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Preface

A computational model is a computer implementation of the solution to a
(scientific) problem for which a mathematical representation has been formu-
lated. These models are applied in various areas of science and engineering to
solve large-scale and complex scientific problems. Developing a computational
model involves studying the problem, formulating a mathematical representa-
tion, implementing the solution, and validating the model by applying com-
puter science concepts, principles, and methods, and usually includes applying
techniques of high-performance computing (HPC).

Computational modeling focuses on reasoning about problems using com-
putational thinking and multidisciplinary/interdisciplinary computing for de-
veloping computational models to solve complex problems. It is the foun-
dation component of computational science, which is an emerging discipline
that includes concepts, principles, and methods from applied mathematics and
computer science.

This book presents an introduction to computational models and their im-
plementation using the Python programming language. This is one of the most
popular programming languages, especially among scientists of a wide variety
of disciplines. One advantage of Python is the higher level of abstraction at the
programming level. Although Fortran and C programming languages are the
ones most suitable for high-performance computing (HPC), Python provides
several packages to improve performance of numerical computing, comparable
to C and Fortran.

Python is a high-level interpreted language that is much slower than C
in general; however, Python provides many ways to optimize critical parts of
code by rewriting them in C. Numpy and all standard libraries are already
optimized in this way, and custom application code can also be optimized, for
instance with PyPy or Cython.

People who think Python is slow for serious number crunching haven’t
used the Numpy and Scipy modules available with Python. Developing soft-
ware with Python on relatively small projects provides one an appreciation
of the dynamically typed nature of this language, which often shortens the
development time. For larger projects this may be a hindrance, as the code
would run slower than, say, its equivalent in C++. Using Numpy and/or Scipy
modules with Python, the code would run as fast as a native C++ program
(where the code in C++ would sometimes take longer to develop). The speed
is achieved from using modules written in C or libraries written in Fortran.

xxvii



xxviii � Preface

An interesting Python/Numpy/C++ related performance question ap-
pears on Benchmarking (python vs. c++ using BLAS) and (numpy) by J.F.
Sebastian. He writes “There is no difference between C++ and Numpy on my
machine.”

Some researchers have commented on the Web that Python has been found
to be a comprehensive, flexible, and easy-to-use language, much more conve-

nient for data science than C/C++ or Java, or even R and MATLAB
R©

in
data mining and big data analysis (using Python modules such as Panda).

The primary goal of this book is to present fundamental and introduc-
tory principles for developing computational models for a wide variety of ap-
plications. The prerequisites are knowledge of programming and Calculus I.
Emphasis is on reasoning about problems, conceptualizing the problem, math-
ematical formulation, and the computational solution that involves computing
results and visualization.

The book emphasizes analytical skill development and problem solving.
The main software tools for implementing computational models are: the
Python programming language interpreter, the several packages available from
the huge Python Library, and an Integrated Development Environment. These
tools are open-source and platform independent (Linux, MacOS, and Win-
dows).

The material in this book is aimed at beginners to advanced undergradu-
ate science (and engineering) students. However, the vision in the book is to
promote and introduce the principles of computational modeling as early as
possible in the undergraduate curricula and to introduce the approaches of
multidisciplinary and interdisciplinary computing.

This book provides a foundation for more advanced courses in scientific
computing, including parallel computing using MPI, grid computing and other
methods and techniques used in high-performance computing. Additional ap-
plied mathematical concepts outside the scope of this book are non-linear
equations, partial differential equations, non-linear optimization, and other
techniques.

Please note that there are many sites on the Web that maintain tuto-
rials on various additional aspects of Python that fall outside the scope of
this book. One such aspect is the installation of the Python interpreter and
the necessary library modules in various operating systems (MacOS, Linux,
Windows). Another topic is the use of several IDEs for developing Python
programs. Another related aspect is the use of graphics for developing GUIs,
which may improve the use of Python programs, by end users.

The material in the book is presented in five parts or sections. The first part
is an overview of problem solving and introduction to simple Python programs.
This part introduces the basic modeling and techniques for designing and
implementing problem solutions, independent of software and hardware tools.

The second part presents an overview of programming principles with
the Python programming language. The relevant topics are basic program-
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ming concepts, data definitions, programming structures with flowcharts and
pseudo-code, solving problems, and algorithms.

The third part introduces Python lists, arrays, basic data structures, object
orientation, linked lists and recursion, and running programs under Linux.

The fourth part applies programming principles and fundamental tech-
niques to implement the relatively simple computational models. It gradually
introduces numerical methods and mathematical modeling principles. Simple
case studies of problems that apply mathematical models are presented. Case
studies are of simple linear, quadratic, geometric, polynomial, and linear sys-
tems using the NumPy package. Computational models that use polynomial
evaluation, computing roots of polynomials, interpolation, regression, and sys-
tems of linear equations are discussed. Examples and case studies demonstrate
the computation and visualization of data produced by computational models.

The fifth part introduces the modeling of linear optimization problems and
several case studies are presented. The problem formulation to implementation
of computational models with linear optimization is shown.

All the Python programs in source code, the data files used, and several
output files (text mode) are posted on the following website:

cs.kennesaw.edu/~jgarrido/comp_models/python_mod

José M. Garrido
Kennesaw, Georgia

www.allitebooks.com

http://www.allitebooks.org
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C HA P T E R 1

Problem Solving and

Computing

1.1 INTRODUCTION

Computer problem solving attempts to derive a computer solution to a real-
world problem, and a computer program is the implementation of the solution
to the problem. A computational model is a computer implementation of the
solution to a (scientific) problem for which a mathematical representation has
been formulated. These models are applied in various areas of science and
engineering to solve large-scale and complex scientific problems.

A computer program consists of data definitions and a sequence of instruc-
tions. The instructions allow the computer to manipulate the input data to
carry out computations and produce desired results when the program exe-
cutes; an appropriate programming language is used.

This chapter discusses problem solving principles and presents elementary
concepts and principles of problem solving, computational models, and pro-
grams.

1.2 COMPUTER PROBLEM SOLVING

Problem solving is the process of developing a computer solution to a given
real-world problem. The most challenging aspect of this process is discovering
the method to solve the problem. This method of solution is described by an
algorithm. A general process of problem solving involves the following steps:

1. Understand the problem.

2. Describe the problem in a clear, complete, and unambiguous form.

3. Design a solution to the problem (algorithm).

4. Develop a computer solution to the problem.

3
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An algorithm is a description of the sequence of steps performed to pro-
duce the desired results, in a clear, detailed, precise, and complete manner.
It describes the computations on the given data and involves a sequence of
instructions or operations that are to be performed on the input data in order
to produce the desired results (output data).

A program is a computer implementation of an algorithm and consists of
a set of data definitions and sequences of instructions. The program is written
in an appropriate programming language and it tells the computer how to
transform the given data into correct results by performing a sequence of
computations on the data. An algorithm is described in a semi-formal notation
such as pseudo-code and flowcharts.

1.3 ELEMENTARY CONCEPTS

A model is a representation of a system, a problem, or part of it. The model
is simpler than, and should be equivalent to, the real system in all relevant
aspects. In this sense, a model is an abstract representation of a problem.
Modeling is the activity of building a model.

Every model has a specific purpose and goal. A model only includes the
aspects of the real problem that were decided as being important, according
to the initial requirements of the model. This implies that the limitations of
the model have to be clearly understood and documented.

An essential modeling method is to use mathematical entities such as num-
bers, functions, and sets to describe properties and their relationships to prob-
lems and real-world systems. Such models are known as mathematical models.

A computational model is an implementation in a computer system of a
mathematical model and usually requires high-performance computational re-
sources to execute. The computational model is used to study the behavior of
a large and complex system. Developing a computational model consists of:

• applying a formal software development process; and

• applying Computer Science concepts, principles, and methods, such as:

– abstraction and decomposition

– programming principles

– data structures

– algorithm structures

– concurrency and synchronization

– Modeling and simulation

– multi-threading, parallel, and distributed computing for high per-
formance (HPC)

Abstraction is a very important principle in developing computational
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models. This is extremely useful in dealing with large and complex problems
or systems. Abstraction is the hiding of the details and leaving visible only
the essential features of a particular system.

One of the critical tasks in modeling is representing the various aspects of
a system at different levels of abstraction. A good abstraction captures the
essential elements of a system, and purposely leaves out the rest.

Computational thinking is the ability of reasoning about a problem and
formulating a computer solution. Computational thinking consists of the fol-
lowing elements:

• Reasoning about computer problem solving.

• The ability to describe the requirements of a problem and, if possible,
design a mathematical solution that can be implemented in a computer.

• The solution usually requires multi-disciplinary and inter-disciplinary
approaches to problem solving.

• The solution normally leads to the construction of a computational
model.

Computational Science integrates concepts and principles from applied
mathematics and computer science and applies them to the various scientific
and engineering disciplines. Computational science is:

• An emerging multidisciplinary area.

• The intersection of the more traditional sciences, engineering, applied
mathematics, and computer science, and focuses on the integration of
knowledge for the development of problem-solving methodologies and
tools that help advance the sciences and engineering areas. This is illus-
trated in Figure 1.1.

• An area that has as a general goal the development of high-performance
computer models.

• An area that mostly involves multi-disciplinary computational models
including simulation.

When a mathematical analytical solution of the model is not possible, a nu-
merical and graphical solution is sought and experimentation with the model
is carried out by changing the parameters of the model in the computer, and
studying the differences in the outcome of the experiments. Further analysis
and predictions of the operation of the model can be derived or deduced from
these computational experiments.

One of the goals of the general approach to problem solving is modeling
the problem at hand, building or implementing the resulting solution using

an interactive tool environment (such as MATLAB
R©
or Octave), Python with

an IDE, or with some appropriate programming language, such as C, C++,
Fortran, or Ada.
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Figure 1.1 Computational science as an integration of several disciplines.

1.4 DEVELOPING COMPUTATIONAL MODELS

Figure 1.2 Development of computational models.

The process of developing computational models consists of a sequence of
activities or stages that starts with the definition of modeling goals and is
carried out in a possibly iterative manner. Because models are simplifications
of reality, there is a trade-off as to what level of detail is included in the model.
If too little detail is included in the model, one runs the risk of missing rele-
vant interactions and the resultant model does not promote understanding. If
too much detail is included in the model, the model may become overly com-
plicated and actually preclude the development of understanding. Figure 1.2
illustrates a simplified process for developing computational models.
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Computational models are generally developed in an iterative manner.
After the first version of the model is developed, the model is executed, re-
sults from the execution run are studied, the model is revised, and more
iterations are carried out until an adequate level of understanding is de-
veloped. The process of developing a model involves the following general
steps:

1. Definition of the problem statement for the computational model. This
statement must provide the description of the purpose for building the
model, the questions it must help to answer, and the type of expected
results relevant to these questions.

2. Definition of the model specification to help define the conceptual model
of the problem to be solved. This is a description of what is to be ac-
complished with the computational model to be constructed, and the
assumptions (constraints) and domain laws to be followed. Ideally, the
model specification should be clear, precise, complete, concise, and un-
derstandable. This description includes the list of relevant components,
the interactions among the components, the relationships among the
components, and the dynamic behavior of the model.

3. Definition of the mathematical model. This stage involves deriving a
representation of the problem solution using mathematical entities and
expressions and the details of the algorithms for the relationships and
dynamic behavior of the model.

4. Model implementation. The implementation of the model can be carried
out with a software environment such as MATLAB and Octave, in a
simulation language, or in a general-purpose high-level programming
language, such as Ada, C, C++, or Java. The simulation software to
use is also an important practical decision. The main tasks in this phase
are coding, debugging, and testing the software model.

5. Verification of the model. From different runs of the implementation
of the model (or the model program), this stage compares the output
results with those that would have been produced by correct implemen-
tation of the conceptual and mathematical models. This stage concen-
trates on attempting to document and prove the correctness of the model
implementation.

6. Validation of the model. This stage compares the outputs of the verified
model with the outputs of a real system (or a similar already developed
model). This stage compares the model data and properties with the
available knowledge and data about the real system. Model validation
attempts to evaluate the extent to which the model promotes under-
standing.
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Figure 1.3 Model development and abstract levels.

A conceptual model can be considered a high-level specification of the
problem and it is a descriptive model. It is usually described with some for-
mal or semi-formal notation. For example, discrete-event simulation models
are described with UML (the Unified Modeling Language) and/or extended
simulation activity diagrams.

The conceptual model is formulated from the initial problem statement,
informal user requirements, and data and knowledge gathered from analysis of
previously developed models. The stages mentioned in the model development
process are carried out at different levels of abstraction. Figure 1.3 illustrates
the relationship between the various stages of model development and their
abstraction level.

1.5 TEMPERATURE CONVERSION

The process of developing a computational model is illustrated in this section
with an extremely simple problem: the temperature conversion problem. A
basic sequence of steps is discussed for solving this problem and for developing
a computational model.

1.5.1 Initial Problem Statement

American tourists visiting Europe do not usually understand the units of tem-
perature used in weather reports. The problem is to devise some mechanism
for indicating the temperature in Fahrenheit from a known temperature in
Celsius.
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1.5.2 Analysis and Conceptual Model

A brief analysis of the problem involves:

1. Understanding the problem. The main goal of the problem is to develop
a temperature conversion facility from Celsius to Fahrenheit.

2. Finding the mathematical representation or formulas for the conversion
of temperature from Celsius to Fahrenheit. Without this knowledge, we
cannot derive a solution to this problem. The conversion formula is the
mathematical model of the problem.

3. Knowledge of how to implement the mathematical model in a com-
puter. We need to express the model in a particular computer tool or
a programming language. The computer implementation must closely
represent the model in order for it to be correct and useful.

4. Knowledge of how to test the program for correctness.

1.5.3 Mathematical Model

The mathematical representation of the solution to the problem is the for-
mula expressing a temperature measurement F in Fahrenheit in terms of the
temperature measurement C in Celsius, which is:

F =
9

5
C + 32. (1.1)

Here, C is a variable that represents the given temperature in degrees
Celsius, and F is a derived variable, whose value depends on C.

A formal definition of a function is beyond the scope of this chapter. In-
formally, a function is a computation on elements in a set called the domain
of the function, producing results that constitute a set called the range of
the function. The elements in the domain are sometimes known as the input
parameters. The elements in the range are called the output results.

Basically, a function defines a relationship between two (or more variables),
x and y. This relation is expressed as y = f(x), so y is a function of x.
Normally, for every value of x, there is a corresponding value of y. Variable x
is the independent variable and y is the dependent variable.

The mathematical model is the mathematical expression for the conver-
sion of a temperature measurement in Celsius to the corresponding value in
Fahrenheit. The mathematical formula expressing the conversion assigns a
value to the desired temperature in the variable F , the dependent variable.
The values of the variable C can change arbitrarily because it is the inde-
pendent variable. The model uses real numbers to represent the temperature
readings in various temperature units.

www.allitebooks.com

http://www.allitebooks.org
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1.6 AREA AND PERIMETER OF A CIRCLE

In this section, another simple problem is formulated: the mathematical
model(s) and the algorithm. This problem requires computing the area and
circumference of a circle, given its radius. The mathematical model is:

cir = 2 π r

area = π r2

The high-level algorithm description in informal pseudo-code notation is:

1. Read the value of the radius of a circle, from the input device.

2. Compute the area of the circle.

3. Compute the circumference of the circle.

4. Print or display the value of the area of the circle to the output device.

5. Print or display the value of the circumference of the circle to the output
device.

A more detailed algorithm description follows:

1. Read the value of the radius r of a circle, from the input device.

2. Establish the constant π with value 3.14159.

3. Compute the area of the circle.

4. Compute the circumference of the circle.

5. Print or display the value of area of the circle to the output device.

6. Print or display the value of cir of the circle to the output device.

The previous algorithm now can be implemented by a program that cal-
culates the circumference and the area of a circle.

1.7 CATEGORIES OF COMPUTATIONAL MODELS

From the perspective of how the model changes state in time, computational
models can be divided into two general categories:

1. Continuous models

2. Discrete models
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A continuous model is one in which the changes of state in the model occur
continuously with time. Often the state variables in the model are represented
as continuous functions of time. These types of models are usually modeled
as sets of difference or differential equations.

For example, a model that represents the temperature in a boiler as part of
a power plant can be considered a continuous model because the state variable
that represents the temperature of the boiler is implemented as a continuous
function of time.

Figure 1.4 Continuous model.

In scientific and engineering practice, a computational model of a real phys-
ical system is often formulated as a continuous model and solved numerically
by applying numerical methods implemented in a programming language.
These models can also be simulated with software tools, such as Simulink
and Scilab, which are computer programs designed for numeric computations
and visualization. Figure 1.4 illustrates how the a variable changes with time.

A discrete model represents a system that changes its states at discrete
points in time, i.e., at specific instants. The model of a simple car-wash system
is a discrete-event model because an arrival event occurs, and causes a change
in the state variable that represents the number of cars in the queue that are
waiting to receive service from the machine (the server). This state variable
and any other only change its values when an event occurs, i.e., at discrete
instants. Figure 1.5 illustrates the changes in the number of cars in the queue
of the model for the simple car-wash system.

Depending on the variability of some parameters, computational models
can be separated into two categories:
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Figure 1.5 Discrete changes of number of cars in the queue.

1. Deterministic models

2. Stochastic models

A deterministic model exhibits a completely predictable behavior. A
stochastic model includes some uncertainty implemented with random vari-
ables, whose values follow a probabilistic distribution. In practice, a significant
number of models are stochastic because the real systems modeled usually in-
clude properties that are inherently random.

An example of a deterministic simulation model is a model of a simple
car-wash system. In this model, cars arrive at exact specified instants (but at
the same instants), and all have exact specified service periods (wash periods);
the behavior of the model can be completely and exactly determined.

The simple car-wash system with varying car arrivals and varying service
demand from each car, is a stochastic system. In a model of this system, only
the averages of these parameters are specified together with a probability
distribution for the variability of these parameters. Uncertainty is included in
this model because these parameter values cannot be exactly determined.

1.8 GENERAL PROCESS OF SOFTWARE DEVELOPMENT

For large software systems, a general software development process involves
carrying out a sequence of well-defined phases or activities. The process is also
known as the software life cycle.

The simplest approach for using the software life cycle is the waterfall
model. This model represents the sequence of phases or activities needed to
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develop the software system through installation and maintenance of the soft-
ware. In this model, the activity in a given phase cannot be started until the
activity of the previous phase has been completed.

Figure 1.6 The waterfall model.

Figure 1.6 illustrates the sequence of phases that are performed in the
waterfall software life cycle. The various phases of the software life cycle are
the following:

1. Analysis, which results in documenting the problem description and
what the problem solution is supposed to accomplish.

2. Design, which involves describing and documenting the detailed struc-
ture and behavior of the system model.

3. Implementation of the software using a programming language.

4. Testing and verification of the programs.

5. Installation, which results in delivery and installation of the programs.

6. Maintenance.

There are some variations of the waterfall model of the life cycle. These
include returning to the previous phase when necessary. More recent trends in
system development have emphasized an iterative approach, in which previous
stages can be revised and enhanced.
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A more complete model of the software life cycle is the spiral model that
incorporates the construction of prototypes in the early stages. A prototype is
an early version of the application that does not have all the final characteris-
tics. Other development approaches involve prototyping and rapid application
development (RAD).

1.9 MODULAR DESIGN

To design and implement large and complex problems, two principles are
essential: decomposition and abstraction. A problem may be too large and
complex to solve as a single unit. An important strategy in problem solving is
divide and conquer. It consists of partitioning a large problem into subproblems
that are smaller, easier to solve, and easier to manage. Each subproblem can be
solved individually. These subproblems or modules need to be well organized
in order to achieve the overall solution to the problem.

The technique used in modular design is top-down design. A more technical
term for this technique is decomposition. The top module is the main module
and includes the high-level solution, or the big picture design. The modules
at the next lower level include more detailed design, and the modules at the
bottom level include the maximum detail of design.

Figure 1.7 Modular design.

The abstraction principle is applied in this technique. The top-level module
includes the design at the highest level of abstraction, and is the easiest to
understand and describe because it includes no details of the design. The
lowest-level modules contain the all the necessary detail, at the lowest level
of abstraction. Applying top-down design results in a hierarchical solution to
a problem and includes multiple levels of abstraction. Figure 1.7 shows the
module hierarchy used in top-down design.

1.10 PROGRAMMING LANGUAGES

A programming language is used by programmers to write programs. This
language contains a defined set of syntax and semantic rules. The syntax rules
describe how to write well-defined statements. The semantic rules describe the
meaning of the statements.
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1.10.1 High-Level Programming Languages

The solution to a problem is implemented by a program written in an appro-
priate programming language. This program is known as the source program
and is written in a high-level programming language.

A high-level programming language is a formal notation in which to write
instructions to the computer in the form of a program. A programming lan-
guage helps programmers in the writing of programs for a large family of
problems.

High-level programming languages are hardware-independent and are
problem-oriented (for a given family of problems). These languages allow more
readable programs, and are easy to write and maintain. Examples of these lan-
guages are C, Fortran, Ada, C++, Eiffel, and Java.

Programming languages like C++ and Java can require considerable effort
to learn and master. The Python programming language is much easier to
learn and use.

There are several integrated development environments (IDE) that facili-
tate the development of programs. Examples of these are: Eclipse, Netbeans,
CodeBlocks, and Codelite. Other tools include IDEs that are designed for
numerical and scientific problem solving that have their own programming
language. Some of these computational tools are MATLAB, Octave, Mathe-
matica, Scilab, Stella, and Maple.

There are several IDEs available for developing scientific applications with
Python. Some of these are Spyder, IEP, Eric, PyDev, WingIDE, Canopy,
Komodo IDE, and Pycharm. The last four are commercial products but the
companies provide an academic version with limited capabilities.

For some programming languages, the source program is compiled (trans-
lated or converted) into an equivalent program in machine code, which is the
only programming language that the computer can understand. The computer
can only execute instructions that are in machine code.

For other programming languages (such as Python), the source program
is interpreted. This means every command in the source program is analyzed
for correct syntax and then it is executed immediately by the interpreter.

The program executing in the computer usually reads input data from the
input device and after carrying out some computations, it writes results to
the output device(s).

1.10.2 Interpreters and Python

An interpreter is a special program that performs syntax checking of a com-
mand in a user program written in a high-level programming language and
immediately executes the command. It repeats this processing for every com-
mand in the program. Examples of interpreters are the ones used for the
following languages: Python, MATLAB, Octave, PHP, and Perl.

As mentioned previously, the Python interpreter reads a command written
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in the Python programming language and immediately executes the command.
A Python program is a file of Python commands, so the program is also known
as a script. Figure 1.8 illustrates the interpretation of a Python command and
the response to the command. In a terminal or command window, all the
interaction with a user takes place by typing Python commands.

Figure 1.8 Python interpreter.

The command prompt is the symbol that the Python interpreter dis-
plays on the window to alert the user that it is waiting for a command. The
Python prompt is >>> and is used for interactive mode of computing with
Python. In a terminal window, the user starts the Python interpreter sim-
ply by typing python at the Linux prompt (Bash shell). After the interpreter
starts, the Python prompt >>> is displayed.

The following commands were typed on a PC with Linux. The first com-
mand typed is a simple assignment of 15 to variable num. By typing the name
of the variable, the interpreter displays the value associated with it (15). The
next command typed assigns the value 20.6 to variable y and the command
after that assigns the value 2.56 to variable x. After that, another command
assigns the value 200 to variable j. Note how the Python interpreter immedi-
ately responds to a command; this is the interactive mode of using Python.

$ python

Python 2.7.8 (default, Oct 20 2014, 19:24:18)

[GCC 4.9.1] on linux2

Type "help", "copyright", "credits" or "license" for more

information.

>>> num = 15

>>> num

15

>>> y = 20.6

>>> y

20.6

>>> x = 2.56

>>> j = 200

>>> j

200

>>>
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The Python interpreter assumes that y is a non-integer numeric variable
since the constant value 20.6 is assigned to y. The same applies to variable x.
Variable j is an integer variable because the integer constant 200 is assigned to
it. The following command performs a multiplication of the values of variables
y and x, the intermediate result is added with constant 125.25, and the final
resulting value of this computation is assigned to variable z. When there is
no assignment to a variable, the Python interpreter displays the value of the
variable. The next few lines show slightly more complex calculations.

>>> z = y * x + 125.25

>>> z

177.986

>>> z / 12.5

14.23888

>>>

1.10.3 Compilers

A compiler is a special program that translates another program written in a
programming language into an equivalent program in binary or machine code,
which is the only language that the computer accepts for processing.

In addition to compilation, an additional step known as linking is re-
quired before a program can be executed. Examples of programming lan-
guages that require compilation and linking are C, C++, Eiffel, Ada, and
Fortran. Other programming languages, such as Java, require compilation and
interpretation.

1.10.4 Compiling and Execution of Java Programs

Figure 1.9 Compiling a Java source program.

To compile and execute programs written in the Java programming lan-
guage, two special programs are required, the compiler and the interpreter.
The Java compiler checks for syntax errors in the source program and trans-
lates it into bytecode, which is the program in an intermediate form. The Java
bytecode is not dependent on any particular platform or computer system.
To execute this bytecode, the Java Virtual Machine (JVM), carries out the
interpretation of the bytecode.

Figure 1.9 shows what is involved in compilation of a source program in
Java. The Java compiler checks for syntax errors in the source program and



18 � Introduction to Computational Models with Python

then translates it into a program in bytecode, which is the program in an
intermediate form.

Figure 1.10 Executing a Java program.

The Java bytecode is not dependent on any particular platform or com-
puter system. This makes the bytecode very portable from one machine to
another.

Figure 1.10 shows how to execute a program in bytecode. The Java virtual
machine (JVM) carries out the interpretation of the program in bytecode.

1.10.5 Compiling and Executing C Programs

Figure 1.11 Compiling a C program.

Programs written in C must be compiled, linked, and loaded into memory
before executing. An executable program file is produced as a result of link-
ing. The libraries are a collection of additional code modules needed by the
program. Figure 1.11 illustrates the compilation of a C program. Figure 1.12
illustrates the linkage of the program. The executable program is the final
form of the program that is produced. Before a program starts to execute in
the computer, it must be loaded into the memory of the computer.

Figure 1.12 Linking a C program.
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1.11 PRECISION, ACCURACY, AND ERRORS

Performing numerical computations involves considering several important
concepts:

• Number representation

• The number of significant digits

• Precision and accuracy

• Errors

1.11.1 Number Representation

Numeric values use numbers that are represented in number systems. Numbers
based on decimal representation use base 10. This is the common number rep-
resentation used by humans. There are three other relevant number systems:
binary (base 2), octal (base 8), and hexadecimal (base 16). Digital computers
use the base 2, or binary, system. In a digital computer, a binary number
consists of a number of binary digits or bits.

Any number z that is not zero (z 6= 0) can be written in scientific notation
using decimal representation in the following manner:

z = ± . d1d2d3 · · · ds × 10p.

Each di is a decimal digit (has a value from 0, 1 . . .9). Assuming that
d1 > 0, the part of the number d1d2d3 · · · ds is known as the fraction, or
mantissa or significand of z. The quantity p is known as the exponent and its
value is a signed integer.

The number z may be written using a binary representation, which uses
binary digits or bits and base 2.

z = ± . b1b2b3 · · · br × 2q

To represent the significand using a binary representation, the number of
bits is different than the number of decimal digits in the decimal representation
used previously. The exponent q also has a different value than the exponent
p that is used in the decimal representation.

In a computer, most computations with numbers are performed in floating-
point arithmetic in which the value of a real number is approximated with a
finite number of digits in its mantissa, and a finite number of digits in its
exponent. In this number system, a real number that is too big cannot be
represented and causes an overflow. In a similar manner, a real number that
is too small cannot be represented and causes an underflow.
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1.11.2 Number of Significant Digits

The number of significant digits is the number of digits in a numeric value
that defines it to be correct. In engineering and scientific computing, it is
convenient and necessary to be able to estimate how many significant digits
are needed in the computed result.

The number of bits in a binary number determines the precision with
which the binary number represents a decimal number. A 32-bit number can
represent approximately seven digits of a decimal number. A 64-bit binary
number can represent 13 to 14 decimal digits.

1.11.3 Precision and Accuracy

Precision refers to how closely a numeric value used represents the value it
is representing. Accuracy refers to how closely a number agrees with the true
value of the number it is representing. Precision is governed by the number of
digits being carried in the numerical calculations. Accuracy is governed by the
errors in the numerical approximation; precision and accuracy are quantified
by the errors in a numerical calculation.

1.11.4 Errors

An error is the difference between the true value tv of a number and its
approximate value av. The relative error is the proportion of the error with
respect to the true value.

error = tv − av

rel error =
error

tv

The accuracy of a numerical calculation is quantified by the error of the
calculation. Several types of errors can occur in numerical calculations.

• Errors in the parameters of the problem

• Algebraic errors in the calculations

• Iteration errors

• Approximation errors

• Roundoff errors

An iteration error is the error in an iterative method that approaches
the exact solution of an exact problem asymptotically. Iteration errors must
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decrease toward zero as the iterative process progresses. The iteration error
itself may be used to determine the successive approximations to the exact
solution. Iteration errors can be reduced to the limit of the computing device.

An approximation error is the difference between the exact solution of an
exact problem and the exact solution of an approximation of the exact prob-
lem. Approximation error can be reduced only by choosing a more accurate
approximation of the exact problem.

A roundoff error is the error caused by the finite word length employed
in the calculations. Roundoff error is more significant when small differences
between large numbers are calculated. Most computers have either 32-bit or
64-bit word length, corresponding to approximately 7 or 13 significant deci-
mal digits, respectively. Some computers have extended precision capability,
which increases the number of bits to 128. Care must be exercised to ensure
that enough significant digits are maintained in numerical calculations so that
roundoff is not significant.

In many engineering and scientific calculations, 32-bit arithmetic is suffi-
cient. However, in many other applications, 64-bit arithmetic is required. In
a few special situations, 128-bit arithmetic maybe required. Such calculations
are called double precision or quad precision, respectively. Many computations
are evaluated using 64-bit arithmetic to minimize roundoff errors.

A floating-point number has three components: sign, the exponent, and the
significand. The exponent is a signed integer represented in biased format (a
fixed bias is added to it to make it into an unsigned number). The significand
is a fixed-point number in the range [1, 2). Because the binary representation
of the significand always starts with one (1) and dot, this is fixed and hidden
and only the fractional part of the significand is explicitly represented.

Except for integers and some fractions, all binary representations of dec-
imal numbers are approximations, because of the finite number of bits used.
Thus, some loss of precision in the binary representation of a decimal number
is unavoidable. When binary numbers are combined in arithmetic operations
such as addition, multiplication, etc., the true result is typically a longer bi-
nary number which cannot be represented exactly with the number of available
bits in the binary number capability of the digital computer. Thus, the results
are rounded off in the last available binary bit. This rounding off gives rise to
roundoff errors, which can accumulate as the number of calculations increases.

The most common representation of numbers for computations dealing
with values in a wide range is the floating-point format. The IEEE floating-
point standard format (ANSI/IEEE Standard 754-1985) is used by the com-
puter industry. Other formats will differ in their parameters and representation
details, but the basic tradeoffs and algorithms remain the same.

Two of the most common floating-point formats are short (32-bit) and
long (64-bit) floating-point formats. The short format has adequate range and
precision for most common applications (magnitudes ranging from 1.2× 1038

to 3.4 × 1038). The long format is used for highly precise computations or
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those involving extreme variations in magnitude (from about 2.2 × 10308 to
1.8× 10308).

The value zero has no proper representation. For zero and other special
values, the smallest and largest exponent codes (all 0s and all 1s in the biased
exponent field) are not used for ordinary numbers. An all-0s word (0s in
sign, exponent, and significand fields) represents +0; similarly, 0 and ±∞
have special representations, as does any nonsensical or indeterminate value,
known as “not a number” (NaN).

When an arithmetic operation produces a result that is not exactly rep-
resentable in the format being used, the result must be rounded to some
representable value. The ANSI/IEEE standard prescribes several rounding
options.

1.12 SUMMARY

Application programs are ones with which the user interacts to solve par-
ticular problems. Computational models are used to solve large and complex
problems in the various scientific and engineering disciplines. These models are
implemented by computer programs coded in a particular programming lan-
guage. There are several standard programming languages, such as C, C++,
Eiffel, Ada, Java. Compilation is the task of translating a program from its
source language to an equivalent program in machine code. Other languages
used in scientific computing such as Python, MATLAB, and Octave are inter-
preted. Computations are carried out on input data by executing individual
commands or complete programs.

Key Terms

computational model mathematical model abstraction
algorithm conceptual model model development
compilers linkers interpreters
programs commands instructions
programming language Java C
C++ Eiffel Ada
Python interpreter program execution
data definition Source code high-level language
simulation model keywords identifiers

1.13 EXERCISES

1.1 Explain the differences between a computational model and a mathe-
matical model.



Problem Solving and Computing � 23

1.2 Explain the reason why the concept of abstraction is important in de-
veloping computational models.

1.3 Investigate and write a short report on the programming languages used
to implement computational models.

1.4 What is a programming language? Why are they needed?

1.5 Explain why there are many programming languages.

1.6 What are the differences between compilation and interpretation in high-
level programming languages?

1.7 Explain the purpose of compilation. How many compilers are necessary
for a given application? What is the difference between program compi-
lation and program execution? Explain.

1.8 What is the real purpose of developing a program? Can we just use a
spreadsheet program to solve numerical problems? Explain.

1.9 Explain the differences between data definitions and instructions in a
program written in a high-level programming language.

1.10 For developing small programs, is it still necessary to use a software
development process? Explain. What are the main advantages in using
a process for program development? What are the disadvantages?





C HA P T E R 2

Simple Python Programs

2.1 INTRODUCTION

This chapter presents an overview of the structure of a computer program,
which include data definitions and basic instructions using the Python pro-
gramming language. Because functions are one of the building blocks and
the fundamental components of Python programs, the concepts of function
definitions and function invocations are gradually explained, and complete
Python programs are introduced that illustrate further the role of functions.
This chapter also presents concepts and principles that are used in develop-
ing computational models by implementing two mathematical models with
Python programs.

2.2 COMPUTING WITH PYTHON

There two modes of computing with Python:

• Interactive mode, which provides the Python prompt indicated by >>>.
Each Python command is directly entered and the Python interpreter
responds immediately to the command.

• Script mode, which is a sequence of Python commands in a file with a
.py extension. This file is passed to the Python interpreter to process
and is known as a script. A typical Python program is edited and stored
as a script and an appropriate text editor is used to build a program as
a Python script.

2.2.1 Using Interactive Mode with Simple Operations

The following Python command listing on Linux shows several Python instruc-
tions in interactive mode. These instructions set the value 34.5 to variable y,
the value 12.48 to variable x, and then adds the values of variables x and y;
the result is assigned to variable z. By typing the name of the variable, the
Python interpreter responds displaying its value.

25
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$ linux

Python 2.7.6 (default, Mar 22 2014, 22:59:38)

[GCC 4.8.2] on linux2

Type "help", "copyright", "credits" or "license" for more

information.

>>> y = 34.5

>>> y

34.5

>>> x = 12.48

>>> x

12.48

>>> z = x + y

>>> z

46.980000000000004

>>>

2.2.2 Mathematical Operations

To increment the value of a variable that has an integer value is straight-
forward; the instruction adds the previous value of the variable with the in-
crement value and the result becomes the new value of the variable. In the
following example, variable ix is given a value of 6. Then the next command
increments the value of the ix variable by 1, and therefore the new value of
variable ix is 7. Note that a variable must be defined (assigned a value to it)
before it can be used in an operation.

>>> ix = 6

>>> ix = ix + 1

>>> ix

7

Integer division only produces an integer quotient; for example, variable ix
has a value of 7 and when is divided by 3 results in 2. To get the remainder,
the modulus operator (%) is used.

>>> id = ix / 3

>>> id

2

>>> iy = ix % 3

>>> iy

1

Non-integer numbers are known as floating-point numbers. In the following
example, the first statement assigns the constant value 21.5 to variable y. The
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second statement assigns the value 4.5 to variable x. In the third assignment
statement, the expression y + 1.5× x3 is evaluated and the resulting value is
assigned to variable z.

>>> y = 21.5

>>> y

21.5

>>> x = 4.5

>>> x

4.5

>>> z = y + 1.5 * x**3

>>> z

158.1875

Complex numbers are represented by a pair of values known as the real part
and the imaginary part, which is written with a suffix of j . In Python, these
are always floating-point numbers. The following lines of Python commands
illustrate the use of complex numbers. Variable z is defined as a complex
variable, and its value is a complex number. Function complex() is used to
create the complex number. The value of z is (2.5− 5.32j). The real part of a
complex number can be retrieved by using the attribute real of the complex
number and the imaginary part by using the attribute imag after the dot sign.

>>> x = 2.5

>>> y = -5.32

>>> z = complex(x, y)

>>> z

(2.5-5.32j)

>>> rp = z.real

>>> rp

2.5

>>> ip = z.imag

>>> ip

-5.32

2.2.3 More Advanced Mathematical Expressions

Simple arithmetic expressions are used in assignment statements. These are
addition, subtraction, multiplication, division, and exponentiation. More com-
plex calculations use various numerical functions, such as square root and
trigonometric functions. These expressions apply the mathematical functions
cos and sqrt that are defined in the math module. The import command is
used to gain access to a module.
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>>> from math import *

>>> pi

3.141592653589793

>>> PI = pi

>>> ss6 = cos(0.5*PI)

>>> ss6

6.123233995736766e-17

>>> ss7 = cos(0.25*PI)

>>> ss7

0.7071067811865476

>>> yy = exp(x)

>>> yy

961965785544776.4

>>> zz = exp(1.0e-5) - 1

>>> zz

1.0000050000069649e-05

>>> ff = acos(0.45)

>>> ff

1.1040309877476002

>>> mfact = factorial(5)

>>> mfact

120

In the following example, the value of the expression cos p+ q is assigned
to variable y and the value of

√
x− y is assigned to variable q.

>>> p = 0.2 * PI

>>> q = 2.34

>>> y = cos(p) + q

>>> y

3.1490169943749473

>>> q = sqrt(x - y)

>>> q

1.1623179451531551

In the following example, the value of the mathematical expression xn ×
y × sin2m x is assigned to variable z:

>>> x = 2.5

>>> y = -5.32

>>> n = 3.75

>>> m = 4

>>> z = (x**n) * y * sin(x)**(2*m)

>>> z

-2.719807659910173
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2.2.4 Scientific Notation

Scientific notation is used to display very large and very small floating-point
values. It is written with a letter e after the floating-point value followed by
an integer exponent. In the following example, the mathematical equivalent
for the first value of variable y is 5.77262× 1012. Scientific notation can also
be used in mathematical expressions with assignments.

>>> y = 5.77262e+12

>>> y

5772620000000.0

>>> x = 5.4e8 + y

>>> x

5773160000000.0

>>> y = x * 126.5e10

>>> y

7.3030474e+24

2.3 PROGRAMS

A program consists of data definitions and instructions that manipulate the
data. These are:

• Data definitions, which indicate the data to be manipulated by the in-
structions.

• A sequence of instructions, which perform the computations on the data
in order to produce the desired results.

2.4 DATA DEFINITIONS

The data in a program consists of one or more data items. These are manipu-
lated or transformed by the computations (computer operations). In Python,
each data definition is specified by assigning a value to a variable and has:

• a reference, which is a variable with a unique name to refer to the data
item, and

• a value associated with it.

The name of the reference (variable) to a data item is an identifier and
is defined by the programmer; it must be different from any keyword in the
programming language.
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2.4.1 Data Objects

In Python, the data items are known as data objects and every variable refer-
ences a data object. If the value associated with a data object does not change,
then the data object is said to be immutable, otherwise it is mutable.

The three most important attributes of a data object are:

• the identity, which is the location (address) of the data object in the
computer memory;

• the type, which defines the operations are allowed for the data object;
and

• the value, which can be changed (mutable) or not (immutable).

2.4.2 Variables

As mentioned previously, a variable is a reference to a data object and the
name of the variable is used in a program for uniquely identifying the variable
and is known as an identifier. The special text words or symbols that indicate
essential parts of a programming language are known as keywords. These are
reserved words and cannot be used for any other purpose.

A problem that calculates the area of a triangle uses four variables. Ex-
amples of the names for these variables are a, b, c, and area.

2.4.3 Using Data Objects and Variables

In the following listing of Python commands, the first three commands include
three assignments to variables x, y, and z. The fourth Python command uses
the Python function id() to get the address of the data object referenced by
variable x and this address is 19290088. Note that the address of the referenced
object with variables y and z is the same, because these two variables refer
to the same data object. After changing the value of variable y, the reference
is different because now variable y refers to a different data object. Note that
the # symbol is used to include a comment on a source line and has no effect
on the instruction.

>>> x = 5.33

>>> y = 6

>>> z = y # these now refer to the same data object

>>> id(x) # get identity of data object

19290088

>>> id(y)

19257084

>>> id(z)

19257084
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>>> y = y + 1

>>> id(y)

19257072

>>> id(z)

19257084

>>> z = z + 1

>>> id(z)

19257072

>>> type(x)

<type ’float’>

>>> type(y)

<type ’int’>

>>>

2.4.4 Basic Data Types

The fundamental data types are classified into the three categories:

• Numeric

• Text

• Boolean

The numeric types are further divided into two basic types, integer , and
float . Values of integer type are those that are countable to a finite value, for
example, age, number of parts, number of students enrolled in a course, and
so on. Values of type float have a decimal point; for example, cost of a part,
the height of a tower, current temperature in a boiler, a time interval. These
values cannot be expressed as integers.

In the Python commands of the previous example, the Python function
type() is used to get the type variable x and of variable y. Note that the type
of variable x is float and the type of variable y is int.

Text data items are of type string and consist of a sequence of characters.
The values for this types of data items are text values. An example of a string
is the text value: ’Welcome!’.

The third data type is used for data objects whose values can take any of
two truth values (True or False); these data objects are of type bool.

2.5 SIMPLE PYTHON PROGRAMS

A very simple program consists of data definitions and a sequence of instruc-
tions. The script mode is normally used for writing Python programs. Instruc-
tions are written into a text file using an appropriate text editor such as gedit
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on Linux and Notepad++ on Windows. The text file with the source code is
known as a script and has a .py extension.

An instruction performs a specific manipulation or computation on the
data, it is written as a language statement in the program.

2.5.1 The Assignment Statement

As discussed in previous examples, the assignment statement is the most fun-
damental statement (high-level instruction); its general form is:

〈 variable name 〉 = 〈 expression 〉

The assignment operator is denoted by the = symbol and on the left side of
this operator a variable name must always be written. On the right side of the
assignment operator, an expression is written. The Python interpreter evalu-
ates the expression on the right-hand side of the assignment and the result is
assigned to the variable on the left-hand side of the assignment operator.

In the following example, the first Python statement is a simple assignment
that assigns the value 34.5 to variable x. The second assignment statement is
a slightly more complex assignment that performs an addition of the value of
variable x and the constant 11.38. The result of the addition is assigned to
variable y.

x = 34.5

y = x + 11.38

2.5.2 Basic Input and Output Instructions

Input and output statements are used to read (input) data values from the
input device (e.g., the keyboard) and write (output) data values to an output
device (the computer screen).

2.5.2.1 Output Statement

In Python, the print statement is used for the output of variables and text
strings. This output statement writes the value of one or more variables to
the output device. The variables do not change their values. The general form
of the output statement in Python is:

print 〈 data list 〉

For example, in the following Python statements, the line will simply dis-
play the value of variable y on the screen. The second output displays the
string literal “value of x= ”, followed by the value of variable x.
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print y

print "value of x= ", x

Note that the print instruction is a statement in Python 2; it is a function
in Python 3 and is written as:

print (y)

print ("value of x= ", x)

2.5.2.2 Input Statements

The input statement reads a value of a variable from the input device (e.g., the
keyboard). This statement is written with the function input, for of a single
data value and assign to a variable. The following two lines of pseudo-code
include the general form of the input statement and an example that uses the
read statement to read a value of variable y.

〈 var name 〉 = input ( 〈 string lit〉 )

The following example displays the string literal “Enter value of y: ” and
reads the value of variable y.

y = input ("Enter value of y: ")

2.5.3 Example Scripts with Input/Output

The following script computes 75% of the value of variable y. The name of
the script is prog01.py.

y = 34.5

print (y)

y = y * 0.75

print(y)

At the Linux prompt, the Python interpreter is run with script prog01.py.
The interpreter will execute every Python command in sequence (one after the
other) and the results are displayed on the screen.

$ python prog01.py

34.5

25.875
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The next script has more output but it carries out the same computations.
The first line of the script is only a comment; it starts with the pound (#)
symbol. The name of this second script is prog02.py.

# This script computes 75% of the value of y

y = 34.5

print "Initial value of y: ", y

y = y * 0.75

print "Final value of y: ", y

This script is started by invoking the Python interpreter with the name of
the script, prog02.py.

$ python prog02.py

Initial value of y: 34.5

Final value of y: 25.875

The third script performs the same computations as the first two scripts.
The main difference is that it inputs the value of variable y; in other words,
the user of the program will enter the value of y.

# This script computes 75% of the value of y

y = input ("Enter initial value of y: ")

print "Initial value of y: ", y

y = y * 0.75

print "Final value of y: ", y

This script is started by invoking the Python interpreter with the name of
the script, prog03.py.

$ python prog03.py

Enter initial value of y: 34.5

Initial value of y: 34.5

Final value of y: 25.875

2.6 A SIMPLE PROBLEM: TEMPERATURE CONVERSION

This section revisits and implements in Python the temperature conversion
problem, which was discussed in the previous chapter. The solution and im-
plementation is derived by following a basic sequence of steps.

The problem: given the value of the temperature in degrees Celsius, com-
pute the corresponding value in degrees Fahrenheit and show this result.
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2.6.1 Mathematical Model

The mathematical representation of the solution to the problem, the formula
expressing a temperature measurement F in Fahrenheit in terms of the tem-
perature measurement C in Celsius is:

F =
9

5
C + 32.

The solution to the problem is the mathematical expression for the con-
version of a temperature measurement in Celsius to the corresponding value
in Fahrenheit. The mathematical formula expressing the conversion assigns a
value to the desired temperature in the variable F , the dependent variable.
The values of the variable C can change arbitrarily because it is the indepen-
dent variable. The mathematical model uses real numbers to represent the
temperature readings in various temperature units.

2.6.2 Computational Model

The computational model is derived by implementing the mathematical model
in a program using the Python programming language. This model is devel-
oped using a Terminal window Linux. In a similar manner to the previous ex-
amples, the computational model is developed by writing a Python program
as a script using the gedit text editor, then executing the Python interpreter
with the script.

The Python program is very simple and Listing 2.1 shows the complete
source code.

Listing 2.1: Temperature conversion program.

1 """

2 Program : tconvctof.py

3 Author : Jose M Garrido

4 Date : 5-12-2014

5 Description : Read value of temperature Celsius from

6 console, convert to degrees Fahrenheit, and display

7 value of this new temperature value on the output

8 console */

9 """

10

11 C = input("Enter value of temp in Celsius: ")

12 F = C * (9.0/5.0) + 32.0 # temperature in Fahrenheit

13 print "Value of temperature in Celsius: ", C

14 print "Temperature in Fahrenheit: ", F

Lines 1–9 are part of a multi-line comment. The computation of the tem-
perature in Fahrenheit is performed in line 12 using an assignment statement.



36 � Introduction to Computational Models with Python

The following listing shows the interpretation of the commands in the script
tconvctof.py by executing the Python interpreter.

$ python tconvctof.py

Enter value of temp in Celsius: 25.0

Value of temp in Celsius: 25.0

Temperature in Fahrenheit: 77.0

This procedure can be repeated several times to compute the Fahrenheit
temperature starting with a given value of 10.0 for the temperature in Celsius
and then repeating in increments of 5.0 degrees Celsius. The last computation
is for a given value of 45.0 degrees Celsius.

Table 2.1 shows the values of temperature in Celsius from 5.0 to 45.0 used
to compute the corresponding temperature in Fahrenheit. This is a short set
of results of the original problem. Figure 2.1 shows a plot of the values of
temperature computed.

Table 2.1 Celsius and Fahrenheit temperatures.

Celsius 5 10 15 20 25 30 35 40 45
Fahrenheit 41 50 59 68 77 86 95 104 113

Figure 2.1 Plot of the values of temperature Celsius and Fahrenheit.
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2.7 DISTANCE BETWEEN TWO POINTS

2.7.1 Problem Statement

The following problem requires computing the distance between two points in
a Cartesian plane. A program is to be developed that computes this distance,
given the values of the coordinates of the two points.

2.7.2 Analysis of the Problem

A Cartesian plane consists of two directed lines that perpendicularly intersect
their respective zero points. The horizontal directed line is called the x-axis
and the vertical directed line is called the y-axis. The point of intersection of
the x-axis and the y-axis is known as the origin and is denoted by the letter
O.

Figure 2.2 shows a Cartesian plane with two points, P1 and P2. Point P1

is defined by two coordinate values (x1, y1) and point P2 is defined by the
coordinate values (x2, y2).

Figure 2.2 Horizontal and vertical distances between two points.

2.7.3 Design of the Solution

The horizontal distance between the two points, ∆x, is computed by the
difference x2 − x1. Similarly, the vertical distance between the two points
is denoted by ∆y and is computed by the difference y2 − y1. The distance,
d, between two points P1 and P2 in a Cartesian plane, is calculated with the
following mathematical expression:
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d =

√

∆x2 +∆y2.

A detailed design in an algorithm follows:

1. Read the values of the coordinates for point P1 from input device (key-
board).

2. Read the values of the coordinates for point P2 from the input device.

3. Compute the horizontal distance, ∆x, between the two points:

∆x = x2 − x1.

4. Compute the vertical distance, ∆y, between the two points:

∆y = y2 − y1.

5. Compute the distance, d, between the two points:

d =

√

∆x2 +∆y2.

6. Display the value of the distance between the two points, on the output
device (video screen).

2.7.4 Implementation

This phase implements the design by coding a program in Python, running the
Python interpreter with the corresponding script, and testing the program.
Listing 2.1a shows the source program, which is stored in file distpoints.py.

Listing 2.1a: A program to compute the distance between two points.

1 """

2 Program : distpts.py

3 Author : Jose M Garrido, January, 20, 2014.

4 Description : This program computes the distance

5 between two points in a Cartesian plane.

6 """

7

8 import math

9 x1 = input ("Enter value of x-coordinate of P1: ")

10 y1 = input ("Enter value of y-coordinate of P1: ")

11 print "Coordinates of P1: ", x1, y1

12 x2 = input ("Enter value of x-coordinate of P2: ")

13 y2 = input ("Enter value of y-coordinate of P2: ")

14 print "Coordinates of P2: ", x2, y2
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15

16 # compute horizontal distance between points

17 dx = x2 - x1

18

19 # compute vertical distance between points

20 dy = y2 - y1

21 print "Horizontal and vertical distances: ", dx, dy

22

23 # compute the distance between the points

24 d = math.sqrt( dx ** 2 + dy ** 2 )

25

26 # display result

27 print "Distance between P1 and P2: ", d

The following listing shows the Python interpretation of the script
distpts.py with the input values shown.

$ python distpts.py

Enter value of x-coordinate of P1: 2.25

Enter value of y-coordinate of P1: 1.5

Coordinates of P1: 2.25 1.5

Enter value of x-coordinate of P2: 1.3

Enter value of y-coordinate of P2: 0.45

Coordinates of P2: 1.3 0.45

Horizontal and vertical distances: -0.95 -1.05

Distance between P1 and P2: 1.41598022585

2.8 GENERAL STRUCTURE OF A PYTHON PROGRAM

A typical program in the Python language has the general structure as shown
in Figure 2.3. It consists of several parts:

1. The import commands are optional but they are present in almost all
Python programs. Each of these uses the import statement and allows
the program access to the definitions and code in the specified Python
module.

2. Global data, which may consist of assignments of values to variables, in
a similar manner as described previously. These are global data because
they can be used by all functions in the program.

3. Definition of functions. This is an optional component of a Python pro-
gram but it is almost always present. When present, one or more func-
tions are defined in this part of the program. In Figure 2.3, a function
is defined with name myfuncta.

www.allitebooks.com

http://www.allitebooks.org
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Figure 2.3 General structure of a Python program.

4. Definition of classes. This is another optional component in a Python
program. A class definition allows the program to create objects of that
class. When present, one or more classes are defined in this part of the
program.

5. The instructions are Python statements that invoke or call the functions
in the program and/or in the imported modules. These instructions can
also create and manipulate objects using the class definitions in the
program and/or in the imported modules.

Function definitions can be programmer-defined functions that are invoked
(or called) in the program. The other functions that can be called are the
built-in functions provided by standard Python interpreter libraries or by
other Python modules. A library is a collection of related function definitions
and/or class definitions that may also include data.

A function starts executing when it is called by another function or by
an instruction in the program. Before a function can be called in a Python
program, a function definition is required. Once a function is defined, it can be
called or invoked by any other function or by an instruction in the program.
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2.9 SIMPLE FUNCTIONS

A Python program is normally decomposed into modules, and these are divided
into classes and functions. A function carries out a specific task in a program.

As mentioned previously, data in a function is known only to that
function—the scope of the data is local to the function. The local data in a
function has a limited lifetime; it only exists during execution of the function.

2.9.1 Function Definitions

A simple Python program consists of functions and instructions that call or
invoke the various functions. Figure 2.4 illustrates the general structure of a
function in the Python language.

Figure 2.4 Structure of a python function.

In the source code, the general syntactical form of a function in the Python
programming language is written as follows:

def function_name ( [parameters] ) :

[ local declarations ]

[ executable language statements ]

The relevant internal documentation of the function definition is described
in one or more lines of comments, which begins with the characters (”””) and
ends with (”””).

The local data definitions in the function are optional. The instructions
implement the body of the function. The following Python source code shows
a simple function for displaying a text message on the screen.

def show_message () :

"""

This function displays a message
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on the screen.

"""

print("Computing data")

This is a very simple function and its only purpose is to display a text
message on the screen. This function does not declare parameters and the
type of this function is void to indicate that this function does not return a
value.

2.9.2 Function Calls

The name of the function is used when calling or invoking the function by
some other function. The function that calls another function is known as the
calling function; the second function is known as the called function. When a
function calls or invokes another function, the flow of control is altered and
the second function starts execution immediately.

Figure 2.5 A function calling another function.

When the called function completes execution, the flow of control is trans-
ferred back (returned) to the calling function and it continues execution from
the point after it called the second function.

Figure 2.5 illustrates an instruction calling function functb. After complet-
ing its execution, function functb returns the flow of control to the instruction
that performed the call.

An example of this kind of function call is the call to function
show message, discussed previously. In Python, the statement that calls a
simple function uses the function name and an empty parentheses pair. For
example, the call to function show message is written as:

show_message()

Listing 2.2 shows a Python program that defines function show message
then calls the function. This program is stored in file shmessp.py.

Listing 2.2: Python program that defines and calls a function.
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2 # Program : shmessp.py

3 # Author : Jose M Garrido, May 28 2014.

4 # Description : Define and call a simple function.

5

6 def show_message():

7 """

8 This function displays a message

9 on the screen

10 """

11 print "Computing results ..... "

12

13 y = input("Enter a number: ")

14 sqy = y * y

15 show_message()

16 print "square of the number is: ", sqy

The function is defined in lines 6–11 and the function is called in line 15.
The following listing shows the Python interpretation of the script shmessp.py.

$ python shmessp.py

Enter a number: 12

Computing results .....

square of the number is: 144

2.10 SUMMARY

The structure of a Python computer program includes data definitions, func-
tion definitions, class definitions, and basic instructions that manipulate the
data. Functions are one of the building blocks and fundamental components
of Python programs. Functions are first defined and then called in Python
programs. These basic programming constructs are used in developing com-
putational models by implementing the corresponding mathematical models
with Python programs.

Key Terms

programs functions function invocation
function call assignment statement assignment operator
local declaration variables constants
function definition class definitions scope
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2.11 EXERCISES

2.1 Why are functions defined and used in programs? Explain.

2.2 Develop a computational model (with a Python program) that computes
the area of a right triangle given values of the altitude and the base.

2.3 Develop a computational model (with a Python program) that computes
the distance between two points in a plane: P1 with coordinates (x1, y1),
and P2 with coordinates (x2, y2). Use the coordinate values: (2, 3) and
(4, 7).

2.4 Develop a computational model that computes the temperature in Cel-
sius, given the values of the temperature in Fahrenheit.

2.5 Develop a computational model that computes the circumference and
area of a square, given the values of its sides.

2.6 Develop a computational model (with a Python program) that computes
the slope of a line between two points in a plane: P1 with coordinates
(x1, y1), and P2 with coordinates (x2, y2). Use the coordinate values:
(0,−3/2) and (2, 0).
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C HA P T E R 3

Modules and Functions

3.1 INTRODUCTION

A program is usually partitioned into modular units, and in Python, these are
modules, classes, and functions. A function is the most fundamental module
or decomposition unit in Python programs. When called (invoked), a function
carries out a specific task in a program and can receive input data from another
function; these input data are known as arguments. The function can also
return output data when it completes execution.

This chapter provides details on function definitions, invocation, and de-
composition. It also discusses the basic mechanisms for data transfer between
two functions; several examples are included that call mathematical built-in
functions.

3.2 MODULAR DECOMPOSITION

A problem is often too large and complex to deal with as a single unit. In
problem solving and algorithmic design, the problem is partitioned into smaller
problems that are easier to solve. The final solution consists of an assembly
of these smaller solutions. The partitioning of a problem into smaller parts is
known as decomposition. These small parts are sometimes known as modular
units, which are much easier to develop and manage.

System design usually emphasizes modular structuring, also called modu-
lar decomposition. With this approach, the solution to a problem consists of
several smaller solutions corresponding to each of the subproblems. A problem
is divided into smaller problems (or subproblems), and a solution is designed
for each subproblem. These modular units are considered building blocks for
constructing larger and more complex algorithms.

In addition to calling programmer-defined functions, the instructions in
the program can call built-in functions provided by standard Python inter-
preter libraries or by other Python modules. A library is a collection of related
function definitions and/or class definitions that may also include data.

As mentioned in the previous chapter, a function starts executing when it
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is called by an instruction in the program. Before a function can be called in a
Python program, a function definition is required. Once a function is defined,
it can be called or invoked one or more times.

3.3 FUNCTIONS

A Python program is often decomposed into modules, and these are divided
into classes and functions. A function carries out a specific task in a program.

The data in a function is known only to that function—the scope of the
data is local to the function. The local data in a function has a limited lifetime;
it only exists during execution of the function.

A Python program typically consists of functions and instructions that
call or invoke the various functions. In the source code, the general syntactical
form of a function definition in the Python programming language is written
as follows:

def function_name ( [parameters] ) :

[ local declarations ]

[ executable language statements ]

The relevant internal documentation of the function definition is described
in one or more lines of comments, which begin with the characters (”””) and
ends with (”””).

The local data definitions in the function are optional. The instructions
implement the body of the function.

3.3.1 Function Calls

After a function is defined, it can be called (invoked) and the name of the
function is used by the instruction in the program that calls the function.
When a function is called, the normal sequential flow of control is altered and
the (called) function starts execution immediately.

Figure 3.1 A function call.
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When the called function completes execution, the flow of control is trans-
ferred back (returned) to the instruction that called the function and it contin-
ues execution from this point. Figure 3.1 illustrates a call to function functb.
After completing its execution, function functb returns the flow of control to
the instruction that called it. In Python, the statement that calls a simple
function uses the function name and an empty parentheses pair.

3.4 CATEGORIES OF FUNCTIONS

Data transfer occurs between the instruction that calls a function and the
called function. This data transfer may occur from the calling instruction to
the called function, from the called function to the calling instruction, or in
both directions. With respect to data transfer, there are four categories of
functions:

1. Simple functions, which do not allow data transfer when they are called.
The previous example, function show message, is a simple function be-
cause there is no data transfer involved.

2. Functions that return a single value after completion.

3. Functions that specify one or more parameters, which are data items
transferred to the function.

4. Functions that allow data transfers in both directions. These functions
specify one or more parameters and return a value to the calling function.

3.4.1 Simple Function Calls

Simple functions do not return a value to the calling function. There is no
data transfer to or from the function. Figure 3.1 shows an instruction that
calls function functb. After completing its execution, the called function functb
returns the flow of control to the instruction that called it. An example of this
kind of function is show message, discussed previously.

3.4.2 Calling Functions that Return Data

Value-returning functions transfer data back to the calling instruction. Typi-
cally, a single value is computed and is returned to the calling instruction.

These functions can be called in one of two ways:

• Call the function in a simple assignment statement.

• Call the function in an assignment statement with an expression.

These function definitions must include at least one return statement,
which is written with the keyword return followed by an expression. The
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value in the return statement can be any valid expression, following the return
keyword. The expression can include constants, variables, or a combination of
these.

Figure 3.2 Calling function square.

Figure 3.2 shows an instruction that calls function square. The return value
from function square is used in an assignment statement that assigns the value
to variable y.

Listing 3.1 shows the source code of a Python program that includes in
lines 2–10, the definition of function square. This function returns the value of
the square of variable x that is assigned a value of 3.15. Lines 12–13 include
the instructions that call the function and display the value of variable y.
These are included after the function definition of square.

Lines 15–18 show instructions that involve a function call in a more com-
plex expression of an assignment statement. The value of the expression is as-
signed to variable fres and the value of this variable is displayed. The Python
instructions of this example are stored in file prog04.py.

Listing 3.1: Python program that computes the square of a value.

1 # This script computes the square of the value 3.15

by calling function ’square’

2 def square():

3 """

4 description

5 This function returns the square of variable x

6 with value 3.15

7 """

8 x = 3.15

9 res = x**2

10 return res

11

12 y = square()

13 print "Value of y is: ", y



Modules and Functions � 51

14

15 w = 2.35

16 q = 12.75

17 fres = q + w * square() + 23.45

18 print "Value of fres is: ", fres

The following listing shows the interpretation of the commands in the
script prog04.py by executing the Python interpreter.

$ python prog04.py

Value of y is: 9.9225

Value of fres is: 59.517875

3.4.2.1 Including the Function Definition in Another Module

Sometimes it may be more convenient to include one or more function defini-
tions in another module. Before a function can be called, the corresponding
module that contains its definition has to be imported.

In this particular example, the function definition of function square is
edited in the module myf.py. This example is performed in interactive mode
with the Python interpreter and consists of a statement that imports module
myf and an assignment statement that calls function square. The returned
value is assigned to variable y. Note that the name of the function is preceded
by the name of the module that contains its definition and a dot.

>>> import myf

>>> y = myf.square()

>>> y

9.9225

The function call can occur in a more complex expression of an assignment
statement. In the following example, the value of the expression is assigned to
variable fres.

>>> w = 2.35

>>> y = 12.75

>>> fres = y + w * myf.square() + 23.45

>>> fres

59.517875000000004

3.4.3 Calling Functions with Arguments

A function defined with one or more parameter specifications allows data
transfer to the function when called. The parameters specified in the function
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definition are treated as local data and have local scope. The data values used
when calling these functions are known as arguments.

Every argument in a function call must correspond to a parameter specifi-
cation in the function definition. A function that is called with two arguments
must be defined with two parameters.

Figure 3.3 illustrates the example in which one parameter is specified in
the function definition of squared. The function call requires an argument and
the function computes the square of the value in the argument; the called
function returns the value computed.

Figure 3.3 Calling function squared with an argument.

Listing 3.2 shows the Python program with the definition of function
squared that includes one parameter p, and returns the value of the local
variable result. The source code is stored in file prog05.py.

Listing 3.2: Python program that calls squared with an argument.

1 # This script computes the square value of a variable

2 # by calling function ’squared’

3 def squared (p) :

4 """

5 description

6 This function returns the square of p

7 """

8 result = p ** 2

9 return result

10

11 x = 3.0

12 y1 = squared(x)

13 print "Value of the argument x: ", x

14 print "Value of y1: ", y1

15

16 y2 = x * 2.55 + squared(x)

17 print "Value of y2: ", y2
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The following listing shows the interpretation of the commands in the
script prog05.py by executing the Python interpreter.

$ python prog05.py

Value of the argument x: 3.0

Value of y1: 9.0

Value of y2: 16.65

3.4.3.1 Including Function squared in Another Module

If function squared is stored in module myf.py, then calling the function may
be carried out in the script prog05.py or in interactive mode with Python as
follows:

>>> y = myf.squared(3.0)

>>> y

9.0

>>> x = 3.5

>>> y = myf.squared(x)

>>> y

12.25

>>>

3.5 BUILT-IN MATHEMATICAL FUNCTIONS

Python provides a wide variety of functions organized and stored in various
libraries of standard modules with many pre-defined functions. One such mod-
ule is the mathematical module math. In Python programs, the access to this
is achieved by importing the module with command import math at the top
of a Python script (program).

The following language statements in interactive mode, include calls to
function sin applied to variable x, which is the argument written in parentheses
and its value is assumed in radians. The value returned by the function is the
sine of x.

>>> from math import *

>>> x = 0.175 * pi

>>> y = 2.16 + sin(x)

>>> y

2.682498564715949

>>> j = 0.335

>>> z = x * sin(j * 0.32)

>>> z

0.05882346197763754
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To compute the square root of the value of a variable, z expressed math-
ematically as:

√
z, the mathematical library provides the sqrt() function. For

example, given the following mathematical expression:

var =

√

sin2 x+ cos2 y.

The assignment statement to compute the value of variable var uses three
functions: sqrt(), sin(), and cos() and is coded as:

>>> y = 0.335

>>> var = sqrt (sin(x) ** 2 + cos(y) ** 2)

>>> var

1.079312551150338

The exponential function exp() computes e raised to the given power. The
following statement computes q = y + x ek.

>>> k = 0.335

>>> q = y + x * exp(k)

>>> q

1.1035578677649929

To compute the logarithm base e of x, denoted mathematically as lnx or
loge x, function log() is called. For example:

>>> t = log((q-y)/x)

>>> t

0.33499999999999996

The following table lists the basic mathematical functions available in mod-
ule math.

Function Description

fabs(x) Returns the absolute value of x
sqrt(x) Returns the square root of x, x ≥ 0
pow(x, y) Returns x to the power of y
ceil(x) Returns the nearest integer larger than x
floor(x) Returns the nearest integer less than x
exp(x) Returns the value ex, e is the base for natural logarithms
log(x) Returns the natural logarithm of x (base e), x > 0
log10(x) Returns the logarithm base 10 of x, x > 0

The following table lists the trigonometric and hyperbolic functions avail-
able.
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Function Description

sin(x) Returns the sine of x, where x is in radians
cos(x) Returns the cosine of x, where x is in radians
tan(x) Returns the tangent of x, where x is in radians
asin(x) Returns the arcsine of x, where −1 < x < 1
acos(x) Retirns the arccosine of x, where −1 < x < 1
atan(x) Returns the arctangent of x
atan2(y, x) Returns the arctangent of the value y/x
sinh(x) Returns the hyperbolic sine of x
cosh(x) Returns the hyperbolic cosine of x
tanh(x) Returns the hyperbolic tangent of x

3.6 SUMMARY

Functions are fundamental modular units in a program. A function has to
be defined first in order to be called and calling functions involves several
mechanisms for data transfer. Calling simple functions does not involve data
transfer between the calling function and the called function. Value-returning
functions return a value to the calling function. Calling functions that define
one or more parameters involve values sent by the calling function and used
as input in the called function.

Key Terms

modules functions function definition
function call local declaration arguments
return value assignment parameters
pre-defined functions built-in functions libraries

3.7 EXERCISES

3.1 Why is a function a decomposition unit? Explain.

3.2 Explain variations of data transfer among functions.

3.3 Write the Python code of a function defined with more than two pa-
rameters.

3.4 Write the Python code that calls the function that was defined with
more than two parameters.

3.5 Develop a Python program that defines two functions, one to compute
the area of a triangle, the other function to compute the circumference
of a triangle. The program must call these functions from instructions
that input the corresponding values.
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3.6 Develop a Python program that defines two functions, one to compute
the area of a circle, the other function to compute the circumference of
a circle. The program must call these functions from the instructions
that input the corresponding values.

3.7 Develop a Python program that defines a function that computes the
volume of a cylinder. The program must call these functions from in-
structions that input the corresponding values.

3.8 Develop a Python program that defines a function that computes the
volume of a sphere. The program must call these functions from instruc-
tions that input the corresponding values.

3.9 Develop a Python program that defines two functions, one to compute
the area of an ellipse, the other function to compute the circumference
of an ellipse. The program must call these functions from instructions
that input the corresponding values.

3.10 Develop a Python program that computes the slope of a line between
two points in a plane: P1 with coordinates (x1, y1), and P2 with coor-
dinates (x2, y2). The program should include a function slopef and the
parameters of this function (slopef) are the coordinates of the points in
a plane. The program must input the coordinate values.
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Program Structures

4.1 INTRODUCTION

Program structures, also known as design structures, are discussed along with
how they are used in designing program logic to implement the solution to
a problem. This chapter presents general concepts of algorithms, flowcharts,
and pseudo-code.

As mentioned in a previous chapter, the purpose of computer problem
solving is to design a solution to a problem; an algorithm describes precisely
this design and is implemented in a computer program. Analyzing the problem
includes understanding the problem, identifying the given (input) data and
the required results. Developing a program involves implementing a computer
solution to solve some real-world problem. Design of a solution to the problem
requires finding some method to solve the problem.

Designing a solution to the problem consists of defining the necessary com-
putations to be carried out in an appropriate sequence on the given data to
produce the final required results.

The design of the solution to a problem is described by an algorithm,
which is a complete and precise sequence of steps that need to be carried out
to achieve the solution to a problem.

After the algorithm has been formulated and written, its implementation
and the corresponding data definitions are carried out with a programming
language such as Python.

4.2 ALGORITHMS

An algorithm is a clear, detailed, precise, and complete description of the
sequence of steps to be performed in order to produce the desired results. An
algorithm can be considered the transformation on the given data and involves
a sequence of commands or operations that are to be carried out on the data
in order to produce the desired results.

The algorithm is usually broken down into smaller tasks; the overall al-
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gorithm for a problem solution is decomposed into smaller algorithms, each
defined to solve a subtask.

A computer implementation of an algorithm consists of a group of data
definitions and one or more sequences of instructions to the computer for pro-
ducing correct results when given appropriate input data. The implementation
of an algorithm is in the form of a program, which is written in a programming
language and it indicates to the computer how to transform the given data
into correct results.

An algorithm is often described in a semiformal notation such as pseudo-
code and flowcharts.

4.3 IMPLEMENTING ALGORITHMS

Programming languages have well-defined syntax and semantic rules. The
syntax is defined by a set of grammar rules and a vocabulary (a set of words).
The legal sentences are constructed using sentences in the form of statements.
There are two groups of words that are used to write the statements: reserved
words also known as keywords and identifiers.

Reserved words are the keywords of the language and have a predefined
purpose. These are used in most statements. Examples are: for, def, while,
and if. Identifiers are names for variables, constants, and functions that the
programmer chooses, for example, height, temperature, pressure, number units,
and so on.

4.4 ALGORITHM DESCRIPTION

Designing a solution to a problem consists of designing and defining an al-
gorithm, which will be as general as possible in order to solve a family or
group of similar problems. An algorithm can be described at several levels of
abstraction. Starting from a very high and general level of description of a
preliminary design, to a much lower level that has a more detailed description
of the design.

Several notations are used to describe an algorithm. An algorithmic nota-
tion is a set of general and informal rules used to describe an algorithm. Two
widely used notations are:

• Flowcharts

• Pseudo-code

4.4.1 Flowcharts

The flow of control in a program is the order in which the operations will be
executed. A flowchart is a visual representation of the flow of the data and
the operations on this data. A flowchart consists of a set of symbolic blocks
connected by arrows. The arrows that connect the blocks show the order for
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Figure 4.1 Flow of control.

describing a sequence of design or action steps. The arrows also show the flow
of data.

The most basic flow of control is sequential—the operations are executed
in sequence, as seen in Figure 4.1. Several basic flowchart blocks are shown in
Figure 4.2. Every flowchart block has a specific symbol. A flowchart always
begins with a start symbol, which has an arrow pointing from it. A flowchart
ends with a stop symbol, which has one arrow pointing to it.

Figure 4.2 Basic flowchart symbols.

The process block or transformation block symbol is the most common
and general symbol, shown as a rectangular box. A process block represents
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Figure 4.3 A simple flowchart ex-

ample.

Figure 4.4 A flowchart with a se-

quence.

one or more operations of computation. This symbol is used to represent any
computation or sequence of computations carried out on some data. There is
one arrow pointing to it and one arrow pointing out from it.

The selection flowchart symbol has the shape of a vertical diamond and
represents a selection of alternate paths in the sequence of design steps. It
is shown in Figure 4.2 with a condition that is evaluated to True or False.
This symbol is also known as a decision block because the flow of control of
instructions can take one of two (or more) directions in the flowchart, based
on the evaluation of a condition.

The input-output flowchart symbol is used for a data input or output op-
eration. There is one arrow pointing into the block and one arrow pointing
out from the block.

An example of a simple flowchart with several basic symbols in shown in
Figure 4.3. For larger or more complex algorithms, flowcharts are used mainly
for the high-level description of the algorithms and pseudo-code is used for
describing the details.

4.4.2 Pseudo-Code

Pseudo-code is an informal notation that uses a few simple rules and English
for describing the algorithm that defines a problem solution. It can be used to
describe relatively large and complex algorithms. It is relatively easy to convert
the pseudo-code description of an algorithm to a computer implementation in
a high-level programming language.



Program Structures � 61

4.5 DESIGN STRUCTURES

The flow of control of an algorithm can be completely defined with only
four fundamental design structures. These structures can be specified using
flowcharts and/or pseudo-code notations. The design structures are:

1. Sequence: Describes a sequence of operations.

2. Selection: This part of the algorithm takes a decision and selects one of
several alternate paths of flow of actions. This structure is also known
as alternation or conditional branch.

3. Repetition: This part of the algorithm has a sequence of steps that are
to be executed zero, one, or more times.

4. Input-output: The values of variables are read from an input device (such
as the keyboard) or the values of the variables (results) are written to
an output device (such as the screen).

4.5.1 Sequence

A sequence structure consists of a group of operations that are to be executed
one after the other, in the specified order, as shown in Figure 4.1. The symbol
for a sequence can be directly represented by two or more process blocks con-
nected by arrows in a flowchart. Figure 4.4 illustrates the sequence structure
with several blocks. The sequence structure is the most common and basic
structure used in algorithmic design.

4.5.2 Selection

With the selection structure, one of several alternate paths of the algorithm
will be chosen based on the evaluation of a condition. Figure 4.5 illustrates
the selection structure in flowchart form. In the figure, the actions or instruc-
tions in Process1 are executed when the condition is True. The instructions
in Process2 are executed when the condition is False.

A concrete and simple flowchart example of the selection structure is shown
in Figure 4.6. The condition of the selection structure is len > 0 and when
this condition evaluates to True, the block with the action add 3 to k will
execute. Otherwise, the block with the action decrement k will execute.

4.5.3 Repetition

The repetition structure indicates that a set of action steps are to be repeated
several times. Figure 4.7 shows this structure. The execution of the actions in
the Process block are repeated while the condition is True. This structure is
also known as the while-loop.

A variation of the repetition structure is shown in Figure 4.8. The actions
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Figure 4.5 Selection structure. Figure 4.6 An example of the se-

lection structure.

Figure 4.7 While-loop of the rep-

etition structure.
Figure 4.8 Repeat-until loop of

the repetition structure.
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in the Process block are repeated until the condition becomes True. This
structure is also known as the repeat-until loop.

4.5.4 Simple Input/Output

Input and output statements are used to read (input) data values from the
input device (e.g., the keyboard) and write (output) data values to an output
device (mainly to the computer screen). The flowchart symbol is shown in
Figure 4.9.

Figure 4.9 Flowchart data input/output symbol.

4.5.4.1 Output

In Python, the output statement is used for the output of a list of variables
and literals; it is written with the keyword print. The output statement writes
the value of one or more variables to the output device. The variables do not
change their values. The general form of the output statement is:

print 〈 data list 〉

In the following line of Python code, the print statement is used to output
four data items that include the value of variables x and y:

print "value of x= ", x, "value of y = ", y

4.5.4.2 Input

The input function in Python reads a value of a variable from the input de-
vice (e.g., the keyboard). This input implies an assignment statement for the
variable because the variable changes its value to the new value that is read
from the input device. A text string is typically included to prompt the user
for input of a data value. For example, in interactive mode, the following lines
of code read the value of variable q:
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>>> q = input ("Enter the value of q: ")

Enter the value of q: 45.32

>>> q

45.32

To read several values and assign them to corresponding variables, the
general form of the input uses the raw input and split functions (Python 2.7).
Function split is used to separate the values inputted.

〈 var list 〉 = raw input().split()

The following example in interactive mode reads two values separated by a
space, assigns these to variables x and y, then converts each to the appropriate
type.

>>> x, y = raw_input().split()

12 36.8

>>> x = int(x)

>>> x

12

>>> y = float(y)

>>> y

36.8

4.6 COMPUTING AREA AND CIRCUMFERENCE

For this example, a computational model is developed that computes the area
and circumference of a circle. The input value of the radius is read from the
keyboard and the results written to the screen.

4.6.1 Specification

The specification of the problem can be described as a high-level algorithm in
informal pseudo-code notation:

1. Read the value of the radius of a circle, from the input device.

2. Compute the area of the circle.

3. Compute the circumference of the circle.

4. Output or display the value of the area of the circle to the output device.

5. Output or display the value of the circumference of the circle to the
output device.
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4.6.2 Algorithm with the Mathematical Model

A detailed description of the algorithm and the corresponding mathematical
model follows:

1. Read the value of the radius r of a circle, from the input device.

2. Establish the constant π with value 3.14159.

3. Compute the area of the circle, area = π r2.

4. Compute the circumference of the circle, cir = 2 π r.

5. Print or display the value of area of the circle to the output device.

6. Print or display the value of cir of the circle to the output device.

The following lines of pseudo-code completely define the algorithm.

read r
π = 3.1416
area = π r2

cir = 2π r
display "Area = ", area, " Circumference = ", cir

Listing 4.1 shows the Python program that implements the computational
model; this program stored in file areacir.py.

Listing 4.1: Python program for computing the area and circumference.

1 # Program : areacir.py

2 # Description : Read value of the radius of a circle,

3 # compute the area and circumference, display value of

4 # of these on the output console.

5 # Author : Jose M Garrido, May 27 2014.

6

7 from math import *

8

9 print "Compute area and circumference of a circle"

10 r = input("Enter value of radius: ")

11 print "Value of radius: ", r

12 area = pi * r ** 2

13 cir = 2.0 * pi * r

14 print "Value of area: ", area

15 print "Value of circumference: ", cir

The following listing shows the Linux shell commands that start the
Python interpreter with the file areacir.py.
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$ python areacir.py

Compute area and circumference of a circle

Enter value of radius: 3.15

Value of radius: 3.15

Value of area: 31.1724531052

Value of circumference: 19.7920337176

4.7 SUMMARY

An algorithm is a precise, detailed, and complete description of a solution to
a problem. The notations to describe algorithms are flowcharts and pseudo-
code. Flowcharts are a visual representation of the execution flow of the vari-
ous instructions in the algorithm. Pseudo-code is an English-like notation to
describe algorithms.

The design structures are sequence, selection, repetition, and input-output.
These algorithmic structures are used to specify and describe any algorithm.

Key Terms

algorithm flowcharts pseudo-code variables
constants action step structure sequence
statements selection repetition input/output
identifier design

4.8 EXERCISES

4.1 Write the algorithm for computing the area of a triangle. Use flowcharts.

4.2 Write the algorithm for computing the area of a triangle. Use pseudo-
code.

4.3 Develop a computational model for computing the area of a triangle.

4.4 Write the algorithm for computing the perimeter of a triangle. Use
pseudo-code.

4.5 Write the algorithm for computing the perimeter of a triangle. Use
flowcharts.

4.6 Develop a computational model for computing the perimeter of a trian-
gle.

4.7 Write the algorithmic description in flowchart and in pseudo-code to
compute the conversion from a temperature reading in degrees Fahren-
heit to Centigrade. The algorithm should also compute the conversion
from Centigrade to Fahrenheit.
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4.8 Develop a computational model to compute the conversion from a tem-
perature reading in degrees Fahrenheit to Centigrade. The program
should also compute the conversion from Centigrade to Fahrenheit.

4.9 Write an algorithm and data descriptions in flowchart and pseudo-code
to compute the conversion from inches to centimeters and from centime-
ters to inches.

4.10 Develop a computational model to compute the conversion from inches
to centimeters and from centimeters to inches.





C HA P T E R 5

The Selection Program

Structure

5.1 INTRODUCTION

In the previous chapter, it was discussed that to completely describe an al-
gorithm, four design structures are used: sequence, selection, repetition, and
input/output. This chapter explains the selection program structure using
pseudo-code, flowcharts, and the corresponding statements in the Python pro-
gramming language for implementing computational models.

Conditions are expressions that evaluate to a truth value (True or False).
Conditions are used in the selection statements. Simple conditions are formed
with relational operators for comparing two data items. Compound conditions
are formed by joining two or more simple conditions with logical operators.

The solution to a quadratic equation is discussed as an example of applying
the selection statements.

5.2 CONDITIONAL EXPRESSIONS

A conditional expression, also known as a Boolean expression, consists of an
expression that evaluates to a truth value, True or False.

5.2.1 Relational Operators

A conditional expression can be constructed by comparing the values of two
data items and using a relational operator. The following list of relational
operators in arithmetic notation can be used in a condition:

69
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Arithmetic Operator Description

> Greater than
< Less than
= Equal to
≤ Less or equal to
≥ Greater or equal to
6= Not equal to

These relational operators are used to construct conditions as in the fol-
lowing examples in algebraic notation:

y ≤ 20.15
p ≥ q
a = b

In Python, the relational operators are used with the following notation:

Relational Operator Description Arithmetic Notation

> Greater than >
< Less than <
== Equal to =
>= greater than or equal to ≥
<= Less than or equal to ≤
!= Not equal to 6=

The previous examples of conditional expressions can be written as follows:

y <= 20.15

p >= q

a == b

Arithmetic expressions can be used as part of conditional expression. For
example:

y >= (x + 45.6)

When this conditional expression is evaluated, the arithmetic expression
(x+45.6) is evaluated first, then the relational operators are applied. The order
in which these operators are evaluated is specified in the following table:

Operator Order of Evaluation
( ) 1
*, /, % 2
+, - 3
=, <, >, <=, >=, != 4
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A conditional expression can be assigned to a variable and its value is
of type bool. For example, the following statement assigns the value of the
previous conditional expression to variable y flag:

y_flag = y >= (x + 45.6)

5.2.2 Logical Operators

A compound conditional expression consists of one or more simple conditional
expressions. The logical operators and, or, and not are used to construct
compound conditional expressions from simpler conditions.

The not logical operator is applied with one simple condition, cond. If a
compound condition is defined as not cond, the truth value of the compound
condition is simply the negation of the truth value of the simple condition. For
example, when the simple condition cond has truth value False, the resulting
compound condition has a truth value of True. The opposite also applies,
when the truth value of cond is True, the truth value of the compound con-
dition is False. These rules are summarized in the following table.

cond not cond

True False
False True

The and and or logical operators are used with two simple conditions
cond1 and cond2. The rules that apply for the truth value of the resulting
compound condition are summarized in the following table.

cond1 cond2 cond1 and cond2 cond1 or cond2

True True True True
True False False True
False True False True
False False False False

The table shows that when the and logical operator is applied to two
simple conditions, the truth value of the resulting compound condition is
True when the truth values of both simple conditions are True. When the
or logical operator is applied, the truth value of the compound condition is
True when either or both simple conditions have value True.

The general forms of compound conditions from the simple conditions,
cond1 and cond2 in Python are:

cond1 and cond2

cond1 or cond2

not cond1

The following examples include the or and the and logical operators:
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(y > 12) or (x < 23)

(p==q) and (z <= r)

The following example includes the not operator:

not (y > 12)

5.3 THE SELECTION STRUCTURE

The selection program structure is also known as alternation, because alter-
nate paths are considered, based on the evaluation of a condition. This section
describes the selection structure with flowcharts, the concepts associated with
conditional expressions, and the implementation in the Python programming
language.

5.3.1 Selection Structure with Flowcharts and Pseudo-code

The selection structure is used for decision making in the logic of a program.
Figure 5.1 shows the selection design structure using a flowchart. Two possible
paths for the execution flow are shown. The condition is evaluated, and one
of the paths is selected. If the condition is True, then the left path is selected
and Process1 is performed. If the condition is False, the other path is selected
and Process2 is performed. In pseudo-code, the selection structure is written
as:

if 〈 condition 〉
then

〈 statements in Process1 〉
else

〈 statements in Process2 〉
endif

5.3.2 Selection with Python

With the Python language, the selection structure is written with an if state-
ment and includes three sections: the condition, the then-section, and the
else-section. The else-section is optional. The keywords that are used in this
statement are: if and else. The general form of the if statement is:

if 〈 condition 〉 :

〈 statements in Process1 〉
else :

〈 statements in Process2 〉
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Figure 5.1 Flowchart of the selection structure.

When the condition is evaluated, only one of the two alternatives will be
carried out: the one with the statements in Process1 if the condition is True,
or the one with the statements in Process2 if the condition is False.

5.3.3 Example with Selection

The following example evaluates the condition len > 0, to select which op-
eration is to be performed on variable k. Figure 5.2 shows the flowchart for
part of the algorithm that includes this selection structure. In Python, this
example is written as:

if (len > 0) :

k= k + 3

else :

k=k - 1

A second example in interactive mode is the following:

>>> y = 15

>>> if y >= 11 :

. . . print "value of y is: ", y

. . else:

. . . print "Value of y too small"

. . .

value of y is: 15
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Figure 5.2 Example of selection structure.

The following example is a selection statement in Python that includes a
compound condition.

if a < b or x >= y :

a = x + 23.45

else :

a = y

5.4 A COMPUTATIONAL MODEL WITH SELECTION

The following problem involves developing a computational model that in-
cludes a quadratic equation, which is a simple mathematical model of a second-
degree equation. The solution to the quadratic equation involves complex
numbers.

5.4.1 Analysis and Mathematical Model

The goal of the solution to the problem is to compute the two roots of the equa-
tion. The mathematical model is defined in the general form of the quadratic
equation (second-degree equation):

ax2 + bx+ c = 0.

The given data for this problem are the values of the coefficients of the
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quadratic equation: a, b, and c. Because this mathematical model is a second-
degree equation, the solution consists of the value of two roots: x1 and x2.

5.4.2 Algorithm for General Solution

The general solution gives the value of the two roots of the quadratic equation,
when the value of the coefficient a is not zero (a 6= 0). The values of the two
roots are:

x1 =
−b+

√
b2 − 4ac

2a
x2 =

−b−
√
b2 − 4ac

2a
.

The expression inside the square root, b2 − 4ac, is known as the discrimi-
nant. If the discriminant is negative, the solution will involve complex roots.
Figure 5.3 shows the flowchart for the general solution and the following listing
is a high-level pseudo-code version of the algorithm.

Input the values of coefficients a, b, and c

Calculate value of the discriminant

if the value of the discriminant is less than zero

then calculate the two complex roots

else calculate the two real roots

endif

display the value of the roots

5.4.3 Detailed Algorithm

The algorithm in pseudo-code notation for the solution of the quadratic equa-
tion is:

read the value of a from the input device

read the value of b from the input device

read the value of c from the input device

compute the discriminant, disc = b2 − 4ac
if discriminant less than zero

then

// roots are complex

compute x1 = (−b+
√
disc)/2a

compute x2 = (−b−
√
disc)/2a

else

// roots are real

compute x1 = (−b+
√
disc)/2a

compute x2 = (−b−
√
disc)/2a

endif

display values of the roots: x1 and x2
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Figure 5.3 High-level flowchart for solving a quadratic equation.
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Listing 5.1 shows the Python program that implements the algorithm for
the solution of the quadratic equation, which is stored in the file solquad.py.

Listing 5.1 Program to compute the roots of a quadratic equation.

1 # Program : solquad.py

3 # Author : Jose M Garrido, May 21 2014.

4 # Description : Compute the roots of a quadratic equation.

5 # Read the value of the coefficients: a, b, and c from

6 # the input console, display value of roots.

7

8 from math import *

9

10 a = input ("Enter value of coefficient a: ")

11 print "Value of a: ", a

12 b = input ("Enter value of coefficient b: ")

13 print "Value of a: ", b

14 c = input ("Enter value of coefficient c: ")

15 print "Value of a: ", c

16

17 disc = b ** 2 - 4.0 * a * c

18 print "discriminant: ", disc

19 if (disc < 0.0) :

20 # complex roots

21 disc = -disc

22 x1r = -b/(2.0 * a)

23 x1i = sqrt(disc)/(2.0 * a)

24 x2r = x1r

25 x2i = -x1i

26 print "Complex roots "

27 # print "x1r: ", x1r, " x1i: ", x1i

28 x1 = complex( x1r, x1i)

29 #print "x2r: ", x2r, " x2i: ", x2i

30 x2 = complex (x2r, x2i)

31 print "x1: ", x1

32 print "x2: ", x2

33 else :

34 # real roots

35 x1r = (-b + sqrt(disc))/(2.0 * a)

36 x2r = (-b - sqrt(disc))/(2.0 * a)

37 print "Real roots:"

38 print "x1: ", x1r, " x2: ", x2r

The following shell commands start the Python interpreter and it processes
the program solquadra.py. The program prompts the user for the three values
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of the coefficients, calculates the roots, then displays the value of the roots.
Note that the roots are complex.

$ python solquad.py

Enter value of coefficient a: 1.25

Value of a: 1.25

Enter value of coefficient b: 2.5

Value of a: 2.5

Enter value of coefficient c: 2.85

Value of a: 2.85

discriminant: -8.0

Complex roots

x1: (-1+1.1313708499j)

x2: (-1-1.1313708499j)

The following commands show the Python interpreter processing the pro-
gram with a different set of input values. Note that in this case, the roots
computed are real.

$ python solquad.py

Enter value of cofficient a: 2

Value of a: 2

Enter value of cofficient b: -20

Value of a: -20

Enter value of cofficient c: 5

Value of a: 5

discriminant: 360.0

Real roots:

x1: 9.74341649025 x2: 0.256583509747

5.5 MULTI-LEVEL SELECTION

The multi-path selection involves more than two alternatives. The general if
statement with multiple paths is used to implement this structure. In Python,
the elif clause is used to expand the number of alternatives. The if statement
with n alternative paths has the general form:

if 〈 condition 〉 :

〈 block1 〉
elif 〈 condition2 〉 :

〈 block2 〉
elif 〈 condition3 〉 :

〈 block3 〉
...

else :

〈 blockn 〉
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Each block of statements is executed when that particular path of logic
is selected. This selection depends on the conditions in the multiple-path if

statement that are evaluated from top to bottom until one of the conditions
evaluates to True. The elif parts and the else part are optional. The following
example shows the if statement with several paths.

print "Testing multi-path selection in a Python script"

y = 4.25

x = 2.55

if y > 15.50 :

x = x + 1

print "x: ", x

elif y > 4.5 :

x = x + 7.85

print "x: ", x

elif y > 3.85 :

x = y * 3.25

print "x: ", x

elif y > 2.98 :

x = y + z*454.7

print "x: ", x

else :

x = y

print "x: ", x

This portion of Python code is stored in file test1.py. The following lines
of shell commands start the Python interpreter and process the script.

$ python test1.py

Testing multi-path selection in a Python script

x: 13.8125

5.6 SUMMARY

The selection structure is also known as alternation. It evaluates a condition
and then follows one of two (or more) paths. The two general selection state-
ments with if are explained in Python. The first one is applied when there are
two or more possible paths in the algorithm, depending on how the condition
evaluates. The multi-path selection statement is applied when the value of
a single variable or expression is evaluated, and there are multiple possible
values.

The condition in the if statement consists of a conditional expression,
which evaluates to a truth value (True or False). Relational operators and
logical operators are used to form more complex conditional expressions.
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Key Terms

selection alternation condition if statement
case statement relational operator logical operator truth-value
then else endif elif
elseif end multi-path selection

5.7 EXERCISES

5.1 Develop a Python program that computes the conversion from gallons
to liters and from liters to gallons. Include a flowchart, pseudo-code
design, and a complete implementation in Python. The user inputs the
string: “gallons” or “liters”; the model then computes the corresponding
conversion.

5.2 Develop a Python program to calculate the total amount to pay for
movie rental. Include a flowchart, pseudo-code design, and a complete
implementation in Python. The movie rental store charges $3.50 per
day for every DVD movie. For every additional period of 24 hours, the
customer must pay $0.75.

5.3 Develop a Python program that finds and displays the largest of several
numbers, which are read from the input device. Include a flowchart,
pseudo-code design, and a complete implementation in Python.

5.4 Develop a Python program that finds and displays the smallest of several
numbers, which are read from the input device. Include a flowchart,
pseudo-code design, and a complete implementation in Python.

5.5 Develop a Python program that computes the gross and net pay of
several employees. The input quantities are employee name, hourly rate,
number of hours, percentage of tax (use 14.5%). The tax bracket is
$ 115.00. When the number of hours is greater than 40, the (overtime)
hourly rate is 40% higher. Include a flowchart, pseudo-code design, and
a complete implementation in Python.

5.6 Develop a Python program that computes the fare in a ferry transport
for passengers with motor vehicles. Include a flowchart, pseudo-code
design, and a complete implementation in Python. Passengers pay an
extra fare based on the vehicle’s weight. Use the following data: vehicles
with weight up to 780 lb pay $80.00, up to 1100 lb pay $127.50, and up
to 2200 lb pay $210.50.

5.7 Develop a Python program that computes the average of student grades.
The input data are the four letter grades for various work submitted by
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the students. Include a flowchart, pseudo-code design, and a complete
implementation in the Python programming language.





C HA P T E R 6

The Repetition Program

Structure

6.1 INTRODUCTION

This chapter presents the repetition program structure and using it for spec-
ifying, describing, and implementing algorithms in developing computational
models. This structure and the corresponding statements are discussed with
flowcharts, pseudo-code, and implementation in the Python programming lan-
guage. The repetition structure specifies that a block of statements be exe-
cuted repeatedly based on a given condition. Basically, the statements in the
process block of code are executed several times, so this structure is often
called a loop structure. A program segment that includes the repetition struc-
ture has three major parts in its form:

1. the initial conditions,

2. the steps that are to be repeated, and

3. the final results.

There are three general forms of the repetition structure: the while-loop,
the repeat-until loop, and the for-loop. The first form of the repetition struc-
ture, the while construct, is the most flexible. The other two forms of the
repetition structure can be expressed with the while construct.

6.2 REPETITION WITH THE WHILE-LOOP

The while-loop consists of a conditional expression and block of statements.
This construct evaluates the condition before the process block of statements
is executed. If the condition is true, the statements in the block are executed.
This repeats while the condition evaluates to true; when the condition evalu-
ates to false, the loop terminates.

83
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6.2.1 While-Loop Flowchart

A flowchart with the while-loop structure is shown in Figure 6.1. The process
block consists of a sequence of actions.

The actions in the process block are performed while the condition is true.
After the actions in the process block are performed, the condition is again
evaluated, and the actions are again performed if the condition is still true;
otherwise, the loop terminates.

Figure 6.1 A flowchart with a while-loop.

The condition is tested first, and then the process block is performed. If
this condition is initially false, the actions in the block are not performed.

The number of times that the loop is performed is normally a finite number.
A well-defined loop will eventually terminate, unless it has been specified as a
non-terminating loop. The condition is also known as the loop condition, and
it determines when the loop terminates. A non-terminating loop is defined in
special cases and will repeat the actions forever.

6.2.2 While Structure in Pseudo-Code

The form of the while statement includes the condition, the actions in the
process block written as statements, and the keywords while, do, and endwhile.
The block of statements is placed after the do keyword and before the endwhile
keyword. The following lines of pseudo-code show the general form of the
while-loop statement that is shown in the flowchart of Figure 6.1.

while 〈 condition 〉 do

〈 block of statements 〉
endwhile
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The following example has a while statement and the block of statements
is performed repeatedly while the condition j <= MAX NUM is true.

while j <= MAX_NUM do

set sum = sum + 12.5

set y = x * 2.5

add 3 to j

endwhile

display "Value of sum: ", sum

display "Value of y: ", y

6.2.3 While-Loop in the Python Language

The following lines of code show the general form of the while-loop statement
in Python; it is similar to the pseudo-code statement and follows the loop
definition shown in the flowchart of Figure 6.1.

while 〈 condition 〉 :

〈 block of statements 〉

The previous example has a while statement with a condition that checks
the value of variable j. The block of statements that are repeated are always
indented (four columns to the right); these statements are repeated while the
condition j <= MAX NUM is true. The following lines of code show the Python
implementation, which is stored in file test2.py. The while statement appears
in line 6, the block of statements that are repeated are in lines 7–9. The print
statement in line 10 is at the end and is outside the loop.

1 # Script for testing while-loop

2 x = 12.35

3 MAX_NUM = 15

4 j = 0

5 sum = 0.0

6 while ( j <= MAX_NUM) :

7 sum = sum + 12.5

8 y = x * 2.5

9 j = j + 3

10 print ’Value of sum: ’, sum

The following Linux shell command starts the Python interpreter with the
script test2.py.

$ python test2.py

Value of sum: 75.0
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6.2.4 Loop Counter

As mentioned previously, in the while-loop construct, the condition is tested
first and then the statements in the loop block are performed. If this condition
is initially false, the statements are not performed.

The number of times that the loop is performed is normally a finite integer
value. For this, the condition will eventually be evaluated to false, that is, the
loop will terminate. This condition is often known as the loop condition, and
it determines when the loop terminates. Only in some very special cases, the
programmer can decide to write an infinite loop; this will repeat the statements
in the repeat loop forever.

A counter variable stores the number of times (also known as iterations)
that the loop executes. The counter variable is incremented every time the
statements in the loop are performed. The variable must be initialized to a
given value, typically to 0 or 1.

In the following pseudo-code listing, there is a counter variable with name
loop counter in the while statement. This counter variable is used to control
the number of times the block statement is performed. The counter variable
is initially set to 1, and is incremented every time through the loop.

Max_Num = 25 // maximum number of times to execute

set loop_counter = 1 // initial value of counter

while-loop_counter < Max_Num do

display "Value of counter: ", loop_counter

increment loop_counter

endwhile

The first time the statements in the block are performed, the loop counter
variable loop counter starts with a value equal to 1. The second time through
the loop, variable loop counter has a value equal to 2. The third time through
the loop, it has a value of 3, and so on. Eventually, the counter variable will
have a value equal to the value of Max Num and the loop terminates. The
following listing is the Python code, which is stored in file test3.py.

# Script for testing a loop counter in a while-loop

Max_Num = 15 # maximum number of times to execute

loop_counter = 1 # initial value of counter

while-loop_counter < Max_Num :

print "Value of counter: ", loop_counter

loop_counter = loop_counter + 1

The following Linux shell command starts the Python interpreter with the
script test3.py.
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$ python test3.py

Value of counter: 1

Value of counter: 2

Value of counter: 3

Value of counter: 4

Value of counter: 5

Value of counter: 6

Value of counter: 7

Value of counter: 8

Value of counter: 9

Value of counter: 10

Value of counter: 11

Value of counter: 12

Value of counter: 13

Value of counter: 14

Value of counter: 15

6.2.5 Accumulator Variables

An accumulator variable stores partial results of repeated calculations. The
initial value of an accumulator variable is normally set to zero.

For example, the following algorithm in pseudo-code calculates the sum-
mation of numbers from input, and includes an accumulator variable. The
statement accumulates the values of cval in variable total and it is included
in the while-loop:

total = 0.0

while j < MAX_NUM

set cval = j * 1.25

add cval to total

increment j

endwhile

display "Total accumulated: ", total

After the endwhile statement, the value of the accumulator variable total
is displayed. The following code is the corresponding Python code, which is
stored in file test4.py.

# Script for testing an accumulator variable in a while-loop

total = 0.0

j = 1

MAX_NUM = 15

while j < Max_num :
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cval = j * 1.25

total = cval + total

j = j + 1

print "Total accumulated: ", total

The following Linux shell command starts the Python interpreter with the
script test4.py.

$ python test4.py

Total accumulated: 131.25

In programming, each counter and accumulator variable serves a specific
purpose and these variables should be well documented.

6.2.6 Summation of Input Numbers

The following simple problem applies the concepts and implementation of
while-loop and accumulator variable. The problem computes the summation
of numeric values inputed from the main input device. Computing the sum-
mation should proceed while the input values are greater than 1.

The pseudo-code that describes the algorithm uses an input variable, an
accumulator variable, a loop counter variable, and a conditional expression
that evaluates whether the input value is greater than zero.

set innumber = 1.5 // number with dummy initial value

set loop_counter = 0

set sum = 0.0 // initialize accumulator variable

display "Enter a number: "

read innumer // read first value

while innumber > 1.0 do

add innumber to sum

increment loop_counter

display "Value of counter: ", loop_counter

display "Enter a number: "

read innumer

endwhile

display "Value of sum: ", sum

Listing 6.1 shows the Python program that implements the summation
problem. The program is stored in file summa.py.

Listing 6.1 Python program for computing the summation.
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1 # Script for summation of input values a while-loop

2 # Script: summa.py

3

4 loop_counter = 0

5 sum = 0.0 # initial value of accumulator variable

6 innumber = input( "Type number: ") # read first value

7 while innumber > 1.0 :

8 sum = sum + innumber

9 loop_counter = loop_counter + 1

10 print "Value of counter: ", loop_counter

11 innumber = input( "Enter a number: ")

The following output listing shows the shell commands that start the
Python interpreter with file summa.py.

$ python summa1.py

Type number: 1.5

Value of counter: 1

Type number: 2.55

Value of counter: 2

Type number: 1.055

Value of counter: 3

Type number: 4.12

Value of counter: 4

Type number: 1.25

Value of counter: 5

Type number: 0.0

Value of sum: 10.475

6.3 REPEAT-UNTIL LOOP

The repeat-until loop is a control flow structure that allows actions to be
executed repeatedly based on a given condition. The actions within the process
block are executed first, and then the condition is evaluated. If the condition is
not true the actions within the process block are executed again. This repeats
until the condition becomes true.

Repeat-until structures check the condition after the block is executed; this
is an important difference from the while-loop, which tests the condition before
the actions within the block are executed. Figure 6.2 shows the flowchart for
the repeat-until structure.

The pseudo-code statement of the repeat-until structure corresponds di-
rectly with the flowchart in Figure 6.2 and uses the keywords repeat, until, and
endrepeat. The following lines of code shows the general form of the repeat-
until statement.
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Figure 6.2 A flowchart with a repeat-until structure.

repeat

〈 statements in block 〉
until 〈 condition 〉
endrepeat

The following listing shows the pseudo-code of a repeat-until statement for
the problem discussed in the previous section.

set innumber = 1.0 // dummy initial value

set l_counter = 0

set sum = 0.0 // accumulator variable

repeat

add innumber to sum

increment l_counter

display "Value of counter: ", l_counter

display "Type number: "

read innumer

until innumber <= 0.0

endrepeat

display "Value of sum: ", sum

In Python, the repeat-until loop is not directly supported by a syntactic
construct. However, it can be implemented with a while statement. Listing 6.2
shows the Python program that implements a problem with a loop counter.
Note that a Boolean variable (loop cond) is used to reference the value of the
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loop condition. The while statement in line 8 always checks for the reversed
condition using the not operator that precedes the Boolean variable. The body
of the loop includes the statements in lines 9−11 and the condition is evaluated
at the end. The program is stored in file test5.py.

Listing 6.2 Python program with a loop counter.

1 # Script: test5.py

2 # This script tests a loop counter in a repeat-until loop

3 # implemented with a while statement

4

5 Max_Num = 15 # maximum number of times to execute

6 loop_counter = 1 # initial value of counter

7 loop_cond = False

8 while not loop_cond :

9 print "Value of counter: ", loop_counter

10 loop_counter = loop_counter + 1

11 loop_cond = loop_counter >= Max_Num # until true

The following output listing shows the shell commands that start the
Python interpreter with file test5.py.

$ python test5.py

Value of counter: 0

Value of counter: 1

Value of counter: 2

Value of counter: 3

Value of counter: 4

Value of counter: 5

Value of counter: 6

Value of counter: 7

Value of counter: 8

Value of counter: 9

Value of counter: 10

Value of counter: 11

Value of counter: 12

Value of counter: 13

Value of counter: 14

Listing 6.3 shows the Python program that implements the summation
problem. The program is stored in file summrep.py.

Listing 6.3 Python program that computes a summation.

1 # Script: summrep.py

2 # This script computes a summation using a repeat-until
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3 # loop implemented with a while statement

4

5 sum = 0.0

6 loop_counter = 0

7 innumber = input( "Enter a number: ") # first number

8 lcond = innumber <= 0.0

9 while not lcond:

10 sum = sum + innumber

11 loop_counter = loop_counter + 1

12 print "Value of counter: ", loop_counter

13 innumber = input( "Enter a number: ")

14 lcond = innumber <= 0.0

15

16 print "Value of sum: ", sum

The following output listing shows the shell commands that start the
Python interpreter with file summrep.py.

$ python summrep.py

Enter a number: 4.7

Value of counter: 1

Enter a number: 7.88

Value of counter: 2

Enter a number: 0.8

Value of counter: 3

Enter a number: 2.145

Value of counter: 4

Enter a number: 0.0

Value of sum: 15.525

6.4 FOR-LOOP STRUCTURE

The for-loop structure explicitly uses a loop counter; the initial value and
the final value of the loop counter are specified. The for-loop is most useful
when the number of times that the loop is carried out is known in advance.
In pseudo-code, the for statement has the following general form:

for 〈 counter 〉 = 〈 initial val 〉 to 〈 final val 〉
do

Block of statements

endfor

On every iteration, the loop counter is automatically incremented. The
last time through the loop, the loop counter reaches its final value and the
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loop terminates. The for-loop is similar to the while-loop in that the condition
is evaluated before carrying out the operations in the repeat loop.

The following listing in pseudo-code uses a for-loop for the repetition part
of the summation problem. Variable j is the counter variable, which is auto-
matically incremented and is used to control the number of times the state-
ments in a block is to be performed.

for j = 1 to num do

set sum = sum + 12.5

set y = x * 2.5

endfor

display "Value of sum: ", sum

display "Value of y: ", y

In Python, the simple use of the for statement uses function range. The
first, last, and the increment values of the loop counter are specified. The last
value specified is not really included as one of the values of the loop counter.
The increment is optional; if not included, its value is 1.

Listing 6.4 shows the Python program that includes a simple for-loop. The
program is stored in file test6.py. The loop statement is in line 6. Note that
values of j are: 1, . . . , 9 and the value of this loop counter is displayed in line
9 in every iteration of the loop.

Listing 6.4 Python program that includes a for-loop.

1 # Script: test6.py

2 # This script tests a for-loop

3 x = 3.45

4 num = 10

5 sum = 0.0

6 for j in range(1, num) :

7 sum = sum + 12.5

8 y = x * 2.5

9 print "Loop counter: ", j

10

11 print "Value of sum: ", sum

12 print "Value of y: ", y

The following output listing shows the shell commands that start the
Python interpreter with file test6.py.

$ python test6.py

Loop counter: 1

Loop counter: 2

Loop counter: 3
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Loop counter: 4

Loop counter: 5

Loop counter: 6

Loop counter: 7

Loop counter: 8

Loop counter: 9

Value of sum: 112.5

Value of y: 8.625

6.4.1 Summation Problem with a For-Loop

Using the for-loop construct of the repetition structure, the algorithm for
the summation of input data can be defined in a relatively straightforward
manner with pseudo-code. The most significant difference from the previous
design is that the number of data inputs from the input device is included
at the beginning of the algorithm. As in the previous case, the input value is
added to variable sum only if the value entered is greater than zero.

set innumber = 1.0 // number with dummy initial value

set sum = 0.0 // initialize accumulator variable

display "Number of input data to read: "

read MaxNum

for-loop_counter = 1 to MaxNum do

display "Type number: "

read innumber

if innumber > 0.0

then

add innumber to sum

display "Value of counter: ", loop_counter

endif

endfor

display "Value of sum: ", sum

Listing 6.5 shows the Python source program that implements the summa-
tion problem with a for-loop. The program is stored in file summfor.c. Note
that in line 5, the upper bound value specified for loop counter is MaxNum+1.

Listing 6.5 Python program for computing the summation with for-loop.

1 # Script: summfor.py

2 # This script computes a summation using a for-loop

3 sum = 0.0 # initialize value of accumulator variable

4 MaxNum = input ("Enter number of input data to read: ")

5 for-loop_counter in range(1, MaxNum+1) :

6 innumber = input ("Enter number: ")

7 if innumber > 0.0 :
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8 sum = sum + innumber

9 print "Value of counter: ", loop_counter

10

11 print "Value of sum: ", sum

The following output listing shows the shell commands that start the
Python interpreter with file summfor.py.

$ python summfor.py

Enter number of input data to read: 5

Enter number: 12.66

Value of counter: 1

Enter number: 2.432

Value of counter: 2

Enter number: 5.78

Value of counter: 3

Enter number: 23.85

Value of counter: 4

Enter number: 22.12

Value of counter: 5

Value of sum: 66.842

6.4.2 Factorial Problem

The factorial operation, denoted by the symbol !, can be defined in a general
and informal manner as follows:

y! = y (y − 1) (y − 2) (y − 3) . . . 1.

For example, the factorial of 5 is:

5! = 5× 4× 3× 2× 1.

6.4.2.1 Mathematical Specification of Factorial

A mathematical specification of the factorial function is as follows, for y ≥ 0:

y! =

{

1 when y = 0
y (y − 1)! when y > 0.

The base case in this definition is the value of 1 for the function if the
argument has value zero, which is 0! = 1. The general (recursive) case is
y! = y (y−1)! , if the value of the argument is greater than zero. This function
is not defined for negative values of the argument.
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6.4.2.2 Computing Factorial

In the following Python program, the factorial function mfact has one param-
eter: the value for which the factorial is to be computed. Listing 6.6 shows a
Python program, factp.py, that includes function function mfact. This func-
tion is called in line 22 to compute the factorial of a number and the result
value is displayed on the console.

Listing 6.6 Python source program for computing factorial.

1 #

2 # Program : factp.py

3 # Author : Jose M Garrido, May 28 2014.

4 # Description : Compute the factorial of a number.

5

6 def mfact(num):

7 """

8 This function computes the factorial of num >= 0

9 it multiplies num * (num-1) * num-2 * ...1

10 """

11 res = 1

12 if num > 0:

13 for num in range(num, 1, -1):

14 res = res * num

15 return res

16 elif num == 0:

17 return 1

18 else :

19 return -1

20

21 y = input("Enter a number to compute factorial: ")

22 fy = mfact(y)

23 print "Factorial is: ", fy

Note that this implementation returns −1 for negative values of the ar-
gument. The following shell commands execute the Python interpreter with
program factp.py and computes the factorial for several values of the input
number.

$ python factp.py

Enter a number to compute factorial: 5

Factorial is: 120

$ python factp.py

Enter a number to compute factorial: 0

Factorial is: 1
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$ python factp.py

Enter a number to compute factorial: 1

Factorial is: 1

6.5 SUMMARY

The repetition structure is used in algorithms in order to perform repeatedly
a group of action steps (instructions) in the process block. There are three
types of loop structures: while-loop, repeat-until, and for-loop. In the while
construct, the loop condition is tested first, and then the block of statements
is performed if the condition is true. The loop terminates when the condition
is false.

In the repeat-until construct, the group of statements in the block is carried
out first, and then the loop condition is tested. If the loop condition is true, the
loop terminates; otherwise the statements in the block are performed again.

The number of times the statements in the block are carried out depends
on the condition of the loop. In the for-loop, the number of times to repeat
execution is explicitly indicated by using the initial and final values of the
loop counter. Accumulator variables are also very useful with algorithms and
programs that include loops. Several examples of programs in Python are
shown.

Key Terms

repetition loop while loop condition
do endrepeat block loop termination
loop counter endwhile accumulator repeat-until
for to downto endfor
end iterations summation factorial

6.6 EXERCISES

6.1 Develop a computational model that computes the maximum value from
a set of input numbers. Use a while-loop in the algorithm and implement
in Python.

6.2 Develop a computational model that computes the maximum value from
a set of input numbers. Use a for-loop in the algorithm and implement
in Python.

6.3 Develop a computational model that computes the maximum value from
a set of input numbers. Use a repeat-until loop in the algorithm and
implement in Python.
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6.4 Develop a computational model that finds the minimum value from a
set of input values. Use a while-loop in the algorithm and implement in
Python.

6.5 Develop a computational model that finds the minimum value from a
set of input values. Use a for-loop in the algorithm and implement in
Python.

6.6 Develop a computational model that finds the minimum value from a set
of input values. Use a repeat-until loop in the algorithm and implement
in Python.

6.7 Develop a computational model that computes the average of a set of in-
put values. Use a while-loop in the algorithm and implement in Python.

6.8 Develop a computational model that computes the average of a set of
input values. Use a for-loop in the algorithm and implement in Python.

6.9 Develop a computational model that computes the average of a set of
input values. Use a repeat-until loop in the algorithm and implement in
Python.

6.10 Develop a computational model that computes the student group av-
erage, maximum, and minimum grade. The computational model uses
the input grade for every student. Use a while-loop in the algorithm and
implement in Python.

6.11 Develop a computational model that computes the student group av-
erage, maximum, and minimum grade. The computational model uses
the input grade for every student. Use a for-loop in the algorithm and
implement in Python.

6.12 Develop a computational model that reads rainfall data in inches for
yearly quarters from the last five years. The computational model is to
compute the average rainfall per quarter, the average rainfall per year,
and the maximum rainfall per quarter and for each year. Implement in
Python.

6.13 Develop a computational model that computes the total inventory value
amount and total per item. The computational model is to read item
code, cost, and description for each item. The number of items to process
is not known. Implement in Python.
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C HA P T E R 7

Python Lists, Strings, and

Other Data Sequences

7.1 INTRODUCTION

Most programming languages support arrays, which are one the most funda-
mental data structures. With an array, multiple values can be stored and each
is referenced with the name of the array and specifying an index value. The
individual values of an array are known as elements.

Python uses lists, which are more general data structures that can be used
to represent arrays. This chapter discusses lists and other data sequences used
in Python. In a subsequent chapter, the extensive array handling operations
and objects in the NumPy library will be discussed.

7.2 LISTS

A list in Python is simply an ordered collection of items each of which can be
of any type. A list is a dynamic mutable data structure and this means that
items can be added to and deleted from it. The list data structure is the most
common data sequence in Python. A sequence is a set of values identified by
integer indices.

To define a list in Python, the items are separated by commas and in
square brackets. A simple list with name vv and n items is defined as follows:

vv = [p1, p2, p3, . . . , pn] .

For example, the command that follows defines a list with name vals and
six data items:

vals = [1,2,3,4,5,6]

101
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7.2.1 Indexing Lists

An individual item in the list can be referenced by using an index, which
is an integer number that indicates the relative position of the item in the
list. The values of index numbers always start at zero. In the list vals defined
previously, the index values are: 0, 1, 2, 3, 4, and 5.

In Python, the reference to an individual item of a list is written with the
name of the list and the index value or an index variable within brackets. The
following Python commands in interactive mode define the list vals, reference
the first item on the list with index value 0, reference the fourth item with
index value 3, then use an index variable idx with a value of 4 to reference an
item of list vals.

>>> vals = [1, 2, 3, 4, 5, 6]

>>> vals

[1, 2, 3, 4, 5, 6]

>>> vals[0]

1

>>> vals[3]

4

>>> idx = 4

>>> vals[idx]

5

In non-interactive mode, the command print vals[idx] is used to display
the value of the list item indexed with variable idx.

An index value of −1 is used to reference the last item of a list and an
index value of −2 is used to reference the item that is previous to the last
item of the list. The following commands also in interactive mode illustrate
this.

>>> vals[-1]

6

>>> vals[-2]

5

Because a list is a mutable data structure, the items of the list can change
value by performing assignment on them. The second of the following Python
commands assigns the new value of 23.55 to the item that has index value 3.

>>> vals

[1, 2, 3, 4, 5, 6]

>>> vals [3] = 23.55

>>> vals

[1, 2, 3, 23.55, 5, 6]
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7.2.2 Slicing Operations

The slicing operations are used to access a sublist of the list. The colon nota-
tion is used to specify the range of index values of the items. The first index
value is written before the colon and the last index value is written after the
colon. This indicates the range of index values from the start index value up
to but not including the last index value specified.

In the following example, which uses Python in interactive mode, the sec-
ond command specifies a sublist of list vals, that includes the items starting
with index value 0 up to but not including the item with index value 4. The
third command assigns the sublist vals[2:5] to variable y; so this command
creates a new sublist and assigns it to y.

>>> vals

[1, 2, 3, 4, 5, 6]

>>> vals[0:4]

[1, 2, 3, 4]

>>> y = vals[2:5]

>>> y

[3, 4, 5]

A range of items can be updated using slicing and assignment. For example,
the following command changes the values of items with index 0 and up to
but not including the item with index value 2.

>>> vals[0:2] = vals[1:3]

>>> vals

[2, 3, 3, 23.55, 5, 6]

Using slicing, the second index value can be left out and implies that the
range of index values starts from the item with the index value specified to
the last item of the list. In a similar manner, the first index value can be left
out and implies that the range of items starts with the first item of the list.

>>> vals[1:]

[3, 3, 23.55, 5, 6]

>>> vals[:5]

[2, 3, 3, 23.55, 5]

The first useful operation on a list is to get the number of items in a list.
Function len is called to get the number of items from the list specified in
parenthesis. In the following commands, the first command gets the length of
list vals and assigns this value to variable n. The next command shows the
value of n, which is 6 because vals has six items. The next command calls
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function range to generate another list starting at 0 and the last value is 5
(one before 6). Recall that function range was used in the for-loop discussed
previously. The next command combines functions range and len to produce
the same result as the previous command.

>>> n = len(vals)

>>> n

6

>>> range(n)

[0, 1, 2, 3, 4, 5]

>>> range(len(vals))

[0, 1, 2, 3, 4, 5]

7.2.3 Iterating over a List with a Loop

Indexing is very useful to access the items of a list iteratively in a loop. A for-
loop accesses the items of a list one by one by iterating over the index values
of the list. Listing 7.1 computes the summation of the items in list vals2 and
selects only the ones that have a value ≤ 3.15. The Python script is stored in
file sumlist.py.

Listing 7.1 Python program for computing the summation on a list.

1 # Script: sumlist.py

2 # Compute the summation of the values in a list

3 # that are less or equal to 3.15 using a loop

4 #

5 vals2 = [2, 3.45, 1.22, 4.87, 0.78, 2.45, 8.76]

6 nl = range ( len(vals2))

7 sum = 0.0

8 for i in nl:

9 if vals2[i] <= 3.15 :

10 print "Index: ", i

11 sum = sum + vals2[i]

12 print "Summation: ", sum

The following output listing shows the shell commands that start the
Python interpreter with file sumlist.py, and the results computed.

$ python sumlist.py

Index: 0

Index: 2

Index: 4

Index: 5

Summation: 6.45
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Python supports iterating directly over the items of a list using the for
statement. Listing 7.2 shows a Python program that computes the same sum-
mation of the list discussed in the previous problem. Instead of using indexing,
this program iterate over the items of the list vals2 and the final result is the
same as in the previous program. Note that the variable item refers to the
value of an individual item of the list. This Python script is stored in file
sumlistb.py.

Listing 7.2 Python program for computing the summation on a list.

1 # Script: sumlistb.py

2 # Compute the summation of the values in a list

3 # that are less or equal to 3.15 by

4 # using a loop to iterate over the items of a list

5 #

6 vals2 = [2, 3.45, 1.22, 4.87, 0.78, 2.45, 8.76]

7 sum = 0.0

8 for item in vals2:

9 if item <= 3.15 :

10 print "item ", item

11 sum = sum + item

12 print "Summation: ", sum

The following output listing shows the shell commands that start the
Python interpreter with file sumlistb.py and the results.

$ python sumlistb.py

item 2

item 1.22

item 0.78

item 2.45

Summation: 6.45

7.2.4 Creating a List Using a Loop

A list can be created starting with an empty list; items can be appended using
a for-loop. The append method is an operation of a list and is very useful for
creating a list. The following command appends the value of a new item v to
a list mlist:

mlist.append(v)

The following example builds a list of items with values that are multiples
of 5. Listing 7.3 shows a Python program that builds the list starting with
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an item with value 5. Line 8 has a for statement that defines the loop that
iterates with loop counter j starting with 1 up to SIZE. The value of the
current item is computed in line 9 and it is placed at the end of the current
list using the append list method in line 10. Note that the variable item refers
to the value of an individual item of the list. This Python script is stored in
file blist5.py.

Listing 7.3 Python program with a list of values that are multiples of 5.

1 # Script: blist5.py

2 # Python script to build a list with

3 # items with values multiple of 5

4

5 SIZE = 15 # number of items in list

6 listmf = [] # create empty list

7 # the list starts with 5

8 for j in range (1, SIZE+1):

9 item = j * 5

10 listmf.append(item)

11

12 print "List is: ", listmf

The following output listing shows the shell commands that start the
Python interpreter with file blist5.py and the results.

$ python blist5.py

List is: [5, 10, 15, 20, 25, 30, 35, 40, 45, 50]

7.2.5 Passing Lists to a Function

One or more lists can be passed to a function and the lists are used as argu-
ments in the function call. The lists are specified as parameters in the function
definition.

Listing 7.4 shows a Python program that includes a function definition
buildlf starting in line 8. The function has two parameters: a list llist and
simple variable lsize. The function builds the list by appending items into it.
The function call with two arguments appears in line 15 and the results are
displayed by the instruction in line 16.

Listing 7.4 Program that builds a list with values that are multiples of 5.

1 # Script: blist5f.py

2 # Python script to build a list with

3 # items with values multiple of 5

4 # using function buildlf
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5

6 #Function that builds a list

7 # the list starts with 5

8 def buildlf (llist, lsize):

9 for j in range (1, lsize+1):

10 item = j * 5

11 llist.append(item)

12

13 SIZE = 10 # number of items in list

14 listmf = [] # create empty list

15 buildlf(listmf, SIZE)

16 print "List is: ", listmf

The following output listing shows the shell commands that start the
Python interpreter with file blist5f.py and the results.

$ python blist5f.py

List is: [5, 10, 15, 20, 25, 30, 35, 40, 45, 50]

A list can be returned by a function and the list must be defined in the
function. Listing 7.5 shows a Python program that includes a function defini-
tion buildlg starting in line 8. This function builds a list and then returns it in
line 13. Note that the function includes only one parameter: lsize. The script
calls in the function in an assignment statement in line 16.

Listing 7.5 Python program that builds a list of values multiples of 5.

1 # Script: blist5g.py

2 # Python script to build a list with

3 # items with values multiple of 5

4 # using function buildlg

5

6 #Function that builds a list

7 # the list starts with 5

8 def buildlg (lsize):

9 llist = [] # create empty list

10 for j in range (1, lsize+1):

11 item = j * 5

12 llist.append(item)

13 return llist

14

15 SIZE = 10 # number of items in list

16 listmf = buildlg(SIZE)

17 print "List is: ", listmf
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The results are the same as the previous two Python scripts. The following
output listing shows the shell commands that start the Python interpreter
with file blist5g.py and the results.

$ python blist5g.py

List is: [5, 10, 15, 20, 25, 30, 35, 40, 45, 50]

7.2.6 Additional Operations on Lists

In addition to list method append, there are several methods for lists provided
in Python. The extend method appends another list to the current list. The
following commands using Python in interactive mode define two lists listm
and lst2, then append the second list to the first list.

>>> listm = [5, 10, 15, 20, 25, 30]

>>> lst2 = [35, 40]

>>> listm.extend(lst2)

>>> listm

[5, 10, 15, 20, 25, 30, 35, 40]

List method insert places an item at a given position of a list. Calling this
method requires two arguments, the first is the index value before which the
new item is to be inserted, the second argument is the value of the item to
be inserted in the list. The following command inserts an item with value 33
into list listm at position with index value 5.

>>> listm.insert(5, 33)

>>> listm

[5, 10, 15, 20, 25, 33, 30, 35, 40]

List method remove searches for the first item with the specified value and
removes it from the list. The following command removes the item with value
35 from the list listm.

>>> listm.remove(35)

>>> listm

[5, 10, 15, 20, 25, 33, 30, 40]

List method pop removes the last item from the specified list and returns
the value of the item. The following command removes and displays the last
item from list listm.
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>>> listm.pop()

40

>>> listm

[5, 10, 15, 20, 25, 33, 30]

List method index finds the first item with the value specified and returns
its index value. The following command gets and returns the index value of
the item that has value 33.

>>> listm.index(33)

5

List method sort rearranges in ascending order the items of a list. The fol-
lowing commands sort the items (in ascending order) in list listm and displays
the list again.

>>> listm.sort()

>>> listm

[5, 10, 15, 20, 25, 30, 33]

List method reverse rearranges the items of a list in reverse order. The
following command reverses the items in list listm.

>>> listm.reverse()

>>> listm

[33, 30, 25, 20, 15, 10, 5]

7.3 TEMPERATURE CONVERSION PROBLEM

The temperature conversion problem was discussed in the previous chapter.
The description of the revised problem is: given a list of values of temperature
in degrees Celsius, compute the corresponding values in degrees Fahrenheit
and show this result.

7.3.1 Mathematical Model

The mathematical representation of the solution to the problem, the formula
expressing a temperature measurement F in Fahrenheit in terms of the tem-
perature measurement C in Celsius is:

F =
9

5
C + 32.
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The solution to the problem applies the mathematical expression for the
conversion of a temperature measurement in Celsius to the corresponding
value in Fahrenheit. The mathematical formula expressing the conversion as-
signs a value to the desired temperature in the variable itemF, the dependent
variable. The values of the variable itemC can change arbitrarily because it is
the independent variable. The mathematical model uses floating-point num-
bers to represent the temperature readings in various temperature units.

7.3.2 The Python Implementation

The solution to his problem is implemented in Python using lists. Variable
itemC refers to a value of the temperature in Celsius and variable itemF
refers to the corresponding value of the temperature in Fahrenheit. All values
of the temperatures in Celsius are placed in list listC and all values computed
of the temperature in Fahrenheit are placed in list listF.

Listing 7.6 shows a Python program that computes the temperature in
Fahrenheit for every value in the list of temperature in Celsius. This program
uses a loop in which the two lists are built by appending a new item to the
lists. This Python script is stored in file tconvctfl.py.

Listing 7.6 Python program for temperature conversion on a list.

1 # Program : tconvctfl.py

2 # Author : Jose M Garrido

3 # Date : 6-02-2014

4 # Description : Read values of temperature in Celsius

5 # from console, convert to degrees Fahrenheit, and

6 # display corresponding values of temperature

7 # in fahrenheit on screen

8

9 SIZE = 15 # number of items in list

10 listC = [] # create empty list for temp in Celsius

11 listF = [] # create empty list for temp in Fahrenheit

12 # listC starts with 5

13 for j in range (1, SIZE+1):

14 itemC = j * 5

15 listC.append(itemC)

16 itemF = itemC * (9.0/5.0) + 32.0 # temp in Fahrenheit

17 listF.append(itemF)

18

19 print "Values of temperature in Celsius: "

20 print listC

21 print "Values of temperature in Fahrenheit: "

22 print listF
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The following listing shows the shell command that starts the Python
interpreter with file tconvctfl.py and the results.

$ python tconvctfl.py

Values of temperature in Celsius:

[5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75]

Values of temperature in Fahrenheit:

[41.0, 50.0, 59.0, 68.0, 77.0, 86.0, 95.0, 104.0, 113.0,

122.0, 131.0, 140.0, 149.0, 158.0, 167.0]

7.3.3 Implementation Using a Function

Listing 7.5 shows a Python script that solves the same problem as the previous
script. It defines function tconvf in lines 9–16. This function takes a list of
values of temperature in Celsius, computes the temperature in Fahrenheit,
and returns these values in a new list. This Python script creates a list of
values of temperature in Celsius in line 18, calls function tconvf in line 19
using the list as the argument, then displays the two lists in lines 20–23. This
script is stored in file tconvs.py.

Listing 7.5 Python program calls a function for temperature conversion.

1 # Program : tconvs.py

2 # Author : Jose M Garrido

3 # Date : 6-02-2014

4 # Description : Given a list of values of temperature in

5 # Celsius, convert to degrees Fahrenheit, and return a

6 # list of values in Fahrenheit. This script defines and

7 # calls function ’tconvf’

8

9 def tconvf (listC):

10 # listC list of temperature values in Celsius

11 listF = [] # empty list for temp in Fahrenheit

12 size = len(listC)

13 for j in range (0, size):

14 itemF = listC[j] * (9.0/5.0) + 32.0

15 listF.append(itemF)

16 return listF

17

18 c = [0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55]

19 f = tconvf(c)

20 print "Values of temperature in Celsius: "

21 print c

22 print "Values of temperature in Fahrenheit: "

23 print f
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The following listing shows the shell command that starts the Python
interpreter with file tconvs.py and the results.

$ python tconvs.py

Values of temperature in Celsius:

[0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55]

Values of temperature in Fahrenheit:

[32.0, 41.0, 50.0, 59.0, 68.0, 77.0, 86.0, 95.0, 104.0, 113.0,

122.0, 131.0]

7.4 LIST COMPREHENSIONS

A list comprehension is a compact notation in Python for generating a list
of a given size and with the elements initialized according to the specified
expression. The following example generates a list ll with 12 elements all
initialized with value 1.

>>> lsize = 12

>>> ll = [ 1 for j in range(lsize) ]

>>> ll

[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

The same list can be generated using a for-loop and function append, as
the following example shows.

>>> ll = []

>>> for j in range(lsize):

... ll.append(1)

...

>>> ll

[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

In the notation for list comprehension, the expression appears first followed
by one or more for clauses and all within brackets. The following example
generates a list ll of size lsize with the elements initialized to a value from the
expression j + 12.5.

>>> ll = [ j+12.5 for j in range(lsize)]

>>> ll

[12.5, 13.5, 14.5, 15.5, 16.5, 17.5, 18.5, 19.5, 20.5,

21.5, 22.5, 23.5]
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7.5 LISTS OF LISTS

Lists of lists are also known as nested lists, which means that one or more items
in a list are also lists. Multidimensional arrays can be defined with nested lists.
In the following example, the first command creates list lst1 with four items.
The second command creates list lst2 and its third item is list lst1. The third
command displays list lst2 and the last command shows that the length of list
lst2 is 5.

>>> lst1 = [12, 54, 2, 9]

>>> lst2 = [99, 5, lst1, 20, 7]

>>> lst2

[99, 5, [12, 54, 2, 9], 20, 7]

>>> len (lst2)

5

To reference an item of a list that is part of a larger list, two indices are
required. The first index refers to an item in the outer list, the second index
refers to an item in the inner list. In the following example, the first command
uses index value 2 to reference the third item of list lst2 and this item is the
inner list lst1. The second command uses two index values; the first index
value, 2, indicates the third item of list list2, and the second index value, 3,
references the fourth item of the inner list lst1, which has value 9.

>>> lst2 [2]

[12, 54, 2, 9]

>>> lst2 [2][3]

9

The following commands create a small matrix smatrix with two rows and
three columns, references the element of the second row and third column,
and assign the value to variable eval. In a similar manner, the element of the
first row and second column is referenced and its value is assigned to variable
fval.

>>> smatrix = [[9, 2, 5], [4, 8, 6]]

>>> smatrix

[[9, 2, 5], [4, 8, 6]]

>>> eval = smatrix[1][2]

>>> eval

6

>>> fval = smatrix[0][1]

>>> fval

2
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The following example generates a 3 by 5 list, that is, a list with three
rows and five columns. The outer for-loop is used to generate a row list, and
the inner for-loop generates all the elements in a row initialized to value 1.

>>> nll = [[]]

>>> for i in range(3):

... row = []

... for j in range (5):

... row.append(1)

... nll.append(row)

...

>>> nll

[[], [1, 1, 1, 1, 1], [1, 1, 1, 1, 1], [1, 1, 1, 1, 1]]

The following command calls list function pop to remove the first element
from the list, which is an empty list.

>>> nll.pop(0)

[]

>>> nll

[[1, 1, 1, 1, 1], [1, 1, 1, 1, 1], [1, 1, 1, 1, 1]]

Nested list comprehensions are used to generate multi-dimensional lists
initialized to a value according to a specified expression. The following example
generates a 3 by 5 list, that is, a list with three rows and five columns. The
inner (first) for clause is used to generate the values in a row, the second for
clause generates all the rows.

>>> lll = [[1 for i in range(5)] for j in range (3)]

>>> lll

[[1, 1, 1, 1, 1], [1, 1, 1, 1, 1], [1, 1, 1, 1, 1]]

7.6 TUPLES

A tuple is a Python sequence similar to a list. To create a tuple of items, write
the values separated by commas. It is often convenient to enclose the items in
parenthesis. For example:

>>> xt = (4.5, 6, 78, 19)

>>> xt

(4.5, 6, 78, 19)
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A tuple is immutable, which means that after creating a tuple it cannot be
changed. The value of the elements in a tuple cannot be altered, and elements
cannot be added or removed from the tuple.

As with lists, the individual elements of a tuple can be referenced by using
an index value. In the following example, the third element of tuple xt is
accessed and its value is assigned to variable yy.

>>> yy = xt[2]

>>> yy

78

Tuples can be nested, which means tuples of tuples can be created. For
example, the following creates a tuple xt2 that includes tuple xt as its second
element.

>>> xt2 = (25, xt, 16)

>>> xt2

(25, (4.5, 6, 78, 19), 16)

Method len can be used to get the number of elements in a tuple. The
following assignment statement gets the length of tuple xt and assigns this
value to variable lxt.

>>> lxt = len (xt)

>>> lxt

4

A tuple can be converted to a list by calling method list. For example, the
following command converts tuple xt to a list llxt.

>>> llxt = list (xt)

>>> llxt

[4.5, 6, 78, 19]

A list can be converted to a tuple by calling method tuple. For example, the
following commands create list vals then convert the list to a tuple mytuple.

>>> vals = [1, 2, 3, 4, 5, 6]

>>> vals

[1, 2, 3, 4, 5, 6]

>>> mytuple = tuple (vals)

>>> mytuple

(1, 2, 3, 4, 5, 6)
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It is possible to build lists of tuples and tuples of lists. The following
command defines a list myltt of tuples.

>>> myltt = [(12, 45.25), (45, 68.5), (25, 78.95)]

>>> myltt

[(12, 45.25), (45, 68.5), (25, 78.95)]

The following command defines a tuple mytup of lists.

>>> mytup = ([14, 45.25], [55, 68.5], [28, 78.95])

>>> mytup

([14, 45.25], [55, 68.5], [28, 78.95])

7.7 DICTIONARIES

Dictionaries are also Python data structures except that these are indexed
by keys. A dictionary is used as an unordered set of key and value pairs that
are enclosed in curly braces. The key can be any immutable type and must
be unique. The corresponding value associated with a key is written after a
semicolon and following the key.

The following example creates a dictionary of three key-value pairs sep-
arated by commas. Note that the keys are strings in this example. The last
command extracts the value of the pair that has given key ’price’.

>>> mydict = {’desc’: ’valve 5in’, ’price’: 23.75, ’quantity’: 54}

>>> mydict

{’price’: 23.75, ’quantity’: 54, ’desc’: ’valve 5in’}

>>> mydict[’price’]

23.75

The value of a pair in a dictionary can be updated given the key. The
following example changes the value of price to 25.30.

>>> mydict[’price’] = 25.30

>>> mydict

{’price’: 25.3, ’quantity’: 54, ’desc’: ’valve 5in’}

The in keyword is used to check whether a key appears in the given dictio-
nary. The following command checks the dictionary mydict for the key ’desc’.
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>>> ’desc’ in mydict

True

The dictionary method keys is used to get a list of all the keys in a given
dictionary. The following command gets a list of the keys in mydict.

>>> mydict.keys()

[’price’, ’quantity’, ’desc’]

A given list of two-tuples can be converted to a dictionary by calling func-
tion dict. The following commands define a list of two-tuples (tuples with two
values) myltt and convert this list to a dictionary.

>>> myltt = [(12, 45.25), (45, 68.5), (25, 78.95)]

>>> myltt

[(12, 45.25), (45, 68.5), (25, 78.95)]

>>> mdict3 = dict (myltt)

>>> mdict3

{25: 78.95, 12: 45.25, 45: 68.5}

7.8 STRINGS

A string is a sequence of text characters in a particular character encoding.
Syntactically, a string literal is enclosed in single or double quotes and can be
assigned to a variable. Strings are immutable, and once defined, strings cannot
be modified. The following command defines a string literal and assigns the
reference to variable mystr.

>>> mystr = ’State University’

>>> mystr

’State University’

One of the most commonly used operations is concatenation. It joins two
or more strings and creates a longer string. The concatenation string operator
is the plus sign (+). The following command concatenates two strings and the
newly created string is assigned to variable str2.

>>> str2 = ’Kennesaw ’ + mystr

>>> str2

’Kennesaw State University’
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Function len gets the length of a string, that is, the number of characters
in the string. The following command gets the number of characters in the
string referenced by variable str2.

>>> s = len (str2)

>>> s

25

Indexing is used to access particular characters of a string. Index values
start at zero and are written within brackets. The following command prints
the character with index 5 of string str2, which is s.

>>> print str2[5]

s

The character accessed in a string can be assigned to another variable, as
the next example shows.

>>> x = str2[5]

>>> x

’s’

The slicing operation is used to access a subset of a string. This operation
requires the slice operator (:) and indexes that specify the range of characters
to include. In the following example, the first command prints the subset
of string str2 specified from the second character (with index 1) up to the
fourth character (with index 4). The second command assigns to variable strx
a subset of string str2 specified from the first character to the fifth character.

>>> print str2[1:4]

enn

>>> strx = str2[0:5]

>>> strx

’Kenne’

The following example creates a new string that consists of "Kansas" con-
catenated with a subset of str2 that starts with the ninth character to the end
of str2.

>>> nstrx = "Kansas" + str2[8:]

>>> nstrx

’Kansas State University’
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The membership operator in is used to check whether a character or a
substring is contained in another string and returns True or False. In the
following example, the first command checks if the character ’K’ belongs in
string nstrx. The second command checks if the substring strx is contained in
the string str2.

>>> ’K’ in nstrx

True

>>> strx in str2

True

Some characters in a string and escape characters are written preceded
with a backslash (\). For example, when a newline character is part of a
string, that indicates that a change of line occurs at that point and the rest
of the string appears on a newline. The following example shows a string that
is to be displayed on two lines.

>>> message = "Start the program now\n click on the icon"

>>> message

’Start the program now\n click on the icon’

>>> print message

Start the program now

click on the icon

When a string is enclosed in double quotes (”) but one or more double
quotes are also used as part of the string, these have to be escaped with a
backslash as in the following example. The same applies with single quotes.

>>> mess1 = "The program responds with \"welcome\" then waits"

>>> print mess1

The program responds with "welcome" then waits

Python provides several string methods and the general form to call these
methods is:

string_name.method_name(arguments)

For example, method find is used to find the index value in string nstrx
where the substring "State" starts, as in the following example.
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>>> nstrx

’Kansas State University’

>>> nstrx.find("State")

7

Another very useful string method is isdigit and is used to check whether
all characters in a string are decimal digits. The following example checks
whether string nn contains only decimal digits.

>>> nn = "54321"

>>> nn.isdigit()

True

7.9 SIMPLE NUMERICAL APPLICATIONS USING LISTS

This section discusses several simple applications of arrays as lists; a few of
these applications perform simple manipulation of arrays, and other applica-
tions perform slightly more complex operations with arrays such as searching
and sorting.

The problems discussed in this section compute the average value and
the maximum value in an array named varr. The algorithms that solve these
problems examine all the elements of the array.

7.9.1 The Average Value in an Array

To compute the average value in an array, the algorithm is designed to first
compute the summation of all the elements in the array; the accumulator
variable sum is used to store this. Second, the algorithm computes the average
value by diving the value of sum by the number of elements in the array. The
following listing has the pseudo-code description of the algorithm.

1. Initialize the value of the accumulator variable, sum, to zero.

2. For every element of the array, add its value to the accumulator variable
sum.

3. Divide the value of the accumulator variable by the number of elements
in the array, num.

The accumulator variable sum stores the summation of the element values
in the array named varr with num elements. The average value, ave, of array
varr using index j starting with j = 1 to j = n is expressed mathematically
as:
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ave =
1

num

num
∑

j=1

varrj .

Listing 7.7 shows the Python script that implement the algorithm that
computes the average value of the elements in the array. This code is stored
in the script file aver.py.

Listing 7.7: Python script file for computing the average in a list.

1 # Python script file to compute average value in a list

2 # This script inputs the array size

3 # and the elements of the array from the console

4 # Computes the average value in the array

5 # File: aver.py

6 num = input(’Enter array size: ’);

7 varr = [] # empty list

8 for j in range(0, num):

9 item = input(’Enter array element: ’)

10 varr.append(item)

11

12 # Now compute the average value in list

13 sum = 0.0

14 for j in range(0, num):

15 print "index: ", j, " value: ", varr[j]

16 sum = sum + varr[j]

17

18 ave = sum/num

19 print "Average value: ", ave

The following output listing shows the result of executing the script aver.py
at the Linux prompt.

$ python aver.py

Enter array size: 4

Enter array element: 9.75

Enter array element: 8.34

Enter array element: 7.25

Enter array element: 6.77

index: 0 value: 9.75

index: 1 value: 8.34

index: 2 value: 7.25

index: 3 value: 6.77

Average value: 8.0275
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7.9.2 Maximum Value in a List

Consider a problem that deals with finding the maximum value in an array
named varr. The algorithm with the solution to this problem also examines
all the elements of the array.

The variable max arr stores the maximum value found so far. The name
of the index variable is j. The algorithm description is:

1. Read the value of the array size, num, and the value of the array ele-
ments.

2. Initialize the variablemax arr that stores the current largest value found
(so far). This initial value is the value of the first element of the array.

3. Initialize the index variable (value zero).

4. For each of the other elements of the array, compare the value of the
next array element; if the value of the current element is greater than the
value of max arr (the largest value so far), change the value of max arr
to this element value, and store the index value of the element in variable
k.

5. The index value of variable k is the index of the element with the largest
value in the array.

Listing 7.8 contains the Python script that implements the algorithm
for finding the maximum value in an array; the script is stored in the file
arrmax.py. As in the previous examples, the list is first created by reading
the values of the elements, in lines 6–10. Finding the maximum value in the
list is performed in lines 13–18

Listing 7.8: Python script file for finding the maximum value in a list.

1 # Python script file to find the maximum value in a list

2 # This script inputs the array size

3 # and the elements of the array from the console

4 # Computes the maximum value in the array

5 # File: arrmax.py

6 num = input (’Enter array size: ’)

7 varr = [] # empty list

8 for j in range(0, num):

9 item = input(’Enter array element: ’)

10 varr.append(item)

11

12 # Now find the maximum value in list

13 max_arr = varr[0] # initial value of max_arr

14 for j in range(1, num):

15 print "index: ", j, " value: ", varr[j]
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16 if varr[j] > max_arr:

17 k = j

18 max_arr = varr[j]

19

20 print "Index of max value: ", k

21 print "Max value: ", varr[k]

Executing the script file arrmax.py with the Python interpreter produces
the following output.

$ python arrmax.py

Enter array size: 4

Enter array element: 5.56

Enter array element: 7.87

Enter array element: 3.78

Enter array element: 2.7

index: 1 value: 7.87

index: 2 value: 3.78

index: 3 value: 2.7

Index of max value: 1

Max value: 7.87

7.9.3 Searching

Looking for an array element with a particular value, known as the key, is
called searching and involves examining some or all elements of an array. The
search ends when and if an element of the array has a value equal to the
requested value. Two general techniques for searching are linear search and
binary search.

7.9.3.1 Linear Search

A linear search algorithm examines the elements of an array in a sequential
manner starting with the first element. The algorithm examines the first el-
ement of the array, then the next element, and so on until the last element
of the array. Every array element is compared with the key value, and if an
array element is equal to the requested value, the algorithm has found the
element and the search terminates. This may occur before the algorithm has
examined all the elements of the array.

The result of this search is the index of the element in the array that
is equal to the key value given. If the key value is not found, the algorithm
indicates this with a negative result or in some other manner. The following
is an algorithm description of a general linear search using a search condition
of an element equal to the value of a key.

1. Repeat for every element of the array:
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(a) Compare the current element with the requested value or key. If the
value of the array element satisfies the condition, store the value of
the index of the element found and terminate the search.

(b) If values are not equal, continue search.

2. If no element with value equal to the value requested is found, set the
result to value −1.

The algorithm outputs the index value of the element that satisfies the
search condition, whose value is equal to the requested value kval. If no element
is found that satisfies the search condition, the algorithm outputs a negative
value.

The Python script is stored in file lsearch.py. Listing 7.9 shows the
Python commands that implement the algorithm that searches the list llist for
the key value, key. In line 18, list llist is created. In line 20, there is a function
call to lsearchf using two arguments: the list and the key value to search. The
function definition appears in lines 8–16. The function returns the index value
of the element found that is equal to the key value, or −1 if not found.

Listing 7.9: Script file for computing a linear search in a list.

1 # Python script for linear search

2 # it performs a linear search of the array varr

3 # looking for the value kvar

4 # The algorithm sets the result, the index value of

5 # the element found, or -1 if not found.

6 # File: lsearch.py

7

8 def lsearchf (varr, kval):

9 # find the element in varr equal to kval

10 found = False

11 num = len (varr)

12 for j in range(0, num):

13 if found == False and varr [j] == kval:

14 found = True

15 return j

16 return -1

17

18 llist = [23, 12, 19, 35, 22, 81, 14, 8, 33]

19 key = input ("Enter the key value: ")

20 result = lsearchf(llist, key)

21 if result >= 0:

22 print ’Result index is: ’, result

23 else:

24 print ’Key not found’
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Executing the script file lsearch.py with the Python interpreter produces
the following output.

$ python lsearch.py

Enter the key value: 33

Result index is: 8

$ python lsearch.py

Enter the key value: 45

Key not found

7.9.3.2 Binary Search

Binary search is a more complex search method and is very efficient, compared
to linear search, because the number of comparisons is smaller.

A prerequisite for the binary search technique is that the element values
in the array to be searched are sorted in ascending order. The array elements
to search are split into two halves or partitions of about the same size. The
middle element is compared with the key (requested) value. If the element
with this value is not found, the search is continued on only one partition.
This partition is again split into two smaller partitions until the element is
found or until no more splits are possible because the element is not found.

With a search algorithm, the efficiency of the algorithm is determined
by the number of compare operations with respect to the size of the array.
The average number of comparisons with linear search for an array with N
elements is N/2, and if the element is not found, the number of comparisons
is N . With binary search, the number of comparisons is log2 N . The informal
description of the algorithm is:

1. Assign the lower and upper bounds of the array to lower and upper.

2. While the lower value is less than the upper value, continue the search.

(a) Split the array into two partitions. Compare the middle element
with the key value.

(b) If the value of the middle element is equal to the key value, termi-
nate search and the result is the index of this element.

(c) If the key value is less than the middle element, change the upper
bound to the index of the middle element minus 1. Continue the
search on the lower partition.

(d) If the key value is greater than or equal to the middle element,
change the lower bound to the index of the middle element plus 1.
Continue the search on the upper partition.

3. If the key value is not found in the array, the result is −1.
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Listing 7.10 shows the Python script that implements the binary search
algorithm. The script commands are stored in command file bsearch.py.

Listing 7.10: Python script for searching for a key using binary search.

1 # Python script that implements a binary search

2 # of list (array) llist using key value key.

3 # The result is the index value of

4 # the element found, or -1 if not found.

5 # File: bsearch.py

6

7 def bsearchf (varr, kval):

8 # find the element in varr equal to kval

9 num = len (varr)

10 lower = 0

11 upper = num - 1

12 while lower <= upper :

13 middle = (lower + upper) / 2

14 if kval == varr[middle]:

15 return middle; # result

16 else:

17 if kval < varr[middle]:

18 upper = middle - 1

19 else:

20 lower = middle + 1

21 return -1 # not found

22

23 llist = [9, 10, 13, 61, 72, 82, 89, 95, 102]

24 key = input(’Enter key value: ’)

25 result = bsearchf(llist, key)

26 if result >= 0:

27 print ’Result index is: ’, result

28 else:

29 print ’Key not found’

Executing the bsearch script with the Python interpreter produces the
following output listing.

$ python bsearch.py

Enter key value: 81

Key not found

$ python bsearch.py

Enter key value: 72

Result index is: 4
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Note that because of the limited precision of digital computers, it is not
recommended that two floating-point values be tested for equality. Instead, a
small fixed constant value is used to compare with the absolute difference of
the two values.

The following example defines the symbol EPSIL as a constant with a
relatively small value 0.000001 and is used to compare with the difference
of the values of variables aa and bb. In this case, the two variables are not
considered equal because their difference is not less than or equal to EPSIL.

>>> EPSIL = 0.000001

>>> aa = 46.005

>>> bb = 46.0055

>>> aa - bb

-0.000499999999995282

>>> abs(aa - bb) <= EPSIL

False

7.10 SUMMARY

An array in Python is a list data structure that stores several values. Each
of these values is known as an element. To refer to an individual element an
index is used to indicate the relative position of the element in the array.

Searching an array consists of looking for a particular element value or key.
Two common search algorithms are linear search and binary search. Comput-
ing an approximation of the rate of change and the area under a curve is much
more convenient using arrays, as shown in the case study discussed.

A list is the most general data structure in Python. Other data structures
are strings, tuples, and dictionaries.

Key Terms

creating lists accessing elements size of a list
index array element element reference
searching linear search binary search
key value algorithm efficiency summation
accumulator strings tuples
dictionaries passing lists to functions returning a list
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7.11 EXERCISES

7.1 The definition of themedian of a group of numbers arranged in ascending
(or descending) order is the value in the middle. The mode is the number
that appears most often. Write a Python program that finds the median
and mode of a list.

7.2 Develop a Python program that reads the values of numbers and builds
a list. Copy the even numbers into a separate list, the odd numbers into
another list, and the negative numbers into another list. The program
must print all of the lists separately.

7.3 Develop a Python program that solves the same problem described in
the previous exercise. Instead of using the three lists for even, odd, and
negative numbers, use a single nested list.

7.4 Develop a program that computes the standard deviation of values in an
array. Implement using the Python programming language. The stan-
dard deviation measures the spread, or dispersion, of the values in the
array with respect to the average value. The standard deviation of array
X with n elements is defined as:

std =

√

sqd

n− 1
,

where

sqd =
n−1
∑

j=0

(Xj − Av)2.

7.5 Develop a program that finds the minimum value element in an array
and returns the index value of the element found. Implement using the
Python programming language.

7.6 Develop a computational model that computes the average, minimum,
and maximum rainfall per year and per quarter (for the last five years)
from the rainfall data provided for the last five years. Four quarters of
rainfall are provided, measured in inches. Use a matrix to store these
values. Implement using the Python programming language.

7.7 Develop a program that sorts an array using the Insertion sort technique.
This sort algorithm divides the array into two parts. The first is initially
empty; it is the part of the array with the elements in order. The second
part of the array has the elements in the array that still need to be sorted.
The algorithm takes the element from the second part and determines
the position for it in the first part. To insert this element in a particular
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position of the first part, the elements to right of this position need
to be shifted one position to the right. Implement using the Python
programming language.





C HA P T E R 8

Object Orientation

8.1 INTRODUCTION

The basic principles of object orientation are explained in this chapter. The
concepts of objects, collection of objects, encapsulation, models, information
hiding, and classes are explained.

The structure of a class and how to create objects or instances of a class
are explained in a simplified manner. Other preliminary concepts in object-
oriented programming such as inheritance, reuse, abstraction, and modular-
ization are also discussed.

A model is an abstract representation of groups of objects, each one rep-
resenting a real-world entity. Real-world applications consist of collections of
real-world objects interacting with one another and with their surroundings.

System design usually emphasizes modular structuring, also called modu-
lar decomposition. A problem is often partitioned into smaller problems (or
subproblems), and a solution is designed for each subproblem. Object-oriented
design enhances modular design by providing classes as an important decom-
position (modular) unit. In Python, many modules contain one or class defi-
nitions.

8.2 OBJECTS IN THE PROBLEM DOMAIN

Real-world entities or real-world objects are the fundamental components of a
real-world system. Identifying and modeling real-world entities in the problem
domain are the central focus of the object-oriented approach. A real-world
entity has the responsibility of carrying out a specific task and is modeled as
an object.

Abstraction is used to model the objects in a problem domain and in-
volves the elimination of unessential characteristics. A model includes only
the relevant aspects of the real-world system. Therefore, only the essential
characteristics of the objects are included in the model. Several levels of de-
tail are needed to completely define objects and the collections of objects in
a model. Object-oriented modeling consists of:
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1. Identifying the relevant objects for the model

2. Describing these objects using abstraction

3. Defining collections of similar objects

Objects with similar characteristics are grouped into collections, and these
are modeled as classes. The Unified Modeling Language (UML) is a standard
notation used to describe objects and classes in a problem domain.

8.3 DEFINING CLASSES

In modeling a real-world problem, collections of similar objects are identified.
Classes are then defined as abstract descriptions of these collections of objects,
which are objects with the same structure and behavior. A class defines the
attributes and behavior for all the objects of the class. An object belongs to
a class, and any object of the class is an instance of the class. A software
implementation of class consists of:

• Data definitions that represent the attributes of the class

• Behavior representation as one or more operations (also known as meth-
ods)

Figure 8.1 shows two collections of objects in the problem domain and the
corresponding model with two classes.

Figure 8.1 Collections of objects.

The following example shows a representation of class Employee, in a sim-
plified UML diagram includes the structure and behavior for objects of this
class. The diagram is basically a rectangle divided into three sections. The top
section indicates the class of the object, the middle section includes the list of
the attributes and their current values, and the bottom section includes the
list of object operations.

Figure 8.2 shows the diagram that describes class Employee. The attributes
defined for this class are salary, emp number, name, and emp date. The be-
havior is defined in methods: get name, increase sal, get age, and start emp.
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Figure 8.2 Diagram of class Employee.

8.4 DESCRIBING OBJECTS

Objects exhibit independent behavior and interact with one another. Objects
communicate by sending messages to each other. Every object has:

• a state, represented by the set of properties (or attributes) and their
associated values;

• behavior, represented by the operations, also known as methods, of the
object;

• identity, which is an implicit or explicit property that can uniquely iden-
tify an object.

The state of an object is defined by the values of its attributes. Several
objects of the same class would typically have different states because their
attributes would have different values.

8.5 INTERACTION BETWEEN TWO OBJECTS

The interaction between two objects involves an object sending messages to
another object. The object that sends the message is the requestor of a service
that can be provided by the receiver object.

The first object sends a message to request a service, which is provided by
the second object, which is the one receiving the message. The sender object
is known as the client of a service, and the receiver object is known as the
supplier of the service. In this simple scenario, objects perform operations in
response to messages.

A message is always sent to a specific object and is also known as method
invocation. A message normally contains the following components:
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• the owner of the operation, which is the receiver of the message,

• the operation to be invoked or started,

• the input data required by the operation to perform, and

• the result of the operation.

The standard UML diagram is the communication diagram and is used to
describe the general interaction between two (or more) objects (the sending
of messages between objects).

The interaction between two diagrams is illustrated by Figure 8.3, which
shows a simple communication diagram describing the interaction between an
object of class Person with an object of class Ball. In this example, the object
of class Person invokes the move operation of the object of class Ball. The
first object sends a message to the second object. As a result of this message,
the object of class Ball performs its move operation.

Figure 8.3 Interaction between two objects.

8.6 DESIGN WITH CLASSES

Object orientation provides enhanced modularity in developing software sys-
tems. An application is basically a set of well-structured and related modules.
The class is one of the most basic modular units of a program. A Python
program is decomposed into a set of modules, which consists of a related set
of functions and classes.

This is the static view of a program (that implements an application). The
dynamic view of the application is a set of objects performing their behavior
and interacting among themselves.

8.6.1 Encapsulation

The encapsulation principle describes an object as the integration of its at-
tributes and behavior in a single unit. There is an imaginary protecting wall
surrounding the object. This is considered a protection mechanism. To protect
the features of an object, an access mode is specified for every feature.

The access mode specifies which features of the object can be accessed from
other objects. If access to a feature (attribute or operation) is not allowed, the
access mode of the feature is specified to be private. If a feature of an object
is public, it is accessible from any other objects.
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8.6.2 Data Hiding

As mentioned previously, an object that provides a set of services to other
objects is known as a provider object, and all other objects that request these
services by sending messages are known as client objects. An object can be a
service provider for some services, and it can also be a client for services that
it requests from other (provider) objects.

The principle of data hiding (or information hiding) provides the descrip-
tion of a class and only shows the services the objects of the class provide
to other objects and hides all implementation details. In this manner, a class
description presents two views:

1. The external view of the objects of a class. This view consists of the
list of services (or operations) that other objects can invoke. The list of
services can be used as a service contract between the provider object
and the client objects.

2. The internal view of the objects of the class. This view describes the
implementation details of the data and the operations of the objects in
a class. This information is hidden from other objects.

These two views of an object are described at two different levels of ab-
straction. The external view is at a higher level of abstraction. The external
view is often known as the class specification, and the internal view as the
class implementation.

With the external view, information about an object is limited to that
only necessary for the object’s features to be invoked by other objects. The
rest of the knowledge about the object is not revealed.

In general, the external view of the objects should be kept separate from
the internal view. The internal view of properties and operations of an object
are hidden from other objects. The object presents its external view to other
objects and shows what features (operations and attributes) are accessible.

8.7 SUMMARY

One of the important tasks in modeling object-oriented applications is to
identify the objects and collections of similar objects in the problem domain.
An object has properties and behaviors. The class is a definition of objects
with the same characteristics.

A model is an abstract representation of a real system. Modeling involves
selecting relevant objects and relevant characteristics of these objects.

Objects collaborate by sending messages to each other. A message is a
request by an object to carry out a certain operation on another object, or
on the same object. Information hiding emphasizes the separation of the list
of operations that an object offers to other objects from the implementation
details that are hidden to other objects.
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Key Terms

models abstraction objects
collections real-world entities object state
object behavior messages attributes
operations methods functions
UML diagram interactions method invocation
classes encapsulation information hiding
private public class specification
class implementation collaboration

8.8 EXERCISES

8.1 What are the differences between classes and objects? Why is an object
considered a dynamic concept? Why is the class considered a static
concept? Explain.

8.2 Explain the differences and similarities of the UML class and object
diagrams. What do these diagrams actually describe about an object
and about a class? Explain.

8.3 Is object interaction the same as object behavior? Explain and give
examples. What UML diagram describes this?

8.4 Briefly explain the differences between encapsulation and information
hiding. How are these two concepts related? Explain.

8.5 Are the external view and internal view of a class at different levels of
abstraction? Explain. Is this considered important in software develop-
ment? Explain.

8.6 Identify the type and number of objects involved in an automobile rental
office. For every type of object, list the properties and operations. Draw
the class and object diagrams for this problem.

8.7 Describe the object interactions necessary for the objects in the auto-
mobile rental office. Draw the corresponding communication diagrams.

8.8 Identify the various objects in a supermarket. How many objects of each
type are there? List the properties and the necessary operations of the
objects. Draw the corresponding UML diagrams for this problem.

8.9 List the private and public characteristics (properties and operations)
for every type of object in the two previous exercises. Why do you need
to make this distinction? Explain.
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Object-Oriented

Programs

9.1 INTRODUCTION

The first part of this chapter presents and explains the basic structure of
a class. An introduction to data descriptions and the general structure of
methods is discussed. The construction of simple object-oriented programs is
presented.

The second part of this chapter discusses inheritance as a class relation-
ship among classes. The other basic class relationship is composition, which
is a stronger form of association. These relationships are easily modeled in
UML diagrams. Composition can be considered a horizontal relationship and
inheritance a vertical relationship.

Inheritance is a facility provided by an object-oriented language for defin-
ing new classes from existing classes. The basic inheritance relationships and
their applications are explained in some detail. Inheritance enhances class
reuse, that is, the use of a class in more than one application.

9.2 PROGRAMS

An object-oriented program consists of the implementation of the classes and
additional language statements in one or more modules. When the program
is running, objects of these classes are created and made to interact among
themselves. This is the dynamic view of a program, which describes the be-
havior of the program while it executes.

9.3 DEFINITION OF CLASSES

A class definition includes the data structures and the behavior of the objects
in that class and consists of:
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• The definitions of the attributes of the class

• Descriptions of the operations, known as methods of the class

Figure 9.1 Structure of a typical class.

The general structure of a class is illustrated in Figure 9.1 and shows the
attributes and the definitions of three methods: Method A, Method B, and
Method C. Each of these operations consists of local data and its instructions.

The software implementation of a program is carried out by writing the
code in a suitable programming language. Detailed design is often written in
pseudo-code, which is a high-level notation at the level between the modeling
diagrams and the programming language.

In object-oriented programming, there are two general categories of vari-
ables:

• Variables of elementary or primitive type

• Object reference variables

Reference variables are defined when creating objects of a class. An object
reference variable refers to an object.

9.4 CLASS DEFINITIONS IN PYTHON

A Python program can include zero or more class definitions, function def-
initions, and instructions to create objects and to manipulate the objects
created. A class definition is implemented with a class header and additional
statements; these are:
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1. The class statement is used for the class header in the class definition.
This includes a name of the class and other information related to the
class.

2. An optional comment string that serves as class documentation and
which may be used to include a textual documentation or description of
the class.

3. Data definitions.

4. One or more member functions of the class and these are known as
methods.

In Python, the general syntax of a class definition is:

class 〈 class name 〉 :

[data definitions]

[method definitions]

9.4.1 Data Definitions in a Class

In a class definition, two categories of variables can be defined:

• Class variables

• Instance variables

Class variables are defined usually at the top and their values are shared
by all objects or instances of the class. When a class variable is used outside
the class, its name has to be prefixed by the class name. For example, if a
class variable xx is defined in class Point, the prefix Point. is used with the
name of the variable. To display the value of xx the statement is:

print "Variable xx is: ", Point.xx

Instance variables are data definitions that appear inside a method and
their values will be unique to each instance or object of the class. The name
of all instance variables in a class have the prefix self.

9.4.2 Methods in a Class Definition

A method can have zero or more parameter declarations; the first parameter
is always self. Four categories of methods can be defined in a class:

1. Constructor methods

2. Accessor methods
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3. Mutator methods

4. Auxiliary methods

A class may have one or more constructor methods and these are used to
assign initial values to instance variables and to perform any computation. A
constructor method is used to create a new instance or object of the class.
The name of this method is init and is always the same for any class.

An accessor method returns the value of an instance variable or a class
variable.

A mutator method changes the value of an instance variable and, in effect,
changes the state of the object referred.

An auxiliary method is one that is only called internally in the class and
it is called with the self. prefix.

9.4.3 Example of a Class Definition

In the following example, class Circle is defined and the statements that appear
after the class are the instructions to perform computing with the objects
created of the class.

Line 2 has a documentation string for the class. In line 3, class variable
circount is defined with an initial value of zero. Lines 5–7 define a constructor
method, which is used to initialize the instance variables and create a new
instance of the class.

In line 6, the value of parameter ir is assigned to instance variable radius.
The name of all instance variables in a class have the prefix self. and can
be referenced in one or more methods of the class. In line 7, the class variable
circount is incremented. The value of this variable is the number of objects of
this class that have been created. The name of this variable is prefixed with
the name of class Circle.

In line 9, a mutator method is defined that sets a new value to instance
variable radius. In line 12, a mutator method is defined that computes the
value of instance variable cir. In line 16, another mutator method is defined
that computes the value of instance variable area. In line 20, an accessor
method is defined that returns the value of instance variable radius.

1 class Circle:

2 ’Circle for computing circumference and area’

3 circount = 0

4

5 def __init__(self, ir):

6 self.radius = ir

7 Circle.circount += 1

8

9 def setRadius(self, ir):

10 self.radius = ir
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11

12 def compCircum(self):

13 self.cir = 2.0 * math.pi * self.radius

14 return self.cir

15

16 def compArea (self):

17 self.area = math.pi * self.radius * self.radius

18 return self.area

19

20 def getRadius(self):

21 return self.radius

9.5 CREATING AND MANIPULATING OBJECTS

After a class has been defined, objects of the class can be created by invoking
one of the constructor methods of the class. The general form of the assignment
statement used to create an object is:

〈 ref name 〉 = 〈 class name 〉 ( arguments)

ref name is a reference variable that is used as a reference to the newly
created object. For example, to create an object of class Circle with a radius
of 2.35 and a reference variable cirobj, the statement is:

cirobj = Circle(2.35)

The reference variable is used to manipulate the object by invoking one
or more of its methods. For example, the following statements are used to
compute the area of the object referenced by variable cirobj and to display
this value.

area = cirobj.compArea()

print "Area of the circle: ", area

To change the value of an instance variable of an object, one of the mutator
methods of the object is invoked. For example, to change the value of the
radius to 4.55 of the object referenced by variable cirobj:

cirobj.setRadius(4.55)
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9.6 COMPLETE PROGRAM WITH A CLASS

Listing 9.1 shows a Python program stored in file circlep.py that includes
the class definition Circle. The statements following the class definition create
and manipulate objects of class Circle.

Listing 9.1 Python program with definition of class Circle.

2 # Program : circlep.py

3 # Author : Jose M Garrido, May 21 2014.

4 # Description : This program defines a class for circles

5 # Computes the area and circumference of circles

7 # Reads the value of the radius for several circles

8 # from the input console, display results.

9

10 import math

11

12 class Circle:

13 ’Circle for computing circumference and area’

14 circount = 0

15

16 def __init__(self, ir):

17 self.radius = ir

18 Circle.circount += 1

19

20 def setRadius(self, ir):

21 self.radius = ir

22

23 def compCircum(self):

24 self.cir = 2.0 * math.pi * self.radius

25 return self.cir

26

27 def compArea (self):

28 self.area = math.pi * self.radius * self.radius

29 return self.area

30

31 def getRadius(self):

32 return self.radius

33

34 r1 = input ("Enter value of radius 1: ")

35 r2 = input ("Enter value of radius 2: ")

36 r3 = input ("Enter value of radius 3: ")

37

38 cobj1 = Circle(r1)

39 cobj2 = Circle(r2)

40 cobj3 = Circle(r3)
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41

42 print "Value of radius1: ", cobj1.getRadius()

43 print "Value of radius2: ", cobj2.getRadius()

44 print "Value of radius3: ", cobj3.getRadius()

45

46 print "Number of objects created of class Circle: ",

Circle.circount

47 cperim1 = cobj1.compCircum()

48 print "Perimeter of first circle object: ", cperim1

49 carea1 = cobj1.compArea()

50 print "Area of first circle: ", carea1

51

52 r1 = input ("Enter new value of radius 1: ")

53 cobj1.setRadius(r1)

54 print "Radius of first circle: ", cobj1.getRadius()

55 cperim1 = cobj1.compCircum()

56 print "Perimeter of first circle object: ", cperim1

57 carea1 = cobj1.compArea()

58 print "Area of first circle: ", carea1

9.7 SCOPE OF VARIABLES

The scope of a variable is that portion of a program in which statements can
reference that data item. Variables and constants declared as attributes of the
class can be accessed from anywhere in the class. Instructions in any func-
tioned of the class can use these data items. Local definitions define variables
that can only be used by instructions in the function in which they have been
declared.

The persistence of a variable is the interval of time that the data item
exists—the lifetime of the data item. The lifetime of a variable declared as an
attribute of a class, exists during the complete life of an object of the class.
Variables declared locally will normally have a lifetime only during which the
function executes.

9.8 CLASS HIERARCHY WITH INHERITANCE

Classes in an application that are related in some manner are organized in the
form a hierarchy of classes. Others are completely independent because they
do not have any relationship with other classes.

In a class hierarchy, the most general class is placed at the top and is
known as the base class, parent class, and is also known as the super class.
A subclass inherits the characteristics (all attributes and operations) of its
parent class. These characteristics of a class are also known as features. A
subclass can be further inherited by lower-level classes.

Figure 9.2 illustrates the inheritance class relationship among several
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classes. Class University employee is the base class; the other three classes
inherit the features of this base class.

Figure 9.2 Class inheritance.

9.9 DEFINING CLASSES WITH INHERITANCE

The purpose of inheritance is to define a new class from an existing class and
to shorten the time compared to the development of a class from scratch.
Inheritance also enhances class reuse.

The base class is a more general class than its subclasses. A derived class
can be defined by adding more features or modifying some of the inherited
features and can be defined as:

• An extension of the base class, if in addition to the inherited features,
it includes its own data and operations.

• A specialized version of the base class, if it overrides (redefines) one or
more of the features inherited from its parent class.

• A combination of an extension and a specialization of the base class.

Multiple inheritance is the ability of a class to inherit the characteristics
frommore than one parent class. Most object-oriented programming languages
support multiple inheritance.

In the simple class hierarchy with inheritance shown in Figure 9.2, the
base class is University employee and the subclasses are Faculty, Staff, and
Short-term. All objects of class Faculty in Figure 9.2 are also objects of class
University employee, because this is the base class for the other classes. On
the contrary, not all objects of class University employee are objects of class
Faculty.
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9.9.1 Inheritance with Python

The definition of a subclass in Python include, one or more names of base
classes. The general form of the Python statement for the header in the defi-
nition of a subclass is:

class 〈 class name 〉 ( 〈 base class list 〉 ) :

...

The header of the subclasses Faculty and Staff in Figure 9.2 are written:

class Faculty (University_employee):

and

class Staff (University_employee):

9.9.2 Inheritance and Constructor Methods

The constructor methods of a base class are the only features that are not
inherited by the subclasses. A constructor method of a subclass will normally
invoke the constructor method of the base class.

The statement to call or invoke a constructor method of the base class
from the subclass is:

〈 baseclass name 〉. init (〈 arguments 〉)

The following portion of Python code from the file univemp.py defines
the base class University employee. The constructor method of this class sets
initial values for the instance variables name, date start, and phone.

8 class University_employee:

9 ’Base class’

10 empcount = 0

11

12 def __init__(self, name, datas, phone):

13 self.name = name

14 self.date_start = datas

15 self.phone = phone

16 University_employee.empcount += 1

17

18 def setPhone(self, nphone):

19 self.phone = nphone

20
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21 def getPhone(self):

22 return self.phone

23

24 def getName (self):

25 return self.name

26

27 def getDates(self):

28 return self.date_start

The following portion of code defines a subclass Faculty that inherits the
features of an existing (base) class University employee.

The subclass Faculty has one class variable faccount and two other instance
variables rank and tenure. The constructor method of this class in lines 34–38
invokes the constructor method of the base class and sets initial values for its
two instance variables. The following code shows this subclass.

30 class Faculty (University_employee):

31 ’Subclass of University_employee’

32 faccount = 0

33

34 def __init__(self, name, datas, phone, rank, tenure):

35 University_employee.__init__(self, name, datas,

phone)

36 self.rank = rank

37 self.tenure = tenure

38 Faculty.faccount += 1

39

40 def getRank(self):

41 return self.rank

42

43 def setRank(self, nrank):

44 self.rank = nrank

45

46 def getTenure(self):

47 return self.tenure

48

49 def setTenure(self, nten):

50 self.tenure = nten

In a similar manner to the previous subclass, Staff is a subclass that
inherits the features of the (base) class University employee.

The subclass Staff has one class variable staffcount and two other instance
variables position and train. The constructor method of this class, defined in
lines 56–60, invokes the constructor method of the base class and sets initial
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values for its two instance variables. The following code shows the definition
of this subclass.

52 class Staff (University_employee):

53 ’Subclass of University_employee’

54 staffcount = 0

55

56 def __init__(self, name, datas, phone, position,

train_level):

57 University_employee.__init__(self, name, datas,

phone)

58 self.position = position

59 self.train = train_level

60 Staff.staffcount += 1

61

62 def getPos(self):

63 return self.position

64

65 def setPos(self, npos):

66 self.position = npos

67

68 def getTrain(self):

69 return self.train

70

71 def setTrain(self, ntrainl):

72 self.train = ntrainl

9.9.3 Example Objects

In the following code, objects of the base class and the two subclasses are
created and methods of these objects are called. Notice that in line 78, the
object referenced by femp of subclass Faculty invokes method setPhone, which
is a method of the base class. This is perfectly legal because the features of
the base class are available to the subclasses. The complete program is stored
in file univemp.py.

74 gemp = University_employee("Jose Garrido", "10 Oct 2007",

2138)

75 femp = Faculty("F. Hunt", "23 March 2010", 1121, 2, False)

76 semp = Staff("J Sommer", "12 April 1999", 6543, 12, 2)

77 print "Phone of Jose: ", gemp.getPhone()

78 femp.setPhone(4454)

79 print "Phone of Hunt: ", femp.getPhone()
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80 print "Tenure status Hunt: ", femp.getTenure()

81 print "Training level Sommer: ", semp.getTrain()

9.10 OVERLOADING AND OVERRIDING METHODS

Overloading is an object-oriented facility that allows the definition of more
than one method to be defined with the same name in a class definition. This
facility is not directly supported in Python but there are some more advanced
ways to implement this facility.

With inheritance, a class can be defined as a specialized subclass of the
base class. To use this facility, one or more methods of the base class are
redefined (or overridden) in the subclass. The subclass is said to re-implement
one or more methods of the base class.

9.11 SUMMARY

A class is a collection of objects with similar characteristics. It is also a type
for object reference variables. A class is a reusable unit; it can be reused in
other applications. A program consists of an assembly of classes, function
definitions, and language statements. This is the static view of a program.

The structure of a class consists of data definitions and method definitions.
Data definitions in the class define the attributes of the class; data definitions
also appear in the functions to define the function’s local data. A function
includes data definitions and instructions.

Data definitions consist of the declarations of constants, variables of simple
types, and object reference variables.

The implementation of classes in Python and other object-oriented pro-
gramming languages is accomplished by writing the program using the lan-
guage statements and structuring the program according to the language syn-
tax.

With inheritance, a subclass (derived class) inherits all the features of
its base (parent) class. Inheritance is a vertical relationship among classes
and enhances class reuse. The constructor method of the base classes is not
inherited.

A subclass can be an extension and/or a specialization of the base class.
If a subclass defines new features in addition to the ones that it inherits from
the base class, then the subclass is said to be an extension to the base class. If
a subclass redefines (overrides) one or more functions of the base class, then
the subclass is said to be a specialization of the base class. In most cases,
subclasses are both an extension and a specialization of the base class.
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Key Terms

static view dynamic view decomposition
modules units class reuse
package devices data declaration
variables constants simple types
primitive types class structure object references
class description local data initial value
data types scope persistence
classification parent class super class
base class subclass derived class
horizontal relationship vertical relationship class hierarchy
inherit extension specialization
class reuse inheritance method overriding

9.12 EXERCISES

9.1 Is a class an appropriate decomposition unit? What other units are
possible to consider?

9.2 The software implementation for a problem is decomposed into classes
and functions. Explain this decomposition structure. What is the pur-
pose of decomposing a problem into subproblems?

9.3 Is it convenient to include public attribute definitions in classes? What
are the advantages and disadvantages? Hint: review the concepts of en-
capsulation and information hiding.

9.4 When a program executes, the objects of the program interact, col-
laborating to accomplish the overall solution to the problem. This is a
dynamic view of a program. Where and when are these objects created
and started? Explain.

9.5 Class reuse can be very useful. Explain and write an example.

9.6 The relationships among classes are identified early in software develop-
ment. Explain horizontal and vertical relationships and how these are
shown in UML diagrams.

9.7 Define one or two additional redefined methods in class Faculty.

9.8 Define one or two additional methods in extending class Staff.

9.9 Define a new class that inherits class Person. This class must include
methods that define it as an extension and specialization of the base
class Person.
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9.10 Write a document that describes and explains how class reuse is used in
the previous problem, Exercise 9.9.

9.11 Define two classes in addition to the ones shown in Figure 9.2.

9.12 Develop a program that manipulates complex numbers. A complex num-
ber has two attributes, the real part and the imaginary part of the
number. The basic operations on complex numbers are complex ad-
dition, complex subtraction, complex multiplication, and complex di-
vision. Hint : in addition to the rectangular representation of complex
numbers (x,y), it might be helpful to include attributes for the polar
representation of complex numbers (module, angle).

9.13 Define the classes of a problem that deals with motor vehicles; two
groups or collections of these vehicles are trucks and cars. Include class
Sport car in the class hierarchy as a subclass of Car. Design and im-
plement a program with all these classes. Include attributes such as
horse-power, maximum speed, passenger capacity, load capacity, and
weight. Include the relevant functions.
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Linked Lists

10.1 INTRODUCTION

A linked list is a data structure that consists of a sequence of data items of
the same or similar types and each data item or node has one or more links to
another node. This data structure is dynamic in the sense that the number of
data items can change. A linked list can grow and shrink during the execution
of the program that is manipulating it. Recall that an array is also a data
structure that stores a collection of data items, but the array is static because
once it is created, more elements cannot be added or removed.

This chapter discusses the basic forms of simple linked lists, double-ended
linked lists, and multiple linked lists. Several classes are defined for nodes
and the actual linked lists. The operations possible on linked lists and higher-
level data structures, such as stacks and queues implemented with linked lists,
are also discussed. Abstract data types (ADTs) are discussed and defined for
queues and stacks.

10.2 NODES AND LINKED LISTS

A linked list is a data structure that consists of a chain or sequence of nodes
connected in some manner. A node is a relatively smaller data structure that
contains data and one or more links that are used to connect the node to one
on more other nodes. In graphical form, a node may be depicted as a box,
which is divided into two types of components:

• A data block that stores one or more data components

• One or more link components that are references to other nodes

A simple node has a simple data block and one reference to another node.
Figure 10.1 shows a representation of a simple node. Figure 10.2 illustrates
the general form of a simple linked list in which nodes contain a reference
to the next node. Note H is a reference to the first node (the head) of the

151
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Figure 10.1 Structure of a node.

linked list. The last node (Node 3 in Figure 10.2) has a link that refers to a
black dot to indicate that the node has no connection to any other node and
the reference of the node has a value None. When comparing linked lists with
arrays, the main differences observed are:

• Linked lists are dynamic in size because they can grow and shrink; arrays
are static in size.

• In linked lists, nodes are linked by references and based on many nodes;
an array is a large block of memory with the elements located contigu-
ously.

• The nodes in a linked list are referenced by relationship, not by position;
to find a data item, always start from the first item (no direct access).
Recall that access to the elements in an array is carried out using an
index.

Figure 10.2 A simple linked list.

Linked lists and arrays are considered low-level data structures. These are
used to implement higher-level data structures. Examples of simple higher-
level data structures are stacks and queues and each one exhibits a different
behavior implemented by an appropriate algorithm. More advanced and com-
plex higher-level data structures are priority queues, trees, graphs, sets, and
others.
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10.2.1 Nodes

As mentioned previously, a simple node in a linked list has a data block and
a reference that connects it to another node. These nodes can be located any-
where in memory and do not have to be stored contiguously in memory. The
following listing shows the Python code with a class definition of a node. Class
Node includes two attributes: the data and the reference next to another node.
The class also defines two methods, and the constructor has one parameter
with a default value of None.

class Node:

def __init__(self, data = None):

self.data = data

self.next = None

def strnode (self):

print self.data

The following example includes several Python statements to create ob-
jects of class None, using the indicated data as an argument and the default.
Note that nd1 is the reference to a new node with the string "Hi there" as
its data. Node object nd2 is created with 24 as a its data.

nd1 = Node("Hi there")

nd2 = Node(24)

nd1.strnode()

nd2.strnode()

10.2.2 Definition of a Class for Linked Lists

A linked list is an object that creates, references, and manipulates node ob-
jects. A set of operations is defined for the linked list and some of these basic
operations are:

• Create an empty linked list.

• Create and insert a new node at the front of the linked list.

• Insert a new node at the back of the linked list.

• Insert a new node at a specified position in the linked list.

• Get a copy of the data in the node at the front of the linked list.

• Get a copy of the data in the node at a specified position in the linked
list.
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• Remove the node at the front of the linked list.

• Remove the node at the back of the linked list.

• Remove the node at a specified position in the linked list.

• Traverse the list to display all the data in the nodes of the linked list.

• Check whether the linked list is empty.

• Check whether the linked list is full.

• Find a node of the linked list that contains a specified data item.

These operations are implemented as methods in class LinkedList and it
is shown in Listing 10.1 and is stored file linklistc.py. In addition to these
methods, two attributes are defined, numnodes and head. The value of the
first attribute numnodes is the number of nodes in the linked list. The second
attribute head is a reference to the first node of the linked list. This node is
also known as the head node because it is the front of the linked list. In an
empty list, the value of numnodes is zero and the value of head is None.

Listing 10.1: Python implementation for class LinkedList.

11 class LinkedList:

12 def __init__(self):

13 self.numnodes = 0

14 self.head = None

15

16 def insertFirst(self, data):

17 newnode = Node(data)

18 newnode.next = self.head

19 self.head = newnode

20 self.numnodes += 1

21

22 def insertLast(self, data):

23 newnode = Node(data)

24 newnode.next = None

25 if self.head == None:

26 self.head = newnode

27 return

28 lnode = self.head

29 while lnode.next != None :

30 lnode = lnode.next

31 lnode.next = newnode # new node is now the last node

32 self.numnodes += 1

33

34 def remFirst(self):
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35 cnode = self.head

36 self.head = cnode.next # new head is second node

37 cnode.next = None

38 del cnode

39 self.numnodes -= 1

40

41 def remLast(self):

42 lnode = self.head

43 while lnode.next != None: #traversing list

44 pnode = lnode

45 lnode = lnode.next

46 pnode.next = None

47 del lnode

48 self.numnodes -= 1

49

50 def getFirst(self):

51 lnode = self.head # first node

52 return lnode.data

53

54 def getLast(self):

55 lnode = self.head

56 while lnode.next != None: #traversing list

57 lnode = lnode.next

58 return lnode.data

59

60 def print_list(self):

61 lnode = self.head

62 while lnode:

63 lnode.strnode() #print lnode.data

64 lnode = lnode.next

65

66 def getSize(self):

67 return self.numnodes

10.2.3 Creating and Manipulating a Linked List

To create an empty list, the constructor in class LinkedList is invoked as the
following example shows. The assignment statement defines listObj , which
now references an empty linked list object.

listObj = Linkedlist()

Method empty checks whether the list is empty by comparing the value of
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the head reference head with None. The following example checks the linked
list referenced by listObj if empty.

if listObj.empty() == True:

. . .

A node can be inserted in the linked list at the front, at the back, or in any
other place specified. Method insertFirst creates and inserts a new node at
the front of a linked list, given the data for the node. The new node becomes
the head or front node of the linked list and the method increments the value
of attribute numnodes. Figure 10.3 shows the insertion of a new node to the
front of the list.

Figure 10.3 A new node inserted in the front of a linked list.

Assuming that newData refers to the data component for a new node, the
following example invokes the method that creates and inserts the node:

llistObj.insertFirst (newData)

Method getFirst returns the data in the first node of the linked list. Method
remFirst is called to remove and delete the node at the front of the linked
list. The following example gets the data then removes the first node of the
linked list.

data = listObj.getFirst()

listObj.remFirst()

Method getLast returns the data component of the last node in the linked
list. Method remLast removes the last node of the linked list. The following
example gets the data then removes the last node of the linked list.

data = listobj.getLast()

listObj.remLast()

Simple traversal of a linked list involves accessing every node in the linked
list by following the links to the next node until the last node. Recall that the
link of the last node is None. The following example calls method print llist ,
which traverses a linked list to display the data of every node.
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listObj.print_llist()

The following listing shows a Python script that imports class Node and
class LinkedList to create and manipulate a linked list object. The script is
stored in file testlinklist.py.

from linklistc import Node, LinkedList

print "New linked list"

listObj = LinkedList()

listObj.insertFirst("John")

listObj.insertFirst(99)

listObj.insertFirst(45)

listObj.insertLast(78)

listObj.insertLast(88)

listObj.insertLast("Mary")

print "Remove first node"

listObj.remFirst()

print "remove last node"

listObj.remLast()

listObj.print_list()

Using the Python interpreter to run the script produces the following out-
put:

$ python testlinklist.py

New linked list

45

99

John

78

88

Mary

Remove first node

remove last node

99

John

78

88

More flexibility is obtained by including in the class an operation to insert
a node at a specified position in the linked list. For example, insert a new
node after current node 2. Figure 10.4 illustrates changing the links so that a
new node is inserted after node 2. An enhanced implementation of class Node
and class LinkedList is stored in file linklist2c.py.
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Figure 10.4 A new node inserted after node 2.

10.3 LINKED LISTS WITH TWO ENDS

The linked lists discussed previously have only one end, which includes a
reference to the first node, and this reference is also known as the head of the
linked list. In addition to the head node, providing a reference to the last node
gives the linked list more flexibility for implementing some of the operations
to manipulate linked list objects.

With two ends, a linked list has two references: one to the first node H,
also known as the head or front of the list, and a reference to the last node L,
also known as the back of the linked list. Figure 10.5 illustrates a linked list
with a head reference H and a back reference L.

Figure 10.5 A linked list with two ends.

The class definition of a two-end linked list TeLinkedList includes an addi-
tional attribute, the reference to the last node (the last). An object of this class
has the ability to directly add a new node to the back of the linked list without
traversing it from the front. In a similar manner, the last node of a linked list
can be removed without traversing it from the front. The implementation of
this class is stored in file telinklistc.py.
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Linked lists with two ends are very helpful and convenient for implementing
higher-level data structures such as stacks and queues.

10.4 DOUBLE-LINKED LISTS

Linked lists that have nodes with only one link, a reference to the next node,
can only traverse the linked list in one direction, starting at the front and
toward the back of the list. A second link is included in the definition of the
nodes that is a reference to the previous node. Figure 10.6 shows a linked list
with nodes that have two links: a reference to the next node and a reference
to the previous node. Such linked lists are known as double linked lists.

Figure 10.6 A linked list with two links per node.

The following listing of Python statements defines class DNode, which
can be used for creating and manipulating nodes with two links, next that
references the next node in the linked list, and prev that references the previous
node in the linked list. Class DNode and class DLinkedList are implemented
in module dlinklistc.py.

class DNode:

def __init__(self, data = None):

self.data = data

self.next = None

self.prev = None

def strnode (self):

print self.data

10.5 STACKS AND QUEUES DATA STRUCTURES

More practical data structures are used in problem solving and can be imple-
mented with linked lists or with arrays. The structure and operations of two
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simple and widely known higher-level data structures, queues and stacks , are
discussed here.

10.5.1 Stacks

A stack is a higher-level dynamical data structure that stores a collection of
data items, each of which is stored in a node. Each node in a stack includes a
data block and one or more links.

A stack has only one end: the top of the stack. The main characteristics
of a stack are:

• Nodes can only be inserted at the top of the stack (TOS).

• Nodes can only be removed from the top of the stack.

• Nodes are removed in reverse order from that in which they are inserted
into the stack. A stack is also known as a last in and first out (LIFO)
data structure.

Figure 10.7 A stack as a dynamical data structure.

Figure 10.7 shows a stack and the top of the stack as the insertion point
and the removal point. A class for stacks includes the following operations:

• create stack, create an empty stack.

• empty, returns true if the stack is empty; otherwise returns false.

• full, returns true if the stack is full; otherwise returns false.
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• gettop, returns a copy of the data block at the top of the stack without
removing the node from the stack.

• pop, removes the node from the top of the stack.

• push, inserts a new node to the top of the stack.

• getsize, returns the number of nodes currently in the stack.

The most direct way to implement a stack is with a single-list linked list
in which insertions and deletions are performed at the front of the linked list.
The two-ended linked list class TeLinkedList is used to implement class Stack,
which is stored in files stack.py. Listing 10.2 shows the Python source code
of class Stack.

Listing 10.2: Python implementation of class Stack .

1 # A simple class for a stack using two-ended Linked List

2 from telinklistc import TeLinkedList

3

4 class Stack:

5 capacity = 100

6 def __init__(self):

7 self.list = TeLinkedList()

8

9 def empty (self):

10 if self.list.numnodes == 0:

11 return True

12 else:

13 return False

14

15 def full (self):

16 if self.list.numnodes == capacity:

17 return True

18 else:

19 return False

20

21 def push(self, data):

22 self.list.insertFirst(data)

23

24 def pop (self):

25 self.list.remFirst()

26

27 def get_top (self):

28 data = self.list.getFirst()

29 return data

30
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31 def getSize(self):

32 lsize = self.list.numnodes

33 return lsize

34

35 def printStack(self):

36 self.list.print_list()

The Python commands that create a stack object and manipulate the stack
are included in the following listing and stored in file teststack.py.

from stack import Stack

print "New stack"

listObj = Stack()

listObj.push("John")

listObj.push(99)

listObj.push(45)

print "TOS: ", listObj.get_top()

print "Stack empty? ", listObj.empty()

listObj.push(78)

listObj.push(88)

print "TOS: ", listObj.get_top()

listObj.pop()

print "TOS: ", listObj.get_top()

listObj.push(204)

print "TOS: ", listObj.get_top()

print "Size of stack: ", listObj.getSize()

listObj.printStack()

The following listing shows the Python interpreter running script
teststack.py and the results produced.

$ python teststack.py

New stack

TOS: 45

Stack empty? False

TOS: 88

TOS: 78

TOS: 204

Size of stack: 5

204

78

45

99

John
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10.5.2 Queues

A queue is a dynamical data structure that stores a collection of data items
or nodes and that has two ends: the head and the tail. The basic restrictions
on manipulating a queue are:

• Nodes or data items are inserted at the tail of the queue.

• Nodes or data items are removed from the head of the queue.

• Nodes or data items are removed in the same order that they were
inserted into the queue and is also known as a first in and first out
(FIFO) data structure.

Figure 10.8 illustrates the form of a queue. It shows the insertion point
at the tail and the removal point at the head of the queue. The relevant
operations for manipulating a queue are:

• empty, returns true if the queue is empty; otherwise returns false.

• full, returns true if the queue is full; otherwise returns false.

• getHead, returns a copy of the data object at the head of the queue
without removing the object from the queue.

• removeHead, removes the head item from the queue.

• insertTail, inserts a new data item into the tail of the queue.

• getsize, returns the number of data items currently in the queue.

Figure 10.8 A queue as a dynamical data structure.

Queues can be implemented with single-linked lists, but a good way to
implement a queue class is with a linked list with two ends. Class Queue is
implemented with class TeLinkedList, which has already defined most of the
needed operations. Listing 10.3 shows the Python source code of class Queue,
which is stored in file queue.py.

Listing 10.3: Python implementation of class Queue.
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1 # A simple class for a queue using two-ended Linked List

2 from telinklistc import TeLinkedList

3

4 class Queue:

5 capacity = 100

6 def __init__(self):

7 self.list = TeLinkedList()

8

9 def empty (self):

10 if self.list.numnodes == 0:

11 return True

12 else:

13 return False

14

15 def full (self):

16 if self.list.numnodes == capacity:

17 return True

18 else:

19 return False

20

21 def insertTail(self, data):

22 self.list.insertLast(data)

23

24 def getHead(self):

25 ldata = self.list.getFirst()

26 return ldata

27

28 def removeHead (self):

29 self.list.remFirst()

30

31 def getSize(self):

32 lsize = self.list.numnodes

33 return lsize

34

35 def printQueue(self):

36 self.list.print_list()

The following Python script is used to test class Queue. It creates an object
of the class and inserts and removes several data items.

from queue import Queue

print "New queue"

listObj = Queue()

listObj.insertTail("John")
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print "Head: ", listObj.getHead()

listObj.insertTail(99)

listObj.insertTail(45)

print "Queue empty? ", listObj.empty()

listObj.insertTail(78)

listObj.insertTail(88)

listObj.removeHead()

print "Head: ", listObj.getHead()

listObj.insertTail(204)

print "Size of queue: ", listObj.getSize()

listObj.printQueue()

The following listing shows the Linux shell commands that compile, link,
and execute the program. The results produced by the program execution are
also shown.

$ python testqueue.py

New queue

Head: John

Queue empty? False

Head: 99

Size of queue: 5

99

45

78

88

204

10.6 SUMMARY

Linked lists are dynamical data structures for storing a sequence of nodes.
The data items are smaller data structures known as nodes. After the list
object has been created, it can grow or shrink by adding or removing nodes.
Lists can have one or two ends. Each node may have one or more links. A link
is a reference to another node of the linked list. Classes of higher-level data
structures are implemented with linked lists. Queues and stacks are examples
of higher-level data structures and can be implemented with arrays or with
linked lists.

Key Terms

linked lists nodes links
dynamic structure low-level structures high-level structures
next previous queues
stacks data block abstract data type
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10.7 EXERCISES

10.1 Design and implement in Python a linked list in which each node rep-
resents a flight stop in a route to a destination. The data in each node
is the airport code (an integer number). The airline can add or delete
intermediate flight stops. It can also calculate and display the number
of stops from the starting airport to the destination airport.

10.2 The class defined in this chapter for linked lists defines nodes with only
one link and with only one end. Develop a class Stack2 that uses double-
linked lists with two ends. Develop a complete Python program that
creates and manipulates three stacks.

10.3 Class LinkedList for linked lists defines nodes with only one link and
with only one end. Given nodes that store person names and addresses,
define an additional method that searches for a node with a given name
and returns a copy of the data in the node. Develop a complete Python
program that includes the necessary classes.

10.4 Develop a Python program that defines an array of N linked lists. This
can be used if the linked list is used to implement a priority queue with
N different priorities. A node will have an additional component, which
is the priority defined by an integer variable.

10.5 Class Queue implements a queue data structure. Modify this class and
implement it with a linked list that includes nodes of class DNode.

10.6 Class Stack implements a queue data structure. Modify this class and
implement it with a linked list that includes nodes of class DNode.
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Recursion

11.1 INTRODUCTION

Recursion is a design and programming technique used to implement a repet-
itive task or to implement a circular definition of a data structure. In methods
and functions, recursion involves defining the method or function in terms of
itself, which means that the method or function has a call to itself. Similarly,
a structure is defined in terms of itself.

Recursion can be used to describe a solution in a simpler, clearer manner
than with an iterative solution. Recursion can be used to describe complex
algorithms by partitioning the problem into several smaller subproblems of
the same kind and then combining the solutions to these subproblems. This
chapter introduces the basic concepts and recursive problem-solving approach.

11.2 RECURSIVE APPROACH TO PROBLEM SOLVING

Most problems that can be solved recursively can also be solved iteratively.
With iteration, a set of instructions is executed repeatedly until some ter-
minating condition has been satisfied. Similarly with recursion, a set of in-
structions of a method or a function, is invoked repeatedly until a terminating
condition becomes true.

A recursive definition of a method or a function consists of two parts:

1. One or more base cases that define the terminating conditions.

2. One or more recursive cases.

11.3 RECURSIVE DEFINITION OF FUNCTIONS

Three examples of recursive definition of methods are presented, and these
are factorial, sum of squares, and reversing a list.
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11.3.1 Factorial Problem

The factorial operation, denoted by the symbol !, can be defined in a general
and informal manner as follows:

y! = y (y − 1) (y − 2) (y − 3) . . . 1.

For example, the factorial of 5 is: 5! = 5× 4× 3× 2× 1.

Mathematical Specification of Factorial. A mathematical specifi-
cation of the factorial function follows and is valid for y ≥ 0:

y! =

{

1 when y = 0
y (y − 1)! when y > 0.

The base case in this definition is the value of 1 for the function if the
argument has value zero, that is, 0! = 1. The general (recursive) case is y! =
y (y− 1)! when the value of the argument is greater than zero. Note that this
function is not defined for negative values of the argument.

Computing Factorial. In the following Python program, the factorial
recursive function rfact has one parameter: the value for which the factorial
is to be computed. Listing 11.1 shows a Python program that includes the
recursive function, rfact , and the program is stored in file rfactp.py. The
function is first called in line 21 to compute the factorial of a number. The
recursive step in function rfact appears in lines 13–16.

Listing 11.1 Python program for computing factorial recursively.

2 # Program : rfactp.py

3 # Author : Jose M Garrido, May 29 2014.

4 # Description : Compute the recursive factorial of

an integer number.

5

6 def rfact(n):

7 """

8 This function computes the factorial of num >= 0

9 it multiplies num * (num-1) * num-2 * ...1

10 """

11 if n < 0: # negative values

12 return -1

13 if n > 0: # recursive step

14 print "Factorial of ", n

15 res = n * rfact (n - 1)

16 return res

17 else: # base case
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18 return 1

19

20 y = input("Enter a number to compute factorial: ")

21 fy = rfact(y)

22 print "Factorial is: ", fy

Note that this implementation returns −1 for negative values of the ar-
gument. The following shell commands execute the Python interpreter with
program rfactp.py and computes the factorial of an input number.

C:\python_progs>python rfactp.py

Enter a number to compute factorial: 5

Factorial of 5

Factorial of 4

Factorial of 3

Factorial of 2

Factorial of 1

Factorial is: 120

11.3.2 Sum of Squares

This is another example of a simple recursive function sumsq, which adds all
the squares of numbers from m to k, with m ≤ k. The informal description of
the function sumsq is:

sumsq(m, k) = m2 + (m+ 1)2 + (m+ 2)2 + . . .+ k2.

The solution approach is to decompose or break down the problem into
smaller subproblems, such that the smaller problems can be solved with the
same technique as that used to solve the overall problem. The final solution
is computed by combining the solutions to the subproblems.

A mathematical specification of this recursive function is as follows, as-
suming that m ≥ 0 and k ≥ 0:

sumsq(m, k) =

{

m2 + sumsq(m+ 1, k), when m < k
m2, otherwise.

Listing 11.2 shows a Python program that includes the recursive function,
rsumsq and the program is stored in file rsumsqp.py.

Listing 11.2 Python program for computing the sum of squares.

1 # Program : rsumsqp.py

2 # Author : Jose M Garrido, June 3, 2014.

3 # Description : Compute the recursive sum of squares of

4 # integer numbers from m to k.

5



170 � Introduction to Computational Models with Python

6 def rsumsq(m, k):

7 """

8 This function computes the sum of squares from m

9 to k

10 """

11 if m < k:

12 res = m * m + rsumsq(m+1, k) # recursive step

13 return res

14 else: # base case

15 res = m * m

16 return res

17

18 x = input("Enter first number to compute sum of squares: ")

19 y = input("Enter second number: ")

20 r = rsumsq(x, y)

21 print "The sum of squares is: ", r

The following shell commands execute the Python interpreter with pro-
gram rsumsqp.py and computes the sum of squares from m up to k.

$ python rsumsqp.py

Enter first number to compute sum of squares: 3

Enter second number: 12

The sum of squares is: 645

11.3.3 Reversing a Linked List

The recursive processing of a linked list is a very practical group of problems.
Recursive reversal of a linked list is simpler and more elegant than performing
the same operation iteratively.

Figure 11.1 Linked list of characters.

Given the simple list of numbers, listobj = (123, 456, 567, 678), Figure 11.1



Recursion � 171

shows a linked list with the four nodes, each with a number. The problem is
to change the list so that the nodes will appear in reverse order.

A recursive approach is to apply the divide-and-conquer approach. The
first step is to partition the list into two sublists: the head and the tail. The
head sublist contains only the first element of the list. The second sublist
contains the rest of the list. The second step is to reverse (recursively) the tail
sublist. The third step is to attach or concatenate the reversed tail sublist and
the head.

The method of reversing a linked list recursively is shown in Figure 11.2.
After partitioning the list, the head sublist contains only the first element
of the list: head = (123). The second sublist contains the rest of the list,
tail = (456, 567, 678).

Figure 11.2 Reversing a linked list recursively.

The recursive operation continues to partition the tail sublist until a simple
operation of reversing the sublist is found. Reversing a list containing a single
element is easy; the reverse of the list is the same list. If the sublist is empty,
the reverse of the list is an empty list. These will be included as the two base
cases in the overall solution to the problem.

The overall solution is achieved by combining the concatenation or joining
together the reversed tail sublist and the head sublist. Two auxiliary methods
are used: the first one, detach head, partitions the list into head and tail. The
other method, attach, joins the reversed tail with the head.
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Listing 11.3 shows two auxiliary methods in class LinkedList and these
methods are detach head and attach. These auxiliary methods are used in the
recursive function revList. The class is stored in file linklistc.py and only
the last part of the listing is shown.

Listing 11.3 Auxiliary methods in class LinkedList.

69 def detach_head(self):

70 #detach head node

71 lhead = self.head

72 lref = self.head.next

73 self.head = lref

74 lhead.next = None

75 self.numnodes -= 1

76 return lhead

77

78 def attach(self, subl2):

79 lnode = self.head

80 while lnode.next != None:

81 lnode = lnode.next

82 lnode.next = subl2 # join last node

The following listing shows a Python program that includes the recursive
function, revList and other instructions to test the recursive reversal of a
linked list. The program is stored in file testrevlist.py.

from linklistc import Node, LinkedList

def revList(clist):

if clist == None:

return None

if clist.getSize() == 1:

return clist

else:

headl = clist.detach_head() # partition list

taill = clist

rlist = revList(taill) # reverse tail

rlist.attach(headl) # attach head

return rlist

print "New linked list"

listObj = LinkedList()

listObj.insertLast(123)

listObj.insertLast(456)

listObj.insertLast(567)
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listObj.insertLast(678)

listObj.print_list()

print "Reverse list"

nlist = revList(listObj)

nlist.print_list()

The following shell commands execute the Python interpreter with pro-
gram testrevlist.py; it creates and reverses a linked list.

$ python testrevlist.py

New linked list

123

456

567

678

Reverse list

678

567

456

123

11.4 ANALYZING RECURSION

Storage is provided for objects, constants, and functions that have local vari-
ables, constants, and parameter variables. Recursion uses a runtime stack.
A block of memory serves as a medium for the runtime stack, which grows
when a function is invoked and shrinks when the execution of a function is
completed.

Whenever a function is invoked, the runtime system dynamically allocates
storage for its local variables, constants, and parameter variables declared
within the function from the allocated chunk of memory. This data is placed
in a data structure known as a frame or activation record and inserted on the
stack with a push operation. After the execution of the invoked function is
completed, the frame created for that function is removed from the top of the
stack with the pop operation.

A frame is created to provide storage for each function. The runtime stack
refers to a stack-type data structure (LIFO) associated with each process that
is provided and maintained by the system. The runtime stack holds data of
all the functions that have been invoked but not yet completed processing.
A runtime stack grows and shrinks depending on the number of functions
involved in processing and the interaction between them.
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11.5 SUMMARY

For several algorithms, the mathematical representations are recursive by de-
fault. One example is the factorial function, of which the recursive form is
easier to understand. The same is true for the algorithm that reverses a list.
A recursive function definition contains one or more calls to itself and in many
cases, the recursive function is very powerful and compact in defining the so-
lution to complex problems. The main disadvantages are that it demands a
relatively large amount of memory and time to build its internal stack.

Defining a recursive function may require defining additional functions
known as auxiliary functions or methods. Often, a software developer must
decide between using iterative and recursive algorithms.

Key Terms

base cases recursive case recursive call
terminating condition recursive solution iterative solution
recursive functions list functions auxiliary functions
activation frame activation record runtime stack

11.6 EXERCISES

11.1 Develop a Python program with a recursive function that finds and
displays n natural numbers that are even.

11.2 Develop a Python program with a recursive function that computes
exponentiation of a number given and displays the result.

11.3 Develop a Python program with a recursive function that displays the
letters in a string in reverse order.

11.4 Develop a Python program with a recursive function that reverses the
letters in a string.

11.5 Develop a Python programwith a recursive function that checks whether
a given string is a palindrome. A palindrome is a string that does not
change when it is reversed. For example: “madam,” “radar,” and so on.

11.6 Develop a Python program with a recursive function that performs a
linear search in an array of integer values.

11.7 Develop a Python program with a recursive function that performs a
binary search in an array of integer values.
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Computational Models

with Arithmetic Growth

12.1 INTRODUCTION

Given a real-world problem, a mathematical model is defined and formulated;
then one or more techniques are used to implement this model in a computer
to derive the corresponding computational model. This chapter presents an
introduction to simple mathematical models that exhibit arithmetic growth
and describes the overall behavior of simple mathematical and computational
models. This includes definitions and explanations of several important con-
cepts related to modeling.

Some of these concepts have been briefly introduced in preceding chapters.
The derivation of difference and functional equations is explained; their use
in mathematical modeling is illustrated with a few examples. A complete
computational model implemented with the Python programming language
and some functions in the Numpy module are presented and discussed.

12.2 MATHEMATICAL MODELING

The three types of methods that are used for modeling are:

1. Graphical

2. Numerical

3. Analytical

Graphical methods apply visualization of the data to help understand the
data. Various types of graphs can be used; the most common one is the line
graph.

Numerical methods directly manipulate the data of the problem to com-
pute various quantities of interest, such as the average change of the population
size in a year.

177
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Analytical methods use various forms of relations and equations to allow
computation of the various quantities of interest. For example, an equation
can be derived that defines how to compute the population size for any given
year. Each method has its advantages and limitations. The three methods
complement each other and are normally used in modeling.

12.2.1 Difference Equations

A data list that contains values ordered in some manner is known as a se-
quence. Typically, a sequence is used to represent ordered values of a property
of interest in some real problem. Each of these values corresponds to a recorded
measure at a specific point in time. In the example of population change over
a period of five years, the ordered list will contain the value of the population
size for every year. This type of data is discrete data and the expression for
the ordered list can be written as:

〈 p1, p2, p3, p4, p5 〉.

In this expression, p1 is the value of the population of year 1, p2 is the
value of the population for year 2, p5 is the value of the population for year
5, and so on. In this case, the length of the list is 5 because it has only five
values, or terms.

Another example is the study of changes in electric energy price in a year
in Georgia, given the average monthly price. Table 12.1 shows the values of
average retail price of electricity for the state of Georgia.1 The data given
corresponds to the price of electric power that has been recorded every month
for the last 12 months. This is another example of discrete data. The data list
is expressed mathematically as:

〈 e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11, e12 〉.

Given the data that has been recorded about a problem and that has been
recorded in a list, simple assumptions can be made. One basic assumption
is that the quantities in the list increase at a constant rate. This means the
increment is assumed to be fixed. If the property is denoted by x, the increment
is denoted by ∆x, and the value of a term measured at a particular point in
time is equal to the value of the preceding term and the increment added to
it. This can be expressed as:

xn = xn−1 +∆x. (12.1)

Another assumption is that the values of x are actually always increasing,

1U.S. Energy Information Administration—Independent Statistics and Analysis.
http://www.eia.gov/
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and not decreasing. This means that the increment is greater than zero, de-
noted by ∆x ≥ 0. At any point in time, the increment of x can be computed
as the difference of two consecutive measures of x and has the value given by
the expression:

∆x = xn − xn−1. (12.2)

These last two mathematical expressions, Equation 12.1 and Equa-
tion 12.2, are known as difference equations and are fundamental for the for-
mulation of simple mathematical models. We can now derive a simple math-
ematical model for the monthly average price of electric energy, given the
collection of monthly recorded energy price in cents per kW-h of the last 12
months. This model is formulated as:

en = en−1 +∆e.

The initial value of energy price, prior to the first month of consumption,
is denoted by e0, and it normally corresponds to the energy price of a month
from the previous year.

12.2.2 Functional Equations

A functional equation has the general form: y = f(x), where x is the indepen-
dent variable, because for every value of x, the function gives a corresponding
value for y. In this case, y is a function of x.

An equation that gives the value of xn at a particular point in time denoted
by n, without using the previous value, xn−1, is known as a functional equa-
tion. In this case the functional equation can also be expressed as: x = f(n).
From the data given about a problem and from the difference equation(s), a
functional equation can be derived. Using analytical methods, the following
mathematical expression can be derived and is an example of a functional
equation.

xn = (n− 1)∆x+ x1. (12.3)

This equation gives the value of the element xn as a function of n. In other
words, the value xn can be computed given the value of n. The value of ∆x
has already been computed. The initial value of variable x is denoted by x1

and is given in the problem by the first element in the sequence x.

12.3 MODELS WITH ARITHMETIC GROWTH

Arithmetic growth models are the simplest type of mathematical models.
These models have a linear relationship in the variable because the values
of the variable increase by equal amounts over equal time intervals. Using x
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as the variable, the increase is represented by ∆x, and the difference equation
defined in Equation 12.1:

xn = xn−1 +∆x.

Examples are time-dependent models, in which a selected property is rep-
resented by a variable that changes over time.

From the given data of a real problem, to decide if the model of the problem
will exhibit arithmetic growth, the given data must be processed by computing
the differences of all consecutive values in the data. The differences thus consist
of another list of values. If the differences are all equal, then the model exhibits
arithmetic growth, and therefore it is a linear model.

Equation 12.1 and the simplifying assumption of constant growth can be
applied to a wide variety of real problems, such as: population growth, monthly
price changes of electric energy, yearly oil consumption, and spread of disease.

Using graphical methods, a line chart or a bar chart can be constructed to
produce a visual representation of the changes in time of the variable x. Using
numerical methods, given the initial value x0 and once the increase ∆x in the
property x has been derived, successive values of x can be calculated using
Equation 12.1. As mentioned before, with analytical methods, a functional
equation can be derived that would allow the direct calculation of variable xn
at any of the n points in time that are included in the data list given. This
equation is defined in Equation 12.3:

xn = x1 +∆x (n− 1).

12.4 USING THE PYTHON LANGUAGE AND NUMPY

The NumPy library includes functions, two of which that are needed to im-
plement computational models with arithmetic growth. These functions are
diff and linspace. The first function, diff, computes the differences of a vector
(sequence) of data values given.

Calling function diff requires one argument, which is the specified vector.
A second argument is optional and it specifies the order of the differences
of the array. The function produces another array that has the values of the
differences of the values in the given vector.

>>> import numpy as np

>>> e = np.array ([1.25, 2.15, 4.55, 3.2, 1.05, 2.45, 3.85,

1.15, 2.75, 3.55])

>>> e

array([ 1.25, 2.15, 4.55, 3.2 , 1.05, 2.45, 3.85,

1.15, 2.75, 3.55])

>>> de = np.diff(e)
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>>> de

array([ 0.9 , 2.4 , -1.35, -2.15, 1.4 , 1.4 , -2.7 ,

1.6 , 0.8 ])

Table 12.1 Average price of electricity (cents per kW-h) in 2010.

Month Jan Feb Mar Apr May Jun Jul Aug
Price 10.22 10.36 10.49 10.60 10.68 10.80 10.88 10.94

Month Sep Oct Nov Dec

Price 11.05 11.15 11.26 11.40

Listing 12.1 shows the Python program that computes the differences and
the approximate price of electricity for 12 months. The array for the monthly
price is denoted by e, and the array for months is denoted by m. The array of
differences is denoted by de and is computed in line 17 of the program. The
data is taken from Table 12.1.

In the program, the number of measurements is the total number of
months, denoted by N and has a value of 12. To compute the average value
of the increments in price of electric energy in the year we can use the general
expression for calculating average:

∆e =
1

n

i=n
∑

i=1

dei.

Computing the average is implemented in Python with the mean NumPy
function that computes the average of the values in a vector. Using d to
denote the average increment (∆e), the following statement illustrates the
call to function mean and is included in line 20 of the Python program.

deltax = np.mean(de)

Listing 12.1: Program for computing the differences in price of electricity.

1 # Program: priceelect.py

2 # Python program for computing monthly price for electric

energy

3 # J. M. Garrido, August 2014.

4

5 import numpy as np

6
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7 N = 12; # 12 months

8 e = np.array([10.22, 10.36, 10.49, 10.60, 10.68, 10.80,

10.88, 10.94, 11.05, 11.15, 11.26, 11.40])

9 mm = np.arange(N) # month array

10 m = mm + 1

11 print "Monthly price of electricity\n"

12

13 # Array Monthly price for electric energy

14 print e

15 # differences in sequence e

16 print "\nDifferences of the given data\n"

17 de = np.diff(e)

18 print de

19 # average of increments

20 deltax = np.mean(de)

21 print "\nAverage difference: ", deltax

22 # Calculating price of electric energy

23 ce = mm * deltax + e[0]

24 print "\nCalculated prices of electricity: \n"

25 print ce

26 print "\nData for Plotting\n"

27 for j in range(N):

28 print m[j], e[j], ce[j]

With the value of the average increment of the price of electricity, the
functional equation of the model is applied to compute the price of electric
energy for any month. The new array, ce, is defined and contains all the
values computed using the functional equation and the average value of the
increments. This is shown in line 23 of the program. The following listing shows
the command that starts the Python interpreter and the results produced.

$ python priceelect.py

Monthly price of electricity

[ 10.22 10.36 10.49 10.6 10.68 10.8 10.88 10.94 11.05

11.15 11.26 11.4 ]

Differences of the given data

[ 0.14 0.13 0.11 0.08 0.12 0.08 0.06 0.11 0.1 0.11

0.14]

Average difference: 0.107272727273

Calculated prices of electricity:
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[ 10.22 10.32727273 10.43454545 10.54181818

10.64909091 10.75636364 10.86363636 10.97090909

11.07818182 11.18545455 11.29272727 11.4 ]

Data for Plotting

1 10.22 10.22

2 10.36 10.3272727273

3 10.49 10.4345454545

4 10.6 10.5418181818

5 10.68 10.6490909091

6 10.8 10.7563636364

7 10.88 10.8636363636

8 10.94 10.9709090909

9 11.05 11.0781818182

10 11.15 11.1854545455

11 11.26 11.2927272727

12 11.4 11.4

12.5 PRODUCING THE CHARTS OF THE MODEL

Two lists of values for the price of electric energy are available as arrays. The
first one is the data given with the problem and is denoted by e; the second list
was computed in the program using the functional equation for all 12 months,
and the list is denoted by ce. The array with data representing the months of
the year is denoted by m.

Gnuplot is a software tool and is used to produce charts with these three
data lists or arrays. Two line charts are generated on the same plot, one line
chart of array e with array m, the second chart using array ce and array m.
The Gnuplot commands that create and draw the charts are stored in the
script file: priceelect.cgp and are shown as follows:

set title "Plot of Montly Price of Electricity vs time"

set xlabel "Time (secs)"

set ylabel "Monthly price of electricity"

set size 1.0, 1.0

set samples 12

plot "priceelect.gpl" u 1:2 with linespoints, "priceelect.gpl"

u 1:3 with linespoints

Figure 12.1 shows the line chart with the original data given in Table 12.1
and the line with computed values of the monthly price of electricity.



184 � Introduction to Computational Models with Python

Figure 12.1 Given and computed values of monthly price of electricity.

12.6 VALIDATION OF A MODEL

Validation of a model is the analysis that compares the values computed with
the model with the actual values given. For example, starting with the first
value of the monthly consumption of electric energy, the model is used to
compute the rest of the monthly values of consumption. These values can
then be compared to the values given.

If the corresponding values are close enough, the model is considered a
reasonable approximation to the real system.

12.7 FILE I/O

Computational models typically deal with a large amount of data, which is
conveniently stored in data files. The programs discussed and shown previously
read and write data to the console, which on a personal computer is the
keyboard and the screen. This is also known as standard input and output.

Python provides basic functions and methods necessary to manipulate files.
The programs do most of the file manipulation using file objects.

12.7.1 Types of Files

There are two general types of file: text or binary. A text file is typically
structured as a sequence of text lines, each being a sequence of characters.

A text line is terminated by a special control character, the EOL (End of
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Line) character. The most common line terminator is the \n , or the newline
character. The backslash character is used to specify control characters and
indicates that the next character will be treated as a newline.

A binary file is basically any file that is not a text file. The main advantage
of text files is that no data conversion is necessary.

12.7.2 Opening and Closing Text Files

A file has to be opened before data can be read or written to it. Opening a
file creates a file object and is carried out by calling Python’s built-in open
function, which returns a file object. The first argument in the call is a string
with the file name, the second argument is the access mode for the file, the
third argument is optional and indicates the buffering as an integer. The
following table indicates the access modes allowed for files in Python.

Mode Description

r Opens a file for reading only. The file pointer is placed at the
beginning of the file. This is the default mode.

rb Opens a file for reading only in binary format. The file pointer
is placed at the beginning of the file. This is the default mode.

r+ Opens a file for both reading and writing. The file pointer will
be at the beginning of the file.

rb+ Opens a file for both reading and writing in binary format. The
file pointer will be at the beginning of the file.

w Opens a file for writing only. Overwrites the file if the file exists.
If the file does not exist, creates a new file for writing.

wb Opens a file for writing only in binary format. Overwrites the
file if the file exists. If the file does not exist, creates a new file
for writing.

w+ Opens a file for both writing and reading. Overwrites the ex-
isting file if the file exists. If the file does not exist, creates a
new file for reading and writing.

wb+ Opens a file for both writing and reading in binary format.
Overwrites the existing file if the file exists. If the file does not
exist, creates a new file for reading and writing.
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Mode Description
a Opens a file for appending. The file pointer is at the end of the

file if the file exists. That is, the file is in the append mode. If
the file does not exist, it creates a new file for writing.

ab Opens a file for appending in binary format. The file pointer is
at the end of the file if the file exists. That is, the file is in the
append mode. If the file does not exist, it creates a new file for
writing.

a+ Opens a file for both appending and reading. The file pointer
is at the end of the file if the file exists. The file opens in the
append mode. If the file does not exist, it creates a new file for
reading and writing.

ab+ Opens a file for both appending and reading in binary format.
The file pointer is at the end of the file if the file exists. The file
opens in the append mode. If the file does not exist, it creates
a new file for reading and writing.

The following example opens two files: lengthpart.dat is opened for writing
and the file object created is outfile. The second file, mydata.dat , is opened
for reading and the file object created is infile.

outfile = open("lengthpart.dat", "w")

infile = open ("mydata.dat", "r")

After a file has been used in a program, it should be closed. Method close
of a file object flushes any unwritten data and closes the file object, after
which no more writing can be performed. The following example closes the
two files that were opened previously.

outfile.close()

infile.close()

12.7.3 Writing Data to a File

Writing data to a file involves calling method write of the file object and it
writes a string to the open file. Method write does not add a newline character
(\n) to the end of the string.

The following example is a short Python program that opens file mtest.dat
for writing. In line 3, the string "Testing output data" is written to the file.
Line 4 defines variable v1 with a value of 56. This value has to be converted
to a string before it is written to the file. Function str is called with variable
v1 as the argument. The new string variable v1str is created. The statement
in line 6 writes the string variable to the file. In a similar manner, v2 is a
floating-point variable and its value is also converted to a string then written
to the file in lines 8–9. The file is closed in line 12.
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1 # writing to a data file

2 mfile = open("mtest.dat", ’w’)

3 mfile.write("Testing output data\n")

4 v1 = 56

5 v1str = str(v1)

6 mfile.write(v1str)

7 v2 = 10.45

8 v2str = str(v2)

9 mfile.write("\n")

10 mfile.write(v2str + "\n")

11 mfile.write(v1str + " " + v2str +"\n")

12 mfile.close()

The following lines are produced when the Python interpreter runs the
program.

Testing output data

56

10.45

56 10.45

12.7.4 Reading Data from a File

As mentioned previously, a text file stores data in string form. Reading data
from a text file involves reading lines of text from a file. Method read reads a
string from an open file. This method starts reads from the beginning of the
file and tries to read as much as possible, or until the end of file. An optional
argument can be used that indicates the number of bytes to read.

Method readline reads a single line from the file and returns a string con-
taining characters up to \n. This method is useful for reading data from a file
line by line rather than reading the entire file in at once.

infile = open(’mydata.txt’, ’r’)

# Read a line from the open file

line = infile.readline()

Because several data values can be contained in a line, the split string
method can be used to separate substrings in the line that separated by a space
character. This method returns a list of substrings. An optional argument is
the actual separator character to apply. The following example illustrates the
use of the split string method. It is first called with no arguments, so the
default separator is one or more space characters and the list created is cols.
The second time it is called with a comma as the argument to be used as the
substring separator.
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>>> line = "1234 23.59 part 27134"

>>> cols = line.split()

>>> cols

[’1234’, ’23.59’, ’part’, ’27134’]

>>> line2 = "1234, 23.59, part 27134"

>>> cols2 = line2.split(",")

>>> cols2

[’1234’, ’ 23.59’, ’ part 27134’]

To read multiple lines from a file, a loop can be used over the file object.
This is memory efficient, fast, and leads to simple code. For numerical vari-
ables, either integer or floating-point, their values are converted from string
to the numeric type using functions float and int. The following short Python
program illustrates the general technique of reading lines of data, separating
the various data fields from the line, and converting each data field to the
required type.

1 # Open input file program: gen_filein.py

2 infile = open(’mydata.dat’, ’r’)

3

4 # Read and ignore a header line

5 headstr = infile.readline()

6

7 # Loop over lines and extract variables

8 for line in infile:

9 line = line.strip() # remove ’\n’ char

10 columns = line.split() # split line into columns

11 print columns

12 var1 = columns[0]

13 var2 = float(columns[1])

14 j = int(columns[2])

15 print var1, var2, j

The following data file mydata.dat is used for testing the program.

Testing data

sequence1 34.56 88

sequence2 10.45 79

sequence3 85.56 45

Starting the Python interpreter to run the program, produces the following
output:
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$ python gen_filein.py

[’sequence1’, ’34.56’, ’88’]

sequence1 34.56 88

[’sequence2’, ’10.45’, ’79’]

sequence2 10.45 79

[’sequence3’, ’85.56’, ’45’]

sequence3 85.56 45

12.8 SUMMARY

Several basic concepts of mathematical models are presented. A computational
model is a computer implementation of a mathematical model. Considering
simplifying assumptions and using abstraction are important steps in formu-
lating a mathematical model. This involves a transition from the real world
to the abstract world.

Simple mathematical techniques such as difference equations and func-
tional equations are used. With arithmetic growth models, the values of the
differences of the data is constant. The difference and functional equations
for these models are linear. Numpy is used to create efficient arrays and
perform various computations with arrays. The programming techniques dis-
cussed compute the first differences of the values in an array. If the differences
are constant or are almost all equal, then the model represented by the val-
ues of the original array is a linear model. The data of linear models follows
arithmetic growth.

Computational models typically deal with a large amount of data, which is
conveniently stored in data files. Python provides basic functions and methods
necessary to manipulate files. The programs do most of the file manipulation
using file objects.

Key Terms

arithmetic growth mathematical methods graphical methods
numerical methods analytical methods discrete data
data list ordered list sequence
differences average difference linear models
difference equations functional equations model validation
data files reading files writing files

12.9 EXERCISES

12.1 Construct a line chart of the data list in Table 12.1 and discuss how the
price of electric energy changes in a specified period.
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12.2 Construct a bar chart of the data list in Table 12.1 and discuss how the
price of electric energy changes in a specified period.

12.3 Formulate a mathematical model based on a difference equation of the
data in Table 12.1.

12.4 Develop a Python program that uses the data in Table 12.1 to com-
pute the average increase in price of electric energy per month from
Equation 12.1 and/or Equation 12.2. Start with the second month, and
calculate the price for the rest of the months. Discuss the difference
between the data in the table and the corresponding values calculated.

12.5 Develop a Python program that uses the data from a different problem
to compute the differences and decide whether the model of the problem
exhibits arithmetic growth.
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Computational Models

with Quadratic Growth

13.1 INTRODUCTION

A computational model with quadratic growth is one in which the differences
in the data are not constant but growing in some regular manner. Recall that
with arithmetic growth these differences are constant. This chapter presents
an introduction to computational models in which the differences in the data
follow a pattern of arithmetic growth, or in simpler terms, the differences
increase or decrease linearly.

This chapter explains the computation of difference and functional equa-
tions; their use in the mathematical model is illustrated with a few examples.
A complete computational model implemented with the Python programming
language is presented and discussed.

13.2 DIFFERENCES OF THE DATA

The data values in a quadratic growth model do not increase (or decrease) by
a constant amount. With quadratic growth, the differences of the data change
linearly. The differences of the differences, known as the second differences,
are constant.

The data in a problem is used to set up an ordered list of values, or
sequence. This type of list is denoted as follows:

〈 p1, p2, p3, p4, p5 〉.

The following example presents a data list given in a generic problem and
Figure 13.1 shows the graph of these values.

S = 〈 6.5, 10.5, 17.5, 27.5, 40.5, 56.5, 75.5, 97.5, 122.5 〉

191



192 � Introduction to Computational Models with Python

Figure 13.1 Plot of data in the sequence.

The differences of these values is another sequence, D, that can be derived
and represents the differences of the values in sequence S. The values in D
are the increases (or decreases) of the values in the first sequence, S.

D = 〈 4.0, 7.0, 10.0, 13.0, 16.0, 19.0, 22.0, 25.0 〉

The increases of the values of the differences, D, appear to change linearly
and follow an arithmetic growth pattern; this is an important property of
quadratic growth models. Figure 13.2 shows the graph with the data of the
first differences.

Listing 13.1 shows the source code of a Python program that creates the
arrays for the data sequences in the problem, their differences, and their second
differences. This program is stored in file: differences.py. Note that the first
differences are computed in line 18 and the second differences are computed
in line 21. As mentioned in the previous chapter, the differences are computed
by calling function diff(), which is in the NumPy package.

Listing 13.1: Program that computes the first and second differences.

1 # Program: differences.py

2 # Python program for computing first and second differences

3 # of problem data

4 # J. M. Garrido, August 2014.

5 import numpy as np

6

7 N = 9 # number of data points

8 # Array with original data sequence
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Figure 13.2 Plot of first differences.

9 s = np.array([6.5, 10.5, 17.5, 27.5, 40.5, 56.5, 75.5, 97.5,

122.5])

10 x = np.arange(N)

11 x = x + 1

12

13 # Array with problem data

14 print "Data sequence \n"

15 print s

16 # Compute first differences in sequence e

17 print "\nFirst Differences of the given data\n"

18 d = np.diff(s)

19 print d

20 # compute differences of the differences

21 d2 = np.diff(d)

22 print "\nSecond differences\n"

23 print d2

24 print "\nData for Plotting\n"

25 for j in range(N):

26 print x[j], s[j]

27 print "\nData of differences for plotting\n"

28 for j in range(N-1):

29 print x[j], d[j]

The following listing shows the Python interpreter processing the program.
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The output produced by the execution of the program shows the data given
by the problem, the first differences, and the second differences.

$ python differences.py

Data sequence

[6.5 10.5 17.5 27.5 40.5 56.5 75.5 97.5 122.5]

First Differences of the given data

[4. 7. 10. 13. 16. 19. 22. 25.]

Second differences

[ 3. 3. 3. 3. 3. 3. 3.]

Data for Plotting

1 6.5

2 10.5

3 17.5

4 27.5

5 40.5

6 56.5

7 75.5

8 97.5

9 122.5

Data of differences for plotting

1 4.0

2 7.0

3 10.0

4 13.0

5 16.0

6 19.0

7 22.0

8 25.0

In the example, the second differences are constant; all have value 3.0. This
is another important property of quadratic growth models.
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13.3 DIFFERENCE EQUATIONS

An ordered data list or sequence is used to represent ordered values of a
property of interest in some real problem. Each of these values can correspond
to a recorded measure at a specific point in time. The expression for the values
in a sequence, S, with n values can be written as:

S = 〈 s1, s2, s3, s4, s5 . . . sn 〉.

In a similar manner, the expression for the values in the differences, D,
with m values and with m = n− 1, can be written as:

D = 〈 d1, d2, d3, d4, d5 . . . dm 〉.

Because the values in the sequence of second differences are all the same,
the value is denoted by dd, and computed simply as dd = dn − dn−1.

To formulate the difference equation, the value of a term, sn+1 in the
sequence is computed with the value of the preceding term sn plus the first
term of the differences d1, plus the single value dd of the second differences
added to it times n − 1. This equation, which is the difference equation for
quadratic growth models, can be expressed as:

sn+1 = sn + d1 + dd (n− 1). (13.1)

13.4 FUNCTIONAL EQUATIONS

An equation that gives the value of a term xn without using consecutive values
(the previous value, xn−1 or the next value, xn+1) , is known as a functional
equation. The difference equation for quadratic growth models, Equation 13.1,
can be rewritten as:

sn = sn−1 + d1 + dd (n− 2). (13.2)

Equation 13.2 can be manipulated by substituting sn−1 for its difference
equation, and continuing this procedure until s1. In this manner, a functional
equation can be derived. The following mathematical expression is a general
functional equation for quadratic growth models.

sn = s1 + d1 (n− 1) + dd (n− 2)n/2. (13.3)

Equation 13.3 gives the value sn as a function of n for a quadratic growth
model. The value of the first term of the original sequence is denoted by s1,
the value of the first term of the differences is denoted by d1, and the single
value, dd, is the second difference.
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13.5 EXAMPLES OF QUADRATIC MODELS

Equation 13.1 and Equation 13.3 represent mathematical models of quadratic
growth models. These can be applied to a wide variety of real problems, such
as computer networks, airline routes, roads and highways, and telephone net-
works. In these models, the first differences increase in a linear manner (arith-
metic growth), as the two examples discussed in previous sections of this chap-
ter. Other models with quadratic growth involve addition of ordered values
from several sequences that exhibit arithmetic growth.

13.5.1 Growth of Number of Patients

Statistical data maintained by a county with several hospitals include the
number of patients every year. Table 13.1 gives the data of the number of
patients in the years from 1995 to 2002, and their increases. Figure 13.3 shows
the graph for the number of patients in the hospital by year from 1995 through
2002. It can be observed that the number of patients from 1995 through 2002
does not follow a straight line; it is not linear.

Table 13.1 Number of patients for years 1995–2002.

Year 1995 1996 1997 1998 1999 2000

Patients 5,500 8,500 13,500 20,500 29,500 40,500
Increase 0 3,000 5,000 7,000 9,000 11,000

Year 2001 2002
Patients 53,5000 68,500
Increase 13,000 15,000

Table 13.1 shows that the number of patients increases every year by a
constant number. The differences in the number of patients from year to year
increase in a regular pattern, in a linear manner. This implies that the in-
creases of the number of patients follow an arithmetic growth.

Computing the first and second differences of the data for this problem is
similar to the one already discussed.

13.5.2 Growth of Computer Networks

The following example represents a simple network that connects computers
directly to each other and a number of links are necessary for the direct
connection between computers. To connect two computers, 1 single link is
needed. To connect 3 computers, 3 links are needed. To connect 4 computers,
6 links are needed.

It can be noted that as the number of computers increases, the number
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Figure 13.3 Number of patients for 1995–2002.

of links increases in some pattern. To connect 5 computers, 4 new links are
needed to connect the new computer to the 4 computers already connected.
This gives a total of 10 links. To connect 6 computers, 5 new links are needed
to connect the new computer to the 5 computers that are already connected,
for a total of 15 links.

Let Ln denote the number of links needed to connect n computers. The
difference equation for the number of links can be expressed as:

Ln = Ln−1 + (n− 1).

This equation has the same form as the general difference equation for
quadratic growth, Equation 13.2. The parameters are set as: d1 = 0 and
dd = 1.

Using the expression for the difference equation for Ln, the following
Python program is used to construct the data sequence for L for n vary-
ing from 1 to 50. The source code is stored in the file links.py and is shown
in Listing 13.2.

When running the program, all the terms in the sequence L are computed
and the results are used to produce a chart using GnuPlot. Figure 13.4 shows
the graph of the number of links needed to connect n computers.

Listing 13.2: Python source program that computes the number of links.

1 # Program: links.py

2 # Python program that computes the number of links needed

3 # to connect n computers

4 # J. M. Garrido, August 26, 2014.
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5 import numpy as np

6 M = 50 # limit on number of computers

7 print "Links of computer network\n"

8 n = np.arange(M)

9 n = n + 1

10 llinks = np.zeros(M)

11 # compute the links as n varies from 2 to m

12 for j in range(M):

13 llinks[j] = llinks[j-1] + (j-1)

14 # data for plot

15 print "Number of computers number of links\n"

16 for j in range(M):

17 print n[j], llinks[j]

$ python links.py

Links of computer network

Number of computers number of links

1 -1.0 2 -1.0 3 0.0

4 2.0 5 5.0 6 9.0

7 14.0 8 20.0 9 27.0

10 35.0 11 44.0 12 54.0

13 65.0 14 77.0 15 90.0

16 104.0 17 119.0 18 135.0

19 152.0 20 170.0 21 189.0

22 209.0 23 230.0 24 252.0

25 275.0 26 299.0 27 324.0

28 350.0 29 377.0 30 405.0

31 434.0 32 464.0 33 495.0

34 527.0 35 560.0 36 594.0

37 629.0 38 665.0 39 702.0

40 740.0 41 779.0 42 819.0

43 860.0 44 902.0 45 945.0

46 989.0 47 1034.0 48 1080.0

49 1127.0 50 1175.0

From the general functional equation, Equation 13.3, the functional equa-
tion for the network problem discussed can be expressed as

Ln+1 = L1 + (n+ 1)n/2.

Notice that L1 is always zero (L1 = 0) because no link is necessary when
there is only one computer (n = 1).
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Figure 13.4 Number of links to connect n computers.

Ln = n(n− 1)/2

13.5.3 Models with Sums of Arithmetic Growth

A variety of models have data about a property that follows an arithmetic
growth pattern. The summation or running totals of the data of this property
is also important. The following example will illustrate this concept.

A county maintains data about the cable installations for multi-purpose
services, such as TV, phones, Internet access, and others. The data include
new cable installations (in thousands) per year and the total number of cable
installations per year. This data is shown in Table 13.2.

Table 13.2 Number of cable installations for years 1995–2002.

Year 1995 1996 1997 1998 1999 2000 2001 2002
New 1.5 1.9 2.3 2.7 3.1 3.5 3.9 4.3

Sum 1.5 3.4 5.7 8.4 11.5 15.0 18.9 25.2

For this type of data, the general principle is that the new cable installa-
tions follow an arithmetic growth pattern, and the summations of the cable
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installations follow a quadratic growth pattern. Two sequences are needed: a
for the new cable installations, and b for the sums of cable installations.

a = 〈 a1, a2, a3, a4, a5 . . . an 〉 b = 〈 b1, b2, b3, b4, b5 . . . bn 〉

To develop a difference equation and a functional equation of the sums
of cable installations, a relation of the two sequences, a and b, needs to be
expressed.

It can be observed from the data in Table 13.2 that the data in sequence
a follows an arithmetic growth pattern. The difference equation for a can be
expressed as:

an = an−1 +∆a, ∆a = 400, n = 2 . . .m.

The functional equation for a can be expressed as:

an = 1500 + 400 (n− 1).

It can also be observed from the data in Table 13.2 that the data in se-
quence b is related to the data in sequence a. The difference equation for
sequence b is expressed as:

bn = bn−1 + an, n = 2 . . .m.

Substituting an for the expression in its functional equation and using the
general functional equation for quadratic growth, Equation 13.3:

bn = b1 + d1 (n− 1) + dd (n− 2)n/2.

Finally, the functional equation for the sequence b is expressed as:

bn = 1500 + 1900n+ 400(n− 1)n/2.

13.6 SUMMARY

This chapter presented some basic concepts of quadratic growth in mathemat-
ical models. Simple mathematical techniques, such as difference equations and
functional equations, are used in the study of models with quadratic growth.
In these models the increases follow an arithmetic growth pattern; the second
differences are constants. The most important difference with models with
arithmetic growth is that the increases cannot be represented by a straight
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line, as with arithmetic models. The functional equation of quadratic growth
is basically a second-degree equation, also known as a quadratic equation.

Key Terms

quadratic growth non-linear representation differences
second differences network problems summation
quadratic equation roots coefficients

13.7 EXERCISES

13.1 On a typical spring day, the temperature varies according to the data
recorded in Table 13.3. Develop a Python program to compute first and
second differences. Formulate the difference equations and functional
equations for the temperature. Is this discrete or continuous data? Dis-
cuss.

Table 13.3 Temperature changes in a 12-hour period.

Time 7 8 9 10 11 12 1 2 3 4 5 6

Temp. (F 0) 51 56 60 65 73 78 85 86 84 81 80 70

13.2 Develop a Python program to compute first and second differences. Pro-
duce a line chart of the data list in Table 13.1. Discuss how the number
of patients changes in a specified period.

13.3 Formulate a mathematical model based on a difference equation of a
modified computer network problem similar to one discussed in this
chapter. There are three servers and several client computers connected
via communication links. All connections between pairs of clients re-
quire two links. The connection between servers also requires two links.
Use the concepts and principles explained in this chapter to derive an
equation for the number of links.

13.4 Formulate a mathematical model based on a functional equation of a
modified computer network problem similar to one discussed in this
chapter. There are three servers and several client computers connected
via communication links. All connections between pairs of clients re-
quire two links. The connection between servers also requires two links.
Use the concepts and principles explained in this chapter to derive an
equation for the number of links.
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13.5 Formulate a mathematical model based on a functional equation of a
modified computer network problem similar to one discussed in this
chapter. There are K servers and several client computers connected
via communication links. All connections between pairs of clients require
two links. The connection of a server to the other K−1 servers requires
a single link. Use the concepts and principles explained in this chapter
to derive an equation for the number of links.
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Models with Geometric

Growth

14.1 INTRODUCTION

This chapter presents an introduction to computational models in which the
data follow a pattern of geometric growth. In such models, the data exhibit
growth in such a way that in equal intervals of time, the data increase by an
equal percentage or factor.

The difference and functional equations in models with geometric growth
are explained; their use in mathematical modeling is illustrated with a few
examples. Several computational models implemented with Python and the
NumPy library are presented and discussed.

14.2 BASIC CONCEPTS

The data in the sequence represent some relevant property of the model and
are expressed as a variable s. An individual value of variable s is known as a
term in the sequence and is denoted by sn. A sequence with m data values or
terms, is written as follows:

〈 s1, s2, s3, s4, s5, . . . , sm 〉.

In models with geometric growth, the data increase (or decrease) by an
equal percentage or growth factor in equal intervals of time. The difference
equation that represents the pattern of geometric growth has the general form:

sn+1 = c sn. (14.1)

In Equation 14.1, the parameter c is constant and represents the growth
factor, and n identifies an individual value such that n ≤ m. With geometric
growth, the data increases or decreases by a fixed factor in equal intervals.

203
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14.2.1 Increasing Data with Geometric Growth

The data in a sequence will successively increase in value when the value of
the growth factor is greater than 1. For example, consider a data sequence
that exhibits geometric growth with a growth factor of 1.45 and a starting
value of 50.0. The sequence with 8 terms is:

〈 50.0, 72.5, 105.125, 152.43, 221.02, 320.48, 464.70, 673.82 〉.

Figure 14.1 shows a graph of the data with geometric growth. Note that
the data increases rapidly.

Figure 14.1 Data with geometric growth.

14.2.2 Decreasing Data with Geometric Growth

The data in a sequence will successively decrease in value when the value of
the growth factor is less than 1. For example, consider a data sequence that
exhibits geometric growth with a growth factor of 0.65 and a starting value
of 850.0. The sequence with 10 terms is:

〈 850.0, 552.5, 359.125, 233.43, 151.73, 98.62, 64.10, 41.66, 27.08, 17.60 〉.

Figure 14.2 shows a graph of the data with geometric growth. Note that
the data decreases rapidly because the growth factor is less than 1.0.
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Figure 14.2 Data decreasing with geometric growth.

14.2.3 Case Study 1

The population of a small town is recorded every year; the increases per year
are shown in Table 14.1, which gives the data about the population during the
years from 1995 to 2003. The table also shows the population growth factor.

Table 14.1 Population of a small town during 1995–2003 (in thousands).

Year 1995 1996 1997 1998 1999 2000 2001 2002 2003
Pop. 81 90 130 175 206 255 288 394 520

Fac. — 1.111 1.444 1.346 1.177 1.237 1.129 1.368 1.319

Note that although the growth factors are not equal, the data can be con-
sidered to grow in a geometric pattern. The values of the growth factor shown
in the table are sufficiently close and the average growth factor calculated is
1.2667.

After a brief analysis of the data in the problem, the following tasks are
to be computed: (1) create the data lists (arrays) of the sequence s with the
values of the original data in Table 14.1; (2) compute the average growth
factor from the data in the table; (3) compute the values of a second data
list y using 1.267 as the average growth factor and the difference equation
yn+1 = 1.267 yn, and (4) plot the graphs.

Listing 14.1 shows the Python program that performs these tasks and is
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stored in file: popstown.py. The factors of the population data are computed
in line 19 with a call to function factors and the average growth factor is
computed in line 22 of the program. The computed data is calculated in lines
25–27.

Listing 14.1: Program that computes the population average growth factor.

1 # program: popstown.py

2 # This program computes the growth factor per year

of the population.

3 # Uses NumPy

4 # J Garrido 09-2-2014

5

6 import numpy as np

7

8 def factors(marray): # Compute factors in marray

9 n = marray.size

10 mf = np.zeros(n-1) # array of factors

11 for j in range(n-1):

12 mf[j] = marray[j+1]/marray[j]

13 return mf

14

15 N = 9

16 s = np.array([81.0, 90.0, 130.0, 175.0, 206.0, 255.0, 288.0,

394.0, 520.0])

17 x = np.array([1995, 1996, 1997, 1998, 1999, 2000, 2001,

2002, 2003])

18 print "Program to compute average growth factor"

19 f = factors(s) # compute array of factors

20 print "\nFactors in array s: \n"

21 print f

22 meanv = np.mean(f)

23 print "\nMean factor: ", meanv

24 cs = np.zeros(N)

25 cs[0] = s[0]

26 for j in range(N-1):

27 cs[j+1] = meanv * cs[j];

28 print "\nGiven and Computed values of population"

29 for j in range(N):

30 print x[j], s[j], cs[j]

When the Python interpreter processes the program, the following listing
is produced.

Program to compute average growth factor
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Figure 14.3 Population of a small town for 1995–2003.

Factors in array s:

[ 1.11111111 1.44444444 1.34615385 1.17714286 1.23786408

1.12941176 1.36805556 1.31979695]

Mean factor: 1.26674757639

Given and Computed values of population

1995 81.0 81.0

1996 90.0 102.606553687

1997 130.0 129.976603205

1998 175.0 164.647547097

1999 206.0 208.566881243

2000 255.0 264.201591329

2001 288.0 334.676725494

2002 394.0 423.950930893

2003 520.0 537.038814216

Figure 14.3 shows a graph with two curves; one with the population in
the town by year from 1995 through 2003 taken directly from Table 14.1. The
other curve shown in the graph of Figure 14.3 is the computed data applying
Equation 14.1 with 1.267 as the growth factor, using the difference equation
sn+1 = 1.267 sn.

A very similar python program is stored in file popstown2.py, which reads
the population data from a text file and produces the same results.
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14.2.4 Case Study 2

In a water treatment process, every application of solvents removes 65% of
impurities from the water to make it more acceptable for human consumption.
This treatment has to be performed several times until the level of purity of
the water is adequate for human consumption. Assume that when the water
has less than 0.6 parts per gallon of impurities, it is adequate for human
consumption.

In this problem, the data given is the contents of impurities in parts per
gallon of water. The initial data is 405 parts per gallon of impurities and the
growth factor is 0.35.

Listing 14.2 shows a Python program that computes the impurities of
water after each application of the solvent. The program declares the data
lists (arrays) of the sequence s with the data of the contents of impurities
in parts per gallon of water. The output data produced by executing the
program and GnuPlot is used to plot the graphs. The program is stored in
file: watertr.py.

Listing 14.2: Program that computes the impurities of water.

1 # program: watertr.py

2 # This program computes the impurities in water

given the growth factor.

3 # Uses NumPy

4 # J Garrido 9-2-2014

5 import numpy as np

6

7 N = 10 # Number of applications

8 f = 0.35 # constant factor

9 s = np.zeros(N) # create array with zeros

10 s[0] = 405.0 # initial impurity of water

11 print "Program to compute growth of impurities in water\n"

12 napp = np.arange(N)

13 napp = napp + 1 # application number

14 print "Initial impurity in water: ", s[0]

15 print "Number of applications: ", N

16 print "Factor: ", f

17 for j in np.arange(N-1): # compute impurities

18 s[j+1] = f * s[j]

19 print "\nImpurities after each application \n"

20 for j in np.arange(N):

21 print napp[j], s[j]

When the Python interpreter processes the program, the following output
listing is produced. Figure 14.4 shows the graph of the impurities in parts per
gallon of water for several applications of solvents.
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Figure 14.4 Impurities in water (parts/gallon).

Program to compute growth of impurities in water

Initial impurity in water: 405.0

Number of applications: 10

Factor: 0.35

Impurities after each application

1 405.0

2 141.75

3 49.6125

4 17.364375

5 6.07753125

6 2.1271359375

7 0.744497578125

8 0.260574152344

9 0.0912009533203

10 0.0319203336621

14.3 FUNCTIONAL EQUATIONS IN GEOMETRIC GROWTH

From the difference equation for models with geometric growth, Equation 14.1,
the first few terms of sequence s can be written as:
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s2 = cs1
s3 = cs2 = c(cs1)
s4 = cs3 = c(c(cs1))
s5 = cs4 = c(c(c(cs1)))
s6 = cs5 = cc(c(c(cs1)))
. . .
sn = c n−1s1.

Equation 14.1 was referenced by substituting sn−1 for its difference equa-
tion, and continuing this procedure up to sn. In this manner, a functional
equation can be derived. Recall that a functional equation gives the value of a
term sn without using the previous value, sn−1. The following mathematical
expression is a general functional equation for geometric growth models.

sn = s1 c n−1 (14.2)

Equation 14.2 gives the value sn as a function of n for a geometric growth
model, with n ≥ 1. Note that this functional equation includes the fixed value
s1, which is the value of the first term of the data sequence.

A functional equation such as Equation 14.2 is an example of an exponen-
tial function because the independent variable, n, is the exponent. This type
of growth in the data is also known as exponential growth.

Functional equations can be used to answer additional questions about a
model. For example: what will the population be 12 years from now? What
amount of impurities are left in the water after 8 repetitions of the application
of solvents?

When the growth factor does not correspond to the desired unit of time,
then instead of n, a more appropriate variable can be used. For example,
in the first population data in Case Study 1, Section 14.2.3, the variable n
represents number of years. To deal with months instead of years, a small
substitution in the functional equation is needed. Variable t will represent
time, and the starting point of the data is at t = 0 with an initial value of y0.
This gives meaning to the concept of a continuous model. Because one year
has 12 months and using the same growth factor c as before, the following is
a modified functional equation and can be applied when dealing with months.

y(t) = y0 ct/12 (14.3)

14.4 SUMMARY

This chapter presented some basic concepts of geometric growth in mathe-
matical models. The data in these models increase or decrease in a constant
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growth factor for equal intervals. Simple mathematical techniques such as
difference equations and functional equations are used in the study of mod-
els with geometric growth. The functional equation of geometric growth is
basically an exponential function, so this type of growth is also known as
exponential growth.

Some important applications involving computational models with ge-
ometric growth are pollution control, human drug treatment, population
growth, radioactive decay, and heat transfer.

Key Terms

geometric growth exponential growth average growth
growth factor exponent continuous data
exponentiation rules logarithms exponent base

14.5 EXERCISES

14.1 In the population problem Case Study 1 Section 14.2.3, use the average
growth factor already calculated and compute the population up to year
14. For this, modify the corresponding Python program and run again.
Draw the graphs with GnuPlot.

14.2 In the population problem Case Study 1 Section 14.2.3, use the average
growth factor already calculated and compute the population up to year
20. For this, modify the corresponding Python program and run again.
Draw the graphs with GnuPlot.

14.3 In the population problem Case Study 1 Section 14.2.3, estimate the
population for year 18 and month 4. Use the average growth factor
already calculated and the modified functional equation, Equation 14.3.
Develop a Python program to solve this problem.

14.4 In the population problem Case Study 1 Section 14.2.3, estimate the
population for month 50. Use the average growth factor already calcu-
lated and the modified functional equation, Equation 14.3. Develop a
Python program to solve this problem.

14.5 In the population problem Case Study 1 Section 14.2.3, compute the year
when the population reaches 750, 000. Use the average growth factor and
develop a Python program to solve this problem.

14.6 In the population problem Case Study 1 Section 14.2.3, compute the
month when the population reaches 875, 000. Use the average growth
factor already calculated and the modified functional equation, Equa-
tion 14.3. Develop a Python program to solve this problem.
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14.7 In the modified water treatment problem Case Study 2 Section 14.2.4, an
application of solvents removes 57% of impurities in the water. Compute
the levels of impurities after several repetitions of the application of
solvents. Use this growth factor and develop a Python program to solve
this problem.

14.8 In the original water treatment problem Case Study 2 Section 14.2.4,
compute the levels of impurities after 8 repetitions of the application of
solvents. Use this growth factor and develop a Python program to solve
this problem.

14.9 In the modified water treatment problem, Exercise 14.8, compute the
levels of impurities after 8 repetitions of the application of solvents. Use
the growth factor and develop a Python program to solve this problem.

14.10 In the original water treatment problem Case Study 2 Section 14.2.4,
compute the number of repetitions of the application of solvents that
are necessary to reach 0.5 parts per gallon of impurities. Use the growth
factor and develop Python program to solve this problem.



C HA P T E R 15

Computational Models

with Polynomial Growth

15.1 INTRODUCTION

Linear and quadratic equations are special cases of polynomial functions.
These equations are of higher order than quadratic equations and more general
mathematical methods are used to solve them.

This chapter presents general concepts and techniques to evaluate and
solve polynomial functions with emphasis on numerical and graphical meth-
ods. Solutions implemented with the Python programming language and the
polynomial module of the Numpy package are presented and discussed.

15.2 GENERAL FORMS OF POLYNOMIAL FUNCTIONS

Linear and quadratic equations are special cases of polynomial functions. The
degree of a polynomial function is the highest degree among those in its terms.
A linear function such as y = 3x+8, is a polynomial equation of degree 1 and
a quadratic equation such as y = 4.8x2 + 3x+ 7, is a polynomial function of
degree 2; thus the term “second-degree equation.”

A function such as y = 2x4+5x3−3x2+7x−10.5, is a polynomial function
of degree 4 because 4 is the highest exponent of the independent variable x.
A polynomial function has the general form:

y = p1x
n + p2x

n−1 + p3x
n−2 + . . . pk−1x+ pk.

This function is a polynomial equation of degree n, and p1, p2, p3, . . . pk
are the coefficients of the equation and are constant values. Another general
form of a polynomial function P(x) is:

P (x) = c0 + c1x+ c2x
2 + · · ·+ cn−1x

n−1 + cnx
n.

213



214 � Introduction to Computational Models with Python

In this second form of a polynomial, c0, c1, c2, c3, . . . cn are the coefficients
of the equation and are constant values. In addition to the algebraic form
of a polynomial function, the graphical form is also important; a polynomial
function is represented by a graph. As mentioned previously, Gnuplot is used
for plotting data.

15.3 THE polynomial MODULE OF THE Numpy PACKAGE

The polynomial module of the Numpy package provides several functions for
manipulating polynomial series. A polynomial function is represented by a
vector of coefficients in ascending order. The following is a list of the relevant
functions for dealing with polynomials.

polyval(x,c[,tensor]) Evaluate a polynomial at points x.
polyval2d(x,y,c) Evaluate a 2-D polynomial at points (x, y).
polyval3d(x,y,z,c) Evaluate a 3-D polynomial at points (x, y, z).
polygrid2d(x,y,c) Evaluate a 2-D polynomial on the Cartesian

product of x and y.
polygrid3d(x,y,z,c) Evaluate a 3-D polynomial on the Cartesian

product of x, y and z.
polyroots(c) Compute the roots of a polynomial.
polyfromroots(roots) Generate a monic polynomial with given

roots.
polyfit(x,y,deg

[,rcond,full,w])

Least-squares fit of a polynomial to data.

polyvander(x,deg) Vandermonde matrix of given degree.
polyvander2d(x,y,deg) Pseudo-Vandermonde matrix of given degrees.
polyvander3d(x,y,z,

deg)

Pseudo-Vandermonde matrix of given degrees.

polyder(c[,m,scl,

axis])

Differentiate a polynomial.

polyint(c[,m,k,lbnd,

scl,axis])

Integrate a polynomial.

polyadd(c1,c2) Add one polynomial to another.
polysub(c1,c2) Subtract one polynomial from another.
polymul(c1,c2) Multiply one polynomial by another.
polymulx(c) Multiply a polynomial by x.
polydiv(c1,c2) Divide one polynomial by another.
polypow(c,pow[,

maxpower])

Raise a polynomial to a power.

polyline(off,scl) Returns an array representing a linear poly-
nomial.
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15.4 EVALUATION OF POLYNOMIAL FUNCTIONS

With a computer program, a relatively large number of values of x can be used
to evaluate the polynomial function for every value of x. The set of values of
x that are used to evaluate a polynomial function are taken from an interval
a ≤ x ≤ b, where a is the lower bound of the interval and b is the upper
bound. The interval is known as the domain of the polynomial function. In a
similar manner, the interval of the values of the function y is known as the
range of the polynomial function.

A polynomial function is evaluated by using various values of the indepen-
dent variable x and computing the value of the dependent variable y. In a
general mathematical sense, a polynomial function defines y as a function of
x. With the appropriate expression, several values of the polynomial can be
computed and graphs can be produced.

The functions in the polynomial module of the Numpy package evaluate a
polynomial, P(x), using Horner’s method for stability. Using the general form
of the polynomial of degree n,

P (x) = c0 + c1x+ c2x
2 + · · ·+ cn−1x

n−1 + cnx
n.

Function polyval evaluates polynomials with real coefficients for the real
variable x. The function returns the values of P(x) for the given values in
list x. The following assignment statement has a call to function polyval that
evaluates a polynomial at the values in list x with the coefficients in list c .

y = polyval (x, c)

The function computes the values of the polynomial (values of y) for all the
given values of x. The following example evaluates the polynomial function
y = 2x3− 3x2− 36x+14 and the values in the two arrays x and y are computed
by the program in file polyval1.py. Only 20 values of x are evaluated in this
example. The following listing is the output produced by the program.

$ python polyval1.py

Coefficient list

[ 14. -36. -3. 2.]

Evaluating a polynomial

-6.0 -310.0

-5.31578947368 -179.827525878

-4.63157894737 -82.3265782184

-3.94736842105 -13.6534480245

-3.26315789474 30.0355736988

-2.57894736842 52.5841959469

-1.89473684211 57.8361277154

-1.21052631579 49.6350779997
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-0.526315789474 31.8247557953

0.157894736842 8.24887009768

0.842105263158 -17.2488700977

1.52631578947 -40.8247557953

2.21052631579 -58.6350779997

2.89473684211 -66.8361277154

3.57894736842 -61.5841959469

4.26315789474 -39.0355736988

4.94736842105 4.65344802449

5.63157894737 73.3265782184

6.31578947368 170.827525878

7.0 301.0

Figure 15.1 Graph of the equation y = 14− 36x− 3x2 + 2x3.

Listing 15.1 shows the source code of the Python program in file
polyval1.py. The program evaluates the polynomial and computes the val-
ues in vector y. Line 18 defines the array with the polynomial coefficients: a,
b, c, and d. Line 10 defines array x with 20 different values from the interval
−6.0 ≤ x ≤ 7.0. Line 14 calls function polyval that computes the value of the
function for every value in array x.

Listing 15.1: A program that computes the values of a polynomial.

1 # This program evaluates a polynomial given

2 # the coefficients in list c

3 # at points in list x

4 # J M Garrido, August 2, 2014

5 import numpy as np
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6 from numpy.polynomial.polynomial import polyval

7 M = 20 # number of data points

8 xi = -6.0 # first value of x

9 xf = 7.0 # final value

10 x = np.linspace(xi, xf, M)

11 c = np.array([14.0, -36.0, -3.0, 2.0])

12 print "Coefficient list"

13 print c

14 y = polyval(x, c)

15 print "Evaluating a polynomial"

16 for j in range(M):

17 print x[j], y[j]

A graph is easily produced with Gnuplot using the values in arrays of
x and y computed. Figure 15.1 shows the graph of the polynomial function
y = 14 − 36x− 3x2 + 2x3 with the data computed previously. The graph is
produced with the script files polyval1.cgp.

To evaluate the polynomial equation y = −2 + 3x5, the corresponding
coefficient vector is [−2.0, 0, 0, 0, 0, 3.0]. The program calls function polyval
to evaluate the polynomial in the interval −2.5 ≤ x ≤ 2.5. The program is
basically the same as the previous example. The following listing shows the
Python interpreter running the program.

$ python polyval2.py

Coefficient list

[-2. 0. 0. 0. 0. 3.]

Evaluating polynomial

-2.5 -294.96875

-2.23684210526 -169.995597296

-1.97368421053 -91.8482429544

-1.71052631579 -45.9308953696

-1.44736842105 -21.0553407421

-1.18421052632 -8.98659937214

-0.921052631579 -3.98858195139

-0.657894736842 -2.36974585578

-0.394736842105 -2.02875143775

-0.131578947368 -2.00011831867

0.131578947368 -1.99988168133

0.394736842105 -1.97124856225

0.657894736842 -1.63025414422

0.921052631579 -0.011418048612

1.18421052632 4.98659937214

1.44736842105 17.0553407421

1.71052631579 41.9308953696
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Figure 15.2 Graph of the equation y = −2 + 3x5.

1.97368421053 87.8482429544

2.23684210526 165.995597296

2.5 290.96875

In a similar manner, executing the command file polyval2.cgp with Gnu-
plot produces a graph of polynomial equation y = −2+3x5. Figure 15.2 shows
the graph of this polynomial function.

15.5 SOLVING POLYNOMIAL FUNCTIONS

The solution to a quadratic equation, which is a second-degree equation, is
relatively straightforward. The solution to this equation involves finding two
values of x that give y value zero. These two values of x are known as the
roots of the function. For higher-order polynomial functions, the degree of
the polynomial determines the number of roots of the function. A polynomial
function of degree 7 will have 7 roots.

It is not generally feasible to find the roots of polynomial equations of
degree 4 or higher by analytical methods.

Function polyroots of the polynomial module computes the complex roots
of a polynomial function. This function takes the coefficients vector of the
polynomial function as the argument, and returns a vector with the roots.
This vector is known as the roots vector. The function implements an algorithm
that uses an iterative method to find the approximate locations of roots of
polynomials. The only parameter of this function is the array of coefficients
of the polynomial function.

Listing 15.2 shows the Python source code of a program that computes
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the roots of the polynomial function 3+3x−14x2−17x3+23x4. The program
is stored in file polyrootsp.py.

Listing 15.2: A program that computes the roots of a polynomial function.

1 # This program computes the roots of a polynomial

2 # given the coefficients in list c

3 # J M Garrido, Aug 2, 2014. Program: polyrootsp.py

4 import numpy as np

5 import numpy.polynomial.polynomial as poly

6 c = np.array([3.0, 3.0, -14.0, -17.0, 23.0])

7 print "Solving a polynomial"

8 print "Coefficient list"

9 print c

10 r = poly.polyroots(c)

11 print "Roots of the polynomial"

12 print r

The following output was produced after starting the Python interpreter
and running the program. The solution vector, r, has the values of the (com-
plex) roots of the polynomial function.

$ python polyrootsp.py

Solving a polynomial

Coefficient list

[ 3. 3. -14. -17. 23.]

Roots of the polynomial

[-0.43665695-0.19425443j -0.43665695+0.19425443j

0.52528824+0.j 1.08715609+0.j ]

For the polynomial function: y = 2x3− 3x2− 36x+14, the following output
was produced after starting the Python interpreter and running the program.
The solution vector, r, has the values of the (real) roots of the polynomial
function. The individual values of vector r are r0 = −3.7688, r1 = 0.3799, and
r2 = 4.8889.

$ python polyroots2.py

Solving a polynomial

Coefficient list

[ 14 -36 -3 2]

Roots of the polynomial

[-3.76883165 0.37990763 4.88892403]

The solution to the polynomial equation y = −2 + 3x5 is computed in a
similar manner. Four of the roots computed are complex values, which are
known as complex roots.
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$ python polyroots3.py

Solving a polynomial

Coefficient list

[-2. 0. 0. 0. 0. 3.]

Roots of the polynomial

[-0.74600097-0.54200143j -0.74600097+0.54200143j

0.28494702-0.87697674j 0.28494702+0.87697674j

0.92210791+0.j ]

15.6 SUMMARY

This chapter presented some basic techniques for solving polynomial equa-
tions that are very useful in computational modeling. Linear and quadratic
equations are special cases of polynomial equations. The concepts discussed
apply to polynomial functions of any degree. The main emphases of the chap-
ter are evaluation of a polynomial function, the graphs of these functions, and
solving the functions by computing the roots of the polynomial functions. The
list of functions in the polynomial module of the Numpy package was taken
from the scipy1 web page.

Key Terms

polynomial functions polynomial evaluation roots
coefficient vector root vector evaluation interval
function domain function range variable interval

15.7 EXERCISES

15.1 Develop a Python program to evaluate the polynomial function y =
x4 + 4x2 + 7. Find an appropriate interval of x for which the function
evaluation is done and plot the graph.

15.2 Develop a Python program to evaluate the polynomial function y =
3x5 + 6. Find an appropriate interval of x for which the function evalu-
ation is done and plot the graph.

15.3 Develop a Python program to evaluate the polynomial function y =
2x6 − 1.5x5+5x4− 6.5x3+6x2− 3x+4.5. Find an appropriate interval
of x for which the function evaluation is done and plot the relevant data.

1docs.scipy.org/doc/numpy/reference/routines.polynomials.polynomial.html.
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15.4 Develop a Python program to solve the polynomial function y = x4 +
4x2 + 7.

15.5 Develop a Python program to solve the polynomial function y = 3x5+6.

15.6 Develop a Python program to solve the polynomial function y = 2x6 −
1.5x5 + 5x4 − 6.5x3 + 6x2 − 3x+ 4.5.





C HA P T E R 16

Empirical Models with

Interpolation and Curve

Fitting

16.1 INTRODUCTION

The mathematical model in a computational model can be expressed as a set
of polynomial functional equations of any order. If only raw data is available,
estimates of the values of the function can be computed for other values of
the independent variable, within the bounds of the available set of values
of the independent variable. Computing these estimates is carried out using
interpolation techniques.

If the mathematical model in the form of a polynomial function is needed
to represent the raw data, then curve fitting, also known as regression, tech-
niques are used. In the general case, the coefficients of the polynomial can be
computed (estimated) for a polynomial function of any degree. This chapter
discusses two general numerical techniques that help estimate data values:
interpolation and curve fitting. Solutions are implemented with the Scipy,
Numpy, and its polynomial module used in the Python programming lan-
guage.

16.2 INTERPOLATION

The given or raw data in a problem usually provides only a limited number of
values of data points (x, y). These are normally values of a function y for the
corresponding values of variable x. These intermediate values of x and y are
not part of the original data. Two well-known interpolation techniques are:

• linear interpolation

• cubic spline interpolation

223
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Figure 16.1 Linear interpolation of an intermediate data point.

16.2.1 Linear Interpolation

In the linear interpolation technique, the assumption is that the intermediate
data point (value of the function y for a value of x), between two known data
points: (x1, y1) and (x2, y2), can be estimated by a straight line between the
known data points. In other words, the intermediate data point (xi, yi) falls
on the straight line between the known points (x1, y1) and (x2, y2).

Assume that there are two data points: (0.5, 1.5) and (6.5, 8.5). An inter-
mediate data point between the given points is to be estimated for x = 4.25.
Applying a linear interpolation technique, the estimated value computed for
y is 5.875. The new intermediate data point is therefore (4.25, 5.875). Fig-
ure 16.1 illustrates the technique of estimating an intermediate data point on
a straight line between two given data points.

There are several functions in Scipy and Numpy that perform linear in-
terpolation given three vectors: x, y, and xint. The first two vectors store the
values of the given data points. The third vector, xint, stores the new or inter-
mediate values of x for which estimates are to be computed and these are new
or intermediate data points. In the previous example, vector xint has only a
single value, 4.25, and the value of yint computed is 5.875.

The Python program in Listing 16.1 computes the values of the interme-
diate data points and stores these in vector yint. Line 17 in the listing calls
function linterp to compute the estimated intermediate points using linear in-
terpolation. The program is stored in file linterp1.py and the program with
additional statement that plot the graph is stored in linterp1 plot.py.
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Figure 16.2 Graph of linear interpolation of data points.

Listing 16.1: Program that computes linear interpolation of data points.

1 # Program that performs linear interpolation

2 import numpy as np

3

4 y = [0.0, 3.0, 6.0, 8.0, 12.0, 17.0, 23.0, 26]

5 y = np.array(y)

6 print "Values of array y:"

7 print y

8 xi = 0.0

9 xf = 7.0

10 M = np.size(y)

11 x = x = np.linspace(xi, xf, M)

12 print "Values of array x:"

13 print x

14 # generate an array of 20 intermediate points

15 N = 20

16 xint = np.linspace(xi, xf, N)

17 yint = np.interp(xint, x, y)

18 print "Interpotated values of x and y:"

19 for j in range(N):

20 print xint[j], yint[j]

In the problem, there are eight given data points in arrays x and y. Array
x has equally spaced values of x starting at 0 and increasing by 1. Linear
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interpolation is used to estimate intermediate data points for every value of
x spaced 0.25, starting at 0 and up to 7. The values given in the problem
are stored in the three given vectors, x, y, and xint, and the values in vector
yint are computed using linear interpolation. The values given and the values
computed using linear interpolation are shown as follows:

$ python interp1.py

Values of array y:

[ 0. 3. 6. 8. 12. 17. 23. 26.]

Values of array x:

[ 0. 1. 2. 3. 4. 5. 6. 7.]

Interpolated values of x and y:

0.0 0.0

0.368421052632 1.10526315789

0.736842105263 2.21052631579

1.10526315789 3.31578947368

1.47368421053 4.42105263158

1.84210526316 5.52631578947

2.21052631579 6.42105263158

2.57894736842 7.15789473684

2.94736842105 7.89473684211

3.31578947368 9.26315789474

3.68421052632 10.7368421053

4.05263157895 12.2631578947

4.42105263158 14.1052631579

4.78947368421 15.9473684211

5.15789473684 17.9473684211

5.52631578947 20.1578947368

5.89473684211 22.3684210526

6.26315789474 23.7894736842

6.63157894737 24.8947368421

7.0 26.0

Figure 16.2 shows a plot of the data given in the problem and the inter-
polated data using the linear interpolation of several intermediate data points
given two arrays of the original data points x and y.
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Figure 16.3 Graph of linear interpolation of many data points.

16.2.2 Non-Linear Interpolation

Non-linear interpolation can generate better estimates for intermediate data
points than linear interpolation. The Python Scipy package includes functions
that implement the cubic spline interpolation technique, and smoother curves
can be generated using this technique.

Using the Scipy interpolation module, two steps are required: (1) a spline
representation of the curve is computed, and (2) the spline is evaluated at the
desired points. Function splrep finds the spline representation of a curve with
a direct method. With the computed spline representation, function splev
computes the intermediate values desired. More detailed documentation is
found in the scipy1 web page.

The following example applies the cubic spline interpolation technique to
data provided by the problem, using an array of values of nx for intermediate
data points. The Python program in file csinterp.py is shown in Listing 16.2.
The statement in line 12 calls function splrep to compute spline representation
of the curve given by x and y. Function splev is called in line 15 to compute
the interpolation using the cubic spline technique. The program that includes
additional statements that plot the curves is stored in file csinterp1 plot.py.

Listing 16.2: Program to compute cubic spline interpolation of data.

1 # Cubic spline interpolation

2 #File: csinterp.py Sep 2, 2014

3 import numpy as np

4 from scipy import interpolate

1http://docs.scipy.org/doc/scipy/reference/interpolate.html.
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Figure 16.4 Graph of given data points.

5

6 y = [-310.0, -179.8, -82.3, -13.6, 30.0, 52.6,57.8, 49.6,

31.8, 8.2, -17.2,-40.8, -58.6, -66.8, -61.5,-39.0, 4.6,

73.3, 170.8, 301.0]

7 y = np.array(y)

8 N = np.size(y)

9 xi = -6.0

10 xf = 7.0

11 x = np.linspace(xi, xf, N)

12 sprep = interpolate.splrep(x, y, s=0) # spline of y

13 M = int(1.5 * N) # more points

14 xint = np.linspace(xi, xf, M)

15 yint = interpolate.splev(xint, sprep, der=0) # interp

16 print "Cubic Spline interpolation:"

17 for j in range(M):

18 print xint[j], yint[j]

Figure 16.4 shows the graph of original data points that define a curve.
Figure 16.5 shows the graph of the original data points and the computed
intermediate data points. Executing the program produces the output shown
in the following listing.

$ python csinterp.py

Cubic Spline interpolation:
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Figure 16.5 Cubic spline interpolation of data points.

-6.0 -310.0

-5.55172413793 -220.800476594

-5.10344827586 -146.22867376

-4.65517241379 -85.1612803181

-4.20689655172 -36.4975182072

-3.75862068966 0.761529182443

-3.31034482759 27.7118155661

-2.86206896552 45.5635333789

-2.41379310345 55.3026524832

-1.96551724138 57.9519490911

-1.51724137931 54.684292212

-1.06896551724 46.582496444

-0.620689655172 34.6890729458

-0.172413793103 20.0598682544

0.275862068966 3.84627383363

0.724137931034 -12.8459940601

1.1724137931 -29.0608305789

1.62068965517 -43.6881162489

2.06896551724 -55.5794898433

2.51724137931 -63.6961481782

2.96551724138 -66.9422754367

3.41379310345 -64.2137664572

3.86206896552 -54.4926582486
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4.31034482759 -36.7167186662

4.75862068966 -9.76909231321

5.20689655172 27.5012343371

5.65517241379 76.1610779244

6.10344827586 137.227806359

6.55172413793 211.801416278

7.0 301.0

16.3 CURVE FITTING

Curve fitting techniques attempt to find the best polynomial expression that
represents a given sequence of data points. The most widely used curve fitting
technique is the least squares technique. Recall that a polynomial function has
the general form:

y = p1x
n + p2x

n−1 + p3x
n−2 + . . . pk−1x+ pk.

The parameters p1, p2, p3, . . . pk are the coefficients of the equation, which
are constants. If a polynomial function of degree 1 is fitted to the given data,
the technique is known as linear regression, and a straight line is fitted to the
data points. If the degree of the polynomial is greater than 1, then a curve,
instead of a straight line, is fitted to the given data points.

Figure 16.6 Graph of a given set of data points.
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The Numpy package in the Python programming language provides func-
tion polyfit to compute the coefficients (p) of the polynomial function of de-
gree n. The arguments for the function calls are arrays x and y that define the
data points, and the value of the desired degree of the polynomial. The polyfit
function computes an array that consists of the values of the coefficients of a
polynomial function of degree n that best fit the given data points in vectors
x and y. This array has values that correspond to the coefficients with the
highest power first (descending order).

16.3.1 Linear Polynomial Function

The following example illustrates the fitting of a polynomial of degree 1 to a
given set of data points. Figure 16.6 shows a given set of data points for which
polynomial fit is to be carried out.

Listing 16.4 includes the Python program that computes the coefficients
of a polynomial of degree 1 by calling function polyfit in line 20. With the
coefficients computed, function polyval is called in line 25 to evaluate the
polynomial with additional data points. The source code of the program code
is stored in file polyf1.py. Using the matplotlib package, the computed data
points are plotted and Figure 16.7 shows the graph of the fitted line.

Listing 16.4: Program that fits a linear polynomial to data points.

1 # This program fits a polynomial of degree 1

2 # to a set of data points. Then it evaluates a polynomial

3 # given the coefficients in list c

4 # at points in list x. File: polyf1.py

5 # J M Garrido, August 12, 2014

6 import numpy as np

7 from numpy.polynomial.polynomial import polyval

8

9 M = 30 # number of data points to compute

10 xi = 0.0 # first value of x

11 xf = 7.0 # final value of x

12 y = [0.0, 3.0, 6.0, 8.0, 12.0, 21.0, 43.0, 66.0]

13 y = np.array(y)

14 sn = np.size(y) # number of points

15 x = np.linspace(xi, xf, sn)

16 deg = 1 # degree of polynomial function

17 print "Values of X and Y:"

18 for j in range (sn):

19 print x[j], y[j]

20 c = np.polyfit(x, y, deg)

21 print "Coefficient list:"

22 print c

23 # Evaluate polynomial



232 � Introduction to Computational Models with Python

24 xc = np.linspace(xi, xf, M) # new x points

25 yc = np.polyval(c, xc) # new y points

26 print "Evaluation of polynomial"

27 for j in range(M):

28 print xc[j], yc[j]

Figure 16.7 Polynomial of degree 1 fit from given data points.

Executing the Python interpreter with the polyf1.py program, the output
produced are shown in the following listing.

$ python polyf1_plot.py

Values of X and Y:

0.0 0.0

1.0 3.0

2.0 6.0

3.0 8.0

4.0 12.0

5.0 21.0

6.0 43.0

7.0 66.0

Coefficient list:

[ 8.46428571 -9.75 ]
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Evaluation of polynomial

0.0 -9.75

0.241379310345 -7.70689655172

0.48275862069 -5.66379310345

0.724137931034 -3.62068965517

0.965517241379 -1.5775862069

1.20689655172 0.465517241379

1.44827586207 2.50862068966

1.68965517241 4.55172413793

1.93103448276 6.59482758621

2.1724137931 8.63793103448

2.41379310345 10.6810344828

2.65517241379 12.724137931

2.89655172414 14.7672413793

3.13793103448 16.8103448276

3.37931034483 18.8534482759

3.62068965517 20.8965517241

3.86206896552 22.9396551724

4.10344827586 24.9827586207

4.34482758621 27.025862069

4.58620689655 29.0689655172

4.8275862069 31.1120689655

5.06896551724 33.1551724138

5.31034482759 35.1982758621

5.55172413793 37.2413793103

5.79310344828 39.2844827586

6.03448275862 41.3275862069

6.27586206897 43.3706896552

6.51724137931 45.4137931034

6.75862068966 47.4568965517

7.0 49.5

16.3.2 Fitting Non-Linear Polynomial Functions

Polynomial functions with degree 2 and higher are considered non-linear func-
tions. Executing the program to compute the coefficients of a polynomial of
degree 3 by calling function polyfit using 3 as the value of the third argument
(degree of the polynomial), produces the following output.

$ python polyf2.py

Values of X and Y:

0.0 0.0

1.0 3.0

2.0 6.0
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Figure 16.8 Curve fitting of a polynomial of degree 3.

3.0 8.0

4.0 12.0

5.0 21.0

6.0 43.0

7.0 66.0

Coefficient list:

[ 0.36616162 -1.8982684 4.90873016 0.03030303]

Evaluation of polynomial

0.0 0.030303030303

0.241379310345 1.10971786834

0.48275862069 1.99882895543

0.724137931034 2.7285338522

0.965517241379 3.32973011927

1.20689655172 3.83331531726

1.44827586207 4.27018700681

1.68965517241 4.67124274853

1.93103448276 5.06738010305

2.1724137931 5.48949663099

2.41379310345 5.96848989298

2.65517241379 6.53525744965

2.89655172414 7.2206968616

3.13793103448 8.05570568947
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3.37931034483 9.07118149389

3.62068965517 10.2980218355

3.86206896552 11.7671242749

4.10344827586 13.5093863726

4.34482758621 15.5557056895

4.58620689655 17.936979786

4.8275862069 20.6841062228

5.06896551724 23.8279825604

5.31034482759 27.3995063597

5.55172413793 31.4295751811

5.79310344828 35.9490865852

6.03448275862 40.9889381328

6.27586206897 46.5800273844

6.51724137931 52.7532519007

6.75862068966 59.5395092422

7.0 66.9696969697

Figure 16.8 shows the graph of a fitted curve that corresponds to a poly-
nomial of degree 3 with the same data points used with the previous example.
This polynomial of degree 3 is a much better fit to the data points given.

16.4 MODELING THE HEAT CAPACITY OF CARBON DIOXIDE

The amount of energy required to heat a gas depends on its temperature. The
heat capacity of a gas is often modeled with polynomial equations. Specific
heat of carbon dioxide gas (CO2) at temperatures ranging from 175 to 6000
K is taken from the web page:

http://www.engineeringtoolbox.com/carbon-dioxide-d_974.html

Given the values of temperature and heat for the CO2 gas, the problem is
to construct a non-linear model that shows the variation of the heat measured
in the gas as temperature increases.

The data in the following table is stored in a data file temp heat co2.dat.
The Python program in file temp heat co2.py reads the data from the data
file, performs curve fitting to derive a polynomial of degree 3, prints the value
of the coefficients of the polynomial, computes values of the heat using the
polynomial function, and plots the given values and the computed values of
heat with changes of temperature. The listing after the following table shows
the results of running the program.

Running the Python program is repeated to derive polynomials of degrees
5 and 6. Figures 16.9 and 16.10 show the plots of the data given and the
computed data using the polynomial functions of degrees 3 and 6, respectively.
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Figure 16.9 Heat Cap CO2 polyno-

mial deg 3.

Figure 16.10 Heat Cap CO2 polyno-

mial deg 6.

Carbon Dioxide Gas (CO2)
Temperature Specific Heat

(K) (kJ/kgK)

175 0.709
200 0.735
225 0.763
250 0.791
275 0.819
300 0.846
325 0.871
350 0.895
375 0.918
400 0.939
450 0.978
500 1.014
550 1.046
600 1.075
650 1.102
700 1.126
750 1.148
800 1.168
850 1.187
900 1.204
950 1.220
1000 1.234
1050 1.247
1100 1.259
1150 1.270
1200 1.280

Carbon Dioxide Gas (CO2)
Temperature Specific Heat

(K) (kJ/kgK)

1250 1.290
1300 1.298
1350 1.306
1400 1.313
1500 1.326
1600 1.338
1700 1.348
1800 1.356
1900 1.364
2000 1.371
2100 1.377
2200 1.383
2300 1.388
2400 1.393
2500 1.397
2600 1.401
2700 1.404
2800 1.408
2900 1.411
3000 1.414
3500 1.427
4000 1.437
4500 1.446
5000 1.455
5500 1.465
6000 1.476



Empirical Models with Interpolation and Curve Fitting � 237

$python temp_heat_co2.py

Coefficient list with polynomial of degree: 3

[ 1.97002031e-11 -2.12104223e-07 7.09887769e-04

6.77678246e-01]

Evaluation of polynomial

175.0 0.79551849498

289.215686275 0.865723896188

403.431372549 0.930841363004

517.647058824 0.991047011593

631.862745098 1.04651695812

746.078431373 1.09742731874

860.294117647 1.14395420962

974.509803922 1.18627374692

1088.7254902 1.22456204681

1202.94117647 1.25899522545

. . . . .

5200.49019608 1.40385267251

5314.70588235 1.41679485038

5428.92156863 1.43239820502

5543.1372549 1.45083885258

5657.35294118 1.47229290924

5771.56862745 1.49693649114

5885.78431373 1.52494571447

6000.0 1.55649669537

16.5 SUMMARY

This chapter presented two important techniques that deal with raw data:
interpolation and curve fitting. Interpolation is used to compute estimates of
the value of the function for intermediate values of the independent variable,
within the bounds of an available set of values of the independent variable.
Curve fitting or regression techniques are used when a polynomial function is
needed that would represent the raw data. Several functions in the Numpy
and Scipy packages are used.

Key Terms

intermediate data estimated data raw data
linear interpolation non-linear interpolation curve fitting
cubic spline interpolation coefficients regression
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16.6 EXERCISES

16.1 On a typical spring day, the temperature varies according to the data
recorded in Table 16.1. Develop a Python program and apply linear
interpolation to compute estimates of intermediate values of the tem-
perature. Produce a plot of the given and estimated data.

Table 16.1 Temperature changes in a 12-hour period.

Time 7 8 9 10 11 12 1 2 3 4 5 6

Temp. (F 0) 51 56 60 65 73 78 85 86 84 81 80 70

16.2 On a typical spring day, the temperature varies according to the data
recorded in Table 16.1. Develop a Python program and apply cubic
spline interpolation to compute estimates of intermediate values of the
temperature. Produce a plot of the given and estimated data.

16.3 On a typical spring day, the temperature varies according to the data
recorded in Table 16.1. Apply curve fitting to derive the polynomial
function of degree 2 that represents the given data. Develop a Python
program and use the polynomial function to compute estimates of in-
termediate values of the temperature. Produce a plot of the given and
estimated data.

16.4 On a typical spring day, the temperature varies according to the data
recorded in Table 16.1. Apply curve fitting to derive the polynomial
function of degree 3 that represents the given data. Develop a Python
program and use the polynomial function to compute estimates of in-
termediate values of the temperature. Produce a plot of the given and
estimated data.

16.5 On a typical spring day, the temperature varies according to the data
recorded in Table 16.1. Apply curve fitting to derive the polynomial
function of degree 4 that represents the given data. Develop a Python
program and use the polynomial function to compute estimates of in-
termediate values of the temperature. Produce a plot of the given and
estimated data.

16.6 Develop a Python program that uses the data in Table 16.2 and applies
linear interpolation to compute estimates of intermediate values of the
number of patients. Produce a plot of the given and estimated data.

16.7 Develop a Python program and use the data in Table 16.2 and apply
non-linear interpolation to compute estimates of intermediate values of
the number of patients. Produce a plot of the given and estimated data.
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Table 16.2 Number of patients for years 1995–2002.

Year 1995 1996 1997 1998 1999 2000

Patients 5,500 8,500 13,500 20,500 29,500 40,500
Increase 0 3,000 5,000 7,000 9,000 11,000

Year 2001 2002
Patients 53,5000 68,500
Increase 13,000 15,000

16.8 Develop a Python program and use the data in Table 16.2 and ap-
ply curve fitting to derive a polynomial function of degree 2. Use this
function to compute estimates of intermediate values of the number of
patients. Produce a plot of the given and estimated data.

16.9 Develop a Python program and use the data in Table 16.2 and ap-
ply curve fitting to derive a polynomial function of degree 3. Use this
function to compute estimates of intermediate values of the number of
patients. Produce a plot of the given and estimated data.





C HA P T E R 17

Using Arrays with Numpy

17.1 INTRODUCTION

This chapter presents an overview of single-dimensional arrays, implementa-
tion techniques with programming in Python and Numpy, and a summary of
computing with vectors. In general, an array is a term used in programming
and is defined as a data structure that is a collection of values and these val-
ues are organized in several ways. In programming, a one-dimensional array
is often known as a vector. The following arrays: X , Y , and Z have their data
arranged in different manners. Array X is a one-dimensional array with n
elements and it is considered a row vector because its elements x1, x2, . . . , xn

are arranged in a single row.

X = [x1 x2 x3 · · · xn] Z =















z1
z2
z3
...
zm















Array Z is also a one-dimensional array; it has m elements organized as
a column vector because its elements: z1, z2, . . . , zm are arranged in a single
column.

The following array, Y , is a two-dimensional array organized as an m× n
matrix; its elements are arranged in m rows and n columns. The first row of
Y consists of elements: y11, y12, . . . , y1n. Its second row consists of elements:
y21, y22, . . . , y2n. The last row of Y consists of elements: ym1, ym2, . . . , ymn.

Y =











y11 y12 · · · y1n
y21 y22 · · · y2n
...

...
. . .

...
ym1 ym2 · · · ymn
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17.2 VECTORS AND OPERATIONS

A vector is a mathematical entity that has magnitude and direction. In
physics, it is used to represent characteristics such as the velocity, acceler-
ation, or momentum of a physical object. A vector v can be represented by
an n-tuple of real numbers:

v = (v1, v2, . . . , vn)

Several operations with vectors are performed with a vector and a scalar
or with two vectors.

17.2.1 Addition of a Scalar and a Vector

To add a scalar to a vector involves adding the scalar value to every element
of the vector. In the following example, the scalar α is added to the elements
of vector Z, element by element.

Z =















z1
z2
z3
...
zm















Z + α =















z1 + α
z2 + α
z3 + α

...
zm + α















17.2.2 Vector Addition

Vector addition of two vectors that are n-tuple involves adding the correspond-
ing elements of each vector. The following example illustrates the addition of
two vectors, Y and Z.

Y =















y1
y2
y3
...
zm















Z =















z1
z2
z3
...
zm















Y + Z =















y1 + z1
y2 + z2
y3 + z3

...
ym + zm















17.2.3 Multiplication of a Vector and a Scalar

Scalar multiplication is performed by multiplying the scalar with every ele-
ment of the specified vector. In the following example, scalar α is multiplied
by every element zi of vector Z.
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Z =















z1
z2
z3
...
zm















Z × α =















z1 × α
z2 × α
z3 × α

...
zm × α















17.2.4 Dot Product of Two Vectors

Given vectors v = (v1, v2, . . . , vn) and w = (w1, w2, . . . , wn), the dot product
v · w is a scalar defined by:

v · w =

n
∑

i=1

viwi = v1w1 + v2w2 + . . . + vnwn.

Therefore, the dot product of two vectors in an n-dimensional real space
is the sum of the product of the vectors’ components.

When the elements of the vectors are complex, then the dot product of
two vectors is defined by the following relation. Note that vi is the complex
conjugate of vi.

v · w =

n
∑

i=1

viwi = v1w1 + v2w2 + . . .+ vnwn

17.2.5 Length (Norm) of a Vector

Given a vector v = (v1, v2, . . . , vn) of dimension n, the Euclidean norm of the
vector denoted by ‖v‖2, is the length of v and is defined by the square root of
the dot product of the vector:

‖v‖2 =
√
v · v =

√

v21 + v22 + · · ·+ v2n

In the case that vector v is a 2-dimensional vector, the Euclidean norm
of the vector is the value of the hypotenuse of a right-angled triangle. When
vector v is a 1-dimensional vector, then ‖v‖2 = |v1|, the absolute value of the
only component v1.

17.3 VECTOR PROPERTIES AND CHARACTERISTICS

A vector v = (v1, v2, . . . , vn) in Rn (an n-dimensional real space) can be spec-
ified as a column or row vector. When v is an n column vector, its transpose
vT is an n row vector.
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17.3.1 Orthogonal Vectors

Vectors v and w are said to be orthogonal if their dot product is zero. The
angle θ between vectors v and w is defined by:

cos(θ) =
v · w

‖v‖2 ‖w‖2
.

where θ is the angle from v to w, and non-zero vectors are orthogonal if and
only if they are perpendicular to each other, i.e., when cos(θ) = 0 and θ is
equal to π/2 or 90 degrees. Orthogonal vectors v and w are called orthonormal
if they are of length one, i.e., v · v = 1, and w · w = 1.

17.3.2 Linear Dependence

A set k of vectors {x1, x2, . . . , xk} is linearly dependent if at least one of the
vectors can be expressed as a linear combination of the others. Assuming there
exists a set of scalars {α1, α2, . . . , αk}, vector xk is defined as follows:

xk = α1x1 + α2x2 + . . .+ αk−1xk−1.

If a vector w depends linearly on vectors {x1, x2, . . . , xk}, this is expressed
as follows:

w = α1x1 + α2x2 + . . .+ αkxk.

17.4 USING ARRAYS IN PYTHON WITH NUMPY

Arrays are created and manipulated in Python and Numpy by calling the
various library functions. Before using an array, it needs to be created. Numpy
function array creates an array given the values of the elements. When an
array is no longer needed in the program, it can be destroyed by using the del
Python command.

Numpy function zeros creates an array with the specified number of ele-
ments, all initialized to zero. Similarly, function ones creates an array with
its elements initialized to value 1.0. Note that the default type of these arrays
is float. Function arange creates an array of integers starting at value 0 and
increasing up to n− 1.

The following short Python program illustrates the various Numpy func-
tions used to create arrays. The program is stored in file test arrays.py.

import numpy as np

print "Creating arrays"

x = np.array([4.5, 2.55, 12.0 -9.785])

print "Array x: ", x
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y = np.zeros(12)

print "Array y: ", y

z = np.ones((3, 4)) # 3 rows, 4 cols

print "Array z: "

print z

n = np.arange(12)

print "Array n: ", n

del x # delete array x

Executing the Python interpreter and running the program yields the fol-
lowing output. Note that array z is a two-dimensional array with three rows
and four columns with all its elements initialized to 1.0

$ python test_arrays.py

Creating arrays

Array x: [ 4.5 2.55 2.215]

Array y: [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]

Array z:

[[ 1. 1. 1. 1.]

[ 1. 1. 1. 1.]

[ 1. 1. 1. 1.]]

Array n: [ 0 1 2 3 4 5 6 7 8 9 10 11]

A vector is manipulated by accessing its individual elements and changing
and/or retrieving the value of the elements using indexing.

Listing 17.1 shows the source code of a Python program stored in file
test2 arrays.py that uses Numpy functions to create and manipulate a vec-
tor. Line 4 calls function zeros to create vector p with N elements. In lines
7–8, elements with index j (from 0 to k− 1) of vector p are set to value 5.25.
In line 11, vector p is destroyed.

Listing 17.1: Program that creates and manipulates a vector.

1 import numpy as np

2 print "Creating and manipulate an array"

3 N = 8 # number of elements

4 p = np.zeros(N)

5 print "Array p: ", p

6 k = 5

7 for j in range(k):

8 p[j] = 5.25

9 print "Array p: "

10 print p

11 del p # delete array p
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Executing the Python interpreter and running the program yields the fol-
lowing output. Note that only the first k elements of array p are set to value
5.25.

$ python test2_arrays.py

Creating and manipulate an array

Array p: [ 0. 0. 0. 0. 0. 0. 0. 0.]

Array p:

[ 5.25 5.25 5.25 5.25 5.25 0. 0. 0. ]

Slicing can be used to indicate more selective indexing with the : operator.
For example, x[0:4] references the elements of array x but only the elements
with indices from 0 up to 3. Most of the time it is more efficient (time-wise)
to use slicing than using a loop. The following program is a variation of the
previous one, but instead of the loop, now slicing is used in line 7 to assign
values to select elements of array p. The results are the same as the previous
program.

1 import numpy as np

2 print "Creating and manipulate an array"

3 N = 8 # number of elements

4 p = np.zeros(N)

5 print "Array p: ", p

6 k = 5

7 p[0:k] = 5.25

8 print "Array p: "

9 print p

Arrays can be stacked into a single array by calling Numpy function hstack.
Arrays can also be split into separate arrays by calling function hsplit. The
following program creates two arrays p and q in lines 3 and 6, then it stacks
them into array newa in line 7. Array newa is split into three arrays with
equal shape in line 10. Arrays x, y, and z are used to reference the three
arrays created in lines 12–14. Array newa is split after column 4 and up to
column 6, basically creating three arrays in line 17.

1 import numpy as np

2 print "Stacking and splitting array"

3 p = np.array([1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5])

4 print "Array p: "

5 print p

6 q = np.array([2.35, 5.75, 7.75, 3.15])

7 newa = np.hstack((p, q))

8 print "newa: "
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9 print newa

10 r = np.hsplit(newa,3) # three equally shaped arrays

11 print "Array r:"

12 x = r[0]

13 y = r[1]

14 z = r[2]

15 print "Array x: ", x

16 # after col 4 up to col 6

17 newb = np.hsplit (newa,(4,6))

18 print "Array newb:"

19 print newb[0]

20 print newb[1]

21 print newb[2]

$ python test2c_arrays.py

Stacking and splitting array

Array p:

[1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5]

newa:

[ 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 2.35 5.75

7.75 3.15]

Array r:

Array x: [ 1.5 2.5 3.5 4.5]

Array newb:

[ 1.5 2.5 3.5 4.5]

[ 5.5 6.5]

[ 7.5 8.5 2.35 5.75 7.75 3.15]

17.5 SIMPLE VECTOR OPERATIONS

Operations on vectors are performed on an individual vector, with a vector
and a scalar, or with two vectors.

17.5.1 Arithmetic Operations

To add a scalar to a vector involves adding the scalar value to every element
of the vector. This operation adds the specified constant value to the elements
of the vector specified.

The following Python program illustrates the arithmetic operations on
vectors and scalars. The program is stored in file test3 arrays.py. In line 4,
vector p is created and its elements initialized with zero values. In line 8, a
scalar value xv is added to vector p. In line 11, the constant 2 (another scalar)
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is subtracted from vector p and assigned to array q. In line 13, vector q is
multiplied by the scalar 3 and assigned to vector q2 . In line 15, vector q2 is
divided by the scalar 2.5.

1 import numpy as np

2 print "Arithmetic operations with a scalar"

3 N = 8 # number of elements

4 p = np.zeros(N)

5 print "Array p: "

6 print p

7 xv = 3.75

8 p = p + xv

9 print "Array p: "

10 print p

11 q = p - 2.0

12 print "Array q: ", q

13 q2 = q * 3

14 print "Array q2: ", q2

15 q3 = q2 / 2.5

16 print "Array q3: ", q3

Executing the Python interpreter with program test3 arrays.py yields
the following output.

$ python test3_arrays.py

Arithmetic operations with a scalar

Array p:

[ 0. 0. 0. 0. 0. 0. 0. 0.]

Array p:

[ 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75]

Array q: [ 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75]

Array q2: [ 5.25 5.25 5.25 5.25 5.25 5.25 5.25 5.25]

Array q3: [ 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1]

To add two vectors involves adding the corresponding elements of each
vector, and a new vector is created. This addition operation on vectors is only
possible if the row vectors (or column vectors) are of the same size. In a similar
manner, subtracting two vectors of the same size can be performed.

In the following program, vectors p and q are created with size 8. The
operation in line 8 adds the elements of vector q and the elements of vector
p and the elements are assigned to vector q3, the new vector created. The
operation in line 10 subtracts the elements of vector p from the elements
of vector q and the new vector created is q4. This program is stored in file
test4 arrays.py.
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1 import numpy as np

2 print "Vector arithmetic operations"

3 p = np.zeros(8)

4 p = p + 3.5

5 print "Array p: ", p

6 q = p * 3

7 print "Array q: ", q

8 q3 = q + p

9 print "Array q3: ", q3

10 q4 = q - p

11 print "Array q4: ", q4

Executing the Python interpreter with program test4 arrays.py yields
the following output.

$python test4_arrays.py

Vector arithmetic operations

Array p: [ 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5]

Array q: [ 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5]

Array q3: [ 14. 14. 14. 14. 14. 14. 14. 14.]

Array q4: [ 7. 7. 7. 7. 7. 7. 7. 7.]

17.5.2 Element Multiplication and Division Operations

Applying element-by-element multiplication, the corresponding elements of
two vectors are multiplied. This operation is applied to two vectors of equal
size. This operation multiplies the elements of the specified vector by the
elements of the second specified vector. Using element-by-element division, the
corresponding elements of two vectors are divided. This operation is applied
to two vectors of equal size.

The following program shows element-wise multiplication and division with
vectors. In line 8, vectors p and q are multiplied and the results are stored in
vector p3. In line 10, vector q is divided by vector p and the results are stored
in vector q4. The program is stored in file test5 arrays.py.

1 import numpy as np

2 print "Element multiplication and division operations"

3 p = np.zeros(8)

4 p = p + 3.5

5 print "Array p: ", p

6 q = p * 3

7 print "Array q: ", q

8 q3 = q * p
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9 print "Array q3: ", q3

10 q4 = q / p

11 print "Array q4: ", q4

Executing the Python interpreter with program test5 arrays.py yields
the following output.

$ python test5_arrays.py

Element multiplication and division operations

Array p: [ 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5]

Array q: [ 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5]

Array q3: [ 36.75 36.75 36.75 36.75 36.75 36.75

36.75 36.75]

Array q4: [ 3. 3. 3. 3. 3. 3. 3. 3.]

17.5.3 Vector Multiplication

Multiplication of vectors is carried out by using the Numpy function dot or
vdot. This operation is known as the dot multiplication of vectors. The follow-
ing program stored in file test5b arrays illustrates these operations. Lines 8
and 10 apply dot multiplication of vectors p and q.

1 import numpy as np

2 print "Vector dot multiplication"

3 p = np.zeros(8)

4 p = p + 3.5

5 print "Array p: ", p

6 q = p * 3

7 print "Array q: ", q

8 q4 = np.dot(p,q)

9 print "Dot product of p, q: ", q4

10 q4v = np.vdot(p,q)

11 print "Dot product of p, q", q4v

Executing the Python interpreter with program test5b arrays.py yields
the following output.

$ python test5b_arrays.py

Vector dot multiplication

Array p: [ 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5]

Array q: [ 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5]

Dot product of p, q: 294.0

Dot product of p, q 294.0
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17.5.4 Additional Vector Operations

In addition to slicing, selective indexing can also be carried out using arrays
of indices. The following program stored in file test9 arrays.py creates an
array of indices in line 6 and applies it to array p to select the corresponding
elements in line 7. These selected elements are assigned the value 2.0 in line
9.

1 import numpy as np

2 print "Array of indices"

3 p = np.array([1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5])

4 print "Array p: "

5 print p

6 pindx = np.array([1, 4, 6, 7])

7 q = p[pindx]

8 print "q: ", q

9 p[pindx] = 2.0

10 print "Array p:"

11 print p

Executing the Python interpreter with program test9 arrays.py yields
the following output.

$ python test9_arrays.py

Array of indices

Array p:

[ 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5]

q: [ 2.5 5.5 7.5 8.5]

Array p:

[ 1.5 2. 3.5 4.5 2. 6.5 2. 2. ]

Various additional operations can be applied to vectors. For vector assign-
ment, the resulting vector is only a view of the first vector. The two vectors
refer to the same list of values. For the copy operation, method copy is called,
the two vectors must have the same length, and the element values are all
copied to the second vector.

The vector comparison operation is applied to all vectors as a whole by
calling Numpy function array equal. The result is a single Boolean value. The
element comparison of two vectors for equality is performed element by ele-
ment by calling Numpy function equal and the operation creates a new vector
of the same size with values True or False. Similarly, when comparing for
greater-than operation, the Numpy function greater is called.

The following program illustrates the use of these operations. Line 10 is
an assignment of vector q to vector qq. The two vectors now refer to the same
list of values. In line 12, the elements of vector p are copied to vector qqq by
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calling method copy and qqq becomes a new vector. In line 14, Numpy function
array equal compares vectors p and qqq. This produces a single Boolean result.
In line 16, the Numpy function equal is called to compare the elements of
vector p and qq, and the result is another vector with the Boolean result of
the comparison for each corresponding pair of element values. In a similar
manner, the Numpy function greater is called to compare the elements of
vectors q and p in line 18.

1 import numpy as np

2 print "Vector assignment, comparisons operations"

3 p = np.zeros(8)

4 p = p + 3.5

5 p[2] = 1.75

6 p[6] = 12.35

7 print "Array p: ", p

8 q = p * 3

9 print "Array q: ", q

10 qq = q

11 print "Array qq: ", qq

12 qqq = p.copy()

13 print "Array qqq: ", qqq

14 yyn = np.array_equal(p, qqq)

15 print "Vector equality: ", yyn

16 yn = np.equal(p, qq) # p == qq

17 print "Element equality: ", yn

18 byn = np.greater(q, p) # q > p

19 print "Greater: ", byn

Executing the Python interpreter with program test6 arrays.py yields
the following output.

$ python test6_arrays.py

Vector assignment, comparisons operations

Array p: [ 3.5 3.5 1.75 3.5 3.5 3.5 12.35

3.5 ]

Array q: [ 10.5 10.5 5.25 10.5 10.5 10.5 37.05

10.5 ]

Array qq: [ 10.5 10.5 5.25 10.5 10.5 10.5 37.05

10.5 ]

Array qqq: [ 3.5 3.5 1.75 3.5 3.5 3.5 12.35

3.5 ]

Vector equality: True

Element equality: [False False False False False False

False False]

Greater: [ True True True True True True True True]
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A Boolean expression can be used in indexing, and this is very convenient
to select the elements for which the Boolean expression is true. In the following
program, a Boolean expression is applied to all elements of array p in line 6.
The array of truth values created, pindx, is used to index array p.

1 import numpy as np

2 print "Indexing with boolean expression"

3 p = np.array([1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 3.25, 1.65])

4 print "Array p: "

5 print p

6 pindx = p <= 2.25

7 print "Array pindx: ", pindx

8 q = p[pindx]

9 print "q: ", q

Executing the Python interpreter with program tmat11.py yields the fol-
lowing output.

$ python tmat11.py

Indexing with boolean expression

Array p:

[ 1.5 2.5 3.5 4.5 5.5 6.5 3.25 1.65]

Array pindx: [ True False False False False False False True]

q: [ 1.5 1.65]

Function max gets the maximum value stored in the specified vector. The
following function call gets the maximum value in vector pv and assigns this
value to x.

x = numpy.max(pv)

In addition to the maximum value in a vector, the index of the element
with that value may be desired. Calling function argmax returns the index
value of the element with the maximum value in a specified vector. In the
following function call, the index value of the element with the maximum
value in vector pv is returned and assigned to integer variable idx.

idx = numpy.argmax (pv)

In a similar manner, function min gets the minimum value stored in a
vector. Function argmin returns the index value of the minimum value in the
specified vector.

Listing 17.2 shows a Python source listing of a program that includes the
application of the operations on vectors that have been discussed and some
additional ones. The program is stored in file vectorops.py.

Listing 17.2: Program that shows various operations on vectors.
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1 import numpy as np

2 print "Vector maximum, minimum, sum, mean, other

operations"

3 p = np.zeros(8)

4 p = p + 3.5

5 p[2] = 1.75

6 p[6] = 12.35

7 print "Array p: ", p

8 q = p * 3

9 print "Array q: ", q

10 x = np.max(p)

11 print "Max in vector p: ", x

12 idx = np.argmax(p)

13 print "Index of max in p: ", idx

14 y = np.min(q)

15 print "Min in vector q: ", y

16 ydx = np.argmin(q)

17 print "Index of min in q: ", ydx

18 mym = np.mean(p)

19 print "Mean of p: ", mym

20 xm = np.median(p)

21 print "Median of p: ", xm

22 mystd = p.std()

23 print "STD of p: ", mystd

24 mysum = p.sum()

25 print "Sum of p: ", mysum

Executing the Python interpreter with program vectorops.py yields the
following output.

$ python vectorops.py

Vector maximum, minimum, sum, mean, other operations

Array p: [ 3.5 3.5 1.75 3.5 3.5 3.5 12.35

3.5 ]

Array q: [ 10.5 10.5 5.25 10.5 10.5 10.5 37.05

10.5 ]

Max in vector p: 12.35

Index of max in p: 6

Min in vector q: 5.25

Index of min in q: 2

Mean of p: 4.3875

Median of p: 3.5

STD of p: 3.06357124122

Sum of p: 35.1
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17.6 SUMMARY

Arrays are data structures that store collections of data. To refer to an indi-
vidual element, an integer value, known as the index, is used to indicate the
relative position of the element in the array. Python and Numpy manipulate
arrays as vectors and matrices. Many operations and functions are defined for
creating and manipulating vectors and matrices.

Key Terms

arrays elements index
vectors array elements matrices
column vector row vector two-dimensional array
vector operations vector functions complex vectors

17.7 EXERCISES

17.1 Develop a Python program that computes the values in a vector V that
are the sines of the elements of vector T. The program must assign to T

a vector with 75 elements running from 0 to 2π. Plot the elements of V
as a function of the elements of T; use GnuPlot or matplotlib.

17.2 Develop a Python program that finds the index of the first negative
number in a vector. If there are no negative numbers, it should set the
result to −1.

17.3 The Fibonacci series is defined by Fn = Fn−1+Fn−2. Develop a Python
program that computes a vector with the first n elements of a Fibonacci
series. A second vector should also be computed with the ratios of con-
secutive Fibonacci numbers. The program must plot this second vector
using GnuPlot or matplotlib.

17.4 Develop a Python program that reads the values of a vector P and com-
putes the element values of vectorQ with the cubes of the positive values
in vector P . For every element in P that is negative, the corresponding
element in Q should be set to zero.

17.5 Develop a Python program that reads the values of a vector P and
assigns the element values of vector Q with every other element in vector
P .

17.6 Develop a Python program that reads the values of a matrix M of m
rows and n columns. The program must create a column vector for every
column in matrix M , and a row vector for every row in matrix M .
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17.7 A trapezoid is a four-sided region with two opposite sides parallel. The
area of a trapezoid is the average length of the parallel sides, times the
distance between them. The area of the trapezoid with width ∆x =
x2 − x1, is computed with ∆x times the average height (y2 + y1)/2.

At = ∆x
y1 + y2

2

For the interval of [a, b] on variable x, it is divided into n − 1 equal
segments of length ∆x. Any value of yk is defined as yk = f(xk). The
trapezoid sum to compute the area under the curve for the interval of
[a, b], is defined by the summation of the areas of the individual trape-
zoids and is expressed as follows.

A =

k=n
∑

k=2

[∆x
1

2
(f(xk−1) + f(xk))]

The larger the number of trapezoids, the better the approximation of the
area. The area from a to b, with segments a = x1 < x2 < . . . < xn = b
is given by:

A =
b− a

2n
[f(x1) + 2f(x2) + ...+ 2f(xn−1) + f(xn)].

Develop a Python function that computes an estimate of the area under
a curve given by a sequence of values y with a corresponding sequence
of values x. The function must be called from main and the program
must use GnuPlot or matplotlib.



C HA P T E R 18

Models with Matrices and

Linear Equations

18.1 INTRODUCTION

As mentioned in previous chapters, in scientific computing, data is conve-
niently organized as collections of values known as vectors and matrices and
are used to implement data lists and sequences of values. This chapter presents
basic concepts of matrices, operations on matrices, and programming comput-
ing with matrices in Python and Numpy, and a summary of systems of linear
equations that are solved using Numpy.

18.2 MATRICES

In general, a matrix is a two-dimensional array of data values and is orga-
nized in rows and columns. The following array, Y , is a two-dimensional array
organized as an m × n matrix; its elements are arranged in m rows and n
columns.

Y =











y11 y12 · · · y1n
y21 y22 · · · y2n
...

...
. . .

...
ym1 ym2 · · · ymn











The first row of Y consists of elements y11, y12, . . . , y1n. The second row
consists of elements y21, y22, . . . , y2n. The last row of Y consists of elements
ym1, ym2, . . . , ymn. In a similar manner, the elements of each column can be
identified.

257
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18.2.1 Basic Concepts

A matrix is defined by specifying the rows and columns of the array. An m by
n matrix has m rows and n columns. A square matrix has the same number
of rows and columns, n rows and n columns, which is denoted as n× n. The
following example shows a 2×3 matrix, which has two rows and three columns:

[

0.5000 2.3500 8.2500
1.8000 7.2300 4.4000

]

A matrix of dimension m× 1 is known as a column vector and a matrix of
dimension 1×n is known as a row vector. A vector is considered a special case
of a matrix with one row or one column. A row vector of size n is typically a
matrix with one row and n columns. A column vector of size m is a matrix
with m rows and one column.

The elements of a matrix are denoted with the matrix name in lower-case
and two indices, one corresponding to the row of the element and the other
index corresponding to the column of the element. For matrix Y , the element
at row i and column j is denoted by yij or by yi,j .

The main diagonal of a matrix consists of those elements on the diagonal
line from the top left and down to the bottom right of the matrix. These
elements have the same value of the two indices. The diagonal elements of
matrix Y are denoted by yii or by yjj . For a square matrix, this applies for
all values of i or all values of j. For a square matrix X (an n×n matrix), the
elements of the main diagonal are:

x1,1, x2,2, x3,3, x4,4, . . . , xn,n.

An identity matrix of size n, denoted by In is a square matrix that has all
the diagonal elements with value 1, and all other elements (off-diagonal) with
value 0. The following is an identity matrix of size 3 (of order n):

I =





1 0 0
0 1 0
0 0 1





18.2.2 Arithmetic Operations

The arithmetic matrix operations are similar to the ones discussed previously
for vectors. The multiplication of a matrix Y by a scalar λ calculates the
multiplication of every element of matrix Y by the scalar λ. The result defines
a new matrix.
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Y =











y11 y12 · · · y1n
y21 y22 · · · y2n
...

...
. . .

...
ym1 ym2 · · · ymn











λY =











λy11 λy12 · · · λy1n
λy21 λy22 · · · λy2n
...

...
. . .

...
λym1 λym2 · · · λymn











In a similar manner, the addition of a scalar λ to matrix Y , calculates the
addition of every element of the matrix with the scalar λ. The subtraction of
a scalar λ from a matrix Y , denoted by Y − λ, computes the subtraction of
the scalar λ from every element of matrix Y .

Thematrix addition is denoted by Y+Z of twom×nmatrices Y and Z, and
calculates the addition of every element of matrix Y with the corresponding
element of matrix Z. The result defines a new matrix. This operation requires
that the two matrices have the same number of rows and columns.

Y + Z =











y11 + z11 y12 + z12 · · · y1n + z1n
y21 + z21 y22 + z22 · · · y2n + z2n

...
...

. . .
...

ym1 + zm1 ym2 + zm2 · · · ymn + zmn











Similarly, the subtraction of two matrices Y and Z, denoted by Y − Z,
subtracts every element of matrix Z from the corresponding element of matrix
Y . The result defines a new matrix.

The element-wise multiplication (also known as the Hadamard product or
Schur product) of two matrices, multiplies every element of a matrix X by the
corresponding element of the second matrix Y and is denoted by X ◦ Y . The
result defines a new matrix, Z. This operation requires that the two matrices
have the same number of rows and columns. The following is the general form
of the element-wise multiplication of matrix X multiplied by matrix Y .

Z = X ◦ Y =











x11 × y11 x12 × y12 · · · x1n × y1n
x21 × y21 x22 × y22 · · · x2n × y2n

...
...

. . .
...

xm1 × ym1 xm2 × ym2 · · · xmn × ymn











The determinant of a matrix A, denoted by detA or by | A |, is a special
number that can be computed from the matrix. The determinant is useful to
describe various properties of the matrix that are applied in systems of linear
equations and in calculus.

The determinant provides important information when the matrix consists
of the coefficients of a system of linear equations. If the determinant is nonzero,
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the system of linear equations has a unique solution. When the determinant
is zero, there are either no solutions or many solutions.

One of several techniques to compute the determinant of a matrix is apply-
ing Laplace’s formula, which expresses the determinant of a matrix in terms of
its minors. The minor Mi,j is defined to be the determinant of the submatrix
that results from matrix A by removing the ith row and the jth column. Note
that this technique is not very efficient. The expression Ci,j = (1)i+jMi,j is
known as a cofactor. The determinant of A is computed by

detA =
n
∑

j=1

Ci,j × ai,j ×Mi,j .

The matrix multiplication of an m × n matrix X and an n × p matrix
Y , denoted by XY , defines another matrix Z of dimension m by p and the
operation is denoted by Z = XY . In matrix multiplication, the number of
rows in the first matrix has to equal the number of columns in the second
matrix. An element of the new matrix Z is determined by

zij =

n
∑

k=1

xik ykj ,

that is, element zij of matrix Z is computed as follows:

zij = xi1 y1j + xi2 y2j + . . .+ xin ynj .

The matrix multiplication is not normally commutative, that is, XY 6=
Y X. The following example defines a 2 by 3 matrix, X , and a 3 by 3 matrix,
Y . The matrix multiplication of matrix X and Y defines a new matrix Z.

X =

[

1 2 1
0 2 1

]

Y =





1 2 0
0 3 1
−2 1 1





Z = XY =

[

−1 9 3
−2 7 3

]

The transpose of an m × n matrix X is an n × m matrix XT formed by
interchanging the rows and columns of matrix X . For example, for the given
matrix X , the transpose (XT ) is:

X =

[

1 2 1
0 5 3

]

XT =





1 0
2 5
1 3



 .

The conjugate of an m × n complex matrix Z is a matrix Z with all its
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elements conjugate of the corresponding elements of matrix Z. The conjugate
transpose of an m×n matrix Z, is an n×m matrix that results by taking the
transpose of matrix Z and then the complex conjugate. The resulting matrix
is denoted by ZH or by Z∗ and is also known as the Hermitian transpose, or
the adjoint matrix of matrix Z. For example:

Z =

[

1.5 + 2.3i 2.1− 1.4i 1 + 0.7i
0 + 3.2i 5.2− 1.5i 3.7 + 3.5i

]

ZH =





1.5− 2.3i 0− 3.2i
2.1 + 1.4i 5.2 + 1.5i
1− 0.7i 3.7− 3.5i





A square matrix Y is symmetric if Y = Y T . The following example shows
a 3× 3 symmetric matrix Y .

Y =





1 2 7
2 3 4
7 4 1





A square matrix X is triangular if all the elements above or below its diag-
onal have value zero. A square matrix Y is upper triangular if all the elements
below its diagonal have value zero. A square matrix Y is lower triangular if all
the elements above its diagonal have value zero. The following example shows
a matrix Y that is upper triangular.

Y =





1 2 7
0 3 4
0 0 1





The rank of a matrix Y is the number of independent columns in matrix
Y , or the number of linearly independent rows of matrix Y . The inverse of an
n× n matrix X is another matrix X−1 (if it exists) of dimension n× n such
that their matrix multiplication results in an identity matrix or order n. This
relation is expressed as:

X−1X = XX−1 = In.

A square matrix X is orthogonal if for each column xi of X , xT
i xj = 0 for

any other column xj of matrix X . If the rows and columns are orthogonal unit
vectors (the norm of each column xi of X has value 1), then X is orthonormal.
A matrix X is orthogonal if its transpose XT is equal to its inverse X−1. This
implies that for orthogonal matrix X ,

XTX = I.

Given matrices A, X , and B, a general matrix equation is expressed by
AX = B. This equation can be solved for X by pre-multiplying both sides



262 � Introduction to Computational Models with Python

of the matrix equation by the inverse of matrix A. The following expression
shows this:

A−1AX = A−1B.

This results in

X = A−1B.

18.3 MATRIX MANIPULATION WITH NUMPY

Matrices are created and manipulated in Python by calling the various library
functions in the Numpy and Scipy packages. Before using a matrix, it needs
to be created. Matrices are created in a similar manner than the one used to
create vectors.

18.3.1 Creating, Initializing, and Indexing Matrices

The most straightforward way to create a matrix with Numpy is to call func-
tion array and specify the values in the matrix arranged in rows and columns.
Numpy function ones creates a matrix of the specified number of rows and
columns, and returns a new matrix. Numpy function zeros creates a matrix of
the specified number of rows and columns, and returns a new matrix. Matrices
are stored in row-major order, and the elements of each row form a contiguous
block in memory. When a matrix is no longer needed in the program, it can
be destroyed by calling the del command.

The following program shows how to create and manipulate matrices in
Python and is stored in file tmat1.py. In line 3, matrix amat is created given
the values of the elements arranged into three rows and two columns. In line 6,
matrix bmat is created by calling Numpy function ones and specifying three
rows and two columns with all elements initialized to 1. In line 9, calling
Numpy function ones creates matrix cmat with two rows and three columns
and all elements initialized to 0. An element of matrix amat is accessed by
specifying index 2 and index 1, which indicate the element in row 2 and column
1. Finally, in line 14, the assignment gets the element in row 0 and column 1
and assigns the value to q.

1 import numpy as np

2 print "Create and manipulate a matrix"

3 amat = np.array([[1.0, 3.0], [2.0, 5.0], [4.0, 7.0]])

4 print "Matrix amat: "

5 print amat

6 bmat = np.ones([3,2])

7 print "Matrix bmat: "

8 print bmat
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9 cmat = np.zeros([2,3])

10 print "Matrix cmat:"

11 print cmat

12 p = amat[2,1]

13 print "Value of p: ", p

14 q = amat[0,1]

15 print "Value of q: ", q

Executing the Python interpreter and running the program in file
tmat1.py, yields the following output. Note that matrices amat and bmat are
two-dimensional arrays with three rows and two columns, and matrix cmat is
a matrix of two rows and three columns.

$ python tmat1.py

Create and manipulate a matrix

Matrix amat:

[[ 1. 3.]

[ 2. 5.]

[ 4. 7.]]

Matrix bmat:

[[ 1. 1.]

[ 1. 1.]

[ 1. 1.]]

Matrix cmat:

[[ 0. 0. 0.]

[ 0. 0. 0.]]

Value of p: 7.0

Value of q: 3.0

Numpy function identity creates an identity matrix and sets it to the spec-
ified matrix and number of rows. Therefore, the elements of the main diagonal
will have a value of 1, and all other elements will have a value of zero. The
following segment of Python code creates identity matrix imat of four rows.

import numpy as np

print "Create an identity matrix of four rows"

imat = np.identity(4)

print imat

Running the code with the Python interpreter produces the following out-
put.
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Create an identity matrix of four rows

[[ 1. 0. 0. 0.]

[ 0. 1. 0. 0.]

[ 0. 0. 1. 0.]

[ 0. 0. 0. 1.]]

18.3.2 Element Addition and Subtraction Operations

The basic operations on matrices are performed with a matrix and a scalar or
with two matrices. These are carried out by calling several Numpy or Scipy
functions in Python.

As with vectors, adding a scalar to a matrix, involves adding the scalar
value to every element of the matrix. With Python and Numpy, the addition
operator (+) is applied directly to add a value to a matrix.

In the following portion of Python code, in matrix amat the constant value
5.5 is added to the matrix and the result is used to create matrix cmat. In a
similar manner, subtracting a scalar from a matrix is specified.

import numpy as np

print "Simple matrix operations"

amat = np.array([[1.0, 3.0], [2.0, 5.0], [4.0, 7.0]])

print "Matrix amat: "

print amat

print "Scalar addition and subtraction: "

cmat = amat + 5.5

dmat = amat - 3.2

print "Matrix cmat:"

print cmat

print "Matrix dmat:"

print dmat

Running the code with the Python interpreter produces the following out-
put.

Simple matrix operations

Matrix amat:

[[ 1. 3.]

[ 2. 5.]

[ 4. 7.]]

Scalar addition and subtration:

Matrix cmat:

[[ 6.5 8.5]

[ 7.5 10.5]

[ 9.5 12.5]]
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Matrix dmat:

[[-2.2 -0.2]

[-1.2 1.8]

[ 0.8 3.8]]

Matrix addition adds two matrices and involves adding the corresponding
elements of each matrix. This addition operation on matrices is only possible
if the two matrices are of the same size. Matrix subtraction is carried out by
subtracting the corresponding elements of each of two matrices. The matrices
must be of the same size.

The following program is stored in file tmat4.py and creates matrix amat
and matrix bmat , which are both matrices of size 3×2. The statement in line 9
adds the elements of matrix amat with the elements of matrix bmat and then
creates the resulting matrix cmat. In line 12, the elements of matrix bmat are
subtracted from the elements of matrix amat and creates the resulting matrix
dmat.

1 import numpy as np

2 print "Matrix addition and subtraction"

3 amat = np.array([[1.0, 3.0], [2.0, 5.0], [4.0, 7.0]])

4 print "Matrix amat: "

5 print amat

6 bmat = np.ones([3,2])

7 print "\nMatrix bmat: "

8 print bmat

9 cmat = amat + bmat # matrix addition

10 print "\nMatrix cmat:"

11 print cmat

12 dmat = amat - bmat

13 print "\nMatrix dmat: "

14 print dmat

Executing the Python interpreter and running the program in file
tmat4.py, yields the following output. Note that matrices amat and bmat
are two-dimensional arrays with three rows and two columns.

$ python tmat4.py

Matrix addition and subtraction

Matrix amat:

[[ 1. 3.]

[ 2. 5.]

[ 4. 7.]]

Matrix bmat:
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[[ 1. 1.]

[ 1. 1.]

[ 1. 1.]]

Matrix cmat:

[[ 2. 4.]

[ 3. 6.]

[ 5. 8.]]

Matrix dmat:

[[ 0. 2.]

[ 1. 4.]

[ 3. 6.]]

18.3.3 Element Multiplication and Division

Matrix scalar multiplication involves multiplying each element of the matrix
by the value of the scalar. With Numpy, the multiplication operator (∗) is
directly applied to multiply the specified matrix by the constant factor.

Element-by-element matrix multiplication involves multiplying the corre-
sponding elements of two matrices. With Numpy, the multiplication operator
(∗) is directly applied to multiply two matrices of equal size (m × n). The
operation multiplies the elements of the first specified matrix by the elements
of the second specified matrix.

The following program is stored in file tmat5.py and creates matrix amat
and matrix bmat , which are both matrices of size 3× 2. The statement in line
9 multiplies the elements of matrix amat by the constant 2 and the resulting
matrix is cmat. In line 12, the elements of matrix amat are multiplied by the
elements of matrix bmat and creates the resulting matrix dmat.

1 import numpy as np

2 print "Matrix scalar and elementwise multiplication"

3 amat = np.array([[1.0, 3.0], [2.0, 5.0], [4.0, 7.0]])

4 print "Matrix amat: "

5 print amat

6 bmat = np.array([[2.5, 1.5], [3.0, 1.5], [2.0, 4.25]])

7 print "\nMatrix bmat: "

8 print bmat

9 cmat = amat * 2.0 # matrix scalar multiplication

10 print "\nMatrix cmat:"

11 print cmat

12 dmat = amat * bmat

13 print "\nMatrix dmat: "

14 print dmat
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Executing the Python interpreter and running the program in file
tmat5.py, yields the following output. Note that matrices amat and bmat
are two-dimensional arrays with three rows and two columns.

$ python tmat5.py

Matrix scalar and elementwise multiplication

Matrix amat:

[[ 1. 3.]

[ 2. 5.]

[ 4. 7.]]

Matrix bmat:

[[ 2.5 1.5 ]

[ 3. 1.5 ]

[ 2. 4.25]]

Matrix cmat:

[[ 2. 6.]

[ 4. 10.]

[ 8. 14.]]

Matrix dmat:

[[ 2.5 4.5 ]

[ 6. 7.5 ]

[ 8. 29.75]]

Matrix scalar division involves dividing each element of the matrix by the
value of the scalar. With Numpy, the division operator (/) is applied directly
for dividing the specified matrix by the constant factor.

Element-by-element matrix division involves dividing the corresponding
elements of two matrices. With Numpy, the division operator (/) is applied
directly to two matrices of equal size (m × n) and it divides one matrix by
the second matrix. This operation divides the elements of the first specified
matrix by the elements of the second specified matrix.

The following program is stored in file tmat6.py and creates matrix amat
and matrix bmat , which are both matrices of size 3× 2. The statement in line
9 divides the elements of matrix amat by the constant 2 and the resulting
matrix is cmat. In line 12, the elements of matrix amat are divided by the
elements of matrix bmat and creates the resulting matrix dmat.

1 import numpy as np

2 print "Matrix scalar and elementwise division"

3 amat = np.array([[1.0, 3.0], [2.0, 5.0], [4.0, 7.0]])

4 print "Matrix amat: "
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5 print amat

6 bmat = np.array([[2.5, 1.5], [3.0, 1.5], [2.0, 4.25]])

7 print "\nMatrix bmat: "

8 print bmat

9 cmat = amat / 2.0 # matrix scalar multiplication

10 print "\nMatrix cmat:"

11 print cmat

12 dmat = amat / bmat

13 print "\nMatrix dmat: "

14 print dmat

Executing the Python interpreter and running the program in file
tmat6.py, yields the following output. Note that matrices amat and bmat
are two-dimensional arrays with three rows and two columns.

$ python tmat6.py

Matrix scalar and elementwise division

Matrix amat:

[[ 1. 3.]

[ 2. 5.]

[ 4. 7.]]

Matrix bmat:

[[ 2.5 1.5 ]

[ 3. 1.5 ]

[ 2. 4.25]]

Matrix cmat:

[[ 0.5 1.5]

[ 1. 2.5]

[ 2. 3.5]]

Matrix dmat:

[[ 0.4 2. ]

[ 0.66666667 3.33333333]

[ 2. 1.64705882]]

18.3.4 Additional Matrix Functions

Various additional operations can be applied to matrices. Recall that simple
assignment of matrices results in two references to the same matrix and is
considered another view of the matrix. Copying one matrix to another matrix
is performed by calling the Numpy function copy. This function copies the
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elements of the specified source matrix into the specified destination matrix.
The two matrices must have the same length m×n. In the following example,
matrix amat is copied to matrix bmat.

bmat = np.copy (amat)

The slicing operator (:) allows referencing of a subset of a matrix. The
following program is stored in file tmat7a.py and creates matrix amat , which
is a matrix of size 3 × 2. The statement in line 6 applies slicing to reference
column 0 of matrix amat and is assigned to vector bmat. In line 9, rows 0 and
1 of matrix amat are referenced and assigned to cmat . In line 11, row 1 of
matrix amat is referenced and assigned to dmat. In line 14, row 2 of matrix
amat is assigned new values from a specified vector.

1 import numpy as np

2 print "Applying slicing on a matrix"

3 amat = np.array([[1.0, 3.0], [2.0, 5.0], [4.0, 7.0]])

4 print "Matrix amat: ", amat.shape

5 print amat

6 bmat = amat[:, 0] # column 0

7 print "\nColumn 0 of matrix amat: ", bmat.shape

8 print bmat

9 cmat = amat[0:2,1] # rows 0 and 1 of col 1

10 print "\nRows 0 and 1 of col 1 Matrix amat: ", cmat

11 dmat = amat[1,:] # row 1 all cols

12 print "\nRow 1 of matrix amat: ", dmat

13 # assign new values for row 2

14 amat[2, :] = [21.35, 8.55]

15 print "Updated matrix amat: "

16 print amat

Executing the Python interpreter and running the program in file
tmat7a.py, yields the following output. Note that matrix amat is a two-
dimensional array with three rows and two columns.

$ python tmat7a.py

Applying slicing on a matrix

Matrix amat: (3, 2)

[[ 1. 3.]

[ 2. 5.]

[ 4. 7.]]

Column 0 of matrix amat: (3,)

[ 1. 2. 4.]
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Rows 0 and 1 of col 1 Matrix amat: [ 3. 5.]

Row 1 of matrix amat: [ 2. 5.]

Updated matrix amat:

[[ 1. 3. ]

[ 2. 5. ]

[ 21.35 8.55]]

Copying rows and columns of a matrix to a vector or another matrix
is performed by slicing with the : operator and using function copy. The
following program is stored in file tmat7.py and creates matrix amat , which
is a matrix of size 3× 2. In line 6, matrix amat is copied to matrix bmat. In
line 9, rows 0 and 1 in column 0 of matrix amat are copied to to matrix cmat .
In line 11, row 1 of matrix amat is copied to to dmat.

1 import numpy as np

2 print "Copy a matrix, row, or column"

3 amat = np.array([[1.0, 3.0], [2.0, 5.0], [4.0, 7.0]])

4 print "Matrix amat: "

5 print amat

6 bmat = np.copy(amat) # copy entire matrix

7 print "\nMatrix bmat: "

8 print bmat

9 cmat = np.copy(amat[0:2,0]) # rows 0 to 1 of col 0

10 print "\nMatrix cmat: ", cmat

11 dmat = np.copy(amat[1,:]) # row 1 all cols

12 print "\nMatrix dmat: ", dmat

Executing the Python interpreter and running the program in file
tmat7.py, yields the following output. Note that matrix amat is a two-
dimensional array with three rows and two columns.

$ python tmat7.py

Copy a matrix, row, or column

Matrix amat:

[[ 1. 3.]

[ 2. 5.]

[ 4. 7.]]

Matrix bmat:

[[ 1. 3.]

[ 2. 5.]

[ 4. 7.]]
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Matrix cmat: [ 1. 2.]

Matrix dmat: [ 2. 5.]

A copy of the first specified row or column is selected; then an in-place copy
is performed to the second specified row or column. The following program is
stored in file tmat8c.py and exchanges rows 0 and 1 of matrix amat. Function
exchange col is defined in lines 4–7 and is called in line 13 to exchange columns
0 and 1 of matrix amat .

1 import numpy as np

2 def exchange_col (x, ncol1, ncol2):

3 tmat = np.copy(x[:,ncol1])

4 x[:,ncol1] = x[:,ncol2]

5 x[:,ncol2] = tmat

6

7 print "Exchange columns of a matrix"

8 amat = np.array([[1.0, 3.0], [2.0, 5.0], [4.0, 7.0]])

9 print "Matrix amat: ", amat.shape

10 print amat

11 exchange_col(amat, 0, 1)

12 print "Updated matrix amat: "

13 print amat

Executing the Python interpreter and running the program in file
tmat8c.py, yields the following output. Note that matrix amat is a two-
dimensional array with three rows and two columns.

$ python tmat8c.py

Exchange columns of a matrix

Matrix amat: (3, 2)

[[ 1. 3.]

[ 2. 5.]

[ 4. 7.]]

Updated matrix amat:

[[ 3. 1.]

[ 5. 2.]

[ 7. 4.]]

In a similar manner, the exchange of two rows is performed by calling
function exchange row, which is defined in program tmat8r.py

The comparison of two matrices using relational operations is performed by
calling the Numpy functions or directly using the standard operators ==, !=,
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>, >=, <, and <=. These are element-wise operations on the matrices. Function
array equal returns the single truth value True if two arrays have the same
shape and elements and False otherwise.

The following program is stored in file tmat9.py and applies the various
relational operators on matrices. In line 9, function array equal is called to
compare the shape and elements of matrices amat and bmat. In the rest of
the program the relational operators are directly applied.

1 import numpy as np

2 print "Relational operations on matrices"

3 amat = np.array([[1.0, 3.0], [2.0, 5.0], [4.0, 7.0]])

4 print "Matrix amat: ", amat.shape

5 print amat

6 bmat = np.copy(amat)

7 print "Matrix bmat: "

8 print bmat

9 flageq = np.array_equal(amat, bmat)

10 print "Flag matrix equal shape and elements: ", flageq

11 flageq2 = np.equal(amat, bmat) # or amat == bmat

12 print "Flag equal: ", flageq2

13 flaggt = np.greater(amat, bmat)

14 print "Flag greater: ", flaggt

15 flaggte = amat >= bmat

16 print "Flag greater equal: ", flaggte

17 flaglt = amat < bmat

18 print "Flag less than: ", flaglt

19 flagle = amat <= bmat

20 print "Flag less equal: ", flagle

Executing the Python interpreter and running the program in file
tmat9.py, yields the following output.

$ python tmat9.py

Relational operations on matrices

Matrix amat: (3, 2)

[[ 1. 3.]

[ 2. 5.]

[ 4. 7.]]

Matrix bmat:

[[ 1. 3.]

[ 2. 5.]

[ 4. 7.]]

Flag matrix equal shape and elements: True

Flag equal2: [[ True True]
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[ True True]

[ True True]]

Flag greater: [[False False]

[False False]

[False False]]

Flag greater equal: [[ True True]

[ True True]

[ True True]]

Flag less than: [[False False]

[False False]

[False False]]

Flag less equal: [[ True True]

[ True True]

[ True True]]

Relational operations can also be applied to evaluate a Boolean expression
on the elements or to select the elements that result from a relational expres-
sion. The following program is stored in file tmat9b.py and applies the various
relational operators on a matrix. In line 6, the Boolean relational expression
>= 1.25 is applied on the elements of matrix amat and results in a matrix of
Boolean values. In line 8, the Boolean expression is applied on matrix amat
to select the elements that make the Boolean expression True. Lines 10 and
11, applies the Boolean expression only to column 0 of matrix amat.

1 import numpy as np

2 print "Relational operations on elements with specific

values"

3 amat = np.array([[1.0, 3.0], [2.0, 5.0], [4.0, 7.0]])

4 print "Matrix amat: ", amat.shape

5 print amat

6 bmat = amat >= 1.25

7 print "Elements >= 1.25 in amat: ", bmat

8 cmat = amat[amat >= 1.25]

9 print "Elements >= 1.25 in amat: ", cmat

10 dmat = amat[0,:]

11 emat = dmat[dmat >= 1.25]

12 print "Elements >= 1.25 in amat in row 0: ", emat

Executing the Python interpreter and running the program in file
tmat9b.py, yields the following output.

$ python tmat9b.py

Relational operations on elements with specific values

Matrix amat: (3, 2)
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[[ 1. 3.]

[ 2. 5.]

[ 4. 7.]]

Elements >= 1.25 in amat: [[False True]

[ True True]

[ True True]]

Elements >= 1.25 in amat: [ 3. 2. 5. 4. 7.]

Elements >= 1.25 in amat in row 0: [ 3.]

Numpy function amax computes the maximum value stored in the specified
matrix. The following function call gets the maximum value of all elements in
matrix p and assigns this value to variable x. When the axis is specified as the
second argument in the function call, it indicates that the maximum value is
computed in every column (axis=0) or in every row (axis=1). Therefore, in
the following example, xc and xr are vectors.

x = numpy.amax(p)

xc = numpy.amax(p, axis=0) # max in columns

xr = numpy.amax(p, axis=1) # max in columns

In addition to the maximum value in a matrix, the index of the element
with that value may be desired in every row and every column. Calling function
argmax computes the index values of the element with the maximum value in
the specified in every column (axis=0) matrix and in every row (axis=1). In
the following function call, the index values of the element with the maximum
value in matrix p in every column are stored in vector idxc and the index
values of maximum in every row in vector idxr.

idxc = numpy.argmax (p, axis=0)

idxr = numpy.argmax (p, axis=1)

In a similar manner, function amin computes the maximum value stored in
the specified matrix. Function argmin gets the index values (row and column)
of the minimum value in the specified matrix.

Listing 18.3 shows a Python program stored in file array2d ops.py that
performs the operations discussed for computing maximum values in a matrix.

1 import numpy as np

2 # Maximum values and indices in a matrix

3 # Program: array2d_ops.py

4 print "Sum, maximum values in a matrix"

5 amat = np.array([[3.11, 5.12, 2.13], [1.21, 8.22, 5.23],

[6.77, 2.88, 7.55]])
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6 print "Array amat: "

7 print amat

8 suma = np.sum(amat)

9 print "Sum of all elements of amat: ", suma

10 sumac = np.sum(amat, axis=0)

11 print "Sum of columns: ", sumac

12 sumar = np.sum(amat, axis=1)

13 print "Sum of rows: ", sumar

14 maxa = np.amax(amat)

15 print "Maximum of all elements of amat: ", maxa

16 maxac = np.amax(amat, axis=0)

17 print "Maximum of columns: ", maxac

18 maxar = np.amax(amat, axis=1)

19 print "Maximum of rows: ", maxar

20 idxc = np.argmax(amat, axis=0)

21 print "Indices of maximum in columns: ", idxc

22 idxr = np.argmax(amat, axis=1)

23 print "Indices of minimum in rows: ", idxr

Executing the Python interpreter and running the program in file
array2d ops.py, yields the following output.

$ python array2d_ops.py

Sum, maximum values in a matrix

Array amat:

[[ 3.11 5.12 2.13]

[ 1.21 8.22 5.23]

[ 6.77 2.88 7.55]]

Sum of all elements of amat: 42.22

Sum of columns: [ 11.09 16.22 14.91]

Sum of rows: [ 10.36 14.66 17.2 ]

Maximum of all elements of amat: 8.22

Maximum of columns: [ 6.77 8.22 7.55]

Maximum of rows: [ 5.12 8.22 7.55]

Indices of maximum in columns: [2 1 2]

Indices of minimum in rows: [1 1 2]

The linalg module of the Numpy package provides function inv that com-
putes the inverse of a matrix. Function transpose rearranges the matrix by
permuting the rows and columns of a matrix. The following program stored
in file array2d ops2.py illustrates the use of these functions.

1 import numpy as np

2 # Inverse and transpose of a matrix
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3 # Program: array2d_ops2.py

4 print "Inverse and transpose of a matrix"

5 amat = np.array([[3.11, 5.12, 2.13], [1.21, 8.22, 5.23],

[6.77, 2.88, 7.55]])

6 print "Array amat: "

7 print amat

8 imat = np.linalg.inv(amat)

9 print "Inverse of matrix amat: "

10 print imat

11 tamat = np.transpose(amat)

12 print "Transpose of matrix amat: "

Executing the Python interpreter and running the program in file
array2d ops2.py, yields the following output.

$ python array2d_ops2.py

Inverse and transpose of a matrix

Array amat:

[[ 3.11 5.12 2.13]

[ 1.21 8.22 5.23]

[ 6.77 2.88 7.55]]

Inverse of matrix amat:

[[ 0.27717054 -0.19179357 0.0546632 ]

[ 0.15493469 0.053433 -0.0807239 ]

[-0.30763662 0.15159675 0.11422715]]

Transpose of matrix amat:

[[ 3.11 1.21 6.77]

[ 5.12 8.22 2.88]

[ 2.13 5.23 7.55]]

Function det of the linalg module of the Numpy package computes the
determinant of a square matrix. Function dot performs the matrix multipli-
cation of two matrices. Recall that in this operation, the matrices have to
be aligned; the number of columns of the first matrix must be equal to the
number of rows in the second matrix. The first matrix is n × m, the second
matrix is m× k, and the resulting matrix is n× k.

In the following program stored in file array2d ops3.py creates a 3 × 3
matrix, amat , in line 5. The determinant of matrix amat is computed in line
8. A 3× 2 matrix, bmat , is created in line 10. The dot product of matrix amat
and matrix bmat is computed in line 12.

1 import numpy as np

2 # Matrix determinant and multiplication

3 # Program: array2d_ops2.py
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4 print "Matrix determinant and multiplication "

5 amat = np.array([[3.11, 5.12, 2.13], [1.21, 8.22, 5.23],

[6.77, 2.88, 7.55]])

6 print "Array amat: "

7 print amat

8 adet = np.linalg.det(amat)

9 print "Determinant of amat: " , adet

10 bmat = np.array([[4.5, 6.5], [8.5, 1.5], [5.25, 7.35]])

11 print bmat

12 dpmat = np.dot(amat, bmat)

13 print "Dot product of amat and bmat: "

14 print dpmat

Executing the Python interpreter and running the program in file
array2d ops3.py, yields the following output.

$ python array2d_ops3.py

Matrix determinant and multiplication

Array amat:

[[ 3.11 5.12 2.13]

[ 1.21 8.22 5.23]

[ 6.77 2.88 7.55]]

Determinant of amat: 169.56564

[[ 4.5 6.5 ]

[ 8.5 1.5 ]

[ 5.25 7.35]]

Dot product of amat and bmat:

[[ 68.6975 43.5505]

[ 102.7725 58.6355]

[ 94.5825 103.8175]]

18.4 SOLVING SYSTEMS OF LINEAR EQUATIONS

Several methods exist for solving systems of linear equations applying vectors
and matrices. Some of these methods are: substitution, cancellation, and ma-
trix manipulation. A system of n linear equations can be expressed by the
general equations

a11x1 + a12x2 + . . . + a1nxn = b1
a21x1 + a22x2 + . . . + a2nxn = b2

...
...

...
...

an1x1 + an2x2 + . . . + annxn = bn.
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This system of linear equations is more conveniently expressed in matrix
form in the following manner:











a11 a12 · · · a1n
a21 a22 · · · a2n
...
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. (18.1)

This can also be expressed in a more compact matrix form as AX = B.
Matrix A is the coefficients matrix (of the variables xi for i = 1 . . . n). X is
the vector of unknowns xi, and B is the vector of solution. Consider a simple
linear problem that consists of a system of three linear equations (n = 3):

5x1 +2x2 +x3 = 25
2x1 +x2 +3x3 = 12
−x1 +x2 +2x3 = 5.

In matrix form, this system of three linear equations can be written in the
following manner:





5 2 1
2 1 3
−1 1 2









x1

x2

x3



 =





25
12
5



 . (18.2)

Matrix A is a square (n× n) of coefficients, X is a vector of size n, and B
is the solution vector also of size n.

A =





5 2 1
2 1 3
−1 1 2



 X =





x1
x2
x3



 B =





25
12
5



 (18.3)

Decomposing the coefficient matrix, A is the main technique used to com-
pute the determinant, matrix inversion, and the solution a set of linear equa-
tions. Common numerical methods used are:

• Gaussian elimination

• LU decomposition

• SV decomposition

• QR decomposition
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The Numpy function linalg.solve finds the solution to a linear matrix equa-
tion, or system of linear scalar equations, given the coefficient matrix a and
the vector of dependent variable b. The function applies LU decomposition to
the specified square matrix. The function returns the vector x , which has the
same dimension as vector b.

The following program, stored in file linsolve.py, creates a square matrix
amat in line 6. The solution vector b is defined in line 10. The vector of
unknowns x is created in line 12 by calling function linalg.solve.

1 import numpy as np

2 # Solution to a set of linear equations

3 # A X = B

4 # Program: linsol.py

5 print "Solving a set of linear equations"

6 amat = np.array([[3.11, 5.12, 2.13], [1.21, 8.22, 5.23],

[6.77, 2.88, 7.55]])

7 print "Matrix a: "

8 print amat

9 print "Vector b: "

10 b = np.array([4.5, 6.5, 8.5])

11 print b

12 x = np.linalg.solve(amat, bmat)

13 print "Vector x: "

14 print x

Executing the Python interpreter and running the program in file
linsolve.py, yields the following output.

$ python linsolve.py

Solving a set of linear equations

Matrix a:

[[ 3.11 5.12 2.13]

[ 1.21 8.22 5.23]

[ 6.77 2.88 7.55]]

Vector b:

[ 4.5 6.5 8.5]

Vector x:

[ 0.46524638 0.35836741 0.57194488]

18.5 INDUSTRIAL MIXTURES IN MANUFACTURING

Manufacturing of various products require specified amounts of several ma-
terials to produce products of acceptable quality. The optimization of such
mixtures is discussed in detail in the chapters on linear optimization.



280 � Introduction to Computational Models with Python

For example, every unit weight (in grams) of product A requires 0.59 g of
material P , 0.06 g of material Q, 0.037 g of material R, and 0.313 g of material
S. This can be written in a general expression of the form:

A = b1 + b2 + b3 + b4.

In the expression, b1 is the amount material P , b2 is the amount of material
Q, b3 is the amount of materialR, and b4 is the amount of material S. A similar
expression can be used for the mix required for the manufacturing of product
B, so on.

The materials needed in the manufacturing process are acquired as sub-
stances that contain various amounts of the materials mentioned previously.
For example, the following table provides data on the unit content (1 g) of the
substances used to obtain the materials needed for manufacturing of products
A and B.

Substance Material P Material Q Material R Material S
S1 0.67 0.2 0.078 0.135
S2 0.87 0.04 0.0029 0.0871
S3 0.059 0.018 0.059 0.864
S4 0.72 0.02 0.03 0.23

From the data in the table, the expression that is used to compute the
amount b1 of material P using y1 grams of S1, y2 grams of S2, y3 grams of
S3, and y4 grams of S4 is:

b1 = 0.67 y1 + 0.87 y2 + 0.059 y3 + 0.72 y4.

In a similar manner, the expression that is used to compute the amount
b2 of material Q using y1 grams of S1, y2 grams of S2, y3 grams of S3, and
y4 grams of S4 is:

b2 = 0.2 y1 + 0.04 y2 + 0.018 y3 + 0.02 y4

Similar expressions can be written for computing the amount of materials
R and S needed for the manufacturing of product A.

The system of 4 linear equations that corresponds to this problem can be
expressed by:

0.67 y1 + 0.87 y2 + 0.059 y3 + 0.72 y4 = b1
0.2 y1 + 0.04 y2 + 0.018 y3 + 0.02 y4 = b2

0.078 y1 + 0.0029 y2 + 0.059 y3 + 0.03 y4 = b3
0.135 y1 + 0.0871 y2 + 0.864 y3 + 0.23 y4 = b4.

This system of linear equations is more conveniently expressed in matrix
form in the following manner:
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This can also be expressed in a more compact matrix form as: AY = B.
Matrix A is the coefficients matrix (of the variables yi for i = 1 . . . n). Y is
the vector of unknowns yi, and B is the vector of solution.

The Python program mixmanuf.py solves the problem by solving the sys-
tem of four equations. This provides the solution by computing the values of
vector Y, which are the quantities necessary of substances S1, S2, S3, and S4
that are required to produce 1 gram of product A. The following listing shows
running the program with the Python interpreter.

$ python mixmanuf.py

Mix for Manufacturing Products

Solving the set of linear equations

Matrix A:

[[ 0.67 0.87 0.059 0.72 ]

[ 0.2 0.04 0.018 0.02 ]

[ 0.078 0.0029 0.059 0.03 ]

[ 0.135 0.0871 0.864 0.23 ]]

Vector B:

[ 0.59 0.06 0.037 0.313]

Vector Y:

[ 0.19145029 0.31650837 0.23670601 0.23944495]

18.6 SUMMARY

Computations that involve single numbers are known as scalars. Matrices are
data structures that store collections of data in two dimensions: rows and
columns. To refer to an individual element, two index values are used: one
to indicate the row and the other to indicate the column of the element in
the array. With the Python programming language and the Numpy package,
several functions are available to create and manipulate matrices. Several case
studies are presented that show for each problem, the Python source program
and the output produced by the program execution.
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Key Terms

arrays elements index
matrices array elements Numpy arrays
column vector row vector double-dimension array
matrix operations matrix functions determinant
inverse matrix system of linear equations LU decomposition

18.7 EXERCISES

18.1 Develop a Python program that reads the values of a matrixM ofm rows
and n columns. The program must use Numpy and create a new matrix
that has the same number of rows and columns, from the appropriate
elements in matrix M . Hint: if m < n, then the second matrix would be
an m×m square matrix.

18.2 Develop a computational model that inputs and processes the rainfall
data for the last five years. For every year, four quarters of rainfall are
provided, measured in inches. Hint: use a matrix to store these values.
The attributes are the precipitation (in inches), the year, and the quar-
ter. The program must compute the average, minimum, and maximum
rainfall per year and per quarter (for the last five years). Implement
with Python using a Numpy array.

18.3 Compute the inverse matrix and the determinant of the following ma-
trix:

A =





3.0 5.0 2.0
2.0 3.0 −1.0
1.0 −2.0 −3.0





18.4 A computational model has a mathematical representation as a set of
three linear equations. Develop a Python program that computes the
solution to the following set of linear equations using LU elimination.

3x1 +5x2 +2x3 = 8
2x1 +3x2 −x3 = 1
x1 −2x2 −3x3 = −1

18.5 A computational model has a mathematical representation as a set of
the following linear equations. Develop a Python program that computes
the solution to the following set of linear equations using LU elimination.
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3x1 +4x2 +2x3 −x4 +x5 +7x6 +x7 = 42
2x1 −2x2 +3x3 −4x4 +5x5 +2x6 +8x7 = 32
x1 +2x2 +3x3 +x4 +2x5 +4x6 +6x7 = 12
5x1 +10x2 +4x3 +3x4 +9x5 −2x6 +x7 = −5
3x1 +2x2 −2x3 −4x4 −5x5 −6x6 +7x7 = 10
−2x1 +9x2 +x3 +3x4 −3x5 +5x6 +x7 = 18
x1 −2x2 −8x3 +4x4 +2x5 +4x6 +5x7 = 17





C HA P T E R 19

Introduction to Models of

Dynamical Systems

19.1 INTRODUCTION

Computational models of dynamical systems are used to study the behavior of
systems over time. The foundations for modeling dynamical systems are based
on the mathematical concepts of derivatives, integrals, and differential equa-
tions. Models of dynamical systems use difference and differential equations
to describe the behavior of the systems they represent. This chapter discusses
models of dynamical systems and the computer (numerical) solution to the
corresponding types of equations using Python and Numpy.

A continuous model is one in which the changes of state in the model occur
continuously with time. Often the state variables in the model are represented
as continuous functions of time. For example, a model that represents the
temperature in a boiler as part of a power plant can be considered a continuous
model because the state variable that represents the temperature of the boiler
is implemented as a continuous function of time. These types of models are
usually modeled as a set of differential equations.

19.2 AVERAGE AND INSTANTANEOUS RATE OF CHANGE

A mathematical function defines the relation between two (or more) variables
and this relation is expressed as: y = f(x). In this expression, variable y is a
function of variable x, and x is the independent variable because for a given
value of x, there is a corresponding value of y.

The average rate of change of a variable, y, with respect to a variable, x,
(the independent variable) is defined as the proportion of the change of y,
denoted as ∆y, over a finite interval of x, denoted as ∆x.

The Cartesian plane is used to illustrate the concept of rate of change
of y with respect to x. It consists of two directed lines that perpendicularly
intersect their respective zero points. The horizontal directed line is called

285
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Figure 19.1 The slope of a line.

the x-axis and the vertical directed line is called the y-axis. The point of
intersection of the x-axis and the y-axis is called the origin and is denoted by
the letter O.

The graphical interpretation of the average rate of change of a variable with
respect to another is the slope of a line drawn in the Cartesian plane. The
vertical axis is usually associated with the values of the dependent variable,
y, and the horizontal axis is associated with the values of the independent
variable, x.

Figure 19.1 shows a straight line on the Cartesian plane. Two points on the
line, P1 and P2, are used to compute the slope of the line. Point P1 is defined by
two coordinate values (x1, y1) and point P2 is defined by the coordinate values
(x2, y2). The horizontal distance between the two points, ∆x, is computed by
the difference x2−x1. The vertical distance between the two points is denoted
by ∆y and is computed by the difference y2 − y1.

The slope of the line is the inclination of the line and is computed by
the expression ∆y/∆x, which is the same as the average rate of change of a
variable y over an interval ∆x. Note that the slope of the line is constant, on
any pair of points on the line.

As mentioned previously, if the dependent variable y does not have a linear
relationship with the variable x, then the graph that represents the relation-
ship between y and x is a curve instead of a straight line. The average rate
of change of a variable y with respect to variable x over an interval ∆x, is
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Figure 19.2 Slope of a secant. Figure 19.3 Slope of a tangent.

computed between two points, P1 and P2. The line that connects these two
points is called a secant of the curve. The average rate on that interval is
defined as the slope of that secant. Figure 19.2 shows a secant to the curve at
points P1 and P2.

The instantaneous rate of change of a variable, y, with respect to another
variable, x, is the value of the rate of change of y at a particular value of x.
This is computed as the slope of a line that is tangent to the curve at a point
P .

Figure 19.3 shows a tangent of the curve at point P1. The instantaneous
rate of change at a specified point P1 of a curve can be approximated by
calculating the slope of a secant and using a very small interval, in different
words, choosing ∆x very small. This can be accomplished by selecting a second
point on the curve closer and closer to point P1 (in Figure 19.3), until the
secant almost becomes a tangent to the curve at point P1.

Examples of rate of change are: the average velocity, v̄, computed by
∆y/∆t, and the average acceleration ā, computed by ∆v/∆t. These are de-
fined over a finite time interval, ∆t.

19.3 THE FREE-FALLING OBJECT

A problem is solved by developing a computational model and running the
corresponding program. Developing a computational model generally involves
applying the software development process discussed previously.
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19.3.1 Initial Problem Statement

The problem requires the calculation of the values of the vertical position and
the velocity of a free-falling object as time passes. The solution to this problem
is the calculation of vertical distance traveled and the velocity as the object
approaches the ground. Several relevant questions related to the free-falling
object need to be answered. Some of these are:

1. How does the acceleration of gravity affect the motion of the free-falling
object?

2. How does the height of the free-falling object change with time, while
the object is falling?

3. How does the velocity of the free-falling object change with time, while
the object is falling?

4. How long does the free-falling object take to reach ground level, given
the initial height, y0? This question will not be answered here, it is left
as an exercise.

19.3.2 Analysis

A brief analysis of the problem involves:

1. Understanding the problem. The main goal of the problem is to develop
a model to compute the vertical positions of the object from the point
where it was released and the speed accordingly with changes in time.

2. Finding the relevant concepts and principles on the problem being stud-
ied. Studying the mathematical expressions for representing the vertical
distance traveled and the vertical velocity of the falling object. This
knowledge is essential for developing a mathematical model of the prob-
lem.

3. Listing the limitations and assumptions about the mathematical rela-
tionships found.

19.3.2.1 Assumptions

The main assumption for this problem is that near the surface of the earth,
the acceleration, due to the force of gravity, is constant with value 9.8 m/s2,
which is also 32.15 ft/s2. The second assumption is that the object is released
from rest. The third important assumption is that the frictional drag, due to
resistance of the air, is not considered.
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19.3.2.2 Basic Definitions

The vertical motion of an object is defined in terms of displacement (y),
velocity (v), acceleration (g), and time (t).

A time change, denoted by ∆t, is a finite interval of time defined by the
final time instance minus the initial time instance of the interval of time:
(t2 − t1). A change of displacement is denoted by ∆y, and it represents the
difference in the vertical positions of the object in a finite interval: (y2 − y1).
In a similar manner, a change of velocity is denoted by ∆v, and it represents
the difference in the velocities in a finite interval: (v2 − v1).

The velocity is the rate of change of displacement, and the acceleration
is the rate of change of velocity. The average velocity, denoted by v̄, is the
average rate of change of displacement with respect to time on the interval
∆t. The average acceleration, denoted by ā, is the average rate of change of
the velocity with respect to time on the interval ∆t. These are defined by the
following mathematical expressions:

v̄ =
∆y

∆t
ā =

∆v

∆t

19.3.3 Design

The solution to the problem consists of the mathematical formulas expressing
the vertical displacement and the velocity of the object in terms of the time
since the object was released and began free fall. Note that a general way to
compute the average velocity, v̄, is from the following expression:

v̄ =
v0 + v

2
,

with v0 being the initial velocity and v the final velocity in that interval.

The mathematical model of the solution for a vertical motion of a free-
falling object is considered next. Recall that in this model, the air resistance is
ignored and the vertical acceleration is the constant −g. The vertical position
as the object falls is expressed by the equation:

y = y0 + v0t−
gt2

2
. (19.1)

The velocity of the object at any time is given by the equation:

vy = v0 − gt, (19.2)

where y is the vertical position of the object; t is the value of time; v is
the vertical velocity of the object; v0 is the initial vertical velocity of the
object; and y0 is the initial vertical position of the object. Equation 19.1
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and Equation 19.2 represent the relationships among the variables: vertical
position, vertical velocity, initial velocity, time instant, and initial vertical
position of the object.

Note that in this model, the system state changes continuously with time
and the problem can be expressed completely by a set of mathematical equa-
tions (or expressions).

19.3.4 Implementation

The next step is to implement the mathematical model using a Python pro-
gram. The computational model has the mathematical expression (formula)
for the vertical position, y, and the vertical velocity vy of the object, and
allows arbitrary values given for time t. This really means that the program
will use the equations (Equation 19.1 and Equation 19.2) defined previously.

Listing 19.1 shows the source program in Python and stored in file
ffallobj3.py. Two constants are first declared in lines 9 and 10. The value
for the acceleration of gravity is g, in meters per seconds squared, and the
value of the initial height is y0, in meters. The convention used here is to
name the symbolic constants in upper case.

The initial value of the vertical position is read from input in line 12. The
values of time t of the falling object is computed in line 14. The values of the
vertical position are computed in line 17. The vertical velocity at time t is
computed in lines 22–23. The values of the acceleration are computed in lines
30–31.

Listing 19.1: Python program of free-falling object.

1 # File: ffallobj3.py

2 # Compute height, velocity, and acceleration

3 # of a free-falling object

4 # Compute vertical velocity and acceleration vs time

5 # using finite rates of change

6 # J Garrido, Updated 9-1-2014. CS Department, KSU.

7

8 import numpy as np

9 N = 20 # number of data points

10 g = 9.8 # acceleration of gravity m/sec2

11 print "Free-falling object \n"

12 y0 = input("Type initial vertical pos: ")

13 print "\n Time Vertical Position"

14 tf = np.linspace(0.0, 2.87, N) # values of time

15 dtf = tf[1] - tf[0] # delta t

16 # Compute vertical position of falling object

17 hf = y0 - 0.5 * g * pow(tf,2)

18 for j in range(N):

19 print tf[j], hf[j]
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20 # Compute Vertical velocity

21 # using rates of change

22 dhf = np.diff(hf) # Differences of vertical pos

23 vel = dhf/dtf # velocity

24 print "\n Time, Vertical velocity"

25 for j in range(N-1):

26 #vel[j+1] = dhf[j]/dtf; // rate of change of hf

27 print tf[j+1], vel[j]

28 print "\n Time Acceleration of object"

29 # Compute differences of the vertical velocity

30 dvel = np.diff(vel)

31 accel = dvel/dtf

32 for j in range(N-2):

33 print tf[j+2], accel[j]

The following lines show executing the Python interpreter and executing
program ffallobj3.py.

$ python ffallobj3.py

Free-falling object

Type initial vertical pos: 40.0

Time Vertical Position

0.0 40.0

0.151052631579 39.8881972022

0.302105263158 39.5527888089

0.453157894737 38.9937748199

0.604210526316 38.2111552355

0.755263157895 37.2049300554

0.906315789474 35.9750992798

1.05736842105 34.5216629086

1.20842105263 32.8446209418

1.35947368421 30.9439733795

1.51052631579 28.8197202216

1.66157894737 26.4718614681

1.81263157895 23.9003971191

1.96368421053 21.1053271745

2.11473684211 18.0866516343

2.26578947368 14.8443704986

2.41684210526 11.3784837673

2.56789473684 7.68899144044

2.71894736842 3.77589351801

2.87 -0.36081
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Time, Vertical velocity

0.151052631579 -0.740157894737

0.302105263158 -2.22047368421

0.453157894737 -3.70078947368

0.604210526316 -5.18110526316

0.755263157895 -6.66142105263

0.906315789474 -8.14173684211

1.05736842105 -9.62205263158

1.20842105263 -11.1023684211

1.35947368421 -12.5826842105

1.51052631579 -14.063

1.66157894737 -15.5433157895

1.81263157895 -17.0236315789

1.96368421053 -18.5039473684

2.11473684211 -19.9842631579

2.26578947368 -21.4645789474

2.41684210526 -22.9448947368

2.56789473684 -24.4252105263

2.71894736842 -25.9055263158

2.87 -27.3858421053

To compute the vertical position and velocity of the falling object for
several values of time, the program is made to run several times. Table 19.1
shows most of the values used of the height and the vertical velocity computed
with the values of time shown. This table represents a simple and short set of
results of the original problem.

Table 19.1 Values of height and vertical velocity.

t 0.0 0.5 0.7 1.0 1.2 1.8 2.2 2.5 2.8
y 40.0 38.7 37.6 35.1 32.9 24.12 16.28 9.37 1.58
vy 0.0 −4.9 −6.86 −9.8 −11.7 −17.6 −21.5 −24.5 −27.4

19.4 DERIVATIVE OF A FUNCTION

A mathematical function defines a relationship between two (or more) vari-
ables. A simple relation is expressed as y = f(x). In this expression, variable
y is a function of variable x, which is the independent variable; for a given
value of x there is a corresponding value of y.

The derivative of a function is used to study some relevant properties of
the function, for example, the rate of change. The derivative of a function
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y = f(x) at a particular point is the slope of the tangent line at that point
and can be computed with the value of ∆y/∆x when ∆x is infinitely small.
In mathematics, this is the limit when ∆x approaches zero or ∆x → 0.
A description of a graphical interpretation of the slope of a tangent to a
function at some specified point appears in Section 19.2. This is the rate of
change of y with respect to x. The exact slope, m, of the tangent is expressed
as:

m = lim
∆x→0

∆y

∆x
.

The derivative of a variable y with respect to variable x is expressed as:

dy

dx
= lim

∆x→0

∆y

∆x
.

It is assumed that y is a function of x, expressed as y = f(x), and that y is a
continuous function in an interval of interest. The function f(x) is continuous
in an interval if its limit exists for every value of x in the interval.

The derivative of y with respect to x is the instantaneous rate of change
of y with respect to x and is denoted as:

dy

dx
or y′.

The second derivative of y with respect to x is denoted as:

y′′ or
d2y

dx2
.

The third and higher-order derivatives are similarly denoted. A derivative
of order n is denoted as:

y(n) or
dny

dxn
.

When a variable q is a function of two independent variables, q = f(x, y),
the derivative of q has to be specified with respect to x or with respect to y.
This concept is known as a partial derivative. The partial derivative of q with
respect to x is denoted by δq/δx and the partial derivative of q with respect
to y is denoted by δq/δy.
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19.4.1 Computing the Derivative with Finite Differences

The derivative of a curve given by y = f(x) at some specified point x = c can
be approximated by the use of finite differences. Figure 19.4 shows the curve
given by y = f(x) at point x = c. A finite difference or change of the values of
variable y at x = c is denoted by ∆y = f(c+ h)− f(c) and a finite difference
or change of the values of variable x is denoted by ∆x = h. An approximation
of the derivative of f(x), denoted by f ′(x), at x = c can be computed by:

f ′(x)
∣

∣

x=c
≈ f(c+ h)− f(c)

h
.

This expression is known as the forward difference of f(x) at x = c. A
similar expression allows computing an approximation to the derivative of
f(x) at x = c using the backward difference.

f ′(x)
∣

∣

x=c
≈ f(c)− f(c− h)

h

Another similar expression allows computing an approximation to the
derivative of f(x) at x = c using the central difference.

f ′(x)
∣

∣

x=c
≈ f(c+ h)− f(c− h)

2h

Figure 19.4 The slope of x = c.

The value of h can be chosen smaller and smaller to improve the approxi-
mation of the derivative of f(x) at x = c. Because of roundoff and truncation
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errors, care must be taken in applying the previous expressions of finite dif-
ferences. There are finite difference expressions for higher-order derivatives.
For example, an estimate of the second derivative of f(x) at x = c can be
computed with the central finite difference expression:

f ′′(x)
∣

∣

x=c
≈ f(c+ h)− 2f(c) + f(c− h)

h2
.

19.4.2 Computing the First Derivative Using Python

Listing 19.2 shows the source program deriv1.py that computes the approx-
imations of the derivative values of f(x) = x2 using forward, backward, and
central differences for several values of h.

Listing 19.2: Program that computes the approximation of a derivative.

1 # File: deriv1.py

2 # This program estimates the derivative of the function

3 # f(x) = x^2 at x=2.

4 # The derivative is computed using forward, backward,

and central differences.

5 # J M Garrido. Updated in Python Sep 28, 2014

6

7 def myf (x):

8 return pow (x, 2)

9

10 N = 10 # number of iterations decreasing h

11 h = 0.5 # finite diff interval of x

12 x = 2.0

13 exactv = 2.0 * x # exact value of derivative

14 print "Exact value of derivative: ", exactv

15 print "h, forward diff, backward diff, central diff,

errors"

16 for j in range(N):

17 intf = (myf(x+h) - myf(x)) / h # forward diff

18 intb = (myf(x) - myf(x-h)) / h # backward diff

19 intc = (myf(x+h) - myf(x-h))/(2.0*h) # central diff

20 abserrf = (intf - exactv)/intf

21 abserrb = (intb - exactv)/intb

22 abserrc = (intc - exactv)/intc

23 print "h=", h, "forward=",intf, "error=", abserrf

24 print "h=", h, "backward=", intb, "error=",abserrb

25 print "h=", h, "central=", intc, "error=", abserrc

26 h = h / 5.0

The following listing shows executing the Python interpreter and running
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the program deriv1.py. The best value of the derivative is 4.0000000361
using a value for h near 0.00016 with forward differences. The best value
using central differences appears using h = 0.1

$ python deriv1.py

Exact value of derivative: 4.0

h, forward diff, backward diff, central diff, errors

h= 0.5 forward= 4.5 error= 0.111111111111

h= 0.5 backward= 3.5 error= -0.142857142857

h= 0.5 central= 4.0 error= 0.0

h= 0.1 forward= 4.1 error= 0.0243902439024

h= 0.1 backward= 3.9 error= -0.025641025641

h= 0.1 central= 4.0 error= 2.22044604925e-16

h= 0.02 forward= 4.02 error= 0.00497512437811

h= 0.02 backward= 3.98 error= -0.00502512562814

h= 0.02 central= 4.0 error= 8.881784197e-16

h= 0.004 forward= 4.004 error= 0.000999000998975

h= 0.004 backward= 3.996 error= -0.001001001001

h= 0.004 central= 4.0 error= -1.29896093881e-14

h= 0.0008 forward= 4.0008 error= 0.000199960007783

h= 0.0008 backward= 3.9992 error= -0.000200040008145

h= 0.0008 central= 4.0 error= -1.79523063082e-13

h= 0.00016 forward= 4.00016000001 error= 3.9998401598e-05

h= 0.00016 backward= 3.99984 error= -4.0001600292e-05

h= 0.00016 central= 4.0 error= 6.53033183084e-13

h= 3.2e-05 forward= 4.00003200002 error= 7.99994043779e-06

h= 3.2e-05 backward= 3.999968 error= -8.00006296855e-06

h= 3.2e-05 central= 4.00000000001 error= 2.73470135425e-12

h= 6.4e-06 forward= 4.00000640013 error= 1.60003104617e-06

h= 6.4e-06 backward= 3.99999359996 error= -1.6000133499e-06

h= 6.4e-06 central= 4.00000000005 error= 1.14082077117e-11

h= 1.28e-06 forward= 4.0000012809 error= 3.20223912095e-07

h= 1.28e-06 backward= 3.9999987201 error= -3.19975786555e-07

h= 1.28e-06 central= 4.0000000005 error= 1.24165344657e-10

h= 2.56e-07 forward= 4.00000025463 error= 6.36584084889e-08

h= 2.56e-07 backward= 3.99999974462 error= -6.3843767019e-08

h= 2.56e-07 central= 3.99999999963 error= -9.26752008554e-11

Function scipy.misc.derivative can be used to compute the n-th derivative
of a function at a specified point. The function definition has to be provided,
as shown in the following Python program stored in file tt deriv2.py. The
function and the specified point to compute the derivative is the same as in
the previous program.

1 # File: deriv2.py
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2 # This program estimates the derivative of the function

3 # f(x) = x^2 at x=2. The derivative is computed

4 # calling scipy.misc.derivative.

5 # J M Garrido. Sep 28, 2014

6

7 # import numpy as np

8 import scipy.misc as scder

9

10 def myf (px):

11 return pow (px, 2)

12

13 N = 20 # number of iterations decreasing h

14 h = 0.5 # finite diff interval of x

15 x = 2.0

16 exactv = 2.0 * x # exact value of derivative

17 print "Exact value of derivative: ", exactv

18 y = scder.derivative(myf, x, h)

19 print "Derivative, h, error"

20 for j in range(N):

21 y = scder.derivative(myf, x, h)

22 abserrf = (y - exactv)/y

23 print y, h, abserrf

24 h = h / 2.5

The following listing shows executing the Python interpreter and running
the program deriv2.py.

$ python deriv2.py

Exact value of derivative: 4.0

Derivative, h, error

4.0 0.5 0.0

4.0 0.2 2.22044604925e-16

4.0 0.08 8.881784197e-16

4.0 0.032 8.881784197e-16

4.0 0.0128 -6.10622663544e-15

4.0 0.00512 -1.90958360236e-14

4.0 0.002048 -3.00870439673e-14

4.0 0.0008192 -4.36317648678e-14

4.0 0.00032768 -1.79189996175e-13

4.0 0.000131072 -3.48610029732e-13

4.0 5.24288e-05 7.48290318597e-14

4.0 2.097152e-05 1.13375975275e-12

3.99999999995 8.388608e-06 -1.21010979017e-11

4.00000000015 3.3554432e-06 3.75297570784e-11

3.99999999995 1.34217728e-06 -1.21010979017e-11
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4.00000000086 5.36870912e-07 2.15373718813e-10

4.00000000128 2.147483648e-07 3.18771231532e-10

3.99999999455 8.589934592e-08 -1.36143940751e-09

3.99999998292 3.4359738368e-08 -4.26949621925e-09

4.00000000231 1.37438953472e-08 5.77265124257e-10

19.5 NUMERICAL INTEGRATION

Several methods exist for the approximation of the integration of functions.
The simplest methods are the Trapezoid method and Simpson’s method. A
more advanced method is that of Gauss Quadrature. The integral of function
f(x) is formulated as:

I =

∫ xb

xa

f(x)w(x) dx.

The function w(x) is a weight function of f(x), xa is the lower bound,
and xb is the upper bound of the integration interval. In the practical cases
presented in this chapter, w(x) ≡ 1.

The Scipy and Numpy packages provide several functions that implement
methods for adaptive and non-adaptive integration of general functions, and
some functions with specialized methods for specific cases. In the function
call, the user specifies the absolute and relative error bounds required.

In partitioning the integration interval, the adaptive functions tend to
adjust according to the behavior of the function f(x).

19.5.1 Area under a Curve

A general method for approximating the area under a curve in the interval
x = xa and x = xb is the trapezoid method. It consists of dividing the interval
[xa, xb] into several trapezoids, computing the areas of the trapezoids, and
adding these areas.

A trapezoid is a geometric figure with four sides and only two parallel
opposite sides. The area of a trapezoid with width ∆x = xi+1−xi, is computed
as:

q = ∆x
yi + yi+1

2
.

There are n− 1 equal subintervals, ∆x, in the interval [xa, xb] on variable
x and yi = f(xi). The sum of the areas of the trapezoids is:

A =
k=n−1
∑

k=1

[∆x
1

2
(yk + yk+1)].
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The approximation of the area can be improved with smaller values of the
width (∆x) of the trapezoids. Figure 19.5 shows a segment of a curve divided
into n−1 trapezoids. The area from xa to xb with xa = x1 < x2 < . . . < xn =
xb is:

A =
xb − xa

2n
[y1 + 2y2 + ...+ 2yn−1 + yn].

Figure 19.5 The area under a curve.

19.5.2 Using the Trapezoid Method

Numerical integration consists of approximating the integral of a function in a
given interval. The area under a curve on an interval is the basic concept used
for computing an approximation of the integral of a function. This applies
for functions continuous and nonnegative on the given interval. For functions
that have negative values in a subinterval, the area of this subinterval is given
a negative sign.

The program in Listing 19.3, stored in file trapz1.py, calls the Numpy
function trapz that implements the Trapezoid method to compute an approx-
imate integral of function f(x) = ex in the interval (0.0, 1.0) of x.

Listing 19.3: Python program that computes an integral of f(x) = ex.

1 # File: trapz1.py

2 # This program estimates the integral of the function

3 # f(x) = e^x on the interval (0, 1.0)

4 # The program calls trapz function.
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5 # It start with a small number of trapezoids and

6 # increasing

7 # J M Garrido. Updated in Python Sep 28, 2014

8 import numpy as np

9 def myf (x):

10 return np.exp (x)

11

12 n = 4 # initial number of trapezoids

13 xa = 0.0 # lower bound interval of x

14 xb = 1.0 # upper bound

15 exactint = 1.718282 # exact value of integral

16 print "Compute the integral of f(x) = e^x "

17 print "Exact value of integral: ", exactint

18 while n <= 16500:

19 x = np.linspace(xa, xb, n)

20 y = myf(x)

21 intv = np.trapz(y, x) # compute integral

22 errint = intv - exactint

23 print "n=", n, " integral =", intv, " error =", errint

24 n = n * 2

The following listing shows the execution of the Python interpreter and
running of the program. Note that with n = 64 (number of trapezoids), the
computed approximation is reasonably close to the exact value of the integral,
1.718282.

$ python trapz1.py

Compute the integral of f(x) = e^x

Exact value of integral: 1.718282

n= 4 integral = 1.73416246012 error = 0.0158804601234

n= 8 integral = 1.72120308299 error = 0.00292108298745

n= 16 integral = 1.718918182 error = 0.000636182000449

n= 32 integral = 1.71843082707 error = 0.000148827074113

n= 64 integral = 1.71831790544 error = 3.59054434467e-05

n= 128 integral = 1.71829070626 error = 8.70625707416e-06

n= 256 integral = 1.71828403054 error = 2.0305369488e-06

n= 512 integral = 1.71828237683 error = 3.76826060133e-07

n= 1024 integral = 1.71828196528 error = -3.47170827641e-08

n= 2048 integral = 1.71828186263 error = -1.37368397768e-07

n= 4096 integral = 1.718281837 error = -1.63001986131e-07

n= 8192 integral = 1.71828183059 error = -1.69406733086e-07

n= 16384 integral = 1.71828182899 error = -1.71007461303e-07

The program in file trapz2.py applies a cumulatively integration of y(x)
using the composite trapezoidal rule. Scipy function romb applies Romberg
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integration using samples of a specified function. The program in file romb1.py
applies this method. The following listing shows the result of computing the
same problem.

$ python romb1.py

Compute the integral of f(x) = e^x

Exact value of integral: 1.718282

n= 3 integral = 1.85914091423 error = 0.14085891423

n= 5 integral = 1.71886115188 error = 0.000579151876593

n= 9 integral = 1.71828268792 error = 6.87924757159e-07

n= 17 integral = 1.71828182879 error = -1.71205469801e-07

n= 33 integral = 1.71828182846 error = -1.7154092169e-07

n= 65 integral = 1.71828182846 error = -1.71540954552e-07

n= 129 integral = 1.71828182846 error = -1.71540954996e-07

n= 257 integral = 1.71828182846 error = -1.71540955218e-07

n= 513 integral = 1.71828182846 error = -1.71540955218e-07

19.5.3 Using Adaptive Quadrature

The Scipy function quad applies an adaptive quadrature method for integra-
tion. The first parameter is a reference to the function to integrate, the next
two parameters are the lower and upper bounds of the integration interval.
The quad function returns a tuple with the estimated value of the function
and an upper bound of the error.

The following program is stored in file quad1.py and it computes the
integral of the same function in the previous program. It calls function quad
to compute an estimate of the given function in the specified interval.

1 # File: quad1.py

2 # This program estimates the integral of the function

3 # f(x) = e^x on the interval (0, 1.0)

4 # The program calls function quad.

5 # J M Garrido. Sep 28, 2014

6 import numpy as np

7 import scipy.integrate as scint

8 def myf (x):

9 return np.exp (x)

10

11 xa = 0.0 # lower bound interval of x

12 xb = 1.0 # upper bound

13 exactint = 1.718282 # exact value of integral

14 print "Compute the integral of f(x) = e^x "

15 (intv, errub) = scint.quad(myf, xa, xb) # compute integral

16 errint = intv - exactint

17 print "Upper bound on error: ", errub
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18 print "Exact: ", exactint, " integral =", intv,

" rel error =", errint

The following listing shows the execution of the Python interpreter and
running of program quad1.py.

$ python quad1.py

Compute the integral of f(x) = e^x

Upper bound on error: 1.90767604875e-14

Exact: 1.718282 integral = 1.71828182846

rel error = -1.71540954774e-07

19.6 WORK PRODUCED IN A PISTON WITH AN IDEAL GAS

A piston with gas in its cylinder is a simple thermodynamic system. The
process is isothermal if the temperature is kept constant. A gas confined by a
piston in a cylinder is not heated or cooled, but the piston is slowly moved so
that the gas expands or is compressed.

The temperature is maintained at a constant value by putting the system in
contact with a constant-temperature reservoir (the thermodynamic definition
of a reservoir is something large enough that it can transfer heat into or out
of a system without changing temperature).

The behavior of an ideal gas is the relationship of pressure (P ), volume
(V ), and temperature (T ), and can be summarized in the ideal gas law:

PV = nRT,

where n is the number of moles of gas, and R = 8.314 J / (mol K) is known
as the universal gas constant.

If the volume increases while the temperature is constant, the pressure
must decrease, and if the volume decreases the pressure must increase. The
work produced is due to the gas pressure on the piston. The work can also be
represented per unit mass of fuel and air. Work is simply a force multiplied
by the distance moved in the direction of the force.

For a small displacement, dx, the work is dW .

dW = Fdx = PAdx = PdV

For a finite volume change, work is given by:

W =

∫ v2

v1

P dV.

The python program wpiston.py computes the work produced in a piston
using an ideal gas. The temperature value is 300.0 degrees Kelvin and 1 mole
of gas used. The volume changes applied on the piston are: V 1 = 1.0 to
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V 2 = 7.5 cubic meters. The program calls the Scipy function quad that applies
an adaptive quadrature method for integration. The following listing shows
the results produced after running the program.

$python wpiston.py

Compute the work produced on a piston

Volume limits (cubic meters): 1.0 7.5

Upper bound on error: 4.8116672127e-07

Work produced: 5025.57111384 kJ

19.7 DIFFERENTIAL EQUATIONS

An ordinary differential equation (ODE) is one that includes derivatives of a
function with a single independent variable. For example, the following equa-
tion is a differential equation of order one.

dy

dx
+ 20y − 6x = 23.5

The order of a differential equation is determined by the highest derivative.
The following expression is an example of a differential equation of order two.

y′′ + 20y′x− 3y′y = 12

The general form of a differential equation of order n is expressed in the
following manner:

dnz(t)

dtn
+ a1

dn−1z(t)

dtn−1
+ · · ·+ an−1

dz(t)

dt
+ anz(t) = Q. (19.3)

The solution to a differential equation is an expression for the function
y = f(x). It is convenient when solving a differential equation of a higher
order with numerical methods, to reduce the order of the equation to order
one.

A differential equation of order n can be reduced to n first-order differ-
ential equations. The following variable substitutions are necessary to reduce
Equation (19.3) to a system of n first-order equations:

x1 = z(t), x2 =
dz(t)

dt
, x3 =

d2z(t)

dt2
, . . . , xn =

dn−1z(t)

dtn−1
. (19.4)

Substituting the Equations (19.4) in Equation (19.3), the following first-
order equations result:
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dx1

dt
= x2

dx2

dt
= x3

dx3

dt
= x4

· · ·
dxn

dt
= Q− a1xn − a2xn−1 − · · · − an−1x2 − anx1. (19.5)

19.8 MODELS OF DYNAMICAL SYSTEMS

Models of dynamical systems describe the behavior of systems varying with
time. Differential equations are used to model this behavior as it changes
continuously with time. A model of a dynamical system has two major com-
ponents:

1. the state vector that indicates the current state at a particular time
instance and

2. a set of (linear) differential equations that describe the continuous
change of state.

Figure 19.6 illustrates the high-level view of a dynamical system and in-
cludes the variables used in the modeling: U(t) is the vector of input variables,
Y (t) is the vector of output variables, and X(t) is the vector of state variables.
All these variables are functions of time.

Figure 19.6 High-level view of a dynamical system.

The dynamic behavior of a continuous linear system is described by the
following set of linear differential equations.

ẋ1 = a11x1 + a12x2 + . . .+ a1nxn + b11u1 + b12u2 + · · ·+ b1mum

ẋ2 = a21x1 + a22x2 + . . .+ a2nxn + b21u1 + b22u2 + · · ·+ b2mum

. . .

ẋn = an1x1 + an2x2 + . . .+ annxn + bn1u1 + bn2u2 + · · ·+ bnmum.(19.6)
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19.8.1 State Equations

Equations (19.6) are known as state equations, and are expressed in matrix
form as:

Ẋ = AX +BU. (19.7)

This state equation uses the following matrix definitions:

Ẋ =











ẋ1

ẋ2

...
ẋn











A =











a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 a2m · · · amn











X =











x1
x2
...
xn











B =











b11 b12 · · · b1m
b21 b22 · · · b2m
...

...
. . .

...
bn1 bn2 · · · bnm











U =











u1

u2

...
um











. (19.8)

In the state equations, ẋ denotes dx/dt, A is an m × n matrix, X is a
column vector of size n, Ẋ is a column vector of size n, B is an n×m matrix,
and U is a column vector of size m.

19.8.2 Output Equations

The output equations of a model of a dynamical system are expressed as
follows:

y1 = c11x1 + c12x2 + . . .+ c1nxn + d11u1 + d12u2 + · · ·+ d1mum

y2 = c21x1 + c22x2 + . . .+ c2nxn + c21u1 + d22u2 + · · ·+ d2mum

. . .

yn = ak1x1 + ak2x2 + . . . + aknxn + dk1u1 + dk2u2 + · · · + dkmum.(19.9)

Equation (19.9) can also be written in matrix form as Y = CX +DU , in
which C is an k × m matrix, Y is a column vector of size k, D is an k × m
matrix, and U is a column vector of size m.

In a more compact form, the model of a dynamical system can be expressed
with two matrix equations:
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Ẋ = AX +BU

Y = CX +DU. (19.10)

19.9 FORMULATING SIMPLE EXAMPLES

This section describes the formulation of problems using state variables with
differential equations and applying basic laws of physics.

19.9.1 Free-Falling Object

An object is released from a certain height, h0, and falls freely until it reaches
ground level. The problem is to study the changes in the vertical location of
the object and its velocity as time progresses.

Assume that the mass of the object is m, and the only force applied on
the object is that due to gravity, g. Let x denote the vertical displacement of
the object, that is, its height as a function of time, and v its vertical velocity.
Applying Newton’s law of force, which relates mass, acceleration, and force,
gives the following expression:

−mg = m
d2x

dt2
.

This differential equation of order 2 can be reduced to two first-order
differential equations. Because the velocity is the instantaneous rate of change
of the displacement and the acceleration is the instantaneous rate of change
of the velocity, the two first-order differential equations are:

v =
dx

dt

−mg = m
dv

dt
.

The two state variables are the velocity, v, and the displacement, x. There
is only one input variable, u1, and its value is the constant g. The two state
equations in the form of general state equations in (19.6), are the following:

dx

dt
= 0x+ v + 0

dv

dt
= 0x+ 0v +−g.



Introduction to Models of Dynamical Systems � 307

Following the general matrix and vector form in Equation (19.8), the state
vector X , matrix A, matrix B, and vector U are:

X =

[

x
v

]

A =

[

0 1
0 0

]

B =

[

0
−1

]

U = [g] .

The output equations are:

y1 = x+ 0v

y2 = 0x+ v.

Matrix C and matrix D are:

C =

[

1 0
0 1

]

D =

[

0
0

]

.

19.9.2 Object on Horizontal Surface

A force, F , is applied to an object on a horizontal surface. The resistance of
the surface on the object due to friction is proportional to the velocity of the
object, and its value is −kv. The constant k is the coefficient of friction of
the surface. The horizontal displacement of the object is denoted by x. The
problem is to find the instantaneous change in the displacement of the object.

The dynamic behavior of the object is defined by Newton’s law, and is
expressed as follows:

m
d2x

dt2
= F − kv.

Because the velocity is the instantaneous change of the displacement, and
the acceleration is the instantaneous change in the velocity of the object, the
previous equation is expressed as follows:

v =
dx

dt

m
dv

dt
= F − kv.

For this problem, the two state variables are displacement x, and the ve-
locity v, of the object. The input variable, u1, is the force F . The two state
equations are expressed as follows:
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dx

dt
= 0x+ v + 0

dv

dt
= 0x− kv

m
+ F/m.

In this problem, the state vector X , matrix A, matrix B, and vector U
are:

X =

[

x
v

]

A =

[

0 1
0 −k/m

]

B =

[

0
1/m

]

U = [F ] .

The output equations are:

y1 = x+ 0v

y2 = 0x+ v.

Matrix C and matrix D are:

C =

[

1 0
0 1

]

D =

[

0
0

]

.

19.9.3 Object Moving on an Inclined Surface

A force F is applied to an object on an inclined surface. The elevation angle
is θ. The frictional force that resists movement is proportional to the velocity
of the object. The problem is to derive the change of the displacement and
the velocity of the object on the inclined surface.

Figure 19.7 Object on inclined surface.

The projection of the force of gravity of the object on the inclined surface
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is mg sin θ. As explained in previous problems, applying the law of Newton,
the following equations are derived:

v =
dx

dt

m
dv

dt
= F − kv −mg sin θ.

For this problem, the two state variables are displacement x, and the ve-
locity v, of the object. The input variables are the force F and the acceleration
due to the gravity. The two state equations are expressed as follows:

dx

dt
= 0x+ v + 0

dv

dt
= 0x− kv

m
+ F/m− g sin θ.

In this problem, the state vector X , matrix A, matrix B, and vector U
are:

X =

[

x
v

]

A =

[

0 1
0 −k/m

]

B =

[

0 0
1/m − sin θ

]

U =

[

F
g

]

.

The output equations are:

y1 = x+ 0v

y2 = 0x+ v.

Matrix C, vector Y , and matrix D are:

C =

[

1 0
0 1

]

Y =

[

x
v

]

D =

[

0 0
0 0

]

.

19.10 SOLUTION OF DIFFERENTIAL EQUATIONS

There are many ordinary differential equations (ODEs) that cannot be solved
analytically. Numerical methods are techniques that compute estimates using
software implementations. Euler’s method is the simplest technique for solving
differential equations numerically. With this method, the time step is constant
from one iteration to the next. However, this may not be feasible for many
functions or may result in an inaccurate solution.
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Methods that adjust the time step as the computation proceeds are known
as adaptive methods. The Dormand–Prince pair of Runge–Kutta is one of the
best adaptive methods.

Some general-purpose ODE solvers use a modified Newton iteration
method is used to solve the system of non-linear equations. This is gener-
ally suitable for stiff problems and requires the Jacobian.

In a stiff problem, some methods for solving the equation are numerically
unstable, and the step size is forced to be unacceptably small in a region where
the solution curve is very smooth.

The general structure of a Python program that numerically solves a set
of first-order ordinary differential equations with Scipy has the following se-
quence of parts in its code:

1. Set up the ODE system with the following components: the programmer-
defined function with the right-hand side of the first-order differential
equations to solve, the array of initial conditions of differential equations
to solve, and an array with the values of time to be used for solving the
equations.

2. A call to the Scipy function odeint , the ODE solver. The arguments
to the function call are the reference to the supplied function that de-
fines the system of differential equations to solve; the array of initial
conditions; and the array of time values.

3. Get the solution array and extract from each column the corresponding
variable.

4. Optionally, plot every variable with respect to time.

19.10.1 Model with a Single Differential Equation

This case study is a very simple model represented by only a single first-order
differential equation. The problem consists of numerically solving the following
differential equation:

dy

dt
= αx [1 + sin(ωt)] . (19.11)

This equation is solved with α = 0.015 and ω = 2π/365, an initial value
y(0) = 2, and an interval of t from 0.0 to 365.0.

Listing 19.5 shows the Python program that numerically solves the single
differential equation and it is stored in file tode1.py. The programmer-defined
function dfunc that specifies the differential equation (19.11) is defined in lines
16–18. Function odeint is called in line 33. The function that generates the
plot is called in line 37.

Listing 19.5: Python program that solves a single differential equation.
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Figure 19.8 Case Study 1: Model with single differential equation.

1 # Program: tode1.py

2 # This program solves a single differential equation

3 # dxdt = alpha x [1+ sin(w t)]

4 # J M Garrido, Sep 2014. CS dept, KSU

5 # Uses Scipy odeint ODE function

6 # This program solves the equation

7 # x’(t) - alpha x(t) (1+sin(omega t)) = 0

8 import math as m

9 import numpy as np

10 import matplotlib.pyplot as plt

11 from scipy.integrate import odeint

12

13 alpha = 0.015 # parameter for the diff eq

14 omega = 2.0 * m.pi/365.0 # parameter

15 # dfunct - defines the first order differential equation

16 def dfunc (y, t):

17 f0 = alpha * y[0] * (1+ m.sin (omega*t))

18 return f0

19

20 N = 30 # Number of data points

21 print "This program solves a system with a single

diff equation"
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22 tmin = 0.0 # starting t value

23 tmax = 365.0 # final t value

24 dimension = 1 # number of diff eqs

25 yinit = 2.0 # initial value of x

26 print "Input data: "

27 print " alpha = ", alpha, " omega = ", omega

28 print " Time parameters: ", tmin, tmax

29 print " Number of equations: ", dimension

30 print "\n Time y "

31 t = np.linspace(tmin, tmax, N) # time grid

32 # solve the ODE

33 ysol = odeint(dfunc, yinit, t)

34 yy = ysol[:,0] # extract column 0

35 for j in range (N):

36 print t[j], yy[j]

37 plt.plot(t, yy, linestyle="-", color="black", linewidth=2.0,

label="ODE solution")

38 plt.title(’Numerical Solution’)

39 plt.xlabel(’Time values’)

40 plt.ylabel(’Y values’)

41 # Save figure using 300 dots per inch

42 plt.savefig("tode1p.png",dpi=300)

43 plt.show() # Show on screen

The following listing shows resulting output when the program tode1.py

runs. The result includes an array with the values of time and an array with
the values of y.

$ python tode1.py

This program solves a system with a single diff equation

Input data:

alpha = 0.015 omega = 0.017214206321

Time parameters: 0.0 365.0

Number of equations: 1

Time y

0.0 2.0

12.5862068966 2.46529755215

25.1724137931 3.1622055048

37.7586206897 4.20891786935

50.3448275862 5.78679035902

62.9310344828 8.16884389072

75.5172413793 11.7536287335

. . .
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339.827586207 354.637897137

352.413793103 403.318381344

365.0 477.300923692

Figure 19.8 shows the graph generated with matplotlib of the values of
y with time and is a visual representation of the numerical solution of the
differential equation (19.11).

19.10.2 Model with a System of Differential Equations

Most practical models are represented by a system of two or more first-order
and most often correspond to one or more higher-order differential equations.
For example, consider the following system of linear first-order differential
equations:

dx1

dt
= −x1 − x2

dx2

dt
= x1 − 2x2. (19.12)

These equations can be expressed in the form of state equations and for
this, state vector X and matrix A are:

X =

[

x1
x2

]

A =

[

−1 −1
1 −2

]

. (19.13)

For this problem, matrix B, and vector U are empty. The output equations
are:

y1 = x1 + 0x2

y2 = 0x1 + x2.

Matrix C and vector Y are expressed in the following form:

C =

[

1 0
0 1

]

Y =

[

x1
x2

]

. (19.14)

This system of differential equations can be solved numerically using
Python and Scipy in a similar manner as with the previous case study. The
Python code of the programmer-defined function dfunc that specifies the two
first-order differential equations (19.12) is shown as follows.
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def dfunc (y, t):

# evaluate the right-hand-side at t

f0 = - y[0] - y[1]

f1 = y[0] - 2.0 * y[1]

return [f0, f1]

The initial conditions are set as x1 = 1.0 and x2 = 1.0 at t = 0; the time
span is set for values of t from 0.0 to 5.0. The program that implements the
solution of the model with the two differential equations (19.12) is stored in
file tode2.py. The following portion of code shows how the program solves
the ODE system.

ysol = odeint(dfunc, xinit, t)

x1 = xsol[:, 0] # extract column 0

x2 = xsol[:, 1] # column 1

Figure 19.9 shows the graph generated by matplotlib of the values of vari-
ables t, x1 , and x2 with time, and represents visually the numerical solution
of the differential equations (19.12).

Figure 19.9 Numerical solution to a system of two differential equations.
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19.10.3 Model with Drag Force

An object is released from a specified height, h0, and falls freely until it reaches
ground level. The problem is to formulate and solve a model to study the
changes in the vertical position of the object and its velocity as time progresses.

Figure 19.10 Vertical position of free-falling object.

Assume that the mass of the object is m, and there are two forces applied
on the object: one due to gravity with acceleration g and the second is the drag
force against the direction of movement. Let x denote the vertical displacement
of the object, and v its vertical velocity. The drag force is cv2, in which c is the
drag constant. Applying Newton’s law of force that relates mass, acceleration,
and force, gives the following expression:

−mg + cv2 = m
d2x

dt2.

The vertical velocity is the instantaneous rate of change of the vertical
position and the acceleration is the instantaneous rate of change of the vertical
velocity. The second-order differential equation can be reduced to two first-
order differential equations:

v =
dx

dt

−mg + cv2 = m
dv

dt
.
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The two state variables are the vertical position, x, and the vertical veloc-
ity, v. The two state equations are the following:

dx

dt
= v

dv

dt
= (c/m)v2 − g.

The output equations are:

y1 = x

y2 = v.

Figure 19.11 Vertical velocity of free-falling object.

This problem is solved with the parameters m = 80.0 and c = 0.2; the
acceleration constant G is always 9.8 (m/s2). The Python program that com-
putes the solution to the model of the free-falling object is stored in file
odefall.py. The Python code of the programmer-defined function dfunc that
specifies the two first-order differential equations is shown as follows.

def dfunc (y, t):

# evaluate the right-hand-side at t

f0 = y[1]

f1 = (c/m) * y[1] * y[1] - G

return [f0, f1]
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Figure 19.10 shows the graph of the vertical displacement with time gen-
erated by matplotlib. Observe that after about 10 seconds, the displacement
changes linearly. Figure 19.11 shows the graph of vertical velocity of the object
with time. Observe that the velocity of the object increases negatively at an
exponential rate until about 20 seconds. After this time instant, the velocity
remains constant.

19.10.4 Prey and Predator Model

The prey and predator model helps to study how the population of two animal
species changes over time. The prey (rabbits) population is represented by
x1(t). The predator (wolves) population is represented by x2(t). Without the
predator, the prey population will grow as:

dx1

dt
= ax1, a > 0.

Without the prey, the population of the predator will decrease as:

dx2

dt
= −bx2, b > 0.

Figure 19.12 Population changes of prey and predator.

When the two species live and interact in the same environment, the prey
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population will decline when the predator population increases. This interac-
tion produces additional changes in the population of the two species that are
given by the following state equations:

dx1

dt
= ax1 − cx1x2

dx2

dt
= −bx2 + dx1x2.

In these expressions, a, b, c, and d are constants. The output equations
are:

y1 = x1

y2 = x2.

For a numerical solution, assume a = 0.25, b = 0.12, c = 0.0025, and
d = 0.0013. At the beginning, there are 125 rabbits and 47 wolves, so the
initial conditions for the problem are x1(0) = 125 and x2(0) = 47.

The Python function that defines the evaluation of the two differential
equations is shown in the following listing and the complete Python program
is stored in file predprey.py.

def dfunc (y, t):

# evaluate the right-hand-side at t

f0 = a * y[0] - c * y[0] * y[1]

f1 = - b * y[1] + d * y[0] * y[1]

return [f0, f1]

Figure 19.12 shows the graph of the population changes of the prey and
predator over time. Observe that after about 10 seconds, the displacement
changes linearly. Figure 19.13 shows the phase plot of the two population
changes. Because this shows a closed curve, it implies that the prey and preda-
tor populations follow periodic cycles.
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Figure 19.13 Phase plot of the population changes.

19.11 SUMMARY

Function differentiation and integration are used to better understand the be-
havior of functions that represent relationships in the properties of a system
and are important in formulating computational models. Many systems in
science and engineering can be modeled with ordinary differential equations.
This chapter presented how to implement mathematical models that are for-
mulated with differential equations, and their numerical solutions. Several case
studies were presented and discussed with solutions implemented in Python
with Numpy and Scipy.

Key Terms

functions derivative integrals
rate of change area under a curve finite differences
continuous models dynamical systems state variables
state equations output equations differential equations
initial values Runge–Kutta methods ODE solver

19.12 EXERCISES

19.1 Develop a program that computes the derivate at the point x = 2 of
function f(x) = (5x− 3)2ex . Use finite differences.



320 � Introduction to Computational Models with Python

19.2 Develop a program that uses the Numpy and computes the derivate of
function f(x) = (5x− 3)2ex at the point x = 2.

19.3 An object falls freely, and the vertical position of the object is given
by the expression y(t) = 16t2 + 32t+ 6. Compute the velocity and the
acceleration at various values of time. To solve this problem, develop a
Python program that applies finite differences (central, backward, and
forward).

19.4 An object falls freely, and the vertical position of the object is given
by the expression y(t) = 16t2 + 32t+ 6. Compute the velocity and the
acceleration at various values of time. To solve this problem, develop a
Python program that uses Numpy (or Scipy) and applies finite differ-
ences.

19.5 Develop a program that computes an approximation of the integral of
the function f(x) = x2 in the interval (0.0, 2.0) of x. In the program,
apply the Trapezoid method. Use a value n = 6, then a value n = 20.

19.6 Develop a Python program that uses Numpy and computes an approxi-
mation of the integral of the function f(x) = x2 in the interval (0.0, 2.0)
of x.

19.7 Develop a Python program that implements and solves numerically the
following mathematical model, and generate a graph with matplotlib
using the values of the variables in the numerical solution. Use a time
interval from t = 0 to t = 8.0.

dy

dt
= t+ et/2π cos(2π t)

19.8 This problem presents a simplified model of a water heater. The tem-
perature of the water in a tank is increased by the heating elements and
the temperature varies with time. The differential equation is

cm
dT

dt
= q − hA(T − ts),

where T is the temperature of the water as a function of time, m is the
mass of the water (in Kg), A is the area of the surface of the heater, q is
the constant rate at which the elements produce heat, h is the Newton
cooling coefficient, and ts is the temperature of the surroundings (a
constant). Develop a program that implements and solves numerically
the mathematical model, and generate a graph of the temperature with
time. Use the following values: c = 4175, m = 245, A = 2.85, h = 12.0,
q = 3600, ts = 15. The initial condition is T (0) = 15 and perform
computations over an interval from t = 0.0 to t = 2750.0.
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19.9 Edward N. Lorenz was a pioneer of Chaos Theory; the following simpli-
fied differential equations are known as the Lorenz Equations. Develop
a program that implements and solves numerically the mathematical
model:

dx

dt
= σ(y − x)

dy

dt
= x(ρ− z)

dz

dt
= xy − βz.

Use the following values for the constants σ = 10, β = 8/3, and ρ = 28.
Use initial conditions x(0) = 8, y(0) = 8, and z(0) = 27 and a time
span from t = 0 to t = 20. Draw a plot of the variables in the numerical
solution; first plot z with respect to x, then the three variables with
respect to time. Investigate and plot a three-dimensional plot (x, y, z).

19.10 Develop a program that implements and solves numerically the following
mathematical model:

d2u

dx2
+ ex

dv

dx
+ 3u = e2x

d2v

dx2
+ cos(x)

du

dx
+ u = sin(x).

Use the initial values u(0) = 1, u′(0) = 2, v(0) = 3, and v′(0) = 4. Solve
over the interval from x = 0 to x = 3. Generate a plot of the variables
in the numerical solution.

19.11 Investigate the SIR model for disease spread, which was proposed by W.
O. Kermack and A. G. McKendrick. In this model, three groups of pop-
ulation are considered: S(t) is the population group not yet infected and
is susceptible, I(t) is the population group that has been infected and is
capable of spreading the disease, and R(t) is the population group that
has recovered and is thus immune. The mathematical model consists of
the following differential equations:

ds

dt
= −αsi

di

dt
= αsi− βi

dr

dt
= βi.
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Use the values of the constants α = 1 and β = 0.3. The initial condi-
tions are s = 0.999, i = 0.001, and r = 0.0. Develop a program that
implements and numerically solves the mathematical model and plot
the values of the variables in the numerical solution.
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C HA P T E R 20

Linear Optimization

Modeling

20.1 INTRODUCTION

Mathematical optimization consists of finding the best possible values of vari-
ables from a given set that can maximize or minimize a real function. An
optimization problem can be formulated in such a form that it can be pos-
sible to find an optimal solution; this is known as mathematical modeling
and is used in almost all areas of science, engineering, business, industry, and
defense. The goal of optimization modeling is of formulating a mathematical
model of the system and attempting to optimize some property of the model.
The actual optimization is carried out by executing the computer implemen-
tation of the model. This chapter discusses the general Simplex algorithm and
the formulation of simple linear optimization models.

20.2 GENERAL FORM OF A LINEAR OPTIMIZATION MODEL

The following is a general form of a linear optimization model that is basically
organized in three parts.

1. The objective function, f , to be maximized or minimized, mathemati-
cally expressed as:

f(x1, x2, . . . , xn) = c1x1 + c2x2 + . . .+ cnxn. (20.1)

2. The set of m constraints, which is of the form:

ai,1x1 + ai,2x2 + . . .+ ai,nxn ≤ bi i = 1, . . .m. (20.2)

The other form is:

325
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ai,1x1 + ai,2x2 + . . .+ ai,nxn ≥ bi i = 1, . . .m. (20.3)

3. The sign restriction for variables: xj ≥ 0, or xj ≤ 0, or xj unrestricted
in sign, j = 1, . . . n.

Many problems are formulated with a mix of m constraints with ≤, =, and
≥ forms. Note that the objective function, which is expressed mathematically
in (20.1), and the constraints, which are expressed mathematically in (20.2)
and (20.3), are linear mathematical (algebraic) expressions.

An important assumption included in the general formulation of a linear
optimization problem is that the variables, xi, i = 1, . . . n, take numeric values
that are real or fractional. In the case that one or more variables only take
integer values, then other techniques and algorithms are used. These methods
belong to the class of Integer Linear Optimization or Mixed Integer Optimiza-
tion.

20.3 THE SIMPLEX ALGORITHM

The Simplex algorithm, due to George B. Dantzig, is used to solve linear
optimization problems. It is a tabular solution algorithm and is a powerful
computational procedure that provides fast solutions to relatively large-scale
applications. There are many software implementations of this algorithm, or
variations of it. The basic algorithm is applied to a linear programming prob-
lem that is in standard form, in which all constraints are equations and all
variables non-negative.

20.3.1 Foundations of the Simplex Algorithm

For a given linear optimization problem, a point is the set of values corre-
sponding to one for each decision variable. The feasible region for the problem
is the set of all points that satisfy the constraints and all sign restrictions. If
there are points that are not in the feasible region, they are said to be in an
infeasible region.

The optimal solution to a linear maximization problem is a point in the
feasible region with the largest value of the objective function. In a similar
manner, the optimal solution to a linear minimization problem is a point in
the feasible region with the smallest value of the objective function.

There are four cases to consider in a linear optimization problem.

1. A unique optimal solution

2. An infinite number of optimal solutions

3. No feasible solutions

4. An unbounded solution
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In a linear maximization problem, a constraint is binding at an optimal so-
lution if it holds with equality when the values of the variables are substituted
in the constraint.

20.3.2 Problem Formulation in Standard Form

Because the Simplex algorithm requires the problem to be formulated in stan-
dard form, the general form of the problem must be converted to standard
form.

• For each constraint of ≤ form, a slack variable is defined. For constraint
i, slack variable si is included. Initially, constraint i has the general form:

ai,1x1 + ai,2x2 + . . .+ ai,nxn ≤ bi. (20.4)

To convert constraint i of the general form of the expression in (20.4)
to an equality, slack variable si is added to the constraint, and si ≥ 0.
The constraint will now have the form:

ai,1x1 + ai,2x2 + . . .+ ai,nxn + si = bi. (20.5)

• For each constraint of ≥ form, an excess variable is defined. For con-
straint i, excess variable ei is included. Initially, constraint i has the
general form:

ai,1x1 + ai,2x2 + . . .+ ai,nxn ≥ bi. (20.6)

To convert constraint i of the general form of the expression in (20.6)
to an equality, excess variable ei is subtracted from the constraint, and
ei ≥ 0. The constraint will now have the form:

ai,1x1 + ai,2x2 + . . .+ ai,nxn − ei = bi. (20.7)

Consider the following formulation of a numerical example:

Maximize: 5x1 + 3x2
Subject to:

2x1 + x2 ≤ 40
x1 + 2x2 ≤ 50

x1 ≥ 0
x2 ≥ 0
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After rewriting the objective function and adding two slack variables s1
and s2 to the problem, the transformed problem formulation in standard form
is:

Maximize: z − 5x1 − 3x2 = 0.
Subject to the following constraints:

2x1 + x2 + s1 = 40
x1 + 2x2 + s2 = 50

x1 ≥ 0
x2 ≥ 0
s1 ≤ 0
s2 ≤ 0

20.3.3 Generalized Standard Form

A generalized standard form of a linear optimization problem is:

Maximize (or minimize) f = c1x1 + c2x2 + . . .+ cnxn

Subject to the following constraints:

a1,1x1 + a1,2x2 + . . . + a1,nxn = b1
a2,1x1 + a2,2x2 + . . . + a2,nxn = b2

...
...

...
...

am,1x1 + am,2x2 + . . . + am,nxn = bm

(20.8)

xi ≥ 0, i = 1, 2, . . . , n.

The constraints can be written in matrix form as follows:
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(20.9)

Equation (22.2) can also be written as AX = B, in which A is an m × n
matrix, X is a column vector of size n, and B is a column vector of size m.
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20.3.4 Additional Definitions

To derive a basic solution to Equation (22.2), a set m of variables known as
the basic variables is used to compute a solution. These variables are the ones
left after setting the nonbasic variables, which is the set of n − m variables
chosen and set to zero.

There can be several different basic solutions in a linear optimization prob-
lem. There could be one or more sets of m basic variables for which a basic
solution cannot be derived.

A basic feasible solution to the standard formulation of a linear optimiza-
tion problem is a basic solution in which the variables are non-negative.

The solution to a linear optimization problem is the best basic feasible
solution to AX = B (or Equation (22.2)).

20.4 DESCRIPTION OF THE SIMPLEX ALGORITHM

In addition to transforming the constraints to standard form, the expression
of the objective function must be changed to an equation with zero on its
right-hand side. The general expression:

f = c1x1 + c2x2 + . . .+ cnxn

is changed to

f − c1x1 − c2x2 − . . .− cnxn = 0.

This equation becomes row 0 in the complete set of equations of the prob-
lem formulation. After this transformation, the Simplex method can be used
to solve the linear optimization problem.

20.4.1 General Description of the Simplex Algorithm

The following is a general description of the Simplex algorithm:

1. Find a basic feasible solution to the linear optimization problem; this
solution becomes the initial basic feasible solution.

2. If the current basic feasible solution is the optimal solution, stop.

3. Search for an adjacent basic feasible solution that has a greater (or
smaller) value of the objective function. An adjacent basic feasible so-
lution has m − 1 variables in common with the current basic feasible
solution. This becomes the current basic feasible solution, continue in
step 2.

A linear optimization problem has an unbounded solution if the objective
function can have arbitrarily large values for a maximization problem, or arbi-
trarily small values for a minimization problem. This occurs when a variable
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with a negative coefficient in the objective row (row 0) has a non-positive
coefficient in every constraint.

20.4.2 Detailed Description of the Simplex Algorithm

A shorthand form of the set of equations known as the simplex tableau is
used in the algorithm. Each tableau corresponds to a movement from one
basic variable set BVS (extreme or corner point) to another, making sure that
the objective function improves at each iteration until the optimal solution
is reached. The following sequence of steps describes the application of the
simplex solution algorithm:

1. Convert the LP to the following form:

(a) Convert the minimization problem into a maximization one.

(b) All variables must be non-negative.

(c) All RHS values must be non-negative.

(d) All constraints must be inequalities of the form ≤.

2. Convert all constraints to equalities by adding a slack variable for each
constraint.

3. Construct the initial simplex tableau with all slack variables in the basic
variable set (BVS). The row 0 in the table contains the coefficient of the
objective function.

4. Determine whether the current tableau is optimal. That is: If all RHS
values are non-negative (called, the feasibility condition) and if all ele-
ments of the row 0 are non-positive (called, the optimality condition).
If the answers to both questions are Yes, then stop. The current tableau
contains an optimal solution. Otherwise, continue.

5. If the current basic variable set (BVS) is not optimal, determine which
nonbasic variable should become a basic variable and which basic vari-
able should become a nonbasic variable. To find the new BVS with the
better objective function value, perform the following tasks:

(a) Identify the entering variable: The entering variable is the one with
the largest positive coefficient value in row 0. (In case of a tie, the
variable that corresponds to the leftmost of the columns is selected).

(b) Identify the outgoing variable: The outgoing variable is the one
with smallest non-negative column ratio (to find the column ratios,
divide the RHS column by the entering variable column, wherever
possible). In case of a tie, the variable that corresponds to the
upmost of the tied rows is selected.
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(c) Generate the new tableau: Perform the Gauss–Jordan pivoting op-
eration to convert the entering column to an identity column vector
(including the element in row 0).

6. Go to step 4.

At the start of the simplex procedure, the set of basis is constituted by
the slack variables. The first BVS has only slack variables in it. The row 0
presents the increase in the value of the objective function that will result if
one unit of the variable corresponding to the jth column was brought in the
basis. This row is sometimes known as the indicator row because it indicates
if the optimality condition is satisfied.

Criterion for entering a new variable into the BVS will cause the largest
per-unit improvement of the objective function. Criterion for removing a vari-
able from the current BVS maintains feasibility (making sure that the new
RHS, after pivoting, remain non-negative). Warning: Whenever during the
Simplex iterations you get a negative RHS, it means you have selected a
wrong outgoing variable.

Note that there is a solution corresponding to each simplex tableau. The
numerical of basic variables are the RHS values, while the other variables
(non-basic variables) are always equal to zero. Note also that variables can
exit and enter the basis repeatedly during the simplex algorithm.

20.4.3 Degeneracy and Convergence

A linear optimization problem (LP) is degenerate if the algorithm loops end-
lessly, cycling among a set of feasible basic solutions and never gets to the
optimal solution. In this case, the algorithm will not converge to an optimal
solution. Most software implementations of the Simplex algorithm will check
for this type of non-terminating loop.

20.4.4 Two-Phase Method

The Simplex algorithm requires a starting basic feasible solution. The two-
phase method can find a starting basic feasible solution whenever it exists.
The two-phase simplex method proceeds in two phases, phase I and phase II.
Phase I attempts to find an initial basic feasible solution. Once an initial basic
feasible solution has been found, phase II is then applied to find an optimal
solution to the original objective function.

The simplex method iterates through the set of basic solutions (feasible in
phase II) of the LP problem. Each basic solution is characterized by the set
of m basic variables xB1, . . . , xBm. The other n variables are called nonbasic
variables and denoted by xN1, . . . , xNn.
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20.5 FORMULATION OF LINEAR OPTIMIZATION MODELS

The formulating of a problem for linear constrained optimization is also known
as linear optimization modeling or the mathematical modeling of a linear opti-
mization problem (LP). Linear optimization modeling consists of four general
steps, and these are as follows:

1. Identify a linear function, known as the objective function, to be max-
imized or minimized. This function is expressed as a linear function of
the decision variables.

2. Identify the decision variables and assign to them symbolic names, x, y,
etc. These decision variables are those whose values are to be computed.

3. Identify the set of constraints and express them as linear equations and
inequations in terms of the decision variables. These constraints are
derived from the given conditions.

4. Include the restrictions on the non-negative values of decision variables.

The objective function, f , to be maximized or minimized is expressed by:

f(x1, x2, . . . , xn) = c1x1 + c2x2 + . . .+ cnxn. (20.10)

The set of m constraints are expressed in the form:

ai,1x1 + ai,2x2 + . . .+ ai,nxn ≤ bi i = 1, . . .m. (20.11)

Or, of the form:

ai,1x1 + ai,2x2 + . . .+ ai,nxn ≥ bi i = 1, . . .m. (20.12)

The sign restrictions for variables are denoted by xj ≥ 0, or xj ≤ 0, or xj
unrestricted in sign, j = 1, . . . n. Many problems are formulated with a mixed
of m constraints with ≤, =, and ≥ forms.

20.6 EXAMPLE PROBLEMS

There are many real and practical problems to which the linear optimiza-
tion modeling may be applied. The following examples, although very simple
because they use only two variables, help to illustrate the general method
involved in linear optimization modeling.
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20.6.1 Case Study 1

An industrial chemical plant produces two products, A and B. The market
price for a pound of A is $12.75, and that of B is $15.25. Each pound of
substance A produced requires 0.25 lbs of material P and 0.125 lbs of material
Q. Each pound of substance B produced requires 0.15 lbs of material P and
0.35 lbs of material Q. The amounts of materials available in a week are 21.85
lbs of material P and 29.5 lbs of material Q. Management estimates that at
the most, 18.5 pounds of substance A can be sold in a week. The goal of this
problem is to compute the amounts of substance A and B to manufacture in
order to optimize sales.

20.6.1.1 Understanding the Problem

For easy understanding and for deriving the mathematical formulation of the
problem, the data given are represented in a table as follows. As stated previ-
ously, the main resource required in the production of the chemical substances
A and B are the amounts of material of type P and Q.

Material Available Substance Substance
of type A of type B

P 21.85 0.250 0.15
Q 29.50 0.125 0.35

20.6.1.2 Mathematical Formulation

Let x1 denote the amount of substance (lbs) of type A to be produced, and
x2 denote the amount of substance (lbs) of type B to be produced. The total
sales is 12.75x1 + 15.25x2 (to be maximized). The objective function of the
linear optimization model formulation of the given problem is:

Maximize S = 12.75x1 + 15.25x2
Subject to the constraints:

0.25x1 + 0.15x2 ≤ 21.85
0.125x1 + 0.35x2 ≤ 29.5

x1 ≤ 18.5
x1 ≥ 0
x2 ≥ 0

20.6.2 Case Study 2

A manufacturer of toys produces two types of toys: X and Y. In the production
of these toys, the main resource required is machine time and three machines
are used: M1, M2, and M3. The machine time required to produce a toy of
type X is 4.5 hours of machine M1, 6.45 hours of machine M2, and 10.85 hours
of machine M3. The machine time required to produce a toy of type Y is 7.25
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hours of machine M1, 3.65 hours of machine M2, and 4.85 hours of machine
M3. The maximum available machine time for the machines M1, M2, M3 are
415, 292, and 420 hours, respectively. A toy of type X gives a profit of 4.75
dollars, and a toy of type Y gives a profit of 3.55 dollars. Find the number of
toys of each type that should be produced to get maximum profit.

20.6.2.1 Understanding the Problem

For easy understanding and for deriving the mathematical formulation of the
problem, the data given are represented in a table as follows. As stated pre-
viously, the main resource required in the production of toys is machine time
of machines M1, M2, and M3.

Machine Total time Req time Req time
available toy type X toy type Y

M1 415 4.5 7.25

M2 292 6.45 3.64
M3 420 10.85 4.85

20.6.2.2 Mathematical Formulation

Let x denote the number of toys of type X to be produced, and y denote the
number of toys of the type Y to be produced. The total profit is = 4.75x+3.55y
(to be maximized). The objective function of the linear optimization model
formulation of the given problem is:

Maximize: P = 4.75x+ 3.55y
Subject to the constraints:

4.5x+ 7.25y ≤ 415
6.45x+ 3.65y ≤ 292
10.85x+ 4.85y ≤ 420

x ≥ 0
y ≥ 0

20.6.3 Case Study 3

A person needs to follow a diet that has at least 5, 045 units of carbohydrates,
450.75 units of fat, and 325.15 units of protein. Two types of food are available:
P and Q. A unit of food of type P costs 2.55 dollars and a unit of food of
type Q costs 3.55 dollars. A unit of food of type P contains 9.75 units of
carbohydrates, 18.15 units of fat, and 13.95 units of protein. A unit of food
type Q contains 22.95 units of carbohydrates, 12.15 units of fat, and 18.85
units of protein. A mathematical linear model is needed to find the minimum
cost for a diet that consists of a mixture of the two types of food and that
meets the minimum diet requirements.
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20.6.3.1 Understanding the Problem

For easy understanding and for deriving the mathematical formulation of the
problem, the data given is represented in a table. For each type of food, the
data include the cost per unit of food, and the contents, carbohydrates, fat,
and proteins. The data for the diet problem is represented as follows:

Food type Cost Carbohydrates Fat Protein

P 2.55 9.75 18.15 13.95

Q 3.55 22.95 12.15 18.85

20.6.3.2 Mathematical Formulation

Let x1 denote the amount of units of food type P and x2 the units of food
type Q contained in the diet. The total cost of the diet is 2.55x1 + 3.55x2.
As stated previously, the main limitation is the lower bound requirement of
carbohydrates, fat, and proteins. The combination of units of type P and of
type Q should have the minimum specified units of carbohydrates, fat, and
proteins. The objective function of linear optimization model formulation of
the given diet problem is:

Minimize: C = 2.55x1 + 3.55x2

Subject to the following constraints:

9.75x1 + 22.95x2 ≥ 5045
18.15x1 + 12.15x2 ≥ 450.75
13.95x1 + 18.85x2 ≥ 325.15

x1 ≥ 0
x2 ≥ 0

20.6.4 Case Study 4

The owners of a farm acquired a loan of $16, 850.00 to produce three types
of crops—corn, barley, and wheat—on 140 acres of land. An acre of land can
produce an average of 135 bushels of corn, 45 of barley, or 100 bushels of
wheat. The net profit per bushel of barley is $3.05, for corn is $1.70, and for
wheat is $2.25. After the harvest, these crops must be stored in relatively large
containers. At present, the farm can store 3895 bushels. The total expenses to
plant an acre of land are $95.00 for corn, $205.00 for barley, and $115.00 for
wheat. What amount of land should the farm plan to dedicate to each crop
in order to optimize profit?

20.6.4.1 Understanding the Problem

As in previous case studies, the data given are represented in a table for easy
understanding and for deriving the mathematical formulation of the problem.
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There are three types of resources that will impose constraints on the problem
formulation: the total storage capacity of the farm for the crops, the total
available funds, and the total amount of land. The data for this problem is
represented as follows:

Resource Total Corn Barley Wheat

Storage (bushels) 3895 135 45 100
Funds ($) 16, 850.00 95.00 205.00 115.00

Land (acres) 140 x1 x2 x3

20.6.4.2 Mathematical Formulation

Let x1 denote the amount of land in acres allotted to corn, x2 the amount of
land allotted to barley, and x3 the amount of land dedicated to wheat. This
problem is to optimize profit. The total net profit is denoted by P and for
each crop it consists of net profit per bushel times the number of bushels per
acre, times the number of acres to plant. The constraints are derived from the
resource limitations of the problem. The arithmetic expression for P is given
by:

P = 135× 1.70× x1 + 45× 3.05× x2 + 100× 2.25× x3.

The objective function of the linear optimization formulation of the given
problem is:

Maximize: P = 229.5x1 + 137.25x2 + 225.00x3

Subject to the following constraints:

135x1 +45x2 +100x3 ≤ 3895
95x1 +205x2 +115x3 ≤ 16850.00
x1 +x2 +x3 ≤ 140

x1 ≥ 0
x2 ≥ 0
x3 ≥ 0

20.7 SUMMARY

Linear optimization modeling consists of formulating a mathematical linear
model that includes the linear function to be optimized (maximized or mini-
mized), a set of decision variables, and a set of constraints. The computational
models of this type are also known as Linear Programming Models. The ac-
tual solution of linear optimization problems is performed by software tools
known as LP solvers. The Simplex algorithm and its derivatives are discussed
in some detail.
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Key Terms

Simplex algorithm two-phase method standard form
feasible region optimal solution slack variables
excess variables basic variables convergence
feasible region simplex tableau degeneracy
linear optimization decision variables constraints
linear programming linear problems problem formulation
sign restriction objective function technological coefficient

20.8 EXERCISES

20.1 A factory produces three types of bed, A, B, and C. The company that
owns the factory sells beds of type A for $250.00 each, beds of type
B for $320.00 each, and beds of type C for $625.00 each. Management
estimates that all beds produced of types A and C will be sold. The
number of beds of type B that can be sold is at most 45. The production
of different types of bed requires different amounts of resources such as
basic labor hours, specialized hours, and materials. The following table
provides these data.

Type A Type B Type C Resource

10 ft. 60ft. 80 ft. Material
15 h 20 h 40 h Basic labor
5 h 15 h 20 h Specialized labor

The amounts of resources available are 450 ft of material, 210 hours of
basic labor, and 95 hours of specialized labor. The problem is to optimize
profit. Write the formulation of the mathematical optimization problem.

20.2 An automobile factory needs to have a different number of employees
working for every day of the week. Each employee has to work 5 consec-
utive days a week and have two days of rest. The following are the re-
quirements of the factory: Monday needs 330 employees, Tuesday needs
270 employees, Wednesday needs 300 employees, Thursday needs 390
employees, Friday needs 285 employees, Saturday needs 315 employees,
and Sunday needs 225 employees. To improve profitability, the factory
is required to optimize the number of employees. (Hint: the key decision
is how many employees begin work on each day. Employees who begin
work on Monday are those who do not begin on Tuesday or Wednesday).
Write the formulation of the mathematical optimization problem.
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20.3 Consider the problem in Exercise 20.2 with the following changes: the
problem is to optimize the labor costs of the auto factory based on
amount of labor time in hours worked by employees. Full-time employees
work 8 hours per day and cost the factory $12.50 per hour. Part-time
employees work 4 hours a day and cost $8.50 per hour. The total amount
of part-time labor should be at most 30% of total labor time. Write the
formulation of the mathematical optimization problem.

20.4 A factory manufactures 5 different products: P1, P2, P3, P4, and P5. The
factory needs to maximize profit. Each product requires machine time
on three different devices, A, B, and C, each of which is available 135
hours per week. The following table provides the data (machine time in
minutes):

Device Device Device
Product A B C

P1 20 15 8
P2 13 17 12
P3 15 7 11
P4 16 4 7
P5 18 14 6

The unit sale price for products P1, P2, and P3 is $7.50, $6.00, and $8.25,
respectively. The first 26 units of P4 and P5 have a sale price of $5.85
each, and all excess units have a sale price of $4.50 each. The operational
costs of devices A and B are $5.25 per hour, and $5.85 for device C. The
cost of materials for products P1 and P4 are $2.75. For products P2, P3,
and P5 the materials cost is $2.25. Hint: assume that xi, i = 1 . . . 5 are
the number of units produced of the various products and use two new
variables y4 and y5 for the units produced of P4 and P5, respectively,
in excess of 26. Write the formulation of the mathematical optimization
problem.

20.5 A company produces a certain number of products and distributes these
to various customer distribution centers that request specified numbers
of units of the product. There are two production facilities P1 and P2.
There are three storage facilities, S1, S2, and S3. The company also
has four distribution centers, D1, D2, D3, and D4. This problem can
be represented as a network in which there is a cost per unit to ship
products from a production facility to a storage facility, and from a
storage facility to a distribution center. The problem must optimize the
cost of distribution of the products. The following table provides the
costs per unit shipped from a source node to a destination node.



Linear Optimization Modeling � 339

Source S1 S2 S3 D1 D2 D3 D4

node

P1 4 6 0 0 0 0 0
P2 10 4 7 0 0 0 0
S1 0 0 0 17 20 0 0
S2 0 0 0 20 15 25 0
S3 0 0 0 0 30 18 11





C HA P T E R 21

Solving Linear

Optimization Models

21.1 INTRODUCTION

This chapter presents the general principles and the basic concepts of nu-
merical solution to linear optimization models that represent real problems.
Several case studies are presented using the modeling capabilities of several
software packages using Python, which use an underlying software solver such
as GLPK.

21.2 LINEAR OPTIMIZATION MODELS WITH PYTHON

Python is a very good language used to model linear optimization problems.
Two important Python features facilitate this modeling:

• The syntax of Python is very clean and it lends itself to naturally adapt
to expressing (linear) mathematical programming models.

• Python has the built-in data structures necessary to build and manipu-
late models.

Python uses a linear optimization solver, such as GLPK, to compute the
actual optimization. Therefore, with Python there will always be an underly-
ing efficient linear optimization solver.

Several Python libraries or packages are available for modeling linear op-
timization problems. Some of the best known are:

• Pyomo - Coopr

• Pulp

• PyGLPK

341
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• PyLPSolve

• PyMathProg

• PyCplex

21.3 MODELING WITH PYOMO

The Python Optimization Modeling Objects, also known as Pyomo, is a soft-
ware package that supports the formulation and analysis of mathematical
models for complex optimization applications. A linear optimization model
in Pyomo is comprised of modeling components that define different aspects
of the model. Pyomo uses index sets, symbolic parameters that are used to
specify decision variables, objective functions, and constraints. Two types of
models can be specified with Pyomo:

1. A concrete model, in which the problem data is embedded in the math-
ematical model itself.

2. An abstract model, in which the problem data is separated from the
symbolic (mathematical) model.

A concrete model is generally more convenient for simple and relatively
small problems. An abstract model is more appropriate for larger problems,
which often have larger data sets.

21.3.1 Formulating Case Study 1

The following listing includes the model of Case Study 1 (previous chap-
ter) using Pyomo. Note that this is a concrete model and is stored in file
casestud1.py. The problem data is specified in lines 13–34 using Python
lists and dictionaries. The model decision variables are declared in line 60
with Pyomo class Var. The variables are indexed by list Products and the
values are limited to be non-negative reals.

The objective function is specified in lines 63–65 with Pyomo class Ob-
jective. The decision variables and the dictionary MPrice are indexed by list
Products.

This model has two types of constraints. The first type is the material
constraints, which are generated for every material type in the model. The
second type of constraint is the production constraints, for which only one
constraint is generated.

Constraints are generated with Pyomo class Constraint and indicated the
appropriate expression. Lines 68–73 define a constraint function with param-
eter p that is used in line 76 to specify one constraint for each material type.
This statement generates the constraints indexed by list Materials. The pro-
duction constraint is specified in line 80.
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1 """

2 Case Study 1 Python Formulation for the Pyomo Modeler

3 An industrial chemical plant produces substances A and B

4 The company needs to optimize the amount of A and B to

5 maximize sales. Concrete model.

6 J M Garrido, September 2014. Usage: pyomo casestud1.py

7 """

8 print

9 print "Case Study 1: Chemical Plant Production"

10 # Import

11 from coopr.pyomo import *

12

13 # Data for Linear Optimization Problem

14 N = 2 # number of products

15 Products = range(1, N+1) # list of indices for decision var

16 IndxProd = 1 # index of product with limit

17 ProdLimit = 18.5 # limit of product 1 (pounds)

18 numprod = range(N)

19

20 Price = [12.75, 15.25] # price per pound for each product

21 MPrice = {Products[i] : Price[i] for i in numprod}

22

23 M = 2 # M: number of types of material

24 Material = range(1, M+1) # list of indices for materials

25 nummat = range(M)

26

27 #Capacity of available material (pounds)

28 CapMat = [21.85, 29.5]

29 AvailMat = {Material[i] : CapMat[i] for i in nummat}

30

31 # requirement of materials for every pound of product

32 MatReq = [[0.25, 0.125],

33 [0.15, 0.350]]

34 RequireMat = {(Products[i], Material[j]) : MatReq[i][j] for j in

nummat for i in numprod}

35

36 #Print Data

37 print

38 print "Price (per pound) of product: "

39 for i in numprod:

40 print "Product",Products[i], ":", MPrice[Products[i]]

41 print "Product 1 limit: ", ProdLimit

42 print

43 print "Available Material:"

44 for j in nummat:
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45 print "Material",Material[j], ":", AvailMat[Material[j]]

46 print

47 print "Requirements of Material "

48 for i in numprod:

49 for j in nummat:

50 print "Product",Products[i], "-", "Material",Material[j],

":", MatReq[i][j]

51 print

52

53 #Concrete Model

54 model = ConcreteModel()

55

56 #Decision Variables

57 # The 2 variables x1, x2 are created with a lower limit of zero

58 # x1 is the amount of product 1 to produce

59 # x2 is the amount of product 2 to produce

60 model.Prod = Var(Products, within=NonNegativeReals)

61

62 # The objective function

63 model.obj = Objective(expr=

64 sum(MPrice[i] * model.Prod[i] for i in Products),

65 sense = maximize)

66

67 # Capacity Constraints

68 def CapacityRule(model, p):

69 """

70 This function has the Pyomo model as the first positional

parameter,

71 and a material requirement index as a second positional

parameter

72 """

73 return sum(RequireMat[i,p] * model.Prod[i] for i in Products)

<= AvailMat[p]

74

75 # Generate one constraint for each material type

76 model.Capacity = Constraint(Material, rule = CapacityRule)

77

78 # Production Constraint

79 # Limit of production for Products[0]

80 model.ProdRestriction = Constraint(expr=model.Prod[IndxProd]

<= ProdLimit)

The command line that runs this linear optimization model with Pyomo
and the results are shown in the following listing. The first part displays the
values of the input data for verification purposes and some messages about
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solving the optimization problem. In the second part of the output, the So-
lution Summary is displayed. The value computed of the decision variables
(Prod) at the optimal point are 18.6 and 77.67867. The optimal value of the
objective function is 1420.47321429.

$ pyomo casestud1.py --summary

[ 0.00] Setting up Pyomo environment

[ 0.00] Applying Pyomo preprocessing actions

Case Study 1: Chemical Plant Production

Price (per pound) of product:

Product 1 : 12.75

Product 2 : 15.25

Product 1 limit: 18.5

Available Material:

Material 1 : 21.85

Material 2 : 29.5

Requirements of Material

Product 1 - Material 1 : 0.25

Product 1 - Material 2 : 0.125

Product 2 - Material 1 : 0.15

Product 2 - Material 2 : 0.35

[ 0.01] Creating model

[ 0.01] Applying solver

[ 0.05] Processing results

Number of solutions: 1

Solution Information

Gap: 0.0

Status: feasible

Function Value: 1420.47321429

Solver results file: results.json

==========================================================

Solution Summary

==========================================================

Model Chemical Plant Production

Variables:

Prod : Size=2, Index=Prod_index, Domain=NonNegativeReals

Key : Lower : Value : Upper : Initial : Fixed : Stale
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1 : 0 : 18.5 : None : None : False : False

2 : 0 : 77.6785714286 : None : None : False : False

Objectives:

obj : Size=1, Index=None, Active=True

Key : Active : Value

None : True : 1420.47321429

Constraints:

Capacity : Size=2

Key : Lower : Body : Upper

1 : None : 16.2767857143 : 21.85

2 : None : 29.5 : 29.5

ProdRestriction : Size=1

Key : Lower : Body : Upper

None : None : 18.5 : 18.5

[ 0.06] Applying Pyomo postprocessing actions

[ 0.06] Pyomo Finished

21.3.2 An Abstract Model Case Study 1

As mentioned previously, in an abstract model the data are separated from the
mathematical model. The abstract data structures in the model are declared
as parameters and sets and the actual data values are given in a data file. So
essentially two files are used when invoking Pyomo, the file with the symbolic
model and the file with the data values.

The following list shows the abstract model in file casestud1abs.py. In
this model, the first important line is the declaration of the abstract model
and this appears in line 13.

In line 16, a parameter is declared with name m that corresponds to the
number of types of products and it is constrained to be a non-negative integer.
Parameter n is similarly in line 21 and corresponds to the number of types of
materials.

Parameter m is used in line 19 to declare a set with name Products that
will be used to index parameters MPrice (line 31), RequireMat (line 37), and
to index the decision variables Prod in line 44 .

Parameter n is similarly used to declare a set with name Material in line
23 that will be used to index parameters AvailMat in line 34, RequireMat in
line 37, and the material capacity constraints in line 60.

1 """

2 Case Study 1 Python Formulation for the Pyomo Modeler

3 An industrial chemical plant produces substances A and B
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4 The company needs to optimize the amount of A and B to

5 maximize sales. Abstract model.

6 J M Garrido, September 2014

7 usage: pyomo casestud1abs.py casestud1.dat --summary

8 """

9 # Linear Optimization Problem

10 print

11 print "Case Study 1: Chemical Plant Production"

12 from coopr.pyomo import *

13

14 model = AbstractModel()

15

16 model.m = Param(within=NonNegativeIntegers) # Number products

17

18 # Set of indices of Types of items produced

19 model.Products = RangeSet(1, model.m)

20

21 model.n = Param(within=NonNegativeIntegers) # Number materials

22 # Set of indices of Types of Substances required in production

23 model.Material = RangeSet(1, model.n)

24

25 # Limit of product 1

26 model.ProdLimit = Param(within=PositiveReals)

27 # Index for type of individual material with limit

28 model.K = Param(within=NonNegativeIntegers)

29 model.IndxProd = RangeSet(model.K, model.K)

30

31 model.MPrice = Param(model.Products, within=PositiveReals)

32

33 #Available material

34 model.AvailMat = Param(model.Material, within=PositiveReals)

35

36 # requirement of materials for every pound of product

37 model.RequireMat = Param(model.Products, model.Material)

38

39 #Decision Variables

40 # The 2 variables x1, x2 are created with a lower limit of zero

41 # x1 is the amount of product 1 to produce

42 # x2 is the amount of product 2 to produce

43

44 model.Prod = Var(model.Products, domain=NonNegativeReals)

45

46 # The objective function

47 def objective_expr(model):

48 return summation(model.MPrice, model.Prod)
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49 model.obj = Objective(rule=objective_expr, sense = maximize)

50

51 # Material Capacity Constraints

52 def CapacityF(model,p):

53 """

54 This function for material constraint, the pyomo model as

55 the first positional parameter, and a material requirement index

56 as the second positional parameter.

57 """

58 return sum(

model.RequireMat[i,p] * model.Prod[i] for i in model.Products)

<= model.AvailMat[p]

59 # Generate one constraint for each material

60 model.Capacity = Constraint(model.Material, rule=CapacityF)

61

62 # Production Constraint - Limit of production for Product 1

63 def ProductLimit(model, i):

64 return (model.Prod[i] <= model.ProdLimit)

65 model.ProdRestriction = Constraint(model.IndxProd,

rule=ProductLimit)

The data for the linear optimization model of Case Study 1 is stored in
file casestud1.dat and is shown in the following listing.

# Data file: casestud1.dat. Case Study 1: Chemical Plant Production

param m := 2; # Number of types of products

param n := 2; # Number of types of materials

# Limit of production of (first) product

param ProdLimit := 18.5 ;

# Index of (first) product with production limit

param K := 1 ;

# Market Price of every pound of product

param MPrice := 1 12.75

2 15.25

;

# Available material, amount of every material

param AvailMat := 1 21.85

2 29.5

;
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# Amount of material required for producing each pound of product

# One product per row (product, material, material_amount)

param RequireMat := 1 1 0.25 1 2 0.125

2 1 0.15 2 2 0.350

;

The other three case studies are formulated as concrete models with Pyomo
and are stored in files casestud2.py, casestud3.py, and casestud4.py. In
addition to these case studies, several sample models are included in the pyomo
directory.

21.4 MODELING WITH PULP

Pulp is another good modeler for linear optimization models and is written
in Python. The general setup of the problem model is similar to Pyomo. It is
convenient to use Python lists and dictionaries for the problem data.

The following listing contains the model specification for Case Study 1 and
is stored in file casestud1b.py. A simplified model of this problem is stored
in file casestud1.py and several additional models are stored in the directory
pulp models.

1 """

2 Case Study 1 Python Formulation for the PuLP Modeller

3 An industrial chemical plant produces substances A and B

4 J M Garrido, September 2014

5 Usage: python casestud1b.py

6 """

7

8 # Import PuLP modeler functions

9 from pulp import *

10

11 N = 2 # number of product types

12 Products = range(1, N+1) # list of products

13 IndxProd = 1 # product with production limit

14 ProdLimit = 18.5

15 numprod = range(N) # index list of product types

16

17 Price = [12.75, 15.25] # price per pound for each product

18 MPrice = {Products[i] : Price[i] for i in numprod}

19

20 M = 2 # number of material types

21 Materials = range(1, M+1) # list material types

22 nummat = range(M) # index list of materials

23

24 #Capacity of available material (pounds)
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25 CapMat = [21.85, 29.5]

26 AvailMat = {Materials[i] : CapMat[i] for i in nummat}

27

28 # requirement of materials for every pound of product

29 MatReq = [[0.25, 0.125],

30 [0.15, 0.350]]

31 RequireMat = {(Products[i], Materials[j]) : MatReq[i][j] for j

in nummat for i in numprod}

32

33 #Print Data

34 print

35 print "Price (per pound) of product: "

36 for i in numprod:

37 print "Product",Products[i], ":", MPrice[Products[i]]

38 print "Product 1 limit: ", ProdLimit

39 print

40 print "Available Material:"

41 for j in nummat:

42 print "Material",Materials[j], ":", AvailMat[Materials[j]]

43 print

44 print "Requirements of Material "

45 for i in numprod:

46 for j in nummat:

47 print "Product",Products[i], "-", "Material",Materials[j],

":", MatReq[i][j]

48 print

49

50 # Create the model to contain the problem data

51 model = LpProblem("Case study 1", LpMaximize)

52

53 # Decision variables

54 Prod = LpVariable.dicts("ProdVar", Products, 0, None)

55

56 # The objective function

57 model += lpSum([MPrice[i]*Prod[i] for i in Products]),"Total Sales"

58

59 # The constraints of available material

60 for p in Materials:

61 model += lpSum([RequireMat[i,p] * Prod[i] for i in Products])

<= AvailMat[p], "Maximum of Material %d"%p

62

63 # Production Constraint

64 # Limit of production for Products[IndxProd]

65 model += Prod[IndxProd] <= ProdLimit, "Production limit"

66
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67 # Write the problem data to an .lp file

68 model.writeLP("casestud1b.lp")

69

70 # Solve the optimization problem using the specified PuLP Solver

71 model.solve(GLPK())

72

73 # Print the status of the solution

74 print "Status:", LpStatus[model.status]

75

76 # Print each of the variables with its resolved optimum value

77 for v in model.variables():

78 print v.name, "=", v.varValue

79

80 # Print the optimised value of the objective function

81 print "Optimal sales", value(model.objective)

The data are set with Python lists and dictionaries on lines 11–31 and
is exactly the same as in the model using Pyomo. Lines 33–48 displays the
problem data for verification purposes.

The Pulp model for the problem is declared in line 51 using Pulp class
LPProblem with argument LPMaximize. The decision variables are created
in line 54 as a dictionary indexed by list Products. The lower bound for the
value of the variables is zero and there is no upper bound (specified as None).
By default, the variables created are of type real and type integer is specified
with the argument LpInteger.

The objective function is specified in line 57 and the summation is indexed
by list Products. The materials constraints are specified in lines 60–61 and are
indexed by list Materials. The single production constraint is specified with
variable Prod indexed by the scalar parameter IndxProd.

The model is solved with the GLPK specified solver in line 71. The status
of the solution is displayed in line 74. The computed optimal values of the
decision variables are displayed in lines 77–78 and the optimal value of the
objective function is displayed in line 81.

The following listing shows the output produced after running the model.
The command line used is the first line shown in the listing.

$python casestud1b.py

/usr/local/lib/python2.7/dist-packages/pulp_or-1.4.6-py2.7.

egg/pulp

Price (per pound) of product:

Product 1 : 12.75

Product 2 : 15.25

Product 1 limit: 18.5
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Available Material:

Material 1 : 21.85

Material 2 : 29.5

Requirements of Material

Product 1 - Material 1 : 0.25

Product 1 - Material 2 : 0.125

Product 2 - Material 1 : 0.15

Product 2 - Material 2 : 0.35

GLPSOL: GLPK LP/MIP Solver, v4.54

Parameter(s) specified in the command line:

--cpxlp /tmp/3556-pulp.lp -o /tmp/3556-pulp.sol

Reading problem data from ’/tmp/3556-pulp.lp’...

3 rows, 2 columns, 5 non-zeros

11 lines were read

GLPK Simplex Optimizer, v4.54

3 rows, 2 columns, 5 non-zeros

Preprocessing...

2 rows, 2 columns, 4 non-zeros

Scaling...

A: min|aij| = 1.250e-01 max|aij| = 3.500e-01 ratio =

2.800e+00

Problem data seem to be well scaled

Constructing initial basis...

Size of triangular part is 2

* 0: obj = 0.000000000e+00 infeas = 0.000e+00 (0)

* 2: obj = 1.420473214e+03 infeas = 0.000e+00 (0)

OPTIMAL LP SOLUTION FOUND

Time used: 0.0 secs

Memory used: 0.0 Mb (37657 bytes)

Writing basic solution to ’/tmp/3556-pulp.sol’...

Status: Optimal

ProdVar_1 = 18.5

ProdVar_2 = 77.6786

Optimal sales 1420.47365

21.5 SOFTWARE LINEAR OPTIMIZATION SOLVERS

There are many software linear optimization solvers, some free open source
and others commercial solvers. This section mentions two software tools that
are cross-platform (Linux, MacOS, and MS Windows), and solve linear opti-
mization problems using the Simplex algorithm and variations of it. These are
LP solve and GLPK, and problem formulation and executions are shown with
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several examples. Several Python linear optimization modelers use GLPK as
the default solver.

21.6 SHORT LIST OF OPTIMIZATION SOLVERS

Commercial linear optimization solvers are available; some only for MS Win-
dows and others for multiple platforms. These are generally faster than the
free open-source solvers and some of the most widely used are:

• Gurobi

• Cplex

• Xpress

• Lindo

The most widely used of the open-source and cross-platform software linear
optimization solvers are:

• The Gnu Linear Programming Kit also known as GLPK

• LPsolve

• SCIP

• CLP (Coin-or)

21.7 SUMMARY

Python is a very good language to model linear optimization problems. Two
modeling packages used with Python are Pyomo and Pulp. The solution to
linear optimization modeling is performed by software tools known as LP
solvers. Some solvers require that the linear optimization problem formulation
be in standard form, in which all constraints are equations and all variables
non-negative. The solvers discussed and used in this chapter are open source
programs. There are also several commercial proprietary solvers as well, such
as Lindo.

Key Terms

modeling software Pyomo Pulp
lists dictionaries optimal solution
concrete model abstract model model data
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21.8 EXERCISES

21.1 Model and solve the following linear optimization problem using Pyomo
and Pulp.

Minimize: 2x1 + 3x2

Subject to the following constraints:

0.5x1 + 0.25x2 ≤ 4.0
x1 + 3x2 ≥ 36
x1 + x2 = 10

x1 ≥ 0
x2 ≥ 0

21.2 Model and solve the following linear optimization problem using Pyomo
and Pulp.

Maximize: 2x1 + 3x2 + x3

Subject to the following constraints:

x1 + x2 + x3 ≤ 40
2x1 + x2 − x3 ≥ 10

− x2 + x3 ≥ 10
x1 ≥ 0
x2 ≥ 0
x3 ≥ 0

21.3 A factory produces three types of beds, A, B, and C. The company that
owns the factory sells beds of type A for $250.00 each, beds of type B
for $320.00 each, and beds of type C for $625.00 each. Management esti-
mates that all beds produced of types A and C will be sold. The number
of beds of type B that can be sold is at the most 45. The production of
different types of beds requires a different amount of resources such as
basic labor hours, specialized hours, and materials. The following table
provides these data.

Type A Type B Type C Resource
10 ft. 60 ft. 80 ft. Material
15 min 20 min 40 min Basic labor
5 min 15 min 20 min Specialized labor
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The amounts of resources available are 450 ft of material, 210 hours
of basic labor, and 95 hours of specialized labor. The problem is to
optimize sales. Write the formulation of the mathematical optimization
problem. Use Pyomo and Pulp to find a numerical solution to the linear
optimization problem.

21.4 An automobile factory needs to have a different number of employees
working for every day of the week. Each employee has to work 5 consec-
utive days a week and have two days of rest. The following are the re-
quirements of the factory: Monday needs 330 employees, Tuesday needs
270 employees, Wednesday needs 300 employees, Thursday needs 390
employees, Friday needs 285 employees, Saturday needs 315 employees,
and Sunday needs 225 employees. To improve profitability, the factory
is required to optimize the number of employees. (Hint: the key decision
is how many employees begin work on each day. Employees who begin
work on Monday are those who do not begin on Tuesday or Wednesday).
Write the formulation of the mathematical optimization problem. Use
Pyomo and Pulp to find a numerical solution to the linear optimization
problem.

21.5 Consider the problem in Exercise 21.4 with the following changes: the
problem is to optimize the labor costs of the auto factory based on the
amount of labor time in hours worked by employees. Full-time employees
work 8 hours per day and cost the factory $12.50 per hour. Part-time
employees work 4 hours a day and cost $8.50 per hour. The total amount
of part-time labor should be at the most 30% of total labor time. Write
the formulation of the mathematical optimization problem. Use Pyomo
and Pulp to find a numerical solution to the linear optimization problem.

21.6 A factory manufactures 5 different products: P1, P2, P3, P4, and P5.
The factory needs to maximize profit. Each product requires machine
time (in minutes) on three different devices: A, B, and C, each of which
is available 135 hours per week. The following table provides the data
on machine time needed (in minutes):

Device Device Device
Product A B C

P1 20 15 8
P2 13 17 12
P3 15 7 11
P4 16 4 7
P5 18 14 6

The unit sale price for products P1, P2, and P3 is $7.50, $7.00, and $8.25,
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respectively. The first 26 units of P4 and P5 have sale prices of $5.85
each; all excess units have a sale price of $4.50 each. The operational
costs of devices A and B are $5.25 per hour, and $5.85 for device C. The
cost of materials for products P1 and P4 are $2.75. For products P2, P3,
and P5 the materials cost is $2.25. Hint: assume that xi, i = 1 . . . 5 are
the number of units produced of the various products and use two new
variables y4 and y5 for the units produced of P4 and P5, respectively
in excess of 26. Write the formulation of the mathematical optimization
problem. Use Pyomo and Pulp to find a numerical solution to the linear
optimization problem.

21.7 A company produces a certain number of products and distributes these
to various customer distribution centers that request a specified number
of units of the product. There are two production facilities P1 and P2.
There are three storage facilities: S1, S2, and S3. The company also
has four distribution centers: D1, D2, D3, and D4. This problem can
be represented as a network in which there is a cost per unit to ship
products from a production facility to a storage facility, and from a
storage facility to a distribution center. The problem must optimize the
cost of distribution of the products. The following table provides the
cost per unit shipped from a source node to a destination node. Use
Pyomo and Pulp to find a numerical solution to the linear optimization
problem.

Source S1 S2 S3 D1 D2 D3 D4

node

P1 4 6 0 0 0 0 0
P2 10 4 7 0 0 0 0
S1 0 0 0 17 20 0 0
S2 0 0 0 20 15 25 0
S3 0 0 0 0 30 18 11
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Sensitivity Analysis and

Duality

22.1 INTRODUCTION

This chapter presents the general concepts and techniques of sensitivity analy-
sis and duality. With sensitivity analysis, we can find out how relatively small
changes in the parameters of a linear optimization problem can cause changes
in the optimal solution computed.

The concepts of marginal values, which are also known as shadow prices,
and the reduced costs are extremely useful in sensitivity analysis. Duality helps
to better understand sensitivity analysis as well as the nature of linear opti-
mization.

22.2 SENSITIVITY ANALYSIS

Sensitivity analysis deals with the effect of independent, multiple changes in
the values of:

• the coefficients of the objective function of linear programmodels having
a unique solution and

• the right-hand side of the constraints.

Other useful points in the analysis are the study of the change in the
solution to a problem that occurs when a new constraint is added, and the
changes when a new variable is added to the problem.

22.2.1 Coefficients of the Objective Function

How much can the objective function coefficients change before the values of
the variables change? Or when the objective function coefficient of a single

357
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variable is changed, for what range of values of this coefficient will the optimal
values of the decision variables be retained?

The concept of reduced cost is associated with the coefficients of the vari-
ables in the objective function. It is a very useful concept and applies to a
variable with value zero in the optimal value of the objective function. The
reduced cost of a variable is the amount by which the objective function will
decrease when the variable is forced to a value of 1.

The simplest and most direct way to find the reduced costs of variables
and the allowable changes to the coefficients in the objective function is to
observe the output results in the computer solution to a linear optimization
problem. These are briefly discussed next using the Pulp and Pyomo modeling
tools that apply the GLPK solver.

The two modeling tools are used to solve the following linear optimization
model, Example 1:

Maximize: 60x1 + 30x2 + 20x3

Subject to the following constraints:

8x1 + 6x2 + x3 ≤ 48
4x1 + 2x2 + 1.5x3 ≤ 20
2x1 + 1.5x2 + 0.5x3 ≤ 8

x1 ≥ 0
x2 ≥ 0
x3 ≥ 0

22.2.2 Using Pulp: Example 1

The formulation of the problem with the Pulp modeler is stored in file
sensit1.py and is shown in the following listing.

1 """

2 Python Formulation for the PuLP Modeler

3 An example of sensitivity analysis

4 J M Garrido, September 2014

5 Usage: python sensit1.py

6 """

7

8 # Import PuLP modeler functions

9 from pulp import *

10

11 # Create the model for the problem

12 prob = LpProblem("Sensit 1",LpMaximize)

13

14 # The 3 variables x1, x2, and x3 have a lower limit of zero

15 x1=LpVariable("x1",0,None)

16 x2=LpVariable("x2",0)
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17 x3=LpVariable("x3",0)

18

19 # The objective function

20 prob += 60.0*x1 + 30*x2 + 20*x3, "Objective"

21

22 # The three constraints are

23 prob += 8.0*x1 + 6.0*x2 + x3 <= 48.0, "Constraint 1"

24 prob += 4.0*x1 + 2.0*x2 + 1.5*x3 <= 20.0, "Constraint 2"

25 prob += 2.0*x1 + 1.5*x2 + 0.5*x3 <= 8.0, "Constraint 3"

26

27 # Write the problem data to an .lp file

28 prob.writeLP("sensit1.lp")

29

30 # Solve the optimization problem using the specified Solver

31 prob.solve(GLPK(options=[’--ranges sensit1.sen’]))

32

33 # Print the status of the solution

34 print "Status:", LpStatus[prob.status]

35

36 # Print each of the variables with it’s resolved optimum value

37 for v in prob.variables():

38 print v.name, "=", v.varValue

39

40 # Print the optimised value of the objective function

41 print "Objective", value(prob.objective)

In line 31, the program invokes the solver GLPK and specifies the option:
--ranges sensit1.sen. This option indicates that GLPK will generate the
sensitivity analysis report in file sensit1.sen. The results of running the
program are stored in file sensit1.sen and only the second part is shown in
the following listing.

GLPK 4.55 - SENSITIVITY ANALYSIS REPORT Page 2

Problem: sensit1

Objective: z = 280 (MAXimum)

No. Col St Acty Obj coef Lower Activity

Marginal Upper range

--- ---- --- ----------- ----------- --------- -----------

1 x1 BS 2.000 60.000 . -Inf

. +Inf 4.00000

2 x2 NL . 30.000 . -4.00000
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-5.00000 Inf 1.60000

3 x3 BS 8.0000 20.0000 . -16.000

. +Inf 13.3333

Col Obj coef Obj value Limiting

range break pt variable

---- ---------- ----------- ----------

X1 56.000 272.000 x2

80.000 320.000 C2

X2 -Inf 300.000 x3

35.000 272.000 x1

X3 15.000 240.000 C2

22.500 300.000 C3

End of report

Column “Acty” (activity) shows the actual values of variables x1, x2, and
x3. Note that variable x2 has a value of zero and column “Activity range”
shows the value 1.6, which is the value that the variable will take when its
coefficient reaches the value of 35.

The range of values of the coefficients in the objective function appear
in column “Obj coef range,” for the three decision variables x1, x2, and x3.
These ranges of values correspond to the coefficients of variables that retain
the optimal value of the objective function. For example, the value of the
coefficient of x1 can range from 56.0 to 80.0, the coefficient of x2 can range
from a very low value up to 35.0, and the coefficient of variable x3 can range
from 15.0 to 22.5. Any values of the coefficient outside these ranges will change
the conditions of the objective function to a suboptimal value.

Variable x2 has a reduced cost of −5 and is shown in column “Marginal.”
This is the amount the objective function would change if the value of x2 is
changed to 1. Variables x1 and x3 are basic variables and have a zero reduced
cost.

22.2.3 Using Pyomo: Example 1

The formulation of the problem with the Pyomo modeler is stored in file
sensit1.py and is shown in the following listing.

1 """

2 Python Formulation for the Pyomo Modeler

3 Example for sensitivity analysis

4 J M Garrido, September 2014. File sensit1.py
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5 Usage: pyomo sensit1.py

6 """

7 from coopr.pyomo import *

8

9 # Data for Linear Optimization Problem

10 xlist = [1, 2, 3]

11

12 #Concrete Model

13 model = ConcreteModel(name="Sensitivity 1")

14

15 #Decision Variables

16 model.x = Var(xlist, within=NonNegativeReals)

17

18 # The objective function

19 model.obj = Objective(expr= 60.0*model.x[1] + 30.0*model.x[2] +

20.0 * model.x[3],sense = maximize)

20

21 # Constraints

22 model.Constraint1 = Constraint(expr= 8.0 * model.x[1] +

6.0 * model.x[2] + model.x[3] <= 48.0)

23 model.Constraint2 = Constraint(expr= 4.0 * model.x[1] +

2.0 * model.x[2] + 1.5 * model.x[3] <= 20.0)

To run the model, the command line to use is indicated at the top of
the following listing. It indicates to the Pyomo modeler to save the model in
GLPK format in file sensit1.lp. The reason for this is that with Pyomo, it
is sometimes difficult to pass options to the GLPK solver.

pyomo sensit1.py --summary --save-model sensit1.lp

[ 0.00] Setting up Pyomo environment

[ 0.00] Applying Pyomo preprocessing actions

Sensitivity 1

[ 0.00] Creating model

[ 0.00] Applying solver

[ 0.05] Processing results

Number of solutions: 1

Solution Information

Gap: 0.0

Status: feasible

Function Value: 280.0

Solver results file: results.json

==========================================================

Solution Summary

==========================================================
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Model Sensitivity 1

Variables:

x : Size=3, Index=x_index, Domain=NonNegativeReals

Key : Lower : Value : Upper : Initial : Fixed : Stale

1 : 0 : 2.0 : None : None : False : False

2 : 0 : 0.0 : None : None : False : False

3 : 0 : 8.0 : None : None : False : False

Objectives:

obj : Size=1, Index=None, Active=True

Key : Active : Value

None : True : 280.0

Constraints:

Constraint1 : Size=1

Key : Lower : Body : Upper

None : None : 24.0 : 48.0

Constraint2 : Size=1

Key : Lower : Body : Upper

None : None : 20.0 : 20.0

Constraint3 : Size=1

Key : Lower : Body : Upper

None : None : 8.0 : 8.0

[ 0.08] Applying Pyomo postprocessing actions

[ 0.08] Pyomo Finished

The next step is to run the model in file sensit1.lp directly using the
GLPK command line executable, glpsol. The option to produce a report with
the sensitivity analysis to the specified file is --ranges sensit1.sen. This
generates the same output discussed previously and the command line is:

glpsol -m sensit1.lp --lp --ranges sensit1.sen

22.2.4 Right-Hand Side of Constraints

As mentioned previously, another part of sensitivity analysis involves finding
out how changes in the right-hand side of a constraint would change the basis
of the optimal solution to a problem.

The dual value (marginal value or shadow price) in a constraint is the
amount by which the objective function will decrease when the right-hand
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side of the constraint in incremented by one. Another way to define a dual
value is the rate of change of the objective function with respect to the right-
hand side of the constraint.

The right-hand side of a single constraint can vary within a specified range.
The dual value of constraint will only hold while the right-hand side of the
constraint is in the range of values.

A constraint that is not active has a dual value of zero. This is a constraint
that is not binding because its actual value is less (or greater) than the value
of the right-hand side specified in the problem formulation.

This second set of data is provided by computer LP solvers such as GLPK
glpsol and LP solve. These solvers display output results that can be used for
sensitivity analysis.

22.3 DUALITY

For every linear optimization problem, known as the primal, there is an associ-
ated problem known as its dual. The relationship between these two problems
helps to understand the connection between the reduced cost and the shadow
price.

22.3.1 Formulating the Dual Problem

Assume that the primal linear maximization problem has the generalized stan-
dard form:

Maximize f = c1x1 + c2x2 + . . .+ cnxn
Subject to the following constraints:

a1,1x1 + a1,2x2 + . . . + a1,nxn ≤ b1
a2,1x1 + a2,2x2 + . . . + a2,nxn ≤ b2

...
...

...
...

am,1x1 + am,2x2 + . . . + am,nxn ≤ bm

(22.1)

xi ≥ 0, i = 1, 2, . . . , n.

The constraints in matrix form are as follows:











a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n
...

...
. . .

...
am,1 a2,m · · · am,n





















x1
x2
...
xn











≤











b1
b2
...
bm











. (22.2)

This linear problem can also be written as maximize f = C′X such that
AX ≤ B, in which C is a column vector of size n, X is a column vector of
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size n, A is an m × n matrix, and B is a column vector of size m. The dual
problem is a minimization problem formulated in standard form as follows:

Minimize g = b1y1 + b2y2 + . . . + bmym
Subject to the following constraints:

a1,1y1 + a2,1y2 + . . . + am,1ym ≥ c1
a1,2y1 + a2,2y2 + . . . + am,2ym ≥ c2

...
...

...
...

a1,ny1 + a2,ny2 + . . . + am,nym ≥ cn

(22.3)

yi ≥ 0, i = 1, 2, . . . ,m.

The constraints in matrix form are as follows:











a1,1 a2,1 · · · am,1

a1,2 a2,2 · · · am,2

...
...

. . .
...

a1,n a2,n · · · am,n





















y1
y2
...
ym











≥











c1
c2
...
cn











. (22.4)

The matrix form of this dual linear problem can also be written as minimize
g = B′Y such that A′Y ≥ C, in which C is a column vector of size n,
X is a column vector of size n, A is an m × n matrix, and B is a column
vector of size m. In a similar manner, if the primal problem is a minimization
problem, its dual is a maximization problem. For example, the following primal
maximization problem is in standard form.

Maximize f = 144x1 + 60x2

Subject to the following constraints:

120x1 + 210x2 ≤ 15000
110x1 + 30x2 ≤ 4000

x1 + x2 ≤ 75

x1 ≥ 0, x2 ≥ 0.

The dual problem of the given primal is formulated as follows:
Minimize g = 15000y1 + 4000y2 + 75y3
Subject to the following constraints:

120y1 + 110y2 + y3 ≥ 144
210y1 + 30y2 + y3 ≥ 60

y1 ≥ 0, y2 ≥ 0.
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22.3.2 Transforming a Problem to Standard Form

A primal linear problem has to be formulated in standard form before its
dual can be formulated. A standard maximization form is also known as the
normal maximization form that has been explained previously.

When a linear problem is not in standard (or normal) form, then a few
transformations are necessary. For example, the following linear maximization
problem formulation is not in standard form.

Maximize f = 144x1 + 60x2

Subject to the following constraints:

120x1 + 210x2 ≤ 15000
110x1 + 30x2 = 4000

x1 + x2 ≥ 75

x1 ≥ 0, x2 urs.

This problem has a constraint with an equal sign (=), a constraint with a
≥ sign, and a variable with unrestricted sign. Therefore, the problem is not
formulated in standard (normal) form. The following transformation steps are
necessary:

• To transform a constraint with a ≥ to a constraint with a ≤ sign, the
constraint must be multiplied by −1. For example, the constraint x1 +
x2 ≥ 75, is transformed to −x1 − x2 ≤ −75.

• To transform a constraint with an equal sign, it must be replaced by two
inequality constraints, one with a ≤ sign and another with a ≥ sign. For
example, the second constraint in the problem (110x1+30x2 = 4000) is
replaced by the two constraints: 110x1+30x2 ≥ 4000 and 110x1+30x2 ≤
4000. The first of these constraints is transformed to a constraint with
a ≤ sign by multiplying it by −1.

• When a decision variable xi is unrestricted in sign (urs), it means that it
can take positive, negative, and zero values. The equivalence xi = x′i−x′′

i

is applied; therefore, variable xi is replaced by x′
i − x′′i . In the problem

previously discussed, variable x2 is unrestricted in sign, so it is replaced
by x′

2 − x′′
2 .

The transformed linear maximization (primal) problem formulation is now
expressed as follows:

Maximize f = 144x1 + 60x′
2 − 60x′′2

Subject to the following constraints:

120x1 + 210x′
2 − 210x′′

2 ≤ 15000
110x1 + 30x′

2 − 30x′′2 ≤ 4000
−110x1 − 30x′

2 + 30x′′2 ≤ −4000
−x1 − x′2 + x′′2 ≤ −75
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x1 ≥ 0, x′
2 ≥ 0, x′′

2 ≥ 0.

The final step is to find the dual problem of the primal problem discussed.
Because the primal problem is a maximization problem, its dual is a min-
imization problem. The formulation of the dual problem is as expressed as
follows:

Minimize g = 15000y1 + 4000y2 − 4000y3 − 75y4
Subject to the following constraints:

120y1 + 110y2 − 110y3 − y4 ≥ 144
210y1 + 30y2 − 30y3 − y4 ≥ 60

−210y1 − 30y2 + 30y2 + y4 ≤ −60

y1 ≥ 0, y2 ≥ 0, y3 ≥ 0, y4 ≥ 0.

In a similar manner, a linear minimization (primal) problem that is not
in standard form can be transformed to a standard form. To transform a
constraint with a ≤ to a constraint with a ≥ sign, the constraint must be
multiplied by −1. The other steps are the same as outlined previously.

22.3.3 Duality Discussion

The constraint values of the primal problem are related to the variables of the
dual problem. These variables are known as shadow prices.

The weak duality theorem states that the objective function of value g of
the dual problem at any feasible solution y1, y2, . . . , ym, is always greater than
or equal to the objective value z of the primal problem at any feasible solution
x1, x2, . . . xn. This can be expressed in matrix form as follows:

g = B′Y ≥ C′X = z.

The strong duality theorem specifies that the primal and dual problems
have equal optimal values of the objective function. This theorem can be used
to solve the primal linear optimization problem.

Recall that the shadow price of constraint i of a linear maximization prob-
lem is the amount by which the optimal value of the objective function in-
creases when the right-hand value of constraint i is increased by 1. The strong
dual theorem can be used to calculate the shadow price of constraint i.

22.4 SUMMARY

Sensitivity analysis and duality are important concepts and the information
is valuable in addition to the data on optimality. Sensitivity analysis helps to
find the effect of small changes in the parameters of the formulation of a linear
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optimization problem. Duality helps to improve the understanding of a linear
optimization problem.

Key Terms

sensitivity duality objective coefficients
right-hand constraints marginal values shadow prices
reduced costs dual value primal problem
dual problem normal maximization

22.5 EXERCISES

22.1 A factory manufactures 5 different products: P1, P2, P3, P4, and P5.
The factory needs to maximize profit. Each product requires machine
time on three different devices: A, B, and C, each of which is available
135 hours per week. The following table provides the data:

Device Device Device
Product A B C

P1 20 15 8
P2 13 17 12
P3 15 7 11

P4 16 4 7

P5 18 14 6

The unit sale price for products P1, P2, and P3 is $7.50, $6.00, and $8.25,
respectively. The first 26 units of P4 and P5 have a sale price of $5.85
each; all excess units have a sale price of $4.50 each. The operational
costs of devices A and B are $5.25 per hour, and $5.85 for device C. The
cost of materials for products P1 and P4 is $2.75. For products P2, P3,
and P5 the materials cost is $2.25. Hint: assume that xi, i = 1 . . . 5 are
the number of units produced of the various products and use two new
variables y4 and y5 for the units produced of P4 and P5, respectively,
in excess of 26. Write the formulation of the mathematical optimization
problem with Pyomo and Pulp. If the price of P1 changes by 35%, how
does the optimal solution change?

22.2 Find the dual of Exercise 22.1. Formulate with Pyomo and Pulp then
solve the problem.
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Transportation Models

23.1 INTRODUCTION

This chapter presents the general concepts and formulation of transportation
and transshipment problems. These are special cases of linear optimization
problems.

The main goal is to formulate these problems as linear optimization prob-
lems and compute minimum cost to transport a product as the optimal solu-
tion computed. For formulating these problems, the two modelers Pyomo and
Pulp are used.

Transportation problems deal with finding the optimal manner by which
a product or commodity produced or available at different supply points can
be transported to a number of destinations or demand points. Typically, the
objective function is the cost of transportation subject to capacity constraints
at the supply points and demand constraints at the demand points.

23.2 MODEL OF A TRANSPORTATION PROBLEM

A transportation problem is formulated as a standard linear optimization
problem. The objective function is defined to minimize the cost of transporta-
tion, subject to demand and supply constraints.

Assume there are m supply points and n demand points in a problem. Let
ci,j denote the given unit cost of transportation from supply point i to demand
(destination) point j. Let xi,j denote the amount of product to be transported
from supply point i to demand (destination) point j. The objective function
can then be expressed as follows:

Minimize z,

z =

i=m
∑

i=1

j=n
∑

j=1

xi,jci,j .

This equation can be expanded and written with equations in which each
row of the right-hand side of the equation represents the cost of transportation

369
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from a supply point. For example, row 1 of the right-hand side of the equation
represents the cost of transportation from supply point 1; row 2 represents the
cost of transportation from supply point 2, the last row represents the cost of
transportation from supply point m.

z =

c1,1x1,1 + c1,2x1,2 + · · · + c1,nx1,n +
c2,1x2,1 + c2,2x2,2 + · · · + c2,nx2,n +
...

...
. . .

... +
cm,1xm,1 + cm,2xm,2 + · · · + cm,nxm,n

In transportation problems there are two types of constraints: supply con-
straints and demand constraints. Let si denote the amount of product at the
supply point i. Let dj denote the amount of product at the demand point j.

The supply constraints have the right-hand side as an upper bound. There
are m supply constraints, the constraint of supply point i is expressed as
follows:

j=n
∑

j=1

xi,j ≤ si.

This equation can be expanded to show all the quantities of the product
to be shipped from supply point i. There are m supply constraints, with each
row representing the total quantity of product transported from an indicated
supply point. For example, the first row (1) represents the quantities of prod-
uct shipped from supply point 1. The second row (2) represents the quantities
of product shipped from supply point 2. The last row (m) represents the
quantities of product shipped from supply point m.

x1,1 + x1,2 + · · · + x1,n ≤ s1
x2,1 + x2,2 + · · · + x2,n ≤ s2
...

...
. . .

...
...

xm,1 + xm,2 + · · · + xm,n ≤ sm

The demand constraints have the right-hand side as a lower bound. There
are n demand constraints, and the constraint of supply point j is expressed
as follows:

i=m
∑

i=1

xi,j ≥ dj .

This equation can be expanded to show all the quantities of the product
to be received at demand point j. There are n demand constraints, with each
row representing the total quantity of product to be transported and received
by the indicated demand point. For example, the first row (1) represents the
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quantities of product at demand point 1. The second row (2) represents the
quantities of product at demand point 2. The last row (n) represents the
quantities of product at demand point n.

x1,1 + x2,1 + · · · + xm,1 ≥ d1
x1,2 + x2,2 + · · · + xm,2 ≥ d2
...

...
. . .

...
...

x1,n + x2,n + · · · + xm,n ≥ dm

The decision variables xi,j have a sign constraint: xi,j ≥ 0, for i =
1, 2, . . .m and j = 1, 2, . . . n.

The following three case studies help to illustrate the modeling of trans-
portation problems.

23.3 TRANSPORTATION CASE STUDY 1

The distribution manager of a company needs to minimize global transport
costs between a set of three factories (supply points) S1, S2, and S3, and a
set of four distributors (demand points) D1, D2, D3, and D4. The following
table shows the transportation cost from each supply point to every demand
point, the supply of the product at the supply points, and the demand of the
product at the demand points.

D1 D2 D3 D4 Supply
S1 20 40 70 50 400

S2 100 60 90 80 1500

S3 10 110 30 200 900
Demand 700 600 1000 500

The transportation unit costs for every supply point are shown from
columns 2 to 5. The transportation unit cost from supply point S1 to de-
mand point D1 is 20. The transportation unit cost from supply point S1 to
demand point D2 is 40. The transportation unit cost from supply point S2 to
demand point D3 is 90, and so on.

The last column in the table shows the supply capacity of the supply
point, in quantity of the product. The capacity of supply point S1 is 400. The
summation of the values in the last column is the total supply in the system;
this value is 2800. The last row of the table shows the demand of each demand
point, in quantity of the product. The demand of demand point D1 is 700, of
demand point D2 is 600, and so on. The summation of the values in the last
row is the total demand in the system; this value is 2800.

Note that the total supply is 2800, and the total demand is also 2800.
This is calculated by summing the values of the last column and the last row.
Because the value for the amount of product of total supply and the amount of
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total demand is the same, this transportation problem is said to be balanced.
The objective function can be expressed as follows:

Minimize z,

z =
1=m
∑

i=1

j=n
∑

j=1

xi,jci,j .

This problem has m = 3 supply points and n = 4 demand points. The
objective function can be completely written with the unit cost values of the
product to be transported, given in the table shown previously. The objective
function is expressed as follows:

z =
20x1,1 + 40x1,2 + 70x1,3 + 50x1,4 +
100x2,1 + 60x2,2 + 90x2,3 + 80x2,4 +
10x3,1 + 110x3,2 + 30x3,3 + 200x3,4.

The supply constraints are:

x1,1 + x1,2 + x1,3 + x1,4 ≤ 400
x2,1 + x2,2 + x2,3 + x2,4 ≤ 1500
x3,1 + x3,2 + x3,3 + x3,4 ≤ 900.

The demand constraints are:

x1,1 + x2,1 + x3,1 ≥ 700
x1,2 + x2,2 + x3,2 ≥ 600
x1,3 + x2,3 + x3,3 ≥ 1000
x1,4 + x2,4 + x3,4 ≥ 500.

23.3.1 Formulation Using the Pyomo Modeler

The formulation of this problem using the Pyomo modeler is shown in the
following listing and stored in file transport1.py. It defines a two-dimensional
index list, xindx , using list comprehension and is shown in line 19. This allows
creating two-dimensional decision variables in line 26 and using these variables
for specifying the objective function (lines 28–32) and the constraints (lines
35–40 and lines 43–50.

1 """

2 Python Formulation for the Pyomo Modeler

3 Example transportation problem. File: transport1.py

4 J M Garrido, September 2014

5 usage: pyomo transport1.py --summary

6 """

7 print "Transportation Problem 1"
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8 # Import

9 from coopr.pyomo import *

10

11 # Data for Linear Optimization Problem

12 M = 3 # Supply points

13 N = 4 # Demand points

14 a = range(1, M+1)

15 al = range(M)

16 b = range(1,N+1)

17 bl = range(N)

18 # Index list for decision variables x

19 xindx = [(a[i],b[j]) for j in bl for i in al]

20

21 #Concrete Model

22 model = ConcreteModel(name="Transportation Problem 1")

23

24 #Decision Variables

25 model.x = Var(xindx, within=NonNegativeReals)

26

27 # The objective function

28 model.obj = Objective(expr=

29 20.0 * model.x[1,1] + 40.0 * model.x[1,2] + 70.0 * model.x[1,3] +

50.0*model.x[1,4]

30 + 100*model.x[2,1] + 60.0*model.x[2,2] + 90.0*model.x[2,3] +

80.0*model.x[2,4]

31 +10.0*model.x[3,1] + 110.0*model.x[3,2] + 30.0*model.x[3,3] +

200*model.x[3,4],

32 sense = minimize)

33

34 # Supply Constraints

35 model.SConstraint1 = Constraint(expr=

36 model.x[1,1] + model.x[1,2] + model.x[1,3] + model.x[1,4]

<= 400.0)

37 model.SConstraint2 = Constraint(expr=

38 model.x[2,1] + model.x[2,2] + model.x[2,3] + model.x[2,4]

<= 1500.0)

39 model.SConstraint3 = Constraint(expr=

40 model.x[3,1] + model.x[3,2] + model.x[3,3] + model.x[3,4]

<= 900.0)

41

42 # Demand Constraints

43 model.DConst1 = Constraint(expr=

44 model.x[1,1] + model.x[2,1] + model.x[3,1] >= 700.0)

45 model.DConst2 = Constraint(expr=

46 model.x[1,2] + model.x[2,2] + model.x[3,2] >= 600.0)
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47 model.DConst3 = Constraint(expr=

48 model.x[1,3] + model.x[2,3] + model.x[3,3] >= 1000)

49 model.DConst4 = Constraint(expr=

50 model.x[1,4] + model.x[2,4] + model.x[3,4] >= 500.0)

Running the model produces the following output listing. Note that the
optimal total transportation cost is 141, 000 and some of the values of x are
zero. If xi,j = 0, then the amount of the product to be transported from
supply point i to demand point j is zero. In this problem, the total demand
of demand point D1 is satisfied by the amount 400 from supply point S1, and
the amount 300 from supply point S3. There was no supply from supply point
D2 to demand point D1, therefore x2,1 = 0.

$ pyomo transport1.py --summary

[ 0.00] Setting up Pyomo environment

[ 0.00] Applying Pyomo preprocessing actions

Transportation Problem 1

[ 0.00] Creating model

[ 0.01] Applying solver

[ 0.05] Processing results

Number of solutions: 1

Solution Information

Gap: 0.0

Status: feasible

Function Value: 141000.0

Solver results file: results.json

==========================================================

Solution Summary

==========================================================

Model Transportation Problem 1

Variables:

x : Size=12, Index=x_index, Domain=NonNegativeReals

Key : Lower : Value : Upper : Initial : Fixed : Stale

(1, 1) : 0 : 400.0 : None : None : False : False

(1, 2) : 0 : 0.0 : None : None : False : False

(1, 3) : 0 : 0.0 : None : None : False : False

(1, 4) : 0 : 0.0 : None : None : False : False

(2, 1) : 0 : 0.0 : None : None : False : False

(2, 2) : 0 : 600.0 : None : None : False : False

(2, 3) : 0 : 400.0 : None : None : False : False

(2, 4) : 0 : 500.0 : None : None : False : False
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(3, 1) : 0 : 300.0 : None : None : False : False

(3, 2) : 0 : 0.0 : None : None : False : False

(3, 3) : 0 : 600.0 : None : None : False : False

(3, 4) : 0 : 0.0 : None : None : False : False

Objectives:

obj : Size=1, Index=None, Active=True

Key : Active : Value

None : True : 141000.0

Constraints:

SConstraint1 : Size=1

Key : Lower : Body : Upper

None : None : 400.0 : 400.0

SConstraint2 : Size=1

Key : Lower : Body : Upper

None : None : 1500.0 : 1500.0

SConstraint3 : Size=1

Key : Lower : Body : Upper

None : None : 900.0 : 900.0

DConst1 : Size=1

Key : Lower : Body : Upper

None : 700.0 : 700.0 : None

DConst2 : Size=1

Key : Lower : Body : Upper

None : 600.0 : 600.0 : None

DConst3 : Size=1

Key : Lower : Body : Upper

None : 1000.0 : 1000.0 : None

DConst4 : Size=1

Key : Lower : Body : Upper

None : 500.0 : 500.0 : None

[ 0.14] Applying Pyomo postprocessing actions

[ 0.14] Pyomo Finished

23.3.2 Formulation Using the Pulp Modeler

The following listing shows the formulation of the transportation problem
with Pulp and is stored in file transort1.py in the directory pulp models.
Note that setting the data is similar to the model that was formulated with
Pyomo.

"""
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Python Formulation for the Pulp Modeler

Example transportation problem. File: transport1.py

J M Garrido, September 2014

usage: python transport1.py

"""

print "Transportation Problem 1"

# Import PuLP modeler functions

from pulp import *

# Data for Linear Optimization Problem

M = 3 # Supply points

N = 4 # Demand points

a = range(1, M+1)

al = range(M)

b = range(1,N+1)

bl = range(N)

# Index list for decision variables x

xindx = [(a[i],b[j]) for j in bl for i in al]

# Create the model to contain the problem data

model = LpProblem("Transportation Problem 1",LpMinimize)

# Decision variables

x = LpVariable.dicts("X", xindx,0,None)

# The Pulp objective function

model += 20.0 * x[1,1] + 40.0 * x[1,2] + 70.0 * x[1,3] + 50.0*x[1,4] \

+ 100*x[2,1] + 60.0*x[2,2] + 90.0*x[2,3] + 80.0*x[2,4] \

+ 10.0*x[3,1] + 110.0*x[3,2] + 30.0*x[3,3] + 200*x[3,4], \

"Transportation cost"

# Supply Constraints

model += x[1,1] + x[1,2] + x[1,3] + x[1,4] <= 400.0, "Supply Pt 1"

model += x[2,1] + x[2,2] + x[2,3] + x[2,4] <= 1500.0, "Supply Pt 2"

model += x[3,1] + x[3,2] + x[3,3] + x[3,4] <= 900.0, "Supply Pt 3"

# Demand Constraints

model += x[1,1] + x[2,1] + x[3,1] >= 700.0, "Demand Pt 1"

model += x[1,2] + x[2,2] + x[3,2] >= 600.0, "Demand Pt 2"

model += x[1,3] + x[2,3] + x[3,3] >= 1000, "Demand Pt 3"

model += x[1,4] + x[2,4] + x[3,4] >= 500.0, "Demand Pt 4"

# Solve the optimization problem using the specified PuLP Solver

model.solve(GLPK())
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# Print the status of the solution

print "Status:", LpStatus[model.status]

# Print each of the variables with it’s resolved optimum value

for v in model.variables():

print v.name, "=", v.varValue

# Print the optimised value of the objective function

print "Objective Function", value(model.objective)

23.4 UNBALANCED PROBLEM: CASE STUDY 2

The transportation problem discussed in the previous section is an example of
a balanced problem. In this case, the total supply is equal to the total demand
and is expressed mathematically as:

i=m
∑

i=1

si =

j=n
∑

j=1

dj .

If the transportation problem is not balanced, the total supply may be
less than the total demand, or the total supply may be greater than the total
demand. When total supply is greater than the total demand, the problem
is unbalanced and its formulation must include a dummy demand point to
balance the problem, and the transportation costs to this demand point are
zero.

The following problem has a small variation to the one discussed in the
previous section. The distribution manager of a company needs to minimize
global transport costs between a set of three factories (supply points) S1, S2,
and S3, and a set of four distributors (demand points) D1, D2, D3, and D4.

The following table shows the transportation cost from each supply point
to every demand point, the supply of the product at the supply points, and
the demand of the product at the demand points.

D1 D2 D3 D4 D5 Supply

S1 20 40 70 50 0 600

S2 100 60 90 80 0 1500
S3 10 110 30 200 0 900

Demand 700 600 1000 500 200

The last column in the table shows the supply capacity of the supply point,
in quantity of the product. The summation of the values in the last column
is the total supply in the system; this value is 3000. The last row of the table
shows the demand of each demand point, in quantity of the product. The
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demand of demand point D1 is 700, of demand point D2 is 600, and so on.
The summation of the values in the last row is the total demand in the system,
and this value is 2800.

Note that the total supply is 3000 and the total demand is 2800. This is
calculated by summing the values of the last column and the last row. Because
the value for the amount of product of total supply is greater than the amount
of total demand, this transportation problem is said to be unbalanced.

The transportation unit costs for every supply point are shown from
columns 2 to 5. The transportation unit cost from supply point S1 to de-
mand point D1 is 20. The transportation unit cost from supply point S1 to
demand point D2 is 40. The transportation unit cost from supply point S2 to
demand point D3 is 90, and so on.

Because there is an excess supply of 200, the formulation of the problem
must include a dummy demand point, D5, with a demand of 200. The trans-
portation costs to demand point D5 are zero, and this is expressed as follows:

ci,5 = 0, i = 1, . . . , 3.

This problem now has m = 3 supply points and n = 5 demand points. The
objective function can be completely written with the unit cost values of the
product to be transported, given in the table shown previously. The objective
function is expressed as follows:

z =
20x1,1 + 40x1,2 + 70x1,3 + 50x1,4 +

100x2,1 + 60x2,2 + 90x2,3 + 80x2,4 +
10x3,1 + 110x3,2 + 30x3,3 + 200x3,4.

The supply constraints have the right-hand side as an upper bound. There
are 3 supply constraints, and the constraint of supply point i is expressed as
follows:

j=n
∑

j=1

xi,j ≤ si.

There are 3 supply constraints, with each row representing the total quan-
tity of product transported from an indicated supply point. For example, the
first row (1) represents the quantities of product shipped from supply point 1.
The second row (2) represents the quantities of product shipped from supply
point 2. The last row (3) represents the quantities of product shipped from
supply point 3.

x1,1 + x1,2 + x1,3 + x1,4 + x1,5 ≤ 600
x2,1 + x2,2 + x2,3 + x2,4 + x2,5 ≤ 1500
x3,1 + x3,2 + x3,3 + x3,4 + x3,5 ≤ 900

The demand constraints have the right-hand side as a lower bound. There



Transportation Models � 379

are 5 demand constraints, and the constraint of supply point j is expressed as
follows:

i=m
∑

i=1

xi,j ≥ dj .

There are 5 demand constraints, with each row representing the total quan-
tity of product to be transported and received by the indicated demand point.

x1,1 + x2,1 + x3,1 ≥ 700
x1,2 + x2,2 + x3,2 ≥ 600
x1,3 + x2,3 + x3,3 ≥ 1000
x1,4 + x2,4 + x3,4 ≥ 500
x1,5 + x2,5 + x3,5 ≥ 200

The decision variables xi,j have the sign constraint xi,j ≥ 0, for i = 1, 2, 3
and j = 1, 2, . . . , 5.

23.4.1 Formulation with the Pyomo Modeler

The following listing shows the Python script that contains the formulation of
the model using Pyomo. The main difference with the previous model is that
now there are five demand points (line 13), three additional decision variables,
and the index list is now a (3 × 5) list (line 19). There is also an additional
demand constraint (lines 51–52).

1 """

2 Python Formulation for the Pyomo Modeler

3 Example unbalanced transportation problem.

File: transport1u.py

4 J M Garrido, September 2014

5 usage: pyomo transport1u.py --summary

6 """

7 print "Unbalanced Transportation Problem"

8 # Import

9 from coopr.pyomo import *

10

11 # Data for Linear Optimization Problem

12 M = 3 # Supply points

13 N = 5 # Demand points

14 a = range(1, M+1)

15 al = range(M)

16 b = range(1,N+1)

17 bl = range(N)

18 # Index list for decision variables x
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19 xindx = [(a[i],b[j]) for j in bl for i in al]

20

21 #Concrete Model

22 model = ConcreteModel(name="Unbalanced Transportation Problem 1")

23

24 #Decision Variables

25 model.x = Var(xindx, within=NonNegativeReals)

26

27 # The objective function

28 model.obj = Objective(expr=

29 20.0 * model.x[1,1] + 40.0 * model.x[1,2] + 70.0 * model.x[1,3] +

50.0*model.x[1,4]

30 + 100*model.x[2,1] + 60.0*model.x[2,2] + 90.0*model.x[2,3] +

80.0*model.x[2,4]

31 +10.0*model.x[3,1] + 110.0*model.x[3,2] + 30.0*model.x[3,3] +

200*model.x[3,4],

32 sense = minimize)

33

34 # Supply Constraints

35 model.SConstraint1 = Constraint(expr=

36 model.x[1,1] + model.x[1,2] + model.x[1,3] + model.x[1,4] +

model.x[1,5] <= 600.0)

37 model.SConstraint2 = Constraint(expr=

38 model.x[2,1] + model.x[2,2] + model.x[2,3] + model.x[2,4] +

model.x[2,5] <= 1500.0)

39 model.SConstraint3 = Constraint(expr=

40 model.x[3,1] + model.x[3,2] + model.x[3,3] + model.x[3,4] +

model.x[3,5] <= 900.0)

41

42 # Demand Constraints

43 model.DConst1 = Constraint(expr=

44 model.x[1,1] + model.x[2,1] + model.x[3,1] >= 700.0)

45 model.DConst2 = Constraint(expr=

46 model.x[1,2] + model.x[2,2] + model.x[3,2] >= 600.0)

47 model.DConst3 = Constraint(expr=

48 model.x[1,3] + model.x[2,3] + model.x[3,3] >= 1000)

49 model.DConst4 = Constraint(expr=

50 model.x[1,4] + model.x[2,4] + model.x[3,4] >= 500.0)

51 model.DConst5 = Constraint(expr=

52 model.x[1,5] + model.x[2,5] + model.x[3,5] >= 200.0)

Running the model with Pyomo produces the following output listing.

$ pyomo transport1u.py --summary
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[ 0.00] Setting up Pyomo environment

[ 0.00] Applying Pyomo preprocessing actions

Unbalanced Transportation Problem

[ 0.02] Creating model

[ 0.02] Applying solver

[ 0.05] Processing results

Number of solutions: 1

Solution Information

Gap: 0.0

Status: feasible

Function Value: 131000.0

Solver results file: results.json

==========================================================

Solution Summary

==========================================================

Model Unbalanced Transportation Problem 1

Variables:

x : Size=15, Index=x_index, Domain=NonNegativeReals

Key : Lower : Value : Upper : Initial : Fixed : Stale

(1, 1) : 0 : 600.0 : None : None : False : False

(1, 2) : 0 : 0.0 : None : None : False : False

(1, 3) : 0 : 0.0 : None : None : False : False

(1, 4) : 0 : 0.0 : None : None : False : False

(1, 5) : 0 : 0.0 : None : None : False : False

(2, 1) : 0 : 0.0 : None : None : False : False

(2, 2) : 0 : 600.0 : None : None : False : False

(2, 3) : 0 : 200.0 : None : None : False : False

(2, 4) : 0 : 500.0 : None : None : False : False

(2, 5) : 0 : 200.0 : None : None : False : False

(3, 1) : 0 : 100.0 : None : None : False : False

(3, 2) : 0 : 0.0 : None : None : False : False

(3, 3) : 0 : 800.0 : None : None : False : False

(3, 4) : 0 : 0.0 : None : None : False : False

(3, 5) : 0 : 0.0 : None : None : False : False

Objectives:

obj : Size=1, Index=None, Active=True

Key : Active : Value

None : True : 131000.0

Constraints:

SConstraint1 : Size=1
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Key : Lower : Body : Upper

None : None : 600.0 : 600.0

SConstraint2 : Size=1

Key : Lower : Body : Upper

None : None : 1500.0 : 1500.0

SConstraint3 : Size=1

Key : Lower : Body : Upper

None : None : 900.0 : 900.0

DConst1 : Size=1

Key : Lower : Body : Upper

None : 700.0 : 700.0 : None

DConst2 : Size=1

Key : Lower : Body : Upper

None : 600.0 : 600.0 : None

DConst3 : Size=1

Key : Lower : Body : Upper

None : 1000.0 : 1000.0 : None

DConst4 : Size=1

Key : Lower : Body : Upper

None : 500.0 : 500.0 : None

DConst5 : Size=1

Key : Lower : Body : Upper

None : 200.0 : 200.0 : None

[ 0.41] Applying Pyomo postprocessing actions

[ 0.41] Pyomo Finished

23.4.2 Formulation with the Pulp Modeler

The Python script with the model formulated for Pulp is shown in the follow-
ing listing. The output listing produced when running the model shows the
same results as with the model using the Pyomo modeler.

"""

Python Formulation for the Pulp Modeler

Example transport problem. File: transport1u.py

J M Garrido, September 2014

usage: python transport1u.py

"""

print "Unbalanced Transportation Problem 1"

# Import PuLP modeler functions

from pulp import *

# Data for Linear Optimization Problem

M = 3 # Supply points
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N = 5 # Demand points

a = range(1, M+1)

al = range(M)

b = range(1,N+1)

bl = range(N)

# Index list for decision variables x

xindx = [(a[i],b[j]) for j in bl for i in al]

# Create the model to contain the problem data

model = LpProblem("Unbalanced Transportation Problem 1",LpMinimize)

# Decision variables

x = LpVariable.dicts("X", xindx,0,None)

# The Pulp objective function

model += 20.0 * x[1,1] + 40.0 * x[1,2] + 70.0 * x[1,3] + 50.0*x[1,4] \

+ 100*x[2,1] + 60.0*x[2,2] + 90.0*x[2,3] + 80.0*x[2,4] \

+10.0*x[3,1] + 110.0*x[3,2] + 30.0*x[3,3] + 200*x[3,4], \

"Transportation cost"

# Supply Constraints

model += x[1,1] + x[1,2] + x[1,3] + x[1,4] + x[1,5] <= 600.0,

"Supply Pt 1"

model += x[2,1] + x[2,2] + x[2,3] + x[2,4] + x[2,5] <= 1500.0,

"Supply Pt 2"

model += x[3,1] + x[3,2] + x[3,3] + x[3,4] + x[3,5] <= 900.0,

"Supply Pt 3"

# Demand Constraints

model += x[1,1] + x[2,1] + x[3,1] >= 700.0, "Demand Pt 1"

model += x[1,2] + x[2,2] + x[3,2] >= 600.0, "Demand Pt 2"

model += x[1,3] + x[2,3] + x[3,3] >= 1000.0, "Demand Pt 3"

model += x[1,4] + x[2,4] + x[3,4] >= 500.0, "Demand Pt 4"

model += x[1,5] + x[2,5] + x[3,5] >= 200.0, "Dummy Demand Pt"

# Solve the optimization problem using the specified PuLP Solver

model.solve(GLPK())

# Print the status of the solution

print "Status:", LpStatus[model.status]

# Print each of the variables with it’s resolved optimum value

for v in model.variables():

print v.name, "=", v.varValue
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# Print the optimised value of the objective function

print "Objective Function", value(model.objective)

23.5 UNBALANCED PROBLEM: CASE STUDY 3

When the demand exceeds the supply, the problem formulation includes a
penalty associated with the unmet demand. Suppose that in the original prob-
lem discussed previously, supply point S1 produces 300 units of the product
(instead of 400). This problem is now unbalanced, with an unmet demand of
100.

A dummy supply point, S4, with a supply of 100, is added to the problem
formulation. The penalty for unmet demand at demand point D1 is 125; at
demand point D2 is 147; at demand point D3 is 95; and at demand point D4
is 255.

The following table shows the transportation cost from each supply point
to every demand point, the supply of the product at the supply points, and
the demand of the product at the demand points.

D1 D2 D3 D4 Supply
S1 20 40 70 50 300

S2 100 60 90 80 1500

S3 10 110 30 200 900

S4 125 147 95 255 100
Demand 700 600 1000 500

Note that the dummy supply point S4 has been included in the table.
The penalty amounts have also been included for this supply point. The total
supply and demand is now 2800.

This problem has m = 4 supply points and n = 4 demand points. The
objective function can be completely written with the unit cost values of the
product to be transported, given in the table shown previously. The objective
function is expressed as follows:

z =

20x1,1 + 40x1,2 + 70x1,3 + 50x1,4 +
100x2,1 + 60x2,2 + 90x2,3 + 80x2,4 +
10x3,1 + 110x3,2 + 30x3,3 + 200x3,4 +

125x4,1 + 147x4,2 + 95x4,3 + 255x4,4.

There are 4 supply constraints, with each row representing the total quan-
tity of product transported from an indicated supply point. For example, the
first row (1) represents the quantities of product shipped from supply point 1.
The second row (2) represents the quantities of product shipped from supply
point 2. The last row (4) represents the quantities of product shipped from
supply point 4.
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x1,1 + x1,2 + x1,3 + x1,4 ≤ 300
x2,1 + x2,2 + x2,3 + x2,4 ≤ 1500
x3,1 + x3,2 + x3,3 + x3,4 ≤ 900
x4,1 + x4,2 + x4,3 + x4,4 ≤ 100

The demand constraints have the right-hand side as a lower bound. There
are 4 demand constraints, with each row representing the total quantity of
product to be transported and received by the indicated demand point.

x1,1 + x2,1 + x3,1 + x4,1 ≥ 700
x1,2 + x2,2 + x3,2 + x4,2 ≥ 600
x1,3 + x2,3 + x3,3 + x4,3 ≥ 1000
x1,4 + x2,4 + x3,4 + x4,4 ≥ 500

The decision variables xi,j have the sign constraint: xi,j ≥ 0, for i =
1, . . . , 4 and j = 1, . . . , 4.

23.5.1 Formulation with the Pyomo Modeler

The following listing shows the Python script that contains the formulation
of the model using Pyomo and is stored in file transport1ub.py (in folder
pyomo.

"""

Python Formulation for the Pyomo Modeler

Example unbalanced transportation problem with excess supply.

File: transport1u.py J M Garrido, September 2014

usage: pyomo transport1ub.py --summary

"""

print "Unbalanced Transportation Problem 2"

# Import

from coopr.pyomo import *

# Data for Linear Optimization Problem

M = 4 # Supply points

N = 4 # Demand points

a = range(1, M+1)

al = range(M)

b = range(1,N+1)

bl = range(N)

# Index list for decision variables x

xindx = [(a[i],b[j]) for j in bl for i in al]

#Concrete Model

model = ConcreteModel(name="Unbalanced Transportation Problem 2")
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#Decision Variables

model.x = Var(xindx, within=NonNegativeReals)

# The objective function

model.obj = Objective(expr=

20.0 * model.x[1,1] + 40.0 * model.x[1,2] + 70.0 * model.x[1,3]

+ 50.0*model.x[1,4]

+ 100*model.x[2,1] + 60.0*model.x[2,2] + 90.0*model.x[2,3]

+ 80.0*model.x[2,4]

+10.0*model.x[3,1] + 110.0*model.x[3,2] + 30.0*model.x[3,3]

+ 200*model.x[3,4]

+125.0*model.x[4,1] + 147.0*model.x[4,2] + 95.0*model.x[4,3]

+ 255.0*model.x[4,4],

sense = minimize)

# Supply Constraints

model.SConstraint1 = Constraint(expr=

model.x[1,1] + model.x[1,2] + model.x[1,3] + model.x[1,4] <= 300.0)

model.SConstraint2 = Constraint(expr=

model.x[2,1] + model.x[2,2] + model.x[2,3] + model.x[2,4] <= 1500.0)

model.SConstraint3 = Constraint(expr=

model.x[3,1] + model.x[3,2] + model.x[3,3] + model.x[3,4] <= 900.0)

model.SConstraint4 = Constraint(expr=

model.x[4,1] + model.x[4,2] + model.x[4,3] + model.x[4,4] <= 100.0)

# Demand Constraints

model.DConst1 = Constraint(expr=

model.x[1,1] + model.x[2,1] + model.x[3,1] + model.x[4,1] >= 700.0)

model.DConst2 = Constraint(expr=

model.x[1,2] + model.x[2,2] + model.x[3,2] + model.x[4,2] >= 600.0)

model.DConst3 = Constraint(expr=

model.x[1,3] + model.x[2,3] + model.x[3,3] + model.x[4,3] >= 1000)

model.DConst4 = Constraint(expr=

model.x[1,4] + model.x[2,4] + model.x[3,4] +model.x[4,4] >= 500.0)

The following listing is produced after running the model with the Pyomo
modeler.

$ pyomo transport1ub.py --summary

[ 0.00] Setting up Pyomo environment

[ 0.00] Applying Pyomo preprocessing actions

Unbalanced Transportation Problem 2

[ 0.02] Creating model
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[ 0.02] Applying solver

[ 0.06] Processing results

Number of solutions: 1

Solution Information

Gap: 0.0

Status: feasible

Function Value: 146500.0

Solver results file: results.json

==========================================================

Solution Summary

==========================================================

Model Unbalanced Transportation Problem 2

Variables:

x : Size=16, Index=x_index, Domain=NonNegativeReals

Key : Lower : Value : Upper : Initial : Fixed : Stale

(1, 1) : 0 : 300.0 : None : None : False : False

(1, 2) : 0 : 0.0 : None : None : False : False

(1, 3) : 0 : 0.0 : None : None : False : False

(1, 4) : 0 : 0.0 : None : None : False : False

(2, 1) : 0 : 0.0 : None : None : False : False

(2, 2) : 0 : 600.0 : None : None : False : False

(2, 3) : 0 : 400.0 : None : None : False : False

(2, 4) : 0 : 500.0 : None : None : False : False

(3, 1) : 0 : 400.0 : None : None : False : False

(3, 2) : 0 : 0.0 : None : None : False : False

(3, 3) : 0 : 500.0 : None : None : False : False

(3, 4) : 0 : 0.0 : None : None : False : False

(4, 1) : 0 : 0.0 : None : None : False : False

(4, 2) : 0 : 0.0 : None : None : False : False

(4, 3) : 0 : 100.0 : None : None : False : False

(4, 4) : 0 : 0.0 : None : None : False : False

Objectives:

obj : Size=1, Index=None, Active=True

Key : Active : Value

None : True : 146500.0

Constraints:

SConstraint1 : Size=1

Key : Lower : Body : Upper

None : None : 300.0 : 300.0

SConstraint2 : Size=1
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Key : Lower : Body : Upper

None : None : 1500.0 : 1500.0

SConstraint3 : Size=1

Key : Lower : Body : Upper

None : None : 900.0 : 900.0

SConstraint4 : Size=1

Key : Lower : Body : Upper

None : None : 100.0 : 100.0

DConst1 : Size=1

Key : Lower : Body : Upper

None : 700.0 : 700.0 : None

DConst2 : Size=1

Key : Lower : Body : Upper

None : 600.0 : 600.0 : None

DConst3 : Size=1

Key : Lower : Body : Upper

None : 1000.0 : 1000.0 : None

DConst4 : Size=1

Key : Lower : Body : Upper

None : 500.0 : 500.0 : None

[ 0.08] Applying Pyomo postprocessing actions

[ 0.08] Pyomo Finished

23.5.2 Formulation with the Pulp Modeler

The following listing shows the Python script with the formulation of the
model using Pulp modeler and is stored in file transport1ub.py in directory
pulp models.

"""

Python Formulation for the Pulp Modeler

Example transport problem with excess demand.

File: transport1ub.py

J M Garrido, September 2014

usage: python transport1ub.py

"""

print "Unbalanced Transportation Problem 2"

# Import PuLP modeler functions

from pulp import *

# Data for Linear Optimization Problem

M = 4 # Supply points

N = 4 # Demand points
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a = range(1, M+1)

al = range(M)

b = range(1,N+1)

bl = range(N)

# Index list for decision variables x

xindx = [(a[i],b[j]) for j in bl for i in al]

# Create the model to contain the problem data

model = LpProblem("Unbalanced Transportation Problem 2",LpMinimize)

# Decision variables

x = LpVariable.dicts("X", xindx,0,None)

# The Pulp objective function

model += 20.0 * x[1,1] + 40.0 * x[1,2] + 70.0 * x[1,3] + 50.0*x[1,4] \

+ 100*x[2,1] + 60.0*x[2,2] + 90.0*x[2,3] + 80.0*x[2,4] \

+10.0*x[3,1] + 110.0*x[3,2] + 30.0*x[3,3] + 200*x[3,4] \

+125.0*x[4,1] + 147.0*x[4,2] + 95.0*x[4,3] + 255.0*x[4,4], \

"Transportation cost"

# Supply Constraints

model += x[1,1] + x[1,2] + x[1,3] + x[1,4] <= 300.0,"Supply Pt 1"

model += x[2,1] + x[2,2] + x[2,3] + x[2,4] <= 1500.0, "Supply Pt 2"

model += x[3,1] + x[3,2] + x[3,3] + x[3,4] <= 900.0, "Supply Pt 3"

model += x[4,1] + x[4,2] + x[4,3] + x[4,4] <= 100.0, "Dummy Supply Pt"

# Demand Constraints

model += x[1,1] + x[2,1] + x[3,1] + x[4,1] >= 700.0, "Demand Pt 1"

model += x[1,2] + x[2,2] + x[3,2] + x[4,2] >= 600.0, "Demand Pt 2"

model += x[1,3] + x[2,3] + x[3,3] + x[4,3] >= 1000.0, "Demand Pt 3"

model += x[1,4] + x[2,4] + x[3,4] + x[4,4] >= 500.0, "Demand Pt 4"

# Solve the optimization problem using the specified PuLP Solver

model.solve(GLPK())

# Print the status of the solution

print "Status:", LpStatus[model.status]

# Print each of the variables with it’s resolved optimum value

for v in model.variables():

print v.name, "=", v.varValue

# Print the optimised value of the objective function

print "Objective Function", value(model.objective)
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23.6 TRANSSHIPMENT MODELS

A transshipment model includes intermediate or transshipment points in a
transportation model. A transshipment point is an intermediate point between
one or more supply points and one or more demand points. Quantities of a
product can be sent from a supply point directly to a demand point or via a
transshipment point.

A transshipment point can be considered both a supply point and a de-
mand point. At a transshipment point, k, the total quantity of product shipped
to this point must equal the total quantity of the product shipped from this
intermediate point and can be expressed as follows:

i=m
∑

i=1

xi,k =

j=n
∑

j=1

xk,j ,

where m is the number of supply points, n is the number of demand points,
and xi,j is the amount of the product shipped from supply point i to demand
point j. From the previous equation, the transshipment constraint of a point,
k, is expressed as follows:

i=m
∑

i=1

xi,k −
j=n
∑

j=1

xk,j = 0. (23.1)

23.7 TRANSSHIPMENT PROBLEM: CASE STUDY 4

Various quantities of a product are shipped from two cities (supply points), S1
and S2, to three destinations (demand points), D1, D2, and D3. The products
are first shipped to three warehouses (transshipment points), T1, T2, and T3,
then shipped to their final destinations.

The following table shows the transportation cost from each supply point
to the intermediate points and to every demand point. The table also includes
the supply of the product at the supply points, and the demand of the product
at the demand points.

T1 T2 T3 D1 D2 D3 Supply

S1 16 10 12 0 0 0 300
S2 15 14 17 0 0 0 300
T1 0 0 0 6 8 10 0

T2 0 0 0 7 11 11 0

T3 0 0 0 4 5 12 0
Demand 0 0 0 200 100 300

Note that the total supply of the product is 600 and the total demand is
also 600. Therefore, this is a balanced problem.
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The problem can be formulated directly as a standard transportation prob-
lem, using the data in the previous table. The conventional notation for the
quantity of product is used and xi,j denotes the quantity of product shipped
from point i to point j. For example: x2,3 denotes the quantity of product
shipped from supply point S2 to transshipment point T3.

This problem has m = 2 supply points, n = 3 demand points, and 3
transshipment points. Because a transshipment point can be a supply point
and a demand point, the problem can be formulated with a total of 5 supply
points and 6 demand points.

The objective function can be completely written with the unit cost values
of the product to be transported given in the table. The objective function is
expressed as follows:

z =

16x1,1 + 10x1,2 + 12x1,3 +
15x2,1 + 14x2,2 + 17x2,3 +
6x3,4 + 8x3,5 + 10x3,6 +
7x4,4 + 11x4,5 + 11x4,6 +
4x5,4 + 5x5,5 + 12x5,6.

There are three transshipment constraints, one for each transshipment
point. These constraints are:

x1,1 + x2,1 − x3,4 − x3,5 − x3,6 = 0 (T1)
x1,2 + x2,2 − x4,4 − x4,5 − x4,6 = 0 (T2)
x1,3 + x2,3 − x5,4 − x5,5 − x5,6 = 0 (T3).

There are two supply constraints, each representing the total quantity of
product transported from an indicated supply point.

x1,1 + x1,2 + x1,3 ≤ 300
x2,1 + x2,2 + x2,3 ≤ 300

There are three demand constraints, each representing the total quantity
of product transported to the indicated demand point.

x3,6 + x4,6 + x5,6 ≥ 300
x3,5 + x4,5 + x5,5 ≥ 100
x3,4 + x4,4 + x5,4 ≥ 200

There are three transshipment constraints applying the balance equations
(Equation 23.1) at each one.

x1,1 + x2,1 − x3,4 − x3,5 − x3,6 = 0
x1,2 + x2,2 − x4,4 − x4,5 − x4,6 = 0
x1,3 + x2,3 − x5,4 − x5,5 − x5,6 = 0.

The decision variables xi,j have the sign constraint xi,j ≥ 0, for i = 1, . . . , 5
and j = 1, . . . , 6.
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23.7.1 Formulation with the Pyomo Modeler

The following listing shows the Python script with the model using Pyomo
and is stored in file transship1.py. Note that a list of artificial variables
were included in the formulation because Pyomo does not accept constraints
with an equal sign. The size of this list, y, is the number of transshipment
points. With this list, the right-hand side of the transshipment constraints
were written with ≥ 0.0 in lines 55–60.

1 """

2 Python Formulation for the Pyomo Modeler

3 Example a transshipment problem.

4 File: transship1.py - J M Garrido, September 2014

5 usage: pyomo transship1.py --summary

6 """

7 print "Transshipment Problem 1"

8 # Import

9 from coopr.pyomo import *

10

11 # Data for Linear Optimization Problem

12 M = 5 # Supply points

13 N = 6 # Demand points

14 NT = 3 # Number of transshipment points

15 a = range(1, M+1)

16 al = range(M)

17 b = range(1,N+1)

18 bl = range(N)

19 # Index list for decision variables x

20 xindx = [(a[i],b[j]) for j in bl for i in al]

21 tindx = range(1, NT+1) # index list for y variables

22

23 #Concrete Model

24 model = ConcreteModel(name="Transshipment Problem 1")

25

26 # Decision Variables

27 model.x = Var(xindx, within=NonNegativeReals)

28 # Artificial variables

29 model.y = Var(tindx, within=NonNegativeReals)

30

31 # The objective function

32 model.obj = Objective(expr=

33 16.0 * model.x[1,1] + 10.0 * model.x[1,2] + 12.0 * model.x[1,3]

34 + 15*model.x[2,1] + 14.0*model.x[2,2] + 17.0*model.x[2,3]

35 +6.0*model.x[3,4] + 8.0*model.x[3,5] + 10.0*model.x[3,6]

36 +7.0*model.x[4,4] + 11.0*model.x[4,5] + 11.0*model.x[4,6]

37 +4.0*model.x[5,4] + 5.0*model.x[5,5] + 12.0*model.x[5,6],
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38 sense = minimize)

39

40 # Supply Constraints

41 model.SConstraint1 = Constraint(expr=

42 model.x[1,1] + model.x[1,2] + model.x[1,3] <= 300.0)

43 model.SConstraint2 = Constraint(expr=

44 model.x[2,1] + model.x[2,2] + model.x[2,3] <= 300.0)

45

46 # Demand Constraints

47 model.DConst1 = Constraint(expr=

48 model.x[3,4] + model.x[4,4] + model.x[5,4] >= 200.0)

49 model.DConst2 = Constraint(expr=

50 model.x[3,5] + model.x[4,5] + model.x[5,5] >= 100.0)

51 model.DConst3 = Constraint(expr=

52 model.x[3,6] + model.x[4,6] + model.x[5,6] >= 300.0)

53

54 # Transshipment Constraints

55 model.TConst1 = Constraint(expr=

56 model.x[1,1] + model.x[2,1] - model.x[3,4] - model.x[3,5]

- model.x[3,6] - model.y[1] >= 0.0)

57 model.TConstraint2 = Constraint(expr=

58 model.x[1,2] + model.x[2,2] - model.x[4,4] - model.x[4,5]

- model.x[4,6] - model.y[2] >= 0.0)

59 model.TConstraint3 = Constraint(expr=

60 model.x[1,3] + model.x[2,3] - model.x[5,4] - model.x[5,5]

- model.x[5,6] - model.y[3] >= 0.0)

After running the model with Pyomo, the following listing is produced.
Note that the value of the objective function is 12400.0, which is the optimal
value.

$ pyomo transship1.py --summary

[ 0.00] Setting up Pyomo environment

[ 0.00] Applying Pyomo preprocessing actions

Transshipment Problem 1

[ 0.02] Creating model

[ 0.02] Applying solver

[ 0.05] Processing results

Number of solutions: 1

Solution Information

Gap: 0.0

Status: feasible

Function Value: 12400.0

Solver results file: results.json
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==========================================================

Solution Summary

==========================================================

Model Transshipment Problem 1

Variables:

x : Size=30, Index=x_index, Domain=NonNegativeReals

Key : Lower : Value : Upper : Initial : Fixed : Stale

(1, 1) : 0 : 0.0 : None : None : False : False

(1, 2) : 0 : 0.0 : None : None : False : False

(1, 3) : 0 : 300.0 : None : None : False : False

(1, 4) : 0 : None : None : None : False : True

(1, 5) : 0 : None : None : None : False : True

(1, 6) : 0 : None : None : None : False : True

(2, 1) : 0 : 300.0 : None : None : False : False

(2, 2) : 0 : -0.0 : None : None : False : False

(2, 3) : 0 : 0.0 : None : None : False : False

(2, 4) : 0 : None : None : None : False : True

(2, 5) : 0 : None : None : None : False : True

(2, 6) : 0 : None : None : None : False : True

(3, 1) : 0 : None : None : None : False : True

(3, 2) : 0 : None : None : None : False : True

(3, 3) : 0 : None : None : None : False : True

(3, 4) : 0 : 0.0 : None : None : False : False

(3, 5) : 0 : 0.0 : None : None : False : False

(3, 6) : 0 : 300.0 : None : None : False : False

(4, 1) : 0 : None : None : None : False : True

(4, 2) : 0 : None : None : None : False : True

(4, 3) : 0 : None : None : None : False : True

(4, 4) : 0 : 0.0 : None : None : False : False

(4, 5) : 0 : 0.0 : None : None : False : False

(4, 6) : 0 : 0.0 : None : None : False : False

(5, 1) : 0 : None : None : None : False : True

(5, 2) : 0 : None : None : None : False : True

(5, 3) : 0 : None : None : None : False : True

(5, 4) : 0 : 200.0 : None : None : False : False

(5, 5) : 0 : 100.0 : None : None : False : False

(5, 6) : 0 : 0.0 : None : None : False : False

y : Size=3, Index=y_index, Domain=NonNegativeReals

Key : Lower : Value : Upper : Initial : Fixed : Stale

1 : 0 : 0.0 : None : None : False : False

2 : 0 : 0.0 : None : None : False : False

3 : 0 : 0.0 : None : None : False : False



Transportation Models � 395

Objectives:

obj : Size=1, Index=None, Active=True

Key : Active : Value

None : True : 12400.0

Constraints:

SConstraint1 : Size=1

Key : Lower : Body : Upper

None : None : 300.0 : 300.0

SConstraint2 : Size=1

Key : Lower : Body : Upper

None : None : 300.0 : 300.0

DConst1 : Size=1

Key : Lower : Body : Upper

None : 200.0 : 200.0 : None

DConst2 : Size=1

Key : Lower : Body : Upper

None : 100.0 : 100.0 : None

DConst3 : Size=1

Key : Lower : Body : Upper

None : 300.0 : 300.0 : None

TConst1 : Size=1

Key : Lower : Body : Upper

None : 0.0 : 0.0 : None

TConstraint2 : Size=1

Key : Lower : Body : Upper

None : 0.0 : 0.0 : None

TConstraint3 : Size=1

Key : Lower : Body : Upper

None : 0.0 : 0.0 : None

[ 0.08] Applying Pyomo postprocessing actions

[ 0.08] Pyomo Finished

23.7.2 Formulation with the Pulp Modeler

The following listing shows the Python script with the model using Pulp and is
stored in file transship1.py. Note that a list of artificial variables is included
in the formulation because Pulp does not accept constraints with an equal
sign. The size of this list, y, is the number of transshipment points. With this
list, the right-hand side of the transshipment constraints were written with
≥ 0.0.
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"""

Python Formulation for the Pulp Modeler

Transshipment problem. File: transship1.py

J M Garrido, September 2014

usage: python transship1.py

"""

print "Transshipment Problem"

# Import PuLP modeler functions

from pulp import *

# Data for Linear Optimization Problem

M = 5 # Supply points

N = 6 # Demand points

NT = 3 # Number of transshipment points

a = range(1, M+1)

al = range(M)

b = range(1,N+1)

bl = range(N)

# Index list for decision variables x

xindx = [(a[i],b[j]) for j in bl for i in al]

tindx = range(1, NT+1) # index list for y variables

# Create the model to contain the problem data

model = LpProblem("Transshipment Problem",LpMinimize)

# Decision variables

x = LpVariable.dicts("X", xindx,0,None)

y = LpVariable.dicts("Y", tindx,0, None)

# The Pulp objective function

model += 16.0 * x[1,1] + 10.0 * x[1,2] + 12.0 * x[1,3] \

+ 15.0*x[2,1] + 14.0*x[2,2] + 17.0*x[2,3] \

+6.0*x[3,4] + 8.0*x[3,5] + 10.0*x[3,6] \

+7.0*x[4,4] + 11.0*x[4,5] + 11.0*x[4,6] \

+4.0*x[5,4] + 5.0*x[5,5] + 12.0*x[5,6], \

"Transportation cost"

# Supply Constraints

model += x[1,1] + x[1,2] + x[1,3] <= 300.0,"Supply Pt 1"

model += x[2,1] + x[2,2] + x[2,3] <= 300.0, "Supply Pt 2"

# Demand Constraints

model += x[3,4] + x[4,4] + x[5,4] >= 200.0, "Demand Pt 1"

model += x[3,5] + x[4,5] + x[5,5] >= 100.0, "Demand Pt 2"

model += x[3,6] + x[4,6] + x[5,6] >= 300.0, "Demand Pt 3"
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# Transshipment Constraints

model += x[1,1] + x[2,1] - x[3,4] - x[3,5] -x[3,6] - y[1] >= 0.0,

"Transshipment Pt 1"

model += x[1,2] + x[2,2] - x[4,4] - x[4,5] -x[4,6] - y[2] >= 0.0,

"Transshipment Pt 2"

model += x[1,3] + x[2,3] - x[5,4] - x[5,5] -x[5,6] - y[3] >= 0.0,

"Transshipment Pt 3"

# Solve the optimization problem using the specified PuLP Solver

model.solve(GLPK())

# Print the status of the solution

print "Status:", LpStatus[model.status]

# Print each of the variables with it’s resolved optimum value

for v in model.variables():

print v.name, "=", v.varValue

# Print the optimized value of the objective function

print "Objective Function", value(model.objective)

23.8 ASSIGNMENT PROBLEMS

An assignment problem is a special case of a transportation problem that is
formulated as a linear optimization model. The basic goal is to find an optimal
assignment of resources to tasks. The typical objective is to minimize the total
time to complete a task or to minimize the cost of the assignment.

A simple description of the general assignment problem is: minimize the
total cost of a set of workers assigned to a set of tasks. The constraints are:
each worker is assigned no more that a specified number of jobs, and each job
requires no more than a specified number of workers.

An assignment of a resource i to a job j is denoted by xi,j . Let m be the
number of resources and n the number of jobs. The decision variables xi,j

have the constraint xi,j = 1 or xi,j = 0, for i = 1 . . .m and j = 1 . . . n. The
cost of resource i to complete the job j is denoted by ci,j . The total cost of
the resource allocation is:

m
∑

i=1

n
∑

j=1

ci,jxi,j .

Let Pj denote the maximum number of resources to be assigned to job j.
Similarly, let Qi denote the maximum number of jobs that resource i can be
assigned to. In simple problems, all these parameters are equal to 1. The two
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types of constraints are m resource constraints and n job constraints. The job
constraints are expressed as:

m
∑

i=1

xi,j ≤ Pj , j = 1 . . . n.

The resource constraints are expressed as:

n
∑

j=1

xi,j ≤ Qi, i = 1 . . .m.

23.9 ASSIGNMENT PROBLEM: CASE STUDY 5

A factory has 3 machines: M1, M2, and M3. These are to be assigned to four
jobs: T1, T2, T3, and T4. The following table is the cost matrix that gives
the expected costs when a specific machine is assigned a specific job. The
goal of the problem is to optimize the assignment of machines to jobs. In this
problem, each machine can only be assigned to one job, and each job can only
receive one machine.

T1 T2 T3 T4

M1 13 16 12 11

M2 15 2 13 20
M3 5 7 10 6

Note that the total number of machines is 3 and the total number of jobs
is 4, so this is an unbalanced problem. A dummy machine, M4, is included
with zero cost when assigned to a job.

The problem can be formulated directly using the data in the previous
table. The conventional notation for an assignment of resource i to job j is
used and denoted by xi,j . For example, x2,3 denotes the assignment of machine
M2 to job T3.

The goal of the problem is to minimize the objective function, which is the
cost of the assignment of the various machines to the jobs and expressed as
follows:

z =
13x1,1 + 16x1,2 + 12x1,3 + 11x1,4 +
15x2,1 + 2x2,2 + 13x2,3 + 20x2,4 +
5x3,1 + 7x3,2 + 10x3,3 + 6x3,4 +.

The dummy machine assignments are not included in the objective func-
tion because their costs are zero. There are four resource constraints, each
representing the possible assignments of a machine.
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x1,1 + x1,2 + x1,3 + x1,4 = 1 (M1)
x2,1 + x2,2 + x2,3 + x2,4 = 1 (M2)
x3,1 + x3,2 + x3,3 + x3,4 = 1 (M3)
x4,1 + x4,2 + x4,3 + x4,4 = 1 (M4)

There are four job constraints, each representing the possible assignments
of the machines to it.

x1,1 + x2,1 + x3,1 + x4,1 = 1 (T1)
x1,2 + x2,2 + x3,2 + x4,2 = 1 (T2)
x1,3 + x2,3 + x3,3 + x4,3 = 1 (T3)
x1,4 + x2,4 + x3,4 + x4,4 = 1 (T4)

The decision variables xi,j have the constraint xi,j = 0 or xi,j = 1, for
i = 1, . . . , 4 and j = 1, . . . , 4.

23.9.1 Formulation with the Pyomo Modeler

The following listing shows the Python script with the model using Pyomo
and stored in file assign1.py. As with the previous models, it was necessary
to introduce artificial variables.

"""

Python Formulation for the Pyomo Modeler

Assignment problem. File: assign1.py

J M Garrido, September 2014

usage: pyomo assign1.py --summary

"""

print "Assignment Problem 1"

# Import

from coopr.pyomo import *

# Data for Linear Optimization Problem

M = 4 # Number of Jobs

N = 6 # Number of Machines

NAV = M+N # Number of artificial variables

a = range(1, M+1)

al = range(M)

b = range(1,N+1)

bl = range(N)

# Index list for decision variables x

xindx = [(a[i],b[j]) for j in bl for i in al]

tindx = range(1, NAV+1) # index list for y variables

#Concrete Model
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model = ConcreteModel(name="Assignment Problem 1")

# Decision Variables

model.x = Var(xindx, within=NonNegativeReals)

# Artificial variables

model.y = Var(tindx, within=NonNegativeReals)

# The objective function

model.obj = Objective(expr=

13.0 * model.x[1,1] + 16.0 * model.x[1,2] + 12.0 * model.x[1,3]

+ 11.0*model.x[1,4]

+ 15*model.x[2,1] + 2.0*model.x[2,2] + 13.0*model.x[2,3]

+ 20.0*model.x[2,4]

+5.0*model.x[3,1] + 7.0*model.x[3,2] + 10.0*model.x[3,3]

+ 6.0*model.x[3,4],

sense = minimize)

# Job Constraints

model.JConstraint1 = Constraint(expr=

model.x[1,1] + model.x[2,1] + model.x[3,1] + model.x[4,1]

- model.y[1] >= 1)

model.JConstraint2 = Constraint(expr=

model.x[1,2] + model.x[2,2] + model.x[3,2] + model.x[4,2]

- model.y[2] >= 1)

model.JConstraint3 = Constraint(expr=

model.x[1,3] + model.x[2,3] + model.x[3,3] + model.x[4,3]

- model.y[3] >= 1)

model.JConstraint4 = Constraint(expr=

model.x[1,4] + model.x[2,4] + model.x[3,4] + model.x[4,4]

- model.y[4] >= 1)

# Machine Constraints

model.MConst1 = Constraint(expr=

model.x[1,1] + model.x[1,2] + model.x[1,3] + model.x[1,4]

- model.y[5] >= 1)

model.MConst2 = Constraint(expr=

model.x[2,1] + model.x[2,2] + model.x[2,3] + model.x[2,4]

- model.y[6] >= 1)

model.MConst3 = Constraint(expr=

model.x[3,1] + model.x[3,2] + model.x[3,3] + model.x[3,4]

- model.y[7] >= 1)

model.MConst4 = Constraint(expr=

model.x[4,1] + model.x[4,2] + model.x[4,3] + model.x[4,4]

- model.y[8] >= 1)
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After running the model with Pyomo, the following listing is produced.
Note that the optimum value of the objective function is 18.

$ pyomo assign1.py --summary

[ 0.00] Setting up Pyomo environment

[ 0.00] Applying Pyomo preprocessing actions

Assignment Problem 1

[ 0.00] Creating model

[ 0.00] Applying solver

[ 0.05] Processing results

Number of solutions: 1

Solution Information

Gap: 0.0

Status: feasible

Function Value: 18.0

Solver results file: results.json

==========================================================

Solution Summary

==========================================================

Model Assignment Problem 1

Variables:

x : Size=24, Index=x_index, Domain=NonNegativeReals

Key : Lower : Value : Upper : Initial : Fixed : Stale

(1, 1) : 0 : 0.0 : None : None : False : False

(1, 2) : 0 : 0.0 : None : None : False : False

(1, 3) : 0 : 0.0 : None : None : False : False

(1, 4) : 0 : 1.0 : None : None : False : False

(1, 5) : 0 : None : None : None : False : True

(1, 6) : 0 : None : None : None : False : True

(2, 1) : 0 : 0.0 : None : None : False : False

(2, 2) : 0 : 1.0 : None : None : False : False

(2, 3) : 0 : 0.0 : None : None : False : False

(2, 4) : 0 : 0.0 : None : None : False : False

(2, 5) : 0 : None : None : None : False : True

(2, 6) : 0 : None : None : None : False : True

(3, 1) : 0 : 1.0 : None : None : False : False

(3, 2) : 0 : 0.0 : None : None : False : False

(3, 3) : 0 : 0.0 : None : None : False : False

(3, 4) : 0 : 0.0 : None : None : False : False

(3, 5) : 0 : None : None : None : False : True

(3, 6) : 0 : None : None : None : False : True

(4, 1) : 0 : 0.0 : None : None : False : False
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(4, 2) : 0 : 0.0 : None : None : False : False

(4, 3) : 0 : 1.0 : None : None : False : False

(4, 4) : 0 : 0.0 : None : None : False : False

(4, 5) : 0 : None : None : None : False : True

(4, 6) : 0 : None : None : None : False : True

y : Size=10, Index=y_index, Domain=NonNegativeReals

Key : Lower : Value : Upper : Initial : Fixed : Stale

1 : 0 : 0.0 : None : None : False : False

2 : 0 : 0.0 : None : None : False : False

3 : 0 : 0.0 : None : None : False : False

4 : 0 : 0.0 : None : None : False : False

5 : 0 : 0.0 : None : None : False : False

6 : 0 : 0.0 : None : None : False : False

7 : 0 : 0.0 : None : None : False : False

8 : 0 : 0.0 : None : None : False : False

9 : 0 : None : None : None : False : True

10 : 0 : None : None : None : False : True

Objectives:

obj : Size=1, Index=None, Active=True

Key : Active : Value

None : True : 18.0

Constraints:

JConstraint1 : Size=1

Key : Lower : Body : Upper

None : 1.0 : 1.0 : None

JConstraint2 : Size=1

Key : Lower : Body : Upper

None : 1.0 : 1.0 : None

JConstraint3 : Size=1

Key : Lower : Body : Upper

None : 1.0 : 1.0 : None

JConstraint4 : Size=1

Key : Lower : Body : Upper

None : 1.0 : 1.0 : None

MConst1 : Size=1

Key : Lower : Body : Upper

None : 1.0 : 1.0 : None

MConst2 : Size=1

Key : Lower : Body : Upper

None : 1.0 : 1.0 : None

MConst3 : Size=1

Key : Lower : Body : Upper

None : 1.0 : 1.0 : None
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MConst4 : Size=1

Key : Lower : Body : Upper

None : 1.0 : 1.0 : None

[ 0.09] Applying Pyomo postprocessing actions

[ 0.09] Pyomo Finished

23.9.2 Formulation with the Pulp Modeler

The following listing shows the Python script with the model using Pulp and
stored in file assign1.py. As with the previous models, it was necessary to
introduce artificial variables.

"""

Python Formulation for the Pulp Modeler

Assignment problem. File: assign1.py

J M Garrido, September 2014

usage: python assign1.py

"""

print "Transshipment Problem"

# Import PuLP modeler functions

from pulp import *

# Data for Linear Optimization Problem

M = 4 # Number of jobs

N = 4 # Number of resources

NAV = M+N # Number of artificial variables

a = range(1, M+1)

al = range(M)

b = range(1,N+1)

bl = range(N)

# Index list for decision variables x

xindx = [(a[i],b[j]) for j in bl for i in al]

tindx = range(1, NAV+1)

# Create the model to contain the problem data

model = LpProblem("Assignment Problem",LpMinimize)

# Decision variables

x = LpVariable.dicts("X", xindx,0,None)

y = LpVariable.dicts("Y", tindx,0,None)

# The Pulp objective function

model += 13.0 * x[1,1] + 16.0 * x[1,2] + 12.0 * x[1,3] + 11.0*x[1,4] \

+ 15.0*x[2,1] + 2.0*x[2,2] + 13.0*x[2,3] + 20.0*x[2,4] \
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+5.0*x[3,1] + 7.0*x[3,2] + 10.0*x[3,3] + 6.0*x[3,4], \

"Assignment cost"

# Job Constraints

model += x[1,1] + x[2,1] + x[3,1] + x[4,1] -y[1] >= 1,"Job 1"

model += x[1,2] + x[2,2] + x[3,2] + x[4,2] -y[2] >= 1,"Job 2"

model += x[1,3] + x[2,3] + x[3,3] + x[4,3] -y[3] >= 1,"Job 3"

model += x[1,4] + x[2,4] + x[3,4] + x[4,4] -y[4] >= 1,"Job 4"

# Machine Constraints

model += x[1,1] + x[1,2] + x[1,3] + x[1,4] -y[5] >= 1, "Machine 1"

model += x[2,1] + x[2,2] + x[2,3] + x[2,4] -y[6] >= 1, "Machine 2"

model += x[3,1] + x[3,2] + x[3,3] + x[3,4] -y[7] >= 1, "Machine 3"

model += x[4,1] + x[4,2] + x[4,3] + x[4,4] -y[8] >= 1, "Machine 4"

# Solve the optimization problem using the specified PuLP Solver

model.solve(GLPK())

# Print the status of the solution

print "Status:", LpStatus[model.status]

# Print each of the variables with it’s resolved optimum value

for v in model.variables():

print v.name, "=", v.varValue

# Print the optimized value of the objective function

print "Objective Function", value(model.objective)

23.10 SUMMARY

Two important application areas of linear optimization are transportation and
transshipment problems. The goal of the first type of problem is finding the
minimum cost to transport a product. The goal of the second type of problem
is finding the optimal manner to transport products to destination or demand
points.

Key Terms

supply points demand points destination points
transportation cost demand constraints supply constraints
balanced problem unbalanced problem transshipment points
transshipment constraints job constraints resource constraints
dummy assignments artificial variables
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23.11 EXERCISES

23.1 A factory of automobile spare parts has two supply locations: S1 and
S2. There are three demand points that require 35, 42, and 50 parts,
respectively. Supply point S1 has a capacity of 85 parts and S2 a capacity
of 65 parts. The following table shows transportation costs and the costs
(penalty) for excess demand of each supply point. Formulate and solve
the optimization problem using Pyomo and Pulp.

D1 D2 D3 Supply
S1 25 45 42 85
S2 20 60 50 65
Demand 35 42 50
Penalty 100 85 150

23.2 In Exercise 23.1, management of the factory decided to meet excess
demand by purchasing additional parts and sending them to the demand
points. The cost of purchasing and sending each of these parts is $140.00.
Formulate and solve the optimization problem using Pyomo and Pulp.

23.3 A computer manufacturer produces three types of computer laptops:
T1, T2, and T3. These are built in three facilities: F1, F2, and F3. In a
week of 44 hours, the demand is for a total of 10 computers that must
be produced. Formulate and solve the minimum cost of producing the
computers. The following table includes the time (in hours) and the cost
of producing every type of computer.

Facility Time T1 T2 T3
F1 5 $180 $120 $84
F2 4 $150 $90 $90
F3 3.5 $129 $60 $60

23.4 In Exercise 23.3, each computer type has a different time (in hours)
that it takes to manufacture it depending on the facility where it is
built. The following table includes this data. Formulate and solve the
minimum cost of producing the computers.

Facility T1 T2 T3

F1 4.5 4 4.5
F2 4.5 4.3 5
F3 3.5 3.5 4
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Network Models

24.1 INTRODUCTION

This chapter presents the general concepts, formulation, and solution of prob-
lems that can be described with network models. These are special cases of
linear optimization problems. The main goal is to formulate these problems as
linear optimization models and compute the minimum cost or the maximum
flow from a source point to a destination point in the network.

Examples of these types of problems are shortest path problems, maximum
flow problems, and minimum spanning tree problems.

24.2 GRAPHS

A graph is used as a visual representation of a network. A graph consists of a
finite set of nodes (also known as vertices) and a finite set of arcs that connect
pairs of nodes. A directed arc connects an ordered pair of vertices; if an arc
starts at node P (head) and ends at node Q (tail), it is denoted as (P,Q). An
arc will typically have an associated weight or length.

A path is a sequence of arcs with the property that for every arc its tail
vertex is the head vertex of the next arc. The length (or cost) of the path is
the summation of the lengths of the individual arcs in it.

24.3 SHORTEST PATH PROBLEM

A shortest path problem consists of finding the path from an initial node in
the graph to a final node with the shortest length. Several algorithms have
been developed to solve this general problem, the most important of which is
Dijkstra’s algorithm.

This section discusses the formulation of shortest path problems as trans-
shipment problems. For this, the techniques of the previous chapters are ap-
plied. As discussed previously, a transshipment model includes intermediate
or transshipment points in a transportation model. A transshipment point is

407
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an intermediate point between one or more supply points and one or more
demand points.

The general problem consists of transporting one unit of a product from
a source point P to a destination point Q. The intermediate nodes are the
transshipment points. Units of the product can be sent from the source point
to the destination point using one of several possible paths.

When in a graph there is no arc between two points, an artificial arc is
included and its length is given a relatively large value, H. An arc from a node
to the same node will have zero length.

The cost of sending 1 unit of product from node i to node j is the length
of the arc and denoted by ci,j . For example, c2,3 denotes the cost of sending
1 unit of product shipped from node 2 to node 3. The shipment of 1 unit of
the product from node i to node j is denoted by xi,j . Therefore, the value of
xi,j is 1 or zero.

The objective function indicates the total cost of transporting 1 unit of the
product from the source node to the destination node and can be expressed
as follows:

Minimize: z,

z =
1=n
∑

i=1

j=n
∑

j=1

ci,jxi,j .

The number of nodes is n and there is one supply point and one demand
point. A transshipment point can be considered both a supply point and a
demand point. At a transshipment point, k, the total inputs to this point must
equal the total outputs from this intermediate point and can be expressed as
follows:

i=p
∑

i=1

xi,k =

j=q
∑

j=1

xk,j .

where p is the number of supply points, q is the number of demand points,
and xi,j denotes a unit of (1) product or no product (0) shipped from point
i to point j. From the previous equation, the transshipment constraint of a
point, k, is expressed as follows:

i=p
∑

i=1

xi,k −
j=q
∑

j=1

xk,j = 0.

24.4 SHORTEST PATH: CASE STUDY 1

A product is shipped from a supply city (supply point), represented by node
1, to a destination city (demand point), represented by node 6. The product is
first shipped to one or more cities that are represented by intermediate nodes
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Figure 24.1 Graph of shortest path problem.

2–5. The goal of the problem is to find the shortest path from the supply city
to the destination city. The distance between the cities is shown by the arcs
between nodes in the graph of Figure 24.1.

The problem can be formulated directly as a standard transportation prob-
lem, using the data in the previous figure. This problem has one supply point
and one demand point. The objective function can be completely written with
the unit cost values of the product to be transported. The objective function
is to minimize the following expression:

z =

0x1,1 + 4x1,2 + 2x1,3 + Hx1,4 + Hx1,5 + Hx1,6 +
Hx2,1 + 0x2,2 + Hx2,3 + 5x2,4 + Hx2,5 + Hx2,6 +
Hx3,1 + 1x3,2 + 0x3,3 + 8x3,4 + 10x3,5 + Hx3,6 +
Hx4,1 + Hx4,2 + Hx4,3 + 0x4,4 + 2x4,5 + 6x4,6 +
Hx5,1 + Hx5,2 + Hx5,3 + Hx5,4 + 0x5,5 + 2x5,6 +
Hx6,1 + Hx6,2 + Hx6,3 + Hx6,4 + Hx6,5 + 0x6,6.

There are two source–destination constraints, each representing 1 unit of
product transported from the indicated source node to the indicated destina-
tion node.

x1,2 + x1,3 = 1 (Source node)
x4,6 + x5,6 = 1 (Destination node)

There are four intermediate nodes, so there are four transshipment con-
straints, one for each intermediate node. These constraints are:

x1,2 + x3,2 − x4,2 = 0 (Node 2)
x1,3 − x3,2 − x3,4 − x3,5 = 0 (Node 3)
x2,4 + x3,4 − x4,5 − x4,6 = 0 (Node 4)
x3,5 + x4,5 − x5,6 = 0 (Node 5).

The decision variables xi,j have the sign constraint xi,j = 0 or xi,j = 0,
for i = 1, . . . , 6 and j = 1, . . . , 6.
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24.4.1 Formulation Using the Pyomo Modeler

The following listing shows the formulation of the model using the Pyomo
modeler. The model is stored in file network1.py.

"""

Python Formulation using Pyomo Modeler

Network problem, shortest path. File: network1.py

J M Garrido, September 2014

usage: pyomo network1.py --summary

"""

print "Assignment Problem 1"

# Import

from coopr.pyomo import *

# Data for Linear Optimization Problem

N = 6 # Number of nodes in network

M = 2 # number of end nodes (source and destination)

INT = 4 # Number of intermediate nodes

H = 10000.0 # A very high cost constant

a = range(1, N+1)

al = range(N)

b = range(1,N+1)

bl = range(N)

# Index list for decision variables x

xindx = [(a[i],b[j]) for j in bl for i in al]

T = INT + M # number of artificial variables (y)

tindx = range(1, T+1) # index list for y variables

#Concrete Model

model = ConcreteModel(name="Shortest Path Problem 1")

# Decision Variables

model.x = Var(xindx, within=NonNegativeReals)

# Artificial variables

model.y = Var(tindx, within=NonNegativeReals)

# The objective function

model.obj = Objective(expr=

0.0 * model.x[1,1] + 4.0 * model.x[1,2] + 2.0 * model.x[1,3]

+ H*model.x[1,4] +H*model.x[1,5] + H*model.x[1,6]

+ H*model.x[2,1] + 0.0*model.x[2,2] + H*model.x[2,3]

+ 5.0*model.x[2,4] + H*model.x[2,5] + H*model.x[2,6]

+ H*model.x[3,1] + 1.0*model.x[3,2] + 0.0*model.x[3,3]

+ 8.0*model.x[3,4] + 10.0*model.x[3,5] + H*model.x[3,6]

+ H*model.x[4,1] + H*model.x[4,2] + H*model.x[4,3]
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+ 0.0*model.x[4,4] + 2.0*model.x[4,5] + 6.0*model.x[4,6]

+ H*model.x[5,1] + H*model.x[5,2] + H*model.x[5,3]

+ H*model.x[5,4] + 0.0*model.x[5,5] + 2.0*model.x[5,6]

+ H*model.x[6,1] + H*model.x[6,2] + H*model.x[6,3]

+ H*model.x[6,4] + H*model.x[6,5] + 0.0*model.x[6,6]

, sense = minimize)

# Source and Destination Constraints

model.SConstraint1 = Constraint(expr=

model.x[1,2] + model.x[1,3] -model.y[1] >= 1)

model.DConstraint1 = Constraint(expr=

model.x[4,6] + model.x[5,6] -model.y[2] >= 1)

# Intermediate Node Constraints

model.IntConst1 = Constraint(expr=

model.x[1,2] + model.x[3,2] - model.x[2,4] - model.y[3] >= 0)

model.IntConst2 = Constraint(expr=

model.x[1,3] - model.x[3,2] - model.x[3,4] - model.x[3,5]

- model.y[4] >= 0)

model.IntConst3 = Constraint(expr=

model.x[2,4] + model.x[3,4] - model.x[4,5] - model.x[4,6]

- model.y[5] >= 0)

model.IntConst4 = Constraint(expr=

model.x[3,5] + model.x[4,5] - model.x[5,6] - model.y[6] >= 0)

After running the model with Pyomo, the following listing is produced.
Note that the optimal value of the objective function is 12.0. The results show
that the minimum path has length = 12. The path selected consists of the
following arcs: x1,3, x3,2, x2,4, x4,5, and x5,6.

$ pyomo network1.py --summary

[ 0.00] Setting up Pyomo environment

[ 0.00] Applying Pyomo preprocessing actions

Assignment Problem 1

[ 0.01] Creating model

[ 0.01] Applying solver

[ 0.05] Processing results

Number of solutions: 1

Solution Information

Gap: 0.0

Status: feasible

Function Value: 12.0

Solver results file: results.json
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==========================================================

Solution Summary

==========================================================

Model Shortest Path Problem 1

Variables:

x : Size=36, Index=x_index, Domain=NonNegativeReals

Key : Lower : Value : Upper : Initial : Fixed : Stale

(1, 1) : 0 : None : None : None : False : True

(1, 2) : 0 : 0.0 : None : None : False : False

(1, 3) : 0 : 1.0 : None : None : False : False

(1, 4) : 0 : 0.0 : None : None : False : False

(1, 5) : 0 : 0.0 : None : None : False : False

(1, 6) : 0 : 0.0 : None : None : False : False

(2, 1) : 0 : 0.0 : None : None : False : False

(2, 2) : 0 : None : None : None : False : True

(2, 3) : 0 : 0.0 : None : None : False : False

(2, 4) : 0 : 1.0 : None : None : False : False

(2, 5) : 0 : 0.0 : None : None : False : False

(2, 6) : 0 : 0.0 : None : None : False : False

(3, 1) : 0 : 0.0 : None : None : False : False

(3, 2) : 0 : 1.0 : None : None : False : False

(3, 3) : 0 : None : None : None : False : True

(3, 4) : 0 : 0.0 : None : None : False : False

(3, 5) : 0 : 0.0 : None : None : False : False

(3, 6) : 0 : 0.0 : None : None : False : False

(4, 1) : 0 : 0.0 : None : None : False : False

(4, 2) : 0 : 0.0 : None : None : False : False

(4, 3) : 0 : 0.0 : None : None : False : False

(4, 4) : 0 : None : None : None : False : True

(4, 5) : 0 : 1.0 : None : None : False : False

(4, 6) : 0 : 0.0 : None : None : False : False

(5, 1) : 0 : 0.0 : None : None : False : False

(5, 2) : 0 : 0.0 : None : None : False : False

(5, 3) : 0 : 0.0 : None : None : False : False

(5, 4) : 0 : 0.0 : None : None : False : False

(5, 5) : 0 : None : None : None : False : True

(5, 6) : 0 : 1.0 : None : None : False : False

(6, 1) : 0 : 0.0 : None : None : False : False

(6, 2) : 0 : 0.0 : None : None : False : False

(6, 3) : 0 : 0.0 : None : None : False : False

(6, 4) : 0 : 0.0 : None : None : False : False

(6, 5) : 0 : 0.0 : None : None : False : False

(6, 6) : 0 : None : None : None : False : True
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y : Size=6, Index=y_index, Domain=NonNegativeReals

Key : Lower : Value : Upper : Initial : Fixed : Stale

1 : 0 : 0.0 : None : None : False : False

2 : 0 : 0.0 : None : None : False : False

3 : 0 : 0.0 : None : None : False : False

4 : 0 : 0.0 : None : None : False : False

5 : 0 : 0.0 : None : None : False : False

6 : 0 : 0.0 : None : None : False : False

Objectives:

obj : Size=1, Index=None, Active=True

Key : Active : Value

None : True : 12.0

Constraints:

SConstraint1 : Size=1

Key : Lower : Body : Upper

None : 1.0 : 1.0 : None

DConstraint1 : Size=1

Key : Lower : Body : Upper

None : 1.0 : 1.0 : None

IntConst1 : Size=1

Key : Lower : Body : Upper

None : 0.0 : 0.0 : None

IntConst2 : Size=1

Key : Lower : Body : Upper

None : 0.0 : 0.0 : None

IntConst3 : Size=1

Key : Lower : Body : Upper

None : 0.0 : 0.0 : None

IntConst4 : Size=1

Key : Lower : Body : Upper

None : 0.0 : 0.0 : None

[ 0.11] Applying Pyomo postprocessing actions

[ 0.11] Pyomo Finished

24.4.2 Formulation Using the Pulp Modeler

The following listing shows the formulation of the model using the Pulp mod-
eler. The model is stored in file network1.py.

"""
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Python Formulation using the Pulp Modeler

Network problem, shortest path. File: network1.py

J M Garrido, September 2014

usage: python network1.py

"""

print "Network Problem, shortest path"

# Import PuLP modeler functions

from pulp import *

# Data for Linear Optimization Problem

N = 6 # Number of nodes in network

M = 2 # number of end nodes (source and destination)

INT = 4 # Number of intermediate nodes

H = 10000.0 # A very high cost constant

a = range(1, N+1)

al = range(N)

b = range(1,N+1)

bl = range(N)

# Index list for decision variables x

xindx = [(a[i],b[j]) for j in bl for i in al]

T = INT + M # number of artificial variables (y)

tindx = range(1, T+1)

# Create the model to contain the problem data

model = LpProblem("Shortest Path Problem",LpMinimize)

# Decision variables

x = LpVariable.dicts("X", xindx,0,None)

y = LpVariable.dicts("Y", tindx,0,None)

# The Pulp objective function

model += \

0.0*x[1,1] + 4.0*x[1,2] + 2.0*x[1,3] + H*x[1,4] +H*x[1,5] + H*x[1,6] \

+ H*x[2,1] + 0.0*x[2,2] + H*x[2,3] + 5.0*x[2,4] + H*x[2,5]

+ H*x[2,6] \

+ H*x[3,1] + 1.0*x[3,2] + 0.0*x[3,3] + 8.0*x[3,4] + 10.0*x[3,5]

+ H*x[3,6] \

+ H*x[4,1] + H*x[4,2] + H*x[4,3] + 0.0*x[4,4] + 2.0*x[4,5]

+ 6.0*x[4,6] \

+ H*x[5,1] + H*x[5,2] + H*x[5,3] + H*x[5,4] + 0.0*x[5,5] + 2.0*x[5,6] \

+ H*x[6,1] + H*x[6,2] + H*x[6,3] + H*x[6,4] + H*x[6,5] + 0.0*x[6,6] \

, "Transportation cost"

# Source and Constraints

model += x[1,2] + x[1,3] -y[1] >= 1,"Source node"
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model += x[4,6] + x[5,6] -y[2] >= 1,"Destination node"

# Intermediate Node Constraints

model += x[1,2] + x[3,2] - x[2,4] - y[3] >= 0,"Node 2"

model += x[1,3] - x[3,2] - x[3,4] - x[3,5] - y[4] >= 0,"Node 3"

model += x[2,4] + x[3,4] - x[4,5] - x[4,6] - y[5] >= 0, "Node 4"

model += x[3,5] + x[4,5] - x[5,6] - y[6] >= 0, "Node 5"

# Solve the optimization problem using the PuLP Solver

model.solve(GLPK())

# Print the status of the solution

print "Status:", LpStatus[model.status]

# Print each of the variables with it’s resolved optimum value

for v in model.variables():

print v.name, "=", v.varValue

# Print the optimized value of the objective function

print "Objective Function", value(model.objective)

24.5 MAXIMUM FLOW PROBLEMS

The are many problems in which the goal is to send the maximum quantity of
a product from a source node to a destination node of a network. The main
limitation is the capacity of each segment of the network represented by the
arcs. For these problems, the Ford–Fulkerson algorithm was developed. In this
section, the linear optimization formulation is discussed.

The following maximum flow problem illustrates the basic approach to for-
mulate a linear optimization problem. An airline company needs to plan and
set up an optimal number of flights from Chicago to Rio de Janeiro. The inter-
mediate stops that need to be included are: first Atlanta, then Bogota and/or
Caracas. Table 24.1 shows the routes, the corresponding arcs in Figure 24.2,
and the capacity (maximum number of flights allowed) of each route.

The problem can be formulated directly as a standard transportation prob-
lem, using the data in Table 24.1 and Figure 24.2.

Let xi,j denote the number of flights from node i to node j, and ci,j the
capacity between nodes i and j. This problem has one supply point (source)
and one demand point (destination). The objective function can be written
by observing that the maximum flow from node 1 to node 5 is actually the
flow from node 1 to node 2, which is represented by the variable x1,2. The
objective function is then to maximize the expression z = x1,2.
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Table 24.1 Airline routes from Chicago to Rio.

Route Arc Max number of flights

Chicago to Atlanta x1,2 7
Atlanta to Bogota x2,3 4

Atlanta to Caracas x2,4 3

Bogota to Caracas x3,4 6

Bogota to Rio x3,5 3

Caracas to Rio x4,5 4

Figure 24.2 Graph of airline routes to Rio.

To simplify the formulation of the problem, three types of constraints are
considered:

• Source–destination constraints

• Transshipment constraints

• Capacity constraints

There is one source–destination constraint, which represents the balance
in the flow from the source node and the flow into the destination node in
Figure 24.2. This constraint is expressed as follows:

x1,2 = x3,5 + x4,5.

There are three intermediate nodes (2, 3, and 4), so there are three trans-
shipment constraints, one for each intermediate node. These constraints are:

x1,2 − x2,3 − x2,4 = 0 (Node 2)
x2,3 − x3,4 − x3,5 = 0 (Node 3)
x2,4 + x3,4 − x4,5 = 0 (Node 4).

The capacity constraints represent the maximum number of flights possible
on the indicated route:
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xi,j ≤ ci,j .

These are shown as the value of the arcs in Figure 24.2. There are six arcs
in the graph, therefore there are six capacity constraints.

x1,2 ≤ 7
x2,3 ≤ 4
x2,4 ≤ 3
x3,4 ≤ 6
x3,5 ≤ 3
x4,5 ≤ 4

The decision variables xi,j have the sign constraint xi,j ≥ 0, for i = 1, . . . , 5
and j = 1, . . . , 5.

24.5.1 Formulation Using the Pyomo Modeler

The following listing shows the formulation of the model using the Pyomo
modeler and is stored in file maxflow1.py. Note that this is a maximization
model and the artificial variables are used with a + sign and the right-hand
side of the respective constraints are <= 0. This is shown in line 36 and in
lines 54–58.

1 """

2 Python Formulation using Pyomo Modeler

3 Network problem, maximum flow. File: network1.py

4 J M Garrido, September 2014

5 usage: pyomo maxflow1.py --summary

6 """

7 print "Maximum Flow Problem"

8 # Import

9 from coopr.pyomo import *

10

11 # Data for Linear Optimization Problem

12 N = 5 # Number of nodes in network

13 INT = 3 # Number of intermediate nodes

14 a = range(1, N+1)

15 al = range(N)

16 b = range(1,N+1)

17 bl = range(N)

18 # Index list for decision variables x

19 xindx = [(a[i],b[j]) for j in bl for i in al]

20 T = INT + 1 # number of artificial variables (y)
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21 tindx = range(1, T+1) # index list for y variables

22

23 #Concrete Model

24 model = ConcreteModel(name="Maximum Flow Problem")

25

26 # Decision Variables

27 model.x = Var(xindx, within=NonNegativeReals)

28 # Artificial variables

29 model.y = Var(tindx, within=NonNegativeReals)

30

31 # The objective function

32 model.obj = Objective(expr= model.x[1,2], sense = maximize)

33

34 # Source and Destination Constraint

35 model.SDConstraint1 = Constraint(expr=

36 model.x[1,2] - model.x[3,5] - model.x[4,5] + model.y[1] <= 0)

37

38 # Arc Capacity Constraints

39 model.ArcConstraint1 = Constraint(expr=

40 model.x[1,2] <= 7)

41 model.ArcConstraint2 = Constraint(expr=

42 model.x[2,3] <= 4)

43 model.ArcConstraint3 = Constraint(expr=

44 model.x[2,4] <= 3)

45 model.ArcConstraint4 = Constraint(expr=

46 model.x[3,4] <= 6)

47 model.ArcConstraint5 = Constraint(expr=

48 model.x[3,5] <= 3)

49 model.ArcConstraint6 = Constraint(expr=

50 model.x[4,5] <= 4)

51

52 # Intermediate Node Constraints

53 model.IntConst1 = Constraint(expr=

54 model.x[1,2] - model.x[2,3] - model.x[2,4] + model.y[2] <= 0)

55 model.IntConst2 = Constraint(expr=

56 model.x[2,3] - model.x[3,4] - model.x[3,5] + model.y[3] <= 0)

57 model.IntConst3 = Constraint(expr=

58 model.x[2,4] + model.x[3,4] - model.x[4,5] + model.y[4] <= 0)

After running the model with the Pyomo modeler, the following listing is
produced. Note that optimum number of flights is 7 and the value of variable
x3,4 is 1, which means that the maximum number of flights from node 3 to
node 4 is 1.
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$ pyomo maxflow1.py --summary

[ 0.00] Setting up Pyomo environment

[ 0.00] Applying Pyomo preprocessing actions

Maximum Flow

[ 0.02] Creating model

[ 0.02] Applying solver

[ 0.06] Processing results

Number of solutions: 1

Solution Information

Gap: 0.0

Status: feasible

Function Value: 7.0

Solver results file: results.json

==========================================================

Solution Summary

==========================================================

Model Maximum Flow Problem

Variables:

x : Size=25, Index=x_index, Domain=NonNegativeReals

Key : Lower : Value : Upper : Initial : Fixed : Stale

(1, 1) : 0 : None : None : None : False : True

(1, 2) : 0 : 7.0 : None : None : False : False

(1, 3) : 0 : None : None : None : False : True

(1, 4) : 0 : None : None : None : False : True

(1, 5) : 0 : None : None : None : False : True

(2, 1) : 0 : None : None : None : False : True

(2, 2) : 0 : None : None : None : False : True

(2, 3) : 0 : 4.0 : None : None : False : False

(2, 4) : 0 : 3.0 : None : None : False : False

(2, 5) : 0 : None : None : None : False : True

(3, 1) : 0 : None : None : None : False : True

(3, 2) : 0 : None : None : None : False : True

(3, 3) : 0 : None : None : None : False : True

(3, 4) : 0 : 1.0 : None : None : False : False

(3, 5) : 0 : 3.0 : None : None : False : False

(4, 1) : 0 : None : None : None : False : True

(4, 2) : 0 : None : None : None : False : True

(4, 3) : 0 : None : None : None : False : True

(4, 4) : 0 : None : None : None : False : True

(4, 5) : 0 : 4.0 : None : None : False : False

(5, 1) : 0 : None : None : None : False : True

(5, 2) : 0 : None : None : None : False : True
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(5, 3) : 0 : None : None : None : False : True

(5, 4) : 0 : None : None : None : False : True

(5, 5) : 0 : None : None : None : False : True

y : Size=4, Index=y_index, Domain=NonNegativeReals

Key : Lower : Value : Upper : Initial : Fixed : Stale

1 : 0 : 0.0 : None : None : False : False

2 : 0 : 0.0 : None : None : False : False

3 : 0 : 0.0 : None : None : False : False

4 : 0 : 0.0 : None : None : False : False

Objectives:

obj : Size=1, Index=None, Active=True

Key : Active : Value

None : True : 7.0

Constraints:

SDConstraint1 : Size=1

Key : Lower : Body : Upper

None : None : 0.0 : 0.0

ArcConstraint1 : Size=1

Key : Lower : Body : Upper

None : None : 7.0 : 7.0

ArcConstraint2 : Size=1

Key : Lower : Body : Upper

None : None : 4.0 : 4.0

ArcConstraint3 : Size=1

Key : Lower : Body : Upper

None : None : 3.0 : 3.0

ArcConstraint4 : Size=1

Key : Lower : Body : Upper

None : None : 1.0 : 6.0

ArcConstraint5 : Size=1

Key : Lower : Body : Upper

None : None : 3.0 : 3.0

ArcConstraint6 : Size=1

Key : Lower : Body : Upper

None : None : 4.0 : 4.0

IntConst1 : Size=1

Key : Lower : Body : Upper

None : None : 0.0 : 0.0

IntConst2 : Size=1

Key : Lower : Body : Upper

None : None : 0.0 : 0.0

IntConst3 : Size=1

Key : Lower : Body : Upper
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None : None : 0.0 : 0.0

[ 0.08] Applying Pyomo postprocessing actions

[ 0.08] Pyomo Finished

24.5.2 Formulation Using the Pulp Modeler

The following listing shows the formulation of the model using the Pulp mod-
eler and is stored in file maxflow1.py.

"""

Python Formulation using the Pulp Modeler

Network problem, maximum flow. File: maxflow1.py

J M Garrido, September 2014

usage: python maxflow1.py

"""

print "Network Problem, shortest path"

# Import PuLP modeler functions

from pulp import *

# Data for Linear Optimization Problem

N = 5 # Number of nodes in network

INT = 3 # Number of intermediate nodes

a = range(1, N+1)

al = range(N)

b = range(1,N+1)

bl = range(N)

# Index list for decision variables x

xindx = [(a[i],b[j]) for j in bl for i in al]

T = INT + 1 # number of artificial variables (y)

tindx = range(1, T+1)

# Create the model to contain the problem data

model = LpProblem("Maximum Flow Problem",LpMaximize)

# Decision variables

x = LpVariable.dicts("X", xindx,0,None)

y = LpVariable.dicts("Y", tindx,0,None)

# The Pulp objective function

model += x[1,2], "Maximum Flow"

# Source and Destination Constraints

model += x[1,2] - x[4,5] - x[3,5] + y[1] <= 0,"Source to destination"
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# Arc Capacity Constraints

model += x[1,2] <= 7,"Arc 1-2"

model += x[2,3] <= 4,"Arc 2-3"

model += x[2,4] <= 3,"Arc 2-4"

model += x[3,4] <= 6,"Arc 3-4"

model += x[3,5] <= 3,"Arc 3-5"

model += x[4,5] <= 4,"Arc 4-5"

# Intermediate Node Constraints

model += x[1,2] - x[2,3] - x[2,4] + y[2] <= 0,"Node 2"

model += x[2,3] - x[3,4] - x[3,5] + y[3] <= 0,"Node 3"

model += x[2,4] + x[3,4] - x[4,5] + y[4] <= 0,"Node 4"

# Solve the optimization problem using the PuLP Solver

model.solve(GLPK())

# Print the status of the solution

print "Status:", LpStatus[model.status]

# Print each of the variables with it’s resolved optimum value

for v in model.variables():

print v.name, "=", v.varValue

# Print the optimized value of the objective function

print "Objective Function", value(model.objective)

24.6 CRITICAL PATH METHOD

The critical path method (CPM) is a network model that can help in the
scheduling of large projects. The important computations are the total time
to complete the project and the interval that represents how long an activity of
the project can be delayed without causing delays to the project. This method
calculates the minimum completion time for a project and the possible start
and finish times for the project activities.

A network model of a project typically consists of a sequence of the various
activities that need to be performed, and the duration of each activity. A
directed arc represents an activity, a node represents a start or finish event of
an activity. A special initial node represents the start of the project, and a
special end node represents the completion of the project.

In any project there are cases in which more than one activity needs to
be completed before the next activity can start. Figure 24.3 illustrates this
situation. Activity Aj and activity Ak have to be completed before activity Al
can start. Another situation is an activity that needs to be completed before
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two or more activities can start. Figure 24.4 illustrates this by showing activity
Al , which needs to be completed before activities Am, Ak, and Ap can start.

Figure 24.3 Several activities

completed before next activ-

ity.

Figure 24.4 Sequencing of ac-

tivities.

The following terms are used in project scheduling using the duration of
the activities in the project. The early event time of node i, denoted by ei, is
the earliest time at which the event can occur. The late event time of node i,
denoted by li, is the latest time at which the event can occur.

The total float, denoted by fi,j of an activity Ai,j is the time interval by
which the starting time of the activity can be delayed and not cause delay in
the completion time of the project.

An activity that has a total float equal to zero is known as a critical
activity. A critical path consists of a sequence of critical activities. Delays in
the activities in a critical path will delay the completion of the project.

Recall that for any activity Ai,j , the start time of the activity is the event
represented by node i and the completion time of the activity is the event
represented by node j. Let xk denote the time occurrence of event k and
the duration of activity Ai,j is denoted by ∆i,j . For every activity Ai,j , the
completion time of the activity is given by the expression xj ≥ xi +∆i,j .

Let f denote the finish node of the project; the event time of the completion
of the project is denoted by xf . Similarly, node 1 is the start node of the project
and the event time of the start of the project is denoted by x1. The total time
interval or duration of the entire project is given by the expression xf − x1.
Let n denote the total number of nodes in the project network. This implies
that xf = xn. The formulation of the linear optimization problem that finds
the critical path of a project is given by the following expressions:

Minimize: z = xf − x1
Subject to:

xj ≥ xi +∆i,j , i = 1, . . . , n− 1, j = 2, . . . , n

The variables xi, i = 1, . . . , n are unrestricted in sign.
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24.6.1 Critical Path Method: Case Study

A project has been defined with the activities and their duration given in
Table 24.2. The goal of the problem is to find the critical path of the project.
The various activities and their predecessors are shown by the arcs between
nodes in the graph of Figure 24.5.

Table 24.2 Project data.

Activity Predecessor Duration

A1,2 - 6

A2,3 A1,2 9
A3,5 A2,3 13

A3,6 A2,3 6

A3,4 A2,3 5

A4,5 A3,4 7

A5,6 A4,5, A3,5 4

Figure 24.5 Graph of project activities.

The problem can be formulated directly as a standard transportation prob-
lem, using the data in Table 24.2 and in Figure 24.5.

The final node of the project in this problem is node 6. The objective
function is then to minimize the expression z = x6 − x1. The constraints are
expressed as follows:

x2 ≥ x1 + 6 Activity A1,2

x3 ≥ x2 + 9 Activity A2,3

x4 ≥ x3 + 5 Activity A3,4

x5 ≥ x4 + 7 Activity A4,5

x5 ≥ x3 + 13 Activity A3,5

x6 ≥ x3 + 6 Activity A3,6

x6 ≥ x5 + 4 Activity A5,6.

The decision variables xi have unrestricted sign constraint for i = 1, . . . , 6.
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24.6.2 Formulation Using the Pyomo Modeler

The following listing shows the Python script of the model written for the
Pyomo modeler, and is stored in file cpm1.py.

"""

Python Formulation using Pyomo Modeler

Network problem, critical path method. File: cpm1.py

J M Garrido, September 2014

usage: pyomo cpm1.py --summary

"""

print "Maximum Flow"

# Import

from coopr.pyomo import *

# Data for Linear Optimization Problem

N = 6 # Number of nodes in network

# Index list for decision variables x

xindx = range(1, N+1)

#Concrete Model

model = ConcreteModel(name="Critical Path Problem")

# Decision Variables

model.x = Var(xindx, within=NonNegativeReals)

# The objective function

model.obj = Objective(expr= model.x[6] - model.x[1], sense = minimize)

# Activity Constraint

model.ActConstraint1 = Constraint(expr=

model.x[2] - model.x[1] >= 6)

model.ActConstraint2 = Constraint(expr=

model.x[3] - model.x[2] >= 9)

model.ActConstraint3 = Constraint(expr=

model.x[4] - model.x[3] >= 5)

model.ActConstraint4 = Constraint(expr=

model.x[5] - model.x[4] >= 7)

model.ActConstraint5 = Constraint(expr=

model.x[5] - model.x[3] >= 13)

model.ActConstraint6 = Constraint(expr=

model.x[6] - model.x[3] >= 6)

model.ActConstraint7 = Constraint(expr=

model.x[6] - model.x[5] >= 4)
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The following listing shows the results after running the model with the
Pyomo modeler. Note that the total time interval for completion of the project
is 32 days and the start time of every activity is shown in the listing.

$ pyomo cpm1.py --summary

[ 0.00] Setting up Pyomo environment

[ 0.00] Applying Pyomo preprocessing actions

Maximum Flow

[ 0.02] Creating model

[ 0.02] Applying solver

[ 0.06] Processing results

Number of solutions: 1

Solution Information

Gap: 0.0

Status: feasible

Function Value: 32.0

Solver results file: results.json

==========================================================

Solution Summary

==========================================================

Model Critical Path Problem

Variables:

x : Size=6, Index=x_index, Domain=NonNegativeReals

Key : Lower : Value : Upper : Initial : Fixed : Stale

1 : 0 : 0.0 : None : None : False : False

2 : 0 : 6.0 : None : None : False : False

3 : 0 : 15.0 : None : None : False : False

4 : 0 : 20.0 : None : None : False : False

5 : 0 : 28.0 : None : None : False : False

6 : 0 : 32.0 : None : None : False : False

Objectives:

obj : Size=1, Index=None, Active=True

Key : Active : Value

None : True : 32.0

Constraints:

ActConstraint1 : Size=1

Key : Lower : Body : Upper

None : 6.0 : 6.0 : None

ActConstraint2 : Size=1

Key : Lower : Body : Upper
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None : 9.0 : 9.0 : None

ActConstraint3 : Size=1

Key : Lower : Body : Upper

None : 5.0 : 5.0 : None

ActConstraint4 : Size=1

Key : Lower : Body : Upper

None : 7.0 : 8.0 : None

ActConstraint5 : Size=1

Key : Lower : Body : Upper

None : 13.0 : 13.0 : None

ActConstraint6 : Size=1

Key : Lower : Body : Upper

None : 6.0 : 17.0 : None

ActConstraint7 : Size=1

Key : Lower : Body : Upper

None : 4.0 : 4.0 : None

[ 0.08] Applying Pyomo postprocessing actions

[ 0.08] Pyomo Finished

24.6.3 Formulation Using the Pulp Modeler

The following listing shows the Python script of the model written for the
Pyomo modeler, and is stored in file cpm1.py.

"""

Python Formulation using the Pulp Modeler

Network problem, critical path. File: cpm1.py

J M Garrido, September 2014

usage: python cpm1.py

"""

print "Network Problem, critical path method"

# Import PuLP modeler functions

from pulp import *

# Data for Linear Optimization Problem

N = 6 # Number of nodes in network

# Index list for decision variables x

xindx = range(1, N+1)

# Create the model to contain the problem data

model = LpProblem("Critical path Method",LpMinimize)

# Decision variables
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x = LpVariable.dicts("X", xindx,0,None)

# The Pulp objective function

model += x[6] - x[1], "Duration of project"

# Activity Constraints

model += x[2] - x[1] >= 6,"Activity 1-2"

model += x[3] - x[2] >= 9,"Acivity 2-3"

model += x[4] - x[3] >= 5,"Activity 3-4"

model += x[5] - x[4] >= 7,"Activity 4-5"

model += x[5] - x[3] >= 13,"Activity 3-5"

model += x[6] - x[3] >= 6,"Activity 3-6"

model += x[6] - x[5] >= 4,"Activity 5-6"

# Solve the optimization problem using the PuLP Solver

model.solve(GLPK())

# Print the status of the solution

print "Status:", LpStatus[model.status]

# Print each of the variables with it’s resolved optimum value

for v in model.variables():

print v.name, "=", v.varValue

# Print the optimized value of the objective function

print "Objective Function", value(model.objective)

24.7 REDUCING THE TIME TO COMPLETE A PROJECT

When a decision is taken to reduce the total time to complete a project, addi-
tional resources must be allocated to the various activities. Linear optimization
is used to minimize the total cost of allocating the additional resources to the
project activities.

Let ri,j denote the number of days that the duration of activity Ai,j is
reduced, and ci,j denote the cost per day of allocating additional resources to
activity Ai,j . Let R denote the time (in days) that an activity can be reduced,
and let T denote the new total time (in days) of the project completion. The
objective function to minimize is:

z =

n−1
∑

i=1

n
∑

j=2

ci,jri,j , for all activities Ai,j .

The time-reduction constraints are expressed as:
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ri,j ≤ R, for all activities Ai,j .

The activity constraints are expressed as:

xj = xi +∆i,j − ri,j , for all activities Ai,j .

The total time constraint is:

xn − x1 ≤ T.

24.7.1 Reducing Time Case Study

Consider a reduction of 4 days in the total time to complete the project
described in the previous problem. The completion time is now 28 days. The
activity completion time can be reduced up to 2 days. The following table
shows the cost per day of reducing each activity of the project.

Table 24.3 Project additional cost.

Activity Cost
A1,2 22.50
A2,3 15.75

A3,5 13.25

A3,6 16.50
A3,4 25.30
A4,5 17.50

A5,6 14.75

The various activities and their predecessors are shown by the arcs between
nodes in the graph of Figure 24.5. This problem has node 6 as the final node of
the project. The goal of the problem is to find the minimum cost of reducing
the total completion time of the project. The objective function is then to
minimize the expression:

z = 22.50 r1,2 + 15.75 r2,3 + 13.25 r3,5 + 16.50 r3,6 + 25.30 r3,4+
17.50 r4,5 + 14.75 r5,6.

.

The time-reduction constraints are expressed as follows:
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r1,2 ≤ 2, Activity A1,2

r2,3 ≤ 2, Activity A2,3

r3,4 ≤ 2, Activity A3,4

r4,5 ≤ 2, Activity A4,5

r3,5 ≤ 2, Activity A3,5

r3,6 ≤ 2, Activity A3,6

r5,6 ≤ 2, Activity A5,6.

The activity constraints are expressed as follows:

x2 ≥ x1 + 6− r1,2, Activity A1,2

x3 ≥ x2 + 9− r2,3, Activity A2,3

x4 ≥ x3 + 5− r3,4, Activity A3,4

x5 ≥ x4 + 7− r4,5, Activity A4,5

x5 ≥ x3 + 13− r3,5, Activity A3,5

x6 ≥ x3 + 6− r3,6, Activity A3,6

x6 ≥ x5 + 4− r5,6, Activity A5,6.

The decision variables xi have unrestricted sign constraint for i = 1, . . . , 6.

24.7.2 Formulation Using the Pyomo Modeler

The following listing shows the formulation of the model using the Pyomo
modeler and is stored in file cpm1b.py.

"""

Python Formulation using Pyomo Modeler

Network problem, reducing time of project. File: cpm1b.py

J M Garrido, September 2014

usage: pyomo cpm1b.py --summary

"""

print "Reducing Time of Project"

# Import

from coopr.pyomo import *

# Data for Linear Optimization Problem

N = 6 # Number of nodes in project network

# Index list for decision variables x

xindx = range(1, N+1)

a = range(1, N+1)

al = range(N)

b = range(1,N+1)

bl = range(N)

# Index list for decision variables x

rindx = [(a[i],b[j]) for j in bl for i in al]
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#Concrete Model

model = ConcreteModel(name="Project Time Reduction")

# Decision Variables

model.x = Var(xindx, within=NonNegativeReals)

model.r = Var(rindx, within=NonNegativeReals)

# The objective function

model.obj = Objective(expr= 22.5*model.r[1,2] + 15.75*model.r[2,3]

+ 13.25*model.r[3,5] + 16.5*model.r[3,6] + 25.3*model.r[3,4]

+ 17.5*model.r[4,5] + 14.75*model.r[5,6]

, sense = minimize)

# Time Reduction Constraints

model.TRConstraint1 = Constraint(expr=

model.r[1,2] <= 2)

model.TRConstraint2 = Constraint(expr=

model.r[2,3] <= 2)

model.TRConstraint3 = Constraint(expr=

model.r[3,4] <= 2)

model.TRConstraint4 = Constraint(expr=

model.r[4,5] <= 2)

model.TRConstraint5 = Constraint(expr=

model.r[3,5] <= 2)

model.TRConstraint6 = Constraint(expr=

model.r[3,6] <= 2)

model.TRConstraint7 = Constraint(expr=

model.r[5,6] <= 2)

# Activity Constraint

model.ActConstraint1 = Constraint(expr=

model.x[2] - model.x[1] + model.r[1,2] >= 6)

model.ActConstraint2 = Constraint(expr=

model.x[3] - model.x[2] + model.r[2,3] >= 9)

model.ActConstraint3 = Constraint(expr=

model.x[4] - model.x[3] + model.r[3,4] >= 5)

model.ActConstraint4 = Constraint(expr=

model.x[5] - model.x[4] + model.r[4,5] >= 7)

model.ActConstraint5 = Constraint(expr=

model.x[5] - model.x[3] + model.r[3,5] >= 13)

model.ActConstraint6 = Constraint(expr=

model.x[6] - model.x[3] + model.r[3,6] >= 6)

model.ActConstraint7 = Constraint(expr=

model.x[6] - model.x[5] + model.r[5,6] >= 4)
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# Total Time of Project

model.TConstraint = Constraint(expr=

model.x[6] - model.x[1] <= 28)

The following listing shows the results of running the model with the Py-
omo modeler. The total cost of reducing the time interval for completion of
the project is $58.50. Note that the completion time of activities A1,2, A3,6,
A3,4, and A4,5, were not reduced. However, the completion time of activity
A5,6 was reduced by 2 days.

[ 0.00] Setting up Pyomo environment

[ 0.00] Applying Pyomo preprocessing actions

Reducing Time of Project

[ 0.00] Creating model

[ 0.01] Applying solver

[ 0.05] Processing results

Number of solutions: 1

Solution Information

Gap: 0.0

Status: feasible

Function Value: 58.5

Solver results file: results.json

==========================================================

Solution Summary

==========================================================

Model Project Time Reduction

Variables:

x : Size=6, Index=x_index, Domain=NonNegativeReals

Key : Lower : Value : Upper : Initial : Fixed : Stale

1 : 0 : 0.0 : None : None : False : False

2 : 0 : 6.0 : None : None : False : False

3 : 0 : 14.0 : None : None : False : False

4 : 0 : 19.0 : None : None : False : False

5 : 0 : 26.0 : None : None : False : False

6 : 0 : 28.0 : None : None : False : False

r : Size=36, Index=r_index, Domain=NonNegativeReals

Key : Lower : Value : Upper : Initial : Fixed : Stale

(1, 1) : 0 : None : None : None : False : True

(1, 2) : 0 : 0.0 : None : None : False : False

(1, 3) : 0 : None : None : None : False : True

(1, 4) : 0 : None : None : None : False : True
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(1, 5) : 0 : None : None : None : False : True

(1, 6) : 0 : None : None : None : False : True

(2, 1) : 0 : None : None : None : False : True

(2, 2) : 0 : None : None : None : False : True

(2, 3) : 0 : 1.0 : None : None : False : False

(2, 4) : 0 : None : None : None : False : True

(2, 5) : 0 : None : None : None : False : True

(2, 6) : 0 : None : None : None : False : True

(3, 1) : 0 : None : None : None : False : True

(3, 2) : 0 : None : None : None : False : True

(3, 3) : 0 : None : None : None : False : True

(3, 4) : 0 : 0.0 : None : None : False : False

(3, 5) : 0 : 1.0 : None : None : False : False

(3, 6) : 0 : 0.0 : None : None : False : False

(4, 1) : 0 : None : None : None : False : True

(4, 2) : 0 : None : None : None : False : True

(4, 3) : 0 : None : None : None : False : True

(4, 4) : 0 : None : None : None : False : True

(4, 5) : 0 : 0.0 : None : None : False : False

(4, 6) : 0 : None : None : None : False : True

(5, 1) : 0 : None : None : None : False : True

(5, 2) : 0 : None : None : None : False : True

(5, 3) : 0 : None : None : None : False : True

(5, 4) : 0 : None : None : None : False : True

(5, 5) : 0 : None : None : None : False : True

(5, 6) : 0 : 2.0 : None : None : False : False

(6, 1) : 0 : None : None : None : False : True

(6, 2) : 0 : None : None : None : False : True

(6, 3) : 0 : None : None : None : False : True

(6, 4) : 0 : None : None : None : False : True

(6, 5) : 0 : None : None : None : False : True

(6, 6) : 0 : None : None : None : False : True

Objectives:

obj : Size=1, Index=None, Active=True

Key : Active : Value

None : True : 58.5

Constraints:

TRConstraint1 : Size=1

Key : Lower : Body : Upper

None : None : 0.0 : 2.0

TRConstraint2 : Size=1

Key : Lower : Body : Upper

None : None : 1.0 : 2.0
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TRConstraint3 : Size=1

Key : Lower : Body : Upper

None : None : 0.0 : 2.0

TRConstraint4 : Size=1

Key : Lower : Body : Upper

None : None : 0.0 : 2.0

TRConstraint5 : Size=1

Key : Lower : Body : Upper

None : None : 1.0 : 2.0

TRConstraint6 : Size=1

Key : Lower : Body : Upper

None : None : 0.0 : 2.0

TRConstraint7 : Size=1

Key : Lower : Body : Upper

None : None : 2.0 : 2.0

ActConstraint1 : Size=1

Key : Lower : Body : Upper

None : 6.0 : 6.0 : None

ActConstraint2 : Size=1

Key : Lower : Body : Upper

None : 9.0 : 9.0 : None

ActConstraint3 : Size=1

Key : Lower : Body : Upper

None : 5.0 : 5.0 : None

ActConstraint4 : Size=1

Key : Lower : Body : Upper

None : 7.0 : 7.0 : None

ActConstraint5 : Size=1

Key : Lower : Body : Upper

None : 13.0 : 13.0 : None

ActConstraint6 : Size=1

Key : Lower : Body : Upper

None : 6.0 : 14.0 : None

ActConstraint7 : Size=1

Key : Lower : Body : Upper

None : 4.0 : 4.0 : None

TConstraint : Size=1

Key : Lower : Body : Upper

None : None : 28.0 : 28.0

[ 0.05] Applying Pyomo postprocessing actions

[ 0.05] Pyomo Finished
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24.7.3 Formulation Using the Pulp Modeler

The following listing shows the formulation of the model using the Pulp mod-
eler and is stored in file cpm1b.py.

"""

Python Formulation using the Pulp Modeler

Network problem, project time reduction. File: cpm1.py

J M Garrido, September 2014

usage: python cpm1b.py

"""

print "Network Problem, project time reduction"

# Import PuLP modeler functions

from pulp import *

# Data for Linear Optimization Problem

N = 6 # Number of nodes in network

# Index list for decision variables x

xindx = range(1, N+1)

a = range(1, N+1)

al = range(N)

b = range(1,N+1)

bl = range(N)

# Index list for decision variables x

rindx = [(a[i],b[j]) for j in bl for i in al]

# Create the model to contain the problem data

model = LpProblem("Reducing Time of Project",LpMinimize)

# Decision variables

x = LpVariable.dicts("X", xindx,0,None)

r = LpVariable.dicts("R", rindx,0,None)

# The Pulp objective function

model += 22.5*r[1,2] + 15.75*r[2,3] + 13.25*r[3,5] \

+ 16.5*r[3,6] + 25.3*r[3,4] + 17.5*r[4,5] + 14.75*r[5,6], \

"Time duration of project"

# Time Reduction Constraints

model += r[1,2] <= 2, "Reduc time Act 1-2"

model += r[2,3] <= 2, "Reduc time Act 2-3"

model += r[3,4] <= 2, "Reduc time Act 3-4"

model += r[4,5] <= 2, "Reduc time Act 4-5"

model += r[3,5] <= 2, "Reduc time Act 3-5"

model += r[3,6] <= 2, "Reduc time Act 3-6"

model += r[5,6] <= 2, "Reduc time Act 5-6"
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# Activity Constraints

model += x[2] - x[1] + r[1,2] >= 6,"Activity 1-2"

model += x[3] - x[2] + r[2,3] >= 9,"Activity 2-3"

model += x[4] - x[3] + r[3,4] >= 5,"Activity 3-4"

model += x[5] - x[4] + r[4,5] >= 7,"Activity 4-5"

model += x[5] - x[3] + r[3,5] >= 13,"Activity 3-5"

model += x[6] - x[3] + r[3,6] >= 6,"Activity 3-6"

model += x[6] - x[5] + r[5,6] >= 4,"Activity 5-6"

# Total Time of Project

model += x[6] - x[1] <= 28, "Project Total Time"

# Solve the optimization problem using the PuLP Solver

model.solve(GLPK())

# Print the status of the solution

print "Status:", LpStatus[model.status]

# Print each of the variables with it’s resolved optimum value

for v in model.variables():

print v.name, "=", v.varValue

# Print the optimized value of the objective function

print "Objective Function", value(model.objective)

24.8 SUMMARY

Linear optimization modeling can be used to study and calculate various prob-
lems that are represented by networks. The typical problems are shortest path
problems, maximum flow problems, and the critical path method for project
management. A dummy activity has zero duration and is necessary to prevent
two activities with the same start node and the same end node.

Key Terms

shortest path routes traffic
maximum flow critical path minimum spanning tree
graph nodes arcs
path vertex activity
event early event time late event time
total float critical activity transshipment point
transporting cost artificial node arc capacity
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24.9 EXERCISES

24.1 A company manufactures bicycles in two facilities: F1 and F2. Facility
F1 can build a maximum of 400 bicycles per year at a cost of $850 per
unit. Facility F2 can build a maximum of 300 bicycles per year at a cost
of $950. There are two main destinations D1 and D2. Destination D1
demands 400 bicycles per year and D2 demands 300 bicycles per year.
The following table includes the transportation costs from a facility F1,
F2, or the intermediate point D3 to destination points D1, D2, and D3.
The bicycles may be sent to an intermediate location D3. Compute the
minimum total cost that meets the demand.

Transportation Costs

From D1 D2 D3
F1 $250 $200 $75
F2 $155 $130 $95
D3 $45 $35 0

24.2 Repeat the previous problem with the additional condition that the
maximum number of bicycles transported to the intermediate point (D3)
is 185.

24.3 A low-end computer laptop can be purchased for about $400 and can
be used for five years with no salvage value. The maintenance of the
computer is estimated to cost $85 for year 1, $140 for year 2, $210 for
year 3, $250 for year 4, and $270 for year 5. Compute the minimum total
cost of purchasing and using the computer for six years.

24.4 Traffic engineers are studying traffic patterns in part of a city. The im-
mediate problem is to find the maximum flow of vehicles from a source
point, S, to a destination point, D. Figure 25.1 and the following table
show the flow capacity of the various roads (between nodes). Note that
the direction of the traffic is important. Formulate and solve a linear op-
timization problem that computes the maximum traffic flow from point
S to point D.
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Figure 24.6 Graph of road capacity in a city.

Arc Capacity Arc Capacity

S-3 6 4-5 5

3-S 1 5-4 1

S-4 7 4-6 7
4-S 1 6-4 1

S-2 5 4-D 2

2-S 0 D-4 0

2-4 1 5-D 8

4-2 4 D-5 0
2-3 2 5-6 2

3-2 1 6-5 2

3-4 2 6-D 8

4-3 1 D-6 2
3-5 4 5-3 3



C HA P T E R 25

Integer Linear

Optimization Models

25.1 INTRODUCTION

This chapter presents the general concepts and formulation of problems that
can be solved with modes of integer linear optimization. These are models
with more constraint than the standard linear optimization problems.

An integer linear optimization problem in which all variables are required
to be integers is called a pure integer linear problem. If some variables are
restricted to be integers and others are not, the problem is a mixed integer
linear problem. The special case of integer variables that are restricted to be
0 or 1 is very useful and are known as pure (mixed) 0–1 linear problems or
pure (mixed) binary integer linear problems.

25.2 MODELING WITH INTEGER VARIABLES

An integer linear optimization problem is a conventional linear optimization
problem with the additional constraints that the decision variables be integer
variables. This implies that for a maximization integer linear problem, the
optimal value of the objective function is less or equal to the optimal value of
the linear optimization problem.

Removing the constraints that the variables must be integer variables re-
sults in a linear problem similar to the ones discussed in previous chapters.
This linear problem is known as the linear problem relaxation of the integer
linear problem.

In most situations, computing the optimal value of the two linear problems
will produce very different results. The following pure integer linear problem
illustrates this. The objective function is to maximize the following expression:

z = 20x1 + 20x2 + 10x3,

439
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subject to the following restrictions:

2x1 + 20x2 + 4x3 ≤ 15
6x1 + 20x2 + 4x3 = 20

x1, x2, x3 ≥ 0, integer.

The following listing shows the formulation of the problem with the Pyomo
modeler and is stored in file intprob.py. Note that in line 20, the decision
variables are declared as non-negative integers.

1 """

2 Python Formulation using Pyomo Modeler

3 Relaxed Optimization problem. File: intprobr.py

4 J M Garrido, September 2014

5 usage: pyomo intprobr.py --summary

6 """

7 print "Relaxed Optimization Model"

8 # Import

9 from coopr.pyomo import *

10

11 # Data for Linear Optimization Problem

12 N = 3 # Number of variables

13 # Index list for decision variables x

14 xindx = range(1, N+1)

15

16 #Concrete Model

17 model = ConcreteModel(name="Relaxed Optimization Problem")

18

19 # Decision Variables

20 model.x = Var(xindx, within=NonNegativeIntegers)

21

22 # The objective function

23 model.obj = Objective(expr= 20*model.x[1] + 10*model.x[2]

+ 10*model.x[3], sense = maximize)

24 # Constraints

25 model.AConstraint1 = Constraint(expr=

26 2*model.x[1] + 20*model.x[2] + 4*model.x[3] <= 15)

27 model.AConstraint2 = Constraint(expr=

28 6*model.x[1] + 20*model.x[2] + 4*model.x[3] <= 20)

After running the model with Pyomo, this linear optimization problem
produces the results that can be observed in the following listing. The result
of solving this integer linear problem shows the objective function with the
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value 60, and the values of the integer variables are x1 = 2, x2 = 0, and
x3 = 2.

$ pyomo intprob.py --summary

[ 0.00] Setting up Pyomo environment

[ 0.00] Applying Pyomo preprocessing actions

Integer Optimization Model

[ 0.00] Creating model

[ 0.00] Applying solver

[ 0.06] Processing results

Number of solutions: 1

Solution Information

Gap: 0.0

Status: optimal

Function Value: 60.0

Solver results file: results.json

==========================================================

Solution Summary

==========================================================

Model Integer Optimization Problem

Variables:

x : Size=3, Index=x_index, Domain=NonNegativeIntegers

Key : Lower : Value : Upper : Initial : Fixed : Stale

1 : 0 : 2.0 : None : None : False : False

2 : 0 : 0.0 : None : None : False : False

3 : 0 : 2.0 : None : None : False : False

Objectives:

obj : Size=1, Index=None, Active=True

Key : Active : Value

None : True : 60.0

Constraints:

AConstraint1 : Size=1

Key : Lower : Body : Upper

None : None : 12.0 : 15.0

AConstraint2 : Size=1

Key : Lower : Body : Upper

None : None : 20.0 : 20.0

[ 0.08] Applying Pyomo postprocessing actions

[ 0.08] Pyomo Finished
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Relaxing the constraints that the variables xi, i = 1 . . . 3 be integer vari-
ables by changing line 20 and declaring the variables as non-negative reals,
results in a different numerical solution and can be observed in the following
listing.

$ pyomo intprob.py --summary

[ 0.00] Setting up Pyomo environment

[ 0.00] Applying Pyomo preprocessing actions

Integer Optimization Model

[ 0.02] Creating model

[ 0.02] Applying solver

[ 0.06] Processing results

Number of solutions: 1

Solution Information

Gap: 0.0

Status: feasible

Function Value: 66.6666666667

Solver results file: results.json

==========================================================

Solution Summary

==========================================================

Model Integer Optimization Problem

Variables:

x : Size=3, Index=x_index, Domain=NonNegativeReals

Key : Lower : Value : Upper : Initial : Fixed : Stale

1 : 0 : 3.33333333333 : None : None : False : False

2 : 0 : 0.0 : None : None : False : False

3 : 0 : 0.0 : None : None : False : False

Objectives:

obj : Size=1, Index=None, Active=True

Key : Active : Value

None : True : 66.6666666667

Constraints:

AConstraint1 : Size=1

Key : Lower : Body : Upper

None : None : 6.66666666667 : 15.0

AConstraint2 : Size=1

Key : Lower : Body : Upper
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None : None : 20.0 : 20.0

[ 0.16] Applying Pyomo postprocessing actions

[ 0.16] Pyomo Finished

25.3 APPLICATIONS OF INTEGER LINEAR OPTIMIZATION

A brief description of some typical problems that can be formulated as integer
optimization problems follows.

• Knapsack Problem. Given a knapsack with fixed capacity and a collec-
tion of items, each with a weight and value, find the number of items to
put in the knapsack that maximizes the total value carried subject to
the requirement that that weight limitation not be exceeded.

• The Transportation Problem. Given a finite number of suppliers, each
with fixed capacity, a finite number of demand centers, each with a given
demand, and costs of transporting a unit from a supplier to a demand
center, find the minimum cost method of meeting all of the demands
without exceeding supplies.

• Assignment Problem. Given equal numbers of people and jobs and the
value of assigning any given person to any given job, find the job as-
signment (each person is assigned to a different job) that maximizes the
total value.

• Shortest Route Problem. Given a collection of locations and the distance
between each pair of locations, find the cheapest way to get from one
location to another.

• Maximum Flow Problem. Given a series of locations connected by
pipelines of fixed capacity and two special locations (an initial location
or source and a final location or sink), find the way to send the maximum
amount from source to sink without violating capacity constraints.

The techniques used to solve integer linear problems are branch-and-bound
and branch-and-cut algorithms. They are both implicit enumeration tech-
niques, “implicit” meaning that (hopefully) many solutions will be skipped
during enumeration as they are known to be non-optimal.

25.3.1 Branch and Bound

The most widely used method for solving integer linear optimization models
is branch and bound. Subproblems are created by restricting the range of the
integer variables. For binary variables, there are only two possible restrictions:



444 � Introduction to Computational Models with Python

setting the variable to 0, or setting the variable to 1. More generally, a variable
with lower bound l and upper bound u will be divided into two problems with
ranges l to q and q + 1 to u, respectively. Lower bounds are provided by the
linear optimization relaxation of the problem. If the optimal solution to a
relaxed problem is (coincidentally) integral, it is an optimal solution to the
subproblem, and the value can be used to terminate searches of subproblems
whose lower bound is higher.

25.3.2 Branch and Cut

For branch and cut, the lower bound is again provided by the linear optimiza-
tion relaxation of the integer program. The optimal solution to this linear
program is at a corner of the feasible region (the set of all variable settings
which satisfy the constraints). If the optimal solution to the problem is not
integral, this algorithm searches for a constraint which is violated by this so-
lution, but is not violated by any optimal integer solutions. This constraint is
called a cutting plane.

When this constraint is added to the model, the old optimal solution is no
longer valid, and so the new optimal will be different, potentially providing
a better lower bound. Cutting planes are searched iteratively until either an
integral solution is found or it becomes impossible or too expensive to find
another cutting plane. In the latter case, a traditional branch operation is
performed and the search for cutting planes continues on the subproblems.

Almost all the sample problems described in this chapter are formulated
with the Pyomo and Pulp modelers. The underlying solver is GLPK, which
is a linear (integer) optimization solver based on the revised simplex method
and the branch-and-bound method for the integer variables.

25.4 INTEGER LINEAR OPTIMIZATION: CASE STUDY 1

In the knapsack problem, a hiker needs to take as many items as possible in
his knapsack for the next hike. The knapsack has a capacity of 25 pounds.
Each item has a priority from 1 to 10 that indicates the relative importance
of the item, and a weight. This data is included in Table 25.1.

The decision variables, xi, i = 1, . . . , 5, for this integer linear problem can
have only two possible values: (0, 1). xi = 1 indicates that item i is put in the
knapsack and xi = 0 indicates that it is not put in the knapsack. The type of
these variables are also known as binary.

The goal of this problem is to find the best way to pack the items in
the knapsack by priority, given the constraint of the weight capacity of the
knapsack. The objective function is to maximize the following expression:

z = 7x1 + 5x2 + 10x36x4 + 8x5,
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Table 25.1 Items for knapsack.

Item Priority Weight
1 7 5.5

2 5 9.5
3 10 13.5

4 6 6.5
5 8 6

subject to the following restrictions:

5.5x1 + 9.5x2 + 13.5x3 + 6.5x4 + 6x5 ≤ 25

xi ∈ {0, 1}, i = 1, . . . , 5.

25.4.1 Formulation of the Model Using Pyomo

The following listing shows the formulation of the model using the Pyomo
modeler and is stored in file knapsack1.py. Note that the decision variables
are declared with type binary in line 21. The version of the abstract model is
stored in file knapsack2.py and needs the data in file knapsack2.dat.

1 """

2 Python Formulation using Pyomo Modeler

3 The knapsack problem. File: knapsack.py

4 J M Garrido, September 2014

5 usage: pyomo knapsack.py --summary

6 """

7 print "Knapsack Model"

8 # Import

9 from coopr.pyomo import *

10

11 # Data for Linear Optimization Problem

12 N = 5 # Number of variables

13 wlimit = 25 # weight limit

14 # Index list for decision variables x

15 xindx = range(1, N+1)

16

17 #Concrete Model

18 model = ConcreteModel(name="Knapsack Problem")

19

20 # Decision Variables

21 model.x = Var(xindx, within=Binary)
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22

23 # The objective function

24 model.obj = Objective(expr= 7*model.x[1] + 5*model.x[2]

+ 10*model.x[3] + 6*model.x[4] + 8*model.x[5], sense = maximize)

25 # Weight Constraint (limit)

26 model.WConstraint1 = Constraint(expr=

27 5.5*model.x[1] + 9.5*model.x[2] + 13.5*model.x[3]

+ 6.5*model.x[4] + 6*model.x[5] <= wlimit)

The following listing is produced when running the model with Pyomo.
Note that only items 1 3, and 5 are selected.

$ pyomo knapsack1.py --summary

[ 0.00] Setting up Pyomo environment

[ 0.00] Applying Pyomo preprocessing actions

Knapsack Model

[ 0.00] Creating model

[ 0.00] Applying solver

[ 0.05] Processing results

Number of solutions: 1

Solution Information

Gap: 0.0

Status: optimal

Function Value: 25.0

Solver results file: results.json

==========================================================

Solution Summary

==========================================================

Model Knapsack Problem

Variables:

x : Size=5, Index=x_index, Domain=Binary

Key : Lower : Value : Upper : Initial : Fixed : Stale

1 : 0 : 1.0 : 1 : None : False : False

2 : 0 : 0.0 : 1 : None : False : False

3 : 0 : 1.0 : 1 : None : False : False

4 : 0 : 0.0 : 1 : None : False : False

5 : 0 : 1.0 : 1 : None : False : False

Objectives:

obj : Size=1, Index=None, Active=True

Key : Active : Value
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None : True : 25.0

Constraints:

WConstraint1 : Size=1

Key : Lower : Body : Upper

None : None : 25.0 : 25.0

[ 0.05] Applying Pyomo postprocessing actions

[ 0.05] Pyomo Finished

The results listing shows that only items 1, 3, and 5 are put in the knapsack
because of the weight constraint.

25.4.2 Formulation of the Model Using Pulp

The following listing shows the formulation of the model using the Pulp mod-
eler and is stored in file knapsack1.py. Note that the decision variables are
declared with lower and upper bounds 0 and 1, respectively, and type LpIn-
teger in line 21.

1 """

2 Python Formulation using the Pulp Modeler

3 Knapsack problem. File: knapsack1.py

4 J M Garrido, September 2014

5 usage: python knapsack1.py

6 """

7 print "Knapsack Problem"

8 # Import PuLP modeler functions

9 from pulp import *

10

11 # Data for Linear Optimization Problem

12 N = 5 # Number of decision variables

13 wlimit = 25 # weight limit

14 # Index list for decision variables x

15 xindx = range(1, N+1)

16

17 # Create the model to contain the problem data

18 model = LpProblem("Knapsack",LpMaximize)

19

20 # Decision variables

21 x = LpVariable.dicts("X", xindx,0,1, LpInteger)

22

23 # The Pulp objective function

24 model += 7*x[1] + 5* x[2] + 10*x[3] + 6*x[4] + 8*x[5],
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"Maximum items to take"

25

26 # Weight Constraint

27 model += 5.5*x[1] + 9.5* x[2] + 13.5*x[3] + 6.5*x[4] + 6*x[5]

<= wlimit,"Weight"

28

29

30 # Solve the optimization problem using the PuLP Solver

31 model.solve(GLPK())

32

33 # Print the status of the solution

34 print "Status:", LpStatus[model.status]

35

36 # Print each of the variables with it’s optimum value

37 for v in model.variables():

38 print v.name, "=", v.varValue

39

40 # Print the optimized value of the objective function

41 print "Objective Function", value(model.objective)

25.5 INTEGER LINEAR OPTIMIZATION: CASE STUDY 2

A factory manufactures three types of automobile parts. The following table
has the data on the unit requirements of materials (pounds) and labor (hours),
as well as the unit sales price and unit variable cost. The total available labor
per week is 200 hours and the total of 170 pounds of material available per
week. There are three types of machines that need to be rented, one for each
type of part. The weekly costs for renting these machines are $150.00 for
machine 1, $100.00 for machine 2, and $85.00 for machine 3. The goal of the
problem is to maximize the profit of producing the three types of automobile
parts.

Part type Material Labor Sales price Var cost

1 7 5 34.00 18.00

2 5 4 22.00 12.00

3 7 12 40.00 22.00

In formulating this linear optimization model, let x1 denote the number of
parts manufactured of type 1, x2 denote the number of parts manufactured
of type 2, and x3 denote the number of parts manufactured of type 3. These
integer variables are used to formulate the total sales, S, with the following
expression:

S = 34x1 + 22x2 + 40x3.
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The total costs variable, V , is formulated with the following expression:

V = 18x1 + 12x2 + 22x3.

The cost of renting the machines (the fixed cost) depends on whether the
parts of a specific type are produced. Let y1 denote whether the parts of type
1 are produced, y2 denote whether the parts of type 2 are produced, and y3
denote whether the parts of type 3 are produced. These binary variables are
used to formulate the total fixed cost, F , with the following expression:

F = 150y1 + 100y2 + 85y3.

The weekly profit is the objective function of the problem and can be
expressed as:

P = S − V − F.

The objective function can then be formulated with the following expres-
sion:

z =
34x1 + 22x2 + 40x3

−18x1 − 12x2 − 22x3
−150y1 − 100y2 − 85y3.

There are two types of problem constraints: The first type of constraint
derives from the total available labor and material per week. The second type
of constraint associates the type of part produced with the corresponding
machine that needs to be rented.

7x1 + 5x2 + 7x3 ≤ 170 (Material available)
5x1 + 4x2 + 12x3 ≤ 200 (Labor available)

In this problem, given the total available material and labor per week, the
maximum possible number of parts of type 1 that can be produced is 24. In
a similar manner, the maximum possible number of parts of type 2 that can
be produced is 34, and the maximum possible number of parts of type 3 that
can be produced is 16. These constraints are:

x1 ≤ 24y1
x2 ≤ 34y2
x3 ≤ 16y3.
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25.5.1 Formulation of the Model Using Pyomo

The following listing shows the formulation of the problem for using the Pyomo
modeler and is stored in file autoparts.py.

1 """

2 Python Formulation using Pyomo Modeler

3 Auto parts production problem. File: autoparts.py

4 J M Garrido, September 2014

5 usage: pyomo autoparts.py --summary

6 """

7 print "Auto Parts Production Problem"

8 # Import

9 from coopr.pyomo import *

10

11 # Data for Linear Optimization Problem

12 N = 3 # Number of auto parts, decision variables

13 # Index list for decision variables x

14 xindx = range(1, N+1)

15 yindx = range(1, N+1)

16

17 #Concrete Model

18 model = ConcreteModel(name="Auto Parts Production Problem")

19

20 # Decision Variables

21 model.x = Var(xindx, within=NonNegativeIntegers)

22 model.y = Var(yindx, within=Binary)

23 model.yy = Var(within=NonNegativeIntegers)

24

25 # The objective function

26 model.obj = Objective(expr= 16*model.x[1] + 10*model.x[2]

+ 18*model.x[3] - 150*model.y[1] - 100*model.y[2]

- 85*model.y[3], sense = maximize)

27

28 # Material Constraint

29 model.MConstraint1 = Constraint(expr=

30 7*model.x[1] + 5*model.x[2] + 7*model.x[3] <= 170)

31

32 # Labor Constraint

33 model.LConstraint1 = Constraint(expr=

34 5*model.x[1] + 4*model.x[2] + 12*model.x[3] <= 200)

35

36 # General Constraints

37 model.GConstraint1 = Constraint(expr=

38 model.x[1] - 24*model.y[1] <= 0)

39 model.GConstraint2 = Constraint(expr=
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40 model.x[2] - 34*model.y[2] <= 0)

41 model.GConstraint3 = Constraint(expr=

42 model.x[3] - 16*model.y[3] <= 0)

43 model.GConstraint4 = Constraint(expr=

44 model.x[1] - model.y[1] >= 0)

45 model.GConstraint5 = Constraint(expr=

46 model.x[2] - model.y[2] >= 0)

47 model.GConstraint6 = Constraint(expr=

48 model.x[3] - model.y[3] >= 0)

49

50 # Additional Constraints

51 # At least two machines must be rented

52 #model.AConstraint1 = Constraint(expr=

53 # model.y[1] + model.y[2] + model.y[3] >= 2)

54

55 # If machine 1 is rented, machine 3 must also

56 #model.AConstraint2 = Constraint(expr=

57 # model.y[1] - model.y[3] <= 1)

58

59 # Al three machines must be rented

60 #model.AConstraint3 = Constraint(expr=

61 # model.y[1] + model.y[2] + model.y[3] - model.yy >= 3)

Running this linear optimization model with Pyomo produces the results
that can be observed in the following listing.

$ pyomo autoparts.py --summary

[ 0.00] Setting up Pyomo environment

[ 0.00] Applying Pyomo preprocessing actions

Auto Parts Production Problem

[ 0.02] Creating model

[ 0.02] Applying solver

[ 0.06] Processing results

Number of solutions: 1

Solution Information

Gap: 0.0

Status: optimal

Function Value: 240.0

Solver results file: results.json

==========================================================

Solution Summary

==========================================================
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Model Auto Parts Production Problem

Variables:

x : Size=3, Index=x_index, Domain=NonNegativeIntegers

Key : Lower : Value : Upper : Initial : Fixed : Stale

1 : 0 : 0.0 : None : None : False : False

2 : 0 : 34.0 : None : None : False : False

3 : 0 : 0.0 : None : None : False : False

y : Size=3, Index=y_index, Domain=Binary

Key : Lower : Value : Upper : Initial : Fixed : Stale

1 : 0 : 0.0 : 1 : None : False : False

2 : 0 : 1.0 : 1 : None : False : False

3 : 0 : 0.0 : 1 : None : False : False

yy : Size=1, Index=None, Domain=NonNegativeIntegers

Key : Lower : Value : Upper : Initial : Fixed : Stale

None : 0 : None : None : None : False : True

Objectives:

obj : Size=1, Index=None, Active=True

Key : Active : Value

None : True : 240.0

Constraints:

MConstraint1 : Size=1

Key : Lower : Body : Upper

None : None : 170.0 : 170.0

LConstraint1 : Size=1

Key : Lower : Body : Upper

None : None : 136.0 : 200.0

GConstraint1 : Size=1

Key : Lower : Body : Upper

None : None : 0.0 : 0.0

GConstraint2 : Size=1

Key : Lower : Body : Upper

None : None : 0.0 : 0.0

GConstraint3 : Size=1

Key : Lower : Body : Upper

None : None : 0.0 : 0.0

GConstraint4 : Size=1

Key : Lower : Body : Upper

None : 0.0 : 0.0 : None

GConstraint5 : Size=1

Key : Lower : Body : Upper

None : 0.0 : 33.0 : None

GConstraint6 : Size=1
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Key : Lower : Body : Upper

None : 0.0 : 0.0 : None

[ 0.08] Applying Pyomo postprocessing actions

[ 0.08] Pyomo Finished

The results show that the optimal value of profit is $240.00 and only 34
automobile parts of type 2 are to be produced.

An additional constraint on the problem is: at least two machines must be
rented. This constraint is formulated with the following expression:

y1 + y2 + y3 ≥ 2.

Running the model with this additional constraint produces the following
results.

Objective function: 195.00000000

Values of the variables:

x1 0

x2 20

x3 10

y1 0

y2 1

y3 1

The results show that the optimal value of profit is now $195.00 and 20
automobile parts of type 2 and 10 automobile parts of type 3 are to be pro-
duced.

Instead of the previous constraint, another constraint on the problem is:
if machine 1 is rented, then machine 3 should also be rented. This constraint
is formulated with the following expression:

y1 − y3 ≤ 1.

Running the model with this constraint produces the results that can be
observed in the following listing.

Objective function: 240.00000000

Values of the variables:

x1 0

x2 34

x3 0

y1 0
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y2 1

y3 0

The results are the same as the first solution to this problem. The results
show that the optimal value of profit is $240.00 and only 34 automobile parts
of type 2 are to be produced.

Instead of the previous constraint, another constraint on the problem is:
all three machines should be rented. This constraint is formulated with the
following expression:

y1 + y2 + y3 = 3.

Running the model with this constraint produces the results that can be
observed in the following listing.

Objective function: 69.00000000

Values of the variables:

x1 11

x2 3

x3 11

y1 1

y2 1

y3 1

The results show that the optimal value of profit is $69.00 and 11 auto-
mobile parts of type 1, 3 parts of type 2, and 11 parts of type 3 are to be
produced.

25.5.2 Formulation of the Model Using Pulp

The following listing shows the formulation of the model for using the Pulp
modeler.

"""

Python Formulation using the Pulp Modeler

Auto parts production problem. File: autoparts.py

J M Garrido, September 2014

usage: python autoparts.py

"""

print "Automobile Parts"

# Import PuLP modeler functions
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from pulp import *

# Data for Linear Optimization Problem

N = 3 # Number of auto parts, decision variables

# Index list for decision variables x

xindx = range(1, N+1)

yindx = range(1, N+1)

# Create the model to contain the problem data

model = LpProblem("Auto Parts",LpMaximize)

# Decision variables

x = LpVariable.dicts("X", xindx,0,None, LpInteger)

y = LpVariable.dicts("Y", yindx,0,1, LpInteger)

# Auxiliary variable

yy = LpVariable("YY", 0, None, LpInteger)

# The Pulp objective function

model += 16*x[1] + 10* x[2] + 18*x[3] - 150*y[1] - 100*y[2] - 85*y[3],

"Maximum auto parts"

# Material Constraint

model += 7*x[1] + 5*x[2] + 7*x[3] <= 170,"Material"

# Labor Constraint

model += 5*x[1] + 4*x[2] + 12*x[3] <= 200, "Labor"

# Parts Constraints

model += x[1] - 24*y[1] <= 0, "Max production type 1"

model += x[2] - 34*y[2] <= 0, "Max production part 2"

model += x[3] - 16*y[3] <= 0, "max production part 3"

# General Constraints

model += x[1] - y[1] >= 0, "Part type 1"

model += x[2] - y[2] >= 0, "Part type 2"

model += x[3] - y[3] >= 0, "Part type 3"

# Machine Constraints

#model += y[1] + y[2] + y[3] >= 2, "At least 2 machines"

#model += y[1] - y[3] <= 1, "If machine 1 then also machine 3"

#model += y[1] + y[2] + y[3] + yy <= 3, "All 3 machines must be rented"

# Solve the optimization problem using the specified PuLP Solver

model.solve(GLPK())
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# Print the status of the solution

print "Status:", LpStatus[model.status]

# Print each of the variables with it’s resolved optimum value

for v in model.variables():

print v.name, "=", v.varValue

# Print the optimized value of the objective function

print "Objective Function", value(model.objective)

25.6 SUMMARY

Integer linear optimization modeling can be used to study and calculate vari-
ous problems that are represented by variables that have only integer values.
The additional restrictions on decision variables, is that the type of these
variables are to be binary. If not all variables have integer values, then it is
a mixed integer linear problem. Typical applications of problems that can be
solved with integer linear optimization are knapsack problems, transportation
problems, assignment problems, shortest route problems, and maximum flow
problems.

Key Terms

integer variables binary variables integer relaxation
shortest route knapsack transportation
assignment maximum flow branch & bound
branch & cut mixed integer

25.7 EXERCISES

25.1 A company manufactures two types of duffel traveling bags. Three units
of material are used to manufacture bags of type 1, and six units of
material to manufacture bags of type 2. The total units of available
material are 150. The initial setup cost to manufacture bags is $15 for
type 1 and $30 for type 2. The company can sell bags of type 1 with a
profit of $2 per bag and type 2 with a profit of $5 per bag. Compute
the number of bags of each type to produce and the maximum profits
possible.

25.2 A computer distributer has four warehouses (W1, W2, W3, and W4)
and each can ship 120 units per week. The operational costs of the
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warehouses are $385 for W1, $480 for W2, $290 for W3, and $145 for
W4. There are three demand points (D1, D2, and D3) that have the
following weekly demands: 75 for D1, 68 for D2, and 35 for D3. The
distributer has the following operational restrictions: at most, two ware-
houses can be operating; if warehouse W1 is operating, then W2 must
also be operating; and either warehouse W4 or warehouse W2 must be
operating. Compute the minimum weekly cost while meeting demand.
The following table includes data on the cost of transporting a unit from
a warehouse to a destination point.

From D1 D2 D3
W1 $18 $36 $47
W2 $45 $12 $22
W3 $22 $34 $15
W4 $20 $46 $32

25.3 Traffic engineers are studying traffic patterns in part of a city. The im-
mediate problem is to find the maximum flow of vehicles from a source
point, S, to a destination point, D. Figure 25.1 and the following table
show the flow capacity of the various roads (between nodes). Note that
the direction of the traffic is important. Formulate and solve a linear op-
timization problem that computes the maximum traffic flow from point
S to point D.

Figure 25.1 Graph of road capacity in city.
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Arc Capacity Arc Capacity
S-3 6 4-5 5

3-S 1 5-4 1

S-4 7 4-6 7

4-S 1 6-4 1
S-2 5 4-D 2

2-S 0 D-4 0

2-4 1 5-D 8

4-2 4 D-5 0
2-3 2 5-6 2
3-2 1 6-5 2

3-4 2 6-D 8

4-3 1 D-6 2
3-5 4 5-3 3
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