Build games quickly and easily —
no coding required

Learn

GameSalad for i0S

Game Development for iPhone, iPad, and HTML5

David Guerineau

APIeEsSs’

http://www.allitebooks.org

Learn GameSalad for
I0S: Game
Development for
IPhone, IPad,
and HTML5

David Guerineau

Apress’

[vww allitebooks.cond

http://www.allitebooks.org

Learn GameSalad for iOS: Game Development for iPhone, iPad, and HTML5
Copyright © 2012 by David Guerineau

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or
scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer
system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is
permitted only under the provisions of the Copyright Law of the Publisher's location, in its current version, and
permission for use must always be obtained from Springer. Permissions for use may be obtained through
RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective
Copyright Law.

ISBN 978-1-4302-4356-4
ISBN 978-1-4302-4357-1 (eBook)

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial
fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material
contained herein.

President and Publisher: Paul Manning

Lead Editor: Michelle Lowman and Douglas Pundick

Technical Reviewer: Henry Abrams

Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Louise Corrigan, Morgan Ertel, Jonathan
Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham, Matthew Moodie,
Jeff Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Gwenan Spearing,
Matt Wade, Tom Welsh

Coordinating Editor: Anita Castro

Copy Editor: Mary Behr

Compositor: Bytheway Publishing Services

Indexer: SPi Global

Artist: SPi Global

Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th
Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or
visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales—
eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to readers at
www.apress.com. For detailed information about how to locate your book’s source code, go to
Www.apress.com/source-code.

[vww allitebooks.cond

http://www.allitebooks.org

To Raphaelle, Chloe, and Noah.

—David Guerineau

vww allitebooks.conl

http://www.allitebooks.org

S

Contents at a Glance

About the AUthOr......cccciunisemmmmnissennmmsssssasmnsssssnssnessssnas s ssnnsnessssnnnnesssnnnnnnssnnn Xii
About the Technical REVIEWETcccisemrrssemmmssssmssssssssssssssssssssssasssssassessansasss Xiii
Acknowledgmentsccccumisemmmmsemmmmsmsmssmsmsssnsmsssnssnssnsssssnnssssnnssssnnssssnnnansnns xiv
INtroducCtioncccimiciemiriesrrse s e n e s n e s n e n e Xv
Part 1: Learning the GameSalad Fundamentals...........ccousmmssmmmsansssassssnsssanssses 1
Chapter 1: Preparing Your Design Environmentc.ccousmmmsenmssessssnsssassssannas 3
Chapter 2: Your First Game from Scratch: The Pong Gameccuccunsserssanss 31
Chapter 3: Finishing Pong: Scoring and Game Interactionc..cccueeresaennas 65
Chapter 4: Break A Wall: Implementing Comments, Accelerometer
Movements, LifeManagement, and Pausecccvriemmmssenmnssesmsssessssssssessnnnas 87
Chapter 5: Making a Shoot ‘Em Up Game: Carrot Invadercc.cccuusemrrnnens 125
Part 2: Let’s Spice Up the Salad with Advanced Functions and Effects in

L 111 LT 159
Chapter 6: Learning Gravity, Basic Physics, and Camera Controls: An Angry
Birds-like Game, Part |cccorcinismmmnsmmmmssssmsssssessssssssssssssssnsnsssnsessnnsessnns 161
Chapter 7: Creating a Game Menu and a Particles Effect: An Angry Birds-like
T 11 LT T | 203
Chapter 8: Graphics and Sound Effects: Labyrinthccccocciniminscnnnnaens 247
Part 3: Prepping for the App Store: Polishing, Publishing, and Promoting
YOUF GAME..ciiiemrrrsemnesssnnasssnnessssnessssnesssansesssnsessnnsessnnnnesssnnesssnneessnnsessnnsessnnnes 271
Chapter 9: Bonuses, Game Center, and iAd: Break a Wallccocccennnsnnnnns 273

[vww allitebooks.cond

http://www.allitebooks.org

Chapter 10: Device Internal Clock and Cyclic Movement: Non-Game Apps 307

Chapter 11: Submitting Your Game to the App Store........cccccccvimininrnnaens 341
Chapter 12: Introduction to Game Promotioncc.ccccvvmrnienmnssensnssensensens 371
INAEX ceeitiiisnnnnnnnsssnnnnnssssnnnnnssssnnnnmssssnnnnnesssnnnnesssssnnneessssnnnnesssnssnnnesssssnnnnnsssnnnns 387

[vww allitebooks.cond

http://www.allitebooks.org

CONTENTS

o

Contents

About the AUthOr......cccciunisemmmmnissennmmsssssasmnsssssnssnessssnas s ssnnsnessssnnnnesssnnnnnnssnnn Xii
About the Technical REVIEWETcccuserssessssmssssnsssassssassssnsssassssassssnsssansssanss Xiii
Acknowledgmentsccccumisemmmmsemmmmsmsmssmsmsssnsmsssnssnssnsssssnnssssnnssssnnssssnnnansnns xiv
INtroducCtioncccimiciemiriesrrse s e n e s n e s n e n e Xv
Part 1: Learning the GameSalad Fundamentals..........c.ccccusmmniemmnssenmnssensnssens 1
Chapter 1: Preparing Your Design Environmentc.ccousmmmsenmssessssnsssassssannas 3
GameSalad Requirements.......ccccimeriesmnssesmnssesmmssssmesssssesssssesssssesssassesssnsssnnsessnns 3
Registering to GAMeSalad.........cucuusmsssessssnsssnsssassssnsssansssassssasssansssnnssssnsssansssanss 4
ADOUL GAMESAIAU PIO.....c.c.eeeeeeeeececee et ee e e e e e b e R e R e s e e e e e e e e e e e 5
Registering in the i10S Developer Programccceeussesmssesmssssssasssssssssssssassssanss 6
InStalling XCOMEcuverrsumrssunsssmmssnnsssansssnsssnnssssassssnnssansssansssnsssnnsssnnsssnsssansssnnssnnss 14
Installing GameSalad Creatorccouemmmmmsesmssmmmsesmssassssssssassssassssssssassssasssnns 17
Installing GameSalad i0S VIeWerccuccusemmssmmssansssassssnssssssssassssassssssssassssasssnns 19
Why is GameSalad i0S Viewer a PieCe 0F COUB?coviviiiinniss e sesan 19
Getting the GameSalad i0S VIEWE ... e sr s st nrnnne 20
Installing the Developer Certificate in YOUr KEYCRAIN..........cocooereeeeerccneeeeeeeeeresere e 20
Creating a Provisioning Profile for i0S VIBWET ..o 23
INSTAIIING 10S VIBWENcucceiiiicer e e ee s e R e R bR e e R npnnn 26
R 11 1] 1 29
Chapter 2: Your First Game from Scratch: The Pong Gameccuccunsserssanss 31
A Little Bit of HistoryAbout PONQccssermsemmssesmssmssssssssasssssssssssssassssssssassssanss 31
Specifying the Game Concept and Rulescccvvrvnseminssmsmnssesssssesssssessssssssnns 34
QL TEl €T LT 0] T T o T 34
THE GAIME RUIBS..........eeeeeece ettt s e e e ne e e e rnr e 35
Creating a New GameSalad Projectccuccumsemssenmssmsssanmssassssssssassssassssssssanssses 35
Adding ACTOr'S ...cccuvsenmssmmsssnsssansssassssnsssansssnsssssnsssassssnsssnnsssansssnsssnnsssassssnsssnnsssansss 39
L LA L 3T T (o OO 39
CrEAtiNG ACTOISviveei e e e e b e e e e b e R e e e R e e e R e e R e e Re e EnRen 40

[vww allitebooks.cond

http://www.allitebooks.org

Modifying Actors Attributes.......ccciuemmsmmmsnmssesmssnsssansssassssnsssansssassssnsssansssasssanss 41
Instance or Prototype
Actor Attributes............ccceeeeeneee
Commonly Used Attributes
MOGITYINGALIHDULES ... e nn

Adding BENaVIOrsS.....ccuccumssmmssenmssassssnsssassssnsssssnsssansssassssssssansssassssnsssansssasssansssansss 46
What @re DBRAVIOIS?.......c.coceeeeece s e e s e e e 46
Adding Behaviors

Adding an Actor to the SCeneccussmssemmssnmssesmssasssansssassssnssssassssassssnsssansssansss 31

Creating Other ACOrScuccmemmssmmmssnmssessmssmssssnsssasssssssssnsssnssssasssnnsssansssnsssnnsssas D2
Racket Player 2
The Ball

[N o U | X

L 11 1] 1 Y | X |

Chapter 3: Finishing Pong: Scoring and Game Interactionccccieeecneees 65
Let’s KEeP SCOreccuriemrrssemimssenmmssmnmnsssnsnsssssnsssssnsssssssessnnsessnnsesssanenssnnsssnansessas 09

It’s All About the ACe!ccccuniseemmmmmsssnmnmmmsssssnmsssssssnmsssssssnssssssnssssssssnsnnssssansnnsssns 14
Serving Feature: The Winner of the Point Serves the Next Ball............ccocvrivvnicnnins e 74
Keeping One Ball in the Game at 8 TIME ..o s nnne 76

Do You Have the TOUCh?ccccccinnmmnnsemmnnssssmnssssssssssssssssssesssssesssssssssasssssansessns 79
Serving with a PinCh of TOUCK ... 79

Giving Your Game a Brainccuemmsesmssesmsssmssassssassssssssssssssssssssssassssassssnsssanssses O 1
Detecting the Direction and Getting the Y Value
Moving Player 2 Racket 10 the STored ValUe ... ssnnns

[0 T TR T (R . . |

Let’s Play on YOUr DEVICE .uiccecssemrrssemmesssnsnssssnnssssnnssssnnsessansesssnsesssnnesssanssssansessas O

L 11 1] 1 N .

Chapter 4: Break A Wall: Implementing Comments, Accelerometer
Movements, LifeManagement, and Pausecccccccvnemmmmsemmnmssmssssssssssssnsessanes 87

Laying Down the BasiCS......ccssmssemmssnmssansssassssnsssansssansssmsssansssassssassssnsssassssanssanss 90
Defining the New Project................
Defining the Actors..........cccovveennae
Creating the Collidable Tag
Defining the AtHDULES........ooe e ———————————
Implementing the Rules and BERAVIOLS ... s s snnnne 98
LAYOUL OF THE SCENE........civirierirc e e e e e e e e e e e R s 106

[vww allitebooks.cond

CONTENTS

vii

http://www.allitebooks.org

CONTENTS

viii

R T LT T I 0 11T g [G — | | § {
Moving the Paddle with the Accelerometer.........ccccinsmmssmmmmsansssesssnsssansssassssss 109
Managing Lives and the GameQver process.......csussmsssassssssssassssassssasssansssanssss 119
Adding a Pause Featureccuuemmsmmmsesmssasmssnsssesssssssssnsssassssasssansssassssassssnasssans 119
L 11111 R, I X |

Chapter 5: Making a Shoot ‘Em Up Game: Carrot Invaderc..cccvinenrenne. 125
Preparing the Basic Elements of the Scene.........cccuccnmnssmmmsennssesmssnsssassssannsss 127

Creating the Carrot Invader Game ProjECL..........ccovivinicii s 127
Artist Entrance: Creating the ACIOIS ... e e 127
Controlling the Number of Enemies with Game AttribUtes ... 133

Setting the Screenplay: Implementing Rules and Behaviors....
The Invasion is Starting: Creating the Scene Layout

Adding Advanced Featuresccusemmsesmssnmsmssnsssansssassssnsssansssasssnnsssansssasssansssans 143
COMPIEX MOVEIMENEScciiiicerirccr e e e e e e e b e e e e R s
Giving the Impression of Spaceship Movement
Managing the Energy Bar
SCENE MANAGEMENT ... bR e b e E e R e e R E e R E R

11111 | U |1 :]
Part 2: Let’s Spice Up the Salad with Advanced Functions and Effects in
L 111 [T U 11!
Chapter 6: Learning Gravity, Basic Physics, and Camera Controls: An Angry
Birds-like Game, Part |ccccvvcmmnsmmnssenmnssesssssssmnsssssssssssssssssssssssensssnensses 161

Building a Slingshot: Elastic and Pullback FOrceccuusemmsesmssessssnsssansssannsss 162
Anatomy 0f @ SHNGSNOL..........coi e ——————————
Building the Pullback FOrce..........ccurvvvninnnennnnesesensenens
How to Simulate an Elastic in GameSalad

THe SCIEEN VS. thE SCENEc.eeeeeeeeer ettt se e e ne e e e e 184
Implementing the SCIOIlING ..o e 186
Flying and Falling Down: Gravity Conceptsc..cccusmmmssemmnmssmsssssssssssssssssanenss 187
Once Upon a Time, There Was an APPIE........ou v ses e sns s sessa s 187
FIYING QNG DrAJUING...c.iiieriiiserinisessese e s s s st b e e e e e e b e e e p e s 188

More Camera Controls: Zooming In/Qut While Flyingccscemsesmssnsssansssasnsss 189
Zooming Out
Zooming In

Projectile Management: Managing the Attemptsccccinsmnnennssnsssensssannsss 193
AUUING BOUNUAIIESceiieeccerincer e s e e e e b e e e e e nnr s 193
Creating DUMMY PrOJECHIESc.coveeeeeeeeceeee e e 195

[vww allitebooks.cond

http://www.allitebooks.org

CONTENTS

Modifying the Projectile INSLANCE ... s 198
11 1] 11 202
Chapter 7: Creating a Game Menu and a Particles Effect: An Angry Birds-like
T 11 LT T | 203
Aiming at a Target: Destroying BIOCKSc.cccusserssssnsssansssassssnsssassssassssnsssanssses 204
Creating the Blocks: Hard, Soft, and the Target ... s 204
MaKeE THEemM COllIUE ... e e e e e e e r e e 205
Ground Them on Earth: Gravity ... s st se e sr s s 206
Let the ACtors ENter the SCENE ... e 207
With a Touch of Style: The Particle Effect......cc.cccnicminiemmnienmnsenmnssessnssensnssnns 208
The Parameters of the Particle EffECt...........cccmiiiininisnnsss s s ssnnns 208
AN EXPIOSION OF COIOTScviuiciccccr e s e e e e e e nnr s 213
Performance Optimization with Tables.........ccccccmnsmnnininsnmnsesssssessesennn. 217
Introduction to Tables in GAMESAIAU...........ccoviciricr e ——————— 217
Managing Several SCENes iN ONE SCENEc.cuvvviirrni s s 220
Adding @ COOl MeNUcccumsummmsanmssansssnssssnsssasssssssssnsssansssassssnsssansssassssasssnnnsssas 234
Creating the MENU SCENE ... e e e e e e e e e e R s 234
Managing UnlOCKEU LEVEIS........ccucciiicerncse s s sa s s s se st 235
Implementing the SIiding EfECT ... 238
Enabling LeVEl SEIBCHION ..o e e e 242
Adding a Menu Button on the INitial SCENE ... s 244
11 1] 11 245
Chapter 8: Graphics and Sound Effects: Labyrinthcccuccnnnniennnnnssnenn 247
Creating the Labyrinth Game Project........ccccuscimnsmmmnssmmnssenmsssesssssesssssssssssannas 248
Creating Actors for the Labyrinth Gamecccuccunsmmmemmssmmsssssmssessssssssassssasnns 248
Defining the Game Logic with Rules and Behaviorscccuesmesmssesmssnsssanssses 253
Designing the Game Area by Laying Qut the Scenecccissemmssesssansssassssannns 263
Implementing Lighting Special Effectsccucctmmsmmmsenmssmmmsnmssassssassssnsssansssanns 266
Implementing Sound Special Effectsccuccininimmmmiesmnsenmnssessnssessnssessesssnsnnns 267
11 1] 11 270
| Part 3: Prepping for the App Store: Polishing, Publishing, and Promoting Your
1 1 271
Chapter 9: Bonuses, Game Center, and iAd: Break a Wallccocccennnsnnnnns 273
Designing the Start SCreencccuemmsmmsemmsssmsssmssesmssasmssssssassssassssssssassssansss 274
Creating the ACHOIS ... e e e e e e e e R s 275
Implementing Rules and BENAVIOIS ... s s e e sn s sssna s 276
Adding SCOre Keeping.....uucussssssssssassssnssssnsssassssassssnsssanssssassssnsssansssansssnsssnnsssas 283

[vww allitebooks.cond

http://www.allitebooks.org

CONTENTS

SCOMEDISPIAY ACLOK ... R e e R e e R R e R e e R R e R r R 286
ScoreDisplay Rules and BERAVIOIScccoivicinisniscssisess s s sesssnssessssssessnnens 287
Creating the Extra-Bonus ACIOrSccucsmssemmssmmssesmsssmsssssssasssssassssssssassssassssnsss 289
50 PLCAP ACTOF .. R AR R e r R 289

Implementing the Extra-Bonus Rules and Behaviorsccucussesssssssssassssasnnss 291
Posting Scores on Game Center Leaderboard...........cccconsemnsennssennssnsssansssannsss 300

LOGIN 10 GAME CENTETcovivicerieccc e e e e e e bR ee e e e e R s 301
POSHING @ SCOTE.....ccciiiiieiecce s e e e R e e e R e e R e e R e e R s 302
SHOWING ThE SCOMES.....oiviecccr e bR e s E e R e e R e Re e pnnn 303

L 11 1] 1 . |
Chapter 10: Device Internal Clock and Cyclic Movement: Non-Game Apps 307
Creating an Analog Clock with the Device Clock and Rotation............c.csseeee. 308

ACCESSING the DEVICE CIOCK.......cccviierieiseriecre e e e e e e n s 309

Creating the CIOCK PrOJECT ... s e e e e 309

Creating the Background and the CloCK HANUSc.ccccvicinicnn e e 310

Creating the Clock Mechanisms: Rules and BENAVIOLS ... sesssssesees 313

Assembling the Clock: Laying oUt the SCENE..........cciric s s 317
Cyclic Movement: The Metronome..........ccccniemmnssenmnssessnssessssssssssssssesssssesssnnens 3 18

Creating the Metronome PrOJECT..........cccoric e e e

Metronome Mechanical Components: Creating the Actors

Storing Information: Defining the Attributes..........ccovvevnicvinnnene

Creating Mechanical Movements: Rules and Behaviors

Building the Metronome: Laying out the SCENE..........ccceciicininr s

L 11111 R 1 | | |
Chapter 11: Submitting Your Game to the App Store........ccccccvriririnenennne. 341

Getting the ApplD, Certificate, and Distribution Provisioning Profile on the
Provisioning Portalccccccusemmssmmmsenmssassssssssassssasssssssssassssssssnssssassssnsssansssanssss 342

Creating YOUER APP ID ..o e e s e e e e e e e R s 342
Your Distribution CertifiCate ..o e 343
Creating the Distribution Provisioning Profile..........ccciniiisnnis s s 343
Creating the Game on iTunes CONNECtccusmmmemmssmsssansssessssassssnsssassssasssansss 349
Step 1: Logging into iTUNES CONNECT ..o nn 345
Step 2: Creating @ NEW ADD ..o e p R e e e R e p e R rnnn 346
Step 3: Providing Basic INFOIMALiON ..o s 346
Step 4: Release Date and Pricing INFOrMationcccccvnicnninnissses s sessssesssnens 347
Step 5: Providing Version and Category INformation.........c.c.coocvnnnnncnnssssessssess e sesssssesssnens 347
Step 6: Defining Your Application Rating.........ccuuvinicnnisnnssnssssess e sssnens 348
Step 7: Providing Metadata Information..........c.cceciiciininniis s ssenens 349

Step 8: Reading and Accepting the EULA AgreemENt..........ccooicviicninicnnses e ssssessnnens 350

Step 9: Providing the GAME AMTWOTKc.cciiicicrcn st r s rnnn 350
Enabling Game Center TOr YOUE ADPD ..o sas e e se e st e st ses s ssssa s 352
ENADIING TAG ... oot e bR e e R R e e e R R R s 356

Updating Game Center in GameSaladc.cccvnrmrmnsmmmssmsmmsssesmnssesssssssssssaneess 397

Publishing the Game Inside GameSaladcccusersseesssensssassssansssassssnsssansssasssss 357
Step 1: Selecting the Targeted PIatfOrM.........ccoviviiicinrcr e 357
Step 2: Providing Overview INFOrMation ... 358
Step 3: Selecting Your Provisioning Profile ... sessssesessnnens 360
Step 4: Providing a Link to a Promotional YouTube Vido ..o sessssesessnnens 362
Step 5: Uploading YOUr SCrEENSNOLS ..o e nn 362
Step 6: Reading and Accepting the AQreBMENT ... 362
Step 7: CompPressing YOUE FilEcccviiciiniscnnisc st sesss s e sesnssesesnssessnnns 364

Uploading the Game to ITUNESccsermsemsssessssmssssnsssassssassssnsssansssassssnsssansssanss 304

Wait and Wait and Wait.........cccuccunsmmmsmmsmmmsssmmsesmssasmsssmssesssssssssssssasssssssssssssass 309

Your Game is Ready for Sale......cc.cccnimmmmsmmmmsssenmnssessnssessssssssssssssssssssessssssessas 370

L 11111 . ¥ { | |
Chapter 12: Introduction to Game Promotionccccccnvcmnnsmnssseesssssensnnns 371

Pre-Development Phase........ccueemmmmimeemmmmmmsessmmmsssssmmsssssssmsssssssssssssssssssssssnnsnns 3 1 2
Defining Your Targeted Customers................
Identifying and Qualifying Your Competition .
Creating Your Unique Value Proposition ... s snssssssessse s

WHLING @ PreSs REIEASE........ccviiuiiiiiir s e e e e e e e e ran
Creating a Web Page
Getting Your Game Reviewed on App Review WebSites
Creating a Facebook Page

L 11111 | N 1 .
WHO ThiS BOOK IS FOFecueiiicic it s e e e s h e pnne e pnnn Xiv
WRAL YOU Will LEAIM........ooeiiceiec et e p R e nn Xiv
DOWNIOATING The COUE......coueiierrecir e e e e e e b e e e e R rnnn XV
CoNtacting the AULNOT ..o e rn XV

T . 1 7 §

CONTENTS

o

About the Author

David Guerineau is a hobbyist in development. This is his
first book. He has a master’s degree in engineering from the
French National Institute of Telecommunications and a
master’s degree in finance and strategy from the Conservatoire
National des Arts et Metiers. He is a Managing Director Asia
Pacific for a telecom company based in Singapore. Although
working in the field of computer science, his professional
activity is in infrastructure. He worked with JavaScript, C, C++,
and Visual Basic for 15 years. Then came the iPhone and all the
revolutions around it, so he became interested in the iOS SDK
and Objective-C (the Apple development language), finding it
fairly easy coming from C; the complexity is in the incredible
number of APIs in the iOS SDK. While looking for tools to simplify the development, he came
across GameSalad and was immediately attracted to the concept: you focus on the game and its
logic, and you design it in the interface without programming.

Guerineau is a 35 year old, a French-speaking native who has been living in Singapore for the last
six years. He is married to the most fantastic woman on Earth and has two amazing kids that
make life joyful every day.

o

About the Technical Reviewer

ﬁm Henry Abrams is one of the most experienced and knowledgeable
© | GameSalad programmers. His apps have been seen on over 70 major
* a2 web sites and have had thousands of downloads. He has also
developed complete games for various clients. Before using
GameSalad, Henry used Corona, Torque 2D, Unity, Xcode, and
StencylWorks.

o

Acknowledgments

I would like to thank my wife, Raphaelle, and my two kids, Chloe and Noah, for their continued
support and love during this incredible adventure.

I' would also like to thank Michelle, Anita, Henry, Douglas, and the whole Apress family for their
precious advice and patience.

—David Guerineau

Xiv

Xv

o

Introduction

In 2007, Apple revolutionized our way of living by introducing the iPhone, but most important
was the birth of iOS. Today, iOS is used in the iPhone, iPad, and iPod Touch. Via the App Store, a
new business model has emerged that offers more than 500,000 applications and games,
resulting in 25 billion downloads. This new business model is a huge opportunity for game
entrepreneurs and hobbyists as there are more than 100,000 games in the App Store.

GameSalad is on a mission to help you to be an active actor in this revolution.
GameSalad is a powerful, graphical 2D-game development engine for iOS. According to
GameSalad, more than 3% of the games in the App Store are created with the GameSalad Creator,
its development tool. The Creator has been downloaded more than 150,000 times since 2009.

The power of GameSalad comes from the fact that no programing knowledge is
required. You read correctly: NO PROGRAMING at all! You focus on your game logic, and via an
intuitive WYSIWYG interface you design your games with a few drag and drop actions. Forget the
long learning curve of object-oriented programing (OOP) and Objective-C; this is no longer
required with GameSalad.

However, this power does not come without a few constrains. For instance, you can only
develop 2D games. Also, you are limited to a specified set of features—important ones but not
complete compared to the iOS SDK. Don’t worry—these constrains still leave you with an infinite
number of games to create!

GameSalad comes in two versions: free and pro. The free version is obviously free of
charge, whereas the pro version costs 299USD per year. I cover the differences between these two
versions in Chapter 1.

The book is divided in three parts. Part 1 provides you with the fundamental skillset for
GameSalad. Chapter 1 offers step-by-step tutorials for installing all the required tools on your
computer to get you started with GameSalad. In Chapters 2 and 3, you design a fully functioning
and classic game, Pong, and you get familiar with scenes, actors, attributes, and behaviors. You
then create a new version of Arkanoid in Chapter 4, consolidating your skills and using the
accelerometer for the first time. Chapter 5 concludes the first part of the book as you remake
Space Invader and add new tools to your arsenal.

Part 2 spices things up with more complex features and projects in GameSalad. In
Chapters 6 and 7, you create a fully functioning Angry Birds-like game, learning the required
physics and creating a very advanced menu system. In Chapter 8, you add music and sounds to
your project and implement a very powerful visual effect with a labyrinth game.

Part 3 completes the journey by bringing your game to the Apple Store. In Chapter 9, you
finish the Arkanoid-like project started in Chapter 4 by polishing it in Game Center and adding
features. Chapter 10 illustrates some non-game apps with GameSalad. You also learn about the
device clock features. In Chapter 11, you publish your game on the App Store via a very detailed
step-by-step tutorial. Chapter 12 offers a brief introduction to game promotion in Chapter 12.
You learn the main tactics to get your game visibility so that it can potentially be the next big
hitter!

Part1

Learning the
GameSalad
Fundamentals

Chapter

Preparing Your Design
Environment

The work environment is a very important aspect for any game designer. Not
only will you gain efficiency with a proper environment, but you will also gain
pleasure. Imagine that you’re about to finish your game and you want to test it
immediately on your device, but then you realize that you haven’t yet installed
the testing environment. Although it may take only a few moments, isn’t it
frustrating? If this story resonates for you, take the proper time to follow the
steps discussed in this chapter.

Before you start messing around with GameSalad, you need to prepare the
design environment. This chapter will guide you in setting up the required tools.

GameSalad Requirements

These are the minimum hardware and software requirements for developing iOS
games with GameSalad:

Intel-based Mac computer with 1GB RAM

Mac OS X 10.6 (Snow Leopard) or higher

AniOS device (ideally a device per targeted platform)
Xcode 4.2 or higher

GameSalad Creator 0.9.91 or higher

GameSalad Viewer 0.9.91 or higher

D. Guerineau, Learn GameSalad for iOS: Game Development for iPhone, iPad, and HTML5
© David Guerineau 2012

CHAPTER 1: Preparing the Design Environment

Although any Intel-based Mac running Snow Leopard will suffice, | strongly
recommend that you to get a machine with a screen of 15”or larger and 2GB
RAM. This will ease your life as the compiling time will get much shorter.

In this chapter, | will guide you in the following aspects:
Registering in GameSalad
Registering for the iOS Developer Program
Installing Xcode
Installing GameSalad Creator

Installing GameSalad Viewer

Registering to GameSalad

To use GameSalad, you don't actually need to be registered on GameSalad.com
but | strongly recommend doing it for several reasons. First, this will get you
known by GameSalad as a user. As GameSalad is a very young startup
company, it is important for them to know their developer community. The more
users, the more attractive the platform. Second, this will allow you to post
messages or questions on the forum. When you need support, being able to tap
the community is an invaluable resource. Third, you’ll be eligible for the standard
technical support from GameSalad. Fourth, you need it to publish your games. It
is not mandatory to register as a Promember to publish games and to reproduce
most of the examples of this book, but to access Promember features, you must
have a valid Pro account (299 US$ per year). | will cover some of the
Promember features in Chapter 9. You may decide to register later when you
feel more proficient.

To register, open your favorite web browser and go to
http://gamesalad.com/download/getCreator.

You will need to:
Provide a valid e-mail address.
Choose a username.
Select a password.
Agree to the Terms of Use and Privacy Policy.

Figure 1-1 shows the very light registration form.

http://gamesalad.com/download/getCreator

CHAPTER 1: Preparing the Design Environment

Don't have a profile?

Why not save some time and create one,
or just go ahead and download.

Email:
Username:

Password:

| acknowledge that | have read and agree to the
Terms of Use and Privacy Policy. [

Figure 1-1. GameSalad registration form

You can review the Terms and Conditions at http://gamesalad.com/terms. You
can review the Privacy Policy at http://gamesalad.com/privacy.

After filling the required information, you will be directed to the GameSalad
Creator download and installation instruction page.

If you don't want to register yet, you can go directly to the download page at
http://gamesalad.com/download/latestCreator.

You can continue to read this chapter while the file is downloading. | will provide
installation instructions later in this chapter.

About GameSalad Pro

Going Pro has several advantages, especially if you intend to get a serious
business out of game development.

A Pro account will enable you to publish on iOS without the
GameSaladsplashscreen (put yours instead!), to put external links into your
application (implement a “purchase full version” link in a lite version), to access
GameCenter and iADs capabilities, to enable In-App Purchase and Kiip
monetization, and to access priority technical support.

Also, although out of the scope of this book, a Pro membership will enable you
to publish on the Android platform. Your potential market just widened instantly.

Figure 1-2 summarizes the features of a Promembership.

[vww . allitebooks.con

http://gamesalad.com/terms
http://gamesalad.com/privacy
http://gamesalad.com/download/latestCreator
http://www.allitebooks.org

CHAPTER 1: Preparing the Design Environment

Features Basic (Free!) Pro ($299/year)
GameSalad Creator v v
GameSalad Viewer" 4 v
Web Publishing v v
Mac Publishing v v
iOS Publishing* v v
Custom Splash Screens v v
Android Publishing v
Twitter TweetSheet v
Game Center o
i0S In-App Purchase 4
External Links v
iAds v
Innovative Monetization v
Standard Technical Support v v
Priority Technical Support v

* Requires iOS Developer Account for iOS
Figure 1-2. Pro membership features

Registering in the Pro program is very easy. Log into the GameSalad website
with your free membership account. If you have skipped the registration part of
this chapter, it is never to late to go back and register now. Then you need to go
to http://gamesalad.com/membership/join. You will have to provide your
password again. You can pay via via PayPal or Amazon.

Registering in the i0S Developer Program

If you are already registered in a paid version of the iOS Developer Program, you
can skip this section and go directly to installing Xcode.

You don't need to be registered in any iOS Developer Program to use
GameSalad, but this will become mandatory as soon as you want to publish

http://gamesalad.com/membership/join

CHAPTER 1: Preparing the Design Environment

apps in the Apps Store or access some of the GameCenter and iADs features. It
is also a must in order to install GameSaladiOS Viewer on your devices and to
test ad-hoc versions of your games.

In addition, the iOS Developer Program is very affordable. It costs only $99 US
per year for individual access and you get access to thousands of tutorials and
videos, registration access to WWDC, previews of future iOS releases, and
publishing rights on the App Store.

Moreover, registeringin the Developer Program is mandatory in order to install
any iOS application on an iOS device. To install the GameSalad Viewer, you
need to install directly from Xcode to your iOS devices. This is called an ad-hoc
installation. The Developer Program enables you to do that with up to 100
devices.

So let’s get started. Open your web browser and go to
http://developer.apple.com/programs/ios/.

Then click the Enroll now button.

Click the Continue button.

Select an option depending on your situation, as per Figure 1-3.
If you are a new Apple Developer,

a) and you don't have an Apple ID yet (or you wish to create a specific
one for development), then you need to select:

/ need to create a new account and Apple ID for an Apple Developer
Program.

b) and you have an Apple ID, then you need to select:

! have an Apple ID | would like to use for my enrollment in an Apple
Developer Program.

NOTE: An Apple ID is your account that you may already use to
purchase on iTunes, register Apple products, or access the Mac
application store.

If you are an existing Apple Developer,

a) but not registered in a Paid Program (iOS or Mac), then you need to
select:

I'm registered as a developer with Apple and would like to enroll in a
paid Apple Developer Program.

http://developer.apple.com/programs/ios/

CHAPTER 1: Preparing the Design Environment

b) and you are registered in a Paid Program, but you would like to add
another subscription, then select:

I'm currently enrolled in iOS Developer Program or Mac Developer
Program and want to add an additional program to my existing
account.

The latter would be the case if you are registered on the Mac Developer
program and would like to add the iOS Developer Program or if you are
registered as an individual in the iOS Developer Program and would like to
upgrade as an company registration.

Are you new or a registered Apple developer?

New Apple Developer Existing Apple Developer
| need to create a new account and Apple ID for an I'm registered as a developer with Apple and would like
Apple Developer Program. to enroll in a paid Apple Developer Program.
| have an Apple ID | would like to use for my enroliment I'm currently enrciled in i0S Developer Program or Mac
in an Apple Developer Program, Developer Program and want to add an additional

program 1o my existing account.

Note: If you intend to enrell in a paid Developer Program for business purposes, you may prefer to create a new Apple ID that Is dedicated to your business
transactions and used for accounting purposes with Apple. If your Apple ID is associated with an existing iTunes Connect account, please create a new Apgle ID
to avoid accounting and reporting issues.

Figure 1-3. New or registered Apple developer page

For the purpose of this book, | will show you the steps for the creation of a new
Apple ID for the enrollment into the iOS Developer Program.

The next step is to choose between Individual and Company subscriptions. |
strongly recommend you choose an Individual subscription. However, if you are
a company, you should sign up as one. With an Individual subscription, the
process is very quick and simple. You will be up and running in less than a day.
A Company subscription requires that you send in many legal documents like
company registration, proof that you are authorized to register the company,
etc. to Apple, and the verification process takes several days.

Let’s go with Individual, as shown in Figure 1-4.

CHAPTER 1: Preparing the Design Environment

Are you enrolling as an individual or company?

Individual Company
Enroll as an individual if you are a sole proprietor or if you Enrall as a company if you are a company, government
develop under your own name. entity, or university,

Individual Development Only Development Team
L You are the anly one allowed access to Program resources n You can add additional developers 1o your team whe can
access Program resources.

App Store Distribution
Your name will appear as the “seller™ for apps you distribute ¢ App Store Distribution

on the App Store. BU! Your company name will appear as the “seller” for apps you

Vie distribute on the App Store.

View example

1 To enroll as an Individual you will need:

T 1] half of in :
= Credit Card Billing information for identity verification. ' e ol DRI L OEE COMpaT you i I-hied

. Ar red legal entity ng
« Avalid credit card for purchase and identity verific tpatine Ml ety mame

cept DBAs, Fictitious Business or Trade names at

dditional g 1l documentation t

+ An address for the company’s principle place of business or
corporate headquarters.

= Legal authority to bind your company forganization 1o Apple
Developer Program legal agreements and contracts.

* Avalid credit card for purchase

Figure 1-4. Individual or Company subscription

The next step is to create an Apple ID. Use Table 1-1 to prepare the information
you need to provide on the Apple Developer Program registration form.

Table 1-1. List of Required Information

Email address

Password

Birthday and birth month

Security Question

Answer to the security question

First Name

Last Name

10

CHAPTER 1: Preparing the Design Environment

Company
Country

Address

City

State

Postal Code

Phone Number

Next, you need to provide little additional information on your intended activities
as an Apple developer. Apple wants to know on which platforms you develop:
i0S, Mac OS X, or Safari.

This is not overyet; Apple is indeed very curious about your intentions. You need
to select your primary target market as per the choices in Table 1-2.

Table 1-2. Primary Target Market

Business Medical Reference Educati on
Music Social Networking | Entertainment Navigation
Sports Finance News Travel

Games Phot ography Utilities Health & Fitness
Productivity We ather Lifestyle

Then Apple requests the area of application you intend to develop, offering the
same choices as per Table 1-2 (but you can choose more than one).

You must then indicate the primary category for your applications.

CHAPTER 1: Preparing the Design Environment 11

Free Applications

Commercial Applications
Enterprise (In-house) Applications
Web Applications

You must also provide information about your developer experience in years
and development experience on other platforms (Figure 1-5).

How many years have you been developing on Apple platforms?
New to Apple platforms
< 1 year
1 to 3 years
3 to 5 years

(*) 5+ years

Do you develop on other mobile platforms?
®) Yes

No

Which other mobile platforms do you develop on? Select all that apply.

Android BREW

Symbian BlackBerry

Palm Windows Mobile
Other

Figure 1-5. Developer experience questions

As you just experienced, Apple likes to know a lot about their developer
community.

The next page requires you to agree with the Registered Apple Developer
Agreement.You can see the agreement (valid at the time of the writing) as a PDF
file at the following address:

http://developer.apple.com/programs/terms/registered apple developer 201
00301.pdf

http://developer.apple.com/programs/terms/registered_apple_developer_201

12

CHAPTER 1: Preparing the Design Environment

Read the agreement and agree to it by checking the box at the bottom of the
page. The next step is to enter the verification code that was just sent to the e-
mail address you previously provided, as shown in Figure 1-6.

Enter the verification code sent to your email

! Did not receive a verification email?

A verification email was sent to the email address you If you did not receive a verification email, please check your
provided. Please click on the link within the email or enter bulk mail or spam folder first. If you still do not see an emall

the verification code from the email we sent to from Apple Developer Support, you can request another
david.guerineau@orange.com 5o that you can proceed with verification email,
your registration,

Continue

Figure 1-6. Verification code page

Once the verification code is entered, you will be directed to the billing
information page. You will need to enter the exact information on your credit
card.

Select the iOS Developer Program at $99 USD (or 128 SGD, if you live in
Singapore, as | do).

iOS Developer Program

@] 55128 [year
The iOS Developer Program provides a complete and integrated process for developing applications for iPad, iPhone, and
iPod touch.

Figure 1-7. i0S Developer Program fee

You have the opportunity to review your enroliment information one last time
before submitting. Carefully review the information.

Next, accept the iOS Developer Program License Agreement (so many
agreements to read). You can access the agreement (as of the October, 2011) at
the following address:

http://developer.apple.com/programs/terms/ios/standard/ios_program_stand
ard_agreement_20111004.pdf

Confirm your acceptance by checking the Agreement box at the bottom of the
page and clicking “I Agree.”

You’re almost finished! This is the last mile. You must add the iOS Developer
Program to the cart, as per Figure 1-8.

http://developer.apple.com/programs/terms/ios/standard/ios_program_stand

CHAPTER 1: Preparing the Design Environment 13

o 1. Purchase your Apple Developer Program
Click 'Add to cart' to proceed to the Apple Online Store and purchase
E 05 Developer Program your program.
55 128/year
" 2. Receive instructions from Apple Developer Support
ﬁ In addition to your purchase confirmation email from the Apple
Online Store, you will receive an email from Apple Developer Support
within 24 hours after your purchase. This email will contain
information on how to access the resources of your Program,

i
Please note that it may take up to 24 hours
to receive your activation email. Add 1o cart

Figure1-8. Adding the iOS Developer Program to the cart

Checkout of the store and make the actual payment. This part I'll leave it to you
and your credit card. Make sure that the name on the credit card is the same
name that was used to create the developer account. If you have selected
company registration, you will need to fax many legal papers to Apple.

The final step is the activation of your account. It could take from a few minutes
to a few days. Once this is complete, Apple will send you an e-mail informing
you that your iOS Developer Program account is ready.

These steps are summarized in Figure 1-9.

Figure 1-9. i0S registration workflow

14

CHAPTER 1: Preparing the Design Environment

Installing Xcode

Xcode is the development environment from Apple. The installation of Xcode is
fairly simple and can be done in a few steps.

1. Installing Xcode requires you to go to the Mac Application
Store.

2. Type “Xcode” in the search area of the App Store application.
Figure 1-10 shows the Xcode page.

Xcode

Xcode provides everything developers need to create great applications for Mac, iPhone, and iPad. Xcode 4 has been
streamlined to help you write better apps. It has unified user interface design, coding, testing, and debugging all within a
single window. The Xcode IDE analyzes the details of your project to identify mistakes in both syntax and logic, it can even
help fix your code for you

Xcode runs on OS X Lion and includes the Xcode IDE, Instruments, iO5 Simulator, the latest Mac 05 X and i0S SDKs, and
hundreds of powerful features:

Installation ' Innovative tools to help you create great apps

- Interface Builder is fully integrated as a design canvas within the Xcode IDE

- The Assistant shows files related to what you're editing, such as the header, superclass, or controller
- The Version editor shows a live source code comparison through Git or Subversion history

=~ Live Issues display errors as you type, and Fix~it can correct the mistakes for you

= Apple LLVM compiler now includes full support for C++, in addition to C and Objective-C

- The new LLDB debugging engine is faster and more memory-efficient than GDB

- Instruments adds System Trace and new iOS instruments including OpenGL ES

Streamlined interface that is faster and easier to use

- Design your interface side by side with the backing source code

- Create connections from your GUI design directly to the related source code

- Use tabs to organize your workspace, or double-click to open files in a new window
- Schemes let you customize exactly how your app will build, run, profile, and deploy
- Debugging and console views slide in without disturbing your place in the editor

Professional editor keeps you focused on your code

- Click the Jump Bar at the top of the editor to instantly go to another file

- View message bubbles to see errors, warnings, and other issues right beside the code
- Use the ribbon on the left of the editor to fold your code, or highlight scope

Embedded Apple LLVM technology finds and fixes bugs for you

- Analyzer travels countless code paths looking for logical errors before they become bugs
= Live Issues underlines coding mistakes as you type with no need to build first

- Fix-it can confidently correct mistakes for you with just a keystroke

- Code completion for C, C++, and Objective-C is incredibly fast and accurate

Instruments for visual performance analysis

- Compare CPU, disk, memory, and OpenGL performance as graphical tracks over time

- Identify performance bottlenecks then dive deep into the code to uncover the cause

- Monitor your app directly, or sample the entire system, with very little overhead

To test or deploy applications on an i0S device you must be a member of Apple's i0S Developer Program. To submit your Mac

or {05 apps to the App Store you must be a member of the Mac or iOS Developer Program. Some features may reguire Internet
access.

Figure 1-10. Xcode App Store page

3. Click the button below the Xcode icon. This will start the
download of the Xcode installation file.

This may take a little bit of time, as the file is 1.68GB. Be patient.

CHAPTER 1: Preparing the Design Environment

4. Once the download is completed, open Install Xcode.app, as
shown in Figure 1-11. It’s located in the Application folder. This
will start the installation process. You must quit all other

applications before starting the installation of Xcode.

D4

Install Xcode

Figure 1-11. Install Xcode icon

5. Confirm that you want to install Xcode by clicking the Install
button, as per Figure 1-12.

‘00 Install Xcode

Xcode Installer

You will be guided through the steps necessary to install the Xcode 4 developer
tools on your startup disk.

Click Install to begin.

Quit Install

Figure 1-12.Xcode Installer page

6. Read and accept the Xcode License Agreements as per
Figure 1-13.

[vww . allitebooks.con

15

http://www.allitebooks.org

16 CHAPTER 1: Preparing the Design Environment

800 Install Xcode

You must agree to both license agreements below for the installer to continue. By
clicking agree, you are agreeing to the terms of the software license agreements.

Software License Agreements
ENGLISH f

IMPORTANT: BY USING THIS SOFTWARE, YOU ARE AGREEING TO BE BOUND BY THE FOLLOWING APPLE
TERMS:

A, SOFTWARE LICENSE AGREEMENT FOR XCODE
B. i05 SDK AGREEMENT

APPLE INC.

SOFTWARE LICENSE AGREEMENT FOR XCODE

PLEASE READ THIS SOFTWARE LICENSE AGREEMENT ["LICENSE") CAREFULLY BEFORE USING THE
DEVELOPER SOFTWARE (DEFINED BELOW). BY USING THE DEVELOPER SOFTWARE, YOU ARE AGREEING
TO BE BOUND BY THE TERMS OF THIS LICENSE. IF YOU ARE ACCESSING THE DEVELOPER SOFTWARE
ELECTRONICALLY, SIGNIFY YOUR AGREEMENT TO BE BOUND BY THE TERMS OF THIS LICENSE BY
CLICKING THE "AGREE " BUTTON. IF YOU DO NOT AGREE TO THE TERMS OF THIS LICENSE, DO NOT USE
THE DEVELOPER SOFTWARE AND CLICK “DISAGREE". FOR DEVELOPER SOFTWARE INCLUDED WITH
YOUR PURCHASE OF HARDWARE, YOU MUST RETURN THE ENTIRE HARDWARE/SOFTWARE PACKAGE IN

Save... Disagree Agree

Figure 1-13. Xcode License Agreements

Once you agree on the Agreements, the Xcode installation process will start, as
per Figure 1-14. It may take between 10 to 20 minutes depending on your
machine. Closing down other applications will speed up the installation.

800 Install Xcode

Xcode Installer

Installing files...

Quit Install

Figure 1-14. Xcode Installer at work

CHAPTER 1: Preparing the Design Environment

Once the installation is complete, the Xcode Welcome page will display, as
shown in Figure 1-14. An Xcode icon will be added automatically to the dock.

Recents

Welcome to Xcode

b

[, X

Create a new Xcode project
Start building a new Mac, iPhone or iPad
application from one of the included templates

Connect to a repository
Use Xcode's integrated source control features to
work with your existing projects

Learn about using Xcode
Explore the Xcode development environment with
the Xcode 4 User Guide

Go to Apple's developer portal
Visit the Mac and iOS Dev Center websites at
developer.apple.com

! show this window when Xcode launches

Figure 1-15. Xcode Welcome page

Installing GameSalad Greator

Installing GameSalad Creator is very easy. If you have not registered and
downloaded the installation file yet, go to
http://gamesalad.com/download/latestCreator.

1. Double-click the .dmg file that you downloaded.

2. Read and agree to the GameSalad.com Terms of Service, as
per Figure 1-16.

17

http://gamesalad.com/download/latestCreator

18 CHAPTER 1: Preparing the Design Environment

GameSalad-Creator-0.9.85-beta.dmg

If you agree to the terms of
this license agreement, click
“Agree” to access the
software. If you do not
agree, press “Disagree.”

GameSalad.com Terms Of Service

November 20, 2010

PLEASE READ THE FOLLOWING TERMS OF SERVICE (“TERMS")
CAREFULLY. BY CLICKING THE "I ACCEPT” BUTTON, YOU
ACKNOWLEDGE THAT YOU HAVE READ, UNDERSTOOD, AND AGREE
TO BE BOUND BY THESE TERMS AND THE TERMS OF THE
GAMESALAD PRIVACY POLICY ("PRIVACY POLICY") WHEN
ACCESSING THE WEB SITE LOCATED AT THE URL:
WWW.CAMESALAD.COM ("SITE") AND/OR USING ANY SERVICES,
SOFTWARE OR CONTENT OFFERED BY GAMESALAD, INC.
("GAMESALAD" OR "WE" OR “OUR" OR "US") THROUGH THE SITE
(COLLECTIVELY, THE “SERVICES").

IF YOU ARE ACCEPTING THESE TERMS ON BEHALF OF ANOTHER
PERSON OR A COMPANY OR OTHER LECAL ENTITY, THEN YOU
REPRESENT AND WARRANT THAT YOU HAVE FULL AUTHORITY TO
BIND THAT PERSON, COMPANY, OR LEGAL ENTITY TO THESE
TERMS.

IF YOU DO NOT AGREE TO THESE TERMS OR THE TERMS OF THE
PRIVACY POLICY, AND EACH AS AMENDED FROM TIME TO TIME,
CLICK THE "I DO NOT AGREE" BUTTON, AND YOU MAY NOT

[print.. || SaveAs.. | | Disagree | [Agree |

Figure 1-16. Terms of Service

3. Drag the GameSalad icon into the Application folder, as per
Figure 1-17.

Figure 1-17. nstall Screen

4. Open GameSalad.app in the Application folder and you are ready
(see Figure 1-18).

CHAPTER 1: Preparing the Design Environment

GameSalad

QFilter X My Great Project

4

_—
Last Updated: Nov 8, 2011
—-— First Created: Nov 8, 2011
My Great Project Allen Conquerors Platformer Tem Basic Shoot Em Up
l iPhone l iPhone l iPhone l iPhone
A tabula rasa, a blank slate on which one
may create a masterpiece
Basic Table Ten Cannon Physics Cave Adventure Commenting Fe.
ll irhone § irhone | B iphone
Edit in GameSalad Creator
Crazy Ball Wall Game Center Le Keyboard Entry OS5Time Demo

Login
Figure 1-18. The GameSalad start page

This was much easier than registering to the Apple Developer Program!

Installing GameSalad i0S Viewer

The GameSalad Viewer is an Xcode project. This means that you download a
piece of code that you will compile and install on your iPhone or any other iOS
device. This is one of the main reasons you installed Xcode previously.

Why is GameSalad i0S Viewer a piece of code?

Well, this way GameSalad enables the installation of a viewer without going
through the App Store distribution. GameSalad Creator will send your project to
the viewer via Wi-Fi without the possibility of getting the code generated from
GameSalad. This protects the GameSalad business model.

19

20

CHAPTER 1: Preparing the Design Environment

Getting the GameSalad i0S Viewer

You can download the GameSalad iOS Viewer from
http://gamesalad.com/download/getViewer.

You will download a .zip file with the last version of iOS Viewer. But before
rushing to unzip the file, let’s go through the creation of a provisioning profile on
your iOS device.

Installing the Developer Certificate in Your Keychain

The developer certificate is a key element for installing the iOS Viewer or any
other ad-hoc games. It is used to sign your applications so that you can install
them on your iOS devices.

First, you need to find your keychain. The keychain is located in Ultilities.

1. Open a Finder window and navigate to your Utilities folder
(within your Application folder).

2. Double-click the Keychain Access application.

From Keychain Access, you will use the assistant to request a developer
certificate from Apple.

3. Navigate to Keychain Access » Certificate Assistant » Request
a certificate from a certificate authority.

A window form will open, as shown in Figure 1-19.

http://gamesalad.com/download/getViewer

CHAPTER 1: Preparing the Design Environment 21

ificate Assistant

Certificate Information

Enter information for the certificate you are requesting.
Click Continue to request a certificate from the CA.

User Email Address: R

Common Name: David GUERINEAU

CA Email Address:

Request is: Emailed to the CA
*) Saved to disk
Let me specify key pair information

Continue

Figure 1-19. Request a certificate

Fill in the e-mail address using the e-mail address you used to register in the iOS
Developer Program and select “Saved to disk.”

Click the Continue button.

Select the location to save your certificate. You may choose to save it on your
desktop so you can find it easily. The file that you just downloaded is a
Certificate Signing Request (CSR) that you will use to generate the certificate.

4. Close the Keychain Access application by going to Keychain
Access » Quit Keychain Access.

Quitting the Keychain Access application helps to reduce the potential errors
when installing the certificate.

5. Open your web browser and go to the Developer Member
Center (http://developer.apple.com/membercenter/) and then
click the iOS Provisioning Portal.

At this stage, you should have not have any certificates. Check this by clicking
the Certificate menu on the left side and verifying that there is no Development
or Distribution certificate.

http://developer.apple.com/membercenter/

22

CHAPTER 1: Preparing the Design Environment

Download the WWDR intermediate certificate, as this certificate is required to be
installed in your keychain, by clicking on the link shown in Figure 1-20.

*If you do not have the WWDR intermediate certificate installed, click here 1o download now.

Figure 1-20. Link to download WWDR intermediate certificate
6. Under the Development tab in Certificate, click the Request a
Certificate option.

You will be directed to a page titled Create iPhone Development Certificate
(Figure 1-21). Select the Certificate Signing Request (CSR) that you created in
step 3.

Create iPhone Development Certificate

How to create a development certificate:

Choose MNile Certificate. ningRequest

Figure 1-21. Create iPhone Development Certificate
Once you have selected the file, click the Submit button.

7. Go to the Distribution tab and do the exact same thing.

Wait 1 to 2 minutes, then refresh the page. Your development and distribution
certificates should be ready for download.

CHAPTER 1: Preparing the Design Environment

8. Download both the Development and Distribution certificates
respectively located under the Development and Distribution
tabs by clicking the Download button next to the certificates.

You should have now three files in your download folder:
AppleWWDRCA.cer
iOS_development.cer
iOS_distribution.cer
9. Install the certificates in your keychain.

You need to install those three certificates, starting with the AppleWWDRCA.cer.
To install each of them, simply double-click each file. This will open Keychain
Access. Verify that the certificate is correctly installed by checking its presence
in the My Certificates window. Then completely quit KeychainAccess before
repeating the operation with the next certificate.

You now have the certificates installed on your machine.

Creating a Provisioning Profile for i0S Viewer

Before installing the iOS Viewer, you first need to create a provisioning profile for
GameSalad iOS Viewer.

Open your web browser and go to the Developer Member Center
(http://developer.apple.com/membercenter/) and then click the iOS
Provisioning Portal.

1. Register your device in your Provisioning Portal.

Go to Devices » Add Devices. Type a name and the Device ID, as per Figure
1-22, and click the Submit button.

23

http://developer.apple.com/membercenter/

24 CHAPTER 1: Preparing the Design Environment

Provisioning Portal Go 1o K05 Dev Center
Home

Certificates Manage History How To

Devices "
A Add Devices
App 1Ds
Provisioning You can add up to 96 deviceis). Enter a name for each device and its ID. Finding the Device ID
Distribution
Important: Your i0S Developer Program membership can be terminated if you provide pre-release Apple Software to
anyone other than employees, contractors, and of your n who are d as Apple Developers
and have a demonstrable need 1o know or use Apple Software (n order to develop and test applications on your behalf.
Unauthorized distribution of Apple Confidential Information (including pre-release Apple Software) is prohibited and
may subject you to both civil and criminal liability.

Device Name Device ID (40 hex characters)

Figure 1-22. Adding an i0OS device to the Provisioning Portal

To get your device ID, connect your iOS device via the USB cable to your Mac
computer and open Xcode. In Xcode, navigate to Window » Organizer. The 40-
hex character string in the Identifier field is your device’s ID.If this is the first time
you’re using your device for development, click “Use for development” on this

page.
2. Create an ApplD for the iOS Viewer.

Click App IDs and select New App ID. For the description, use an all-attached
string like iOSViewer. Don't modify the Team ID option. And select a unique
bundle identifier. This identifier is something that must be unique in the world.
Apple recommends that you use your web domain name backward and add a
unique application name. Click the Submit button (Figure 1-23).

CHAPTER 1: Preparing the Design Environment

Provisioning Portal
Home
Certificates
Devices
AppiDs
Provisioning

Distribution

G0 10 105 Dev Center

Manage How To
Create App ID
Description

Enter a common name or description of your App ID using alphanumeric characters. The description you specify will be used
throughout the Provisiening Portal to identify this App ID.

J0SViewer You cannct use special characters as @, & *. " in your deseription
Bundle Seed ID (App ID Prefix)
Use your Team ID or select an existing Bundle Seed 1D for your App 1D

Use Team ID ¢ te of applications that will share the same Keychain access, use the same bundie Seed ID far each of yaur

Bundle Identifier (App 1D Suffix)

Enter a unique identifier for your App ID. The recommended practice is to use a reverse-domain name style string for the Bundle
Identifier portion of the App ID.

| com.domain.iosviewer Example: com.domainname appname

Figure 1-23. New App ID

3. Create a provisioning profile for the iOS Viewer.

Click Provisioning » Development » New Profile.You will create a new
Development provisioning profile that will let you install the GameSalad Viewer
on your iOS device.

Provide a profile name like “iOSViewer.” Check the box with your certificate.
Select the App ID you just created and select the device(s) you previously
registered, as per Figure 1-24.

[vww . allitebooks.con

25

http://www.allitebooks.org

26

CHAPTER 1: Preparing the Design Environment

Provisioning Portal Go to i05 Dev Center
Home
Certificates Development Distribution listory How Ta

Devices
Create i0OS Development Provisioning Profile
App IDs
T— fI fields are required unless otherwise noted. To learn more, visit the How To section.
Tt e e —
Distribution
Profile Name 08 viewer

Certificates +/ David GUERINEAU
App ID 05Viewer
Devices Deselect All
¥ David GUERINEAU's iPad ¥/ David GUERINEAU's iPhone

¥/ David GUERINEAU'S iPhane ¥ David GUERINEAU's IPod

Figure 1-24. New provisioning profile

4. Download the provisioning profile.

Download your newly created provisioning profile by clicking Download. If the
status is still Pending, hit the Refresh button, and it should be OK within a few
seconds.

5. Install the provisioning profile.

Double-click your provisioning profile in the Download folder. This will
automatically install it on your machine.To confirm the correct installation of the
profile, open Xcode and launch the Organizer by navigating to Window »
Organizer. On the left side of the Organizer, select Provisioning Profiles and
check that your profile appears in the list on the main window. If this is not the
case, repeat the installation by double-clicking your provisioning profile file.

Installing i0S Viewer

It's now time to go back to the iOS Viewer .zipfile. After such a long wait, your
patience is rewarded. You can now unzip it.

Double-click the 10SViewer<version>.xcodeproj file (where <version>is be the
version number of your iOS Viewer).This will automatically launch Xcode.

1. Change the bundle identifier.

CHAPTER 1: Preparing the Design Environment 27

Click the GameSalad Viewer on the left pane of Xcode. This will display the
project summary information, as shown in Figure 1-25.

|Bmilm ® 4 = » B [m| 4 > [[Camesalad viewer =]
o --'.--',j: e PROJECT | Summary | Info Build Settings Bulld Phases Build Rules
— - B Viewer i05 Application Target
| TARGETS Identifier | com.gendaigames.gamesaladviewer
GameSalad Viewer
Version Build | 1.0

Devices | Universal

Deployment Target | 3.0 N
¥ (Phone / iPod Deployment Info

Main Storyboard

Main interface

Supported Device Orientations

omasE

Portrait Upside Landscape Landscape
Dow Lel

App lcons

Retina Display

Figure 1-25. GameSalad Viewer info

Change the Identifier field to the value that you used in step 3 as your unique
bundle identifier.
2. Change the code signing.

In the GameSalad viewer project page, go into Build Settings and change the
Code Signing as per your new provisioning profile “iOSViewer,” like Figure 1-26.

28

CHAPTER 1: Preparing the Design Environment

e oo

) (M) [GameS... » David GUERINEAU's ithone | =]

Run Suwp

™ GameSalad Viewer.xcodeproj

Xeode
22

Schiane SesakpaiaL Project

|m|n ® 4 = » B ue | 4 b+ [GameSalad Viewer PITS
L Dl Toet. 105 { PROJECT | Info Build Settings ‘
e B ca PP i Y combinea a |

TARGETS
B8 Gamesalad Viewer

Setting
» Architectures

| b Build Locations

| Bulld Options
¥ Code Signing
Code Signing Entitlements
¥ Code Signing Identity
Debug
Any i0S SDK ¢
Release
Any iOS SDK §
Code Signing Resource Rules Path
Other Code Signing Flags

Figure 1-26. Changing code signing

Are you ready to run iOSGameviewer?

5 GameSalad Viewer

iPhane Developer: David GUERINEAU (ASNET23DA4) & ‘
iPhone Developer: David GUERINEAU (ASNBT23DA4) &
iPhone Developer 3 |
iPhone Developer: David GUERINEAU (ASNBT23DA4) &
iPhone Developer +

Connect your iOS device to your Mac, select the target platform to your iOS,
make sure that your device is selected from the drop-down bar next to the Stop

button, count to three, and press the Run button.

It may take 1 to 2 minutes to compile and install. Xcode will display the progress

in the status dashboard

Then you will see the screen in Figure 1-27 on your iOS device.

Recent Games Instructions

Connected to wifi
GameSalad Creator Not Found

Figure 1-27. GameSalad Viewer

CHAPTER 1: Preparing the Design Environment

You can test the viewer by opening one of the GameSalad templates like “Basic
Shoot Them Up,” and click “Preview on iPhone” or “Preview on iPad”

depending on your iOS device (see Figure 1-28).

eno

Untitled
ERESPAN > &
Back/Forward Home Scenes 2] Preview Preview on iPhane.)
" mj&tm Scenes Actors
Title [Basic ShootEmUp
e
Platform | iPhone Landscape L ;}
Resolution Independence } : -3'
———

Description Shoot anything that moves. You're indestructible!
(Draft) Spaz out!

Instructions Learn how to create this game at
(Draft) http://gamesalad.com/wiki/
tutorials:basic_shoot_em_up

Tags template, tutorial, shmup

Figure 1-28. GameSalad viewer enabled

L @

Publis Feedback Help

Congratulations! You’ve set up your design environment. You can now move on

to the fun of GameSalad. Let’s create some games!

Summary

Well, the most boring part is done. GameSalad development required this small

sacrifice. From here on, things will be much more fun.

This chapter covered:

The registration and installation of GameSalad

The registration on iOS Developer Program

The installation of Xcode

29

30 CHAPTER 1: Preparing the Design Environment

The installation of GameSalad Viewer

In the coming chapters, you will create some really fun games as you learn the
basics of GameSalad.

Chapter

Your First Game from
Scratch: The Pong
Game

Now that you have properly set up your environment, let’s use GameSalad to
create a real game. In this chapter, | will guide you through the creation of a
complete game: Pong. This chapter covers the basics of GameSalad; the next
chapter covers a few more features of the game.

This chapter specifically covers:
GameSalad project creation
Creating scenes, actors, attributes, and behaviors
An introduction to collision

To have a look at what you will achieve in this chapter, you can open the file
MyFirstPong step6.gameproj, which is located in the Chapter 1 File folder at
www . apress.com. Opening this file will launch GameSalad. Then you simply need
to hit the Preview button in GameSalad.

A Little Bit of History About Pong

The seventies saw the birth of the video game industry. Pong showed the path
to many other game developers. Of course, the technology was not advanced

D. Guerineau, Learn GameSalad for iOS: Game Development for iPhone, iPad, and HTML5
© David Guerineau 2012

http://www.apress.com

32

CHAPTER 2: The Pong Game

as it is today so games were quite limited. One of the most important limitations
was the graphics. As one of the very first arcade games, Pong was no
exception. The user interface was very simple, as you can see in Figure 2-1.
Still, it was so revolutionary that the public massively adopted it.

Figure 2-1. A screenshot of the original Pong game

Allan Alcorn created Pong in 1972 while working at Atari. But the world almost
didn’t get to know this game. As a trainee, Allan was assigned the exercise of
creating a game in order to develop his skills. He came back with Pong. The
Atari management team was so completely bluffed by the end result that they
decided to go commercial with the game. It was probably one of their best
decisions. The first release of Pong as an arcade game was a huge success and
it gave birth to the video game industry. Figure 2-2 shows the arcade version of
Pong.

CHAPTER 2: The Pong Game

Figure 2-2. The original Pong arcade machine

Pong was later developed in several versions, including a home game. The
home version of Pong, shown in Figure 2-3, was created in 1974 but was only
released in 1975 due to difficulty in finding a distribution channel. Several
versions (and clones) have been released over time.

33

34

CHAPTER 2: The Pong Game

Figure 2-3. Mass production of the Pong game

I remember playing Pong on my Atari home game device for hours. Originally,
my father bought an Atari 2600 for himself. It was the special “Darth Vader”
Edition, an all-black model with four switches, released in 1982. This was one of
the first video game consoles. With a console, you had a device capable of
running severalgames (viaa cartridge system)—not just a single game, as was
the case with Home Pong. | was only five at that time but | clearly remember
playing like crazy, making my father angry because after a few days | was
unbeatable.

Specifying the Game Goncept and Rules

When you begin a new game project, it’s a good practice to start by specifying
the game concept and writing the rules of the game down on paper. This
provides structure to your work.

The Game Concept

The purpose of this game is to defeat your opponent in a simulated table tennis
(ping-pong) game by being the first to reach a score of 11. It is a two-dimension
game where players vertically control a paddle (ping-pong racket).

CHAPTER 2: The Pong Game

The Game Rules

Human player 1 plays on the left side of the screen against human player 2. (The
CPU player is covered in the next chapter.) Players use the racket to hit the ball
back and forth.

Creating a New GameSalad Project

Are you ready to play pong?

First, let's create a new GameSalad Project. Click on the GameSalad icon, as
shown in Figure 2-4, in Applications to open GameSalad Creator.

GameSalad

Figure 2-4. The GameSalad app logo

Select the Plus button (New), select “My Great Project,” and click “Edit in
GameSalad.” This will open a new project in GameSalad (Figure 2-5).

My Great Project

J ' iPhone

Last Updated: Jan 18, 2012

First Created: Jan 18, 2012
My Great Praject Alien Conquerors Platformer Tem Basic Shoot Em Up
l iphone B Prone l irhone J iPhone

A tabula rasa, a blank slate on which one
may create a masterplece.

Basic Table Ten Cannon Physics Cave Adventure. Commenting Fe.
fl iPhone B iphone J ihone J irhone

Edit in GameSalad Creator

Crazy Ball Wall Game Center Le... Keyboard Entry OSTime Demo

guerined Logout

Figure 2-5. The GameSalad launch screen

[vww . allitebooks.con

35

http://www.allitebooks.org

36 CHAPTER 2: The Pong Game

You will arrive to the page shown in Figure 2-6.

enn

2] A & O

Back(Forward Home Scenes Tables

Untitled

<

Web Preview Publish

- @

Preview Feedback Help

(TProjectinfo | Scenes

Title

Platform

Description
{Draft)

Instructions
(Draft)

Tags

guerined =

Figure 2-6. The Project Info page

Actors. Tables

My Great Project

iPhone Landscape

Resolution Independence

A tabula rasa, a blank slate on which one may create
a masterpiece.

Add game instructions here.

Project Size: 2 KB

This page is the project information page. It contains general information about
the project, such as the title of the project, the game’s platform, a description,
and instructions. Enter the information shown in Table 2-1.

CHAPTER 2: The Pong Game

Table 2-1. Game Creation Information

Title

My First Pong Game

Platform

iPhone Landscape

Resolution Independence

Checked

Description This is a remake of the famous Pong
game by Atari

Instructions Use your finger to move the racket or
tilt the phone

Tags Pong

Your screen should look like Figure 2-7.

@eno Untitled

R PS > L @

;la(kﬂ'u_mrﬁ_ﬁmﬂt Scenes Preview Web Preview Publish Feedback: Help

m Scenes Actors

Title My First Pong Game

Platform | iPhone Landscape

\ﬂ Resolution Independence

Description This is a remake of the famous
(Draft)

Pong Game of Atari.

Instructions Use your finger to move the racket or tilt the phone.

(Draft)

Tags |Pong

Sign In

Project Size: 2 KB

Figure 2-7. The My First Pong Game Project Info page

37

38

CHAPTER 2: The Pong Game

All of this information is draft only. You will have opportunities to review it before
you submit your work for App Store validation.

Save the project. Create a folder in your documents and name it
LearnGameSalad chapa2.

Save a copy of your project now. This way you can frequently save your
progress. Click File » Save As, name the file MyFirstPong.gameproj, and save it
in the newly created folder (Figure 2-8).

Save As: MyFirstPong.gameproj A

|| > ESE@J imi || &= v || (3 Chapter2
FAVORITES Name Date Modified
|__] Dropbox
.| Desktop
{57 davidguerineau
% Applications
[Documents
2 Downloads
SHARED
—| antoineb-pc

| emily-pc

New Folder Cancel Save

Figure 2-8.Saving the game

You are all set to start your project.

About Resolution Independence:

Resolution independence is a great feature of GameSalad. In short, it
lets you design a high resolution version of the game that can adapt to
the various resolutions of iOS devices. This increases the number of
potential targets for your games.

How does it work? GameSalad will automatically adjust the size of all
your artwork to fit the iOS device resolution by creating lower
resolution copies of your artwork.

To enjoy this feature, select resolution independence and design your
game artwork for retina display resolution.

CHAPTER 2: The Pong Game

There’s a little secret to make it work nicely. All you artwork must have
a pixel size that you can divide by 4. Why 4?7 Because, to nicely
display your artwork, it must be an even number (like 20x20).
GameSalad will adjust automatically to lower resolution (i.e. divide by
2), so it needs to be an even number! Thus the 4!

Word of caution: there is a size limit of 1024x1024 for images.

If you are planning a low-resolution game (480 x320), there’s no need
to check resolution independence. Another good reason to deselect
this option and plan for a low-resolution game is that older devices
(like the first generation of the iPod touch) will have difficulties to
handling those graphics. As ever, the best advice: test, test, and test
again.

The pages you have read thus far mention actors, scenes, and projects. So you
may naturally ask yourself, “Am | reading the right book? | thought | was reading
about game creation and everything looks like movie production. | don’t have
the money to hire Bruce Willis for my production!”

Yes, you are reading a book about game design. But isn’t it easier to think about
game creation like a movie production where you have a plot (game mechanics),
some actors (characters or objects), and a direction (behaviors and attributes)?

GameSalad allows you to design your game like a movie. You will use scenes
(splash screen, menu, level, gameplays) and actors to interact in these scenes.

Adding Actors

Ready to play the movie director...er...the game director role? Let’s fabricate
some actors!

What is an actor?

An actor is an object with specific behaviors and attributes that you will place in
the scene. Typically, in the Pong game, the ball is an actor. As for specific
behaviors, you will tell the ball how to react when colliding with some rackets
and with walls. The ball will also have some attributes that will define the ball
itself; for example, it will be moveable.

39

40

CHAPTER 2: The Pong Game

A view of the Actor Editor is shown in Figure 2-9.

®0o0

L = | AN &5,

Back/Forward Home Scenes

MyFirstPong_stepl.gameproj - Actor 1 (Prototype)

> @ ¢

Proview Wel Preview Publish

) @

Feedback Help.

|
I

Attributes

Name
Time

¥ Position

FSize
Rotation

* Color
Image
Tags
Preload Art

Custom

| Create Group

Create Rule |

Actor 1 text
0 real
point
size
0 angle
color
image
text
&) boolean
“Behaviors Images = Sounds
Plug-Ins m— -

[Accelerate
& Accelerate Toward
3 Animate
[Change Attribute
3 Change Image
3 Change Scene
E Change Size

+

Sign In

Accelerate (Persistent
Bahavior)

Specily he speed ang

direction (angie) of

acceleration of an actor. Best
used in a rule that checks for
a kewaaw_euam. Note: If the

Figure 2-9. The ActorEditor

Creating actors
There are two ways to create actors:
Via the Project Editor
Via the Scene Editor

Personally | mostly use the Scene Editor to create new actors as | create my
scene, but if you are a very good planner, you may use the Project Editor to
create most (if not all) of them when you create your project. | will cover the
creation of an actor with the Scene Editor here.

Project Size: 2 KB

Click the Scenes icon shown in Figure 2-10.

5.

Scenes

Figure 2-10. Scenes icon

CHAPTER 2: The Pong Game

Select “Initial Scene.” The Scene Editor opens. Locate the Actor Inspector
window on the left side, as per Figure 2-11. Click the + sign below the Actor
Inspector window.

Inspector Game Scene

-ﬂctors _Al_lri_m.;es Dcvas

@ -

Figure 2-11. Actor Inspector window

That’s it! You have just created your first actor!

Modifying Actors Attributes

An actor’s attributes can be modified by behaviors. But first you need to
understand a crucial concept.

Instance or Prototype

Before you go any further, | need to introduce the Very Important Concept (VIC)
of actor prototype versus actor instance.

The actor prototype is where you define the master actor. You will define the
actor, its attributes, and its behaviors.

Then every time you place this actor in one of the scenes of the game, you
automatically create an instance of this actor. The instance will automatically
inherit from the properties (attributes and behaviors) of the prototype.

a1

42 CHAPTER 2: The Pong Game

About Object-Oriented Programming:

Object-oriented programming (OOP) is a programming concept
centered on objects. An object is a data structure that contains
descriptive information about the object as well as actions (called
methods). OOP is out of the scope of this book, but perhaps you’ve
noticed the resemblance between OOP and GameSalad. Actors are
the objects, attributes are the descriptive information, and behaviors
are the methods. In reality, this is no surprise. GameSalad only hides
the programming aspects of iOS development! The iOS development
language is Objective-C, and guess what? Objective-C is an object-
oriented programming language.

If you need to modify some attributes or a behavior of a specific instance, you
must unlock the instance to access its attributes and behaviors. Scene
attributes, such as camera or orientation attributes, can only be accessed from
actors located on the scene. As such, you will need to edit the actor instances.

Actor Attributes

To best understand the concept of actor attributes, you need to think about
attributes as items that describe the actor. For example, to describe a human
actor, you would mention hair color (blond, brown, grey, dark, or none), eye
color (blue, brown, green), etc. Thus an attribute is a characteristic of the item
and its value.

So what does this mean in GameSalad? Let’s say that you have an actor called
Ball. It can be moveable (yes or no), it has a height and width, a color, etc.

Commonly Used Attributes

Let’s quickly review the most important attributes of an actor. Those attributes
are accessible from the Actor Editor shown in Figure 2-9.

This field contains the name of the actor. Use specific names; this is especially
important if you will have many actors in your project.

CHAPTER 2: The Pong Game

You can specify the size of the actor. If you are planning to use an image, key in
the size of the image.

Don’t forget about the tip regarding the size (make it divisible by 4!)

Color

You can fill a color in your actor if you are not using an image.

Tags

Tags are a way to group actors and to have them to behave in a similar way. For
example, you can group some actors to be collidable. Then you can define a
rule that a special object (a ball, for example) collides with all collidable-tagged
objects.

Physics/Density

Located under Physics, density represents the heaviness of an actor. The way
GameSalad implements density is very close to real life. According to the
GameSalad support, the units in GameSalad equal standard density in
kilograms per cubic meter.

Physics/Friction

Located under Physics, this attribute is used to simulate friction, which is the
force resulting from the contact of two materials. The lower the value of friction,
the softer it will simulate the reaction. A value of 0 will simulate ice.

Physics/Moveable

Located under Physics, this attribute lets you decide if the object can move or
not. If not moveable, the object will be in a fixed position. However, the actor will
be able to be moved through Change Attribute and Interpolate behaviors.

This list is not exhaustive. Many more attributes will be covered in the coming
chapters and you will learn how to create some custom attributes.

43

44

CHAPTER 2: The Pong Game

Modifying Attributes

To modify an actor, double-click the actor in the Actor window in the Scene
Editor. This will open the actor prototype in the Actor Editor. Then you simply
need to access each of the attributes in the Actor Editor. Let’s practice.

Double-click the actor you previously created (Actor 1), as shown in Figure 2-12.

Inspector (Game Scene

Attributes Devices

sk All

Figure 2-12. Actor 1 in the Inspector

Double-clicking Actor 1 opens to the Actor Editor, as shown in Figure 2-13.

CHAPTER 2: The Pong Game

A,

MyFirstPong_step2.gameproj - Actor 1 (Prototype)

>

Q C) @

Back/Forward Home Scenes Preview. Web Preview Publish Feadback Help.
{ Create Group | [Create Rule |
Attributes
Name Actor 1 text
Time 1] real
» Position point
» Size size
Rotation 4] angle
» Color color
Image image
Tags text
Preload Art =] boolean
+
Library (TBeRaviors | Images Sounds |
(& FCH Custom Pro Plug-ins
&l Accelerate .
K Accelerate Toward Accelerate (Persistent
Behavior)
B Animate
3 Change Attribute Specify the speed and
& Change Image ﬁlrsc:.iun _[angl;s:of B
acceleration of an actor. Best
n Change Scene used in a rule thal checks for
[Change Size akeyboard evant. Note: lfthe
P
guerined v Project Size: 5 KB

Figure 2-13. Actor Editor for Actor 1

Now let's change the following attributes:

Name: Rack Player 1
Size/Width: 16
Size/Height: 120
Color: White
Physics/Density: 500
Physics/Friction: 3

Physics/Restitution: 0
Physics/Fixed Rotation: Checked (This will avoid the actor

rotating after a collision with the ball.)

Now save your project.

[vww . allitebooks.con

45

http://www.allitebooks.org

46

CHAPTER 2: The Pong Game

About the Restitution Attribute:

The restitution attribute defines the bounciness. Zero means no
bounce! Confused? Why not use bounciness? How will the ball go
back if it can’t bounce? Well, the ball will bounce, not the racket!
(Imagine the racket bouncing out of the wall. Not very playable.) A
value of 1 in restitution means that no energy is lost out of the collision
(so it’s perfectly elastic).

Adding Behaviors

You can open MyFirstPong_step2.gameproj to start from this point.

In order to add actions to your actors, you need to add behaviors. With
behaviors, you can change the actors’ appearance, put some conditions to
some specific actions, or have them perform actions based on a timer. Thus you
use behaviors to add logic to your game.

What are behaviors?

To understand behavior in GameSalad, let’s continue the analogy of a human
actor. As a movie director, you direct your actors to perform certain tasks (like
when the cop sees the bad guys, the cop will shoot at them).

In GameSalad, behaviors direct your actors. You may instruct an actor that if a
condition is met, it will auto-destroy itself. This is an example of a behavior.

You can have behaviors for actions (such as how to react when colliding) or
behaviors that check on specific conditions (if the score is below 11, continue to
play).

There are three types of behaviors:

1. Behaviors that occur once (these have an“A” letter in a red box
next to their name).

2. Persistent behaviors that act continuously (these have a “B”
letter in a green box to their name).

3. Rules that use conditions to perform other behaviors (these
have a “G” letter in a blue box next to their name).

CHAPTER 2: The Pong Game

Adding Behaviors

Adding a behavior is fairly easy from the Actor Editor. On the bottom left, you
have access to the library of behaviors. You select the targeted behavior by
dragging and dropping it into the behavior area.

If you need to create a Rule behavior, you can either drag and drop the Rule
behavior from the list of behaviors or click the Create Rule button located in the
top right corner of the Actor Editor, as shown in Figure 2-14.

ano MyFirstfong_step? gamepro) = Actor 1 Prototype)
o &
4 % P { ey =
Pt Wels Preview Pukilisn dlacy Help

Back/Tonward Hare Seenes

Craxte Craup

Create a rule button

ATEriBuies

......... UrwReT

*Phydica Attributied
Density 500 real
Friction 3 real
Restitution o real
Movabla o hemkan
Collision Shape Bectangle 1| enume.
Drag o real
Angulsr Drag 1] roal

Images

Libran Behaniars
d Flug-Ins

Frov

Accelerate sPerzizsn
Batuior)

List of behaviors

Specily e speed and

Ly Change Image cirecion (angle])
8¢ accadaration of an acios. Besj,
ENRE oene Ligad b Rl TRt Ehasks

B REyDoEn avenL Nal

guesined = Project Slze: 5 KB

Figure 2-14. Actor Editor

About Rule Behaviors:

A rule behavior is used to define a condition to a behavior. It could be
a condition on the actor or on an attribute. It could be one condition,
several conditions at the same time, or any of several conditions at a
given time.

47

CHAPTER 2: The Pong Game

Now let’s practice. Start with the up and down movement. To do so, create a
rule that when a key is pressed a behavior (movement) is triggered.

1. Click on the New Rule button.

2. Rename therule as “Down” by clicking "Rule” next to the On
button

A rule has three parts, as shown in Figure 2-15.

v @D Rule Q

hen | All $) conditions are valid
() ACtor receives event s mouse button # 0I5 (down H =]+
Conditions -

Actions if
conditions
are met

¥ Otherwise:

Actions if
conditions

not are met
Figure 2-15. The three parts of a rule

Rule conditions are located at the top part of the rule. As you may have several
conditions, you can choose to have either all of the conditions be met in order to
trigger the behaviors or to have any of the conditions be met in order to trigger
the actions.

3. Modify the condition to “Actor receives event.” Also,
choose “down” for the key, as shown in Figure 2-16.

CHAPTER 2: The Pong Game

([v 'Down

Q)

When [All _3',' conditions are valid:

=70

(Actor receives event :) (key :) [down | Keyboard | is (down ¢)
\ > Otherwise: Y.
Figure 2-16. Conditions of Downrule
4. From the behaviors library, drag a Move behavior (not

the Move To behavior) and drop it into the behavior area

of the rule if the condition is met. Modify the Move

behavior with a direction of 270.
The completed rule is shown in Figure 2-17.
- [On Down [x) R

- (%)

When | All) conditions are valid:

Actor receives event 7 | key v | down Keyboard ', is (down %
(v @D Move D) \
Direction: | 270 [e] . Relativeto:| actor 3| Move Type: | additive $
Speedi[300 [&) UL AEE

\t Otherwise:

Figure 2-17. Behavior of Downrule

49

50 CHAPTER 2: The Pong Game

About the Move Behavior:
There are several perimeters to the Move behavior.

Direction: You can either enter a value in degrees or a mathematical equation
to define the direction that the actor will take. For example, 0 will have an actor
move to the East of his point of reference for the movement (see below).

Relative to: This defines the point of reference for the movement. You have
two choices: the actor itself or the scene. Relative to the scene is a movement
in the absolute referential of the scene. If you put 0 relative to the scene, the
actor will move to the right of the scene. If you put O relative to the actor, the
actor will move to his right, which could be the left of the scene if the actor is
upside down.

Move type: You can choose between additive or stacked. Additive will sum up
the speed and direction of other Move or Move To behaviors, while stacked
will only apply the speed and direction of the most recent Move or Move To
behaviors.

Speed: You can either put a value or open the Equation Editor by clicking the
little box with the “e” on it to the right of the value box and entering a
mathematical equation to define the speed of the movement

Try to create the Up rule on your own. Here are a few hints:

You can duplicate the Down rule by holding option and
dragging the rule down, renaming it, and changing the
settings. Alternatively, you can select the Down rule, copy
(Command + C), and then paste (Command + V). Another
approach is to create a new rule, as you did for the Down
rule.

The name of this rule is Up.

The condition of the rule is “Actor receives event” and the
key is “up.”

Drag and drop a Move behavior and change the settings as
per the Down rule but with direction set to 90.

CHAPTER 2: The Pong Game

You can open MyFirstPong_step3.gameprojfile to follow up from this point.

Before placing this actor on the scene, add one more behavior for each rack.
Constrain its positions on the horizontal axis. This means that the racket will
move up and down but will be on a fixed horizontal position (constant value on
the X axis). To do so, use the Constraint Attribute behavior.

In the behavior library (Figure 2-14), locate the Constrain Attribute behavior and
drop it into the Actor Behavior pane below the Up rule you just created. To
select the attribute to constrain, use the Attribute Browser. Click the button with
the three dots located to the right of the value input field. Browse to Rack Player
1 » Position » X, as shown in Figure 2-18.

o Attribute Browser
Game I- Name X
Devices ; Time Y
Rack Player 1 r Position I

Size '

Rotation

Color

Image

Figure 2-18. Attribute Browser

Double-click the X attribute to validate it. Assign a value of 20 for this constraint,
which will constrain the racket on a vertical axis located 20 pixels from the left of
the screen. The completed behavior is shown in Figure 2-19.

!‘/ ¥ @» Constrain Attribute 01

L Constrain Attribute: self.Position.X To: 20 6. J

Figure 2-19. Constrain Attribute

And now you are ready to position the actor on the scene.

Adding an Actor to the Scene

So you have created the racket for player 1. Now let’s position it on the scene.

Go back to the Scene Editor, and drop the actor into the scene. The location
only needs to be approximate because you have constrained the racket on the
x-axis, as shown in Figure 2-20.

51

52

CHAPTER 2: The Pong Game

@00

MyFirstPong_step4.gameproj - Initial Scene

[« ~/.\6 > @ & o«
—— 1a] d S = —“‘ @
Back/Forward Home Scenes Preview Web Preview Publish Feedback Help
Inspector Game Scene
Actors Antributes Devices
Rack Player 1
+ | - All
Library Behaviors Images = Sounds
GO0 Custom Plug-ins
[Accelerate T
ccelerate (Parsisten
] Accelerate Toward Bahavior)
B Animate

ﬁ Change Attribute
3 Change Image

[Change Scene

E] Change Size

3 Change Velocity
E collide

B3 Constrain Attribute

Specify the speed and
direction (angle) of
acceleration of an actor. Best
used in a rule Inat checks for a
keyboard event. Note: If the
drag behavior is notalso
applied 1o an actor,
acceleration will be
continuously applied, adding
greater and greater speed to
the actor until it has reached its

+

Project Size: 9 KB

Sign In
Figure 2-20. Placing the racket on the scene
Hit Preview! You have a racket on the scene that you can move up and down
with the arrow keys of your keyboard.

You can access this stage by opening fileMyFirstPong step3.gameproj.

Creating Other Actors

| have taken you through a very detailed approach to creating the racket for
Player 1. You will now create some of the remaining actors. You will define the
racket for the Player 2, the ball, and walls to get a defined playing area. You will
also add a little bit of dynamics so that you can have fast play.

| will guide you more quickly but | will highlight some new items as they appear.

CHAPTER 2: The Pong Game

Racket Player 2

To create the racket for Player 2, create a new actor. Double-click this new actor
to edit it in the Actor Editor. Change the attributes as per the following:

Name: Rack Player 2

Size/Width: 16

Size/Height: 120

Color: White

Physics/Density: 500

Physics/Friction: 3

Physics/Restitution: 0

Physics/Fixed Rotation: Checked
Then create the two following rules:

1. Arule named Down. It will be triggered when the “A” key is
down (the condition). The behavior will be a Move with a
direction of 270.

2. Arule named Up. It will be triggered when the “Q” key is down
(the condition). The behavior will be a Move with a direction of
90.

Last, add a behavior called Constrain Attribute, with actor X constrained to 460.

Now, place your racket on the scene. You can place it approximately as the
position constrain will automatically position it correctly. Your Rack Player 2
editor screen should look like Figure 2-21.

53

54 CHAPTER 2: The Pong Game

‘@00 MyFirstPong_stepS5.gameproj - Rack Player 2 (Prototype)
Ll iy b E @ @ (e @
BackiForward Home Secnes Preview Web Preview Publish Feedback Help
| Create Group || Create Rule |
- \
‘ ¥ @D Down a l
bt | When Al) conditions are valid: =5
l Actor receives event i) key i la Keyboard | is | down : =i {r
(.4 Move L)
b Direction: (270 | € . Relativeto: [actor ¢ Move Type: | additive
::::: “I"‘k Playsrd ::‘t spee: (300 |&] \
¥ Position paint I —
vSize size sl
Width 16 real
Height 120 real v Up o)
bEc’:alm)n o ""IQ'E | When (Al t) conditions are valid: S|
r r i T 1
Ir:aoge f::ge ACtor receives event i) | key 2 [q Xeyboard | is (down © =i
Tags text
Preload Art o beolean
* Graphics ik
T v Move o
Direction: | 90 € ") Relativeto: [actor 3| Move Type: | additive
Sounds T il
Speed: | 300 €
| » otherwise J
[change Size ‘:‘ na h-
Change Velocity L NENRWY: o
O coliide Unlike the Change Attribute [Y @D Constrain Auribute —_— 0)
EJ constrain Attribute pehavior, this behaviar i - |
EJ cControl Camera continuously updates the value | | Cemstrain Attribute self Positian X .| Te: 480 e
of one atribuie o that of /.l
£ Destroy anoiher. For insiance, an actors
& bisplay Text x and y pasition can
r conbnuously be constrained 1o
o alof he mouse.
& interpolate
e
Sign In Project Size: 10 K8

Figure 2-21. Rack Player 2 editor screen

The Ball

You will now create the ball. For reason of simplicity, you will create a square
ball of 16 x 16 pixels.This actor will be generated from another actor: either Rack
Player 1 or Rack Player 2. In the GameSalad vocabulary, we say that this actor
is spawned.

As usual, create a new actor and change the following attributes in the Actor
Editor:

Name: Ball
Size/Width: 16
Size/Height: 16
Color: Red
Physics/Restitution: 1

CHAPTER 2: The Pong Game

Physics/Fixed Rotation: Checked
Physics/Collision Shape: Circle

You have two options to define how the actors will collide. The shape will be
either rectangle or circle.

The ball will be spawned from either Rack Player 1 or Rack Player 2, depending
on which player is serving for the game. By default, Player 1 will start the game
by serving first. The winner of the point will serve the next ball. To define which
player will serve, use a Boolean attribute on whether Player 1 will serve. If true,

Player 1 will serve; if false, Player 2 will serve.

In the Scene Editor, select the Attributes Inspector window and create a new
Boolean attribute by clicking the + sign, as per Figure 2-22.

Inspector P‘ﬁ&l!— Scene
| Actors [_@l:_mgs)] Devices
Name default name text
Time 0 real
» Display Size size
Actor Tags text
OE

Figure 2-22. Attributes Inspector window

Name this attribute P1Serving and check it.

Back in the Actor Editor for the Ball actor, create a new rule. The rule will check
which player is serving and, based on the result, will change the direction. To do
so, use the Otherwise part of the rule.

Create a new rule and call it Ball Direction.The condition is if the attribute of
game. P1Serving is true. Drag in a Change Velocity behavior.

Change the direction using the Expression Editor. Click the small “e” at the right
of the direction field, as shown in Figure 2-23.

[vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 2: The Pong Game

Direction: |0 | Gﬁ

Figure 2-23. The Expression Editor icon

This will open the Expression Editor shown in Figure 2-24.

Expression Editor

_n

- insert function: - remove expression

Figure 2-24. Expression Editor

Select the Random (min, max) function by clicking on the insert function drop-
down menu and replacing the min with -45 and the max with 45. By doing so,
the ball will go in a direction between -45 degrees and +45 degrees. Then, click
the green check mark to actually insert the function. Figure 2-27 provides a
visual representation of the angles.

Figure 2-25. Ball direction (-45, +45)

Drag another Change Velocity behavior in the Otherwise section, which can be
accessed by clicking the arrow in front of the Otherwise text on the bottom of
the rule, and change the direction value to Random (135,225) and click the
green check mark. Figure 2-26 provides a visual representation of the angles.

CHAPTER 2: The Pong Game

Figure 2-26. Ball direction (135, 225)

You should end up with a rule that looks similar to Figure 2-27.

[i 7
¥ @3 Ball Direction
When | All 3 conditions are valid: =5

| Attribute $) | gamePiSer... ! is [true)

(v @D Change Velocity o)

Direction: r:mdom(-:G! = Relative to: | actor 3

Speed: | 300 £ iRy 2
C random(-45,45)

¥ Otherwise:

(¥ @@» Change Velocity

Direction: rarldomt:il > Relative to: | actor * |

Speed: 300 |L6| ,;r‘_,;, Expression Editor

e random(135,225) [x]
& v ncior: QD

Figure 2-27. The Ball Direction rule

About the Expression Editor:

The Expression Editor is the advanced editor where you can use
advanced mathematical formulas to define complex actions and
movements. | will cover more mathematical aspects later.

58 CHAPTER 2: The Pong Game

There are a few tips you need to know about the Expression Editor:
1. .. is used to show more than one attribute.

Example: (actor.position.X)..(actor.position.Y)

2. “text” is used to display text.

Example: “X Position: “..(actor.position.X)

3. \"” is used to insert a double quote in the text within a double
quoted text.

Example: “This is a quote \” in a text”

4. \32 is used to insert a space in the text within a double quoted
text.

Example: “This\32is\32a\32space”

5. \n is used to start a new line in the text within a double quoted
text.

Example: “This add \n a new line”

Let’s go back to the rackets to enable them to spawn the ball. The ball will be
spawned when the space bar is pressed. And guess what? You’ll use a rule.

Open the Rack Player 1 in the Actor Editor. Create a new rule and name it
Serving. The condition is when the Actor receives event and when the space key
is down.

You also need to check if it is Player 1’s turn to serve. To do so, use the
attribute that you previously created, P1Serving. If P1Serving is true and the
space bar is pressed, then Rack Player 1 will spawn the ball.

Add a new condition in the Serving rule by clicking the + sign. The condition will
be if attribute game.P1Serving is true.

Now, add a Spawn Actor behavior in the behavior area of the Serving rule.
Change the actor to Ball and the horizontal position to 16. This will spawn the
ball just in front of the racket.

The Serving rule should look similar to Figure 2-28.

CHAPTER 2: The Pong Game

(a 3
v @ Serving o)
When (_All %) conditions are valid: =)
(Actor receives event 3 (key ¢) 'space | Keyboard | is (down %)
(Attribute) game.P1Ser... J is (true %)
(v @ Spawn Actor Q \
Actor: | Ball s | Layer Order: | in front of actor % |
Direction: 0 ﬂ "__';'," Relative to: | actor |

Position: [+ 16 ‘ﬂ ko \i’ Relative to: | actor +

\b Otherwise: 4

Figure 2-28. Serving rule

Now you can do the same for Rack Player 2 with the following modification:
In the condition of Attribute game. P1Serving is false.

Spawn Actor is the ball and the position is -16 (to spawn the
ball on the left side of the racket).

Figure 2-29 shows the Serving rule for Rack Player 2.

(v @D Sening o
When (_ All 3 conditions are valid: =JE
Actor receives event | | key :) | space Keyboard | is (down 3)
. Attribute D[game.PlSer... ' is [false $
(v @» Spawn Actor (] \
Actor: | Ball 4| Layer Order: | in front of actor * |
Direction: 0 EJ) Relative to: | actor % |
Position:] -16 GI o [e| Relativeto: [actor |
\3 Otherwise: 4

Figure 2-29. Serving Rule for Rack Player 2

CHAPTER 2: The Pong Game

You can open the MyFirstPong_step5.gameproj file to see the results at this
stage. By changing the value of P1Serving from true to false in the Attribute
Editor, you can serve from either Racket 1 or Racket 2 in the Preview mode.

Let’s put some walls around this game now!

Walls

The next step is to create some walls around the playing area and implement
some bounciness.

As usual, create a new actor. Double-click this new actor to edit it in the Actor
Editor. Change the attributes as per the following:

Name: Bouncing Wall
Size/Width: 480

Size/Height: 10

Physics/Density: 500
Physics/Restitution: 0
Physics/Fixed Rotation: Checked
Physics/Moveable: Unchecked

Go back to the Scene Editor. Drag the Bouncing Wall into the scene and
position it just above the visible scene. Drag another Bouncing Wall into the
scene and position it just below the visible scene. Refer to Figure 2-30 to see
the result.

CHAPTER 2: The Pong Game

‘@00 MyFirstPong_step6.gameproj - Initial Scens

A, b af Qe

Back/Forward Home Scenas Preview Web Preview Publish Feedback Help

Inspector (Game scene
Actors CAuributes | Devices
Rack Player 1 Rack Player 2
Ball Bouncing Wall
+ = Al
Library “Behaviors | Images | Sounds
cl:n-l Custom Plug-ins
@ ray
Play Sound 7
= Spawn Actor (Action)
3 Replicate
J Reset Game Good for "firing” projectiles,
E Reset Scene dropping items, or laying eggs!
3 Rotate This behavior creates a new
actor instance in the scene.
& Rotate to Angle Specify the spawned actor
& Rotate to Position instance’s directional and
E Rul angular position relative (o the
v scane or spawning actor, If this
Save Attribute actor is spawned too far
3 Spawn Actor outside of the scene, it will be
) wrapped or destroyed,
E Stop Music depending on the Wrap scene
R
Sign In Project Size: 17 KB

Figure 2-30. Scene with walls

By dragging the Bouncing Wall into the scene twice, you just created two
instances of the same actor. If you double-click the actor in the Actor Editor, you
can modify the prototype and all instances will reflect the modification. But if
you double-click one of the instances, you will edit just that instance and not the
others.

Does this ring a bell? This was the VIC (Very Important Concept) that was
introduced before.

Tags

Tags are very useful tools. They are a way to group actors together and then
have a behavior that applies to the tag (i.e. the group of actors). The group of
actors that you will create now is the Collidable group of actors.

61

62

CHAPTER 2: The Pong Game

To create a new tag, click the Home icon as per Figure 2-31.

i}

Home
Figure 2-31. Home icon

Click the + button on the left button side of the home screen, as per Figure 2-32.

®B0n MyFirstPong_stepé.gameproj
o)) £ 2@
BackiForward Home Scenes Prewview Web Preview Publish Feedback Melp
Praject Info Seenes Actors
] i .
Rack Player 1 Rack Player 2 Ball Bouncing Wail

+
@gn n Project Size: 17 KB

Figure 2-32. Home Screen

Name the tag Collidable.
Drag each of the four objects on the right side of the tag you just created.

Double-click Rack Player 1 to edit it. Add a Collide behavior. Configure the
behavior for Bounce when colliding with actor with tag and “Collidable,” as per
Figure 2-33.

CHAPTER 2: The Pong Game

(v @ Collide o)

Bounce when colliding with: | actor with tag: 3 Collidable

Figure 2-33. Collide behavior

Repeat the same for Rack Player 2, the Ball, and the Bouncing Wall.

Let’s Play

You can open the file MyFirstPong_step6.gameproj to get to the current stage.

Are you ready for your first Pong game? Hit the Preview button. You can now
play Pong. Use the Up and Down keys to control Player 1 and the Q and A keys
to control Player 2. Press the space bar to serve a ball.

Summary

Congratulations! You have created your first playable game. But this is not your
only achievement. In this chapter:

You learned the basic concepts of GameSalad.
You created your first project.

You created your first actors.

You implemented some player controls.

You used the collision concept.

Are you enjoying this process? Good! But you have still a lot to fix. In the next
chapter, you will do the following:

Design a scoring system.

Manage which player will serve.

Implement touch detection for Player 1 racket.
Implement CPU to control Player 2.

Manage the display.

63

Chapter

Finishing Pong: Scoring
and Game Interaction

In the previous chapter, you created a pretty cool game in just a few minutes.
You now have a grasp of the capabilities of GameSalad, but your project is far
from being perfect. In this chapter, you will continue learning GameSalad by
implementing some add-ons and fine-tuning the Pong game.

Let’s Keep Score

Who’s winning the game? When playing table tennis, isn’t one of the top goals
to win or achieve a high score? But to do so, a game needs a scoring system.
So what are you waiting for?

For the Pong game, you will create a scoring system based on the following
rule: if you miss the ball, your opponent scores a point. The first player to reach
11 wins the game.

You can open the file MyFirstPong step6.gameproj to follow the next steps.

The trick to knowing if one player has missed the ball is to create an invisible
actor that willd etect when the balltouchesit—but one that is not collidable so
the ball goes through it. This actor will cover the complete height of the
gamefield. You will also take the opportunity to destroy the current ball instance.
This will free up some memory resources.

D. Guerineau, Learn GameSalad for iOS: Game Development for iPhone, iPad, and HTML5
© David Guerineau 2012

CHAPTER 3: The Pong Game - Part Il

About Memory:

Memory is a precious resource in an iOS device. Although iPhone 4S
can have up to 64GB, the dynamic memory allocated for your runtime
is much more limited (a few MB only). It is an excellent practice to
destroy an actor as soon as it becomes useless for the rest of the
game. If your actor will be needed later, an advance technique for
performance optimization is recycling. Recycling is covered in
Chapter 7.

To keep score, create two attributes to store the scores of each player.

In the Scene Editor, select the Attributes Inspector window and create a new
Integer attribute by clicking the + sign. Name it P1 Score. Repeat the operations
but name the attribute P2 Score.

In the Scene view, create a new actor and change the following attributes:
Name: Left Winning Zone
Size/Width: 10
Size/Height: 320
Color/Alpha: 0
Physics/Density: 0
Physics/Moveable: Unchecked

As you may have noticed, fixed rotation is left unchecked here. Fixed rotation is
to prevent an actor from spinning around when it collides with another actor. As
this actor will not collide with any other actors, it is unnecessary to check fixed
rotation.

You should end up with the same attributes as Figure 3-1.

CHAPTER 3: The Pong Game - Part Il

67

Attributes
Name Left Winning Zone text
Time 0 real
¥ Position point
X 0 real
¥ 0 real
¥ Size size
Width 10 real
Height 320 real
Rotation 0 angle
¥ Color | il color
Red i real
Green 1 real
Blue 1 real
Alpha 0 real
Image image
Tags text
Preload Art v boolean
¥ Graphics attributes
» Motion attributes
¥ Physics attributes
Density 0 real
Friction 3 real
Restitution 1 real
Fixed Rotation boolean
Movable boolean
Collision Shape Rectangle enumera...
Drag 0 real
Angular Drag 0 real
+ -

Figure 3-1. Left Winning Zone attributes

Now add some rules and behaviors to that actor.

The first rule will detect the overlap between this zone and the ball. Create a rule
and name it Ball Detection rule. The rule is “Actor receives event” and “overlaps
or collides” withactor of type“ball.”

Drag the Change Attribute behavior into the rule. Change the settings to Change
Attribute: game. P2 Score. Then, use the Expression Editor (the little icon
located to the right of To:) to self-increment by 1 the P2 score attribute. You
expression must look like Figure 3-2.

CHAPTER 3: The Pong Game - Part Il

Expression Editor

= game.P2 Score +1

Game . Name
Devices Time

Left Winning Zone Display Size
Actor Tags
P1Serving
P1 Score
P2 Score

Figure 3-2. Self-increment of P2 score
Now you can keep track of the Player 2 score. Repeat the same steps to keep
track of the Player 1 score.
Create a new actor and change the following attributes:
Name: Right Winning Zone
Size/Width: 10
Size/Height: 320
Color/Alpha: 0
Physics/Density: 0
Physics/Moveable: Unchecked

Next, add a rule to detect the overlap between this zone and the ball. Create a
rule and name it Ball Detection rule. The rule is “Actor receives event” and
“overlaps or collides” with actor of type “ball.”

Drag the Change Attribute behavior into the rule. The behavior is Change
Attribute: game.P1 Score. Use the Expression Editor to self-increment by 1 the
Player 1 score.

Go back to the Scene View Editor. Drag and place the Left Winning Zone on the
complete left side of the visible zone, as shown in Figure 3-3.

CHAPTER 3: The Pong Game - Part Il

Figure 3-3. Positioning the Left Winning Zone on the scene

Repeat a similar action with the Right Winning Zone on the complete right side
of the visible zone, as per Figure 3-4.

70 CHAPTER 3: The Pong Game - Part Il

Figure 3-4. Positioning the Right Winning Zone on the scene

It’s great to keep score for each player but it would be greater to see the scores!
To display text on the scene, you will use an actor as a recipient holder. You will
introduce a new behavior called Display Text. This behavior is used to display
text into an actor.

In the Scene Editor, create a new actor and change the following attributes:
Name: P1 Score
Size/Width: 50
Size/Height: 50
Color/Alpha: 0
Physics/Moveable: Unchecked

CHAPTER 3: The Pong Game - Part Il

Setting Alpha to 0 will make the actor transparent but the display text will remain
visible. This is how you achieve the best result.

In order to perfectly position the score display on the scene, use a Change
Attribute behavior to constrain its position. Drag and drop a Change Attribute
behavior into the behavior area of the P1 Score actor. Then select the P1
Score.Position.X attribute and change it to 215. Once selected, it will display as
self.Position.X. Repeat the operation with P1 Score.Position.Y with a change

to 295.

Last but not least, drag a Display Text behavior. The Display Text behavior is
shown in Figure 3-5.

[@ Display Text LR
Text: | Hello world! e
Align: (= [=—=| (] Wrap inside actor
Font: | Arial + | Size: 30 (#] color: [C—

Figure 3-5. The Display Text behavior

In the Display Text behavior box, you can either enter your own text or access
the Expression Editor. You have several options to format your text, such as
choosing the alignment, the font, the size, and the color. The “Wrap inside
actor” option creates line breaks so that your text fits inside the actor.

In the Display Text behavior box that you just dropped, open the Expression
Editor and select the following attribute: game.P1 Score. Set the size as 20 and
choose an orange color so it is clearly visible on the scene.

Figure 3-6 shows the final result.

n

72 CHAPTER 3: The Pong Game - Part Il

| Create Group]| CrealeRuT

| (o o °
L

N N A Y E

L Change Attribute: | self.Position.X [o] Te:[z1s €
¥ @D Change Attribute (]

Attributes Change Attribute: | self.Position.Y [.] To: [2ss e
Name P1 Score text
T:m‘e_ " rea_l ¥ @D Display Text (]
¥ Position point
»Size size Text: [game.P1 Seore '_6_
Rotation 0 angle ==
» Color — color Align: (= == | Wrap inside actor
Image Image Font: | Asial +] size: [20 | [3) Color: ||
Tags text ——
Preload Art =] boolean
ok = |
Library (TBeRaviors'| Images | Sounds |

Custom Pro Plug-ins
& Accelerate

Accelerate (Porsistont
[Accelerate Toward Bahavior)
& Animate

i Specily the speed and direction

Change Attribute i did st b
Change Image actor. Best used in @ rule that

checks for a keyboard event
3 Change Scene Note: If the drag bohavier s not
& Change Size aiso applied 1o an actor,
= arrabeation will ha contiouniehs

P

Figure 3-6. P71 Score actor

Repeat the same sequence of action to create the P2 score actor, display the
game.P2 score, and constrain the actor to the position (265,295). Figure 3-7
shows the final result.

CHAPTER 3: The Pong Game - Part Il

| Create Group || Create Rule |
i
| (» @@» Display Text (>}
Text: | game.P2 Scare e
| Aign: (=== | Wrap inside actor
Font: | Arial + | Size: |20 +| Color: | =
Attributes &
M, P, P =T e I =
ame 2-Score e [* @D Change Attribute [x]
Time 0 real f
> Position point | Change Artribute: self.Position.X To: 265 &
»Size size
Rotation 0 angle = N SIS — R —
» Color | color = m Change Attribute 0 \
Image image 1
9 imag Change Attribute: | self.Position.Y -1 To[28s e
Tags text
Preload Art = boolean
v [
Library (mﬂm Images = Sounds
Custom Pro Plug-ins
& Accelerate Tt
& Accelerate Toward ooty
B Animate
hange Attribut Specity the speed and direction
ﬁ cl ge Attribute (angle) of acceleration of an
ﬁ Change Image actor. Best used in a rulo that
checks for a keyboard event.
£ Change Scene Note: If the drag behavier is not
& Change Size also applied to an actor,

== arroloration will ha cootinusshs
T B

Figure 3-7. P2 score

Go back to the Scene Editor and drop P1 Score and P2 Score on the scene.

Before jumping to the next paragraph, you need to free up the memory once the
point is made. To do so, use the Destroy behavior on the ball itself.

Open the Ball in the Actor Editor and create a new rule. Name the new rule
Destroy. This rule will have two conditions but with an “Any” of those
conditions. To have the Any option, click the “All” in “When ‘All’ conditions are
valid” and select “Any.”

The first condition is “Actor receives event” and “overlaps or collides” with actor
of type “Left Winning Zone.”

The second condition is very similar: “Actor receives event”’and “overlaps or
collides” with actor of type “Right Winning Zone.”

Then, drag and drop a Destroy behavior. There is no option setting for this
behavior. When any of the conditions you previously made are valid, it will
destroy the instance of the actor. Your rule should look like Figure 3-8.

73

74

CHAPTER 3: The Pong Game - Part Il

7~ —_—

[¥ @ Destroy Q)

| When |_Any %) conditions are valid: =){x |
Actor receives event) | overlaps or collides %) with | actor of type + Left Winning Zone % -1+

Actor receives event 1) (overlaps or collides %) with {actorof type #! (Right Winning Zone =+

- @D Destroy [x] A

| Destroy this actor
.8

Figure 3-8. Destroying the ball

You can open the file MyFirstPong_step7.gameproj to access to the current
stage of the design.

It’s All About the Ace!

Are you ready to ace the game? Before starting the competition, you need to
create two additional features of the game: winning points and serving the next
ball.

At this point, not only can Player 1 serve but he can serve an infinite number of
balls into the game at the same time. Press the space bar multiple times if you
don’t believe me.

Serving Feature: The Winner of the Point Serves the
Next Ball

Implementing the function “the one who makes the point will serve the next ball”
is fairly easy, especially because you have set up almost everything already. As
you only have two players in the game, it can only be Player 1 or Player 2 who is
serving. Another way of saying this is that Player 1 is serving or not (if not, then
Player 2 is serving).

In the previous chapter, you created an attribute for serving that you will reuse
now. The attribute P1Serving will get modified according to which player makes
the points.

Open the Left Winning Zone actor in the Actor Editor by double-clicking it. You
already have a rule that makes the scoring point. Add a Change Attribute to this
existing rule to modify the P1Serving attributes in addition to the score. The rule
detects when Player 2 makes the point. In that case, it’s Player 2’s turn to serve.
Thus, P1Serving should be set to false.

CHAPTER 3: The Pong Game - Part Il

Drag a Change Attributebehavior into the Ball Detection rule. Set
game.P1Serving to 0, as in Figure 3-9.

(v @» Ball detection rule Q 2
When [All :) conditions are valid: =)&)
i_Actor receives event) [overlaps or collides :) with | actor oftype 3, (Ball
(v @D Change Attribute o)
L Change Attribute: . game.P2 Score [' To: Igar‘ne.PZ Sl:oret'E
(v @ Change Attribute (] 2
Change Attribute: |~ game.P1Serving —|—_ To: [0 4)
\ > Otherwise: 4

Figure 3-9. Change P1Serving to false

About Boolean:

Boolean attributes are true/false attributes. To save a little bit of time,
you can substitute true and false with 0 and 1, respectively.
GameSalad will automatically associate 0 to false and 1 to true

Repeat the operation with the Right Winning Zone; this time game.P1Serving
must be set to 1, as in Figure 3-10.

76 CHAPTER 3: The Pong Game - Part Il

- @D Ball detection rule o)

|
‘ When | All) conditions are valid: -+

a &

| Actor receives event 3 | overlaps or collides = with | actor of type ¢ [Ball

- @ Change Attribute Q \

Change Attribute: game.P1 Score o To: |game.P1 Scorea-:.__g_’ J

- @ Change Attribute o \

Change Attribute: game.P1Serving o To: [1 5 J
Q_Othemise: _ j

Figure 3-10. Changing P1Serving to true

Keeping One Ball in the Game at a Time

Now, let’s limit the number of balls in the game to one. (You can decide
otherwise later and adapt it to your own game’s rules.)

You will use a Boolean attribute that will be changed to true as soon as a ball
actor is spawned and to false when the ball is destroyed. Then you will modify
the spawn behavior to check if this new attribute is false before spawning the
ball.

In the Scene Editor, select the Attribute Inspector pane. Create a new Boolean
attribute as per Figure 3-11.

CHAPTER 3: The Pong Game - Part Il 77

@00 MyFirstPong_step8.gameproj - Initial Scene
= - = M % &
ENERE AL > @ o e
BackjForward Home: Scenes Preview \Waby Préview. Publich Feedback: Help
Inspector
SR —— | Pick an Attribute Type:
Actors Auriby
Name defau () boolean text _integer (_)real _langle _Jindex
Time
* Display Size
Actor Tags Colli¢
P1Serving =
P1 Score [i] integer
P2 Score 1] integer
| e
Library ("Behaviors'| images = Sounds
ScUEEl Custom Plug-Ins
J Accelerate e
3 Accelerate Toward 3;?“-:; Y
Ed Animate

3 Change Attribute
ﬁ Change Image

3 Change Scene

EJ Change Size

ﬁ Change Velocity
B collide

Constrain Attribute
B3 control Camera

A oensons

ol =

Specify the spaed ang
direction (angle) of
acceleration of an actor. Best
used in a rule that checks for a
keyboard event. Note: If the
drag behavior is not alse
applied o an actor,
acceleration will be
continuously applied, adding
greater and grealer speed to
the actor until it has reached

Figure 3-11. A new Boolean attribute

Name this attribute ActiveBall and leave it unchecked, as initially there will be no
ball in the game.

Let’s go back to the spawning behavior. Remember, the ball is spawned but the
rackets are spawning. So you need to modify the behavior of the racket actors.

Open Rack Player 1 and add a new condition in the Serving rule. The condition
is if game.ActiveBall is false. Then you need to add a Change Attribute behavior
that will occur at the same time as the ball spawning. Drag a Change Attribute
below the Spawn actor and implement game. ActiveBall to 1. This will change
the attribute to true, preventing a new ball from being spawned when the space
bar is down. Figure 3-12 shows the modified Serving rule.

CHAPTER 3: The Pong Game - Part Il

[v @ Ssening 0)
When [All 3 conditions are valid: =)@
| Actor receives event ;) (key *) | space Keyboard is (down %)
(Awibute #)| gameplSer.. |..|is (wue %)
(Attribute v game.Acti... J is (false D)
(v @D Spawn Actor (%] \
Actor: | Ball ¢ | lLayer Order: | in front of actor ¢ |
Direction: 0 ﬂ A=t Relative to: | actor + |
Position:]| 16 e] /o [€] Relativeto: [actor ¢]
(v @ Change Attribute (%] \
L Change Attribute: game.ActiveBall U To: | 1 ﬂ J
\ > Otherwise: 4

Figure 3-12. Modified Rack Player 1 Serving rule

Repeat the operation for Rack Player 2.

Last but not least, you need to modify the Destroy behavior of the Ball actor to
indicate that there is no longer an active ball in the game. Double-click the Ball
actor. Drag a Change Attribute behavior above the Destroy behavior and change
the ActiveBall attribute to false. Your rule should look similar to Figure 3-13.

- @ Destroy o)

When (_Any $) conditions are valid: (=)(®)

(_Actor receives event :) (overlaps or collides +) with(actor of type :) (Left Winning

(Actor receives event :) (overlaps or collides) with (actoroftype) (Right Winnin:

- @@» Change Attribute Q)
Change Attribute: | game.ActiveBall [..] To: [false K)
[v @ Destroy G
Destroy this actor
i 4
\! Otherwise: Y,

Figure 3-13. Modified Destroy behavior

CHAPTER 3: The Pong Game - Part Il

Launch the game in Preview and check the appropriate behavior.

You can open the file MyFirstPong_step8.gameproj to reach this step.

Do You Have the Touch?

The real fun begins now! You will start using some of hardware functions of the
iOS device. The first one is the touch interface of your device. You will
implement two functions. The first one will spawn a ball when you tap the
screen. The second one will move the Rack Player 1 with your finger.

Serving with a Pinch of Touch

You will implement touch serving for Player 1 only. The idea is that by the end of
the chapter you will be able to play Player 1 against the computer!

To do so will take you about 5 seconds. Yes, you read correctly! Only 5
seconds.

Double-click Rack Player 1 to open the actor in editor mode. Modify the Serving
rule’s first condition: replace “key” with “touch.” Then select “outside.” So
instead of having the player press the space bar down to spawn a ball, the
player will touch the screen and the racket will spawn a ball. Your Serving rule
should look like Figure 3-14.

- @D Serving (%) 0
When | All :) conditions are valid: =&
Actor receives event) | touch v is | outside
Attribute s game.Pl1Ser... .| Is (true
Attribute t)| gameaAct... .| is (false
- @@ Change Attribute [%)
Change Attribute: game.ActiveBall .| Toi [true e
(- @» Spawn Actor]
Actor: | Ball B Layer Order: | in front of actor *
‘ Direction: 0 G‘ . Relative to: | actor 3 |
Position: B] 16 el [ilo e Relative to: | actor
\
\ > Otherwise:)

Figure 3-14. Serving with a touch

79

CHAPTER 3: The Pong Game - Part Il

Now you want to be able to move Player 1’s racket with a finger. Remember
that the racket is constrained on a specific horizontal value. It can only move up
or down. So you only have to work on the y-axis.

The trick is to detect the touch, to collect the value of the y-axis of the touch,
and to constrain the Racket actor to this value. To collect the value of the touch
position, you are going to use the mouse device.

The Mouse Device

The mouse special object is an object inside GameSalad in the
Devices category. The Devices category helps you to take advantage
of the hardware functionalities of iOS devices. Here you have access
to the accelerometer, screen, audio, clock, touch, and mouse features.
The mouse feature represents where you touch the screen and you
collect this information through the position attributes.

Still, there is something very important to do to make it work. The racket shall
not move outside of the visible area. You manage this point by only taking into
account the touch within the range of 60 and 260.

1. Create a new rule and name it Touch Detection.

2. Add the following condition: Actor receives event of touch inside
(you could replace “inside” with “pressed”).

3. Add the two additional conditions:
Attribute, game.Mouse.Position.Y,>, 60
Attribute, game.Mouse.Position.Y, <, 260

4. Add a Constrain Attribute of Rack Player 1.Position.Y to
game.Mouse.Position.Y.

The completed rule should look like Figure 3-15.

CHAPTER 3: The Pong Game - Part Il

[v@ Rule o)
| When (_All 3 conditions are valid: et 1
Actor receives event 5 (touch 7)) is (inside :
Attribute D, game.Mous... | >)60 G
Attribute 2| gamemous.. [..] (< :)[260 e
: - @3 Constrain Attribute)
k Constrain Attribute: self.Position.Y To: game.Mouse.Pos. G:
\ » Otherwise: w7

Figure 3-15. Touch rule

You can access to this stage by opening the file MyFirstPong_step10.gameproj.

Giving Your Game a Brain

iOS devices are powerful but implementing artificial intelligence with GameSalad
is not possible. However, with a little bit of imagination, you can implement a
few rules and behaviors that can do the trick.

You will proceed in a two-stage implementation. You will detect when the ball is
coming to the Player 2 racket; when it passes half the screen, you will collect the
y-value of the ball and store the value into an attribute. You will use a second
attribute to limit the racket movement. The second stage will be to move the
racket to this value.

Detecting the Direction and Getting the Y Value

1. Create a real attribute and name it “predict.”

2. Create a Boolean attribute and name it “positionyourself” with a
default value of false (leave it unchecked).

3. Open the Ball actor in the Actor Editor.

81

82 CHAPTER 3: The Pong Game - Part Il

4. Create a new rule and add these conditions:

Attribute, Ball.Motion.Linear.Velocity.X, 2,0: This will detect
the movement direction of the ball. If the value is positive,
the x-value will increase. So the movement will be from left
to right, going into the Player 2 racket.

Attribute, Ball.Position.X, 2, 240: This is when the ball
passes over the half of the screen.

Attribute, Ball.Position.X, <, 300: This is before the ball
bounces back on the racket.

5. Add a Constrain Attribute behavior and configure game.predict
to ball.Position.Y

6. Add a Change Attribute behavior and configure
game.positionyourself to 1.

7. Add a last Change Attribute behavior but in the Otherwise
section, and configure game.positionyourselfto 0.

The finished rule is as per Figure 3-16.

[~@ Rue

| When (_All %) conditions are valid:
Attribute £ selfmotion.. .| (= o le]
Attribute t self PositionX .| (= 1) 240 e
Attribute : selfPositionX |..| (= $)/300 e
¥ @» Constrain Attribute
Constrain Attribute: game.predict I __: To: | self.Position.Y .G'

[¥ @@ Change Attribute

Change Antribute: Qame.positionyo. .. To: |1 e

¥ Otherwise

[Vm Change Attribute

Change Attribute: game.positionyo. .. To: 0 €

\

Figure 3-16. Movement detection and position

CHAPTER 3: The Pong Game - Part Il

Moving Player 2 Racket to the Stored Value

1. Open the Rack Player 2 actor in the Actor Editor.
2. Create a new rule and add the following condition:
Attribute game.positionyourself is true.
This detects the allowed period to move itself to move to the stored position.
3. Drag a Move To behavior.

4. Configure the Constrain Attribute as per Figure 3-17.

- —
[@ Rule o)
| When (All :) conditions are valid: =) (+
Attribute : ‘game.positi... | 15 (true $ =i+
(= @» Constrain Attribute (<] _
| Constrain Attribute: self.Position.¥ w| T |game.predict e /ll
'\I'Olh!rwise. J)

Figure 3-17. Constrain Attribute

You also need to do a modification on the Serving function so that Player 2 can
serve automatically after winning a point. To do so, just remove the condition
that the space key is pressed by scrolling over and clicking the - sign next to the
condition.

The modified rule is shown in Figure 3-18.

83

84

CHAPTER 3: The Pong Game - Part Il

- @D Serving () B
‘ When (_All _7) conditions are valid: SIAE
Attribute 3 game.P1Ser... is | false
Attribute 3 game.Acti... is (false
(¥ @D Change Attribute Q S
Change Attribute: game.ActiveBall [| To: | true G: J
v @» Spawn Actor o 2
Actor: | Ball +| Layer Order: | in front of actor ¢ |
Direction: 0 ' G o Relative to: |_actor il
Position: B] -16 le] [@fo e Relative to: | actor =+ |
\P Otherwise: 4)

Figure 3-18. Modified Serving rule

You can directly reach this step by opening MyFirstPong stepi1.gameproj.

Pong, Talk to Me

A final touch-up to the Pong project is to add some key messages that interact
with the player. GameSalad has no speech capability but it can display text
messages on the iOS device screen. As you did before with the score, you will
use an actor to display some key interaction messages to the user.

In the Scene view, create a new actor and change the following attributes:
Name: Display
Size/Width: 360
Size/Height: 100
Color/Alpha: 0
Physics/Moveable: Unchecked

In order to perfectly position the score display on the scene, you will use a
Constrain Attribute behavior to constrain this position.

CHAPTER 3: The Pong Game - Part Il

Drag and drop a Constrain Attribute into the behavior area of the Display actor.
Then select Display.Position.X and constrain it to 240. Repeat the operation with
Display.Position.Y and a constraint of 160.

Create a new rule with the following conditions:
Attribute game.ActiveBall is false
Attribute game.P1Serving is true

Drag a Display Textbehavior and configure it as per Figure 3-19.

(@ Rule o)
When (__All 3) conditions are valid: -+
Attribute . game.Acti... .| is (false :
Attribute : game.PlSer... | ..| s (true :
(v @@ Display Text (x] \
Text: |Tap the screen to play -ﬂ_
Align: |= &= = Wrap inside actor
Font: | Arial % | Size: |30 (-] Color: | |
\ > Otherwise: /)

Figure 3-19. Display key message

Last but not least, drag and drop the actor on the scene.

You can reach this step directly by opening MyFirstPong_stepi2.gameproj.

Let’s Play on Your Device

It’s time to use the GameSaladiOS viewer.

Start the GameSaladiOS viewer on your iOS device and hit the Preview on
iPhone button orthe Preview on iPad button. Your GameSalad will look like
Figure 3-20.

86 CHAPTER 3: The Pong Game -

Partli

@00

L« > | N &5,

Back{Forward Home Scenes

MyFirstPong_stepl2.gameproj - Remote Preview

> @ &

Preview Web Preview Publish

) @

Performance:

Frames per second: 62.95

Memory Usage:

Images
Sounds
Game Engine
Other:

Total

Initial Scene

Connected
Ready

Initial Scene

Figure 3-20. Pong in iOS viewer

Summary

Feedback Help

You’ve come a long way since the beginning of Chapter 2. You now have a fully
functional game that was built in two chapters.

In this chapter, you learned about:

Scoring management

Serving the ball

Implementing artificial intelligence so Player 2 is controlled
by the CPU

Adding game/player interaction

| hope you enjoyed developing and playing the Pong game!

Chapter

Break A Wall:
Implementing
Comments,
Accelerometer
Movements,
LifeManagement, and
Pause

This chapter will cover the first part of the creation of Break a Wall, a remake of
the famous Breakout. Before you jump into the design of the game, | would like
to cover a little bit of the game’s history.

D. Guerineau, Learn GameSalad for iOS: Game Development for iPhone, iPad, and HTML5

© David Guerineau 2012

CHAPTER 4: Break a Wall - Part |

Atari developed Breakout (Figure 4-1) in 1976. Released four years after the
Pong, Breakout became an arcade game immediately. Later, Atari released
video game console version of Breakout.

Figure 4-1. Breakout original poster

Nolan Bushnell and Steve Bristow developed the game from an idea of having a
one-player Pong game. The player uses racket to hit a ball to destroy bricks in a
wall. If the player misses the return of the ball, he loses.

The original Breakout features a prisoner trying to escape using his ball and
chain to break the bricks. There are two levels. Level 1 is made of eight rows of
bricks of four different colors (two rows per color, shown in Figure 4-2). With the
ball and the racket, the player must destroy all the bricks. The player can make
up to 448 points per level.

CHAPTER 4: Break a Wall - Part |

Figure 4-2. Atari 2600 home version of Breakout

A little note:

The original arcade version of Breakout was manufactured with black
and white screens. Atari used some colored scotch strips on the
screen itself to give the appearance of colors.

A little note:

Steve Jobs and Steve Wozniak were involved in the development of
Breakout. They worked on the optimization of the circuitry boards in
the game to reduce the number of transistors.

This chapter will cover the following subjects:
Reinforcing your basic GameSalad skills
Adding comments to your work
Using the Accelerometer to control your game
Managing lives and the Game Over process

Adding a Pause feature to your game

CHAPTER 4: Break a Wall - Part |

Laying Down the Basics

In this section, you will quickly create the basic elements of the game. You will
start by creating the actors and then you’ll define the rules and behaviors for
each of them. Lastly, you will position the actors on the scene.

You can jump-start this section by directly opening the file BreakalWall-
step1.gameproj.

Defining the New Project

Start by opening the GameSalad creator. Under New Project, select My Great
Project template and click Edit in GameSalad Creator.

Configure the project info as per Table 4-1.
Table 4-1. Project Info

Title Break a Wall
Platform iPad Portrait
Description This is a remake of the famous Breakout game from Atari, originally

released in 1972 as an arcade game.

Instructions Tilt your iPad left and right to move the racket.

Tags Breakout

Click File » Save As to save your project. Name it BreakaWall.gameproj.

Defining the Actors
For this game you will create the following actors:
Racket
Brick
Ball
Vertical Wall

Horizontal Wall

CHAPTER 4: Break a Wall - Part |

Losing Zone

Display

Racket

The racket is controlled by the player to bounce the ball back to the brick.

Create a new actor and double-click it to open the Actor Editor.

Edit the actor attributes with the parameters in Table 4-2.

Table 4-2. Racket Actor Attributes

Name Racket
Size/Width 200
Size/Height 20
Color/Red 0
Color/Green 0
Color/Blue 1

Density 500
Friction 0
Restitution 1

Fixed Rotation Checked

Brick

Bricks constitute the unitary elements of the wall to destroy. Create a new actor
and double-click it to open the Actor Editor. Edit the actor attributes with the

parameters in Table 4-3.

91

92

CHAPTER 4: Break a Wall - Part |

Table 4-3. Brick Actor Attributes

Name Brick
Size/Width 128
Size/Height 20
Color/Red 0
Color/Green 1
Color/Blue 0

Density 500
Friction 0
Restitution 1

Fixed Rotation Checked
Moveable Unchecked
Ball

The ball is the moving element bouncing inside the playing area. Create a new
actor and double-click it to open the Actor Editor. Edit the actor attributes with

the parameters in Table 4-4.

CHAPTER 4: Break a Wall - Part |

Table 4-4. Ball Actor Attributes

Name Ball
Size/Width 20
Size/Height 20
Color/Red 1
Color/Green 1
Color/Blue 1
Density 1
Friction 0
Restitution 1
Fixed Rotation Checked
Collision shape Circle

Vertical Wall

Walls are used to define the game area. Create a new actor and double-click it
to open the Actor Editor. Edit the actor attributes with the parameters in

Table 4-5.

93

94

CHAPTER 4: Break a Wall - Part |

Table 4-5.Wall Actor Attributes

Name Vertical Wall
Size/Width 20
Size/Height 1048
Color/Red 1
Color/Green 1

Color/Blue 1

Density 500

Friction 0

Restitution 1

Fixed Rotation Checked
Moveable Unchecked

Horizontal Wall

Create a new actor and double-click it to open the Actor Editor. Edit the actor

attributes with the parameters in Table 4-6.

CHAPTER 4: Break a Wall - Part |

Table 4-6.Horizontal Wall Actor Attributes

Name Horizontal Wall
Size/Width 792
Size/Height 20
Color/Red 1
Color/Green 1

Color/Blue 1

Density 500

Friction 0

Restitution 1

Fixed Rotation Checked
Moveable Unchecked

Losing Zone

Similar to the Winning Zone in the Pong game, you will create a Losing Zone
below the racket to detect when the player has missed a ball. Create a new
actor and double-click it to open the Actor Editor. Edit the actor attributes with

the parameters in Table 4-7.

CHAPTER 4: Break a Wall - Part |

Table 4-7. Losing Zone Actor Attributes

Name Losing Zone
Size/Width 792
Size/Height 20
Color/Red 1
Color/Green 1

Color/Blue 1
Color/Alpha 0

Density 1

Restitution 1

Fixed Rotation Unchecked
Moveable Unchecked
Display

The display actor is used to display information on the screen. Create a new
actor and double-click it to open the Actor Editor. Edit the actor attributes with
the parameters in Table 4-8.

CHAPTER 4: Break a Wall - Part |

Table 4-8. Display Actor Attributes

Name Display
Size/Width 700
Size/Height 300
Color/Red 1
Color/Green 1

Color/Blue 1
Color/Alpha 0

Density 1

Restitution 1

Fixed Rotation Unchecked
Moveable Unchecked

Creating the Collidable Tag

You will repeat the approach you took for Pong to create a Collidable tag for all

the actors that will collide.

Create a new actor tag and name it “Collidable.”

Drag and drop the following actors over the Collidable tag:

Brick

Racket

Ball

Horizontal Wall
Vertical Wall

97

CHAPTER 4: Break a Wall - Part |

Defining the Attributes

As in the previous chapters, attributes will play a great deal in your game
engineering.

ActiveBall attribute will be used to know if a ball is already active on the screen
and if so, prevents the user from spawning another ball in the game. To do this,
you will use a Boolean.

BrickCount will be used to know when the ball destroys the last brick. You will
set this integer attribute with the initial number of bricks on the screen. Then
everytime a brick is destroyed, you will decrement this integer.

TextToDisplay will be used to communication game information with the player.
Create the attributes as per Table 4-9.
Table 4-9. Attribute List

Attribute Name Type Initial Value
ActiveBall Boolean False
BrickCount Integer 6
TextToDisplay Text

Implementing the Rules and Behaviors

Actors, attributes, and tags are now all set. But no logic and interaction has
been implemented yet. The next steps will add the rules and behaviors that will
define the game logic for each of actors.

Ball Rules and Behaviors

In order to give the ball an initial movement when it is spawned you will use a
Change Velocity behavior.

Drag and drop a Change Velocity behavior into the actor and change the setting
to direction of random (70,110) relative to the scene at a speed of 300, as per
Figure 4-3.

CHAPTER 4: Break a Wall - Part |

_/'@ -(ihan_gg-Vt-alocity - - 0._

Direction: random(‘; 0: ; Relative to: | scene
| =1 e '
| Speed: | 300 €] ————

Figure 4-3. Initial velocity of the ball
Next, you need to ensure that the ball will collide with all collidable actors, so
use a Collide behavior.

Drag and drop a Collide behavior into the actor and change the setting to “actor
with tag:” and “collidable” as per Figure 4-4.

lf" Y@ Collide o)

Bounce when colliding with: | actor with tag: | Collidable J

Figure 4-4. Collide behavior of the ball

Let’s create the rule when the player misses the ball. You will use the same logic
as per the Pong game. An actor will be positioned below the racket and when
the ball overlaps it, it will destroy the ball and change the attribute ActiveBall to
false.

ClickCreate Rule and add the condition “Actor receives event” “overlaps or
collides” with “actor of type” “loosing zone.” Drag and drop a Change Attribute
behavior and change game.ActiveBall to 0. Then, drag and drop a Destroy
behavior just below the Change Attribute behavior. Your rule should be similar to
Figure 4-5.

100

CHAPTER 4: Break a Wall - Part |

’/vm Rule Q)

When [All) conditions are valid: =) (&)

(Actor receives event :) (overlaps or collides :) with (actorof type ¢ (Loosing zone

(v @D Change Attribute (] o
Change Attribute: game.ActiveBall [..] To:lo e)
[v @ Destroy o)
Destroy this actor)

\ > Otherwise: ¥

Figure 4-5. Loosing rule

Next, create a rule that will destroy the ball when the last brick has been
destroyed and will also display the text “You Win!” Click Create Rule and add
the condition “Attribute”“game.BrickCount”“="“0.” Drag and drop a Change
Attribute behavior and change game.TextToDisplayto “You Win!” Then, drag
and drop a Destroy behavior just below the Change Attribute behavior. Your rule
should be similar to Figure 4-6.

[v@ Rule 0)
When (_All_:) conditions are valid: Sy
t_:i__t_t__rﬁbqt_; = :) [game.Brick...) ; ; 7__:_;_‘0 [ﬂ

(v @ Constrain Attribute D

L Constrain Attribute: | - game.TextToDisplay D To: | You Win! €

)
)
[v@ Destroy o)
J

Destroy this actor

L\b Otherwise:)

Figure 4-6. Finishing the game

CHAPTER 4: Break a Wall - Part |

If you have played a significant number of Pong games, you may have noticed
that the ball sometimes gets stuck horizontally; this is very boring. In order to
avoid this, let’s introduce a disturbance. You will monitor the ball, and as soon
as it is stuck horizontally or vertically, you will add a random effect to change the
next bounce. To achieve this objective, you must monitor the linear velocity of
the ball. The linear velocity is the motion among the axis of the 2-D plan. If the
linear velocity of the Y is 0, this means that the ball keeps a constant Y position.
In other words, your ball is moving at a perfect horizontal movement (the ball is
stuck between the left and right wall). If the linear velocity of the X is 0, this
means that the ball keeps a constant X position. In other words, your ball is
moving at a perfect vertical movement.

Click Create Rule and add the condition “Attribute”“ball.Motion.Linear
Velocity.Y”“="0". Drag and drop a Rule behavior and add the condition “Actor
receives event”“overlaps or collides” with “actor with tag”“collidable.” Then
drag and drop a Change Attribute behavior and change ball.Motion.Linear
Velocity.Y to random (70,120). Your rule should be similar to Figure 4-7.

(@ Rule o)
| When All 7 conditions are valid: =)\
Atribute [selfmotion.. |..| (= o e
((v@ Rule Q)
| When (_All 5 conditions are valid: - (*

Actor receives event :) | overlaps or collides 3, with (actor with tag + Collida

(w @ Change Attribute [%]
L Change Attribute: | self.Motion.Line... |..| To: [random(zo,1201] €]
!KP Otherwise: /J
.\\b Otherwise: _,.)

Figure 4-7. Preventing horizontal jam

Click Create Rule and add the condition “Attribute”“ball.Motion.Linear
Velocity. X”*“="“0". Drag and drop a Rule behavior and add the condition “Actor
receives event”“overlaps or collides” with “actor with tag”“collidable.” Then

101

102

CHAPTER 4: Break a Wall - Part |

drag and drop a Change Attribute behavior and change ball.Motion.Linear
Velocity.X to random (70,120). Your rule should be similar to Figure 4-8.

[v@ Rule 0)
When [All _:) conditions are valid: =&
Attribute $)| self.Motion... =)0 i Gj
(v @ Rule o)
When (_All 3 conditions are valid: =)\

Actor receives event) (overlaps or collides) with (actor withtag +) [Collida
(v @D Change Attribute (<] \
L Change Attribute: self.Motion.Line... _‘ To: random(?D.lZD}"ﬂJ
_r Otherwise: .
\b Otherwise: A

Figure 4-8. Preventing vertical jam

Racket Rules and Behaviors

Drag and drop a Collide behavior into the actor and change the setting to “actor
with tag:”“Collidable” as per Figure 4-9.

([v@ Coliide o)

)

L Bounce when colliding with: | actor with tag: T| [Collidable

Figure 4-9. Collide behavior of the ball

Drag and drop a Constrain Attribute behavior into the actor and change the
setting of Racket.Position.Y to 40 as per Figure 4-10. This will constrain the
racket to its position vertically.

(v @ Constrain Attribute o)

L Constrain Auribute: | self.Position.Y [7 To: [40 e J

Figure 4-10. Constrain attribute for racket

CHAPTER 4: Break a Wall - Part |

Now create two rules to implement the movement of the racket. As you did
previously, you will use the keys to move the racket left and right.

Click Create Rule and add the condition “Actor receives event”“key” “left”
keyboard is “down.” Drag and drop a Move behavior and change the settings

to:
Direction: 180
Relative to: actor
Move Type: additive
Speed: 300

Your rule should be similar to Figure 4-11.

;/' €D Rule

o)

1 When | All 3 conditions are valid:

) (&

Actor receives event :) (key $) [left K-ey.t-:oard | is (down :
| (v@» Move (] \
Direction: | 180 \ 6: = | Relative to: | actor Move Type: | additive
} Speed: (300 |e] Ll AT
J
\ > Otherwise: J

Figure 4-11. Left movement rule

Click Create Rule and add the condition “Actor receives event” “key” “right”
keyboard is “down.” Drag and drop a Move behavior and change the settings

to:
Direction: 0
Relative to: actor
Move Type: additive
Speed: 300

103

104

CHAPTER 4: Break a Wall - Part |

Your rule should be similar to Figure 4-12.

(v @> Rule o)
{ When | All) conditions are valid: - (+)
Actor receives event) (key :) "rig.;ht ml{eyboard | is (down 3
(v @D Move o \
Direction: 0 . €| [° Relativeto:| actor | Move Type: | additive
Speed: (300 |€] A1l
kb Otherwise: J

Figure 4-12. Right movement rule
Lastly, create a rule to spawn a ball actor when the screen is touched outside of
the actor and when there is no active ball.

Click Create Rule and add the condition “Actor receives event” “touch” is
“outside.” Add a second condition to check the game.ActiveBall attribute. The
condition will be “Attribute” “game.ActiveBall” is “false.” Drag and drop a
Spawn Actor behavior and change the settings to:

Actor: Ball

Layer Order:in front of actor
Direction: random(75,135)
Relative to: actor

Position: 0, 10

Relative to: actor

Drag and drop a Change Attribute behavior and change game.ActiveBall to 1.
Your rule should be similar to Figure 4-13.

CHAPTER 4: Break a Wall - Part | 105

[v @ Rule o)
When (_ All 3] conditions are valid: =)&)
Actor receives event 3) | touch 4) is [outside v)
. Attribute) [game.Acti... i j is [false 4
(v @D Spawn Actor [x] o
Actor: | Ball : | Layer Order: | in front of actor % |
Direction: random("El 5 Relative to: | actor & |
position:][0 el [l |e] Relativeto: [actor ¢ |
&
(v @D Change Attribute o)
L Change Attribute: | game._AcFve_Ball _|_l Tor [1 el
[2
KF Otherwise: 3

Figure 4-13. Spawning the Ball actor rule

Brick Rules and Behaviors

There will be only one rule for the brick actor. The rule will detect a collision with
the ball and then destroy the actor and decrement the brickCount attribute.

Click Create Rule and add the condition “Actor receives event” “overlaps or
collides” with “actor of type” “Ball.” Drag and drop a Destroy behavior. Drag
and drop a Change Attribute behavior and change game.BrickCount to
game.BrickCount-1. Your rule should be similar to Figure 4-14.

106 CHAPTER 4: Break a Wall - Part |

([+@ Rule o)
\ When | All) conditions are valid: = 6,
Actor receives event) [overlaps or collides + with (_actor of type %) (Ball
(v @D Destroy (])
L Destroy this actor j
{f v @ Change Attribute (] B,
L Change Attribute: game.BrickCount _ To: game.BrickCount_ﬁ_é)
Q 6-them}ise: J

Figure 4-14. The Brick rule

Display Text Rules and Behaviors

The last actor that needs a behavior at this stage is the display text. It will
permanently display the content of a text attribute on the scene. The trick is that
the attribute will be empty until the game is won.

Drag and drop a Display Text attribute and change the setting of Text to
“game.TextToDisplay.” You can leave all the rest as per default. Your behavior
should be similar to Figure 4-15.

(v @D Display Text 91
Text: | game.TextToDisplay E
| Align: |= = = || Wrap inside actor

Font: | Arial + | Size: |30 |+| Color: I[—J

Figure 4-15. Displaying the winning text

Layout of the Scene

The next step is to position the actors on the scene. Drag your actors onto the
scene and try to match Figure 4-16. You will need to drag the Brick into the
scene six times in order to create six instances of this actor.

CHAPTER 4: Break a Wall - Part | 107

Figure 4-16. Step 1 scene

Although invisible, drag the Display actor at the center of the scene.

Commenting Your Work

If you skipped the previous part, you can directly open the file BreakaWall-
step1.gameproj to continue from this point.

Should you write comments? What is a good comment? | must admit that | used
to hate to write comments. | thought it was useless and diverted me from the
objective: coding! But this is wrong! First and foremost, comments make your

108

CHAPTER 4: Break a Wall - Part |

game design clearer. By commenting, you can describe the responsibilities of
the actor or the intent of the rule. Next, it makes your game projects easier to
understand for others. When you work on a team, you will save your colleagues
a tremendous amount of time if you include the right comments. A good
comment provides useful information about your design strategy and any tricky
arrangements in your rules.

To add a comment, use the Note behavior of GameSalad. It can be placed as
any behavior in the Actor Behavior pane or within a rule. Let’s practice a little bit.

Open the Racket actor in the Actor Editor. Drag and drop a Note behavior at the
top of the pile of the behaviors. Type the following comment:

The Racket is the paddle to be controlled by the player.
The racket will collide and bounce with collidable objects.
The racket will be constrained on the Y=40 axis.

Your comment should be similar to Figure 1-17.

= Note. o)

The Racket is the paddle to be controlled by the player.

The racket will be constrained on the Y=40 axis.

N,

Figure 1-17. General comment for the racket

Now, drag and drop a Note behavior above the Left Movement rule. Type the
following comment:

When the left key is pressed, the actor will move to the left direction.

When the right key is pressed, the actor will move to the right
direction.

Your comment should be similar to Figure 1-18.
= Note L

When the left key is pressed, the actor will move to the left direction.
When the right key is pressed, the actor will move to the right direction.

\ d

Figure 4-18. Comments on racket movement rules

From this step forward, | will not tell you which comment to write but the project
files will contain some of my comments. Feel free to read them.

CHAPTER 4: Break a Wall - Part |

Moving the Paddle with the Accelerometer

To followfrom this point, you can simply open the file BreakalWall-
step2.gameproj.

Let’s have some fun! In order to move the racket, you will use the built-in
accelerometer of the iOS device. In order to create such a feature, you will again
use the device attributes, especially the accelerometer. In fact, you will need to
use detection on the X-axis of the accelerometer.

Open the Racket actor in the Actor Editor. In the left movement rule, add a new
condition. The condition is “Attribute”“game.accelerometer.X”“<”*“-0.05”. You
also need to change from “All” to “Any” in “When ‘Any’ conditions are valid.”
That’s it! Your new rule will be similar to Figure 4-19.

This implementation of the movement based on the accelerometer is rough at
this stage and does not take into consideration any amount of tilt in the
movement. It is only a first approach. You will learn a more advanced approach
in Chapter 8.

(¥ @ Rule o)
When (_Any) conditions are valid: =) (+
Actor receives event) | key v) |left Keyboard | is (down :

Attribute +) game.Accel... | (£ %)|-0.05 €
[@ Move o

Direction: | 180 | 6: . Relative to: | scene = Move Type: | additive |
Speed: | 500 €| J

\: Otherwise: J

Figure 4-19. Left Movement rule with the accelerometer

The Accelerometer

The accelerometer is measuring the device’s own acceleration in the
3-D space. Sensors in your iOS device capture every movement and
tilt so it can calculate the orientation of the device and many other
usages (such as which direction the device is moving).

109

110 CHAPTER 4: Break a Wall - Part |

When you put the iPad in a Portrait mode, as per Figure 4-20, the X-axis will be
pointing to you.

Z-axis

(o)

Figure 4-20. iPad in a Portrait mode

Negative acceleration is a counterclockwise rotation around the x-axis, as per
Figure 4-21.

N

Figure 4-21. Counterclockwise rotation

Positive acceleration is a clockwise rotation around the x-axis, as per
Figure 4-22.

N

Figure 4-22. Clockwise rotation

CHAPTER 4: Break a Wall - Part |

As you want to capture intended movement and not vibration, you select the
trigger value of 0.05. You may play around this value to find the one you feel
most comfortable with.

Let’s modify the Right Movement rule to include the accelerometer condition. In
the Right Movement rule, add a new condition:
“Attribute”“game.accelerometer.X”“>” “0.05”. You also need to change from
“All” to “Any”as in “When ‘Any’ conditions are valid.” That’s it! Your new rule
will be similar to Figure 4-23.

(v @ Rule o)
1 When (_Any) conditions are valid: =IE
Actor receives event s) | key +) |right Keyboard | is (down :
Attribute D | game.Accel... [..] G__%)[o.0s ._ e
(v @ Move (5]
Direction: ”D :E o Relative to: | scene * | Move Type: I'_addil:ive
Speed: (500 |e] LllltlilliA
KP Otherwise: Y.

Figure 4-23. Right Movement rule with accelerometer

If you change from Portrait to Landscape orientation or to support both
orientations, you will need to change your accelerometer rules.

Create a group of behaviors for the racket by clicking Create Group in the Actor
Editor for the Racket. Drag and drop the two rules into the group.

The rules that you just created work well for Portrait orientation. You need to
inverse them for the Portrait Upside Down orientation. Doing so is very easy with
GameSalad. Create a rule that will detect the screen orientation and enable the
correct rules accordingly.

Create a new rule with the conditions of “Attribute”“game.Screen.Device
Orientation” “is” “Portrait.” Then drag and drop the newly created group. The
new rule should be as in Figure 4-24.

111

112 CHAPTER 4: Break a Wall - Part |

(v @ Rule 0)

When { _All +.) conditions are valid:

w

(Attribute) game.Scree... +) (Portrait NG

fvm Group 9\

Y@ Rule o)

When [Any) conditions are valid:

{ Actor receives event &) | key 30 left _ Keyboard | is (down %)

(Attribute.) game.Accel.. .| (< 4)/-0.05 e

('m Move 0\

.

Direction: | 180 0! -_'-, Relative to: | scene 2| Move Type: | additive]

Speed: (00 |e] LLititiiiiA

\ > Otherwise:

(+ @ Rule o)

O6

when ([_Anv_) conditions are valid:

(_Actor receives event) [key z) :righl [Keyboar_d is do_wn +
| Attribute s [@& game.Accel... __J (> __#)o0s - _Ii

r' Move 9\

Direction: 0 E| Relative to: | scene 3| Move TypE:l-additi;e &

Speed: | 500 el A

\ > Otherwise: /

A s

U Otherwise:)

Figure 4-24. Portrait Orientation rule

Select the rule you just created and press Command + C to copy the rule. Press
Command + V to paste the rule and change the following settings: “Portrait” to
“Portrait Upside Down”, and then the first sub-rule for the left movement will
change its condition to “>"“0.05" and the second sub-rule for the right
movement will change its condition to “<”*“-0.05”. Your rule will be similar to
Figure 4-25.

CHAPTER 4: Break a Wall - Part |

P
@ Rule 0)
when (_All_:) conditions are valid: =1 ()
[Attribute v game.Scree... U (is %) (Portrait UpsideDown 3] (=)(+)
(v @ Group o)
(v @ Rule o)
When \lﬁ![[j," conditions are valid: (1))
(Actor receives event 3 (key) lleft ["Keyboard | is (down 1)
(Auwibute ©)[gameAccel.. || (>)00 el

(vm Move 0\

Direction: | 180 : L'-;:I Relative to: | scene 3 | Move Type: | additive 2
Speed:wlllll‘l‘ll;

\ > Otherwise: Y
(v @@ Rule o)
When (_Any :) conditions are valid: O®
[Actor receives event 3 [key) | right | Keyboard ‘ is (down 3] (:
(Atribute 9 cameAccel.. |..| (< t[-00s [e]
(Y@ Move 0\

Direction: |0 [‘.:f' Relative to: | scene # Move Type: | additive 3|
Speed: 500 OL—(_'""""")

\ > Otherwise: g
L v

\ > Otherwise: o

Figure 4-25. Portrait Upside Down Orientation rule

You now manage the orientation of your device!

113

114 CHAPTER 4: Break a Wall - Part |

EXERCISE

Test this project in the i0OS viewer. Follow the instruction from the previous chapter. You will also
change the Autorotate attribute to enable Portrait Upside Down. To do so, in the Scene Editor,
click the Scene button as per Figure 4-26 and expand the Autorotate attribute. Tick the box next

to Portrait Upside Down.
Inspector Came _s_‘_'-S"_'e »
Attributes Layers

Name Initial Scene text
Time 0 real
»Size size
Wrap X boolean
Wrap Y boolean
P Gravity point
» Color == color
» Camera rect
¥ Autorotate attributes
Landscape Left boolean
Portrait v boolean
Landscape Right boolean
Portrait Upside Down (v boolean

Figure 4-26. Scene Attribute Inspector

CHAPTER 4: Break a Wall - Part |

Managing Lives and the GameOver process

To follow from this point, you can simply open the file BreakalWall-
step3.gameproj.

To make the game more realistic, you can give the player three lives. This means
that the third time the ball is missed, you will display a Game Over message and
the player will not be able to spawn a new actor. You will also display a Retry
button that will reset the scene and let the player attempt to win again.

As you may have guessed already, you will use an attribute to manage the lives.
Every time the ball is missed, you will decrement the attribute by 1. You will add
a condition to check that the number of lives is strictly superior to 0 before
spawning a new ball. In the display text, you will have a rule to display the Game
Over message when the lives attribute is equal to 0.

Time to GameSalad design! Create a new integer attribute, rename it “lives”,
and set the default value to 3. Your attribute will look like Figure 4-27.

lives 3 integer

Figure 4-27. Lives attribute

Open the Ball actor in the Actor Editor by double-clicking it. In the Losing Zone
rule, drag and drop a Change Attribute behavior and position it between the
game.ActiveBall Change Attribute behavior and the Destroy behavior. Modify
game.lives to game.lives-1.

The Losing Zone rule will be as in Figure 4-28.

115

116 CHAPTER 4: Break a Wall - Part |

[w Note o)
Rule to detect an overlap of the ball with the loosing zone. Then the following
actions are performed:
- destruction of the ball
- change ActiveBall to False
- decrement the number of live by 1
S J
(v @ Loosing Zone 0)
9
When (Al conditions are valid: o))
(_Actor receives event +) (overlaps or collides %) with (actor of type 3 (Loosing zone =)&)
(v @D Change Attribute o)
Change Auribute: | game.ActiveBall [] To: [0 E E
(¥ @@» Change Attribute (])
Change Attribute: game.lives |_| To: game.lives-1 €)
(v Destroy o A
\ Destroy this actor j
Q Otherwise: _)

Figure 4-28. Modified Losing Zone rule

Next, create a new rule and change the condition to “Attribute”“game.lives”“="
“0”. This will detect when there are no more lives available. Drag and drop a
Change Attribute behavior and change game.TextToDisplay to “Game Over! —
Tap here to retry” as per Figure 4-29.

CHAPTER 4: Break a Wall - Part |

(v Note o)
The below rule is used to assign the value 'Game Over' to the TextToDisplay
attribute when the attribute lives is equal to 0
S
(v@ Rule o)
When | All 3 conditions are valid: SINE
Autribute %) game.lives [« (=__®)]o el @
(v @» Change Attribute [x) \
L Change Attribute: game.TextToDisplay '_J To: _Game Over! - Ta| ﬁ] J
\ > Otherwise: A

Figure 4-29. Game Over display rule

You need to modify the Ball Spawning rule attached to the Racket actor in order

to add a condition on the number of lives (>0).

Open the Racket actor in the Actor Editor. Select the Ball Spawning rule and
add the following condition: “Attribute”*“game.lives”*>"*“0” as per Figure 4-30.

117

118

CHAPTER 4: Break a Wall - Part |

- @D Ball Spawning

When (_ All 3 conditions are valid:

Actor receives event 3 | touch

:) is | outside

Attribute G game.A-ct.i.,._. D | is [false +
{ Attribute ¢ gamelives] G 3o e &
v @@» Spawn Actor
Layer Order: | in front of actor & |

Relative to: | actor

Relative to: |

actor

Actor: [Ball 3]
Direction: | random(6)
Position:][0 ‘el [0

Change Attribute

L Change Attribute: | game.Ar.tiveBalI_ .

o

I\P Otherwise:

Figure 4-30. Modified Ball Spawning rule

You’re almost there but you need to implement the Retry feature when the game

is over. This is fairly easy. You will use the Reset Game behavior.

About Reset Game and Reset Scene:

Although it may sound obvious, Reset Scene will only reset the scene

and not the game. This is very useful when you have a multiple-level

game and you want to give more tries to the players, but keep in mind

that resetting the scene will only reset the scene, and as such, the

game attributes will not be reset. So when you design your game, take

the time to think about which attributes should be game or scene

attributes.

Open the Display actor in the Actor Editor and create a new rule as per

Figure 4-31.

CHAPTER 4: Break a Wall - Part |

= —
This rule will manage the retry feature.
When the number of lives = 0 and then the touch is pressed, it will trigger the reset
game behavior.

"/ ¥ Note 9\

=

[+@ Rule o

| When (_All_%) conditions are valid: =) (+
Attribute : game.lives w| (=3O e =) (*
Actor receives event 5 touch ¥ is pressed v -+
If v @D Reset Game (%}

‘ Lkeset game

l\b Otherwise: /

Figure 4-31. Retry feature

Adding a Pause Feature

To follow from this point, you can simply open the file BreakaWall-
step4.gameproj.

Pausing in GameSalad is extremely easy, but you need to understand the
concept in order to use it efficiently.

The Pause behavior will overlay a new scene on the top of your current scene
and suspend all the physics of the current scene. It does not pause music,
sound, nor timers. To efficiently build a Pause function, you need:

An actor that can trigger the Pause behavior.

A scene to use as a Pause screen.

A button on the Pause screen to resume the game.
Let’s put all this into practice.

Create a new scene. Click the Home button and select the Scene tab. Then click
on the + sign at the bottom left. Rename the scene by clicking on the name.
Type “Pause” as the scene name.

119

120

CHAPTER 4: Break a Wall - Part |

As per Figure 3-32, you now have two scenes in your project.

Initial Scene Pause

Figure 3-32. Scene view

Create a new actor. Edit the actor attributes with the parameters in Table 4-10.

Table 4-10. Pause actor attributes

Name Pause
Size/Width 200
Size/Height 100
Color/Alpha 0

Drag and drop a Display Text attribute and change the setting as per
Figure 4-33.

(v Display Text (] \
Text: ||| e
Align: | = || =] Wrap inside actor
Font: | Arial s size: [20 | +) Color: |7

Figure 4-33. Pause display

Create a new rule and add the following conditions:
“Actor receives event” “touch” is “pressed”
“Attribute” “game.lives” “>"“0”

Then drag and drop a Pause Game attribute and select the Pause scene that
you previously created. The complete rule is shown in Figure 4-34.

CHAPTER 4: Break a Wall - Part | 121

~ -
(@ Rule o)
When | All %) conditions are valid: AL
Actor receives event :) | touch) is [pressed : -+
Attribute : game.lives | (=__#)|0 e =) (&
> .
[¥ @ Pause Game [%] \'
K Go to Scene: | Pause 3 J
\ > Otherwise: =

Figure 4-34. Pause rule

Now position the Pause actor on the screen at the top left corner as per
Figure 3-35.

Figure 3-35. Positioning the Pause actor

By clicking the Scenes button, select the newly created scene named Pause.

Create a new actor called ResumeGame. Edit the actor attributes with the
parameters in Table 4-11.

122

CHAPTER 4: Break a Wall - Part |

Table 4-11. Resume Game Actor Attributes

Name Resume Game
Size/Width 600

Size/Height 300

Color/Alpha 0

Drag and drop a Display Text attribute and change the setting as per
Figure 4-36.

& Display Text 0
Text: | Resume Game by tapping here '6|

Align: (= E =) ("] Wrap inside actor

Font: | Arial | size: [30 | |3] Color: I:;J

Figure 4-36. Resume Game display

Create a new rule and add the following conditions:
“Actor receives event” “touch” is “pressed”

Then drag and drop an Unpause Game attribute. The complete rule is shown in
Figure 4-37.

(v @ Rule o)
When (_All %) conditions are valid: =)\x)
Actor receives event 3) | touch +) is | pressed * =) (+
(v @3> Unpause Game (%) \
This behavior will remove the Pause Screen

and unpause the game.

\P Otherwise: 4

Figure 4-37. Unpause Game rule

CHAPTER 4: Break a Wall - Part |

Last, you need to position the ResumeGame actor in the center of the screen.
And that’s it! You have a Pause feature in your game!

You can open the file Breakawall-step5.gameproj to reach this point.

You will continue to work on this game in Chapter 9. In the meantime, you will
develop skills in physics, gravity, audio, and graphics effects.

Summary

You are on the verge of creating a new Arkanoid! You have a second game in
your portfolio.

In this chapter, you have:
Reinforced your basic GameSalad skills.
Added comments to your work.
Used the Accelerometer to control your game.
Managed lives and the Game Over process.

Added a pause feature to your game.

123

Chapter

Making a Shoot ‘Em Up
Game: Garrot Invader

When | was a kid, | remember in a bad way my parents trying to get me to finish
my mashed carrots. “Eat this, you will have nice skin!” Arhh!!! | still have
nightmares about carrots! This is why, in order to pay a tribute to one of the
most famous video games, you will remake Space Invaders with carrots instead
of aliens.

Space Invaders is a Japanese game that was released in 1978 by Taito
Corporation. Taito was originally an import/export company that traded vending
machines in Japan. They moved into the gaming industry in the 60s. More
recently, Square Enix acquired Taito in 2005. Square Enix is famous in the
gaming industry for the Final Fantasy games.

Space Invaders was inspired by a previous electro-mechanical game from Taito
called Space Monsters. Space Invaders has been a colossal success for Taito.
The arcade version of the game is shown in Figure 5-1.

D. Guerineau, Learn GameSalad for iOS: Game Development for iPhone, iPad, and HTML5
© David Guerineau 2012

126

CHAPTER 5: Making a Shoot-Em Up: Carrot Invader

Figure 5-1. A Space Invaders arcade cabinet.

Space Invaders is a shoot ‘em up game. You control a spaceship that shoots at
its enemies with a cannon. The enemies are aliens that move from left to right in
rows (and from time to time move down by a few pixels). The purpose is to
shoot at all the enemies before they touch down on the Earth and start the
invasion.

In this chapter, you will practice the basics of GameSalad by creating another
new project that contains actors, rules, and behaviors. You will also learn about
the management of images and how to use images with actors. This chapter will
also cover the following:

A basic introduction to mathematics to create complex
movements

Visual effects of spaceship movement without moving
The Interpolate behavior to manage the energy bar

The Change Scene behavior to transition scenes

CHAPTER 5: Making a Shoot-Em Up: Carrot Invader

Preparing the Basic Elements of the Scene

As per the previous chapter, you may jump-start this section by directly opening
the file CarrotInvaders-stepl.gameproj.

In this section, you will create a new project for your Carrot Invader project.
Then you will focus on the actors of the project. You will reinforce your skills in
actor creation, rules, and attributes design. You will also learn something new:
the image features, such as importing images, the inspector, and adding a
picture to an actor.

Creating the Carrot Invader Game Project

Open the Game Salad Creator and create a new project. Configure the project
info as per Table 5-1.

Table 5-1. Project Info for Carrot Invaders

Title Carrot Invaders
Platform iPhone Portrait
Description Carrot Invader is a remake of Space Invaders, an arcade video

game created in 1978 by Tomohiro Nishikado for Taito.

Defeat Carrot Invasion by shooting at them

Instructions Automatic shooting

Tilt the device to move left and right (or use the arrows)

Tags Carrot Invaders

Name and save your file as Carrot_Invaders.gameproj.

Artist Entrance: Creating the Actors

Carrot Invaders requires the following actors:
Carrots: Used as enemies
Spaceship: Used as the hero

Background: Used to create the context

127

128

CHAPTER 5: Making a Shoot-Em Up: Carrot Invader

Bullet: Used to destroy the enemies
Wall: To define the scene

Before creating the actors, you will do something new. You will prepare some
costumes for your actors. Yes, you will put some clothes on them (by clothes, |
mean you will use pictures). | will provide you later with more information about
graphics and graphic optimization in GameSalad; this chapter focuses on how
to import and use an image in GameSalad.

To display an image on the screen, you need an actor. But for actor to access
the image, the image must be first imported into GameSalad.

Importing images in GameSalad is easy. In the Scene Editor, select the Images
tab next to the Behavior tab, as per Figure 5-2.

o
eoo Carrot_Invaders_stepl.gameproj - Initial Scene

<+] A 6. > @ & « @
Back/Forward Home Scenes Preview Web Preview Publish Feedback Help
Inspector (Game Scene
Actors Attributes Devices
+ | = All
Library Behaviors |Images’| Sounds
Purchased
+ - @ [(| Purchase Images..

Figure 5-2. Scene Editor with Images tab selected

Click the + sign at the bottom corner to open a system selection window and
select the file you want to import.

CHAPTER 5: Making a Shoot-Em Up: Carrot Invader

NOTE: Images can be imported in a few other ways. They can be
dragged into the Images section directly from the desktop or a folder.
They can be dragged onto an actor from the desktop or folder. They
can also be added by right-clicking the .gameproj file and
selecting“Show package contents and images” and dragging it into
there, but this is not recommended.

Import the following files into the Images Resources located in the chapter 5
folder: carrot.png, background.png, spaceship.png, tomato.png, and
explosion.png (as per Figure 5-3).

ré’ 00 Carrot_Invaders_stepl.gameproj - Initial Scene
(<>] A &, >) @
Batk/Forward Home Scenes Preview Feedback Help
Inspector Game Scene
Actors Antributes Devices
+ = LAl
Library Behaviors | Images Sounds
Purchased

\ & ‘ H

carrot spaceship tomato Backgr.

+ - W e—— " @& | Purchase Images...

Figure 5-3. Imported images

As you create the actors, note that if the attributes are not specifically
mentioned, the value is left by default.

129

130 CHAPTER 5: Making a Shoot-Em Up: Carrot Invader

Creating the Enemies: Garrots

Create a new actor and double-click it to open the Actor Editor.
Edit the actor attributes with the parameters in Table 5-2.

Table 5-2. Carrots Actor

Name Carrots
Size/Width 12
Size/Height 42

Click the Images tab to display the images that you just imported. Drag and
drop carrot.png to the Actor view as per Figure 5-4.

[-NeNs] Carrot_|nvaders_stepl.gameproj - Carrots (Prototype) i
ENCRY, 8 7 > @ & «w @
Back/Forward Home Scenes Preview Web Preview, Publish Feedback Help

[]
L

| Create Group || Create Rule |

Attributes
Name Carrots text
Time 0 real
¥ Position point
¥ Size J size

Height 42 real
Rotation 0 angle
* Color color
T =
Library Behaviors |images’| Sounds
23028 Purchased

- \

L * o H
carrot spaceship romato Backgr
4+ | = @ ———(——— [@ (Purchase Images..

Figure 5-4. Moving a picture to the actor

CHAPTER 5: Making a Shoot-Em Up: Carrot Invader

Traveling through Space: The Spaceship
Create a new actor and double-click it to open the Actor Editor.

Edit the actor attributes with the parameters in Table 5-3.

Table 5-3. Spaceship Actor

Name Spaceship
Size/Width 20
Size/Height 40
Physics/Fixed Rotation Checked
Physics/Restitution 0

Click the Images tab to display the images that you just imported, and drag and
drop spaceship.png to the actor.

In a Far, Far, Far away Galaxy: Creating the Background
Create a new actor and double-click it to open the Actor Editor.

Edit the actor attributes with the parameters in Table 5-4.

Table 5-4. Background Actor

Name Background
Size/Width 320
Size/Height 480
Physics/Moveable unchecked

Click the Images tab to display the images that you just imported, and drag and
drop background.png to the actor.

131

132 CHAPTER 5: Making a Shoot-Em Up: Carrot Invader

Load Your Guns: Defining the Bullets

Create a new actor and double-click it to open the Actor Editor.
Edit the actor attributes with the parameters in Table 5-5.
Table 5-5. Bullet Actor

Name Bullet
Size/Width 2
Size/Height 20
Color/Red 1
Color/Green 1
Color/Blue 0

Boundaries in Deep Space: The Wall
Create a new actor and double-click it to open the Actor Editor.

Edit the actor attributes with the parameters in Table 5-6.
Table 5-6. Wall Actor

Name Wall
Size/Width 10
Size/Height 480
Physics/Restitution 0
Physics/Moveable unchecked

Your actor inventory should match Figure 5-5.

CHAPTER 5: Making a Shoot-Em Up: Carrot Invader

Inspector (Game Scene |
Actors Attributes Devices
-
‘-
‘ te)
Carrots Spaceship
Background Bullet
wall
+ — All :
Library {_Behaviors | Images Sounds)
(j:)l==9) Purchased
i \
I I
carrot spaceship Backaqr... tomato
+ - | @ { [(Purchase Images...

Figure 5-5. Actors created

Controlling the Number of Enemies with Game
Attributes

At first, you will only create one attribute that will be used to contain the number
of carrots remaining on screen. As such, it will be an integer attribute that you

will call NumberCarrots.

At the start of the game, this attribute will contain the number of carrots on the
screen and it will be decremented by 1 each time a carrot is smashed by the

bullet beam.

133

134

CHAPTER 5: Making a Shoot-Em Up: Carrot Invader

Click the Attribute tab in the inspector in Scene Editor mode. Then click the +
sign to create a new attribute and select integer. The initial value should be 0
and the type should be integer as per Figure 5-6.

NumberCarrots 0 integer

Figure 5-6. NumberCarrots attribute

Setting the Screenplay: Implementing Rules and
Behaviors

You need to define the logic of your game and you will use rules and behaviors
to accomplish this task. You will use the Timer and Accelerator behaviors to
create controls and the auto firing.

Carrots: The Ultimate Enemy Role

Drag and drop a Change Attribute behavior into the Carrots actor and change
game.NumberCarrots to game.NumberCarrots+1 as per Figure 5-7. Every time
you position a Carrots actor on the scene, this will increment by 1 the attribute
NumberCarrots. So when you start the scene, you will have the number of
carrots on the screen contained in the game attribute NumberCarrots.

- Note D \\J

"This 'Change Attribute’ behavior is incrementing by 1 every time an
actor is positioned on the scene. This way when we start the scene we
will have the number of carrots on the screen in NumberCarrots

L

Cl@ Change Attribute o

Change Attribute: game.NumberCar... To: gamc.NumberCa“G_

Figure 5-7. Change Attribute NumberCarrots

Now create a rule that will detect when a collision occurs between a bullet and a
carrot, trigger a decrement of the number of enemies, and then destroy the
enemy.

CHAPTER 5: Making a Shoot-Em Up: Carrot Invader

Click Create Rule and name the rule “Destroy the Carrot.” Add the following
conditions: “Actor receives event” “overlaps or collides” with “actor of type”
“Bullet.” Drag and drop a Timer behavior and change the setting to “After” “0.4”
seconds. Check the box for “Run to Completion.” Then drag and drop a

Change Attribute behavior and change game.NumberCarrots to

game.NumberCarrots-1. Lastly, drag and drop a Destroy behavior as per

Figure 5-8.

Why are you using a Timer? Later in this chapter you will implement an

explosion effect with a duration of 0.4 seconds. Thus the timer is to give you the

time to display this effect before destroying the actor.

(v @D Destroy the Carrot

| When (All 3 conditions are valid:

[Actor receives event - (overlaps or collides

o)

"

+) with (actor of type +) [Bullet

(@» Timer

g\

After 3 |0.4 iﬂ seconds

@1 Run to Completion

(v @D Change Attribute

k Change Attribute: game.NumberCar...

To: game.NumberCa GJ

(v @D Destroy

L Destroy this actor

A

Q Otherwise:

Figure 5-8. Destroy the Carrot rule

Flying the Spaceship

First, you will ensure that the spaceship stays on a horizontal axis at Y=25 by

using a Constrain Attribute behavior.

Drag and drop a Constrain Attribute behavior into the Spaceship actor and

configure spaceship.position.Y to 25 as per Figure 5-9.

135

136

CHAPTER 5: Making a Shoot-Em Up: Carrot Invader

spaceship to a fixed vertical value (Y=25)

(v @ Co_nstrain Att_ribute - o

| Constrain Attribute: | self.Position.Y [-] Te: [2s e/

(v Note 1 x]
This 'Constrain Attribute' is used to constrain the position of the

Figure 5-9. Constraining the spaceship at Y=25
Next, use the collision with the walls to create some boundaries for the
spaceship.

Drag and drop a Collide behavior and change the settings to Bounce when
colliding with “actor of type”“wall” as per Figure 5-10.

C v Note (] \

"This 'Collide’ behavior is used for the spaceship to bounce with the
walls

LS /
(v@ Coliide o)
L Bounce when colliding with: | actor of type: s Wwall)

Figure 5-10. Colliding with the wall

Group the Movement rules together to increase readability. You will use rules to
detect the accelerometer movements and make the spaceship move
accordingly.

Click Create Group and name it “Movement.” Click Create Rule to create a rule
inside the group. Name the rule “Right Movement” and configure to “Any” the
following conditions:

“Actor receives event”“key” “right” keyboard is “down”

“Attribute”“game.Accelerometer”“>"*“0.2”

CHAPTER 5: Making a Shoot-Em Up: Carrot Invader

Then drag and drop a Move behavior and configure the following settings:
Direction: 0
Relative to: Scene
Move Type: additive
Speed: 300

Your rule should be similar to Figure 5-11.

(¥ @ Right Movement (> R

When |_Any 3 conditions are valid: =) \%)

(_Actor receives event 7 [key v) 'right Keyboard | is (dow

[Attribute) game.Accel... _\ > +)0.2 _(
- @D Move [}]
Direction: 0_ |0— < Relative to: | scene '+ | Move Type: _aaj_m_v

Speed: (300 |€] LillliAtl
k;" Otherwise: J

Figure 5-11. Right Movement rule
Create a new rule in the Movement group. Name it “Left Movement” and
configure to “Any” the following conditions:
“Actor receives event”“key”“left” keyboard is “down”
“Attribute”“game.Accelerometer”“<”*-0.2”
Then drag and drop a Move behavior and configure the following settings:
Direction: 180
Relative to: Scene
Move Type: additive
Speed: 300

Your rule should be similar to Figure 5-12.

137

138 CHAPTER 5: Making a Shoot-Em Up: Carrot Invader

- @D Left Movement (] \
~-)(*

When |_Any %) conditions are valid:

Actor receives event :) (key +) |left Keyboard | is (dov

[l

Attribute : game.Accel... _< $)[-0.2

('m Move (%]

Direction: “180 _6. *) Relative to: | scene = Move Type: | additive

Speed: (300 [€] Ll AL

\b Otherwise: 7

Figure 5-12. Left Movement rule

Now implement an auto-fire of the bullets by the spaceship. To do so, create a
rule that states that as long as the number of carrots on the screen is strictly
larger than 0, a bullet is fired every 0.5 seconds.

Create a new rule and name it “Auto Fire” with the condition
“Attribute”“game.NumberCarrots”“>"*0". Then drag and drop a Timer behavior
and change the settings to “Every”“0.5” seconds with “Run to completion”
unchecked. Lastly, drag and drop a Spawn Actor behavior and change the
settings to:

Actor: Bullet

Layer Order: in back of actor
Direction: 0

Relative to: actor

Position: X:0Y: 0

Relative to: actor

The Auto Fire rule will be the same as Figure 5-13.

CHAPTER 5: Making a Shoot-Em Up: Carrot Invader 139

(v @D AutoFire (] R
When (_ All %) conditions are valid: =)
(Attribute $) game.Nu... [.] G_®o | el
(v @ Timer o)
_Every) 0.5 |e| seconds (") Run to Completion
(v @» Spawn Actor (%] \
Actor: | Bullet 3| Layer Order: | in back of actor :
Direction: 0 E } @ Relative to: | actor =-|
Position:] 0 E] [t 0 7é| Relative to: | actor 4 |
S g
\ > Otherwise: J

Figure 5-13. Auto Fire rule

Firing at Full Force: Bullet

First, you will change the velocity of the bullet in order for the bullet to move as
soon as it is spawned.

Drag and drop a Change Velocity behavior on the Bullet actor and configure
these settings (also shown in Figure 5-14):

Direction: 90
Relative to: scene
Speed: 300

140

CHAPTER 5: Making a Shoot-Em Up: Carrot Invader

(f ' Note o

We use the 'change velocity' to give an initial movement to the bullet
after spawning.

L
(¥ @» Change Velocity [x]
Direction: |90 I_ﬂ Relative to: | scene
Speed: (300 |@] Ll AU

Figure 5-14. Bullet change velocity

The next step is to destroy the actor when it collides with an enemy or as soon
as it is no longer visible on the screen. You will know that the bullet is not visible
by detecting its Y-axis value.

Create a new rule and name it “Destroy.” Configure the conditions to “Any” of
the following conditions:

“Actor receives event”“overlaps or collides” with “actor of
type”“Carrots”

“Attribute” “bullet.Position.Y”“>"“560"
Then drag and drop a Destroy behavioras per Figure 5-15.

CHAPTER 5: Making a Shoot-Em Up: Carrot Invader

- Note Q)

This rule will destroy the bullet actor in either of the 2 below cases
- the bullet collides with a Carrot
- the bullet is out of the screen

L P
/& [

¥ @ Destroy 9)
When \ Any 3 conditions are valid: -\':} -\1-)

(_Actor receives event) (overlaps or collides) with (actor of type %) L‘Earrots

(Attribute $)| selfpositiony [..] (>) 480 el
(v @D Destroy L
L Destroy this actor J

\ > Otherwise: 4

Figure 5-15. Bullet Destroy rule

141

142 CHAPTER 5: Making a Shoot-Em Up: Carrot Invader

The Invasion is Starting: Creating the Scene Layout

The next step is to position the actors on the scene. Try to match Figure 5-16.

Figure 5-16. Carrot Invaders Step 1

CHAPTER 5: Making a Shoot-Em Up: Carrot Invader

Adding Advanced Features

It’s now time to add a few advanced features to your game. You will learn some
mathematic aspects to create complex movements and movement visual
effects, manage an energy bar with the Interpolate behavior, and transition the
scene with the Change Scene behavior.

Complex Movements

You can open the file Carrot_Invaders_stepi.gameproj to follow the steps from
this point.

Mathematics is fun! | am pretty sure that most of you won’t believe me, but | can
assure you that the math required for game development is really basic and it
lets you make fun games!

By now you must have hit the Preview button and destroyed the carrots. And
you manage to destroy them quite easily: still, defenseless targets! But what if
the carrots could move? They would be less easy to kill. As you have guessed
by now, you will use mathematics to define their movements.

Before you jump into the movement definition in GameSalad, | would like to
clarify what | mean by “complex movement.” A complex movement is not a
random movement. A random movement is chaotic by its very nature. A
complex movement has a very pre-determined pattern but is different from a
simple linear movement.

Parametric Equations Are Fun

So fasten your seatbelt and jump into the world of parametric equations.
Basically a parametric equation is a way to draw a graph with an equation where
both the X and Y position depend on a specific parameter. It means that every
point in the drawing of the graph is a couple of coordinates (X,Y). At this point,
you should say “ah ha!” Yes, GameSalad represents the location of the actors
with X 'and Y coordinates. For example, Actor1’s position on the screen is X=0
and Y=0. This is the bottom left corner of the screen.

Let’s go one step further. Imagine that instead of having a fixed value (0,0) you
have a parameter that varies over time. Let’s call this parameter “t.” Now you
can define the position by X=t and Y=t. The result is that your actor will move in
a linear movement in the top right direction. The t parameter could be, for
example, a number incremented by 1 every seconds or maybe a clock.

143

144 CHAPTER 5: Making a Shoot-Em Up: Carrot Invader

Basically, that’s it. A parametric equation defines the X and Y based on a t
parameter. In GameSalad, you will define complex movement by constraining
the position.X and position.Y attributes to a formula based on the t parameter
where t is the Time attribute of the actor.

The next step is to develop your Google search skills to find a parametric
equation describing the complex movement you want to implement.

NOTE: The Time attribute is the internal clock of every implementation
of an actor on the scene. The clock will start from the moment the
actor appears on the scene or at the same time the scene is displayed
if the actor is initially on the screen. It is sensitive up to five digits after
the second. It will increase itself continuously with time.

Let’s put into practice what you just learned.

Creating Movement with Parametric Equations

A quick search on Google gave me the following parametric equation for a heart
shape:

X=sin’(t)
Y=cos(t)-sin‘(t)
The graph of this equation is shown in Figure 5-17.

CHAPTER 5: Making a Shoot-Em Up: Carrot Invader

[-NaNal Untitled
™ @ |). =] |
[YN NC S R S 0
Action Zoom In Zoom Out Center Origin Equalize Axes Inspector

& . i
) X 3][:['] =0 e
L¥] | sin(ry*-cosir)|

&)

Figure 5-17. Heart drawing in Grapher

To draw this equation, | used Grapher with a Mac OS utility provided by default.
MacRumors.com hosts a very simple but efficient guide on the Mac Grapher
tool. In the Chapter5_Files folder, you will find the Grapher file for this equation.

Back to GameSalad: open the Carrots actor in the Actor Editor. Create two
actors attributes of type “real” by clicking the + sign at the bottom left of the
Actor Attribute window, as shown in Figure 5-18. Name them “InitX” and “InitY.”
You will use these two attributes to store the initial location of each
implementation of the Carrots actor.

145

146 CHAPTER 5: Making a Shoot-Em Up: Carrot Invader

Attributes
b Position point
i > Size size
| Rotation 0 angle
» Color color
Image carrot image
Tags text
Preload Art 4 boolean
InitX 0 real
InitY 0 real

@...‘l..:" o kile satot

Figure 5-18. Actor Attribute creation

NOTE: When you create actor attributes, each implementation of the
actor will have their own values in the actor attribute. Thus, if you plan
to have carrots, you don’t have to create 10 game attributes. Or if you
have a dynamic number of actors (if they are spawned, for example)
you can store values specific to each actor implementation on the
scene.

Create a new group and name it “Movements.”You will use this group as a
container for all the behaviors that define the movement.

Drag and drop a Change Attribute behavior into the group and change
Carrots.InitXtoCarrots.Position.X. Drag and drop a second Change Attribute
behavior into the group and change Carrots.InitY to Carrots.Position.Y. The
initial position is now stored in two attributes.

NOTE: The Change Attribute behavior only happens once. In contrast,
theConstrain Attribute updates the attribute value on a real-time basis.

CHAPTER 5: Making a Shoot-Em Up: Carrot Invader

Drag and drop a Constrain Attribute behavior into the group. Select
Carrots.Position.X as the attribute to constrain and open the Formula Editor. Set
the following formula (also shown in Figure 5-19):

Carrots.InitX+20*sin(Carrots.Time*100)"3

Let me explain this formula. You want to have a movement from the initial
position, so you start by defining the starting point as InitX. Then you move
around InitX by 20*sin (Carrots.Time*100)"3. Sin and Cos will only return value
between -1 and 1. You multiply by 20 to give amplitude to the movement. Also,
Sin and Cos will vary from -1 to 1 with t varying from 0 to 360, from 361 to 720,
and from -1 to 1. So to have a full heart movement, you need to go from 0 to
360, which is basically 6 minutes (1 degree per second, so 60 degrees per
minute and then 6 minutes for 360 degres). Thus multiplying by 100 accelerates
the movement. You can play with these values if you want to vary the amplitude
and the speed.

Expression Editor

N G o 00 L x -

Figure 5-19. X formula in Formula Editor

Drag and drop a second Constrain Attribute behavior into the group. Select
Carrots.Position.Y as the attribute to constrain and open the Formula Editor. Set
the following formula (also shown in Figure 5-20):

Carrots.InitY+20*(sin(Carrots.Time*100)"4-cos(Carrots.Time))

Expression Editor

self.nity +20*(sin(self.Time *100)74) -cos(self.Time 'lOU}IJ

n insert function: - remove expression

Figure 5-20. Y formula in Formula Editor

Hit the Preview button to give it a try. Isn’t it fun!

Your Movements group should match Figure 5-21.

147

148

CHAPTER 5: Making a Shoot-Em Up: Carrot Invader

[v @D Movements o)
- @D Change Attribute (])
Change Attribute: | self.InitX I:] To: | self.Position.X ?J
= g
(.~ @I» Change Attribute (])
Change Attribute: self.Inity I_/ To: | self.Position.Y ﬂ
A
- @» Constrain Attribute (])
Constrain Attribute: self.Position.X To: [self.Initx+20*sin €|
(v @D Constrain Attribute (])
Constrain Attribute: | seiEPosition.Y L To: —self.laitY+20'([s;ﬂ
A S

Figure 5-21. Movements group

Now because this is all about the invasion, you need the carrots to go down.
Configure it so that the carrots go down by 15 pixels every 10 seconds.

Drag and drop a Timer into the group.Change InitY attribute every 10 seconds

as per Figure 5-22.

L Change Attribute: | self.InitY

To:

self.lnity-15

)
<

9

(@ Timer 0)
(Every &) |10 @ seconds ("] Run to Completion
(’ v @» Change Attribute (]

y,

Figure 5-22. The invasion

Giving the Impression of Spaceship Movement

Movement is relative. What do | mean by this? Well, you don’t need to have the
Spaceship actor move to give an impression of movement. You just need to

have other actors move!

CHAPTER 5: Making a Shoot-Em Up: Carrot Invader

In order to provide more dynamism in the game, you will add some asteroids in
the spaceship trajectory, but instead of moving the spaceship, the asteroids will
move.

Follow the steps described in the “Artist Entrance: Creating the Actors” section
to import the image file named asteroid. jpg located into the Chapter5_Files
folder.

Create a new actor and double-click it to open the Actor Editor.
Edit the actor attributes with the parameters in Table 5-7.
Table 5-7. Asteroid Attributes

Name Asteroid
Size/Width 64
Size/Height 64
Physics/Fixed Rotation Checked
Physics/Restitution 0

Click the Images tab to display the image that you just imported, and drag and
drop asteroid.pnginto the actor.

Make the Asteroids Move

Drag and drop a Change Velocity behavior and change the settings to:
Direction: 270
Relative to: scene
Speed: random(100,300)

Create a new rule with the condition “attribute”“asteroid.Position.Y”*“<““-60".
Then drag and drop a Change Attribute behavior in the rule and change
Asteroid.Position.Y to 530. This will reposition the asteroid at the top of the
screen. But it would be boring to have the asteroid always on a same line at the
same speed. Drag and drop a second Change Attribute behavior and change
Asteroid.Position.X to random (0,320). Now the asteroid will appear at any place
on the X-axis. Now give the asteroid a variable speed. Select the Change
Velocity behavior that you just implemented by clicking once next to the

149

150 CHAPTER 5: Making a Shoot-Em Up: Carrot Invader

behavior name. Copy the behavior by pressing Command + C or by dragging
the behavior while pressing the Alt key. Your rule should match Figure 5-23.

(Y@ Rule o)
When | All 7 conditions are valid: =) (+)
G D[selfosiiony >] (=_D[-60 e

; %
v @D Change Attribute (>
tchange Auribute: | self.Position.Y [..] 7o [s30 el
] L
[v @D Change Attribute o)
Change Attribute: | self.Position.X |..] To: [random(0,320) €]
(v @» Change Velocity [%] R
Direction: | 270 @ (o) Relative to: | scene 3
Speed: —ra_ndor_'n(_E)
V.
\ > Otherwise: A

Figure 5-23. Asteroid Movement rule

Go back to the Scene Editor and position two asteroids just above the visible
area of the scene as per Figure 5-24.

CHAPTER 5: Making a Shoot-Em Up: Carrot Invader

Figure 5-24. Positioning the asteroids

EXERCISE 5.1

Implement a rule that when there are no more carrots on the screen, the actor is destroyed.

EXERCISE 5.2

Implement a rule that when the asteroid collides with the spaceship, the game is reset.

EXERCISE 5.3

Implement a rule that when the asteroid collides with a bullet, it disappears from the screen and
comes back again from the top in a random X-axis position.

To see the answers to these three exercises, open the file named
Carrot_Invaders step3.gameproj.

151

152

CHAPTER 5: Making a Shoot-Em Up: Carrot Invader

Managing the Energy Bar

Every hero needs an energy bar! No, | am not talking about a chocolate caramel
snack. | am referring to the life bar for your main characters. There are many
ways to manage this in GameSalad. You can use attributes, actors, or any
combination of them with rules. | won’t cover all of the possibilities; rather, |
want to show you a new behavior called “Interpolate,” which | will illustrate
through the energy bar.

The Interpolate Behavior

The Interpolate behavior is a very powerful behavior. In simple terms, it will
calculate all the values between a starting point and a finishing point in a given
period of time with a specific method. Imagine your actor is at point A (the
starting point) and the actor needs to go to point B. If you apply a Change
Attribute to the position, your actor will make a quantum jump from A to B.
That’s not the effect you want.

If you have read the previous chapters or if you are proficient with GameSalad,
you will think to yourself, “No need to use Interpolate, just use Move to.” You
are almost correct! Move to is a linear implementation of Interpolate, but
Interpolate provides one more option: not being linear. This applies to any
attribute. | repeat: any attribute. This gives you a lot of possibilities to introduce
some very cool features in your game.

In this section, you will use the Interpolate behavior on the color of an actor.
Your energy bar will be green when 100% but will change from green to orange
(and all the colors between green and orange) when it is at 50% and then from
orange to red when it is at 25%. Every hit of an Asteroid will remove 25% of the
energy bar. You will also make a second use of the Interpolate behavior by
decreasing the size of the energy bar after each collision with an asteroid.

Enough talking. Let’s practice now.

Interpolate in Action

You can continue from your existing Carrot_Invaders file or open
Carrot_Invaders_step3.gameproj.

Create two game attributes of type integer and name them respectively
“EnergyBar” and “EnergyBarlnit.” Set both to a default value of 100. The names
are quite implicit on the purpose of those attributes, but why do you need two?

CHAPTER 5: Making a Shoot-Em Up: Carrot Invader

You will use decrementation, so you need a buffer attribute in order to avoid a
recursive endless loop (I will show this later in the implementation).

Create a new actor and double-click it to open the Actor Editor.
Edit the actor attributes with the parameters in Table 5-8.

Table 5-8. Energy Bar Attributes

Name EnergyBar
Size/Width 100
Size/Height 10
Color/Red 0
Color/Green 1

Color/Blue 0
Physics/Moveable unchecked

In order to have perfect positioning on the screen, change the position attributes
of the actor with some Change Attributes behaviors.

NOTE: about positioning the actor

You will have notice that | often use Change Attribute behaviors to
position the actors. It gives an impeccable result. It consumes a very
little bit of memory but the impact is very negligible. You may want to
use another approach, which is to change the position attribute of the
actor instance by double-clicking the actor instance on the scene.

Drag and drop a Change Attribute behavior into the actor and change energy
bar.Position.X to 0. Drag and drop a second Change Attribute behavior and
change energy bar.position.Y to 20.

Positioning the actor to X=0 will only display half of the actor on the screen. This
is done intentionally. As you modify the size of the actor, it will keep its center
position but reduce from both left and right side. By creating an actor double of
the required size and making only half visible, you will create a visual effect that

153

154 CHAPTER 5: Making a Shoot-Em Up: Carrot Invader

only one side is shrinking. Alternatively, you may constrain the position at the
same time the size decrease, but this would consume many more resources.

The next step is to constrain the width of the Energy Bar to the EnergyBar
attribute. This way, the Energy Bar actor width will be the real-time value of the
EnergyBar attribute. If the EnergyBar attribute goes from 100 to 75 by
interpolation, then you will have a visual effect of the Energy Bar actor shrinking.

Drag and drop a Constrain Attribute into the Energy Bar actor and change the
settings of Energy bar.size.width to game.EnergyBar.

The behaviors you just implemented should be as per Figure 5-25.

[x @ Change Attribute [x] \

| Change Attribute: self.Position.X o [| e J

A

- @D Change Attribute (] \
Change Attribute: self.Position.Y To: .20 _Bj)

- @» Constrain Attribute (] R
Constrain Attribute: self Size.Width | To: game.EnergyBar _6 J

Figure 5-25. The Energy Bar behaviors

Now let’s create the color changes.

From Green to Orange to Red: Managing Energy Bar Golor

Create a new rule named “Orange” with the following condition:
“attribute”“game.EnergyBar”“<”“75.”Then drag and drop an Interpolate
behavior and change the settings to:

Interpolate attribute: Energy bar.Color.Red
To: 1
Duration: 1
Function: Linear
Drag and drop a second Interpolate behavior and change the settings to:
Interpolate attribute: Energy bar.Color.Green
To: 0.5

CHAPTER 5: Making a Shoot-Em Up: Carrot Invader 155

Duration: 1
Function: Linear

The rule is show in Figure 5-26.

(" S - N
¥ @» Orange %
When [All §) conditions are valid: =) (%)

s) game.Ener...] CS8)| 75 € =)&)
(v @ Interpolate o)
Interpolate Attribute: | self.Color.Red LI Todl|| X e|
Duration: | 1 _&| Function: | Linear 3
g W
- @ Interpolate (])
Interpolate Attribute: | self.Color.Green l§| To: [0.5 ?l
Duration: _l E Function: | Linear 3|
b 4
\ > Otherwise: J

Figure 5-26. Orange rule

Let’s do the red warning now. Create a new rule in the actor named “Red” with
the following condition: “attribute”“game.EnergyBar”“<”“50.” Then drag and
drop an Interpolate behavior and change the settings to:

Interpolate attribute: Energy bar.Color.Green
To: 0

Duration: 1

Function: Linear

The rule is show in Figure 5-27.

156 CHAPTER 5: Making a Shoot-Em Up: Carrot Invader

(Y@ Red L
When | All 3 conditions are valid: =) &
Attribute £) game.Ener... <)50 9
- @D Interpolate [}
Interpolate Attribute: self.Color.Green [-] Te:|0 e
Duration: |1 €| Function: | Linear 3
Q Otherwise: _/

Figure 5-27. Red rule

Updating the Asteroid

Open the Asteroid actor in the Actor Editor by double-clicking it. In the rule that
detects the collision with the Spaceship actor, remove the Reset Game behavior
by clicking the circled cross or by selecting and pressing Delete. Drag and drop
an Interpolate behavior and change the settings to:

Interpolate Attribute: game.EnergyBar
To: game.EnergyBarlnit-25

Duration: 1

Function: Linear

This is where you use the buffer attribute called EnergyBarlnit. If you were to
write EnergyBar-25, then you would go into an end-less recursive loop. Not
sure? Then let’s put it on the iteration, like so:

Interpolation 0: EnergyBar = 100, to EnergyBar-25 = 100-
25=75

Interpolation 1: EnergyBar= 99, to EnergyBar-25=99-25=74

And so on, because every time GameSalad interpolates, the
target is also moving.

To finish the buffer trick, drag and drop a Time into the Spaceship Collision rule
and change the setting to “After” “1.1” seconds with “Run to
completion”checked. Then drag and drop a Change Attribute into the timer and

CHAPTER 5: Making a Shoot-Em Up: Carrot Invader 157

change game.EnergyBarlnit to game.EnergyBar. The rule is shown in Figure
5-28. The last behavior will ensure that the new value after completion of the
interpolation is stored into the buffer to be used for the next collision.

(@ Rule o)
! When [All 3 conditions are valid: =) (*
Actor receives event &) [overlaps or collides %) with (actor of type ¢ Spaceship
f v @» Interpolate [x] i
Interpolate Attribute: game.EnergyBar I To: |game.EnergyBarl €
Duration: |1 € Function: | Linear .
S J
- @©@» Timer %])
|
After 3) (1.1 €| seconds ™ Run to Completion
| - S -
| | .(v @D Change Attribute [}
| L Change Attribute: game.EnergyBarinit = To: |game.EnergyBar €
G 4
\r Otherwise: j

Figure 5-28. Collision detection

EXERCISE 5.4

Using Interpolate, Timer, and Alpha, make the Energy Bar blink when it is in the red color zone.

Scene Management

Last but not least, let’s look at the Change Scene behavior. This behavior is very
simple to use, and it changes your action to another scene. The scene could be
the next in order or a specific scene that you have chosen, such as back to the
menu.

Basically, you want to change the scene when there are no more carrots on the
screen. This means that the attribute number Carrots is equal to 0. You already
have a rule in the game that detects when the condition numberCarrots

equals 0.

158

CHAPTER 5: Making a Shoot-Em Up: Carrot Invader

The first step is to create a new scene. Click the Home button and then click the
+ sign at the bottom left of the screen to create a new scene. Change the name
of the scene to “New” by simply clicking in the name area and typing the new

name.

Open the Asteroid actor in the Actor Editor. Drag and drop a Change Scene
behavior into the rule that detects the attribute numberCarrots equals 0. Change
the setting of Change Scene to Go to scene: “New” as per Figure 5-29.

(v @ Rule

Q)

When (_All) conditions are valid:

Attribute 3) game.Nu...

+

,‘.

(v @D Destroy

| Destroy this actor
\

]

(v @D Change Scene

@

‘ Co to Scene: | New

KP Otherwise:

Figure 5-29. Changing the scene

Summary

You have created a classic shoot ‘em up game! You can design your own
shooting game with various levels, several enemy types, and big losses.

In this chapter, you have:

Reinforced your basic project creation, actors, rules, and

behavior design skills.

Learned about parametric equations.

Created visual effects of movement.

Discovered the Interpolate behavior and implemented its

application to manage the energy bar.

Learned how to transition from one scene to another with the

Change Scene behavior.

Part 2
Let’s Spice Up the
Salad with
Advanced
Functions and
Effects in
GameSalad

Chapter

Learning Gravity, Basic
Physics, and Camera
Controls: An Angry
Birds-like Game, Part |

Unless you spent the past two years on a deserted island, you must have heard
about Angry Birds. Angry Birds is one of the biggest success stories among
game developers. This small, simple, but very addictive game is a worldwide
phenomenon. First released on iOS in 2009, Angry Birds has been downloaded
more than 300 million times on multiple platforms and logs more than one
million hours of game time each day.

In the next two chapters, | will cover the development of a similar game in
GameSalad. Then it will be up to you to find the next Angry Birds success with a
game you design with GameSalad.

If you are not familiar with the gameplay, you can download a free version of
Angry Birds from the App Store. Alternatively, you can play in a Firefox web
browser or on Facebook.

As mentioned, the gameplay is simple but yet efficient. Using a slingshot, you
throw birds at pigs on the other side of the scene. The goal is to destroy all pigs.

D. Guerineau, Learn GameSalad for iOS: Game Development for iPhone, iPad, and HTML5
© David Guerineau 2012

162

CHAPTER 6: Learning Gravity, Basic Physics, and Camera Controls: An Angry Birds-like Game, Part |

As the purpose of the two coming chapters is to cover the fundamental
mechanisms of the gameplay, | will not use any image element. | will stick to the
basic shapes in GameSalad.

In this chapter, you will learn to:
Build a complete slingshot system.
Simulate an elastic slingshot element in GameSalad.
Control the camera.
Implement gravity for your game.
Use advanced camera settings.

Manage a defined number of attempts to destroy targets.

Building a Slingshot: Elastic and Pullback
Force

Building the slingshot is one of the keys to your game. In doing so, you will learn
some new functions like magnitude and vectorToAngle.

Anatomy of a Slingshot

A slingshot is a catapult that has a T-shape with two elastics attached to it. It is
used to throw small projectiles by hand. Figure 6-1 shows a drawing of a
slingshot.

' 7

Figure 6-1. Drawing of a slingshot

You will position the slingshot on the ground. The projectile will have a limited
area of movement. The more you pull back on the elastic, the farther you will
send the projectile, as shown in Figure 6-2.

CHAPTER 6: Learning Gravity, Basic Physics, and Camera Gontrols: An Angry Birds-like Game, Part |

Figure 6-2. Throwing a projectile with a slingshot

You can’t imagine how many metal cans | shot at when | was a kid. | lived in a
pretty rural area and slingshot competitions were common among young boys.
We weren’t using birds as projectiles and we weren’t shooting at animals...but
we may have had a few fights. | also replaced quite a few glass windows in my
neighborhood.

Enough memories! Let’s play with a digital slingshot now. | will show you the
basic components of the slingshot in GameSalad.

Creating the Project File

Create a new project in GameSalad and save the file as
“CanonShowPartI.gameproj.” You're calling it “CanonShow” because in the
gaming area, all concepts used in this chapter are referred as Canon physics.

In the Project Info tab, use the information in Table 6-1.

163

164

CHAPTER 6: Learning Gravity, Basic Physics, and Camera Controls: An Angry Birds-like Game, Part |

Table 6-1. Canon Show Part | Project Info

Title Canon Show Part |

Platform iPhone Landscape

Resolution Independence Unchecked

Description A Angry Bird-like game created with GameSalad
Instructions Use your finger to fire a slingshot

Tags Gravity, Slingshot, Angry Birds

Building the Slingshot Frame

The slingshot frame will be built with three components: one foot and two arms.
To make it simple, you will use only one simple white actor and change the
shape and rotation of the instances of this actor. You will modify the instances
directly on the scene.

Open the initial scene of your new project in the Scene Editor. Create a new
actor in the Actor Editor and name it “Slingshot Component.” The actor
attributes should not be changed.

Drag the actor on the scene. Select the instance by clicking the actor on the
scene. A frame with circles will appear inside the actor. Click the frame to
change the shape of the actor. Alternatively, double-click the instance and
change the size of the actor instance. Modify the shape to make a vertical
rectangle (Width: 24 and Height: 100). Position the actor on the ground as per
Figure 6-3.

CHAPTER 6: Learning Gravity, Basic Physics, and Camera Controls: An Angry Birds-like Game, Part | 165

Figure 6-3. Positioning the foot on the ground

Drag another instance of the actor on the scene. Replicate the previous shape

by holding the Option key and clicking and dragging the instance. Double-click
the instance of the actor and change the Rotation attribute to 330. Position the
instance at the top of the foot as per Figure 6-4.

Figure 6-4. Positioning the right frame of the slingshot

166 CHAPTER 6: Learning Gravity, Basic Physics, and Camera Controls: An Angry Birds-like Game, Part |

Drag a third instance of the actor on the scene. Replicate the previous shape by
holding the Option key and clicking and dragging the instance. Double-click the
instance of the actor and change the Rotation attribute to 30. Position the
instance at the top of the foot as per Figure 6-5.

Figure 6-5. Positioning the left frame of the slingshot

You have the base of the slingshot. You will now focus on building the pullback
force.

Building the Pullback Force

The pullback force is proportional to the distance you move the block to throw
back to the left side. You will move the block by pressing the touch; when you
release the touch, it will throw the block to the right side of the scene. You will
limit the area in which you can pullback the block, as shown in Figure 6-6.

CHAPTER 6: Learning Gravity, Basic Physics, and Camera Controls: An Angry Birds-like Game, Part | 167

Figure 6-6. Area of Pullback of the block

A circle will define this area. The radius of the circle will be the maximum of the
force of the pullback. You will use a game attribute to store this maximum value;
name it “MaxPower.”

Before building this pullback, let’s look at two new functions of GameSalad:
magnitude and vectorToAngle.

magnitude Function

magnitude is a function that calculates the distance between two actors, as
shown in Figure 6-7. The syntax of the function is magnitude (Actor1X-Actor2X,
Actor1Y-Actor2Y)

" Actor2 (X2,Y2)

|
b

"~ = magnitude(X2-X1, Y2-Y1)
>

e

~3
SN

Actor1 (X1,Y1)

Figure 6-7. Distance between two actors

168

CHAPTER 6: Learning Gravity, Basic Physics, and Camera Controls: An Angry Birds-like Game, Part |

You will use magnitude to calculate the distance from the origin point of the
block to the current position of the block while pulling back.

vectorToAngle Function

vectorToAngle is a function that calculates the angle to the horizontal and the
line formed between two actors, as shown in Figure 6-8. The syntax of the
function is:

vectorToAngle(Actor1X-Actor2X, Actor1Y-Actor2Y)
Actor2 (X2,Y2)

= vectorToAngle(X2-X1, Y2-Y1)

Figure 6-8. vectorToAngle function

Using magnitude and vectorToAngle with the Slingshot

Figure 6-9 shows how to use the magnitude and vectorToAngle functions with
the slingshot.

CHAPTER 6: Learning Gravity, Basic Physics, and Camera Controls: An Angry Birds-like Game, Part | 169

Figure 6-9. Using the magnitude and vectorToAngle functions

With your finger, you will touch the projectile and pull it back. When the touch is
released, you will use a Change Velocity for the direction, which will depend on
the vectorToAngle value, and the speed, which will depend on the magnitude.

Using the mouse position when the touch is pressed, you will constrain the
position of the projectile. But you don’t want the projectile to be outside of the
circle shown back in Figure 6-6.

Creating the Projectile

In the Scene Editor, create a new actor and named it “Projectile.” Change the
attributes of the actors as per Table 6-2.

170

CHAPTER 6: Learning Gravity, Basic Physics, and Camera Controls: An Angry Birds-like Game, Part |

Table 6-2. Projectile Actor Attributes

Name Projectile
Size\Width 25
Size\Height 25
Color\Red 1
Color\Green 0
Color\Blue 0

This small red actor will be thrown by the slingshot.

Storing the Initial Position

In order to store the initial position of the projectile, you will use two game
attributes. The reason for using game attributes instead of actor attributes is
because you will need to access this initial position from other actors (the
subsequent projectiles).

Return to the Scene Editor and create two real game attributes named
“InitialProjectileX” and “InitialProjectileY.”

Use a Change Attribute behavior to store the initial position of the projectile in
the two attributes you just created. Open the Projectile actor in the Actor Editor;
drag and drop a Change Attribute behavior and change game.InitialProjectileX
to Projectile.Position.X as shown in Figure 6-10.

- @ Change Attribute [x) \

Change Attribute: game.InitialProje... To: .self.Position.)(.G_. J

\

Figure 6-10. Change Attribute of InitialProjectX

Drag and drop a second Change Attribute behavior (or duplicate the previous
one) into the Projectile actor and change game.InitialProjectileY to
Projectile.Position.Y.

CHAPTER 6: Learning Gravity, Basic Physics, and Camera Gontrols: An Angry Birds-like Game, Part |

Cosinus and Sinus

Next, create a rule to detect the touch on the projectile. You will use the mouse
device position to constrain the position of the projectile. But you want to
constrain this position within a circle. Use the Cosine and Sine functions, as
shown in Figure 6-11.

/N Cosine(alpha) =a /¢
Point B (X2, Y2) Sine(alpha)=b/c
Alpha = vectorToAngle(X2-X1, Y2-Y1)
ol ¢ = magnitude(X2-X1, Y2-Y1)

-

|

[H |
s ‘b X2 = X1 + ¢ * cos(alpha)
e Ya!pha | Y2 = Y1 + ¢ * sin(alpha)

=]

Point A (X1, Y1)

N

7

Figure 6-11. Cosine and Sine

Cosines and Sines are trigonometric functions, meaning they are functions of an

angle, that link angles of a right triangle with the sides of this triangle. In a right
triangle, the cosine of an angle (alpha) is defined by

Cosine(alpha) = (adjacent side of the angle alpha)/(opposite side to the right
angle — hypotenuse)

The sine of an angle (alpha) is defined by

Sine(alpha) = (opposite side of the angle alpha)/(opposite side to the right angle
— hypotenuse)

As you want to constrain the projectile within the circle that is defined by the
attribute MaxPower, the value you use for ¢ will be the minimum of MaxPower
and the distance between A and B. This way the maximum value that c will be
able to take is MaxPower.

Let’s implement all this.

Moving the Projectile with a Touch

Open the Scene Editor and create an Integer game attribute named
“MaxPower.” Set a default value of 75.

17

172 CHAPTER 6: Learning Gravity, Basic Physics, and Camera Controls: An Angry Birds-like Game, Part |

Create a new rule named “Touch.” The condition will be “Actor receives
event”“touch” is “pressed.” This will detect that the actor is touched.

Drag and drop a Constrain Attribute into the rule and
changeProjectile.Position.X to game.InitialProjectX + min(game.MaxPower,
magnitude(game.Mouse.Position.X - game.InitialProjectX,
game.Mouse.Position.Y — game.InitialProjectY) * cos(
vectorToAngle(game.Mouse.Position.X - game.InitialProjectX,
game.Mouse.Position.Y — game.InitialProjectY)).

Going back to Figure 6-11,
X2 is Projectile.Position.X
X1 is game.InitialProjectX
cis
min(game.MaxPower,magnitude(game.Mouse.Position.X -

game.InitialProjectX, game.Mouse.Position.Y —
game.InitialProjectY))

alpha is vectorToAngle(game.Mouse.Position.X -
game.InitialProjectX, game.Mouse.Position.Y —
game.InitialProjectY)

Drag and drop a Constrain Attribute into the rule and change
Projectile.Position.Y to game.InitialProjectY + min(game.MaxPower ,
magnitude(game.Mouse.Position.X - game.InitialProjectX,
game.Mouse.Position.Y — game.lInitialProjectY) *
sin(vectorToAngle(game.Mouse.Position.X - game.InitialProjectX,
game.Mouse.Position.Y — game.InitialProjectY)).

Going back to Figure 6-11,
Y2 is Projectile.Position.Y
Y1 is game.InitialProjectY
cis
min(game.MaxPower,magnitude(game.Mouse.Position.X -

game.InitialProjectX, game.Mouse.Position.Y -
game.InitialProjectY))

alpha is vectorToAngle(game.Mouse.Position.X -
game.InitialProjectX, game.Mouse.Position.Y —
game.lInitialProjectY

The rule is shown in Figure 6-12.

CHAPTER 6: Learning Gravity, Basic Physics, and Camera Gontrols: An Angry Birds-like Game, Part |

(vy@» Touch [x) 2
| When All) conditions are valid: =) (*
Actor receives event touch v+ is (pressed H
| - - —
‘ (v @ Constrain Attribute Q \
| L Constrain Attribute: self.Position.X To: game.InitialProje G J
I
_(r ¥ @® Constrain Attribute o
] Constrain Attribute: self.Position.Y To: game.lnitialProjens:
\» otherwise:]

Figure 6-12. Touch rule

Return to the Scene Editor. Drag and drop the projectile on the scene and
position it between the two arms of the slingshot.

Hit the Preview button and play around with the projectile.

Throwing the Projectile

The next step is to be able to throw the projectile when you remove your finger
from the screen. The power will be defined based on the distance between the
point of origin and the pullback, and the direction will be from vectorToAngle.

You will use the Change Velocity behavior to set the direction and the speed of
the projectile once you release the touch.

Intuitively, you might think to use a new rule with the condition “Actor receives
event” “touch” is “released.” This approach is OK while you remain within the
circle restriction, but if you go out of the circle and release the touch, it won’t
work. Instead, you will use a small trick with an attribute and the existing Touch
rule. Create a Boolean actor attribute that is false by default. Then, once the
Touch is pressed, change the attribute to True. In the Touch rule, add a sub-rule
in the Otherwise section. The sub-rule condition is that the attribute is True. This
will avoid the possibility of the projectile being thrown before Touch is pressed.

173

174

CHAPTER 6: Learning Gravity, Basic Physics, and Camera Controls: An Angry Birds-like Game, Part |

Open the Projectile actor in the Actor Editor. Create a Boolean actor attribute
and name it “HasBeenTouched.”

In the Touch rule, add a Change Attribute behavior above the Constrain
Attribute behavior. Change HasBeenTouched to true, as shown in Figure 6-13.

/-'m Touch 0_\

+

| When All 3 conditions are valid:

-

Actor receives event - | touch +) is (pressed :)

- @ Change Attribute
| _ = — :
| Change Attribute: self.HasBeenTouc... .| To: |true 6_

Figure 6-13. Changing HasBeenTouched attribute

Then add a Change Attribute behavior at the top of the Behaviors window so
that the HasBeenTouched attribute is reset to false when you initiate the scene.
Set Projectile.HasBeenTouched to false.

Then expand the Otherwise section of the rule and add a new rule in this
section. Name this sub-rule “Throwing.” The condition is “Attribute”
“Projectile.HasBeenTouched” is “true.” Then drag and drop a Change Velocity
behavior into the Throwing rule. Change the settings of this behavior to

Direction: 180 + vectorToAngle(Projectile.Position.X-
gamelnitialX, Projectile.Position.Y-gamelnitialY)

Relative to: scene

Speed: 10*magnitude(Projectile.Position.X-gamelnitialX,
Projectile.Position.Y-gamelnitial)

The rule is shown in Figure 6-14.

CHAPTER 6: Learning Gravity, Basic Physics, and Camera Gontrols: An Angry Birds-like Game, Part |

v Oth-em-i's;:

(Y@ Throwing 9\

When (All %) conditions are valid: S\X

an

_ Attribute &) self.HasBee... | is (true

(v @@» Change Velocity [\

Direction: 180+vec§ e - Relative to: | actor * |

Speed: lo*magrgﬁi O

Q Otherwise: y

& /

Figure 6-14. Throwing rule

The direction has been set to 180 + vectorToAngle() because vectorToAngle
provides the direction from the origin point to the location of the pullback. You
want to throw the projectile in the opposite direction, so this is why you use the
“180 +”.

For the speed, use a multiplicator to increase the effect. I've suggested 10 but
you can play with different values.

Hit the Preview button to test your rule.

How to Simulate an Elastic in GameSalad

Simulating the elastic in GameSalad is based on modifying the size of the actor
used as a graphical representation of the elastic.

You will have two instances of the same elastic actor on the scene. Each of
them will connect to a different arm of the slingshot. The behaviors will be
different for each instance; as such, you will edit the instances on the scene.
Also, you will need to access some of the attributes of the scene instances.

175

176

CHAPTER 6: Learning Gravity, Basic Physics, and Camera Controls: An Angry Birds-like Game, Part |

Changing Instance Actor Name

To create the slingshot, you used a single actor called “Slingshot Component.”
In order to easily identify the instances, you will change the names of the
instances in the scene.

Open the Scene Editor and double-click the foot of the slingshot. This will open
the instance in the Actor Editor, as shown in Figure 6-15.

@en0o CanonShowPartl-stepltemp.gameproj - Slingshot Compenent Foot

PR . -
EIRIN O, 6- =k E @ @ ‘."1'}. @
Back/Forward Home Scenes Tables Preview Web Preview Publish Feedback Help

[Gianteoun il Cesnte e

_Edit Protowpe.., H

Attributes
Name Slingshot Comp... text
Time 0 real
* Position point
* Size size
Rotation a angle
» Color color
Image image
Tags text
Preload Art E boolean
T s Click the lock to edit the behaviors
of this actor.

Library (Behaviors | Images Sounds |

Custom Pro Plug-Ins

(B}

[E3 Change Attribute Change Attribute

3 Change Image Action)

ﬁ Change Scene Change me, baby! "I":s action

i akows you 10 set, change o

[change size incremant a game of aclor

3 Change Velocity attribute. For exnz\vplel. al::fw
: points 1o a gama level attribute

E Collide caled score by choosing lo

1 Coamerenin Arrribura ineramant hu 250 i tha
Rk 1S

Figure 6-15. Foot of the slingshot in the Actor Editor

In the attributes of the instance, modify the name to “Slingshot Component
Foot.”
Repeat the same operation for the right arm of the slingshot and name it

“Slingshot Component Right.” Do it one more time for the left arm of the
slingshot and name it “Slingshot Component Left.”

You performed this renaming operation because you will need to access some
of the attributes of these instances from the instance of elastic on the scene.

CHAPTER 6: Learning Gravity, Basic Physics, and Camera Controls: An Angry Birds-like Game, Part | 177

Getting the Real-Time Position of the Projectile

In order to correctly position the elastic, you will need to access the real-time
position of the projectile. This is fairly easy to do so using game attributes and
Constrain Attribute behaviors. But you only need this information when the
project is grabbed. You don’t want your elastic to follow the projectile once it is
thrown. You will use the Touch rule of the projectile to constrain the position
when the rule is verified; otherwise you will bring back the elastic to the original
position.

Create two real game attributes named “ProjectileX” and “ProjectileY.”

Open the Projectile actor in the Actor Editor. Drag and drop a Constrain
Attribute into the Touch rule and changegame.ProjectileX to
Projectile.Position.X. Drag and drop another Constrain Attribute behavior into
the Touch rule and change game.ProjectileY to Projectile.Position.Y. These two
behaviors are shown in Figure 6-16.

[v@ Touch LR
‘ When (_All) conditions are valid: =\L
(_Actor receives event) (touch :) is (pressed 3
- @» Constrain Attribute (]

Constrain Attribute: | game.ProjectileX To: | self.Position.X _6

Constrain Attribute: | game.ProjectileY : To: | seif.Position.y _0

}
(v @D Constrain Attribute o \

(» @@ Change Attribute [x])
(> @D Constrain Attribute (])
(_ » @ Constrain Attribute o)

Figure 6-16. Constraining the position of the projectile

178

CHAPTER 6: Learning Gravity, Basic Physics, and Camera Controls: An Angry Birds-like Game, Part |

This will ensure that when the projectile is grabbed, the position of the bird is
contained in the two game attributes ProjectileX and ProjectileY.

Next, when the bird is not grabbed (the Otherwise section of the Touch rule),
change the value of the ProjectileX and ProjectileY attributes to the initial
position of the projectile, which is contained in InitialProjectileX and
InitialProjectileY.

Expand the Otherwise section of the Touch rule, and drag and drop a Change
Attribute behavior in this section. Change game.ProjectileX to
game.InitialProjectileX. Drag and drop another Change Attribute behavior and
change game.ProjectileY to game.InitialProjectileY. These two additional
behaviors are shown in Figure 6-17.

¥ Otherwise:

_f ¥ @D Change Attribute L

L Change Attribute: - game.ProjectileX To: .game.lnitiaIProje.Q?)

;/ ¥ @3 Change Attribute o)

L Change Attribute: game.ProjectileY To: game.InitialProje 9 _/

(» @D Throwing (%))
& |

Figure 6-17. Back to initial position

Now you have attributes ProjectileX and ProjectileY set. Let’s spend some time
on the elastic.

Elastic Theory

The elastic will be a basic actor of a very small size (5x5) that will modify its
shape (width), position, and rotation depending on the position of the projectile.
Figure 6-18 illustrates how the elastic interacts with the projectile.

CHAPTER 6: Learning Gravity, Basic Physics, and Camera Gontrols: An Angry Birds-like Game, Part |

/N Enstic

Position (X3, ¥3)

Right arm of
\ y' <— slingshot
/aﬁ.”-’ Position (X1, Y1)

T

X

Projectile
Position (X2, ¥2)

o, 4
>
Figure 6-18. Projectile, elastic, and slingshot arm

For the elastic, you will constrain its width to the distance between the projectile
and the right arm of the slingshot, giving the impression that the length is
changing (elastically) when moving the projectile. The position X3 is made by
adding half of the distance between X2 (the projectile) and X1 (the arm) to X2.
It’s the same for Y3, which is made by adding half of the distance between Y2
and Y1 to Y2.

To finalize the effect, you will constrain the rotation of the elastic to the same
angle between the projectile and the arm of the slingshot. As you can see in
Figure 6-18, these two angles are equal.

Let’s do all the above.

Creating the Elastic Actor

In the Scene Editor, create a new actor named “Elastic.” Change the attribute of
this actor as per Table 6-3.

179

180 CHAPTER 6: Learning Gravity, Basic Physics, and Camera Controls: An Angry Birds-like Game, Part |

Table 6-3. Elastic Actor Attribute

Name Elastic
Size\Width 5
Size\Height 5
Color\Red 0.5
Color\Green 0
Color\Blue 0.5

Drag the Elastic actor and drop it on the scene at about the center of the right
arm. Repeat the same action, but drop the second instance in about the center
of the left arm, as shown in Figure 6-19.

Figure 6-19. Elastic positioned on the scene

Let’'s now configure each of the instances.

CHAPTER 6: Learning Gravity, Basic Physics, and Camera Gontrols: An Angry Birds-like Game, Part |

Implementing the Right Elastic

Double-click the right elastic instance on the scene to open it in the Actor Editor.
Rename the instance actor to “elastic right.” Click the lock icon shown in Figure
6-20. This will unlock the instance behaviors.

Bhod =

Edit Prototype...

Back/For

Attributes

MName elastic right text
Time 0 real
* Position point
vSize size
Width 5 real
Height 5 real
Rotation 0 angle
» Color | color
Imaae image
Click the lock to edit the behaviors
Library (BeRaviors | Images Sounds of this actor.

(CoC) Custom Pro Plug-ins
& Accelerate Toward

Accelerate (Porsistont

& Animate Bonavior)
3 Change Attribute

Specify the speed and direction
EJ Change Image (angle) of accoleration of an
EJ Change Scene actor. Best used in a rule that
u Change Size chacks for @ keyboard event

Mote: If the ¢rag behavior is not
Channa Valasing Al AR 0 AR AEINE
T

Figure 6-20. Unlock the instance of actor

Drag and drop a Constrain Attribute behavior and change elastic right.Position.X
to game.ProjectileX + (Current Scene.Layers.Background.Slingshot Component
Right.Position.X — game.ProjectileX)/2.

Drag and drop a Constrain Attribute behavior and change elastic right.Position.Y
to game.ProjectileY + (Current Scene.Layers.Background.Slingshot Component
Right.Position.Y — game.ProjectileY)/2.

Drag and drop a Constrain Attribute behavior and change elastic
right.Size.Width to magnitude(Current Scene.Layers.Background.Slingshot
Component Right.Position.X — game.ProjectileX ,Current
Scene.Layers.Background.Slingshot Component Right.Position.Y —
game.ProjectileY).

181

182

CHAPTER 6: Learning Gravity, Basic Physics, and Camera Controls: An Angry Birds-like Game, Part |

Drag and drop a Constrain Attribute behavior and change elastic right.Rotation
to vectorToAngle(game.ProjectileX - Current
Scene.Layers.Background.Slingshot Component Right.Position.X
,game.ProjectileY - Current Scene.Layers.Background.Slingshot Component
Right.Position.Y).

These behaviors are shown in Figure 6-21.

@
J

Edit Prototype... | Revert to Prototype | | Create Group \ | Create Rule

| Constrain Antribure: self.Position.X To: |game.Projectilex & J
\.

[[0n -C:onstrain Attribute 0 ‘\!

(o —
(v @@P Constrain Attribute 0)
Attributes | I
Constrain Attribute: self.Position.¥ ..| Te: game.ProjectileY &
Name elastic right text == 2
Time 0 real
Tas i = = "
¥ Position point [v @D Constrain Attribute o)
¥ Size size =
Width 5 real L Constrain Attribute. self Size Width .| To: magnitude(scene €| J
Height 5 real
Rotation 1] angle —
» Color = i = Constrain Attribute Q)
Image imaae |
T | Constrain Attribute: self.Rotation To: vectorToAnglelg: &
Library (Behauiors| Images Sounds
Custom Pro Plug-ins
————
£ change Scene Constrain Attribute
[Change Size (Persistont Bahavior)
3 Change Velocity s s
; ke ange ute
 Collide behavior, this bohavior
C i i i updates the value of
‘ona attribute 1o that of another.
3 Control Camera For instance, on aciors x and y
— et ean mratAAEAL P
RS
querined v Project Size: 17 KB

Figure 6-21. Elastic Right behaviors

Let’s do the same for the left elastic.

Implementing the Left Elastic

Double-click the left elastic instance on the scene to open it in the Actor Editor.
Rename the instance actor to “elastic left.” Click the lock icon.

Drag and drop a Constrain Attribute behavior and change elastic
left.Position.Xto game.ProjectileX + (Current
Scene.Layers.Background.Slingshot Component Left.Position.X —
game.ProjectileX)/2.

CHAPTER 6: Learning Gravity, Basic Physics, and Camera Gontrols: An Angry Birds-like Game, Part |

Drag and drop a Constrain Attribute behavior and change elastic left.Position.Y
to game.ProjectileY + (Current Scene.Layers.Background.Slingshot Component
Left.Position.Y — game.ProjectileY)/2.

Drag and drop a Constrain Attribute behavior and change elastic left.Size.Width
to magnitude(Current Scene.Layers.Background.Slingshot Component
Left.Position.X — game.ProjectileX ,Current Scene.Layers.Background.Slingshot
Component Left.Position.Y — game.ProjectileY).

Drag and drop a Constrain Attribute behavior and change elastic left.Rotation to
vectorToAngle(game.ProjectileX - Current Scene.Layers.Background.Slingshot
Component Left.Position.X ,game.ProjectileY - Current
Scene.Layers.Background.Slingshot Component Left.Position.Y).

These behaviors are shown in Figure 6-22.

| Revert to Prototype | | Create Group || _ Create Rule |

Back/Forwar

Edit Prototype...

(v @ Constrain Attribute 9_\

| Constrain Attribute: " self.Position.x . To: |gameProjectiiex € J
:/ ¥ @@ Constrain Attribute 0\
Attributes |
Constraln Attribute self Position.Y Te: |game Projectile¥ &
Name elastic left text N
Time 0 real R —
¥ Position point Cv@® i At) \‘
¥ Size size li
Width 5 real L ‘Constrain Attribute: self Size.Width w To! magnitude(scene & J
Height 5 real
Rotation 0 angle o -
¥ Calor = color [¥ @ Constrain Attribute (%] W
Imaae imaae |
vt io Pt orTe L Constrain Attribute: self.Rotation ... To vectorToanglelg: € J
Library (Behaviors | Images | Sounds
(ECLC R Custom Pro Plug-ins
i
3 change scene Constrain Attribute
[change Size (Porsistont Bohavior)
3 change Velocity
@ colid Unlka the Change Attributs
ollide behavior, this behavior
K Constrain Attribute continously updates the valse of

one atiribute to that of ancther,

& control Camera

Sl

Figure 6-22. Elastic Left behaviors

Hit the Preview button to play with the projectile.

You can open the file CanonShowPartI-step1.gameproj located in the folder
Chapter6_Files.

183

184

CHAPTER 6: Learning Gravity, Basic Physics, and Camera Controls: An Angry Birds-like Game, Part |

Controlling the Gamera: Scrolling Across the
Scene

Next, you will learn about the camera in GameSalad. The camera in GameSalad
is not a way to control the iPhone camera (this is not possible yet with
GameSalad, but it would be a very cool feature). The simplest way to
understand the camera is to think that you are seeing the game through the
camera. Then you can play with the scrolling features to enhance the player
experience in your Canon Show!

The Screen vs. the Scene

In GameSalad, there is only one camera. The camera is the point of view, the
way you see the game. The visible area of the game is on your screen and you
will implement controls to play with the camera: to move it left, right, up, and
down.

So far, you have made projects where the size of the scene was equal to the
size of the screen. This is good when you are building a project where scrolling
is not required. However, in this game you want to have a much bigger scene in
which the visible part is equal to the size of the screen.

A key concept of the camera in GameSalad is that an actor is controlling the
camera. You will use a behavior named Control Camera and affect it to an actor.
Thus, when the actor moves, the camera follows.

The camera view is the screen, but there is another tool that accompanies the
camera: the camera zone. This zone is the key to controlling the camera. As
long as the actor moves within this zone, the camera will not move; as soon as
the actor moves out of the zone, the camera will follow.

To access the camera zone, click the camera icon shown in Figure 6-23.

Figure 6-23. The camera icon

This activates the camera mode and shows the camera zone (seeFigure 6-24).

CHAPTER 6: Learning Gravity, Basic Physics, and Camera Controls: An Angry Birds-like Game, Part | 185

Figure 6-24. The camera zone view

The actor controlling the camera can move freely in the central black area before
bumping into the camera zone and moving the camera along with the actor.

You can use the handles to reduce or increase this zone. You can also use the
Scene-Camera-Tracking Area to edit the values with exact numbers.

But what is the point of being able to move the camera if your scene is the size
of your screen? None! In order to use the camera, you need to have a much
bigger scene.

186

CHAPTER 6: Learning Gravity, Basic Physics, and Camera Controls: An Angry Birds-like Game, Part |

Implementing the Scrolling

Let’s implement the scrolling for the Canon Show. The first step is to make the
size of the scene bigger.

In the Scene Editor, click the Scene tab to open the scene attributes, as shown
in Figure 6-25.

Inspector Game m
Attributes | Layers
Name Initial Scene text
Time 0 real
b Size size
Wrap X [boolean
Wrap Y : boolean
¥ Cravity point
b Color = color
P Camera rect
b Autorotate attributes
+ —_—

Figure 6-25. Scene attributes
Expand the size attributes and change the size of the scene to Width: 1920 and
Height: 1280, as shown in Figure 6-26.

Width 1920 real
Height 1280 real

Figure 6-26. Scene size

Let’s add the camera control to the projectile now.

Open the Projectile actor in the Actor Editor. Drag and drop a Control Camera
behavior into the Projectile actor, as shown in Figure 6-27.

CHAPTER 6: Learning Gravity, Basic Physics, and Camera Gontrols: An Angry Birds-like Game, Part |

| (Create Group || Create Rule |

(b D= Changu Attihute, o)

{: » @@ Change Attribute (3] ;

Cr = Tl;.l{h) =

Attributes = © =/

Nj)me Projectile text = €@ Control Camera) ™

Time 0 real I 1
® Position point | Control Camera

~ v

» Size size

Figure 6-27. Control the camera

Hit the Preview button to play with the projectile.

You can open the file CanonShowPartI-step2.gameproj located in the folder
Chapter6_Files.

Flying and Falling Down: Gravity Goncepts

You now have a projectile that is thrown but it only goes up and very rapidly out
of the scene. You need to implement a way to get down to earth so you can try
to reach the targets you will later create. Also, when an object flies in the air, the
air causes some friction that slows down the speed, so you need to define this.

Once Upon a Time, There Was an Apple

Gravity is a natural phenomenon by which physical bodies attract a force
proportional to their mass. The concept of gravity is attributed to Sir Isaac
Newton in the 17" century. It is denoted by g and is the acceleration that Earth
imparts to objects on or near its surface. It’s why you stick to the ground. As
you can see in Figure 6-28, it is measured in meters per second per second of
about 9.8m/s’.

Y

9.8 m/s?

Figure 6-28. /llustration of gravity

187

188 CHAPTER 6: Learning Gravity, Basic Physics, and Camera Controls: An Angry Birds-like Game, Part |

About Apple:

The very first Apple logo was actually a representation of Sir Isaac
Newton sitting under an apple tree with an apple falling on his head. It
is said that the Apple name was an homage to Sir Newton.

Flying and Dragging

Personally | do not use the GameSalad gravity feature. It is located within the
scene attributes. You can enter a real number on X and Y that will simulate a
force in the X and Y direction.

As gravity is an acceleration, instead | prefer to use the Accelerate behavior. It
gives more flexibility because you can trigger it through rules. Imagine having a
space scene with several planets, each having their own gravity...

Implement the gravity and drag it into your project. Drag is used to simulate the
friction of the air for an object. Drag is an attribute of an actor.

Open the Projectile actor in the Actor Editor. Expand the Otherwise section of
the Touch rule. Then, drag and drop an Accelerate behavior into the Throwing
rule. Change the settings to:

Direction: 270

Relative to: scene

Acceleration: 200
This will simulate the gravity.

Then, drag and drop a Change Attribute behavior next to the Accelerate
behavior. Change Projectile.Physics.Drag to 100. Figure 6-29 shows these two
behaviors. This drag will simulate the air friction.

CHAPTER 6: Learning Gravity, Basic Physics, and Camera Gontrols: An Angry Birds-like Game, Part |

- @D Accelerate (%] B
Direction: .2?0 . el (, Relative to: | scene =
Acceleration: 20
v
g/ v @D Change Attribute o)
‘l\\ Change Attribute: self.Physics.Drag Teo: | 100 .9. y

Figure 6-29. Accelerate and drag

The last step is to position a background to make it easier to visualize the
movement of the projectile. Import the image Background.png and create a new
actor named “Background.” Drag the actor on the scene, right-click the actor to
send it to the back, and then resize the background to cover the complete
scene.

Hit the Preview button to play with the projectile.

You can open the file CanonShowPartI-step3.gameproj located in the folder
Chapter6_Files.

More GCamera Gontrols: Zooming In/Out While
Flying

When you watch action movies, a common moviemaker trick to give more
emphasis on a scene is to zoom in or zoom out. Wouldn’t it be nice to be able to
do the same in GameSalad while your projectile is flying? Imagine that you can
zoom out at the beginning of the fly and then zoom it when you are close to the
landing. It would certainly give a very nice visual effect.

Let’s do it!

Zooming Out

There is one set of attributes | didn’t mention yet for the camera: the camera
size. As discussed, the display of the camera is the screen. So what happens is
that you change the camera size. Obviously, your physical screen is not going to
expand (Apple is magical, but not that magical). So what happens if you
increase the size of the screen? You would have more to cover in the same

189

190

CHAPTER 6: Learning Gravity, Basic Physics, and Camera Controls: An Angry Birds-like Game, Part |

display size. It will generate a visual effect as if the camera was going further
(zooming out) to show more on the display. This is exactly the effect you want.

The camera attributes are scene attributes. If you want a behavior to modify
them, you need to be able to access the scene attributes. What type of actors
can access the scene attributes? The unlocked actor instance!

Open the Scene Editor. Double-click the instance of the Projectile actor on the
scene. Unlock the instance by clicking the lock icon as per Figure 6-30.

8eo0o CanonShowPartl-step4.gameproj - Projectile

Ll >) A% @. e b @ =£) @
Back/Forward Home Scenes Tables Preview Web Preview Publish Feedback Help
E‘d‘il‘i"r‘cmtypam | Revert to Prototype. | | Create Group | | Creat |

Attributes
Name Projectile text
Time 0 real
¥ Position paint
> Size size
Rotation 0 angle
* Color - color
Image image
Tags text
Preload Art &) boolean
SR S — A . . N
e o P Click the lock to edit the behaviors
of this actor.
Library (“Behaviors | Images Sounds
oL0C) Custom Pro Plug-Ins
Accelerate =
& Accelerate Toward mmle uabent
B Animate
3 Change Attribute Y Ao pnd o it
3 Change image actor, Bost used in a rule that
ﬁ Change Scene :tm_ks for a koyboard avent.
lote: If the drag behavior is not
Change Size alsc appbod to an acior,
[Chang
= acralerating will he continunos: e,

Figure 6-30. Unlocking the Projectile instance

Expand the Otherwise section of the Touchrule. Then expand the Throwing rule.
Drag and drop an Interpolate behavior into the Throwing rule and, as shown in
Figure 6-31, change the settings to:

Interpolate Attribute: Current Scene.Camera.Size.Width
To: 920
Duration: 2

Function: Linear

CHAPTER 6: Learning Gravity, Basic Physics, and Camera Gontrols: An Angry Birds-like Game, Part |

[v @D Interpolate o \.
: Interpolate Attribute: scene.Camera.Siz... To: 920 e

Duration: |2 [Function: | Linear
A J

Figure 6-31. Interpolate the width of the camera size

You can play with the value of the width as well as the duration. | used 920
because | like the effect of doubling the value over 2 seconds. | recommend that
you play around to find values you prefer.

Drag and drop an Interpolate behavior into the Throwing rule and change the
settings to:

Interpolate Attribute: Current Scene.Camera.Size.Height
To: 640

Duration: 2

Function: Linear

Hit the Preview button to try this new effect.

Zooming In

Intuitively, you can say that if you reduce the camera size, you will create a
zoom-in effect. And you are absolutely right!

In order to trigger the effect after the zoom out, add a timer of 2 seconds. In the
next chapter, you will change the time to add a rule that will trigger the zoom-in
when there is a contact with a target.

Drag and drop a Timer behavior into the Throwing rule of the Projectile actor
instance and change the settings to “After” “2” seconds.

Duplicate these two Interpolate behaviors (drag+Option key) into the timer.
Change the settings of the Interpolate behaviors you just duplicated to Width:
460 and Height: 320, as shown in Figure 6-32.

191

192

CHAPTER 6: Learning Gravity, Basic Physics, and Camera Controls: An Angry Birds-like Game, Part |

{'m Timer 0“\‘

After :) |2 6_ seconds |_| Run to Completion

(_ ¥ @ Interpolate o

Interpolate Attribute: scene.CameraSiz... |..| To: 460 e

Duration: |2 e Function: | Linear

Interpolate Attribute: | scene.CameraSiz... |...| To: 320 el

Duration: |2 € Function: | Linear %

WJ
{ v @D Interpolate QWJ

\ J

Figure 6-32. Zoom-in effect

You now have good zoom-out and zoom-in effects, but with a very small trick,
you can make it even better.

Fine-Tuning

To fine-tune the effect, there is a small trick. Reducing the tracking area will
produce a much better effect.

Open the Scene Editor and click the Scene tab to display the scene attributes.
Expand the Camera attributes and then the Tracking Area attributes. Change the
Width attribute to 200 and Height attribute to 150, as shown in Figure 6-33.

¥ Camera rect
> Origin point

> Size size

¥ Tracking Area size
Width 200 real
Height 150 real

Figure 6-33. Reducing the tracking area

Hit the Preview button to play with the projectile.

You can open the file CanonShowPartI-step4.gameproj located in the folder
Chapter6_Files.

CHAPTER 6: Learning Gravity, Basic Physics, and Camera Gontrols: An Angry Birds-like Game, Part |

Projectile Management: Managing the
Attempts

The final step for this chapter is to implement a maximum number of attempts
per scene. You will have some projectiles on the bottom left part of the screen,
and the number will decrease by one after throwing each projectile.

Adding Boundaries

Before going into projectile management, you need to define some walls around
the playing area. As you may have noticed, when you throw projectiles, they fall
and go under the scene, as there is no ground floor. You will create some walls

around the scene. The projectile will collide with the walls.

Open the Scene Editor and create a new actor named “wall.” Double-click the
actor to open it in the Actor Editor. In the attributes of the actor, change the
restitution to 0 and uncheck the movable box.

Go back to the Scene Editor. Drag and drop four instances of the Wall actor on
the scene. Change the shape of each of them to position them on the four
borders of the scene, as shown in Figure 6-34.

193

194 CHAPTER 6: Learning Gravity, Basic Physics, and Camera Controls: An Angry Birds-like Game, Part |

Figure 6-34. Adding walls to the scene

Next, double-click the Projectile actor instance on the scene. Remember that
because you have edited this instance (unlock), it will not incorporate changes
made on the prototype. Drag and drop a Collide behavior on the top of the
behaviors and change the settings to Bounce when colliding with “actor of type”
“Wall,” as shown in Figure 6-35.

[Revert to Prototype] [Create Group] [Create Rule]
[r@ Colide °)
L Bounce when colliding with: | actor of type: | | wall s J

Figure 6-35. Bouncing on the walls

Hit Preview to test your work.

CHAPTER 6: Learning Gravity, Basic Physics, and Camera Gontrols: An Angry Birds-like Game, Part |

Creating Dummy Projectiles

The very cool trick to manage the various projectiles is that in reality you will
only use one projectile. You will create dummy projectiles that will just disappear
one by one after each attempt while the main projectile is brought back to the
slingshot.

The dummy projectiles will have the same appearance as the projectile. But they
will just contain one rule and one Change Attribute behavior in this rule.

Create a game attribute to define the number of attempts left to complete the
scene. | set this number of attempts to 4 (you can choose any other number that
suits you), so you will need three dummy projectiles. As you have one on the
slingshot, it will initially display four projectiles on the scene. After each attempt,
you will decrement by one the game attribute. The rule in the dummy projectile
will check the game attribute compared to a position number. If the game
attribute is lower, you will make invisible (color alpha to 0) the dummy projectile.
And the magic is done!

In the Scene Editor, create a new game attribute of type integer, name it
“Attemptleft,” and set its default value to 4, as shown in Figure 6-36.

Attemptleft 4 integer
Figure 6-36. Game Attribute attemptleft
Next, create a new actor and rename it “dummy projectile” and change the
following attributes in the Actor Editor:
Size/Width: 25
Size/Height: 25
Color/Red: 1
Color/Green: 0
Color/Blue: 0

Next, create a new rule with the condition “Attribute”“game.Attemptleft” “<”“4.”

Drag and drop a Change Attribute and change dummy projectile.Color.Alpha to
0, as shown in Figure 6-37.

195

196 CHAPTER 6: Learning Gravity, Basic Physics, and Camera Controls: An Angry Birds-like Game, Part |

| Create Group || CreateRute |

When [All %) conditions are valid: L

Atribute O camedwe.. | (<)4 e

== pm— °

Attributes
Width b1 real (= Changa Attribite °)
Height 25 real L Change Atribute: | self.Color.Alpha =] T fo [e| J
Rotation 0 angle
+Color j==] color (& Otherwine: J
Red s i real
Green 0 real
Blue 0 real
Alpha 15 real
Image image
Tame vt
T
Library (TBehaviors | Images Sounds |
Custom Pro Plug-Ins
X AOCETET AT TOWATT
[Animate Change Attribute
3 Change Attribute (Action)
ﬁ Change Image Change me, baby! This action
3 Change Scene allows you 1o set, change o
3 change Size e 2t
3 Change Velocity pestis toa game lovel atirivuto
3 collide byl A ol
P i

Figure 6-37. Dummy projectile

Drag and drop three instances of the dummy projectile actors and position them
on the bottom left of the scene, as shown in Figure 6-38.

CHAPTER 6: Learning Gravity, Basic Physics, and Camera Controls: An Angry Birds-like Game, Part | 197

Figure 6-38. Positioning the dummy projectiles

Starting from the left side, open the first instance of the dummy projectile and
unlock it. Change the condition of the rule to

“Attribute”“game.Attemptleft”“<”“2,” as shown in Figure 6-39.

[v @ Rule 0)
When | All 3) conditions are valid: - @j
(Attribute %)! game.Atte... u < ?,}?2 |_G_|
[v @D Change Attribute Q)
L Change Attribute: | self.Color.Alpha l_l To: |0 |£] J
\ > Otherwise: y

Figure 6-39. Modifying dummy projectile one

198

CHAPTER 6: Learning Gravity, Basic Physics, and Camera Controls: An Angry Birds-like Game, Part |

Starting from the left side, open the second instance of the dummy projectile
and unlock it. Change the condition of the rule to

“Attribute”“game.Attemptleft”“<”“3,” as shown in Figure 6-40.

[~ @ Rule o)
| When (_ All %) conditions are valid: =/
Attribute v game.Atte... . w] (S .3 6
[v @D Change Attribute Q \
K Change Attribute: self.Color.Alpha To: |0 ' G J
| > Otherwise: J

Figure 6-40. Modifying dummy projectile two

Modifying the Projectile Instance

The next part of the work is to modify the projectile instance. You will need to
implement a detection when the projectile stops moving, which will trigger the
projectile to return to its original position. You will also reset the key attributes,
decrement the number of attempts, and implement a game reset when the four
attempts have been done. You will also use a Boolean attribute to set a state
when you change the projectile. This Boolean will be used as a condition in a
rule to trigger some resets.

Detecting when the Projectile Stops Moving

In the Scene Editor, create a new Boolean game attribute named “Change
Projectile.” To detect when the projectile stops moving, you will use the linear
velocity motion attributes.

Open the Projectile actor instance by double-clicking the actor on the scene.
Create a new rule into the Throwing rule and name it “Change projectile.” Add
the following conditions into the rule with the criteria “All:”

“Attribute”“Projectile.Motion.Linear Velocity.X”“="“0"

“Attribute”“Projectile.Motion.Linear Velocity.Y”“="“0"

CHAPTER 6: Learning Gravity, Basic Physics, and Camera Gontrols: An Angry Birds-like Game, Part |

Then, drag and drop a Change Attribute behavior into the rule and change
Projectile.Color.Alpha to 0. Next, drag and drop a Change Attribute behavior
into the same rule and change game.Change Projectile to true. Last, drag and
drop a last Change Attribute behavior into the rule and change game.Attemptleft
to game.Attemptleft -1. The rule is shown in Figure 6-41.

- @@ Change Projectile o)
| When [All) conditions are valid: =) (%)
Attribute : self.Motion... - (=30 € =&
Attribute $)[" self.Motion... .| (=__%)o 2 =&
,f ¥ @ Change Attribute o)
| Change Attribute: self.Color.Alpha To: 0 €
-3 : : V.
f/ ¥ @» Change Attribute Q R
L Change Attribute: game.Change Pro... To: true €
(_ ¥ @3 Change Attribute Q =
| Change Attribute: game.Attemptleft I To! game.Attemptlef €
-3 /
\\D Otherwise: V.

Figure 6-41. Change Projectile rule

Moving Back to the Original Position

You will move the projectile back to its original position via a rule when the
attribute Change Projectile is true. Use the Interpolate behavior to move it back
to its original position, which is stored in the attributes InitialProjectileX and
InitialProjectileY.

Create a new rule in the Projectile actor instance and name it “Back to
Position.” The condition of the rule is “Attribute”“game.Change

Projectile”*is”“true.” Drag and drop an Interpolate behavior into the rule and
change the settings to:

Interpolate Attribute: Projectile.Position.X
To: game.InitialProjectileX
Duration: 1

Function: Linear

199

200

CHAPTER 6: Learning Gravity, Basic Physics, and Camera Controls: An Angry Birds-like Game, Part |

Repeat the same operation with the following settings:
Interpolate Attribute: Projectile.Position.Y
To: game.InitialProjectileY
Duration: 1
Function: Linear

The Back to Position rule is shown in Figure 6-42.

fi i
¥ @D Back to Position [x] Ny
When | All 3 conditions are valid: SINE
Attribute | game.Chan... | I8 (true : =)
- o)
@@ Interpolate
Interpolate Attribute: self.Position. X To: game.lnitialProje €
Duration: 1 e Function: | Linear
\ 4
(v @ Interpolate LI
| Interpolate Attribute: self.Position.Y To: | game.lnitialProje G.
Duration: 1 e Function: | Linear -
b /
\ > Otherwise: S

Figure 6-42. Back to Position rule

Resetting Key Attributes

Next, you need to reset the HasBeenTouched attribute, make projectile visible,
and change the status of Change Projectile to false.

Drag and drop a Change Attribute behavior into the Back to Position rule and
change Projectile.HasBeenTouched to false.

Drag and drop a new rule into the Back to Position rule, name it “attribute
reset,” and add the following conditions to “All:”

“Attribute” “Projectile.Position.X”
“="“game.InitialProjectileX”

“Attribute” “Projectile.Position.Y” “=”
“game.InitialProjectileY”

CHAPTER 6: Learning Gravity, Basic Physics, and Camera Gontrols: An Angry Birds-like Game, Part |

This will detect that the projectile is back to its original position.

Drag and drop a Change Attribute behavior into the Attributes reset rule and
change projectile.Color.Alpha to 1. Drag and drop a second Change Attribute
and change game.Change Projectile to false. The Attributes reset rule is shown
in Figure 6-43.

(¥ @D Attributes reset Q)

lwhen . All 3 conditions are valid: (=) (&)
Attribute £ selfpositionX .| (= %)game.initialProjectilex] €| OIC
Attribute 2| selfpositiony |..| (=) game.nitialProjectiley| €| -)(#)
- @3 Change Attribute o =

Change Attribute: [¢ s.ei.f.{fﬁior.ﬁl.b-ﬁé] To: [1 | 6

.
- @ Change Attribute [B
Change Attribute: game.Change Pro... _| To: |false 9_ j

\’ Otherwise: A

Figure 6-43. Attributes reset rule

Resetting the Game After Four Attempts

This last step is very easy. Just create a new rule in the Projectile actor instance

and name it “Reset the Game.” The condition of the rule is “Attribute”
“game.Attemptleft” “=" “0.” Then drag and drop a Reset Game behavior into
the rule. The Reset the Game rule is shown in Figure 6-44.

([v@ Rule ©)
When (Al %) conditions are valid: =\
(Attribute 2| gameAtte... [..] &_3%)o e -)\&
If ¥ @P» Reset Game] \
L Reset game J
K’ Otherwise: >,

Figure 6-44. Reset the Game rule

201

202

CHAPTER 6: Learning Gravity, Basic Physics, and Camera Controls: An Angry Birds-like Game, Part |

Hit the Preview button to play with the projectile.

You can open the file CanonShowPartI-step5.gameproj located in the folder
Chapter6_Files.

Summary

Ready to throw any objects at targets? With your brand new slingshot you will
be in a position to improve your targeting skills.

In this chapter, you have learned how to:
Build a slingshot system.
Simulate an elastic element.
Control the camera.
Implement gravity.
Use advanced camera settings.

Manage a limited number of attempts.

Chapter

Creating a Game Menu
and a Particles Effect:
An Angry Birds-like
Game, Part li

In the previous chapter you learned how to build the basics for an Angry Birds-
like game. But you still have a lot to learn. You need a target to aim at and
blocks to protect the target. It’s also an opportunity to introduce tables, which
perform some very advance optimization. Last but not least, you will build a very
cool menu system.

In this chapter, you will:
Build the target and blocks.
Use the Particles effect feature.
Learn about GameSalad tables.
Optimize your game with tables.

Create a cool menu system.

D. Guerineau, Learn GameSalad for iOS: Game Development for iPhone, iPad, and HTML5

© David Guerineau 2012

204

CHAPTER 7: Creating a Game Menu and a Particles Effect: An Angry Birds-like Game, Part Il

Aiming at a Target: Destroying Blocks

What would a canon game be without target and blocks to protect the target? In
this section, you will increase the game experience by creating three categories
of blocks to be destroyed and you’ll create the required interactions to play the
game.

Creating the Blocks: Hard, Soft, and the Target

You will create three types of blocks: hard, soft, and the target blocks. The
target is the aim. A single hit by the projectile and the level is completed. The
soft block will simulate easy-to-destroy blocks; a double hit will be required to
destroy these blocks. Last, hard blocks will simulate a rock-solid block; a triple
hit will be required to destroy these blocks.

Target

Open the scene in the Scene Editor and create a new actor. Name the actor
“Target.” Change the attributes as per Table 7-1.

Table 7-1. Target Actor Attributes

Name Target
Size\Width 50
Size\Height 50
Color\Red 0.8
Color\Green 0.2
Color\Blue 1
Physics\Restitution 0
Soft Block

Create a new actor and name it “Soft Block.” Change the attributes as per
Table 7-2.

CHAPTER 7: Creating a Game Menu and a Particles Effect: An Angry Birds-like Game, Part Il

Table 7-2. Soft Block Actor Attributes

Name Soft Block
Size\Width 100
Size\Height 100
Color\Red 0.15
Color\Green 0.95
Color\Blue 1
Physics\Restitution 0

Hard Block

Create a new actor and name it “Hard Block.” Change the attributes as per

Table 7-3.
Table 7-3. Hard Block Actor Attributes

Name Hard Block
Size\Width 100
Size\Height 100
Color\Red 0.55
Color\Green 0.22
Color\Blue 0.09
Physics\Restitution 0

Make Them Collide

You will use a tag to make it easier to define the collideable objects.

205

206

CHAPTER 7: Creating a Game Menu and a Particles Effect: An Angry Birds-like Game, Part Il

Click the Home button and then click the Actors tab. Create a new tag for all
collideable objects. Click the + sign on the tag pane and rename the new tag
“Collidable.” Then drag and drop the following actors into the Collidable tag:

Projectile
Target

Soft Block
Hard Block
Wall

The result is shown in Figure 7-1.

—_—
FProject Info Scenes | Actors . Tables Services

All

=——a @ n]

Figure 7-1. The Collidable-tagged actors
Open the Target actor in the Actor Editor. Drag and drop a Collide behavior and

change the settings to Bounce when colliding with “actor with tag” “Collidable,”
as shown in Figure 7-2.

'/ "_Q Collide Q_J

Bounce when colliding with: | actor with tag: # Collidable

Figure 7-2. Collide behavior

Repeat the same for actors Soft Block and Hard Block.

Ground Them on Earth: Gravity

As you are implementing gravity through acceleration, you will need to define an
Acceleration behavior.

Open the Target actor in the Actor Editor. Drag and drop an Acceleration
behavior and change the settings to:

Direction: 270
Relative to: scene

Acceleration: 200

CHAP H ing a Game Menu and a Particles Effect: An Angry Birds-like Game, Part Il 207

Refer to Figure 7-3. “Relative to” applies to the direction. If you select scene, it
will be compare to the referential of the scene. A direction of 90 relative to the
scene will go up. If you select actor, it will be relative to the actor. So if you
select 90 and your actor’s rotation equals 90, the effect will be to go to the left in
the scene (90 + 90).

(v Accelerate. o \
Direction: |270 | €] () Relative to: [scene ¢ |
Acceleration: (200 | €

Figure 7-3. Gravity for the target

Repeat the same for actors Soft Block and Hard Block.

Let the Actors Enter the Scene

Drag and drop into the scene one instance of Target, one instance of Soft Block,
and two instances of Hard Block. Position and reshape the actors to
approximately match Figure 7-4. Try to position them on the right side of the
scene.

Inspector ZE i

Actors Avcoues | Devices
Slingshot Component Projectile

. -

p oA

elastic Background
Fole= Al
Library Behaviors | Images | Sounds |
Standard Custom Pro (1L

Figure 7-4. Positioning the target on the scene

208

CHAPTER 7: Creating a Game Menu and a Particles Effect: An Angry Birds-like Game, Part Il

Hit the Preview button to play with the projectile.

You can open the file CanonShowPartII-stepl.gameproj located in the folder
Chapter7_Files.

At this stage, you still have more work to do in order to make it a little bit more
playable. Next, you will focus on making sure that some of the blocks are
destroyed after a certain amount of hits.

With a Touch of Style: The Particle Effect

The particle effect is a great feature of GameSalad. Basically, it will spawn
multiple elements (particles) in a specified amount of time at a defined rate. It
can be used in many different ways. It can deliver multiple results depending on
the settings: dust, thrust, explosion. This section explains each of the setting
parameters of the particle effect, and then you will implement it for the
destruction of the target.

The Parameters of the Particle Effect

The particle effect is a behavior named Particles. It can be found in the standard
behavior library and needs to be dragged and dropped into an actor. Although
the effect is great, one downside is that you are not spawning actors. This
means that particles don’t have the same properties. For example, they can’t
collide or have behaviors.

The Particles behavior is composed of six tabs of parameters:

Spawn Rate: Defines the number of particles, their life
duration, and the spawn speed.

Velocity/Position: Defines the speed of the particles and where
they should be spawned.

Size: Defines the size of the particles.
Color: Allow some color effects on the particle.

Rotation: Options to add some settings for the rotation of the
particles.

Image: Instead of a basic shape, this section lets you to
choose an image from your library for the particle.

CHAPTER 7: Creating a Game Menu and a Particles Effect: An Angry Birds-like Game, Part Il

Spawn Rate

Figure 7-5 shows the Spawn Rate tab of the Particles behavior.

-
[¥ @D Particles

I_ Spawn Rate | Vclél:i-wf Position] Size Color Rotation
Number of Particles: |20 | €
Particle Startup Time: 2 €| seconds

Particle Lifetime: 2 €| seconds

\

Image

Figure 7-5. Spawn Rate tab of the Particles behavior

In this tab, you have three setting parameters:

Number of Particles: Here you enter the number of particles to
be spawned during the occurrence of the behavior. Be careful;
setting a high number of particles here may slow down your
game.

Particle Startup Time: Enter the time required to spawn the
complete number of particles that you just defined above. The
unit is second.

Particle Lifetime: Here you define the life duration of a particle

before it is destroyed. The unit is second.

Velocity/Position

The Velocity/Position tab is shown in Figure 7-6.

[@D Particles

Spawn Rate | velocity/Position Size Color Rotation
Emitter Offset:] 0 e| [|o €
Direction: 0 €| . Relative to: | actor * Affected by gravity

Speed: 10 e S———

Image

Figure 7-6. The Velocity/Position tab of the Particles behavior

209

210 CHAPTER 7: Creating a Game Menu and a Particles Effect: An Angry Birds-like Game, Part Il

Here you can define the speed and direction of the particles that you spawn as
well as their origins. This tab contains six setting parameters:

Emitter Offset x: This parameter offsets the position on the x-
axis for the origin of the particles compared to the center of
the actor that has the particles behavior.

Emitter Offset y: This parameter offsets the position on the y-
axis for the origin of the particles compared to the center of
the actor that has the particles behavior.

Direction: Defines the direction of the spawned particles.

Relative to: You can choose if you want the direction to be
relative to the actor or to the scene. For example, if you select
270 degrees for the direction relative to the scene, it will
always go down, whatever the position of the actor. If you
select 270 degrees for the direction relative to the actor, if will
go to the bottom of the actor, which will depend on the
rotation of the actor.

Affected by gravity: If you have defined the scene gravity,
check this box if you want your particles to be affected by the
gravity.

Speed: Enter a value to define the speed of the particles.

Size
The Size tab of the Particles behavior is shown in Figure 7-7.
_f ¥ @D Particles - ; : : 0)
Spawn Rate Velocity/Position Size Color Rotation image
Size: 15 € (' Size changes to
Size Transition
Target Size: |5 e |_' S ——
Duration: |0 [€] seconds
\

Figure 7-7. Size tab of the Particles behavior

The Size tab defines the size of the particles, a start size, and a target size to be
reached within a specified time. The parameters are:

CHAPTER 7: Creating a Game Menu and a Particles Effect: An Angry Birds-like Game, Part Il 211

Size: Enter a value here. The unit is pixel.

Size does not change: Select if you want to have a constant
size over the life of the particle or if you want the size to
change.

If you have selected “Size changes to,” the Size Transition settings will appear
on the screen. The setting parameters are:

Target Size: Enter the size to reach in a specified amount of
time set in the below parameter.

Duration: Enter the time to change the size. Unit is second.

Color
Figure 7-8 shows the Color tab of the Particles behavior.
(v @D Particles o
épawn Ra‘tc \';;Iocit.w.f:‘osix.w.na éize | Color = .Ré.m(.non .I;-rmgc
Color: || Color changes to + | Blending ¥ Normal
Opaque
Color Transition Additive
Target color: || =cveen
3 Multiply
Duration: |1 | €] seconds
' ¥

Figure 7-8. The Color tab of the Particles behavior
The Color tab not only defines the color of the particles but it also enables you
to have a start color and a target color to be reached within a specified time.
The parameters are:

Color: Pick a color here.

Color does not change: Select if you want to have a constant
color over the life of the particle or if you want the color to
change.

If you have selected “Color changes to”, the Color Transition settings will
appear on the screen. The setting parameters are:

Blending mode: You can choose between various blending
modes. Experiment to find the setting that best suits you.

212

CHAPTER 7: Creating a Game Menu and a Particles Effect: An Angry Birds-like Game, Part Il

Target color: Pick the color to set in a specified amount of time
(set in the below parameter).

Duration: Enter the time to change the color. Unit is second.

Rotation
The Rotation tab is shown on Figure 7-9.
|'/ v @D Particles o)
! .Snawn-ﬁa.l-e [\v‘;.[;c-iw.fl-?osi(_ion Size I Color Rotation Image
Initial Rotation: |0 [e]
Angular Velocity: |0 | 8] (N
L

Figure 7-9. The Rotation tab

You can define the initial rotation angle as well as the angular velocity (the speed
of rotation of the particles).

Image
Figure 7-10 shows the Image tab.
(o E':I VPmicTes : : N Q)
Spawn Rate Velocity/Position Size Color Rotation | Image
Set Image to: | | [No Value
N

Figure 7-10. The Image tab of the Particles behavior

Instead of having a basic square, you can use an image from the image library
by selecting the image from the drop button. The previous settings continue to
apply.

CHAPTER 7: Creating a Game Menu and a Particles Effect: An Angry Birds-like Game, Part Il 213

An Explosion of Colors

Before playing a little bit with the Particles behavior, you need to follow a few
additional steps in your gameplay.

Open Soft Block in the Actor Editor and create a new integer actor attribute
named “NbHit” with a default value of 0. This attribute will increment itself by
one for each collision with the projectile.

Create a new rule named “Collision Increment.” The condition of the rule is
“Actor receives event” “overlaps or collides” with “actors of type” “Projectile.”
Then drag and drop a Change Attribute behavior into the rule and change Soft
Block.NbHit to Soft Block.NbHit+1.

Next, create a second rule named “Block Destruction.” This rule will destroy the
actor after two hits from the projectile. The condition of the rule is
“Attribute”“Soft Block.NbHit”“>="“2.” Then drag and drop a Destroy behavior
into the rule.

Create Croup Create Rule

(7@ Accelerate o)
Direction: | 2790 € .| Relative to: | sene
| Accnaton: 750 |€ |
—
[* @D Collision Increment o)
Attributes. When (_All 3| sonditions are valid gl
R Ty At fectives event 1) (overaps of collides. 1) wirh (actor of type) (Projectile
Rotation 0 angle
» Color color
Image image
Tags Collidable text F : = |
Prelond Art o boalean " @D Change Attribute a \
SRy L) g Change Amrbute: | selfNoHit .| Te [selfNoiel € |
» Graphics attributes N | }
+ Mation attributes | !
¥ Physics Attributes ¥ Ceherwise:
G ales
[¥ @D Block Destrustion o)
Ubrary CERRIERN images | Sounds When (Al 5 conditions are valid =]
Custom Pro Plug-ins Anvibute £ aclf Notin =] Dl e
[conmal Canieea Change Attribute
[Destroy racton)
[Display Text - . —
i Group [*@E Destroy o | |
[Interpolate 1
| Destroy this acter
[0 Keyboard Input \ _} |
Load Attribute
x e s

Figure 7-11. Actor Editor view of Soft Block

Repeat the same for the Hard Block actor, but instead of two hits required to
destroy the actor, set it for destruction after three hits. The actor is shown in
Figure 7-12.

214 CHAPTER 7: Creating a Game Menu and a Particles Effect: An Angry Birds-like Game, Part Il

Create Group | | CreateRule |
- [T Accelerate 8.
Cirection: (270 |8 () Relativeto: [scenc = |
- — :
| @D Collision Increment Q.
Attributes When (Al 3/ conditions are valig |
v i ACIOF rectives event 3/ | overiaps o Collits 31 wath (Mo of type i | Prajectile 5 =
Rotation Q angle
* Color | color
Image image
Tags rext - — |
Preload Art e boolean [7@ Change Auribute e |
NbHit L] Ll L | Change Armibute: | self Nabi To [setnbitel €
* Graphics attributes 2 |
» Mation aneributes I |
» Physics attributes elulin E,
+[.= Va— —
[*@D Block Restruction L]
Library ERRRIGRN 1mages | Sounds when (AL 3] conditions are valid: =
©5) Custom Pro Plug-ins Auribure B sell bt @ 83 e -
[contral Camera Change Attribute
3 Destroy {Acton)
[pisplay Text e —
Change me, baby! This acticn Fd
& Croup slows you 10 8e¢ change o [@& Destroy 9.
romant gawa or acor
[tmerpolate wrebuta For uxbmgin. 338 750 | Destroy this setor]
£ Heyboard Input poets 10 8 game bvel sl \. |
: Zaked scar by chogag |
Y Load Auribute ncrement by 250 n me (> otharwise 7,

+ | =

Figure 7-12. Actor Editor view of Hard Block

Now, let’s play a little with the Particles behavior.

Import the image located in the Chapter7_Files folder named star.png into the
Image library of your project.

Open the Target actor in the Actor Editor. Create a new rule and name it “Target
Destruction.” The condition of the rule is “Actor receives event” “overlaps or
collides” with “actor of type” “projectile.” Drag and drop a Particles behavior
and change the settings to:

Number of Particles: 200
Particle Startup Time: 1
Particle Lifetime: 1
Emitter Offset: 0 & 0
Direction: random(0,359)
Relative to: actor
Speed: 100
Size: 20
Size changes to:

Target Size: 0

Duration: 1

CHAPTER 7: Creating a Game Menu and a Particles Effect: An Angry Birds-like Game, Part Il 215

Color: pick a blue and set opacity to 50%
Color changes to:
Blending: Normal
Target color: pick a yellow green and set opacity to 50%
Duration: 1
Initial Rotation: random(0,359)
Angular Velocity: 50
Image: star

Drag and drop another Particles behavior and change the settings to (or
duplicate the previous behavior by dragging it while pressing the Option key)

Number of Particles: 200
Particle Startup Time: 1
Particle Lifetime: 1
Emitter Offset: 0 & 0
Direction: random(0,359)
Relative to: actor
Speed: 100
Size: 20
Size changes to:
Target Size: 0
Duration: 1
Color: pick a green and set opacity to 50%
Color changes to:
Blending: Normal
Target color: pick a yellow green and set opacity to 50%
Duration: 1
Initial Rotation: random(0,359)
Angular Velocity: 50

Image: star

216 CHAPTER 7: Creating a Game Menu and a Particles Effect: An Angry Birds-like Game, Part Il

Drag and drop another Particles behavior and change the settings to:
Number of Particles: 200
Particle Startup Time: 1
Particle Lifetime: 1
Emitter Offset: 0 & 0
Direction: random(0,359)
Relative to: actor
Speed: 100
Size: 20
Size changes to:
Target Size: 0
Duration: 1
Color: pick a red and set opacity to 50%
Color changes to:
Blending: Normal
Target color: pick a yellow green and set opacity to 50%
Duration: 1
Initial Rotation: random(0,359)
Angular Velocity: 50
Image: star
Drag and drop another Particles behavior and change the settings to:
Number of Particles: 200
Particle Startup Time: 1
Particle Lifetime: 1
Emitter Offset: 0 & 0
Direction: random(0,359)
Relative to: actor
Speed: 100

CHAPTER 7: Creating a Game Menu and a Particles Effect: An Angry Birds-like Game, Part Il 217

Size: 20
Size changes to:
Target Size: 0
Duration: 1
Color: pick a green and set opacity to 50%
Color changes to:
Blending: Normal
Target color: pick a grey and set opacity to 50%
Duration: 1
Initial Rotation: random(0,359)
Angular Velocity: 50
Image: star
Hit the Preview button to play with the projectile.

You can open the file CanonShowPartII-step2.gameproj located in the folder
Chapter7_Files.

Performance Optimization with Tables

Version 0.9.90 of GameSalad introduced the tables. Tables are two-dimension
arrays that allow you to store data of different types. At the time of writing this
book, tables are only in a read-only mode, but it is in the GameSalad roadmap
to make them writable from the game logic.

Introduction to Tables in GameSalad

The tables can be seen on the Tables tab next to Actors tab, as show in
Figure 7-13.

218

CHAPTER 7: Creating a Game Menu and a Particles Effect: An Angry Birds-like Game, Part Il

[CNaN&] CanonShowPartll-step3.gameproj

S &

[~) A 5. O > @£ <O

Back/Forward Home Scenes Tables Preview Web Preview Publish Feedback Help
{_ Project Info Scenes Actors ﬁ,ﬁe&r)

F o e

Figure 7-13. The Tables tab view

To create a new table, you simply need to click the + sign on the bottom left of
the screen. You can rename the table name by clicking on its name. Tables will
appear as game attributes and you will use specific functions to access the
content of the tables. Tables can also be imported from Excel or any other
software that exports CSV format.

You can open a table in the Table Editor by double-clicking the table. The Table
Editor is shown in Figure 7-14.

CHAPTER 7: Creating a Game Menu and a Particles Effect: An Angry Birds-like Game, Part Il

Table 1 Rows L .| Columns 1 |[:| Import €5V || Export CSV

Figure 7-14. Table Editor

You can modify the name of the table in the Table Editor also. You will be able
to add rows and columns by modifying those parameters next to the table

name.
You will select the type of data that will be contained in the table by column.
This means that each column will be a specific type of data. As usual, you can
select Text, Integer, Boolean, Real, and Angle. You can also hame your columns
and lines as shown in Figure 7-15.

City Position| | Rows 3 |-} Columns '3 7]
1 2 3
Longitude Latitude City Name
Real v Real v Text =
- Row 1 0 0
2 Row 2 0 0
3 Row 3 0 0

Figure 7-15. A simple table

Another very useful feature of the Table Editor is the ability to import and export
CSV files. If you have big files of data, you can immediately import them from a
CSV file.

Last but not least, let’s quickly review the functions to use with tables. Figure
7-16 shows the three functions to access table information.

219

220

CHAPTER 7: Creating a Game Menu and a Particles Effect: An Angry Birds-like Game, Part Il

tableCellValue
tableColCount
tableRowCount

Figure 7-16. Table function

Let’'s examine the syntax and the outcome of each function.

tableCellValue() returns the value of a specified cell in a specified table. The
syntax is:

tableCellValue(table,row,col)

Table: The name of the table. You need to use the attribute
browser to select the table.

Row: The row number
Col: The column number

tableColCount() returns the number of columns in a specified table. The syntax
is:

tableColCount(table)

Table: The name of the table. You need to use the attribute
browser to select the table.

tableRowCount()returns the number of rows in a specified table. The syntax is:
tableRowCount(table)

Table: The name of the table. You need to use the attribute
browser to select the table.

Let’s put in practice the usage of tables.

Managing Several Scenes in One Scene

Let’s go through a very advanced utilization of the tables. You will do some
recycling of the actors and use tables to store the different levels of a game.

Creating Tables

You will create a table for each actor you will recycle. Basically, you will have
tables for Hard Block1, Hard Block2, Soft Block, and Target. The tables will
contain the positions of the blocks for each level. You will have two columns (X

CHAPTER 7: Creating a Game Menu and a Particles Effect: An Angry Birds-like Game, Part Il

and Y) and three rows (three levels). If you were to create more levels, you would
create more rows.

Go to the Tables tab and create a new table. Rename this table “Hard Block1.”
Open this table in the Table Editor by double-clicking it. Type the values inside
this table as per Figure 7-17.

'HardBlockl | Rows 3 [i] Columns 2 [}
X s f

Real . Real .

I N
2 1,609 113
3 1,326 165

Figure 7-17. Hard Block1 table

Repeat the operation by creating another table named “Hard Block2” and add
the values shown in Figure 7-18.

HardBlockz | Rows '3 |[}] Columns'z |[}]
X Y

Real v Real .
1 1,763 88
2 1,646 113
3 1,400 164

Figure 7-18. Hard Block2 table

Repeat the operation by creating another table named “Soft Block” and insert
the values shown in Figure 7-19.

221

222 CHAPTER 7: Creating a Game Menu and a Particles Effect: An Angry Birds-like Game, Part Il

Soft Block Rows 3 [i| Columns'2 [}
1 2
X Y

Real . Real v
1 1,691 188
2 1,588 13
3 1,361 65

Figure 7-19. Soft Block table

Repeat the operation again to add another table named “Target” and add the
values shown in Figure 7-20.

Target Rows 3 'I_EI Columns 2 [:]
1
X Y
Real H Real H
1 1,696 26
2 1,625 225
3 1,362 26

Figure 7-20. Target table

You now have your tables all set. You will modify your actors accordingly.

Implementing the Recycling

The purpose of recycling is very simple. You position a block and when it is time
to destroy the block, instead of using the Destroy behavior, you will move the
actor out of the visible scene. When you go to the next level, you will again
change the position of the block back to where it should be for the next level.
This way you can have hundreds of levels with just one scene, which is very
efficient on memory.

CHAP H ing a Game Menu and a Particles Effect: An Angry Birds-like Game, Part Il 223

You will use a game attribute to store the current level. Open the scene in the
Scene Editor and create a new integer game attribute named “WhatlLevel.” The
default value is 1.

Open the instance of the Hard Block actor located in the far right of the scene in
the Actor Editor, as shown in Figure 7-21.

Figure 7-21. The far right Hard Block selected

Unlock the instance of the actor. Rename the instance “Hard Block1.”

Drag and drop a Change Attribute behavior into the instance and change Hard
Block1.Position.X to tableCellValue(game.Hard Block1, game.WhatLevel,1).
Drag and drop another Change Attribute behavior into the instance and change

224

CHAPTER 7: Creating a Game Menu and a Particles Effect: An Angry Birds-like Game, Part Il

Hard Block1.Position.Y to tableCellValue(game.Hard Block1,
game.WhatLevel,2). These two behaviors are shown in Figure 7-22.

| Revert to Prototype | | Create Group || CreateRule |
. Pz & o .
b Change Attribute
fomea T 4 B8 tableCellValuel game.Hard Blockl . gamewhattevel HJ x N]
Change Attribute: self Position X .| To: ubleCelivalueig: & e .
e oo (D

Expression Editor

- [CEEATT. gamerardbiockt 1 gamewnanever &) (ER (ED
[JE—]

[¥ @ Change Attribute

L Change Attribute: self.Position.¥ To: | tableCellValuelg: €

Figure 7-22. Initial positioning of Hard Block1

Open the second instance of the Hard Block actor and rename it “Hard Block2.”

Drag and drop a Change Attribute behavior into the instance and change Hard
Block2.Position.X to tableCellValue(game.Hard Block2, game.WhatLevel,1).
Drag and drop another Change Attribute behavior into the instance and change
Hard Block2.Position.Y to tableCellValue(game.Hard Block2,
game.WhatLevel,2). These two behaviors are shown in Figure 7-23.

e — Expression Editor
(=¥ Change Attribute

n insert function: remove expression

l Change Attribute: self.Position.X Te: | tableCellValueig: €

Expression Editor

B tableCellValue(game.Hard Block2 , game.Whattevel 2) [¥ |

[* @D Change Attribute

| Change Attribute: self Position.Y To: |rableCellValue(g: €&

Figure 7-23. Initial positioning of Hard Block2

Open the instance of the Soft Block actor.

Drag and drop a Change Attribute behavior into the instance and change Soft
Block.Position.X to tableCellValue(game.Soft Block, game.WhatLevel,1). Drag
and drop another Change Attribute behavior into the instance and change Soft
Block.Position.Y to tableCellValue(game.Soft Block, game.WhatLevel,2). These
two behaviors are shown in Figure 7-24.

| Revert to Prototype | | Create Group || CreateRule |

{ :
¥ @ Change Attrib
w{ = B AR, B tableCellvaluel gameSoftBlock . gamewhattevel Dl X N v |

Change Artribute: self Position.X .| Tor | tableCellvaluelg: € -
: s B o oncon: (D

Expression Editor

[¥ @D Change Attribute

‘ Change Attribute: seif.Position.y To: | tableCellvaluelg: &

FEMOVE EXDress

Figure 7-24. Initial positioning of Soft Block

CHAPTER 7: Creating a Game Menu and a Particles Effect: An Angry Birds-like Game, Part Il

Open the instance of the Target actor.

Drag and drop a Change Attribute behavior into the instance and change
Target.Position.X to tableCellValue(game.Target, game.WhatLevel,1). Drag and
drop another Change Attribute behavior into the instance and change
Target.Position.Y to tableCellValue(game.Target, game.WhatLevel,2). These two
behaviors are shown in Figure 7-25.

jiRmast o baintse) gCrete Croup sl Cructe Bule |
— Expres Editor
[¥ @Z® Change Attribute

i Ll tableCellValue{ game.Target , game.Whatlevel 1)

‘ Change Attribute self Position X .| Tor | rableCellValuelg: €
. B oo (D

Expression Editor

- eI cemevarer | gamewnaeer ©) EB
BB rentuncion: (D

;{' Change Attribute

L Change Attribute self.Position.Y <A To: tableCellValuelg: €

Figure 7-25. Initial positioning of Target

Re-open the Hard Block1 instance. In the Block Destruction rule, remove the
Destroy behavior by clicking the circled cross on the right side of behavior.

Drag and drop a Change Attribute behavior into the rule and change Hard
Block1.Position.X to 640. Drag and drop a Change Attribute behavior into the
rule and change Hard Block1.Position.Y to 1500. The updated Block Destruction
rule is shown in Figure 7-26.

!/ v @D Block Destruction o
Ew‘hen All_:) conditions are valid: AL
Attribute : self NbHit - (E_8)|3 L 16

[¥ @ Change Attribute

Change Attribute: self.Position X To: 640 (3

\

(<]

h IR B 1B

(x Change Attribute

Change Attribute: solf.Position.¥ [..] Te: [1s00 e

|- Otherwise:

Figure 7-26. Updated Block Destruction rule

Make similar changes for Hard Block2 (shown in Figure 7-27) and for Soft Block
(shown in Figure 7-28).

225

226 CHAPTER 7: Creating a Game Menu and a Particles Effect: An Angry Birds-like Game, Part Il

Cx Block Restruction o
| When (_All_:) conditions are valid: - (*
Attribute : self.NbHit - (2 2|3 e &

_'/ ¥ @ Change Attribute

L Change Amribute: self.Position.X | Toi|s0 €

]

h B A

_(¥ @3 Change Attribute

Change Antribute: self.Position.¥ || To: 1500 e

> Othenwise:

Figure 7-27. Updated Block Destruction rule for Hard Block2

!/ v @@ Block Destruction
| When (Al %) conditions are valid: =Ye

Attribute 81 self.NbHit o] & 8z e D&

[v @D Change Attribute o

L Change Amtribute: self.Position.X [..] To: [1000 e J

_ff ¥ @D Change Attribute L]

L Change Artribute: self_Position.y -] To: 1300 [

¥ Otherwise: J

Figure 7-28. Updated Block Destruction rule for Soft Block

Next, open the instance of the Target actor. Drag and drop a Timer behavior into
the Target Destruction rule below the last Particles behavior. Change the
settings of the Timer behavior to “After” “0.5” seconds with “Run to
completion” checked.

Drag and drop a Change Attribute behavior into the Timer and change
Target.Position.X to 1400. Drag and drop a Change Attribute behavior into the
Timer and change Target.Position.Y to 1300. The updated Target Destruction
rule is shown in Figure 7-29.

CHAPTER 7: Creating a Game Menu and a Particles Effect: An Angry Birds-like Game, Part Il 227

* @R Timer]
After 1) 0.5 €| seconds ™ Run to Completion
= @@ Change Attribute (] \|
| Change Attribute: self.Position.X | To! | 1400 e
N S
I'd = I = .- e
[* @D Change Attribute o
! Change Artribute: self.Position.Y To: | 1300 L
\
\ A

Figure 7-29. Updated Target Destruction rule

You use a Timer here because you want to see the particles effects.

Knowing When the Target Has Been Destroyed

You will need another game attribute in order to know when the target has been
destroyed. Create a new Boolean game attribute named “TargetDestroyed.”

Add a new Change Attribute behavior into the Timer you just created and
change game.TargetDestroyed to true, as shown in Figure 7-30.

(= aﬂ_ CIl.illQE At.;ribute 6 j

| Change Attribute: game.TargetDest.. To: true L3

Figure 7-30. TargetDestroyed is set to true

You will now know when the target has been destroyed; this indicates that it’s
time to move to the next level and reposition the actors on the scene per their
next level coordinates. Let’s do that.

Still in the instance of the Target actor, create a new rule named “Level Up” that
will meet the following two conditions:

“AII”
“Attribute” “game.TargetDestroyed” is “true”
“Attribute” “game.Change Projectile” is “true”

Add the condition for the Change Projectile to be true in order to reset the scene
when the projectile goes back to the slingshot.

Drag and drop a Change Attribute behavior and change game.WhatLevel to
game.WhatLevel+1. This moves the level up.

Next, you will reposition the target. But before doing that, you need to ensure
that the target has no momentum movement. This would be a movement from

228

CHAPTER 7: Creating a Game Menu and a Particles Effect: An Angry Birds-like Game, Part Il

the previous scene. As you will re-use this for other blocks, | will show you how
to create a custom behavior.

Creating a Custom Behavior

Basically, to ensure that the target is not moving, you will reset to 0 all velocity
(linear and angular) as well as the rotation angle.

In the Level up rule, create a new group named “No Movement.” Use Change
Attribute behaviors to set the following (shown in Figure 7-31):

Self.Motion.Linear Velocity.X to 0
Self.Motion.Linear Velocity.Y to 0
Self.Motion.Angular Velocity to 0
Self.Rotation to 0

U .
[*@» No Movement o)

o/

[~ Change Attribute

L Change Attribute: self.Motion.Line... Te: 0 e

|f v @ Change Attribute

| Change Attribute: self.Motion Line.. To: |0 e
A\

(<]

(= @D Change Attribute

Change Attribute: self. Motion.Angu. .. Te: |0 e

(]

(<]
N O N U W A e

3
[*@P Change Attribute

Lcmngu Artribute: self.Rotation P e

Figure 7-31. No movement

Now, click the Custom tab in the Behaviors library. Drag the No Movement
group over to the Behavior library, as shown in Figure 7-32.

Library ("Behaviors | Images = Sounds)
Standard Pro Plug-Ins

&) No Movement

Figure 7-32. No Movement custom behavior

That’s it! You have created your first custom behavior. You will use this behavior
later.

CHAPTER 7: Creating a Game Menu and a Particles Effect: An Angry Birds-like Game, Part Il

Positioning the Target on the New Level

In the Level up rule, drag and drop a Change Attribute behavior and change
Target.Position.X to tableCellValue(game.Target, game.WhatlLevel, 1).

Drag and drop another Change Attribute behavior and change Target.Position.Y
to tableCellValue(game.Target, game.WhatlLevel, 2).

The updated Level up rule is shown in Figure 7-33.

P
[7 @D Levelup (]
| When | All 3 conditions are valid: SIE
Attribute B game.Targ.. | Is (true ¥ =&
Attribute s game.Chan | 15 true ¥ =) (e
F .- 3 = =\
[* @D Change Attribute o)
Change Aftribute: game WhatLevel To: | game WhatLevel-| €
P
et @@ No Movement
- Ex ar
¥ & Change Attribute
[¥ CD g PN tableCeliValuel game.Target game whatlevel)l X |
h ibute: ! To: <
L Change Atribute self.Position.X o tableCellValuelg: € n s e -
= = Expression Editor
Al O- | ange Attribute
[— s - [0 gametarge “amewnaieve 2] (£ 2D
Change Attribute: self.Position.¥ .| To: tableCeliValueig: €

t
\ P Otherwise:

Figure 7-33. Updated Level up rule
One last modification on the Target instance: you need to reset the
TargetDestroyed attribute at the start of each game.

Drag and drop a Change Attribute behavior into the Target instance and change
game.TargetDestroyed to false, as shown in Figure 7-34.

| Revert to Prototype | | Create Group || Create Rule
foz : y)
[¥ @D Change Attribute o
!\ Change Attribute game.TargetDest... waf TE .’;alsd _IQG_)l

Figure 7-34. Resetting the Target Destroyed attribute

Replacing the Blocks

Let’s modify the hard and soft blocks so they reposition themselves after the
target is destroyed.

229

230

CHAPTER 7: Creating a Game Menu and a Particles Effect: An Angry Birds-like Game, Part Il

Open the instance Hard Block1 in the Actor Editor. Create a new rule and
rename it “Level Up.” The triggers for this rule are the two attributes
TargetDestroyed and Change Projectile set to true. So modify the conditions to:

“AII”
“Attribute” “game.TargetDestroyed” is “true”
“Attribute” “game.Change Projectile” is “true”

Then, drag and drop a Timer and change the settings to “After” “1” seconds
with “Run to Completion” checked. You use a Timer before re-positioning the
blocks to ensure that the projectile has enough time to fly out of the scene. If
you don’t wait, a collision may occur that could mess your gameplay.

Now drag and drop the No Movement custom behavior into the Timer.
Drag and drop two Change Attributes into the Timer and change:

Hard Block1.Position.X to tableCellValue(game.Hard Block1,
game.WhatLevel, 1)

Hard Block1.Position.Y to tableCellValue(game.Hard Block1,
game.WhatLevel, 2)

You will also need to reset the number of hits for the block. Drag and drop a
Change Attribute behavior and change Hard Block1.NbHit to O.

The Level Up rule for Hard Block1 is shown in Figure 7-35.

CHAPTER 7: Creating a Game Menu and a Particles Effect: An Angry Birds-like Game, Part Il 231

[~ @ Levelip)
| When | All_ 3 conditions are valid: =) (%
Artribute : ga;ﬁnfl‘.-mj,, | b5 (true * G LE]
Attribute s game.Chan ...| 15 (true . =) ()
Y@ Timer [x]
After 1) |1 | €| seconds ™ Run to Completion

(> @@ No Movement

o o

[x]
A GBS B N B

(v @@ Change Attribute

L Change Attribute: self Position.X To: tableCellValuelg: €|

(v @@ Change Attribute

L Change Attribute: celf Position.Y - To: tableCelivalue(g: 6‘_
(v Change Attribute o
L Change Attribute: self . NbHit || ToifO €
A J

P Otherwise:

Figure 7-35. Level Up rule for Hard Block1

Open Hard Block2 in the Actor Editor. Create a new rule named “Level Up.”
Modify the conditions area to:

“A"!!
“Attribute” “game.TargetDestroyed” is “True”
“Attribute” “game.Change Projectile” is “True”

Then, drag and drop a Timer and change the settings to “After” “1” seconds
with “Run to Completion” checked. Now drag and drop the No Movement
custom behavior into the timer. Drag and drop two Change Attributes into the
timer and change:

Hard Block2.Position.X to tableCellValue(game.Hard Block2,
game.WhatLevel, 1)

Hard Block2.Position.Y to tableCellValue(game.Hard Block2,
game.WhatLevel, 2)

Drag and drop a Change Attribute behavior and change Hard Block2.NbHit to 0.

Repeat the same steps for the Soft block instance. Create a new rule named
“Level Up.” Modify the conditions area to:

“A”!!

232

CHAPTER 7: Creating a Game Menu and a Particles Effect: An Angry Birds-like Game, Part Il

“Attribute” “game.TargetDestroyed” is “true”
“Attribute” “game.Change Projectile” is “true”

Then, drag and drop a Timer and change the settings to “After” “1” seconds
with “Run to Completion” checked. Now drag and drop the No Movement
custom behavior in the timer. Drag and drop two Change Attributes into the
timer and change

Soft Block.Position.X to tableCellValue(game.Soft Block,
game.WhatLevel, 1)

Soft Block.Position.Y to tableCellValue(game.Soft Block,
game.WhatLevel, 2)

Drag and drop a Change Attribute behavior and change Hard Block2.NbHit to 0.

The last steps are to take care of the projectiles.

Modifying the Projectiles to Start a New Level

You will use the end of the re-positioning of the projectile to finish resetting your
parameters.

Open the instance of Projectile in the Actor Editor. Expand the Attributes reset
rule located in the Back to Position rule.

Drag and drop a Change Attribute behavior into the Attributes reset rule and
change game.TargetDestroyed to false.

Within the Back to Position rule, create a new rule that you will position on top
position. The condition is “Attribute” “TargetDestroyed” is “true.” Then drag
and drop a “Change Attribute” behavior in this rule and change
game.Attemptleft to 4. This will reset the number of attempts back to 4 when
you change levels.

The last modification you need make is to delay the repositioning because
putting the projectile back to its original position will reset the attributes. You
need to have the necessary time to reposition all the blocks.

Drag and drop a Timer behavior into the Back to Position rule and change the
settings to “After” “0.2” seconds with “Run to Completion” checked. Next, drag
and drop the rule and two behaviors into the Timer, as shown in Figure 7-36.

CHAPTER 7: Creating a Game Menu and a Particles Effect: An Angry Birds-like Game, Part Il

:f v @P Back to Position (] =)
' When | All 3 conditions are valid -1 (*
Attribute & game.Chan... | 18 (true 3 =i+
(v @ Timer o)
After +) 0.2 :6 seconds # Run to Completion
(* @D Rule o)
When | All &) conditions are valid: =) (¥
Auribute s game.Targ... | 18 true : -l
(¥ @D Change Attribute o)
‘\ Change Attribute: game Attemptieft To: |4 [J
'\D Otherwise:)
~ . -
[¥ @3 Change Attribute []
Change Attribute: self.Position.X To: | game.InitialProje €
[¥ @D Change Attribute (]
Change Attribute: self.Position. Y [..] To: [game.nitiaiProje| €
| A /

Figure 7-36. Reset the number of attempts left after a level up

Also, you need to replace the interpolate behaviors in the Back to position rule
because they could trigger an unwanted collision with blocks when going back
to slingshot position. You will use Change Attribute behaviors instead.

Remove the two Interpolate behaviors from the Back to Position rule. Drag and
drop two Change Attribute behaviors and change the settings to the following
(shown in Figure 7-37):

Projectile.Position.X to game.lInitialProjectileX
Projectile.Position.Y to game.InitialProjectileY

Last, you need to modify the dummy projectile. It will re-appear when the
number of attempts is reset.

Open each of the dummy projectile instances and expand the Otherwise section
of the existing rule. Drag and drop a Change Attribute behavior in the Otherwise
section and change Dummy Projectile.Color.Alpha to 1. This will make the trick
work.

Hit the Preview button to play with the projectile.

233

234

CHAPTER 7: Creating a Game Menu and a Particles Effect: An Angry Birds-like Game, Part Il

You can open the file CanonShowPartII-step3.gameproj located in the folder
Chapter7_Files.

Adding a Gool Menu

In the last section of this chapter, you will create a very cool sliding menu. You
will limit it to three levels, with each level displayed on one page. But you can
have many more levels on a page and as many pages as you want. In addition,
only the first level will be unlocked and you will need to win the level to unlock
the following levels.

Creating the Menu Scene

Create a new scene named “Menu” and position it before the Initial Scene, as
shown in Figure 7-37.

[-MeHa] CanonShowPartll-step4.gameproj
[<>]) /A 5. B>
Back/Forward Home Scenes Tables Preview

—_—
Project Info Scenes | Actors Tables

Menu Initial Scene

Figure 7-37. Menu scene

Double-click the Menu scene to open the Scene Editor.

As you are working on an iPhone Landscape project, the size of the screen is
480 x 320. As you want to have three pages of menu, you will need to change
the width to 1440.

Display the scene attribute and change Width to 1440, as shown in Figure 7-38.

CHAPTER 7: Creating a Game Menu and a Particles Effect: An Angry Birds-like Game, Part Il

Inspector Game -SCFE“
~ Auributes | Layers
Name Menu text
Time 0 real
v Size size
Width 1440 real
Height 320 real
Wrap X 2 boolean
Wrap Y boolean
» Gravity point
» Color N color
» Camera rect
» Autorotate attributes

Figure 7-38. Menu scene attributes

Managing Unlocked Levels

In order to manage levels, you will use an integer game attribute that will contain
the maximum level unlocked. By default, it will start at one. Then during the
game, every time you do a level up, you will check that the new WhatLevel
attribute is higher than MaxLevel. If this is the case, you will replace the value of
MaxLevel with the value of WhatLevel.

On the Menu Scene, you will use an actor to display either the level number of
the box or a red cross if the level has not been unlocked yet. The level number
of the box will be an actor attribute with a different value per instance on the
scene.

Let’s do all this!

Create a new integer game attribute named “MaxLevel.” The default value is 1.
Open Initial Scene in the Scene Editor. Open the target instance and locate the
increment of WhatLevel in the Level Up rule. Just below this increment, create a
new rule with the condition “Attribute” “game.WhatLevel” “>”
“game.LevelMax.” Then drag and drop a Change Attribute behavior to the rule
and change game.MaxLevel to game.WhatLevel, as shown in Figure 7-39.

235

236

CHAPTER 7: Creating a Game Menu and a Particles Effect: An Angry Birds-like Game, Part Il

— -
[@ Levelup o)
BB, e =
| When (_All %) conditions are valid: DG
Attribute : game.Targ... .| i85 (true =&
Attribute ' game.Chan... w15 (true o\
(x @@ Change Attribute (] =
|\ Change Attribute: game. WhatLevel ... To: gameWhatlevel € J
[~ R B
| When (Al %) conditions are valid: - [+
Attribute : game.What... | L= %) game MaxLevel e o
(¥ @3 Change Attribute [x]
| Change Autribute: game.MaxLevel To: | game.WhatLevel | &
\ P Otherwise: A

Figure 7-39. MaxLevel update

Next, create a new actor named “BoxLevel.” Double-click this actor to open it in
the Actor Editor. Create an actor attribute of type integer named “Level.”

Create a new rule with the condition “Attribute” “BoxLevel.Level” “<”
“game.MaxLevel.” Drag and drop a Display Text behavior and select
BoxLevel.Level as an attribute to display. Change the size to 60.

Expand the Otherwise section of the rule and drag and drop a Display Text
behavior. Type a capital X letter to display. Change the size to 60 and the color
to red.

The rule is shown in Figure 7-40.

CHAPTER 7: Creating a Game Menu and a Particles Effect: An Angry Birds-like Game, Part Il

e =N
[Y@ Rule)
:whcn All_+) conditions are valid: =) ()
Attribute $ self.Level | L& P game.MaxLevel e =)i*
P :
(v @» Display Text (<]
Text: | self.Level e
Align: |= = Wrap inside actor
Font: | Arial +] size: [60 | [5 Color: | mumm
¥ Otherwise:
- — - -
(v @3 Display Text []
Text: | X (3
Aign: | = = (= Wrap inside actor
Fon: | Arial + | Size: 60 | || Color: | mm—|

\
X,

Figure 7-40. What content to display for Level box

Position three instances of the BoxLevel actor on the Menu scene, as per

Figure 7-41. Positioning the boxes

Open each instance of the actor on the scene and change the level attribute
from one to three, starting from left to right.

Next, you will implement the sliding effect.

237

238

CHAPTER 7: Creating a Game Menu and a Particles Effect: An Angry Birds-like Game, Part Il

Implementing the Sliding Effect

To implement the sliding effect, you will need two actors. Basically, the first one
will register the finger movement and the second one will control the camera
based on the data collected from the first actor.

Touch Actor

The Touch actor will be used to register the finger movements. It will be made
invisible on the scene.

Create an actor named “Touch.” Drag and drop an instance of the Touch actor
on the scene and double-click the instance to open it in the Actor Editor. Click
the lock icon to unlock the instance.

Create a new rule with the condition “Actor receives event” “mouse button” is
“down.” This will detect that the finger has been positioned on the screen.
Contrary to the previous chapter, you don’t use Touch to detect the finger
touch. You do use the mouse button detection because this gives you the
possibility to detect the touch anywhere on the screen, not related to position of
the actor.

Then drag and drop a Change Attribute behavior into the rule and change
Touch.Position.X to Device.Mouse.Position.X. Then drag and drop a Constrain
Attribute behavior into the rule and change Touch.Motion.Linear Velocity.X to
10*(game.Mouse.Position.X — Touch.Position.X). Those two behaviors will
ensure that as long as the finger is on the screen there is no inertia. It moves
with the finger.

Last, drag and drop a Constrain Attribute behavior into the rule and change
Touch.Motion.Linear Velocity.X to Touch.Motion.Linear Velocity.X*0.95. This last
behavior will make an inertia that will slow down by itself with the 95% reduction
(*0.95).

The rule is shown in Figure 7-42.

CHAPTER 7: Creating a Game Menu and a Particles Effect: An Angry Birds-like Game, Part Il

(@ Rule]
| When | All_3) conditions are valid: =1+
| Actor receives event $ [mouse button) is [down =) %)

Change Atribute: | self. Position.X

[v Change Attribute

To: game.Mouse.Pos € I

(_ ¥ @D Constrain Attribute Qj
Constrain Attribute: self.Motion.Line... [To: 10‘(gnme.l-louse. e J

¥ Otherwise:

(r Constrain Attribute Q)

Constrain Attribute: self.Motion.Line..

] To: self,Mnlinn,‘Limm‘G;

Figure 7-42. Touch rule

One last modification, which is critical, is that this actor should be positioned on

a non-scrollable layer. In the Scene Editor, click the Scene tab to display the

scene attributes inspector. Click the Layers tab, as shown in Figure 7-43.

(Game ["Scene’)

Inspector

Attributes
name

Figure 7-43. Layers inspector

Create a new layer by clicking the + sign in the layer inspector. By default, it will
create a new layer named “Layer 1.” Uncheck the box below “scrollable.”

Expand the background layer, move down to the Touch actor in the layer
inspector to Layer 1, as shown in Figure 7-44.

Layers

scrollable

» Background v

239

240

CHAPTER 7: Creating a Game Menu and a Particles Effect: An Angry Birds-like Game, Part Il

Inspector Game | Scene

Attributes Layers
name scrollable

¥ Background)
BoxLevel
BoxLevel
BoxLevel
¥lLayer 1
Touch

Figure 7-44. Touch in Layer 1

Lastly, open the Touch actor instance in the Actor Editor and uncheck the
Visible box.

CameraGontrol Actor

Let’s work on the CameraControl actor.

Create a new actor named “CameraControl.” Change its color to a vivid green.
This actor will be invisible but it will be helpful when positioning the actor.

Drag and drop an instance of CameraControl on the scene. Try to position the
actor at the center of the scene and reshape the actor to be as small as
possible, as shown in Figure 7-45.

Figure 7-45. Positioning the CameraControl on the scene

CHAPTER 7: Creating a Game Menu and a Particles Effect: An Angry Birds-like Game, Part Il

Click the Camera icon to set up the camera zone. Reduce the camera zone to a
very small zone on the CameraControl actor, as shown in Figure 7-46.

Figure 7-46. Modified camera zone

Go back to the Scene Editor. Double-click the instance of CameraControl actor.
Click the lock icon to unlock the instance.

Drag and drop a Control Camera behavior into the actor.

Next, drag and drop a Constrain Attribute behavior and change
CameraControl.Motion.Linear Velocity.X to - Current Scene. Layers.Layer
1.Touch.Motion.Linear Velocity.X, as shown in Figure 7-47.

{ * @ Constrain Atribute o)

L Constrain Attribute: | selfMotion.Line... |..| To: [-scenc.layer LT €]

éxpresﬂon Editor

= scene.Layer 1.Touch.Motion.Linear Velocity.X n

n insert function: - remove expression

Figure 7-47. Moving the camera

You put a minus sign in front of the velocity value from Touch because you want
the camera to move in the opposite direction of the finger. If you move your
finger from right to left, you want to see what is on the right of the screen
(opposite direction).

241

242

CHAPTER 7: Creating a Game Menu and a Particles Effect: An Angry Birds-like Game, Part Il

Now you will add boundaries to the left and right sides. It will be a minimum of
240 and a maximum of (1440-240) for the x-axis value. Drag and drop two
Constrain Attribute behaviors and change:

CameraControl.Position.X to
max(240,CameralControl.Position.X)

CameraControl.Position.X to
min(1200,CameralControl.Position.X)

This is shown in Figure 7-48.

[» @D Control Camera 0)
| Control Camera]
L J
= : z =
(» @ Constrain Attribute e)
| Constrain Attribute self.Mation.Line... | TOI -scenelayer LT € 1
AL /
I P g ™
[* @3 Constrain Attribute [
| Constrain Attribute: self.Position.X | TO! max(240,self.Po: & ‘
— J
[‘ = s
[*@> Constrain Attribute [
| Constrain Attribute self.Position. X .| To: min(1200,self.Po € J
=S —

Figure 7-48. CameraControl behaviors

Last but not least, uncheck the visible attribute, which is located in the actor
attribute for this actor.

Enabling Level Selection

You now need a way to be able to click on a box to play an unlocked level. You
will use a very simple trick. When you touch to slide, the Touched and Released
position will not be the same. But if you intend to click a box, the Touch and
Release position will be the same.

Create two game attributes of type real named “TouchedX” and “ReleasedX.”
You will use those attributes to store the value of the Touch and the Release.

Next, open the BoxLevel actor prototype in the Actor Editor.

Create a new rule with the condition “Actor receives event” “touch” is
“pressed.” Then drag and drop a Change Attribute behavior in the rule and
change game.TouchX to devices.Mouse.Position.X, as shown in Figure 7-49.

CHAPTER 7: Creating a Game Menu and a Particles Effect: An Angry Birds-like Game, Part Il

[v@ Rule]
Iw'hen All %) conditions are valid: - (¥
Actor receives event 3 | touch) is | pressed B -
(¥ @D Change Attribute (]
Change Attribute game.TouchX [... To: game.Mouse Pos &
| > Otherwise:

Figure 7-49. Registering the Touch X value

Create a new rule with the condition “Actor receives event” “touch” is
“released.” Then drag and drop a Change Attribute behavior in the rule and
change game.ReleaseX to devices.Mouse.Position.X, as shown in Figure 7-50.

(v@» Rule o)
iwrm: All =) conditions are valid: -) (*
Actor receives event :) | touch i) s | released : =)+
[~ @ Change Attribute o \}
L' Change Attribute: game.ReleaseX To: | game.Mouse.Pos| € J
\ > Otherwise:

Figure 7-50. Registering the Release X value
Next, create a rule that will check when Touch is release if the x positions are
the same and if the level is unlocked.
Create a new rule with the conditions of:
“All”
“Actor receives event” “touch” is “released”

“Attribute” “game.ReleaseX” “=" “game.TouchX”
“Attribute” “BoxLevel.Level” “<” “game.MaxLevel”

Then drag and drop a Change Attribute behavior into the rule and change
game.WhatLevel to BoxLevel.Level. Last, drag and drop a Change Scene
behavior and change the settings to “Go to Scene:” “Initial Scene,” as per
Figure 7-51.

244 CHAPTER 7: Creating a Game Menu and a Particles Effect: An Angry Birds-like Game, Part Il

-~ .
[+ @ Rule o)
| When (Al %) conditions are valid: =l
Actor receives event) | touch $) s [released : -1+
Attribute 3 game Relea. .| (= %) game.Touchx le| -
Attribute : self.Level .| LS %) game.MaxLevel e =S
[» @D Change Attribute LI
Change Attribute: game.Whatlevel i To: | self.Level e J
(v @D Change Scene 0)
Go to Scene: | Initial Scene J
> Otherwise:

Figure 7-51. Launching the level

Let’s finish up this project by adding a Menu button on the initial scene.

Adding a Menu Button on the Initial Scene

Open the Initial Scene in the Scene Editor.
Create a new actor named “Menu.” Change the Color\Alpha to 0.

In the Actor Editor, add a Display Text behavior into the Menu actor and type
“Menu” as text to display.

Next, create a new rule with the condition “Actor receives event” “touch” is
“pressed.” Last, drag and drop a Change Scene behavior into the rule and
select the Menu scenes.

The actor behaviors are shown in Figure 7-52.

CHAPTER 7: Creating a Game Menu and a Particles Effect: An Angry Birds-like Game, Part Il 245

/.

[@D Display Text <] \‘
Text: | Menu €
Align E _E_E | Wrap inside actor
Font: | Arial + | Size: |30 .| Color: | mumm
e
- .
(@ Rue °)
?w‘ncn All_) conditions are valid - *I
Actor receives event) | touch 3) Is (pressed : -1+
-
[¥ @D Change Scene o
Co to Scene: | Menu

\ P Otherwise: }

Figure 7-52. Menu actor behaviors

Last but not least, drag and drop the actor on the Initial Scene at the top right of
the scene.

Hit the Preview button to play with your menu.

You can open the file CanonShowPartII-step4.gameproj located in the folder
Chapter7_Files.

Summary

Whoa! What a long road you just travelled! You build the entire game mechanics
of a game such as Angry Birds. In this chapter, you have:

Created the blocks and target.
Discovered the Particles behavior.

Used tables in GameSalad.
Implemented recycling of actors.
Optimized your performance with tables.

Created a very powerful and advanced menu.

Chapter

Graphics and Sound
Effects: Labyrinth

When | was a kid, video games were not commonly found in households. At that
time, we had other games. Yes, we had non-video games. Ball-in-a-maze
puzzles were very popular; they were available in every drugstore in different
sizes, shapes, and colors (Figure 8-1).

Figure 8-1. Ball-in-a-maze picture from Wikipedia

These games date back to the 19" century. Why am | talking about non-video
games in a book about video games? Well, because in this chapter you will

D. Guerineau, Learn GameSalad for iOS: Game Development for iPhone, iPad, and HTML5
© David Guerineau 2012

248

CHAPTER 8: Graphics and Sound Effects: Labyrinth

transform a retro game into a retro video game. You will implement a Labyrinth
game with GameSalad.

Implementing a Labyrinth game in GameSalad is fairly easy and gives you
unlimited number of games to design. In the previous chapters, you learned
some serious game logic, and you will use this knowledge to lay down the
basics of the Labyrinth game. You will be implementing accelerometer
movements again as well as the Timer behavior.

Then | will show you how to implement some cool lighting special effects using
a few tricks in GameSalad. Lastly, | will cover Sound Import and how to use
sound behaviors to create spatial sound effects.

Creating the Labyrinth Game Project

Start by opening the GameSalad creator. Under New Project, select My Great
Project template and click Edit in GameSalad Creator.

Configure the project info as per Table 8-1.
Table 8-1. Labyrinth Project Info

Title Labyrinth

Platform iPhone Landscape
Description Put the ball in the hole
Instruction Move the phone

Tags

Click File » Save As to save your project. Name it Labyrinth.gameproj.

Creating Actors for the Labyrinth Game
In this game you will use the following actors:

Ball

Background

Wall

CHAPTER 8: Graphics and Sound Effects: Labyrinth

Door
Open Door
Victory Hole

Losing Hole

The Ball is the main actor of the game in the sense that it is the actor controlled
by the player. Because it’s a ball, you will change the collision shape to circle,
which will provide a more realistic collision effect.

Create a new actor and double-click it to open the Actor Editor. Edit the actor
attributes with the parameters in Table 8-2.

Table 8-2. Ball Actor Attributes

Name Ball
Size/Width 20
Size/Height 20
Physics/Density 3

Physics/Restitution 0
Physics/Fixed Rotation Checked
Physics/Collision Shape Circle

Import the image named ball.png located in the chapter_08 folder. Drag and
drop ball.png into the actor.

249

250

CHAPTER 8: Graphics and Sound Effects: Labyrinth

Background

The Background actor is just used to display a background image in your game.

Create a new actor and double-click it to open the Actor Editor. Edit the actor
attributes with the parameters in Table 8-3.

Table 8-3. Background Actor Attributes

Name Background
Size/Width 480
Size/Height 320

Import the wood background.png image located in the chapter_08 folder. Drag

and drop it into the actor.

The Wall actor is used to define the collidable boundaries for your ball. It is
important to change the restitution to 0 to avoid bounciness. In addition, the
walls are fixed position, so you will uncheck the Moveable attribute.

Create a new actor and double-click it to open the Actor Editor. Edit the actor
attributes with the parameters in Table 8-4.

Table 8-4. Wall Actor Attributes

Name Wall
Color/Red 0.6
Color/Green 0.4
Color/Blue 0.2
Physics/Restitution 0
Physics/Moveable Unchecked

CHAPTER 8: Graphics and Sound Effects: Labyrinth

Door

The Door actor is used to add a little bit more complexity to the game. It
prevents access to the winning area. The player will have to perform some steps
to open the door and get access to the winning area.

Create a new actor and double-click it to open the Actor Editor. Edit the actor
attributes with the parameters in Table 8-5.

Table 8-5. Door Actor Attributes

Name Door
Size/Width 5
Size/Height 100
Color/Red 0
Color/Green 0
Color/Blue 0
Physics/Restitution 0
Physics/Fixed Rotation Checked
Physics/Moveable Unchecked
Open Door

The Open Door actor is used as a switch button to open the access to the
victory hole.

Create a new actor and double-click it to open the Actor Editor. Edit the actor
attributes with the parameters in Table 8-6.

Table 8-6. Open Door Actor Attributes

Name Open Door

Size/Width 20

251

252

CHAPTER 8: Graphics and Sound Effects: Labyrinth

Name Open Door
Size/Height 20
Physics/Moveable Unchecked
Victory Hole

The Victory Hole actor acts as the aim for the ball. Your target as a player is to

put the ball in the hole. The actor should be slightly bigger than the ball for good

visual effects.

Create a new actor and double-click it to open the Actor Editor. Edit the actor
attributes with the parameters in Table 8-7.

Table 8-7. Victory Hole Actor Attributes

Name Victory Hole
Size/Width 25
Size/Height 25
Physics/Moveable Unchecked

Losing Hole

To make the game a little bit harder, you will use some traps: holes that make

you lose. These are losing holes.

Create a new actor and double-click it to open the Actor Editor. Edit the actor
attributes with the parameters in Table 8-8.

Table 8-8. Losing Hole Actor Attributes

Name Losing Hole
Size/Width 25
Size/Height 25
Physics/Moveable Unchecked

CHAPTER 8: Graphics and Sound Effects: Labyrinth

Defining the Game Logic with Rules and
Behaviors

Now it’s time to define the game logic. You will re-use rules and behaviors that
have been covered in the previous chapters. This is an excellent opportunity to
review the Timer behavior and the accelerometer usage.

Ball Rules and Behaviors

In order to move the ball, you will use the accelerometer as you did in Chapter 4.
You will implement the four directions. Remember that if you were to publish
this game, you would need to implement the auto-rotate in order to keep valid
movements.

Open the Ball actor in the Actor Editor. Create a new group and name it
“accelerometer.”

Create a new rule and name it “up.” The condition of the rule is
“attribute”“device.Accelerometer.X”“<”“-0.1.” Then drag and drop an
Accelerate behavior and change the settings to:

Direction: 270
Relative to: actor

Acceleration: max(100, min(1400, abs(
device.Accelerometer.X * 1000)

The rule is shown in Figure 8-2.

Cx @D Accelerometer [x]
(@ w)
| When (Al %) conditions are valid: AL

Arntribute : game.Accel... .| (< #)[-001 e S
[+ @ Accelerate o)
Direction: 270 e (, Relative to: | actor 3
Acceleration: | max(100/ € Expression Editor
Ll max(100,min(1400,abs(game.Accelerometer.X *1000))) n -
L
O ey
Cases 6 oot (D
|

Figure 8-2. Up Accelerometer rule

253

254

CHAPTER 8: Graphics and Sound Effects: Labyrinth

The formula will ensure that you will have analog acceleration. It’s linked to the
value of the accelerometer axis, so the stronger you move, the faster it will go.

Repeat the previous steps three more times.

Duplicate the rule you just created by holding the option key while dragging

down the existing rule. Name it “right.” The condition of the rule is
“attribute” “device.Accelerometer.Y”“>"“0.1.” Then drag and drop an

Accelerate behavior and change the settings to:
Direction: 180
Relative to: actor

Acceleration: max(100, min(1400, abs(
device.Accelerometer.Y * 1000)

The rule is shown in Figure 8-3.

(v @ right

When [All 3 conditions are valid:

Attribute v game.Accel... . | = * 0.1

(v @ Accelerate

"

Direction: (180 |[€] =) Relative to: [actor ¢

Acceleration: | max(100| €|

kh Otherwise:

Figure 8-3. Right Accelerometer rule

Create a new rule and name it “down.” The condition of the rule is
“attribute”“device.Accelerometer.X”“>"*“0.1”. Then drag and drop an

Accelerate behavior and change the settings to:
Direction: 90
Relative to: actor

Acceleration: max(100, min(1400, abs(
device.Accelerometer.X*1000)

CHAPTER 8: Graphics and Sound Effects: Labyrinth

The rule is shown in Figure 8-4.

[v @ down o \
1
When (_All 7) conditions are valid: =,
(Attribute) [C gameceel. O |...| G_9[01 E]

(v @D Accelerate o)

Direction: |90 'E (") Relative to: [actor % |
Acceleration: Imax[lOOE’
\ > Otherwise: /

Figure 8-4. Down Accelerometer rule

Create a new rule and name it “left.” The condition of the rule is
“attribute” “device.Accelerometer.Y”“<”*“-0.1”. Then drag and drop an
Accelerate behavior and change the settings to:

Direction: 0

Relative to: actor

Acceleration: max(100, min(1400,
abs(device.Accelerometer.Y*1000)

The rule is shown in Figure 8-5.

255

256

CHAPTER 8: Graphics and Sound Effects: Labyrinth

(v @D left o)

When (_All %) conditions are valid: SIE)

(Attribute *)| game.Accel... |..| (< *#)[-0.1 €

('m Accelerate (%) \
Direction: 0 |e] (9 Relativeto: [actor :

Acceleration: rmax(looj e

\P Otherwise: /

Figure 8-5. Left Accelerometer rule

TIP: Should you want to design a game that will be published, do not
forget to handle screen rotation as explained in Chapter 4.

Next, you need to ensure that the ball is bouncing off the Wall and Door actors.
Drag and drop a Collide behavior and change the settings to Bounce when
colliding with “actor of type” “Wall.” Repeat the operation by dragging and
dropping a second Collide behavior, but change the settings to make it collide
with “actor of type” “Door” as per Figure 8-6.

(& .
v @D Collide o)
Bounce when colliding with: | actor of type: 3+ | | wall 3
N ¥
e .
v @ Collide o)
Bounce when colliding with: | actor of type: :| | Door s
A : i

Figure 8-6. Collision rules for Ball

CHAPTER 8: Graphics and Sound Effects: Labyrinth

Background Rules and Behaviors

The background contains a couple of Change Attribute behaviors that will be
used to perfectly position the actor at the center of the screen.

Open the Background actor in the Actor Editor. Create a new group and name it
“Position the background.” Drag and drop a Change Attribute behavior in the
group and change Background.Position.X to 240. Repeat the operation with an
additional Change Attribute behavior and change Background.Position.Y to 160.
The group is shown in Figure 8-7.

(» @» Position the background [%) R
(v @ Change Attribute (])
Change Attribute: self.Position.X .| To: (240 el
& ' ' 4
- @» Change Attribute (] =)
Change Attribute: self.Position.Y - To: 160 el
A W

Figure 8-7. Position the background

Open Door Rules and Behaviors

You need to open the door that blocks the access to the winning hole. The
player has to move the ball over a button that will trigger the opening of the
door. The button works as an on/off button. This means that if the ball touches
the button, it will open the door. If the ball touches the button again, it will close
the door, and this cycle will continue.

In the Open Door actor, you will detect the collision with the Ball actor. This will
trigger a change in a Boolean game attribute. Depending on the value of the
previous attribute, the door will move from one position to the other. But, in
order to have time to move the ball off the button before it hits the button again,
you need to add a timer of 2 seconds. If you don’t use this timer and let the ball
keep moving over the button, it will keep changing state from true to false so
quickly you won’t even notice it by eye.

Create a new game attribute of type Boolean and name it “Open Door.” Open
the Open Door actor in the Actor Editor. Create a new actor attribute of type
Boolean and name it “Timer.”

257

258

CHAPTER 8: Graphics and Sound Effects: Labyrinth

Create a new rule and name it “Change to False.” Apply “All” to the following
conditions:

“Attribute” “game.OpenDoor” is “true”

“Actor receives event” “overlaps or collides” with “actor of
type” 113 ba””

“Attrlbute” “Open DOOI’.TImeI’” “_» uo!!

Then drag and drop a Change Attribute behavior and change game.OpenDoor
to 0.

Drag and drop a second Change Attribute behavior and change Open
Door.Timer to 1.

Next, drag and drop a Timer behavior and change the settings to “After” “2”
seconds with “Run to completion” checked.

Lastly, drag and drop a Change Attribute behavior into the Timer and change
Open Door.Timer to 0.

The complete rule is shown in Figure 8-8.

CHAPTER 8: Graphics and Sound Effects: Labyrinth 259

- @I» Change to False o)
When (_All 3 conditions are valid: oW
Attribute 3) game.Open... |..| is (true s
| Actor receives event :) (overlaps or collides 3) with (actoroftype) (Ball
(Auribute %) self.Timer [.] =90 e
(v @ Change Attribute o)
Change Attribute: game.OpenDoor] J To: |0 € |
I= =l 4
- @ Change Attribute (]
Change Attribute: _self.Timer_-]_‘ Te: (1 --Q]
A =
[Y@ Timer o)
[After) |2 : seconds @ Run to Completion
(v @» Change Attribute [} \
L Change Attribute: self.Timer u To: 0 ﬂJ
A 4
\ > Otherwise: Y,

Figure 8-8. Change to False rule

Duplicate the rule by dragging it down while pressing the Option key. Name it
“Change to True.” You will basically reverse the results. Apply “All” to the
following conditions:

“Attribute” “game.OpenDoor” is “false”

“Actor receives event” “overlaps or collides” with “actor of
type” 13 ba””

“Attrlbute” “Open DOOf'.TImeI’” “_» uo!l

Then drag and drop a Change Attribute behavior and change game.OpenDoor
to 1.

Drag and drop a second Change Attribute behavior and change Open
Door.Timer to 1.

260 CHAPTER 8: Graphics and Sound Effects: Labyrinth

Next, drag and drop a Timer behavior and change the settings to “After” “2”
seconds with “Run to completion” checked.

Lastly, drag and drop a Change Attribute behavior into the timer and change
Open Door.Timer to 0.

The complete rule is shown in Figure 8-9.

(v @ Change to True o)
When ([All %) conditions are valid: =) ()
Auribute ¢)| gameOpen.. |..|is (false
(Actor receives event) (overlaps or collides %) with (actor of type 3 (Ball
_ Attribute $) [selfTimer _I (=_9o l?]
(¥ @ Change Attribute Q)
L Change Attribute: game.OpenDoor u To: |1 6]
| y
(v Change Attribute o)
Change Attribute: | self.Timer |T To: [1 —G_|
| L)
[v @ Timer Q)
| After 3 2 iﬂ seconds Run to Completion
(¥ @ Change Attribute [>] \
L Change Attribute: self. Timer D To: |0 ﬂJ
S 4
\ > Otherwise: Y.

Figure 8-9. Change to True rule

Door Rules and Behavior

Assume that the door is located in a top position on the screen and will open by
going down (you could easily adapt the settings if you want it to go up or left or
right). Store the initial value of the Y position in an actor attribute and interpolate
back and forth the Y position value minus the height of the actor.

CHAPTER 8: Graphics and Sound Effects: Labyrinth

First, create a new actor attribute of type real and name it “InitialY.”

Next, drag and drop a Change Attribute behavior and change Door.InitialY to
Door.Position.Y as per Figure 8-10.

(¥ @D Change Attribute (%)

L Change Attribute: self.Initialy To: | self.Position.Y '6__5

Figure 8-10. Storing the initial Y position value
Then, create a new rule and name it “OpenDoor is True.” This rule will be used
to open the door. Apply “All” to the following conditions:
“Attribute” “game.OpenDoor” is “True”
“Attribute” “Door.Position.Y” “=" “Door.InitialY”
The second condition will check that the door is closed.

Drag and drop an Interpolate behavior and change the settings to
“Door.Position.Y” “Door.InitialY — Door.Size.Height” “0.5” “Linear.”

The complete rule is shown in Figure 8-11.

_(v @ OpenDoor is True o)
| When (_ All) conditions are valid: =/ \E
Attribute $)| gameopen. [..|is (true :
Attribute) self.Position.Y _— (= %)|self.nitialy "]
f v @ Interpolate (] \
Interpolate Attribute: self.Position.Y |_| To: | self.InitialY-self.! _6'
Duration: 0.5 e Function: | Linear s
\ » Otherwise: J

Figure 8-11. OpenDoor is True rule

Last, create a new rule and name it “OpenDoor is False.” This rule will be used
to close the door. Apply “All” to the following conditions:

“Attribute” “game.OpenDoor” is “False”

261

262 CHAPTER 8: Graphics and Sound Effects: Labyrinth

“Attribute” “Door.Position.Y” “*” “Door.InitialY”

The second condition will check that the door is closed.

Drag and drop an Interpolate behavior and change the settings to
“Door.Position.Y” “Door.InitialY” “0.5” “Linear.”

The complete rule is shown in Figure 8-12.

- @® OpenDoor is False (%))

When | All 7 conditions are valid: =)+
| Attribute | game.Open... | is (false B
(Attribute +) self.Position.Y | # 7) self.nitialY '_ 6
(v @ Interpolate Q \

Interpolate Attribute: ' self.Position.Y I| To: | self.InitialY G
Duration: 0.5 9 Function: | Linear : |
Q Otherwise: J

Figure 8-12. OpenDoor is False rule

Victory Hole Rules and Behaviors

The final step in this part is to reset the game when the ball touches the Victory
Hole actor. For a real game, you would change scene to the next level.

Create a new rule with the condition “Actor receives event” “overlaps or
collides” with “actor of type” “ball.” Then drag and drop a Reset Game behavior
into the rule as per Figure 8-13.

CHAPTER 8: Graphics and Sound Effects: Labyrinth

(v @ Rule Q)
When (Al +) conditions are valid: =-)(+)
_Actor receives event 5 | overlaps or collides with | actor of type %) (Ball
(v @D Reset Game []
L Reset game
\b Otherwise: Y,

Figure 8-13. Victory Hole rule

Designing the Game Area by Laying Out the

It’s time to lay out the scene. First, drag and drop the Background actor and try
to position it approximately in the center of the scene.

Then you will use multiple instances of the Wall actor in different sizes.
GameSalad allows you to have multiple instances of an actor with different sizes
but still sticking to the prototype for the rules and behaviors.

Drag and drop the Wall actor on the scene. With the mouse pointer positioned
on the side of the actor (on the white circle) as per Figure 8-14, press click and

maintain the click to resize the actor.

Figure 8-14. Resizing an actor

264 CHAPTER 8: Graphics and Sound Effects: Labyrinth

Change the size to the minimum width and match the height to the height of the
scene. Then move the wall to the left side of the scene as per Figure 8-15.

Figure 8-15. Positioning the first wall

Now repeat the operation in order to have a labyrinth similar to Figure 8-16.

CHAPTER 8: Graphics and Sound Effects: Labyrinth 265

Figure 8-16. Labyrinth layout

Lastly, drag and drop the Ball, Victory Hole, Open Door, and Door actors on the
scene as per Figure 8-17.

Figure 8-17. Finished layout

Try the game on your device.

266

CHAPTER 8: Graphics and Sound Effects: Labyrinth

Implementing Lighting Special Effects

LightFX are known as special effects with lighting. They are commonly used in
video games to add more interactivity or enhance the player experience.

You can start directly at this stage by opening the file Labyrinth-
step1.gameproj.

I will show you a very cool trick now. This is what | call “The light is off.” Imagine
the labyrinth game with only a small amount of light around the ball; the scene is
completely dark. Of course the light will have to follow the ball and you will
discover the area via the ball. If you already have a labyrinth game for iOS, you
know that this is a common feature.

The trick is very simple. You will use a black image with a transparent disk at its
center. The size of the disk depends on how difficult you want to make the
game. Also, the size of the image should be twice the size of the scene. The
center of the disk will be constrained to the position of the ball. With this size,
the entire scene will be covered wherever the ball is going.

You will use some game attribute in order to store the position of the ball.
Create two game attributes named “BallX” and “BallY.”

Open the Ball actor in the Actor Editor. Drag and drop a Constrain Attribute
behavior and change game.BallX to Ball.Position.X. Repeat the same operation
with BallY and Position.Y as per Figure 8-18.

[v @ Constrain Attribute) \
Constrain Attribute: game.BalX .| To: self.Position.X G J
- @D Constrain Attribute Q \
Constrain Attribute: game.BallY [..| To: [seif.positiony | G J

Figure 8-18. Constraining the ball

Import the image named Light 0ff.png located in the Chapter_8 folder. Create
a new actor and drag and drop the image on the new actor. Rename the actor
“Light_Off.”

Open the actor in the Actor Editor and drag and drop a Constrain Attribute
behavior with the settings “Light_Off.position.X” “game.BallX.” Repeat the
operation with Light_Off.position.Y and game.BallY.

CHAPTER 8: Graphics and Sound Effects: Labyrinth

Position the Light_Off actor on the scene.

Try the game on your device.

Implementing Sound Special Effects

SoundFX are known as special effects with sounds. You will use sounds to
make your game more interactive and more lively. It will also provides an
additional level of information to the player.

You can start directly at this stage by opening the file Labyrinth-
step2.gameproj.

In order to make the game more realistic, you will use a small sound special
effect—nothing fancy, just a small sound when the ball hits a wall. This will
illustrate how to use the Play Sound behavior.

| will focus on the Play Sound behavior here, but Play Music works in much the
same way. There are additional behaviors called Pause Music and Resume
Music that | will talk about a little bit later.

NOTE: Play Sound vs. Play Music

When the sound is less than 30 seconds, you can use Play Sound.
When the sound is longer than 30 seconds, you should use Play
Music. Keep in mind that GameSalad will play only one music clip at a
time but can play multiple sounds simultaneously.

Similar to images, you need to import sounds into your library in order to be able
to use them.

Click the Sounds tab in either the Actor Editor or Scene Editor as per
Figure 8-19.

267

CHAPTER 8: Graphics and Sound Effects: Labyrinth

Behaviors = Images

Purchased

+ - Purchase Sounds... |

Figure 8-19. Sounds tab

Click on the + sign to import a new audio file. Select the file named brick.mp3 to
import it. Then you need to select if you want to import the file as music or
sound as per Figure 8-20.

Import “brick.mp3*

The file "brick.mp3" needs to
be imported.

Best for audio files Best for short

longer than 30 audio files that will
seconds be played often
Cancel | Import As Music | i Import as Sound |

Figure 8-20. Music or Sound import

Select “Import as Sound.”

Next, create a rule within the Ball actor to play the sound every time there is a
collision with a wall. Open the Ball actor in the Actor Editor. Create a new rule
and the condition will be “Actor receives event” “overlaps or collides” with
“actor of type” “Wall.” As per Figure 8-21, drag and drop a Play Sound behavior
into the rule and change the settings to Sound: “brick” and Volume: “0.50” with
“Run to completion” checked.

CHAPTER 8: Graphics and Sound Effects: Labyrinth 269

(v @ Rule o)

[When (_ All 3 conditions are valid: =JE

- &

Actor receives event) (overlaps or collides %) with(actor of type %) (Wall

(v @ Play Sound (] \
Sound: | brick + | L) Loop 12[Run to completion
Volume: [0.5 le] = — (¥ Positional Sound
pitch: |1 -6-| WAL L [_| Velocity Shift
\P Otherwise: A

Figure 8-21. Play Sound rule

| recommend using Positional Sound as often as you can. The Positional Sound
feature adds a great deal of interactivity. If the actor playing the sound is on the
left side of the screen, it will give the impression that the sound is coming from
the left, which is very nice effect. In addition, if the actor moves while playing the
sound, the sound will “move” with the actor.

You can try the game on your device.

MP3 or other formats

GameSalad supports multiple sound formats such as Caf, ogg, mp3,
and m4a.

About Pause Music and Resume Music:

If you implement a Pause function in your game and have background
music, you may want to pause the music and resume it after the player
unpauses the game. In order to do so, you will need to use the Pause
Music and Resume Music behaviors.

270

CHAPTER 8: Graphics and Sound Effects: Labyrinth

Summary

In this chapter, you reviewed the basics of creating a new project and defining
the gameplay. You also learned some very powerful and simple special effects
that definitely spice up the game and the player experience.

You have:
Reviewed GameSalad new project creation.

Reinforced the use of rules and behaviors to define the
gameplay.

Learned how to implement lighting special effects.

Learned how to use sounds behavior to implement sound
special effects.

Part 3

Prepping for the
App Store:
Polishing,
Publishing, and
Promoting Your
Game

Chapter

Bonuses, Game Center,
and i1Ad: Break a Wall

In this chapter, you will finalize the game you started in Chapter 4. | have
prepared a file named BreakaWallPartII.gameproj that includes background
images and actor images. These improvements won’t be covered in this
chapter. Refer to previous chapters for a refresher on how to implement
graphics and sounds.

In this chapter, | want to focus on the finalization of a few elements before you
submit your game to the App Store. You will learn how to:

Create a Start Screen.

Implement a scoring system.

Add game interactivity with in-game bonuses.
Post scores on Game Centerleaderboard.
Monetize your game with iAd.

You can download my version of Break A Wall, used in this chapter and Chapter
4 to illustrate game-building concepts, for free at

http://itunes.apple.com/us/app/break-a-wall/id496154190?1s=18mt=8

Have fun and try to rank first on the leaderboard!

D. Guerineau, Learn GameSalad for iOS: Game Development for iPhone, iPad, and HTML5
© David Guerineau 2012

http://itunes.apple.com/us/app/break-a-wall/id496154190?ls=1&mt=8

274

CHAPTER 9: Bonuses, Game Center, and iAd: Break a Wall

Designing the Start Screen

Every game starts with a Start Screen, also called the menu page. | am not
talking about the Splash Screen that may or not appear as the first screen when
you launch the game. A Splash Screen will not offer interactivity with the player;
it’s just a way to promote your brand.

The Start Screen is a very important step in the player experience as it will guide
him/her through different choices. The most obvious choice will be to play the
game, of course, but you may provide some instructions, too.

Note about instruction:

Apple loves apps that are intuitive. Nevertheless, some games require
a level of instruction to play the game or to understand the rules.

The following are the guidelines that | systematically apply to my
games:

1) If your game is very simple and very intuitive to use, don’t add
instructions. Keep it straightforward.

2) If your game is simple and intuitive but you would like to give non-
intuitive additional instructions, create a scene to contain the
instructions and make it accessible from the menu.

3) If your game requires some learning, use the first levels or create an
interactive scene for the player to learn the game. You may also add
instructionsinto the game when a new situation arises.

To design a Start Screen in GameSalad, you will create a specific scene. This
scene will be the first one in the order (from left to right).

Open the file BreakaWall-partII-stepi.gameproj in GameSalad.

Create a new scene and name it “Home.” Drag and drop the scene in the first
position (the very left side) as shown in Figure 9-1.

CHAPTER 9: Bonuses, Game Center, and iAd: Break a Wall

o= ; &
O I o > @ € «w @
Back/Forward Home Scenes Tables Preview Web Preview Publish Feedback Help
[ProjectInfo ["""Scenes | Actors Tables
E .
Home Level L End [Pause]

Figure 9-1. Home scene

Placing the Homescene in this location will ensure that it will be the first scene
when you start the game.

Note about Splash Screens:

As you will see in Chapter 11, you can create a customized splash
screen during the publishing process, but this is limited to a static
image. By default, it will be a GameSalad Splash Screen. A trick is to
replace the Splash Screen with a black image and have an animation
in the first scene that acts as an animated Splash Screen.

Creating the Actors

In this section, you will create a few additional actors for use on your Home
screen. A Background actor will be used to contain the background image. You
will also create a couple of buttons to add controls for the player.

Create a new actor and double-click it to open the Actor Editor. Edit the actor
attributes with the parameters in Table 9-1.

Table 9-1. Home Attributes

Name Home

Size/Width 768

Size/Height 1024

275

276

CHAPTER 9: Bonuses, Game Center, and iAd: Break a Wall

Click the Images tab to display the images resources and drag and drop
Home.png into the actor.

Start Game

Create a new actor and double-click it to open the Actor Editor. Edit the actor
attributes with the parameters in Table 9-2.

Table 9-2. Start Game Attributes

Name Start Game
Size/Width 204
Size/Height 57

Click the Images tab to display the images resources and drag and drop
play1.png into the actor.

Speaker

Create a new actor and double-click it to open the Actor Editor. Edit the actor
attributes with the parameters in Table 9-3.

Table 9-3. Speaker Attributes

Name Speaker
Size/Width 90
Size/Height 90

Click the Images tab to display the images resources and drag and drop
Speaker.png to the actor.

Implementing Rules and Behaviors

It’s now time to define the logic behind your actors. The most important logic
will reside in the control actors you just created. The Start Game actor will let
you start playing and the Speaker actor will control the volume (on or off).

CHAPTER 9: Bonuses, Game Center, and iAd: Break a Wall

In order to perfectly position the background object, you will use the trick of
changing the position attributes.

Open the Home actor in the Actor Editor. Drag and drop a Change Attribute
behavior and change Home.Position.X to 384.

Drag and drop a Change Attribute behavior and change Home.Position.Y
to 512.

The two behaviors are shown in Figure 9-2.

(v @D Change Attribute o)
Change Attribute: self_Position.X (] To: (384 e J
./ v @D Change Attribute (] w
Change Attribute: self.Position.Y To: [512 el J

Figure 9-2. Positioning the background with Change Attributes

Now drag and drop the actor on the scene and position it approximately in the
center.

Start Game

The Start Game actor will be used as a button. You will implement a rollover
effect so that the color of the font changes when the button is pressed. But,
because it is an image, you will use the Change Image behavior and use a
different image to replace the active one.

You will proceed in two steps. First, you will change the image to an image with
a different font color when the actor is pressed. Then you will change the image
back to the original when the actor touch is released. This is only one of the
many ways to createa button-pressing effect. Another approach could be to
change either alpha to 0.5 or RGB colors to 0.5.

Open the Start Game actor in the Actor Editor. Create a new rule and name it
“Touch is Pressed.” The condition is “Actor receives event” “touch” is
“pressed.”

Then drag and drop a Change Image behavior into the rule and select “play2”
from the drop-down next to “Set Image to.”

2717

278

CHAPTER 9: Bonuses, Game Center, and iAd: Break a Wall

Let’s proceed to the second phase of the rollover.

Create a new rule and name it “Touch is Released.” The condition is “Actor
receives event” “touch” is “released.” This could also be done in the
“otherwise” section of the “Touch is pressed” rule.

Then drag and drop a Change Image behavior into the rule and select “play1”
from the drop-down next to “Set Image to.”

The two new rules are shown in Figure 9-3.

- @@ Touch is Pressed [x] R

When | All 3 conditions are valid:

(Actor receives event 3) [touch $) is (pressed &)

(¥ @» Change Image [x) \

Set Image to: | play2]

_b Otherwise: J

(Touch is Released o)

When | | %) conditions are valid:

-

{ Actor receives event %) | touch 3 is (released)

(¥ @ Change Image 0\

r

Set Image to: | | playl -

\P Otherwise: o

Figure 9-3. Touch is Pressed and Touch is Released

CHAPTER 9: Bonuses, Game Center, and iAd: Break a Wall

You’ve got the visual effect in place, but the purpose of the Start Game actor is
to allow you to start the game.

In order to reach this goal, you will add some behaviors in the rule “Touch is
Released.” In order to have a smooth transition, | often use a short timer before
implementing the change scene. This will improve the user experience by giving
the player the time to see the change of states of the button.

Drag and drop a Timer behavior below the Change Image behavior in the
“Touch is Released” rule. Set the timer to “After”*“0.5”seconds. Then drag and
drop a Change Scene behavior in the timer and set it to Level 1 as per

Figure 9-4.

(¥ @» Touch is Released [%] R
When (_All) conditions are valid: - (+)
(_Actor receives event 3 (touch :) is [released :)
v
v @ Change Image o)
Set Image to: || playl :
st
LS A
[v @ Timer Q
(After ¢) | 0.5 W‘ seconds || Run to Completion
(v @» Change Scene (%] \
L Go to Scene: | Level 1 = J
A 4
\b Otherwise:)

Figure 9-4. Updated Touch is Released rule

Position the Start Gameactor in the scene.

279

280

CHAPTER 9: Bonuses, Game Center, and iAd: Break a Wall

Speaker

You will use the speaker actor to control the sounds and music. In this example,
you will only focus on sound but you could use the same approach with music.

A touch on the speaker will change the state of a game attribute to either 0 or 1.
You could use rules and Boolean, but instead | will show you a cool trick with
the modulo operator.

Wikipedia defines modulo operation as a function that returns “the remainder of
division of one number by another.”

In other words, if you divide 9 by 4, you get 9 =2 x 4 + 1. The remainder of 9
divided by 4 is 1. Let’s take another example. If you divide 50 by 14, you get 50
=3 x 14 + 8. The remainder of 50 divided by 14 is 8.

With modulo notation (%), you have 9 mod 4 = 1 or 9%4=1.

Now, if you take any number (integer) and you do modulo 2 this number, you
only have two possible results: 0 and 1. If the number is even, the remainder of
this number divided by two is null (0). If the number is odd, the remainder of this
number divided by two is 1.

So with a simple equation of a unitary increment and modulo two, you have a
result that goes from zero to one and from one to zero. The equation is soundOn
= (soundOn+1)%2.

By default, you want to have the sound on. So the initial value is soundOn=1.
When you press the Speaker actor, you get SoundOn = (1+1)%2 = (2)%2 = 0.
The next time you press the Speaker actor, you get SoundOn = (0+1)%2 =
(%2 =1. And so on...

When you want to have sound, SoundOn is equal to 1 and when you don’t want
to have sound, SoundOn is equal to 0. All the rules on sound are based on the
state of the SoundOn attribute.

To make it simple to manage, instead of creating a rule for every PlaySound
behavior, you will control the volume instead. When SoundOn is equal to 1,
volume is equal to 1. Respectively, when SoundOn is equal to 0, volume is equal
to 0.

You will also implement a rollover with a crossed speaker icon when the sound
is turned off.

Let’s do all this now!

Create a new game attribute of type Integer and name it “SoundOn.” Give this
attribute the default value of 1 as per Figure 9-5.

CHAPTER 9: Bonuses, Game Center, and iAd: Break a Wall

|
| Inspector (Game™ scene
| Actors | Atributes i Devices
i Name default name text
| Time 0 real
! » Display Size size
it Actor Tags Collidable text
| ActiveBall boolean
| BrickCount 24 integer
| TextToDisplay text
lives 3 integer
SoundOn 1 integer

Figure 9-5. SoundOn attribute

Open the Speaker actor in the Actor Editor. Create a new rule and name it
“Touch is pressed.” The condition is “Action receives event” “touch” is
“pressed.” Next, drag and drop a Change Attribute behavior and change
game.SoundOn to (game.SoundOn+1)%2 as per Figure 9-6.

FV @ Touch is pressed 0—\
l When | All %) conditions are valid: -)(*
|_Actor receives event 5) (touch v is (pressed D,
v @ Change Attribute o \
Change Attribute: K game.SoundOn _|_ To: '(game._Sa_undOnJ?__ J
K: Otherwise: _/)

Figure 9-6. Touch is pressed rule

Now, create a new rule and name it “SoundOn is equal to 1.” The condition will
be “Attribute”“game.SoundOn”“="“1". Next, drag and drop a Change Image
behavior and set the image to speaker. Lastly, drag and drop a Change Attribute
behavior and change Device.Audio.Sound Volume to 1 as per Figure 9-7.

281

282 CHAPTER 9: Bonuses, Game Genter, and iAd: Break a Wall

- @®» SoundOnis equalto 1 (])
When [All %) conditions are valid: =) (+)
At_tr_i'_bt._at_g_ : 3 game.Soun... ; =_+3)1 ng
(¥ @I»® Change Image o)

Set Image to: [speaker s
A 4
(¥ @3 Change Attribute (] B
Change Attribute: game.Audio.Soun...] J To: |1 GJ
\b- Otherwise: 4

Figure 9-7. SoundOn is equal to 1 rule.

Last but not least, create a new rule and name it “SoundOn is equal to 0.” The
condition is “Attribute”“game.SoundOn”“="“0". Next, drag and drop a Change
Image behavior and set the image to speaker off." Lastly, drag and drop a
Change Attribute behavior and change Device.Audio.Sound Volume to 0 as per
Figure 9-8.

CHAPTER 9: Bonuses, Game Center, and iAd: Break a Wall

_/ v @» SoundOn is equal to 0 (%) R

I'IWhen All 3 conditions are valid: =) ()

| (Attribute D | game.Soun... ' = o G
(v @» Change Image (%) =

Set Image to: | |_'speaker off

£
(¥ @D Change Attribute (x] 3
Lchange Atribute: | game.AudioSoun... |..| To: |0 ‘e
. L= I
\ > Otherwise: 4

Figure 9-8. SoundOn is equal to 0 rule

Position the Speaker actor on the scene at the bottom left corner.

You can now test your work in the Preview window of GameSalad.

Adding Score Keeping

Later in the chapter | will cover Game Center. But first you need to have a
scoring system. You will make it very simple. Every time a blue brick is
destroyed, one point will be added to the score. And every time a red brick is
destroyed, you will add two points to the score. To follow the project from this
point, open the file named BreakaWall-partII-step2.gameproj.

A game attribute of type Integer will be used to keep up with the score. You will
ensure a manual reset every time you start the game. And you will increment the
score every time a brick is hit. Last but not least, you will display the score on
the top right zone of the screen, so the player can keep up with his/her
progress.

First, let’s create the score attribute. Create a new game attribute of type Integer
and name it “Score.” Keep the default value to zero.

283

284 CHAPTER 9: Bonuses, Game Genter, and iAd: Break a Wall

Open the Start Game actor into the Actor Editor. Drag and drop a Change
Attribute behavior into the rule “Touch is Released” and change game.Score to
0, as per Figure 9-9.

- @®» Touch is Released ())
When | All 3) conditions are valid: =)&)
(Actor receives event :) (touch %) is (released %)
(v @ Change Image o)
Set Image to: | | playl :
sy
A /
- @I Change Attribute Q D
Change Attribute: |~ game.Score [..| To: o E
— _$
(v @D Timer (%] R
(After 3) (0.5 | €] seconds (] Run to Completion
(v @D Change Scene (<] \
L Go to Scene: | Level 1 : J
A J
\’ Otherwise: J

Figure 9-9. Updated Touch is Released rule

Open the Brick1 actor in the Actor Editor. Drag and drop a Change Attribute into
the existing rule and change game.Score to game.Score+1, as per Figure 9-10.

CHAPTER 9: Bonuses, Game Center, and iAd: Break a Wall 285

(v @D Rule o)

When | Any) conditions are valid: =)(+)

{ Actor receives event) (overlaps or collides %) with (actor of type %) (Ball

(v @D Destroy o \
L Destroy this actor J
(@D Change Attribute o)
Change Attribute: | game.Score |_] To: 'game.Scoreﬂ !6_])
(v @D Change Attribute o)
Change Attribute: | game.BrickCount |_| To: game.BrickCount!ii)
- @» Play Sound [x) 2
Sound: | brick :| [Loop ™ Run to completion

Volume: '1—@ () (] Positional Sound
pPitch: 1 E' o Velocity Shift !

\b Otherwise: J

Figure 9-10. Updated Brick1 rule

Repeat the same operation with Brick2 but add two points for each Brick2.
Open the Brick2 actor in the Actor Editor. Drag and drop a Change Attribute into
the existing rule and change game.Score to game.Score+2, as per Figure 9-11.

286 CHAPTER 9: Bonuses, Game Center, and iAd: Break a Wall

[v @ Rule 0)
When | Arlv ' conditions are valid: e 'L_ﬂ‘
(Actor receives event 3) (overlaps or collides) with (actoroftype &) (Ball
f v @ Destroy o \
k Destroy this actor J
- @ Change Attribute o)
Change Attribute: | game.Score l_l To: |game.Score+2 "ﬂ Y.
(¥ @D Change Attribute o)
Change Attribute: ' game.BrickCount l_[To: game.BrickCount!_ f[)
[~ @» Play Sound (%) =
Sound: | brick +|) Loop ™ Run to completion
Volume: |1 : (LWO (") Positional Sound
pitch: rl—lz‘ c-_I(_l .. T I TR Velocity Shift)
\ > Otherwise: o

Figure 9-11. Updated Brick2 rule
You are keeping up with the score but wouldn’t it be nice to display it to the

player?!

ScoreDisplay Actor

Create a new actor and double-click it to open the Actor Editor. Edit the actor
attributes with the parameters in Table 9-4.

CHAPTER 9: Bonuses, Game Center, and iAd: Break a Wall

Table 9-4. ScoreDisplay Attributes

Name ScoreDisplay
Size/Width 260
Size/Height 100
Color/Alpha 0

ScoreDisplay Rules and Behaviors

Drag and drop a Display Text behavior into the ScoreDisplay actor. Change the
settings as follows (and shown in Figure 9-12):

Text: “Score:”..game.Score

Font: Cochin
Color: purple
:f-v @D Display Text e
| Text: |*Score:"..game.Score 'G_'
Align: IZEEI Wrap inside actor
Font: | Cochin : | size: [30 | (2] color: _

Figure 9-12. Display Text for ScoreDisplay actor

Open the Level 1 scene in the Scene Editor and position the ScoreDisplay actor
in the scene at the top in the middle as per Figure 9-13.

287

288 CHAPTER 9: Bonuses, Game Genter, and iAd: Break a Wall

lives:2

Figure 9-13. Level 1 Scene

CHAPTER 9: Bonuses, Game Center, and iAd: Break a Wall

Creating the Extra-Bonus Actors

In order to make it more fun, you will add the following bonuses into some of the
bricks:

A 50-point bonus
A 100-point bonus
A auto-bullet bonus

The point bonuses will be spawned by the bricks that hide them and will be
added to the score if the racket collides with them. The same principle will apply
to the auto-bullet, but instead of adding points, it will have the racket trigger
bullets automatically. These bullets will destroy the bricks. The bullets will be
automatically fired as long as a Boolean game attribute AutoBullet is set to true.
By default, it is set to false. Catching the capsule will set it to true. Losing the
ball will set it back to false.

To follow the project from this point, open the file named BreakaWall-partII-
step3.gameproj.

50 pt cap Actor

Create a new actor and double-click it to open the Actor Editor. Edit the actor
attributes with the parameters in Table 9-5.

Table 9-5. 50 Pt Cap Actor Attributes

Name 50 pt cap
Size/Width 81
Size/Height 54

Click the Images tab to display the images resources and drag and drop 50
pt.png into the actor.

100 pt cap Actor

Create a new actor and double-click it to open the Actor Editor. Edit the actor
attributes with the parameters in Table 9-6.

289

290

CHAPTER 9: Bonuses, Game Center, and iAd: Break a Wall

Table 9-6. 700 pt cap Actor Attributes

Name 100 pt cap
Size/Width 81
Size/Height 54

Click the Images tab to display the images resources and drag and drop 100
pt.png into the actor.

Auto Bullet Actor

Create a new actor and double-click it to open the Actor Editor. Edit the actor
attributes with the parameters in Table 9-7.

Table 9-7. Auto Bullet Actor Attributes

Name Auto bullet
Size/Width 81
Size/Height 54

Click the Images tab to display the images resources and drag and drop
Bullet.png to the actor.

Bullet Actor

Create a new actor and double-click it to open the Actor Editor. Edit the actor
attributes with the parameters in Table 9-8.

Table 9-8. Bullet Actor Attributes

Name Bullet

Size/Width 30

Size/Height 60

CHAPTER 9: Bonuses, Game Center, and iAd: Break a Wall

Click the Images tab to display the images resources and drag and drop
Bullet-img.pnginto the actor.

Your newly created actors should be similar to Figure 9-14.

Inspector (Game | Scene
Actors Attributes Devices
Speaker ScoreDisplay
M 2
50 pt cap 100 pt cap
Auto bullet Bullet
+ — LAl

Figure 9-14. Actor Inspector

Implementing the Extra-Bonus Rules and
Behaviors

Basically, you want the bricks containing the extra bonuses to spawn an extra-
bonus actor. The extra-bonus actor will move down and when it overlaps with
the racket, it will enable the bonus.

Open the 50 pt cap actor in the Actor Editor. Drag and drop a Change Velocity
behavior into the actor and change the settings to:

Direction: 270
Relative to: scene
Speed: 150

Create a new rule and set the condition to “Actor receives event”“overlaps or
collides” with “actor of type”“racket.” Drag and drop a Change Attribute
behavior and change game.Score to game.Score+50. Drag and drop a Destroy

291

292 CHAPTER 9: Bonuses, Game Genter, and iAd: Break a Wall

behavior. Depending on the number of actions to be executed, you may have an
issue if you place the Destroy behavior before them. As a rule of the thumb, |
recommend that you place the Destroy behavior last. The actor action pane
should be as per Figure 9-15.

- @» Change Velocity (%] A
Direction: | 270 |E| . Relative to: | scene 3
Speed:WZ,_,":i,_"":")
[7@ Rule 0)
When (_All 7) conditions are valid: -) &)
Actor receives event ;) | overlaps or collides 7) with(actor of type :) (Racket
(v Change Attribute o)
Change Attribute: | game.Score . To: |game.Score+50 | 6‘
\. = - A
[v @D Destroy o)
Destroy this actor
J
\ » Otherwise: P

Figure 9-15. 50 pt cap action pane

100 pt cap

Open the 100 pt cap actor in the Actor Editor. Drag and drop a Change Velocity
behavior into the actor and change the settings to:

Direction: 270
Relative to: scene
Speed: 150

Create a new rule and set the condition to “Actor receives event”“overlaps or
collides” with “actor of type”“racket.” Drag and drop a Change Attribute

CHAPTER 9: Bonuses, Game Center, and iAd: Break a Wall 293

behavior and change game.Score togame.Score+100. Drag and drop a Destroy
behavior. The actor action pane should be as per Figure 9-16.

a 5
¥ @» Change Velocity o)
Direction: 270 €| () Relative to: | scene %
Speed: 150 (€| Ny
_
(N
¥ @D Rule (]
When | _Ali + | conditions are valid: =) ()
Actor receives event 3) (overlaps or collides :) with (actor of type #) (Racket
[v @D Change Attribute o)
Change Attribute: game.Score [_! To: |game.Score+100 €|
[v @D Destroy o)
Destroy this actor
2 4
\ > Otherwise: >,

Figure 9-16. 700 pt cap action pane

Auto hullet

Create a game attribute of type Boolean, name it “AutoBullet,” and set the
default value to false.

Open the Auto bullet actor in the Actor Editor.

Drag and drop a Change Velocity behavior into the actor and change the
settings to:

Direction: 270
Relative to: scene
Speed: 150

294

CHAPTER 9: Bonuses, Game Center, and iAd: Break a Wall

Create a new rule and set the condition to “Actor receives event” “overlaps or
collides” with “actor of type” “racket.” Drag and drop a Change Attribute
behavior and change game.AutoBullet to 1. Drag and drop a Destroy behavior.
The actor action pane should match Figure 9-17.

(v Change Velocity o)
Direction: | 270 Ig ke Relative to: | scene % |
Speed: (150 €] /Al y
(v @ Rule o)
When (_ All %) conditions are valid: SINE)
Actor receives event) (overlaps or collides +) with (actor of type) (Racket
r ¥ @D Change Attribute (%})
Change Attribute: |~ game.AutoBullet = o1 e
o] |)
(v @ Destroy (%] R
Destroy this actor
J
Q Otherwise: _,)

Figure 9-17. AutoBullet action pane

Bullet

Open the Bullet actor in the Actor Editor. Drag and drop a Change Velocity
behavior into the actor and change the settings to:

Direction: 90
Relative to: scene
Speed: 300

Create a new rule and set the condition of “Any” for “Actor receives event”
“overlaps or collides” with “actor of type” “Brick1” and “Actor receives event”

CHAPTER 9: Bonuses, Game Genter, and iAd: Break a Wall 295

“overlaps or collides” with “actor of type” “Brick2.” Drag and drop a Destroy
behavior. The actor action pane should match Figure 9-18.

(v Change Velocity o)

Direction: | 90 [3 & Relative to: | scene * |

Speed: | 300 li S

r'@ Rule 9\

When (_Any 3/ conditions are valid: =) (+)

Actor receives event) (overlaps or collides :) with(actor of type 3 (Brickl

-

|_Actor receives event =) '_mr}aps or collides + with | actor of type) | Brick2

(v @» Destroy Q w
L Destroy this actor J
Q Otherwise: _)

Figure 9-18. Bullet action pane

You now need to edit the following actors:
Brick1
Brick2
Racket

Brick1

Open the Brick1 actor in the Actor Editor and add a condition set to “Any.” The
new rule is “Actor receives event” “overlaps or collides” with “actor of type”
“Bullet” as per Figure 9-19.

296 CHAPTER 9: Bonuses, Game Genter, and iAd: Break a Wall

/"_@ Rule @ 2

| When (_ Any +) conditions are valid: =I\¥)

Actor receives event +) | overlaps or collides *) with | actor of type + (Ball

Actor receives event +) (overlaps or collides 3+ with (actor of type +| (Bullet

Figure 9-19. Modified Brick1 rule

Brick2

Repeat the modification. Open the Brick2 actor in the Actor Editor and add a
condition set to “Any.” The new rule is “Actor receives event” “overlaps or
collides” with “actor of type” “Bullet” as per Figure 9-20.

[+ @ Rule o

l When (_Any % conditions are valid: /AL

. Actor receives event :) (overlaps or collides %) with(actor of type * Ball

Actor receives event 5| | overlaps or collides = with (actor of type Bullet

Figure 9-20. Modified Brick2 rule

Racket

Open the Racket actor in the Actor Editor and create a new rule. The condition
is “Attribute” “game.AutoBullet” is “true.” Drag and drop a Timer behavior set
to “Every” “1” second. Then, drag and drop a Spawn Actor behavior and modify
the settings to:

Actor: Bullet
Layer Order: in back of actor
Direction: 0
Position: 0&0
Relative to: actor
Drag and drop a Play Sound behavior and change the settings to:
Sound: bullet fire

Run to completion: checked

CHAPTER 9: Bonuses, Game Center, and iAd: Break a Wall

Volume: 1
Pitch: 1

The new rule is shown in Figure 9-21.

[Y@ Rule

When (_All 3 conditions are valid:

(Attribute :) game.Aut...

| Is (true £

- @D Timer

(Every 3) |1 | €| seconds

(| Run to Completion

(v @» Spawn Actor

Actor: | Bullet s

mole)

Direction:

Position:] [0 e] o

[v @D PlaySound

Sound: | bullet fire

:| [JLoop ™ Run to completion

Volume: (1 [€] A

Pitch: |1 [€] m—

[_] Positional Sound
1 Velocity Shift

Layer Order: ['in back of actor :__I
Relative to: | actor + |
|€| Relativeto: [actor ¢

A

\b Otherwise:

Figure 9-21. New rule for Racket

You will now position the bonuses randomly on the scene. Open the Level 1
scene in the Scene Editor. Double-click any of the bricks in the scene. This will
open the instance of the actor prototype. Click the lock to edit the instance of
the actor. Modifying the instance will only modify this instance in the scene and
not all the actors. Add a Spawn Actor behavior into the rule of the instance and

change the settings to:

Actor: 50 pt cap

297

298

CHAPTER 9: Bonuses, Game Center, and iAd: Break a Wall

Layer Order: in back of actor
Direction: 0

Position: 0&0

Relative to: actor

The updated rule is shown inFigure 9-22.

-
v @ Rule 0)
When | Any 5 conditions are valid: =) (&)
(_Actor receives event :) | overlaps or collides) with(actor of type) (Ball
(_Actor receives event) (overlaps or collides) with(actor of type 7 (Bullet
(v @D Destroy (x] D
L Destroy this actor
>
By
v @» Spawn Actor (x)
Actor: | 50 pt cap +| Layer Order: | in back of actor * |
Direction: |0 e] O Relative to: | actor ¢ |
Position:] 0 (el [1] | €| Relative to: | actor |
4

Figure 9-22. Updated Brick rule

Repeat this several times with various bricks with the following actors:

50 pt cap
100 pt cap
Auto Bullet

100 pt cap and Auto Bullet implementations on random bricks are shown in

Figures 9-23 and Figure 9-24.

CHAPTER 9: Bonuses, Game Center, and iAd: Break a Wall 299

- Rule. o)
When "__;_.\E_.:') conditions are valid: .-\'__") ©)

(Actor receives event %) (overlaps or collides %) with (actor of type ¢) (Ball

(_Actor receives event) (overlaps or collides %) with (actor of type % (Bullet

- @D Destroy Q B
Destroy this actor
@ >
[v @ Spawn Actor o)
Actor: | 100 pt cap + | Layer Order: | in back of actor ¢
Direction: 0 2 "\:‘) Relative to: | actor |
Position: /0 le] o (€| Relativeto: [actor ¢
b v
Figure 9-23. 100 pt cap implementation
[v @ Rule o)
When (_Any) conditions are valid: -

(Actor receives event :) (overlaps or collides) with (actor of type) (Ball

- @D Destroy (%))
Destroy this actor
e y
[v @ Spawn Actor 0)
Actor: [Auto bullet $ J Layer Order: | in back of actor 3
Direction: 0 e '_j Relative to: | actor % |
Position: [+] |0]ﬂ zllo [ﬂ Relative to: | actor 3
v

Figure 9-24. Auto Bullet implementation

300

CHAPTER 9: Bonuses, Game Center, and iAd: Break a Wall

Posting Scores on Game Genter Leaderboard

To follow from this point, open the file named BreakalWall-partII-
step4.gameproj.

Game Center is the social gaming platform of Apple. It lets players to share their
gaming experiences by showing best results, achievements, and game
recommendations. The Game Center features are only accessible to Pro
members. Apple provides more information at www.apple.com/game-center/.

Basically, once you have authenticated yourself, you can post your scores in the
area called Leaderboards and track specific game achievements in the area
called Achievements. There are more features to Game Center but these two are
the most important.

At the time | am writing this chapter, GameSalad has implemented only the
Authentication and Leaderboards features. The Achievements section is on the
roadmap for the first half of 2012.

Let’s go deeper into authentication and the leaderboards. The authentication
feature will enable your user to log into Game Center with their alias. The player
uses their alias to validate their identity, manage lists of friends, and post status
messages. After a player authenticates, he can post scores to Game Center.
The scores posted on the leaderboards will rank all the players, the purpose of
which is to develop a sense of competition.

Before setting up your GameSalad project, you will need to create a leaderboard
in the Apple provisioning portal. You will decide the unit of achievement: time,
money, or points. You can have several leaderboards per game. You could have
leaderboards per type of gameplay (time when playing against the watch, points
when playing arcade mode, etc.).

Let’s implement the Game Center features in Break a Wall.
GameSalad offers three behaviors related to Game Center:
Login
Post a Score
Show the Leaderboard

In order to properly configure the Game Center behaviors, you will need to have
a Leaderboard ID. This will be necessary to post and show the scores. The
creation of a Leaderboard ID is covered in Chapter 11. You will obtain a unique
alphanumeric ID that you will use in the followings steps.

http://www.apple.com/game-center/

CHAPTER 9: Bonuses, Game Center, and iAd: Break a Wall

Login to Game Center

Open BreakaWall-partII-step4.gameproj. Open the Home scene. Select the

Home actor in the Actor Editor.

Drag and drop a “Game Center — Login” behavior from the Pro tab as per

Figure 9-25.

Library ('mhq’rs; Images Sounds

Standard Custom ([0 Plug-ins

Game Center - Login
Game Center - Post Score
EJ Game Center - Show L...
B3 In App Purchase Item Logs the current user into
In App Purchase Restor... Game Center.

Open URL

5 Show iAd

Game Center - Login
(Action)

+ -

Figure 9-25. Game Center behaviors

The Home actor is shown inFigure 9-26.

8eno BreakaWall-parll-step5.gameproj - Home (Prototype)

1 - = v \
BRSPS > @ = @
Back/Forward Home Scenes Tables Preview Web Preview Feedback Help

| Create Group | Create Rule |
¥ @@ Change Attribute o)
Change Attribute: self.Position. X Te: '334 ‘el J
= Change Attribute.)
Attributes Change Attribute: self. Position.¥ Te: 512 G:
Name Home text]
0 i«
Time G real v @ GCame Center - Login [x]
¥ Position point
» Size size This action will log the player into Came Center.
Rotation 0 angle
¥ Color color
Image Home image
Tags text
Preload Art o boolean
£ enmbirs atteibatar
*|=

Figure 9-26. Home actor action pane

301

302

CHAPTER 9: Bonuses, Game Center, and iAd: Break a Wall

Posting a Score

During a game, there will be two key moments to post your score:
When you loose

When you win

Posting the Score After You Lose

Open the Ball actor in the Actor Editor. Go to the rule with the condition
“Attribute game.lives = 0”. Drag and drop a “Game Center — Post Score”
behavior into the rule. The attribute to post is“game.Score.” Enter your
Leaderboard ID. Your screen should look similar to Figure 9-27 (with a different
Leaderboard ID, of course).

(@ Rule o)
_| When | All %) conditions are valid: =) (&
[Attribute :) game.lives ' =)0 -;65
(v @» Game Center - Post Score [%) \
Post Attribute: | game.Score "
Leaderboard ID: | 20120101 el
(v @D Change Attribute (] \
L Change Attribute: . game.TextToDisplay I| To: |Game Over! - Ta-_é. J
\ > Otherwise: J

Figure 9-27. Posting score when game is lost

Posting the Score When You Win

The best moment to post the score is when the game has been won. The End
actor tells you exactly when this happens. This actor is the control that resets
the game. You need to post the score just before resetting the game.

CHAPTER 9: Bonuses, Game Genter, and iAd: Break a Wall 303

Open the End actor in the Actor Editor. Drag and drop a “Game Center — Post
Score” behavior into the rule. The attribute to post is“game.Score.” Enter the
Leaderboard ID. The screen should look similar to Figure 9-28.

:’fr v @D Timer 0)
(Every 3) |0.5 6 seconds ("] Run to Completion
[» @D Reset Game o \\
h Reset game J
fr ¥ @D Game Center - Post Score o)
Post Attribute: game.Score
Leaderboard ID: [20120101 ‘e)

Figure 9-28. Posting score when game is won

Showing the Scores

On the Home scene, add a button to show the Leaderboard with the highest
scores from all players across the world.

Create a new actor and double-click it to open the Actor Editor. Edit the actor
attributes with the parameters in Table 9-9.

Table 9-9. Leaderboards Actor Attributes

Name Leaderboards
Size/Width 204
Size/Height 57

Click the Images tab to display the images resources and drag and drop
Leaderboard.png to the actor.

Open the actor in the Actor Editor. Create a new rule with the condition “Actor
receives event”“touch” is “pressed.” Then drag and drop a “Game Center —
Show Leaderboard” behavior and key-in the Leaderboard ID and the period for

304

CHAPTER 9: Bonuses, Game Center, and iAd: Break a Wall

the score (today, this week, or all time). The screen should look similar to
Figure 9-29.

(Y@ Rule o)
‘ When (All) conditions are valid: S
Actor receives event ;) | touch +) is (pressed -
i’f v @ Game Center - Show Leaderboard Q
Leaderboard ID: |20120118 e
over time period: | today : |
-\» Otherwise: /‘

Figure 9-29. Show Leaderboard

Position the Leaderboards actor on the Home scene just below the Play actor.

iAd

iAd is the Apple advertising platform. It comes with the intent of developing the
freemium model. What is the freemium model? Basically it’s one in which you
can develop an application/game that is free to users but that displays ads

within the game spaceto generate revenue from advertising or iAP (in-app
purchase).

iAd provides you with a complete framework to display either banner or full-
screen ads in your application; these come directly from Apple. Thus you don’t
need to bother about selling the ad space. You just need to design the area for
the ad space and then the iAd framework will manage it from there.

To use iAd in your GameSalad project, you must join the iAd network. In
iTunesConnect, the first step is to setup your contract with Apple.

iAd was introduced with iOS 4. This means that all pre-iOS 4 will not be
compatible with iAd. The iAd feature is only accessible to Pro members.

To follow from this point, open the file named BreakaWall-partII-
step5.gameproj.

CHAPTER 9: Bonuses, Game Center, and iAd: Break a Wall

Configuring iAd is extremely easy. You need to activate iAd for your application
as described in Chapter 11. Once iAd is activated, you need to implement the
iAd behavior.

You need to take into consideration the area of display of the Ad so it does not
interfere with your game user interface. On an iPhone, a portrait advertisement is
320 x 50 pixels and a landscape advertisement is 480 x 32 pixels. On an iPad, a
portrait advertisement is 768 x 66 pixels and a landscape advertisement is 1024
X 66 pixels.

Open the Home actor in the Actor Editor. Drag and drop a Show iAd behavior
into the actor. Select “Bottom” as the banner position as per Figure 9-30.

(v @» ShowiAd o J

Banner Position: Bottom

Figure 9-30. Show iAd behavior
That’s it! You’re all set for iAd. Real ads will only display once the application is
published.

You can check the project by opening the file named BreakaWall-partII-
step6.gameproj.

Note about iAd:

iAd is not a cash cow. The level of revenue is very low. Break a Wall
has been downloaded about 1,400 times at the time of writing. So far,
the iAd revenue is below US$2 (see Figure 9-31).

305

306 CHAPTER 9: Bonuses, Game Genter, and iAd: Break a Wall

Performance . [

Revenue impressions Requests eCPM Click-Through Rawe (CTR) Fill Rate % Months' Totals

show. [BMenths 3| String on: [o1r01/2012] @

Figure 9-31. iAd revenue for Break a Wall

Summary

You have learned many new elements in this chapter. Your game has now a
Start Screen and can post scores to Game Center. In addition, you have started
to monetize your game with iAd. This will greatly increase the game experience
and enable you to generate revenue from your games.

In this chapter, you learned how to:
Design a Start Screen.
Add game depth with extra bonuses.
Implement score posting on Game Center.

Enable iAd for your game.

Chapter

Device Internal Glock
and Cyclic Movement:
Non-Game Apps

Although the primary purpose of GameSalad is to create games, you can use it
to create other applications, as long as your applications only require the
framework available in GameSalad.

To illustrate this point, you will work on two projects. First, you will create an
analog clock that will display the iOS device time and then you will create a
metronome, as per Figure 10-1.

By using all your GameSalad knowledge you can create some very interesting
apps. You will mostly use behaviors and concepts that you have seen
previously, but | will introduce new concepts that could also be used in games.

D. Guerineau, Learn GameSalad for iOS: Game Development for iPhone, iPad, and HTML5
© David Guerineau 2012

308 CHAPTER 10: Device Internal Clock and Cyclic Movement: Non-Game Apps

Figure 10-1. The analog clock and the metronome

The purpose of this chapter is to illustrate that by thinking out of the box, you
can extend the possibilities of GameSalad.

In this chapter, you will learn how to:

Use standard GameSalad features to make an app, which is
not a game.

Access and use the device internal clock.

Create cyclic movement using basic math.

Creating an Analog Clock with the Device
Clock and Rotation

In this project you will build an analog clock that will display the time in hours,
minutes, and seconds. This will be a relatively short and easy project. It should
not take you more than 30 minutes to implement.

CHAPTER 10: Device Internal Clock and Cyclic Movement: Non-Game Apps

You will learn to implement behaviors based on the device internal clock. You
will also learn how to modelize the movements of the clock hands through
rotation and angle calculation.

Accessing the Device Clock

In order to display the current time, you will be using the clock from the device
attributes, which is a great set of attributes. The clock gives you access to the
device time from the year and up to the milliseconds as per Figure 10-2.

Game r Mouse P Year
Devices L Touches r Month
Actor 1 r Accelerometer ¢ Day
Screen r Hour
Audio r Minute
Clock - Second
Millisecond

Figure 10-2. The Clock set of attributes

Although this example will only create a clock, you will cover some manipulation
of the clock attributes which you can use to extend your ideas out of the box
and integrate those attributes in new features of your games. For example, you
could create a special icon on the Menu page that will only display on the 4" of
July to celebrate Independence Day.

Creating the Clock Project

Open the GameSalad Creator and create a new project. Configure the project
info as per Table 10-1.

309

310 CHAPTER 10: Device Internal Clock and Cyclic Movement: Non-Game Apps

Table 10-1. Project Info for Yet Another Clock

Title Yet Another Clock

Platform iPhone Portrait

Resolution Unchecked

Independence

Description This project is to demonstrate that you can build non-game apps
Instruction None

Tags time, clock, analog

Name and save your file as YAC.gameproj.

Creating the Background and the Clock Hands

To design your clock, you need to create the following actors:
Clock: This is the frame for the clock.
Hours: This is the hour arrow.
Minutes: This is the minute arrow.
Seconds: This is the second arrow.
Button: This is a graphic trick to hide the origin of the arrows.

Before creating the actors, import the images that you will be using for those
actors.Open the Scene Editor and select the Images tab. Click the + sign and
import the following files: chap10-button.png, chap10-clock.png, chap10-
hours.png, chap10-minutes.png, and chap10-seconds.png. These pictures files
are located in the chapter 10 file folder. Your Image tab should match

Figure 10-3.

CHAPTER 10: Device Internal Clock and Cyclic Movement: Non-Game Apps 311

Behaviors __'i_nj'_l_}a_ge_s . Sounds

Purchased

chapl0... chapl0... chapl0... chapl0...

*

chapl0...

Figure 10-3. Images
As a bonus, | also provide the lllustrator file for each of the images if you want to
customize your clock.

Take a close look on the arrows. Did you notice something strange? The image
size is twice the double of the visible arrow. This is not a mistake. This is a trick!
| will explain it later.

Clock

Create a new actor and double-click it to open the Actor Editor. Edit the actor
attributes with the parameters in Table 10-2.

Table 10-2. Clock Actor Attributes

Name Clock
Size/Width 320
Size/Height 320

Click the Images tab to display the images that you just imported and drag and
drop Chap10-clock.png into the actor.

312

CHAPTER 10: Device Internal Clock and Cyclic Movement: Non-Game Apps

Create a new actor and double-click it to open the Actor Editor. Edit the actor
attributes with the parameters in Table 10-3.

Table 10-3. Seconds Actor Attributes

Name Seconds
Size/Width 5
Size/Height 200

Click the Images tab to display the images that you just imported and drag and
drop Chap10-seconds.png into the actor.

Create a new actor and double-click it to open the Actor Editor. Edit the actor
attributes with the parameters in Table 10-4.

Table 10-4. Minutes Actor Attributes

Name Minutes
Size/Width 5
Size/Height 226

Click the Images tab to display the images that you just imported and drag and
drop Chap10-minutes.png into the actor.

Hours

Create a new actor and double-click it to open the Actor Editor. Edit the actor
attributes with the parameters in Table 10-5.

CHAPTER 10: Device Internal Clock and Cyclic Movement: Non-Game Apps

Table 10-5. Hours Actor Attributes

Name Hours
Size/Width 9
Size/Height 194

Click the Images tab to display the images that you just imported and drag and
drop the Chap10-hours.png into the actor.

Create a new actor and double-click it to open the Actor Editor. Edit the actor
attributes with the parameters in Table 10-6.

Table 10-6. Button Actor Attributes

Name Button
Size/Width 27
Size/Height 27

Click the Images tab to display the images that you just imported and drag and
drop Chap10-button.png to the actor.

Creating the Clock Mechanisms: Rules and Behaviors

Creating a real world mechanical clock could be a work of art. It is so small and
the movements need to be perfect, so it can take several months. Fortunately
for us, a virtual analog clock is much less complicated. The time information
isdirectly accessed from the device internal clock. The behaviors of your actors
will mostly ensure that the hands move correctly.

Clock

In order to perfectly position the clock on the screen, you will position it via
change attribute behavior.

313

314

CHAPTER 10: Device Internal Clock and Cyclic Movement: Non-Game Apps

Open the Clock actor in the Actor Editor. Drag and drop a Change Attribute
behavior into the actor and change clock.position.X to 160. Drag and drop a
second Change Attribute behavior into the actor and change Clock.position.Y to
240. The Clock action view should match Figure 10-4.

(A Note 0__\

In order to have a perfect positioning of the clock in the middle of the screen, we will use 2
change attribute behaviors to modify the X and Y position to 160 and 240.
160 and 240 comes from the iPhone Portrait project and thus the screen size is 320 x 480.
A
(v m (Ehange Attribute (] B
L Change Attribute: | self.Position.X [..] To: 160 ‘el)
f ¥ @3 Change Attribute o)
L Change Attribute: self.Position.Y To: | 240 e)

Figure 10-4. Clock action view

In order to be efficient and save some precious time, you will create a custom
behavior that will position the actors in the center of the screen.

Create a new group and name it “Positioning in the center.” Move the two
Change Attributes you just created into the new group.

In the Behaviors inventory pane, select Custom, located next to Standard, by
clicking it. Drag and drop your group into the pane as per Figure 10-5. That’s it!
You have just created your first custom behaviors. You will use these behaviors
on every actor in this project to position them perfectly in the center of the
screen.

Library (TBehaviors | Images | Sounds)

Standard €= L) Pro Plug-Ins

'B' Positioning in the centre

+ -

Figure 10-5. Custom behavior inventory

CHAPTER 10: Device Internal Clock and Cyclic Movement: Non-Game Apps

Double-click the Button actor to open it in the Actor Editor. Drag and drop the
“Positioning in the center” behavior from the custom behavior inventory.

Double-click the Seconds actor to open it in the Actor Editor. Drag and drop the
“Positioning in the center” behavior from the custom behavior inventory.

Coming back to the strange size of the image compare to the visible arrow, the
trick is to implement a rotation of the actor per second. But the rotation attribute
rotates the actor from its center. So having an actor double the size of the arrow
provides the illusion that only the arrow is moving while in fact this is the
complete actor.

Drag and drop a Constrain Attribute behavior and change Seconds.rotation to
Devices.Clock.Seconds*6.

Why is there a minus sign? Chapter 2 discussed the way GameSalad measures
the angle: counter-clockwise. So in order to have a clockwise movement, you
need to make the seconds negative.

Also, the second arrows will cover the complete rotation in 60 seconds. A
complete rotation is 360 degrees. So the arrow should cover 6 degrees per
second (360/6).

The Seconds action view should match Figure 10-6.

315

CHAPTER 10: Device Internal Clock and Cyclic Movement: Non-Game Apps

| Create Croup | Create Rule

= ;
(@D Positioning in the centre o)
| = = =

(=2 Note o)
In order to have a perfect positioning of the actor in the centre of the screen, we will use

2 change attribute behaviors to modify the X and Y position to 160 and 240.
160 and 240 comes from the iPhone Portrait project and thus the screen size is 320 x

Attributes. 480.
Name Seconds text \
Time 0 real b
+ Position point - =
vSize size [* @D Change Attribute]
Width 5 real Change Antribute: self.Position X -] Te: 160 €
Height 200 real _ - v,
Rotation (1] angle
-IColor color [¥ @D Change Attribute o)
mage chapl0-seconds image
- e - | Change Anribute: self.Pasinion.Y w| Toll240 L3 |
o |
L 4
Library (Behaviors | Images Sounds —
G0N Custom Pro Plug-ins [O Constrain Atctn 1R 8-
| Standard ug- I
E"E':E"E?TS"“Q? o e | Constrain Auribute: salf.Rotation To: |-gameClock See, €]
ange Scene ccelerate (Persistent L -
[Change Size Behavior)
Change Velocity
g c ".: i Specity the speed and
cllide direction (angle) of
3 Constrain Attribute acceleration of an actor, Best
i used in & rule that checks for
[Control Camera a keyboard event. Nate: If the

3 Destroy Aran hahavinzis nataisn

Figure 10-6. Seconds action view

Double-click the Minutes actor to open it in the Actor Editor. Drag and drop the
“Positioning in the center” behavior from the custom behavior inventory. Drag
and drop a Constrain Attribute behavior and change Minutes.rotation to
Devices.Clock.Minutes*6.

Hours

Double-click the Hours actor to open it in the Actor Editor. Drag and drop the
“Positioning in the center” behavior from the custom behavior inventory.

Drag and drop a Constrain Attribute behavior and change Hours.rotation to
Devices.Clock.Hours*6 — 30*Devices.Clock.Minutes/60.

You’ve added a few extra degrees in the case of the hour in order to show the
movement between 2 hours. If the arrow were to move 30 degrees at once, the
visual effect would not be nice. You know that the Hours arrow will do 30
degrees in 60 minutes. As such, it will be doing 0.5 degrees per minute.

The action view for the Hours actor should match Figure 10-7.

CHAPTER 10: Device Internal Clock and Cyclic Movement: Non-Game Apps 317

(_ v Note °_ 2

We constrain the rotation of the hours actor to the number of hours from the clock.

We multiply by 30 as the arrow will cover 360 degrees in 12 hours (30 degrees per hour).
But in addition, we also add degrees depending on the values of the minutes in order to
have a more realistic effect on the hour arrow. We know that the arrow will do 30
degrees in 60 minutes, so we add 0.5 degree per minute

k... ' o . . " - S
(v @D Constrain Attribute o)
| Constrain Attribute: self.Rotation To: | -game.Clock.Hou G_' j

Figure 10-7. Hours constrain attribute

Assembling the Clock: Laying out the Scene

The layout of the scene is quite easy as you have positioned your actors using
behaviors. But the order in which you position the actors is important for the
visual aspect.

Position the actors about in the center of the scene in the following order as per
Figure 10-8:

Clock
Hours
Minutes
Seconds
Button

318

CHAPTER 10: Device Internal Clock and Cyclic Movement: Non-Game Apps

Figure 10-8. The Clock scene

Preview the project on your iPhone or in the Preview window.

Cyclic Movement: The Metronome

A metronome is a device that makes a regular beat (Figure 10-9). You can set
the number of beats by seconds. It is used to help musicians follow a consistent
tempo.

CHAPTER 10: Device Internal Clock and Cyclic Movement: Non-Game Apps 319

Figure 10-9. A mechanical metronome

In this section, you will learn how to implement a cyclic movement. This concept
could easily be re-used in game projects.

To give you a better idea of the results, open the file metronome_final.gameproj
and click Preview.

Creating the Metronome Project

Open the GameSalad Creator and create a new project. Configure the project
info as per Table 10-7.

320

CHAPTER 10: Device Internal Clock and Cyclic Movement: Non-Game Apps

Table 10-7. Project Info for the Metronome

Title The Metronome

Platform iPhone Portrait

Resolution Unchecked

Independence

Description This project is to demonstrate that you can build non-game apps

Instruction Move the weight up and down and click on/off to start the
metronome.

Tags Metronome

Name and save your file as Metronome.gameproj.

Metronome Mechanical Components: Creating the

Actors

To design your metronome, youneed to create the following actors:

Metronome
Weight

Pendulum

On
Off

Before creating the actors, import the images for these actors. Open the Scene
Editor and select the Images tab. Click the + sign and import the following files:
chap10-metronome.png, chap10-pendulum.png, and chap10-weight.png. These
pictures files are located in the chapter 10 file folder. Your Image tab should

match Figure 10-10.

CHAPTER 10: Device Internal Clock and Cyclic Movement: Non-Game Apps

Library (_Behaviors | Images Sounds

®

chaplO... chapl0... chapl0...

Purchased

I I { [#&] | Purchase Images...

Figure 10-10. /mages

As a bonus, | also provide the lllustrator file for each of the images if you want to
customize your metronome.

Metronome

Create a new actor and double-click it to open the Actor Editor. Edit the actor
attributes with the parameters in Table 10-8.

Table 10-8. Metronome Actor Attributes

Name Metronome
Size/Width 301
Size/Height 478

As you may have noticed the actor size is odd. This is definitely not optimized
for memory; if you are looking for performance, you should always optimize the
actor size to a multiple of four.

Click the Images tab to display the images that you just imported and drag and
drop Chap10-metronome.png into the actor.

321

322

CHAPTER 10: Device Internal Clock and Cyclic Movement: Non-Game Apps

Weight

Create a new actor and double-click it to open the Actor Editor. Edit the actor
attributes with the parameters in Table 10-9.

Table 10-9. Weight ActorAttributes

Name Weight
Size/Width 34
Size/Height 48

Click the Images tab to display the images that you just imported and drag and
drop Chap10-weight.png into the actor.

Create two actors attributes for Weight as per Table 10-10.
Table 10-10. Weight Actor Custom Attributes

Name Type Default Value
InitX Real 0

InitY Real 0
Pendulum

Create a new actor and double-click it to open the Actor Editor. Edit the actor
attributes with the parameters in Table 10-11.

Table 10-11. Pendulum Actor Attributes

CHAPTER 10: Device Internal Clock and Cyclic Movement: Non-Game Apps

Name Pendulum
Size/Width 600
Size/Height 18
Rotation 90

Click the Images tab to display the images that you just imported and drag and

drop Chap10-pendulum.png to the actor.

Create a new actor and double-click it to open the Actor Editor. Edit the actor
attributes with the parameters in Table 10-12.

Table 10-12. On Actor Attributes

Name On
Size/Width 100
Size/Height 100
Color/Alpha 0
Off

Create a new actor and double-click it to open the Actor Editor. Edit the actor
attributes with the parameters in Table 10-13.

323

324

CHAPTER 10: Device Internal Clock and Cyclic Movement: Non-Game Apps

Table 10-13. Off Actor Attributes

Name Off
Size/Width 100
Size/Height 100
Color/Alpha 0

Storing Information: Defining the Attributes

Create the game attributes as per Table 10-14.
Table 10-14. Game Attributes

Name Type Default Value
inMovement Boolean 0
Speed Real 1
Rotation Real 0

Creating Mechanical Movements: Rules and
Behaviors

The basic movement of a metronome is to go back and forth, thus having a
cyclic movement. The speed of the cycle depends on the position of the weight.
You will implement this logic using rules and behaviors.

Metronome Rules and Behaviors

Create a Group and name it “Position the metronome.” Drag and drop a Change
Attribute behavior and change metronome.Position.X to 160. Drag and drop a
second Change Attribute behavior and change metronome.Position.Y to 240.

CHAPTER 10: Device Internal Clock and Cyclic Movement: Non-Game Apps 325

On Rules and Behaviors

Create a group and name it “Position the On button.” Drag and drop a Change
Attribute behavior and change on.Position.X to 60. Drag and drop a second
Change Attribute behavior and change on.Position.Y to 30.

Drag and drop a Display Text behavior and type the text “On” inside. You can
leave all other settings as the defaults. The action view should match

Figure 10-11.
- @» Position the 'On’' button Q)
- Note (%})
We position the On button with Change Attribute behaviors.
: y
- @D Change Attribute o)
Change Attribute; | self.Position.X L To: 60 €| g
- @» Change Attribute o)
Change Attribute: | self.Position.Y ..l To: 30 ‘e
— — 4
N J
- @» Display Text Q h
Text: | On £|
Align: == =] ("] Wrap inside actor
Font: | Arial i | Size: [30 | |:_| Color: r—|
_ ‘ J

Figure 10-11. On action view

Lastly, create a new rule and name it “On is pressed.” The condition is “Actor
receives event” “touch” is “pressed.” Then drag and drop a Change Attribute
behavior and change game.InMovement to 1 as per Figure 10-12.

326

CHAPTER 10: Device Internal Clock and Cyclic Movement: Non-Game Apps

(v Note [})
When 'On' is pressed then we change the Game attribute InMovement
to true.
A\
_(v @D Onis pressed rule [x])
!When (__All 3 conditions are valid: =) (%)
Actor receives event 7) | touch is (pressed
(v @3 Change Attribute (%] \
L Change Attribute: [¢ game.InMovement 7| To: [1 !] J
\ > Otherwise: Y,

Figure 10-12. On is pressed rule

This rule is used to detect a touch in the On area and then it changes the
InMovement attribute to true. You will use this attribute to authorize the
movement of the pendulum.

Off Rules and Behaviors

Create a group and name it “Position the Off button.” Drag and drop a Change
Attribute behavior and change on.Position.X to 260. Drag and drop a second
Change Attribute behavior and changeon.Position.Y to 30.

Drag and drop a Display Text behavior and type the text “Off” inside. You can
leave all other settings as the defaults. The action view should match
Figure 10-13.

CHAPTER 10: Device Internal Clock and Cyclic Movement: Non-Game Apps

- @ Position the 'Off' button (x))
- Note Q)
We position the Off button with Change Attribute behaviors.
. 4
[v @ Change Attribute o)
Change Attribute: self.Position.X]_J To: | 260 e
L 4
- @» Change Attribute (%] =)
Change Attribute: self.Position.Y]_J To: |30 €)
N J
[v @ Display Text Q)
Text: |Off E‘
Align: |= = = ("] Wrap inside actor
Font: | Arial : | Size: 30 |_:| Color: El
N _ .

Figure 10-13. Off action view

Lastly, duplicate the On rule by dragging the rule down while pressing the
Option key. Name it “Off is pressed.” The condition is “Actor receives event”
“touch” is “pressed.” Then drag and drop a Change Attribute behavior and

change game.InMovement to 0 as per Figure 10-14.

327

328 CHAPTER 10: Device Internal Clock and Cyclic Movement: Non-Game Apps

(v Note 0)
When 'Off" is pressed then we change the Game attribute InMovement
to false.
4
_(v @D Off is pressed rule (] 2
[when I All %) conditions are valid: =) (%)
Actor receives event 3) | touch s is [pressed
(v @ Change Attribute (] \
Change Attribute: ' game.InMovement || To: [0 6] J
kb Otherwise: >

Figure 10-14. Off is pressed rule

This rule is used to detect a touch in the Off area and then it changes the
InMovement attribute to false. You will use this attribute to stop the movement
of the pendulum.

Create a group and name it “Position the pendulum.” Drag and drop a Change
Attribute behavior and change on.Position.X to 160. Drag and drop a second
Change Attribute behavior and change on.Position.Y to 100 as per Figure 10-15.

- @ Position the pendulum Q 0

‘f"' Note Q_

We position the pendulum with Change Attribute behaviors.

- @ Change Attribute (x]
L Change Attribute: | self.Position.X [.] To:[160 el
- @D Change Attribute o
K Change Attribute: self.Position.Y = To: | 100 e
= 4

Figure 10-15. Positioning the pendulum

Open the Sound inventory view (click the Sounds tab next to Images tab). Click
the + sign to import a new sound. Select the file named sound4.mp3 from the
Chap4_files folder. Import the file as Sound.

You will now create the movement. To do so, you need to know the maximum
rotation of the pendulum in both directions. Set a rotation angle of a total of 20
degrees: -10 to +10. But the originating angle is 90 degrees, so the pendulum
will rotate from angle 80 to 100, back and forth. You will use the Interpolate
behavior to make the movement adependent of a Speed attribute.

Create a new rule with the following conditions:
“Attribute”“Pendulum.Rotation”*“="80"
“Attribute”“game.InMovement” is “true”

Then drag and drop an Interpolate behavior and change the settings.
Interpolate Attribute: Pendulum.Rotation
To: 100
Duration: game.speed
Function: Linear

Next, drag and drop a Play Sound behavior and select sound4 as the sound to
play. Leave all the other setting as the defaults.

CHAPTER 10: Device Internal Clock and Cyclic Movement: Non-Game Apps

329

330 CHAPTER 10: Device Internal Clock and Cyclic Movement: Non-Game Apps

The rule is shown in Figure 10-16.

(v @ Rule)
When (_All _3) conditions are valid: =)&)
Attribute 21| self.Rotation [..] & %80 | GJ

Attribute $) P game.lnM... > “—1 is (true
v Interpolate o)

Interpolate Attribute: | self.Rotation [..] To:[100 el

Duration: ”game.speed ? Function: | Linear 3l
\ J
- @» Play Sound [x]
Sound: | sound4 :| () Loop ™ Run to completion
Volume: |1 ‘?| SR ("] Positional Sound
Pitch: --l—;_ﬁ_] ’_{_ (RN Velocity Shift _)
\ > Otherwise: J

Figure 10-16. Interpolate to 100 rule

Create a new rule with the following conditions:
“Attribute”“Pendulum.Rotation”“="“100"
“Attribute” “game.InMovement” is “true”

Then drag and drop an Interpolate behavior and change the settings.
Interpolate Attribute: Pendulum.Rotation
To: 80
Duration: game.speed
Function: Linear

Next, drag and drop a Play Sound behavior and select sound4 as the sound to
play. Leave all the other setting as the defaults.

The rule is shown in Figure 10-17.

CHAPTER 10: Device Internal Clock and Cyclic Movement: Non-Game Apps

(v @ Rule o)
‘ When (_All %) conditions are valid: =) &
Attribute)| self.Rotation [..] =100 | 6‘
Attribute [gameinM...) |..| is (true
- @ Interpolate [x] =
Interpolate Attribute: self.Rotation |I To: [80 9|
Duration: ' game.speed e Function: | Linear 5l
(v @» PlaySound o
Sound: | sound4 :| [Loop @ Run to completion
Volume: |1 G| S IR [} Positional Sound
pitch: Vl ‘I Fw’i- 1 (RN Velocity Shift _/
\b Otherwise: J

Figure 10-17. Interpolate to 80 rule

Create a new group named “Pendulum Movement” and place the two rules that
you just created into this group.

Create a new rule with the condition “Attribute” “game.InMovement” is “false.”
Drag and drop a Constrain Attribute behavior into the rule and change
pendulum.Rotation to 90. This rule will detect that the Off button has been
pressed and set the pendulum into the initial position.

Create a new rule with the condition “Attribute” “game.lInMovement” is “true.”
Drag and drop a Change Attribute behavior into the rule and change
pendulum.Rotation to 100. This rule will position the pendulum to rotation at
100. Then the interpolate rules kicks off.

Create a new group and name it “On/Off rules.” Drag and drop the two rules
that you just created into this group as per Figure 10-18.

331

332 CHAPTER 10: Device Internal Clock and Cyclic Movement: Non-Game Apps

(v @ On/OF rules o)
[v @ Rule o)
When [All %) conditions are valid: =) (*)
(_ Attribute D) game.nM... . |..| is (false 2
(v @ Constrain Attribute Q
L Constrain Attribute: |~ self.Rotation [..] To:[90 9_1
_4
\ P Otherwise: J
[Y@ Rule 9)
When | 71'&[_:) conditions are valid: =/\r)
(Awripute #)| gamednM.. [.[is (wwe %)
(v @D Change Attribute Q \
L Change Attribute: self.Rotation ‘_| To: | 100 ilj
\ > Otherwise: 4
\. v

Figure 10-18. On/0ff rules

Last but not least, drag and drop a Constrain Attribute behavior in the actor
action view and change game.Rotation to pendulum.Rotation as per

Figure 10-19.
(v @D Constrain Attribute) \
L Constrain Attribute: game.Rotation u To: | self.Rotation ﬂ J

Figure 10-19. Constrain the Rotation attribute

This last behavior aims at stocking at any time the Rotation value of the
pendulum into the game attribute named Rotation. You will use this value later
to synchronize the movement of the weight.

CHAPTER 10: Device Internal Clock and Cyclic Movement: Non-Game Apps

Weight Rules and Behaviors

Create a new group and name it “Position the Weight.” Drag and drop two
Change Attribute behaviors into the group and change:

Weight.Position.X to 160
Weight.Position.Y to 240

Create a second group and name it “Init.” Drag and drop two Change Attribute
behaviors into the group and change:

Weight.InitX to Weight.Position.X
Weight.InitY to Weight.Position.Y

At this stage, your action view should match Figure 10-20.

- @ Position the Weight o)
C» Note o)
(v @ Change Attribute o)

Change Attribute: self.Position.X _: To: | 160 z
(v @» Change Attribute o)
Change Attribute: | self.Position.Y .| To: 240 e J

A A

[v@ init o)
C» Note o)
(v @ Change Attribute (%] A

Change Attribute: self.InitX PJ To: self.Position.X | i)
(» @ Change Attribute [%] R
Change Attribute: | self.nity u To: self.Position.Y i)

A 4

Figure 10-20. Position and Init Groups

333

334

CHAPTER 10: Device Internal Clock and Cyclic Movement: Non-Game Apps

Create a new rule and name it “Setting the Weight.” The conditions for this rule
are:

“Attribute” “gamelnMovement” is “false”
“Actor receives event” “touch” is “pressed”

Those conditions will ensure that you can only move the weight when the
metronome is off.

Drag and drop two Constrain Attribute behaviors into the rule and change:
Weight.Position.X to 160

Weight.Position.Y to max(120,min(340,
game.mouse.position.Y))

The last constrain will ensure that the weight is positioned where your finger
touched the screen within the limit of 120 to 340.

Drag and drop a Constrain Attribute behaviors into the rule and change:
Weight.InitY to Weight.Position.Y

This will ensure that InitX and InitY always contain the last position of the weight
before pressing the On button. You will use this information to calculate the
movement and to return the weight to its position when you press the Off
button.

Last but not least, use the position of the weight to determine the speed of the
metronome. The higher the weight is, the faster the pendulum will go. Use the
formula precision(120/Weight.Position.Y),2). Precision function will help you to
keep only two digits below the second.

Drag and drop another Constrain Attribute into the rule and change:
game.speed to precision(120/Weight.Position.Y),2)
Your Weight Setting rule is shown in Figure 10-21.

CHAPTER 10: Device Internal Clock and Cyclic Movement: Non-Game Apps

- @D Weight Setting (] R
When -J__-__@II_ +) conditions are valid: =)&)
(Awdbute %) gamednM.. |..|Is (false %)
(Actor receives event #) (touch ¢) is (pressed %)
- @ Constrain Attribute (] h
Constrain Attribute: self.Position.X _' To: | 160 ' ﬂ
A
5 E B
- @» Constrain Attribute]
Constrain Attribute: self;Position.Y - E To: rImax[lEO,minG(E
' &
; 7 N
(v @» Constrain Attribute (%]
Constrain Attribute: | self.Inity ..| To: |self.Position.y €|
e =
3 < =4
(> @I» Constrain Attribute (]
Constrain Attribute: game.speed [«.] To: Eprec[lzo.‘self.Poﬂ
S 4
\Iv Otherwise: o

Figure 10-21. Weight Setting rule
Next, you will create a rule that will detect when the InMovement attribute
changes to false in order to reset the weight to its starting position.

Create a new rule named “Go to starting position.” The condition of this rule is
“Attribute” “game.InMovement” is “false.”Drag and drop three Change Attribute
behaviors into the rule and change:

Weight.Position.X to Weight.InitX
Weight.Position.Y to Weight.InitY
Weight.Rotation to 0

The rule is shown in Figure 10-22.

335

336 CHAPTER 10: Device Internal Clock and Cyclic Movement: Non-Game Apps

- @D Go to starting position (])
When (_All 7 conditions are valid: =) (%)
(Attribute $)| gamelnM... 7! is [false :
(v @D Change Attribute (] o)
Change Attribute: | self.Position.X [.] To: [self.mitx e)
- @3» Change Attribute o h
Change Attribute: self.Position.Y u To: | self.Inity e |
— _
- @D Change Attribute [])
Change Attribute: self.Rotation]j To: [0 ?I
— 4
\ > Otherwise: J

Figure 10-22. Go to starting position rule

Finally, you need to set up the most complex rule. You need to have the weight
move at the same time as the pendulum but across an arc and rotating at the
same time. There is a little bit of trigonometry involved here. | always
recommend that you use a piece of paper and draw your equations. My sketch
is in Figure 10-23.

CHAPTER 10: Device Internal Clock and Cyclic Movement: Non-Game Apps

v'll‘>< = cc\l""“;“o" 2 CS'\WM .f{)‘\'c-\.ﬁf-m.
Sy s

a A
con X = — o W= —
P

Q.= L&g, 'S:K-Dll

\ 1
] i .

ol m{ﬁ' hoda (F\"-“.LM K-z, , poaitien. T-q|

A (xﬁ" = [/-5—:' |r:r)/}

f 7 : Ay p
‘é = |<;'r‘; + mc;br\\]'w:la_ {Ml;l\lk\ fm .lli.o-___-\—]f,,-. s L.oc;g«k f“'-"-o‘. |r I"-’-='-);I X Cod 'k-' afne ‘-'.““\C&l(?'.)

*X= X, +C x‘...\r‘\t‘/\

: g o I\.. Fixye I\"“ - Pl --\.'-!' ot .\.li-» Y- r:.g\ T (o0 .,.\'\,.
b, S8 46") + :.'\.._na".\.u.'l'.(_]I\/\quli .|_y}':'.\-.a._ K-1be J WJ lla_ AT | ! ?_\\..l\&f\.w. - .-.\|_r¢»n}

A s

Figure 10-23. Trigonometry concept for the position of the weight at any time

By using the cosinus and sinus of the angle (a in Figure 10-23), you can derive
the value of x and y at point C. You use the magnitude function to calculate the
distance between two points.

Create a new rule and name it “Sync the movement.” The condition is
“Attribute” “game.InMovement” is “true.” Then drag and drop three Constrain
Attribute behaviors into the rule and change:

Weight.Rotation to game.Rotation-90

Weight.Position.X to160+magnitude(Weight.Position.X-160,
Weight.Position.Y-100) * sin (-(game.rotation-90))

Weight.Position.Yto 100+magnitude(Weight.Position.X-160,
Weight.Position.Y-100) * cos (game.rotation-90)

337

338 CHAPTER 10: Device Internal Clock and Cyclic Movement: Non-Game Apps

Your rule should match Figure 10-24.

(v @» Syncthe movement o)
When (_ All) conditions are valid: =)\t
[Attribute D | game.InM... [.]is (true $)

v @3 Constrain Attribute (] 2)

Constrain Attribute: self.Rotation |7| To: '(game.Rozation-!fJ

¥ @ Constrain Attribute o)

To: | LED+magniluae.(_'ﬂ

v @» Constrain Attribute [x])

t Constrain Attribute: | self.Position.X |

Constrain Attribute: | self.Position.Y [..] To: [100+magnitude(€]

\: Otherwise: -

Figure 10-24. Sync the movement rule

Building the Metronome: Laying out the Scene

The layout of the scene is quite easy, as you have positioned your actors using
behaviors. But the order in which you position the actors is important for the
visual aspect.

Position the actors in the center of the scene in the following order, as per
Figure 10-25:

Pendulum
Weight
Metronome
On

Off

CHAPTER 10: Device Internal Clock and Cyclic Movement: Non-Game Apps 339

Figure 10-25. The Metronome scene

Preview the project on your iPhone or in the Preview window.

340

CHAPTER 10: Device Internal Clock and Cyclic Movement: Non-Game Apps

Summary

This chapter concludes the GameSalad development of this book. You have
seen that GameSalad can be used to create apps other than games with just a
little bit of creativity.

In this chapter, you have learned how to:
Create apps other than games in GameSalad.
Use the device internal clock features.

Create cyclic movement in GameSalad.

Chapter

Submitting Your Game
to the App Store

This is the moment. Yes, the big moment. You have spent countless hours
working on your game and it is now time for everybody to see it. But one more
critical step lies ahead. You need to publish your game to the App Store.

REMINDER: You need to be a registered iOS developer. Please refer
to Chapter 1 for more information.

In this chapter, you will go through all the steps to publish a game in the App
Store:

You will create your App ID.

You will get a Distribution Certificate and create a
Distribution Provisioning Profile.

You will create the iTunes Connect Application Profile.
You will enable Game Center and iAd for your game.
You will generate the binary file and upload it to Apple.

You will make the game available in the App Store.

D. Guerineau, Learn GameSalad for iOS: Game Development for iPhone, iPad, and HTML5
© David Guerineau 2012

342

CHAPTER 11: Submitting Your Game to the App Store

Getting the ApplD, Gertificate, and
Distribution Provisioning Profile on the
Provisioning Portal

This section covers all the necessary actions on the Provisioning Portal. You will
create the App ID that will be the unique ID of your game. You will also use your
Distribution Certificate (created in Chapter 1) to sign your app. Lastly, you will
create the Distribution Provisioning Profile that will be used to publish the game
in GameSalad.

Creating Your App ID

First, you need to create an ID for your game. This is the AppID.

Go to the Provisioning Portal (developer.apple.com, then Member Centre » iOS
Provisioning Portal).

Click the App IDs option located on the left side on the screen and then click the
New App ID button to land on the Create ApplID page, as shown in Figure 11-1.

You will need to provide:

Description: This should be a way to find your App ID
rapidly. | suggest using the name of your game.

Bundle Seed ID: You can leave it as “Use Team ID” unless
you want to select a Bundle Seed ID. The Bundle Seed ID is
used when you have several games that will share the same
Keychain access (to share data such as usernames and
passwords).

Bundle Identifier: Enter something that will be unique for this
app in the whole world. Apple recommends using a reverse
domain name, but you may not have a domain name. In
such a case, use something that will be unique to you and
that nobody else would pick.

Then click the Submit button.

CHAPTER 11: Submitting Your Game to the App Store 343

Provisioning Portal €6 10,105 Dev Center
Home
Certificates Manage How To

Devices

Create App ID
Provisioning Description

Distribution

Enter a common name or descript
throughout the Provisioning Poral 1o identify this App D,

your App ID using alphanumeric characters. The description you specify will be used

Bundle Seed ID (App ID Prefix)

Use your Team ID or sel existing Bundl

eed 1D for your App 1D,

Keychain access, use the same bundie Seed 1D for each of your

Use Team 10 = | Ify
ap

Bundle Identifier (App ID Suffix)

fier for your App ID. The recommended practice is to use a reverse-domain name style string for the Bundle
e App ID.

Cancel

Figure 11-1. Creating an App ID

Your Distribution Gertificate

In Chapter 1, the “Installing the Developer Certificate in Your Keychain” section
covered the steps of creating your Distribution Certificate. This file is named
i0S_distribution.cer.

You can verify its presence in the KeyChain utilities under Certificate. If the
certificate is not present, refer back to the aforementioned section of Chapter 1.

Creating the Distribution Provisioning Profile

The next step is to create an App Store Distribution Provisioning Profile for your
game.

Click the Provisioning link below App IDs located on the left side. Select the
Distribution tab and click the New Profile button to get to the Create iOS
Distribution Provisioning Profile page shown in Figure 11-2.

344

CHAPTER 11: Submitting Your Game to the App Store

Provide the following information:
Distribution Method: Select App Store.

Profile Name: Enter a name for your profile. | recommend
using the name of the application followed by “AppStore”
so that you know this is the profile for the store.

App ID: Select the game App ID that you created in the
previous step.

Development Distribution History How To

Create iOS Distribution Provisioning Profile

Generate provisioning profiles here. All fields are required unless otherwise noted. To learn more, visit the How To section

Distribution Method &) App Store Ad Hoc
Profile Name
Distribution Certificate David GUERINEAU (expiring on Sep 28, 2012)

App ID

Select All

[EUTNN Submit |

Figure 11-2. Creating the Distribution Profile

Click the Submit button to generate the Distribution Profile. You may need to hit
refresh on your web browser if the status is still pending. It should take from a
few seconds to two minutes.

Click the Download button shown in Figure 11-3 to download the Distribution
Profile onto your computer.

& Break a Wal 9D4476BAKS. com.aeris-prod.brea... Active Download | Edit

Figure 11-3. Your newly created Distribution Profile

CHAPTER 11: Submitting Your Game to the App Store

Next, you need to install the profile by double-clicking it or by opening Xcode
and dragging it into the Organizer. It will automatically open the Organizer tool
from Xcode, as per Figure 11-4.

eann Organizer - Devices

= " E O

Devices | Repositories Projects Archives Documentation

A Developer Profile

-4 Software Images
Device Logs
B screenshots

DEVICES

=M @
2 | I?;u‘idlg(;l:lgsllﬂznu'i iPad :
i Q- Profile Name
Device Logs Name & Expiration Date Portal Team Status
B screenshos Break a Wall September 28, 2012 2:21 PM David GUERINEAL
1 ?‘;‘,“L‘iﬁ'.f;“.'"“‘“" P-.+ Break a wall Ad Hoc September 28, 2012 10:17 AM David GUERINEAU
Oudlee Liss i0SViewer December 11, 2012 6:45 PM David GUERINEAU
B screenshots iPhone Testing December 29, 2012 11:35 PM David CUERINEAU
o \" IZ Automatic Device Provisioning Refresh

New Import Export

Figure 11-4. Provisioning Profile view in the Organizer

Creating the Game on iTunes Gonnect

Before starting the publishing process with the newly created Distribution
Profile, you need create the game on iTunes Connect. This will enable you to
activate GameCenter, iAD, or iApp if you use these functionalities in your game.

Step 1: Logging into iTunes Connect

Connect to iTunes Connect at itunesconnect.apple.com. Click the Manage Your
Applications link shown in Figure 11-5.

= Manage Your Applications
Add, view, and manage your applications in the
iTunes Store.

Figure 11-5. Managing your applications in iTunes Connect

345

346 CHAPTER 11: Submitting Your Game to the App Store

Step 2: Creating a New App
Click the Add New App button shown in Figure 11-6.

@& iTunes Connect
" AddHee App

Figure 11-6. Adding a new app

Step 3: Providing Basic Information

Next, you need to provide the following information as per Figure 11-7:

Default language of your application: This is the default
language of your game.

App Name: Your game name.

SKU Number: This is a tracking number. It is used in-house
to track uniquely the version of their software. | recommend
using a date in the format YYYYMMDD, but you can use
any random number.

Bundle ID: Select the App ID that you created previously.

App Information

Enter the following information about your app.

Default Language | English
App Name
SKU Nummber

Bundle ID | Sebect
You can register a new Bundie 1D here.
Does your app have specific device requirements? Learn mare

Figure 11-7. Game name

CHAPTER 11: Submitting Your Game to the App Store 347

Step 4: Release Date and Pricing Information

Next you need to provide a targeted release date and pricing information as per
Figure 11-8.

Availability Date: Keep in mind that if you pick a date before
getting the store approval, your game will be release on the
day you obtain the approval.

Price Tier: There are many different strategies regarding

pricing. Just keep in mind that Apple keeps 30% of each
sale.

Discount for Educational Institutions: Indicate if you are
willing to provide a discount for education institutions if they
buy large numbers of your game.

Custom B2B App: Check if you have developed a game for
a company for its own use.

Break a Wall

Select the availability date and price tier for your app.

Availability Date 0ljan | 20 3| 2012

Price Tier | Free

Discount for Educational Institutions &

Custom B2B App

Unless you select specific stares, your app will be for sale in all App Stores worldwide.
= (o2

Figure 11-8. Release date and pricing information

Step 5: Providing Version and Category Information

Next you need to provide information about the game as per Figure 11-9.

Version Number: | recommend using conventions like
major.minor.maintenance with maintenance for bug
correction only, minor for minor features, and major for
major changes in the game.

Copyright: Put your copyright information here.

348 CHAPTER 11: Submitting Your Game to the App Store

Primary Category: Select Game or any other appropriate
category according to the purpose of your development.
Select two sub-categories (only if you selected Game as
your category).

Second Category: This is optional. However, it’s
recommended to reach a larger audience.

Review Notes: If you want to give specific instruction to the
reviewers.

Break a Wall

Enter the following information in English.
Version Information

Version Number
Copyright
Primary Category | Select
Secondary Category (optional) | Select

Review Notes (optional)

Figure 11-9. Version information

Step 6: Defining Your Application Rating

The next screen is the rating of your application. The questions are self-
explanatory, as per Figure 11-10.

CHAPTER 11: Submitting Your Game to the App Store

Rating

For each content description, choose the level of frequency that best describes your app.

a

App Rating

Apple Content Descriptions None Infrequent/Mild Frequent/intense

Cartoon or Fantasy Viclence

Realistic Violence i*
Sexval Content or Nudity

Profanity or Crude Humor

Alcohol, Tobacco, or Drug Use or References o
Mature/Suggestive Themes

Simulated Gambling

Horror/Fear Themes i*
Pralonged Graphic or Sadistic Realistic Violence

Graphic Sexual Content and Nudity i=

Figure 11-10. Game rating

Step 7: Providing Metadata Information

Then you provide the metadata for the game as per Figure 11-11.

Description: Put on the salesman suit and use your best
pitch for the game. | recommend that you prepare in
advance.

Keywords: The keywords are very important, as they will be
searchable in the App Store. You can use Google Keywords
to optimize your keyword selection.

Email address: For contacting you.

Support URL: You need to provide a web site for game
support (you own web site or your blog page).

Marketing URL: This is optional but it’s a good idea to have
one.

Privacy policy URL: Also optional.

349

350 CHAPTER 11: Submitting Your Game to the App Store

Metadata

Description Break a Wall is a brick game. You need to
destroy all the brieks on the sereen to
move to the next level.
4 nicely deasigned levela await for you.
Keywords ik, breakout, cassebrique. casse-brique, casse brique, arkanold
Support Email Address | samingaeris-prod.com
Support URL hp: f jwww.aeris-prod.com

Marketing URL {optional] | hnp: /s

Privacy Policy URL (optional) |pgp: sy

Figure 11-11. Metadata

Step 8: Reading and Accepting the EULA Agreement

Now you need to read and accept the default End User License Agreement
(EULA) or provide your own, as shown in Figure 11-12.

EULA
If you want to provide your own End User License Agreement (EULA), click here, If you provide a EULA, it must meet these minimum terms, If you do
not provide a EULA, the standard EULA will apply to your app.

Figure 11-12. End User License Agreement

Step 9: Providing the Game Artwork

And finally, you need to upload your art (Figure 11-13). You must provide:

512 x 512 icon for iTunes art: 72 dpi and | recommend png
format.

Up to five screens captures for either iPhone or iPad.

CHAPTER 11: Submitting Your Game to the App Store 351

Uploads

Large 512x512 lcon

iPhone and IPod touch Screenshots
CEED

iPad Screenshots (drag and drop to change the order)

Figure 11-13. Uploading your art

Once you have provided all of the above information, you will be directed to a
summary page (Figure 11-14).

352 CHAPTER 11: Submitting Your Game to the App Store

Break a Wall

App Information EZI0
Identifiers Links
SKU 20120118
Bundle ID com.aeris-prod.breakawall
Apple ID 496154190

Type 105 App

Default Language English
Versions

Current Version

R

‘7‘ Status) Prepare for Upload

Date Created Jan 17, 2012

[="View Detalls)

Figure 11-14. New application summary

At this stage you new app has a status of Prepare for Upload.

You can now enable Game Center and iAd for your game.

Enabling Game Center for Your App

If you are using Game Center in your game, you need to enable Game Center in
order to get the required information to finish the configuration of your game.
Click the Manage Game Center button in the new application summary page.
You will be directed to a page to enable Game Centre as per Figure 11-15. Click
the Enable button.

CHAPTER 11: Submitting Your Game to the App Store

Break a Wall - Game Center

Game Center

In order for your app 1o be viewed in Game Center, you must have used GameKit 10 include the capability in your binary. To set
up Game Center for your app, click Enable, below,

Figure 11-15. Enabling Game Center

Once you have clicked the Enable button, the page will update with options to
set up Leaderboards and Achievements, as per Figure 11-16.

Break a Wall - Game Center

Game Center

Game Center has been enabled for your app. Click below if you want to disable it.
[—r——

Leaderboard

A leaderboard is the piace for your users 1o view the 1op scores by all Game Center players of your app. Once a leaderboard
has gane live for any version of your app, It cannot be removed.

[Setup]
Achievements

An achievement is a distinction that a player earns for reaching a milestone; or performing an action, defined by you and
programmed into your app. Once an achievement has gone live for any version of your app, it cannot be removed.

Dane
Figure 11-16. Leaderboards and Achievements setup page
Game Salad only supports Leaderboards. Achievements are on the roadmap
but not yet delivered at the time of writing.

Click the Setup button in the Leaderboard section. You will be directed to the
Leaderboards management page as per Figure 11-17.

353

354 CHAPTER 11: Submitting Your Game to the App Store

Break a Wall - Leaderboards

Leaderboards

A leaderboard is the place for your users 1o view the top scores by all Game Center players of your app. Once a leaderboard has gone
live for any version of your app, it cannot be removed

Search Leaderboards Q, Segrch Leaderboard

derboard 1D Type Default

Leaderboard Ref Name L

Click Add Leaderboard to get started,

Figure 11-17. Leaderboards management page

Click the Add Leaderboard button to create a new leaderboard. First you will be
asked to choose between a single leaderboard or a combined leaderboard, as
per Figure 11-18.

Break a Wall - Add Leaderboard

Choose Leaderboard Type

Single Leaderboard Combined Leaderboard
Create a singke leaderboard for your app. You cannot create a combined leaderboard until you have
TS : two or more single leaderboards with the same score
[Choose] format type and sort order.
-

Figure 11-18. Single or combined leaderboard

Choose single leaderboard. Combined leaderboards are simply combinations of
several single leaderboards.

Next, you need to provide the following information for your leaderboard
(Figure 11-19):

Leaderboard Reference Name: This is your leaderboard
name (Highest score, Fastest race, etc.). Although this is an
internal name, make it explicit. This will make your life easier
later.

Leaderboard ID: This one is key as you will need to
implement this number into the GameSalad Creator for your
game. This ID is alphanumeric.

CHAPTER 11: Submitting Your Game to the App Store

Score Format Type: Integer, time, etc.
Sort Order: Low-to-High or High-to-Low.

Score Range: Display scores only in the range. This is
optional.

Localization: You need to add a minimum of one language
for your leaderboard. Click the Add Language button to
provide the name to display on the leaderboard, the
formatting of the score, the words to follow this score in
both singular and plural, and an image (optional), as per
Figure 11-20.

Break a Wall - Add Leaderboard

Single Leaderboard

Leaderboard Reference Name
Leaderboard ID
Score Format Type | Choose Formatter Type...
Sort Order Low to High High to Low

Score Range (optional) To

Leaderboard Localization

You must add at least one language below. For each language, provide a score format and a leaderboard name.

Image Language Leaderboard Name Score Format Score Format Suffix

Click Add Language to get started.

Cane:

Figure 11-19. New leaderboard

355

356 CHAPTER 11: Submitting Your Game to the App Store

Add Language

Language | English)
Name Top Scores

Score Format | Integer (100,000,122) 3|

Score Format Suffix (Singular) | point

Score Format Suffix Plural | points

Image

Cancel Save

Figure 11-20. Localization of your leaderboard

Enabling iAd

If you are using iAd, you also need to enable it in iTunes Connect for your game.
In your game overview page (Figure 11-14), you need to click the Enable iAd
network option.

The Enable iAd page appears as per Figure 11-21.

Enable iAd Advertising Network

The iAd Network gives you an opportunity to earn advertising revenue through ads in your application. Learn more, (8

+ Once you click Save, [Ad cannot be disabled. To remove ads from an application, you will need to resubmit your application
with the iAd Network functionality remaoved.

My primary target audience is users under 17 years of age. Yes No

Enable iAds

[Conce | [s]
Figure 11-21. Enabling iAd

Just click the Enable iAd and Save buttons.

CHAPTER 11: Submitting Your Game to the App Store

You are all set up in iTunes Connect for the moment. The next step is to prepare
the binary file to upload.

Updating Game Genter in GameSalad

Open your game in GameSalad Creator.

For every action with GameCenter that you may have used in your game you
need to update the Post Score and Show Leaderboards behaviors with the
appropriate Leaderboard ID that you just created, as per Figures 11-22

and 11-23.

/‘ ¥ @» Game Center - Show Leaderboard [)

Leaderboard ID: 20120118 e
over time period: | today
Figure 11-22. Show Leaderboard behavior

v @D Game Center - Post Score [%]
Post Attribute: game.Score .

Leaderboard ID: 20120118 6_

Figure 11-23. Post Score behavior

Publishing the Game Inside GameSalad

You now need to create the binaries for uploading to the iTunes store. This step
is called publishing in GameSalad Creator. During this step, your game will be
signed with the appropriate certificate and provisioning profiles, enabling you to
send it to Apple.

Step 1: Selecting the Targeted Platform

With the game you want to publish opened, click the Publish button in the
GameSalad Creator.

The following screen will ask you on which platform you want to publish your
game (Figure 11-24). Select the appropriate platform.

357

358 CHAPTER 11: Submitting Your Game to the App Store

Please choose a target platform.

)

wrr
L)
——
iPad Macintosh Android

Platform Selection: Choose one from any of the above platforms.

| Cancel

Figure 11-24. Choosing the target platform

Step 2: Providing Overview Information

The next step is to provide the overview information about your game as per
Figure 11-25.

CHAPTER 11: Submitting Your Game to the App Store

@nn

Calad Publishi

~ BreakaWall-parll.

Break a wall
iPad

Overview o

Primary Category
Games

Subcategory One

Select

Subcategory Two

Secondary Category
Select

lean

Cancel

Platform

Choose File

Video

Language
US English

Title
Break a wall

Description

A tabula rasa, a blank slate on which one may create a masterpiece.

Scheenshoty

Keywords (comma separated)

Copyright Info

All rights reserved.

Figure 11-25. Overview information

You need to provide:

Reviaw

Finished

Primary Category: Most of the time you should pick Games
but you have seen that you may do things other than games
in GameSalad.

Subcategory: Select two subcategories in your primary
category according to your game type (only for Game
category).

Secondary category: Select a second category in which
your game will appear.

Icon: Upload the game icon (512 x 512)
Language: Select the language of your game.
Title: This is the name of your game.

Description: Provide the description of your game.

Keywords: Provide a selection of keywords for your game
separated by a comma.

359

360

CHAPTER 11: Submitting Your Game to the App Store

Copyright info: Provide your copyright information here.

A lot of this information was provided already when you created your game in
iTunes Connect. Make it match!

Step 3: Selecting Your Provisioning Profile

The next screen asks you to select your Provisioning Profile. You must select
the profile that you created for distribution on the App Store. You will also be
asked for the display name of your game as well as its version.

NOTE: The version in GameSalad MUST match the version you input
in iTunes Connect.

Notice the advanced options on this screen. They allow you to customize the
orientation as well as the splash screen (for Pro members) as per Figure 11-26.

CHAPTER 11: Submitting Your Game to the App Store 361

Advanced Platform Settings

Bundle Identifier Supported Orientations
com.aeris-prod.breakawall - .
Require armv7 I
@Enable Glossy App lcon bA m m
° s
Minimum Supported iOS Version ™

| 3.2 =

Portrait Image

Change Image

Done

Figure 11-26. Advanced platform settings

The splash screen must be the size of the resolution of your target device. You
will also have the opportunity to select armv7 or enable the Glossy App icon.

About armv7:

Armv7 is the processor instruction set standard. It is used from iPhone
3GS, iPad 1¥ Gen, iPod Touch 3™ Gen, and all following generations. If

you check armv7, your game will only work on devices that support
armv7’.

362 CHAPTER 11: Submitting Your Game to the App Store

Step 4: Providing a Link to a Promotional YouTube
Video

This step is optional and enables you to provide a link to a promotional video on
YouTube.

Step 5: Uploading Your Screenshots

This step requires you to upload up to five screenshots of your game as per
Figure 11-27.

8nn GameSalad ishing M; - BreakaWall-parll.gameproj

h: Break a wall
- iPad

Screenshots Select up to 5 screenshots to promote your game

A UALL

- -

Cancel Back

Figure 11-27. Screenshots

Step 6: Reading and Accepting the Agreement

Next, you can review all the information that you just provided. When you are
happy with the data, click Publish.

CHAPTER 11: Submitting Your Game to the App Store

Read and accept the GameSalad Submission Terms and Agreement as per
Figure 11-28.

To submit your game, you must agree to the GameSalad Submission Terms and Agreement.

Effective Date of these Terms: 22 June 2011

PLEASE READ THE FOLLOWING TERMS OF SERVICE ("TERMS") CAREFULLY. BY USING
OR VISITING THE GAMESALAD WEBSITE OR ANY GAMESALAD SERVICES, SOFTWARE
OR CONTENT, YOU ACKNOWLEDGE THAT YOU HAVE READ, UNDERSTOOD, AND
AGREE TO BE BOUND BY THESE TERMS AND THE TERMS OF THE GAMESALAD
PRIVACY POLICY ("PRIVACY POLICY") WHEN ACCESSING THE WEB SITE LOCATED AT
THE URL: WWW.CAMESALAD.COM (“SITE") AND/OR USING ANY SERVICES, SOFTWARE
OR CONTENT OFFERED BY GAMESALAD, INC. ("GAMESALAD" OR "WE" OR "OUR" OR
"US") THROUGH THE SITE (COLLECTIVELY, THE “SERVICES").

IF YOU ARE ACCEPTING THESE TERMS ON BEHALF OF ANOTHER PERSON OR A
COMPANY OR OTHER LEGAL ENTITY, THEN YOU REPRESENT AND WARRANT THAT
YOU HAVE FULL AUTHORITY TO BIND THAT PERSON, COMPANY, OR LEGAL ENTITY
TO THESE TERMS.

IF YOU DO NOT AGREE TO THESE TERMS OR THE TERMS OF THE PRIVACY POLICY,
AND EACH AS AMENDED FROM TIME TO TIME, CLICK THE "I DO NOT AGREE"
BUTTON, AND YOU MAY NOT ACCESS OR USE THE SITE OR SERVICES.

IF THESE TERMS ARE CONSIDERED AN OFFER, ACCEPTANCE IS EXPRESSLY LIMITED TO
THESE TERMS.

Your privacy is important to us. Please review the terms of our Privacy Policy. In
order to use the Services you will need to provide certain personally identifiable
information to us. We will collect, store and use such information in accordance with
the terms of our Privacy Policy as amended from time to time.

| D-isagree || Agree and UpEd__l

Figure 11-28. GameSalad Submission Terms and Agreement

Once you agree, the uploading of your game to the GameSalad servers will
start. After a short while (depending on your game size), you will be asked to
save your signed binary on your computer. The final screen will confirm that you
successfully published you game in GameSalad, meaning you received your
binary file (Figure 11-29).

363

364 CHAPTER 11: Submitting Your Game to the App Store

800 GameSalad Publishing - Break parll of

9

Break a wall
L= iPad

Screenshots

Congratulations!

(% Break a wall
iPad

Congratulations! All the hard work you've done has been leading up to this. You
hawve brought your idea to life. You have created a game. Now it's time to take the
next step toward sharing your game with the world. Choose from the options
below, based on the profile you have selected:

— Share
(r// ni This option allows you to create a .zip file, containing
k your full app and ad-hoc profile. You can then email
this .zip file to a friend for play-testing. The Share

option is a great way 1o get maore people testing your
game and will provide you with very valuable
information before going live in the App Store.

Test

Select this button to start testing your packaged .app
on your 105 device. This option will immediately sync
your .app file through iTunes and make it possible to
run the game on your iPhone, IPad, or iPod Touch.

Figure 11-29. Congrats

Step 7: Compressing Your File

The last step is to compress the file you just received by right-clicking and
choosing Compress. You are now ready to upload your game.

Uploading the Game to iTunes

Go back to iTunes Connect and select your game in the Manage your
Application section. The summary page should be similar to Figure 11-30 with a
status of Prepare for Upload.

CHAPTER 11: Submitting Your Game to the App Store

P e = o o e
Break a Wall, Version 1.0 Ready 1o Upload Binary
Version Information
Details Large lcon Links
Version 1.0

Status © Prepare for Upload
Primary Category Games
Subcategory Action
Subcategory Arcade

Secondary Category Entertainment
(optional)

Copyright Aeris Production
Review Notes Move the iPad 1o move the paddle

Rating 4+

Figure 11-30. Prepare for Upload status

Click the Ready to Upload button. You will be directed to the Export
Compliance page as per Figure 11-31.

Break a Wall, Version 1.0 - Export Compliance

Export laws require that products containing encryption be properly authorized for export.
Failure to comply could result in severe penalties.
For further information, click here.

Is your product desi 1 to use cr graphy or does it contain or Yes No
incorporate cryptography?

[~ Cance] [see]
Figure 11-31. Export Compliance
The next screen indicates where to find the Application Loader that will be used

to upload the game. You will find the Application Loader at the following path:
/Developer/Application/Utilities/Application Loader.app.

Open the Application Loader. If this is the first time you’ve used it, you will be
asked to accept the Software License Agreement as per Figure 11-32.

365

366 CHAPTER 11: Submitting Your Game to the App Store

8 nn
Welcome to
. Application Loader
i Version 2.4.1 (190)
APPLE INC. P

SOFTWARE LICENSE AGREEMENT FOR
ITUNES PRODUCER AND/OR APPLICATION LOADER

PLEASE READ THIS SOFTWARE LICENSE AGREEMENT ("AGREEMENT") BEFORE USING THE SOFTWARE. BY USING THE SOFTWARE, YOU ARE AGREEING
TO BE BOUND BY THE TERMS OF THIS AGREEMENT. IF YOU WOULD LIKE TO RECEIVE APPLE SOFTWARE PURSUANT TO THIS AGREEMENT, SIGNIFY
YOUR AGREEMENT TO BE BOUND BY THE TERMS OF THIS AGREEMENT BY CLICKING THE "ACCEPT™ BUTTON. IF YOU DO NOT AGREE TO THE TERMS
OF THIS LICENSE, CLICK "CANCEL".

IMPORTANT NOTE: This software may be used to reproduce materials. It is licensed to you only for reproduction of non-copyrighted materials,
materials in which you own the copyright, or ials you are authorized or legally i 1o rep If you are uncertain about your right to
copy any material you should contact your legal advisor.

1. Definitions
1.1 “Apple” means Apple inc. and/for any of its affiliates responsible for operating the iTunes Store, App Store, or iBookstore in various territories.

1.2 “Apple Software™ means the iTunes Producer Software and/or the Application Loader Software, including any and all technologies therein, provided by
Apple te Provider.

1.3 “iTunes Store Agreement™ means an agreement with Apple for the provision of materials 1o Apple for distribution via Apple’s iTunes Store, App Store, or
iBookstore.

1.4 “Provider” means the entity that has entered into the iTunes Store Agreement with Apple pursuant to which Provider Materials will be provided to Apple
using the Apple Software. Only an entity that is a party to a currently existing iTunes Store Agreement with Apple is licensed to use the Apple Software
jpursuant to this license agreement.

® l Cancel } !_ Accept J
Figure 11-32. Application Loader Software License Agreement

Next you need to provide your Developer Apple ID and password as the
Application Loader will use them to connect to your account and upload your
game.

In the Application Loader main screen, select Deliver Your App as per
Figure 11-33.

CHAPTER 11: Submitting Your Game to the App Store

Welcome to Open Package... A david_guerineau...

Application Loader

Version 2.4.1 (190)

\

Deliver Your App 5

Create New Package 4=

Getting Started

Application Loader helps you prepare your apps for sale on the App Store. With fast uploading, stable connections, and early validation wamings, you
can use Application Loader to upload your app binary and create packages for delivery.

If you are ready to submit your binary, click Deliver Your App. Before submitting, make sure that the status of your app in iT: G s “Waiting
for Upload.” To access additional Application Loader functions (for example, creating an app to test new iOS hardware c ate New

Package.

@ [Previous H Next |

Figure 11-33. Application Loader main screen

Next, select your application by clicking “Choose your application.” Click Next.
Then, click the Choose button as per Figure 11-34 to select the binary file to
upload.

8 00 Deliver Your App

Application Information

Application Break a Wall
Version Number 1.0
SKU Number 20120118
Primary Language English
Copyright Aeris Production
Type iOS App
Apple ID 496154190
2 david_guerineau@... | Back || Choose...

Figure 11-34. App info before upload

367

368 CHAPTER 11: Submitting Your Game to the App Store

A file-browsing window will open. Select the binary file to upload and confirm by
clicking Send. You can follow the progress of the upload on the screen as per
Figure 11-35.

8 00 breakawall.zip

Adding application...

Software: fUsers/davidguerineau/Desktop/breakawall.zip

Uploaded package to the iTunes Store

2 david_guerineau@... | Cancel | Next

Figure 11-35. Uploading your file

Once the upload is completed, a Thank You screen will appear. You can close
the window and the Application Loader.

The status of your game will change to Upload Received as per Figure 11-36.

Version Information IET0

Details Large lcon Links
Version 1.0

Version Summary

Status @ Upload Received Status History
Primary Category Games
Subcategory Action

Subcategory Arcade

Secondary Category Enter
(optional)

Copyright Aeris Production
Review Notes Move the iPad to move the paddie

Rating 4+

Figure 11-36. Upload Received status

After a very short while, your game status will automatically update to Waiting
for Review (Figure 11-37).

CHAPTER 11: Submitting Your Game to the App Store

Versions

Current Version

Viersion 1.0
Status O Waiting For Review

Date Created Jan 17, 2012

Figure 11-37. Waiting for Review status

Wait and Wait and Wait

Now you have to wait... and wait... and wait until Apple reviews your
application. At this stage, there is nothing more that you can do on the game
submission. | recommend that you plan to work either on other project or on
your game promotion if not done yet.

Once the Apple team starts to review your game, you will receive an e-mail
notification (Figure 11-38) and your level of stress will increase because you
know you will get your approval/rejection in a few hours.

The status for the following app has changed to In Review.
App Name: Break a Wall

App Version Number: 1.0

App SKU: 20120118

App Apple ID:496154190

To make changes to this app, sign in to iTunes Connect and open the Manage Your Applications module,
If you have any questions regarding your app, click Caontact Us in iTunes Connect.
Regards,

The iTunes Store Team

Figure 11-38. E-mail notification of In Review status

At the time of writing, the review is about three to four days, but it changes
depending on the number of new apps added.

What if you get rejected? Don’t get discouraged. This happens very often,
especially for your first game. Apple will provide you with the reason of the
rejection. Let their feedback guide you in improving your game and then
resubmit it. You can contact them if you don’t understand the feedback and
they will provide you with more insight.

My first app got rejected three times before | got it right!

369

370

CHAPTER 11: Submitting Your Game to the App Store

Your Game is Ready for Sale

Congratulations!!!! You have received an e-mail indicating that your app is now
ready for sale (Figure 11-39).

The following app has been approved. The status has changed to Ready for Sale.

If your contracts are not in effect at this time, however, your app status will be Pending
Contract. You may track the progress of your contracts in the Contracts, Tax, and Banking
module in iTunes Connect.

Note that it may take up to 24 hours before your app is live on the App Store. This delay is
dependent upon any app availability issues.

App Name: Break a Wall @

App Version Number: 1.0

App SKU: 20120118

App Apple ID:496154190

To make changes to this app, sign in to iTunes Connect and open the Manage Your Applications
module.

If you have any questions regarding your app, click Contact Us in iTunes Connect.
Regards,

The iTunes Store Team

Are you looking for opportunities to generate additional revenue and market your apps to
millions of iPhone and iPod touch users around the world? Learn more about the iAd Network
and iAd for Developers.

Figure 11-39. Ready for Sale status notification

Good luck with your sales!

Summary

| hope that your game is selling quickly now! In this chapter, you learned how to:

Create your AppID and your Distribution Provisioning
Profile.

Create your game description on iTunes Connect.
Publish your game in GameSalad.
Upload your game to Apple.

Still think that your sales figures are too low? Then jump to the next chapter
where you will get a quick introduction to promotional tactics.

Chapter

Introduction to Game
Promotion

The purpose of this chapter is not to provide you with a complete and
exhaustive course on game marketing but rather a quick introduction to some
important concepts that may help you to increase your sales.

You have developed a wonderful game and you want people to know about it.
Even more, you want people to purchase it! So you have to tell the world, but
going around yelling “I have the best game” is just not enough!

Before jumping into operational tactics, you need to prepare yourself with a little
bit of introspective work: Who are your possible customers? Who are your
competitors? What is unique about your game?

In this chapter, | will cover:
The definition of your target customers.
The investigation into your competition.
The draft of your unique value definition.

Basic operational tactics like press releases and their
distribution.

Getting reviews from influencers.

Promoting your game with Facebook.

D. Guerineau, Learn GameSalad for iOS: Game Development for iPhone, iPad, and HTML5
© David Guerineau 2012

372

CHAPTER 12: Introduction to Game Promotion

Pre-Development Phase

The preparation phase is in fact the most important task for an efficient
promotion. By crafting the appropriate message you may increase your
download rate significantly. The preparation phase is mostly composed of three
areas of investigation: your targeted customers, your competition, and your
unique value proposition.

Defining Your Targeted Customers

In order to craft a relevant message to your potential customers, you need to
study them. You could spend years and years studying social psychology and
getting deep insight into customer purchasing behavior, but this is not the
purpose of this book. Instead | will provide you with a few questions that will
help you to qualify your potential targets.

The very first step is to identify if your targeted customers buy games at the App
Store. If they don’t, you need to ask yourselves why. You may end up with the
conclusion that they don’t buy games at the App Store because they don’t use
iOS devices. Or they are not authorized to make the purchase (minors, young
kids, people under management of another adult). In that case, you will need to
qualify both populations: the player and the purchaser.

Population Profiling

To qualify a population, you will need to provide the following information about
your population:

Age

Sex

Income

Education

Marital status
Geographical location
Profession

Let’s practice with an illustration. Let’s imagine that you intend create a
kindergarten game targeted to the United States. Let’s fill in the appropriate
information in Table 12-1.

CHAPTER 12: Introduction to Game Promotion

Table 12-1. Targeted Customers Profiling

Target Player Purchaser
Age 2t06 20 to 50
Sex Not relevant Mother concerned with

toddler development and
learning activities

Income None UMC and above
(Upper Middle Class)

Education None Diplom a and above

Marital Status None No t relevant

Geographical location us us

Profession Kindergarten Executives with a busy

lifestyle; this game will
have the kid performing
independent activities

Remember that the profiling does not aim at being exhaustive but at targeting
80% of your potential customers with minimal effort.

Source of Information

The next step is to identify where your targeted audience collects information to
make their purchasing decisions. Once these sources of information are
identified, you will communicate through them about your game. For example,
Internet forums on parenthood are a great source of information for parents. A
Google search on “Toddler parent US forum” will provide you with a list of
forums where you can talk about your game. Also, there are web sites that cover
apps for toddlers. Identifying them and getting them to review your game will
bring you great exposure.

373

374

CHAPTER 12: Introduction to Game Promotion

Understanding the Purchasing Decision

The last step in the qualification of your targeted customers is to identify the way
your potential customers make purchase decisions for your type of game. Will
the purchase decision be impulsive, analyzed, referred, or influenced? Again,
getting this information is essential in the way your will define the content of
your messaging.

In this example, it’s critical for parents to have other parents recommend the
app. So your operational tactic is to get positive recommendations from other
parents and then communicate these recommendations. How do you get
positive recommendations? One way is to distribute free download codes in
exchange of answering a survey andthen creating a database of reliable
reviewers.

Identifying and Qualifying Your Competition

For iOS games, locating your competition is both easy and tricky. Locating the
games that you will compete against is simple as finding the App Store. But with
more than 500,000 apps in the store, finding the games that you will fight
against for market share may be tricky.

You can use the Search feature of iTunes (shown in Figure 12-1).

iTunes g
P
+ e [1 i | | @, kindergarten
4 > # Musique Films Séries TV AppStore Livres Podcasts (TunesU Ping Sign In
Recherche avancée » Apps pour iPhone Tout atiicher »
. 7 5 Ady's Kindesgarten Baby Flash Cards : 450+ flash. . Kindergarten: 21 in 1 kids pack
FILTRER PAR MEDIA | { Jeux Ensegnomont e pignement
’ Mo & pur 27 nov, 2011 Mise & jpur 13 jany. 2012 Mee a jpur 183l 2011

AN 108 N/ nmg | Zo| i Game Center |[English © s - 079 € ACHETER '+
J1 Musique 'L — o y
i Fams
I SéreaTV ABA Flash Cards - Animals ABA Problem Solving Game - .. ABA PROBLEM SOLVING GAME ...

Ensognement 5 Ensegnemant Ensognemant
Ll Appe Meso i jour 13 fhyr. 2012 .. Sartio 27 fevr, 2010 a~r Seete 27 mass 2010
— ! pry
& Livres 3 L5BE ACHETER = 079 € ACHETER = >) 0,79€ ACHETER =
(_T=

§ Podeasts
W Tunes U
Editeurs Apps pour iPad Tout atficher »

Kindeegarien.com >
Trinlti Interactive Limited +
2team, LLE 3
oFlashapps »

Doopak Demiwal 3

ABA Flash Cards = Animals

S Ads's Kindsegarten Baby Flash Cards : 450+ flash.
Jok Ensegnomont Ensoignamsnt

el Mias i jour 27 now, 2011 - Mao 8 jour 13 jany, 2012 - Meso & jour 13 6vr, 2012

S| i Gamo Center Eng[jsh £ GRATUIT » 3 1,59 € ACHETIR. ¥

T3 7B € ACHETER =

Abby - First Words: Animals - .. ABC Animal Puzzies HO - Tod.., 3 ABA Receptive Idantitication - By ...
Ensognement [omian™- Ensegnement DS Enseignement

Mse & pur 25 @, 2012 ' Sortie 08 jut. 2011 E Mse 4 jour 12 mars 2012

cRATUIT = Y 233¢ ACHETER = 159 € ACHETER +

Figure 12-1. The result of “Kindergarten” search in iTunes

CHAPTER 12: Introduction to Game Promotion

Another approach is to use Google with keywords like iPhone, iOS, or iPad.
Then you can use all the power of Google to get results. The result of search
“kindergarten ios games” is shown in Figure 12-2.

enn Kindergarten ios ganes - Google Search
It ' kindergarten los games = Googl, . | + |

J go0giecom.sg

GO ,81@ kindergarien ios games “ David GUERINEAL! n + Share m

Search 5 a e

Evarything

Images Pm Yrmm Games lor educaling and enteraining preschoolers, kids
Maga in kindergarten and firs1 grao.

+ Cannest the Dots - Reviews - Spanish Espatic! - Shape Builder
Videos
o iPncna ag@ iphonn Gamns apgs Auas Klndamaﬂan IPA .

a3 rlen

Agpications Adas nl.mum-mn 1PA dowmiond iPhrml apgm Pv apps Ph, Al st APPS SU s

bast iphone apps cracked [PA for jailbreak downioads IPA download ipa,
Mora

Ada's Kindargarten v1. 2 for IPhongliPad Free Download Apps .

3prab, comiiphone-gamani2 17 5, niml
Singapore 27 Now 2011 - ARE you GDOD with KIDS? FIND OUT in ADAS LATEST ADVENTURE!
Changa locaton JOIN ADA back at SCHOOL, NOW in FULL HD, wi support for RETINA ..
The web Best ch a\pus for Kids - IPhone, iPod Touch, iPad, Android
Fages from Singapare W

20 Besl frow apps for kids, reviews of IPhene, Pad, Ped Tauch (Tauch).
and Android apps. Educational and fun applcations and games for kids, teens, bables.
preschool, kindergarten, elemantary schaol, middie-schoel, and ..

More search locls

Ada's Kindergarten - IPhone Download Center
T

0 A 01 times Bk Windmreartnn

P

Figure 12-2. Google “kindergarten ios game” results

Once you have identified the list of potential competitors, create a table with one
competitor per line and the information shown in Table 12-2 as columns.

375

376

CHAPTER 12: Introduction to Game Promotion

Table 12-2. Competition Information

Name of the game Name of the game as it appears in the App
Store
Game description on the store Description of the game as it is in the App

Store - remove useless information

Screenshots Copy the most important screen captures

Reviews on the store Select the most relevant part of the
reviews. This will be the positive and
negative comments. They will provide you
with the features that customers of your
competitors appreciate and the features
that they are missing

Price Tier Indicate the price in the App Store

Rating Indicate the number of stars

Released data Date the game was released

Website Website of the game or the developer

Key features List the main important features of your
competitor

Key messages From the info that you have collected,

analyze the messaging that is pushed by
your competitor

Targeted audience List the audience targeted by your
competitors. It may differ from yours.

Strengths List what you identify as key strengths of
your competitor

Weaknesses List what you identify as key weaknesses
of your competitor

You can use the Excel template named Competitive Review template.xls
located in the Chapter12_Files folder.

CHAPTER 12: Introduction to Game Promotion 377

Creating Your Unique Value Proposition

The last step is to create your unique value proposition. This is the main reason
why your customers will buy your game. The main generic reasons for a
customer to buy your game is the entertainment value, the educational value,
and the addiction value that your game provides for a specified price. By listing
the features and the benefits of these features you will create values in these
three categories and this will generate your unique value proposition.

Finding the Perfect Name

As the name is one of the most important criteria for search in the store, you
should spend a relatively long amount of time finding the right name. It will need
to be descriptive enough so that your game has a good match when potential
buyers look for a game.

Among the checks to be performed on the name selection, you need to ensure
that there is no offensive meaning in another country or culture that you are
targeted. Also, you must respect copyright and trademark rules. A good tip is to
do a Google search using the name you may want to use.

Last but not least, you may want to check what domain names are available in
relation to the game name. Figure 12-3 shows the results of a domain check on
“kindergarten.”

378

CHAPTER 12: Introduction to Game Promotion

Start your web hosting experience with us by entering the domain name you want to register, transfer or simply purchase hosting for below...

kindergarten

Search Multiple TLDs

o |

Serry! kindergarten.com is already taken!

Domain Name Status More Info
X kindergarten.com Unavailable WWW WHOIS
X kindergarten.net Unavailable WWW WHOIS
x kindergarten.org Unavailable WWW WHOIS
X kindergarten.biz Unavailable WWW WHOIS
X kindergarten.info Unavailable WWW WHOIS
X kindergarten.us Unavailable WWW WHOIS
X kindergarten.ws Unavailable WWW WHOIS

Figure 12-3. Domain check on “kindergarten”

Working on Your Icon

Your icon is your friend! Your icon is your best ally. A potential target customer
performing a search will see two things on the App Store search result page:
your title and your icon.

Thus your icon is extremely important. You must spend the necessary time to
correctly design your icon. It must be descriptive with a catchy visual.

Table 12-3 shows the various requirements for icon sizes.

CHAPTER 12: Introduction to Game Promotion

Table 12-3. /con Sizes

Size for iPhone Size for iPhone Size for iPad Size for iPad
(until 3GS) retina (4 and 4S) | (1stand 2" Gen) | retina (3" Gen)
Applicationicon | 57 x 57 114 x 114 72 x72 144 x 144
App icon for the 512 x 512 1024 x 1024 512 x 512 1024 x 1024
App Store
Small icon 29 x 29 58 x 58 50 x 50 100 x 100

Here is the link to the Apple developer documentation regarding game icons:

http://developer.apple.com/library/ios/#documentation/userexperience/con
ceptual/mobilehig/IconsImages/IconsImages.html

In addition, here is the link to the Apple developer documentation on icon
guidelines:

http://developer.apple.com/library/ios/#documentation/userexperience/con
ceptual/mobilehig/IconsImages/IconsImages.html#//apple ref/doc/uid/TP400
06556-CH14-SW2

Writing the App Store Description

The description of your game in the App Store needs to follow some golden
rules. Let’s face it: most potential buyers will only read the first lines and then
jump to the screen captures. At this point, there are three possibilities: they buy
it, they go away, or they read further to make up their mind. | am not sure that
the third option will be the most common. What does this mean? It means that
you need to focus your key messages in the top of your description.

In addition, your content should not be static over the time. For example, if you
decide to have a new-school-year sale, then advertise it on the top for the
limited period of the sale.

Here are my golden rules for game description:

State positive feedback from customers or recognized
reviewers.

Be direct and short in your game description.

379

http://developer.apple.com/library/ios/#documentation/userexperience/con
http://developer.apple.com/library/ios/#documentation/userexperience/con

380

CHAPTER 12: Introduction to Game Promotion

Explain why the player will have a good time playing your
game.

Be simple, direct, and honest.

When publishing a new release, include a What’s New
section.

List your main features and benefits with a strong highlight
on the ones that are unique to your game.

No bla-bla, just the essential!

Operational Tactics

This section focuses on a few tools that you may want to use in order to get
your game some visibility in the outside world, such as press releases, product
web pages, game reviews, and Facebook pages.

Writing a Press Release

A press release is an official statement that is issued to the media. This is a
formal way of communicating and informing news organizations (press, TV,
Internet news sites).

You have several opportunities to issue a press release regarding game
promotion:

Your new game announcement.

A major update of your game that provides more value to
the customers.

You have reached a significant number of downloads of
your game.

Your game has won some recognition of any sort: awards,
game of the month, best game reviews, App Store special
placement.

Writing a good press release is difficult as it requires very good written
communication skills. For those who can afford it, | strongly recommend hiring a
professional copywriter. Freelance copywriters will probably cost you a few
hundred dollars. A Google search returns plenty of contacts to choose from.
Based on the market research that you have already done, he/she will be able to
write a very powerful press release that you will then broadcast.

CHAPTER 12: Introduction to Game Promotion

If you choose (or have no other choice) to write it yourself, you need to respect a
recognized formatted structure:

Headline

Summary (optional if the headline is explicit)
Body

Contact info

In today’s digital communication age, you will distribute your press release
electronically. Take advantage of this distribution mode to include a link to a
video of your game. A good 30-second video will convince people to try the
game.

To distribute your press release, you may send it directly to a database of key
contacts that you created based on your market research. Alternatively, you
may want to use some Internet services that will distribute your press releases
to the media. Some may do it for free; some other may require a fee. Here are
just a few names of such services:

PRMac (www.prmac.com)
PRWeb (www.prweb.com)

Get2press (www.get2press.sg)

Creating a Web Page

Creating a simple product webpage is also a good and cheap promotional tool.
You can easily find some service to host your page as well as a tool to design
your page from a graphical interface.

Personally, | use a WordPress site, which is hosted for a few dollars per year.
Then | dedicate a page of the site per game. In order to have an efficient
message, here are some simple guidelines:

Keep it clean and simple.
Quickly describe your game at the top of the page.

Make the graphical support niceby using an icon on the
main page and the name of your game in big letters.

Make use of all media possibilities: video, picture gallery,
etc.

381

http://www.prmac.com
http://www.prweb.com
http://www.get2press.sg

382

CHAPTER 12: Introduction to Game Promotion

Relay the content of your App Store page and add
additional sections like Q&As, tips, user guides.

As the purpose is to sell your game, make sure to have a
Buy button easily visible that will link to the App Store page
for your game.

Getting Your Game Reviewed on App Review WebhSites

A strong purchase enabler is a referral. This is why it is critical for your game to
gain reviews from prominent App review sites.

A good approach is to send a personalized message to them with a free
download code of your game and the press release as an attachment.

Here are a few sites that | use:
www. 148apps . com
www.slidetoplay.com
WWW . appspy . com
http://toucharcade.com
www.metacritic.com/games/ios

Also, this page (http://maniacdev.com/2011/08/ios-app-review-sites/) lists
116 sites that review Apps.

Creating a Facehook Page

Although social networking is not limited to Facebook, let’s face it: Facebook is
a powerful tool.

With a Facebook account you can create Facebook pages. A Facebook page is
an excellent vehicle for community communication. You can provide a
description of your game using the description you prepared for the App Store.
To create a Facebook page, go to www.facebook.com/FacebookPages

(Figure 12-4).

http://www.148apps.com
http://www.slidetoplay.com
http://www.appspy.com
http://toucharcade.com
http://www.metacritic.com/games/ios
http://maniacdev.com/2011/08/ios-app-review-sites/
http://www.facebook.com/FacebookPages

CHAPTER 12: Introduction to Game Promotion

facebook [')/ David Guerineau Find Friends Home
Create a Page

| o

Everything you do on Facebook
starts with your Page

Facebook Pages o Like | | % v
1,900,855 likes - 40,465 talking about this

E . : .gm n n 5

Photos Likes Resources Pages Guides: Orgs

Product/Service

A Facebook Page gives a voice to any brand, business
of organization to join the conversation with
Faceboak users,

Figure 12-4. Facebook Pages page
Click the Create a Page button at the top right corner of the page (you must be
logged in to create a page). Select one of the following:

Local Business or Place

Company, Organization, or Institution

Brand or Product

Artist, Band, or Public Figure

Entertainment

Cause or Community

Games for iOS devices fall under “Brand or Product.” Then, select the category
called “App.” Type the name of your game. Read the Facebook Pages terms
(www . facebook.com/page_guidelines.php) and check the box to signify your
acceptance of these terms. Last, click the “Get Started” button shown in
Figure 12-5.

383

http://www.facebook.com/page_guidelines.php

384 CHAPTER 12: Introduction to Game Promotion

Brand or Product

App hd|

iOS Kindergaten

@ agree to Facebook Pages Terms

Get Started

Figure 12-5. Creating a Facebook page for iOS Kindergarten

You can provide a profile picture, as shown in Figure 12-6. Use the icon that you
prepared for your App Store page.

Set Up 10S Kindergaten

1 Profile Picture 2 About 3 Facebook Web Address
Upload From Import From
Computer Website

| skip '

Figure 12-6. Uploading the profile picture

Next is the description of your game (Figure 12-7). Again, use the work you did
for the App Store description.

CHAPTER 12: Introduction to Game Promotion

Set Up 10S Kindergaten

1 Profile Picture m 3 Facebook Web Address

Please provide some basic info about 105 Kindergaten.

For example: your website, Twitter page or Yelp link Add Another Site

Skip |
Figure 12-7. Provide information about your game

The last step in the page creation is to choose the web address of your page. If
will be something like http://www.facebook.com/yourpage, as shown in
Figure 12-8.

Set Up 10S Kindergaten

1 Profile Picture 2 About 3 Facebook Web Address

Choose a unigue Facebook web address to make it easier for people to find your Page. We've made a
suggestion below, but you can also choose your own. Once this is set, it can't be changed.

http:/ fwww.facebook.com/ losKindergaten

Csecnserss [ETY

Figure 12-8. Set up your web address

Your page is created! You will automatically be directed to the admin area of
your page, as shown in Figure 12-9.

385

http://www.facebook.com/yourpage

386

CHAPTER 12: Introduction to Game Promotion

facebook earch | '}/ David Guerineau Find Friends Home

Admin Panel Manage ~ Bulld Audlence ~ Help ~ | | Hide

Notifications Sec All | Messages See All

New Likes See All | Insights Page Tips Next

like your Page Discover resources and

= i tips

28 Invi

d
(38 Irwite Ermail
Contacts

Figure 12-9. Your Facebook page admin panel

Use this page to create a community around your game and use it to
communicate with the community. Once people “Like” the page, they will
receive in their news feed any post on your page wall.

Summary

This ends the introduction to game promotion. It was a very basic approach to
marketing concepts. If you wish to explore more about games marketing and
promotion, | recommend 7he Business of iPhone and iPad App Development by
Dave Wooldridge and Michael Schneider.

In this chapter you learned how to:
Define your target customers.
Research your competition.
Draft your unique value definition.
Write press releases and distribute them.
Approach app review web sites.

Create a Facebook page.

Index

A

Accelerometer
Autorotate attribute, 113-114
clockwise rotation, 110
counterclockwise rotation, 110
iPad, portrait mode, 110
left Movement rule, 109
meaning, 109
portrait orientation rule, 111-112
right movement rule, 111
upside down orientation rule,
112-113
Actor, Pong game
attributes
color, 43
concepts, 42
modification, 41, 44-45
name, 42
Physics/Density, 43
Physics/Friction, 43
Physics/Moveable, 43
restitution attribute, 46
size, 43
Tags, 43
ball, 54
Attributes Inspector window,
55
direction, 55-57
Expression Editor, 56, 58
serving rule, 58, 59
behaviors

Constrain Attribute, 53
definition, 46
move behavior, 50
rule behaviors, 47-49
types, 46

definition, 39

racket player 1, 51

racket player 2, 53

tags, 61-63

via project editors, 40

via scene editor, 41, 51-52

walls, 60-61

Analog clock, 307. See also Device

internal clock

Angry Birds, 161, 203

actors scene, 207
blocks
hard actor attributes, 205
soft actor attributes, 205
target, 204
types, 204
blocks replacing, 229-232
camera
fine-tune, 192
screen vs. scene, 184-185
scrolling, 186-187
tracking area, 192
zooming in, 191-192
zooming out, 189-191
collide, 205-206
cool menu
boxes position, 237

388 INDEX

Angry Birds, cool menu (cont.) level selection, 242-244

level box, 236-237
MaxLevel update, 235-236
menu scene, 234-235
unlocked levels, 235-237
custom behavior, 228
gameplay, 161-162
gravity, 206-207
accelerate and drag, 189
apple, 187-188
flying and dragging, 188-189
particle effect
behavior, 214-217
Color tab, 211-212
explosion, colors, 213-217
feature, 208
Hard Block, 213
Image, 212
parameters, 208
Rotation, 212
Size, 210-211
Soft Block, 213
Spawn Rate tab, 209
Velocity/Position, 209-210
projectile management
adding boundaries, 193-194
bounce, 194
create dummy projectiles,
195-198
modification, 198-202
projectile modification, 232-234
recycling
Hard Block positions, 223-224
right Hard Block selection,
222-223
rule updation, destruction,
225-227
Soft Block actor, 224
Target, 225
sliding effect
cameraControl actor, 240-242
initial scene, 244-245
layers inspector, 239

touch actor, 238-240
slingshot system

anatomy, 162-166

elastic simulation, 175-183

keys, 162

pullback force, 166-175
tables

creation, 220-222

data types, 219

editor, 218-219

function, 219-220

syntax, 220

tab view, 217-218

target table, 222
TargetDestroyed, 227-228
target level updation, 229

App Store, publish a game, 341

App ID creation, 342-343
Distribution Certificate, 343
Distribution Provisioning Profile,
343-345
e-mail notification, 369
in GameSalad, 357
file compression, 364
link to promotional youtube
video, 362
overview information, 358-
360
post score behavior, 357
Provisioning Profile, 360-361
show Leaderboard behavior,
357
targeted platform, 357-358
terms and agreement, 362—-
363
uploading screenshots, 362
on iTunes Connect
application rating, 348
artwork, 350-352
enable Game Center, 352-356
enable iAd, 356-357
EULA agreement, 350

game information, 346

logging, 345

metadata information, 349

new App, 346

release date and pricing
information, 347

upload, 364-369

version and category
information, 347-348

sale status notification, 370
Armv7, 361

B

Ball
attributes, 92-93
rules and behaviours
Collide behavior, 99
drag and drop, 100
horizontal jam, 101
initial velocity, 98-99
loosing rule, 99-100
vertical jam, 101-102
Bonuses, Break A Wall game
actors
50 pt cap, 289
100 pt cap, 289-290
Auto Bullet, 290
Bullet, 290-291
rules and behaviors, 291
50 pt cap, 291-292
100 pt cap, 292-293
Auto bullet, 293-294
Brick1, 295-296
Brick2, 296
Bullet, 294-295
Racket, 296-298
Break A Wall game, 273
bonuses (see Bonuses, Break A
Wall game)
iAd
behavior, 305
freemium model, 304

revenue, 306
score posting, 300
Game Center Login, 301
Show Leaderboard, 303-304
post a score, 302-303
ScoreDisplay, 283
actor attributes, 286-287
rules and behaviors, 287
Start Screen (see Start Screen)
Breakout
accelerometer, 109-114
Atari 2600 home version, 88-89
basic elements
actors, 90-97
actors creation, 90
attributes, 98
Collidable tag, 97
project configuration, 90
rules and behaviors, 98-106
comment, 107-108
development, 89
features, 88
lives and GameOver process
attributes, 115
ball spawning rule, 117-118
display rule, 116-117
feature, 119-123
losing zone rule, 115-116
original game poster, 88
pause
actor attributes, 120
display, 120
function, 119
Game actor attributes, 122
position, 121
ResumeGamedisplay, 122
rule, 121
scene view, 120
unpause Game rule, 122-123
scene layout, 106-107
Bullets
attributes, 132
Change Velocity, 139-140

INDEX

389

Bullets (cont.)
destroy behaviors, 140-141

C

Camera

features, 184

fine-tune, 192

icon, 184

interpolate, width and size, 190-

191

projectile instance, 190

screen vs. scene, 184-185

scrolling
control behavior, 186-187
scene attributes, 186
size, 186

zone view, 185

zooming in, 191-192

zooming out, 189-191

Carrot Invaders, 125

actors
background, 131
bullets, 132
enemies, 130
imported images, 128-129
inventory, 132-133
scene editor, 127-128
spaceship, 131
wall, 132-133

attributes, 133-134

basic elements, 127

energy bar
action, interpolate, 152-154
Asteroid updation, 156-157
attributes, 153
behaviors, 154
Collision detection, 157
color, 154-156
interpolate behavior, 152
orange rule, 155
red rule, 155-156
scene management, 157-158

features, 143
game project, 127
movements, 143
parametric equations
actor attribute creation, 145-
146
GameSalad, 143-144
heart shape, 144-145
invasion, 148
movements group, 147-148
X formula, 146-147
Y formula, 147
rules and behaviors
bullet, 139-141
Carrots, 134-135
scene layout, 142
spaceship, 135-139
shoot ‘emup game, 126
Space Monsters, 125-126
spaceship movement, asteroids
attributes, 148-149
Change Velocity, 149-150
position, 151

D,E, F
Device internal clock
assembling, 317
background and clock hands
button, 313
clock, 311
hours, 312-313
minutes, 312
seconds, 312
mechanisms, rules and behaviors
button, 315
clock, 313-314
hours, 316-317
minutes, 316
seconds, 315, 316
project info, 310
set of attributes, 309

INDEX

G, H
Game promotion, 371
competition information, 374-376
operational tactics
Facebook pages, 382-386
game reviews, 382
press release, 380-381
product web pages, 381-382
targeted customers, 372
population profiling, 372-373
purchase decision, 374
source of information, 373
unique value proposition, 377
App store description, 379-
380
icon search, 378-379
name search, 377-378
GameSalad, 3
ball
attributes, 92-93
rules and behaviors, 98—-102
breakout
attributes, 98
Bricks, 91-92
Collidable tag, 97
display, 96-97
elements, 90
Horizontal Walls, 94-95
Losing Zone, 95-96
project configuration, 90
racket, 90-91
Vertical Walls, 93-94
Creator installation, 17-19
hardware and software
requirements, 3
i0S Developer Program
registration, 6
activation, 13
adding to cart, 13
agreement, 11
Apple ID creation, 9
billing information, 12

experiences, 11
individual/company
subscriptions, 8-9
new/existing Apple Developer,
7-8
target market, 10
verification code, 12
workflow, 13
Pro, 5-6
pong game (see Pong game)
registration, 4-5
resolution independence, 38
rules and behaviors
brick, 105-106
display text, 106
racket, 102-105
tables, 217-220
Viewer installation, 19, 26-29
developer certificate, 20-23
piece of code, 19
provisioning profile, 23-26
Xcode installation, 14
App Store page, 14
Installer page, 15
License Agreements, 16
steps, 14
Welcome page, 17
Xcode icon, 15

,J,K

iAd
behavior, 305
freemium model, 304
revenue, 306

L
Labyrinth, 247
actors
background, 250
ball, 249
door, 251
losing hole, 252

391

392

Labyrinth, actors (cont.)

open door, 251-252
victory hole, 252
wall, 250
ball
Collision rules, 256
down accelerometer rule,
254-255

left accelerometer rule, 255—-

256

right accelerometer rule, 254
up accelerometer rule, 253-

256

ball-in-a-maze puzzles, 247-248

door
false rule, 261-262

initial Y position value, 260—

261

true rule, 261
game project creation, 248
lighting effects, 266-267
open door

False rule, 257-259

true rule, 259-260
rules and behaviors

background, 257

ball, 253-256

door, 260-262

open door, 257-260

victory hole, 262-263
scene layout

different sizes, 263

finished layout, 265

first wall position, 264

labyrinth layout, 264-265
sound effects

import, music/sound, 268

play sound vs. music, 267

rule, 268-269

tabs, 267, 268

M, N
Menu page. See Start Screen
Metronome, 307, 318
components
metronome, 321
off, 323
on, 323
pendulum, 322
weight, 322
game attributes, 323-324
mechanical, 319
movements, rules and behaviors
metronome, 324
off, 326-328
on, 324-326
pendulum, 328-332
weight, 333-338
positioning, 338
project info, 320
Move behavior, 50

(0

Object-oriented programming (00P),
42

P,Q
Pong game, 31, 65
actors (see Actor, Pong game)
arcade version, 32
artificial intelligence, 81
Constrain Attribute, 83
modified serving rule, 84
movement detection and
position, 81-82
concepts and rules, 34-35
game/player interaction, 84-85
GameSalad project, 35-39
history, 31
home version, 33
in i0S viewer, 85, 86
limitations, 32

INDEX

resolution independence, 38 Rule behavior, 47
scoring management
actor rules and behaviors, 67 S, T, U, V, W, X, Y, y 4

Ball Detection rule, 68

Slingshot system
Destroy behavior, 73 ing y

anatomy

Display Text behavior, 70 d 162

fixed rotation, 66 forf;‘tw ;;osition 164
memory, 66 frame, 164-166
rules, 65

left frame position, 166
project file, 163
projectile throw, 163
right frame position, 165
elastic simulation
actor attribute, 179-180
constrain attribute, 177
initial position, 178
instance actor name, 176
left elastic instance, 182-183
real-time position, 177-178
right elastic implementation,
181-182
theory, 178-179
pullback force

Scene Editor attribute, 66

Scene view attribute, 66
serving feature, 74-79

one ball at a time, 76

Point winner, 74

touch interface, 79-81

Projectile management

adding boundaries, 193-194
dummy

creation, 195-196

game attribute attemptleft,

195
modification, 197-198
position, 196-197

modification
. area, 166
attributes ".ESEt rule, 201 Cosinus and Sinus functions,
change attribute rule, 198- 171
199

HasBeenTouched attribut
game resetting, 201-202 e ed attribute,

key resetting, 200-201

U
original position, 199-200 initial position, 170

magnitude function, 167
projectile actor attributes, 170

R throwing rules, 173-175
Racket touch rules, 171-173
attributes, 91 uses, slingshot, 168-169
rules and behaviours vectorToAngle function, 168
ball actor rule, 105 Spaceship
Collide behavior, 102 attributes, 125-126
constrain attribute, 102 auto fire rule, 138-139
left movement rule, 103 Collide wall, 136
right movement rule, 103-104 constrain attribute, 135-136
Resolution Independence, 38 left movement rule, 137-138

Restitution attribute, 46 right movement rule, 136-137

393

394 INDEX

Start Screen, 274
actors, 275
Home attributes, 275-276
Speaker attributes, 276
Start Game attributes, 276
Home scene, 275

instructions, 274

rules and behaviors, 276
Home actor, 277
speaker actor, 280-283
Start Game actor, 277-279

splash screens, 275

	00
	01
	Title Page

	Copyright Page

	Dedication Page

	Contents at a Glance
	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction

	02
	03
	Chapter 1 Preparing Your Design Environment
	GameSalad Requirements
	Registering to GameSalad
	About GameSalad Pro

	Registering in the iOS Developer Program
	Installing Xcode
	Installing GameSalad Creator
	Installing GameSalad iOS Viewer
	Why is GameSalad iOS Viewer a piece of code?
	Getting the GameSalad iOS Viewer
	Installing the Developer Certificate in Your Keychain
	Creating a Provisioning Profile for iOS Viewer
	Installing iOS Viewer

	Summary

	04
	Chapter 2 Your First Game from Scratch: The Pong Game
	A Little Bit of History About Pong
	Specifying the Game Concept and Rules
	The Game Concept
	The Game Rules

	Creating a New GameSalad Project
	Adding Actors
	What is an actor?
	Creating actors

	Modifying Actors Attributes
	Instance or Prototype
	Actor Attributes
	Commonly Used Attributes
	Name
	Size
	Color
	Tags
	Physics/Density
	Physics/Friction
	Physics/Moveable

	Modifying Attributes

	Adding Behaviors
	What are behaviors?
	Adding Behaviors

	Adding an Actor to the Scene
	Creating Other Actors
	Racket Player 2
	The Ball
	Walls
	Tags

	Let’s Play
	Summary

	05
	Chapter 3 Finishing Pong: Scoring and Game Interaction
	Let’s Keep Score
	It’s All About the Ace!
	Serving Feature: The Winner of the Point Serves the Next Ball
	Keeping One Ball in the Game at a Time

	Do You Have the Touch?
	Serving with a Pinch of Touch

	Giving Your Game a Brain
	Detecting the Direction and Getting the Y Value
	Moving Player 2 Racket to the Stored Value

	Pong, Talk to Me
	Let’s Play on Your Device
	Summary

	06
	Chapter 4 Break A Wall: Implementing Comments, Accelerometer Movements, LifeManagement, and Pause
	Laying Down the Basics
	Defining the New Project
	Defining the Actors
	Racket
	Brick
	Ball
	Vertical Wall
	Horizontal Wall
	Losing Zone
	Display

	Creating the Collidable Tag
	Defining the Attributes
	Implementing the Rules and Behaviors
	Ball Rules and Behaviors
	Racket Rules and Behaviors
	Brick Rules and Behaviors
	Display Text Rules and Behaviors

	Layout of the Scene

	Commenting Your Work
	Moving the Paddle with the Accelerometer
	Managing Lives and the GameOver process
	Adding a Pause Feature
	Summary

	07
	Chapter 5 Making a Shoot ‘Em Up Game: Carrot Invader
	Preparing the Basic Elements of the Scene
	Creating the Carrot Invader Game Project
	Artist Entrance: Creating the Actors
	Creating the Enemies: Carrots
	Traveling through Space: The Spaceship
	In a Far, Far, Far away Galaxy: Creating the Background
	Load Your Guns: Defining the Bullets
	Boundaries in Deep Space: The Wall

	Controlling the Number of Enemies with Game Attributes
	Setting the Screenplay: Implementing Rules and Behaviors
	Carrots: The Ultimate Enemy Role
	Flying the Spaceship
	Firing at Full Force: Bullet

	The Invasion is Starting: Creating the Scene Layout

	Adding Advanced Features
	Complex Movements
	Parametric Equations Are Fun
	Creating Movement with Parametric Equations

	Giving the Impression of Spaceship Movement
	Make the Asteroids Move

	Managing the Energy Bar
	The Interpolate Behavior
	Interpolate in Action
	From Green to Orange to Red: Managing Energy Bar Color
	Updating the Asteroid

	Scene Management

	Summary

	08
	09
	Chapter 6 Learning Gravity, Basic Physics, and Camera Controls: An Angry Birds-like Game, Part I
	Building a Slingshot: Elastic and Pullback Force
	Anatomy of a Slingshot
	Creating the Project File
	Building the Slingshot Frame

	Building the Pullback Force
	magnitude Function
	vectorToAngle Function
	Using magnitude and vectorToAngle with the Slingshot
	Creating the Projectile
	Storing the Initial Position
	Cosinus and Sinus
	Moving the Projectile with a Touch
	Throwing the Projectile

	How to Simulate an Elastic in GameSalad
	Changing Instance Actor Name
	Getting the Real-Time Position of the Projectile
	Elastic Theory
	Creating the Elastic Actor
	Implementing the Right Elastic
	Implementing the Left Elastic

	Controlling the Camera: Scrolling Across the Scene
	The Screen vs. the Scene
	Implementing the Scrolling

	Flying and Falling Down: Gravity Concepts
	Once Upon a Time, There Was an Apple
	Flying and Dragging

	More Camera Controls: Zooming In/Out While Flying
	Zooming Out
	Zooming In
	Fine-Tuning

	Projectile Management: Managing the Attempts
	Adding Boundaries
	Creating Dummy Projectiles
	Modifying the Projectile Instance
	Detecting when the Projectile Stops Moving
	Moving Back to the Original Position
	Resetting Key Attributes
	Resetting the Game After Four Attempts

	Summary

	10
	Chapter 7 Creating a Game Menu and a Particles Effect: An Angry Birds-like Game, Part II
	Aiming at a Target: Destroying Blocks
	Creating the Blocks: Hard, Soft, and the Target
	Target
	Soft Block
	Hard Block

	Make Them Collide
	Ground Them on Earth: Gravity
	Let the Actors Enter the Scene

	With a Touch of Style: The Particle Effect
	The Parameters of the Particle Effect
	Spawn Rate
	Velocity/Position
	Size
	Color
	Rotation
	Image

	An Explosion of Colors

	Performance Optimization with Tables
	Introduction to Tables in GameSalad
	Managing Several Scenes in One Scene
	Creating Tables
	Implementing the Recycling
	Knowing When the Target Has Been Destroyed
	Creating a Custom Behavior
	Positioning the Target on the New Level
	Replacing the Blocks
	Modifying the Projectiles to Start a New Level

	Adding a Cool Menu
	Creating the Menu Scene
	Managing Unlocked Levels
	Implementing the Sliding Effect
	Touch Actor
	CameraControl Actor

	Enabling Level Selection
	Adding a Menu Button on the Initial Scene

	Summary

	11
	Chapter 8 Graphics and Sound Effects: Labyrinth
	Creating the Labyrinth Game Project
	Creating Actors for the Labyrinth Game
	Ball
	Background
	Wall
	Door
	Open Door
	Victory Hole
	Losing Hole

	Defining the Game Logic with Rules and Behaviors
	Ball Rules and Behaviors
	Background Rules and Behaviors
	Open Door Rules and Behaviors
	Door Rules and Behavior
	Victory Hole Rules and Behaviors

	Designing the Game Area by Laying Out the Scene
	Implementing Lighting Special Effects
	Implementing Sound Special Effects
	Summary

	12
	13
	Chapter 9 Bonuses, Game Center, and iAd: Break a Wall
	Designing the Start Screen
	Creating the Actors
	Home
	Start Game
	Speaker

	Implementing Rules and Behaviors
	Home
	Start Game
	Speaker

	Adding Score Keeping
	ScoreDisplay Actor
	ScoreDisplay Rules and Behaviors

	Creating the Extra-Bonus Actors
	50 pt cap Actor
	100 pt cap Actor
	Auto Bullet Actor
	Bullet Actor

	Implementing the Extra-Bonus Rules and Behaviors
	50 pt cap
	100 pt cap
	Auto bullet
	Bullet
	Brick1
	Brick2
	Racket

	Posting Scores on Game Center Leaderboard
	Login to Game Center
	Posting a Score
	Posting the Score After You Lose
	Posting the Score When You Win

	Showing the Scores

	iAd
	Summary

	14
	Chapter 10 Device Internal Clock and Cyclic Movement: Non-Game Apps
	Creating an Analog Clock with the Device Clock and Rotation
	Accessing the Device Clock
	Creating the Clock Project
	Creating the Background and the Clock Hands
	Clock
	Seconds
	Minutes
	Hours
	Button

	Creating the Clock Mechanisms: Rules and Behaviors
	Clock
	Button
	Seconds
	Minutes
	Hours

	Assembling the Clock: Laying out the Scene

	Cyclic Movement: The Metronome
	Creating the Metronome Project
	Metronome Mechanical Components: Creating the Actors
	Metronome
	Weight
	Pendulum
	On
	Off

	Storing Information: Defining the Attributes
	Creating Mechanical Movements: Rules and Behaviors
	Metronome Rules and Behaviors
	On Rules and Behaviors
	Off Rules and Behaviors
	Pendulum Rules and Behaviors
	Weight Rules and Behaviors

	Building the Metronome: Laying out the Scene

	Summary

	15
	Chapter 11 Submitting Your Game to the App Store
	Getting the AppID, Certificate, and Distribution Provisioning Profile on the Provisioning Portal
	Creating Your App ID
	Your Distribution Certificate
	Creating the Distribution Provisioning Profile

	Creating the Game on iTunes Connect
	Step 1: Logging into iTunes Connect
	Step 2: Creating a New App
	Step 3: Providing Basic Information
	Step 4: Release Date and Pricing Information
	Step 5: Providing Version and Category Information
	Step 6: Defining Your Application Rating
	Step 7: Providing Metadata Information
	Step 8: Reading and Accepting the EULA Agreement
	Step 9: Providing the Game Artwork
	Enabling Game Center for Your App
	Enabling iAd

	Updating Game Center in GameSalad
	Publishing the Game Inside GameSalad
	Step 1: Selecting the Targeted Platform
	Step 2: Providing Overview Information
	Step 3: Selecting Your Provisioning Profile
	Step 4: Providing a Link to a Promotional YouTube Video
	Step 5: Uploading Your Screenshots
	Step 6: Reading and Accepting the Agreement
	Step 7: Compressing Your File

	Uploading the Game to iTunes
	Wait and Wait and Wait
	Your Game is Ready for Sale
	Summary

	16
	Chapter 12 Introduction to Game Promotion
	Pre-Development Phase
	Defining Your Targeted Customers
	Population Profiling
	Source of Information
	Understanding the Purchasing Decision

	Identifying and Qualifying Your Competition
	Creating Your Unique Value Proposition
	Finding the Perfect Name
	Working on Your Icon
	Writing the App Store Description

	Operational Tactics
	Writing a Press Release
	Creating a Web Page
	Getting Your Game Reviewed on App Review WebSites
	Creating a Facebook Page

	Summary

	17
	Index

