
www.allitebooks.com

http://www.allitebooks.org

Learning Data Mining with R

Develop key skills and techniques with R to create and
customize data mining algorithms

Bater Makhabel

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Learning Data Mining with R

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2015

Production reference: 1250115

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-210-3

www.packtpub.com

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Bater Makhabel

Reviewers
Jason H.D. Cho

Gururaghav Gopal

Vibhav Kamath

Hasan Kurban

Commissioning Editor
Akram Husain

Acquisition Editors
Richard Gall

Owen Roberts

Content Development Editor
Govindan Kurumangattu

Technical Editors
Tanvi Bhatt

Jalasha D'costa

Pooja Nair

Siddhi Rane

Copy Editors
Roshni Banerjee

Karuna Narayanan

Vikrant Phadkay

Project Coordinator
Shipra Chawhan

Proofreaders
Ameesha Green

Sandra Hopper

Clyde Jenkins

Indexer
Mariammal Chettiyar

Graphics
Valentina D'silva

Disha Haria

Abhinash Sahu

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

www.allitebooks.com

http://www.allitebooks.org

About the Author

Bater Makhabel (LinkedIn: BATERMJ and GitHub: BATERMJ) is a system architect
living across Beijing, Shanghai, and Urumqi in China. He received his master's and
bachelor's degrees in computer science and technology from Tsinghua University
between the years 1995 and 2002. He has extensive experience in machine learning,
data mining, natural language processing (NLP), distributed systems, embedded
systems, the Web, mobile, algorithms, and applied mathematics and statistics. He has
worked for clients such as CA Technologies, META4ALL, and EDA (a subcompany of
DFR). He also has experience in setting up start-ups in China.

Bater has been balancing a life of creativity between the edge of computer sciences
and human cultures. For the past 12 years, he has gained experience in various
culture creations by applying various cutting-edge computer technologies, one being
a human-machine interface that is used to communicate with computer systems in
the Kazakh language. He has previously collaborated with other writers in his fields
too, but Learning Data Mining with R is his first official effort.

www.allitebooks.com

http://www.allitebooks.org

Acknowledgments

I would like to thank my wife, Zurypa Dawletkan, and my son, Bakhtiyar. They
supported me and spent weekends and nights to make this book possible.

I would like to thank Luke Presland. He gave me the opportunity to write this book.
A big thank you to Rebecca Pedley and Govindan K; your help on the book was
great. Thanks to Jalasha D'costa and the other technical editors and the team for
their hard work on the publication version of this book, to make it look good.
Also, thanks to all the acquisition editors and technical reviewers.

I also would like to thank my brother, Dr. Bolat Makhabel (LinkedIn: BOLATMJ),
for providing me with the cover image for this book. He is from a medical science
background. The name of the plant in the image is Echinops (the botanical Latin
name), Lahsa in Kazakhstan, and Khonrawbas (or Koktiken) in China. This plant is
used in the traditional Kazakh medicine and is a part of his research as well.

Although most of my professional knowledge comes from continual practice, its
roots are in the firm foundation set up by my university, Tsinghua University, and
my teachers, Prof. Dai Meie, Prof. Zhao Yannan, Prof. Wang Jiaqin, Prof. Ju Yuma,
and many others. Their spirit is still an inspiration for me to pursue my work in the
field of computer science and technology.

I'd like to express my thanks to my wife's parents, Dawletkan Kobegen and Burux
Takay, for helping us by taking care of my son.

Lastly, I would also like to express my greatest respect to my sister, Aynur
Makhabel, and my brother-in-law, Akimjan Xaymardan, for their valuable virtue.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Jason H.D. Cho has received an M.S. degree from University of Illinois at Urbana-
Champaign in computer science, and he is currently pursuing his PhD there. He is
particularly interested in applying natural language processing and big data to solve
medical informatics problem. In particular, he wishes to characterize what patients
are concerned about in terms of their health needs in social media. He has also led a
group of mentees who have been nominated for one of the top 10 teams in a national
primary health care competition (CIMIT). Jason has also reviewed paper submissions
in both natural language processing and big data research field.

Gururaghav Gopal is presently working in Paterson securities as a Quant
developer, trader, and consultant. Previously, he worked as a data science consultant
and was associated with the e-commerce industry. He has also taught graduate
and postgraduate students of VIT University, Vellore, India in the field of pattern
recognition. He has been a research associate in several research institutes, including
IFMR and NAL.

Gururaghav completed his bachelor's degree in electrical and electronics engineering
and master's degree in computer science and engineering. He completed his course
from IFMR in financial engineering and risk management, and since then, he has
been associated with the finance sector. He has won a few awards and has a few
international publications to his name.

He is interested in programming, teaching, and consulting. During his free time,
he listens to music.

www.allitebooks.com

http://www.allitebooks.org

Vibhav Kamath holds a master's degree in industrial engineering and
operations research from Indian Institute of Technology, Bombay, and a
bachelor's degree in electronics engineering from College of Engineering, Pune.
During his postgraduation, he was intrigued with algorithms and mathematical
modeling. He has been involved in analytics since then. Vibhav is currently based
in Bangalore, and works for an IT services firm. As a part of his job, he has developed
statistical/mathematical models based on techniques such as optimization and linear
regression, using the R programming language. He has also worked as a reviewer for
two other books on R, R Graphs Cookbook Second Edition and Social Media Mining with
R, both by Packt Publishing. In the past, he has also handled data visualization and
created dashboards for a leading global bank, using platforms such as SAS, SQL,
and Excel/VBA.

In the past, Vibhav has worked on areas such as discrete event simulation and
speech processing (both on MATLAB) as part of his academics. He has also worked
on robotics in the past, and has built a robot that navigates through a maze, called
Micromouse. Apart from analytics and programming, Vibhav has interests in
reading and likes both fiction and nonfiction books. He plays table tennis in his free
time, follows cricket and tennis, and likes solving puzzles (Su-doku and Kakuro) when
really bored. You can get in touch with him at vibhav.kamath@hotmail.com or on
LinkedIn at in.linkedin.com/in/vibhavkamath.

Hasan Kurban received his master's degree in computer science from Indiana
University, Bloomington in 2012. He is currently a PhD student in the School
of Informatics and Computing at Indiana University, Bloomington, majoring in
computer science and minoring in statistics. His research is focused on data mining,
machine learning, and statistics.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

I dedicate this book to my parents, Makhabel.Janabel and Gulsahira.Muhatay.
They always love, support, and believe in me.

—Bater Makhabel

Table of Contents
Preface 1
Chapter 1: Warming Up 7

Big data 8
Scalability and efficiency 9

Data source 10
Data mining 10

Feature extraction 11
Summarization 11
The data mining process 11

CRISP-DM 12
SEMMA 13

Social network mining 14
Social network 14

Text mining 17
Information retrieval and text mining 17
Mining text for prediction 18

Web data mining 18
Why R? 20

What is the disadvantage of R? 20
Statistics 20

Statistics and data mining 21
Statistics and machine learning 21
Statistics and R 21
The limitations of statistics on data mining 21

Machine learning 22
Approaches to machine learning 22
Machine learning architecture 23

Data attributes and description 23
Numeric attributes 24

Table of Contents

[ii]

Categorical attributes 25
Data description 25
Data measuring 25

Data cleaning 27
Missing values 27
Junk, noisy data, or outlier 28

Data integration 29
Data dimension reduction 29

Eigenvalues and Eigenvectors 30
Principal-Component Analysis 30
Singular-value decomposition 30
CUR decomposition 31

Data transformation and discretization 31
Data transformation 31
Normalization data transformation methods 32
Data discretization 32

Visualization of results 33
Visualization with R 34

Time for action 34
Summary 35

Chapter 2: Mining Frequent Patterns, Associations,
and Correlations 37

An overview of associations and patterns 38
Patterns and pattern discovery 38

The frequent itemset 39
The frequent subsequence 41
The frequent substructures 41

Relationship or rules discovery 42
Association rules 42
Correlation rules 43

Market basket analysis 44
The market basket model 44
A-Priori algorithms 44

Input data characteristics and data structure 45
The A-Priori algorithm 45
The R implementation 47
A-Priori algorithm variants 50

The Eclat algorithm 50
The R implementation 51

The FP-growth algorithm 52
Input data characteristics and data structure 53
The FP-growth algorithm 57
The R implementation 57

Table of Contents

[iii]

The GenMax algorithm with maximal frequent itemsets 58
The R implementation 59

The Charm algorithm with closed frequent itemsets 60
The R implementation 61

The algorithm to generate association rules 61
The R implementation 62

Hybrid association rules mining 64
Mining multilevel and multidimensional association rules 64
Constraint-based frequent pattern mining 65

Mining sequence dataset 65
Sequence dataset 66
The GSP algorithm 66

The R implementation 68
The SPADE algorithm 69

The R implementation 70
Rule generation from sequential patterns 71

High-performance algorithms 71
Time for action 71
Summary 72

Chapter 3: Classification 73
Classification 74
Generic decision tree induction 76

Attribute selection measures 78
Tree pruning 79
General algorithm for the decision tree generation 80
The R implementation 81

High-value credit card customers classification using ID3 82
The ID3 algorithm 83
The R implementation 85
Web attack detection 86
High-value credit card customers classification 88

Web spam detection using C4.5 88
The C4.5 algorithm 90
The R implementation 91
A parallel version with MapReduce 92
Web spam detection 93

Web key resource page judgment using CART 96
The CART algorithm 97
The R implementation 98
Web key resource page judgment 98

Table of Contents

[iv]

Trojan traffic identification method and Bayes classification 99
Estimating 100

Prior probability estimation 100
Likelihood estimation 100

The Bayes classification 101
The R implementation 102
Trojan traffic identification method 102

Identify spam e-mail and Naïve Bayes classification 104
The Naïve Bayes classification 105
The R implementation 106
Identify spam e-mail 107

Rule-based classification of player types in computer
games and rule-based classification 108

Transformation from decision tree to decision rules 109
Rule-based classification 110
Sequential covering algorithm 110
The RIPPER algorithm 111

The R implementation 113
Rule-based classification of player types in computer games 113

Time for action 114
Summary 115

Chapter 4: Advanced Classification 117
Ensemble (EM) methods 117

The bagging algorithm 118
The boosting and AdaBoost algorithms 119
The Random forests algorithm 122
The R implementation 122
Parallel version with MapReduce 123

Biological traits and the Bayesian belief network 124
The Bayesian belief network (BBN) algorithm 125
The R implementation 126
Biological traits 126

Protein classification and the k-Nearest Neighbors algorithm 126
The kNN algorithm 127
The R implementation 127

Document retrieval and Support Vector Machine 127
The SVM algorithm 130
The R implementation 132
Parallel version with MapReduce 133
Document retrieval 134

Table of Contents

[v]

Classification using frequent patterns 134
The associative classification 134

CBA 135
Discriminative frequent pattern-based classification 135
The R implementation 136
Text classification using sentential frequent itemsets 136

Classification using the backpropagation algorithm 137
The BP algorithm 139
The R implementation 141
Parallel version with MapReduce 141

Time for action 143
Summary 143

Chapter 5: Cluster Analysis 145
Search engines and the k-means algorithm 148

The k-means clustering algorithm 150
The kernel k-means algorithm 151
The k-modes algorithm 152
The R implementation 152
Parallel version with MapReduce 153
Search engine and web page clustering 154

Automatic abstraction of document texts and the
k-medoids algorithm 156

The PAM algorithm 158
The R implementation 158
Automatic abstraction and summarization of document text 158

The CLARA algorithm 159
The CLARA algorithm 160
The R implementation 160

CLARANS 161
The CLARANS algorithm 161
The R implementation 162

Unsupervised image categorization and affinity
propagation clustering 162

Affinity propagation clustering 164
The R implementation 164
Unsupervised image categorization 165
The spectral clustering algorithm 165
The R implementation 166

News categorization and hierarchical clustering 166
Agglomerative hierarchical clustering 167
The BIRCH algorithm 167

Table of Contents

[vi]

The chameleon algorithm 168
The Bayesian hierarchical clustering algorithm 170
The probabilistic hierarchical clustering algorithm 170
The R implementation 171
News categorization 171

Time for action 172
Summary 172

Chapter 6: Advanced Cluster Analysis 175
Customer categorization analysis of e-commerce and DBSCAN 175

The DBSCAN algorithm 177
Customer categorization analysis of e-commerce 178

Clustering web pages and OPTICS 178
The OPTICS algorithm 179
The R implementation 181
Clustering web pages 181

Visitor analysis in the browser cache and DENCLUE 181
The DENCLUE algorithm 183
The R implementation 183
Visitor analysis in the browser cache 183

Recommendation system and STING 186
The STING algorithm 186
The R implementation 187
Recommendation systems 187

Web sentiment analysis and CLIQUE 187
The CLIQUE algorithm 188
The R implementation 189
Web sentiment analysis 189

Opinion mining and WAVE clustering 189
The WAVE cluster algorithm 190
The R implementation 191
Opinion mining 191

User search intent and the EM algorithm 192
The EM algorithm 193
The R implementation 193
The user search intent 193

Customer purchase data analysis and clustering
high-dimensional data 194

The MAFIA algorithm 194
The SURFING algorithm 196

Table of Contents

[vii]

The R implementation 197
Customer purchase data analysis 197

SNS and clustering graph and network data 197
The SCAN algorithm 198
The R implementation 198
Social networking service (SNS) 199

Time for action 199
Summary 199

Chapter 7: Outlier Detection 201
Credit card fraud detection and statistical methods 202

The likelihood-based outlier detection algorithm 204
The R implementation 204
Credit card fraud detection 204

Activity monitoring – the detection of fraud involving
mobile phones and proximity-based methods 205

The NL algorithm 205
The FindAllOutsM algorithm 206
The FindAllOutsD algorithm 207
The distance-based algorithm 208
The Dolphin algorithm 209
The R implementation 210
Activity monitoring and the detection of mobile fraud 210

Intrusion detection and density-based methods 211
The OPTICS-OF algorithm 213
The High Contrast Subspace algorithm 214
The R implementation 215
Intrusion detection 215

Intrusion detection and clustering-based methods 216
Hierarchical clustering to detect outliers 216
The k-means-based algorithm 216
The ODIN algorithm 217
The R implementation 218

Monitoring the performance of the web server and
classification-based methods 218

The OCSVM algorithm 218
The one-class nearest neighbor algorithm 219
The R implementation 220
Monitoring the performance of the web server 220

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[viii]

Detecting novelty in text, topic detection, and mining
contextual outliers 220

The conditional anomaly detection (CAD) algorithm 221
The R implementation 223
Detecting novelty in text and topic detection 223

Collective outliers on spatial data 223
The route outlier detection (ROD) algorithm 224
The R implementation 225
Characteristics of collective outliers 225

Outlier detection in high-dimensional data 225
The brute-force algorithm 225
The HilOut algorithm 226
The R implementation 226

Time for action 227
Summary 227

Chapter 8: Mining Stream, Time-series, and Sequence Data 229
The credit card transaction flow and STREAM algorithm 230

The STREAM algorithm 231
The single-pass-any-time clustering algorithm 232
The R implementation 232
The credit card transaction flow 233

Predicting future prices and time-series analysis 233
The ARIMA algorithm 234
Predicting future prices 235

Stock market data and time-series clustering and classification 236
The hError algorithm 237
Time-series classification with the 1NN classifier 238
The R implementation 238
Stock market data 239

Web click streams and mining symbolic sequences 239
The TECNO-STREAMS algorithm 239
The R implementation 243
Web click streams 243

Mining sequence patterns in transactional databases 243
The PrefixSpan algorithm 244
The R implementation 244

Time for action 244
Summary 245

Table of Contents

[ix]

Chapter 9: Graph Mining and Network Analysis 247
Graph mining 247

Graph 247
Graph mining algorithms 248

Mining frequent subgraph patterns 248
The gPLS algorithm 248
The GraphSig algorithm 249
The gSpan algorithm 249
Rightmost path extensions and their supports 250
The subgraph isomorphism enumeration algorithm 251
The canonical checking algorithm 251
The R implementation 252

Social network mining 252
Community detection and the shingling algorithm 252
The node classification and iterative classification algorithms 254
The R implementation 254

Time for action 255
Summary 255

Chapter 10: Mining Text and Web Data 257
Text mining and TM packages 258
Text summarization 258

Topic representation 259
The multidocument summarization algorithm 261
The Maximal Marginal Relevance algorithm 262
The R implementation 263

The question answering system 263
Genre categorization of web pages 264
Categorizing newspaper articles and newswires into topics 265

The N-gram-based text categorization 267
The R implementation 268

Web usage mining with web logs 268
The FCA-based association rule mining algorithm 270
The R implementation 270

Time for action 271
Summary 271

Appendix: Algorithms and Data Structures 273
Index 277

Preface
The necessity to handle many complex statistical analysis projects is hitting
statisticians and analysts across the globe. Since there is an increasing interest in data
analysis, R offers a free and open source environment that is perfect for both learning
and deploying predictive modeling solutions in the real world. With its constantly
growing community and plethora of packages, R offers functionality to deal with a
truly vast array of problems.

It's been decades since the R programming language was born, and it has become
eminent and well known not only within the community of scientists but also in
the wider community of developers. It has grown into a powerful tool to help
developers produce efficient and consistent source code for data-related tasks.
The R development team and independent contributors have created good
documentation, so getting started with R programming isn't that hard.

To go further, you can use packages from the official R website. If you want to
continually improve your level of expertise, you might read through a set of books
that have been published in last couple of years. You should always bear in mind
that creating high-level, secure, and internationally compliant code is more complex
than the first application created in the beginning.

This book is designed to help you deal with an array of problems that you may
encounter during complex statistical projects, which can be difficult. Topics in this
book will include learning how to manipulate data with R using code snippets,
mining frequent patterns, association, and correlations while working with R
programs. This book will also provide for those with only a basic knowledge of R
the skills and knowledge to successfully create and customize the most popular data
mining algorithms. This will help overcome difficulties encountered and will ensure
the most effective use of the R programming language on data mining algorithm
development through its rich set of publicly available packages.

Preface

[2]

Each chapter of this book is intended to stand on its own, so feel free to jump to any
chapter where you feel you need to get more in-depth knowledge about a particular
topic. If you feel you missed something major, go back and read the earlier chapters.
They are constructed in a way to grow your knowledge piece by piece.

Discover how to write code for various predication models, stream data, and
time-series data. You will also be introduced to solutions based on the MapReduce
algorithm. You will finish this book feeling confident in the ability that you know
which data mining algorithm to apply in which situation.

I enjoy working with the R programming language for versatile data mining tasks
developments and researches, and I am really happy to share my enthusiasm and
expertise with you to help you make use of the language more effectively and
comfortably use data mining algorithm developments and applications.

What this book covers
Chapter 1, Warming Up, gives you the overview of data mining, the relation of data
mining to machine learning, and statistics. It illustrates basic data mining terms
such as data definition and preprocessing.

Chapter 2, Mining Frequent Patterns, Associations, and Correlations, contains advanced
and interesting algorithms required to learn mining frequent patterns, association
rules, and correlation rules when working with R programs.

Chapter 3, Classification, helps you learn the classic classification algorithms written
in the R language, covering various classification algorithms for different types
of datasets.

Chapter 4, Advanced Classification, teaches you more classification algorithms, such as
the Bayesian Belief Network, SVM, and k-Nearest Neighbors algorithm.

Chapter 5, Cluster Analysis, helps you learn how to implement the popular and classic
algorithms for clustering, such as k-means, CLARA, and spectral algorithms.

Chapter 6, Advanced Cluster Analysis, shows the implementation of advanced
algorithms for clustering that are related to hot topics in current industries,
including EM, CLIQUE, DBSCAN, and so on.

Chapter 7, Outlier Detection, demonstrates the classic and popular algorithms used to
detect outliers in real-world cases.

Chapter 8, Mining Stream, Time-series, and Sequence Data, explains these three hot
topics with the most popular, classic, and top-ranking algorithms.

Preface

[3]

Chapter 9, Graph Mining and Network Analysis, shows you the overview of graphs and
social mining algorithms, along with other interesting topics.

Chapter 10, Mining Text and Web Data, helps you learn the popular algorithms applied
in domains with interesting applications.

Appendix, Algorithms and Data Structures, contains a list of algorithms and data
structures to help you on your data mining journey.

What you need for this book
Any modern PC with Windows, Linux, or Mac OS should be sufficient to run the
code samples given in this book. All of the software used in the book is open source
and freely available on the Web, at http://www.r-project.org/.

Who this book is for
This book is intended for budding data scientists, quantitative analysts, and software
engineers with only basic exposure to R and statistics. This book assumes familiarity
with only the very basics of R, such as the main data types, simple functions, and
how to move data around. No prior experience with data mining packages is
necessary. However, you should have basic understanding of data mining concepts
and processes.

Even if you are brand new to data mining, you will be able to master both the basic
and the advanced implementations of data mining algorithms. You will learn how to
select and apply the appropriate algorithms from various data mining algorithms to
some specific datasets out of most of the datasets available for the real world.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and
explanations of their meanings.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We can include other contexts through the use of the include directive."

Preface

[4]

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Clicking
on the Next button moves you to the next screen."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you. You can also find the code files for this
book at https://github.com/batermj/learning-data-mining-with-r.

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Warming Up
In this chapter, you will learn basic data mining terms such as data definition,
preprocessing, and so on.

The most important data mining algorithms will be illustrated with R to help you
grasp the principles quickly, including but not limited to, classification, clustering,
and outlier detection. Before diving right into data mining, let's have a look at the
topics we'll cover:

• Data mining
• Social network mining
• Text mining
• Web data mining
• Why R
• Statistics
• Machine learning
• Data attributes and description
• Data measuring
• Data cleaning
• Data integration
• Data reduction
• Data transformation and discretization
• Visualization of results

In the history of humankind, the results of data from every aspect is extensive, for
example websites, social networks by user's e-mail or name or account, search terms,
locations on map, companies, IP addresses, books, films, music, and products.

www.allitebooks.com

http://www.allitebooks.org

Warming Up

[8]

Data mining techniques can be applied to any kind of old or emerging data; each data
type can be best dealt with using certain, but not all, techniques. In other words, the
data mining techniques are constrained by data type, size of the dataset, context of the
tasks applied, and so on. Every dataset has its own appropriate data mining solutions.

New data mining techniques always need to be researched along with new data
types once the old techniques cannot be applied to it or if the new data type cannot
be transformed onto the traditional data types. The evolution of stream mining
algorithms applied to Twitter's huge source set is one typical example. The graph
mining algorithms developed for social networks is another example.

The most popular and basic forms of data are from databases, data warehouses,
ordered/sequence data, graph data, text data, and so on. In other words, they are
federated data, high dimensional data, longitudinal data, streaming data, web data,
numeric, categorical, or text data.

Big data
Big data is large amount of data that does not fit in the memory of a single machine.
In other words, the size of data itself becomes a part of the issue when studying it.
Besides volume, two other major characteristics of big data are variety and velocity;
these are the famous three Vs of big data. Velocity means data process rate or how
fast the data is being processed. Variety denotes various data source types. Noises
arise more frequently in big data source sets and affect the mining results, which
require efficient data preprocessing algorithms.

As a result, distributed filesystems are used as tools for successful implementation
of parallel algorithms on large amounts of data; it is a certainty that we will get even
more data with each passing second. Data analytics and visualization techniques
are the primary factors of the data mining tasks related to massive data. The
characteristics of massive data appeal to many new data mining technique-related
platforms, one of which is RHadoop. We'll be describing this in a later section.

Some data types that are important to big data are as follows:

• The data from the camera video, which includes more metadata for
analysis to expedite crime investigations, enhanced retail analysis,
military intelligence, and so on.

• The second data type is from embedded sensors, such as medical sensors,
to monitor any potential outbreaks of virus.

Chapter 1

[9]

• The third data type is from entertainment, information freely published
through social media by anyone.

• The last data type is consumer images, aggregated from social medias, and
tagging on these like images are important.

Here is a table illustrating the history of data size growth. It shows that information
will be more than double every two years, changing the way researchers or
companies manage and extract value through data mining techniques from data,
revealing new data mining studies.

Year Data Sizes Comments

N/A 1 MB (Megabyte) = 202 . The human brain holds about 200 MB of
information.

N/A 1 PB (Petabyte) = 250 . It is similar to the size of 3 years'
observation data for Earth by NASA and is equivalent of 70.8
times the books in America's Library of Congress.

1999 1 EB 1 EB (Exabyte) = 260 . The world produced 1.5 EB of unique
information.

2007 281 EB The world produced about 281 Exabyte of unique information.

2011 1.8 ZB 1 ZB (Zetabyte)= 702 . This is all data gathered by human beings
in 2011.

Very soon 1 YB(Yottabytes)= 802 .

Scalability and efficiency
Efficiency, scalability, performance, optimization, and the ability to perform in
real time are important issues for almost any algorithms, and it is the same for
data mining. There are always necessary metrics or benchmark factors of data
mining algorithms.

As the amount of data continues to grow, keeping data mining algorithms effective
and scalable is necessary to effectively extract information from massive datasets in
many data repositories or data streams.

The storage of data from a single machine to wide distribution, the huge size of
many datasets, and the computational complexity of the data mining methods
are all factors that drive the development of parallel and distributed data-intensive
mining algorithms.

Warming Up

[10]

Data source
Data serves as the input for the data mining system and data repositories are
important. In an enterprise environment, database and logfiles are common sources.
In web data mining, web pages are the source of data. The data that continuously
fetched various sensors are also a typical data source.

Here are some free online data sources particularly helpful to learn
about data mining:

• Frequent Itemset Mining Dataset Repository: A repository
with datasets for methods to find frequent itemsets
(http://fimi.ua.ac.be/data/).

• UCI Machine Learning Repository: This is a collection of
dataset, suitable for classification tasks (http://archive.
ics.uci.edu/ml/).

• The Data and Story Library at statlib: DASL (pronounced
"dazzle") is an online library of data files and stories that
illustrate the use of basic statistics methods. We hope
to provide data from a wide variety of topics so that
statistics teachers can find real-world examples that will be
interesting to their students. Use DASL's powerful search
engine to locate the story or data file of interest.
(http://lib.stat.cmu.edu/DASL/)

• WordNet: This is a lexical database for English
(http://wordnet.princeton.edu)

Data mining
Data mining is the discovery of a model in data; it's also called exploratory data
analysis, and discovers useful, valid, unexpected, and understandable knowledge
from the data. Some goals are shared with other sciences, such as statistics, artificial
intelligence, machine learning, and pattern recognition. Data mining has been
frequently treated as an algorithmic problem in most cases. Clustering, classification,
association rule learning, anomaly detection, regression, and summarization are all
part of the tasks belonging to data mining.

The data mining methods can be summarized into two main categories of data
mining problems: feature extraction and summarization.

Chapter 1

[11]

Feature extraction
This is to extract the most prominent features of the data and ignore the rest. Here
are some examples:

• Frequent itemsets: This model makes sense for data that consists of baskets of
small sets of items.

• Similar items: Sometimes your data looks like a collection of sets and the
objective is to find pairs of sets that have a relatively large fraction of their
elements in common. It's a fundamental problem of data mining.

Summarization
The target is to summarize the dataset succinctly and approximately, such as
clustering, which is the process of examining a collection of points (data) and
grouping the points into clusters according to some measure. The goal is that
points in the same cluster have a small distance from one another, while points
in different clusters are at a large distance from one another.

The data mining process
There are two popular processes to define the data mining process in different
perspectives, and the more widely adopted one is CRISP-DM:

• Cross-Industry Standard Process for Data Mining (CRISP-DM)
• Sample, Explore, Modify, Model, Assess (SEMMA), which was developed

by the SAS Institute, USA

Warming Up

[12]

CRISP-DM
There are six phases in this process that are shown in the following figure; it is not
rigid, but often has a great deal of backtracking:

Business

Understanding

Data

Understanding

Data

Preparation

Deployment

Modeling

Evaluation

Data

Let's look at the phases in detail:

• Business understanding: This task includes determining business objectives,
assessing the current situation, establishing data mining goals, and
developing a plan.

• Data understanding: This task evaluates data requirements and includes
initial data collection, data description, data exploration, and the verification
of data quality.

• Data preparation: Once available, data resources are identified in the last
step. Then, the data needs to be selected, cleaned, and then built into the
desired form and format.

Chapter 1

[13]

• Modeling: Visualization and cluster analysis are useful for initial analysis.
The initial association rules can be developed by applying tools such as
generalized rule induction. This is a data mining technique to discover
knowledge represented as rules to illustrate the data in the view of causal
relationship between conditional factors and a given decision/outcome. The
models appropriate to the data type can also be applied.

• Evaluation :The results should be evaluated in the context specified by the
business objectives in the first step. This leads to the identification of new
needs and in turn reverts to the prior phases in most cases.

• Deployment: Data mining can be used to both verify previously held
hypotheses or for knowledge.

SEMMA
Here is an overview of the process for SEMMA:

Variable

selection,

creation

Sampling

yes/no

Data

visualization

Neural

networks

Tree-

based

models

Model

assessment

Clustering,

associations

Data

transformation

Logistic

models

Other

stat

models

SAMPLE

EXPLORE

MODIFY

MODEL

ASSESS

Let's look at these processes in detail:

• Sample: In this step, a portion of a large dataset is extracted
• Explore: To gain a better understanding of the dataset, unanticipated trends

and anomalies are searched in this step
• Modify: The variables are created, selected, and transformed to focus on the

model construction process

Warming Up

[14]

• Model: A variable combination of models is searched to predict a
desired outcome

• Assess: The findings from the data mining process are evaluated by its
usefulness and reliability

Social network mining
As we mentioned before, data mining finds a model on data and the mining of social
network finds the model on graph data in which the social network is represented.

Social network mining is one application of web data mining; the popular
applications are social sciences and bibliometry, PageRank and HITS, shortcomings
of the coarse-grained graph model, enhanced models and techniques, evaluation of
topic distillation, and measuring and modeling the Web.

Social network
When it comes to the discussion of social networks, you will think of Facebook,
Google+, LinkedIn, and so on. The essential characteristics of a social network
are as follows:

• There is a collection of entities that participate in the network. Typically,
these entities are people, but they could be something else entirely.

• There is at least one relationship between the entities of the network. On
Facebook, this relationship is called friends. Sometimes, the relationship is
all-or-nothing; two people are either friends or they are not. However, in
other examples of social networks, the relationship has a degree. This degree
could be discrete, for example, friends, family, acquaintances, or none as in
Google+. It could be a real number; an example would be the fraction of the
average day that two people spend talking to each other.

• There is an assumption of nonrandomness or locality. This condition is
the hardest to formalize, but the intuition is that relationships tend to
cluster. That is, if entity A is related to both B and C, then there is a higher
probability than average that B and C are related.

Chapter 1

[15]

Here are some varieties of social networks:

• Telephone networks: The nodes in this network are phone numbers and
represent individuals

• E-mail networks: The nodes represent e-mail addresses, which
represent individuals

• Collaboration networks: The nodes here represent individuals who
published research papers; the edge connecting two nodes represent
two individuals who published one or more papers jointly

Social networks are modeled as undirected graphs. The entities are the nodes,
and an edge connects two nodes if the nodes are related by the relationship that
characterizes the network. If there is a degree associated with the relationship, this
degree is represented by labeling the edges.

Warming Up

[16]

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books
you have purchased. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Here is an example in which Coleman's High School Friendship Data from the sna R
package is used for analysis. The data is from a research on friendship ties between
73 boys in a high school in one chosen academic year; reported ties for all informants
are provided for two time points (fall and spring). The dataset's name is coleman,
which is an array type in R language. The node denotes a specific student and the
line represents the tie between two students.

Chapter 1

[17]

Text mining
Text mining is based on the data of text, concerned with exacting relevant
information from large natural language text, and searching for interesting
relationships, syntactical correlation, or semantic association between the extracted
entities or terms. It is also defined as automatic or semiautomatic processing of text.
The related algorithms include text clustering, text classification, natural language
processing, and web mining.

One of the characteristics of text mining is text mixed with numbers, or in other point
of view, the hybrid data type contained in the source dataset. The text is usually a
collection of unstructured documents, which will be preprocessed and transformed
into a numerical and structured representation. After the transformation, most of the
data mining algorithms can be applied with good effects.

The process of text mining is described as follows:

• Text mining starts from preparing the text corpus, which are reports, letters
and so forth

• The second step is to build a semistructured text database that is based on the
text corpus

• The third step is to build a term-document matrix in which the term
frequency is included

• The final result is further analysis, such as text analysis, semantic analysis,
information retrieval, and information summarization

Information retrieval and text mining
Information retrieval is to help users find information, most commonly associated
with online documents. It focuses on the acquisition, organization, storage, retrieval,
and distribution for information. The task of Information Retrieval (IR) is to retrieve
relevant documents in response to a query. The fundamental technique of IR is
measuring similarity. Key steps in IR are as follows:

• Specify a query. The following are some of the types of queries:
 ° Keyword query: This is expressed by a list of keywords to find

documents that contain at least one keyword
 ° Boolean query: This is constructed with Boolean operators

and keywords
 ° Phrase query: This is a query that consists of a sequence of words

that makes up a phrase

www.allitebooks.com

http://www.allitebooks.org

Warming Up

[18]

 ° Proximity query: This is a downgrade version of the phrase queries
and can be a combination of keywords and phrases

 ° Full document query: This query is a full document to find other
documents similar to the query document

 ° Natural language questions: This query helps to express users'
requirements as a natural language question

• Search the document collection.
• Return the subset of relevant documents.

Mining text for prediction
Prediction of results from text is just as ambitious as predicting numerical data
mining and has similar problems associated with numerical classification. It is
generally a classification issue.

Prediction from text needs prior experience, from the sample, to learn how to
draw a prediction on new documents. Once text is transformed into numeric data,
prediction methods can be applied.

Web data mining
Web mining aims to discover useful information or knowledge from the web
hyperlink structure, page, and usage data. The Web is one of the biggest data
sources to serve as the input for data mining applications.

Web data mining is based on IR, machine learning (ML), statistics, pattern
recognition, and data mining. Web mining is not purely a data mining problem
because of the heterogeneous and semistructured or unstructured web data,
although many data mining approaches can be applied to it.

Web mining tasks can be defined into at least three types:

• Web structure mining: This helps to find useful information or valuable
structural summary about sites and pages from hyperlinks

• Web content mining: This helps to mine useful information from
web page contents

• Web usage mining: This helps to discover user access patterns from web logs
to detect intrusion, fraud, and attempted break-in

Chapter 1

[19]

The algorithms applied to web data mining are originated from classical data mining
algorithms. They share many similarities, such as the mining process; however,
differences exist too. The characteristics of web data mining makes it different from
data mining for the following reasons:

• The data is unstructured
• The information of the Web keeps changing and the amount of data

keeps growing
• Any data type is available on the Web, such as structured and

unstructured data
• Heterogeneous information is on the web; redundant pages are present too
• Vast amounts of information on the web is linked
• The data is noisy

Web data mining differentiates from data mining by the huge dynamic volume of
source dataset, a big variety of data format, and so on. The most popular data mining
tasks related to the Web are as follows:

• Information extraction (IE): The task of IE consists of a couple of steps,
tokenization, sentence segmentation, part-of-speech assignment, named
entity identification, phrasal parsing, sentential parsing, semantic
interpretation, discourse interpretation, template filling, and merging.

• Natural language processing (NLP): This researches the linguistic
characteristics of human-human and human-machine interactive, models of
linguistic competence and performance, frameworks to implement process
with such models, processes'/models' iterative refinement, and evaluation
techniques for the result systems. Classical NLP tasks related to web data
mining are tagging, knowledge representation, ontologies, and so on.

• Question answering: The goal is to find the answer from a collection of
text to questions in natural language format. It can be categorized into slot
filling, limited domain, and open domain with bigger difficulties for the
latter. One simple example is based on a predefined FAQ to answer queries
from customers.

• Resource discovery: The popular applications are collecting important pages
preferentially; similarity search using link topology, topical locality and
focused crawling; and discovering communities.

Warming Up

[20]

Why R?
R is a high-quality, cross-platform, flexible, widely used open source, free language
for statistics, graphics, mathematics, and data science—created by statisticians
for statisticians.

R contains more than 5,000 algorithms and millions of users with domain knowledge
worldwide, and it is supported by a vibrant and talented community of contributors.
It allows access to both well-established and experimental statistical techniques.

R is a free, open source software environment maintained by R-projects for statistical
computing and graphics, and the R source code is available under the terms of the Free
Software Foundation's GNU General Public License. R compiles and runs on a wide
variety for a variety of platforms, such as UNIX, LINUX, Windows, and Mac OS.

What are the disadvantages of R?
There are three shortages of R:

• One is that it is memory bound, so it requires the entire dataset store
in memory (RAM) to achieve high performance, which is also called
in-memory analytics.

• Similar to other open source systems, anyone can create and contribute
package with strict or less testing. In other words, packages contributing
to R communities are bug-prone and need more testing to ensure the
quality of codes.

• R seems slow than some other commercial languages.

Fortunately, there are packages available to overcome these problems. There are some
solutions that can be categorized as parallelism solutions; the essence here is to spread
work across multiple CPUs that overcome the R shortages that were just listed. Good
examples include, but are not limited to, RHadoop. You will read more on this topic
soon in the following sections. You can download the SNOW add-on package and the
Parallel add-on package from Comprehensive R Archive Network (CRAN).

Statistics
Statistics studies the collection, analysis, interpretation or explanation, and
presentation of data. It serves as the foundation of data mining and the relations
will be illustrated in the following sections.

Chapter 1

[21]

Statistics and data mining
Statisticians were the first to use the term data mining. Originally, data mining was a
derogatory term referring to attempts to extract information that was not supported
by the data. To some extent, data mining constructs statistical models, which is an
underlying distribution, used to visualize data.

Data mining has an inherent relationship with statistics; one of the mathematical
foundations of data mining is statistics, and many statistics models are used in
data mining.

Statistical methods can be used to summarize a collection of data and can also be
used to verify data mining results.

Statistics and machine learning
Along with the development of statistics and machine learning, there is a continuum
between these two subjects. Statistical tests are used to validate the machine learning
models and to evaluate machine learning algorithms. Machine learning techniques
are incorporated with standard statistical techniques.

Statistics and R
R is a statistical programming language. It provides a huge amount of statistical
functions, which are based on the knowledge of statistics. Many R add-on package
contributors come from the field of statistics and use R in their research.

The limitations of statistics on data mining
During the evolution of data mining technologies, due to statistical limits on data
mining, one can make errors by trying to extract what really isn't in the data.

Bonferroni's Principle is a statistical theorem otherwise known as Bonferroni
correction. You can assume that big portions of the items you find are bogus,
that is, the items returned by the algorithms dramatically exceed what is assumed.

Warming Up

[22]

Machine learning
The data to which a ML algorithm is applied is called a training set, which consists of
a set of pairs (x, y), called training examples. The pairs are explained as follows:

• x: This is a vector of values, often called the feature vector. Each value, or
feature, can be categorical (values are taken from a set of discrete values,
such as {S, M, L}) or numerical.

• y: This is the label, the classification or regression values for x.

The objective of the ML process is to discover a function ()y f x= that best predicts the
value of y associated with each value of x. The type of y is in principle arbitrary, but
there are several common and important cases.

• y: This is a real number. The ML problem is called regression.
• y: This is a Boolean value true or false, more commonly written as +1 and -1,

respectively. In this class, the problem is binary classification.
• y: Here this is a member of some finite set. The member of this set can be

thought of as classes, and each member represents one class. The problem is
multiclass classification.

• y: This is a member of some potentially infinite set, for example, a parse tree
for x, which is interpreted as a sentence.

Until now, machine learning has not proved successful in situations where we can
describe the goals of the mining more directly. Machine learning and data mining are
two different topics, although some algorithms are shared between them—algorithms
are shared especially when the goal is to extract information. There are situations
where machine learning makes sense. The typical one is when we have idea of what
we looking for in the dataset.

Approaches to machine learning
The major classes of algorithms are listed here. Each is distinguished by the
function f .

• Decision tree: This form of f is a tree and each node of the tree has a
function of x that determines which child or children the search must
proceed for.

• Perceptron: These are threshold functions applied to the components of the
vector 1 2{ , ,.. }. nx x x x= . A weight iw is associated with the ith components,
for each i = 1, 2, … n, and there is a threshold

1

n
i ii

w x θ
=

≥∑ . The output is +1 if
and the output is -1 otherwise.

Chapter 1

[23]

• Neural nets: These are acyclic networks of perceptions, with the outputs of
some perceptions used as inputs to others.

• Instance-based learning: This uses the entire training set to represent the
function f .

• Support-vector machines: The result of this class is a classifier that tends to
be more accurate on unseen data. The target for class separation denotes as
looking for the optimal hyper-plane separating two classes by maximizing
the margin between the classes' closest points.

Machine learning architecture
The data aspects of machine learning here means the way data is handled and the
way it is used to build the model.

• Training and testing: Assuming all the data is suitable for training, separate
out a small fraction of the available data as the test set; use the remaining
data to build a suitable model or classifier.

• Batch versus online learning: The entire training set is available at the
beginning of the process for batch mode; the other one is online learning,
where the training set arrives in a stream and cannot be revisited after it
is processed.

• Feature selection: This helps to figure out what features to use as input to the
learning algorithm.

• Creating a training set: This helps to create the label information that turns
data into a training set by hand.

Data attributes and description
An attribute is a field representing a certain feature, characteristic, or dimensions of
a data object.

In most situations, data can be modeled or represented with a matrix, columns for
data attributes, and rows for certain data records in the dataset. For other cases,
that data cannot be represented with matrices, such as text, time series, images,
audio, video, and so forth. The data can be transformed into a matrix by appropriate
methods, such as feature extraction.

Warming Up

[24]

The type of data attributes arises from its contexts or domains or semantics, and
there are numerical, non-numerical, categorical data types or text data. Two views
applied to data attributes and descriptions are widely used in data mining and R.
They are as follows:

• Data in algebraic or geometric view: The entire dataset can be modeled into
a matrix; linear algebraic and abstract algebra plays an important role here.

• Data in probability view: The observed data is treated as multidimensional
random variables; each numeric attribute is a random variable. The
dimension is the data dimension. Irrespective of whether the value is discrete
or continuous, the probability theory can be applied here.

To help you learn R more naturally, we shall adopt a geometric, algebraic, and
probabilistic view of the data.

Here is a matrix example. The number of columns is determined by m, which is the
dimensionality of data. The number of rows is determined by n, which is the size
of dataset.

()
11 1 1

1

1

m

m

n nm n

x x x
A X X

x x x

 = = =

L

M O M M L

L

Where ix denotes the i row, which is an m-tuple as follows:

()1 1(, ,i i ix x x x= = L I

And jx denotes the j column, which is an n-tuple as follows:

()1 1(, ,j j j njX X X X= = L

Numeric attributes
Numerical data is convenient to deal with because it is quantitative and allows
arbitrary calculations. The properties of numerical data are the same as integer
or float data.

Chapter 1

[25]

Numeric attributes taken from a finite or countable infinite set of values are called
discrete, for example a human being's age, which is the integer value starting from
1,150. Other attributes taken from any real values are called continuous. There are
two main kinds of numeric types:

• Interval-scaled: This is the quantitative value, measured on a scale of equal
unit, such as the weight of some certain fish in the scale of international
metric, such as gram or kilogram.

• Ratio-scaled: This value can be computed by ratios between values in
addition to differences between values. It is a numeric attribute with an
inherent zero-point; hence, we can say a value is a multiple of another value.

Categorical attributes
The values of categorical attributes come from a set-valued domain composed of a set
of symbols, such as the size of human costumes that are categorized as {S, M, L}. The
categorical attributes can be divided into two groups or types:

• Nominal: The values in this set are unordered and are not quantitative; only
the equality operation makes sense here.

• Ordinal: In contrast to the nominal type, the data has an ordered
meaning here. The inequality operation is available here in addition
to the equality operation.

Data description
The basic description can be used to identify features of data, distinguish noise, or
outliers. A couple of basic statistical descriptions are as follows:

• Measures of central tendency: This measures the location of middle or center
of a data distribution: the mean, median, mode, midrange, and so on.

• Measure of the dispersion of the data: This is the range, quartiles,
interquartile range, and so on.

Data measuring
Data measuring is used in clustering, outlier detection, and classification. It refers
to measures of proximity, similarity, and dissimilarity. The similarity value, a real
value, between two tuples or data records ranges from 0 to 1, the higher the value the
greater the similarity between tuples. Dissimilarity works in the opposite way; the
higher the dissimilarity value, the more dissimilar are the two tuples.

Warming Up

[26]

For a dataset, data matrix stores the n data tuples in n x m matrix (n tuples and
m attributes):

11 1

1

m

n nm

x x

x x

L

M O M

L

The dissimilarity matrix stores a collection of proximities available for all n tuples
in the dataset, often in a n x n matrix. In the following matrix, (),d i j means the
dissimilarity between two tuples; value 0 for highly similar or near between each
other, 1 for completely same, the higher the value, the more dissimilar it is.

()
() ()

() ()

2,1 0
3,1 3,2 0

,1 ,2 0

0
d

d d

d n d n

 …

MMM

Most of the time, the dissimilarity and similarity are related concepts. The similarity
measure can often be defined using a function; the expression constructed with
measures of dissimilarity, and vice versa.

Here is a table with a list of some of the most used measures for different attribute
value types:

Attribute value types Dissimilarity
Nominal attributes The dissimilarity between two tuples can be computed by the

following equation: d (i, j) = (p-m)/p
Where, p is the dimension of data and m is the number of
matches that is in same state.

Ordinal attributes The treatment of ordinal attributes is similar to that of numeric
attributes, but it needs a transformation first before applying the
methods.

Interval-scaled Euclidean, Manhattan, and Minkowski distances are used to
calculate the dissimilarity of data tuples.

Chapter 1

[27]

Data cleaning
Data cleaning is one part of data quality. The aim of Data Quality (DQ) is to have
the following:

• Accuracy (data is recorded correctly)
• Completeness (all relevant data is recorded)
• Uniqueness (no duplicated data record)
• Timeliness (the data is not old)
• Consistency (the data is coherent)

Data cleaning attempts to fill in missing values, smooth out noise while identifying
outliers, and correct inconsistencies in the data. Data cleaning is usually an iterative
two-step process consisting of discrepancy detection and data transformation.

The process of data mining contains two steps in most situations. They are as follows:

• The first step is to perform audition on the source dataset to find
the discrepancy.

• The second step is to choose the transformation to fix (based on the
accuracy of the attribute to be modified and the closeness of the new
value to the original value). This is followed by applying the transformation
to correct the discrepancy.

Missing values
During the process to seize data from all sorts of data sources, there are many cases
when some fields are left blank or contain a null value. Good data entry procedures
should avoid or minimize the number of missing values or errors. The missing
values and defaults are indistinguishable.

If some fields are missing a value, there are a couple of solutions—each with different
considerations and shortages and each is applicable within a certain context.

• Ignore the tuple: By ignoring the tuple, you cannot make use of the
remaining values except the missing one. This method is applicable when
the tuple contains several attributes with missing values or the percentage
of missing value per attribute doesn't vary considerably.

• Filling the missing value manually: This is not applicable for large datasets.
• Use a global constant to fill the value: Applying the value to fill the missing

value will misguide the mining process, and is not foolproof.

www.allitebooks.com

http://www.allitebooks.org

Warming Up

[28]

• Use a measure for a central tendency for the attribute to fill the missing
value: The measures of central tendency can be used for symmetric
data distribution.

• Use the attribute mean or median: Use the attribute mean or median for all
samples belonging to the same class as the given tuple.

• Use the most probable value to fill the missing value: The missing data can
be filled with data determined with regression, inference-based tool, such as
Bayesian formalism or decision tree induction.

The most popular method is the last one; it is based on the present values and values
from other attributes.

Junk, noisy data, or outlier
As in a physics or statistics test, noise is a random error that occurs during the test
process to seize the measured data. No matter what means you apply to the data
gathering process, noise inevitably exists.

Approaches for data smoothing are listed here. Along with the progress of data
mining study, new methods keep occurring. Let's have a look at them:

• Binning: This is a local scope smoothing method in which the neighborhood
values are used to compute the final value for the certain bin. The sorted
data is distributed into a number of bins and each value in that bin will
be replaced by a value depending on some certain computation of the
neighboring values. The computation can be bin median, bin boundary,
which is the boundary data of that bin.

• Regression: The target of regression is to find the best curve or something
similar to one in a multidimensional space; as a result, the other values
will be used to predict the value of the target attribute or variable. In other
aspects, it is a popular means for smoothing.

• Classification or outlier: The classifier is another inherent way to find the
noise or outlier. During the process of classifying, most of the source data
is grouped into couples of groups, except the outliers.

Chapter 1

[29]

Data integration
Data integration combines data from multiple sources to form a coherent data store.
The common issues here are as follows:

• Heterogeneous data: This has no common key
• Different definition: This is intrinsic, that is, same data with different

definition, such as a different database schema
• Time synchronization: This checks if the data is gathered under same

time periods
• Legacy data: This refers to data left from the old system
• Sociological factors: This is the limit of data gathering

There are several approaches that deal with the above issues:

• Entity identification problem: Schema integration and object matching are
tricky. This referred to as the entity identification problem.

• Redundancy and correlation analysis: Some redundancies can be detected
by correlation analysis. Given two attributes, such an analysis can measure
how strongly one attribute implies the other, based on the available data.

• Tuple Duplication: Duplication should be detected at the tuple level to
detect redundancies between attributes

• Data value conflict detection and resolution: Attributes may differ on the
abstraction level, where an attribute in one system is recorded at a different
abstraction level

Data dimension reduction
Reduction of dimensionality is often necessary in the analysis of complex
multivariate datasets, which is always in high-dimensional format. So, for example,
problems modeled by the number of variables present, the data mining tasks on the
multidimensional analysis of qualitative data. There are also many methods for data
dimension reduction for qualitative data.

The goal of dimensionality reduction is to replace large matrix by two or more other
matrices whose sizes are much smaller than the original, but from which the original
can be approximately reconstructed, usually by taking their product with loss of
minor information.

Warming Up

[30]

Eigenvalues and Eigenvectors
An eigenvector for a matrix is defined as when the matrix (A in the following
equation) is multiplied by the eigenvector (v in the following equation). The result
is a constant multiple of the eigenvector. That constant is the eigenvalue associated
with this eigenvector. A matrix may have several eigenvectors.

 Av vλ=

An eigenpair is the eigenvector and its eigenvalue, that is, (,ν λ) in the
preceding equation.

Principal-Component Analysis
The Principal-Component Analysis (PCA) technique for dimensionality reduction
views data that consists of a collection of points in a multidimensional space as a
matrix, in which rows correspond to the points and columns to the dimensions.

The product of this matrix and its transpose has eigenpairs, and the principal
eigenvector can be viewed as the direction in the space along which the points best
line up. The second eigenvector represents the direction in which deviations from the
principal eigenvector are the greatest.

Dimensionality reduction by PCA is to approximate the data by minimizing the
root-mean-square error for the given number of columns in the representing matrix,
by representing the matrix of points by a small number of its eigenvectors.

Singular-value decomposition
The singular-value decomposition (SVD) of a matrix consists of following
three matrices:

• U
• ∑
• V

U and V are column-orthonormal; as vectors, the columns are orthogonal and
their length is 1. ∑ is a diagonal matrix and the values along its diagonal are called
singular values. The original matrix equals to the product of U, ∑, and the transpose
of V.

SVD is useful when there are a small number of concepts that connect the rows and
columns of the original matrix.

Chapter 1

[31]

Dimensionality reduction by SVD for matrix U and V are typically as large as the
original. To use fewer columns for U and V, delete the columns corresponding to the
smallest singular values from U, V, and ∑. This minimizes the error in reconstruction
of the original matrix from the modified U, ∑, and V.

CUR decomposition
The CUR decomposition seeks to decompose a sparse matrix into sparse, smaller
matrices whose product approximates the original matrix.

The CUR chooses from a given sparse matrix a set of columns C and a set of rows
R, which play the role of U and TV in SVD. The choice of rows and columns is
made randomly with a distribution that depends on the square root of the sum of
the squares of the elements. Between C and R is a square matrix called U, which is
constructed by a pseudo-inverse of the intersection of the chosen rows and columns.

By CUR solution, the three component matrices C, U, and R will
be retrieved. The product of those three will approximate the
original matrix M. For R community, rCUR is an R package for
the CUR matrix decomposition.

Data transformation and discretization
As we know from the previous section, there are always some data formats that are
best suited for specific data mining algorithms. Data transformation is an approach
to transform the original data to preferable data format for the input of certain data
mining algorithms before the processing.

Data transformation
Data transformation routines convert the data into appropriate forms for mining.
They're shown as follows:

• Smoothing: This uses binning, regression, and clustering to remove noise
from the data

• Attribute construction: In this routine, new attributes are constructed and
added from the given set of attributes

• Aggregation: In this summary or aggregation, operations are performed on
the data

Warming Up

[32]

• Normalization: Here, the attribute data is scaled so as to fall within a
smaller range

• Discretization: In this routine, the raw values of a numeric attribute are
replaced by interval label or conceptual label

• Concept hierarchy generation for nominal data: Here, attributes can be
generalized to higher level concepts

Normalization data transformation methods
To avoid dependency on the choice of measurement units on data attributes, the data
should be normalized. This means transforming or mapping the data to a smaller or
common range. All attributes gain an equal weight after this process. There are many
normalization methods. Let's have a look at some of them:

• Min-max normalization: This preserves the relationships among the original
data values and performs a linear transformation on the original data. The
applicable ones of the actual maximum and minimum values of an attribute
will be normalized.

• z-score normalization: Here the values for an attribute are normalized
based on the mean and standard deviation of that attribute. It is useful
when the actual minimum and maximum of an attribute to be normalized
are unknown.

• Normalization by decimal scaling: This normalizes by moving the decimal
point of values of attribute.

Data discretization
Data discretization transforms numeric data by mapping values to interval or
concept labels. Discretization techniques include the following:

• Data discretization by binning: This is a top-down unsupervised splitting
technique based on a specified number of bins.

• Data discretization by histogram analysis: In this technique, a histogram
partitions the values of an attribute into disjoint ranges called buckets or
bins. It is also an unsupervised method.

• Data discretization by cluster analysis: In this technique, a clustering
algorithm can be applied to discretize a numerical attribute by partitioning
the values of that attribute into clusters or groups.

Chapter 1

[33]

• Data discretization by decision tree analysis: Here, a decision tree employs
a top-down splitting approach; it is a supervised method. To discretize a
numeric attribute, the method selects the value of the attribute that has
minimum entropy as a split-point, and recursively partitions the resulting
intervals to arrive at a hierarchical discretization.

• Data discretization by correlation analysis: This employs a bottom-up
approach by finding the best neighboring intervals and then merging
them to form larger intervals, recursively. It is supervised method.

Visualization of results
Visualization is the graphic presentation of data-portrayals meant to reveal complex
information at a glance, referring to all types of structured representation of
information. This includes graphs, charts, diagrams, maps, storyboards, and other
structured illustrations.

Good visualization of results gives you the chance to look at data through the eyes
of experts. It is beautiful not only for their aesthetic design, but also for the elegant
layers of detail that efficiently generate insight and new understanding.

The result of every data mining algorithm can be visualized and clarified by the use
of the algorithms. Visualization plays an important role in the data mining process.

There are four major features that create the best visualizations:

• Novel: It must not only merely being a conduit for information, but offer
some novelty in the form of new style of information.

• Informative: The attention to these factors and the data itself will make a
data visualization effective, successful, and beautiful.

• Efficient: A nice visualization has an explicit goal, a clearly defined message,
or a special perspective on the information that it is made to convey. It must
be as simple as possible and straightforward, but shouldn't lose out on
necessary, relevant complexity. The irrelevant data serves as noises here. It
should reflect the qualities of the data that they represent, reveal properties
and relationships inherent and implicit in the data source to bring new
knowledge, insight, and enjoyment to final user.

• Aesthetic: The graphic must serve the primary goal of presenting
information, not only axes and layout, shapes, lines, and typography,
but also the appropriate usage of these ingredients.

Warming Up

[34]

Visualization with R
R provides the production of publication-quality diagrams and plots. There are
graphic facilities distributed with R, and also some facilities that are not part of the
standard R installation. You can use R graphics from command line.

The most important feature of the R graphics setup is the existence of two distinct
graphics systems within R:

• The traditional graphics system
• Grid graphics system

The most appropriate facilities will be evaluated and applied to the visualization of
every result of all algorithms listed in the book.

Functions in the graphics systems and add-on packages can be divided into
several types:

• High-level functions that produce complete plots
• Low-level functions to add further output to an existing plot
• The ones to work interactively with graphical output

R graphics output can be produced in a wide range of
graphical formats, such as PNG, JPEG, BMP, TIFF, SVG,
PDF, and PS.

To enhance your knowledge about this chapter, here are some practice questions for
you to have check about the concepts.

Time for action
Let's now test what we've learned so far:

• What is the difference between data mining and machine learning?
• What is data preprocessing and data quality?
• Download R and install R on your machine.
• Compare and contrast data mining and machine learning.

Chapter 1

[35]

Summary
In this chapter, we looked at the following topics:

• An introduction to data mining and available data sources
• A quick overview of R and the necessity to use R
• A description of statistics and machine learning, and their relations to

data mining
• The two standard industrial data mining process
• Data attributes types and the data measurement approaches
• The three important steps in data preprocessing
• An introduction to the scalability and efficiency of data mining algorithms,

and data visualization methods and necessities
• A discussion on social network mining, text mining, and web data mining
• A short introduction about RHadoop and Map Reduce

In the following chapters, the reader will learn how to implement various data
mining algorithms and manipulate data with R.

Mining Frequent Patterns,
Associations, and

Correlations
In this chapter, we will learn how to mine frequent patterns, association rules, and
correlation rules when working with R programs. Then, we will evaluate all these
methods with benchmark data to determine the interestingness of the frequent
patterns and rules. We will cover the following topics in this chapter:

• Introduction to associations and patterns
• Market basket analysis
• Hybrid association rules mining
• Mining sequence datasets
• High-performance algorithms

The algorithms to find frequent items from various data types can be applied to
numeric or categorical data. Most of these algorithms have one common basic
algorithmic form, which is A-Priori, depending on certain circumstances. Another
basic algorithm is FP-Growth, which is similar to A-Priori. Most pattern-related
mining algorithms derive from these basic algorithms.

With frequent patterns found as one input, many algorithms are designed to
find association and correlation rules. Each algorithm is only a variation from
the basic algorithm.

Along with the growth, size, and types of datasets from various domains, new
algorithms are designed, such as the multistage algorithm, the multihash algorithm,
and the limited-pass algorithm.

www.allitebooks.com

http://www.allitebooks.org

Mining Frequent Patterns, Associations, and Correlations

[38]

An overview of associations and patterns
One popular task for data mining is to find relations among the source dataset; this
is based on searching frequent patterns from various data sources, such as market
baskets, graphs, and streams.

All the algorithms illustrated in this chapter are written from scratch in the R
language for the purpose of explaining association analysis, and the code will be
demonstrated using the standard R packages for the algorithms such as arules.

Patterns and pattern discovery
With many applications across a broad field, frequent pattern mining is often used in
solving various problems, such as the market investigation for a shopping mall from
the transaction data.

Frequent patterns are the ones that often occur in the source dataset. The dataset
types for frequent pattern mining can be itemset, subsequence, or substructure.
As a result, the frequent patterns found are known as:

• Frequent itemset
• Frequent subsequence
• Frequent substructures

These three frequent patterns will be discussed in detail in the upcoming sections.

These newly founded frequent patterns will serve as an important platform when
searching for recurring interesting rules or relationships among the given dataset.

Various patterns are proposed to improve the efficiency of mining on a dataset. Some
of them are as follows; they will be defined in detail later:

• Closed patterns
• Maximal patterns
• Approximate patterns
• Condensed patterns
• Discriminative frequent patterns

Chapter 2

[39]

The frequent itemset
The frequent itemset originated from true market basket analysis. In a store such
as Amazon, there are many orders or transactions; a certain customer performs a
transaction where their Amazon shopping cart includes some items. The mass result
of all customers' transactions can be used by the storeowner to find out what items
are purchased together by customers. As a simple definition, itemset denotes a
collection of zero or more items.

We call a transaction a basket, and a set of items can belong to any basket. We
will set the variable s as the support threshold, which is compared with the count
of a certain set of items that appear in all the baskets. If the count of a certain set of
items that appear in all the baskets is not less than s, we would call the itemset a
frequent itemset.

An itemset is called a k-itemset if it contains k pieces of items, where k is a non-zero
integer. The support count of an itemset is ()_support count X , the count of itemset
contained X, given the dataset.

For a predefined minimum support threshold s, the itemset X is a frequent itemset
if ()_support count X s≥ . The minimum support threshold s is a customizable
parameter, which can be adjusted by domain experts or experiences.

The frequent itemset is also used in many domains. Some of them are shown in the
following table:

Items Baskets Comments
Related concepts Words Documents
Plagiarism Documents Sentences
Biomarkers Biomarkers and

diseases
The set of data about
a patient

If an itemset is frequent, then any of its subset must be frequent. This is known as the
A-Priori principle, the foundation of the A-Priori algorithm. The direct application of
the A-Priori principle is to prune the huge number of frequent itemsets.

One important factor that affects the number of frequent itemsets is the minimum
support count: the lower the minimum support count, the larger the number of
frequent itemsets.

Mining Frequent Patterns, Associations, and Correlations

[40]

For the purpose of optimizing the frequent itemset-generation algorithm, some more
concepts are proposed:

• An itemset X is closed in dataset S, if () () , , _ _Y S X Y then support count X support count Y∀ ∈ ⊂ ≠ ;
X is also called a closed itemset. In other words, if X is frequent, then X is a
closed frequent itemset.

• An itemset X is a maximal frequent itemset if , , Y S X Y thenY is not frequent∀ ∈ ⊂ ; in
other words, Y does not have frequent supersets.

• An itemset X is considered a constrained frequent itemset once the frequent
itemset satisfies the user-specified constraints.

• An itemset X is an approximate frequent itemset if X derives only
approximate support counts for the mined frequent itemsets.

• An itemset X is a top-k frequent itemset in the dataset S if X is the k-most
frequent itemset, given a user-defined value k.

The following example is of a transaction dataset. All itemsets only contain items
from the set, []{I |{ | 1,7 }k kD I k= ∈ .Let's assume that the minimum support count is 3.

tid (transaction id) List of items in the itemset or transaction
T001

1 2 4 7, , ,I I I I

T002
2 3 6, ,I I I

T003
1 4 6, ,I I I

T004
1 2 5, ,I I I

T005
2 3 4, ,I I I

T006
2 5 6, ,I I I

T007
42 7, ,I I I

T008
1 7,I I

T009
1 2 3, ,I I I

T010
1 2 4, ,I I I

Then, we will get the frequent itemsets { }{ }1 I | 1, 2, 4,6,7kL k= ∈ and
{ } { } { }{ }2 1 2 1 4 2 4, , , , ,L I I I I I I= .

Chapter 2

[41]

The frequent subsequence
The frequent sequence is an ordered list of elements where each element contains at
least one event. An example of this is the page-visit sequence on a site by the specific
web page the user is on more concretely speaking, the order in which a certain user
visits web pages. Here are two examples of the frequent subsequence:

• Customer: Successive shopping records of certain customers in a shopping
mart serves as the sequence, each item bought serves as the event item, and
all the items bought by a customer in one shopping are treated as elements
or transactions

• Web usage data: Users who visit the history of the WWW are treated as
a sequence, each UI/page serves as the event or item, and the element or
transaction can be defined as the pages visited by users with one click of
the mouse

The length of a sequence is defined by the number of items contained in the
sequence. A sequence of length k is called a k-sequence. The size of a sequence is
defined by the number of itemsets in the sequence. We call a sequence 1 1 2... rs a a a= < >
as a subsequence of the sequence 2 1 ... rs b b b=< > or 2s as the super sequence of 1s
when

1 21 2 1 1 21 ... , , ,...,
rr r j j r jj j j j v and a b a b a b−∃ ≤ ≤ ≤ ≤ ≤ ≤ is satisfied.

The frequent substructures
In some domains, the tasks under research can be modeled with a graph theory.
As a result, there are requirements for mining common subgraphs (subtrees or
sublattices); some examples are as follows:

• Web mining: Web pages are treated as the vertices of graph, links between
pages serve as edges, and a user's page-visiting records construct the graph.

• Network computing: Any device with computation ability on the network
serves as the vertex, and the interconnection between these devices serves
as the edge. The whole network that is made up of these devices and
interconnections is treated as a graph.

• Semantic web: XML elements serve as the vertices, and the parent/child
relations between them are edges; all these XML files are treated as graphs.

Mining Frequent Patterns, Associations, and Correlations

[42]

A graph G is represented by G = (V, E), where V represents a group of vertices,
and E represents a group of edges. A graph (),G V E′ = ′ ′ is called as subgraph of graph
G = (V, E) once V V′ ⊆ and V V′ ⊆ . Here is an example of a subgraph. There is the
original graph with vertices and edges on the left-hand side of the following figure
and the subgraph on the right-hand side with some edges omitted (or omission of
vertices in other circumstances):

a

b

c

d

e

f

g

p

s

b

c

s
d

g

f

e

p

a

Relationship or rules discovery
Mining of association rules is based on the frequent patterns found. The different
emphases on the interestingness of relations derives two types of relations for further
research: association rules and correlation rules.

Association rules
In a later section, a method to show association analysis is illustrated; this is a useful
method to discover interesting relationships within a huge dataset. The relations can
be represented in the form of association rules or frequent itemsets.

Association rule mining is to find the result rule set on a given dataset (the
transaction data set or other sequence-pattern-type dataset), a predefined minimum
support count s, and a predefined confidence c, given any found rule X Y→

()support_count X Y S→ ≥ , and ()confidence X Y c→ ≥ .

X Y→ is an association rule where X Y φ=I ; X and Y are disjoint. The interesting
thing about this rule is that it is measured by its support and confidence. Support
means the frequency in which this rule appears in the dataset, and confidence means
the probability of the appearance of Y when X is present.

Chapter 2

[43]

For association rules, the key measures of rule interestingness are rule support and
confidence. Their relationship is given as follows:

() () ()
()

()
()

_
 |

_
P X Y support count X Y

confidence X Y P Y X
P X support count X

→ = = =
U U

support_count(X) is the count of itemset in the dataset, contained X.

As a convention, in support_count(X), in the confidence value and support count
value are represented as a percentage between 0 and 100.

The association rule X Y→ is strong once ()confidence X Y c→ ≥ and
()_support count X Y s>U . The predefined minimum support threshold is s,

and c is the predefined minimum confidence threshold.

The meaning of the found association rules should be explained with caution,
especially when there is not enough to judge whether the rule implies causality.
It only shows the co-occurrence of the prefix and postfix of the rule. The following
are the different kinds of rules you can come across:

• A rule is a Boolean association rule if it contains association of the presence
of the item

• A rule is a single-dimensional association if there is, at the most, only one
dimension referred to in the rules

• A rule is a multidimensional association rule if there are at least two
dimensions referred to in the rules

• A rule is a correlation-association rule if the relations or rules are measured
by statistical correlation, which, once passed, leads to a correlation rule

• A rule is a quantitative-association rule if at least one item or attribute
contained in it is quantitative

Correlation rules
In some situations, the support and confidence pairs are not sufficient to filter
uninteresting association rules. In such a case, we will use support count,
confidence, and correlations to filter association rules.

Mining Frequent Patterns, Associations, and Correlations

[44]

There are a lot of methods to calculate the correlation of an association rule, such
as

2χ analyses, all-confidence analysis, and cosine. For a k-itemset { }1 2, , , kX i i i= … ,
define the all-confidence value of X as:

() () (){ }_ _ / _ j jall confidence X support count X max support count i i X= ∨∀ ∈

() ()
() () () ()()/

confidence X Y
lift X Y P X Y P X P Y

P Y
→

→ = = U

Market basket analysis
Market basket analysis is the methodology used to mine a shopping cart of items
bought or just those kept in the cart by customers. The concept is applicable to
a variety of applications, especially for store operations. The source dataset is a
massive data record. The aim of market basket analysis is to find the association
rules between the items within the source dataset.

The market basket model
The market basket model is a model that illustrates the relation between a basket and
its associated items. Many tasks from different areas of research have this relation in
common. To summarize them all, the market basket model is suggested as the most
typical example to be researched.

The basket is also known as the transaction set; this contains the itemsets that are sets
of items belonging to same itemset.

The A-Priori algorithm is a level wise, itemset mining algorithm. The Eclat algorithm
is a tidset intersection itemset mining algorithm based on tidset intersection in
contrast to A-Priori. FP-growth is a frequent pattern tree algorithm. The tidset
denotes a collection of zeros or IDs of transaction records.

A-Priori algorithms
As a common strategy to design algorithms, the problem is divided into
two subproblems:

• The frequent itemset generation
• Rule generation

The strategy dramatically decreases the search space for association mining algorithms.

Chapter 2

[45]

Input data characteristics and data structure
As the input of the A-Priori algorithm, the original input itemset is binarized,
that is, 1 represents the presence of a certain item in the itemset; otherwise, it is
0. As a default assumption, the average size of the itemset is small. The popular
preprocessing method is to map each unique available item in the input dataset
to a unique integer ID.

The itemsets are usually stored within databases or files and will go through
several passes. To control the efficiency of the algorithm, we need to control the
count of passes. During the process when itemsets pass through other itemsets, the
representation format for each itemset you are interested in is required to count and
store for further usage of the algorithm.

There is a monotonicity feature in the itemsets under research; this implies that every
subset of a frequent itemset is frequent. This characteristic is used to prune the search
space for the frequent itemset in the process of the A-Priori algorithm. It also helps
compact the information related to the frequent itemset. This feature gives us an
intrinsic view that focuses on smaller-sized frequent itemsets. For example, there are
three frequent 2-itemsets contained by one certain frequent 3-itemset.

When we talk about k-itemsets means an itemset
containing k items.

The basket is in a format called the horizontal format and contains a basket or
transaction ID and a number of items; it is used as the basic input format for the
A-Priori algorithm. In contrast, there is another format known as the vertical format;
this uses an item ID and a series of the transaction IDs. The algorithm that works on
vertical data format is left as an exercise for you.

The A-Priori algorithm
Two actions are performed in the generation process of the A-Priori frequent itemset:
one is join, and the other is prune.

One important assumption is that the items within
any itemset are in a lexicographic order.

• Join action: Given that kL is the set of frequent k-itemsets, a set of candidates
to find kL is generated. Let's call it kC .

Mining Frequent Patterns, Associations, and Correlations

[46]

[] []
[] [] []
[] [] [] [] []

1 1 1 2 1 1

2 1 2

1 1 1 1 2

{ | , 1, 2 ,

and 1 1 ,

1 , 2 ,..., 2 , 1 1

,

, }

k k k kC L L l l l L m k l m

l m l k l k

then l l l l k l k l k

− − −= = ∃ ∀′ ∈

′

∈ −

= − ≤ −

< − − − >

• Prune action: k kL C⊆ , the size of kC , the candidate itemset, is usually much
bigger than , to save computation cost; monotonicity characteristic of
frequent itemset is used here to prune the size of kC .

()1 1 1 , 1 ,k k k k k kc C c is a k subset of c and c L c L− − −∀ ∈ ∃ − − ∉ ∉⇒

Here is the pseudocode to find all the frequent itemsets:

Chapter 2

[47]

The R implementation
R code of the A-Priori frequent itemset generation algorithm goes here. D is a
transaction dataset. Suppose MIN_SUP is the minimum support count threshold.
The output of the algorithm is L, which is a frequent itemsets in D.

The output of the A-Priori function can be verified with the R add-on package,
arules, which is a pattern-mining and association-rules-mining package that
includes A-Priori and éclat algorithms. Here is the R code:

Apriori <- function (data, I, MIN_SUP, parameter = NULL){
 f <- CreateItemsets()
 c <- FindFrequentItemset(data,I,1, MIN_SUP)
 k <- 2
 len4data <- GetDatasetSize(data)
 while(!IsEmpty(c[[k-1]])){
 f[[k]] <- AprioriGen(c[k-1])
 for(idx in 1: len4data){
 ft <- GetSubSet(f[[k]],data[[idx]])
 len4ft <- GetDatasetSize(ft)
 for(jdx in 1:len4ft){
 IncreaseSupportCount(f[[k]],ft[jdx])
 }
 }
 c[[k]] <- FindFrequentItemset(f[[k]],I,k,MIN_SUP)
 k <- k+1
 }
 c
}

To verify the R code, the arules package is applied while verifying the output.

www.allitebooks.com

http://www.allitebooks.org

Mining Frequent Patterns, Associations, and Correlations

[48]

Arules (Hahsler et al., 2011) provides the support to mine
frequent itemsets, maximal frequent itemsets, closed frequent
itemsets, and association rules too. A-Priori and Eclat algorithms
are both available. Also cSPADE can be found in arulesSequence,
the add-on for arules.

Given:

{ }, , , , , , , D tinnedfruit tuna milk coke water biscuits oil soap=

At first, we will sort D into an ordered list in a predefined order algorithm or simply
the natural order of characters, which is used here. Then:

[]1 , 2 , 3 , 4 ,
 { | 1,7 }

5 , 6 , 7 k

I biscuits I coke I milk I oil
D I k

I soap I tinnedfruit I tuna
= = = =

= = ∈ = = =

Let's assume that the minimum support count is 5; the following table is an
input dataset:

tid (transaction id) List of items in the itemset or transaction
T001

1 2 4 7, , ,I I I I

T002
2 3 6, ,I I I

T003
1 4 6, ,I I I

T004
1 2 5, ,I I I

T005
2 3 4, ,I I I

T006
2 5 6, ,I I I

T007
42 7, ,I I I

T008
1 7,I I

T009
1 2 3, ,I I I

T010
1 2 4, ,I I I

Chapter 2

[49]

In the first scan or pass of the dataset D, get the count of each candidate itemset 1C .
The candidate itemset and its related count:

Itemset Support count

1{ }I 6

2{ }I 8

3{ }I 2

4{ }I 5

5{ }I 2

6{ }I 3

7{ }I 3

We will get the 1L after comparing the support count with minimum support count.

Itemset Support count

1{ }I 6

2{ }I 8

4{ }I 5

We will generate 2C by 1L , { } { } { }{ }2 1 2 1 4 2 4, , , , ,C I I I I I I= .

Itemset Support count

{ }1 2,I I 4

{ }41,I I 3

{ }2 4,I I 4

Mining Frequent Patterns, Associations, and Correlations

[50]

After comparing the support count with the minimum support count, we will get
2 L φ= . The algorithm then terminates.

A-Priori algorithm variants
The various variants of A-Priori algorithms are designed mainly for the purpose of
efficiency and scalability. Some of the improvements of the A-Priori algorithms are
discussed in the upcoming sections.

The Eclat algorithm
The A-Priori algorithm loops as many times as the maximum length of the pattern
somewhere. This is the motivation for the Equivalence CLASS Transformation
(Eclat) algorithm. The Eclat algorithm explores the vertical data format, for example,
using <item id, tid set> instead of <tid, item id set> that is, with the input
data in the vertical format in the sample market basket file, or to discover frequent
itemsets from a transaction dataset. The A-Priori property is also used in this
algorithm to get frequent (k+1) itemsets from k itemsets.

The candidate itemset is generated by set intersection. The vertical format structure
is called a tidset as defined earlier. If all the transaction IDs related to the item I are
stored in a vertical format transaction itemset, then the itemset is the tidset of the
specific item.

The support count is computed by the intersection between tidsets. Given two
tidsets, X and Y, () _support count X YI is the cardinality of X YI . The pseudocode
is F φ← , () () P { < , | , _ }i t i i I t i MIN SUP← > ∈ ≥ .

Chapter 2

[51]

The R implementation
Here is the R code for the Eclat algorithm to find the frequent patterns. Before calling
the function, f is set to empty, and p is the set of frequent 1-itemsets:

Eclat <- function (p,f,MIN_SUP){
 len4tidsets <- length(p)
 for(idx in 1:len4tidsets){
 AddFrequentItemset(f,p[[idx]],GetSupport(p[[idx]]))
 Pa <- GetFrequentTidSets(NULL,MIN_SUP)
 for(jdx in idx:len4tidsets){
 if(ItemCompare(p[[jdx]],p[[idx]]) > 0){
 xab <- MergeTidSets(p[[idx]],p[[jdx]])
 if(GetSupport(xab)>=MIN_SUP){
 AddFrequentItemset(pa,xab,
 GetSupport(xab))
 }
 }
 }
 if(!IsEmptyTidSets(pa)){
 Eclat(pa,f,MIN_SUP)
 }
 }
}

Here is the running result of one example, I = {beer, chips, pizza, wine}. The
transaction dataset with horizontal and vertical formats, respectively, are shown in
the following table:

tid X
1 {beer, chips, wine}

2 {beer, chips}

3 {pizza, wine}

4 {chips, pizza}

x tidset
beer {1,2}

chips {1,2,4}

pizza {3,4}

wine {1,3}

Mining Frequent Patterns, Associations, and Correlations

[52]

The binary format of this information is in the following table.

tid beer chips pizza wine
1 1 1 0 1
2 1 1 0 0
3 0 0 1 1
4 0 1 1 0

Before calling the Eclat algorithm, we will set MIN_SUP=2, F {}← ,

{ } P ,1 2 , ,1 24 , , 34 , ,1 3beer chips pizza wine← < > < > < > < >

The running process is illustrated in the following figure. After two iterations, we
will get frequent tidsets, {beer, 12 >, < chips, 124>, <pizza, 34>, <wine,
13>, < {beer, chips}, 12>}:

Eclat Algorithm

{}

<{wine},13>

<{pizza, wine},3><{chips, wine},1>

<{pizza},34><{chips},124>

<{chips< pizza},4><{beer, wine},1><{beer, chips},12>

<{beer},12>

The output of the Eclat function can be verified with the R add-on package, arules.

The FP-growth algorithm
The FP-growth algorithm is an efficient method targeted at mining frequent itemsets
in a large dataset. The main difference between the FP-growth algorithm and the
A-Priori algorithm is that the generation of a candidate itemset is not needed here.
The pattern-growth strategy is used instead. The FP-tree is the data structure.

Chapter 2

[53]

Input data characteristics and data structure
The data structure used is a hybrid of vertical and horizontal datasets; all the
transaction itemsets are stored within a tree structure. The tree structure used in this
algorithm is called a frequent pattern tree. Here is example of the generation of the
structure, I = {A, B, C, D, E, F}; the transaction dataset D is in the following table, and
the FP-tree building process is shown in the next upcoming image. Each node in the
FP-tree represents an item and the path from the root to that item, that is, the node
list represents an itemset. The support information of this itemset is included in the
node as well as the item too.

tid X
1 {A, B, C, D, E}
2 {A, B, C, E}
3 {A, D, E}
4 {B, E, D}
5 {B, E, C}
6 {E, C, D}

7 {E, D}

The sorted item order is listed in the following table:

item E D C B A
support_count 7 5 4 4 3

Reorder the transaction dataset with this new decreasing order; get the new sorted
transaction dataset, as shown in this table:

tid X
1 {E, D, C, B, A}
2 {E, C, B, A}
3 {E, D, A}
4 {E, D, B}
5 {E, C, B}
6 {E, D, C}
7 {E, D}

Mining Frequent Patterns, Associations, and Correlations

[54]

The FP-tree building process is illustrated in the following images, along with the
addition of each itemset to the FP-tree. The support information is calculated at the
same time, that is, the support counts of the items on the path to that specific node
are incremented.

The most frequent items are put at the top of the tree; this keeps the tree as compact
as possible. To start building the FP-tree, the items should be decreasingly ordered
by the support count. Next, get the list of sorted items and remove the infrequent
ones. Then, reorder each itemset in the original transaction dataset by this order.

Given MIN_SUP=3, the following itemsets can be processed according to this logic:

FP-tree building process, step1~step3

step1, (1, EDCBA) step2, (2, ECBA) step3, (3, EDA)

NULL (2)

E(2)

D(1) C(1)

A(1)

A(1)

B(1)

C(1) B(1)

NULL (3)

E(3)

D(2) C(1)

C(1) A(1)

A(1)

A(1)

B(1)

B(1)

NULL (1)

A(1)

D(1)

C(1)

B(1)

E(1)

Chapter 2

[55]

The result after performing steps 4 and 7 are listed here, and the process of the
algorithm is very simple and straight forward:

FP-tree building process, step4~step7

step4, (4, EDB)

NULL (4)

E(4)

D(3) C(1)

C(1) A(1)

A(1)

A(1)

B(1)

B(1) B(1)

step7, (7, ED)

NULL (7)

E(7)

D(5) C(2)

C(2) A(1)

A(1)

A(1)

B(1)

B(1) B(1)

Mining Frequent Patterns, Associations, and Correlations

[56]

A header table is usually bound together with the frequent pattern tree. A link to the
specific node, or the item, is stored in each record of the header table.

Header Table

E:7

C:4

B:4

A:3

D:5

step2, (2, ECBA)

NULL (7)

A(1)

E(7)

D(5)

C(2)

A(1)

B(1)

C(2)

B(1)

B(2)

A(1)

The FP-tree serves as the input of the FP-growth algorithm and is used to find the
frequent pattern or itemset. Here is an example of removing the items from the
frequent pattern tree in a reverse order or from the leaf; therefore, the order is A, B,
C, D, and E. Using this order, we will then build the projected FP-tree for each item.

Chapter 2

[57]

The FP-growth algorithm
Here is the pseudocode with recursion definition; the input values are

() , , R GenerateFPTree D P Fφ φ← ← ←

The R implementation
Here is the R source code of the main FP-growth algorithm:

FPGrowth <- function (r,p,f,MIN_SUP){
 RemoveInfrequentItems(r)
 if(IsPath(r)){
 y <- GetSubset(r)
 len4y <- GetLength(y)
 for(idx in 1:len4y){
 x <- MergeSet(p,y[idx])
 SetSupportCount(x, GetMinCnt(x))
 Add2Set(f,x,support_count(x))
 }
 }else{
 len4r <- GetLength(r)
 for(idx in 1:len4r){
 x <- MergeSet(p,r[idx])
 SetSupportCount(x, GetSupportCount(r[idx]))
 rx <- CreateProjectedFPTree()

Mining Frequent Patterns, Associations, and Correlations

[58]

 path4idx <- GetAllSubPath(PathFromRoot(r,idx))
 len4path <- GetLength(path4idx)
 for(jdx in 1:len4path){
 CountCntOnPath(r, idx, path4idx, jdx)
 InsertPath2ProjectedFPTree(rx, idx, path4idx, jdx,
 GetCnt(idx))
 }
 if(!IsEmpty(rx)){
 FPGrowth(rx,x,f,MIN_SUP)
 }
 }
 }
}

The GenMax algorithm with maximal frequent
itemsets
The GenMax algorithm is used to mine maximal frequent itemset (MFI) to which
the maximality properties are applied, that is, more steps are added to check the
maximal frequent itemsets instead of only frequent itemsets. This is based partially
on the tidset intersection from the Eclat algorithm. The diffset, or the differential set
as it is also known, is used for fast frequency testing. It is the difference between two
tidsets of the corresponding items.

The candidate MFI is determined by its definition: assuming M as the set of MFI, if
there is one X that belongs to M and it is the superset of the newly found frequent
itemset Y, then Y is discarded; however, if X is the subset of Y, then X should be
removed from M.

Here is the pseudocode before calling the GenMax algorithm,
M ,
where D is the input transaction dataset.

Chapter 2

[59]

The R implementation
Here is the R source code of the main GenMax algorithm:

GenMax <- function (p,m,MIN_SUP){
 y <- GetItemsetUnion(p)
 if(SuperSetExists(m,y)){
 return
 }
 len4p <- GetLenght(p)
 for(idx in 1:len4p){
 q <- GenerateFrequentTidSet()
 for(jdx in (idx+1):len4p){
 xij <- MergeTidSets(p[[idx]],p[[jdx]])
 if(GetSupport(xij)>=MIN_SUP){
 AddFrequentItemset(q,xij,GetSupport(xij))
 }
 }
 if(!IsEmpty(q)){
 GenMax(q,m,MIN_SUP)
 }else if(!SuperSetExists(m,p[[idx]])){
 Add2MFI(m,p[[idx]])
 }
 }
}

Mining Frequent Patterns, Associations, and Correlations

[60]

The Charm algorithm with closed frequent
itemsets
Closure checks are performed during the mining of closed frequent itemsets. Closed
frequent itemsets allow you to get the longest frequent patterns that have the same
support. This allows us to prune frequent patterns that are redundant. The Charm
algorithm also uses the vertical tidset intersection for efficient closure checks.

Here is the pseudocode before calling the Charm algorithm,
() () , { X , t X | X , _ _ }i i i iC and P D support count X MIN SUPφ← ← < > ∈ ≥ ,

where D is the input transaction dataset.

Chapter 2

[61]

The R implementation
Here is the R source code of the main algorithm:

Charm <- function (p,c,MIN_SUP){
 SortBySupportCount(p)
 len4p <- GetLength(p)
 for(idx in 1:len4p){
 q <- GenerateFrequentTidSet()
 for(jdx in (idx+1):len4p){
 xij <- MergeTidSets(p[[idx]],p[[jdx]])
 if(GetSupport(xij)>=MIN_SUP){
 if(IsSameTidSets(p,idx,jdx)){
 ReplaceTidSetBy(p,idx,xij)
 ReplaceTidSetBy(q,idx,xij)
 RemoveTidSet(p,jdx)
 }else{
 if(IsSuperSet(p[[idx]],p[[jdx]])){
 ReplaceTidSetBy(p,idx,xij)
 ReplaceTidSetBy(q,idx,xij)
 }else{
 Add2CFI(q,xij)
 }
 }
 }
 }
 if(!IsEmpty(q)){
 Charm(q,c,MIN_SUP)
 }
 if(!IsSuperSetExists(c,p[[idx]])){
 Add2CFI(m,p[[idx]])
 }
 }
}

The algorithm to generate association rules
During the process of generating an algorithm for A-Priori frequent itemsets,
the support count of each frequent itemset is calculated and recorded for further
association rules mining processing, that is, for association rules mining.

Mining Frequent Patterns, Associations, and Correlations

[62]

To generate an association rule , X Y l X Y→ = U , l is a frequent itemset. Two steps
are needed:

• First to get all the nonempty subsets of l.
• Then, for subset X of l, Y l X= − , the rule X Y→ is a strong association rule

only if () confidenceconfidence X Y minimum→ ≥ The support count of any rule of
a frequent itemset is not less than the minimum support count.

Here is the pseudocode:

()

()

{ }{ }

()

1

1: , , , _ {
2 : ;
3 : {
4 :

1 |

 ;

5 :

6 : 1
7 : {

8 :

;

 { |

SUP

k

k k

AprioriGenerateRules D F MIN MIN CONF
R
for each I F

R R I
C

k
while C

H X C confidence I

i I

φ

φ

φ

←

∈

← ⇒

←

≠

← ∈

← ∈

U

()
[] [] [] []()

[]{ }
()

1 1

_ };

9 : , , 1 1,){

10 : ;

11: , , {

12 :
13 : }
14

k

k

k k

X X MIN CONF

for any X Y H X i Y i for i k and X k Y k

I X Y k

if J I J k J H

C C I+ +

− ⇒ ≥

∈ == ≤ ≤ − <

←

∀ ⊆ == ∈

←

U

U

1

: }
15 : 1;
16 : }
17 : { | };
18 : }

k

k k

R R I X X X H H

← +

← − ⇒ ∈ …∈U U

The R implementation
R code of the algorithm to generate A-Priori association is as follows:

Here is the R source code of the main
 algorithm:
AprioriGenerateRules <- function
 (D,F,MIN_SUP,MIN_CONF){

Chapter 2

[63]

 #create empty rule set
 r <- CreateRuleSets()
 len4f <- length(F)
 for(idx in 1:len4f){
 #add rule F[[idx]] => {}
 AddRule2RuleSets(r,F[[idx]],NULL)
 c <- list()
 c[[1]] <- CreateItemSets(F[[idx]])
 h <- list()
 k <-1
 while(!IsEmptyItemSets(c[[k]])){
 #get heads of confident association rule in c[[k]]
 h[[k]] <- getPrefixOfConfidentRules(c[[k]],
 F[[idx]],D,MIN_CONF)
 c[[k+1]] <- CreateItemSets()

 #get candidate heads
 len4hk <- length(h[[k]])
 for(jdx in 1:(len4hk-1)){
 if(Match4Itemsets(h[[k]][jdx],
 h[[k]][jdx+1])){
 tempItemset <- CreateItemset
 (h[[k]][jdx],h[[k]][jdx+1][k])
 if(IsSubset2Itemsets(h[[k]],
 tempItemset)){
 Append2ItemSets(c[[k+1]],
 tempItemset)
 }
 }
 }
 }
 #append all new association rules to rule set
 AddRule2RuleSets(r,F[[idx]],h)
 }
 r
}

To verify the R code, Arules and Rattle packages are applied while verifying
the output.

Arules (Hahsler et al., 2011) and Rattle packages provide support
for association rule analysis. AruleViz is used to visualize the
output's association rules.

Mining Frequent Patterns, Associations, and Correlations

[64]

Hybrid association rules mining
There are two interesting applications of association rules mining: one is
multilevel and multidimensional association rules mining, while the
other is constraint-based mining.

Mining multilevel and multidimensional
association rules
For a given transactional dataset, if there is a conceptual hierarchy that exists from
some dimensions of the dataset, then we can apply multilevel association rules
mining to this dataset. Any association rules mining algorithm applicable to the
transaction dataset can be used for this task. The following table shows an example
from the Amazon store:

TID Item purchased
1 Dell Venue 7 16 GB Tablet, HP Pavilion 17-e140us 17.3-Inch Laptop...
2 Samsung Galaxy Tab 3 Lite, Razer Edge Pro 256GB Tablet…
2 Acer C720P-2666 Chromebook, Logitech Wireless Combo MK270 with

Keyboard and Mouse…
2 Toshiba CB35-A3120 13.3-Inch Chromebook, Samsung Galaxy Tab 3

(7-Inch, White)…

Have a look at the following flowchart that explains multilevel pattern mining:

Multilevel Pattern Mining

All

Computer Software Printer and Camera

Laptop Desktop

Apple Lenovo Legend Compaq LibreOffice Microsoft

Antivirus Printer

HP

Digital Camera

Dell

Office

Toshiba

Based on the conceptual hierarchy, lower-level concepts can be projected to
higher-level concepts, and the new dataset with higher-level concepts can
replace the original lower-level concepts.

Chapter 2

[65]

The support counts are calculated at each conceptual level. Many A-Priori-like
algorithms are designed with slightly different treatment to support count;
here is a possible list of treatments available:

• A uniform minimum support threshold is used across all the levels
• Reduced minimum support threshold is used for lower levels
• Group-based minimum support threshold

Sometimes the A-Priori property is not always held here. There
are some exceptions.
Multilevel association rules are mined from multiple levels of the
conceptual hierarchy.

Constraint-based frequent pattern mining
Constraint-based frequent pattern mining is a heuristic method with some user-
specified constraints to prune the search space.

The ordinary constraints are, but not limited to, the following:

• Knowledge-type constraint (specifies what we are going to mine)
• Data constraint (limits to the original dataset)
• Dimension-level constraints
• Interestingness constraints
• Rule constraints

Mining sequence dataset
Sequential pattern mining is the major task for sequence dataset mining. The
A-Priori-life algorithm is used to mine sequence patterns that use the A-Priori-life
algorithm, which applies a breath-first strategy. However, for the pattern-growth
method, a depth-first strategy is used instead. The algorithm sometimes integrates
with constraints for various reasons.

The common purchase patterns of the customers of the store can be mined from
sequential patterns. In other aspects, especially advertisement or market campaign,
sequential patterns play an important role. The individual customer's behavior can
be predicted from sequential patterns in the domain of web log mining, web page
recommendation system, bioinformatics analysis, medical treatment sequence track
and analysis, and disaster prevention and safety management.

Mining Frequent Patterns, Associations, and Correlations

[66]

The rules in this chapter, which are mined from sequence patterns, are of many
types. Some of them are listed as follows:

• A sequential rule is X Y→ , where X Y⊂
• A label sequential rule (LSR) is of the form X Y→ , where Y is a sequence, and

X a sequence generated from Y by replacing some of its items with wildcards
• A class sequential rule (CSR) is defined as X if:

, ,
, , , , ,

X y given S as a sequence dataset I as the set of all items
S Yas the set of all class lables I Y X as a sequence y Yφ
→ ∈

= ∈I

Sequence dataset
A sequence dataset S is defined as a set of tuples, (sid, s), in which sid is a sequence
ID, and s is a sequence.

The support of a sequence X in a sequence dataset S is the number of tuples in S,
which contains X: () () (){ }, , Ssupport X sid s sid s S X s= ∨ ∈ ← ⊆ .

Here is a property intrinsic to sequential patterns, and it is applied to related
algorithms such as the A-Priori property for the A-Priory algorithm. For a sequence X
and its subsequence Y, () () support X support Y≤ .

The GSP algorithm
The generalized sequential patterns (GSP) algorithm is an A-Priori-like algorithm, but
it is applied to sequence patterns. It is a level-wise algorithm and has a breadth-first
approach. Here is the feature list:

• GSP is an extension of the A-Priori algorithm
It uses the A-Priori property (downward-closed), that is, given the
minimum support count, if a sequence is not accepted, all its super
sequence will be discarded.

• The features require multiple passes of the initial transaction dataset
• It uses the horizontal data format
• In each pass, the candidate's set is generated by a self-join of the patterns

found in the previous pass
• In the k-pass, a sequence pattern is accepted only if all its (k-1) subpatterns

are accepted in the (k-1) pass

Chapter 2

[67]

The overview of GSP algorithm goes here.

Here is the pseudocode:

Mining Frequent Patterns, Associations, and Correlations

[68]

()()
()

()()
()

() ()

21: , {

22 : {

23: {

24 : {
25 : 1

26 : }
27 : }
28 : }
29 :}

k

i

k

i

count r count r

ComputeSupport C D

for each s D

for each r C

if r s
support support←

∈

∈

⊆

+

()()
()()

()()()
[]

()(),

30 : {

31: {

32 : {

33:

34 : , , 1 {

35 :

k

k
a

b a

ab a b

k
c c ab c ab

ab

ExtendPrefixTree C

for eachleaf r C

for eachleaf r Children Parent r

r r r k

if r C r r r r

add r as child o

∈

∈

← +

∈ ∀ ⊂ = +

()

()
()

()

 _ 0
36 : }
37 : }
38 : {

39 :
40 : }
41: }

42 :
43 :}

a ab

a

k
a

k

f r with support count r

if noextensions fromr

remover fromC

returnC

←

The R implementation
Here is the R source code of the main algorithm:

GSP <- function (d,I,MIN_SUP){
 f <- NULL
 c[[1]] <- CreateInitalPrefixTree(NULL)
 len4I <- GetLength(I)
 for(idx in 1:len4I){
 SetSupportCount(I[idx],0)

Chapter 2

[69]

 AddChild2Node(c[[1]], I[idx],NULL)
 }
 k <- 1
 while(!IsEmpty(c[[k]])){
 ComputeSupportCount(c[[k]],d)
 while(TRUE){
 r <- GetLeaf(c[[k]])
 if(r==NULL){
 break
 }
 if(GetSupport(r)>=MIN_SUP){
 AddFrequentItemset(f,r,GetSupport(r))
 }else{
 RemoveLeaf(c[[k]],s)
 }
 }
 c[[k+1]] <- ExtendPrefixTree(c[[k]])
 k <- K+1
 }
 f
}

The SPADE algorithm
Sequential Pattern Discovery using Equivalent classes (SPADE) is a vertical
sequence-mining algorithm applied to sequence patterns; it has a depth-first
approach. Here are the features of the SPADE algorithm:

• SPADE is an extension of the A-Priori algorithm
• It uses the A-Priori property
• Multiple passes of the initial transaction data set are required
• The vertical data format is used
• It uses a simple join operation
• All sequences are found in three dataset passes

Mining Frequent Patterns, Associations, and Correlations

[70]

The short description of SPADE algorithm goes here.

Here is the pseudocode before calling the SPADE algorithm,
() (){ }, 0, , ,support_count MIN_SUPF k P s L s s sφ← ∧ ← ← < >∈∑ ≥ :

The R implementation
Here is the R source code of the main algorithm:

SPADE <- function (p,f,k,MIN_SUP){
 len4p <- GetLength(p)
 for(idx in 1:len4p){
 AddFrequentItemset(f,p[[idx]],GetSupport(p[[idx]]))
 Pa <- GetFrequentTidSets(NULL,MIN_SUP)
 for(jdx in 1:len4p){
 xab <- CreateTidSets(p[[idx]],p[[jdx]],k)
 if(GetSupport(xab)>=MIN_SUP){
 AddFrequentTidSets(pa,xab)
 }
 }

Chapter 2

[71]

 if(!IsEmptyTidSets(pa)){
 SPADE(p,f,k+1,MIN_SUP)
 }
 }
}

Rule generation from sequential patterns
Sequential rules, label sequential rules, and class sequential rules can be generated
from sequential patterns, which you will get from the previous sequential patterns
discovery algorithms.

High-performance algorithms
Along with the growth of the dataset size, there is a steady requirement for
high-performance associations/patterns mining algorithms.

With the introduction of Hadoop and other MapReduce-like platforms to the world,
there is a chance to meet these requirements. I will discuss this further in the upcoming
chapters. Depending on the size of the dataset, some algorithms should be revised and
adjusted, such as the recursive algorithm that will eventually run out of space on the
call stack and might present a challenge when converting to MapReduce.

Time for action
To enhance your knowledge about this chapter, here are some practice questions
that'll let you understand the concepts better:

• Write an R program to find how many unique items' names are contained
in the given sample market basket transaction file. Map each item's name to
a unique integer ID. Find out all the closed frequent itemsets. Find out all
the maximal frequent itemsets and their support count. Set a support count
threshold to various values yourself.

• Write an R program to implement the A-PrioriTid algorithm.

Mining Frequent Patterns, Associations, and Correlations

[72]

Summary
In this chapter, we looked at the following topics:

• Market basket analysis
• As the first step of association rule mining, the frequent itemset is the key

factor. Along with the algorithm design, closed itemsets and maximum
frequent itemsets are defined too.

• As the target of association rule mining, association rules are mined with
the measure of support count and confidence. Correlation rules mining are
mined with the correlation formulae, in addition to the support count.

• Monotonicity of frequent itemset; if an itemset is frequent, then all its subsets
are frequent.

• The A-Priori algorithm, which is the first efficient mining algorithm to mine
frequent patterns; many variants originated from it.

• Frequent patterns in sequence.

The next chapter will cover the basic classification algorithms, which is a major
application of data mining, including ID3, C4.5, and CART.

Classification
In this chapter, you will learn the popular classification algorithms written in the
R language. Empirical classifier performance and accuracy benchmarks are also
included. Along with the introduction of various classification algorithms, b will also
learn various ways to improve the classifier and so on.

Classification has massive applications in modern life. With the exponential
growth of the information dataset, there is a need for high performance classification
algorithms to judge an event/object belonging to a predefined categories set. Such
algorithms have unlimited opportunity for implementation in a wide variety of
industries such as bioinformatics, cybercrime, and banking. Successful classification
algorithms use predefined categories from training information datasets to predict
the unknown category for a single event given a common set of features.

Along with the continual growth of computer science, the classification algorithms
need to be implemented on many diverse platforms including distributed
infrastructure, cloud environment, real-time devices, and parallel computing systems.

In this chapter, we will cover the following topics:

• Classification
• Generic decision tree introduction
• High-value credit card customers classification using ID3
• Web spam detection using C4.5
• Web key resource page judgment using CART
• Trojan traffic identification method and Bayes classification
• Spam e-mail identification and Naïve Bayes classification
• Rule-based classification and the player types in computer games

Classification

[74]

Classification
Given a set of predefined class labels, the task of classification is to assign each data
object of the input dataset with a label using the classifier's training model. Typically,
the input can be a discrete or continuous value, but the output is discrete binary or
nominal value and so forth. Classification algorithms are often described as learning
models or functions, in which x is a tuple of attribute set with discrete or continuous
value, and y is an attribute with discrete value such as categorical labels.

() ()1 2, 0, , , , nf x y x x x x= = …

This function can also be treated as a classification model. It can be used to
distinguish objects belonging to different classes or to predict the class of a new
tuple or y in the above (x, y). In another point of view, classification algorithms
are targeted to find a model from the input data, and apply this model to future
classification usage predictions when given a common set of attributes.

Generally speaking, ()1 2, , , nx x x x= … is a set of attributes selected as the input for
the classification system. There are special algorithms used to select only the useful
attributes from this set to ensure the efficiency of the classification system.

Almost any classification tasks need this preprocessing procedure, but the exact
means vary from case to case. Here are three mainstream methods applied:

• Data cleaning
• Relevance analysis
• Data transformation and reduction

A standard classification process often includes two steps. The classification model
with the higher accepted accuracy is accepted as classifier to classify a dataset in
production. The following two steps are illustrated with an example in the diagram:

• Training (supervised learning): The classification model is built upon the
training dataset, that is, the (instance, class label) pairs

• Classification validation: The accuracy of the model is checked with the test
dataset to decide whether to accept the model

Chapter 3

[75]

Classification algorithm

Classification rules

Training data

name

Sandy Jones
Bill Lee
Caroline Fox
Risk Field
Susan Lake
Claire Philps
Joe Smith
...

middle aged
...

middle aged
middle_aged

Senior
Senior

age income

low risky
risky
safe

safe
safe
safe
...

risky

low

low
low

high

high
...

medium

loan_decision

youth
youth

Classification rules

IF age=youth THEN loan_decision=risks
IF income=high THEN loan_decision=safe

IF age=middle_aged AND income=low
THEN loan_decision=risky

...

(a)

Test data

name

Juan Bello
Sylvia Crest
Anne Yee
...

middle aged
...

middle_aged
senior

age income

safe

safe
...

risky
low
low
high
...

loan_decision

New data

(Joh Henery, middle_aged, low)
Loan decision?

(b)

risky

In the following sections, we will introduce some classification algorithms with
different designs.

Classification

[76]

Generic decision tree induction
There are various definitions of the term decision tree. Most commonly, a
decision tree provides a representation of the process of judging the class of a
given data instance or record from the root node down to some leaf node. As a
major classification model, the decision tree induction builds a decision tree as a
classification model using the input dataset and class label pairs. A decision tree can
be applied to various combinations of the following attribute data types, but is not
limited to, including nominal valued, categorical, numeric and symbolic data, and
their mixture. The following list is an illustration of Hunt's decision tree definition.
The Step #7 applies a selected attribute test condition to partition the records to
smaller datasets.

The decision tree is popular for its simplicity and low computational effort compared
to other algorithms. Here are some characteristics of the decision tree induction:

• The greedy strategy is usually applied to the decision tree.
• It infers a decision tree once upon the entire training dataset.
• The algorithm requires no parameters to obtain the classification model from

the input dataset.
• Like many other tasks, finding an optimal decision tree is an NP-complete

problem.
• The algorithm to build the decision tree enables construction of the decision

tree quickly. Tree construction is efficient, even upon large datasets.
• It provides an expressive way for discrete-valued functions.
• It is robust while opposed to noise.

Chapter 3

[77]

• Using a top-down, recursive partition, the divide-and-conquer strategy is
applied to most of the decision tree algorithms.

• The size of the sample dataset usually decreases dramatically when traversed
down the tree.

• A subtree can be replicated many times in the decision tree.
• The test condition usually contains only one attribute.
• The performance of decision tree algorithms is affected by the

impurity measure.

It is time to consider the decision tree when the instances in the source dataset are
describable by the attribute-value pair, and the target function has discrete values,
while the training dataset possibly has some noise.

An example of a decision tree built with the input dataset in a table (classical play
golf dataset) is shown in the following diagram. The decision tree is composed of
three entities or concepts: the root node, the internal node, and the leaf node. The leaf
is given a class label. Nodes other than the leaf conduct tests on the attribute set to
determine which input data belongs to which branch (child) of the node.

Outlook
RainyRainyRainy
Rainy

Rainy
Rainy

Rainy

Overoast

Overoast
Overoast

Overoast
Sunny
Sunny
Sunny

Sunny

Sunny

Hot
Hot

Cool
Cool

Cool

Cool

Hot

HotHot

Mild

Mild

Mild
Mild
Mild

Mild

HighHigh
High
HighHigh
High

High

HighHighHigh

High

Normal
Normal

Normal
Normal
Normal

Normal

Normal

False

False
False
False

False
False

False

False

True

True
True

True
True

True

No
No

No

No

No

Yes
Yes
Yes

Yes

Yes
Yes
Yes
Yes
Yes

Temp Humidity Windy Play Golf

Predictors Target

Sunny Overcast Rainy

High Normal

No YesYes No

Yes

FALSE TRUE

HumidityWindy

Outlook

Decision Tree

Given a built decision tree, a test record can be classified easily. From the root node,
apply the test condition of that node to the test record and go to the next node with
the corresponding test result until a leaf, by which we can decide which class the test
record belongs to, is reached.

Now there will be two issues. One is how to divide the training set as per a certain
node while the decision induction tree grows according to a chosen test condition
upon various attribute sets. This will be a question related to attribute selection
measure, which are illustrated in the following section. The second but important
issue is related to model overfitting.

Classification

[78]

There are two strategies for the termination of the growth of the limiting decision
induction tree node. Using the naïve strategy, for a certain node, when all the data
objects within a node are assigned to it belong to the same class or all records with
the same attribute values; as a result, the node related will be assigned with the
class label as the majority of training records within that node. The second strategy
terminates the algorithm earlier, which is meant to avoid model overfitting and will
be introduced in the tree pruning section.

Attribute selection measures
The node can have more than two children or branches depending on the attribute
test condition and the selected attribute. To split the node, attribute selection
measures with various implementations are applied. Attribute selection measures
within the same node may also vary for binary branches or multiway branches. Some
common attribute selection measures are the following:

• Entropy: This concept is used in information theory to describe the impurity
of an arbitrary collection of data. Given the target attribute class set with
size of c, and ip as the proportion/probability of S belonging to class i, the
definition is here, and the definition Gain is shown in the next point. Entropy
always means how disordered a dataset is. The higher the value of entropy,
the more the uncertainty shown by the source dataset.

() 2
1

c

i i
i

Entropy S p log p
=

= −∑

The size and coverage of the training set assigned to a certain node affect the
correctness of the following equations. The gain is better for those situations.

• Gain:

() ()
()

()| |,
Values A

SGain S A Entropy S Entropy S
S
υ

υ
υ∈

= − ∑

• Gain Ratio: This is applied in the C4.5 classification algorithm using the
following formula:

() ()
()
,

,
,

Gain S T
GainRatio S T

SplitInfo S T
=

Chapter 3

[79]

• Information Gain: The ID3 algorithm uses this statistical property to decide
which attribute is selected to be tested at any node in the tree, and measures
the association between inputs and outputs of the decision tree.
With the concept of information gain, the definition of a decision tree can be
thought of in this way:

 ° A decision tree is a tree-structured plan that uses a set of attribute
tests to predict output

 ° To decide which attribute should be tested first, simply find the one
with the highest information gain

 ° It, then, recurs

• Gini Index: It is used in the CART classification algorithm. The Gini index
for a specific split point is calculated using the following equation. It is used
to gauge the purity of the split point.

() 2

1

1 (|)
k

i
i

G D P c D
=

= −∑

• Split Info:

()
()

, ,, *
S

S S

Values T S S

T T
SplitInfo S T log

T T
υ υ

υ∈

=− ∑

Tree pruning
The initial decision tree is often built with many branches reflecting outliers or noise,
which are also common causes of model overfitting. Usually, the direct consequent
in tree pruning is needed for the after-dealt of decision tree aiming, which is required
for classifying higher accuracy or lower error rates. The two types of pruning in
production are as follows:

• Post-pruning: This approach is to perform tree pruning after the tree grows
to the maximum form. The cost-complexity pruning algorithm used in CART
and the pessimistic pruning in C4.5 are both examples of post-pruning.

• Pre-pruning: This is also known as the early stopping strategy, which avoids
an over-matured tree generation, to stop the growth of a tree earlier using
additional restrictions, such as a threshold.

Repetition and replication are the two major factors that make decision trees
unreasonably large and inefficient.

Classification

[80]

General algorithm for the decision tree
generation
Here is the pseudocode of the general decision induction tree algorithm:

()
()()

()

1: , {

2 : , {

3 : ()
4 : .
5 :
6 : } {
7 : ()
8 : .

TreeGrowth E F

if StoppingCondition E F

leaf CreateNode
leaf label Classify E
returnleaf

else
root CreateNode
root test

←

←

←

()

()
()

()

_ ,
9 : { | . _ }
10 : {

11: { | . _ , }

12 : ,

13 :

v

v

cond FindBestSplit E F
V v vis a possibleoutcomeof root test cond
for eachv V

E e root test cond e c and e E

child TreeGrowth E F←

←

←

←

∈

= ∈

() , ,
14 : }
15 : }
16 : ;
17 :}

AddDescendentAndLabelEdge root child v

returnroot

Another variety of the algorithm is described here, with input parameters as follows:

• D denotes the training data
• The leaf size is defined by
• The leaf purity threshold is defined by

Chapter 3

[81]

The output of the algorithm is a decision tree, as shown in the following screenshot:

DECISION TREE (D, ,):r

ni |{ D, = }|X | Xj j j ie y c

3

5 c* arg maxi ni
n{ }

create leaf node, and label it with class c*

return

6

7

8

9

10

11

12

13

14

15

16

17

18

19

(split-point*, score*) (0, 0)

foreach (attributeX)j do

2

purity (D) maxi

n |D|1

4 if n < or purity (D) > r then

if (X is numericj) then

(v, score) Evaluate-Numeric-Attribute (D, X)j
if thenscore > score* (split-point*, score*) (X)j < v, score

else if then(X)j is categorial

(V, score) Evaluate-Categorial-Attribute ()D,Xj

if thenscore > score* (split-point*, score*) (X V)j e , score

DY { X D | X satisfies }e split-point*

DN { X D | X does not satisfies }e split-point*

create internal node , with two child nodes, andsplit-point* D DY N

DecisionTree(); DecisionTree()D DY N

{ }ni
n

Line 1 denotes the partition size. Line 4 denotes the stopping condition. Line 9
through line 17 try to get the two branches with the new split. Finally, line 19
applies the algorithm recursively on the two new subbranches to build the
subtree. This algorithm is implemented with R in the following section.

The R implementation
The main function of the R code for the generic decision tree induction is listed
as follows. Here data is the input dataset, c is the set of class labels, x is the set of
attributes, and yita and pi have the same definitions as in the previous pseudocodes:

 1 DecisionTree <- function(data,c,x,yita,pi){
 2 result.tree <- NULL
 3 if(StoppingCondition(data,c,yita,pi)){

Classification

[82]

 4 result.tree <- CreateLeafNode(data,c,yita,pi)
 5 return(result.tree)
 6 }
 7
 8 best.split <- GetBestSplit(data,c,x)
 9 newdata <- SplitData(data,best.split)
 10
 11 tree.yes <- DecisionTree(newdata$yes,c,x,yita,pi)
 12 tree.no <- DecisionTree(newdata$no,c,x,yita,pi)
 13 result.tree <- CreateInternalNode(data,
 14 best.split,tree.yes,tree.no)
 15
 16 result.tree
 17 }

One sample dataset is chosen to verify the generic decision tree induction algorithm,
the weather dataset. It is from the R package Rattle, which contains 366 examples of
23 attributes, and one target or the class label. In the R language, weather is a data
frame, which contains 366 observations of 24 variables. The details for the dataset
can be retrieved with the following R code:

> Library(rattle)

> str(weather)

High-value credit card customers
classification using ID3
The Iterative Dichotomiser 3 (ID3) algorithm is one of the most popular designs of
the decision induction tree. It is not tolerant of missing values or noisy, and the value
of attributes must come from an infinite fixed set.

ID3 uses entropy to calculate the homogeneity of a sample and also for the split. The
information gain G for each attribute A is computed using the following equation.
The root of the final tree is assigned with an attribute with the highest information
gain. Then the new subtree is built recursively upon each value of the attribute
bound to the root.

() ()
()

()| |,
Values A

SGain S A Entropy S Entropy S
S
υ

υ
υ∈

= − ∑

Chapter 3

[83]

() 2
1

c

i i
i

Entropy S p log p
=

= −∑

With the play golf dataset as the input dataset, you can calculate the
information gain and list using the following formulas:

• Entropy (root) = 0.940
• Gain () = 0.048, Gain (S, Humidity) = 0.151
• Gain (S, Temperature) = 0.029, Gain (S, Outlook) = 0.246

ID3 (C4.5 and CART) builds the decision induction tree recursively in a top-down
divide-and-conquer manner through the space of possible decision trees with a
greedy strategy. Using the greedy search strategy, at each step, a decision that
greatly improves the optimizing target is made. For each node, find the test
condition best segment the training data assigned to it.

The characteristics of the decision induction tree in the case of ID3 include
the following:

• Each node excluding the leaf of the tree corresponds to an input attribute,
each arc to a possible value of that attribute

• Entropy is used to determine how informative a particular input attribute is
about the output class on a given dataset

• The recursive algorithm

A quick description about the recursive algorithm can be defined
as follows:

• Break the original problem into two or more smaller-sized
problems with the same type

• Call the recursive algorithm on each smaller type of problem
• Group together the results of step 2 to solve the original problem

The ID3 algorithm
The input parameters for ID3 algorithm are as follows:

• I, denotes the set of input attributes, which may be tested by the result
decision tree

• T, the set of training data objects, or training examples

Classification

[84]

The output parameter of the algorithm is as follows:

• O, denotes the set of output attribute, that is, the value of those attributes will
be predicted by the tree

Here is the pseudocode of the general algorithm:

()
()

()

1: 3 , , {

2 : {
3 : ()
4 : . " "
5 :
6 : }
7 : " " {
8 :

ID I O T

if T is emputy
node CreateNode
node label Failure
returnnode

if all instanceinT sharethe savevalue sameValue for O

←
←

()

 ()
9 : . " "
10 :
11: }
12 : {
13: ()
14 : .

node CreateNode
node label sameValue
returnnode

if I is emputy
node CreateNode
node label the valueof the most common valueof Oin

←
←

←
←

15 :
16 : }

T
returnnode

Chapter 3

[85]

()
[]
[]{ }

17 :
18 : ,

19 : { | 1, }

20 : | 1,
j

j

Computethe information gain for each attribute in I relative to T
let x be the attribute with lestG x T of the attribute in I

let x j m bethevalue set of x

let T j m bethe set of subset of T aft

∈

∈

[]()

{ }()
()

21: ()
22 : .

23 : 1, {

24 :

25 : 3 , ,

26 : {

27 :

j j

j

er it is partitioned withvalue of x

root CreateNode
root label x
foreach j in m

create a newbranch for root

childNode ID I x O T

if T is empty

←

←
←

−

 . ()
28 : .
29 : ,
30 : } {
31:

leaf CreateNode
node label thevalueof themost commonvalueof OinT
add leaf as aleaf and the j thchild of root under the new branch

else

←
←

−

 ,

32 : }
33: }

jadd childNode as the j thchild of root under the new branch−

34 : ;
35 : }

returnroot

The R implementation
The main function of the R code for the ID3 algorithm is listed as follows. Here
data is the input training dataset, ix is the set of input attributes, and ox is the
output attribute:

 1 ID3 <- function(data,ix,ox){
 2 result.tree <- NULL
 3
 4 if(IsEmpty(data)){
 5 node.value <- "Failure"
 6 result.tree <- CreateNode(node.value)
 7 return(result.tree)
 8 }
 9 if(IsEqualAttributeValue(data,ox)){
 10 node.value <- GetMajorityAttributeValue(data,ox)
 11 result.tree <- CreateNode(node.value)

Classification

[86]

 12 return(result.tree)
 13 }
 14 if(IsEmpty(ix)){
 15 node.value <- GetMajorityAttributeValue(data,ox)
 16 result.tree <- CreateNode(node.value)
 17 return(result.tree)
 18 }
 19 gain <- GetInformationGain(data,ix)
 20 best.split <- GetBestSplit(data,gain,ix)
 21
 22 values <- GetAttributeValues(best.split)
 23 values.count <- GetAttributeValuesCount(best.split)
 24 data.subsets <- SplitData(data,best.split)
 25
 26 node.value <- best.split
 27 result.tree <- CreateNode(node.value)
 28 idx <- 0
 29 while(idx<=values.count){
 30 idx <- idx+1
 31 newdata <- GetAt(data.subsets,idx)
 32 value <- GetAt(values,idx)
 33 new.ix <- RemoveAttribute(ix,best.split)
 34 new.child <- ID3(newdata,new.ix,ox)
 35 AddChildNode(result.tree,new.child,value)
 36 }
 37
 38 result.tree

 39 }

Web attack detection
Along with the development of information technology, there have emerged many
systems that identify malicious usage of the built software system, web system, and
so on. One of them is the Intrusion Detection System (IDS), to detect the malicious
behavior, conduct content inspection without the firewall. Also includes include
signature detection, anomaly detection, and so on.

Classifier-like decision tree technologies, such as ID3, C4.5, and CART, play an
important role as analyzers in addition to other important components of IDS,
such as sensor, manager, operator, and administrator. The classifications needed
here are activity monitor, file integrity checker, host firewall, log parser, and packet
pattern matching.

Chapter 3

[87]

Many issues occur for IDS. One of them is the new variety of a known attack pattern,
often with low detection rate by the existing IDS. This drives the design of new types of
IDS systems integrated with artificial intelligence, especially decision tree technologies.

Among real world examples, except the ones IDS has already built, there are also
competitions for applying data mining techniques to web attack detection. One of
them is KDD-Cup. The topic for KDD-Cup 1999 was Computer network intrusion
detection, to build a classifier to predict the unauthorized behavior.

The dataset for it came from the DARPA Intrusion Detection Evaluation Program.
More than five million data instances are contained in the training dataset and more
than two million for test dataset. There are about 24 attack types in the training dataset,
and 14 in the test dataset. Each data instance in the dataset contains 41 attributes, 9
for TCP connection, 13 for content features contained in the TCP connection, 9 for
traffic features that use a two-second time window and the left for host-related traffic
features. All the attacks can be categorized into the following four groups:

• DOS: This refers to denial of service
• R2L: This refers to unauthorized access to the local machine from the

remote machine
• U2R: This refers to unauthorized access to local super-user privileges by a

local unprivileged user
• Probing: This refers to surveillance and probing

By specific transformation, the ID3 algorithm can be applied to various web attack
detection datasets with various sizes. When the size of the dataset increases, the
performance of ID3 will be kept efficient by parallelization.

For simplicity, one example only takes the following four types of attacks to label a
dataset for simple IDS:

• SQL Injection
• Cross Site Scripting
• Code Injection
• Directory Traversal

All the four types of attacks behave with a common pattern, the web queries with
malicious pattern. Normalizing the web queries, the URL and collection of reserved
tags, label-specific patterns with the appropriate label in the four types of attacks.
After training ID3 on the dataset and applying it to the existing IDS, a better
detection rate can be achieved.

Classification

[88]

High-value credit card customers
classification
Following the growth of credit card usage, there has been a requirement in banking
industry—finding high-value credit card customers from all customers to create a
more customer-oriented strategy to increase profit. There are similar requirements
such as finding interesting rules from the dataset.

To achieve this target, we need to enroll more correct customer attributes (no matter
what type they are) to the training data object. The possible choices are transaction
records, usage behaviors, customer age, annual income, education background,
financial assets, and so on.

There is no need to include all customer-related attributes; the most key attributes on
this target should be adopted. The domain experts might be helpful on this.

With the appropriate attributes selected, the ID3 algorithm can be applied here to
finally extract sensitive features or representatives to help to judge which customer
is more likely to be profitable.

Web spam detection using C4.5
C4.5 is an extension of ID3. The major extensions include handling data with missing
attribute values, and handling attributes that belong to an infinite continuous range.

It is one of the decision tree algorithms, and is also a supervised learning
classification algorithm. A model is learned and the input attribute values are
mapped to the mutually exclusive class labels. Moreover, the learned model will be
used to further classify new unseen instances or attribute values. The attribute select
measure adopted in C4.5 is the gain ratio, which avoids the possible bias:

() ()
()
,

,
,

Gain S T
GainRatio S T

SplitInfo S T
=

Chapter 3

[89]

() ()
()

()| |,
Values A

SGain S A Entropy S Entropy S
S
υ

υ
υ∈

= − ∑

()
()

, ,, *
S

S S

Values T S S

T T
SplitInfo S T log

T T
υ υ

υ∈

=− ∑

Based on the generic C4.5 algorithm, a suite for varieties derived, C4.5, C4.5-no-pruning,
C4.5-rules, and so forth; all of them are called C4.5 algorithms, which means C4.5 is a
suite of algorithms.

Compared to other algorithms, there are many important characteristics of C4.5:

• Tree pruning, a post-pruning strategy, is followed to remove some of the tree
structure using selected accuracy criteria

• An improved use of continuous attributes
• Missing values handling
• Inducing rule sets
• It contains a multiway test that depends on the attribute value and is not just

limited to the binary test
• Information theoretic tests are applied via the gain and gain ratio
• The greedy learning algorithm, that is, along with the tree growing, test best

criteria test result is chosen
• The data fits in main memory (there are many extended algorithms that

can use the secondary storages, such as BOAT, Rainforest, SLIQ, SPRINT,
and so forth.)

Classification

[90]

The C4.5 algorithm
Here is the pseudocode for the basic C4.5 algorithm:

C4.5(T)

Input: training data set ; attributes .T S

Output: decision tree .Tree

1: is NULLif thenT

2: failurereturn

3: end if

4: is NULLif thenS

5: as a single node with most frequent class label inreturn Tree T

6: end if

7: | |= 1if thenS

8: Tree as a single nodereturn S

9: end if

10: set = {}Tree

11: afor doe S

12: set =0, and = 0Info(a,T) SplitInfo(a,T)

13: compute (a)Entropy

14: for dov values(a,T)e
15: set as the subset of with attributeT T a = va,v

27: return Tree

26: end for

25: call C T4.5()a,v

21: end for

18: end for

16: Info(a,T) Entroph(a+ =)v|Ta|

| |Ta,v

17: SplitInfo(a,T) log+ =
|Ta|

| |Ta,v

|Ta|

| |Ta,v

19: Gain(a,T) = Entropy(a) Info(a,T)

20: GainRatio(a,T) =
Gain(a,T)

SplitInfo(a,T)

23: attach intoa Treebest

22: set a argmax GainRatio a,Tbest = { ()}
a

24: ()for dov values a , Te best

Chapter 3

[91]

The R implementation
The R code for the ID3 is listed as follows:

 1 C45 <- function(data,x){
 2 result.tree <- NULL
 3
 4 if(IsEmpty(data)){
 5 node.value <- "Failure"
 6 result.tree <- CreateNode(node.value)
 7 return(result.tree)
 8 }
 9 if(IsEmpty(x)){
 10 node.value <- GetMajorityClassValue(data,x)
 11 result.tree <- CreateNode(node.value)
 12 return(result.tree)
 13 }
 14 if(1 == GetCount(x)){
 15 node.value <- GetClassValue(x)
 16 result.tree <- CreateNode(node.value)
 17 return(result.tree)
 18 }
 19
 20 gain.ratio <- GetGainRatio(data,x)
 21 best.split <- GetBestSplit(data,x,gain.ratio)
 22
 23 data.subsets <- SplitData(data,best.split)
 24 values <- GetAttributeValues(data.subsets,best.split)
 25 values.count <- GetCount(values)
 26
 27 node.value <- best.split
 28 result.tree <- CreateNode(node.value)
 29 idx <- 0
 30 while(idx<=values.count){
 31 idx <- idx+1
 32 newdata <- GetAt(data.subsets,idx)
 33 value <- GetAt(values,idx)
 34 new.x <- RemoveAttribute(x,best.split)
 35 new.child <- C45(newdata,new.x)
 36 AddChildNode(result.tree,new.child,value)
 37 }
 38
 39 result.tree
 40 }

Classification

[92]

A parallel version with MapReduce
With the increase in the dataset volume or size, the C4.5 algorithm can be parallelized
according to the MapReduce algorithm, the Hadoop technologies suite, and especially
via RHadoop for R codes.

The MapReduce programming model is illustrated in the following diagram:

Data split 0

Data split 1

Data split 2

Data split nData split n

...

Input Map Stage

Map

Map

Map

Reduce

Reduce

Output 0

Output 1

Data Shuffling Reduce Stage Output

Data Preparation

1: MAP_Attributeprocedure (row_id, (a , a , ..., a , c))1 2 M

2: emit ())a , (row_id, cj

3: end procedure

4: REDUCE_ATTRIBUTE ())procedure a , (row_id, cj

emit ())a , c,cntj5:

6: end procedure

Attribute Selection

1: REDUCE_POPULATION)))procedure a , c,cntj

2: emit ()a , allj

3: end procedure

4: MAP_COMPUTATION (()))procedure a , (c,cnt, allj

compute ()Entropy aj5:

6: compute ()=Info aj
cnt

all
Entropy a()j

7: compute ()=SplitInfo aj
cnt

all
log

cnt

all

emit (, (), ())a Info a SplitInfo aj j j8:

9: end procedure

10: REDUCE_COMPUTATION (((), ()))procedure a , (Info a SplitInfo aj j j

emit (, ())a GainRatio aj j11:

12: end procedure

Chapter 3

[93]

Update Tables

procedure MAP_UPDATE_COUNT ((abest , (row_id, c)))

end procedure

procedure MAP_HASH ((abest , row_id))

emit ()row_id, node_id

end procedure

emit ())abest , (c,cnt `

compute node_id=hash (abest)

Tree Growing

procedure MAP ((abest , (row_id))

emit (,)row_id, node_id subnode_id

end procedure

add a new subnode

compute node_id=hash (abest)

if thennode_id is same with the old value

end if
emit (row_id, nod_id)

Web spam detection
Spamming occurs along with the emergence of search engine technologies to pursue
higher rank with the deceiving search engines relevancy algorithm, but not improve
their own website technologies. It performs deliberate actions to trigger unjustifiable
favorable relevance or importance for a specific web page, in contrast to the page's
true value or merit. The spam page finally receives a substantial amount of score
from other spam pages to boost its rank in search engine results by deliberately
manipulating the search engine indexes. Finally, traffic is driven to the spammed
pages. As a direct result of the Web spam, the information quality of the Web world
is degraded, user experience is manipulated, and the security risk for use increases
due to exploitation of user privacy.

Classification

[94]

One classic example, denoted as link-farm, is illustrated in the following diagram, in
which a densely connected set of pages is created with the target of cheating a link-
based ranking algorithm, which is also called collusion:

Spam
page

Link
farm

Normal
pages

Normal
page

There are three major categories of spam from a business point of view:

• Page Spoofing
• Browser-Based Attacks
• Search Engine Manipulations

There are three major categories of spam from a technology point of view:

• Link spam: This consists of the creation of the link structure, often a
tight-knit community of links, targeted at affecting the outcome of
a link-based ranking algorithm. Possible technologies include honey
pot, anchor-text spam, blog/wiki spam, link exchange, link farm,
and expired domains.

• Content spam: This crafts the contents of web page pages. One example is
inserting unrelated keywords to the web page content for higher ranking
on search engines. Possible technologies include hidden text (size and
color), repetition, keyword stuffing/dilution, and language-model-based
technologies (phrase stealing and dumping).

Chapter 3

[95]

• Cloaking: This sends content to search engines which looks different from
the version viewed by human visitors.

Redirect:
hidden from the
search engine

Normal document

Buy viagra now!

Automatic redirection
Search engine
results page

Search Engine

User

The link-based spam detections usually rely on automatic classifiers, detecting the
anomalous behavior of a link-based ranking algorithm, and so on. Classifier or
language model disagreement can be adopted to detect content spam. While the
cloaking detection solution is inherent, one of them is comparing the indexed page
with the pages visitors saw.

How to apply a decision tree for web spam detection? The links and contents
of the web spam, after statistical analysis, are unique compared to other normal
pages. Some properties are valuable for detecting spam, trustworthiness of the
page, neutrality (facts), and bias. Web spam detection can be a good example for
illustrating the C4.5 algorithm.

Some domain-related knowledge can be applied to the classification solution. One
observed phenomenon is that bad links always have links between them. The links
between web pages and websites are often not randomly set but with certain rules
and they can be detected by classifiers.

About the attributes for a certain data point, the dataset can be divided into two
groups, link-based features and content-based features:

• Link-based features: These include degree-based measures such as
in-degree and out-degree of the web hosts. The second is PageRank-based
features, which is an algorithm to compute a score for every page. The third
is TrustRank-based features, which measure the trustworthiness of certain
web pages to some benchmarked, trustworthy web pages.

Classification

[96]

• Content-based features: These include the number of words in the page,
number of words in the title, average word length, amount of anchor text,
fraction of anchor text, fraction of visible text, fraction of page drawn from
globally popular words, fraction of globally popular words, compressibility,
corpus precision and corpus recall, query precision and query recall,
independent trigram or n-gram likelihood, and entropy of trigrams or n-gram.

All these features are included in one data point to set up a preprocessed dataset,
which in turn can be used by classification algorithms, especially decision tree
algorithms such as C4.5 to work as web spam classifiers to distinguish spam
from normal pages. Among all the classification solutions, C4.5 achieves the
best performance.

Web key resource page judgment using
CART
Classification and Regression Trees (CART) is one of the most popular decision tree
algorithms. It is a binary recursive partitioning algorithm that can be used to process
continuous and nominal attributes.

There are three main steps in the CART algorithm. The first is to construct the
maximum tree (binary tree). The second step is to choose the right size of the tree.
The last step is to classify new data using the result tree.

Compared to other algorithms, there are many important characteristics of CART:

• Binary decision tree (a binary recursive partitioning process)
• The source dataset can have continuous or nominal attributes
• No stopping rule (unless no possible splits are available)
• Tree pruning with cost-complexity pruning
• Nonparametric
• No variables to be selected in advance
• The missing value is dealt with an adaptive and better strategy
• The outlier can be easily handled
• No assumptions
• Computationally fast
• At each split point, only one variable is used

Chapter 3

[97]

• Only one optimal tree is taken as the result tree, which is formed from a
sequence of nested pruned candidate trees generated by CART

• Automatically handling the missing value in the source dataset

The weighted Gini index equation is defined as follows:

() () (), NY
Y N Y N

nnG D D G D G D
n n

= +

The CART measure is different; the goodness of the split point is proportional to the
value of measure. The higher the better.

() ()
1

, 2 | | (|) |
k

NY
Y N i Y i N

i

nnCART D D P c D P c D
n n =

= −∑

The CART algorithm
Splitting rules, with the omission of the following parts, is too lengthy to include in
this section:

• Separate handling of continuous and categorical splitters
• Special handling for categorical splitters with multiple levels
• Missing value handling
• Tree pruning
• Tree selection

Here is the pseudocode for the CART algorithm, the simplified tree-growing algorithm:

Classification

[98]

The simplified pruning algorithm is as follows:

The R implementation
Please look up the R codes file ch_02_cart.R from the bundle of R codes for the
previously mentioned algorithms. One example is chosen to apply the CART
algorithm to, in the following section.

Web key resource page judgment
Web key resource judgment arises from the domain of web information retrieval
and web search engines. The original concept is from the authority value, the hub
value, and the HITS algorithm. During queries of information from IR systems or
search engines, finding important and related information from an overwhelmingly
increasing volume of information is a challenging task. A better judgment leads to
less indexing storage and a more informative querying result.

A key resource page is a high quality web page with much more information per
selected topic compared to an ordinary web page on the same topic. In order to
measure the importance of a certain web page, feature selection is the first thing
required in the design.

Chapter 3

[99]

The link-based features used in current search technologies can't resolve such
issues at an acceptable accuracy rate. To improve the accuracy rate, more
global information across many data instances can be adopted in addition to the
single-data-instance-related attributes or features, which means local attributes.

Experimental results show that the key web page should contain in-site out-links
with anchor text to other pages. Non-content attributes, such as web page links
related attributes and content structures of pages, can be applied to judge key
resource pages. The possible attributes are listed as follows:

• In-degree or in-links: This denotes the number of links pointing to the page.
Observation shows that the higher the number of in-links related to the key
page, the more the links from other sites to that page, which means more
recommendations to a certain extent.

• URL length or the depth of a page's URL: There are four types of URLs
defined in the following box: root, subroot, path, and filename. The four
types of URLs map to four levels of length, that is, 1 to 4 respectively. A
lower prior probability with a lower level and a higher prior probability
mean a bigger possibility to be a key resource page.

• In-site out-link anchor text rate: This refers to the rate of the length of the
anchor text to the document or page content length.

• In-site out-link number: This refers to the number of links embedded in
a page.

• Document length (in words): This filters out specified predefined
non-usable characters from the document. This attribute can predict
the relevance of a page because of the non-uniform distribution.

With the attributes just mentioned, the uniform sampling problem can be bypassed
to a certain extent. The dataset can be easily built and used by decision tree induction
algorithms such as CART.

Trojan traffic identification method and
Bayes classification
Among probabilistic classification algorithms is the Bayes classification, which is
based on Bayes' theorem. It predicts the instance or the class as the one that makes
the posterior probability maximal. The risk for Bayes classification is that it needs
enough data to estimate the joint probability density more reliably.

Classification

[100]

Given a dataset D with a size n, each instance or point x belonging to D with a
dimension of m, for each () { }1 2 1 2, , , , , , , , , i i i im i i i kx x x x D y is theclass for x y c c c= … ∈ ∈ … .
To predict the class y′ of any x, we use the following formula:

(){ }ˆ | |iy arg max P c x i= ∀

Basing on Bayes' theorem, (|)iP x c is the likelihood:

() ()
() () () ()

1

(|)
| , |

k
i i

i j j
j

P x c P c
P c x P x P x c P c

P x =

= =∑

Then we get the following new equations for predicting y′ for x:

(){ } () ()
() ()|

ˆ | | max{ (|) }i i
i i i

P x c P c
y arg max P c x i arg max arg P x c P c

P x
 = ∀ = =

Estimating
With new definitions to predict a class, the prior probability and its likelihood needs
to be estimated.

Prior probability estimation
Given the dataset D, if the number of instances in D labeled with class ic is in and the
size of D is n, we get the estimation for the prior probability of the class ic as follows:

()ˆ i
i

nP c
n

=

Likelihood estimation
For numeric attributes, assuming all attributes are numeric, here is the estimation
equation. One presumption is declared: each class ic is normally distributed around
some mean iµ with the corresponding covariance matrix i∑ . ˆiµ is used to estimate

iµ , ˆ
i∑ for i∑ :

Chapter 3

[101]

() ()ˆ max{ | }i iy arg f x P c i= ∀

() ()
()

() ()1
1 | , exp

22

T
i ii

i i i d

i

x x
f x f x

µ µ
µ

π

− − − = ∑ = −
 ∑

∑

1ˆ
j i

i j
x Di

x
n

µ
∈

= ∑

1ˆ T
i i i

i

Z Z
n

∑ =

For categorical attributes, it can also be dealt with similarly but with minor difference.

The Bayes classification
The pseudocode of the Bayes classification algorithm is as follows:

Classification

[102]

The R implementation
The R code for the Bayes classification is listed as follows:

 1 BayesClassifier <- function(data,classes){
 2 bayes.model <- NULL
 3
 4 data.subsets <- SplitData(data,classes)
 5 cards <- GetCardinality(data.subsets)
 6 prior.p <- GetPriorProbability(cards)
 7 means <- GetMeans(data.subsets,cards)
 8 cov.m <-GetCovarianceMatrix(data.subsets,cards,means)
 9
 10 AddCardinality(bayes.model,cards)
 11 AddPriorProbability(bayes.model,prior.p)
 12 AddMeans(bayes.model,means)
 13 AddCovarianceMatrix(bayes.model,cov.m)
 14
 15 return(bayes.model)
 16 }
 17
 18 TestClassifier <- function(x){
 19 data <- GetTrainingData()
 20 classes <- GetClasses()
 21 bayes.model <- BayesClassifier(data,classes)
 22
 23 y <- GetLabelForMaxPostProbability(bayes.model,x)
 24
 25 return(y)
 26 }

One example is chosen to apply the Bayes classification algorithm, in the
following section.

Trojan traffic identification method
A Trojan horse, which is a malicious program, surreptitiously performs its operation
under the guise of a legitimate program. It has a specific pattern and unique
malicious behavior (such as traffic and other operations). For example, it may obtain
account information and sensitive system information for further attacks. It can
also fork processes for dynamic ports, impersonate software and redirect traffic
of affected services to other systems, make them available to attackers to hijack
connections, intercept valuable data, and inject fake information or phishing.

Chapter 3

[103]

Depending on the purpose of Trojans, there are many versatile types of designs for
Trojans, each with a certain traffic behavior. With the ability to identify the Trojan
traffic, further processing can be performed to protect information. As a result,
detecting the traffic of Trojans is one of the main tasks to detect Trojans on system.
The behavior of Trojans is an outlier compared to the normal software. So the
classification algorithms such as the Bayesian classification algorithm can be applied
to detect the outliers. Here is a diagram showing the Trojan traffic behavior:

Attacker
(RAT Client)

Victim
(RAT Server)

RAT Feedback Channel

Email Server (IMAP, POP)

Web Server (Apache...)

IM/P2P Networks (IRC...)

IP Sweeper (Scanner)

Control Channel

Data Channels (0..N)

The malicious traffic behaviors include but are not limited to spoofing the source
IP addresses and (short and long) term scanning the flow of the address/port that
serves as the survey for successive attacks. Known Trojan traffic behaviors are
used as the positive training data instances. The normal traffic behaviors are used
as the negative data instances in the training dataset. These kinds of datasets are
continuously collected by NGOs.

Classification

[104]

The attributes used for a dataset may include the latest DNS request, the NetBIOS
name table on the host machine, ARP cache, intranet router table, socket connections,
process image, system ports behavior, opened files updates, remote files updates,
shell history, packet TCP/IP headers information, identification fields (IPID) of the
IP header, Time To Live (TTL), and so forth. One possible attribute set for a dataset
is source IP, port, target IP, target port, number of flows, number of packets, number
of bytes, timestamp at certain checkpoint, and the class label for the type of detection.
The DNS traffic plays an important role in the Trojans' detection too; the traffics of
Trojans has certain a relation with DNS traffic.

TCP/IP
Packets

Capture the
packers and
order them in
a sequence

Create feature
data set for

training

Output-Legal or
illegal TCP/IP

packets

Packet Classification
using Naive-Bayesian

classifier

Incoming TCP/IP
Packets

The traditional technologies for detecting a Trojan often rely on the Trojan's
signature and can be deceived by dynamic ports, encrypted messages, and so on.
This led to the introduction of mining technologies for the classification of Trojan
traffic. The Bayesian classifier is one of the better solutions among others. The
preceding diagram is one such possible structure.

Identify spam e-mail and Naïve Bayes
classification
The Naïve Bayes classification presumes that all attributes are independent;
it simplifies the Bayes classification and doesn't need the related probability
computation. The likelihood can be defined with the following equation:

() ()1 2
1

| , ,.., | (|)
d

i d i j i
j

P x c P x x x c P x c
=

= =∏

Chapter 3

[105]

Some of the characteristics of the Naïve Bayes classification are as follows:

• Robust to isolated noise
• Robust to irrelevant attributes
• Its performance might degrade due to correlated attributes in the input dataset

The Naïve Bayes classification
The pseudocode of the Naïve Bayes classification algorithm, with minor differences
from the Bayes classification algorithm, is as follows:

Classification

[106]

The R implementation
The R code for the Naïve Bayes classification is listed as follows:

 1 NaiveBayesClassifier <- function(data,classes){
 2 naive.bayes.model <- NULL
 3
 4 data.subsets <- SplitData(data,classes)
 5 cards <- GetCardinality(data.subsets)
 6 prior.p <- GetPriorProbability(cards)
 7 means <- GetMeans(data.subsets,cards)
 8 variances.m <- GetVariancesMatrix
 (data.subsets,cards,means)
 9
 10 AddCardinality(naive.bayes.model,cards)
 11 AddPriorProbability(naive.bayes.model,prior.p)
 12 AddMeans(naive.bayes.model,means)
 13 AddVariancesMatrix(naive.bayes.model,variances.m)
 14
 15 return(naive.bayes.model)
 16 }

 17
 18 TestClassifier <- function(x){
 19 data <- GetTrainingData()
 20 classes <- GetClasses()
 21 naive.bayes.model <- NaiveBayesClassifier(data,classes)
 22
 23 y <- GetLabelForMaxPostProbability(bayes.model,x)
 24
 25 return(y)
 26 }

One example is chosen to apply the Naïve Bayes classification algorithm, in the
following section.

Chapter 3

[107]

Identify spam e-mail
E-mail spam is one of the major issues on the Internet. It refers to irrelevant,
inappropriate, and unsolicited emails to irrelevant receivers, pursuing
advertisement and promotion, spreading malware, and so on.

Unsolicited, unwanted e-mail that was sent indiscriminately, directly
or indirectly, by a sender having no current relationship with the
recipient is the formal definition of e-mail spam from spam track
at the Text Retrieval Conference (TREC).

The increase in e-mail users, business e-mail campaigns, and suspicious usage of
e-mail have resulted in a massive dataset of spam e-mails, which in turn necessitate
high-efficiency solutions to detect e-mail spam:

E-mail
preprocessing

vector
expression

feature
extraction

model

training sets

testing
e-mail

decision

self-learning

classifier

E-mail spam filters are automated tools that recognize spam and prevent further
delivery. The classifier serves as a spam detector here. One solution is to combine
inputs of a couple of e-mail spam classifiers to present improved classification
effectiveness and robustness.

Spam e-mail can be judged from its content, title, and so on. As a result, the attributes
of the e-mails, such as subject, content, sender address, IP address, time-related
attributes, in-count /out-count, and communication interaction average, can be
selected into the attributes set of the data instance in the dataset. Example attributes
include the occurrence of HTML form tags, IP-based URLs, age of link-to domains,
nonmatching URLs, HTML e-mail, number of links in the e-mail body, and so on.
The candidate attributes include discrete and continuous types.

The training dataset for the Naïve Bayes classifier will be composed of the labeled
spam e-mails and legitimate e-mails.

Classification

[108]

Rule-based classification of player types
in computer games and rule-based
classification
Compared to other classification algorithms, the learned model for a rule-based
classification is set up by an IF-THEN rules set. The rules set can be transformed
from the decision tree or by the following algorithm. An IF-THEN rule has the
following format:

 IF condition_holds_true THEN make_a_conclusion

An alternative format is as follows:

 RULE Antecedent RULE Consequent←

For a given instance or record in the source dataset, if the RULE antecedent holds true,
the rule is defined to cover the instance, and it is satisfied.

Given a rule R, the coverage and accuracy are defined as follows:

() coverD
Coverage R

D
=

() correct

cover

D
Accuracy R

D
=

Chapter 3

[109]

Transformation from decision tree to decision
rules
It is very convenient to transform the decision tree into a decision rules set for further
processing. Along with every path from the root to a leaf in the decision tree, a rule
can be written. The left-hand side, the rule antecedent, of any rule is constructed
by the combination of the label of the nodes and the labels of the arcs, then the rule
consequent by the leaf node. One example of extracting classification rules from the
decision tree is illustrated in the following diagram:

Sunny Overcast Rainy

High Normal

No YesYes No

Play=Yes

FALSE TRUE

HumidityWindy

OutlookR1 : IF (Outlook=Sunny) AND
(Windy=FALSE) THEN Play=Yes

R2 : IF (Outlook=Sunny) AND
(Windy=TRUE) THEN Play=NO

R3 : IF (Outlook=Overcast) THEN
Play=Yes

R4 : IF (Outlook=Rainy) AND
(Humidity=High) THEN Play=No

R5 : IF (Outlook=Rain) AND
(Humidity=Normal) THEN
Play=No

One important question is the pruning of the resulting rules set.

Classification

[110]

Rule-based classification
Rules are learned sequentially, one at a time. Here is the pseudocode of the algorithm
to build a rule-based classifier. The LearnOneRule function is designed with the
greedy strategy. Its target is to cover the positive instance in the source dataset as
much as possible, and none or as few as possible of the negative instance at the
same time. All the instances in the source dataset with a specific class are defined
as positive, and those that belong to other classes are considered to be negative. An
initial rule r is generated, which keeps refining until the stop condition is met.

Sequential covering algorithm
The pseudocode of the generic sequential covering algorithm is as follows. The input
parameters include the dataset with class-labeled tuples and the attributes set with
all of their possible values. The output is a set of IF-THEN rules as follows:

Chapter 3

[111]

The RIPPER algorithm
Repeated Incremental Pruning to Produce Error Reduction (RIPPER) is a direct
rule-based classifier, in which the rule set is relatively convenient to interpret and
the most practical for imbalance problems.

As per the growth of a rule, the algorithm starts from an empty rule and adds
conjuncts, which maximize or improve the information gain measure, that is, the
FOIL. It stops at the situation so that the rule does not cover negative rules. The
resulting rule is pruned immediately with incremental reduced error pruning. Any
final sequence of conditions is removed once it maximizes the measure of pruning v,
which is calculated as follows:

 p nv
p n
−

=
+

The sequential covering algorithm is used to build a rule set; the new description
length (DL) is computed once a new rule is added to the rule set. The rule set is
then optimized.

Given are p as the number of positive examples covered by this rule and n as the
number of negative rules covered by this rule. P denotes the number of positive
examples of this class, and N the number of the negative examples of this class.

log logp PG p
t T

 = −

1
2

pW
t
+

=
+

 , p nA current rule saccuracy
T

′
′+

=

Classification

[112]

The pseudocode of the RIPPER algorithm is as follows:

Chapter 3

[113]

The R implementation
The R code for the rule-based classification is listed as follows:

 1 SequentialCovering <- function(data,x,classes){
 2 rule.set <- NULL
 3
 4 classes.size <- GetCount(classes)
 5 idx <- 0
 6 while(idx <= classes.size){
 7 idx <- idx+1
 8 one.class <- GetAt(classes,idx)
 9 repeat{
 10 one.rule <- LearnOneRule(newdata,x,one.class)
 11 data <- FilterData(data,one.rule)
 12 AddRule(rule.set,one.rule)
 13 if(CheckTermination(data,x,classes,rule.set)){
 14 break;
 15 }
 16 }
 17 }
 18 return(rule.set)
 19 }

One example is chosen to apply the rule-based classification algorithm, in the
following section.

Rule-based classification of player types in
computer games
During computer game progressing and in the game context, improving the
experience of a game is always a continual task. Classification of player types is
one major task, which in turn brings more improvements including game design.

Classification

[114]

One of the popular player models of typological of temperature is the DGD player
topology, which is illustrated in the following diagram. Given this model, the game
players can be labeled with appropriate types, the game can be explained, it helps in
designing new games, and so forth.

DGD1: Hardcore

Diplomatic-Strategic

DGD1: Casual

Tactical-Logistical

.ENFP NTP .ISFJ .ESFJ

Rational/Explorer

Stategic
.ESTJ ISTJ .ISFJ .ESFJ

Guardian/Achiever

Logistical
.ENTJ INTJ .ISFJ.ESTJ

DGD1: Conqueror

Stategic-Logistical

.ENFP INTP .ISFP.ESFP

DGD1: Manager

Stategic-Tactics
.ENFJ INTJ .ISFJ .ESFJ

DGD1: Participant

Diplomatic-Logistical

.ENRP NFP .INFJ.ENFJ

Idealist/Socializer

Diplomatic
.ENFP INFP .ISFP.ESFP

DGD1: Wanderer

Diplomatic-Tactical
.ENFP .ISFPINFP .ESFP

Artisan/Killer

Tactical

STRUCTURE

CHANGE

EXTERNALSINTERNALS

Based on the player behaviors or models, we can train the decision tree model with
the dataset, and the rules set from the trained decision tree model. The dataset will
come from the game log and some predefined domain knowledge.

Time for action
Here are some practices for you to check what you've learned so far:

• Running the R code of the ID3 algorithm step by step upon a minor dataset
to trace the values of the important factors at each step

• Preparing the dataset related to web logs and creating an application that
detects web attacks using ID3

• Implementing an R code to generate decision rules from a decision tree
• What is Gain Ratio?

Chapter 3

[115]

Summary
In this chapter, we learned the following facts:

• Classification is a class of dispatch instances to one of predefined categories
• Decision tree induction is to learn the decision tree from the source dataset

with the (instance and class-label) pairs under the supervised learning mode
• ID3 is a decision tree induction algorithm
• C4.5 is an extension of ID3
• CART is a decision tree induction
• Bayes classification is a statistical classification algorithm
• Naïve Bayes classification is a simplified version of Bayes classification in

which there is a presumption of independence
• Rule-based classification is a classification model applying the rule set, which

can be collections by direct algorithm, the sequential covering algorithm, and
the indirect method by decision tree transforming

In the next chapter, you'll cover the more-advanced classification algorithms,
including Bayesian Belief Network, SVM, k-Nearest Neighbors algorithm, and so on.

Advanced Classification
In this chapter, you will learn about the top classification algorithms written in the
R language. You will also learn the ways to improve the classifier.

We will cover the following topics:

• Ensemble methods
• Biological traits and Bayesian belief network
• Protein classification and the k-Nearest Neighbors algorithm
• Document retrieval and Support Vector Machine
• Text classification using sentential frequent itemsets and classification using

frequent patterns
• Classification using the backpropagation algorithm

Ensemble (EM) methods
To improve the accuracy of classification, EM methods are developed. The accuracy
is dramatically improved by at least one grade compared to its base classifiers,
because the EM methods make mistakes only when at least half of the result of the
base classifiers are wrong.

Advanced Classification

[118]

The concept structure of EM methods is illustrated in the following diagram:

The label for the new data tuple is the result of the voting of a group of base
classifiers. A combined classifier is created based on several base classifiers. Each
classifier is trained with a different dataset or training set re-sampled with the
replacement of the original training dataset.

Three popular EM methods are discussed in the successive sections:

• Bagging
• Boosting
• Random forests

The bagging algorithm
Here is a concise description of the bagging algorithm (noted as the bootstrap
aggregation), followed by the summarized pseudocode. For iteration i ([] 1,i k∈
), a training set, iD , of d tuples is sampled with replacement from the original set
of tuples, D. Any training set is sampled by employing bootstrap sampling (with
replacement) for it, which in turn is used to learn a classifier model, iM . To classify
an unknown or test tuple, X, each classifier, iM , returns its class prediction, which
counts as one vote. Assume the number of classifiers as follows, which predicts the
same class, jc , given the test tuple X:

[]() { () c 1, }j i jv X M x i K= = ∈

Chapter 4

[119]

The bagged classifier, *M , counts the votes and assigns the class with the most votes
to X. Each vote has the same weight in the equation;

() () []* { | 1, }
j

j

c

M X argmax v X j K= ∈
14243

About the prediction of continuous values, the average value of each prediction for
a given test tuple is used as the result. The algorithm reduces the variance, given a
more correct result than the base classifiers.

The input parameters for bagging algorithm are as follows:

• D: This is the training tuples dataset
• K: This is the number of classifiers combined
• S: This is a classification learning algorithm or scheme to learning base

classifier
• *M : This is the ensemble classifier, which is the output of the algorithm

The summarized pseudocode for the bagging algorithm is as follows:

The boosting and AdaBoost algorithms
As opposed to an ensemble algorithm, the bagging algorithm is the weighted voting
and weighted sample training tuple dataset for each base classifier. The base classifiers
are learned iteratively. Once a classifier is learned, the relative weights are updated
with a certain algorithm for the next learning of the base classifiers. The successive
model learning will emphasize the tuples misclassified by the former classifier. As a
direct result, the accuracy of a certain classifier will play an important role in the voting
of the final label once an unknown test tuple is provided for the combined classifier.

Advanced Classification

[120]

Adaptive Boosting or AdaBoost is one of the boosting algorithms. If it contains K
base classifiers, then the AdaBoost will be performed as K passes. Given the tuple
dataset iD and its corresponding classifier iM , the error rate ()ierror M of classifier

iM is defined as follows:

()
1

) *(
d

i j
j

jerr M eo Xr w rror
=

=∑

The new classifier iM will be discarded once the error (iM) is bigger than 0.5. The
training tuples set will be resampled for this classifier and perform the training of
this classifier from scratch.

For tuple j iX D∀ ∈ , the error function is as follows:

() 1 , 0 jerror X for mis classified for others= −

All the weights of the tuples in the training tuples dataset iD are initialized with
1 , id D
d

= . When the classifier iM is learned from the training tuples set iD , the

weight for the tuple, which is correctly classified, is multiplied by ()
()1

i

i

error M
error M−

. After

the updates, the weights for all tuples are normalized, which means the weight of the

classified tuple increases and the weight of the others decreases.

The weight of the vote of classifier iM is as follows:

()
()

1
log i

i

error M
error M
−

We defined ()jv x as the weight of the vote for class jc upon the K classifiers, iα
representing the weight of the ith classifier:

() ()() ()() ()
1

* , 1 , 0
K

j i t j t j t j
i

v X I M x c I M x c when M x c for othersα
=

= = = = =∑

Chapter 4

[121]

The AdaBoost combined classifier, *M , counts the votes with their respective weights
multiplied and assigns the class with the most votes to X. Each vote has the same
weight in the equation:

() () []* { | 1, }
j

j

c

M X argmax v X j K= ∈
14243

The input parameters for the AdaBoost algorithm are as follows:

• D, which denotes a set of training tuples
• k, which is the number of rounds
• A classification learning algorithm

The output of the algorithm is a composite model. The pseudocode of AdaBoost is
listed here:

()

()

1: , , {
12 : ;

3 : 1; ; {
4 : , ,

5 :
j

Adaboost D K S

set theinitial value as for the weight of eachtraining tuple
d

for j j k j
Createbootstrap sample D by sampling D with replacement

← ≤ + +

()
()

 ;

6 : ;

7 : , . ., ;

8 : (0.5){

9 :

j

j j

j j

j

Sample D with replacement according tothetuple weights to get D
Learning a model M with D

computetheerror rateof M i e error D

if error M >

()
()
()

 3 ;
10 : }

11: {

12 : ;
1

13: }
14 :

j

j

j

goback to step and try again

for eachtuplein D that was corretlyclassified

error M
updates its weight valueby multiplying with

error M−

 ;
15 : }
16 :}

normalizethe weight of eachtuple

Advanced Classification

[122]

The Random forests algorithm
Random forests algorithm is an ensemble method to combine a group of decision
trees, which is generated by a strategy of applying a random selection of attributes at
each node that will be split. Given an unknown tuple, each classifier votes, and the
most popular one decides the final result. The pseudocode for the ForestRI algorithm
to generate a forest is as follows:

T denotes a total order of the variables in line 2. In line 5, ()()T jXπ denotes the set of
variables preceding ()T jX . Prior knowledge is required for line 6.

Instead of random selection of attributes on splitting the node, for another algorithm,
ForestRC, the random linear combination strategy of the existing attributes is used
to split the task. New attributes are built by the random linear combination of
the original attributes set. With a couple of new attributes added, the best split is
searched over the updated attributes set including the new and original attributes.

The R implementation
Here we provide three R implementations, bagging, AdaBoost, and Random forests.
Please look up the R codes file ch_04_bagging.R, ch_04_adaboost.R, ch_04_
forestrc.R, and ch_04_forestri.R from the bundle of R codes for the previously
mentioned algorithms. The codes can be tested with the following commands:

> source("ch_04_bagging.R")

> source("ch_04_adaboost.R")

Chapter 4

[123]

> source("ch_04_forestrc.R")

> source("ch_04_forestri.R")

Parallel version with MapReduce
The following algorithm is the parallelized AdaBoost algorithm, which depends on a
couple of workers to construct boosting classifiers. The dataset for the pth worker is
defined using the following formula, where, pn denoting its size is {1,..., }p M∈ :

1 1 2 2{(x , y), (x , y),..., (x , y)}p p p
p p p p p p p

n n n
D =

The classifier pH is defined in the following format, with (t)pα as the weight:

(1) (1) (2) (2) () (){(,), (,),..., (,)}p p p p p T p Th h hα α α

The output is the final classifier. The input is the training dataset of M workers
1
1(,...,)M

M
n n

D D .

Advanced Classification

[124]

Biological traits and the Bayesian belief
network
The Bayesian belief network, once trained, can be used for classification. Based
on the Bayes' theorem, which is defined in the The Bayes classification section of
Chapter 3, Classification, it is defined with two parts, one directed acyclic graph and
conditional probability tables (CPT) for each variable; this is in turn represented by
one node in the graph and models the uncertainty by graphically representing the
conditional dependencies between distinct components. The arcs in the image give
a representation of causal knowledge. The interaction among the diverse sources of
uncertainty is also graphically illustrated.

The uncertainty comes from various sources:

• The way to associate the knowledge by the expert
• The domain intrinsic uncertainty
• The requirement of the knowledge to be translated
• The accuracy and availability of knowledge

Here is an example of the Bayesian belief network with four Boolean variables and
the corresponding arcs. Whether the grass is wet is influenced by the work results of
sprinkler and whether it has just rained, and so on. Each arc has a certain probability.

Let us have a look at the CPT representation of ()| , 0.9P WetGrass T Sprinkler F Rain T= = = = :

P(R=F) P(R=T)C

05 05F
09 01T

P(C=F) P(C=T)

05 05

P(S=F) P(S=T)C

05 05F
09 01T

P(W=F) P(W=T)RS

10 00S F
01 09S T
01 09S T
001 099S T

Cloudy

Wet
Grass

RainSprinkler

Chapter 4

[125]

In the network, each variable is conditionally independent of its non-descendants.
Here is the definition of the joint probability distribution:

() ()1 2
1

, , , (|)
n

n i i
i

P x x x P x Parents Y
=

… =∑

The Bayesian belief network (BBN) algorithm
Before the application of the BBN algorithm to classification, we need to train it
first. In the process of training the network, the expert knowledge, that is, the prior
knowledge, can be used in the training process to help the design of the network.
For the variables that participated in direct dependency, experts must specify their
conditional probability. There are many algorithms to learn the network from the
training dataset; we will introduce an adaptive probabilistic networks algorithm.

The input parameters for the BBN algorithm are as follows:

• T, denotes a total order of the variables
• CPT

The output of the algorithm is the topology structure of BBN, which is as follows:

()
()

()

()() () () (){ }
()()

1 2

1 2 1

1: , {

2 : , , , ;
3 : (1; ;){
4 :

5 : , , , ;

6 :

d

T j

T j T T T j

T j

GenerateBBN T CPT

T X X X
for j j d j

Let X denotethe j thhighesst order variableinT

Let X X X X

Removethevariables from X

π

π

−

← …

← ≤ + +
−

← …

() ()()

7 : .

8 : }
9 : }

j

T j T j

that donot affect X

Createanarcbetween X and theremaining variables in Xπ

T denotes a total order of the variables in line 2. In line 5, ()()T jXπ denotes the set of
variables preceding ()T jX .

Advanced Classification

[126]

The R implementation
Please look up the R codes file ch_04_bnn.R from the bundle of R codes
for the previously mentioned algorithms. The codes can be tested with
the following command:

> source("ch_04_bnn.R")

Biological traits
A biological trait is one of the important applications of the BBN algorithm.

Protein classification and the k-Nearest
Neighbors algorithm
The k-Nearest Neighbors (kNN) algorithm is one of the lazy learners that postpones
the learning until the test tuple or test instance is provided.

A single training tuple is represented by a point in an n-dimensional space. In
other words, n attributes' combinations are used to represent the specific training
tuple. There is no specific training before the arrival of the test tuple that needs to
be classified. Some preprocessing steps are needed, such as normalization for some
attributes with large values compared to other attributes' values. Data normalization
approaches in the data transformation can be applied here for preprocessing.

When a test tuple is given, the k-nearest training tuples are found from the training
tuples space by a specific measure to calculate the distance between test tuple and
the training tuple. The k-nearest training tuples are also known as the kNN. One
popular solution is the Euclidean distance in real space, illustrated in the following
equation. This method is only applicable to numeric attributes:

() ()2

1
, , ,

n
n

p q qi qi p q
i

distance X X x x X X R
=

= − ∈∑

For nominal attributes, one solution is that the difference between two attribute
values is defined as 1, or as 0. We already know that many approaches deal with
missing values in the attributes. With a predefined threshold, the value of k is selected
with the number of tuples with the lowest error-rate among all the training tuples.

The class label of the test tuple is defined by the voting of the most common class in
the kNN.

Chapter 4

[127]

The kNN algorithm
The input parameters for kNN algorithm are as follows:

• D, the set of training objects
• z, the test object, which is a vector of attribute values
• L, the set of classes used to label the objects

The output of the algorithm is the class of z, represented as zc L∈ .

The pseudocode snippet for kNN is illustrated here:

()

()

()

1: , , {
2 : () {
3 : , , ;
4 : }
5 : , ;

6 : argmaxv

GenerateKNN D z L
for eachobject y D

Computed z y thedistancebetween z and y

Select N D the set neighborhood of k closest training object for z

∈

∈

⊆

=z

 c ()() ()(), , I() is an indicator function that

returns the value 1 if its argument is true and 1 otherwise.
7: }

L y L y yI v class c I v class c∈∑ = =

The I function in line 6 denotes an indicator function that returns the value 1 if its
argument is true and 0 otherwise.

The R implementation
Please look up the R codes file ch_04_knn.R from the bundle of R codes for the
previously mentioned algorithm. The codes can be tested with the following command:

> source("ch_04_knn.R")

Document retrieval and Support Vector
Machine
Support Vector Machine (SVM) is a classification algorithm applicable to both
linear and nonlinear data classification. It is based on an assumption: if two classes
of data cannot be divided by a hyper-plane, then after mapping the source dataset to
sufficient higher dimension spaces, the optimal separating hyper-plane must exist.

Advanced Classification

[128]

Here are two concepts that need to be clearly defined:

• Linearly separable: This means that a dataset can be divided into the target
classes with a linear equation with the input of a training tuple.

• Nonlinearly separable: This means that none of the linear equations exist in
the space with the same dimension as that of the training tuple.

The linear hyper-plane can be represented as the linear discriminant equation, given
the weight vector w and the training tuple x,

()1 2, , ,= … nW w w w

()1 2, , ,= … nX x x x

() * 0Tg b= + =X W X

With the preceding equation, we have the following image to illustrate a hyper-plane:

x1

x2

w/||w||

w.x+b=+1
w.x+b=0

w.x+b=-1

� �

The target of SVM is to find the optimal hyper-plane, by which the margin between
data points belonging to different classes are maximized.

Chapter 4

[129]

There are two hyper-planes with equal distance and that are parallel to the
() * 0Tg b= + =X W X hyper-plane. They are boundary hyper-planes and all

support vectors are on them. This is illustrated in the following diagram:

w.x+b=0
� �

Support
vectors

In the following diagram, the case of a nonlinearly separable case is illustrated:

A2

A1

Class 1, y=+1 ()buys_computer=yes
Class 2, y=-1 ()buys_computer=no

In the following diagram, after mapping the vector from a low-dimensional space
to high-dimensional space, the nonlinearly separable case will be transformed into
to a linearly separable case:

�

Input space X

X X

X

X
X

0
0

0
0

Feature space F

�(x)

�(x)
�(x)

�(x)

�(x)
�(0) �(0)

�(0)

�(0)

Advanced Classification

[130]

The SVM algorithm
The input parameters for a dual SVM algorithm are as follows:

• D, the set of training objects
• K
• C
• ε

The output of the algorithm is the SVM algorithm. The pseudocode snippet for this
algorithm is illustrated here:

[]

(),

1: (, , ,) {
2 : (D) {

3:
1

4 : }
5 : (){

16 : { (,) }, , 1,...,
2*

7 : } (){
8 : { (,)}, , 1,..,

9 : }
10 : (1,) {

111:

12 : }

j

j
j

i j ij

i j

j
j j

DualSVM D K C
for each x

x
x

if loss quadratic

K K x x i j n
C

else if loss longe
K K x x i j n

for each j n

K x x

δ

η

∈
∈

←

=

← + =

=
← =

∈

←

Chapter 4

[131]

()()

0

1

1

1

13 : 0
14 : (0,...,0)
15 : {
16 :
17 : (1; 1; }{

18 : 1 (,)

19 : (0) 0
20 : ()
21: }
22 :
23: 1
24 : } ()
25 :}

T

t

n
k k k k i i i ki

k k

k k

t

t t

t

do

for k k k

y y K x x

if
if C C

t t
until

α

α α

α α η α

α α
α α

α α

α α ε

=

+

−

←

←

←
= ≤ + +

← + ∗ − ∗ ∗ ∗

< ←
< ←

←
← +

− ≤

∑

Here is the pseudocode for another version of the SVM algorithm, which is the
primal kernel SVM algorithm. The input parameters for the primal kernel SVM
algorithm are as follows:

• D, the set of training objects
• K
• C
• ε

Advanced Classification

[132]

The output of the algorithm is the SVM model. The pseudocode snippet for this
algorithm is illustrated here:

) 1

) 1

0 0

(

(

1: (, , ,){
2 : (){

3:

4 : }
5 : { ()}, , 1,..,
6 : 0
7 : (0,...,0) , ,
8 : {
9 : v

10 :

11: (2) 2
12 : 2
13: 22 :

T
i t

T
i t

j

j
j

i i

T n
t

i iyi K

i iyi K

t

PrimalKernalSVM D K C
for each x D

x
x

1

K K x ,x i j n
t

R
do

y K

s y K

K CS C v
H K CS

β

β

β β β

β

β

<

<

∗

∗

∈

←

← =
←

← ∈

← ∗

← ∗

∇← + − ∗
← +

∑
∑

1
1

1

14 : 1
15 : } ((
16 :}

t t t

t t

H
t t
until

β η

β β

−
+

−

← − ∗ ∗∇
← +

− ≤

ε

ε

The R implementation
Please look up the R codes file ch_04_svm.R from the bundle of R codes for the
previously mentioned algorithm. The codes can be tested with the following command:

> source("ch_04_svm.R")

Chapter 4

[133]

Parallel version with MapReduce
Along with the online computation requests, such as mobile cloud applications for
classification, a high-performance, robust, and high-accuracy classification platform
or algorithm is widely required. The parallelized SVM distributes the computing of
optimization by the MapReduce technique to achieve working on a large scale of
datasets and high performance at the same time. There are many implementations
of various versions of parallelized SVM. One of them is shown here.

The t denotes for iteration number, l for MapReduce function size, th for the best
hypothesis at iteration t, lD for sub-dataset for node l, lSV for support vectors at
node l and GlobalSV for global support vector:

Next, the mapper algorithm is designed and the for loop is immediately behind the
while loop, which is looped for each subset:

Advanced Classification

[134]

Finally, the reducer algorithm is designed. On line 3, the code inside the for loop
immediately follows the while loop. This is for training by merging the datasets
to obtain support vectors and binary-class hypothesis:

Document retrieval
One of the important applications of SVM is document retrieval, which has a static
information source; the task is to fetch a ranking of documents as a response to
a user request. The vector model is a widely implemented document-retrieval or
information-retrieval model.

Classification using frequent patterns
There are two types of classification using frequent patterns:

• Associative classification model as well as association rules, which are
generated from frequent patterns and used for classifications

• Discriminative frequent pattern-based classification

The associative classification
The generic association classification algorithm is defined here. The input parameters
for the kNN algorithm are as follows:

• D, which is a set of training objects
• F, which is the itemset
• MIN_SUP, which is the minimal support
• MIN_CONF, which is the minimal confidence

Chapter 4

[135]

The output of the algorithm is a rule-based classifier and is shown as follows:

1: ({
2 :
3 : -
4 :}

GenerateGenericAC D,F,MIN_SUP,MIN_CONF)
Perform association mining,satisfying the minimal support and confidence too,
Build a rule based classifier based on the transformation of result rules

Two popular algorithms are illustrated in the successive sections, one is Classification
Based on Association (CBA), and the other is Classification Based on Multiple
Association Rules (CMAR).

CBA
Here is the pseudocode for CBA:

1: ({
2 :
3 :
4 :
5 : (){
6 : -
7 : }

GenerateCBA D,F,MIN_SUP,MIN_CONF)
Perform association mining
Let R is the resulting rules set
Let C be a empty rule based classifier
for each r in R

Intergrating r into the C with an improved rule based classifier

−

8 :}

Discriminative frequent pattern-based
classification
Here is the pseudocode for discriminative frequent pattern-based classification:

1: ({
2 :
3 : ,

_ _ ,

GenerateDFPC D,F,MIN_SUP,MIN_CONF)
Perform association mining,satisfying the minimal support and confidence
Let R is the resulting rules set R is ordered in decreasing precedence based,

on the MIN SUP and MIN CONF for th ,
,

4 : -
5 : (){
6 : -
7 : }
8 :}

e rules with same antecedent
the one with highest confidence is kept others discarded

Let C be a empty rule based classifier
for each r in R

Intergrating r into the C with an improved rule based classifier

Advanced Classification

[136]

The R implementation
Please look up the R codes files ch_04_associative_classification.R, ch_04_
cba.R, and ch_04_frequent_pattern_based_classification.R from the bundle
of R codes for the previously mentioned algorithms. The codes can be tested with the
following commands:

> source("ch_04_associative_classification.R")

> source("ch_04_cba.R")

> source("ch_04_frequent_pattern_based_classification.R")

Text classification using sentential frequent
itemsets
One application of CBA is text classification. The key here is to build a matrix with a
document or text term and labels. With the matrix built, any classification algorithm
can be applied to it. One example of document matrix is illustrated here. The term
might include a character, word, phrase, and concept and so on.

Chapter 4

[137]

Classification using the backpropagation
algorithm
The backpropagation (BP) algorithm learns the classification model by training
a multilayer feed-forward neural network. The generic architecture of the neural
network for BP is shown in the following diagrams, with one input layer, some
hidden layers, and one output layer. Each layer contains some units or perceptron.
Each unit might be linked to others by weighted connections. The values of the
weights are initialized before the training. The number of units in each layer, number
of hidden layers, and the connections will be empirically defined at the very start.

Input
layer

Hidden
Layer

Ouput
layer

x1

x2

x3

x4

OkOk

w1j

w2j

wjkwij

wnj

.

.

.

.

.

.

The training tuples are assigned to the input layer; each unit in the input layer
calculates the result with certain functions and the input attributes from the training
tuple, and then the output is served as the input parameter for the hidden layer;
the calculation here happened layer by layer. As a consequence, the output of the
network contains all the output of each unit in the output layer. The training is
performed iteratively by updating the weights of the connections with the feedback
of errors, that is, back propagation of the errors.

Advanced Classification

[138]

The prototype for the unit in the hidden/output layer is shown here, the one in the
input layer with only one input and other minor differences compared to this. 1 jW
denotes the weight related to that link or connection. Each unit is bound with a bias,
which is θ . The threshold or activation function bound with each unit is f .

�

Inputs
(outputs from
previous layer)

Weighted sum Activation
function

Output

Weights
w1jy1

w2jy2

w3jy3

f

�j
Bias

For a certain unit or perceptron in the hidden or output layer, the net input is a
combination of the linear combination of each of its input from the previous unit,
that is, the output of it, which is pO . Let k denote the number of input connections
of the unit q:

1

k

q p q p q
p

I w O θ
=

= ∗ +∑

The output of this unit q is qO .

1
1 qq IO

e−
=

+
If the unit q is in the output layer and qT denotes the expected or known output
value in the training tuple, then its error qErr can be calculated as follows:

(1) ()q q q qErr O O T Q= ∗ − ∗ −

Chapter 4

[139]

If the unit q is in the hidden layer, then let qpw denote the weight of the connection
from unit q to one unit with the error pErr in the next layer or the known output
value in the training tuple. We can then calculate its error as qErr . Let M denote
the number of output connections of the unit q:

1
(1)

M

q q p qp
p

Err O O Err w
=

= ∗ − ∗ ∗∑

After this preprocessing or preparation, the weights and biases can be updated
accordingly with the backpropagation strategy. η denotes the learning rate;
it is an empirical parameter, which belongs to (0,1):

()p q q pw Err Oη∆ = ∗ ∗

p q p q p qw w w= + ∆

()q qErrθ η∆ = +

q q qθ θ θ= + ∆

The weights and biases are updated per tuple of the training tuple dataset.

The BP algorithm
The input parameters for the BP algorithm, the topology of the neural network,
the number of hidden layers, and the connections, are defined before the start
of the training:

• D, which is the training tuples set
• W, which is the initial values for all the weights.

• θ , which is the bias for each units
• I, which is the learning rate

Advanced Classification

[140]

The output of the algorithm is the topology structure of BP, which consists of:

• BPNN, which is the trained BP neural network
• W, which is a set of weights of the connections in the neural network

Here is the pseudocode for the training of the backpropagation network:

13: (1) ()

14 : }
15 : (){
16 : (1) ()

17 : }
18 : (){
19 : (1)

20 : }
21: (

j j j j j

j j j j j

j j j jkk k

ij

Err O O T O

for each output layer unit j
Err O O T O

for each unit in the hidden layers, from last to first hidden layer
Err O O Err w

for each weight w

−

−

← ∗ − ∗

← ∗ − ∗

← ∗ − ∗ ∗∑

){

22 : ()

23:

24 : }
25 : (){

ij j i

ij ij ij

j

in network
w l Err O

w w w

for each bias in networkθ

∆ ← ∗ ∗

← +∆

1: (){
2 : ;
3 : (){
4 : (){
5 : (){
6 :

7 : }
8 : (

j j

GenerateBPNN D,W, ,I
Intialized all the weights and biases in network
While termination condition is not true

for each tuple X in D
for each input layer unit j

O I

for each children or output layer unit

θ

←

){
9 :

110 :
1

11: }
12 : (){

j

j ij i ji

j l

j
I w O

O
e

for each output layer unit j

θ

−

← +

←
−

∑

Chapter 4

[141]

26 : ()

27 :

28 : }
29 : }
30 : }
31:}

j j

j j j

l Errθ

θ θ θ

∆ ← ∗

← +∆

The R implementation
Please look up the R codes file ch_04_bp.R from the bundle of R codes for the BP
algorithm. The codes can be tested with the following command:

> source("ch_04_bp.R")

Parallel version with MapReduce
Massive data makes the training process of BP dramatically slow. The parallelized
version of BP is proven to accelerate the speed in an amazing way. There are
many versions of parallelized BPNN algorithms implemented on the MapReduce
architecture. Here is one implementation, the MapReduce-based Backpropagation
Neural Network (MBNN) algorithm.

Given the training dataset, each mapper is fed with one single training item. During
the mapper tasks stage, new values for weights are calculated. Then, within the
reducer tasks stage, new values for one weight are collected, and this results in
an average value of these values to output for the weights. After the new values
are provided, all the weights are updated, batch-wise. These steps are executed
iteratively until the termination condition is matched.

Advanced Classification

[142]

The backpropagation main algorithm is listed as follows:

Four steps compose the backpropagation mapper algorithm. They are listed here:

Five steps compose the backpropagation reducer algorithm. They are listed here:

Chapter 4

[143]

Time for action
Here are some practice questions for you to check your understanding about the
concepts covered:

• Find one application of the classification using frequent patterns
• What is the BBN algorithm?
• What is the kNN algorithm?
• What is the backpropagation algorithm?
• What is SVM?

Summary
In this chapter, we looked at the following topics:

• Ensemble methods
• Bagging
• AdaBoost
• Random forests
• BBN, which provides a topology model of causal relationship; it is an

eager learner.

An eager learner is one that behaves in an opposite way to the
lazy learner. The lazy learner postpones the learning until the
test tuple or test instance is provided.

• The kNN algorithm, which is a lazy learner
• SVM, by which the original data is transformed to a higher dimension, and is

separated with a hyper-plane; it is an eager learner
• Classification using frequent patterns; this is an eager learner
• Classification using the BP algorithm, which is a neural network trained with

a descent gradient

In the next chapter, we will learn the clustering algorithm, which is also a kind of
unsupervised classification with no predefined labels.

Cluster Analysis
Clustering is defined as an unsupervised classification of a dataset. The objective
of the clustering algorithm is to divide the given dataset (a set of points or objects)
into groups of data instances or objects (or points) with distance or probabilistic
measures. Members in the same groups are closer by distance or similarity or by
other measures. In other words, maximize the similarity of the intracluster (internal
homogeneity) and minimize the similarity of the intercluster (external separation).

In this chapter, you will learn how to implement the top algorithms for clusters with
R; these algorithms are listed here:

• Search engine and the k-means algorithm
• Automatic abstracting of document texts and the k-medoids algorithm
• The CLARA algorithm
• CLARANS
• Unsupervised image categorization and affinity propagation clustering
• Web page clustering and spectral clustering
• News categorization and hierarchical clustering

Cluster Analysis

[146]

A clustering algorithm is used for the preparation of further analysis, while the other
objective is to understand the nature of the dataset. The most common clustering
process is illustrated in the following diagram:

Knowledge

Data Samples

Clusters

Feature
Selection or
Extraction

Clustering
Algorithm Design

or Selection

Results
Interpretation

Clustering
Validation

The key steps in this process include the following:

• Feature selection: This step chooses distinguished features from the
original dataset

• Clustering algorithm design: This step designs an appropriate algorithm
based on the currently available clustering algorithms, or it just builds one
from scratch

• Cluster validation: This step evaluates the clusters and provides a degree of
confidence about the result

• Result interpretation: This step gives an intrinsic idea of the input dataset

There are many categorization methods to categorize clustering algorithms; the
major categories are partition-based methods, density-based methods, hierarchical
methods, spectral methods, grid-based methods, and so on.

Every clustering algorithm has its limitations and best practices for certain conditions
or datasets. Once an algorithm is chosen, the parameters and distance measures (only
for some algorithms) related to that algorithm need careful consideration as well.
Then, we will list the most popular clustering algorithms and their corresponding
parallel versions (if available).

Chapter 5

[147]

Here is the short list of clustering algorithms and their complexities:

Cluster algorithm Capability of tracking high
dimensional data

k-means No
Fuzzy c-means No
Hierarchical clustering No
CLARA No
CLARANS No
BIRCH No
DBSCAN No
CURE Yes
WaveCluster No
DENCLUE Yes
FC Yes
CLIQUE Yes
OptiGrid Yes
ORCLUS Yes

The difficulties or targets in another aspect of clustering algorithms are the arbitrary
shape of clusters, large volume of datasets, high-dimensional datasets, insensitivity
to noise or outlier, low reliance to user-defined parameters, capability of dealing with
new data without learning after the initial learning or clustering, sensitivity to the
intrinsic, or nature of the number of clusters, nice data visualization, and application
to both numeric or nominal data types.

Cluster Analysis

[148]

Search engines and the k-means
algorithm
The general process of partition-based clustering is iterative. The first step defines
or chooses a predefined number of representatives of the cluster and updates the
representative after each iteration if the measure for the clustering quality has
improved. The following diagram shows the typical process, that is, the partition
of the given dataset into disjoint clusters:

The characteristics of partition-based clustering methods are as follows:

• The resulting clusters are exclusive in most of the circumstances
• The shape of the clusters are spherical, because of most of the measures

adopted are distance-based measures
• The representative of each cluster is usually the mean or medoid of the

corresponding group (cluster) of points
• A partition represents a cluster
• These clusters are applicable for small-to-medium datasets
• The algorithm will converge under certain convergence object functions, and

the result clusters are often local optimum

The k-means clustering algorithm is basically a greedy approach that defines the
centroid of each cluster with its mean value. It is efficient for dealing with a large
dataset. The k-means algorithm is a kind of exclusive clustering algorithm in which
data is clustered in an exclusive way, and one object only belongs to, at the most, one
group or cluster. It is also a type of partitional clustering algorithm in which clusters
are created in one step, in contrast to a couple of steps.

Chapter 5

[149]

The value of k is often determined by the domain knowledge, the dataset, and so
on. At the start, k objects in the initial dataset D (the size of D is n, where k n≤) are
randomly selected as the initial centers for the initial k clusters. In the iteration of
the k-means algorithm, each object is assigned to the most similar or closest (various
measures are used for distance or similarity) cluster (mean). Once the iteration ends,
the mean for each cluster is updated or relocated. The k-means algorithm performs
as much iteration as possible until there is no change that the clusters get from the
previous clustering.

The quality of the specific cluster of the clustering algorithm is measured by various
merits. One of them is formulated in the following equation. This is within the
cluster variation measure, where ic stands for the centroid of the cluster iC . Here, k
is the number of clusters, whereas (), idist p c represents the Euclidean distance of the
two points. The minimum value of E is the needed value and depicts the best quality
clusters. This evaluation or assessing objective function serves as the ideal one,
though not practical for concrete problems. The k-means algorithm provides easy
methods for an approximate-to-ideal value. The k-means algorithm is also known as
the squared error-based clustering algorithm.

()2

1

 ,
i

k

i
i p C

E dist p c
= ∈

=∑∑

()2

1

1 min ,
n

j i
j

d p c
n =

 ∑

In practice, the k-means algorithm can run several times with a different initial set of
centroids to find a relatively better result.

The varieties of the k-means clustering algorithm are designed with different
solutions for the selection of initial k centroids or means. The similarity or
dissimilarity is measured, and the way to calculate the means is established.

The shortages of the k-means clustering method are listed as follows:

• The means of clusters must be defined with a function
• It is only applicable to numeric data type
• The value of k needs to be predefined by users, and it is difficult

Cluster Analysis

[150]

The guidelines or thumb rules for the k-means clustering method
are as follows:

• Remember this method is sensitive to noise and outlier
• This method is only applicable to clusters with closer sizes
• This method finds it difficult to find nonconvex shapes

The k-means clustering algorithm
The input parameters for a dual SVM algorithm is as follows:

• D, which is the set of training objects
• K
• ε

These parameters are used as depicted in the summarized pseudocodes of the
k-means clustering algorithm given as follows:

Chapter 5

[151]

The kernel k-means algorithm
The summarized pseudocode for the kernel k-means clustering algorithm is as follows:

Cluster Analysis

[152]

The k-modes algorithm
This algorithm is a variant of the k-means algorithm; it can deal with categorical data
types and large datasets. It can be integrated with the k-means method to deal with
the clustering of the dataset that contains all data types. The algorithm is mentioned
as follows:

The R implementation
Take a look at the ch_05_kmeans.R, ch_05_kernel_kmeans.R, and ch_05_
kmedoids.R R code files from the bundle of R code for the previously mentioned
algorithms. The code can be tested using the following commands:

> source("ch_05_kmeans.R")

> source("ch_05_kernel_kmeans.R")

> source("ch_05_kmedoids.R")

Chapter 5

[153]

Parallel version with MapReduce
The parallelized k-means is listed as follows:

Cluster Analysis

[154]

Search engine and web page clustering
Along with the nonstop accumulation of Internet documents, the difficulties in finding
some useful information keeps increasing. To find information in these documents or
web pages or from the Web, four search methodologies are provided to us:

• The unassisted keyword search
• The assisted keyword search
• The directory-based search
• The query-by-example search

Web page clustering is an important preprocessing step to web data mining, which
is one solution among the many possible solutions. The document clustering occurs
in the progress of IR and text clustering. Many web clustering criteria are provided,
such as the semantic, the structure, the usage-based criteria, and so on. Domain
knowledge plays an important role in web page clustering.

Term Frequency-Inverse Document Frequency (TF-IDF) is applied during the
preprocessing of the document dataset. One modeling method to represent a
data instance for document clustering is the vector-space model. Given a term
space, each dimension with a specific term in the documents and any document
in the original document dataset can be represented by a vector, as depicted in the
following equation. This definition implies that mostly, frequently used terms play
an important role in the document:

()1 2, ,...,tf nd tf tf tf=

Chapter 5

[155]

Each value in a dimension denotes the frequency of the term that labels the
dimension appearing in the document. For simplicity, the vector needs to be
normalized as a unit length before processing it further, the stop words should be
removed, and so on. As a potential and popular solution, the TF often weighs every
term using the inverse document frequency among the document datasets. The
inverse document frequency is denoted by the following formula in which n is the
dataset size, and ()df it is the document's number that contains the term, it :

() log
()i

i

nidf
df

t
t

=

Given the definition of inverse document frequency, there is another popular
definition of the vector model to denote a document in the document collection for
further processing using a clustering algorithm; (),i itf d t is the frequency of term it
in the document id :

1(,...,)j j jmd w w=

(,) ()ji j i iw tf d t idf t= ⋅

The measures used in the document clustering are versatile and tremendous.
Cosine method is one among them, and we will use the vector dot production in the
equation while the corresponding centroid is defined as c in the successive equation:

1 2 1 2 1 2(,) / || || || ||cosine d d d d d d= ⋅

1
| S | d s

c d
∈

= ∑

Reuters-21578 is one publicly-available document dataset for further research.
TREC-5, 6, and 7 are also open source datasets.

With this measure definition, the k-means algorithm is used for web page
clustering, as it displays its efficiency and always acts as a component for a
practical web search engine.

Cluster Analysis

[156]

Automatic abstraction of document texts
and the k-medoids algorithm
The k-medoids algorithm is extended from the k-means algorithm to decrease the
sensitivity to the outlier data points.

Given the dataset D and the predefined parameter k, the k-medoids algorithm or the
PAM algorithm can be described as shown in the upcoming paragraphs.

As per a clustering related to a set of k medoids, the quality is measured by the
average distance between the members in each cluster and the corresponding
representative or medoids.

An arbitrary selection of k objects from the initial dataset of objects is the first step to
find the k medoids. In each step, for a selected object iO and a nonselected node hO ,
if the quality of the cluster is improved as a result of swapping them, then a swap
is performed.

The cluster quality should be the sum of all the differences in the distance between
the members and medoids, before and after the swap. For each nonselected object

hO , there are four difference cases under consideration (they are marked out in
the following diagram). Given a set of medoids, one of them is iO , and the cluster
related to it is iC .

case 2

case 4

case 3

case 1

M M

A

B

A

Y

Z

B

• Case 1: The first difference case is j iO C∈ , given that ,2jO is the
representative of the second medoid that is closer or more similar to jO :

() (),2 , ,j h j jd O O d O O≥

Chapter 5

[157]

After swapping, jO will be relocated to ,2jc , and the cost of swapping will be
defined as follows:

() (),2 , ,jih j j j iC d O O d O O= −

• Case 2: The second difference case is j iO C∈ , () (),2 , ,j h j jd O O d O O< .

After swapping, jO will be relocated to hC , and the cost of swapping is
defined as follows:

() () , ,jih j h j iC d O O d O O= −

• Case 3: Here, , , j t t tO C t i O representsC∈ ≠ and () () , ,j h j td O O d O O≥ . After
swapping, the cost of swapping is defined as follows:

 0jihC =

• Case 4: Here, , , j t t tO C t i O representsC∈ ≠ and () () , ,j h j td O O d O O<
.

After swapping, jO will be relocated to hC , and the cost of swapping is
defined as follows:

() () , ,jih j h j tC d O O d O O= −

At the end of each swapping step, the total cost of swapping is defined as follows:

jih
j

C∑

Cluster Analysis

[158]

The PAM algorithm
The PAM (Partitioning Around Medoids) algorithm is a partitional clustering
algorithm. The summarized pseudocode for the PAM algorithm is as follows:

The R implementation
Take a look at the ch_05_kmedoids.R R code file from the bundle of R code for the
previous algorithms. The code can be tested with the following command:

> source("ch_05_kmedoids.R")

Automatic abstraction and summarization of
document text
Along with the increase in the size and quantity of documents on the Internet,
the efficient algorithms are always in urgent need to get usable summarization or
distill the key information. The documents will in versatile formats, structured or
unstructured. The tasks include summarization of a single document or multiple
documents. More extended target to extract summarization from multimedia files.
Other challenges include summarizing multilingual documents. Abstraction requires
the tool support from KNLP for grammar and lexicons for analyses and generation.
One possible process for the abstraction is illustrated as follows:

Chapter 5

[159]

Many approaches are suggested for automatic abstraction of document text, such as
automatic extraction, automatic abstraction based on understanding, information
extraction, and automatic abstraction based on structures. Possible features to be
adapted to design the summarization system include the sentence length cutoff,
fixed-phrase, paragraph, thematic word, and uppercase word features.

Abstraction or summarization popularly has been defined as a process with two
steps. An intermediate representation of some sort is retrieved by the extraction of
important concepts from the source texts. Given the intermediate representation, the
summary is generated.

For the first step of the summarization process, it can largely be treated as part of
automatic indexing. Lexical chains to extract important concepts from a document
are one possible solution. Lexical chains exploit the cohesion among an arbitrary
number of related words, and they are calculated by grouping (chaining) sets of
words that are semantically related.

The CLARA algorithm
Instead of taking the whole set of data into consideration, the CLARA (Clustering
LARge Application) algorithm randomly chooses a small portion of the actual data
as a representative of the data. Medoids are then chosen from this sample using
PAM. If the sample is selected in a fairly random manner, it should closely represent
the original dataset.

Cluster Analysis

[160]

CLARA draws multiple samples of the dataset, applies PAM to each sample, finds
the medoids, and then returns its best clustering as the output. At first, a sample
dataset D' is drawn from the original dataset D, and the PAM algorithm is applied
to D' to find the k medoids. Use these k medoids and the dataset D to calculate the
current dissimilarity. If it is smaller than the one you get in the previous iteration,
then these k medoids are kept as the best k medoids. The whole process is performed
a specified number of times.

The CLARA algorithm
The summarized pseudocode for the CLARA algorithm is as follows:

The R implementation
Take a look at the ch_05_clara.R R code file from the bundle of R code for the
previously mentioned algorithms. The codes can be tested with the following command:

> source("ch_05_clara.R")

Chapter 5

[161]

CLARANS
CLARANS (Clustering Large Applications based on RANdomized Search) is
efficient and effective and is the best practice for spatial data mining. CLARANS
applies a strategy to search in a certain graph. A node in this graph, denoting it as

, n kG , is represented by a set of objects, { }1
, ,

km mO O… , 1
, ,

km mO O D… ∈ . Here, k is

the predefined value to choose the k medoids; as a result, the nodes in the graph are

a set of { }{ }1 1
, , | , ,

k km m m mO O O O D… … ∈ . If two nodes, { }11 , ,
km mOS O…= , and

{ }12 , ,
kw wOS O…= are neighbors, then 1 2 1S S k= −I . Each node in the , n kG graph

represents a set of medoids and the cluster related to it. As a result, a cost is related
to each node; this cost is the total distance between any objects and the medoid
represents its cluster. The cost differential of two neighbors can be calculated with the
cost measure function introduced in the PAM algorithm.

The CLARANS algorithm
The input parameters for the CLARANS algorithm are as follows:

• D, which is the training tuples dataset
• numlocal

• maxneighbor

The output of the algorithm is:

• bestnode

Cluster Analysis

[162]

The summarized pseudocode for the CLARANS algorithm is as follows:

The R implementation
Take a look at the ch_05_clarans.R R code file from the bundle of R code
for the previously mentioned algorithms. The codes can be tested with the
following command:

> source("ch_05_clarans.R")

Unsupervised image categorization and
affinity propagation clustering
AP (Affinity Propagation) finds a set of exemplars, { }1

, ,
ke e eX x x= … , in the dataset

and assigns nonselected points to the exemplars. An exemplar is the representative
of a cluster.

Chapter 5

[163]

Two types of messages are exchanged between data objects or points; they are
explained here:

• The r(i,k) message, which is called responsibility, represents the accumulated
evidence sent from ix to kx . It informs us that kx is suitable to serve as the
exemplar of point ix . Every candidate is counted in.

• The a(i,k) message, which is called availability, denotes the accumulated
evidence sent from ix to kx . It informs us that kx should be the exemplar.
Every support from other points is well considered.

Both r(i, k) and a(i,k) are initialized as 0 at the beginning of the algorithm:

() 2, , i ks i k x x i k=− − ≠ , for s(k, k) is initialized with the same value (typically
defined with heuristic knowledge) for each point at the start and updated in the
following description to recur the affection. s(i, k) denotes the extent to which jx
is suited to be the exemplar of ix . Here is a possible value for s(i, i) to be set as
a constant:

, 1; (,)
(,) ,1

(1)

N
i j i j s i j

s l l l N
N N

= ≠∑
= ≤ ≤

∗ −

The index of exemplar, () ie x , which is for data point ix , is defined with the
following formula:

arg max {a(i,k) + r(i,k), k = 1,…, N}

Cluster Analysis

[164]

Given R = (r(i, j)) as the responsibility matrix and A = (a(i, j)) as the
availability matrix, t represents the iteration counts, where a damping factor []0,1λ∈
is set to depress numerical oscillations that might arise:

1 1(1)t t tR R Rλ λ+ −= − +

1 1(1)t t tA A Aλ λ+ −= − +

Affinity propagation clustering
Affinity propagation itself is summarized as follows:

The R implementation
Take a look at the ch_05_affinity_clustering.R R code file from the bundle of
R code for the previously mentioned algorithms. The codes can be tested with the
following command:

> source("ch_05_affinity_clustering.R")

Chapter 5

[165]

Unsupervised image categorization
Due to the massive number of images and other multimedia documents, the
task to classify images becomes even harder than before. Unsupervised image
categorization is frequently utilized by image and video summarization, or it
just serves as a preprocessing step in supervised methods for classification.

One major issue related to unsupervised image categorization is to estimate
the distribution of image categories. Further on, finding the most descriptive
prototypes of the image categories is another main issue of image categorization.

Each image can be represented as a high-dimensional data instance, including
features related to color, texture, and shape. The exemplar technique is applied
here; it represents image categories by a small set of image or its fragments. Given
exemplar concepts, the dimension of an image data instance reduces to a relatively
small size and eases further processing. The measures applied here include the
Chamfer, Hausdorff, and shuffle distances.

Natural categories of the dataset can be of various complex types; overlapping might
be a frequent shape.

Unsupervised image categorization or classification is a clustering problem. Image
clustering is to identify a set of similar image primitives, such as pixels, line elements,
regions, and so on. Given the complex dataset, the recommended way is to use the
prototype-based clustering algorithm. Affinity propagation algorithms can be applied
to unsupervised categorization by finding a subset of representative exemplars.

The spectral clustering algorithm
The summarized pseudocode for the spectral clustering algorithm is as follows:

Cluster Analysis

[166]

The R implementation
Take a look at the ch_05_ spectral_clustering.R R code file from the bundle of
R code for the previously mentioned algorithms. The codes can be tested with the
following command:

> source("ch_05_ spectral_clustering.R")

News categorization and hierarchical
clustering
Hierarchical clustering divides the target dataset into multilevels or a hierarchy of
clusters. It segments data points along with successive partitions.

There are two strategies for hierarchical clustering. Agglomerative clustering starts
with each data object in the input dataset as a cluster, and then in the following
steps, clusters are merged according to certain similarity measures that end in only
one cluster. Divisive clustering, in contrast, starts with one cluster with all the data
objects in the input dataset as members, and then, the cluster splits according to
certain similarity measures in the following steps, and at the end, singleton clusters
of individual data objects are left.

The characteristics of hierarchical clustering methods are as follows:

• Multilevel decomposition.
• The merges or splits cannot perform a rollback. The error in the algorithm

that is introduced by merging or splitting cannot be corrected.
• The hybrid algorithm.

Chapter 5

[167]

Agglomerative hierarchical clustering
The summarized pseudocode for the agglomerative hierarchical clustering algorithm
is as follows:

The BIRCH algorithm
The BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies)
algorithm is designed for large dynamic datasets and can also be applied to
incremental and dynamic clustering. Only one pass of dataset is required,
and this means that there is no need to read the whole dataset in advance.

CF-Tree is a helper data structure that is used to store the summary of clusters, and
it is also a representative of a cluster. Each node in the CF-Tree is declared as a list of
entries, [] [], , 1,i iCF child i B∈ , and B is the predefined entry limitation. ichild denotes
the link to the ith child.

Given iCF as the representative of cluster i, is defined as (), , i iCF N LS SS= , where
iN is the member count of the cluster, LS is the linear sum of the member objects,

and SS is the squared sum of the member objects.

The leave of the CF-Tree must conform to the diameter limitation. The diameter of

the () ()()1 1
1/22

1 1
/ 1N N

l m i il m
x x N N

= =
− −∑ ∑ cluster must be less than the predefined

threshold value, T.

The main helper algorithms in BIRCH are CF-Tree insertion and CF-Tree rebuilding.

Cluster Analysis

[168]

The summarized pseudocode for the BIRCH algorithm is as follows:

Data

Better Clusters

Good Clusters

Initial CF tree

Smaller CF tree

Phase 2 (optional): Condense into desirable range
by building a smaller CF tree.

Phase 3: Global Clustering

Phase 4: (optional and off line) : Cluster Refining

Phase1: Load into memory by building a CF tree

The chameleon algorithm
The overall framework for the chameleon algorithm is illustrated in the
following diagram:

There are three main steps in the chameleon algorithm, which are as follows:

• Sparsification: This step is to generate a k-Nearest Neighbor graph, which is
derived from a proximity graph.

• Graph partitioning: This step applies a multilevel graph-partitioning
algorithm to partition the dataset. The initial graph is an all-inclusive
graph or cluster. This then bisects the largest graph in each successive step,
and finally, we get a group of roughly, equally-sized clusters (with high
intrasimilarity). Each resulting cluster has a size not more than a predefined
size, that is, MIN_SIZE.

Chapter 5

[169]

• Agglomerative hierarchical clustering: This last step is where the clusters
are merged based on self-similarity. The notion of self-similarity is defined
with the RI and RC; they can be combined in various ways to be a measure
of self-similarity.

Relative Closeness (RC), given the iC and jC clusters with sizes im and jm ,
respectively. (),EC i jS C C denotes the average weight of the edges that connect the
two clusters. () ()()jiEC C EC C denotes the average weight of the edges that bisect
the ()jiC C cluster:

() () (), /(,) i i
EC i j EC i EC j

i j i j

RC C C m mC C S C SS C
m m m m

+ + +
=

Relative Interconnectivity (RI) is defined in the following equation.
Here, (),i jEC C C is the sum of the edges to connect the two clusters,

and () ()()jiEC C EC C is the minimum sum of the cut edges that bisect
the ()jiC C cluster:

() (),
1, () / () ()
2i j i j i jC C EC C C EC C EI CR C= +

The summarized pseudocode for the chameleon algorithm is as follows:

Cluster Analysis

[170]

The Bayesian hierarchical clustering
algorithm
The summarized pseudocode for the Bayesian hierarchical clustering algorithm
is as follows:

while

The probabilistic hierarchical clustering
algorithm
The probabilistic hierarchical clustering algorithm is a hybrid of hierarchical
clustering and probabilistic clustering algorithms. As a probabilistic clustering
algorithm, it applies a completely probabilistic approach, as depicted here:

Chapter 5

[171]

The R implementation
Take a look at the ch_05_ahclustering.R R code file from the bundle of
R code for the previously mentioned algorithms. The codes can be tested
with the following command:

> source("ch_05_ahclustering.R")

News categorization
News portals provide visitors with tremendous news categorized with a predefined
set of topics. With the exponential growth of information we receive from the
Internet, clustering technologies are widely used for web documents categorization,
which include online news. These are often news streams or news feeds.

One advantage of a clustering algorithm for this task is that there is no need for
prior domain knowledge. News can be summarized by clustering news that covers
specific events. Unsupervised clustering can also play a pivotal role in discovering
the intrinsic topical structure of the existing text collections, while new categorization
is used to classify the documents according to a predefined set of classes.

Services such as Google News are provided. For a story published by a couple of
new agencies or even the same agency, there are often various versions that exist at
the same time or span the same range of days. Here, clustering can help aggregate
the news related to the same story, and the result is a better overview of the current
story for visitors.

Cluster Analysis

[172]

As preprocessing steps, plain texts are extracted from the web pages or news pages.
Reuters-22173 and -21578 are two popular documents dataset used for research. The
representation of a data instance in the dataset can either be classical term-document
vectors or term-sentence vectors, as the dataset is a collection of documents, and the
cosine-like measures are applied here.

Time for action
Here are some practice questions for you to check whether you understood the
concepts we covered in this chapter:

1. What is the PAM clustering algorithm?
2. What is the k-means algorithm?
3. What is the k-medoids algorithm?
4. What is the CLARA algorithm?
5. What is the CLARANS algorithm?

Summary
In this chapter, we looked at:

• Partition-based clustering.
• The k-means algorithm is a partition-based clustering algorithm. The

centroids of clusters are defined as a representative of each cluster. In
k-means clustering, a set of n data points in a D-dimensional space and an
integer k are given. The problem is to distribute a set of k points in the centers
to minimize the SSE.

• The k-medoids algorithm is a partition-based clustering algorithm. The
representatives of each resulting clusters are chosen from the dataset itself,
that is, the data objects belong to it.

• CLARA depends on sampling. It draws a sample from the original dataset
instead of the entire dataset. PAM is then applied to each sampling. Then,
the best result is kept during all the iterations.

• CLARANS is a clustering algorithm based on randomized search.

Chapter 5

[173]

• The affinity propagation clustering algorithm recursively passes affinity
messages between objects or points and converges to exemplars adaptively.

• Spectral clustering is used to construct graph partitions based on
eigenvectors of the adjacency matrix.

• Hierarchical clustering decomposes a dataset D into levels of nested clusters;
this is represented by a dendrogram, a tree that iteratively splits the dataset
D into smaller subsets. The process stops only after each subset consists of
only one object.

The next chapter will cover more advanced topics related to clustering
algorithms, density-based algorithms, grid-based algorithms, the EM algorithm,
high-dimensional algorithms, constraint-based clustering algorithms, and so on.

Advanced Cluster Analysis
In this chapter, you will learn how to implement the top algorithms for clusters with
R. The evaluation/benchmark/measure tools are also provided.

In this chapter, we will cover the following topics:

• Customer categorization analysis of e-commerce and DBSCAN
• Clustering web pages and OPTICS
• Visitor analysis in the browser cache and DENCLUE
• Recommendation system and STING
• Web sentiment analysis and CLIQUE
• Opinion mining and WAVE CLUSTER
• User search intent and the EM algorithm
• Customer purchase data analysis and clustering high-dimensional data
• SNS and clustering graph and network data

Customer categorization analysis of
e-commerce and DBSCAN
By defining the density and density measures of data point space, the clusters can be
modeled as sections with certain density in the data space.

Density Based Spatial Clustering of Applications with Noise (DBSCAN) is one of
the most popular density-based clustering algorithms. The major characteristics of
DBSCAN are:

• Good at dealing with large datasets with noises
• Clusters of various shapes can be dealt with

Advanced Cluster Analysis

[176]

DBSCAN is based on the classification of the data points in the dataset as core
data points, border data points, and noise data points, with the support of the
use of density relations between points, including directly density-reachable,
density-reachable, density-connected points. Before we provide a detailed
description of DBSCAN, let's illustrate these ideas.

A point is defined as a core point if the number of data points within the distance of
the predefined parameter, Eps or ∈, is greater than that of the predefined parameter,
MinPts. The space within the Eps is called Eps-neighborhood or ()N q∈ . An object,
o, is noise only if there is no cluster that contains o. A border data object is any object
that belongs to a cluster, but not a core data object.

Given a core object, p, and an object, q, the object, q, is directly density-reachable
from p if ()q N p∈∈ .

Given a core object, p, and an object, q, the object q is density-reachable
from p if 1 1 ,.., , , , 1n nachainof data object p p p q p p i n∃ = = ∀ ≤ < and

 ip is directly density reachable from p− .

For two data objects, 1q and 2q , they are density-connected if
1 2 , acoreobject p q and q aredensity reachableto p∃ − .

The density-based cluster denotes a set of density-connected data objects that are
maximal according to density reachability.

Here is an example illustrated in the following diagram:

q

m

p
r

s

o

Chapter 6

[177]

The DBSCAN algorithm
The summarized pseudocode for the DBSCAN algorithm is as follows, with the
following input/output parameters defined.

The input parameters for the DBSCAN algorithm are as follows:

• D, which is the training tuples dataset
• k, which is the neighbor list size
• Eps, which is the radius parameter that denotes the neighborhood area of a

data point
• MinPts, which is the minimum number (the neighborhood density threshold)

of points that must exist in the Eps-neighborhood
• The output of the algorithm
• A set of density-based clusters

Advanced Cluster Analysis

[178]

Customer categorization analysis of
e-commerce
Customers of e-commerce can be categorized by the psychographic, culturally specific
purchasing behavior. The result of the customer categorization can make the storeowner
efficiently and effectively respond to the customer. The e-commerce general analysis
process is illustrated as follows:

Data collection

Action

Analysis

Recommendations

Clustering web pages and OPTICS
Ordering points to identify the clustering structure, OPTICS, extends the DBSCAN
algorithm and is based on the phenomenon that density-based clusters, with respect
to a higher density, are completely contained in density-connected sets with respect
to lower density.

To construct density-based clusters with different densities simultaneously, the
objects are dealt with in a specific order when expanding a cluster, that is, according
to the order, an object that is density-reachable with respect to the lowest ∈ for the
higher density clusters will be finished first.

Two major concepts are introduced to illustrate the OPTICS algorithm: core-distance
of an object, p, and reachability-distance of object, p. An example is illustrated in the
following image. During which, core-distance (o), reachability-distances, ()1,r p o ,
()2 ,r p o , for MinPts=4.

Chapter 6

[179]

Co
re

(0
)r(P1)

r(P2)

P1

o

P2

3

The core-distance of an object, p, is denoted as the minimal value, ′∈ ,
considering that the ′∈ -neighborhood at least contains MinPts data
objects; otherwise, this is undefined.

Given two data objects, p and q, the reachability-distance of object, p, from q represents
the smallest radius value that makes p density-reachable from q if q is a core data
object; otherwise, this is undefined.

OPTICS outputs an ordering of all data objects in a given dataset in which
the data objects are processed. For each object, the core-distance and a suitable
reachability-distance for each data object are calculated and output together.

The OPTICS algorithm
OPTICS randomly selects an object from the input dataset as the current data object,
p. In addition, for the object, p, the ∈-neighborhood is fetched, the core-distance is
calculated, and the reachability-distance is undefined.

Given p as a core data object, OPTICS recalculates the reachability-distance for any
object, q (in the neighborhood of p), from p and inserts q into OrderSeeds if q has not
been processed.

Once the augmented cluster ordering of the input dataset is generated with respect
to ∈, MinPts and a clustering-distance ′∈ ≤∈, the density-based clustering is
performed with this order.

Advanced Cluster Analysis

[180]

The summarized pseudocode for the OPTICS algorithm with a couple of supporter
functions are as follows:

OPTICS (SetOfObjects, , MinPts, OrderedFile)
 OrderedFile.open();
 FOR i FROM 1 TO SetOfObjects.size Do
 Object := SetOfObject.get(i);
 IF NOT Object.Processed THEN
 ExpandClusterOrder(SetOfObjects, Object, ,
 MinPts, OrderedFile)
 OrderedFile.close();
END; //OPTICS

ε

ε

ExpandClusterOrder (SetOfObjects, Objects, MinPts,)
OrderedFile);
 neighbors := SetOfObjects.neighbors(Object,);
 Object.Processed := TRUE;
 Object.reachability_distance :=UNDEFINED;
 Object.setCoreDistance(neighbors, , MinPts)
 OrderedFile.write(Object);
 IF Object.core_distance<> UNDEFINED THEN
 OrderSeeds.update(neighbors,Object);
 WHILE NOT OrderSeed.empty()DO
 currentObject :=OrderSeeds.next()
 neighbors:=SetOfObject.neighbors(currentObject,);
 currentObject.Processed :=TRUE;
 currentObject.setCoreDistance(neighbors, ,MinPts)
 OrderdFile.write(currentObject);
 IF currentObject.core_distance<>UNDEFINED THEN
 OrderSeeds.update(neighbore, currentObject);
END; // ExpandClusterOrder

ε

ε

ε

OrderSeeds::update(neightbors, CenterObject);
 c_dist :=CenterObject.core_distance;
 FORALL Object FROM neighbors DO
 IF NOT Object.Processed THEN
 new_r_dist:=max(c_dist,CenterObject.dist(Object));
 IF Object.reachability_distance=UNDEFINED THEN
 Object.reachability_distance :=new_r_dist;
 insert(Object, new_r_dist);
 ELSE // Object already inOrderSeeds
 IF new_r_dist<Object.reachability_distance THEN
 Object.reachability_distance :=new_r_dist;
 decrease(Object, new_r_dist);
END; //OrderSeeds::update

Chapter 6

[181]

ExractDBSCAN-Clustering(ClusterOrderedObjs, ’, MinPts)
// Precondition: ‘< generating dist for ClusterOrderedObjs
 ClusterId := NOISE;
 FOR i FROM 1 TO ClusterOrderedObjs.size Do
 Object :=ClusterOrderedObjs.get(i);
 IF Object.reachability_distance> ’ THEN
 // UNDEFINED >
 IF Object.core_distance < ’ THEN
 Clusterld := nextld(Clusterld);
 Object.clusterld := Clusterld;
 ELSE
 Object.clusterld := NOISE;
 ELSE // Object.reachability_distance < ’
 Object.clusterld := Clusterld;
 END; // ExtractDBSCAN-Clustering

ε
ε

ε
ε

ε

ε

ε

The R implementation
Please take a look at the R codes file ch_06_optics.R from the bundle of
R codes for the previously mentioned algorithm. The codes can be tested
with the following command:

> source("ch_06_optics.R")

Clustering web pages
Clustering web pages can be used to group related texts/articles and serve as the
preprocessing steps for supervised learning. It enables automated categorization.

Web pages are versatile and have a different structure (well-formed or badly formed
without structure) and contents.

The Yahoo! industry web page data (CMUWeb KBProject, 1998) is used as the test
data here.

Visitor analysis in the browser cache and
DENCLUE
DENsity-based CLUstEring (DENCLUE) is a density-based clustering algorithm
that depends on the support of density-distribution functions.

Before a detailed explanation on the DENCLUE algorithm, some concepts need
to be introduced; they are influence function, density function, gradient, and
density attractor.

Advanced Cluster Analysis

[182]

The influence function of a specific data object can be any function for which the
Gaussian kernel is usually used as the kernel at the data point.

The density function at a point, x, is defined as the sum of the influence functions of
all the data objects at this data point.

A point is defined as a density attractor if it is a local maximum of the density
function and is computed as

0x x=

()
()

1 *
D i

Bi i
D i

B

f x
x x

f x
δ+

∇
= +

∇

A gradient of the density function is defined in the following equation, given the
density function, ()D

Bf x .

() () ()
1

i

N
xD

B i B
i

f x x x f x
=

∇ = − ∗∑

DENCLUE defines a density function for the data point space at first. All the local
maxima data points are searched and found. Assign each data point to the nearest
local maxima point to maximize the density related to it. Each group of data points
bound with a local maxima point is defined as a cluster. As a postprocess, the cluster
is discarded if its bound local maxima density is lower than the user-predefined
value. The clusters are merged if there exists a path such that each point on the path
has a higher density value than the user-predefined value.

Chapter 6

[183]

The DENCLUE algorithm
The summarized pseudocodes for the DENCLUE algorithm is as follows:

The R implementation
Please take a look at the R codes file ch_06_denclue.R from the bundle of
R codes for previously mentioned algorithm. The codes can be tested with
the following command:

> source("ch_06_denclue.R")

Visitor analysis in the browser cache
The browser-cache analysis provides the website owner with the convenience that
shows the best matched part to the visitors, and at the same time, it is related to their
privacy protection. The data instances in this context are browser caches, sessions,
cookies, various logs, and so on.

Advanced Cluster Analysis

[184]

The possible factors included in certain data instances can be the Web address, IP
address (denotes the position where the visitor comes from), the duration for which
the visitor stayed on a specific page, the pages the user visited, the sequence of the
visited pages, the date and time of every visit, and so on. The log can be specific to
a certain website or to various websites. A more detailed description is given in the
following table:

Hit This refers to each element of a web page downloaded to a
viewer's web browser (such as Internet Explorer, Mozilla,
or Netscape). Hits do not correspond in any direct fashion
to the number of pages viewed or number of visitors to a
site. For example, if a viewer downloads a web page with
three graphics, the web logfile will show four hits: one for
the web page and one for each of the three graphics.

Unique Visitors The actual number of viewers to the website that came
from a unique IP address (see IP address in this table).

New/Return Visitors The number of first-time visitors to the site compared to
returning visitors.

Page views The number of times a specified web page has been
viewed; shows exactly what content people are (or are not)
viewing at a website. Every time a visitor hits the page
refresh button, another page view is logged.

Page views per visitor The number of page views divided by the number of
visitors; measures how many pages viewers look at each
time they visit a website.

IP address A numeric identifier for a computer. (The format of an
IP address is a 32-bit numeric address written as four
numbers separated by periods; each number can be zero
to 255. For example, 1.160.10.240 could be an IP address.)
The IP address can be used to determine a viewer's origin
(that is, by country); it also can be used to determine
the particular computer network a website's visitors are
coming from.

Visitor location The geographic location of the visitor.
Visitor language The language setting on the visitor's computer.
Referring pages/sites (URLs) Indicates how visitors get to a website (that is, whether

they type the URL, or web address, directly into a web
browser or if they click through from a link at another site).

Chapter 6

[185]

Keywords If the referring URL is a search engine, the keywords
(search string) that the visitor used can be determined.

Browser type The type of browser software a visitor is using (that is,
Netscape, Mozilla, Internet Explorer, and so on)

Operating system version The specific operating system the site visitor uses.
Screen resolution The display settings for the visitor's computer.
Java or Flash-enabled Whether or not the visitor's computer allows Java (a

programming language for applications on the Web)
and/or Flash (a software tool that allows web pages to be
displayed with animation, or motion).

Connection speed Whether visitors are accessing the website from a slower
dial-up connection, high-speed broadband, or Tl.

Errors The number of errors recorded by the server, such as a
"404-file not found" error; can be used to identify broken
links and other problems at the website.

Visit duration Average time spent on the site (length the visitor stays on
the site before leaving). Sites that retain visitors longer are
referred to as "sticky" sites.

Visitor paths/navigation How visitors navigate the website, by specific pages, most
common entry pages (the first page accessed by a visitor
at a website) and exit points (the page from which a visitor
exits a Website), and so on. For example, if a large number
of visitors leave the site after looking at a particular
page, the analyst might infer that they either found the
information they needed, or alternatively, there might be a
problem with that page (is it the page where shipping and
handling fees are posted, which maybe are large enough to
turn visitors away?).

Bounce rate The percentage of visitors who leave the site after the first
page; calculated by the number of visitors who visit only
a single page divided by the number of total visits. The
bounce rate is sometimes used as another indicator of
"stickiness."

The analysis of a visitor is basically history sniffing, which is used for
user-behavior analysis.

Advanced Cluster Analysis

[186]

Recommendation system and STING
STatistical Information Grid (STING) is a grid-based clustering algorithm.
The dataset is recursively divided into a hierarchy structure. The whole input
dataset serves as the root node in the hierarchy structure. Each cell/unit in a
layer is composed of a couple of cells/units in the lower layer. An example
is shown in the following diagram:

First layer

 -1)st layer(

th layer

To support the query for a dataset, the statistical information of each unit is calculated
in advance for further processing; this information is also called statistics parameters.

The characteristics of STING algorithms are (but not limited to) the following:

• A query-independent structure
• Intrinsically parallelizable
• Efficiency

The STING algorithm
The summarized pseudocodes for the STING algorithm are as follows:

Chapter 6

[187]

The R implementation
Please take a look at the R codes file ch_06_sting.R from the bundle of
R codes for the previously mentioned algorithm. The codes can be tested
with the following command:

> source("ch_06_sting.R")

Recommendation systems
Depending on statistical, data-mining, and knowledge-discovery techniques,
recommendation systems are being used by most of the e-commerce sites to make it
easy for consumers to find products to purchase. Three main parts: representation of
input data, neighborhood formation, and recommendation generation are shown in
the following diagram:

Hi-dimensional

Low-dimensional

Representation of input data Neighborhood formation

(center-based)

(aggregate)

Recommendation generation

Most frequent items

Association rule

{x,y}z {a,b}c

Web sentiment analysis and CLIQUE
CLustering In QUEst (CLIQUE) is a bottom-up and grid-based clustering algorithm.
The idea behind this algorithm is the Apriori feature, that is, the monotonicity of
dense units with respect to dimensionality. If a set of data points, S, is a cluster in
a k-dimensional projection of the space, then S is also contained in a cluster in any
(k-1)-dimensional projections of this space.

Advanced Cluster Analysis

[188]

The algorithm proceeds by passes. The one-dimensional dense units are produced by
one pass through the data. The candidate k-dimensional units are generated using
the candidate-generation procedure and the determined (k-l)-dimensional dense
units that are fetched at the (k-1) pass.

The characteristics of the CLIQUE algorithm are as follows:

• Efficient for high-dimensional datasets
• Interpretability of results
• Scalability and usability

The CLIQUE algorithm contains three steps to cluster a dataset. First, a group
of subspaces is selected to cluster the dataset. Then, clustering is independently
executed in every subspace. Finally, a concise summary of every cluster is produced
in the form of a disjunctive normal form (DNF) expression.

The CLIQUE algorithm
The summarized pseudocode for the CLIQUE algorithm is as follows:

1. Indentification of subspaces that contain clusters.
2. Indentification of cluster.
3. Generation minimal description for the cluster.

The candidate-generation algorithm is illustrated as follows:

insert into C
Select u .[l ,h), u .[l ,h),...,
 u .[l ,h), u .[l ,h)
from D u , D u
Where u .a = u .a , u .l = u .l , u .h = u .h ,
 u .a = u .a , u .l = u .l , u .h = u .h ,...,
 u .a = u .a , u .l = u .l , u .h = u .h ,
 u .a < u .a

k

1

1

k-1 k-1 k-1 k-1

k-1 k-1

1 2

2

2

1

1

1

1

1

2 2 2 1 2 2 2 1 2 2 2

k-2

k-1

2

2

1 12 2k-2

k-1

k-2 k-2 k-2k-2

2 1 1 2 1 2 11111

211

Chapter 6

[189]

Here is the algorithm to find the connected components of the graph; this is
equivalent to finding clusters:

The R implementation
Please take a look at the R codes file ch_06_clique.R from the bundle of
R codes for the previously mentioned algorithm. The codes can be tested
with the following command:

> source("ch_06_clique.R")

Web sentiment analysis
Web sentiment analysis is used to identify the idea or thought behind the text, for
example, the sentiment analysis of microblogs such as Twitter. One simple example is
comparing the post with a predefined labeled word list for sentiment judging. Another
example is that we can judge a movie review as thumbs up or thumbs down.

Web sentiment analyses are used in news article analyses of biases pertaining to
specific views, newsgroup evaluation, and so on.

Opinion mining and WAVE clustering
The WAVE clustering algorithm is a grid-based clustering algorithm. It depends on
the relation between spatial dataset and multidimensional signals. The idea is that
the cluster in a multidimensional spatial dataset turns out to be more distinguishable
after a wavelet transformation, that is, after applying wavelets to the input data or
the preprocessed input dataset. The dense part segmented by the sparse area in the
transformed result represents clusters.

Advanced Cluster Analysis

[190]

The characteristics of the WAVE cluster algorithm are as follows:

• Efficient for a large dataset
• Efficient for finding various shapes of clusters
• Insensitive to noise or outlier
• Insensitive with respect to the input order of a dataset
• Multiresolution, which is introduced by wavelet transforms
• Applicable to any numerical dataset

The WAVE cluster algorithm performs a few steps. In the first step, it creates a grid
and assigns each data object from the input dataset to a unit in the grid. And then,
transform the data to a new space by applying wavelet transform functions. Third,
find the connected component in the new space. Map the cluster label for related
data object to the original data space.

The WAVE cluster algorithm
The summarized pseudocodes for the WAVE cluster algorithm are as follows:

Input: Multidimentional data objects’ feature vectors
Output: clustered objects

1. Quantize feature space, then assign objects to
 the units.
2. Apply wavelet transform on the feature space.
3. Find the connected componebts (clusters) in the
 subbands of transformed feature space,
 at different levels.
4. Assign label to the units.
5. Make the lookup table.
6. Map the object to the clusters.

Chapter 6

[191]

The R implementation
Please take a look at the R codes file ch_06_wave.R from the bundle of
R codes for the previously mentioned algorithm. The codes can be tested
with the following command:

> source("ch_06_wave.R")

Opinion mining
An entity possesses a couple of features. Features might be explicit or implicit. If a
person or organization expresses an opinion, then the person or organization should
be an opinion holder. An opinion specific to a feature is a positive or negative view,
attitude, emotion, or appraisal of the feature from the opinion holder. Whether the
opinion on a feature is positive, negative, or neutral denotes opinion orientation.

Opinion mining means mining the opinion on certain features of the object or entity
under research. The simplest case is to judge the opinion as positive or negative.

An opinion-orientation algorithm can be listed as follows:

• Identify opinion words and phrases
• Handle negation
• The But clause
• Aggregating opinion

() (),
,j

i
o i

j

p s j

op o
Score f s

d f
o

op∈

⋅
= ∑

The preceding formula denotes the opinion orientation on a certain feature,
if ,

where jop is an opinion word in s, (),j id op f is the distance between
if and jop .

jop oo⋅ is the opinion orientation.

Advanced Cluster Analysis

[192]

User search intent and the EM algorithm
The Expectation Maximization (EM) algorithm is a probabilistic-model-based
clustering algorithm that depends on the mixture model in which the data is
modeled by a mixture of simple models. The parameters related to these models
are estimated by Maximum Likelihood Estimation (MLE).

Mixture models assume that the data is the result of the combination of various
simple probabilistic distribution functions. Given K distribution functions and
the jth distribution with the parameter, jθ , Θ is the set of jθ of all distributions:

()
1

 (|)
K

j j j
j

p w px x θ
=

=Θ ∑

The EM algorithm performs in the following way. In the first step, an initial group of
model parameters are selected. The expectation step is the second step that performs
the calculation of the probability:

() ()
()1

|
| ,

|
i j

i K
i ll

P x
P distribution j x

P x

θ
θ

θ
=

=
∑

The previous equation represents the probability of each data object belonging to
each distribution. Maximization is the third step. With the result of the expectation
step, update the estimation of the parameters with the ones that maximize the
expected likelihood:

1
1

1 1

(o ,) (o ,)1 1
(o ,) (o ,)

n j i i j ii
j ii

j l j il i

n

n n

P o P
o

k kP P
µ =

=

= =

Θ Θ Θ Θ
= =

Θ Θ Θ Θ

∑∑
∑ ∑

2
1

1

(o ,)(o)

(o ,)

n
j i jii

j n
j ii

p u

p
σ =

=

Θ Θ −
=

Θ Θ
∑
∑

The expectation step and maximization step are performed repeatedly until
the output matches the ending condition, that is, the changes of the parameter
estimations below a certain threshold.

Chapter 6

[193]

The EM algorithm
The summarized pseudocode for the EM algorithm are as follows:

The R implementation
Please take a look at the R codes file ch_06_em.R from the bundle of R codes
for the previously mentioned algorithm. The codes can be tested with the
following command:

> source("ch_06_em.R")

The user search intent
Determining the user search intent is an important yet a difficult issue with respect to
the sparse data available concerning the searcher and queries.

User intent has a wide range of applications, cluster query refinements, user
intention profiles, and web search intent induction. Given Web search engine
queries, finding user intention is also a key and requirement.

Advanced Cluster Analysis

[194]

To determine the user interest and preferences, the clicks' sequence upon the search
result can be used as a good base.

Web search personalization is another important application with the user search
intention. It is related to user context and intention. With the user intention applied,
more effective and efficient information will be provided.

Customer purchase data analysis and
clustering high-dimensional data
For high-dimensional data-space clustering, two major issues occur: efficiency and
quality. New algorithms are needed to deal with this type of dataset. Two popular
strategies are applied to it. One is the subspace-clustering strategy to find the cluster
in the subspace of the original dataset space. Another is the dimensionality-reduction
strategy, which is a lower dimensional data space created for further clustering.

MAFIA is an efficient and scalable subspace-clustering algorithm for high-
dimensional and large datasets.

The MAFIA algorithm
The summarized pseudocode for the MAFIA algorithm is as follows:

Chapter 6

[195]

The summarized pseudocode for the parallel MAFIA algorithm is as follows:

Advanced Cluster Analysis

[196]

The SURFING algorithm
The summarized pseudocodes for the SURFING algorithm are as follows. It selects
interesting features from the original attributes of the dataset.

Chapter 6

[197]

The R implementation
Please take a look at the R codes file ch_06_surfing.R from the bundle of
R codes for the previously mentioned algorithm. The codes can be tested
with the following command:

> source("ch_06_surfing.R")

Customer purchase data analysis
Customer purchase data analysis contains many applications such as the
customer-satisfaction analysis.

From the customer purchase data analysis, one application helps find the unwanted
consumption or user's purchase behavior.

SNS and clustering graph and network
data
The clustering for graph and network data has a wide application in modern life,
such as social networking. However, more challenges crop up along with the
needs. High computational cost, sophisticated graphs, and high dimensionality and
sparsity are the major concerns. With some special transformations, the issues can be
transformed into graph cut issues.

Structural Clustering Algorithm for Network (SCAN) is one of the algorithms that
searches for well-connected components in the graph as clusters.

Advanced Cluster Analysis

[198]

The SCAN algorithm
The summarized pseudocodes for the SCAN algorithm are as follows:

endfor
remove w from Q

end while

else
 label u as nonmember
endif
endfor
for all vertex n labeled nonmember do
 if ∃ x,y ∈Γ(u) : x and y have different cluster-ids then
 label u as hub
else
 label u as outlier
endif
endfor

SCAN for clusters on graph data.
Input: a graph G = (V, E), a similarity threshold , and a
 population threshold µ
Output: a set of clusters
Method: set all vertices in V unlabeled
 for all unlabeled vertex u do
 if u is a core then
 generate a new cluster-id c
 insert all v

ε

Νε(u) into a queue Q
while Q ≠ do

w the first vertices in Q
R the set of vertices that can be directly reached from w

for all s

∈

∈R do
if s is not unlabeled or labeld as nonmember then
 assign the current cluster-id c to s
endif
if s is not unlabeled or labeled as nonmember then
 assign the current cluster-id c to s
endif

The R implementation
Please take a look at the R codes file ch_06_scan.R from the bundle of R codes
for the previously mentioned algorithms. The codes can be tested with the
following command:

> source("ch_06_scan.R")

Chapter 6

[199]

Social networking service (SNS)
Social network has become the most popular online communication method
nowadays. The analysis of SNS becomes important, because of the requirement
of security, business, control, and so on.

The foundation of SNS is a graph theory, especially for SNS mining, such as finding
social communities and abuse of SNS for bad purpose.

The clustering for SNS is an inherent application to find a community (or community
detection). Random walk is another key technology for SNS analysis and is used to
find communities.

Time for action
Here are some questions for you to know whether you have understood the concepts:

• What is the DBSCAN algorithm?
• What is the SCAN algorithm?
• What is the STING algorithm?
• What is the OPTICS algorithm?
• What is the constraint-based cluster method?

Summary
In this chapter, we covered the following facts:

• DBSCAN depends on the density-based description of clusters. With
searching and measuring the density of data points, high density means
high possibility of the existence of clusters, and others mean outliers or noise.

• OPTICS produces the cluster ordering that consists of the order of the data
objects together with the corresponding reachability values and core values.

• You learned that DENCLUE is a clustering algorithm based on a set of
specific density-distribution functions and can find arbitrary shape clusters.
It first segments the dataset as cubes and identifies the local density-
distribution function. You also learned that a hill-climbing algorithm is
performed to retrieve the local maximum for each item in the related cube
with which a cluster will be built.

• We saw that STING is based on the grid-like data structure, and it segments
the embedding spatial area of the input data points into rectangular units. It
is mainly used for a spatial dataset.

Advanced Cluster Analysis

[200]

• You learned that CLIQUE is a grid-based clustering algorithm that finds
subspaces of high-dimensional data, and it can find dense units in the high-
dimensional data too.

• You know that the WAVE cluster is a grid-based clustering algorithm based
on the wavelet transformations. It has a multiresolution and is efficient for
large dataset.

• You learned that EM is a probabilistic-model-based clustering algorithm,
where each data point with a probability indicates that it belongs to a cluster.
It is based on the assumption that the attribute of the data point has values
that is the linear combination of simple distributions.

• Clustering high-dimensional data.
• Clustering graph and network data.

In the next chapter, we will cover the major topics related to outlier detection and
algorithms, and look at some of their examples.

Outlier Detection
In this chapter, you will learn how to write R codes to detect outliers in real-world
cases. Generally speaking, outliers arise for various reasons, such as the dataset being
compromised with data from different classes and data measurement system errors.

As per their characteristics, outliers differ dramatically from the usual data in the
original dataset. Versatile solutions are developed to detect them, which include
model-based methods, proximity-based methods, density-based methods, and so on.

In this chapter, we will cover the following topics:

• Credit card fraud detection and statistical methods
• Activity monitoring—the detection of fraud of mobile phones and

proximity-based methods
• Intrusion detection and density-based methods
• Intrusion detection and clustering-based methods
• Monitoring the performance of network-based and classification-based methods
• Detecting novelty in text, topic detection, and mining contextual outliers
• Collective outliers on spatial data
• Outlier detection in high-dimensional data

Outlier Detection

[202]

Here is a diagram illustrating a classification of outlier detection methods:

Outlier Detection Methods

Set based Spatial set based

Spatial Graph

Based Outlier

Detection

(SGBOD)

Statistical

distribution of

attribute value

Multi-dimensional

metric spatial data set

Graph-based

spatial data set

Distance-based (FindOut)

Wavelet

based

Depth threshold

Distance to k-th

Neighbor

(Optics - OF)

Density in

Neighborhood

The output of an outlier detection system can be categorized into two groups: one is
the labeled result and the other is the scored result (or an ordered list).

Credit card fraud detection and statistical
methods
One major solution to detect outliers is the model-based method or statistical method.
The outlier is defined as the object not belonging to the model that is used to represent
the original dataset. In other words, that model does not generate the outlier.

Among the accurate models to be adopted for the specific dataset, there are many
choices available such as Gaussian and Poisson. If the wrong model is used to detect
outliers, the normal data point may wrongly be recognized as an outlier. In addition
to applying the single distribution model, the mixture of distribution models is
practical too.

Chapter 7

[203]

R

C101

02

03

C2

04

C1

C2

C3

0

The log-likelihood function is adopted to find the estimation of parameters of a model:

1

1ˆ x
n

i
i

x
n

µ
=

= = ∑

()22

1

1ˆ
n

i
i

x x
n

σ
=

− −∑

Outlier Detection

[204]

The likelihood-based outlier detection
algorithm
The summarized pseudocode of the likelihood-based outlier detection algorithm is
as follows:

The R implementation
Look up the file of R codes, ch_07_lboutlier_detection.R, from the bundle of
R codes for the previously mentioned algorithm. The codes can be tested with the
following command:

> source("ch_07_lboutlier_detection.R")

Credit card fraud detection
Fraud denotes the criminal activities that happen in various commercial companies,
such as credit card, banking, or insurance companies. For credit card fraud detection,
two major applications are covered, fraudulent application of credit card and
fraudulent usage of credit card. The fraud represents behavior anomalous to the
average usage of credit cards to certain users, that is, transaction records of the users.

This kind of outlier statistically denotes credit card theft, which deviates from the
normal nature of criminal activities. Some examples of outliers in this case are high
rate of purchase, very high payments, and so on.

The location of payment, the user, and the context are possible attributes in the
dataset. The clustering algorithms are the possible solutions.

Chapter 7

[205]

Activity monitoring – the detection of
fraud involving mobile phones and
proximity-based methods
Two major approaches of proximity-based methods are distance-based and
density-based outlier detection algorithms.

The NL algorithm
The summarized pseudocodes of the NL algorithm are as follows:

Outlier Detection

[206]

The FindAllOutsM algorithm
The following are the summarized pseudocode of the FindAllOutsM algorithm:

Chapter 7

[207]

The FindAllOutsD algorithm
The summarized pseudocodes of the FindAllOutsD algorithm are as follows:

Outlier Detection

[208]

The distance-based algorithm
The summarized pseudocodes of the distance-based outlier detection algorithm are
as follows, given a dataset D, size of the input dataset n, threshold r (r > 0), and

(0,1]π ∈ :

A (,)DB r π outlier is defined as a data point, o, and subjected to this formula:

{ (,) } /o dist o o r D π′ ′ ≤ ≤

Let's now learn the pseudocodes for a variety of distance-based outlier detection
algorithms, which are summarized in the following list. The input parameters are
k, n, and D, which represent the neighbors' number, outlier number to be identified,
and input dataset, respectively. A few supporter functions also are defined. Nearest
(o, S, k) returns k nearest objects in S to o, Maxdist (o, S) returns the maximum
distance between o and points from S, and TopOutlier (S, n) returns the top n
outliers in S according to the distance to their kth nearest neighbor.

Chapter 7

[209]

The Dolphin algorithm
The Dolphin algorithm is a distance-based outlier detection algorithm.
The summarized pseudocodes of this algorithm are listed as follows:

Outlier Detection

[210]

The R implementation
Look up the file of R codes, ch_07_proximity_based.R, from the bundle of R codes
for the preceding algorithms. The codes can be tested with the following command:

> source("ch_07_proximity_based.R")

Activity monitoring and the detection of
mobile fraud
The purpose of outlier detection is to find the patterns in source datasets that do not
conform to the standard behavior. The dataset here consists of the calling records,
and the patterns exist in the calling records.

There are many special algorithms developed for each specific domain. Misuse of a
mobile is termed as mobile fraud. The subject under research is the calling activity
or call records. The related attributes include, but are not limited to, call duration,
calling city, call day, and various services' ratios.

Chapter 7

[211]

Intrusion detection and density-based
methods
Here is a formal definition of outliers formalized based on concepts such as, LOF,
LRD, and so on. Generally speaking, an outlier is a data point biased from others
so much that it seems as if it has not been generated from the same distribution
functions as others have been.

Given a dataset, D, a DB (x, y)-outlier, p, is defined like this:

(){ | , } q D d p q y x∈ ≤ ≤

The k-distance of the p data point denotes the distance between p and the data point,
o, which is member of D:

() kdist p denotes k distanceof data point p−

{ } () (){ \ | , , } o D p d p o d p o k∈ ≤′ ≥′

{ } () (){ \ | , , } 1o D p d p o d p o k′ ′∈ < ≤ −

The k-distance neighborhood of the p object is defined as follows, q being the
k-Nearest Neighbor of p:

() { } () (){ \ | , }kN p q D p d p q dist p= ∈ ≤

The following formula gives the reachability distance of an object, p, with respect to
an object, o:

() () (){ }, max , ,k kreachdist p o dist o d p o=

Outlier Detection

[212]

The Local Reachability Density (LRD) of a data object, o, is defined like this:

(p)
- ()

() 1/
()

MinPts

MinPts
o N

MinPts
MinPts

reach dist p,o
lrd p

N p
∈

 =

∑

The Local Outlier Factor (LOF) is defined as follows, and it measures the degree of
the outlierness:

(p)

()
()

()
()

MinPts

MinPts

o N MinPts
MinPts

MinPts

lrd o
lrd p

LOF p
N p

∈=
∑

A property of LOF (p) is defined as shown in the following equation:

()
() () ()

()
min max

max min

direct p direct p
LOF p

indirect p indirect p
≤ ≤

() () ()min{ , | }min MinPtsdirect p reachdist p q q N p= ∈

() () () ()min{ , | , }min MinPts MinPtsindirect p reachdist q o q N p o N q= ∈ ∈

Chapter 7

[213]

These equations are illustrated as follows:

MinPts = 3

p dmin

dmax

imax

imin

C

d = 4*i

LOF (p) >
min max

MinPts 4

d = 6*i

LOF (p) >

max min

MinPts 6

The OPTICS-OF algorithm
The input parameters for the bagging algorithm are:

• ()1, , mD A A… , the dataset
• α , the parameter
• β , another parameter

The output of the algorithm is the value of CBLOF, for all records.

Outlier Detection

[214]

The summarized pseudocodes of the OPTICS-OF algorithm are as follows:

1

1 1

1: (, ,) {
2 : (,...,) g ;

{ ,..., },and ...

3 : ;
4 : (){
5 : (t

K

m

k

i i

OPTICS OF D K S
clustering the dataset D A A by squeezer al orithm

the prodused clusters are C C C C C

get LC and SC with the two parameters
for each record t in the dataset D
if C and C

−

= ≥ ≥

∈

()
){

6 : CBLOF min distance(,) , ;

7 : } else {
8 : CBLOF distance(t,C), ; ;
9 : }
10 :
11: }
12 :}

i i j

i i i

SC
C t C C LC

C C LC

return CBLOF

∈

= ∗ ∈

= ∗ ∈

The High Contrast Subspace algorithm
The summarized pseudocodes of the High Contrast Subspace (HiCS) algorithm are as
follows, where the input parameters are S, M, and ∝. The output is a contrast, |S|.

Chapter 7

[215]

The R implementation
Look up the file of R codes, ch_07_ density _based.R, from the bundle of
R codes for the previously mentioned algorithms. The codes can be tested using
the following command:

> source("ch_07_ density _based.R")

Intrusion detection
Any malicious activity against systems, networks, and servers can be treated as
intrusion, and finding such activities is called intrusion detection.

The characteristics of situations where you can detect intrusion are high volume of
data, missing labeled data in the dataset (which can be training data for some specific
solution), time series data, and false alarm rate in the input dataset.

An intrusion detection system is of two types: host-based and network-based
intrusion detection systems. A popular architecture for intrusion detection
based on data mining is illustrated in the following diagram:

Record of network
traffic for TCP or
WWW protocols

in a log

Notify the
administrator

Sensor Detector

Models

DM
Eng

Data-
warehouse

The core algorithms applied in an outlier detection system are usually semi-supervised
or unsupervised according to the characteristics of intrusion detection.

Outlier Detection

[216]

Intrusion detection and clustering-based
methods
The strategy of outlier detection technologies based on the clustering algorithm is
focused on the relation between data objects and clusters.

Hierarchical clustering to detect outliers
Outlier detection that uses the hierarchical clustering algorithm is based on the
k-Nearest Neighbor graph. The input parameters include the input dataset, DATA,
of size, n, and each data point with k variables, the distance measure function (d),
one hierarchical algorithm (h), threshold (t), and cluster number (nc).

The k-means-based algorithm
The process of the outlier detection based on the k-means algorithm is illustrated in
the following diagram:

Detecttion of external/Internal outliers

and deletion of them by expert

Automatic determination of value

using Cubic Clustering Criterion(CCC)

k

Running of the k-means clustering

algorithm

Repeat this procedure until

the meaningful groups appear

Determination of

target observations

and attributes

Handling of missing

data by imputation

using EM algorithm

Data preparation Outlier detection procedure

Review and validation of analysis results

Complete

dataset

Outlier candidate lists

Review by domain expert

Chapter 7

[217]

The summarized pseudocodes of outlier detection using the k-means algorithm are
as follows:

• Phase 1 (Data preparation):
1. The target observations and attributes should be aligned to improve

the accuracy of the result and performance of the k-means clustering
algorithm.

2. If the original dataset has missing data, its handling activity must be
carried out. The data of maximum likelihood that is anticipated by
the EM algorithm is fed as input into the missing data.

• Phase 2 (The outlier detection procedure):
1. The k value should be determined in order to run the k-means

clustering algorithm. The proper k value is decided by referring
to the value of the Cubic Clustering Criterion.

2. The k-means clustering algorithm runs with the decided k value. On
completion, the expert checks the external and internal outliers in
the clustering results. If the other groups' elimination of the outliers
is more meaningful, then he/she stops this procedure. If the other
groups need to be recalculated, he/she again runs the k-means
clustering algorithms but without the detected outliers.

• Phase 3 (Review and validation):
1. The result of the previous phase is only a candidate for this phase.

By considering the domain knowledge, we can find the true outliers.

The ODIN algorithm
Outlier detection using the indegree number with the ODIN algorithm is based on
the k-Nearest Neighbor graph.

 ODIN
 is indegree threshold

Calculate kNN graph of
 = 1 to
indegree of
Mark as outlier

i

i

T
S

i S
v T

v
≤

for do
if then

end if

end for

Outlier Detection

[218]

The R implementation
Look up the file of R codes, ch_07_ clustering _based.R, from the bundle of R
codes for the previously mentioned algorithms. The codes can be tested with the
following command:

> source("ch_07_ clustering _based.R")

Monitoring the performance of the web
server and classification-based methods
Classification algorithms can be used to detect outliers. The ordinary strategy is to
train a one-class model only for the normal data point in the training dataset. Once
you set up the model, any data point that is not accepted by the model is marked as
an outlier.

Two-class Classifier

+
+ +

+++++
+

+
+

+

++

+
+++

+
+

+

+

+

+
+

+
+

+

+

+

+

+

+
+

+
+ ++ + +

+++++

+ +
++++

++
+ + +

+
+++

+ + + + + ++
+ + + + + +

+
+ +

+++++
+

+
+

+

++

+
+++

+
+

+

+

+

+
+

+
+

+

+

+

+

+

+
+

+
+ ++ + +

+++++

+ +
++++

++
+ + +

+
+++

+ + + + + ++
+ + + + + +

++
+

+
+

+
+

+
+

+++
+

+
+

+

++

+
++

+

+
++

+
+

+
++

++
+

+
+

+

+
++

+
+

+
+

(a) Two-class Classification (b) One-class Classification

Normal Instances
One-class Classifier

Normal Instances

Outliers

The OCSVM algorithm
The OCSVM (One Class SVM) algorithm projects input data into a high-dimensional
feature space. Along with this process, it iteratively finds the maximum-margin
hyperplane. The hyperplane defined in a Gaussian reproducing kernel Hilbert space
best separates the training data from the origin. When [0,1]v∈ , the major portion of

outliers or the solution of OCSVM can be represented by the solution of the following

equation (subject to 1
1n

kk
w

=
=∑ and 1

10 ,..., nw w
vn

≤ ≤):

Chapter 7

[219]

Initialization of the algorithm. We start by setting a random fraction of all
 to 1/(). If is not an integer, then one of the examples is set to a value in

(0, 1/()) to ensure that 1. More
i

ii

ν
α ν ν

ν α =∑
l l

l

[]
over, we set the initial to max{O :

, 0}.

Optimization algorithm. We then select a first variable for the elementry opti-
mization step in one of the two following ways. Here, we use the shorthand

i

i

iρ

α

∈

>l

[]

for the indices of variables which are not at bound, that is, : { : , 0
1/ ()}. At the end, these correspond to points that will sit exactly on the

hyperplane, and that will therefore have

nb

nb

i

SV
SV i i

α ν
= ∈ <

<

l

l

1

a strong influence on its precise position.
 (i) We scan over the entire data set until we find a variable violating a KKT

condition(Bertsekas, 1995, e.g.), that is, a point such that (O -). 0 or
(

i iρ α >

O).(1/())) 0. Once we have found one,say , we pick

according to
 arg max .
 (ii) Same as (i), but the scan is only performed over

i i i j

n nb i n

nb

j sv O O
sv

ρ ν α α α

∈

− − >

= −

l

The one-class nearest neighbor algorithm
This algorithm is based on the k-Nearest Neighbor algorithm. A couple of formulas
are added.

The local density is denoted as follows:

() / /n n nP x k N V=

The distance between the test object, x, and its nearest neighbor in the training set,
()trNN x , is defined like this:

1 ()trd x NN x= −

Outlier Detection

[220]

The distance between this nearest neighbor (()trNN x) and its nearest neighbor in
the training set (()()tr trNN NN x) is defined as follows:

()2 () ()tr tr trd NN x NN NN x= −

One data object is marked as an outlier once , or, in another format, is
marked as 1 2() /NN x d dρ = .

The R implementation
Look up the file of R codes, ch_07_ classification _based.R, from the bundle
of R codes for previously mentioned algorithms. The codes can be tested with the
following command:

> source("ch_07_ classification _based.R")

Monitoring the performance of the web server
Web server performance measurements are really important to the business and
for operating system management. These measurements can be in the form of CPU
usage, network bandwidth, storage, and so on.

The dataset comes from various sources such as benchmark data, logs, and so on.
The types of outliers that appear during the monitoring of the web server are point
outliers, contextual outliers, and collective outliers.

Detecting novelty in text, topic detection,
and mining contextual outliers
If each of the data instances in the training dataset is related to a specific context
attribute, then the dramatic deviation of the data point from the context will be
termed as an outlier. There are many applications of this assumption.

Chapter 7

[221]

The conditional anomaly detection (CAD)
algorithm
The summarized pseudocodes of the CAD algorithm are as follows:

The following are the summarized pseudocodes of the GMM-CAD-Full algorithm:

Outlier Detection

[222]

Chapter 7

[223]

The summarized pseudocodes of the GMM-CAD-Split algorithm are as follows:

The R implementation
Look up the file of R codes, ch_07_ contextual _based.R, from the bundle of R
codes for the previously mentioned algorithms. The codes can be tested with the
following command:

> source("ch_07_ contextual _based.R")

Detecting novelty in text and topic detection
One application of outlier detection is in finding novel topics in a collection of
documents or articles from newspapers. Major detection includes opinion detection.
This is basically an outlier among a lot of opinions.

With the increase in social media, there are many events that happen every day.
The earlier collection was that of only special events or ideas for related researchers
or companies.

The characteristics related to increase in the collection are the various sources of data,
documents in different formats, high-dimensional attributes, and sparse source data.

Collective outliers on spatial data
Given a dataset, if a collection of related data instances is anomalous with respect to
the entire dataset, it is defined as a collective outlier.

Outlier Detection

[224]

The route outlier detection (ROD) algorithm
The summarized pseudocodes of the ROD algorithm are as follows. The input
parameters include the multidimensional attribute space, attribute dataset (D), distance
measure function (F), the depth of neighbor (ND), spatial graph (G = (V, E)), and
confidence interval (CI):

}

NNS=Find_Neighbor_Nodes_set(, ,)iO ND G
=0;Accum_Dist

for (i=1);i ; i++){RN≤
Get_One_Object(i,D);iO =

for(j=1; j NSS ; j++){≤
Get_One_Object(j . NNS);kO =

Accum_Dist (, ,)i kF O O S+ =

AvgDist Accum_Dist/ NSS ;=

Add_Element(Outlier_Set, i);
}

}
return Outlier_Set

s
value

AvgDist
T

µ

σ

−
=

s
if (Check_Normal_Table(,) True){valueT CI ==

Chapter 7

[225]

The R implementation
Look up the file of R codes, ch_07_ rod.R, from the bundle of R codes for the
previously mentioned algorithm. The codes can be tested with the following command:

> source("ch_07_ rod.R")

Characteristics of collective outliers
Collective outliers denote a collection of data that is an abnormal contrast to the input
dataset. As a major characteristic, only the collection of data appearing together will
be collective outliers, but specific data itself in that collection does not appear together
with other data in that collection of data, which is definitely not an outlier. Another
characteristic of a collective outlier is that it can be a contextual outlier.

Collective outliers may be a sequence of data, spatial data, and so on.

Outlier detection in high-dimensional
data
Outlier detection in high-dimensional data has some characteristics that make it
different from other outlier detection problems.

The brute-force algorithm
The summarized pseudocodes of the brute-force algorithm are as follows:

Outlier Detection

[226]

The HilOut algorithm
The following are the summarized pseudocodes of the HilOut algorithm:

The R implementation
Look up the R file, hil_out.R, from the bundle of R codes for the HilOut algorithm.

Look up the file of R codes, ch_07_ hilout.R, from the bundle of R codes
for the previously mentioned algorithms. The codes can be tested with the
following command:

> source("ch_07_ hilout.R")

Chapter 7

[227]

Time for action
Here are some practice questions for you so as to check your understanding of
the concepts:

• What is an outlier?
• List as many types of outliers as possible and your categorization measures.
• List as many areas of application of outlier detection as possible.

Summary
In this chapter, we looked at:

• Statistical methods based on probabilistic distribution functions. The normal
data points are those that are generated by the models. Otherwise, they are
defined as outliers.

• Proximity-based methods.
• Density-based methods.
• Clustering-based methods.
• Classification-based methods.
• Mining contextual outliers.
• Collective outliers.
• Outlier detection in high-dimensional data.

The next chapter will cover the major topics related to outlier detection algorithms
and examples for them, which are based on the previous chapters. All of this will be
covered with a major difference in our viewpoint.

Mining Stream, Time-series,
and Sequence Data

In this chapter, you will learn how to write mining codes for stream data, time-series
data, and sequence data.

The characteristics of stream, time-series, and sequence data are unique, that is, large
and endless. It is too large to get an exact result; this means an approximate result
will be achieved. The classic data-mining algorithm should be extended, or a new
algorithm needs to be designed for this type of the dataset.

In relation to the mining of stream, time-series, and sequence data, there are some
topics we can't avoid. They are association, frequent pattern, classification and
clustering algorithms, and so on. In the following sections, we will go through
these major topics.

In this chapter, we will cover the following topics;

• The credit card transaction flow and STREAM algorithm
• Predicting future prices and time-series analysis
• Stock market data and time-series clustering and classification
• Web click streams and mining symbolic sequences
• Mining sequence patterns in transactional databases

Mining Stream, Time-series, and Sequence Data

[230]

The credit card transaction flow and
STREAM algorithm
As we mentioned in the previous chapters, one kind of data source always requires
a variety of predefined algorithms or a brand new algorithm to deal with. Streaming
data behaves a bit different from a traditional dataset.

The streaming dataset comes from various sources in modern life, such as credit
record transaction stream, web feeds, phone-call records, sensor data from a satellite
or radar, network traffic data, a security event's stream, and a long running list of
various data streams.

The targets to stream data processing are, and not limited to, summarization of the
stream to specific extents.

With the characteristics of streaming data, the typical architecture to stream a
management system is illustrated in the following diagram:

Streams entering

Ad-hoc

Queries

1, 5, 2, 7, 4, 0, 3, 5

q, w, e, r, t, y, u, i, o

0, 1, 1, 0, 1, 0, 0, 0

Stream

Processor

Output streams
Standing

Queries

Limited

Working

Storage
Archival

Storage

...

time

The STREAM algorithm is a classical algorithm used to cluster stream data. In the
next section, the details are present and explained by R code.

Chapter 8

[231]

The STREAM algorithm
The summarized pseudocode of the STREAM algorithm are as follows:

STREAM

For each chunk in the streamXi

1. If a sample of size contains fewer than k distinct points then:$ log

Xi weighted representation

e
1

d
k

2. Cluster usingXi LOCALSEARCH

3. X ` ik icenters obtained from chunks 1 through iterations of the stream, where each

center obtained by clustering is weighted by the number of points in assigned to .c X X ci i

4. Output the centers obtained by clustering usingk Xi LOCALSEARCH

In the preceding algorithm, LOCALSEARCH is a revised k-median algorithm.

8. To Simulate a continuous space, move each cluster center to the center - of - mass for its cluster

LOCALSEARCH (, (,), , , ,N d k e e e)' ". .

1. Read in data points.n

2. Set z =0min

3. Set z = where is an arbitrary point inmax x NR e (),d x, x N0 0x

4. Set to bez
z zmax + min

2
5. Obtain an initial solution () using Algorithm InitialSolution ().I , a N , z

6. Select random points to serve as feasible centersH ()log k
1
p

7. While more or fewer that k centers and zmin < (1- e)" zmax
Let () be the current solutionF, g

Run (, , , (,)) to obtain a new solution (,)FL N d F g F ge ` `

9. Return our solution (,)F g

If | | is “about” , run (, , , (,)) to obtain a new solution; reset (,) toF k FL N d F g F ge
be this new solution

` ` ` ` `

If | | then setF k< zmin` = and = ; else if | |z z F >
z zmax + min

2
` then setk zmax = andz

z =
z zmax + min

2

` `

. .

InitialSolution (data set , facility cost)N z
1. Reorder data points randomly

2. Create a cluster center at the first point

3. For every point after the first,

Let be the distance form the current data point to the nearest existing cluster centerd

With probability create a new cluster center at the current data point; otherwised z/
add the current point to the best current cluster

Mining Stream, Time-series, and Sequence Data

[232]

The single-pass-any-time clustering algorithm
Here is a clustering algorithm designed to deal with a high-frequency news stream:

Single pass anytime clustering algorithm.

Input:

Document vector stream = { }V v |i=1,...,i 3

Distance function (,) between vectors and clusters.d . .

Cluster candidate selection function (,).p . .

Distance threshold .T

Output:

Set of clusters = { }.C V | j=1,....,cj � 3

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

C =: 0

for all do= 1,...,i 3

end for

end if

else

C C v:= {{ }}� i

c c v:= { }� i
^ ^

c c C v d:= e d()=i
^ ^

d
^

if then< T

d = min v C: { (, c)|c }d ei
^ ^

C p C v C:= (,)i 3^

The R implementation
Please take a look at the R codes file ch_08_stream.R from the bundle of
R codes for previously mentioned algorithms. The codes can be tested with
the following command:

> source("ch_08_stream.R")

Chapter 8

[233]

The credit card transaction flow
Day by day, the growing e-commerce market is driving the growth of the usage
of credit card, which, in turn, is bringing in a large number of transaction streams.
Fraudulent usage of credit cards happens every day; we want the algorithm to
detect this kind of transaction in a very short time compared to the big volume
of transactions. Besides this, the requirement to find out the valuable customers
by an analysis of the transaction streams is becoming more and more important.
However, it is harder to get valid information in a very short time in response to the
advertisement needs, such as recommend the necessary finance services or goods to
these customers.

The credit card transaction flow is also the process to generate stream data, and the
related stream-mining algorithm can be applied with high accuracy.

One application for the credit card transaction flow mining is the behavior analysis
of the consumers. With each transaction record that is stored, various costs or
purchases of a certain person can be tracked. With the mining of such transaction
records, we can provide an analysis to the credit card holder to help them keep
financial balance or other financial target. We can also provide this analysis to
the card issuer that published the credit card to create a new business, such as
funding or loaning, or to the retailers (the merchants) such as Walmart to help
in the arrangement of appropriate goods.

Another application for the credit card transaction flow mining is fraud detection.
It is the most obvious one among tons of applications. Using this solution, the card
issuer or the bank can reduce the rate of successful fraud.

The dataset of the credit card transaction includes the owner of cards, place of
consumption, date, cost, and so on.

Predicting future prices and time-series
analysis
Auto Regressive Integrated Moving Average (ARIMA) is a classic algorithm to
analyze time–series data. As the initial step, an ARIMA model will be chosen to
model the time-series data. Assuming that tp is a time-series variable such as a price,
the formula is defined as follows, and it includes the main features of the variable:

() ()φ θ ε= tB pt B

Mining Stream, Time-series, and Sequence Data

[234]

() ()()
()()()

1 2 24 48
1 2 24 48

168 24
168

1 1

1 1 1

φ φ φ φ φ

φ

= − − − −

× − − −

B pt B B B B

B B B

()
(

)
()

()()
()

1 2 3 4 5
1 2 3 4 5

23 24 47 48
23 24 47 48

72 96 120 144
72 96 120 144

168 336 504
168 336 504

1 2 24
1 2 24

168 336 504
168 336 504

1

1

1 log

1 1

1

φ φ φ φ φ

φ φ φ φ

φ φ φ φ

φ φ φ

θ θ θ

θ θ θ ε

− − − − −

× − − − −

− − − −

× − − −

= + − − −

× − − − t

B B B B B

B B B B

B B B B

B B B pt

c B B B

B B B

()
(

)
()
()()()

()
()
()

1 2
1 2

23 24 47 48
23 24 47 48

72 96 120 144
72 96 120 144

167 168 169 192
167 168 169 192

24 168

1 2
1 2

24 48 72 96
24 48 72 96

144
144

168
168 33

1

1

1

1 1 1 log

1

1

1

1

φ φ

φ φ φ φ

φ φ φ φ

φ φ φ φ

θ θ

θ θ θ θ

θ

θ θ

− −

× − − − −

− − − −

− − − −

× − − −

= + − −

× − − − −

× −

× − −

B B

B B B B

B B B B

B B B B

B B B pt

c B B

B B B B

B

B()336 504
6 504θ ε− tB B

The ARIMA algorithm
The summarized steps for the ARIMA algorithm is as follows:

1. A class of models is formulated assuming certain hypotheses.
2. A model is identified for the observed data.

Chapter 8

[235]

3. The model parameters are estimated.
4. If the hypotheses of the model are validated, proceed with this step;

otherwise, go to step 1 to refine the model. The model is now ready
for forecasting.

Predicting future prices
Predicting future prices is one subproblem of predicting the future; this is just a sign
of the difficulty of this issue. Another similar issue under this domain is estimating
the future market demands.

The stock market is a good example of predicting the future price; here, the prices
changes along with time. Predicting future prices helps estimate the equity returns in
the future and also helps in deciding the timing for financial investors, such as when
to buy/sell.

The price graph shows an oscillation. Many factors can affect this value, even the
psycology of humans.

The key problem in this prediction is the huge data volume. As a direct result, the
algorithms to be used for this topic need to be efficient. The other key problem is
that the price might change dramatically in a short time. Also, the complexity of the
market is definitely a big problem.

The data instances for the future price prediction include quantitative attributes
such as technical factors, and they also include macroeconomics, microeconomics,
political events, and investor expectations. Moreover, they include the domain
expert's knowledge.

All the solutions based on the aggregate disperse information from the
preselected factors.

Price is obviously affected by time, and is a time-series variable too. To forecast the
future value, the time-series-analysis algorithm will apply. ARIMA can be used to
forecast the prices of the next day.

One classical solution is to determine the trends of the market at a very early stage.
Another solution is fuzzy solutions, which is also a good choice because of the huge
volume of dataset and wide range of factors affecting the prices.

Mining Stream, Time-series, and Sequence Data

[236]

Stock market data and time-series
clustering and classification
Time-series clustering has been proven to provide effective information for further
research. In contrast to the classic clustering, the time-series dataset comprises data
changed with time.

Time series

Feature

Extraction

Discretization

Features

Clustering

Modeling

Coefficient

or Residuals

Model

parameters
Clusters

and maybe

Cluster

Centers

Clusters

and maybe

Cluster

Centers

Clusters

and maybe

Cluster

Centers

Time series

Modeling

Time series

Clustering Clustering

Chapter 8

[237]

The hError algorithm
This algorithm is denoted as "clustering seasonality patterns in the presence
of errors"; the summarized algorithm is listed in the following figure. The major
characteristic of this algorithm is to introduce a specific distance function and a
dissimilarity function.

Mining Stream, Time-series, and Sequence Data

[238]

Time-series classification with the 1NN
classifier
The summarized pseudocode for the 1NN classifier algorithm is as follows:

The R implementation
Please take a look at the R codes file ch_08_herror.R from the bundle of
R codes for previously mentioned algorithms. The codes can be tested with
the following command:

> source("ch_08_herror.R")

Chapter 8

[239]

Stock market data
Stock market is a complex dynamic system, and many factors can affect the market.
For example, breaking financial news is also a key factor for this topic.

The characteristics of stock market data are large volume (near infinite), real time,
high dimensions, and high complexity. The various data streams from stock markets
go along with many events and correlations.

Stock market sentiment analysis is one topic related to this domain. The stock market
is too complex with many factors that can affect the market. People's opinion or
sentiment is one of the major factors.

The real-time information needs from the stock market require the fast, efficient
online-mining algorithms. The time-series data accounts for various data including
the stock market data that updates along with time.

To predict the stock market, the past data is really important. Using the past
return on certain stock, the future price of that stock can be predicted based
on the price-data stream.

Web click streams and mining symbolic
sequences
Web click streams data is large and continuously emerging, with hidden trends buried
and to be discovered for various usages, such as recommendations. TECNO-STREAMS
(Tracking Evolving Clusters in NOisy Streams) is a one-pass algorithm.

The TECNO-STREAMS algorithm
The whole algorithm is modeled on the following equations: the robust weight or
activation function (1), influence zone (2), pure simulation (3), optimal scale update
(4), incremental update of pure simulation and optimal update (5) and (6), the
simulation and scale values (7), and finally, the D-W-B-cell update equations (8).

() ()2
2

2
,2σ τ

 −
= = − +

ij
ij i ij

i j

d J j
w w d e

{ }min|= ∈ ≥i j a ijIZ x x w w

Mining Stream, Time-series, and Sequence Data

[240]

, 2
,

1

σ

=
=
∑ J

ijj
ai J

i J

w
S

2
2
,

1

1

2
σ

=

=
=
∑
∑

J
ij ijj

i J J
ijj

w d

w

1

, 1
, 2

,

τ

σ

−

− += i J iJ
ai J

i J

e W w
S

1
2 2
, , 1 ,2

, 1

, 12

τ

τ

σ
σ

−

−

−

−

+
=

+

i J i J iJ i J
i J

i J iJ

e W w d

e W w

() ()1 1
, 2 2

, ,

α β
σ σ
= == + −∑ ∑

i i
B BN N

il ill l
i ai J

i J i J

w w
S S t t

() ()
() ()

2 2 2
,2 1 1

,

1 1

1
2 ,

α β
σ

α β
= =

= =

+ −
=

+ −

∑ ∑
∑ ∑

i i
B B

i i
B B

N N
i J il l il ll l

i J N N
il ill l

D t w d t w d

Wi J t w t w

The similarity measures applied in the learning phase are defined here:

1
cos

1 1

=

= =

×
= ∑
∑ ∑

n
ik jkk

ij n n
ik ik jkk k

x p
S

x x p

Chapter 8

[241]

cos PrecL L
ij ij ijS Covg=

1

1

Prec
n

ik jkL k
ij n

jkk

x p

p
=

=

×
= ∑
∑

1

1

=

=

×
= ∑

∑

n
ik jkL k

ij n
jkk

x p
Covg

x

{ }min min Prec ,Covg= L L
ij ij ijS

The similarity measures applied in the validation phase are defined here:

1

1

Prec =

=

×
= ∑

∑

n
ik jkv k

ij n
jkk

pL pGT

pL

1

1

=

=

×
= ∑

∑

n
ik jkv k

ij n
jkk

pL pGT
Covg

pGT

Mining Stream, Time-series, and Sequence Data

[242]

The summarized pseudocode for the TECNO-STREAMS algorithm is as follows:

Chapter 8

[243]

The R implementation
Please take a look at the R codes file ch_08_tecno_stream.R from the bundle of R
codes for previous algorithm. The codes can be tested with the following command:

> source("ch_08_tecno_stream.R")

Web click streams
The web click streams denote the user's behavior when visiting the site, especially
for e-commerce sites and CRM (Customer Relation Management). The analysis of
web click streams will improve the user experience of the customer and optimize
the structure of the site to meet the customers' expectation and, finally, increase the
income of the site.

In other aspects, web click streams mining can be used to detect DoS attacks, track
the attackers, and prevent these on the Web in advance.

The dataset for web click stream is obviously the click records that get generated
when the user visits various sites. The major characteristics of this dataset are that it
is huge, and the size goes on increasing.

Mining sequence patterns in
transactional databases
Mining sequence patterns can be thought of as association discovery over the
temporal data or sequence dataset. Similarly, the classic pattern-mining algorithm
should be extended or modified as per the sequence dataset's scenario.

Mining Stream, Time-series, and Sequence Data

[244]

The PrefixSpan algorithm
PrefixSpan is a frequent sequence-mining algorithm. The summarized pseudocode
for the PrefixSpan algorithm is as follows:

The R implementation
Please take a look at the R codes file ch_08_prefix_span.R from the bundle of R codes
for the previous algorithm. The codes can be tested with the following command:

> source("ch_08_prefix_span.R")

Time for action
Here are some questions for you to know whether you have understood the concepts:

• What is a stream?
• What is a time series?
• What is a sequence?

Chapter 8

[245]

Summary
In this chapter, we looked at stream mining, time-series analysis, mining symbolic
sequences, and mining sequence patterns.

The next chapter will cover the major topics related to graph mining, algorithms, and
some examples related to them.

Graph Mining and
Network Analysis

In this chapter, you will learn the algorithms written in R for graph mining and
network analysis.

In this chapter, we will cover the following topics:

• Graph mining
• Mining frequent subgraph patterns
• Social network mining
• Social influence mining

Graph mining
Grouping, messaging, dating, and many other means are the major forms of social
communication or the classic social behavior in the social network. All these concepts
are modeled with graphs; that is, nodes, edges, and other attributes. Graph mining
is developed to mine this information, which is similar to other types of information,
such as biological information, and so on.

Graph
Graph G contains nodes V and edges E and is represented with an equation, G = (V,
E). As per graph mining, there are some concepts that need to be clarified. There are
two types of graphs: directed graphs, which have ordered pairs of vertices in the
edge set, E, and undirected graphs.

Graph Mining and Network Analysis

[248]

Graph mining algorithms
Although the data instances under research are very different from the other data
types that we saw earlier in this book, graph-mining algorithms still include frequent
pattern (subgraph) mining, classification, and clustering.

In the next section, we will look at frequent subgraph patterns mining algorithm,
links mining, and clustering.

Mining frequent subgraph patterns
The subgraph pattern or graph pattern is an important application of data mining;
this is used for bioinformatics, social network analysis, and so on. Frequent subgraph
patterns are patterns that occur frequently in a set of graphs or in a large graph.

The gPLS algorithm

Chapter 9

[249]

The GraphSig algorithm

The gSpan algorithm
The summarized pseudocode for the gSpan algorithm is as follows:

Graph Mining and Network Analysis

[250]

Rightmost path extensions and their supports

Chapter 9

[251]

The subgraph isomorphism enumeration
algorithm

The canonical checking algorithm

Graph Mining and Network Analysis

[252]

The R implementation
Please take a look at the R codes file ch_09_gspan.R from the bundle of R codes for
previously mentioned algorithms. The codes can be tested with the following command:

> source("ch_09_gspan.R")

Social network mining
Social network is based on human interactions, from the most classical definition.
The data instances collected in the social network have graph-like and temporal
characteristics. There are two major strategies for data mining tasks for social
networks: one is linkage-based or structure-based, and the other is content-based.
The data instances collected in the social network also have two kinds of data
instances: static and dynamic or times-series data, such as the tweets on Twitter.
Due to the characteristics of the data instance of graphs, there are vast versatile
algorithms developed to solve the challenges.

Community detection and the shingling
algorithm

Chapter 9

[253]

Graph Mining and Network Analysis

[254]

The node classification and iterative
classification algorithms

The second-order algorithm to reduce the number of iterations is as follows:

The R implementation
Please take a look at the R codes file ch_09_shingling.R from the bundle of
R codes for previously mentioned algorithms. The codes can be tested with
the following command:

> source("ch_09_shingling.R")

Chapter 9

[255]

Time for action
Here are some practice questions for you to check whether you have understood
the concepts:

• What is a graph?
• What graph opportunities are used?
• What is the PageRank algorithm, and what is its application in web search?

Summary
In this chapter, we looked at:

• Graph mining. We also saw that the characteristics of graph data can be
divided into frequent pattern mining, classification, and clustering

• Mining frequent subgraph patterns is done to find the frequent patterns in a
set of graphs or a single massive graph

• Social network analysis includes a wide range of web applications with
broad definitions, such as Facebook, LinkedIn, Google+, StackOverflow,
and so on

In the next chapter, we will focus on the major topics related to web mining and
algorithms and look at some examples based on them.

Mining Text and Web Data
In this chapter, you will learn the algorithm written in R for text mining and web
data mining.

For text mining, the semistructured and nonstructured documents are the main
dataset. There are a few of major categories of text mining, such as clustering,
document retrieval and representation, and anomaly detection. The application of
text mining includes, but is not limited to, topic tracking, and text summarization
and categorization.

Web content, structure, and usage mining is one application of web mining. Web
mining is also used for user behavior modeling, personalized views and content
annotation, and so on. In another aspect, web mining integrates the result information
from the traditional data-mining technologies and the information from WWW.

In this chapter, we will cover the following topics:

• Text mining and the TM package
• Text summarization
• The question answering system
• Genre categorization of web pages
• Categorization of newspaper articles and newswires into topics
• Web usage mining with web logs

Mining Text and Web Data

[258]

Text mining and TM packages
Along with the appearance of text mining, due to the characteristics of text
or documents, the traditional data-mining algorithms need some minor
adjustments or extensions. The classical text-mining process is as follows:

Document-based
intermediate form

Clustering
Classification
Visualization
......

Documents

Document
refinement

Concept-based
intermediate form

Knowledge
distillation

Predictive-model
Association-mining
Visualization
......

The popular text-clustering algorithms include the distance-based clustering
algorithm, the hierarchical clustering algorithm, the partition-based clustering
algorithm, and so on.

The popular text-classification algorithms include decision trees, pattern-based
classification, SVM classification, Bayesian classification, and so on.

As a popular preprocessing step, here are the details of the word-extraction algorithm.

Text summarization
The target of text summarization is to generate a concise and coherent conclusion or
summary of the major information of the input. Three major steps are performed in
most of the summarization systems. They are as follows:

1. Build a temporary structure that contains the main portion of the key point of
the input text.

2. Next, the sentences from the input are scored with the output of the first step.
3. Lastly, a final summary that represents the input documents is set up by

several sentences.

Chapter 10

[259]

One popular strategy is to remove the unimportant information, clauses, or sentences
and, at the same time, build classifiers to make sure that the key information is
not thrown away, which is, in another viewpoint, the relative importance of topics
functioned here during the summarization process. The final result is represented in
a coherent way.

The summarization is a dynamic nonstop process. First, we need to build
summaries on the set of old documents' dataset, which means multidocuments'
summarization. The second step is to summarize the new documents when we
get the result of the first step.

Due to the difficulty in building a new sentence for the summaries, one solution is
extractive summarization, that is, to extract the most relevant sentences from the
document dataset or documents. With the growth of the size of the documents set,
the time evolution of the topics is also an important issue for which statistical topic
modeling such as time-series-based algorithms are proposed.

There are two popular solutions for intermediate representation: topic representation
and indicator representation. Sentence scoring, the score of each sentence, is
determined by a couple of important factors such as the combination of characters.
Summary sentence selection is determined by the most important N sentences.

There are many good characteristics that describe the final summary: it is indicative
or informative, extract or abstract, generic or query-oriented, consists of background
or just the news, is monolingual or cross lingual, and consists of a single document
or multiple documents.

The benefit of text summarization is to improve the efficiency of document processing
during which the summarization of a certain document can help the reader decide
whether to analyze the document for specific purposes. One example is to summarize
the multilingual, large (nearing unlimited), dynamic dataset of documents from
various sources, including the Web. Examples include summarization of medical
articles, e-mail, the Web, speech, and so on.

Topic representation
Topic representation such as topic signature plays an important role in the
document-summarization system. Various topic representations are provided, such
as topic signature, enhanced topic signature, thematic signature, and so on.

Mining Text and Web Data

[260]

The topic signature is defined as a set of related terms; topic is the target concept,
and signature is a list of terms that is related to the topic with a specific weight.
Each term can be the stemmed content words, bigram or trigram:

The topic term selection process is as follows. The input document sets are divided into
two sets: relevant and nonrelevant texts for the topic. Two hypotheses are defined:

The first hypothesis denotes that the relevance of a document is independent of the
term, whereas the second hypothesis indicates a strong relevance with the presence
of those terms, given that and the 2 x 2 contingency table:

R

 represents the frequency of the term, , occurring in R, and , is the
frequency of the term occurring in . is the frequency of the term, ,
occurring in R, and is the frequency of the term, , occurring in .

The likelihood of both hypotheses is calculated as follows; here, b denotes the
binomial distribution:

Chapter 10

[261]

The algorithm to create the topic signature for a given topic is illustrated as follows:

1. classify documents as relevant or nonrelevant
according to the given topic

2. compute the -2 value using Equation 3 forlog
each term in the document collection

3. rank terms according to their -2 valuelog

4. select a confidence level from the distribution2
table; determine the cutoff associated weight
and the number of terms to be included in the
signatures

The multidocument summarization algorithm
Here is the Graph-Based Sub-topic Partition Algorithm (GSPSummary) algorithm
for multidocument summarization:

Mining Text and Web Data

[262]

The GSPRankMethod is defined as follows:

The Maximal Marginal Relevance algorithm
Maximal Marginal Relevance (MMR), which is comparatively suited for
query-based and multidocument summarization, selects the most important
sentence in each iteration of sentence selection. Each selected sentence has
minimal relevance to the selected sentence set.

The summarized algorithm of MMR is as follows:

Chapter 10

[263]

The R implementation
Please take a look at the R codes file ch_10_mmr.R from the bundle of R codes for the
preceding algorithms. The codes can be tested with the following command:

> source("ch_10_mmr.R")

The question answering system
The question answering (QA) system is a one hot topic related to IR, IE, NLP, data
mining, and so on. A QA system mines a large set of texts to find a short phrase or
sentence that answers a user's question with a certain precision. If the source is the
Web or, even further, the whole information world, the challenge of the QA system
increases dramatically.

There are basically three kinds of QA systems: slot filling, for which the format
of the query and answer are similar; limited domain, for which the domains are
limited with dictionaries and ontologies; and open domain, for which there is no
limitation of domains.

One of the conceptual architectures among various solutions is illustrated in the
following image. The input of the QA system is natural language questions; the
output of the system, that is, the answer to the input question, is provided in natural
language too. The system is composed of three major parts: the user interface, the
processing part for questions, and the generation part for answers.

Assuming the question to be a coherent sentence, the questions from the user
interface are processed, and the final right query is generated after a question-term
identification, such as word segmentation and key word extraction and expansion.
The ontology base here serves to support query expansion.

Mining Text and Web Data

[264]

The answer is selected or generated from the FAQ base by the query that is provided
in the earlier steps.

One popular question answering system is Yahoo! Answers, where a huge number
of questions are asked and answered every day.

Genre categorization of web pages
Genre categorization can be used for large article corpora and web pages. A genre
can be defined in terms of purpose and physical form. It denotes any widely
accepted categories of texts defined by common communicative purpose or other
functional traits, and the categories are extensible. The web genre can also be
defined based on the facets, complexity of the language, subjectivity, and number
of graphics. Genre categorization has many applications such as improving search
efficiency and satisfying the users' information need.

Chapter 10

[265]

For the WWW or web pages, the genre can be defined as the usability of the miner
and feasibility with respect to the efficiency.

There are some major challenges for this web page genre categorization. One
is the instability of the Web itself. The second is the complex and unpredictable
properties of web pages. The third is how to judge the genre for a specific web page.
There are more challenges, but they are not listed here, or they will appear in future
applications. For certain web pages, they might have multiple genres or no genre for
existing recognized genres libraries.

Due to the fast pace of the evolution of the Web, new genres are continuously
introduced to the current genre classes and the current genre classes are
continuously updated and upgraded.

Possible solutions include, but are not limited to, Naïve Bayes, k-Nearest Neighbor,
SVM, and tree nodes as classification methods.

Categorizing newspaper articles and
newswires into topics
Articles and newswires denote the huge periodical source of events of knowledge at
different periods of time. The classification of text is the preprocessing step to store
all these documents into a specific corpus. The categorization of text is the base of
text processing.

We will now introduce an N-gram-based text-classification algorithm. From a longer
string, an N-character slice is called N-gram. The key point of this algorithm is the
calculation of the profiles of the N-gram frequencies.

Mining Text and Web Data

[266]

Before the introduction of the algorithm, here are the necessary illustrations of a
couple of concepts adopted in the algorithm:

Chapter 10

[267]

The N-gram-based text categorization
The summarized pseudocodes for the N-gram-based text-categorization algorithm
are as follows:

Mining Text and Web Data

[268]

The N-gram frequency-generation algorithm is as follows:

The R implementation
Please take a look at the R codes file ch_10_ngram_classifier.R from the
bundle of R codes for the above algorithms. The codes can be tested with the
following command:

> source("ch_10_ngram_classifier.R")

Web usage mining with web logs
Web usage mining denotes the discovery and analytics of patterns in web logs (such
as system access logs) and transactions. The output is the relation of user interaction
and resources on the Web. The user behavior can be identified based on this output.
The web logs record the track of the web user's interaction with web servers, web
proxy servers, and browsers.

Chapter 10

[269]

The popular web usage mining process is illustrated in the images, and it
includes three major steps: data collection and preprocessing, pattern discovery,
and pattern analysis.

The preprocessing contains data cleaning, session identification, and data conversion.
The pattern discovery includes path analysis, association rules, sequential patterns,
and cluster and classification rules.

Mining Text and Web Data

[270]

The FCA-based association rule mining
algorithm
The summarized pseudocodes for the FCA-based association rule mining algorithm
are as follows:

The R implementation
Please take a look at the R codes file ch_10_fca.R from the bundle of R codes for the
above algorithms. The codes can be tested with the following command:

> source("ch_10_fca.R")

Chapter 10

[271]

Time for action
Here are some questions for you to know whether you have understood the concepts:

1. What are the characteristics of text mining?
2. What is the difference between text mining and data mining?
3. What is the difference between web mining and data mining?

Summary
In this chapter, we looked at text mining, which is to find brand new or unknown
information by extracting information from the documents dataset. We also looked
at how text summarization presents the condensed result of the document set under
research; in other words, takes a source, extracts contents, and presents the key
contents in a condensed format that is sensitive to the final needs. Also, we looked
at how genre classification discriminates between documents by form, style, and the
targeted system or audience. We also covered the question answering system, topic
detection, and web mining.

In this book, many useful data-mining algorithms are illustrated in the form of
the R language, which has been there for years, even decades. The most popular
algorithms are included with a detailed description. You can start working with the
knowledge structure of the classical and living data-mining algorithms and solutions
built with R.

Algorithms and Data
Structures

Here is a list of algorithms related to association rules mining; it is only a small
portion of the available algorithms, but it has proved to be effective:

Approach Dataset Sequential
pattern
mining

Sequential
rule
mining

Frequent
itemset
mining

Association
rule mining

Apriori Transaction Yes
AprioriTid Transaction Yes
DHP (Direct
Hashing and
Pruning)

Transaction Yes

FDM (Fast
Distributed
Mining of
association rules)

Transaction Yes

GSP (Generalized
Sequential
Patterns)

Sequence Yes

DIC Transaction Yes
Pincer Search
(the Pincer-search
algorithm)

Transaction Yes

CARMA
(Continuous
Association
Rule Mining
Algorithm)

Transaction Yes

Algorithms and Data Structures

[274]

Approach Dataset Sequential
pattern
mining

Sequential
rule
mining

Frequent
itemset
mining

Association
rule mining

CHARM (Closed
Association Rule
Mining)

Transaction Yes
(closed)

Depth-project Transaction Yes
(maximal)

Eclat Transaction Yes
SPAD Sequence Yes
SPAM Sequence Yes
Diffset Transaction Yes
FP-growth Transaction Yes FP-growth
DSM-FI (Data
Stream Mining for
Frequent Itemsets)

Transaction Yes

PRICES Transaction Yes
PrefixSpan Sequence Yes
Sporadic Rules Transaction Yes
IGB Transaction Yes
GenMax Transaction Yes

(maximal)
FPMax (Frequent
Maximal Item Set)

Transaction Yes

FHARM
(Fuzzy Healthy
Association Rule
Mining)

Transaction Yes

H-Mine Transaction Yes
FHSAR Transaction Yes
Reverse Apriori Transaction Yes

(maximal)
DTFIM Transaction Yes
GIT tree Transaction Yes
Scaling Apriori Transaction Yes
CMRules Sequence Yes
Minimum effort Transaction Yes

(maximal)

Appendix

[275]

Approach Dataset Sequential
pattern
mining

Sequential
rule
mining

Frequent
itemset
mining

Association
rule mining

TopSeqRules Sequence Yes
FPG ARM Transaction Yes
TNR Transaction Yes
ClaSP Sequence Yes

(closed)

Index
Symbol
1NN classifier algorithm 238

A
AdaBoost algorithm 119-121
affinity propagation (AP) clustering

about 162-164
R implementation 164
spectral clustering algorithm 165
used, for unsupervised image

categorization 165
agglomerative clustering

about 166
pseudocode 167

A-Priori algorithm
about 37, 44
data structure 45
input data characteristics 45
join action 45
prune action 46
R implementation 47-50
variants 50

association rules
about 42, 43
algorithms, for mining 273
generating, with algorithm 61, 62
R implementation, of algorithm 62, 63

associative classification
about 134, 135
Classification Based on

Association (CBA) 135
Classification Based on Multiple

Association Rules (CMAR) 135
attribute 23

Auto Regressive Integrated Moving
Average (ARIMA) algorithm

about 233-235
future prices, predicting 235

B
backpropagation algorithm. See BP

algorithm
bagging algorithm

about 118, 119
input parameters 119

Balanced Iterative Reducing and Clustering
using Hierarchies algorithm.
See BIRCH algorithm

basket 39
Bayes classification

about 99
likelihood estimation 100, 101
prior probability estimation 100
pseudocode 101
R implementation 102
used, for Trojan traffic identification 99-104

Bayesian belief network algorithm. See BBN
algorithm

Bayesian hierarchical clustering algorithm
about 170
pseudocode 170

BBN algorithm
about 124, 125
biological traits 126
R implementation 126

big data
about 8, 9
data types 8, 9
efficiency 9

[278]

scalability 9
binning 28
BIRCH algorithm

about 167, 168
CF-Tree insertion 167
CF-Tree rebuilding 167
pseudocode 168

Bonferroni's Principle 21
boosting algorithm 119-121
BP algorithm

about 137-139
input parameters 139
parallel version, with MapReduce 141, 142
pseudocode 140
R implementation 141

brute-force algorithm 225

C
C4.5 algorithm

characteristics 89
parallel version, MapReduce 92
pseudocode 90
R implementation 91
used, for web spam detection 88-96

CART algorithm
about 96
characteristics 96
pseudocode 97, 98
R implementation 98
used, for web key resource

page judgment 96-99
categorical attributes

about 25
nominal 25
ordinal 25

CF-Tree 167
chameleon algorithm

about 168
agglomerative hierarchical clustering 169
graph partitioning 168
sparsification 168

Charm algorithm
about 60
R implementation 61

CLARA algorithm
about 159, 160

pseudocode 160
R implementation 160

CLARANS algorithm
about 161
input parameters 161
pseudocode 162
R implementation 162

classification
about 74, 75
training (supervised learning) 74
validation 74

Classification and Regression Trees
algorithm. See CART algorithm

classification-based methods
about 218
OCSVM (One Class SVM) algorithm 218
one-class nearest neighbor

algorithm 219-220
R implementation 220
web server performance, monitoring 220

Classification Based on Association (CBA)
about 135
pseudocode 135

Classification Based on Multiple
Association Rules (CMAR) 135

classification, using frequent patterns
about 134
associative classification 134
discriminative frequent pattern-based

classification 135
R implementation 136
sentential frequent itemsets 136

CLIQUE algorithm
about 187, 188
characteristics 188
pseudocode 188, 189
R implementation 189
web sentiment analysis 189

closed frequent itemsets
mining, with Charm algorithm 60

clustering
about 145
clustering algorithm design 146
cluster validation 146
feature selection 146
result interpretation 146

[279]

clustering algorithm
about 145, 216
hierarchical clustering algorithm 216
k-means algorithm 216, 217
limitations 146, 147
ODIN algorithm 217
R implementation 218
usage 146

CLustering In QUEst algorithm.
See CLIQUE algorithm

Clustering LARge Application algorithm.
See CLARA algorithm

Clustering Large Applications based on
RANdomized Search algorithm.
See CLARANS algorithm

collective outliers
about 223
characteristics 225
route outlier detection (ROD) algorithm 224

Comprehensive R Archive Network
(CRAN) 20

conditional anomaly detection (CAD)
algorithm

about 221-223
R implementation 223

conditional probability tables (CPT) 124
constraint-based frequent pattern

mining 64, 65
contextual outliers

conditional anomaly detection (CAD)
algorithm 221-223

mining 220
continuous, numeric attributes 25
correlation rules 43, 44
credit card fraud detection 204
credit card transaction flow

mining 233
CRM (Customer Relation Management) 243
Cross-Industry Standard Process for Data

Mining (CRISP-DM)
about 11
business understanding phase 12
data preparation phase 12
data understanding phase 12
deployment phase 13
evaluation phase 13
modeling phase 13

Cubic Clustering Criterion 217
CUR decomposition 31
customer purchase data analysis 197

D
Data and Story Library (DASL)

about 10
URL 10

data attributes
about 23, 24
categorical attributes 25
numeric attributes 24

data attributes, views
algebraic or geometric view 24
probability view 24

data classification
linearly separable 128
nonlinearly separable 128

data cleaning
about 27
junk 28
missing values, avoiding 27, 28
noisy data 28
outlier 28

data description
about 23-25
measures of central tendency 25
measures of data dispersion 25

data dimension reduction
about 29
CUR decomposition 31
eigenvalues 30
eigenvectors 30
PCA 30
SVD 30

data discretization
about 31, 32
by binning 32
by cluster analysis 32
by correlation analysis 33
by decision tree analysis 33
by histogram analysis 32

data integration
about 29
issues 29

data measuring 25, 26

[280]

data mining
about 10
feature extraction 11
process 11
statistics 21
summarization 11

Data Quality (DQ) 27
dataset

content-based features 96
link-based features 95

data smoothing
binning 28
classification 28
outlier 28
regression 28

data source
about 10
online resources 10

data transformation
about 31
aggregation 31
attribute construction 31
concept hierarchy generation, for nominal

data 32
discretization 32
normalization 32
normalization methods 32
smoothing 31

DBSCAN algorithm
about 175, 176
characteristics 175
customer categorization analysis, of

e-commerce 178
pseudocode 177

decision tree 76
decision tree induction

about 76-78
algorithm, pseudocode 80, 81
attribute selection measures 78
characteristics 76, 77
R implementation 81, 82
tree pruning 79

decision tree induction, attribute selection
measures

Entropy 78
Gain 78

Gain Ratio 78
Gini Index 79
Information Gain 79
Split Info 79

DENsity-based CLUstEring algorithm
(DENCLUE algorithm)

about 181, 182
density attractor 181
density function 181
gradient 181
influence function 181
pseudocode 183
R implementation 183
visitor analysis, in browser cache 183-185

density-based methods
about 211-213
High Contrast Subspace (HiCS)

algorithm 214
intrusion detection 215
OPTICS-OF algorithm 213, 214
R implementation 215

Density Based Spatial Clustering of
Applications with Noise algorithm.
See DBSCAN algorithm

description length (DL) 111
directed graphs 247
discrete, numeric attributes 25
discriminative frequent pattern-based

classification
about 135
pseudocode 135

disjunctive normal form (DNF) 188
distance-based outlier detection

algorithm 208
divisive clustering 166
document retrieval

with SVM algorithm 134
document text

automatic abstraction, k-medoids algorithm
used 158, 159

Dolphin algorithm 209

E
Eclat algorithm

about 50
R implementation 51, 52

[281]

e-commerce
customer categorization analysis 178

eigenvalues 30
eigenvectors 30
ensemble (EM) methods

about 117
AdaBoost algorithm 119-121
bagging algorithm 118, 119
boosting algorithm 119-121
parallel version, with MapReduce 123
Random forests algorithm 122
R implementation 122
structure 118

Equivalence CLASS Transformation
algorithm. See Eclat algorithm

Expectation Maximization (EM) algorithm
about 192
pseudocode 193
R implementation 193
user search intent, determining 193, 194

F
FCA-based association rule mining

algorithm
R implementation 270
used, for web usage mining 270

feature extraction, examples
frequent itemsets 11
similar items 11

FindAllOutsD algorithm 207
FindAllOutsM algorithm 206
FP-growth algorithm

about 37, 52
data structure 53-56
input data characteristics 53-56
pseudocode 57
R implementation 57

frequent itemset 39, 40
Frequent Itemset Mining Dataset

Repository
about 10
URL 10

frequent patterns
about 38
frequent itemset 38-40

frequent subsequence 38, 41
frequent substructures 38-42

frequent subgraph patterns mining
algorithm

about 248
canonical checking algorithm 251
gPLS algorithm 248
GraphSig algorithm 249
gSpan algorithm 249
R implementation 252
rightmost path extensions 250
subgraph isomorphism enumeration

algorithm 251
frequent subsequence

about 41
examples 41

frequent substructures
about 41
examples 41, 42

future prices
predicting 235

G
generalized sequential patterns algorithm.

See GSP algorithm
GenMax algorithm

about 58
R implementation 59

genre categorization
of web pages 264, 265

graph
about 247
directed graphs 247
undirected graphs 247

graph and network data
clustering 197

Graph-Based Sub-topic Partition Algorithm
(GSPSummary) algorithm 261

graph mining
about 247
algorithms 248

GSP algorithm
features 66
R implementation 69
sequence dataset, mining 66, 67

[282]

H
hError algorithm

about 237
R implementation 238

hierarchical clustering
about 166
agglomerative clustering 166
Bayesian hierarchical clustering

algorithm 170
BIRCH algorithm 167, 168
chameleon algorithm 168, 169
characteristics 166
divisive clustering 166
probabilistic hierarchical clustering

algorithm 170
R implementation 171
used, for news categorization 171, 172
used, for detecting outliers 216

High Contrast Subspace (HiCS)
algorithm 214

high-dimensional data
clustering 194

high-performance algorithms 71
high-value credit card customers

classifying, ID3 algorithm used 82, 83, 88
HilOut algorithm

about 226
R implementation 226

horizontal format 45
hybrid association rules mining

about 64
constraint-based frequent pattern

mining 64, 65
multilevel and multidimensional

association rules mining 64, 65

I
ID3 algorithm

about 82
input parameters 83
output parameter 84
pseudocode 84
R implementation 85
used, for classifying high-value credit card

customers 82, 83, 88
used, for web attack detection 86, 87

Information Retrieval (IR) 17
interval-scaled

dissimilarity 26
intrusion detection 215
Intrusion Detection System (IDS) 86
iterative classification algorithms 254
Iterative Dichotomiser 3 algorithm. See ID3

algorithm

K
k-itemset 39
k-means algorithm

about 148, 149, 216, 217
guidelines 150
kernel k-means algorithm, pseudocode 151
k-modes algorithm 152
parallel version, with MapReduce 153
pseudocode 150
R implementation 152
search engine 148, 154, 155
shortages 149

k-medoids algorithm
about 156
case considerations 156, 157
PAM algorithm 158
R implementation 158
used, for automatic abstraction of document

text 158, 159
k-Nearest Neighbors algorithm

(kNN algorithm)
about 126, 127
pseudocode 127
R implementation 127
used, for protein classification 126

L
likelihood-based outlier detection algorithm

about 204
R implementation 204

Local Outlier Factor (LOF) 212
Local Reachability Density (LRD) 212

M
machine learning

about 18, 22

[283]

architecture 23
batch, versus online learning 23
feature selection 23
statistics 21
training and testing 23
training set, creating 23

machine learning, algorithms
decision tree 22
instance-based learning 23
neural nets 23
perceptron 22
support-vector machines 23

MAFIA algorithm
about 194
customer purchase data analysis 197
pseudocode 194, 195

MapReduce
BP algorithm, parallel version 141, 142
C4.5 algorithm, parallel version 92
EM methods, parallel version 123
k-means algorithm, parallel version 153
SVM algorithm, parallel version 133, 134

market basket analysis
about 44
A-Priori algorithm 44
association rules, generating 61, 62
Charm algorithm 60
Eclat algorithm 50
FP-growth algorithm 52
GenMax algorithm 58
market basket model 44

maximal frequent itemset (MFI)
about 58
mining, with GenMax algorithm 58

Maximal Marginal Relevance (MMR)
algorithm

about 262
R implementation 263

Maximum Likelihood
Estimation (MLE) 192

missing values
avoiding 27, 28
considerations 27

mobile fraud detection 210
multidocument summarization

algorithm 261

multilevel and multidimensional
association rules mining 64, 65

N
Naïve Bayes classification

characteristics 105
pseudocode 105
R implementation 106
used, for identifying spam e-mail 104-107

news categorization
with hierarchical clustering 171, 172

N-gram-based text-categorization algorithm
about 267
pseudocode 267, 268
R implementation 268
used, for categorizing newspaper

articles 265, 266
used, for categorizing newswires 265, 266

NL algorithm 205
nominal attributes

dissimilarity 26
normalization methods, data transformation

min-max normalization 32
normalization by decimal scaling 32
z-score normalization 32

numeric attributes
about 24
interval-scaled 25
ratio-scaled 25

O
OCSVM (One Class SVM) algorithm 218
ODIN algorithm 217
one-class nearest neighbor

algorithm 219, 220
opinion mining 191
OPTICS algorithm

about 178, 179
core-distance of object 178, 179
pseudocode 180
reachability-distance of object 178, 179
R implementation 181
web pages, clustering 181

OPTICS-OF algorithm 213, 214

[284]

ordinal attributes
dissimilarity 26

outlier detection
about 201
brute-force algorithm 225
classification-based methods 218
clustering-based methods 216
density-based methods 211-213
HilOut algorithm 226
in high-dimensional data 225
methods 202
novelty, detecting in text 223
proximity-based methods 205
topic detection 223
with statistical method 202, 203

P
partition-based clustering

about 148
characteristics 148

Partitioning Around Medoids algorithm
(PAM algorithm) 158

patterns
about 38
frequent patterns 38

PrefixSpan algorithm
about 244
R implementation 244

Principal-Component Analysis (PCA) 30
probabilistic hierarchical clustering

algorithm 170
process, data mining

CRISP-DM 11, 12
SEMMA 11, 13, 14

proximity-based methods
about 205
activity monitoring 210
density-based outlier detection

algorithm 205
distance-based outlier detection

algorithm 205, 208
Dolphin algorithm 209
FindAllOutsD algorithm 207
FindAllOutsM algorithm 206
mobile fraud detection 210
NL algorithm 205
R implementation 210

Q
queries

boolean query 17
full document query 18
keyword query 17
natural language questions 18
phrase query 17
proximity query 18

question answering (QA) system 263, 264

R
R

about 20
advantage 20
disadvantage 20
statistics 21
visualization 34

Random forests algorithm 122
recommendation systems 187
Relative Closeness (RC), chameleon

algorithm 169
Relative Interconnectivity (RI), chameleon

algorithm 169
Repeated Incremental Pruning to

Produce Error Reduction
algorithm (RIPPER algorithm)

about 111
pseudocode 112

route outlier detection (ROD) algorithm
about 224
R implementation 225

rule-based classification
about 108, 110
decision tree, transforming into decision

rules 109
player types, classifying in computer

games 113, 114
R implementation 113
RIPPER algorithm 111, 112
sequential covering algorithm 110

rules
association rules 42, 43
correlation rules 42-44
generating, from sequential patterns 71

Proudly sourced and uploaded by [StormRG]

[285]

S
search engine

web page clustering 154, 155
Sample, Explore, Modify, Model, Assess

(SEMMA)
about 11-14
assess 14
explore 13
model 14
modify 13
sample 13

sentential frequent itemsets
used, for text classification 136

sequence dataset
about 66
mining 65, 66
mining, with GSP algorithm 66, 67

sequence patterns
mining 243
PrefixSpan algorithm 244

sequential covering algorithm
about 110
pseudocode 110

Sequential Pattern Discovery using
Equivalent classes algorithm.
See SPADE algorithm

shingling algorithm 252
single-pass-any-time clustering

algorithm 232
singular-value decomposition (SVD) 30
social network

characteristics 14
collaboration networks 15
e-mail networks 15
example 16
mining 14
telephone networks 15

social networking service (SNS) 199
social network mining

about 252
community detection 252
iterative classification algorithms 254
node classification 254
R implementation 254
shingling algorithm 252

SPADE algorithm
about 69, 70
features 69
R implementation 70

spam e-mail
identifying, Naïve Bayes

classification used 104-107
spectral clustering algorithm

about 165
pseudocode 165
R implementation 166

squared error-based clustering
algorithm 149

STatistical Information Grid algorithm.
See STING algorithm

statistical method
about 202, 203
credit card fraud detection 204
likelihood-based outlier detection

algorithm 204
statistics

about 20
and R 21
data mining 21
limitations, on data mining 21
machine learning 21

STING algorithm
about 186
characteristics 186
pseudocode 186
recommendation systems 187
R implementation 187

stock market data 239
STREAM algorithm

about 230
credit card transaction flow 233
pseudocode 231
R implementation 232
used, for mining stream data 230

Structural Clustering Algorithm for
Network (SCAN) algorithm

about 197
pseudocode 198
R implementation 198
social networking service (SNS) 199

summarization, data mining 11

[286]

Support Vector Machine algorithm.
See SVM algorithm

SURFING algorithm
about 196
pseudocode 196
R implementation 197

SVM algorithm
about 127-129
parallel version, with MapReduce 133, 134
pseudocode 130-132
R implementation 132
used, for document retrieval 134

symbolic sequences
mining 239

T
Term Frequency-Inverse Document

Frequency (TF-IDF) 154
text classification

with sentential frequent itemsets 136
text mining

about 17, 257
for prediction 18
Information Retrieval (IR) 17, 18

Text Retrieval Conference (TREC) 107
text summarization

about 258, 259
Maximal Marginal Relevance (MMR)

algorithm 262
multidocument summarization

algorithm 261, 262
topic representation 259-261

time-series data
clustering 236
clustering, with 1NN classifier

algorithm 238
clustering, with hError algorithm 237
mining 233
stock market data 239

Time To Live (TTL) 104
topic detection 223
topic representation 259-261
topic signature 259

Tracking Evolving Clusters in NOisy
Streams (TECNO-STREAMS)
algorithm

about 239-242
R implementation 243
used, for mining web click streams 243

tree pruning
about 79
post-pruning 79
pre-pruning 79

Trojan horse 102
Trojan traffic identification

with Bayes classification 99-104

U
UCI Machine Learning Repository

about 10
URL 10

undirected graphs 247
unsupervised image categorization

with affinity propagation (AP)
clustering 165

user search intent
determining 193, 194

V
vector-space model 154
vertical format 45
visitor analysis, in browser cache

bounce rate 185
browser type 185
connection speed 185
errors 185
hit 184
IP address 184
Java or Flash-enabled 185
keywords 185
new/return visitors 184
operating system version 185
page views 184
page views per visitor 184
referring pages/sites (URLs) 184

[287]

screen resolution 185
unique visitors 184
visit duration 185
visitor language 184
visitor location 184
visitor paths/navigation 185

visualization
about 33
features 33
with R 34

W
WAVE clustering algorithm

about 189
characteristics 190
opinion mining 191
pseudocode 190
R implementation 191

web attack
detecting, ID3 algorithm used 86, 87
DOS 87
probing 87
R2L 87
U2R 87

web click streams
mining 239, 243

web data mining
about 18, 19, 257
web content mining 18

web structure mining 18
web usage mining 18

web data mining, tasks
information extraction (IE) 19
natural language processing (NLP) 19
question answering 19
resource discovery 19

web key resource page judgment
attributes 99
with CART algorithm 96-99

web logs
used, for web usage mining 268, 269

web pages
clustering 154, 155, 181
genre categorization 264, 265

web sentiment analysis 189
web server

performance, monitoring 220
web spam

cloaking 95
content spam 94
detecting, C4.5 algorithm used 88, 89, 93-96
link spam 94

web usage mining
with FCA-based association rule mining

algorithm 270
with web logs 268, 269

WordNet
URL 10

Thank you for buying
Learning Data Mining with R

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Data Manipulation with R
ISBN: 978-1-78328-109-1 Paperback: 102 pages

Perform group-wise data manipulation and deal with
large datasets using R efficiently and effectively

1. Perform factor manipulation and
string processing.

2. Learn group-wise data manipulation
using plyr.

3. Handle large datasets, interact with database
software, and manipulate data using sqldf.

Big Data Analytics with R and
Hadoop
ISBN: 978-1-78216-328-2 Paperback: 328 pages

Set up an integrated infrastructure of R and Hadoop
to turn your data analytics into Big Data analytics

1. Write Hadoop MapReduce within R.

2. Learn data analytics with R and the
Hadoop platform.

3. Handle HDFS data within R.

4. Understand Hadoop streaming with R.

5. Encode and enrich datasets into R.

Please check www.PacktPub.com for information on our titles

R Statistical Application
Development by Example
Beginner's Guide
ISBN: 978-1-84951-944-1 Paperback: 344 pages

Learn R Statistical Application Development from
scratch in a clear and pedagogical manner

1. A self-learning guide for the user who needs
statistical tools for understanding uncertainty
in computer science data.

2. Essential descriptive statistics, effective data
visualization, and efficient model building.

3. Every method explained through real data
sets enables clarity and confidence for
unforeseen scenarios.

Learning RStudio for R Statistical
Computing
ISBN: 978-1-78216-060-1 Paperback: 126 pages

Learn to effectively perform R development,
statistical analysis, and reporting with the most
popular R IDE

1. A complete practical tutorial for RStudio,
designed keeping in mind the needs of
analysts and R developers alike.

2. Step-by-step examples that apply the
principles of reproducible research and
good programming practices to R projects.

3. Learn to effectively generate reports, create
graphics, and perform analysis, and even build
R-packages with RStudio.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Warming Up
	Big data
	Scalability and efficiency

	Data source
	Data mining
	Feature extraction
	Summarization
	The data mining process
	CRISP-DM
	SEMMA

	Social network mining
	Social network

	Text mining
	Information retrieval and text mining
	Mining text for prediction

	Web data mining
	Why R?
	What is the disadvantage of R?

	Statistics
	Statistics and data mining
	Statistics and machine learning
	Statistics and R
	The limitations of statistics on data mining

	Machine learning
	Approaches to machine learning
	Machine learning architecture

	Data attributes and description
	Numeric attributes
	Categorical attributes
	Data description
	Data measuring

	Data cleaning
	Missing values
	Junk, noisy data, or outlier

	Data integration
	Data dimension reduction
	Eigenvalues and Eigenvectors
	Principal-Component Analysis
	Singular-value decomposition
	CUR decomposition

	Data transformation and discretization
	Data transformation
	Normalization data transformation methods
	Data discretization

	Visualization of results
	Visualization with R

	Time for action
	Summary

	Chapter 2: Mining Frequent Patterns, Associations, and Correlations
	An overview of associations and patterns
	Patterns and pattern discovery
	The frequent itemset
	The frequent subsequence
	The frequent substructures

	Relationship or rules discovery
	Association rules
	Correlation rules

	Market basket analysis
	The market basket model
	A-Priori algorithm
	Input data characteristics and data structure
	The A-Priori algorithm
	The R implementation
	A-Priori algorithm variants

	The Eclat algorithm
	The R implementation

	The FP-growth algorithm
	Input data characteristics and data structure
	The FP-growth algorithm
	The R implementation

	The GenMax algorithm with maximal frequent itemsets
	The R implementation

	The Charm algorithm with closed frequent itemsets
	The R implementation

	The algorithm to generate association rules
	The R implementation

	Hybrid association rules mining
	Mining multilevel and multidimensional association rules
	Constraint-based frequent pattern mining

	Mining sequence dataset
	Sequence dataset
	The GSP algorithm

	The R implementation
	The SPADE algorithm
	The R implementation

	Rule generation from sequential patterns

	High-performance algorithms
	Time for action
	Summary

	Chapter 3: Classification
	Classification
	Generic decision tree induction
	Attribute selection measures
	Tree pruning
	General algorithm for the decision tree generation
	The R implementation

	High-value credit card customers classification using ID3
	The ID3 algorithm
	The R implementation
	Web attack detection
	High-value credit card customers classification

	Web spam detection using C4.5
	The C4.5 algorithm
	The R implementation
	A parallel version with MapReduce
	Web spam detection

	Web key resource page judgment using CART
	The CART algorithm
	The R implementation
	Web key resource page judgment

	Trojan traffic identification method and Bayes classification
	Estimating
	Prior probability estimation
	Likelihood estimation

	The Bayes classification
	The R implementation
	Trojan traffic identification method

	Identify spam e-mail and Naïve Bayes classification
	The Naïve Bayes classification
	The R implementation
	Identify spam e-mail

	Rule-based classification of player types in computer games and rule-based classification
	Transformation from decision tree to decision rules
	Rule-based classification
	Sequential covering algorithm
	The RIPPER algorithm
	The R implementation

	Rule-based classification of player types in computer games

	Time for action
	Summary

	Chapter 4: Advanced Classification
	Ensemble (EM) methods
	The bagging algorithm
	The Boosting and AdaBoost algorithms
	The Random forests algorithm
	The R implementation
	Parallel version with MapReduce

	Biological traits and the Bayesian belief network
	The Bayesian belief network (BBN) algorithm
	The R implementation
	Biological traits

	Protein classification and the k-Nearest Neighbors algorithm
	The kNN algorithm
	The R implementation

	Document retrieval and Support Vector Machine
	The SVM algorithm
	The R implementation
	Parallel version with MapReduce
	Document retrieval

	Classification using frequent patterns
	The associative classification
	CBA

	Discriminative frequent pattern-based classification
	The R implementation
	Text classification using sentential frequent itemsets

	Classification using the backpropagation algorithm
	The BP algorithm
	The R implementation
	Parallel version with MapReduce

	Time for action
	Summary

	Chapter 5: Cluster Analysis
	Search engines and the k-means algorithm
	The k-means clustering algorithm
	The kernel k-means algorithm
	The k-modes algorithm
	The R implementation
	Parallel version with MapReduce
	Search engine and web page clustering

	Automatic abstraction of document texts and the k-medoids algorithm
	The PAM algorithm
	The R implementation
	Automatic abstraction and summarization of document text

	The CLARA algorithm
	The CLARA algorithm
	The R implementation

	CLARANS
	The CLARANS algorithm
	The R implementation

	Unsupervised image categorization and affinity propagation clustering
	Affinity propagation clustering
	The R implementation
	Unsupervised image categorization
	The spectral clustering algorithm
	The R implementation

	News categorization and hierarchical clustering
	Agglomerative hierarchical clustering
	The BIRCH algorithm
	The chameleon algorithm
	The Bayesian hierarchical clustering algorithm
	The probabilistic hierarchical clustering algorithm
	The R implementation
	News categorization

	Time for action
	Summary

	Chapter 6: Advanced Cluster Analysis
	Customer categorization analysis of e-commerce and DBSCAN
	The DBSCAN algorithm
	Customer categorization analysis of e-commerce

	Clustering web pages and OPTICS
	The OPTICS algorithm
	The R implementation
	Clustering web pages

	Visitor analysis in the browser cache and DENCLUE
	The DENCLUE algorithm
	The R implementation
	Visitor analysis in the browser cache

	Recommendation system and STING
	The STING algorithm
	The R implementation
	Recommendation systems

	Web sentiment analysis and CLIQUE
	The CLIQUE algorithm
	The R implementation
	Web sentiment analysis

	Opinion mining and WAVE clustering
	The WAVE cluster algorithm
	The R implementation
	Opinion mining

	User search intent and the EM algorithm
	The EM algorithm
	The R implementation
	The user search intent

	Customer purchase data analysis and clustering high-dimensional data
	The MAFIA algorithm
	The SURFING algorithm
	The R implementation
	Customer purchase data analysis

	SNS and clustering graph and network data
	The SCAN algorithm
	The R implementation
	Social networking service (SNS)

	Time for action
	Summary

	Chapter 7: Outlier Detection
	Credit card fraud detection and statistical methods
	The likelihood-based outlier detection algorithm
	The R implementation
	Credit card fraud detection

	Activity monitoring – the detection of fraud involving mobile phones and proximity-based methods
	The NL algorithm
	The FindAllOutsM algorithm
	The FindAllOutsD algorithm
	The distance-based algorithm
	The Dolphin algorithm
	The R implementation
	Activity monitoring and the detection of mobile fraud

	Intrusion detection and density-based methods
	The OPTICS-OF algorithm
	The High Contrast Subspace algorithm
	The R implementation
	Intrusion detection

	Intrusion detection and clustering-based methods
	Hierarchical clustering to detect outliers
	The k-means-based algorithm
	The ODIN algorithm
	The R implementation

	Monitoring the performance of the web server and classification-based methods
	The OCSVM algorithm
	The one-class nearest neighbor algorithm
	The R implementation
	Monitoring the performance of the web server

	Detecting novelty in text, topic detection, and mining contextual outliers
	The conditional anomaly detection (CAD) algorithm
	The R implementation
	Detecting novelty in text and topic detection

	Collective outliers on spatial data
	The route outlier detection (ROD) algorithm
	The R implementation
	Characteristics of collective outliers

	Outlier detection in high-dimensional data
	The brute-force algorithm
	The HilOut algorithm
	The R implementation

	Time for action
	Summary

	Chapter 8: Mining Stream, Time-series, and Sequence Data
	The credit card transaction flow and STREAM algorithm
	The STREAM algorithm
	The single-pass-any-time clustering algorithm
	The R implementation
	The credit card transaction flow

	Predicting future prices and time-series analysis
	The ARIMA algorithm
	Predicting future prices

	Stock market data and time-series clustering and classification
	The hError algorithm
	Time-series classification with the 1NN classifier
	The R implementation
	Stock market data

	Web click streams and mining symbolic sequences
	The TECNO-STREAMS algorithm
	The R implementation
	Web click streams

	Mining sequence patterns in transactional databases
	The PrefixSpan algorithm
	The R implementation

	Time for action
	Summary

	Chapter 9: Graph Mining and Network Analysis
	Graph mining
	Graph
	Graph mining algorithms

	Mining frequent subgraph patterns
	The gPLS algorithm
	The GraphSig algorithm
	The gSpan algorithm
	Rightmost path extensions and their supports
	The subgraph isomorphism enumeration algorithm
	The canonical checking algorithm
	The R implementation

	Social network mining
	Community detection and the shingling algorithm
	The node classification and iterative classification algorithms
	The R implementation

	Time for action
	Summary

	Chapter 10: Mining Text and Web Data
	Text mining and TM packages
	Text summarization
	Topic representation
	The multidocument summarization algorithm
	The Maximal Marginal Relevance algorithm
	The R implementation

	The question answering system
	Genre categorization of web pages
	Categorizing newspaper articles and newswires into topics
	The N-gram-based text categorization
	The R implementation

	Web usage mining with web logs
	The FCA-based association rule mining algorithm
	The R implementation

	Time for action
	Summary

	Appendix: Algorithms and Data Structures
	Index

