
www.allitebooks.com

http://www.allitebooks.org

Learning Devise for Rails

Use Devise to make your Rails application accessible,

user friendly, and secure

Haiz

Nia Mutiara

Giovanni Sakti

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Learning Devise for Rails

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2013

Production Reference: 1181013

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-704-4

www.packtpub.com

Cover Image by Suresh Mogre (suresh.mogre.99@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Authors

Haiz

Nia Mutiara

Giovanni Sakti

Reviewers

Philip Hallstrom

Andrew Montgomery-Hurrell

Akshay Surve

Acquisition Editors

Nikhil Karkal

Taron Pereira

Commissioning Editor

Neil Alexander

Technical Editors

Jalasha D'costa

Tarunveer Shetty

Copy Editors

Mradula Hegde

Dipti Kapadia

Sayanee Mukherjee

Project Coordinator

Amigya Khurana

Proofreader

Linda Morris

Indexer

Mehreen Deshmukh

Production Coordinator

Aparna Bhagat

Cover Work

Aparna Bhagat

www.allitebooks.com

http://www.allitebooks.org

About the Authors

Haiz majored in Informatics Engineering at Bandung Institute of Technology,
Bandung. He graduated in 2008. In his study period, he spent most of his time
researching user interaction. It was a bit contradictive because he worked mainly
in backend programming after he graduated. Most of his research was about
ActionScript, PHP, and Javascript. About 2 years later, he came across Ruby on Rails,
which sparked a lot more interest in web development. His interest was magniied
after he took on the role of Chief Technology Oficer in a startup (Wiradipa
Nusantara) he built with his friends. Since then, most of his time was contributed to
research on Ruby, Ruby on Rails, and web performance. He blogs extensively about
Ruby and Ruby on Rails at http://hafizbadrie.wordpress.com. He has written a
lot about best practices for using Ruby on Rails and also about web performance.

Currently, he is a Lead Developer in The Jakarta Post Digital while maintaining
his startup as a CTO in Wiradipa Nusantara. In recent days, he is paying more
attention to the development of web performance from the server side with Ruby,
the client side with JavaScript, and any other related strategy. He is a member of
id-ruby (http://id-ruby.org), an Indonesian community that talks about Ruby
and is also a member of Card to Post (http://www.cardtopost.com), an Indonesian
community that mainly talks about postcards.

My sincere gratitude to Allah. An article on Standard Widget Toolkit
(SWT) brought Ashish Bhanushali to my blog and that's where the
offer for this book came from. I'd like to thank the Packt Publishing
team for their patience and hard work and Giovanni and Nia for
making a good team—we should do this again sometime. I also
want to thank my father, mother, brothers, Adelia, and all of the
team in Wiradipa Nusantara for your support. I dedicate this book
to all developers—not just Ruby on Rails developers—and hope it is
useful to everyone who reads it.

www.allitebooks.com

http://www.allitebooks.org

Nia Mutiara is a software engineer working on a virtual stock gaming iOS
application, as well as its server-side web application. For two years, she worked on
complex Ruby on Rails and iOS applications. She is a master of JavaScript and CSS,
and has used those skills to enhance most web applications that she has worked on.
In her spare time, she hangs around Twitter, writes Ruby tutorials in Indonesian, and
watches comedy.

Giovanni Sakti has been a developer for 10 years with an emphasis on
developing web applications in Java and Ruby. His latest projects and research are
focused on API-based web applications with AngularJS as the client-side framework.

He is an active member of the Indonesian Ruby (id-ruby) community and
sometimes gives talks about Ruby-related topics there. He writes regularly on
his blog —http://mightygio.com— primarily about Ruby, Rails, AngularJS,
and other programming topics.

Giovanni is the founder of PT. Starqle Indonesia, a Jakarta-based company
providing products, IT consulting, and development services with a focus
on the healthcare industry.

I would like to thank Haiz and Nia for giving me the opportunity
to write this book together. I would also like to dedicate this book to
my wife, Elvira, and to my grandmother, father, mother, and sisters,
Emmy, Tri, Tina, and Livia. Lastly, I want to send my regards to
everyone who shares the same dreams at PT. Starqle Indonesia.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Philip Hallstrom has been building web applications for the last 19 years. He
enjoys working in the world of open source, particularly with Linux, Ruby, Rails,
and PostgreSQL. He lives in Olympia, WA with his wife and two boys. When he's
not on the golf course, Philip is the CTO for Supreme Golf, a startup looking to make
it easy for golfers to ind the best tee times available. You can ind him online at
http://pjkh.com.

Andrew Montgomery-Hurrell is a software developer, hacker, and all-round
geek who enjoys everything from Dungeons and Dragons to DevOps. At an early
age, he was fascinated with computers, and after cutting his teeth on BASIC with
older models of Amstrad CPCs and Amigas, he moved on to Linux admin, C/
C++, and then later to Python and Ruby. Since the early 2000s, he has worked on
a number of web applications in a range of languages and technologies from small
company catalog sites to large web applications serving thousands of people across
the globe. Trained and interested in computing "from the bottom up", Andrew has
experience in the full stack of computing technology—from ASICs to applications—
coming from a background in electronics and computer interfacing.

When he isn't working on web applications or infrastructure tools for gaming events
by hosting company, Multiplay, he can be found hacking code, reading or writing
iction, playing computer games, or slaying dragons with his wife, Laura.

www.allitebooks.com

http://www.allitebooks.org

Akshay Surve is in pursuit of making a difference through his initiatives, be
it for proit or for good. He has a deep understanding of the Consumer Internet,
Advertising, and Technology domains having worked with high-growth startups
globally. At heart, he is a midnight code junkie and occasionally dabbles in prose.
When not with his MacBook, he can either be found preparing for the next marathon
or disappearing into the wilderness. He was once seen taking a leap from a mountain
top and soaring through the skies solo in what looked like an elongated umbrella
from afar.

He is the co-founder of DeltaX (http://www.deltax.com), where he is building "The
Advertising Cloud" for advertising agencies and advertisers to eficiently buy, track,
attribute, optimize, and report media across the marketing segments—search, social,
display, RTB, mobile, and video.

You can connect with him on Twitter (https://twitter.com/akshaysurve),
LinkedIn (http://www.linkedin.com/in/akshaysurve), his personal blog (http://
www.akshaysurve.com), or Quora (http://www.quora.com/Akshay-Surve).

Akshay also self-published a book in 2012 entitled Words are all I have (http://goo.
gl/x2aCmV), which is a collection of his short poems.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support iles, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support iles and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub iles available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read and search across Packt's entire library
of books.

Why Subscribe?
• Fully searchable across every book published by Packt

• Copy and paste, print and bookmark content

• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

Preface 1

Chapter 1: Devise – Authentication Solution for Ruby on Rails 7

Devise modules 7

Installation 9

Run your irst application with Devise 12
Summary 14

Chapter 2: Authenticating Your Application with Devise 15

Signing in using authentication other than e-mails 15

Updating the user account 21
Signing up the user with conirmation 24
Resetting your password 26
Canceling your account 27
Customizing Devise actions and routes 28
Customizing your Devise layout 31
Integrating Devise with Mongoid 36
Summary 39

Chapter 3: Privileges 41

CollabBlogs – a web application for collaborative writing 41
Advanced CanCan usages 46

Deining rules using SQL 46
Simplifying authorization checks on controllers 49
Ensuring abilities' correctness 50

Testing 50

Debugging 50

Summary 51

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 4: Remote Authentication with Devise and OmniAuth 53
Remote authentication 53
OmniAuth 54

Implementing remote authentication in our application 55

Preparing your application 55

Remote authentication using Twitter 56
Registering our application at the Twitter developer site 56
Coniguring OmniAuth for authentication using Twitter 60

Remote authentication using Facebook 67
Registering our application at the Facebook developer site 67
Coniguring OmniAuth for authentication using Facebook 70

Summary 71

Chapter 5: Testing Devise 73
The sign-up test 74

The user update test 75

The user deletion test 77

The sign-in test 78
The Remote authentication test 80
Summary 85

Index 87

Preface
Imagine that you create a cool Rails web application that does different things
for different users. To do so, your application needs to be able to identify users
(at least users who are logged in versus anonymous visitors) to restrict its many
functionalities. Before building your core Rails application logic, you will need a few
authentication-related features working, that is, sign-up, sign-in, sign-out, remember
me, and password reset features. In future, you will want to integrate the login with
social networking sites such as Facebook or Twitter, so that your users will not need
to retype all their details when signing up for, or signing in, to your web application.

You get so excited with your Rails web application idea that you start searching
online for authentication solutions. Spending your time around the Internet, you
ind two choices; you can roll your own authentication or pick a gem that does
authentication. After weighing these choices, you realize that you need a solution
that works straight away. There are multiple gems that you can pick, such as Devise,
Sorcery, and AuthLogic. Considering that you want to add a social networking sign
in and manage user restrictions, you want the solution to work well with the features
you will add in the future.

You can get Devise (https://github.com/plataformatec/devise), one of the
most popular authentication solutions for Rails. It is a one-stop authentication
solution that works right away. It also works neatly with other gems to help you
with social networking sign in and restricting resources for different users.

In this book, you will ind your all-in-one guide to learn implementation of user
authentication using Devise. Through a series of hands-on instructions and code
examples, this book will explain how Devise saves you from having to implement
different types of authentication (for example, logging in, logging out, and password
resets). You will learn how lexible, customizable, and testable Devise is. This
book will also show you how using Devise, together with other gems, can help you
deine user privileges to restrict resources and integrate a social network login with
your application.

Preface

[2]

What this book covers
Chapter 1, Devise – Authentication Solution for Ruby on Rails, introduces Devise as one
of the most modular, customizable authentication solutions for your Rails project. It
will cover Devise setup to allow quick user login for your Rails project via e-mail.

Chapter 2, Authenticating Your Application with Devise, digs Devise customizability
further down. This chapter explains the overriding of Devise controllers to tailor
different needs. You will also discover how to leverage default Devise authentication
view templates such as views for sign-in, edit account, and sign-up.

Chapter 3, Privileges, explains four simple steps to take advantage of the CanCan
gem for deining authorization rules on what users can and cannot do on different
controllers and views. It will then cover other ways to use CanCan for complex
authorization rules.

Chapter 4, Remote Authentication with Devise and OmniAuth, teaches you how to enable
remote authentication in your application using OmniAuth. Remote authentication
provides users with the ability to sign in using third-party accounts such as Twitter
and Facebook, instead of the typical username and password combination. This
feature is important when you want to simplify the authentication process in your
application.

Chapter 5, Testing Devise, shows you ways of testing your Devise-related code to
ensure that your Rails web application is working as expected. Tests are useful for
maintaining your application, especially when you expect to add lots of functionalities.

What you need for this book
As this book will guide you through plenty of hands-on examples, you should
make sure that you prepare your computer for trying out the examples. One
of the following operating systems is recommended:

• Ubuntu, Linux, or any UNIX-compatible OS (any version)

• Mac OS X (10.6 or higher)

• Microsoft Windows (XP or higher)

In addition, one of the following database engines should be installed on
your computer:

• MySQL (latest version)

• SQLite (latest version)

• MongoDB (latest version)

Preface

[3]

Lastly, you should have the following version of Ruby on Rails installed:

• Ruby (2.0.0 or higher)

• Rails (4.0 or higher)

Who this book is for
This book is for web developers who are getting started with Rails and are looking
for authentication solutions, as well as for Rails developers who are looking to
extend their implementation of authentication with capabilities such as authorization
and remote authentication. A fundamental understanding of Rails is required;
readers should already be familiar with a few important Rails components such as
bundler, migrations, models, views, and controllers. Basic knowledge of relational
databases such as Ruby, HTML, and CSS is also required.

Conventions
In this book, you will ind a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows:

"The irst thing that should be done is to add a devise gem to your Gemfile ile."

A block of code is set as follows:

class User < ActiveRecord::Base

Include default devise modules. Others available

are:

:token_authenticatable, :encryptable,

:confirmable, :lockable, :timeoutable and

:omniauthable

devise :database_authenticatable, :registerable,

:recoverable, :rememberable, :trackable,

:validatable

end

Preface

[4]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

class HomeController < ApplicationController

before_filter :authenticate_user!

def index

end

end

Any command-line input or output is written as follows:

$ rails generate controller home index

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Very often,
when you visit the login page of a website, you will see the text Remember Me with
a checkbox beside it."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Preface

[5]

Downloading the example code
You can download the example code iles for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the iles e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you ind a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you ind any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are veriied, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Devise – Authentication

Solution for Ruby on Rails
It was around 2 months ago that I started to dig deep into Ruby on Rails, when I
needed a plugin to handle authentication. That time, Ruby on Rails 3 was newly
published, when so many gems still hadn't updated their compatibility to Rails
update, including Authlogic. Authlogic was the irst authentication gem that I used
as an authentication plugin, but I couldn't use it anymore since I had to use Rails 3 in
my project. That moment brought me to Devise. Devise was already compatible to
Rails 3 and so my research began. The research concluded:

• Devise was very easy to use. The modules were developed in a very
good structure.

• Devise provided 11 modules that I could use to authenticate my application.

• Devise allowed me to customize some of its modules to meet my
application requirement.

These are the reasons that strongly inluenced me to develop an application with
Devise. It saved my time from developing new authentication modules from
scratch. Now, we have reached Ruby on Rails 4; Devise was quickly updated
so that developers could use it within the new Rails environment.

Devise modules
What makes Devise truly interesting is its modularity. The following modules are
provided by Devise:

• Database Authenticatable: This module will encrypt and store a password
in the database to validate the authenticity of a user while signing in. The
authentication can be done both through POST requests or HTTP Basic
Authentication. This is the basic module to perform authentication
with Devise.

Devise – Authentication Solution for Ruby on Rails

[8]

• Token Authenticatable: This module enables users to sign in based on an
authentication token. The token can be given through query strings or HTTP
Basic Authentication.

• Omniauthable: Attach OmniAuth support to Devise. By turning this
module on, your application will allow the user to sign in with external
accounts such as Facebook and Twitter. We will talk about this in more
detail in Chapter 3, Privileges.

• Conirmable: Attach this module to enable the conirmation mechanism.
So, Devise will send an e-mail with a conirmation instruction and verify
whether an account is already conirmed during the sign-in process.

• Recoverable: There are times when users forget their passwords and need
to recover it. This module is the answer for that need. Devise will allow the
user to reset passwords and it will send the user the instructions via e-mail.

• Registerable: You can control whether or not your application provides the
registration mechanism by using this module. This module is also used to
allow users to edit and destroy their accounts.

• Rememberable: It's very often, when you visit a login page of a website,
you will see a sentence, Remember Me, with a checkbox beside it. It will be
used to remember the logged-in user by storing a cookie. In Devise, you can
implement this method by attaching this module.

• Trackable: For certain websites, the sign-in tracker is very useful. The data
can be very helpful to retrieve some information. If you choose Devise to
handle your authorization mechanisms, you will be able to do it. Devise
provides this module to track sign-in processes, so a user can collect
information regarding sign-in count, timestamps, and the IP address.

• Timeoutable: This module is used to limit the session, so it will expire in a
speciied period of time if it has no activity.

• Validatable: This module provides the basic validation for e-mail and
password. The validations can be customized, so you're able to deine
your own validations.

• Lockable: If you are willing to add more security to your application, this
module could be very handy. Lockable will manage the maximum count
of failed sign-in attempts. When it reaches the maximum number, Devise
will lock the account. The user can unlock it via e-mail or after a speciied
time period.

These 11 modules are the essence of Devise. With these modules, you can do anything
related to application authorization, which is very useful in modern applications.

Chapter 1

[9]

Installation
We are going to learn how to install this interesting authorization plugin to your
Rails application. For your information, this is the speciication of application
sample that I used:

• Rails 4 (4.0.0)

• Devise 3 (3.0.3)

• SQLite 3 (1.3.8)

Let's create our Rails application by executing this command:

$ rails new learning-devise

The irst thing that should be done is you need to add the Devise gem to your Gemfile.

gem 'devise'

To make sure that everything is installed properly, you can execute the following
command inside your Rails application folder:

$ bundle install

The command will install the Devise gem, and now you have to install the
coniguration iles for Devise. You can install it all at once by executing the
following command:

$ rails generate devise:install

The result of the command is shown in the following screenshot:

Devise installation

www.allitebooks.com

http://www.allitebooks.org

Devise – Authentication Solution for Ruby on Rails

[10]

As you can see from the screenshot, Devise generates two new iles in your Rails
application. Those two iles are:

• devise.rb: This ile is located at config/initializers/devise.rb and will
be used as the Devise main coniguration ile.

• devise.en.yml: This ile is located at config/locales/devise.en.yml and
it will be used as an internationalization ile for English language.

Not just generating iles, the installation command also prints some information that
will be useful for our complete Devise setup. This information will tell us about:

• The basic URL coniguration that applies to every environment setting. The
code shown in the screenshot should be added to the environment settings,
so that Devise will acknowledge the application URL which is used in its
autogenerated e-mail. Especially for production, the host value should be
illed with your actual application domain.

• The route setting that you need to add to your config/routes.rb ile. By
deining your root URL, Devise will use it for its redirection. For example,
Devise will redirect the user to the root URL after they sign out from
the application.

• Devise helpers that can be used to generate errors or warning messages when
there's something wrong with the code. This is very useful and you can write
it in your views ile.

• Coniguration that you need to add when deploying to Heroku. I'm not
going to discuss about it in this book.

• How to generate copies of Devise views, so that you can customize it
later. We will see how it works in Chapter 2, Authenticating Your Application
with Devise.

The next step is generating a Devise model. Let's name our Devise model as user. For
your information, this model name can be replaced with any name you wish. This
name also determines the Devise helper's name. We will see how we use it later in
this chapter. To generate the Devise model, you can execute the following command:

$ rails generate devise user

Chapter 1

[11]

The result of this command can be seen in the following screenshot:

Generate Devise model

Based on the previous screenshot, Devise generates four kinds of iles:

• The irst kind is used as a migration ile. This ile is shown as db/
migrate/20130915133401_devise_create_users.rb. Like the other
migration iles, it is used to generate tables in our database.

• A model ile that is shown as app/models/user.rb.

• A test ile that is shown as test/models/user_test.rb. This ile is used to
perform testing. We will discuss this topic in Chapter 5, Testing Devise.

• A ixture ile that is shown as test/fixtures/users.yml. This ile is used
to perform testing. We will discuss this topic in Chapter 5, Testing Devise.

The command also modiies the model ile to attach the default modules and the
route ile (routes.rb). Devise modiies the route so the application recognizes
some routes generated by Devise. This is the code which is added by Devise to
the route ile:

devise_for :users

Now, let's open a user model ile (user.rb) and you're going to see this code:

class User < ActiveRecord::Base

Include default devise modules. Others available

are:

:token_authenticatable, :encryptable,

:confirmable, :lockable, :timeoutable and

:omniauthable

devise :database_authenticatable, :registerable,

:recoverable, :rememberable, :trackable,

:validatable

end

Devise – Authentication Solution for Ruby on Rails

[12]

From the code, we will know that Devise will attach some default modules such as
Database Authenticable, Registerable, Recoverable, Rememberable, Trackable, and
Validatable. As I wrote earlier in this chapter, I suppose you already knew what the
modules are for.

At this point, you have prepared all the basic settings that a Rails application needs
to implement Devise. So, the next step is creating the table on your database by
migrating the migration ile. If you don't make any change to the Devise migration
ile, it means Devise will only generate columns for its default modules. But, if you
make some changes like commenting on other modules such as t.encryptable,
t.confirmable, t.lockable, and t.tocken_authenticatble, you will have extra
columns in your user's table that will handle some speciic Devise modules. So, it
depends on your requirement whether you are going to use the modules or not.

We have prepared our migration ile, now let's create the table. I presume that
you already have the database and have prepared the database coniguration at
config/database.yml. If so, all you need to do is execute this command:

$ rake db:migrate

Now, you have prepared everything to make Devise run smoothly on your Rails
application. But, there's one more thing that I want to show you. It's about how to
wrap controllers with your authorization and see it in action.

Run your irst application with Devise
In this section, we are going to talk about how to wrap your controllers with Devise
authorization and use some Devise helper in your views. First, I want to generate a
single controller by executing this command:

$ rails generate controller home index

This command will generate the controller (home_controller.rb) with an action
named index. It also generates a view ile located at views/home/index.html.erb.
Let's start by opening the controller ile and add a code (:authenticate_user!)
between class deinition and irst action deinition. Why :authenticate_user!? As
I stated before, we have our Devise model named as user and this code is one of the
Devise helpers that I meant. So, in the future, when you have a Devise model with
a different name, you can change the user part in the code with your actual model
name. According to our example, the controller code will be like the following:

class HomeController < ApplicationController

before_filter :authenticate_user!

Chapter 1

[13]

def index

end

end

By adding the highlighted code, your Rails application will run the controller ilter,
which is executed before executing all the actions deined in the controller. You can
also modify the ilter so that it will be executed only for all actions using :only or
:except code. By adding this code, you will be able to deine which actions should
be authorized and which should not. For example, it will be like the following code:

class HomeController < ApplicationController

 before_filter :authenticate_user!, :only => [:index, :new]

 def index

 end

 def new

 end

 def edit

 end

end

The code shows that the actions index and new are authorized, so users need to sign
in before getting into the action page.

Now, let's start our Rails server by executing the command $ rails server. See it
in action by visiting http://localhost:3000. The application will automatically
redirect you to the sign-in page, like this:

First Devise application

Devise – Authentication Solution for Ruby on Rails

[14]

Now, you have run your irst application with Devise. With current modules, you
can only perform sign-in, sign-up, reset password, remember me action, and sign-in
tracker. We will play with other modules in the next chapters, but before that, I want
to show some Devise's helpers, which are very helpful in view iles. Those helpers
are as follows:

• current_user: This helper will be very useful to get the data model of a
currently logged-in user. With this method, you are able to retrieve data
stored in the database anytime you want it. For example, if I want to get the
e-mail of the current logged-in user, I can retrieve it by calling the method
current_user.email.

• user_signed_in?: This helper returns a Boolean data type, which
determines whether a user is logged-in or not. For example, with this method
you can hide and show sign-out link in your view. Here is the sample code
for this case (app/views/home/index.html.erb):

<h1>Home#index</h1>

<p>Find me in app/views/home/index.html.erb</p>

<% if user_signed_in? %>

 <%= link_to 'Sign Out', destroy_user_session_path, method:
:delete %>

<% end %>

• user_session: This is a session variable that can set anything you want in
a hash format. Actually, this helper contains the subset of the Ruby on Rails
session data. So, the purpose of this helper is to simplify the use of Rails
sessions. Despite using the session variable for every Devise model that
you have, you can utilize the session helper, so the session grouping for your
model will be clear. For example, I want to save a string inside the session
helper, I can do it by writing this code:

user_session[:hello] = "world"

These helpers are the ones that I mentioned before. The actual name is based on your
Devise model name. So, when you create or use another model name, you can use all
these helpers by replacing the user keyword in the helpers name with the one that
you have.

Summary
At this point, you've known how to set up Devise at your Rails application, saw it in
action, and the helpers from Devise. We're going to dig deeper into Devise and I'm
sure, if you've understood all of this, the following chapters will be easier for you.

Authenticating Your

Application with Devise
A "state of the art" application sometimes requires more customizations from Devise,
such as customization for signing in, updating accounts, resetting a user's password,
or account conirmation. When you irst install Devise with its default settings, you
will not get these features. That's why you will need to dig deeper to have a more
comprehensive understanding about Devise.

Signing in using authentication other

than e-mails
By default, Devise only allows e-mails to be used for authentication. For some
people, this condition will lead to the question, "What if I want to use some other
ield besides e-mail? Does Devise allow that?" The answer is yes; Devise allows other
attributes to be used to perform the sign-in process.

For example, I will use username as a replacement for e-mail, and you can change it
later with whatever you like, including userlogin, adminlogin, and so on. We are
going to start by modifying our user model. Create a migration ile by executing the
following command inside your project folder:

$ rails generate migration add_username_to_users username:string

Authenticating Your Application with Devise

[16]

This command will produce a ile, which is depicted by the following screenshot:

The generated migration file

Execute the migrate (rake db:migrate) command to alter your users table, and
it will add a new column named username. You need to open the Devise's main
coniguration ile at config/initializers/devise.rb and modify the code:

config.authentication_keys = [:username]

config.case_insensitive_keys = [:username]

config.strip_whitespace_keys = [:username]

You have done enough modiication to your Devise coniguration, and now you have
to modify the Devise views to add a username ield to your sign-in and sign-up pages.
By default, Devise loads its views from its gemset code. The only way to modify the
Devise views is to generate copies of its views. This action will automatically override
its default views. To do this, you can execute the following command:

$ rails generate devise:views

It will generate some iles, which are shown in the following screenshot:

Devise views files

Chapter 2

[17]

As I have previously mentioned, these iles can be used to customize another view.
But we are going to talk about it a little later in this chapter. Now, you have the
views and you can modify some iles to insert the username ield. These iles are
listed as follows:

• app/views/devise/sessions/new.html.erb: This is a view ile for the
sign-up page. Basically, all you need to do is change the email ield into
the username ield.
#app/views/devise/sessions/new.html.erb

<h2>Sign in</h2>

<%= notice %>

<%= alert %>

<%= form_for(resource, :as => resource_name, :url => session_
path(resource_name)) do |f| %>

<div><%= f.label :username %>

<%= f.text_field :username, :autofocus => true %><div>

<div><%= f.label :password %>

<%= f.password_field :password %></div>

<% if devise_mapping.rememberable? -%>

<div><%= f.check_box :remember_me %> <%= f.label :remember_me %></
div>

<% end -%>

<div><%= f.submit "Sign in" %></div>

<% end %>

%= render "devise/shared/links" %>

You are now allowed to sign in with your username. The modiication will
be shown, as depicted in the following screenshot:

The sign-in page with username

Authenticating Your Application with Devise

[18]

• app/views/devise/registrations/new.html.erb: This ile is a view ile
for the registration page. It is a bit different from the sign-up page; in this ile,
you need to add the username ield, so that the user can ill in their username
when they perform the registration.

#app/views/devise/registrations/new.html.erb

<h2>Sign Up</h2>

<%= form_for() do |f| %>

<%= devise_error_messages! %>

<div><%= f.label :email %>

<%= f.email_field :email, :autofocus => true %></div>

<div><%= f.label :username %>

<%= f.text_field :username %></div>

<div><%= f.label :password %>

<%= f.password_field :password %></div>

<div><%= f.label :password_confirmation %>

<%= f.password_field :password_confirmation %></div>

<div><%= f.submit "Sign up" %></div>

<% end %>

<%= render "devise/shared/links" %>

Especially for registration, you need to perform extra modiications.
Previously, in Chapter 1, Devise – Authentication Solution for Ruby on Rails, we
have talked about mass assignment rules written in the app/controller/
application_controller.rb ile, and now, we are going to modify them
a little. Add username to the sanitizer for sign-in and sign-up, and you will
have something as follows:

#these codes are written inside configure_permitted_parameters
function

devise_parameter_sanitizer.for(:sign_in) {|u| u.permit(:email,
:username)}

devise_parameter_sanitizer.for(:sign_up) {|u|

u.permit(:email, :username, :password, :password_confirmation)}

Chapter 2

[19]

These changes will allow you to perform a sign-up along with the
username data. The result of the preceding example is shown in the
following screenshot:

The sign-up page with username

I want to add a new case for your sign-in, which is only one ield for username
and e-mail. This means that you can sign in either with your e-mail ID or username
like in Twitter's sign-in form. Based on what we have done before, you already have
username and email columns; now, open /app/models/user.rb and add
the following line:

attr_accessor :signin

Next, you need to change the authentication keys for Devise. Open /config/
initializers/devise.rb and change the value for config.authentication_keys,
as shown in the following code snippet:

config.authentication_keys = [:signin]

Let's go back to our user model. You have to override the lookup function that
Devise uses when performing a sign-in. To do this, add the following method inside
your model class:

def self.find_first_by_auth_conditions(warden_conditions)

 conditions = warden_conditions.dup

 where(conditions).where(["lower(username) = :value OR lower(email)
= :value", { :value => signin.downcase }]).first

end

www.allitebooks.com

http://www.allitebooks.org

Authenticating Your Application with Devise

[20]

As an addition, you can add a validation for your username, so it will be case
insensitive. Add the following validation code into your user model:

validates :username, :uniqueness => {:case_sensitive => false}

Please open /app/controller/application_controller.rb and make sure you
have this code to perform parameter iltering:

before_filter :configure_permitted_parameters, if: :devise_controller?

protected

 def configure_permitted_parameters

 devise_parameter_sanitizer.for(:sign_in) {|u| u.permit(:signin)}

 devise_parameter_sanitizer.for(:sign_up) {|u| u.permit(:email,
:username, :password, :password_confirmation)}

end

We're almost there! Currently, I assume that you've already stored an account that
contains the e-mail ID and username. So, you just need to make a simple change in
your sign-in view ile (/app/views/devise/sessions/new.html.erb). Make sure
that the ile contains this code:

<h2>Sign in</h2>

<%= notice %>

<%= alert %>

<%= form_for(resource, :as => resource_name, :url => session_
path(resource_name)) do |f| %>

 <div><%= f.label "Username or Email" %>

 <%= f.text_field :signin, :autofocus => true %></div>

 <div><%= f.label :password %>

 <%= f.password_field :password %></div>

 <% if devise_mapping.rememberable? -%>

 <div><%= f.check_box :remember_me %> <%= f.label :remember_me %></
div>

 <% end -%>

 <div><%= f.submit "Sign in" %></div>

<% end %>

<%= render "devise/shared/links" %>

You can see that you don't have a username or email ield anymore. The ield is now
replaced by a single ield named :signin that will accept either the e-mail ID or the
username. It's eficient, isn't it?

Chapter 2

[21]

Updating the user account
Basically, you are already allowed to access your user account when you activate the
registerable module in the model. To access the page, you need to log in irst and
then go to /users/edit. The page is as shown in the following screenshot:

The edit account page

But, what if you want to edit your username or e-mail ID? How will you do that?
What if you have extra information in your users table, such as addresses, birth
dates, bios, and passwords as well? How will you edit these? Let me show you
how to edit your user data including your password, or edit your user data without
editing your password.

• Editing your data, including the password: To perform this action, the irst
thing that you need to do is modify your view. Your view should contain
the following code:

<div><%= f.label :username %>

<%= f.text_field :username %></div>

Now, we are going to overwrite Devise's logic. To do this, you have to create
a new controller named registrations_controller. Please use the rails
command to generate the controller, as shown:

$ rails generate controller registrations update

Authenticating Your Application with Devise

[22]

It will produce a ile located at app/controllers/. Open the ile and make
sure you write this code within the controller class:

class RegistrationsController < Devise::RegistrationsController

 def update

 new_params = params.require(:user).permit(:email,
 :username, :current_password, :password,
 :password_confirmation)

 @user = User.find(current_user.id)

 if @user.update_with_password(new_params)

 set_flash_message :notice, :updated

 sign_in @user, :bypass => true

 redirect_to after_update_path_for(@user)

 else

 render "edit"

 end

 end

end

Let's look at the code. Currently, Rails 4 has a new method in organizing
whitelist attributes. Therefore, before performing mass assignment
attributes, you have to prepare your data. This is done in the irst line
of the update method.

Now, if you see the code, there's a method deined by Devise named
update_with_password. This method will use mass assignment attributes
with the provided data. Since we have prepared it before we used it, it will
be ine.
Next, you have to edit your route ile a bit. You should modify the rule
deined by Devise, so instead of using the original controller, Devise will use
the controller you created before. The modiication should look as follows:
devise_for :users, :controllers => {:registrations =>
"registrations"}

Downloading the example code

You can download the example code files for all Packt books
you have purchased from your account at http://www.
packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Chapter 2

[23]

Now you have modiied the original user edit page, and it will be a little
different. You can turn on your Rails server and see it in action. The view is
as depicted in the following screenshot:

The modified account edit page

Now, try illing up these ields one by one. If you are illing them with
different values, you will be updating all the data (e-mail, username, and
password), and this sounds dangerous. You can modify the controller to
have better data update security, and it all depends on your application's
worklows and rules.

• Editing your data, excluding the password: Actually, you already have what
it takes to update data without changing your password. All you need to do
is modify your registrations_controller.rb ile. Your update function
should be as follows:

class RegistrationsController < Devise::RegistrationsController

 def update

 new_params = params.require(:user).permit(:email,
 :username, :current_password, :password,
 :password_confirmation)

 change_password = true

 if params[:user][:password].blank?

 params[:user].delete("password")

 params[:user].delete("password_confirmation")

Authenticating Your Application with Devise

[24]

 new_params = params.require(:user).permit(:email,
 :username)

 change_password = false

 end

 @user = User.find(current_user.id)

 is_valid = false

 if change_password

 is_valid = @user.update_with_password(new_params)

 else

 @user.update_without_password(new_params)

 end

 if is_valid

 set_flash_message :notice, :updated

 sign_in @user, :bypass => true

 redirect_to after_update_path_for(@user)

 else

 render "edit"

 end

 end

end

The main difference from the previous code is now you have an algorithm that will
check whether the user intends to update your data with their password or not. If
not, the code will call the update_without_password method. Now, you have codes
that allow you to edit with/without a password. Now, refresh your browser and try
editing with or without a password. It won't be a problem anymore.

Signing up the user with conirmation
Why does an application need to have an account conirmation? Actually, it's
because the application needs the e-mail to be real, so that it can be used for future
requirements. So, if one day you decide that you want to give a newsletter to your
users periodically, you can consider applying this method to your application.

It's very simple to apply this method. You just need to activate the :confirmable
module and have access to a mail server. The access is used to send a conirmation
e-mail to the user, and for this example, I will show you how to use Gmail as your
mail server.

Chapter 2

[25]

You need to deine the connection settings in your application. Because we are in the
development environment, you can open the config/environments/development.
rb ile and add this code:

config.action_mailer.delivery_method = :smtp

config.action_mailer.perform_deliveries = true

config.action_mailer.raise_delivery_errors = true

config.action_mailer.smtp_settings = {

 :address => "smtp.gmail.com",

 :port => 587,

 :domain => "gmail.com",

 :user_name => <your_gmail_user_name>,

 :password => <your_gmail_password>,

 :authentication => 'plain',

 :enable_starttls_auto => true

}

Next, modify your model ile and add a module, so your model ile will be as follows:

class User < ActiveRecord::Base

 devise :database_authenticatable, :registerable, :recoverable,
 :rememberable, :trackable, :validatable, :confirmable

end

It's almost done. Now, create a migration ile and modify it so that the content will be
as follows:

class AddConfirmableToUsers < ActiveRecord::Migration

 def up

 add_column :users, :unconfirmed_email, :string

 add_column :users, :confirmation_token, :string

 add_column :users, :confirmed_at, :string

 add_column :users, :confirmation_sent_at, :datetime

 add_index :users, :confirmation_token, :unique => true

 User.update_all(:confirmed_at => Time.now) #your current data
will be treated as if they have confirmed their account

 end

 def down

 remove_column :users, :unconfirmed_email,
 :confirmation_token, :confirmed_at, :confirmation_sent_at

 end

end

Authenticating Your Application with Devise

[26]

Execute the rake db:migrate command and your users table will be altered and
ready to carry out the conirmation mechanism.

Now, run your Rails server and go to the registration page. Try registering a new
account and see how it goes. Your application will send you an e-mail containing a
link to conirm your account.

Resetting your password
"Oh my God! I forgot my password. How can I log in to the site?" It's very common
that people forget the passwords of certain applications, and it will be a disaster if
the application doesn't provide you with a feature to reset or create a new password.
Resetting passwords has become a very important feature, and Devise provides it in
an easy way.

To activate this module, your model should have the recoverable module in its
Devise settings. Since this module requires a connection to an e-mail server, you
will also need to deine the coniguration in order to establish a connection to a mail
server. This can be done in the environment's coniguration iles as well. Fortunately,
we don't need to worry because we have already met the requirement. So, you
can directly go to your sign-in page and you will see a link labeled Forgot your
password?. Click on it, ill in the E-mail ield, and reset the password. In a moment,
you will receive an e-mail sent by the Devise module. The e-mail will contain a link,
which will bring you to a page, as shown in the following screenshot:

The change password page

Now, you can ill in your new password and submit it. Once you've submitted your
new password, you'll be signed in again.

Chapter 2

[27]

Canceling your account
Previously, we learned about how to update an account, register an account with a
conirmation, and reset an account's password. Now, it's time for us to learn how to
cancel an account.

This feature is provided to delete an account so that it won't be accessible anymore.
By default, Devise provides this feature, and it can be accessed through the user
edit page. As shown in the Edit User page, you can see a button labeled Cancel my
account. If you press this button, Devise will delete your data from the database. So,
if you want to access the application, you need to sign up again.

For some websites, data is like a treasure. Many websites don't perform deletions
because they don't want to delete any data stored in their database. Instead of
deleting it physically, the application will only change the lag of a data. Let's say, I
have a user account that has a data lag, published. When I delete it, I don't delete
the data but I change the lag of the data to deleted. But now, the question is how
does Devise perform this method? Perform the following steps to know:

1. Create a migration ile that will add a new column in the users table named
is_active with the type, integer.

2. Add a method named destroy in registration_controller.rb, so it will
contain the following code:

def destroy

 @user = User.find(current_user.id)

 @user.is_active = 0

 if @user.save

 sign_out @user

 redirect_to root_path

 else

 render "edit"

 end

end

3. Now, reload the user edit page and click on the Cancel Account button. You
will be brought to the main page, but this time your data will not be deleted.
It's now lagged with zero (0).

This is an example of many possibilities to be implemented as a replacement for data
deletion. So, it depends on what you want to develop in your application.

Authenticating Your Application with Devise

[28]

Customizing Devise actions and routes
We have learned all the basic features that are commonly used in an application.
Some of them are minimally customized and some of them are used as is. Maybe
now is the time for you to wonder, "What if I want to customize Devise's actions,
so that I can inject extra codes to do anything I want?" So, let's step forward to
customize Devise's actions.

Technically, to perform action customizations, we need to create a controller that
inherits Devise's controllers. It would be wise if you have a look at all of Devise's
controllers irst before we start this part, as shown at https://github.com/
plataformatec/devise/tree/master/app/controllers/devise. So, when you
start making some customizations, you will understand why you do it that way.
However, I'm not going to tell you about the best practices of these customizations;
I will only tell you the basics of performing the customizations. Therefore, what you
will see in these examples are the instructions about what code you need to prepare
and how you should access it.

• Sign-up (registration): You can create a controller to override
registrations_controller.rb, which contains the following code:

class RegistrationsController < Devise::RegistrationController

 def new

 # this action is used to show the sign in form

 # you can add your custom code here

 end

 def create

 # this action is triggered when the user sends data to sign up

 # you can add your custom code here

 end

end

These two new methods will take effect if you change your route for
Devise. Fortunately, we have modiied the route ile to comply with this
customization. This is the route rule that is currently prevalent for Devise.
devise_for :users, :controllers => {:registrations =>
"registrations"}

Now, you have the access to modify the action to meet your needs. You can
write an extra process before or after the sign-up action. But, you need to
remember that you have to write some code that already existed in the parent
controller because without these codes your action won't work well. You can
see the parent ile at https://github.com/plataformatec/devise/blob/
master/app/controllers/devise/registrations_controller.rb.

Chapter 2

[29]

• User edit: To customize this action, you can continue editing
registrations_controller.rb and adding these codes inside the class:

def edit

 # this action is used to show the user edit form page

 # you can add your custom code here

end

def update

 # this action is triggered when the user sends data to edit
their data

 # you can add your custom code here

end

You don't need to make changes to your routes since you already made
changes when you customized the user sign-up (registration) action.

• Conirmation: The irst thing you need to do is create a controller ile named
confirmations_controller.rb. This ile can be created by executing the
following command:

$ rails generate controller confirmations new create

The content of this newly-created controller is as follows:

class ConfirmationsController < Devise::ConfirmationsController

 def new

 # this action is used to show the confirmation form

 # you can add your custom code here

 end

 def create

 # this action is triggered when the user sends their
 confirmation token to confirm their account

 # you can add your custom code here

 end

end

To make Devise recognize that you have overridden its original class, you
also need to modify the routes for your Devise model. As an example, we
will use the user model. Combined with the registration customization, the
route will be as follows:

devise_for :users, :controllers => {:registrations =>
"registrations", :confirmations => "confirmations"}

www.allitebooks.com

http://www.allitebooks.org

Authenticating Your Application with Devise

[30]

• User deletion: To create a custom code for deleting a user, you also need to
modify registrations_controller.rb. Put this method within the class:

def destroy

 # this method is triggered when the user tries to delete a
user account

end

You don't need to modify your routes anymore because the requirement is
met when you customized the user sign-up (requirement) code.

• Sign-in: Execute the following command to create a controller named
sessions_controller.rb:

$ rails generate controller sessions new create

The controller you just generated will contain this code:

class SesssionsController < Devise::SessionsController

 def new

 # this method is used to show the sign in form

 # you can add your custom code here

 end

 def create

 # this method is triggered when the user sends data to sign in

 # you can add your custom code here

 end

end

To make Devise recognize your custom code, you have to modify your
Devise route a little. Combined with the previous customizations, the route
should be as follows:

devise_for :users, :controllers => {:registrations =>
"registrations", :confirmations => "confirmations", :sessions =>
"sessions"}

• Sign-out: To customize this action, you need to modify sessions_
controller.rb, which you just created. Please put the following method
within the class:

def destroy

 # this method is triggered when the user sends data to sign out

 # you can add your custom code here

end

You don't need to modify your routes since it has been done when you
performed your code customization in the sign-in action.

Chapter 2

[31]

• Forgot password: Please create a new controller ile named passwords_
controller.rb. You can do this by executing the following command:

$ rails generate controller passwords new create

The controller will contain this code:

class PasswordsController < Devise::PasswordsController

 def new

 # this method will show a forgot password form

 # you can add your custom code here

 end

 def create

 # this method is triggered when you submit to reset your
password

 # you can add your custom code here

 end

end

Now, to enable your code customization, you have to modify your routes. Combined
with the previous code customizations, your route should be like this:

devise_for :users, :controllers => {:registrations => "registrations",
:confirmations => "confirmations", :sessions => "sessions", :passwords
=> "passwords"}

Customizing your Devise layout
There are times when you have more than one Devise model in one application, and
a question comes to your mind, such as "How do I maintain its views so that they
will have different views?" Previously, I wrote about generating views, so you can
make some custom changes to the views by executing the following command:

$ rails generate devise:views

Now, you are going to learn about how to generate scoped views in Devise. At irst,
you need to make a little modiication to config/initializers/devise.rb. You
need to remove the comment tag for this code:

config.scoped_views = true

This code will enable scoped views for Devise, so you can generate some speciic
views for your Devise model.

Authenticating Your Application with Devise

[32]

Before we start generating views, let's have two new Devise models for admin and
employee as the examples. Now, you can generate scoped views for your Devise
model by executing this command:

$ rails generate devise:views admins

$ rails generate devise:views employees

The following screenshot shows the generated Devise view iles:

Let me show you how it works by making a simple change to each view ile; for
example, we are going to make changes in app/views/admins/sessions/new.
html.erb and app/views/employees/sessions/new.html.erb. In my case, I put
words such as "admins" and "employees" in <h2> tags in each ile, so we can expect
them to have different views when we open their sign-in form. I assume that you
have the admins and employees controllers that deine the index action. The action
is authorized by admin and employee. Now, try starting the Rails server and go
through http://localhost:3000/employees/index.http://localhost:3000/
employees/index.

Chapter 2

[33]

The sign-in form for an employee

You have seen the scoped image for an employee sign-in form; now you need to
go through http://localhost:3000/admins/indexhttp://localhost:3000/
admins/index and you will see the scoped view for an admin:

The sign-in form for an admin

You have successfully created different views for your Devise model, but you still
have only one layout. So, how will you apply different layouts to different Devise
models? Don't worry, it's actually easy to do that. Please open app/controllers/
application_controller.rb and put this code within the class:

layout :layout_by_resource

protected

 def layout_by_resource

 if devise_controller?

 if resource_name == :admin

Authenticating Your Application with Devise

[34]

 "devise_admin_application" #admin model will use this layout

 elsif resource_name == :employee

 "devise_employee_application" #employee model will use this
layout

 else

 "devise_application" #other devise model will use this
layout

 end

 else

 "application" #default rails application layout

 end

end

Now, you need to create three new iles under app/view/layouts named
devise_admin_application.html.erb, devise_employee_application.html.
erb, and devise_application.html.erb. Put anything you like as a mark to
denote that you are in a different layout. If you go through the employee page, you
will see a view, as shown in the following screenshot:

Specific layout for an employee

Chapter 2

[35]

Now, try accessing the sign-in page for the admin model. You will ind it different
based on the mark you put in the layout for admin. In my case, the view is as shown
in the following screenshot:

Specific layout for admin

If you have more than two Devise models, the other one will also have a different
layout. In my case, I used a default layout, which is deined by devise_application.
html.erb. The result is as shown in the following screenshot:

The default layout for a Devise model

Authenticating Your Application with Devise

[36]

Integrating Devise with Mongoid
This is an example of how you are able to implement Devise with one of the
NoSQL databases, such as MongoDB. To establish a connection, we are going to use
Mongoid as a driver. I'm going to show you two examples. The irst example will
require a fresh Rails application where you need to generate a new Rails application,
and the second one will show you how to change the coniguration from MySQL
to MongoDB. Note that these examples will use MongoDB Version 2.2.0 and I will
not tell you how to install MongoDB, but you can see the full documentation about
its installation at http://docs.mongodb.org/manual/installation/. As you can
see in the documentation, it also shows you how to turn on the server; therefore, I
assume you have done it before you proceed to the next step.

Now, we can start from the irst example by executing the Rails application
generation command without specifying the database type:

$ rails new learning-devise-mongoid

Next, you need to add two new gems inside Gemfile and after you have added
them, you can install them by executing bundle install:

gem 'mongoid'

gem 'devise'

Now, you need to create a coniguration ile for Mongoid by executing the
following command:

$ rails generate mongoid:config

In my case, I don't need to change anything in my Mongoid coniguration. But, if you
want to see the content of the coniguration ile or you need to change something in
it, you can open the ile at config/mongoid.yml.

Since we are no longer using active record, we need to modify the config/
application.rb ile and remove the line, require 'rails/all', while adding
this code:

require 'action_controller/railtie'

require 'action_mailer/railtie'

require 'rails/test_unit/railtie'

require 'sprockets/railtie'

You also need to modify one of the iles in config/environments; for this
example, we are going to modify development.rb because we are currently in the
development environment. Please remove or comment out this line of code:

config.active_record.migration_error = :page_load

Chapter 2

[37]

The coniguration for Mongoid is done; now, we are going to move to the Devise
coniguration. There is no difference in setting up Devise with Mongoid; the
commands and steps that you need to perform are exactly the same with the ones
that I've written in the previous chapter. But, there's one difference in the Devise
coniguration ile. If you open config/initializers/devise.rb, usually you are
going to see the require 'devise/orm/active_record' line inside it. But, if you
use Devise with Mongoid, you are going to see that the code will be replaced with
the following code:

require 'devise/orm/mongoid'

Let's say I generated a user Devise model and I also generated a users controller to
see whether it's working or not. My controller will be like this:

class UsersController < ApplicationController

 before_filter :authenticate_user!

 def index

 end

end

These will be the codes for my view:

<h1>Users#index</h1>

<p>Find me in app/views/users/index.html.erb</p>

<%= link_to 'Sign Out', destroy_user_session_path, method: "delete" %>

When you go through http://localhost:3000/users/indexhttp://
localhost:3000/users/index, you are going to be redirected to the following page:

The Devise sign-in form with Mongoid

Authenticating Your Application with Devise

[38]

Your Devise is installed and ready to use. If you want to determine whether your
data is recorded or not in your MongoDB, you can try the commands shown in the
following screenshot:

Commands in the Rails console to check MongoDB data

What if you already have the Rails application installed with the mysql2 gem
and suddenly you decide to change your database to MongoDB? Don't worry.
You don't need to regenerate your Rails application from scratch. You just need to
follow the steps that I'm going to put before you. But, I assume that you are going
to start the application from a brand new database, so your existing user data
will be abandoned.

First of all, you need to modify Gemfile by replacing the line, gem 'mysql2',
with gem 'mongoid', git: 'https://github.com/mongoid/mongoid.git'.
The next step is to modify config/application.rb so that the ile will contain
the following code:

#require 'rails/all' #you don't need this line anymore

require "action_controller/railtie"

require "action_mailer/railtie"

require "rails/test_unit/railtie"

require "sprockets/railtie"

Now, you need to modify config/environments/development.rb by commenting
out the following line:

#config.active_record.migration_error = :page_load

These are the basic conigurations that you need to perform before generating the
Mongoid coniguration with this command:

$ rails generate mongoid:config

Chapter 2

[39]

Don't forget to open config/initializers/devise.rb and modify it as shown:

#require 'devise/orm/active_record'

require 'devise/orm/mongoid

All set! Now, you can go to the authorized page and see the Devise sign-in form.
Don't forget that you don't have the previous data in MySQL in your MongoDB;
consequently, you need to re-register your user data.

Summary
Now, I believe that you will be able to make your own Rails application with Devise.
You should be able to make your own customizations based on your needs. You will
have a more comprehensive understanding about Devise modules and how you
should make your own customizations either in the logic low or the view codes. Next,
we will learn how to implement privileges in Devise because in some circumstances,
privileges will be needed to prevent certain users from accessing some features.
Everything about privileges in Devise will be discussed in the next chapter.

www.allitebooks.com

http://www.allitebooks.org

Privileges
In the previous chapter, you learned how to use Devise authentication features such
as user session and registration management (sign-in, sign-up, sign-out, and so on).

After users are logged in, you will want to make sure that they can only access pages
and page elements that they are supposed to see. You will want to deine access
control rules or privileges so that users cannot see protected resources, such as other
users' private posts. The process of applying the rules in our web application is
called authorization.

In Rails apps, the CanCan gem (https://github.com/ryanb/cancan) can be used
for authorization by deining and applying privileges of what users can or cannot do.
At the same time, Devise will still be used for authentication.

Let's take an example web application that uses CanCan together with Devise.
After that, we will discuss more details on using CanCan, as well as testing and
debugging it.

CollabBlogs – a web application for
collaborative writing
Imagine that we are going to build a Rails web application that facilitates collaborative
writing. Let's call it CollabBlogs. Assume that its basic functionalities are as follows:

• Guest users (not logged-in users) can read non-restricted posts.

• Only logged-in users can create posts.

• An administrator user can do anything he/she wants.

• A user can delete his/her own posts; he/she cannot delete posts created
by other users.

Privileges

[42]

• A restricted post is a post that can be viewed by its creator and the
collaborators chosen by him/her. If there is no collaborator, only
the creator can see the restricted post.

• Many users can edit a post, if the post creator chooses to collaborate
with them.

We are not going to implement all of them; we will only implement the essential
ones together. The rest are left as exercises for you.

Before we try out CanCan, let's do some initial setup:

1. Make sure you inished setting up Devise by following the instructions
given in the previous chapter.

2. Add gem 'cancan', '~>1.6.0' to your Gemfile.

3. Run the bundle command in your terminal.

4. Add the Boolean admin column on user.

5. Create a scaffold for Post and a model for Collaboration, and then, run the
migrations. The scaffold will create JSON views, which will not be discussed
in this book. You are free to add your own model validations before running
the migrations.

On your terminal, run the following commands:

$> rails g scaffold post user:references title content:text
restricted:boolean

$> rails g model collaboration user:references post:references

$> rake db:migrate

After that, make sure that the Post class belongs_to :user and has_many
:collaborations

6. Create a few users and posts, as many as you like. For example, in your Rails
console (or db/seeds.rb):

writer = User.find_or_create_by!(email: "writer@localhost.net",
password: "Plumber364", password_confirmation: "Plumber364")

junior = User.find_or_create_by!(email: "junior@localhost.net",
password: "Plumber364", password_confirmation: "Plumber364")

Post.create!(user: writer, title: "Hot Day",

 content: "The sun seems to like me very much these days. I don't
really mind, but I really wish it could love someone else too.")

Post.create!(user: junior, title: "Hello!",

Chapter 3

[43]

 content: "Hey! I'm pretty new here! Glad to be here! This is my
first time here, so please be nice to me (and each other).")

Once our web application structure is adequately prepared, we'll
pick a simple rule to implement: A user can delete his/her own posts;
he/she cannot delete posts created by other users. The following four
fundamental steps will make CanCan handle authorization work for you.

7. Deining authorization rules: All privilege rules reside in ability.rb, which
is placed under app/models. Run rails g cancan:ability so that Rails
generates ability.rb for you. CanCan provides you with can and cannot
methods for deining access controls. Let's take a look at an example:
app/models/ability.rb

class Ability

 include CanCan::Ability

 def initialize(user)

 if user && user.persisted? # Logged-in user

 # User can destroy his/her own post

 can :destroy, Post, user_id: user.id

 # Non-logged in users cannot destroy Posts.

 # Typically, can is used a lot more than cannot.

 # cannot :destroy, Post, user_id: nil

 end

 end

end

As we have seen, the can and cannot methods take three arguments:
action name, the resource class, and a hash of rule conditions. Although
the arguments seem restrictive, the methods can actually accept different
kinds of arguments such as SQL conditions and blocks. We will discuss
this in detail in a later section.

8. Restricting views based on the rules: Now that we have the access rules,
we can apply them in views. CanCan comes with view helpers (can? and
cannot?) to check authorization in views.
<%# app/views/posts/index.html.erb %>

<% if can?(:destroy, post) %>

 <%= link_to('Del', post, class: 'btn-gray thinner-padding',
method: :delete, data: { confirm: 'Are you sure?' }) %>

<% end %>

Privileges

[44]

<%# using cannot? %>

<%# Typically, can? is used a lot more than cannot? %>

<% if cannot?(:destroy, post) %>

 <p>It looks like you cannot delete this post. If you want this
post to be deleted, please contact the administrator or the
owner.</p>

<% end %>

Run the Rails server by executing rails s in your terminal, and open
http://localhost:3000 in your browser to see if the destroy link is
visible for logged-in users, the post creator, or guest users.

9. Restricting controller access based on the deined rules: You restricted
views accordingly, and you noticed that someone could just use the URL
(via CURL, for example) to delete the post. This leads to the need of
authorization check controllers.

CanCan provides a few authorization-related methods in controllers.
One of the most frequently used methods is authorize!, which accepts
two arguments, an action name, and a resource. The method raises the
CanCan::AccessDenied exception when the currently logged-in user's
privileges are not enough to perform the action on the resource.

For example, we can check for a current user's privileges on creating a
new post and destroying an existing post as follows:

class PostsController < ApplicationController

 before_action :set_post, only: [:show, :edit,

 :update, :destroy]

 # ...

 def new

 authorize! :new, Post

 # codes for new...

 end

 # ...

 def destroy

 authorize! :destroy, @post

 @post.destroy

 # ...

 end

end

Chapter 3

[45]

You might ind this way tedious, especially if you need to authorize every
controller action. We will discuss a way to simplify this in a later section.

10. Customizing the response for unauthorized access: Great! You ensured
that users could only delete their own posts. When an unprivileged user
(an anonymous visitor, for example) tries to delete another user's post,
he/she will get the default 403 forbidden error page. This is because
CanCan raises the CanCan::AccessDenied exception whenever an
unauthorized user tries to access any restricted controller action.

In some cases, you need to customize the look and feel of the forbidden
page. Feel free to do so by rescuing from CanCan::AccessDenied and
rendering a custom view.

app/controllers/application_controller.rb

class ApplicationController < ActionController::Base

 rescue_from CanCan::AccessDenied do |exception|

 if current_user.nil? # user is not logged in

 session[:next] = request.fullpath

 redirect_to login_url,

 :alert => "Please log in to continue."

 else

 if request.env["HTTP_REFERER"].present?

 redirect_to :back, :alert => exception.message

 else

 render :file => "#{Rails.root}/public/403.html",

 :status => 403, :layout => false

 end

 end

 end

...

end

Privileges

[46]

With custom CSS and JavaScript we have in our sample project, we can
have a list of posts displayed with actions allowed for the visitors, like
the following:

Screenshots of a guest user's page (left) and a logged-in user's page (right)

Advanced CanCan usages
The previous abilities we learned through our CollabBlogs application are
enough for us to get started. However, what if our application requires complex
authorization rules? We have a few remaining complex rules unimplemented,
and the abilities we have applied are far simpler than those complex rules.

After we have plenty of rules, we should try to simplify parts of the authorization
process and test the rules' correctness. This is to ensure our application behaves
as expected.

In this section, we are going to discuss deining rules using SQL, simplifying
authorization checks on controllers, and ensuring abilities' correctness.

Deining rules using SQL
As mentioned before, the can and cannot methods we deined in app/models/
abilities.rb, are able to take SQL conditions and block parameters. The SQL
conditions parameter is useful for iltering resources that match the ability (using
Model#accessible_by(ability, action)). The block parameter is very often
used for authorizing actions (for example, edit) on a single resource.

Chapter 3

[47]

As a small example, let's use these parameters on the destroy abilities we have
deined, as shown in the following code snippet:

We can write

can :destroy, Post, user_id: user.id

as a new rule that looks similar

can :destroy, Post, ['user_id = ?', user.id]

Note that the new rule is not quite the same as the old one; the SQL
query will only help build queries using the CanCan model scope
Model#accessible_by(ability, action); it will not work
if/when you apply the rule on your views.

To make it work on views, implement a block that looks equivalent to the SQL.
CanCan will use the block when you apply checks on the views. So, the correct
block-based deinition for the earlier rule is as follows:

can :destroy, Post, ['user_id = ?', user.id] do |post|

 post.user_id == user.id

end

The block is evaluated when an instance of post is passed for checking. You should
not do something, as shown in the following snippet:

Admin can do anything

can :manage, :all do |post|

 user.admin?

end

In some cases, for instance, when you try to check a user's ability to create a new
post using can?(:create, Post), the block above will not get called. Such behavior
potentially breaks your application. Instead, the correct way is as follows:

if user.admin?

 can :manage, :all # An administrator can do anything

else

 # Regular user

end

Now that we know how to use SQL conditions and blocks to implement abilities,
let's try to use them for abilities that require SQL subselects, as shown in the
following sections.

Privileges

[48]

A restricted post is a post that can be viewed by the creator and
the collaborators chosen by the creator. If there is no collaborator,
only the creator can see the post.

We can break down the preceding rules to the following three conditions:

• Non-restricted posts are viewable by anyone

• Posts created by the currently logged-in user are viewable

• If a post is restricted, only the post' collaborators and creator can view it

From these three rules, we can see that they are related to the index and show actions
in PostsController. We will pass an array of the :index and :show actions to the
can method, because it takes an array of actions as the irst argument, instead of just
one action.

the above rules for logged-in users

indexable_condition = <<-EOC

restricted = ? OR posts.user_id = ? OR

 (restricted = ? AND EXISTS

 (SELECT * FROM collaborations WHERE

 collaborations.post_id = posts.id AND

 collaborations.user_id = ?))

EOC

can [:index, :show], Post, [indexable_condition,

 false, user.id, true, user.id] do |post|

 !post.restricted? || post.user_id == user.id ||

 (post.restricted? &&

 post.collaborations.where(

 user_id: user.id).present?)

end

Although this way of using the CanCan ability is not the best way, it shows how you
can leverage CanCan abilities to express complex SQL-based rules.

To display the list of posts that match the currently logged-in user's ability in the
index action of PostsController, assign Post.accessible_by(current_ability,
:index) to @posts instead of assigning Post.all.

With custom JS and CSS provided in the sample project, we can see a list of posts
that are viewable by the currently logged-in user like this. Note that we can apply
view checks on each of the buttons shown (View, Edit, and Delete).

Chapter 3

[49]

A screenshot of a page of a logged-in user who can edit another user's post

How about the rest of the rules? Feel free to try implementing them yourself!

Simplifying authorization checks on
controllers
You can also use authorize_resource so that CanCan authorizes every controller
action as in the following example. This is as an alternative to calling authorize_
resources! on every controller action:

class PostsController < ApplicationController
 before_action :set_post, only: [:show, :edit,
 :update, :destroy]
 authorize_resource
 def new
 # authorization check is done
 end
 # ...
 def destroy
 # authorization check is done
 end
end

www.allitebooks.com

http://www.allitebooks.org

Privileges

[50]

Ensuring abilities' correctness
Our application will get big and challenging to maintain. When we have lots of rules,
we need to make sure they work as expected. Luckily, CanCan makes testing and
debugging privileges delightful.

Testing
Testing abilities can be done using several test frameworks such as Test::Unit,
RSpec, and Cucumber. In this section, we will use RSpec for testing abilities.

CanCan provides an RSpec matcher (be_able_to) to make it convenient to
test abilities:

specs/models/ability_spec.rb

require "cancan/matchers"

require "spec_helper"

describe Ability do

 describe "destroying a post" do

 describe "guest user" do

 let(:ability) { Ability.new nil }

 it "cannot destroy a post" do

 ability.should_not be_able_to(

 :destroy, Post.new(user: nil))

 ability.should_not be_able_to(

 :destroy, Post.new)

 end

 end

 end

end

Debugging
You can debug the deined abilities in a Rails console, during test or during
development. In general, the following are the steps to debug abilities:

1. Fetch a user and a model you would like to debug using the following
code snippet:

user = User.first # a user you want to check

post = Post.first # a model you want to check

ability = Ability.new(user)

Chapter 3

[51]

2. Check if the ability behaves correctly for those records. Use the model
scope to verify if the deined abilities ilter the correct records.
behavior checks

puts ability.can?(:edit, post)

puts ability.can?(:create, Post)

the accessible records on index action

Post.accessible_by(ability, :index)

the SQL query

puts Post.accessible_by(ability, :index).to_sql

Summary
In this chapter, we discussed setting up a Rails project that used CanCan for
authorizing user abilities. We learned how to deine authorization rules using
CanCan abilities, how to apply rules on views using CanCan view helpers,
and how to authorize controllers based on the deined rules. Finally, we saw
how to ensure the correctness of deined rules.

Remote Authentication with

Devise and OmniAuth
By following footpaths from the previous chapters, we will be able to create an
application that authenticates its users using their supplied e-mail addresses and
passwords. However, the e-mail address and password authentication is not the
only way that can be used to verify a user's credential; there are actually several
other alternatives that we can choose from. One such example that is now widely
used is remote authentication.

Remote authentication
Have you seen buttons similar to the buttons in this following screenshot on
websites that you have visited? The sign-in process that is initiated by clicking
on these will actually trigger a remote authentication procedure:

Remote Authentication with Devise and OmniAuth

[54]

Remote authentication is an authentication scheme that utilizes third-party services
to help identify whether a user, who tries to log in, has valid credentials prior to
entering an authenticated area. By using this scheme to authenticate, users just have
to sign in once with third-party providers that provide such services, and then they
can sign in to other websites that support remote authentication without supplying
their e-mail addresses and passwords anymore.

Popular websites, such as Twitter, Facebook, and even Google, provide remote
authentication services to its users. Surely, due to the huge number of users, it
would be good if our websites could authenticate its users using only their Twitter,
Facebook, or Google accounts.

At this point perhaps you're wondering why big companies like them want to act as
remote authentication providers who give authentication services to other websites
for free. Isn't that a waste of their bandwidth and resources? That question of course
has its own merits. Remote authentication providers won't usually give these
services to just anyone. To utilize it, we have to irst register our application at their
site. This is to ensure that they can track every application that use their services and
can provide assistance in case of trouble. They also have the right to reject or ban our
application if we misuse or violate their term of rights.

Meanwhile, providing these services also has beneits for them; remember that
users have to register a new account at their site before they can authenticate
using it? That's an important beneit for them. By providing these services,
remote authentication providers can increase their user base.

OmniAuth
Let's now take a closer look at Devise and how it can support remote authentication.
By itself, Devise is already customizable enough to enable support for remote
authentication. However, Devise doesn't actually have internal functions for this
purpose, and as a consequence, we have to do a lot of lifting to build this feature
purely using Devise. Therefore, because it is almost always better to "re-use" rather
than "build from scratch", let's look into other possible alternatives.

Enter OmniAuth (https://github.com/intridea/omniauth). If you remember
from Chapter 1, Devise – Authentication Solution for Ruby on Rails, Devise has an
Omniauthable module that enables Devise to connect with OmniAuth; this is
where you will ind that ability useful.

Chapter 4

[55]

"OmniAuth is a library that standardizes multiprovider authentication for
web applications. It was created to be powerful, lexible, and do as little as
possible. Any developer can create strategies for OmniAuth that can authenticate
users via disparate systems. OmniAuth strategies have been created for
everything from Facebook to LDAP."

Based on the preceding description by OmniAuth's author (present on the OmniAuth
GitHub page), it was clear that OmniAuth is the library that we want. First, it enables
support for multiprovider authentication. Second, it is lexible and we can create
custom strategies if for some reason OmniAuth hasn't already provided support
for providers that we want. Third, it already supports many providers; some of the
most widely used providers, such as Twitter and Facebook, are already on that list.
Therefore, we don't have to manually create an authentication strategy for Twitter
and Facebook anymore. Perfect!

Implementing remote authentication in

our application
Now, let's move on to the main part, where we will modify our previously created
application so that it can support remote authentication. This section will be divided
into several subsections. The following subsection will discuss the initial preparation,
while the following two after that will discuss implementing Twitter and Facebook
authentication consecutively. They are selected because they are currently reigning
as providers with the most numbers of registered users.

Preparing your application
To enable OmniAuth on our applications, which already have Devise on them, we
have to irst include the OmniAuth gem by modifying our Gemile. While we're
at it, we can also include gems that contain OmniAuth strategies for both Twitter
(https://github.com/arunagw/omniauth-twitter) and Facebook (https://
github.com/mkdynamic/omniauth-facebook) to enable support for both providers.

...

OmniAuth

gem 'omniauth', '~> 1.1.4'

gem 'omniauth-twitter', '~> 1.0.0'

gem 'omniauth-facebook', '~> 1.4.1'

...

Remote Authentication with Devise and OmniAuth

[56]

If you use bundler, you may now call bundle install before continuing, so that
Rails properly includes those new gems that were previously listed in our application.

After successfully including the OmniAuth gem in our application, we have to
instruct Devise to activate the omniauthable module. We can do this by specifying
it when initializing Devise on our User model (or any other model that you use that
utilizes Devise).

devise :database_authenticatable, :registerable, :omniauthable,
:recoverable, :rememberable, :trackable, :validatable

Remote authentication using Twitter
Following successful initial conigurations of our application, let us continue by
adding the Twitter remote authentication support. To accomplish this, there are a
few steps that we have to do. First, we will have to register our application at the
Twitter developer site, which will be explained in the following subsection.

Registering our application at the Twitter developer

site
We can head on straight to the Twitter developer site to register our application
(https://dev.twitter.com). On entering the site, we will be greeted by information
about various services that Twitter shares with third-party developers. We can sign in
with our Twitter account to access the dashboard. However, if we don't have one, we
must create a new Twitter account before continuing.

Chapter 4

[57]

After a successful sign-in, we will ind a pop-up menu in the top-right corner;
you can click on My applications to enter the dashboard:

Remote Authentication with Devise and OmniAuth

[58]

At the dashboard we can see all of our previously registered applications (if any).
Click on Create a new application to register your application:

We will see a form that we have to ill in. There are four ields in this form, the irst
two are quite obvious (Name and Description), but we have to ensure the next two
ields are entered correctly. In the Website ield, we have to ill in a fully-qualiied
URL to our application. Because we're now registering an application for learning
purposes and we don't actually have a real domain, we can put localhost into
this ield. However, as Twitter needs a fully-qualiied URL, we have to type in
http://127.0.0.1:3000 instead of http://localhost:3000.

Chapter 4

[59]

The last ield is a bit tricky; this is a Callback URL ield. Twitter will redirect into
the URL that was speciied here after a successful authentication. However, we
can supply a custom parameter (oauth_callback) later from our application
during the authentication process to override the value that was supplied to this
ield. Interestingly, the Devise and OmniAuth combination will automatically
supply the oauth_callback parameter with our application URL followed by /
auth/:provider/callback. Therefore, any value that we speciied in this ield
won't matter much, as it would be overridden anyway. So, let's just ill this with
a fully-qualiied localhost URL where our application currently resides (the same
with the website URL):

www.allitebooks.com

http://www.allitebooks.org

Remote Authentication with Devise and OmniAuth

[60]

After you have inished illing in the form, we can submit it and Twitter will show
the dashboard for our newly-created application. In this screen, we must write down
both Consumer key and Consumer secret values because we will use it later in our
application coniguration. Both keys are important in helping our application identify
itself to Twitter.

Coniguring OmniAuth for authentication using
Twitter
After successfully registering our application in the Twitter developer website,
we can now set up our application to enable remote authentication using Twitter.
We will begin by specifying the Consumer key and Consumer secret values that
we got earlier from Twitter at config/initializers/devise.rb. We specify the
coniguration at the Devise initializer instead of OmniAuth because Devise will be
the bridge that connects OmniAuth and our application.

Chapter 4

[61]

Just to remind you, the consumer key and the consumer secret are our application's
"username"' and "password" for Twitter's remote authentication, respectively. It is
very important to keep both keys safe.

config.omniauth :twitter, 'CONSUMER_KEY', 'CONSUMER_SECRET'

Remember that changes in any ile within the config/initializers
folder require an application restart. Don't forget to restart your
application server after modifying Devise initializers.

By specifying the preceding coniguration, Devise will also generate helpers for
linking to the Twitter authentication, user_omniauth_authorize_path(:twitter).
This is assuming our model name that utilizes Devise is called User; if you use any
other name, the helper will change accordingly. We can use the helpers in our home
page or sign-in page like this:

<%= link_to "Sign in with Twitter", user_omniauth_authorize_
path(:twitter) %>

When users click on the link that was generated by the previously mentioned helper,
they will be greeted by the Twitter application authorization page. This will only
happen during their irst visit; subsequent visits will instantly redirect back to our
application after Twitter inishes authenticating our credentials. At the application
authorization page, they will have to either authorize our application, or reject, in
which case, they won't be able to sign in.

Up until this point, if we try to sign in using Twitter in our application and we
choose to authorize it in the Twitter application authorization page, we will be
redirected back but will see a "route does not exist" error page. This is normal
because we haven't prepared appropriate routes, controllers, and views to handle
the redirection.

Let's create it by using the Rails generator command (abbreviated g).

$ rails g controller omniauth_callbacks

Now, we have to tell Devise that the newly-generated controller will be the one
that handles callbacks. To do that we can modify the existing devise_for routes
by following the syntax in the following example:

devise_for :users, controllers: {omniauth_callbacks: "omniauth_
callbacks"}

Remote Authentication with Devise and OmniAuth

[62]

Devise will automatically generate routes that link the callback URL of our
application (the URL that will be supplied to the oauth_callback parameter)
with a controller that will handle the callback logic. You can see the generated
routes as follows:

user_omniauth_authorize GET|POST /users/auth/:provider(.:format)
omniauth_callbacks#passthru {:provider=>/twitter|facebook/}

user_omniauth_callback GET|POST /users/auth/:action/callback(.:format)
omniauth_callbacks#(?-mix:twitter|facebook)

The next step, is to modify OmniAuth callbacks that have been generated earlier.
Devise has a class that we can inherit from; it's called Devise::OmniauthCallbacks
Controller. So, let's inherit from it and specify our irst action, twitter.

class OmniauthCallbacksController < Devise::OmniauthCallbacksControll
er

 def twitter

 end

end

Do you remember that users will be redirected back to our application after they
authorize it in the Twitter authorization page? During the redirection, Twitter will
actually supply extra information that we can parse and utilize for our sign-in
process. This information is retrieved, processed, and stored by OmniAuth within
the request.env hash using omniauth.auth as the key.

Let's inspect it by raising it in our callbacks controller.

class OmniauthCallbacksController < Devise::OmniauthCallbacksControll
er

 def twitter

 raise request.env["omniauth.auth"].to_yaml

 end

end

After specifying the raise, try to raise it by clicking on the sign-in using the Twitter
link and authorize your application in the Twitter authorization page. We will see
an exception page that shows all the authentication information that was given
by Twitter.

Chapter 4

[63]

Rather than writing all the extra logic necessary for processing the information from
the hash in the controller, it is better to delegate it into a class method to make the
logic reusable and to keep our controller lean. Let's name the method process_
omniauth and call it from our controller using the following code:

class OmniauthCallbacksController < Devise::OmniauthCallbacksControll
er

 def twitter

 user = User.process_omniauth(request.env["omniauth.auth"])

 end

end

When using the database authentication scheme, users will have to supply their
username and password for authentication. This is not the case in a remote
authentication scheme, because the third-party service will be the one that helps
us in authenticating our users. Unfortunately, if we previously had a username
and/or e-mail as the user's unique identiier in our database, our users won't be
supplying that anymore. Instead, we have to look for other alternatives as the
unique identiier. Luckily, Twitter supplies a uid value, which contains the unique
user identiier that we can use.

We will store uid in our database within columns called uid. We will also store
the provider name to indicate which authentication provider our users use in a
column called provider. Let's create a migration for these new additions using
the following commands:

$ rails g migration add_omniauth_to_users provider:string uid:string

$ rake db:migrate

Remote Authentication with Devise and OmniAuth

[64]

This scheme that we are building now assumes that one user can only
choose one remote authentication provider to use, whether Twitter,
Facebook, or Google. They cannot sign into the same account using
more than one provider. See the summary at the end of this chapter
for more information.

Next, let's create the process_omniauth method in our User model. We have been
supplied with a hash as an argument that contains provider and uid information.
Therefore, let's use this information to traverse our database and ind whether a
user with the provider and uid combination already exists:

def self.process_omniauth(auth)

 where(auth.slice(:provider, :uid)).first_or_create do |user|

 user.provider = auth.provider

 user.uid = auth.uid

 user.username = auth.info.nickname

 end

end

The most interesting part with the preceding code is the first_or_create method
that we call. This is a method that was provided by ActiveRecord, which is a
combination of the first and create methods. This method will return an existing
record if it already exists, but it will create them if it doesn't. As also apparent
from the preceding code, we can supply a block into this method to assign the
newly-created user with attributes of our choosing.

There's one caveat with the first_or_create method, though, because it contains
the create method that does all the validations and persists in the database. Thus,
we must be prepared if this method fails when doing validations or when saving our
user in the database. Let's handle it in our controller by checking whether the user is
successfully persisted by the persisted? method supplied by ActiveRecord.

class OmniauthCallbacksController < Devise::OmniauthCallbacksControll
er
 def twitter
 user = User.process_omniauth(request.env["omniauth.auth"])
 if user.persisted?
 flash.notice = "Signed in!"
 sign_in_and_redirect user
 else
 session["devise.user_attributes"] = user.attributes
 redirect_to new_user_registration_url
 end
 end
end

Chapter 4

[65]

If the user hasn't been persisted, it means that the first_or_create method, which
was called, failed in saving the user in the database. Therefore, we redirect our user
into the new user registration form to correct any mistakes that may occur during
this automated process. However, we must store the attributes somewhere to make
sure that the form is preloaded with authentication information, which we got from
Twitter; so, let's store it in the session with the devise.user_attributes key.

We must tell Devise to automatically preload forms with attributes that were stored
in the session if these attributes are available. To do this, we can override Devise's
new_with_session class method in our User model. This override checks whether
the session information with the devise.user_attributes key exists. If it does, it
will assign the attributes automatically. It will also assign attributes from params
if it's available, and run the validation so that error messages will instantly pop up
when the user opens the form.

def self.new_with_session(params, session)

 if session["devise.user_attributes"]

 new(session["devise.user_attributes"], without_protection: true)
do |user|

 user.attributes = params

 user.valid?

 end

 else

 super

 end

end

At this point, we will actually have a fully working authentication system, which
uses remote authentication to verify user credentials. However, our application
still has problems that need to be ironed out. Devise will still prompt that users
have to supply a password when submitting their registration form, although it
isn't necessary anymore as now they can use remote authentication. To change
this behavior, we can override Devise's password_required? method so that
Devise can skip password validation if the provider ield isn't blank:

def password_required?

 super && provider.blank?

end

Remote Authentication with Devise and OmniAuth

[66]

While we're at it, let's also modify Devise's registration form so that the password-
related ields won't show up when our users use remote authentication. We can ind
the registration form at app/views/devise/registrations/new.html.erb. If you
can't ind it, you may have to execute rails generate devise:views irst.

<h2>Sign up</h2>

<%= form_for(resource, :as => resource_name, :url => registration_
path(resource_name)) do |f| %>

 <%= devise_error_messages! %>

 <div class="field"><%= f.label :email %>

 <%= f.email_field :email %></div>

 <div class="field"><%= f.label :username %>

 <%= f.text_field :username %></div>

 <% if f.object.password_required? %>

 <div class="field"><%= f.label :password %>

 <%= f.password_field :password %></div>

 <div class="field"><%= f.label :password_confirmation %>

 <%= f.password_field :password_confirmation %></div>

 <% end %>

 <div class="field"><%= f.submit "Sign up" %></div>

<% end %>

<%= render "devise/shared/links" %>

Another problem that needs to be tackled, is when a user wants to modify his/her
proile, they will have to supply their current password, which will be validated by
Devise. We have to override this behavior, because some of our users won't have
passwords anymore. We can override Devise's update_with_password method
in our User model to achieve this:

def update_with_password(params, *options)

 if encrypted_password.blank? && provider.present?

 update_attributes(params, *options)

 else

 super

 end

end

Chapter 4

[67]

Let's hide the current_password ield in the proile-editing page (app/views/
devise/registrations/edit.html.erb) for when users do not have any password.

<% if f.object.encrypted_password.present? %>

 <div class="field"><%= f.label :current_password %> <i>(we need your
current password to confirm your changes)</i>

 <%= f.password_field :current_password %></div>

<% end %>

After we inished with the last step, we will have completed adding support for
remote authentication using Twitter. Now, we can carry onto the next step, which is
to add support for Facebook authentication. This will be easier, because we already
have the logic for carrying remote authentication in place.

Remote authentication using Facebook
The steps for adding support for remote authentication using Facebook into our
application is quite similar to the steps that we have taken when adding Twitter
support. We also have to register our application at the Facebook developer site
to get APP_ID and APP_SECRET, which we will use in our application.

Let's start the process by registering our application at the Facebook developer site.

Registering our application at the Facebook

developer site
To register our application, we can go to https://developers.facebook.com/.
Of course, we have to already have a Facebook account so that we can sign in to
this site. If not, we have to sign up irst.

Remote Authentication with Devise and OmniAuth

[68]

After a successful sign-in, we can click on the Apps menu on the top of our screen,
which will take us into our dashboard:

Then, we can click on Create new app to register our application. We will be presented
with a form that contains the basic information about our application that we have to
ill in. Just make sure that the App Name and App Namespace ields are illed with
unique names. If it's already taken, we will have to pick a different name.

Click on Continue to register your application.

Chapter 4

[69]

We will be presented with our application dashboard on successful registration.
We can also click on Edit App in our application dashboard to go to this page. The
most important thing in this page is to write down the information for App ID and
App Secret, which we will use later. We also have to check Website with Facebook
Login in the Select how your app integrates with Facebook section. Don't forget to
ill in the site URL with the usual fully qualiied domain name (FQDN) of localhost
(http://127.0.0.1:3000/). Obviously, you can change this into any domain name
that will host your application:

Remote Authentication with Devise and OmniAuth

[70]

Just remember that changes in the Facebook application dashboard will sometimes
take several minutes to propagate. Just prepare early, be patient when something
unexpected occurs, and try it again after several minutes have passed.

Now, after we get our App ID and App Secret information from Facebook, we can
continue to conigure our application to add the Facebook authentication support.

Coniguring OmniAuth for authentication using
Facebook
First, we have to tell Devise that we want to add support for OmniAuth Facebook
authentication by modifying config/initializers/devise.rb. We must also
specify the App ID and App Secret values that we got earlier here.

config.omniauth :facebook, 'APP_ID', 'APP_SECRET'

We already speciied an action called twitter in our OmniauthCallbacksController.
The logic within the twitter action can be reused by the Facebook authentication
scheme. We can use Rails' alias_method to achieve that, so let's modify our code
as follows:

class OmniauthCallbacksController < Devise::OmniauthCallbacksControll
er

 def provider

 user = User.process_omniauth(request.env["omniauth.auth"])

 if user.persisted?

 flash.notice = "Signed in!"

 sign_in_and_redirect user

 else

 session["devise.user_attributes"] = user.attributes

 redirect_to new_user_registration_url

 end

 end

 alias_method :twitter, :provider

 alias_method :facebook, :provider

end

Chapter 4

[71]

Don't forget to put a link for our users to authenticate with Facebook in your
sign-in page:

<div id="user_nav">

 <% if current_user %>

 Signed in as <%= current_user.name %>!

 <%= link_to "Sign out", signout_path, id: "sign_out" %>

 <% else %>

 <%= link_to "Sign in with Facebook", "/auth/facebook", id: "sign_
in" %>

 <% end %>

</div>

Actually, that was it for adding support for Facebook authentication. Adding
support for Facebook is a lot easier, because we already have the logic in place
when adding the Twitter authentication support. Of course, we can always make
improvements to our application; the examples include support for scenarios
where users can utilize multiprovider authentication in one account or support
for LinkedIn and Google authentication.

Summary
By completing the guidance provided in this chapter, we will have successfully
created an application that can authenticate its users using remote authentication
with third-party providers. To explore this topic further, you can try to implement
support for providers other than Twitter and Facebook, which was described in
this chapter.

Another thing to explore is the database scheme and logic that was used in this
chapter, which was created with an assumption that users can only have one remote
authentication provider for their account. If they, say, want to sign in using a Facebook
account or a Twitter account into the same account in our application, they won't be
able to do so with the current conigurations. To support that scheme, we may have
to create a separate model for storing the provider and uid information. Our User
model must also have a has_many relationship to this new model. Lastly, we also have
to modify the logic in our application accordingly.

Testing Devise
Now, you have reached this point where you have learned so many things about
Devise. You started by setting up Devise modules in your application and now you
are already able to perform remote authentication with Devise. So, let's get to the
next topic about testing your Devise.

Some people think, maybe even you, that in certain circumstances, testing is just
wasting your time. Some of you may have little time to develop your application,
and some of you may only have a little number of people in your team that you
decide to focus on building the features without performing any automated tests. It's
not wrong at all, but I think the main concept of automated tests is about costing you
time in the beginning of the development phase and saving a lot of your time in the
future. So, we can say, this act is a kind of preventive action.

There are many kinds of testing, such as unit testing, integration testing, and
functional testing. We are going to perform unit and functional testing. In Ruby
on Rails, unit testing is performed to test your model and functional testing is
performed to test your controller. I'm not going to write the deinitions and other
details for unit and functional testing, which means, when you read this chapter, it is
required that you know the deinition of these tests and how they are used in Ruby
on Rails. To learn more about tests in Ruby on Rails, you can visit http://guides.
rubyonrails.org/testing.html.

In this chapter, I'm going to give you some examples of tests that you can perform on
your application. The examples are as follows:

• The sign-up test

• The user update test

• The user deletion test

• The sign-in test

• The remote authentication test

Testing Devise

[74]

Why do you pick these ive actions as examples? Didn't you give us a lot of examples
between user deletion test and remote authentication test? These are good questions.
I picked these as examples because I think these actions are basic authentications that
you need to grab before you advance to the next level, that is, testing the customized
Devise modules.

As for your information, by default, we are going to use the default testing tool
provided by Ruby on Rails (Test::Unit). However, to expand your knowledge
about testing tools, we are going to use RSpec (http://rspec.info/) and
Factory Girl (https://github.com/thoughtbot/factory_girl) for the Remote
authentication test.

As I mentioned before, Ruby on Rails provides a default test, which we can use.
I'm going to use this for example one until four; therefore, we need to make some
preparations. The irst thing that you need to provide is a test ixture (http://guides.
rubyonrails.org/testing.html#the-low-down-on-fixtures). You can open a ile
located under the test/fixtures/ folder. If you already generated a model (let's call
it the user model), you will have users.yml under that folder. Now, please deine one
data at least within the ixture. The following is an example of users.yml:

one:

 email: hafizbadrie@gmail.com

 encrypted_password:
 $2a$10$zhKHXP2NlENyYuaYCtwS.e6SfekdVG3Q78qINVgY6Wg4A6c5HknSW

 username: hafizbadrie

This test also requires some Devise speciications, which are stated in the previous
chapters; so, I won't repeat the setup explanation in this chapter. In the next step, you
have to conigure your database for the test environment and perform this command
to create a test database and migrate the tables as follows:

$> rake db:create

$> rake db:migrate RAILS_ENV=test

The sign-up test
Sign-up is the irst action that you need to test. Why? Because if people can't sign up
at your application, then sign-in and any other authentication will be useless. This
is actually a simple test. You just need to add new data to the user table and check
whether it's inserted or not. To do this, please open test/models/user_test.rb
and add this code inside the UserTest class:

test "sign up" do

user = User.new({

:email => "hafizbadrie@hotmail.com",

Chapter 5

[75]

:username => "hafizblubis",

:password => "devisetest",

:password_confirmation => "devisetest"

})

assert user.save, "User not signed up!"

end

The previous code will try to insert new data and check whether it's inserted or
not with assert user.save, "User not signed up!" If it isn't, the message
written will show up. Now, let's try and run our irst Devise test by executing the
following command:

$> rake test

The result of the test is similar to the following screenshot:

The sign-up testing result

As you can see, you currently have one test and this test performs one assertion. You
also have no failures or errors, which means the result is as per our expectation.

The user update test
You already have one test in your model test and now we are going to add one
more test; it is the user update test. We're going to perform two kinds of scenarios
for this test:

• Update the user account without a password: Please open and modify
test/models/user_test.rb and add this code inside the class:

test "user edit without password" do

user = User.first

new_data = {

:email => "hafizbadrie@gmail.com",

Testing Devise

[76]

:username => "hafizlubis"

}

new_data = ActionController::Parameters.new(new_data)

new_data = new_data.permit(:email, :username)

user.update_without_password(new_data)

assert_equal user.username, 'hafizlubis', "User is not updated"

end

The irst line inside the test code tries to get the data from the ixture
and store it to a variable. Based on my ixture, I have data that has,
hafizbadrie@gmail.com, as the e-mail and hafizbadrie as the username.
I intend to update the username to haizlubis and check whether it's
updated with an assertion or not. You can see the result of the test in
the following screenshot:

The user update without password test

Congratulations! Your test has succeeded once more since you have no
failures and errors. The simulation data is successfully loaded and updated.

• Update the user account with a password: To test your user update along
with its password, you need to use a different method name; that is, update_
with_password. Let's see the following code example:

test "user edit with password" do

user = User.first

new_data = {

:username => "hafizlubis",

:current_password => "hafizmelulu",

:password => "devisetest",

:password_confirmation => "devisetest"

}

new_data = ActionController::Parameters.new(new_data)

new_data = new_data.permit(:email, :username, :current_password,
:password, :password_confirmation)

Chapter 5

[77]

user.update_with_password(new_data)

assert_equal user.username, 'hafizlubis', "Password is not
updated"

end

This code is inserted within the class, which is also located at test/models/
user_test.rb. I intend to update the password and username of an existing
account with the username hafizbadrie, so I will change the account's
password and then call the update_with_password method to save these
changes. To check whether the test is successful or not, I will make an
assertion against the updated username. The result of this test is shown in
the following screenshot:

The user update with password test

If your test passes all test cases with all assertions returning the expected
values, this means your data for simulation is successfully changing the
previous passwords.

The user deletion test
This example will show you how to apply a test for user deletion. We are going to
pass through a simple case in our test case. Now, let's modify your user_test.rb
ile so that it contains the following code within its class:

test "user deletion" do

user = User.first

user.destroy

deleted_user = User.first

assert deleted_user.nil?, "User is not deleted"

end

Testing Devise

[78]

You have prepared the test case. Let's execute it. The result will be as shown in the
following screenshot:

The user deletion test

When you see this result in your console, it means you have passed all your
test cases.

The sign-in test
Now, we will see how to perform the sign-in test. In this case, we will no longer use
unit testing, and perform functional testing instead. This test will be performed at
the controller test ile and we start by testing the authentication ilter. We expect that
when users visit the index action of the user's controller, they will be redirected to the
Devise sign-in page. To do it, please open and modify test/controllers/users_
controller_test.rb. Add the following code inside the UsersControllerTest class:

include Devise::TestHelpers

test "should be redirected" do

get :index

assert_redirected_to new_user_session_path, "User is not redirected!"

end

Don't forget to include Devise::TestHelpers because we are going to use some
Devise helpers such as authenticate and sign_in. Both these methods are deined
in this class. The test code will make a request to the index action of the user's
controller. Since we expect that users will be redirected to the sign-in page, we are
going to make an assertion named assert_redirected_to. If the redirected page is
not as we expected, the fail message will show up.

Chapter 5

[79]

You can see the result of the test in the following screenshot:

The user redirection test

All the tests have passed without any errors, so we are going to continue to the next
test, which is the sign-in test. To perform this test, please add the following code
inside test/controllers/users_controller_test.rb:

test "should sign in" do

@request.env["devise.mapping"] = Devise.mappings[:user]

user = User.first

sign_in user

get :index

assert_response :success, "User is not signed in!"

end

This test will try to perform sign-in of an account and check whether it's succeeded
or not. To validate it, we'll try visiting the index action of users_controller_test.
If we are redirected to another page, this means the Devise ilter is executed because
there is not a single signed-in account. However, if we get the actual page of the index
action, this means we have successfully signed in. To perform this test, we need to
use sign_in and assert_response methods. The sign_in Devise helper is used to
perform the Devise sign-in action and assert_response is used to see the response
code from the server. For this test, we use :success, which deines code 200.

Testing Devise

[80]

The Remote authentication test
As I mentioned before, for this test, we will use a different testing tool called RSpec
and Factory Girl.

RSpec is a testing tool for the Ruby programming language. Born under the banner
of Behavior-Driven Development, it is designed to make Test-Driven Development
a productive and enjoyable experience (http://rspec.info/).

factory_girl is a ixtures replacement with a straightforward deinition syntax,
support for multiple build strategies (saved instances, unsaved instances, attribute
hashes, and stubbed objects), and support for multiple factories for the same class
(user, admin_user, and so on), including factory inheritance (https://github.
com/thoughtbot/factory_girl).

In this condition, we are going to replace the default test framework with RSpec
and ixtures with Factory Girl. This means you will have methods different from
the previous examples and, as a consequence, you will learn a new method for
performing tests. Eventually, you will be able to compare which testing tool is more
suitable for you.

To start our test with RSpec and Factory Girl, we need to add both gems in our
Gemfile as follows:

group :development, :test do

gem 'rspec-rails', '~> 2.14.0'

gem 'factory_girl_rails', '~> 4.2.1'

end

If you haven't installed these gems in your gemset, you can run the bundle install
command before proceeding to the next steps. Next, you should initialize RSpec by
executing the following command:

$> rails generate rspec:install

The result of the previous command is shown in the following screenshot:

The RSpec installation result

Chapter 5

[81]

Let's continue by preparing Factory Girl for your test. Since you already have the
spec folder, please add a new folder named factories under it. We will put our
factories ile under it. To apply our new testing tool as our test default, you need
to add some extra coniguration to your generator. You can do this by modifying
your config/application.rb ile and adding the following code:

config.generators do |g|

g.test_framework :rspec, :fixture => true

g.fixture_replacement :factory_girl, :dir => "spec/factories"

end

Before we proceed to the next step, you should pay attention to the coniguration
in the spec/spec_helper.rb ile. We are going to tell Rails not to use its default
ixtures. To do this, please open the ile and include the following two lines:

config.fixture_path = "#{::Rails.root}/spec/fixtures"

config.user_transactional_fixtures = true

Therefore, our new testing tool will become the default tool for testing. If you start
this test from a brand new project, the application will automatically generate RSpec
iles when you execute rails generate model and rails generate controller
commands. However, if you start installing this testing tool with controllers and
models that are already generated, you will need to add some iles by yourself. Since
this example uses the code written in Chapter 4, Remote Authentication with Devise and
OmniAuth, you need to add some test iles in the spec folder.

This test will show you two kinds of tests: a functional test performed in the
controller and a unit test performed in the model. However, before we start the test,
we have to prepare our ixture deined by Factory Girl. Please execute the following
command to produce a ile named users.rb, which is located at spec/factories/:

$ rails generate factory_girl:model User email username provider uid

Now, open the ile and modify it so that the code will look like the following lines
of code.

require 'factory_girl_rails'

FactoryGirl.define do

factory :user do

email 'learningdeviseforrails@gmail.com'

username 'hafizbadrie'

provider 'twitter'

uid '1234567'

end

end

Testing Devise

[82]

Now, let's start writing our test code from the unit test. Please add a new ile named
users_spec.rb under spec/models/. If you don't have a folder named models, you
can create it on your own and save the ile under that folder. Referring to the user.
rb ile written in Chapter 4, Remote Authentication with Devise and OmniAuth, we have
a method called process_omniauth, and we will create our test case in that method.
Please write the following code inside users_spec.rb:

require 'spec_helper'

describe User do

it "processes omniauth from existing user" do

auth = {

:provider => "twitter",

:uid => "1234567",

:info => {

:nickname => "hafizbadrie"

}

}

user = FactoryGirl.create(:user)

tested_user = User.process_omniauth(auth)

expect(tested_user).to eq(user)

end

it "processes omniauth with new user" do

auth = {

:provider => "twitter",

:uid => "1234567",

:info => {

:nickname => "hafizbadrie"

}

}

tested_user = User.process_omniauth(auth)

expect(tested_user.persisted?).to be_false

end

end

You just deined two test cases for the process_omniauth method. The irst test
case shows that the method processing the data deined by auth is equal to the data
existing in the database, while the second shows the opposite of this, that is, the data
deined by auth is new. As you can see, the method used by RSpec is different from
the ones we used in previous examples. For more information about the methods,
you can go to the following original documentation sites:

• http://rubydoc.info/gems/rspec-core

• http://rubydoc.info/gems/rspec-expectations

Chapter 5

[83]

• http://rubydoc.info/gems/rspec-mocks

• http://rubydoc.info/gems/rspec-rails

We have prepared the test case and now, it's time to execute it. Please run the
following command to see the results:

$> rspec spec/models

You also can use the following command to execute all the tests you have (models,
controllers, and the views test), which is slower than the previous command:

$> rake spec

The result will show that you have passed two examples, as shown in the
following screenshot:

The unit test with RSpec result

Let's continue executing the functional test at our controller. Please create a ile
named omniauth_callbacks_controller_spec.rb under spec/controllers. If
you already have the ile, you can skip this step; however, if you don't, you have to
create the folder and ile on your own.

As described in Chapter 4, Remote Authentication with Devise and OmniAuth the
omniauth_callbacks_controller.rb ile provides an action named provider. The
test will show two types of test cases. The irst case will show the condition when a
user signs in with a new Twitter or Facebook account. The second case will show the
condition when a user signs in with an existing account via Twitter or Facebook. The
following is the example test code that I wrote:

require 'spec_helper'

describe OmniauthCallbacksController do

before(:each) do

request.env["omniauth.auth"] = {

:uid => "1234567",

:provider => "twitter",

Testing Devise

[84]

:info => {

:nickname => "hafizbadrie"

}

}

end

describe "GET #provider" do

it "sign up with twitter success" do

user = User.new

get :twitter

response.should redirect_to new_user_registration_url

end

it "twitter sign in success" do

user = FactoryGirl.create(:user)

get :twitter

response.should redirect_to root_path

end

end

end

The previous code gives you two cases. The irst case shows that the user should
be redirected to the registration page because the incoming user is a new user. The
second case uses the data deined in our factory to sign in and then the user should
be redirected to the root path deined in the route. Please remember that to run the
test perfectly, you have to create a dummy value for omniauth.auth, which is used
by the process_omniauth. In the previous code, the dummy value is deined in the
before(:each) … do block of code, which is executed in every test case.

Now, let's see the result of the test. Please execute rspec spec/controllers and the
result will be as follows:

The Functional test with RSpec

Chapter 5

[85]

In the example, I wrote a case where the user signs in with a Twitter account. So,
what about a Facebook account? You can apply the same test with a Facebook
account with minor changes. First, you should change the provider value in
request.env["omniauth.auth"] from twitter to facebook. In every test case,
you should replace get :twitter with get :facebook. This should do it and the
test will be performed with Facebook as its provider.

Summary
In this chapter you have learned about how to test some of the Devise actions. Some
of them are performed with the default Ruby on Rails testing tool and some use
RSpec and Factory Girl. With different testing tools being used in the examples, you
are expected to be able to compare which tool is more suitable for you. The test itself
is meant to make your Devise and application more solid and less faulty. As I have
said earlier, you may think that this activity will consume some of your time, which
could be allocated to developing other features, or you can say that developers
can perform the test manually. However, as the application grows, developers
will start losing track of the bugs they have exterminated and tests they have
performed. Repeating the same test manually will be more ineficient. The point is
that depending on the size of your application, you may choose whether to apply the
test or not, but the end point of the development should remain the same; that is, to
develop a useful and solid application.

Index

Symbols

$ rails server command 13
:conirmable module 24
:except code 13
:index action 48
:only code 13
:show action 48

A

abilities
correctness, ensuring 50
debugging 50
testing 50

account
cancelling 27

admins controller 32
advanced CanCan

using 46-50
advanced CanCan usage

authorization checks, simplifying 49
correctness, ensuring 50, 51
SQL used, for deining rules 46-48

App ID value 70
application

registering, at facebook developer site 67-
70

registering, at Twitter developer site 56-60
remote authentication, implementing on

55-71
App Name ield 68
App Namespace ield 68
App Secret value 70
Apps menu 68
assert_response() method 79

authenticate helper 78
authentication

used, for signing in 15-20
Authlogic 7
authorization 41
authorization checks

simplifying, on controllers 49-51
authorize!() method 44

B
bundle command 42
bundle install command 80

C

CanCan::AccessDenied exception 44, 45
CanCan gem

URL 41
Cancel Account button 27
can() method 43, 46, 48
cannot() method 43, 46
CollabBlogs 41
CollabBlogs, web application

building, for collaborative writing 41-46
functionalities 41, 42
initial setup 42

Conirmable module 8
Consumer key value 60
Consumer secret value 60
controllers

authorization checks, simplifying on 49, 50
create() method 64
Cucumber framework 50
current_password ield 67

D

[88]

Database Authenticatable module 7
destroy abilities 47
Devise

about 7
helpers 14
installing 9-12
integrating, with Mongoid 36-39
modules 7
testing, types 73
used, for application running 12-14

Devise actions
customizing 28-31

Devise actions customization
conirmation 29
forgot password 31
sign-in 30
sign-out 30
sign-up (registration) 28
user deletion 30
user edit 29

Devise ile view
screenshot 16

Devise helpers
current_user 14
user_session 14
user_signed_in? 14

Devise installation
screenshot 10

Devise layout
customizing 31-35

Devise modules
Conirmable 8
Database Authenticatable 7
Lockable 8
Omniauthable 8
Recoverable 8
Registerable 8
Rememberable 8
Timeoutable 8
Token Authenticatable 8
Trackable 8
Validatable 8

Devise::OmniauthCallbacksController
class 62

Devise routes
customizing 28-31

Devise::TestHelpers 78

Devise, testing
Remote authentication test 80-85
sign-in test 78, 79
sign-up test 74, 75
user deletion test 77
user update test 75-77

devise.user_attributes key 65

E

edit account page
screenshot 21

Edit User page 27
E-mail ield 17, 26
employees controller 32

F

Facebook
used, for OmniAuth coniguring 70, 71
used, for remote authentication 67-71

Facebook developer site
application, registering at 67-70
screenshot 68
URL 67

Factory Girl
about 80
URL 74

irst() method 64
irst_or_create() method 64, 65
fully qualiied domain name (FQDN) 69

H

HTTP Basic Authentication 7

L
Lockable module 8

M

model 42
model class 19
Mongoid

Devise, integrating with 36-39

N

[89]

new_with_session() method 65

O

oauth_callback parameter 59, 62
OmniAuth

about 54, 55
URL 54

Omniauthable module 8, 54, 56
omniauth.auth key 62
OmniAuth coniguration

authentication, Facebook used 70, 71
authentication, Twitter used 60-67

OmniAuth support 8

P

password
resetting 26

password_required? method 65
password reset page

screenshot 26
persisted? method 64
POST requests 7
process_omniauth() method 63, 64, 82, 84
provider ield 65

R

Rails application
creating 9-12
iles, generating by Devise 10
information, generating 10
running, Devise used 12-14

Rails application, iles
devise.en.yml 10
devise.rb 10

rails command 21
rails generate controller command 81
rails generate model command 81
rake db

migrate command 16, 26
Recoverable module 8, 26
Registerable module 8, 21
Rememberable module 8
remote authentication

about 53, 54
application, preparing 55, 56

Facebook, using 67-71
implementing, in application 55-71
Twitter, using 56-67

Remote authentication test
about 74
applying 80-85
Factory Girl used 80
RSpec used 80

RSpec
about 80
URL 74

RSpec framework 50
RSpec installation result

screenshot 81
RSpec matcher 50
Ruby on Rails

about 7
URL 73

rules
deining, SQL used 46-48

S

scaffold 42
session variable 14
sign_in helper 78, 79
sign_in() method 79
sign-in page

screenshot 17
sign-in test

applying 78, 79
sign-up page

screenshot 19
sign-up test

applying 74
result, screenshot 75

SQL
used, for rules deining 46-48

T

Test::Unit framework 50
Timeoutable module 8
Token Authenticatable module 8
Trackable module 8
Twitter

used, for OmniAuth coniguring 60-67
used, for remote authentication 56-67

[90]

twitter action 70
Twitter developer site

application, registering at 56-60
screenshot 58
URL 56

U

update() method 22
update_without_password() method 24
update_with_password() method 66, 76, 77
user

signing up,account conirmation
used 24-26

user account
updating 21-24

user account updation
data, editing without password 23, 24
password, editing 21-23

user deletion test
applying 77
screenshot 78

user, Devise model
generating 10

user, Devise model generation
screenshot 11

user keyword 14
username ield 16-18
users controller 37
UsersControllerTest class 78
UserTest class 74
user update test

applying 75
applying, without password 75
applying, with password 76, 77
result, screenshot 76

V

Validatable module 8

W

web application. See CollabBlogs
Website ield 58

Thank you for buying

Learning Devise for Rails

About Packt Publishing
Packt, pronounced 'packed', published its irst book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on speciic technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more speciic and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it irst before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

OpenAM
ISBN: 978-1-849510-22-6 Paperback: 292 pages

Written and tested with OpenAM Snapshot 9 - the
Single Sign-On (SSO) tool for securing your web
applications in a fast and easy way

1. The irst and the only book that focuses on
implementing Single Sign-On using OpenAM

2. Learn how to use OpenAM quickly and
eficiently to protect your web applications
with the help of this easy-to-grasp guide

3. Written by Indira Thangasamy, core team
member of the OpenSSO project from which

OpenAM is derived

Railo 3 Beginner's Guide
ISBN: 978-1-849513-40-1 Paperback: 364 pages

Easily develop and deploy complex applications
online using the powerful Railo Server

1. A complete guide to developing an application
with Railo from start to inish

2. In depth coverage of installing Railo Server on
different environments

3. A detailed look ORM, AJAX, Flex and other
technologies to boost your development

Please check www.PacktPub.com for information on our titles

Ruby on Rails Enterprise

Application Development: Plan,
Program, Extend
ISBN: 978-1-847190-85-7 Paperback: 528 pages

Building a complete Ruby on Rails business
application from start to inish

1. Create a non-trivial, business-focused Rails
application

2. Solve the real-world problems of developing
and deploying Rails applications in a business
environment

Aptana RadRails: An IDE for Rails

Development
ISBN: 978-1-847193-98-8 Paperback: 248 pages

Over 80 practical, task-based recipes to create
applications using Boost libraries

1. Comprehensive guide to using RadRails during
the whole development cycle

2. Code Assistance, Graphical Debugger, Testing,
Integrated Console

3. Manage your gems, plug-ins, servers,
generators, and Rake tasks

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Devise – Authentication Solution for Ruby on Rails
	Devise modules
	Installation
	Run your first application with Devise
	Summary

	Chapter 2: Authenticating Your Application with Devise
	Signing in using authentication other than e-mails
	Updating the user account
	Signing up the user with confirmation
	Resetting your password
	Canceling your account
	Customizing Devise actions and routes
	Customizing your Devise layout
	Integrating Devise with Mongoid
	Summary

	Chapter 3: Privileges
	CollabBlogs – a web application for collaborative writing
	Advanced CanCan usages
	Defining rules using SQL
	Simplifying authorization checks on controllers
	Ensuring abilities' correctness
	Testing
	Debugging

	Summary

	Chapter 4: Remote Authentication with Devise and OmniAuth
	Remote authentication
	OmniAuth
	Implementing remote authentication in our application
	Preparing your application
	Remote authentication using Twitter
	Registering our application at the Twitter developer site
	Configuring OmniAuth for authentication using Twitter

	Remote authentication using Facebook
	Registering our application at the Facebook developer site
	Configuring OmniAuth for authentication using Facebook

	Summary

	Chapter 5: Testing Devise
	The sign-up test
	The user update test
	The user deletion test
	The sign-in test
	The Remote authentication test
	Summary

	Index

