Learning Devise for Rails

Use Devise to make your Rails application accessible,
user friendly, and secure

PACKT

.alitebooks.col

http://www.allitebooks.org

Learning Devise for Ralls

Use Devise to make your Rails application accessible,
user friendly, and secure

Hafiz
Nia Mutiara

Giovanni Sakti

open source

community experience distilled
PUBLISHING

BIRMINGHAM - MUMBAI

[vww allitebooks.cond

http://www.allitebooks.org

Learning Devise for Rails

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2013
Production Reference: 1181013

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78216-704-4
www . packtpub.com

Cover Image by Suresh Mogre (suresh.mogre.99@gmail . com)

[vww allitebooks.cond

http://www.allitebooks.org

Credits

Authors Copy Editors
Hafiz Mradula Hegde
Nia Mutiara Dipti Kapadia
Giovanni Sakti Sayanee Mukherjee
Reviewers Project Coordinator
Philip Hallstrom Amigya Khurana
Andrew Montgomery-Hurrell
Akshay Surve Proofreader
Linda Morris

Acquisition Editors

Nikhil Karkal Indexer

. Mehreen Deshmukh
Taron Pereira

Commissioning Editor Production Coordinator

Neil Alexander Aparna Bhagat

Technical Editors Cover Work
Jalasha D'costa Aparna Bhagat

Tarunveer Shetty

[vww allitebooks.cond

http://www.allitebooks.org

About the Authors

Hafiz majored in Informatics Engineering at Bandung Institute of Technology,
Bandung. He graduated in 2008. In his study period, he spent most of his time
researching user interaction. It was a bit contradictive because he worked mainly

in backend programming after he graduated. Most of his research was about
ActionScript, PHP, and Javascript. About 2 years later, he came across Ruby on Rails,
which sparked a lot more interest in web development. His interest was magnified
after he took on the role of Chief Technology Officer in a startup (Wiradipa
Nusantara) he built with his friends. Since then, most of his time was contributed to
research on Ruby, Ruby on Rails, and web performance. He blogs extensively about
Ruby and Ruby on Rails at http: //hafizbadrie.wordpress.com. He has written a
lot about best practices for using Ruby on Rails and also about web performance.

Currently, he is a Lead Developer in The Jakarta Post Digital while maintaining

his startup as a CTO in Wiradipa Nusantara. In recent days, he is paying more
attention to the development of web performance from the server side with Ruby,
the client side with JavaScript, and any other related strategy. He is a member of
id-ruby (http://id-ruby.org), an Indonesian community that talks about Ruby
and is also a member of Card to Post (http://www.cardtopost .com), an Indonesian
community that mainly talks about postcards.

My sincere gratitude to Allah. An article on Standard Widget Toolkit
(SWT) brought Ashish Bhanushali to my blog and that's where the
offer for this book came from. I'd like to thank the Packt Publishing
team for their patience and hard work and Giovanni and Nia for
making a good team —we should do this again sometime. I also
want to thank my father, mother, brothers, Adelia, and all of the
team in Wiradipa Nusantara for your support. I dedicate this book
to all developers —not just Ruby on Rails developers —and hope it is
useful to everyone who reads it.

[vww allitebooks.cond

http://www.allitebooks.org

Nia Mutiara is a software engineer working on a virtual stock gaming iOS
application, as well as its server-side web application. For two years, she worked on
complex Ruby on Rails and iOS applications. She is a master of JavaScript and CSS,
and has used those skills to enhance most web applications that she has worked on.
In her spare time, she hangs around Twitter, writes Ruby tutorials in Indonesian, and
watches comedy.

Giovanni Sakti has been a developer for 10 years with an emphasis on
developing web applications in Java and Ruby. His latest projects and research are
focused on API-based web applications with Angular]S as the client-side framework.

He is an active member of the Indonesian Ruby (id-ruby) community and
sometimes gives talks about Ruby-related topics there. He writes regularly on
his blog —http://mightygio.com— primarily about Ruby, Rails, Angular]S,
and other programming topics.

Giovanni is the founder of PT. Starqle Indonesia, a Jakarta-based company
providing products, IT consulting, and development services with a focus
on the healthcare industry.

I would like to thank Hafiz and Nia for giving me the opportunity
to write this book together. I would also like to dedicate this book to
my wife, Elvira, and to my grandmother, father, mother, and sisters,
Emmy, Tri, Tina, and Livia. Lastly, I want to send my regards to
everyone who shares the same dreams at PT. Starqle Indonesia.

[vww allitebooks.cond

http://www.allitebooks.org

About the Reviewers

Philip Hallstrom has been building web applications for the last 19 years. He
enjoys working in the world of open source, particularly with Linux, Ruby, Rails,
and PostgreSQL. He lives in Olympia, WA with his wife and two boys. When he's
not on the golf course, Philip is the CTO for Supreme Golf, a startup looking to make
it easy for golfers to find the best tee times available. You can find him online at
http://pjkh.com.

Andrew Montgomery-Hurrell is a software developer, hacker, and all-round
geek who enjoys everything from Dungeons and Dragons to DevOps. At an early
age, he was fascinated with computers, and after cutting his teeth on BASIC with
older models of Amstrad CPCs and Amigas, he moved on to Linux admin, C/

C++, and then later to Python and Ruby. Since the early 2000s, he has worked on

a number of web applications in a range of languages and technologies from small
company catalog sites to large web applications serving thousands of people across
the globe. Trained and interested in computing "from the bottom up", Andrew has
experience in the full stack of computing technology — from ASICs to applications —
coming from a background in electronics and computer interfacing.

When he isn't working on web applications or infrastructure tools for gaming events
by hosting company, Multiplay, he can be found hacking code, reading or writing
fiction, playing computer games, or slaying dragons with his wife, Laura.

[vww allitebooks.cond

http://www.allitebooks.org

Akshay Surve is in pursuit of making a difference through his initiatives, be

it for profit or for good. He has a deep understanding of the Consumer Internet,
Advertising, and Technology domains having worked with high-growth startups
globally. At heart, he is a midnight code junkie and occasionally dabbles in prose.
When not with his MacBook, he can either be found preparing for the next marathon
or disappearing into the wilderness. He was once seen taking a leap from a mountain
top and soaring through the skies solo in what looked like an elongated umbrella
from afar.

He is the co-founder of DeltaX (http://www.deltax.com), where he is building "The
Advertising Cloud" for advertising agencies and advertisers to efficiently buy, track,
attribute, optimize, and report media across the marketing segments —search, social,
display, RTB, mobile, and video.

You can connect with him on Twitter (https://twitter.com/akshaysurve),
LinkedIn (http://www.linkedin.com/in/akshaysurve), his personal blog (http://
www . akshaysurve . com), or Quora (http://www.guora.com/Akshay-Surve).

Akshay also self-published a book in 2012 entitled Words are all I have (http://goo.
gl/x2acmv), which is a collection of his short poems.

[vww allitebooks.cond

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more

You might want to visit www. PacktPub . com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www. PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at serviceepacktpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

[ﬂ] PACKT

http://PacktLib.PacktPub.com

®

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read and search across Packt's entire library
of books.

Why Subscribe?
* Fully searchable across every book published by Packt

* Copy and paste, print and bookmark content

* On demand and accessible via web browser

Free Access for Packt account holders

If you have an account with Packt at www . PacktPub. com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

[vww allitebooks.cond

http://www.allitebooks.org

Table of Contents

Preface 1
Chapter 1: Devise — Authentication Solution for Ruby on Rails 7
Devise modules 7
Installation 9
Run your first application with Devise 12
Summary 14
Chapter 2: Authenticating Your Application with Devise 15
Signing in using authentication other than e-mails 15
Updating the user account 21
Signing up the user with confirmation 24
Resetting your password 26
Canceling your account 27
Customizing Devise actions and routes 28
Customizing your Devise layout 31
Integrating Devise with Mongoid 36
Summary 39
Chapter 3: Privileges 41
CollabBlogs — a web application for collaborative writing 41
Advanced CanCan usages 46
Defining rules using SQL 46
Simplifying authorization checks on controllers 49
Ensuring abilities' correctness 50
Testing 50
Debugging 50
Summary 51

[vww allitebooks.cond

http://www.allitebooks.org

Table of Contents

Chapter 4: Remote Authentication with Devise and OmniAuth 53
Remote authentication 53
OmniAuth 54
Implementing remote authentication in our application 55

Preparing your application 55
Remote authentication using Twitter 56
Registering our application at the Twitter developer site 56
Configuring OmniAuth for authentication using Twitter 60
Remote authentication using Facebook 67
Registering our application at the Facebook developer site 67
Configuring OmniAuth for authentication using Facebook 70
Summary 7

Chapter 5: Testing Devise 73
The sign-up test 74
The user update test 75
The user deletion test 77
The sign-in test 78
The Remote authentication test 80
Summary 85

Index 87

Lii]

Preface

Imagine that you create a cool Rails web application that does different things

for different users. To do so, your application needs to be able to identify users

(at least users who are logged in versus anonymous visitors) to restrict its many
functionalities. Before building your core Rails application logic, you will need a few
authentication-related features working, that is, sign-up, sign-in, sign-out, remember
me, and password reset features. In future, you will want to integrate the login with
social networking sites such as Facebook or Twitter, so that your users will not need
to retype all their details when signing up for, or signing in, to your web application.

You get so excited with your Rails web application idea that you start searching
online for authentication solutions. Spending your time around the Internet, you
find two choices; you can roll your own authentication or pick a gem that does
authentication. After weighing these choices, you realize that you need a solution
that works straight away. There are multiple gems that you can pick, such as Devise,
Sorcery, and AuthLogic. Considering that you want to add a social networking sign
in and manage user restrictions, you want the solution to work well with the features
you will add in the future.

You can get Devise (https://github.com/plataformatec/devise), one of the
most popular authentication solutions for Rails. It is a one-stop authentication
solution that works right away. It also works neatly with other gems to help you
with social networking sign in and restricting resources for different users.

In this book, you will find your all-in-one guide to learn implementation of user
authentication using Devise. Through a series of hands-on instructions and code
examples, this book will explain how Devise saves you from having to implement
different types of authentication (for example, logging in, logging out, and password
resets). You will learn how flexible, customizable, and testable Devise is. This

book will also show you how using Devise, together with other gems, can help you
define user privileges to restrict resources and integrate a social network login with
your application.

Preface

What this book covers

Chapter 1, Devise — Authentication Solution for Ruby on Rails, introduces Devise as one
of the most modular, customizable authentication solutions for your Rails project. It
will cover Devise setup to allow quick user login for your Rails project via e-mail.

Chapter 2, Authenticating Your Application with Devise, digs Devise customizability
further down. This chapter explains the overriding of Devise controllers to tailor
different needs. You will also discover how to leverage default Devise authentication
view templates such as views for sign-in, edit account, and sign-up.

Chapter 3, Privileges, explains four simple steps to take advantage of the CanCan
gem for defining authorization rules on what users can and cannot do on different
controllers and views. It will then cover other ways to use CanCan for complex
authorization rules.

Chapter 4, Remote Authentication with Devise and OmniAuth, teaches you how to enable
remote authentication in your application using OmniAuth. Remote authentication
provides users with the ability to sign in using third-party accounts such as Twitter
and Facebook, instead of the typical username and password combination. This
feature is important when you want to simplify the authentication process in your
application.

Chapter 5, Testing Devise, shows you ways of testing your Devise-related code to
ensure that your Rails web application is working as expected. Tests are useful for
maintaining your application, especially when you expect to add lots of functionalities.

What you need for this book

As this book will guide you through plenty of hands-on examples, you should
make sure that you prepare your computer for trying out the examples. One
of the following operating systems is recommended:

* Ubuntuy, Linux, or any UNIX-compatible OS (any version)

* Mac OS X (10.6 or higher)

* Microsoft Windows (XP or higher)
In addition, one of the following database engines should be installed on
your computer:

* MySQL (latest version)

* SQLite (latest version)

* MongoDB (latest version)

[2]

Preface

Lastly, you should have the following version of Ruby on Rails installed:

* Ruby (2.0.0 or higher)
* Rails (4.0 or higher)

Who this book is for

This book is for web developers who are getting started with Rails and are looking
for authentication solutions, as well as for Rails developers who are looking to
extend their implementation of authentication with capabilities such as authorization
and remote authentication. A fundamental understanding of Rails is required;
readers should already be familiar with a few important Rails components such as
bundler, migrations, models, views, and controllers. Basic knowledge of relational
databases such as Ruby, HTML, and CSS is also required.

Conventions

In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows:
"The first thing that should be done is to add a devise gem to your Gemfile file."

A block of code is set as follows:

class User < ActiveRecord::Base

Include default devise modules. Others available
are:

:token authenticatable, :encryptable,

:confirmable, :lockable, :timeoutable and

:omniauthable

devise :database_authenticatable, :registerable,
:recoverable, :rememberable, :trackable,
:validatable

end

[31]

Preface

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

class HomeController < ApplicationController
before filter :authenticate user!

def index
end
end

Any command-line input or output is written as follows:

$ rails generate controller home index

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Very often,
when you visit the login page of a website, you will see the text Remember Me with
a checkbox beside it."

% Warnings or important notes appear in a box like this.

a1

~Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbackepacktpub. com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

[4]

Preface

Downloading the example code

You can download the example code files for all Packt books you have purchased
from your account at http: //www.packtpub.com. If you purchased this book
elsewhere, you can visit http: //www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books —maybe a mistake in the text or the
code —we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http: //www.packtpub.com/
submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions

You can contact us at questionse@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

[5]

Devise — Authentication
Solution for Ruby on Rails

It was around 2 months ago that I started to dig deep into Ruby on Rails, when I
needed a plugin to handle authentication. That time, Ruby on Rails 3 was newly
published, when so many gems still hadn't updated their compatibility to Rails
update, including Authlogic. Authlogic was the first authentication gem that I used
as an authentication plugin, but I couldn't use it anymore since I had to use Rails 3 in
my project. That moment brought me to Devise. Devise was already compatible to
Rails 3 and so my research began. The research concluded:

* Devise was very easy to use. The modules were developed in a very
good structure.

* Devise provided 11 modules that I could use to authenticate my application.

* Devise allowed me to customize some of its modules to meet my
application requirement.

These are the reasons that strongly influenced me to develop an application with
Devise. It saved my time from developing new authentication modules from
scratch. Now, we have reached Ruby on Rails 4; Devise was quickly updated

so that developers could use it within the new Rails environment.

Devise modules

What makes Devise truly interesting is its modularity. The following modules are
provided by Devise:

* Database Authenticatable: This module will encrypt and store a password
in the database to validate the authenticity of a user while signing in. The
authentication can be done both through POST requests or HTTP Basic
Authentication. This is the basic module to perform authentication
with Devise.

Devise - Authentication Solution for Ruby on Rails

Token Authenticatable: This module enables users to sign in based on an
authentication token. The token can be given through query strings or HTTP
Basic Authentication.

Omniauthable: Attach OmniAuth support to Devise. By turning this
module on, your application will allow the user to sign in with external
accounts such as Facebook and Twitter. We will talk about this in more
detail in Chapter 3, Privileges.

Confirmable: Attach this module to enable the confirmation mechanism.
So, Devise will send an e-mail with a confirmation instruction and verify
whether an account is already confirmed during the sign-in process.

Recoverable: There are times when users forget their passwords and need
to recover it. This module is the answer for that need. Devise will allow the
user to reset passwords and it will send the user the instructions via e-mail.

Registerable: You can control whether or not your application provides the
registration mechanism by using this module. This module is also used to
allow users to edit and destroy their accounts.

Rememberable: It's very often, when you visit a login page of a website,
you will see a sentence, Remember Me, with a checkbox beside it. It will be
used to remember the logged-in user by storing a cookie. In Devise, you can
implement this method by attaching this module.

Trackable: For certain websites, the sign-in tracker is very useful. The data
can be very helpful to retrieve some information. If you choose Devise to
handle your authorization mechanisms, you will be able to do it. Devise
provides this module to track sign-in processes, so a user can collect
information regarding sign-in count, timestamps, and the IP address.

Timeoutable: This module is used to limit the session, so it will expire in a
specified period of time if it has no activity.

Validatable: This module provides the basic validation for e-mail and
password. The validations can be customized, so you're able to define
your own validations.

Lockable: If you are willing to add more security to your application, this
module could be very handy. Lockable will manage the maximum count

of failed sign-in attempts. When it reaches the maximum number, Devise
will lock the account. The user can unlock it via e-mail or after a specified
time period.

These 11 modules are the essence of Devise. With these modules, you can do anything
related to application authorization, which is very useful in modern applications.

[8]

Chapter 1

Installation

We are going to learn how to install this interesting authorization plugin to your
Rails application. For your information, this is the specification of application
sample that I used:

* Rails 4 (4.0.0)
* Devise 3 (3.0.3)
* SQLite 3 (1.3.8)

Let's create our Rails application by executing this command:

$ rails new learning-devise

The first thing that should be done is you need to add the Devise gem to your Gemfile.
gem 'devise'
To make sure that everything is installed properly, you can execute the following

command inside your Rails application folder:
$ bundle install

The command will install the Devise gem, and now you have to install the
configuration files for Devise. You can install it all at once by executing the
following command:

$ rails generate devise:install

The result of the command is shown in the following screenshot:

bash-2,2% rails generate devisezinstall
config/initializers/devise.rb
config/locales/devize, en,uml

Some setup you must do manually iF you hawven't yety
1, Enzure you have defimed default url options in your enviromments Files, Here
iz an example of default_url_options appropriate for a development environment
in configdenvironments/developrent . rbs
config.action_mailer.default_url_options = { thost => 'localhosti3000' +

In production, thost should be sst to the actual host of your application,

ra

. Ensure you have defined root_url to *something® in your config/routes,rb,
For example:

root jto = "homed#index"

o

. Ensure you have flash messages in app/views/layouts/application,html,erb,
For example:

<p class="rotice"»<E= notice E><{/pl
<p class="alert">Ci= alert H></p>

=

« If you are deploying on Heroku with Rails 3.2 only, you may want to set:
config,assets,initialize_on_preconpile = false

On configlapplication,rb forcing your application to not access the TB
or load models when precompiling your assets.

o

. You can copy Devise wiews {for customization) to your app by runming:

rails g devize:vieus

bash-3.2% 11

Devise installation

[o]

[vww allitebooks.cond

http://www.allitebooks.org

Devise - Authentication Solution for Ruby on Rails

As you can see from the screenshot, Devise generates two new files in your Rails
application. Those two files are:

devise.rb: This file is located at config/initializers/devise.rb and will
be used as the Devise main configuration file.

devise.en.yml: This file is located at config/locales/devise.en.yml and
it will be used as an internationalization file for English language.

Not just generating files, the installation command also prints some information that
will be useful for our complete Devise setup. This information will tell us about:

The basic URL configuration that applies to every environment setting. The
code shown in the screenshot should be added to the environment settings,
so that Devise will acknowledge the application URL which is used in its
autogenerated e-mail. Especially for production, the host value should be
filled with your actual application domain.

The route setting that you need to add to your config/routes. rb file. By
defining your root URL, Devise will use it for its redirection. For example,
Devise will redirect the user to the root URL after they sign out from

the application.

Devise helpers that can be used to generate errors or warning messages when
there's something wrong with the code. This is very useful and you can write
it in your views file.

Configuration that you need to add when deploying to Heroku. I'm not
going to discuss about it in this book.

How to generate copies of Devise views, so that you can customize it
later. We will see how it works in Chapter 2, Authenticating Your Application
with Devise.

The next step is generating a Devise model. Let's name our Devise model as user. For
your information, this model name can be replaced with any name you wish. This
name also determines the Devise helper's name. We will see how we use it later in
this chapter. To generate the Devise model, you can execute the following command:

$ rails generate devise user

[10]

Chapter 1

The result of this command can be seen in the following screenshot:

bazh-2.2% railz generate devize user
active_record
db/migrate/201309106123401_devize_create_uzers,rb

L appsmodelsfuser,rb
[test_unit

tests/model = user_test,rb

test A ixturesz/uzers,yml

appsmodelsfuser,rb

devise_for iusers
ibash-3.25 |

Generate Devise model
Based on the previous screenshot, Devise generates four kinds of files:

* The first kind is used as a migration file. This file is shown as db/
migrate/20130915133401 devise create users.rb. Like the other
migration files, it is used to generate tables in our database.

* A model file that is shown as app/models/user.rb.

* A test file that is shown as test /models/user test.rb. This file is used to
perform testing. We will discuss this topic in Chapter 5, Testing Devise.

e A fixture file that is shown as test /fixtures/users.yml. This file is used
to perform testing. We will discuss this topic in Chapter 5, Testing Devise.

The command also modifies the model file to attach the default modules and the
route file (routes. rb). Devise modifies the route so the application recognizes
some routes generated by Devise. This is the code which is added by Devise to
the route file:

devise for :users

Now, let's open a user model file (user.rb) and you're going to see this code:

class User < ActiveRecord::Base

Include default devise modules. Others available
are:

:token authenticatable, :encryptable,

:confirmable, :lockable, :timeoutable and

:omniauthable

devise :database_authenticatable, :registerable,
:recoverable, :rememberable, :trackable,
:validatable

end

[11]

Devise - Authentication Solution for Ruby on Rails

From the code, we will know that Devise will attach some default modules such as
Database Authenticable, Registerable, Recoverable, Rememberable, Trackable, and
Validatable. As I wrote earlier in this chapter, I suppose you already knew what the
modules are for.

At this point, you have prepared all the basic settings that a Rails application needs
to implement Devise. So, the next step is creating the table on your database by
migrating the migration file. If you don't make any change to the Devise migration
file, it means Devise will only generate columns for its default modules. But, if you
make some changes like commenting on other modules such as t .encryptable,
t.confirmable, t.lockable, and t.tocken_authenticatble, you will have extra
columns in your user's table that will handle some specific Devise modules. So, it
depends on your requirement whether you are going to use the modules or not.

We have prepared our migration file, now let's create the table. I presume that
you already have the database and have prepared the database configuration at
config/database.yml. If so, all you need to do is execute this command:

$ rake db:migrate

Now, you have prepared everything to make Devise run smoothly on your Rails
application. But, there's one more thing that I want to show you. It's about how to
wrap controllers with your authorization and see it in action.

Run your first application with Devise

In this section, we are going to talk about how to wrap your controllers with Devise
authorization and use some Devise helper in your views. First, I want to generate a
single controller by executing this command:

$ rails generate controller home index

This command will generate the controller (home_controller.rb) with an action
named index. It also generates a view file located at views/home/index.html.erb.
Let's start by opening the controller file and add a code (:authenticate_user!)
between class definition and first action definition. Why :authenticate_user!? As
I stated before, we have our Devise model named as user and this code is one of the
Devise helpers that I meant. So, in the future, when you have a Devise model with
a different name, you can change the user part in the code with your actual model
name. According to our example, the controller code will be like the following:

class HomeController < ApplicationController
before filter :authenticate user!

[12]

Chapter 1

def index
end
end

By adding the highlighted code, your Rails application will run the controller filter,
which is executed before executing all the actions defined in the controller. You can
also moditfy the filter so that it will be executed only for all actions using :only or

:except code. By adding this code, you will be able to define which actions should
be authorized and which should not. For example, it will be like the following code:

class HomeController < ApplicationController
before filter :authenticate user!, :only => [:index, :new]

def index
end

def new
end

def edit
end
end

The code shows that the actions index and new are authorized, so users need to sign
in before getting into the action page.

Now, let's start our Rails server by executing the command $ rails server. See it
in action by visiting http://localhost:3000. The application will automatically
redirect you to the sign-in page, like this:

e0o %

|] LearningDeviseChl x
<« C' [localhost:3000/ us... 5 % OBk 20 % =
[:Jauascripl: [:| Style D Rails D HTMLS [:l Node)S » D Other Bookmarks

Sign in

E_._mail
|

Password

Remember me
Sign in
Sign up
Forgot your password?

First Devise application

[13]

Devise - Authentication Solution for Ruby on Rails

Now, you have run your first application with Devise. With current modules, you
can only perform sign-in, sign-up, reset password, remember me action, and sign-in
tracker. We will play with other modules in the next chapters, but before that, I want
to show some Devise's helpers, which are very helpful in view files. Those helpers
are as follows:

* current_user: This helper will be very useful to get the data model of a
currently logged-in user. With this method, you are able to retrieve data
stored in the database anytime you want it. For example, if I want to get the
e-mail of the current logged-in user, I can retrieve it by calling the method
current user.email.

* user_ signed_in?: This helper returns a Boolean data type, which
determines whether a user is logged-in or not. For example, with this method
you can hide and show sign-out link in your view. Here is the sample code
for this case (app/views/home/index.html.erb):

<hl>Home#index</hl>
<p>Find me in app/views/home/index.html.erb</p>

<% if user_signed_in? %>
<%= link to 'Sign Out', destroy user session path, method:
:delete %>

<% end %>

* user_ session: This is a session variable that can set anything you want in
a hash format. Actually, this helper contains the subset of the Ruby on Rails
session data. So, the purpose of this helper is to simplify the use of Rails
sessions. Despite using the session variable for every Devise model that
you have, you can utilize the session helper, so the session grouping for your
model will be clear. For example, I want to save a string inside the session
helper, I can do it by writing this code:

user session[:hello] = "world"

These helpers are the ones that I mentioned before. The actual name is based on your
Devise model name. So, when you create or use another model name, you can use all
these helpers by replacing the user keyword in the helpers name with the one that
you have.

Summary

At this point, you've known how to set up Devise at your Rails application, saw it in
action, and the helpers from Devise. We're going to dig deeper into Devise and I'm
sure, if you've understood all of this, the following chapters will be easier for you.

[14]

Authenticating Your
Application with Devise

A "state of the art" application sometimes requires more customizations from Devise,
such as customization for signing in, updating accounts, resetting a user's password,
or account confirmation. When you first install Devise with its default settings, you
will not get these features. That's why you will need to dig deeper to have a more
comprehensive understanding about Devise.

Signing in using authentication other
than e-mails

By default, Devise only allows e-mails to be used for authentication. For some
people, this condition will lead to the question, "What if I want to use some other
field besides e-mail? Does Devise allow that?" The answer is yes; Devise allows other
attributes to be used to perform the sign-in process.

For example, I will use username as a replacement for e-mail, and you can change it
later with whatever you like, including userlogin, adminlogin, and so on. We are
going to start by modifying our user model. Create a migration file by executing the
following command inside your project folder:

$ rails generate migration add username to users username:string

Authenticating Your Application with Devise

This command will produce a file, which is depicted by the following screenshot:

8 00

bazh-3,2% rails generate migration add_uzername_to_uzers uzernameiztring
active_record
db/migrate/20130620120039_add_uzername_to_uzers,rb
bash-3.2% I

The generated migration file

Execute the migrate (rake db:migrate)command to alter your users table, and
it will add a new column named username. You need to open the Devise's main
configuration file at config/initializers/devise.rb and modify the code:

config.authentication keys = [:username]
config.case insensitive keys = [:username]
config.strip whitespace keys = [:username]

You have done enough modification to your Devise configuration, and now you have
to modify the Devise views to add a username field to your sign-in and sign-up pages.
By default, Devise loads its views from its gemset code. The only way to modify the
Devise views is to generate copies of its views. This action will automatically override
its default views. To do this, you can execute the following command:

$ rails generate devise:views

It will generate some files, which are shown in the following screenshot:

8 00

bazh-3,2% rails generate deviseiviews

Devizes ibeneratorss iSharedViewsbenerator
appsviews/devisesshared
appsviewssdevizesshareds _links,erb

form_for
appSviewssdevizesconfirmations
appsviewssdevizesconfirmations new,html .erb
appswiewssdevizespasswords
appsviewssdevizespazswordssedit html .erb
appsuiewssdevize/passwordsSnew,html erb
appsviewssdevizesregistrations
appsviews/devisesregistrationsedit html .erb
appSviewssdevizedregistrationsnew, html, erb
appsviewssdevizeszessions
appdviews/devizessessions/new, html ,erb
appsviewssdevizesunlocks
appsuiewssdevisesunlocks new, html erb

erb
appsviews/devisesmailer
appSviewssdevizesmailers/confirmation_instructions, html ,erb
appsviewssdevizesmallersreset _pazsword_instructions html,erh
appsviews/devizesmailersunlock_instructions, html,erb

bash-2,2% ||

Devise views files

[16]

Chapter 2

As I have previously mentioned, these files can be used to customize another view.
But we are going to talk about it a little later in this chapter. Now, you have the
views and you can modify some files to insert the username field. These files are
listed as follows:

* app/views/devise/sessions/new.html.erb: This is a view file for the
sign-up page. Basically, all you need to do is change the email field into
the username field.

#app/views/devise/sessions/new.html.erb

<h2>Sign in</h2>

<%= notice %>
<%= alert %>
<%= form for(resource, :as => resource name, :url => session_

path(resource name)) do |f]| %>
<div><%= f.label :username %>

<%= f.text field :username, :autofocus => true %$><div>

<div><%= f.label :password $%$>

°

<%= f.password field :password %$></divs>
<% 1f devise mapping.rememberable? -%>
<div><%= f.check box :remember me %> <
divs>

$= f.label :remember me %></

)

<% end -%>

<div><%= f.submit "Sign in" %></div>
<% end %>

%= render "devise/shared/links" %>

You are now allowed to sign in with your username. The modification will
be shown, as depicted in the following screenshot:

Sign in
Username

Password

Remember me
Sign in
Sign up
Forgot your password?

The sign-in page with username

[17]

Authenticating Your Application with Devise

app/views/devise/registrations/new.html.erb: This file is a view file
for the registration page. It is a bit different from the sign-up page; in this file,
you need to add the username field, so that the user can fill in their username
when they perform the registration.

#app/views/devise/registrations/new.html.erb
<h2>Sign Up</h2>

<%= form for() do |f]| %>

<%= devise error messages! %>

)

<div><%= f.label :email %>

<%= f.email field :email, :autofocus => true %></div>

<div><%= f.label :username %>

<%= f.text field :username %></div>

<div><%= f.label :password %>

<%= f.password field :password %$></div>

<div><%= f.label :password confirmation %>

<%= f.password field :password confirmation %$></divs>

<div><%= f.submit "Sign up" %$></divs>

<% end %>
<%= render "devise/shared/links" %>

Especially for registration, you need to perform extra modifications.
Previously, in Chapter 1, Devise — Authentication Solution for Ruby on Rails, we
have talked about mass assignment rules written in the app/controller/
application_controller.rb file, and now, we are going to modify them
a little. Add username to the sanitizer for sign-in and sign-up, and you will
have something as follows:

#these codes are written inside configure permitted parameters
function

devise parameter sanitizer.for(:sign_in) {|u| u.permit (:email,
:username) }

devise parameter sanitizer.for(:sign up) {|u|

u.permit (:email, :username, :password, :password confirmation)}

[18]

Chapter 2

These changes will allow you to perform a sign-up along with the
username data. The result of the preceding example is shown in the
following screenshot:

Sign up

Email

Username

Password

Password confirmation
Sign up

Sign in
Forgot your password?

The sign-up page with username

I want to add a new case for your sign-in, which is only one field for username

and e-mail. This means that you can sign in either with your e-mail ID or username
like in Twitter's sign-in form. Based on what we have done before, you already have
username and email columns; now, open /app/models/user.rb and add

the following line:

attr accessor :signin

Next, you need to change the authentication keys for Devise. Open /config/
initializers/devise.rb and change the value for config.authentication_keys,
as shown in the following code snippet:

config.authentication keys = [:signin]

Let's go back to our user model. You have to override the lookup function that
Devise uses when performing a sign-in. To do this, add the following method inside
your model class:

def self.find first by auth conditions(warden_ conditions)

conditions = warden_ conditions.dup

where (conditions) .where (["lower (username) = :value OR lower (email)
= :value", { :value => signin.downcase }]).first
end

[19]

vww allitebooks.conl

http://www.allitebooks.org

Authenticating Your Application with Devise

As an addition, you can add a validation for your username, so it will be case
insensitive. Add the following validation code into your user model:

validates :username, :uniqueness => {:case sensitive => false}

Please open /app/controller/application_controller.rb and make sure you
have this code to perform parameter filtering:

before filter :configure permitted parameters, if: :devise controller?

protected
def configure permitted parameters
devise parameter sanitizer.for(:sign in) {|u| u.permit (:signin)}
devise parameter sanitizer.for(:sign up) {|u| u.permit (:email,
:username, :password, :password_confirmation)}
end

We're almost there! Currently, I assume that you've already stored an account that
contains the e-mail ID and username. So, you just need to make a simple change in

your sign-in view file (/app/views/devise/sessions/new.html.erb). Make sure
that the file contains this code:

<h2>Sign in</h2>

<%= notice %>
<%= alert %>
<%= form for (resource, :as => resource name, :url => session_

path(resource name)) do |f| %>
<div><%= f.label "Username or Email" %>

<%= f.text field :signin, :autofocus => true %></div>

<div><%= f.label :password %>

<%= f.password field :password %$></div>

<% 1f devise mapping.rememberable? -%>

<div><%= f.check box :remember me %> <%= f.label :remember me %></
divs>

<% end -%>

<div><%= f.submit "Sign in" %$></divs>
<% end %>

<%= render "devise/shared/links" %>

You can see that you don't have a username or email field anymore. The field is now

replaced by a single field named :signin that will accept either the e-mail ID or the
username. It's efficient, isn't it?

[20]

Chapter 2

Updating the user account

Basically, you are already allowed to access your user account when you activate the
registerable module in the model. To access the page, you need to log in first and
then go to /users/edit. The page is as shown in the following screenshot:

Edit User

Email

Password (leave blank if you don't want to change it)
Password confirmation

Current password (we need your current password to confirm your changes)

Update

Cancel my account
Unhappy?
Cancel my account

Back

The edit account page

But, what if you want to edit your username or e-mail ID? How will you do that?
What if you have extra information in your users table, such as addresses, birth
dates, bios, and passwords as well? How will you edit these? Let me show you
how to edit your user data including your password, or edit your user data without
editing your password.

Editing your data, including the password: To perform this action, the first
thing that you need to do is modify your view. Your view should contain
the following code:

<div><%= f.label :username %>

<%= f.text field :username %></div>

Now, we are going to overwrite Devise's logic. To do this, you have to create
a new controller named registrations controller. Please use the rails
command to generate the controller, as shown:

$ rails generate controller registrations update

[21]

Authenticating Your Application with Devise

It will produce a file located at app/controllers/. Open the file and make
sure you write this code within the controller class:

class RegistrationsController < Devise::RegistrationsController

def update
new_params = params.require (:user) .permit (:email,
:username, :current password, :password,

:password confirmation)

@user = User.find(current user.id)

if @user.update with password(new params)
set flash message :notice, :updated
sign in @user, :bypass => true
redirect to after update path for (@user)

else
render "edit"

end

end
end

Let's look at the code. Currently, Rails 4 has a new method in organizing
whitelist attributes. Therefore, before performing mass assignment
attributes, you have to prepare your data. This is done in the first line

of the update method.

Now, if you see the code, there's a method defined by Devise named
update_with_password. This method will use mass assignment attributes
with the provided data. Since we have prepared it before we used it, it will
be fine.

Next, you have to edit your route file a bit. You should modify the rule
defined by Devise, so instead of using the original controller, Devise will use
the controller you created before. The modification should look as follows:

devise for :users, :controllers => {:registrations =>
"registrations"}

Downloading the example code

\ You can download the example code files for all Packt books
~ you have purchased from your account at http: //www.
Q packtpub. com. If you purchased this book elsewhere, you can
visithttp://www.packtpub.com/support and register to
have the files e-mailed directly to you.

[22]

Chapter 2

Now you have modified the original user edit page, and it will be a little
different. You can turn on your Rails server and see it in action. The view is
as depicted in the following screenshot:

Edit User

Email

Username

Password (leave blank if you don't want to change it)

Password confirmation

Current password (we need your current password to confirm your changes)

Update
Cancel my account
Unhappy?

Cancel my account

Back

The modified account edit page

Now, try filling up these fields one by one. If you are filling them with
different values, you will be updating all the data (e-mail, username, and
password), and this sounds dangerous. You can modify the controller to
have better data update security, and it all depends on your application's
workflows and rules.

Editing your data, excluding the password: Actually, you already have what
it takes to update data without changing your password. All you need to do
is modify your registrations_controller.rb file. Your update function
should be as follows:

class RegistrationsController < Devise::RegistrationsController

def update
new_params = params.require (:user) .permit (:email,
:username, :current password, :password,

:password_confirmation)
change password = true
if params/|:user] [:password] .blank?
params [:user] .delete ("password")
params [:user] .delete ("password confirmation")

[23]

Authenticating Your Application with Devise

new_params = params.require (:user) .permit (:email,
:username)
change password = false

end

@user = User.find(current user.id)
is _valid = false

if change password

is valid = @user.update with password(new params)
else

@user.update without password(new params)
end

if is valid
set flash message :notice, :updated
sign in @user, :bypass => true
redirect to after update path for (@user)

else
render "edit"

end

end
end

The main difference from the previous code is now you have an algorithm that will
check whether the user intends to update your data with their password or not. If
not, the code will call the update without_password method. Now, you have codes
that allow you to edit with/without a password. Now, refresh your browser and try
editing with or without a password. It won't be a problem anymore.

Signing up the user with confirmation

Why does an application need to have an account confirmation? Actually, it's
because the application needs the e-mail to be real, so that it can be used for future
requirements. So, if one day you decide that you want to give a newsletter to your
users periodically, you can consider applying this method to your application.

It's very simple to apply this method. You just need to activate the : confirmable
module and have access to a mail server. The access is used to send a confirmation
e-mail to the user, and for this example, I will show you how to use Gmail as your
mail server.

[24]

Chapter 2

You need to define the connection settings in your application. Because we are in the
development environment, you can open the config/environments/development .
rb file and add this code:

config.action mailer.delivery method = :smtp
config.action mailer.perform deliveries = true
config.action mailer.raise delivery errors = true
config.action mailer.smtp_ settings = {

:address => "smtp.gmail.com",

:port => 587,

:domain => "gmail.com",

:user name => <your gmail user names,

:password => <your gmail passwords>,

:authentication => 'plain',

:enable starttls auto => true

}
Next, modify your model file and add a module, so your model file will be as follows:

class User < ActiveRecord: :Base

devise :database authenticatable, :registerable, :recoverable,
:rememberable, :trackable, :validatable, :confirmable
end

It's almost done. Now, create a migration file and modify it so that the content will be
as follows:

class AddConfirmableToUsers < ActiveRecord::Migration

def up
add_column :users, :unconfirmed email, :string
add_column :users, :confirmation_ token, :string
add_column :users, :confirmed at, :string
add_column :users, :confirmation sent at, :datetime
add_index :users, :confirmation token, :unique => true

User.update all(:confirmed at => Time.now) #your current data
will be treated as if they have confirmed their account

end
def down
remove_column :users, :unconfirmed _email,
:confirmation_token, :confirmed_at, :confirmation_sent_at
end
end

[25]

Authenticating Your Application with Devise

Execute the rake db:migrate command and your users table will be altered and
ready to carry out the confirmation mechanism.

Now, run your Rails server and go to the registration page. Try registering a new
account and see how it goes. Your application will send you an e-mail containing a
link to confirm your account.

Resetting your password

"Oh my God! I forgot my password. How can I log in to the site?" It's very common
that people forget the passwords of certain applications, and it will be a disaster if
the application doesn't provide you with a feature to reset or create a new password.
Resetting passwords has become a very important feature, and Devise provides it in
an easy way.

To activate this module, your model should have the recoverable module in its
Devise settings. Since this module requires a connection to an e-mail server, you

will also need to define the configuration in order to establish a connection to a mail
server. This can be done in the environment's configuration files as well. Fortunately,
we don't need to worry because we have already met the requirement. So, you

can directly go to your sign-in page and you will see a link labeled Forgot your
password?. Click on it, fill in the E-mail field, and reset the password. In a moment,
you will receive an e-mail sent by the Devise module. The e-mail will contain a link,
which will bring you to a page, as shown in the following screenshot:

Change your password

Mew password

Confirm new password

Change my password
Sign in
Sign up
Didn't receive confirmation instructions?

The change password page

Now, you can fill in your new password and submit it. Once you've submitted your
new password, you'll be signed in again.

[26]

Chapter 2

Canceling your account

Previously, we learned about how to update an account, register an account with a
confirmation, and reset an account's password. Now, it's time for us to learn how to
cancel an account.

This feature is provided to delete an account so that it won't be accessible anymore.
By default, Devise provides this feature, and it can be accessed through the user
edit page. As shown in the Edit User page, you can see a button labeled Cancel my
account. If you press this button, Devise will delete your data from the database. So,
if you want to access the application, you need to sign up again.

For some websites, data is like a treasure. Many websites don't perform deletions
because they don't want to delete any data stored in their database. Instead of
deleting it physically, the application will only change the flag of a data. Let's say, I
have a user account that has a data flag, published. When I delete it, I don't delete
the data but I change the flag of the data to deleted. But now, the question is how
does Devise perform this method? Perform the following steps to know:

1. Create a migration file that will add a new column in the users table named
is_active with the type, integer

2. Add a method named destroy in registration controller.rb, so it will
contain the following code:

def destroy
@user = User.find(current user.id)
@user.is active = 0
if @user.save
sign out @user
redirect to root path
else
render "edit"
end
end

3. Now, reload the user edit page and click on the Cancel Account button. You
will be brought to the main page, but this time your data will not be deleted.
It's now flagged with zero (0).

This is an example of many possibilities to be implemented as a replacement for data
deletion. So, it depends on what you want to develop in your application.

[27]

Authenticating Your Application with Devise

Customizing Devise actions and routes

We have learned all the basic features that are commonly used in an application.
Some of them are minimally customized and some of them are used as is. Maybe
now is the time for you to wonder, "What if I want to customize Devise's actions,
so that I can inject extra codes to do anything I want?" So, let's step forward to
customize Devise's actions.

Technically, to perform action customizations, we need to create a controller that
inherits Devise's controllers. It would be wise if you have a look at all of Devise's
controllers first before we start this part, as shown at https://github.com/
plataformatec/devise/tree/master/app/controllers/devise. So, when you
start making some customizations, you will understand why you do it that way.
However, I'm not going to tell you about the best practices of these customizations;
I will only tell you the basics of performing the customizations. Therefore, what you
will see in these examples are the instructions about what code you need to prepare
and how you should access it.

* Sign-up (registration): You can create a controller to override
registrations_controller.rb, which contains the following code

class RegistrationsController < Devise::RegistrationController
def new
this action is used to show the sign in form
you can add your custom code here
end

def create
this action is triggered when the user sends data to sign up
you can add your custom code here
end
end

These two new methods will take effect if you change your route for
Devise. Fortunately, we have modified the route file to comply with this
customization. This is the route rule that is currently prevalent for Devise.

devise for :users, :controllers => {:registrations =»>
"registrations"}

Now, you have the access to modify the action to meet your needs. You can
write an extra process before or after the sign-up action. But, you need to
remember that you have to write some code that already existed in the parent
controller because without these codes your action won't work well. You can
see the parent file at https://github.com/plataformatec/devise/blob/
master/app/controllers/devise/registrations controller.rb.

[28]

Chapter 2

User edit: To customize this action, you can continue editing
registrations_controller.rb and adding these codes inside the class:

def edit
this action is used to show the user edit form page
you can add your custom code here

end

def update

this action is triggered when the user sends data to edit
their data

you can add your custom code here
end

You don't need to make changes to your routes since you already made
changes when you customized the user sign-up (registration) action.

Confirmation: The first thing you need to do is create a controller file named
confirmations_controller.rb. This file can be created by executing the
following command:

$ rails generate controller confirmations new create

The content of this newly-created controller is as follows:

class ConfirmationsController < Devise::ConfirmationsController
def new
this action is used to show the confirmation form
you can add your custom code here
end

def create

this action is triggered when the user sends their
confirmation token to confirm their account

you can add your custom code here
end
end

To make Devise recognize that you have overridden its original class, you
also need to modify the routes for your Devise model. As an example, we
will use the user model. Combined with the registration customization, the
route will be as follows:

devise for :users, :controllers => {:registrations =>
"registrations", :confirmations => "confirmations"}
[29]

vww allitebooks.conl

http://www.allitebooks.org

Authenticating Your Application with Devise

User deletion: To create a custom code for deleting a user, you also need to
modify registrations_controller.rb. Put this method within the class:

def destroy

this method is triggered when the user tries to delete a
user account

end

You don't need to modify your routes anymore because the requirement is
met when you customized the user sign-up (requirement) code.

Sign-in: Execute the following command to create a controller named
sessions_controller.rb:

$ rails generate controller sessions new create

The controller you just generated will contain this code:

class SesssionsController < Devise::SessionsController
def new
this method is used to show the sign in form
you can add your custom code here
end

def create
this method is triggered when the user sends data to sign in
you can add your custom code here
end
end

To make Devise recognize your custom code, you have to modify your
Devise route a little. Combined with the previous customizations, the route
should be as follows:

devise for :users, :controllers => {:registrations =>
"registrations", :confirmations => "confirmations", :sessions =>
"sessions"}

Sign-out: To customize this action, you need to modify sessions_
controller.rb, which you just created. Please put the following method
within the class:

def destroy
this method is triggered when the user sends data to sign out
you can add your custom code here

end

You don't need to modify your routes since it has been done when you
performed your code customization in the sign-in action.

[30]

Chapter 2

* Forgot password: Please create a new controller file named passwords
controller.rb. You can do this by executing the following command:

$ rails generate controller passwords new create

The controller will contain this code:

class PasswordsController < Devise::PasswordsController
def new
this method will show a forgot password form
you can add your custom code here
end

def create
this method is triggered when you submit to reset your
password
you can add your custom code here
end
end

Now, to enable your code customization, you have to modify your routes. Combined
with the previous code customizations, your route should be like this:

devise for :users, :controllers => {:registrations => "registrations",
:confirmations => "confirmations", :sessions => "sessions", :passwords
=> "passwords"}

Customizing your Devise layout

There are times when you have more than one Devise model in one application, and
a question comes to your mind, such as "How do I maintain its views so that they
will have different views?" Previously, I wrote about generating views, so you can
make some custom changes to the views by executing the following command:

$ rails generate devise:views

Now, you are going to learn about how to generate scoped views in Devise. At first,
you need to make a little modification to config/initializers/devise.rb. You
need to remove the comment tag for this code:

config.scoped views = true

This code will enable scoped views for Devise, so you can generate some specific
views for your Devise model.

[31]

Authenticating Your Application with Devise

Before we start generating views, let's have two new Devise models for admin and
employee as the examples. Now, you can generate scoped views for your Devise
model by executing this command:

$ rails generate devise:views admins

$ rails generate devise:views employees

The following screenshot shows the generated Devise view files:

8 00 N xterm

bazh-3,2% rails gererate deviseyviews admins

Devise; ;Generators::SharedyisusGenerator
app/views/adning//shared
app/vieus/adnins/shared/_lirks,erb

form_for
appvieussadnins/confirnat ions
app/vieussadnins/confi rnat ions/new, htnl , erb
app/views/adnins/passuords
app/vieussadnins/passuords edit htnl, erb
appiviews/adnins/passwords/new,htnl .erb
app/views/admins/registrations
app/vieus/adnins/registrations/edit, htnl , erb
app/views/adnins/registrations/new.htnl.erb
appvieus/adnins/sessions
appdvieus/admins/sessions/new, htnl erb
app/views/adming/unlocks
app/vieus/adnins/unlocks/new, htul , erb

erb
app/vieus/aduins/mal ler
app/vieus/adnins/mal ler/conf irmation_instructions, htnl,erb
app/views/adning/mailer/reset_passuord_instructions,.htnl.erb
app/vieus/adnins/mai ler/unlock_instructions, htul ert

bash-3.2% rails generate deviseiviews employees

Devises sGenerators::SharedVisnsbenerator
app/vieus/enplogses shared
app/views/employees/shared/_links.erb

Form_for
app/views/employees/conf irmat ions
apprviews/emplogees/canf irmations/new.htnl erb
app/vieus/enpl ogessspassuords
app/views/employees/passwords/edit.htnl.erb
app/vieus/enpl ogessspassuords/nen, htn], erb
appdvieus/enplogess/registrations
app/views/employees/registrations/edit.htnl .erb
app/vieus/enplogees regi strations new, htnl , erb
app/views/employees/sessions
app/vieus/enpl ogeessessions/new, htnl , erb
appvieussenpl ogses unlocks
app/views/employees/unlocks/new,htnl erb

arb
app/views/employees/mailer
app/views/enplogessenailer/confirmation_instructions.htnl.erh
app/vieus/enplogees nal ler/reset_passuord_instructions, htnl,erb
app/views/employees/mailer/unlock_instructions,html.erb

bash-3,25 1l

Let me show you how it works by making a simple change to each view file; for
example, we are going to make changes in app/views/admins/sessions/new.
html .erb and app/views/employees/sessions/new.html.erb. In my case, I put
words such as "admins" and "employees" in <h2> tags in each file, so we can expect
them to have different views when we open their sign-in form. I assume that you
have the admins and employees controllers that define the index action. The action
is authorized by admin and employee. Now, try starting the Rails server and go
through http://localhost:3000/employees/index.http://localhost:3000/
employees/index.

[32]

Chapter 2

Sign in for employee
Email
Password
Remember me
Sign in

Signup
Forgot vour password?

The sign-in form for an employee

You have seen the scoped image for an employee sign-in form; now you need to
go through http://localhost:3000/admins/indexhttp://localhost:3000/
admins/index and you will see the scoped view for an admin:

Sign in for admins
Email
Password
Remember me
_Sign in
Sign up
Forgot your password?

The sign-in form for an admin

You have successfully created different views for your Devise model, but you still
have only one layout. So, how will you apply different layouts to different Devise
models? Don't worry, it's actually easy to do that. Please open app/controllers/
application controller.rb and put this code within the class:

layout :layout by resource

protected
def layout by resource
if devise controller?
if resource name == :admin

[33]

Authenticating Your Application with Devise

"devise admin application" #admin model will use this layout

elsif resource name == :employee
"devise employee application" #employee model will use this
layout
else
"devise application" #other devise model will use this
layout
end
else

"application" #default rails application layout
end
end

Now, you need to create three new files under app/view/layouts named

devise admin application.html.erb, devise employee application.html.
erb, and devise_application.html.erb. Put anything you like as a mark to
denote that you are in a different layout. If you go through the employee page, you
will see a view, as shown in the following screenshot:

Layout for employee

Sign in for employee
Email
Password
Remember me
Sign in

Sign up
Forgot vour password?

Specific layout for an employee

[34]

Chapter 2

Now, try accessing the sign-in page for the admin model. You will find it different
based on the mark you put in the layout for admin. In my case, the view is as shown
in the following screenshot:

Layout for admin

Sign in for admins
Email
Password
Remember me
sign in

Signup
Forgot vour password?

Specific layout for admin

If you have more than two Devise models, the other one will also have a different
layout. In my case, I used a default layout, which is defined by devise_application.
html.erb. The result is as shown in the following screenshot:

Default layout for devise
Sign in
Email
Password
Remember me
Signin

Sign up
Forgot vour password?

The default layout for a Devise model

[35]

Authenticating Your Application with Devise

Integrating Devise with Mongoid

This is an example of how you are able to implement Devise with one of the

NoSQL databases, such as MongoDB. To establish a connection, we are going to use
Mongoid as a driver. I'm going to show you two examples. The first example will
require a fresh Rails application where you need to generate a new Rails application,
and the second one will show you how to change the configuration from MySQL

to MongoDB. Note that these examples will use MongoDB Version 2.2.0 and I will
not tell you how to install MongoDB, but you can see the full documentation about
its installation at http: //docs.mongodb. org/manual/installation/. As you can
see in the documentation, it also shows you how to turn on the server; therefore, I
assume you have done it before you proceed to the next step.

Now, we can start from the first example by executing the Rails application
generation command without specifying the database type:

$ rails new learning-devise-mongoid

Next, you need to add two new gems inside Gemfile and after you have added
them, you can install them by executing bundle install:

gem 'mongoid'
gem 'devise'

Now, you need to create a configuration file for Mongoid by executing the
following command:

$ rails generate mongoid:config

In my case, I don't need to change anything in my Mongoid configuration. But, if you
want to see the content of the configuration file or you need to change something in
it, you can open the file at config/mongoid. yml.

Since we are no longer using active record, we need to modify the config/
application.rb file and remove the line, require 'rails/all', while adding
this code:

require 'action controller/railtie'
require 'action mailer/railtie’
require 'rails/test unit/railtie’
require 'sprockets/railtie’

You also need to modify one of the files in config/environments; for this
example, we are going to modify development .rb because we are currently in the
development environment. Please remove or comment out this line of code:

config.active record.migration error = :page_ load

[36]

Chapter 2

The configuration for Mongoid is done; now, we are going to move to the Devise
configuration. There is no difference in setting up Devise with Mongoid; the
commands and steps that you need to perform are exactly the same with the ones
that I've written in the previous chapter. But, there's one difference in the Devise
configuration file. If you open config/initializers/devise.rb, usually you are
going to see the require 'devise/orm/active_record' line inside it. But, if you
use Devise with Mongoid, you are going to see that the code will be replaced with
the following code:

require 'devise/orm/mongoid’

Let's say I generated a user Devise model and I also generated a users controller to
see whether it's working or not. My controller will be like this:

class UsersController < ApplicationController
before_filter :authenticate_user!
def index
end

end

These will be the codes for my view:

<hl>Users#index</hl>
<p>Find me in app/views/users/index.html.erb</p>
<%= link to 'Sign Out', destroy user session path, method: "delete" %>

When you go through http://localhost:3000/users/indexhttp://
localhost:3000/users/index, you are going to be redirected to the following page:

Sign in
Email
Password
Remember me
Sign in

Sign up
Forgot vour password?

The Devise sign-in form with Mongoid

[37]

Authenticating Your Application with Devise

Your Devise is installed and ready to use. If you want to determine whether your

data is recorded or not in your MongoDB, you can try the commands shown in the
following screenshot:

X/ xterm

bash-3,2% rails ¢
Loading development environment (Rails 4.0.0)
2,0,0p0 1001 > ugers = User,all

=> #¢Hongoid:sCriteria

selectors {}

options: {}

class: User

enbedded; False>

2,0,0p0 1002 > users[0]

=> #<lser _id: 520d8feb3BcleB2acal0000l, email: "hafizbadrielgmail.con", encruypted_password: "$2a%l0%EFsAfrjkCEUGdz]1o0pE]pubz ifulEkip/yShegodvbGOKKVOP1sUE" . reset_passuord_token:
nil, reset_password_sent_at: nil, remember_created_at: nil, sign_in_count: 2, current_sion_in_at: 2013-08-16 02:38:57 UTC, last_sian_in_at: 2013-08-16 02:39:23 UTC, current_sign_

lin_ip: "127,0,0,1", last_sign_in_ip: "127,0,0,1">

2,0,0p0 1003 > uger = User,first

=» #dlser _id: 520d8feb3BcleBlacal00001, email: "hafizbadrielgmail.con”. encrypted_passuord: "$2a$105EFsAfrjKCEWGdz1o0pEIpubzifudEkep /yShegodwbGOKVIPLsuB", reset_password_token:
nil, reset_password_sent_at: nil, remember_created_at: nil, sign_in_count: 2, current_sign_in_at: 2013-08-18 02:38:57 UTC, last_sign_in_at: 2013-08-16 02:35:23 UTC, current_sign_
in_ipy "127,0,0,1", last_sign_in_ips "127,0,0,1"

2,0,0p0 3004 > []

Commands in the Rails console to check MongoDB data

What if you already have the Rails application installed with the mysgl2 gem
and suddenly you decide to change your database to MongoDB? Don't worry.
You don't need to regenerate your Rails application from scratch. You just need to
follow the steps that I'm going to put before you. But, I assume that you are going

to start the application from a brand new database, so your existing user data
will be abandoned.

First of all, you need to modify Gemfile by replacing the line, gem 'mysqgl2"',
with gem 'mongoid', git: 'https://github.com/mongoid/mongoid.git’.
The next step is to modify config/application.rb so that the file will contain
the following code:

#require 'rails/all' #you don't need this line anymore
require "action controller/railtie"

require "action mailer/railtie"

require "rails/test unit/railtie"

require "sprockets/railtie"

Now, you need to modify config/environments/development.rb by commenting
out the following line:

#config.active record.migration error = :page_ load

These are the basic configurations that you need to perform before generating the
Mongoid configuration with this command:

$ rails generate mongoid:config

[38]

Chapter 2

Don't forget to open config/initializers/devise.rb and modify it as shown:

#require 'devise/orm/active record'
require 'devise/orm/mongoid

All set! Now, you can go to the authorized page and see the Devise sign-in form.
Don't forget that you don't have the previous data in MySQL in your MongoDB;
consequently, you need to re-register your user data.

Summary

Now, I believe that you will be able to make your own Rails application with Devise.
You should be able to make your own customizations based on your needs. You will
have a more comprehensive understanding about Devise modules and how you
should make your own customizations either in the logic flow or the view codes. Next,
we will learn how to implement privileges in Devise because in some circumstances,
privileges will be needed to prevent certain users from accessing some features.
Everything about privileges in Devise will be discussed in the next chapter.

[39]

[vww allitebooks.cond

http://www.allitebooks.org

Privileges

In the previous chapter, you learned how to use Devise authentication features such
as user session and registration management (sign-in, sign-up, sign-out, and so on).

After users are logged in, you will want to make sure that they can only access pages
and page elements that they are supposed to see. You will want to define access
control rules or privileges so that users cannot see protected resources, such as other
users' private posts. The process of applying the rules in our web application is
called authorization.

In Rails apps, the CanCan gem (https://github.com/ryanb/cancan) can be used
for authorization by defining and applying privileges of what users can or cannot do.
At the same time, Devise will still be used for authentication.

Let's take an example web application that uses CanCan together with Devise.
After that, we will discuss more details on using CanCan, as well as testing and
debugging it.

CollabBlogs — a web application for
collaborative writing

Imagine that we are going to build a Rails web application that facilitates collaborative
writing. Let's call it CollabBlogs. Assume that its basic functionalities are as follows:

* Guest users (not logged-in users) can read non-restricted posts.

* Only logged-in users can create posts.

* An administrator user can do anything he/she wants.

* A user can delete his/her own posts; he/she cannot delete posts created
by other users.

Privileges

A restricted post is a post that can be viewed by its creator and the
collaborators chosen by him/her. If there is no collaborator, only
the creator can see the restricted post.

Many users can edit a post, if the post creator chooses to collaborate
with them.

We are not going to implement all of them; we will only implement the essential
ones together. The rest are left as exercises for you.

Before we try out CanCan, let's do some initial setup:

1.

ARSI

Make sure you finished setting up Devise by following the instructions
given in the previous chapter.

Add gem 'cancan', '~>1.6.0' toyour Gemfile.
Run the bundle command in your terminal.
Add the Boolean admin column on user.

Create a scaffold for post and a model for collaboration, and then, run the
migrations. The scaffold will create JSON views, which will not be discussed
in this book. You are free to add your own model validations before running
the migrations.

On your terminal, run the following commands:

$> rails g scaffold post user:references title content:text
restricted:boolean

$> rails g model collaboration user:references post:references

$> rake db:migrate

After that, make sure that the Post class belongs_to :user and has many
:collaborations

Create a few users and posts, as many as you like. For example, in your Rails
console (or db/seeds . rb):

writer = User.find or create by! (email: "writer@localhost.net",
password: "Plumber364", password confirmation: "Plumber364")

junior = User.find or_create_by! (email: "junior@localhost.net",
password: "Plumber364", password confirmation: "Plumber364")

Post.create! (user: writer, title: "Hot Day",

content: "The sun seems to like me very much these days. I don't
really mind, but I really wish it could love someone else too.")
Post.create! (user: junior, title: "Hello!",

[42]

Chapter 3

content: "Hey! I'm pretty new here! Glad to be here! This is my
first time here, so please be nice to me (and each other) .")

Once our web application structure is adequately prepared, we'll

pick a simple rule to implement: A user can delete his/her own posts;
he/she cannot delete posts created by other users. The following four
fundamental steps will make CanCan handle authorization work for you.

Defining authorization rules: All privilege rules reside in ability.rb, which
is placed under app/models. Run rails g cancan:ability so that Rails
generates ability.rb for you. CanCan provides you with can and cannot
methods for defining access controls. Let's take a look at an example:

app/models/ability.rb
class Ability
include CanCan::Ability

def initialize (user)
if user && user.persisted? # Logged-in user
User can destroy his/her own post
can :destroy, Post, user id: user.id

Non-logged in users cannot destroy Posts.
Typically, can is used a lot more than cannot.
cannot :destroy, Post, user id: nil
end
end
end

As we have seen, the can and cannot methods take three arguments:
action name, the resource class, and a hash of rule conditions. Although
the arguments seem restrictive, the methods can actually accept different
kinds of arguments such as SQL conditions and blocks. We will discuss
this in detail in a later section.

Restricting views based on the rules: Now that we have the access rules,
we can apply them in views. CanCan comes with view helpers (can? and
cannot?) to check authorization in views.

<%# app/views/posts/index.html.erb %>
<% 1if can?(:destroy, post) %>
<%= link to('Del', post, class: 'btn-gray thinner-padding',
method: :delete, data: { confirm: 'Are you sure?' }) %>
<% end %>

[43]

Privileges

<%# using cannot? %>
<%# Typically, can? is used a lot more than cannot? %>

<% 1f cannot? (:destroy, post) %>

<p>It looks like you cannot delete this post. If you want this
post to be deleted, please contact the administrator or the
owner.</p>
<% end %>

Run the Rails server by executing rails s in your terminal, and open
http://localhost:3000 in your browser to see if the destroy link is
visible for logged-in users, the post creator, or guest users.

Restricting controller access based on the defined rules: You restricted
views accordingly, and you noticed that someone could just use the URL
(via CURL, for example) to delete the post. This leads to the need of
authorization check controllers.

CanCan provides a few authorization-related methods in controllers.
One of the most frequently used methods is authorize!, which accepts
two arguments, an action name, and a resource. The method raises the
CanCan: :AccessDenied exception when the currently logged-in user's
privileges are not enough to perform the action on the resource.

For example, we can check for a current user's privileges on creating a
new post and destroying an existing post as follows:

class PostsController < ApplicationController
before action :set post, only: [:show, :edit,
:update, :destroyl]
#

def new
authorize! :new, Post
codes for new...
end

#

def destroy
authorize! :destroy, @post
@post.destroy
#
end
end

[44]

Chapter 3

You might find this way tedious, especially if you need to authorize every
controller action. We will discuss a way to simplify this in a later section.

10. Customizing the response for unauthorized access: Great! You ensured
that users could only delete their own posts. When an unprivileged user
(an anonymous visitor, for example) tries to delete another user's post,
he/she will get the default 403 forbidden error page. This is because
CanCan raises the CanCan: : AccessDenied exception whenever an
unauthorized user tries to access any restricted controller action.

In some cases, you need to customize the look and feel of the forbidden
page. Feel free to do so by rescuing from CancCan: : AccessDenied and
rendering a custom view.

app/controllers/application controller.rb
class ApplicationController < ActionController::Base
rescue from CanCan::AccessDenied do |exception|
if current user.nil? # user is not logged in
session[:next] = request.fullpath
redirect to login url,
:alert => "Please log in to continue."
else
if request.env["HTTP REFERER"] .present?
redirect to :back, :alert => exception.message
else
render :file => "#{Rails.root}/public/403.html",
:status => 403, :layout => false
end
end
end
#

end

[45]

Privileges

With custom CSS and JavaScript we have in our sample project, we can
have a list of posts displayed with actions allowed for the visitors, like
the following:

Hello, junior@locathost.net

CollabBlogs " sgnos

|~ [EERlE— =

CollabBlegs

Hy thuernl ColiaaBloge I yoaur mast vap bar weking blog posts collsberativaly, You are

ey vmineg scrms of wiitiegs boem cur bakoved community.

K3
c“' Dn,: . m T has Deer | oges. aily ve it G
Lomsmlnmumunmn =3 .ITur!.!m.i.mum in Another Language by wesr@iesbont ot n
[~ S

Screenshots of a guest user's page (left) and a logged-in user's page (right)

Advanced CanCan usages

The previous abilities we learned through our CollabBlogs application are
enough for us to get started. However, what if our application requires complex
authorization rules? We have a few remaining complex rules unimplemented,
and the abilities we have applied are far simpler than those complex rules.

After we have plenty of rules, we should try to simplify parts of the authorization
process and test the rules' correctness. This is to ensure our application behaves
as expected.

In this section, we are going to discuss defining rules using SQL, simplifying
authorization checks on controllers, and ensuring abilities' correctness.

Defining rules using SQL

As mentioned before, the can and cannot methods we defined in app/models/
abilities.rb, are able to take SQL conditions and block parameters. The SQL
conditions parameter is useful for filtering resources that match the ability (using
Model#accessible by (ability, action)). The block parameter is very often
used for authorizing actions (for example, edit) on a single resource.

[46]

Chapter 3

As a small example, let's use these parameters on the destroy abilities we have
defined, as shown in the following code snippet:

We can write

can :destroy, Post, user id: user.id

as a new rule that looks similar

can :destroy, Post, ['user id = ?', user.id]

. Note that the new rule is not quite the same as the old one; the SQL
% query will only help build queries using the CanCan model scope
s Model#accessible by (ability, action); it will not work
if/when you apply the rule on your views.

To make it work on views, implement a block that looks equivalent to the SQL.
CanCan will use the block when you apply checks on the views. So, the correct
block-based definition for the earlier rule is as follows:

can :destroy, Post, ['user _id = ?', user.id] do |post|
post.user id == user.id
end

The block is evaluated when an instance of post is passed for checking. You should
not do something, as shown in the following snippet:

Admin can do anything

can :manage, :all do |post|
user.admin?

end

In some cases, for instance, when you try to check a user's ability to create a new
post using can? (:create, Post), the block above will not get called. Such behavior
potentially breaks your application. Instead, the correct way is as follows:

if user.admin?

can :manage, :all # An administrator can do anything
else

Regular user
end

Now that we know how to use SQL conditions and blocks to implement abilities,
let's try to use them for abilities that require SQL subselects, as shown in the
following sections.

[47]

Privileges

A restricted post is a post that can be viewed by the creator and
the collaborators chosen by the creator. If there is no collaborator,
g only the creator can see the post.

We can break down the preceding rules to the following three conditions:

* Non-restricted posts are viewable by anyone
* Posts created by the currently logged-in user are viewable

* If a post is restricted, only the post' collaborators and creator can view it

From these three rules, we can see that they are related to the index and show actions
in PostsController. We will pass an array of the : index and : show actions to the
can method, because it takes an array of actions as the first argument, instead of just
one action.

the above rules for logged-in users
indexable condition = <<-EOC
restricted = ? OR posts.user id = ? OR
(restricted = ? AND EXISTS
(SELECT * FROM collaborations WHERE
collaborations.post id = posts.id AND
collaborations.user id = ?))
EOC

can [:index, :show], Post, [indexable condition,
false, user.id, true, user.id] do |post|
Ipost.restricted? || post.user id == user.id ||
(post.restricted? &&
post.collaborations.where (
user id: user.id) .present?)
end

Although this way of using the CanCan ability is not the best way, it shows how you
can leverage CanCan abilities to express complex SQL-based rules.

To display the list of posts that match the currently logged-in user's ability in the
index action of PostsController, assigh Post .accessible by (current_ability,
:index) to eposts instead of assigning Post.all.

With custom JS and CSS provided in the sample project, we can see a list of posts
that are viewable by the currently logged-in user like this. Note that we can apply
view checks on each of the buttons shown (View, Edit, and Delete).

[48]

Chapter 3

Cool Day by admin@localhost.net
Written 2 days ago

It has been raining since ages. | really love it because...

Hot Day by You U Edit | Del
Written 2 days ago
The sun seems to like me very much these days. | don't...

Lorem Ipsum in Another Language by You VU Edit | Del
Written 2 days ago
What do you guys think of yet another kind of Lorem...

Hello! by junior@localhost.net View |0
Written 2 days ago

Hey! I'm pretty new here! Glad to be here! This is my...

A screenshot of a page of a logged-in user who can edit another user's post

How about the rest of the rules? Feel free to try implementing them yourself!

Simplifying authorization checks on
controllers

You can also use authorize_resource so that CanCan authorizes every controller
action as in the following example. This is as an alternative to calling authorize_
resources! on every controller action:

class PostsController < ApplicationController
before action :set_post, only: [:show, :edit,
:update, :destroy]
authorize resource
def new
authorization check is done
end
...
def destroy
authorization check is done
end
end

[49]

vww allitebooks.conl

http://www.allitebooks.org

Privileges

Ensuring abilities’ correctness

Our application will get big and challenging to maintain. When we have lots of rules,
we need to make sure they work as expected. Luckily, CanCan makes testing and
debugging privileges delightful.

Testing

Testing abilities can be done using several test frameworks such as Test::Unit,
RSpec, and Cucumber. In this section, we will use RSpec for testing abilities.

CanCan provides an RSpec matcher (be_able_to) to make it convenient to
test abilities:

specs/models/ability spec.rb
require "cancan/matchers"
require "spec_helper"

describe Ability do
describe "destroying a post" do
describe "guest user" do
let (:ability) { Ability.new nil }

it "cannot destroy a post" do
ability.should not be able to(
:destroy, Post.new(user: nil))
ability.should not be able to(
:destroy, Post.new)
end
end
end
end

Debugging
You can debug the defined abilities in a Rails console, during test or during
development. In general, the following are the steps to debug abilities:

1. Fetch a user and a model you would like to debug using the following
code snippet:
user = User.first # a user you want to check

post = Post.first # a model you want to check
ability = Ability.new(user)

[50]

Chapter 3

2. Check if the ability behaves correctly for those records. Use the model
scope to verify if the defined abilities filter the correct records.

behavior checks
puts ability.can?(:edit, post)
puts ability.can?(:create, Post)

the accessible records on index action
Post.accessible by(ability, :index)

the SQL query
puts Post.accessible by (ability, :index).to_sqgl

Summary

In this chapter, we discussed setting up a Rails project that used CanCan for
authorizing user abilities. We learned how to define authorization rules using
CanCan abilities, how to apply rules on views using CanCan view helpers,
and how to authorize controllers based on the defined rules. Finally, we saw
how to ensure the correctness of defined rules.

[51]

Remote Authentication with
Devise and OmniAuth

By following footpaths from the previous chapters, we will be able to create an
application that authenticates its users using their supplied e-mail addresses and
passwords. However, the e-mail address and password authentication is not the
only way that can be used to verify a user's credential; there are actually several
other alternatives that we can choose from. One such example that is now widely
used is remote authentication.

Remote authentication

Have you seen buttons similar to the buttons in this following screenshot on
websites that you have visited? The sign-in process that is initiated by clicking
on these will actually trigger a remote authentication procedure:

+ | Sign in with Google+ g Sign in with Github

[vle]

Sign in with Linkedin [_.;j'w Sign in with OpeniD:

Remote Authentication with Devise and OmniAuth

Remote authentication is an authentication scheme that utilizes third-party services
to help identify whether a user, who tries to log in, has valid credentials prior to
entering an authenticated area. By using this scheme to authenticate, users just have
to sign in once with third-party providers that provide such services, and then they
can sign in to other websites that support remote authentication without supplying
their e-mail addresses and passwords anymore.

Popular websites, such as Twitter, Facebook, and even Google, provide remote
authentication services to its users. Surely, due to the huge number of users, it
would be good if our websites could authenticate its users using only their Twitter,
Facebook, or Google accounts.

At this point perhaps you're wondering why big companies like them want to act as
remote authentication providers who give authentication services to other websites
for free. Isn't that a waste of their bandwidth and resources? That question of course
has its own merits. Remote authentication providers won't usually give these
services to just anyone. To utilize it, we have to first register our application at their
site. This is to ensure that they can track every application that use their services and
can provide assistance in case of trouble. They also have the right to reject or ban our
application if we misuse or violate their term of rights.

Meanwhile, providing these services also has benefits for them; remember that
users have to register a new account at their site before they can authenticate
using it? That's an important benefit for them. By providing these services,
remote authentication providers can increase their user base.

OmniAuth

Let's now take a closer look at Devise and how it can support remote authentication.
By itself, Devise is already customizable enough to enable support for remote
authentication. However, Devise doesn't actually have internal functions for this
purpose, and as a consequence, we have to do a lot of lifting to build this feature
purely using Devise. Therefore, because it is almost always better to "re-use" rather
than "build from scratch", let's look into other possible alternatives.

Enter OmniAuth (https://github.com/intridea/omniauth). If you remember
from Chapter 1, Devise — Authentication Solution for Ruby on Rails, Devise has an
omniauthable module that enables Devise to connect with OmniAuth; this is
where you will find that ability useful.

[54]

Chapter 4

"OmniAuth is a library that standardizes multiprovider authentication for
web applications. It was created to be powerful, flexible, and do as little as
possible. Any developer can create strategies for OmniAuth that can authenticate
users via disparate systems. OmniAuth strategies have been created for
everything from Facebook to LDAP."

Based on the preceding description by OmniAuth's author (present on the OmniAuth
GitHub page), it was clear that OmniAuth is the library that we want. First, it enables
support for multiprovider authentication. Second, it is flexible and we can create
custom strategies if for some reason OmniAuth hasn't already provided support

for providers that we want. Third, it already supports many providers; some of the
most widely used providers, such as Twitter and Facebook, are already on that list.
Therefore, we don't have to manually create an authentication strategy for Twitter
and Facebook anymore. Perfect!

Implementing remote authentication in
our application

Now, let's move on to the main part, where we will modify our previously created
application so that it can support remote authentication. This section will be divided
into several subsections. The following subsection will discuss the initial preparation,
while the following two after that will discuss implementing Twitter and Facebook
authentication consecutively. They are selected because they are currently reigning
as providers with the most numbers of registered users.

Preparing your application

To enable OmniAuth on our applications, which already have Devise on them, we
have to first include the OmniAuth gem by modifying our Gemfile. While we're

at it, we can also include gems that contain OmniAuth strategies for both Twitter
(https://github.com/arunagw/omniauth-twitter) and Facebook (https://
github.com/mkdynamic/omniauth-facebook) to enable support for both providers.

OmniAuth

gem 'omniauth', '~> 1.1.4'
gem 'omniauth-twitter', '~> 1.0.0'
gem 'omniauth-facebook', '~> 1.4.1'

[55]

Remote Authentication with Devise and OmniAuth

If you use bundler, you may now call bundle install before continuing, so that
Rails properly includes those new gems that were previously listed in our application.

After successfully including the OmniAuth gem in our application, we have to
instruct Devise to activate the omniauthable module. We can do this by specifying
it when initializing Devise on our User model (or any other model that you use that
utilizes Devise).

devise :database authenticatable, :registerable, :omniauthable,
:recoverable, :rememberable, :trackable, :validatable

Remote authentication using Twitter

Following successful initial configurations of our application, let us continue by
adding the Twitter remote authentication support. To accomplish this, there are a
few steps that we have to do. First, we will have to register our application at the
Twitter developer site, which will be explained in the following subsection.

Registering our application at the Twitter developer
site

We can head on straight to the Twitter developer site to register our application
(https://dev.twitter.com). On entering the site, we will be greeted by information
about various services that Twitter shares with third-party developers. We can sign in

with our Twitter account to access the dashboard. However, if we don't have one, we
must create a new Twitter account before continuing.

[56]

Chapter 4

After a successful sign-in, we will find a pop-up menu in the top-right corner;
you can click on My applications to enter the dashboard:

W Developers APl Health Blog Discussions Documentation Search
My subscriptions

My applications

More downloads o -
for your app
with Twitter Cards

INSTALL

Twitter Cards offer a fast and easy way to grow your user base
for mobile apps. Simply add some new markup to your pages:
when users tweet links to your domain, Cards will let other
users viewing those Tweets to download and launch your app
across a number of mobile platforms.

Learn More '

| E Tweet y +

Twitter Cards Embedded Timelines Embedded Tweets Tweet Bution Follow Button
Recent posts from Twitter Developer Blog Create applications that integrate Twitter
Jun APl v1 Retirement is Complete - Use APl v1.1 .
& Get started with the platform

Explore the documentation and manage your apps
May Twitter Certified Products Program Expansion

30

Discuss
may Crashlytics for Android: Find the droid crashes you're looking for Get in touch with the @twitterapi team and the community of developers
30
May APl Blackout Testing on May 22, 2013 Explore Twitter Certified Products
17

Valuable products and services built on Twitter

[57]

Remote Authentication with Devise and OmniAuth

At the dashboard we can see all of our previously registered applications (if any).
Click on Create a new application to register your application:

W Developers APl Health Blog Discussions Documentation Search q P

Home

® .

My a pp'lcatlons Create a new application
Stargle Development

@ Development testbed for @stargle
e Stofact

@ Stofact - Get your facts straight!
.. Y mightygio

@ Mightygio twitter widget

W Follow @twitterapi AP|Terms. APIStatus Blog Discussions Documentation A Drupal community site st

We will see a form that we have to fill in. There are four fields in this form, the first
two are quite obvious (Name and Description), but we have to ensure the next two
fields are entered correctly. In the Website field, we have to fill in a fully-qualified
URL to our application. Because we're now registering an application for learning
purposes and we don't actually have a real domain, we can put localhost into
this field. However, as Twitter needs a fully-qualified URL, we have to type in
http://127.0.0.1:3000 instead of http://localhost:3000.

[58]

Chapter 4

The last field is a bit tricky; this is a Callback URL field. Twitter will redirect into
the URL that was specified here after a successful authentication. However, we
can supply a custom parameter (cauth_callback) later from our application
during the authentication process to override the value that was supplied to this
field. Interestingly, the Devise and OmniAuth combination will automatically
supply the oauth_callback parameter with our application URL followed by /
auth/:provider/callback. Therefore, any value that we specified in this field
won't matter much, as it would be overridden anyway. So, let's just fill this with
a fully-qualified localhost URL where our application currently resides (the same
with the website URL):

Home — My applications

Create an application

Application Details

Name: *
learning_devise_for_rails

Your application name. This is used to attribute the source of a tweet and in user-facing autherization screens. 32 characters max.

Description: *
Learning Devise for Rails

Your application description, which will be shown in user-facing authorization screens. Between 10 and 200 characters max.

Website: *
http://127.0.0.1:3000

Your application's publicly accessible home page, where users can go to download, make use of, or find out mare information about your application. This fully-qualified URL is used in
the source attribution for tweets created by your application and will be shown in user-facing authorization screens.
(f you don't have a URL yet, just put a placeholder here but remember to change it later)

Callback URL:
http://127.0.0.1:3000

Where should we return after successfully authenticating? For @Anywhere applications, only the domain specified in the callback will be used. OAuth 1.0a applications should explicitly
specify their cauth_callback URL on the request token step, regardiess of the value given here. To restrict your application from using callbacks, leave this field blank,

[59]

vww allitebooks.conl

http://www.allitebooks.org

Remote Authentication with Devise and OmniAuth

After you have finished filling in the form, we can submit it and Twitter will show
the dashboard for our newly-created application. In this screen, we must write down
both Consumer key and Consumer secret values because we will use it later in our
application configuration. Both keys are important in helping our application identify
itself to Twitter.

learning_devise_for_rails

Details Settings OAuth tool @Anywhere domains Reset keys Delete

Learning Devise for Rails

a 5 http://127.0.0.1:3000

Organization

Information about the organization or company associated with your application. This information is optional.

Organization None

Organization website None

OAuth settings

Your application's OAuth settings. Keep the "Consumer secret” a secret. This key should never be human-readable in your application.

Access level Read-only
About the application permission model

Consumer key

Consumer secrat

Request token URL https://api.twitter.com/oauth/request_token
Authorize URL https://api.twitter.com/ocauth/authorize
Access token URL https://api.twitter.com/cauth/access_token
Callback URL http://127.0.0.1:3000

Sign in with Twitter No

Configuring OmniAuth for authentication using
Twitter

After successfully registering our application in the Twitter developer website,
we can now set up our application to enable remote authentication using Twitter.
We will begin by specifying the Consumer key and Consumer secret values that
we got earlier from Twitter at config/initializers/devise.rb. We specify the
configuration at the Devise initializer instead of OmniAuth because Devise will be
the bridge that connects OmniAuth and our application.

[60]

Chapter 4

Just to remind you, the consumer key and the consumer secret are our application's
"username"' and "password" for Twitter's remote authentication, respectively. It is
very important to keep both keys safe.

config.omniauth :twitter, 'CONSUMER KEY', 'CONSUMER_SECRET'

Remember that changes in any file within the config/initializers
%j%‘\ folder require an application restart. Don't forget to restart your
g application server after modifying Devise initializers.

By specifying the preceding configuration, Devise will also generate helpers for
linking to the Twitter authentication, user _omniauth_authorize path(:twitter).
This is assuming our model name that utilizes Devise is called User; if you use any
other name, the helper will change accordingly. We can use the helpers in our home
page or sign-in page like this:

<%= link to "Sign in with Twitter", user omniauth authorize
path(:twitter) %>

When users click on the link that was generated by the previously mentioned helper,
they will be greeted by the Twitter application authorization page. This will only
happen during their first visit; subsequent visits will instantly redirect back to our
application after Twitter finishes authenticating our credentials. At the application
authorization page, they will have to either authorize our application, or reject, in
which case, they won't be able to sign in.

Up until this point, if we try to sign in using Twitter in our application and we
choose to authorize it in the Twitter application authorization page, we will be
redirected back but will see a "route does not exist" error page. This is normal
because we haven't prepared appropriate routes, controllers, and views to handle
the redirection.

Let's create it by using the Rails generator command (abbreviated g).

$ rails g controller omniauth callbacks

Now, we have to tell Devise that the newly-generated controller will be the one
that handles callbacks. To do that we can modify the existing devise_for routes
by following the syntax in the following example:

devise for :users, controllers: {omniauth callbacks: "omniauth
callbacks"}

[61]

Remote Authentication with Devise and OmniAuth

Devise will automatically generate routes that link the callback URL of our
application (the URL that will be supplied to the cauth_callback parameter)
with a controller that will handle the callback logic. You can see the generated
routes as follows:

user omniauth authorize GET|POST /users/auth/:provider(.:format)
omniauth callbacks#passthru {:provider=>/twitter|facebook/}

user omniauth callback GET|POST /users/auth/:action/callback(.:format)
omniauth callbacks# (?-mix:twitter|facebook)

The next step, is to modify OmniAuth callbacks that have been generated earlier.
Devise has a class that we can inherit from; it's called Devise: :OmniauthCallbacks
Controller. So, let's inherit from it and specify our first action, twitter.

class OmniauthCallbacksController < Devise::OmniauthCallbacksControll
er

def twitter
end
end

Do you remember that users will be redirected back to our application after they
authorize it in the Twitter authorization page? During the redirection, Twitter will
actually supply extra information that we can parse and utilize for our sign-in
process. This information is retrieved, processed, and stored by OmniAuth within
the request . env hash using omniauth.auth as the key.

Let's inspect it by raising it in our callbacks controller.

class OmniauthCallbacksController < Devise::OmniauthCallbacksControll
er

def twitter
raise request.env["omniauth.auth"].to yaml
end
end

After specifying the raise, try to raise it by clicking on the sign-in using the Twitter
link and authorize your application in the Twitter authorization page. We will see
an exception page that shows all the authentication information that was given

by Twitter.

[62]

Chapter 4

RuntimeError in OmnlauthCalibacksControllerftwitter

= irotryhest Grsldutn: Authiesh provider: twitier wid: BR824I Isf: irutrprash:Omnifum oA ess inictiash nisineme: sasisies_me same. Seseisy Mejer locaton: Unites Bises i=age
Y OEEE TR EOMNTON YR pranile IMBQELOEEIT pratle 1 wmlmwnmm appuanm D-nﬂmh Y T N DL ALTRH AN WAbSIE WU o terpdu TAACT Twittir:

-urpq. hnp.-m-mmw miE credentiaiy .u:,m,ugm LEAAR: A HH R BOloRn] WA s i i AT 1 RS E— -
e —_ g o AR r|.b'Jhll.‘ Qrnniduth:: AuihiHssh sccoum ke ruh'r‘aépd ks Token foloms: S
- - - L - e conaurer: nubrpfolject:0ALTH: Eonammmer iny: e ancrat;
e = = wios ppliom; geatiore melhod: Hlue S.mu rwun: ol ST fadulhnbguoddl Sien asutheniae path: nmu-'.uirnr-:-lp BotEn loken gt
josuthvacoess ke progy: Scherme: headet SEp meinod: post oauth_vemsdon: ‘15 she: Raps el twiniee.com hiip: Subpiabject Met HTTP sddress: sl twitier com pom: L4 el _hosi: laeal peet
T P WERAOA 1L R BV OOt 3 BE1 OMTURACENS]T CIOBE 0 STOLY SRS TR0 BOCKET SIAe0] RSHee DDEN_ 1Ml 30 resd_Bme | X0 DO S0t 0s0ug_ Dupat

Prery From s Srum peory el proTy sddnsas; proxy. port proNy Usev; proxy pass: Uss sl brog wal conteTi; Irubrpiobisct DpenEL: SAL 1 GEL Contert oar ey clant cacca fie: os paih; Smaod
werSy mode: O verify_depih: rensgofiation ci- verily caback; cptiona: -214TARZS corl wiorw: exire chain cert: clen] cerd ci- tmp dh calfmch: sesaion 8 conterh: session get ch: seesion new cic
sedilon_remove ch: servernams o ngn_protocois: npa_ sekec] cb: aal_seasion: irubypobject OpenSSL - S50 Seankcn {} mable posl_connection check: lrue sapl_enabled: lalse ca_file: ca_path: cert:
Ser1_shore: cipherc ey el lmeou: sal_version: verity_cailback: verify depih: verify_mode: 0 hmn rm-ml et uri: m‘mm‘ulr HITPS seiunene: HHpS user: pasawornd: Boal: sl twiller som por:

-I-I?M'- eu-er' e raqnuf wuqﬁw PArser: PATRME. OSUTh IDREn AR - . o DN bhuen
- S nath IO RCTE] - - - ST K RO

- e o ey (S NETATRIT waar 1S UBHIANIT Boreen name: wanisley m seen name; sianiley m eagone Instryiabinct-hat: HTTPOK
it veraion: 11" eode: Wnl-lm O headar: cache-conirel: - na-cachs, na-shars, mosl-revelidals, pro-chacks, poal-checksd conant-langih: - "STF tontiml-hygm: - spplicatianfsan charssbeuti -4

it - Mo, 23 Seg 3010 03 S2-00 GMT euplea: - Tue. 31 Mar 1881 05:00:00 GUIT lait-rodBed: - bos, 13 Sep 2011 085222 GMIT pragim: - ho-Ciathe Saresr: - B Sel-cookie: - iafgees .

e ke | WA I SR TETRING: Dn-m-- swiller.com; Pathe, Esperesaied. S Sep-2015 058320 UTE strten: = 200 O st porbaeculy. « medage=d3711 35518 accoss-ireed. « rend wioarme:
liang - BANEDANGIN K FEE AL 5';: el Semaining ‘14”1 Tte-bes-rub et « 1ITHISALT 5 ATMASECION! - TSSECICHEMENEL COAMSTN. - CHb By

("™ PR IREE, " " | IR, “Staniglay Maje" "scresn nama® lun-u-n my® Mocation” "Unied Sostes " description” " Appication Devsloper, e hllp\Mm

Wiy TRACH?, At urke uﬂ " A oV dUTARG | *, " pxpandsd wii” "hilp Wigcoglecom”, "Saplay url” "googie.com . indoes | 0221 T, "descripiion” M

[0}, protectsd” Sales, “Toliwars_count® 3, Wriends_count™:3, et couni® 3, "crasted a1”:bon Sep 71 05811 +0000

Rather than writing all the extra logic necessary for processing the information from
the hash in the controller, it is better to delegate it into a class method to make the
logic reusable and to keep our controller lean. Let's name the method process_
omniauth and call it from our controller using the following code:

class OmniauthCallbacksController < Devise::OmniauthCallbacksControll
er
def twitter
user = User.process_omniauth (request.env["omniauth.auth"])
end
end

When using the database authentication scheme, users will have to supply their
username and password for authentication. This is not the case in a remote
authentication scheme, because the third-party service will be the one that helps
us in authenticating our users. Unfortunately, if we previously had a username
and/or e-mail as the user's unique identifier in our database, our users won't be
supplying that anymore. Instead, we have to look for other alternatives as the
unique identifier. Luckily, Twitter supplies a uid value, which contains the unique
user identifier that we can use.

We will store uid in our database within columns called uid. We will also store
the provider name to indicate which authentication provider our users use in a
column called provider. Let's create a migration for these new additions using
the following commands:

$ rails g migration add omniauth to users provider:string uid:string

$ rake db:migrate

[63]

Remote Authentication with Devise and OmniAuth

This scheme that we are building now assumes that one user can only
choose one remote authentication provider to use, whether Twitter,

Facebook, or Google. They cannot sign into the same account using
’ more than one provider. See the summary at the end of this chapter

for more information.

Next, let's create the process omniauth method in our User model. We have been
supplied with a hash as an argument that contains provider and uid information.
Therefore, let's use this information to traverse our database and find whether a
user with the provider and uid combination already exists:

def self.process omniauth (auth)
where (auth.slice (:provider, :uid)).first or create do |user|
user.provider = auth.provider
user.uid = auth.uid
user.username = auth.info.nickname
end
end

The most interesting part with the preceding code is the first_or create method
that we call. This is a method that was provided by ActiveRecord, whichis a
combination of the first and create methods. This method will return an existing
record if it already exists, but it will create them if it doesn't. As also apparent

from the preceding code, we can supply a block into this method to assign the
newly-created user with attributes of our choosing.

There's one caveat with the first_or_ create method, though, because it contains
the create method that does all the validations and persists in the database. Thus,
we must be prepared if this method fails when doing validations or when saving our
user in the database. Let's handle it in our controller by checking whether the user is
successfully persisted by the persisted? method supplied by ActiveRecord.

class OmniauthCallbacksController < Devise::OmniauthCallbacksControll
er
def twitter
user = User.process_omniauth(request.env["omniauth.auth"])
if user.persisted?

flash.notice = "Signed in!"
sign in and redirect user

else
session["devise.user attributes"] = user.attributes
redirect to new user registration url

end

end
end

[64]

Chapter 4

If the user hasn't been persisted, it means that the first_or_create method, which
was called, failed in saving the user in the database. Therefore, we redirect our user
into the new user registration form to correct any mistakes that may occur during
this automated process. However, we must store the attributes somewhere to make
sure that the form is preloaded with authentication information, which we got from
Twitter; so, let's store it in the session with the devise.user_attributes key.

We must tell Devise to automatically preload forms with attributes that were stored
in the session if these attributes are available. To do this, we can override Devise's
new with session class method in our User model. This override checks whether
the session information with the devise.user_attributes key exists. If it does, it
will assign the attributes automatically. It will also assign attributes from params

if it's available, and run the validation so that error messages will instantly pop up
when the user opens the form.

def self.new with session(params, session)
if session["devise.user attributes"]
new (session(["devise.user attributes"], without protection: true)
do |user|
user.attributes = params
user.valid?
end
else
super
end
end

At this point, we will actually have a fully working authentication system, which
uses remote authentication to verify user credentials. However, our application
still has problems that need to be ironed out. Devise will still prompt that users
have to supply a password when submitting their registration form, although it
isn't necessary anymore as now they can use remote authentication. To change
this behavior, we can override Devise's password_required? method so that
Devise can skip password validation if the provider field isn't blank:

def password required?
super && provider.blank?
end

[65]

Remote Authentication with Devise and OmniAuth

While we're at it, let's also modify Devise's registration form so that the password-
related fields won't show up when our users use remote authentication. We can find
the registration form at app/views/devise/registrations/new.html.erb. If you
can't find it, you may have to execute rails generate devise:views first.

<h2>Sign up</h2>

<%= form for(resource, :as => resource name, :url => registration

)

path(resource name)) do |f| %>
<%= devise error messages! %>
<div class="field"><%= f.label :email %>

<%= f.email field :email %></divs>

<div class="field"><%= f.label :username %>

<%= f.text field :username %></divs>

<% 1f f.object.password required? %>
<div class="field"><%= f.label :password %>

<%= f.password field :password %$></div>

<div class="field"><%= f.label :password confirmation $>

<%= f.password field :password confirmation %$></divs>
<% end %>

<div class="field"><%= f.submit "Sign up" %$></div>

<% end %>

<%= render "devise/shared/links" %>

Another problem that needs to be tackled, is when a user wants to modify his/her
profile, they will have to supply their current password, which will be validated by
Devise. We have to override this behavior, because some of our users won't have
passwords anymore. We can override Devise's update_with_password method

in our User model to achieve this:

def update with password(params, *options)
if encrypted password.blank? && provider.present?
update attributes (params, *options)
else
super
end
end

[66]

Chapter 4

Let's hide the current_password field in the profile-editing page (app/views/
devise/registrations/edit.html.erb) for when users do not have any password.

<% 1f f.object.encrypted password.present? %>

<div class="field"><%= f.label :current password %> <i>(we need your
current password to confirm your changes)?/i>

<%= f.password field :current password %$></div>

<% end %>

After we finished with the last step, we will have completed adding support for
remote authentication using Twitter. Now, we can carry onto the next step, which is
to add support for Facebook authentication. This will be easier, because we already
have the logic for carrying remote authentication in place.

Remote authentication using Facebook

The steps for adding support for remote authentication using Facebook into our
application is quite similar to the steps that we have taken when adding Twitter
support. We also have to register our application at the Facebook developer site
to get APP_ID and APP_SECRET, which we will use in our application.

Let's start the process by registering our application at the Facebook developer site.

Registering our application at the Facebook
developer site

To register our application, we can go to https://developers. facebook.com/.
Of course, we have to already have a Facebook account so that we can sign in to
this site. If not, we have to sign up first.

[67]

Remote Authentication with Devise and OmniAuth

After a successful sign-in, we can click on the Apps menu on the top of our screen,
which will take us into our dashboard:

facebouk deVe|0perS Search Facebook Developers Q Docs Tools Support News Apps 4 Giovanni Sakti ~

Eddie O'Neil cooked a meal with Cooking App

Beef Wellington

Share Dialog

Sharing made simple for iOS apps

—— § COOKING APP

e~ -

|

i0s Android Web

Integrate Facebook with your native iOS apps Integrate Facebook with your native Android apps. Integrate Facebook with your website or host your
apps in Facebook.com.

Latest Updates Games Developer Center Showcase

M Flatform Status: Facebook Platform is Healthy

D Platform Updates: New Facebook SDK for
i0S and API for Page Locations
July 25 by Greg Schechter

‘TR | Games .
0 Developer Center Pinterest ticketmaster

(/L Foodspotting ﬁ%

D Platform Updates: Parse Developer Day,
Local Currency Tutorial, and More
July 18 by Ming Li

Grow and monetize your game by integrating with
Facebook on i0S, Android, and on
Facebook.com. Learn more

See how companies make their sites personalized and

More ¥
social with Facebook
L]
FlLike [EIsend 0 i and 1,975,582 others like this.
Facebook © 2013 - English (US) About Advertising Careers Platform Policies Privacy Policy

Then, we can click on Create new app to register our application. We will be presented
with a form that contains the basic information about our application that we have to
fill in. Just make sure that the App Name and App Namespace fields are filled with
unique names. If it's already taken, we will have to pick a different name.

Click on Continue to register your application.

[68]

Chapter 4

Create New App

App Name: [? learning_devise_for_rails Valid
App Namespace: [?] | learning_devise Available
App Category: (7] | Other x|/ | Choose a sub-category ~|
Web Hosting: [?] [_] Yes, | would like free web hosting provided by Heroku (Learn More)

By proceeding, you agree to the Facebook Platform Policies Continue

We will be presented with our application dashboard on successful registration.

We can also click on Edit App in our application dashboard to go to this page. The
most important thing in this page is to write down the information for App ID and
App Secret, which we will use later. We also have to check Website with Facebook
Login in the Select how your app integrates with Facebook section. Don't forget to
fill in the site URL with the usual fully qualified domain name (FQDN) of localhost
(http://127.0.0.1:3000/). Obviously, you can change this into any domain name
that will host your application:

Settings Apps » learning_devise_for_rails » Basic
Basic

Developer Roles

Permissions learning_devise_for_rails
Payments App ID:
App Secret: (reset)
Realtime Updates @ This app is in Sandbox Mode (Only visible to Admins, Developers and Testers)
Advanced
App Details Basic Info
Review Status Display Name: [learning_devise_for_rails
Open Graph Namespace: [? learning_devise
Localize Contact Email: giosakti@test.com
Alerts App Domains: Enter your site domains and press enter
Insights Hosting URL: You have not generated a URL through one of our partners (Get one)
Sandbox Mode: (7 *) Enabled Disabled

Select how your app integrates with Facebook
Related links

Use Debug Tool " Website with Facebook Login

Use Graph APl Explorer Site URL: 7! http://127.0.0.1:3000/

Use Object Browser

See App Timeline Mew </’ App on Facebook Use my app inside Facebook.com.

Delete App
Q? Mobile Web Bookmark my web app on Facebook mobile.
</’ Native iOS App Publish from my iOS app to Facebook.
</ Native Android App Publish from my Android app to Facebook.
</’ Page Tab Build a custom tab for Facebook Pages.

[69]

Remote Authentication with Devise and OmniAuth

Just remember that changes in the Facebook application dashboard will sometimes
take several minutes to propagate. Just prepare early, be patient when something
unexpected occurs, and try it again after several minutes have passed.

Changes saved. Note that your changes may take several minutes to propagate to all servers.

Now, after we get our App ID and App Secret information from Facebook, we can
continue to configure our application to add the Facebook authentication support.

Configuring OmniAuth for authentication using
Facebook

First, we have to tell Devise that we want to add support for OmniAuth Facebook
authentication by modifying config/initializers/devise.rb. We must also
specify the App ID and App Secret values that we got earlier here.

config.omniauth :facebook, 'APP_ID', 'APP_SECRET'

We already specified an action called twitter in our OmniauthCallbacksController.
The logic within the twitter action can be reused by the Facebook authentication
scheme. We can use Rails' alias_method to achieve that, so let's modify our code

as follows:

class OmniauthCallbacksController < Devise::OmniauthCallbacksControll
er
def provider
user = User.process omniauth(request.env["omniauth.auth"])
if user.persisted?
flash.notice = "Signed in!"
sign in and redirect user
else
session["devise.user_ attributes"] = user.attributes
redirect_to new user_ registration url
end
end

alias_method :twitter, :provider
alias_method :facebook, :provider
end

[70]

Chapter 4

Don't forget to put a link for our users to authenticate with Facebook in your
sign-in page:

<div id="user nav">
<% 1f current user %>

Signed in as <strongs><%= current user.name %$></strongs!

<%= link to "Sign out", signout path, id: "sign out" %>
<% else %>
<%= link to "Sign in with Facebook", "/auth/facebook", id: "sign
in" %>

<% end %>

</div>

Actually, that was it for adding support for Facebook authentication. Adding
support for Facebook is a lot easier, because we already have the logic in place
when adding the Twitter authentication support. Of course, we can always make
improvements to our application; the examples include support for scenarios
where users can utilize multiprovider authentication in one account or support
for LinkedIn and Google authentication.

Summary

By completing the guidance provided in this chapter, we will have successfully
created an application that can authenticate its users using remote authentication
with third-party providers. To explore this topic further, you can try to implement
support for providers other than Twitter and Facebook, which was described in
this chapter.

Another thing to explore is the database scheme and logic that was used in this
chapter, which was created with an assumption that users can only have one remote
authentication provider for their account. If they, say, want to sign in using a Facebook
account or a Twitter account into the same account in our application, they won't be
able to do so with the current configurations. To support that scheme, we may have

to create a separate model for storing the provider and uid information. Our User
model must also have a has_many relationship to this new model. Lastly, we also have
to modify the logic in our application accordingly.

[71]

Testing Devise

Now, you have reached this point where you have learned so many things about
Devise. You started by setting up Devise modules in your application and now you
are already able to perform remote authentication with Devise. So, let's get to the
next topic about testing your Devise.

Some people think, maybe even you, that in certain circumstances, testing is just
wasting your time. Some of you may have little time to develop your application,
and some of you may only have a little number of people in your team that you
decide to focus on building the features without performing any automated tests. It's
not wrong at all, but I think the main concept of automated tests is about costing you
time in the beginning of the development phase and saving a lot of your time in the
future. So, we can say, this act is a kind of preventive action.

There are many kinds of testing, such as unit testing, integration testing, and
functional testing. We are going to perform unit and functional testing. In Ruby

on Rails, unit testing is performed to test your model and functional testing is
performed to test your controller. I'm not going to write the definitions and other
details for unit and functional testing, which means, when you read this chapter, it is
required that you know the definition of these tests and how they are used in Ruby
on Rails. To learn more about tests in Ruby on Rails, you can visit http://guides.
rubyonrails.org/testing.html.

In this chapter, I'm going to give you some examples of tests that you can perform on
your application. The examples are as follows:

* The sign-up test

* The user update test

* The user deletion test

* The sign-in test

¢ The remote authentication test

Testing Devise

Why do you pick these five actions as examples? Didn't you give us a lot of examples
between user deletion test and remote authentication test? These are good questions.
I picked these as examples because I think these actions are basic authentications that
you need to grab before you advance to the next level, that is, testing the customized
Devise modules.

As for your information, by default, we are going to use the default testing tool
provided by Ruby on Rails (Test::Unit). However, to expand your knowledge
about testing tools, we are going to use RSpec (http://rspec.info/) and
Factory Girl (https://github.com/thoughtbot/factory girl) for the Remote
authentication test.

As I mentioned before, Ruby on Rails provides a default test, which we can use.

I'm going to use this for example one until four; therefore, we need to make some
preparations. The first thing that you need to provide is a test fixture (http://guides.
rubyonrails.org/testing.html#the-low-down-on-£fixtures). You can open a file
located under the test/fixtures/ folder. If you already generated a model (let's call
it the user model), you will have users.yml under that folder. Now, please define one
data at least within the fixture. The following is an example of users.yml:

one:
email: hafizbadrie@gmail.com

encrypted password:
$2a$10$zhKHXP2N1ENyYuaYCtwS.e6SfekdVG3Q78gINVgY6Wg4A6c5HknSW

username: hafizbadrie

This test also requires some Devise specifications, which are stated in the previous
chapters; so, I won't repeat the setup explanation in this chapter. In the next step, you
have to configure your database for the test environment and perform this command
to create a test database and migrate the tables as follows:

$> rake db:create

$> rake db:migrate RAILS ENV=test

The sign-up test

Sign-up is the first action that you need to test. Why? Because if people can't sign up
at your application, then sign-in and any other authentication will be useless. This
is actually a simple test. You just need to add new data to the user table and check
whether it's inserted or not. To do this, please open test /models/user_test.rb
and add this code inside the UserTest class:

test "sign up" do
user = User.new ({
:email => "hafizbadrie@hotmail.com",

[74]

Chapter 5

:username => "hafizblubis",
:password => "devisetest",
:password confirmation => "devisetest"

3]

assert user.save, "User not signed up!"
end

The previous code will try to insert new data and check whether it's inserted or
not with assert user.save, "User not signed up!" Ifitisn't, the message
written will show up. Now, let's try and run our first Devise test by executing the
following command:

$> rake test

The result of the test is similar to the following screenshot:

bash-3.2% rake test
Fun options: —-zeed B4105

Funning tests:
Finizhed tests in 0,053388=, 18,7308 testsds,. 18,7308 assertionsds,

1 tests, 1 aszsertions. O failures, O errors, O skips
bazh-3.2% ||

The sign-up testing result

As you can see, you currently have one test and this test performs one assertion. You
also have no failures or errors, which means the result is as per our expectation.

The user update test

You already have one test in your model test and now we are going to add one
more test; it is the user update test. We're going to perform two kinds of scenarios
for this test:

* Update the user account without a password: Please open and modify
test/models/user test.rb and add this code inside the class:

test "user edit without password" do
user = User.first

new data = {

:email => "hafizbadrie@gmail.com",

[75]

Testing Devise

:username => "hafizlubis"

new data = ActionController::Parameters.new(new_data)
new data = new_data.permit (:email, :username)
user.update without password(new data)

assert equal user.username, 'hafizlubis', "User is not updated"
end

The first line inside the test code tries to get the data from the fixture

and store it to a variable. Based on my fixture, I have data that has,
hafizbadriee@gmail.com, as the e-mail and hafizbadrie as the username.
Iintend to update the username to hafizlubis and check whether it's
updated with an assertion or not. You can see the result of the test in

the following screenshot:

bash-3,2% rake test
Fun options: ——seed 57119

Running tests:
Finizhed testz in 0,094863=, 21,0830 tests s, 21,0830 assertionss,

2 tests, 2 assertions, O failures, 0 errors, O skips
bash-3.2% |

The user update without password test

Congratulations! Your test has succeeded once more since you have no
failures and errors. The simulation data is successfully loaded and updated.

* Update the user account with a password: To test your user update along
with its password, you need to use a different method name; that is, update_
with password. Let's see the following code example:

test "user edit with password" do
user = User.first

new data = {

:username => "hafizlubis",

:current password => "hafizmelulu",
:password => "devisetest",

:password confirmation => "devisetest"

}

new data

ActionController: :Parameters.new(new_data)
new_data new _data.permit (:email, :username, :current_ password,
:password, :password confirmation)

[76]

Chapter 5

user.update with password(new data)

assert equal user.username, 'hafizlubis', "Password is not
updated"
end

This code is inserted within the class, which is also located at test /models/
user_test.rb. intend to update the password and username of an existing
account with the username hafizbadrie, so I will change the account's
password and then call the update with password method to save these
changes. To check whether the test is successful or not, I will make an
assertion against the updated username. The result of this test is shown in
the following screenshot:

bash-3.2% rake test
Fun optionst -——zeed 33823

Running tests:

4

Finighed tests in 0,14273d4s, 21,0093 testsss, 21,0093 azsertionzds,

3 testz, 3 azsertionsz, O failuresz, O errorz, O skips
bazh-3.2% |

The user update with password test

If your test passes all test cases with all assertions returning the expected
values, this means your data for simulation is successfully changing the
previous passwords.

The user deletion test

This example will show you how to apply a test for user deletion. We are going to
pass through a simple case in our test case. Now, let's modify your user_test.rb
file so that it contains the following code within its class:

test "user deletion" do
user = User.first
user.destroy

deleted user = User.first

assert deleted user.nil?, "User is not deleted"
end

[77]

Testing Devise

You have prepared the test case. Let's execute it. The result will be as shown in the
following screenshot:

bazh-2,2% rake test
Fun optionz: -—seed 10521

Rurning tests:

LEX N

Finished tests in 0,282624=, 14,1531 tests/s,. 14,1531 aszzertionsds,

4 testz, 4 assertionz, O failures. O errors, O skips
bazh-3.2% |

The user deletion test

When you see this result in your console, it means you have passed all your
test cases.

The sign-in test

Now, we will see how to perform the sign-in test. In this case, we will no longer use
unit testing, and perform functional testing instead. This test will be performed at

the controller test file and we start by testing the authentication filter. We expect that
when users visit the index action of the user's controller, they will be redirected to the
Devise sign-in page. To do it, please open and modify test/controllers/users_
controller_test.rb. Add the following code inside the UsersControllerTest class:

include Devise::TestHelpers

test "should be redirected" do

get :index

assert redirected to new_user_session path, "User is not redirected!"
end

Don't forget to include Devise: : TestHelpers because we are going to use some
Devise helpers such as authenticate and sign_in. Both these methods are defined
in this class. The test code will make a request to the index action of the user's
controller. Since we expect that users will be redirected to the sign-in page, we are
going to make an assertion named assert_redirected_to. If the redirected page is
not as we expected, the fail message will show up.

[78]

Chapter 5

You can see the result of the test in the following screenshot:

bash-3,2% rake test
Fun options: —seed 18749

I
Funning tests:
Finished tests in 0,445106=s, 11,2333 testsds, 13,4799 assertionss,

b tests, B azsertionz. 0 failures. 0 errors, O skips
bazh-3.2% |

The user redirection test

All the tests have passed without any errors, so we are going to continue to the next
test, which is the sign-in test. To perform this test, please add the following code
inside test/controllers/users controller test.rb:

test "should sign in" do
@request.env["devise.mapping"] = Devise.mappings|[:user]

user = User.first

sign in user

get :index
assert response :success, "User is not signed in!"
end

This test will try to perform sign-in of an account and check whether it's succeeded

or not. To validate it, we'll try visiting the index action of users_controller test.

If we are redirected to another page, this means the Devise filter is executed because
there is not a single signed-in account. However, if we get the actual page of the index
action, this means we have successfully signed in. To perform this test, we need to
use sign_in and assert_response methods. The sign_in Devise helper is used to
perform the Devise sign-in action and assert_response is used to see the response
code from the server. For this test, we use : success, which defines code 200.

[79]

Testing Devise

The Remote authentication test

As I mentioned before, for this test, we will use a different testing tool called RSpec
and Factory Girl.

RSpec is a testing tool for the Ruby programming language. Born under the banner
of Behavior-Driven Development, it is designed to make Test-Driven Development
a productive and enjoyable experience (http://rspec.info/).

factory_girl is a fixtures replacement with a straightforward definition syntax,
support for multiple build strategies (saved instances, unsaved instances, attribute
hashes, and stubbed objects), and support for multiple factories for the same class
(user, admin_user, and so on), including factory inheritance (https://github.
com/thoughtbot/factory girl).

In this condition, we are going to replace the default test framework with RSpec
and fixtures with Factory Girl. This means you will have methods different from
the previous examples and, as a consequence, you will learn a new method for
performing tests. Eventually, you will be able to compare which testing tool is more
suitable for you.

To start our test with RSpec and Factory Girl, we need to add both gems in our
Gemfile as follows:

group :development, :test do

gem 'rspec-rails', '~> 2.14.0'
gem 'factory girl_rails', '~> 4.2.1'
end

If you haven't installed these gems in your gemset, you can run the bundle install
command before proceeding to the next steps. Next, you should initialize RSpec by
executing the following command:

$> rails generate rspec:install

The result of the previous command is shown in the following screenshot:

bash-3.2% rails generate repectinstall
Jrapec
TpEC
zpecszpec_helper,rb

bazh-3.2% |

The RSpec installation result

[80]

Chapter 5

Let's continue by preparing Factory Girl for your test. Since you already have the
spec folder, please add a new folder named factories under it. We will put our
factories file under it. To apply our new testing tool as our test default, you need
to add some extra configuration to your generator. You can do this by modifying
your config/application.rb file and adding the following code:

config.generators do |g|

g.test framework :rspec, :fixture => true
g.fixture replacement :factory girl, :dir => "spec/factories"
end

Before we proceed to the next step, you should pay attention to the configuration
in the spec/spec_helper.rb file. We are going to tell Rails not to use its default
fixtures. To do this, please open the file and include the following two lines:

config.fixture path = "#{::Rails.root}/spec/fixtures"
config.user_transactional_fixtures = true

Therefore, our new testing tool will become the default tool for testing. If you start
this test from a brand new project, the application will automatically generate RSpec
files when you execute rails generate model and rails generate controller
commands. However, if you start installing this testing tool with controllers and
models that are already generated, you will need to add some files by yourself. Since
this example uses the code written in Chapter 4, Remote Authentication with Devise and
OmniAuth, you need to add some test files in the spec folder.

This test will show you two kinds of tests: a functional test performed in the

controller and a unit test performed in the model. However, before we start the test,
we have to prepare our fixture defined by Factory Girl. Please execute the following
command to produce a file named users. rb, which is located at spec/factories/:

$ rails generate factory girl:model User email username provider uid

Now, open the file and modify it so that the code will look like the following lines
of code.

require 'factory girl rails'

FactoryGirl.define do

factory :user do

email 'learningdeviseforrails@gmail.com'
username 'hafizbadrie'

provider 'twitter'

uid '1234567"

end

end

[81]

Testing Devise

Now, let's start writing our test code from the unit test. Please add a new file named
users_spec.rb under spec/models/. If you don't have a folder named models, you
can create it on your own and save the file under that folder. Referring to the user.
rb file written in Chapter 4, Remote Authentication with Devise and OmniAuth, we have
a method called process_omniauth, and we will create our test case in that method.
Please write the following code inside users_spec. rb:

require 'spec helper'

describe User do

it "processes omniauth from existing user" do
auth = {

:provider => "twitter",

:uid => "1234567",

:info => {

:nickname => "hafizbadrie"

}

}

user = FactoryGirl.create(:user)
tested user = User.process_omniauth (auth)

expect (tested user) .to eqg(user)
end

it "processes omniauth with new user" do
auth = {

:provider => "twitter",

:uid => "1234567",

:info => {

:nickname => "hafizbadrie"

}
}

tested user = User.process_omniauth (auth)
expect (tested user.persisted?) .to be false
end

end

You just defined two test cases for the process_omniauth method. The first test
case shows that the method processing the data defined by auth is equal to the data
existing in the database, while the second shows the opposite of this, that is, the data
defined by auth is new. As you can see, the method used by RSpec is different from
the ones we used in previous examples. For more information about the methods,
you can go to the following original documentation sites:

® http://rubydoc.info/gems/rspec-core
® http://rubydoc.info/gems/rspec-expectations

[82]

Chapter 5

® http://rubydoc.info/gems/rspec-mocks
* http://rubydoc.info/gems/rspec-rails

We have prepared the test case and now, it's time to execute it. Please run the
following command to see the results:

$> rspec spec/models

You also can use the following command to execute all the tests you have (models,
controllers, and the views test), which is slower than the previous command:

$> rake spec

The result will show that you have passed two examples, as shown in the
following screenshot:

bash-2.2% rzpec zpec/modelss

+

Finished in 0,00826 seconds
2 examples,. 0 failures

Randomized with seed 44421
bazh-3.2% |

The unit test with RSpec result

Let's continue executing the functional test at our controller. Please create a file
named omniauth callbacks controller spec.rb under spec/controllers. If
you already have the file, you can skip this step; however, if you don't, you have to
create the folder and file on your own.

As described in Chapter 4, Remote Authentication with Devise and OmniAuth the
omniauth callbacks_controller.rb file provides an action named provider. The
test will show two types of test cases. The first case will show the condition when a
user signs in with a new Twitter or Facebook account. The second case will show the
condition when a user signs in with an existing account via Twitter or Facebook. The
following is the example test code that I wrote:

require 'spec helper'

describe OmniauthCallbacksController do
before(:each) do
request.env["omniauth.auth"] = {

:uid => "1234567",

:provider => "twitter",

[83]

Testing Devise

:info => {

:nickname => "hafizbadrie"
}

}

end

describe "GET #provider" do

it "sign up with twitter success" do

user = User.new

get :twitter

response.should redirect to new user registration url

end

it "twitter sign in success" do

user = FactoryGirl.create(:user)

get :twitter

response.should redirect to root path
end

end

end

The previous code gives you two cases. The first case shows that the user should

be redirected to the registration page because the incoming user is a new user. The
second case uses the data defined in our factory to sign in and then the user should
be redirected to the root path defined in the route. Please remember that to run the
test perfectly, you have to create a dummy value for omniauth.auth, which is used
by the process_omniauth. In the previous code, the dummy value is defined in the
before (:each) .. do block of code, which is executed in every test case.

Now, let's see the result of the test. Please execute rspec spec/controllers and the
result will be as follows:

bazh-3.2% rzpec specdcontrallers

+ 4

Finizhed in 0,11569 zeconds
2 exanples, O failures

Randomized with seed BZ083
bazh-3.2% |

The Functional test with RSpec

[84]

Chapter 5

In the example, I wrote a case where the user signs in with a Twitter account. So,
what about a Facebook account? You can apply the same test with a Facebook
account with minor changes. First, you should change the provider value in
request.env["omniauth.auth"] from twitter to facebook. In every test case,
you should replace get :twitter with get :facebook. This should do it and the
test will be performed with Facebook as its provider.

Summary

In this chapter you have learned about how to test some of the Devise actions. Some
of them are performed with the default Ruby on Rails testing tool and some use
RSpec and Factory Girl. With different testing tools being used in the examples, you
are expected to be able to compare which tool is more suitable for you. The test itself
is meant to make your Devise and application more solid and less faulty. As I have
said earlier, you may think that this activity will consume some of your time, which
could be allocated to developing other features, or you can say that developers

can perform the test manually. However, as the application grows, developers

will start losing track of the bugs they have exterminated and tests they have
performed. Repeating the same test manually will be more inefficient. The point is
that depending on the size of your application, you may choose whether to apply the
test or not, but the end point of the development should remain the same; that is, to
develop a useful and solid application.

[85]

Symbols

$ rails server command 13
:confirmable module 24
:except code 13

:index action 48

:only code 13

:show action 48

A

abilities
correctness, ensuring 50
debugging 50
testing 50
account
cancelling 27
admins controller 32
advanced CanCan
using 46-50
advanced CanCan usage
authorization checks, simplifying 49
correctness, ensuring 50, 51
SQL used, for defining rules 46-48
App ID value 70
application
registering, at facebook developer site 67-
70
registering, at Twitter developer site 56-60
remote authentication, implementing on
55-71
App Name field 68
App Namespace field 68
App Secret value 70
Apps menu 68
assert_response() method 79

Index

authenticate helper 78
authentication

used, for signing in 15-20
Authlogic 7
authorization 41
authorization checks

simplifying, on controllers 49-51
authorize!() method 44

B

bundle command 42
bundle install command 80

C

CanCan::AccessDenied exception 44, 45
CanCan gem
URL 41
Cancel Account button 27
can() method 43, 46, 48
cannot() method 43, 46
CollabBlogs 41
CollabBlogs, web application
building, for collaborative writing 41-46
functionalities 41, 42
initial setup 42
Confirmable module 8
Consumer key value 60
Consumer secret value 60
controllers
authorization checks, simplifying on 49, 50
create() method 64
Cucumber framework 50
current_password field 67

D

Database Authenticatable module 7
destroy abilities 47
Devise
about 7
helpers 14
installing 9-12
integrating, with Mongoid 36-39
modules 7
testing, types 73
used, for application running 12-14
Devise actions
customizing 28-31
Devise actions customization
confirmation 29
forgot password 31
sign-in 30
sign-out 30
sign-up (registration) 28
user deletion 30
user edit 29
Devise file view
screenshot 16
Devise helpers
current_user 14
user_session 14
user_signed_in? 14
Devise installation
screenshot 10
Devise layout
customizing 31-35
Devise modules
Confirmable 8
Database Authenticatable 7
Lockable 8
Omniauthable 8
Recoverable 8
Registerable 8
Rememberable 8
Timeoutable 8
Token Authenticatable 8
Trackable 8
Validatable 8
Devise::OmniauthCallbacksController
class 62
Devise routes
customizing 28-31
Devise:TestHelpers 78

Devise, testing
Remote authentication test 80-85
sign-in test 78,79
sign-up test 74,75
user deletion test 77
user update test 75-77
devise.user_attributes key 65

E

edit account page
screenshot 21

Edit User page 27

E-mail field 17, 26

employees controller 32

F

Facebook
used, for OmniAuth configuring 70, 71
used, for remote authentication 67-71
Facebook developer site
application, registering at 67-70
screenshot 68
URL 67
Factory Girl
about 80
URL 74
first() method 64
first_or_create() method 64, 65
fully qualified domain name (FQDN) 69

H

HTTP Basic Authentication 7

L
Lockable module 8

model 42
model class 19
Mongoid
Devise, integrating with 36-39

N

[88]

new_with_session() method 65

O

oauth_callback parameter 59, 62
OmniAuth
about 54, 55
URL 54
Omniauthable module 8, 54, 56
omniauth.auth key 62
OmniAuth configuration
authentication, Facebook used 70, 71
authentication, Twitter used 60-67
OmniAuth support 8

P

password

resetting 26
password_required? method 65
password reset page

screenshot 26
persisted? method 64
POST requests 7

process_omniauth() method 63, 64, 82, 84

provider field 65

R

Rails application
creating 9-12
files, generating by Devise 10
information, generating 10
running, Devise used 12-14
Rails application, files
devise.en.yml 10
devise.rb 10
rails command 21
rails generate controller command 81
rails generate model command 81
rake db
migrate command 16, 26
Recoverable module 8, 26
Registerable module 8, 21
Rememberable module 8
remote authentication
about 53, 54
application, preparing 55, 56

Facebook, using 67-71
implementing, in application 55-71
Twitter, using 56-67

Remote authentication test

about 74

applying 80-85
Factory Girl used 80
RSpec used 80

RSpec

about 80
URL 74

RSpec framework 50
RSpec installation result

screenshot 81

RSpec matcher 50
Ruby on Rails

about 7
URL 73

rules

defining, SQL used 46-48

S

scaffold 42

session variable 14
sign_in helper 78,79
sign_in() method 79
sign-in page

screenshot 17

sign-in test

applying 78,79

sign-up page

screenshot 19

sign-up test

applying 74
result, screenshot 75

SQL

used, for rules defining 46-48

T

Test::Unit framework 50
Timeoutable module 8

Token Authenticatable module 8
Trackable module 8

Twitter

used, for OmniAuth configuring 60-67
used, for remote authentication 56-67

[89]

twitter action 70

Twitter developer site
application, registering at 56-60
screenshot 58
URL 56

U

update() method 22
update_without_password() method 24
update_with_password() method 66, 76, 77
user

signing up,account confirmation

used 24-26

user account

updating 21-24
user account updation

data, editing without password 23, 24

password, editing 21-23
user deletion test

applying 77

screenshot 78
user, Devise model

generating 10

user, Devise model generation
screenshot 11

user keyword 14

username field 16-18

users controller 37

UsersControllerTest class 78

UserTest class 74

user update test
applying 75
applying, without password 75
applying, with password 76, 77
result, screenshot 76

\'

Validatable module 8

w

web application. See CollabBlogs
Website field 58

[90]

open source

community experience distilled

PUBLISHING

Thank you for buying
Learning Devise for Rails

About Packt Publishing

Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www . packtpub . com.

About Packt Open Source

In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub. com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

open source

community experience distilled

PUBLISHING

OpenAM
ISBN: 978-1-849510-22-6 Paperback: 292 pages

Written and tested with OpenAM Snapshot 9 - the
Single Sign-On (SSO) tool for securing your web
applications in a fast and easy way

1. The first and the only book that focuses on
implementing Single Sign-On using OpenAM

2. Learn how to use OpenAM quickly and
efficiently to protect your web applications
with the help of this easy-to-grasp guide

3. Written by Indira Thangasamy, core team
member of the OpenSSO project from which
OpenAM is derived

Railo 3 Beginner's Guide
ISBN: 978-1-849513-40-1 Paperback: 364 pages

Easily develop and deploy complex applications
online using the powerful Railo Server

1. A complete guide to developing an application
with Railo from start to finish

2. In depth coverage of installing Railo Server on
different environments

3. A detailed look ORM, AJAX, Flex and other
technologies to boost your development

Please check www.PacktPub.com for information on our titles

open source

community experience distilled

PUBLISHING

Ruby on Rails Enterprise
Application Development: Plan,
Program, Extend

ISBN: 978-1-847190-85-7 Paperback: 528 pages

Building a complete Ruby on Rails business
application from start to finish

1. Create a non-trivial, business-focused Rails
application

y on Rails

Ap on Develo

2. Solve the real-world problems of developing
and deploying Rails applications in a business
environment

Aptana RadRails: An IDE for Rails

Development
ISBN: 978-1-847193-98-8 Paperback: 248 pages

Over 80 practical, task-based recipes to create
applications using Boost libraries

1. Comprehensive guide to using RadRails during
the whole development cycle

‘ﬂﬁtar Eua Ra dmRal Is: 2. Code Assistance, Graphical Debugger, Testing,
N) Integrated Console

3. Manage your gems, plug-ins, servers,
generators, and Rake tasks

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Devise – Authentication Solution for Ruby on Rails
	Devise modules
	Installation
	Run your first application with Devise
	Summary

	Chapter 2: Authenticating Your Application with Devise
	Signing in using authentication other than e-mails
	Updating the user account
	Signing up the user with confirmation
	Resetting your password
	Canceling your account
	Customizing Devise actions and routes
	Customizing your Devise layout
	Integrating Devise with Mongoid
	Summary

	Chapter 3: Privileges
	CollabBlogs – a web application for collaborative writing
	Advanced CanCan usages
	Defining rules using SQL
	Simplifying authorization checks on controllers
	Ensuring abilities' correctness
	Testing
	Debugging

	Summary

	Chapter 4: Remote Authentication with Devise and OmniAuth
	Remote authentication
	OmniAuth
	Implementing remote authentication in our application
	Preparing your application
	Remote authentication using Twitter
	Registering our application at the Twitter developer site
	Configuring OmniAuth for authentication using Twitter

	Remote authentication using Facebook
	Registering our application at the Facebook developer site
	Configuring OmniAuth for authentication using Facebook

	Summary

	Chapter 5: Testing Devise
	The sign-up test
	The user update test
	The user deletion test
	The sign-in test
	The Remote authentication test
	Summary

	Index

