
www.allitebooks.com

http://www.allitebooks.org

Learning NServiceBus

Second Edition

Build reliable and scalable distributed software systems

using the industry leading .NET Enterprise Service Bus

David Boike

P U B L I S H I N G

professional expert ise dist i l led

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Learning NServiceBus

Second Edition

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2013

Second edition: January 2015

Production reference: 1250115

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-292-5

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author

David Boike

Reviewers

Prashant Brall

Roy Cornelissen

Hadi Eskandari

Daniel Marbach

Commissioning Editor

Dipika Gaonkar

Acquisition Editor

Larissa Pinto

Content Development Editor

Kirti Patil

Technical Editor

Chinmay S. Puranik

Copy Editors

Dipti Kapadia

Vikrant Phadke

Project Coordinator

Kranti Berde

Proofreaders

Simran Bhogal

Maria Gould

Ameesha Green

Bernadette Watkins

Indexer

Monica Ajmera Mehta

Graphics

Sheetal Aute

Abhinash Sahu

Production Coordinators

Arvindkumar Gupta

Nilesh R. Mohite

Cover Work

Arvindkumar Gupta

Nilesh R. Mohite

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Foreword

Unlike many people who write a foreword for a book, I have myself not actually
written a book yet, so I am probably going about this the wrong way. Also, of all
the books that I have read, I have almost never read the foreword, which makes me
wonder who is actually reading this.

That being said, I think that 10 years of blogging has actually prepared me very
well to write this foreword, and it will end up being roughly as long as my regular
blog posts.

In any case, I am extremely happy to see how well the irst edition of this Learning
NServiceBus book has done, and when David asked me to write the foreword for this
second edition, I was more than willing to oblige.

Now that you've picked up this book, I think it's fair to assume that you have
heard something about NServiceBus, maybe even downloaded it, played with it,
or used it on a project or two. What you might not know is the story of how it all
began and how we ended up where we are today—seeing the second edition of
Learning NServiceBus being published.

Early inluences
Almost 15 years ago, I was working as a developer on a gigantic command and
control system developed in a language called Ada. This is what Wikipedia has
to say about Ada:

"[Ada] has built-in language support for explicit concurrency, offering tasks,
synchronous message passing, protected objects, and non-determinism."

These were very important attributes for a system that needed to be super reliable,
highly performant, and very scalable. Little did I realize at that time how profound
an effect this relatively unknown programming language would have on the rest of
my career.

www.allitebooks.com

http://www.allitebooks.org

In my next company, a software development irm—the kind that does turnkey
projects for its customers—I continued my focus on command and control systems,
this time using the fairly new .NET platform from Microsoft. The thing was that
many of the abilities that I'd come to rely on in Ada were (to me) curiously absent
from .NET.

Like any good craftsman who has gotten used to a certain tool, I started looking
around for a replacement, and when I couldn't ind one, I went and made it myself.

Starting with MSMQ
Although the main message from Microsoft at the time was all about XML Web
Services and .NET Remoting, I found that there was support for a message
passing model in .NET that was actually built on a piece of infrastructure that was
considerably older (originally built in the NT 3.5.1 days, but released with NT 4.0 in
1997). At that time, MSMQ had made it to version 3.0 which, later on, I learned was
the magic number when it came to stability of software built by Microsoft.

Still, I found the System Messaging API to be a little too close to the metal for me to
feel comfortable using it directly from my application logic, so I created a wrapper
library, which gave me some much needed abstraction.

As I moved from one project to the next, I found this little library to be more and
more useful and kept on extending and reining it. The developers in my teams
seemed to like working with it as well.

After the third or fourth project, I decided to approach the company's management,
suggesting that we should consider turning this infrastructure into a product. Seeing
how useful it was to us on our projects, I igured that it was a no-brainer.

It turned out that this company had gone down the productization path in the past
and had gotten badly burned in the process. As a result, they were very hesitant to
make the same mistake again. Realizing that it wasn't going to happen, I managed
to get permission to release the infrastructure to the world as an open source project,
but only after legal conirmation that there would be no support or other liabilities to
the company.

Thus, in 2007, NServiceBus was born.

This also happened to be the time when I started transitioning into my own private
consulting practice.

www.allitebooks.com

http://www.allitebooks.org

What open source meant in those days
As I continued to use NServiceBus in my work projects, I kept tweaking and
expanding it. Version numbers didn't mean a whole lot, and through 2008, the
version progressed rapidly from 1.6.1 to a release candidate of 1.9. If it worked
on my project, I considered it worthy to ship.

Documentation was practically nonexistent and developers leaned pretty heavily
on samples to igure out what the software did, asking questions on the discussion
group when they ran into cryptic error messages (of which there were many).

In 2008, the 5-day format of my Advanced Distributed Systems Design course was
launched, which was an extension of the 2-day workshop on the same topics I had
been teaching since 2006. This course was based on many of the learnings from my
old Ada days and continues to serve as the architectural underpinning of much of
NServiceBus to this day.

April 2009 brought some stability with the inal release of version 1.9 but came
with a marked increase in the amount of consulting and training I was doing.
This was great for me as I could inally afford to turn down work in order
to continue the development of NServiceBus. This worked out great and
in March 2010, the much-heralded NServiceBus 2.0 was inally released.

Clouds on the horizon
By almost every measure, things were going great. More companies were adopting
NServiceBus and bringing me in for consulting. The Advanced Distributed Systems
Design course was getting quite popular, and for a while, I was teaching it almost
once a month in a different country around the world. Unfortunately, almost 6
months had gone by without any meaningful development on the code base.

Then it hit me that if another year or two would pass by in this manner, NServiceBus
would start to get stale and the companies that had used it in their systems would
eventually have to replace it with something else (costing them quite a lot of time
and money).

I had lived through this story several times as a consumer of open source projects.
As long as the project wasn't too intertwined in our system, it wasn't too painful
to remove it. The thing was that NServiceBus was a fairly large framework that
supported broad cross-sections of both client-side and server-side logic, so there
would be no simple way to replace it.

www.allitebooks.com

http://www.allitebooks.org

I tried to igure out how I could guarantee that the development of the code base
would stay a priority, yet as long as my primary source of revenue was services
(consulting and training), I couldn't see how it would work. The only solution
seemed to be to start charging money for NServiceBus licenses. Although larger
companies were able to keep an open source core and sell other products around it,
I hadn't seen or heard of any one-person operations that had been able to bootstrap
their way into that.

I had no idea whether this would work, and whether the open source community
that had supported me all this time would accept it or turn their backs on me, but I
felt that it needed to be done. Unless there was revenue coming in directly from the
features of the product, it wouldn't have a future.

Therefore, in late 2010, I founded the NServiceBus company and steeled myself for
the worst.

Unexpected success
Seeing the overwhelmingly positive responses from the community was quite
a surprise. Sure, there were those that grumbled, but only a handful ultimately
decided to switch to something else.

I had made it—living the dream!

However, lest I paint an overly rosy picture, I knew nothing about running a product
company. Pricing was harder than I ever imagined it would be. The legal factor was
a "crazy-complex" where, even after the lawyers explained to me all about things
such as indemniication, they told me that it was ultimately my decision whether to
accept the client's terms or not.

Most importantly though, I felt that I had secured the future of NServiceBus. As long
as there was money to be made from it, even if something happened to me, one of
the other contributors to the project could afford to take it over.

Fast-forward to today
So much has happened since those early days of 2011 that it could probably ill its
own book, and maybe one of these days, I'll put the proverbial pen to paper and
make it happen. Anyway, here are the highlights:

• March 2012: NServiceBus 3.0 released. This includes oficial Azure support
for the irst time.

www.allitebooks.com

http://www.allitebooks.org

• July 2013: NServiceBus 4.0 released. This includes modeling and
debugging tools.

• 2013: The company begins to rebrand itself as Particular Software.

• August 2013: The irst edition of the Learning NServiceBus book comes out.

• November 2013: Monitoring tools released for NServiceBus.

• April 2014: The irst release of the integrated Particular Service Platform.
• September 2014: NServiceBus 5.0 released, no longer depending on

distributed transactions.

Also, I've got to tell you, the quality of each version has gone up dramatically over
time. The level of testing that goes into each release is impressive—looping through
every permutation of containers, persistence, transport, and even versions of
supported operating systems and databases.

Back to David, and this book
When David wrote the irst edition of this Learning NServiceBus book, it was
something of a deining moment for NServiceBus—there was inally a book. The
technology industry is awash in books about almost every piece of software out
there, but for most of the time, NServiceBus was absent. Decision makers took us
more seriously when we'd bring physical books with us for their teams.

Books matter!

With this latest edition, David goes beyond just covering the changes that happened
in NServiceBus version 5.0, and goes even deeper into the reasoning behind those
changes and why you'd want to use which features and when.

As one of the most prominent members of the NServiceBus community, David has
interacted with the NServiceBus development team on a regular basis, given valuable
feedback on our API, and debated with us on our future technology roadmap.

You're in for a treat.

Udi Dahan

Founder and CEO, Particular Software

www.allitebooks.com

http://www.allitebooks.org

About the Author

David Boike is a principal consultant with ILM Professional Services, with
experience in building and teaching others how to build distributed systems. He
is an NServiceBus Champion, oficial NServiceBus and RavenDB trainer, Xamarin
Certiied developer, and amateur beer brewer. He lives in the Twin Cities with his
wife and two children.

About the Reviewers

Prashant Brall is a principal consultant and senior software architect and
developer at Veritec (www.veritec.com.au) in Canberra, Australia. He has over
19 years of experience in application development, which includes 4 years of
work in the USA for Fortune 500 companies and major inancial corporations.
As a software professional, Prashant loves crafting software and enjoys writing
about his experiences on his blog at https://prashantbrall.wordpress.com.
He has also reviewed Instant AutoMapper published by Packt Publishing.

In his leisure time, he enjoys watching movies with his wife and playing musical
instruments such as piano and guitar.

A big thank you to my wife, Jhumur, for her love and support and for
being my best friend. I would also like to thank my parents, Mr. Hem
Brall and Mrs. Prabha Brall, for encouraging me and showing me the

difference between right and wrong throughout my childhood.

www.veritec.com.au
https://prashantbrall.wordpress.com

Hadi Eskandari, while working on both Java and .NET technologies, has developed
enterprise-level applications on both platforms. He is a regular contributor to various
open source projects. Currently, he is working as a senior software developer at
Readify, which is a leading company on .NET technology in Australia.

I'd like to thank my family for their support. This wouldn't have
been possible without your encouragement and help.

Roy Cornelissen works as a software architect in the Netherlands. With over
15 years of experience in IT, he has designed and built many enterprise systems
for customers using Microsoft, Particular, and Xamarin technologies.

As a lead consultant at Xpirit, Roy is responsible for the vision and strategy for
the Enterprise Mobile Development competence. He specializes in designing and
building mobile applications for iOS, Android, and Windows Phone, and using
Xamarin technology and architectures for distributed systems running in the cloud.

In 2011, Roy cofounded the Dutch Mobile .NET Developers group, and he is an
active member of the Xamarin and NServiceBus communities. He has been awarded
the Xamarin Insider and NServiceBus Champion titles.

He is a frequent speaker at software development conferences, such as Microsoft
TechDays, Xamarin Evolve, NSBCon, and Gartner Catalyst. He writes articles and
blogs about his professional and personal interests.

As an avid amateur cook, Roy shoots for the Michelin stars. He loves photography,
graphic design, and playing the guitar in his spare time.

I'd like to thank David Boike for the opportunity to review his
excellent book, which has taught me some new things as well, and
the NServiceBus community for being an awesome resource of
knowledge.

Daniel Marbach is an independent contractor working in tracelight GmbH in
Lucerne, Switzerland. His experience spans from mobile application development to
client and server development, with a strong tendency towards distributed systems.
He is a long-time contributor to and community champion of NServiceBus and its
ecosystems. Daniel is a frequent speaker, coach, and passionate blog writer. Recently,
he cofounded the .NET Usergroup of Central Switzerland and continues his journey
of software development with passion.

www.PacktPub.com

Support iles, eBooks, discount offers, and more
For support iles and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
iles available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt

• Copy and paste, print, and bookmark content

• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

Instant updates on new Packt books
Get notiied! Find out when new books are published by following @PacktEnterprise on
Twitter or the Packt Enterprise Facebook page.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

Table of Contents

Preface 1

Chapter 1: Getting on the IBus 5

Why use NServiceBus? 5

Getting the code 7

NServiceBus NuGet packages 9

Our irst example 10
Creating a message assembly 10
Creating a service endpoint 11

Creating a message handler 12

Sending a message from an MVC application 14

Creating the MVC website 14

Running the solution 18

Summary 21

Chapter 2: Messaging Patterns 23

Commands versus events 23

Eventual consistency 24

Achieving consistency with messaging 26

Events 28

Publishing an event 29

Subscribing to an event 31

Message routing 33

Summary 35

Chapter 3: Preparing for Failure 37

Fault tolerance and transactional processing 38

Error queues and replay 40
Automatic retries 40

Replaying errors 42

Second-level retries 42

Table of Contents

[ii]

RetryDemo 44

Messages that expire 45

Auditing messages 46

Web service integration and idempotence 46

Summary 50
Chapter 4: Hosting 51

Hosting types 51

NServiceBus-hosted endpoints 52

Self-hosted endpoints 53

Assembly scanning 54

Choosing an endpoint name 54

Dependency injection 55

Message transport 55

Reasons to use a different transport 56

MSMQ 57

RabbitMQ 57

SQL Server 58

Windows Azure 59

Persistence 59

In-memory persistence 60

NHibernate 60

RavenDB 62

Windows Azure 63

Polyglot persistence 63

Message serialization 63

Transactions 65

Purging the queue on startup 65

Installers 65

Startup 66

Send-only endpoints 67

Summary 67

Chapter 5: Advanced Messaging 69

Unobtrusive mode 69

TimeToBeReceived attribute 71

Message versioning 72

Polymorphic dispatch 73

Events as interfaces 74

Specifying the handler order 75

Message actions 76

Stopping a message 76

Table of Contents

[iii]

Deferring a message 77

Forwarding messages 78

Message headers 78

Property encryption 79

Transporting large payloads 80
Exposing web services 82

Summary 84

Chapter 6: Sagas 85

Long-running processes 85

Deining a saga 86
Finding saga data 88

Ending a saga 89

Dealing with time 91

Design guidelines 93

Business logic only 93

Saga lifetime 95

Saga patterns 95

Messages that start sagas 96

Retraining business stakeholders 97

Persistence concerns 98

RavenDB 98

NHibernate 99

Azure 99

Unit testing 100
Testing events as interfaces 103

Scheduling 104
Summary 105

Chapter 7: Advanced Coniguration 107
Extending NServiceBus 108
IConigureThisEndpoint	 108
INeedInitialization 109

IWantToRunWhenBusStartsAndStops 110

Dependency injection 111

Unit of work 113

Message mutators 114

The NServiceBus pipeline 115

Building behaviors 117

Ordering behaviors 118

Replacing behaviors 120

The pipeline context 121

Table of Contents

[iv]

Outbox 122

DTC 101 122

Life without distributed transactions 123

Outbox	coniguration	 125
Session sharing 126

Summary 126

Chapter 8: The Service Platform 127

ServiceControl 128

ServiceInsight 130
Endpoint Explorer 131

Messages 131

Main view 131
Flow Diagram 131

Saga 134

Sequence Diagram 136

Other tabs 137

ServicePulse 137

Endpoint activity 138

Failed messages 139

Custom checks 140

Getting	notiied	 141
ServiceMatrix 142

Summary 146

Chapter 9: Administration 147

Service installation 147

Infrastructure installers 149

Side-by-side installation 150

Proiles 151
Environmental	proiles	 151
Feature	proiles	 152
Customizing	proiles	 152
Logging	proiles	 155

Customizing the log level 156

Managing conigurations 156
Monitoring performance 158

Scalability 159

Scaling up 159

Scaling out 160
Decommissioning a MSMQ worker 163

Extreme scale 164

Multiple sites 164

Table of Contents

[v]

Virtualization 166

MSMQ message storage 166

Clustering 167

Transport administration 168

Summary 169

Chapter 10: Where to Go from Here? 171

What we've learned 171

What next? 173

Index 175

www.allitebooks.com

http://www.allitebooks.org

Preface
Today's distributed applications need to be built on the principles of asynchronous
messaging in order to be successful. While you could try to build this infrastructure
yourself, it is much better to lean on the proven experience of experts of this ield.
NServiceBus is a framework that gives you a proven asynchronous messaging API
and much more.

This book will be your guide to NServiceBus. From sending a simple message to
publishing events, implementing complex time-dependent business processes, and
deploying systems to production, you'll learn everything you need to know to start
building complex distributed systems in no time.

What this book covers
Chapter 1, Getting on the IBus, introduces NServiceBus and shows you how to start
using the framework. You will learn how to download the framework and send
your irst message with it.

Chapter 2, Messaging Patterns, discusses the asynchronous messaging theory
and introduces the concept of Publish/Subscribe, showing how we can achieve
decoupling by publishing events.

Chapter 3, Preparing for Failure, covers concepts such as automatic retry to give you
the ability to build a system that can deal with failures.

Chapter 4, Hosting, shows how to run and conigure NServiceBus to run both within
its own host process (as a console application or Windows service), and when hosted
in a larger application such as a web project.

Chapter 5, Advanced Messaging, delves into advanced topics that will allow you to
make the most out of the framework's messaging capabilities.

Preface

[2]

Chapter 6, Sagas, introduces the long-running business process known as a saga and
explains how they are built and tested.

Chapter 7, Advanced Coniguration, explains how NServiceBus extends and modiies
itself to it any situation or need.

Chapter 8, The Service Platform, introduces the extra tools that help you to build,
debug, and manage a distributed system from development and into production.

Chapter 9, Administration, shows you how to deploy, monitor, and scale a successful
NServiceBus system in a production environment.

Chapter 10, Where to Go from Here?, summarizes what you have learned in this book
and lists additional sources of information.

What you need for this book
This book covers NServiceBus 5.0, and the requirements for this book closely mirror
the software it covers:

• Microsoft .NET Framework 4.5

• Visual Studio 2013 or later versions

Additionally, the code samples use ASP.NET MVC 5 for web projects.

Who this book is for
This book is for senior developers and software architects who need to build
distributed software systems and software for enterprises. It is assumed that you
are quite familiar with the .NET Framework. A passing understanding of ASP.NET
MVC concepts will also be helpful when discussing web-based projects.

Conventions
In this book, you will ind a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, ilenames, ile extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"When we included the NServiceBus.Host NuGet package, a reference to
NServiceBus.Host.exe was added to the class project."

Preface

[3]

A block of code is set as follows:

public interface IUserCreatedEvent : IEvent

{

 Guid UserId{ get; set; }

 string Name { get; set; }

 string EmailAddress { get; set; }

}

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

public interface IUserCreatedEvent : IEvent

{

 Guid UserId{ get; set; }

 string Name { get; set; }

 string EmailAddress { get; set; }

}

Any command-line input or output is written as follows:

PM> Install-Package NServiceBus.Host –ProjectName UserService

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "In the
Solution Explorer, right-click on the solution ile and click on Properties."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

Preface

[4]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code iles for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the iles e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you ind a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you ind any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the Errata Submission Form link,
and entering the details of your errata. Once your errata are veriied, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Getting on the IBus
In this chapter, we'll explore the basics of NServiceBus by downloading the
NServiceBus binaries and using them to build a simple solution to send a message
from a ASP.NET MVC website to a backend service for processing.

Why use NServiceBus?
Before diving in, we should take a moment to consider why NServiceBus might be
a tool worth adding to your repertoire. If you're eager to get started, feel free to skip
this section and come back later.

So what is NServiceBus? It's a powerful, extensible framework that will help you to
leverage the principles of Service-oriented architecture (SOA) to create distributed
systems that are more reliable, more extensible, more scalable, and easier to update.

That's all well and good, but if you're just picking up this book for the irst time, why
should you care? What problems does it solve? How will it make your life better?

Ask yourself whether any of the following situations describes you:

• My code updates values in several tables in a transaction, which acquires
locks on those tables, so it frequently runs into deadlocks under load. I've
optimized all the queries that I can. The transaction keeps the database
consistent but the user gets an ugly exception and has to retry what they
were doing, which doesn't make them very happy.

• Our order processing system sometimes fails on the third of three database
calls. The transaction rolls back and we log the error, but we're losing money
because the end user doesn't know whether their order went through or
not, and they're not willing to retry for fear of being charged twice, so we're
losing business to our competitor.

Getting on the IBus

[6]

• We built a system to process images for our clients. It worked ine for a
while, but now we've become a victim of our own success. We made it
multithreaded, which was a challenge. Then we had to replace the server it
was running on because it maxed out. We're adding more clients and it's only
a matter of time until we max out the new one too! We need to scale it out to
run on multiple servers but have no idea how to do it.

• We have a solution that integrates with a third-party web service, but when
we call the web service, we also need to update data in a local database.
Sometimes, the web service times out, so our database transaction rolls back,
but sometimes, the web service call does actually complete at the remote end,
so now our local data and our third-party provider's data are out of sync.

• We're sending emails as part of a complex business process. It is designed
to be retried in the event of a failure, but now customers are complaining
that they're receiving duplicate emails, sometimes dozens of them. A failure
occurs after the email is sent, the process is retried, and the email is sent over
and over until the failure no longer occurs.

• I have a long-running process that kicks off from a web application. The
website sits on an interstitial page while the backend process runs, similar
to what you would see on a travel site when you search for plane tickets.
This process is dificult to set up and fairly brittle. Sometimes, the backend
process fails to start and the web page just keeps loading forever.

• We have a batch job that runs every night during off hours, but it's taking so
long to run that it's intruding on regular business hours. Plus waiting for the
batch job is a headache. It needs to be more real-time.

• We don't want to keep investing in on-premises infrastructure to deal with
potential spikes in trafic. We need to igure out how to transition some of
our business processes to run in the cloud.

If any of these situations has you nodding your head in agreement, I invite you to
read on.

NServiceBus will help you to make multiple transactional updates utilizing the
principle of eventual consistency to reduce database locking and blocking and make
deadlocks easy to deal with in a reliable way. It will ensure that valuable customer
order data is not lost in the deep dark depths of a multi-megabyte logile.

Chapter 1

[7]

By the end of the book, you'll be able to build systems that can easily scale out as well
as up. You'll also be able to reliably perform non-transactional tasks such as calling
web services and sending emails. You will be able to easily start up long-running
processes in an application server layer, leaving your web application free to process
incoming requests and you'll be able to unravel your spaghetti codebases into a logical
system of commands, events, and handlers that will enable you to more easily add
new features and version the existing ones.

You could try to do this all on your own by rolling your own messaging, but that
would be really dangerous and wasteful. It is a far better strategy to take advantage
of all of the industry-leading expertise that has been applied in NServiceBus in the
last several years, and concentrate on what your business does best. NServiceBus is
the easiest and most capable solution to solve the aforementioned problems without
having to expend too much effort to get it right, allowing you to put your focus on
your business concerns, where it belongs.

So if you're ready, let's get started creating an NServiceBus solution.

Getting the code
We will be covering a lot of information very quickly in this chapter, so if you
see something that doesn't immediately make sense, don't panic! Once we have
the basic example in place, we will look back and explain some of the iner points
in more detail.

To get the actual NServiceBus binaries, we will use NuGet exclusively, but before
we get started on our irst project, we should download and run the installer for
the entire Particular Service Platform, which will ensure that your machine is set
up properly to run NServiceBus solutions. Additionally, the platform installer
will install several other helpful applications that will assist in your NServiceBus
development, which we will cover in more detail in Chapter 8, The Service Platform.

Getting on the IBus

[8]

Download the installer from http://particular.net/downloads and run it on
your machine. The following screenshot depicts the applications installed by the
platform installer:

You should select all the options that are available to you. There are two options for
ServiceMatrix because of differences in how Visual Studio handles add-ins between
Visual Studio 2012 and 2013, so you can install whichever matches the version of
Visual Studio you use.

In addition to the Service Platform apps, the installer does several things to get your
system ready to go:

• Microsoft Message Queueing (MSMQ): This is installed on your system
if it isn't already. MSMQ is the default message transport that provides the
durable, transactional messaging that is at the core of NServiceBus (this is
only one messaging transport supported by NServiceBus. We will learn
about others in Chapter 4, Hosting).

http://particular.net/downloads

Chapter 1

[9]

• Distributed Transaction Coordinator (DTC): This is conigured on your
system. It will coordinate transactional data access between resources (such
as MSMQ) that support it in order to guarantee that messages are processed
once and only once.

• NServiceBus performance counters: These are added to help you monitor
NServiceBus' performance.

Now that our system is ready to go, we can get started building our irst solution by
pulling in the NServiceBus NuGet packages.

NServiceBus NuGet packages
Once your computer has been prepared for the irst time, you have to include
NServiceBus within an application using the NuGet packages.

There are three core NServiceBus NuGet packages:

• NServiceBus: This package contains the core assembly with most of the code
that drives NServiceBus, except for the hosting capability. This is the package
we will reference when we host NServiceBus within our own process, such
as in a web application.

• NServiceBus.Host: This package contains the service host executable. With
the host, we can run an NServiceBus service endpoint from the command
line during development, and then install it as a Windows service for
production use.

• NServiceBus.Testing: This package contains a framework used to
unit-test NServiceBus endpoints and sagas. We will cover this in more
detail in Chapter 6, Sagas.

If you try installing the NuGet packages irst, they will attempt to detect this and direct
you to download the entire Particular Service Platform from the website. Without
running the installer, it's dificult to verify that everything on your machine is properly
prepared, so it's best to download and run the installer before getting started.

In previous versions, there was also a package called
NServiceBus.Interfaces. It has now been deprecated. Most
users should be using unobtrusive mode conventions, which we
will cover in depth in Chapter 5, Advanced Messaging. For simple
exercises, wherever NServiceBus.Interfaces is used, it
should be replaced by the core NServiceBus package.

www.allitebooks.com

http://www.allitebooks.org

Getting on the IBus

[10]

Our irst example
For this example, let's pretend we're creating a simple website that users can join and
become a member of. We will construct our project so that the user is created in a
backend service and not in the main code of the website.

The following diagram depicts our goal. We will have an ASP.NET MVC web
application that will send a command from the HomeController process, and
then the command will be handled by another process called UserService.

Creating a message assembly
The irst step while creating an NServiceBus system is to create a messages
assembly. Messages in NServiceBus are simply plain old C# classes. Like the WSDL
document of a web service, your message classes form a contract by which services
communicate with each other.

Follow these steps to create your solution:

1. In Visual Studio, create a new project by creating a new class library. Name
the project UserService.Messages and the solution, simply Example. This
irst project will be your messages assembly.

2. Delete the Class1.cs ile that came with the class project.
3. From the NuGet Package Manager Console, run this command to

install the NServiceBus package, which will add the reference to
NServiceBus.Core.dll:

PM> Install-Package NServiceBus –ProjectName UserService.Messages

4. Add a new folder to the project called Commands.

5. Add a new class ile called CreateNewUserCmd.cs to the Commands folder.

6. Add using NServiceBus; to the using block of the class ile. It is very helpful
to do this irst so that you can see all the options available with IntelliSense.

7. Mark the class as public and implement ICommand. This is a marker
interface, so there is nothing you need to implement.

8. Add the public properties for EmailAddress and Name.

Chapter 1

[11]

When you're done, your class should look like this:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

using NServiceBus;

namespace UserService.Messages.Commands

{

 public class CreateNewUserCmd : ICommand

 {

 public string EmailAddress { get; set; }

 public string Name { get; set; }

 }

}

Congratulations! You've created a message. This new message will form the
communication contract between the message sender and receiver. This is just
a message; now you need to create a service that can receive and process it.

Creating a service endpoint
Now we're going to create a service endpoint—a process that will host code to
handle our command message:

1. Add a new class library project to your solution. Name the project
UserService.

2. Delete the Class1.cs ile that came with the class project.
3. From the NuGet Package Manager Console window, run this command to

install the NServiceBus.Host package:

PM> Install-Package NServiceBus.Host –ProjectName UserService

4. Take a look at what the host package has added to your class library. Don't
worry; we'll cover this in more detail later:

 ° References to NServiceBus.Host.exe and NServiceBus.Core.dll

 ° An App.config file

 ° A class named EndpointConfig.cs

 ° Project debug settings to execute NServiceBus.Host.exe when
we debug

Getting on the IBus

[12]

5. In the service project, add a reference to the UserService.Messages project
you created before.

6. In the EndpointConfig.cs class that was generated, replace the text
PLEASE_SELECT_ONE with InMemoryPersistence. You may need to
add a using NServiceBus.Persistence; declaration to the ile if
you don't have a tool such as ReSharper to do it for you.

Creating a message handler
Now that we have a service endpoint to host our code, we will create a message
handler within the endpoint that will process our message when it arrives:

1. Add a new class called UserCreator.cs to the service.

2. Add three namespaces to the using block of the class ile:
using NServiceBus;

using NServiceBus.Logging;

using UserService.Messages.Commands;

3. Mark the class as public.

4. Implement IHandleMessages<CreateNewUserCmd>.

5. Implement the interface using Visual Studio's tools. This will generate a
Handle(CreateNewUserCmd message) stub method.

Normally, we would want to create the user here with calls to a database. In order to
keep the examples straightforward, we will skip the details of database access and
just demonstrate what will happen by logging a message.

With NServiceBus, you can use any logging framework you like without being
dependent upon that framework. NServiceBus internally includes a logging system
that logs to both console and ile, with an API that looks very much like log4net
(previous versions of NServiceBus actually used the log4net framework directly). In
Chapter 7, Advanced Coniguration, you will learn how to easily swap these out for the
real log4net framework, NLog framework, or implement an adapter for any logger
we like. For now, we are more than content with the built-in logging implementation
via the NServiceBus.Logging namespace.

Now lets inish our fake implementation for the handler:

1. Above the Handle method, add an instance of a logger:

private static readonly ILog log =
 LogManager.GetLogger(typeof(UserCreator));

Chapter 1

[13]

2. To handle the command, remove NotImplementedException and replace it
with the following statement:

 log.InfoFormat("Creating user '{0}' with email '{1}'",
 message.Name,
 message.EmailAddress);

When you're done, your class should look like this:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

using UserService.Messages.Commands;

using NServiceBus;

namespace UserService

{

 public class UserCreator : IHandleMessages<CreateNewUserCmd>

 {

 private static readonly ILog log =

 LogManager.GetLogger(typeof(UserCreator));

 public void Handle(CreateNewUserCmd message)

 {

 log.InfoFormat("Creating user '{0}' with email '{1}'",

 message.Name,

 message.EmailAddress);

 }

 }

}

Now we have a command message and a service endpoint to handle it. Its okay if
you don't understand quite how all of this connects yet. Next, we need to create a
way to send the command.

Downloading the example code

You can download the example code iles for all
Packt books you have purchased from your account
at http://www.packtpub.com. If you purchased
this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the
iles e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Getting on the IBus

[14]

Sending a message from an MVC

application
An ASP.NET MVC web application will be the user interface for our system. It
will be sending a command to create a new user to the service layer, which will be
in charge of processing it. Normally this would be from a user registration form,
but in order to keep the example to the point, we'll take a shortcut and enter the
information in the form of query string parameters, and return data as JSON.

Because we will be viewing JSON data directly within a browser, it
would be a good idea to ensure that your browser supports displaying
JSON directly instead of downloading it.

Firefox and Chrome natively display JSON data as plain text, which is
readable but not very useful. Both browsers have an extension available,
called JSONView (although they are unrelated), which allows you
to view the data in a more readable, indented format. Either of these
options will work ine, so you can use whichever browser you prefer.
Beware that Internet Explorer will try to download JSON data to a ile,
which makes it cumbersome to view the output.

Creating the MVC website
Let's follow these directions to get the MVC website set up. We will be using
ASP.NET MVC 5 in Visual Studio 2013:

1. Add a new project to your solution. Select the ASP.NET Web Application
template and name the project ExampleWeb. Select the Empty template and
the Razor view engine.

2. On the New ASP.NET Project dialog, select the Empty template and check
the box to add folders and core references for MVC.

3. From the NuGet Package Manager Console, run this command to install the
NServiceBus package:

PM> Install-Package NServiceBus –ProjectName ExampleWeb

4. Add a reference to the UserService.Messages project you created before.

Because the MVC project isn't fully controlled by NServiceBus, we have to write a bit
of code to get it running.

Chapter 1

[15]

To accomplish this, create a class ile within the root of your MVC application and
name it ServiceBus.cs. Then, ill it with following code. For the moment, don't
worry about what this code does:

using NServiceBus;

namespace ExampleWeb

{

 public static class ServiceBus

 {

 public static IBus Bus { get; private set; }

 private static readonly object padlock = new object();

 public static void Init()

 {

 if (Bus != null)

 return;

 lock (padlock)

 {

 if (Bus != null)

 return;

 var cfg = new BusConfiguration();

 cfg.UseTransport<MsmqTransport>();

 cfg.UsePersistence<InMemoryPersistence>();

 cfg.EndpointName("ExampleWeb");

 cfg.PurgeOnStartup(true);

 cfg.EnableInstallers();

 Bus = NServiceBus.Bus.Create(cfg).Start();

 }

 }

 }

}

That was certainly a mouthful! Don't worry about remembering this. The API
makes it pretty easy to discover things you need to conigure, through IntelliSense.
You will learn more about this code in Chapter 4, Hosting, and I'll explain everything
that's going on.

For now, it is suficient to say that this is the code that initializes the service bus
within our MVC application and provides access to a single static instance of the
IBus interface that we can use to access the service bus.

Getting on the IBus

[16]

You may notice the locking pattern used in the previous code to
ensure that the Bus instance is initialized only once. This is just
one strategy. You could also, for example, utilize a Lazy<IBus>
instance to the same effect.

Now that we've established the ServiceBus class, we need to call the Init()
method from our Global.asax.cs ile so that the Bus property is initialized
when the application starts up:

protected void Application_Start()

{

 AreaRegistration.RegisterAllAreas();

 RouteConfig.RegisterRoutes(RouteTable.Routes);

 ServiceBus.Init();

}

Now NServiceBus has been set up to run in the web application, so we can send
our message. Create a HomeController class and add these methods to it:

public ActionResult Index()

{

 return Json(new { text = "Hello world." });

}

public ActionResult CreateUser(string name, string email)

{

 var cmd = new CreateNewUserCmd

 {

 Name = name,

 EmailAddress = email

 };

 ServiceBus.Bus.Send(cmd);

 return Json(new { sent = cmd });

}

protected override JsonResult Json(object data,

 string contentType,

 System.Text.Encoding contentEncoding,

 JsonRequestBehavior behavior)

{

 return base.Json(data, contentType, contentEncoding,
 JsonRequestBehavior.AllowGet);

}

Chapter 1

[17]

The irst and last methods aren't very important. The irst returns some static JSON
for the /Home/Index action because we aren't going to bother adding a view for it.
The last one is for convenience, to make it easier to return JSON data as a result of
an HTTP GET request.

However, the highlighted method is important because this is where we create an
instance of our command class and send it to the bus via the ServiceBus.Bus static
instance. Lastly, we return the command to the browser as JSON data so that we can
see what we created.

The last step is to add some NServiceBus coniguration to the MVC application's
Web.config ile. We need to add two sections of coniguration. We already saw
MessageForwardingInCaseOfFaultConfig in the app.config ile that NuGet
added to the service project, so we can copy it from there. However, we need to add
a new section called UnicastBusConfig anyway, so the XML for both is included
here for convenience:

<configuration>

 <configSections>

 <section name="MessageForwardingInCaseOfFaultConfig"
 type="NServiceBus.Config.MessageForwardingInCaseOfFaultConfig,
 NServiceBus.Core" />

 <section name="UnicastBusConfig"
 type="NServiceBus.Config.UnicastBusConfig,
 NServiceBus.Core" />

 </configSections>

 <MessageForwardingInCaseOfFaultConfig ErrorQueue="error" />

 <UnicastBusConfig>

 <MessageEndpointMappings>

 <add Messages="UserService.Messages" Endpoint="UserService"
 />

 </MessageEndpointMappings>

 </UnicastBusConfig>

 <!-- Rest of Web.config -->

</configuration>

The irst highlighted line determines what happens to a message that fails. This will
be covered in more depth in Chapter 3, Preparing for Failure. The second highlighted
line determines routing for messages. This will be covered in more depth in the
Publish/Subscribe section of Chapter 2, Messaging Patterns, but for now, it is suficient
to say that it means that all messages found in the UserService.Messages assembly
will be sent to the UserService endpoint, which is our service project.

Getting on the IBus

[18]

NServiceBus also includes PowerShell cmdlets that make it a
lot easier to add these coniguration blocks. You can generate
these sections of coniguration using the Add-NServiceBusM
essageForwardingInCaseOfFaultConfig cmdlet and the
Add-NServiceBusUnicastBusConfig cmdlet.

Running the solution
One thing that will be useful when developing NServiceBus solutions is being able to
specify multiple startup projects for a solution:

1. In Solution Explorer, right-click on the solution ile and click on Properties.

2. From the left side, navigate to Common Properties | Startup Project.

3. Select the Multiple startup projects radio button.

4. Set the Action for the service project and the MVC project to Start and order
them such that the MVC project starts last.

5. Click on OK.

Now build the solution if you haven't already, and assuming there are no
compilation errors, click on the Start Debugging button or press F5.

So what happens now? You get a result that looks like what is shown in the
following screenshot:

Chapter 1

[19]

When you run the solution, both the MVC website and a console window should
appear as shown in the preceding screenshot. As we can see, the browser window
isn't terribly exciting right now. It's just showing the JSON results of the /Home/
Index action. The console window is far more interesting.

If you remember, we never created a console application; our service endpoint was a
class project. When we included the NServiceBus.Host NuGet package, a reference
to NServiceBus.Host.exe was added to the class project (remember that a .NET
executable is also an assembly and it can be referenced by another project) and the
project was set to run that executable when you debug it.

NServiceBus uses different colors to log messages of different levels of severity.
INFO messages are logged in white, and WARN messages are displayed in yellow.
In addition, there can be DEBUG messages, also displayed in white, or ERROR
and FATAL messages which are both logged in red. By default, the INFO log level
is used for display, which ilters out all the DEBUG messages here, and luckily we
don't have any ERROR or FATAL messages.

The entire output is too much to show in a single screenshot. It's worth reading
through, even though you may not understand everything that's going on
quite yet. Here are some of the important points:

• NServiceBus reports how many total message types it has found. In my
example, two messages were found. Only one of them is ours; the other is an
administrative message, which is used internally by NServiceBus. If it had
said that no messages were found, that would have been distressing! We will
revisit this message in Chapter 5, Advanced Messaging.

• The License Manager checks for a valid license. You can get a free trial
license that allows unrestricted non-production use for a limited time. After
that, you need to purchase a commercial license, although Particular may
be willing to extend your trial if your situation merits it. For all questions
about licensing, go to http://particular.net/licensing. Every situation
is different, so don't hesitate to contact Particular to ind out which licensing
structure will work best for you.

• The status of many features is listed for debugging purposes.

• NServiceBus checks for the existence of several queues and creates them if
they do not exist. In fact, if we go to the Message Queuing Manager, we will
see that the following private queues have now been created:

 ° audit

 ° error

 ° exampleweb

 ° exampleweb.retries

www.allitebooks.com

http://particular.net/licensing
http://www.allitebooks.org

Getting on the IBus

[20]

 ° exampleweb.timeouts

 ° exampleweb.timeoutdispatcher

 ° userservice

 ° userservice.retries

 ° userservice.timeouts

 ° userservice.timeoutsdispatcher

If you installed the Service Platform, there could be queues for
error.log and several queues starting with particular.
servicecontrol as well. We'll discuss these in depth in
Chapter 8, The Service Platform.

That's a lot of plumbing that NServiceBus takes care of for us! But this just gets the
endpoint ready to go. We still need to send a message.

Visual Studio will likely give you a different port number for your MVC project than
the number in the preceding example, so change the URL in your browser to the
following, keeping the host and port the same. Feel free to use your own name and
email address:

/Home/CreateUser?name=David&email=david@example.com

Look at what happens in your service window:

INFO UserService.UserCreator Creating user 'David' with email 'david@
example.com'

This might seem simple, but consider what had to happen for us to see this message.
First, in the MVC website, an instance of our message class was serialized to XML.
Then that payload was added to an MSMQ message with enough metadata to
describe where it came from and where it needs to go. The message was sent to an
input queue for our background service, where it waited to be processed until the
service was ready for it. The service pulled the message from the queue, deserialized
the XML payload, and was able to determine a handler that could process the
message. Finally, our message handler was invoked, which resulted in the message
being output to the log.

This is a great start, but there is a great deal more to discover.

Chapter 1

[21]

Summary
In this chapter, we created an MVC web application and an NServiceBus-hosted
service endpoint. Through the web application, we sent a command to the service
layer to create a user where we just logged the fact that the command was received,
but in real life, we would likely perform database work to actually create the user.
For our example, our service was running on the same computer, but our command
can just as easily be sent to a different server, enabling us to ofload work from our
web server.

In the next chapter, we will take the code we developed in this chapter and extend it
using Publish/Subscribe to enable decoupling services from each other. Then we will
start to discover the true power that NServiceBus has to offer.

Messaging Patterns
Sending messages is powerful, but it still assumes coupling between the sender and
the receiver because the sender needs to know where to send the message. In this
chapter, we'll irst delve deeper into the concept of asynchronous messaging, and
then explore the Publish/Subscribe model, and discover how publishing events
allows us to decouple services from one another.

By the end of the chapter, we will have updated our solution from the previous
chapter to publish an event once the user has been created, and then we will show
how we can create multiple subscribers to add functionality to a system without
requiring changes to the original publisher. Along the way, you'll learn the basics
of messaging theory, eventual consistency, and Publish/Subscribe.

Commands versus events
In the previous chapter, the MVC website sent a command to the NServiceBus
endpoint, commanding it to perform an action on its behalf. This is similar to a
web service or any other Remote Procedure Call (RPC) style of communication.
The message sender must necessarily know not only how to communicate with the
receiver but also what it expects the server to do once it receives the message.

A command is a message that can be sent from one or more
logical senders and is processed by a single logical receiver.

The main difference between sending an NServiceBus command and an RPC request
is that an RPC call will block the client until the server sends a response back. There
is no way that the client can continue without the response. Sending an NServiceBus
command, however, is completely asynchronous.

Messaging Patterns

[24]

Eventual consistency
The asynchronous nature of one-way messages brings to the forefront the concept of
eventual consistency, the notion that in a system with disconnected, one-way-only
communication, the state may not be entirely consistent at every single moment,
but will eventually be consistent assuming that all messages are eventually
processed successfully.

Doesn't this ly in the face of what we've been taught to think about transactional
processes? After all, in the ACID acronym (short for Atomicity, Consistency,
Isolation, and Durability), consistency is featured very prominently, and is ACID
not the test by which all database systems are measured?

The challenge lies in building distributed systems due to the following Fallacies
of Distributed Computing, coined in 1994 by Peter Deutsch and his colleagues
at Sun Microsystems:

1. The network is reliable

2. Latency is zero

3. Bandwidth is ininite
4. The network is secure

5. Topology doesn't change

6. There is one administrator

7. Transport cost is zero

8. The network is homogeneous

If we think critically about any of these statements, we know them to be false, but a
lot of times, we seem to look the other way when writing code. Network switches go
up in smoke. Servers lose power. Someone trips over the network cord. All of these
are things that have happened and will happen again, maybe even to you.

When there are network issues, RPC communication falls lat on its face. The
communication to the server cannot complete, and the calling code cannot continue
without the server's response. In the best case, data is lost. In the worst case, threads
pile up waiting for responses that never come. In this case, it is only a matter of time
until the process becomes unresponsive.

Chapter 2

[25]

In fact, this is even mathematically proven! The CAP theorem states, in a nutshell,
that in any distributed system, you can only have any two of Consistency,
Availability, and Partition tolerance, which is a communication failure between two
nodes. The theorem proves that it is impossible to have all three simultaneously.

To better understand CAP, let's consider a gross oversimpliication where we need to
store and retrieve a single value. We start by storing it on one server. As soon as we
store the value, subsequent reads will return the new value, so we have consistency.
Because we are dealing with only one node, we cannot have a partition. If our single
server is down, we cannot answer requests, thus losing availability. This system is CP.

With a second node, we can gain availability by always having at least one node
running to respond to requests, but we need to replicate data between nodes so
that updates made on one server are present when read from the other.

We can decide not to consider a write value as accepted until replication to the
second node is complete. Now we have consistency and availability, but if we can't
communicate between servers for some reason, we won't be able to commit new
values. Our system is not partition tolerant, so this system is CA.

Instead, we could use our best efforts to replicate writes, but we cannot enforce it
in order to accept the transaction. When a partition is healed, the nodes can simply
exchange write logs in order to catch up. This gives us availability and partition
tolerance but not consistency because a read during a partition will not necessarily
have the most up-to-date value. This system is AP.

Because of the fallacies of distributed systems, network partitions are not only
possible, but a near-certainty. Since we must have partition tolerance, our only real
choices are CP and AP. The need for our systems to be available drives us to select
availability and partition tolerance, and embrace a new consistency style called
BASE (short for Basically Available, Soft state, Eventual consistency), as opposed
to ACID. We sacriice consistency for a short time, and then we make up for this lack
of immediate consistency by sending messages.

Messaging Patterns

[26]

Achieving consistency with messaging
Consider a situation where you integrate with third-party providers via web
services. For instance, let's say you are building an application that allows users to
subscribe to different types of notiications via email or SMS. In order to subscribe
a user, you must irst update a local database, then call a web service for the email
component, and then call another service for the SMS component. This process is
shown in the following diagram:

Transaction

Update Database

Call Email Service

Call SMS Service

You might have noticed that calling the web services hangs partially outside the
transaction. This is because the transaction doesn't ultimately manage the web
service call. Once the web service call is made, it will either succeed or fail,
regardless of whether the transaction is committed or rolled back.

What happens if the database transaction and the email service call succeed, but the
SMS service call fails? If you roll back the database transaction, it will appear as if
the user has not subscribed, yet they will be receiving emails from the third-party
provider. If you commit the database transaction, the users will appear subscribed
but they will not receive the SMS notiications they wanted.

What happens if one of the third-party web services becomes extremely slow? It's
entirely possible that the code calling the web service will time out, rolling back the
database transaction, but on the third-party server, the call actually succeeds, albeit
very slowly.

By sending commands with NServiceBus, all of these problems are removed by only
taking on as much work as can be successfully accomplished within a transaction. Each
NServiceBus message handler automatically creates an ambient transaction, and we do
a inite amount of work within that context. To see this in action, inspect the value of
System.Transactions.Transaction.Current within a message handler.

Chapter 2

[27]

This is how our third-party web service scenario works with commands:

Transaction

Transaction

Call Email Service

Call SMS Service

Update Database

Send Messages

Receive Message

Receive Message

Receive Message

Transaction

1. The website sends a command to enroll the user in alerts.

2. A message handler transactionally receives the command message, and
within that same transaction, modiies the database and sends two additional
commands to an email service and SMS service. If an error occurs, the database
transaction is rolled back, the outgoing messages are not sent, and the original
command can be automatically retried.

3. The email service transactionally receives a command to contact the
third-party email subscription service. A web service cannot be enrolled
in a transaction, but if an exception occurs, the command is returned to the
queue to be retried until the web service call completes. We're assuming that
retrying this web service call multiple times would have no ill effects.

4. The SMS service processes its message in the same way as the email service. In
fact, because the messages are asynchronous, this processing can happen at the
same time as the email service, perhaps on a completely different server.

Technically, the entire system is inconsistent when the database updates have
been made and the web services have not yet been contacted. This is only a
temporary condition. By providing a reliable transport, NServiceBus guarantees
that all commands will eventually succeed and the system will once again be
completely consistent.

By using asynchronous commands, the focus shifts from trying to guarantee
consistency, which was impossible in the irst place, to ensuring that the commands
do eventually succeed through automatic retries. We will return to this discussion in
Chapter 3, Preparing for Failure, to see how NServiceBus addresses these guarantees.

Messaging Patterns

[28]

Events
If you compare the following deinition with that of a command, which was deined
earlier in the chapter, you will notice that they follow the same general premise, but
the differences are very important.

An event is a message that is published from a single logical
sender, and is processed by one or more logical receivers.

A command can be sent by any number of different senders. An event is only
published by one logical sender. Sending a command sends one copy of a message
to one receiver, and that receiver is the only entity that can process that command. In
contrast, when an event is published, a copy of that message may be sent to dozens
or even hundreds of subscribers, or maybe none if there are no subscribers.

This has even broader implications. While a command is an order to do
something in the future, an event is an announcement that something has already
happened. This is why commands are often named in the imperative, such as
DoSomethingNowPleaseCmd, while events are often named in the past tense,
such as SomethingAlreadyHappenedEvent.

Some SOA experts would argue against using the -Cmd and
-Event sufixes when naming message types, preferring to rely
on the imperative tense for commands and past tense for events
instead. I won't take sides; you should do whatever works best for
you and your team. In this book, however, we will use the sufixes
so that it is absolutely clear what we are talking about.

While commands bring you the power of eventual consistency between
components that must know about each other, events give you the power
to decouple components that need not know much about each other. The
importance of this cannot be understated.

Chapter 2

[29]

Publishing an event
Now that we've covered the fundamentals of the messaging theory, let's add the
concept of events to our code from Chapter 1, Getting on the IBus, and see irsthand
what they can do for us:

Now that we've gotten our feet wet with NServiceBus, I won't
be very verbose with the instructions. In particular, I will
omit instructions to add using declarations for NServiceBus
namespaces, since Visual Studio should be more than capable
of resolving these references for you.

1. In the UserService.Messages assembly, add a folder called Events.

2. In this folder, create an interface called IUserCreatedEvent and mark
it as public.

3. In the interface deinition, inherit the IEvent interface. Like ICommand, there
is no implementation for this; it is just another marker interface.

4. Add a Guid property named UserId, and string properties for Name
and EmailAddress.

Your code should look like this when you're done:

namespace UserService.Messages.Events

{

 public interface IUserCreatedEvent : IEvent

 {

 Guid UserId { get; set; }

 string EmailAddress { get; set; }

 string Name { get; set; }

 }

}

At this point, you may have noticed a few things.

Firstly, this bears a striking resemblance in structure to the CreateNewUserCmd class
we created in the last chapter, both in name and in structure. Thanks to the duality
of commands and events, it is quite common to have a related command and event:
a command to request an action to be done and a corresponding event to announce
that it has been done.

www.allitebooks.com

http://www.allitebooks.org

Messaging Patterns

[30]

Secondly, you may have noticed that we used an interface to represent the event,
rather than a class. While it is not required for an event to be an interface (it works
just ine as a class) it helps to facilitate with event versioning and allows us to take
advantage of multiple inheritance. Because of these beneits, using interfaces for your
event deinitions is recommended as best practice. We will learn more about message
versioning in Chapter 5, Advanced Messaging.

But how do we instantiate an interface without a concrete class? NServiceBus
provides this capability for us:

1. Open the UserCreator class.

2. Add a public property to the class:

public IBus Bus { get; set; }

3. Modify the Handle() method as follows:

public void Handle(CreateNewUserCmd message)

{

 log.InfoFormat("Creating user '{0}' with email '{1}'",

 message.Name,

 message.EmailAddress);

 // This is where the user would be added to the database.

 // The database command would auto-enlist in the ambient

 // transaction and either succeed or fail along with

 // the message being processed.

 Bus.Publish<IUserCreatedEvent>(evt =>

 {

 evt.UserId = Guid.NewGuid();

 evt.Name = message.Name;

 evt.EmailAddress = message.EmailAddress;

 });

}

We added the Bus instance, which NServiceBus automatically ills by dependency
injection, which we will learn more about in Chapter 5, Advanced Messaging. Then
we publish our message, and we see that the Bus property gives us a way to utilize
an interface without needing a concrete type to implement it. Under the covers, a
concrete class is generated to do that work for us. All we have to do is supply an
Action<IUserCreatedEvent> lambda, where we set the properties of the event
we are publishing.

Chapter 2

[31]

So now that we've published the event, what happens? Well, as it turns out, not
much. Internally, a lot of stuff is going on, but we won't really see any big differences
in the system's behavior because the event has no subscribers. What really happens
is that NServiceBus queries the subscription storage to ask, "Who is interested in
hearing about this event?" and inds that the answer is nobody, so no messages
are sent. Even though no new event messages are sent, the CreateNewUserCmd
message still completes successfully, along with any transactional work we may have
performed while under the message handler's transaction scope. Any subscriber that
we do create will get a separate transaction in which to do its own work when the
event arrives.

Now let's add a subscriber to our system and see some Publish/Subscribe in action.

Subscribing to an event
So far, our system is like any other website out there that allows users to register.
A common component of these systems is an email that is sent to the new user,
welcoming them to the site. Now we will see how we can add that kind of
functionality without modifying any of the existing components:

1. Create a new class library project named WelcomeEmailService and delete
the Class1.cs ile.

2. From Package Manager Console, install the NServiceBus.Host package:

PM> Install-Package NServiceBus.Host –ProjectName
 WelcomeEmailService

3. Add a reference to the UserService.Messages assembly.

4. Modify the EndpointConfig class to select InMemoryPersistence.

5. Create a class named EmailSender and implement IHandleMessages<IUse
rCreatedEvent>. Then add logging to simulate sending the welcome email.
Your class should look somewhat like this:

public class EmailSender : IHandleMessages<IUserCreatedEvent>

{

 private static readonly ILog log =

 LogManager.GetLogger(typeof(EmailSender));

 public void Handle(IUserCreatedEvent message)

 {

 log.InfoFormat("Sending welcome email to {0}",

 message.EmailAddress);

 }

}

Messaging Patterns

[32]

6. Open the App.config ile for the WelcomeEmailService project and modify
the UnicastBusConfig section. The NuGet package inserted it for you, but
you have to insert the MessageEndpointMappings portion of it. You can
copy and paste it directly from the MVC project's Web.config ile. It may
be initially confusing why this section would be exactly the same, but don't
worry; we'll explain this in detail in the next section.

You can always generate the UnicastBusConfig
section using the Add-NServiceBus
UnicastBusConfig PowerShell cmdlet.

7. Modify your solution startup project's settings so that this new service also
starts along with the web project and user creation service.

Now, when you start the project, two console windows will appear. In the new
window, you will see similar messages as we did in the last chapter, where
NServiceBus creates queues for us and gets the endpoint ready to roll.

One big addition should stand out, however. In the WelcomeEmailService window,
likely at the very end of the output, you should see this:

Subscribing to UserService.Messages.Events.IUserCreatedEvent,
UserService.Messages, Version=1.0.0.0, Culture=neutral,
PublicKeyToken=null at publisher queue UserService@COMPUTERNAME

Then in the UserService window, you should see the following output:

Subscribing WelcomeEmailService@COMPUTERNAME to message type
UserService.Messages.Events.IUserCreatedEvent, UserService.Messages,
Version=1.0.0.0, Culture=neutral, PublicKeyToken=null

This pair of messages announces that NServiceBus has automatically subscribed
the WelcomeEmailService endpoint to the IUserCreatedEvent message from the
UserService endpoint.

Now create a user just as we did in the last chapter, by pointing your browser to
/Home/CreateUser?name=David&email=david@example.com.

Chapter 2

[33]

Just as before, the UserService endpoint announces that it created the user, and
in addition, the WelcomeEmailService endpoint announces that it has sent the
welcome email to the user. Neither of these things is really happening because we
are just logging messages to the console, but you can start seeing how powerful
this Publish/Subscribe concept is. The UserService endpoint didn't need to
know anything about the welcome email. It just published the fact that something
(the user creation) had happened. The WelcomeEmailService endpoint was
completely responsible for sending the email, and both services can be maintained
independently. All they share is the contract of the published message.

It's important to remember that multiple subscribers can respond to a published event.
Even a web application can be a subscriber! As an exercise, try adding a subscribing
message handler to the MVC website, and use it to create a feature common on some
forums where the last ive new users are displayed on the homepage. You should have
everything you need at this point save for the following tips:

• Use a static Queue<string> collection in the HomeController class to track
the recently created users. Don't worry about thread safety at this point.

• Create a folder named MessageHandlers in the MVC website and put your
message handling classes there.

If you get stuck, check out the implementation in the downloadable code.

Message routing
Now that we've spoken about commands and events, it's a good time to discuss
how NServiceBus routes messages. Message routing is handled completely by
coniguration, within the UnicastBusConfig section that we have seen only a bit
of so far. By storing the mappings in the coniguration allows us to test our system
entirely on one machine, and then modify the coniguration for a production
scenario that uses multiple machines for processing.

Messages are routed by type, and the UnicastBusConfig section maps message
types to the queues and machines that must process them. When deining types, we
may specify an entire assembly name, which is what we have done so far. In that
case, all messages within that assembly are associated with the same endpoint. We
may also specify particular message classes by using their type name and assembly
name together, but in a suficiently complex system, this quickly becomes very
dificult to manage. As an in-between option, you can also specify routing based on
the combination of an assembly and a namespace.

Messaging Patterns

[34]

You may have noticed in our examples so far that the MVC website and the
WelcomeEmailService endpoint contain exactly the same routing coniguration.
This may seem somewhat confusing. The MVC site is sending a command to the
UserCreator service, so the coniguration associates the message assembly with
the UserCreator queue. This seems straightforward so far.

What makes it confusing is that the WelcomeEmailService endpoint contains exactly
the same coniguration, but it doesn't send any messages to the UserCreator service.
Or does it?

In fact, it does, because the service that subscribes to an event sends a subscription
request message to the publishing service. After that, the publisher stores the
subscriber's information in its subscription storage so that the subscriber will
receive a copy of the event message when it is published.

When NServiceBus starts up, it scans through all of the endpoint's types and reads
the routing coniguration. If the routing coniguration contains a message type that
is an event and the code contains a message handler for that event, then NServiceBus
will automatically subscribe to that event by sending the subscription request to the
endpoint in the routing coniguration.

If this still seems confusing, try to remember the following:

For commands, the message endpoint mappings specify where
the message should be sent.

For events, the message endpoint mappings specify where
the event is published from, and thus, where the subscription
request is sent.

Let's look at a few examples. First of all, the message endpoint mappings always look
like this:

<UnicastBusConfig>

 <MessageEndpointMappings>

 <!-- Mappings are defined by "add" elements here -->

 </MessageEndpointMappings>

</UnicastBusConfig>

Then we deine individual mappings, each with an <add /> element. To register all
the messages in an assembly, use one of these lines of code:

<add Messages="assembly" Endpoint="destination" />

<add Assembly="assembly" Endpoint="destination" />

Chapter 2

[35]

For a fully qualiied message type, use one of these lines:

<add Messages="namespace.type, assembly" endpoint="destination" />

<add Assembly="assembly" Type="namespace.type"
 Endpoint="destination" />

You can even ilter by namespaces, like this:

<add Assembly="assembly" Namespace="MyMessages.Other"
 Endpoint="destination" />

In these examples, destination is either a simple queue name, such as
Endpoint="MyQueue" for the local server or a queue name together with a server
name such as Endpoint="MyQueue@OtherServer" to address a remote server.

Summary
In this chapter, we started by learning about messaging theory. You learned about
the Fallacies of Distributed Computing and the CAP Theorem, and realized that
although we cannot achieve full consistency in a distributed system, we can leverage
the power of asynchronous messaging to achieve eventual consistency.

You then learned about the distinction between commands and events, how
commands are sent by multiple senders but processed by a single logical receiver,
and how events are published by only one logical publisher but received by one
or more logical subscribers. You learned how we can use the Publish/Subscribe
model to decouple business processes—by announcing that some business event has
happened, and allowing subscribers to respond to it in whatever way they wish.

We then demonstrated this knowledge by publishing an event with NServiceBus, and
then creating multiple subscribers for that event. You learned how to conigure the
message endpoint mappings so that NServiceBus knows where to send our messages.

Now that you have learned how to decouple our business processes through
messaging and Publish/Subscribe, you must also learn how to ensure that our
messages are processed successfully. In the next chapter, we will see how to
ensure that our messaging processes are reliable and can withstand failure.

Preparing for Failure

Alfred: Why do we fall sir? So that we can learn to pick ourselves up.

Bruce: You still haven't given up on me?

Alfred: Never.

-Batman Begins (Warner Bros., 2005)

I'm sure that many of you are familiar with this scene from Christopher Nolan's
Batman reboot. In fact, if you're like me, you can't read the words without hearing
them in your head delivered by Michael Caine's distinguished British accent.

At this point in the movie, Bruce and Alfred have narrowly escaped a blazing ire set
by the bad guys that is burning Wayne Manor to the ground. Bruce had taken up the
mantle of the Dark Knight to rid Gotham City of evil, but it seems as if evil has won,
with the legacy of everything his family had built burning to ashes all around him.

It is at this moment of failure that Alfred insists he will never give up on Bruce. I
don't want to spoil the movie if, by chance, you haven't seen it but let's just say some
bad guys get what's coming to them.

This quote has been on my mind for the past few months as my daughter has been
learning to walk. Invariably, she would fall and I would think of Alfred. I realized
that this short exchange between Alfred and Bruce is a itting analogy for the design
philosophy of NServiceBus.

Software fails. Software engineering is an imperfect discipline, and despite our
best efforts, errors will happen. Some of us have surely felt like Bruce when an
unexpected error makes it seem as if the software we built is turning to so much
ash around us.

Preparing for Failure

[38]

Nevertheless, like Alfred, NServiceBus will not give up. If we apply the tools that
NServiceBus gives us, we will not lose data even in the face of failure, we can correct
the error, and we will make it through.

Then the bad guys will get what's coming to them.

In this chapter, we will explore the tools that NServiceBus gives us to stare at failure
in the face and laugh. We'll discuss error queues, automatic retries, and controlling
how those retries occur. We'll also discuss how to deal with messages that may be
transient and should not be retried in certain conditions. Lastly, we'll examine the
dificulty of web service integrations that do not handle retries cleanly on their own.

Fault tolerance and transactional

processing
In order to understand the fault tolerance we gain from using NServiceBus, let's irst
consider what happens without it.

Let's order something from a ictional website and watch what might happen to
process that order. On our ictional website, we add Batman Begins to our shopping
cart and then click on the Checkout button. While our cursor is spinning, the
following process is happening:

1. Our web request is transmitted to the web server.

2. The web application knows it needs to make several database calls, so it
creates a new transaction scope.

3. Database Call 1 of 3: The shopping cart information is retrieved from
the database.

4. Database Call 2 of 3: An Order record is inserted.

5. Database Call 3 of 3: We attempt to insert OrderLine records, but instead
get Error Message: Transaction (Process ID 54) was deadlocked on lock
resources with another process and has been chosen as the deadlock victim.
Rerun the transaction.

6. This exception causes the transaction to roll back.

Chapter 3

[39]

This process is shown in the following diagram:

Error Message

TX

Call 1 3of

Call 2 3of

Call 3 3of

1 Order (HTTP) 3

5

2

4

66

Ugh! If you're using SQL Server and you've never seen this, you haven't been coding
long enough. It never happens during development; there just isn't enough load. It's
even possible that this won't occur during load testing. It will likely occur during
heavy load at the worst possible time, for example, right after your big launch.

So obviously, we should log the error, right? But then what happens to the order?
Well that's gone, and your boss may not be happy about losing that revenue. And
what about our user? They will likely get a nasty error message. We won't want to
divulge the actual exception message, so they will get something like, "An unknown
error has occurred. The system administrator has been notiied. Please try again
later." However, the likelihood that they want to trust their credit card information to
a website that has already blown up in their face once is quite low.

So how can we do better? Here's how this scenario could have happened
with NServiceBus:

Queue Call 1 3of

Call 2 3of

Call 3 3of

Order (HTTP)

Receipt3

5

6

2

7

9

10

8

1

TX

4

1. The web request is transmitted to the web server.

2. We add the shopping cart identiier to an NServiceBus command and send it
through the Bus.

3. We redirect the user to a new page that displays the receipt, even though the
order has not yet been processed.

www.allitebooks.com

http://www.allitebooks.org

Preparing for Failure

[40]

Elsewhere, an Order service is ready to start processing a new message:

1. The service creates a new transaction scope, and receives the message within
the transaction.

2. Database Call 1 of 3: The shopping cart information is retrieved from
the database.

3. Database Call 2 of 3: An Order record is inserted.

4. Database Call 3 of 3: Deadlock!

5. The exception causes the database transaction to roll back.

6. The transaction controlling the message also rolls back.

7. The order is back in the queue.

This is great news! The message is back in the queue, and by default, NServiceBus
will automatically retry this message a few times. Generally, deadlocks are a
temporary condition, and simply trying again is all that is needed. After all, the SQL
Server exception says Rerun the transaction.

Meanwhile, the user has no idea that there was ever a problem. It will just take a
little longer (in the order of milliseconds or seconds) to process the order.

Error queues and replay
Whenever you talk about automatic retries in a messaging environment, you must
invariably consider poison messages. A poison message is a message that cannot
be immediately resolved by a retry because it will consistently result in an error.

A deadlock is a transient error. We can reasonably expect deadlocks and other
transient errors to resolve by themselves without any intervention.

Poison messages, on the other hand, cannot resolve themselves. Sometimes, this is
because of an extended outage. At other times, it is purely our fault—an exception
we didn't catch or an input condition we didn't foresee.

Automatic retries
If we retry poison messages in perpetuity, they will create a blockage in our
incoming queue of messages. They will retry over and over, and valid messages
will get stuck behind them, unable to make it through.

For this reason, we must set a reasonable limit on retries, and after failing too many
times, poison messages must be removed from the processing queue and stored
someplace else.

Chapter 3

[41]

NServiceBus handles all of this for us. By default, NServiceBus will try to process
a message ive times, after which it will move the message to an error queue. This
is the queue that we have seen named in the examples in the previous chapter,
conigured by the MessageForwardingInCaseOfFaultConfig coniguration section:

<MessageForwardingInCaseOfFaultConfigErrorQueue="error" />

It is in this error queue that messages will wait for administrative intervention. In
fact, you can even specify a different server to collect these messages, which allows
you to conigure one central point in a system where you watch for and deal with
all failures:

<MessageForwardingInCaseOfFaultConfigErrorQueue="error@SERVER" />

As mentioned previously, ive failed attempts form the default metric for a failed
message, but this is conigurable via the TransportConfig coniguration section:

<section name="TransportConfig" type="NServiceBus.Config.
TransportConfig, NServiceBus.Core" />

...

<TransportConfig MaxRetries="3" />

You could also generate the TransportConfig section using the
Add-NServiceBusTransportConfig PowerShell cmdlet.

Keep two things in mind:

• Depending upon how you read it, MaxRetries can be a somewhat confusing
name. What it really means is the total number of tries, so a value of 5 will
result in the initial attempt plus 4 retries. This has the odd side effect that
MaxRetries="0" is the same as MaxRetries="1". In both instances, the
message would be attempted once.

• During development, you may want to limit retries to MaxRetries="1" so
that a single error doesn't cause a nausea-inducing wall of red that lushes
your console window's buffer, leaving you unable to scroll up to see what
came before. You can then enable retries in production by deploying the
endpoint with a different coniguration.

Preparing for Failure

[42]

Replaying errors
What happens to those messages unlucky enough to fail so many times that they are
unceremoniously dumped in an error queue? "I thought you said that Alfred would
never give up on us!" you cry.

As it turns out, this is just a temporary holding pattern that enables the rest of
the system to continue functioning, while the errant messages await some sort of
intervention, which can be human or automated based on your own business rules.
Let's say our message handler divides two numbers from the incoming message, and
we forget to account for the possibility that one of those numbers might be zero and
that dividing by zero is frowned upon.

At this point, we need to ix the error somehow. Exactly what we do will depend
upon your business requirements:

• If the messages were sent in an error, we can ix the code that was
sending them. In this case, the messages in the error queue are junk
and can be discarded.

• We can check the inputs on the message handler, detect the divide-by-zero
condition, and make compensating actions. This may mean returning from
the message handler, effectively discarding any divide-by-zero messages that
are processed, or it may mean doing new work or sending new messages. In
this case, we may want to replay the error messages after we have deployed
the new code.

• We may want to ix both the sending and receiving side.

If we decide that we want to replay the messages after ixing the code, NServiceBus
allows us to do this with either the ServiceInsight or ServicePulse tools, which will be
covered in depth in Chapter 8, The Service Platform.

Second-level retries
Automatically retrying error messages and sending repeated errors to an error queue
is a pretty good strategy to manage both transient errors, such as deadlocks, and
poison messages, such as an unrecoverable exception. However, as it turns out, there
is a gray area in between, which is best referred to as semi-transient errors. These
include incidents such as a web service being down for a few seconds, or a database
being temporarily ofline. Even with a SQL Server failover cluster, the failover
procedure can take upwards of a minute depending on its size and trafic levels.

During a time like this, the automatic retries will be executed immediately and great
hordes of messages might go to the error queue, requiring an administrator to take
notice and return them to their source queues. But is this really necessary?

Chapter 3

[43]

As it turns out, it is not. NServiceBus contains a feature called Second-Level Retries
(SLR) that will add additional sets of retries after a wait. By default, the SLR will add
three additional retry sessions, with an additional wait of 10 seconds each time.

By contrast, the original set of retries is commonly
referred to as First-Level Retries (FLR).

Let's track a message's full path to complete failure, assuming default settings:

• Attempt to process the message ive times, then wait for 10 seconds
• Attempt to process the message ive times, then wait for 20 seconds
• Attempt to process the message ive times, then wait for 30 seconds
• Attempt to process the message ive times, and then send the message

to the error queue

Remember that by using ive retries, NServiceBus attempts to process the message
ive times on every pass.

Using second-level retries, almost every message should be able to be processed
unless it is deinitely a poison message that can never be successfully processed.

Be warned, however, that using SLR has its downsides too. The irst is ignorance of
transient errors. If an error never makes it to an error queue and we never manually
check out the error logs, there's a chance we might miss it completely. For this
reason, it is smart to always keep an eye on error logs. A random deadlock now and
then is not a big deal, but if they happen all the time, it is probably still worth some
work to improve the code so that the deadlock is not as frequent.

An additional risk lies in the time to process a true poison message through all the
retry levels. Not accounting for any time taken to process the message itself 20 times
or to wait for other messages in the queue, the use of second-level retries with the
default settings results in an entire minute of waiting before you see the message in
an error queue. If your business stakeholders require the message to either succeed
or fail in 30 seconds, then you cannot possibly meet those requirements.

Due to the asynchronous nature of messaging, we should be careful
never to assume that messages in a distributed system will arrive in
any particular order. However, it is still good to note that the concept
of retries exacerbates this problem. If Message A and then Message B
are sent in order, and Message B succeeds immediately but Message
A has to wait in an error queue for awhile, then they will most
certainly be processed out of order.

Preparing for Failure

[44]

Luckily, second-level retries are completely conigurable. The coniguration element
is shown here with the default settings:

<section name="SecondLevelRetriesConfig"
 type="NServiceBus.Config.SecondLevelRetriesConfig,
 NServiceBus.Core"/>

...

<SecondLevelRetriesConfig Enabled="true"

 TimeIncrease="00:00:10"

 NumberOfRetries="3" />

You could also generate the SecondLevelRetriesConfig
section using the Add-NServiceBus
SecondLevelRetriesConfig PowerShell cmdlet.

Keep in mind that you may want to disable second-level retries, like irst-level
retries, during development for convenience, and then enable them in production.

RetryDemo
The sample solution, RetryDemo, included with this chapter demonstrates the basics
of irst-level and second-level retries. Just type GoBoom in the console window when
prompted and a message will be sent. You can watch the retries as they happen, as
shown in the following screenshot:

Chapter 3

[45]

Play around with the settings in the service project's App.config ile to see how they
affect the output.

Messages that expire
Messages that lose their business value after a speciic amount of time are an
important consideration with respect to potential failures.

Consider a weather reporting system that reports the current temperature every
few minutes. How long is that data meaningful? Nobody seems to care what the
temperature was 2 hours ago; they want to know what the temperature is now!

NServiceBus provides a method to cause messages to automatically expire after a
given amount of time. Unlike storing this information in a database, you don't have
to run any batch jobs or take any other administrative action to ensure that old data
is discarded. You simply mark the message with an expiration date and when that
time arrives, the message simply evaporates into thin air:

[TimeToBeReceived("01:00:00")]

public class RecordCurrentTemperatureCmd : ICommand

{

 public double Temperature { get; set; }

}

This example shows that the message must be received within one hour of being
sent, or it is simply deleted by the queuing system. NServiceBus isn't actually
involved in the deletion at all, it simply tells the queuing system how long to
allow the message to live.

If a message fails, however, and arrives at an error queue, NServiceBus will not
include the expiration date in order to give you a chance to debug the problem. It
would be very confusing to try to ind an error message that had disappeared into
thin air!

Another valuable use for this attribute is for high-volume message types, where a
communication failure between servers or extended downtime could cause a huge
backlog of messages to pile up either at the sending or the receiving side. Running out
of disk space to store messages is a show-stopper for most message-queuing systems,
and the TimeToBeReceived attribute is the way to guard against it. However, this
means we are throwing away data, so we need to be very careful when applying this
strategy. It should not simply be used as a reaction to low disk space!

Preparing for Failure

[46]

Auditing messages
At times, it can be dificult to debug a distributed system. Commands and events are
sent all around, but after they are processed, they go away. We may be able to tell
what will happen to a system in the future by examining queued messages, but how
can we analyze what happened in the past?

For this reason, NServiceBus contains an auditing function that will enable an
endpoint to send a copy of every message it successfully processes to a secondary
location, a queue that is generally hosted on a separate server.

This is accomplished by adding an attribute or two to the UnicastBusConfig section
of an endpoint's coniguration:

<UnicastBusConfig ForwardReceivedMessagesTo="audit@SecondaryServer"
 TimeToBeReceivedOnForwardedMessages="1.00:00:00">

 <MessageEndpointMappings>

 <!-- Mappings go here -->

 </MessageEndpointMappings>

</UnicastBusConfig>

In this example, the endpoint will forward a copy of all successfully processed
messages to a queue named audit on a server named SecondaryServer, and
those messages will expire after one day.

While it is not required to use the TimeToBeReceivedOnForwardedMessages
parameter, it is highly recommended. Otherwise, it is possible (even likely) that
messages will build up in your audit queue until you run out of available storage,
which you would really like to avoid. The exact time limit you use is dependent
upon the volume of messages in your system and how much storage your queuing
system has available.

You don't even have to design your own tool to monitor these audit messages;
the Particular Service Platform has that job covered for you. NServiceBus includes
the auditing coniguration in new endpoints by default so that ServiceControl,
ServiceInsight, and ServicePulse can keep tabs on your system. We will cover
these tools in detail in Chapter 8, The Service Platform.

Web service integration and idempotence
When talking about managing failure, it's important to spend a few minutes
discussing web services because they are such a special case; they are just too
good at failing.

Chapter 3

[47]

In the previous chapter, we discussed only doing as much work within a message
handler as you can reliably perform within the scope of one transaction. For database
operations, this limitation is obvious. For some other non-transactional operations
(sending email comes to mind), it is easy to isolate that operation within its own
message handler. When the message is processed, the email would either be sent or
it won't; there really aren't any in-between cases.

In reality, when sending an email, it is technically possible that we
could call the SMTP server, successfully send an email, and then the
server could fail before we are able to inish marking the message
as processed. However, in practice, this chance is so ininitesimal
that we generally assume it to be zero. Even if it is not zero, we can
assume in most cases that sending a user a duplicate email one time
in a few million won't be the end of the world.

Web services are another story. There are just so many ways a web service can fail
(see the Fallacies of Distributed Computing in the previous chapter.):

• A DNS or network failure may not let us contact the remote web server at all

• The server may receive our request, but then throw an error before any state
is modiied on the server

• The server may receive our request and successfully process it, but a
communication problem prevents us from receiving the 200 OK response

• The connection times out, thus ignoring any response the server may have
been about to send us

For this reason, it makes our lives a lot easier if all the web services we ever have to
deal with are idempotent, which means a process that can be invoked multiple times
with no adverse effects.

Any service that queries data without modifying it is inherently idempotent. We
don't have to worry about how many times we call a service if doing so doesn't
change any data. Where we start to get into trouble is when we begin mutating state.

Sometimes, we can modify state safely. Consider an example used previously
regarding registering for alert notiications. Let's assume that on the irst try,
the third-party service technically succeeds in registering our user for alerts,
but it takes too long to do so and we receive a timeout error. When we retry,
we ask to subscribe the email address to alerts again, and the web service call
succeeds. What's the net effect? Either way, the user is subscribed for alerts.
This web service satisies idempotence.

Preparing for Failure

[48]

The classic example of a non-idempotent web service is a credit card transaction
processor. If the irst attempt to authorize a credit card succeeds on the server and
we retry, we may double charge our customer! This is not an acceptable business
case and you will quickly ind many people angry with you.

In these cases, we need to do a little work ourselves because unfortunately, it's
impossible for NServiceBus to know whether your web service is idempotent or not.

Generally, this work takes the form of recording each step we perform on
durable storage in real time, and then query that storage to see which steps
have been attempted.

In our example of credit card processing, the happy path approach would look
like this:

1. Record our intent to make a web service call to durable storage.

2. Make the actual web service call.

3. Record the results of the web service call to durable storage.

4. Send commands or publish events with the results of the web service call.

Now, if the message is retried, we can inspect the durable storage and decide what
step to jump to and whether any compensating actions need to be taken irst.

If we have recorded our intent to call the web service but do not see any evidence of
a response, we can query the credit card processor based on an order or transaction
identiier. Then we will know whether we need to retry the authorization or just get
the results of the already completed authorization.

If we see that we have already made the web service call and received the results,
then we know that the web service call was successful but some exception happened
before the resulting messages could be sent. In response, we can just take the results
and send the messages without requiring any further web service invocations.

It's important to be able to handle the case where our durable storage throws
an exception, rendering us unable to make our state persist. This is why it's so
important to record the intent to do something before attempting it—so that we
know the difference between never having done something and attempting it but
not necessarily knowing the results.

Chapter 3

[49]

The process we have just discussed is admittedly a bit abstract, and can be visualized
much more easily with the help of the following diagram:

Yes Did we attempt web

service call?

Did we record results

of web service call?

No

Record intent to call

web service

Call web serviceQuery web service

for current status

Take compensating

action

Record results of

web service call

Send commands &

publish events

DONE

No

Yes

The choice of using the durable storage strategy for this process is up to you. If
you choose to use a database, however, you must remember to exempt it from the
message handler's ambient transaction, or those changes will also get rolled back if
and when the handler fails.

www.allitebooks.com

http://www.allitebooks.org

Preparing for Failure

[50]

In order to escape the transaction to write to durable storage, use a new
TransactionScope object to suppress the transaction, like this:

public void Handle(CallNonIdempotentWebServiceCmdcmd)

{

 // Under control of ambient transaction

using (var ts = new TransactionScope(TransactionScopeOption.Suppress))

 {

 // Not under transaction control

 // Write updates to durable storage here

 ts.Complete();

 }

 // Back under control of ambient transaction

}

Summary
In this chapter, we considered the inevitable failure of our software and how
NServiceBus can help us to be prepared for it. You learned how NServiceBus
promises fault tolerance within every message handler so that messages are
never dropped or forgotten, but instead retried and then held in an error queue if
they cannot be successfully processed. Once we ix the error, or take some other
administrative action, we can replay those messages.

In order to avoid looding our system with useless messages during a failure, you
learned how to cause messages that lose their business value after a speciic amount
of time to expire.

Finally, you learned how to build auditing in a system by forwarding a copy of all
messages for later inspection, and how to properly deal with the challenges involved
in calling external web services.

In this chapter, we dealt exclusively with NServiceBus endpoints hosted by the
NServiceBus Host process. In the next chapter, we will explore in detail how
NServiceBus hosting works and how we can host NServiceBus in our own processes.

Hosting
We have already seen how simple NServiceBus makes it to turn a normal class
library into a runnable messaging endpoint using the NServiceBus.Host package.
The host process gives us many shortcuts that simplify setting up a messaging
endpoint, and as we will see in Chapter 9, Administration, it even allows us to easily
install an endpoint as a Windows service.

The time has come to lift the veil and learn how NServiceBus is hosted, both
within the NServiceBus Host and within other processes. Chief among these are
web applications, although it is possible to host NServiceBus within Windows
Presentation Foundation (WPF) and Windows Forms apps as well. We must be able
to conigure and host our messaging infrastructure within all of these environments.

In this chapter, you will learn how to use the NServiceBus coniguration methods to
host a message bus within any application we want, or to customize an application
hosted by the NServiceBus.Host package.

Hosting types
Hosting NServiceBus comes down to coniguring and then starting an instance of a
bus. There are two ways to do this, either as an NServiceBus-hosted endpoint, or as
a self-hosted endpoint. In both cases, the focus is on setting up your desired settings
via a BusConfiguration object.

Hosting

[52]

NServiceBus-hosted endpoints
An NServiceBus-hosted endpoint is a process that is run by executing the
NServiceBus.Host.exe process, which is a part of the NServiceBus.Host NuGet
package. We already know that a .NET executable is just a DLL that can be directly
executed, and can be referenced just like a normal DLL. The host's NuGet package
automates the process of creating a reference to the executable, and then sets the
Debug tab's Start Action to run the host executable. You can see this for yourself
by opening a hosted endpoint's properties page and inspecting the settings on the
Debug tab.

When the host process starts up, it scans all the assemblies in the same directory,
looking for a class that implements IConfigureThisEndpoint. As we have already
seen in our previous examples, the NuGet package creates this class for us, and it
looks something like this:

public class EndpointConfig : IConfigureThisEndpoint, AsA_Server

{

 public void Customize(BusConfiguration configuration)

 {

 configuration.UsePersistence<InMemoryPersistence>();

 }

}

Chapter 4

[53]

It is primarily this class that gives us access to the BusConfiguration instance to
set up how the endpoint will operate. For now, let's ignore the AsA_Server marker
interface. We will discuss it in more detail in Chapter 7, Advanced Coniguration.

NServiceBus-hosted endpoints are easily run as console applications while you
are debugging, and then they can be installed as Windows services with simple
command-line parameters. We will learn more about this in Chapter 9, Administration.

Self-hosted endpoints
By contrast, a self-hosted endpoint is an existing process that conigures and starts
a bus within it. This is commonly a web application, but it could also be a WPF or
Windows Forms application. It could even be a console application, although the
wisdom of doing so would be debatable, given the large number of features the
NServiceBus.Host package offers.

To self-host a bus, we just need to create a new instance of BusConfiguration and
set the necessary settings for our environment, just like the coniguration block from
our previous samples:

var cfg = new BusConfiguration();

cfg.UsePersistence<InMemoryPersistence>();

IBus Bus = NServiceBus.Bus.Create(cfg).Start();

When we're done, we start the bus with one simple line of code and then make the
IBus instance available to our application, commonly as a static property.

This is not a lot of coniguration considering everything that's happening to
conigure a bus, especially compared to previous versions of NServiceBus that
sported long blocks of luently chained methods starting with Configure.With()
that you will likely see all over the Internet (unfortunately) for years to come. These
luent coniguration methods were dependent upon the order of execution and
caused quite a bit of grief for everyone involved.

In NServiceBus 5.0, the team has gone out of their way to make the coniguration
story remarkably more straightforward, providing sensible defaults for most
settings, and changing the process so that the order in which items are conigured no
longer matters.

This does not mean that any power of all of those coniguration options has gone
away, it's just not always required. Now let's start exploring them, starting with
assembly scanning.

Hosting

[54]

Assembly scanning
In order to do the things we have seen so far, such as automatically wiring up
message handlers based on marker interfaces, NServiceBus needs to inspect all
the assemblies in the application to ind those types. By default, NServiceBus will
scan all of the application's assemblies. For a web application, this means the bin
directory. Otherwise, the application's base directory is used for scanning.

Many improvements have been made to the assembly scanning process over the last
few versions of NServiceBus in order to automatically ignore assemblies that cannot be
scanned. For example, COM DLLs are skipped, as are 64-bit assemblies if running with
a 32-bit host process. As a result, this process generally works very well and if there is
an issue, a helpful exception message will let you know how to correct the problem.

Choosing an endpoint name
The endpoint name is very important as it drives the names of all the queues that
NServiceBus creates. In an endpoint hosted by the NServiceBus.Host package,
the endpoint name is automatically determined by locating the EndpointConfig
class (the class that implements IConfigureThisEndpoint, which is automatically
created for you when you include the NServiceBus NuGet package) and using the
namespace of that class as the endpoint name. This is almost always the same as the
Visual Studio project name, unless you have gone to lengths to change it.

When we are hosting NServiceBus on our own, there is no EndpointConfig, so
instead, NServiceBus will default to the namespace of the class calling NServiceBus.
Bus.Create().

We can, however, take control and explicitly set the endpoint name if we really
want to:

cfg.EndpointName("MyEndpoint");

Keep in mind that the string need not be a constant. For example, we could pull in
an appSetting, which would allow us to host Test and QA versions of the same
website on the same server, but with different endpoint names.

If a web application is hosted with OWIN, automatic endpoint name
assignment will not work, and you must explicitly set the endpoint name
as described in the preceding code. Because of this, NServiceBus 6.0 will
require setting the endpoint name explicitly. It would be wise to start this
practice now in order to make future upgrades more straightforward.

Chapter 4

[55]

Dependency injection
Dependency injection is a pattern that allows us to avoid hardcoded dependencies
and deine them at runtime. NServiceBus uses dependency injection to manage a
host of dependencies, but the most visible dependency is the IBus dependency,
which we take in our message handlers. We just declare a public instance of an
interface as a property, and at runtime, NServiceBus will inject the runtime value
that provides the implementation for that interface.

By default, NServiceBus will use the Autofac container (which is embedded within
NServiceBus.Core.dll) for its own needs. In most cases, this is just ine, but if
you already use a DI container and would like to integrate NuGet package with it
directly, you can do so using one of the following NuGet packages that act as an
adapter between NServiceBus and your chosen container:

• NServiceBus.Autofac

• NServiceBus.CastleWindsor

• NServiceBus.Ninject

• NServiceBus.Spring

• NServiceBus.StructureMap

• NServiceBus.Unity

Each package will contain a class that inherits NServiceBus.ContainerDefinition,
which you can use as the generic parameter in the UseContainer method, such as
this example for the NServiceBus.Ninject package:

cfg.UseContainer<NServiceBus.Ninject>();

We will cover more topics related to dependency injection in Chapter 7,
Advanced Coniguration.

Message transport
The most important coniguration setting for NServiceBus is the selection of the
message transport. Microsoft Message Queuing (MSMQ) is the default transport and
is used throughout this book, but several other transports are currently supported.

Declaring any of the transports when self-hosting follows the same pattern. For
example, here is how you would explicitly select MSMQ, although as the default
transport, doing so isn't required:

cfg.UseTransport<MsmqTransport>();

Hosting

[56]

The MsmqTransport type parameter is a class that inherits from NServiceBus.
TransportDefinition. In addition to being the default transport, MSMQ is also
built into the NServiceBus core.

Using any of the other transports also requires an additional NuGet package. The full
details about the use of each alternative transport are beyond the scope for this book,
but we will cover them briely.

It's technically possible, though not exactly easy, to implement your
own message transport and conigure NServiceBus to use it. While
it's a fun exercise, it makes apparent how much work the Particular
team puts into ensuring reliability with each transport they support.
Their team lives on and breathes messaging, and it's probably best
to leave this one to the experts.

Reasons to use a different transport
MSMQ has been a part of NServiceBus since the beginning, as it is a solid technology
that provides a lot of safeguards such as transactional store-and-forward and
distributed transaction support. So why wouldn't we want to use it?

One consideration is platform independence and interoperability. As good as MSMQ
is, it is a Microsoft technology that only runs on Windows servers. If we want to
interoperate with a Java platform, for example, we don't have a lot of good options
except exposing web services, which comes with its own set of problems.

Another consideration is resistance from IT departments. It can be dificult at times
to get an approval from a company's IT department for a system design that requires
MSMQ and distributed transactions if such support wasn't already available before.
Yet in such companies, Microsoft SQL Server is nearly ubiquitous. Using SQL Server
as a transport can be a way for developers itching to take advantage of the beneits
NServiceBus has to offer. They can get it in the door, and prove that it can be a
valuable asset to the business.

The last common reason to consider a different transport is support for the cloud,
where there may not be support for MSMQ or distributed transactions. We need
to have different transports available to us to take advantage of those platforms.

Chapter 4

[57]

MSMQ
Before we dive into alternatives, we should understand MSMQ a little better. MSMQ
is a true bus-style messaging system, where each server hosts its own MSMQ service
and communicates with other servers in a decentralized fashion. As a decentralized
solution, MSMQ provides store-and-forward so that once a message is sent, you can
be sure that it will (eventually) arrive at its intended destination. One big advantage
of a bus-based queuing infrastructure is that even if individual servers go down from
time to time, messages continue to low through other nodes in the system, with
store-and-forward ensuring that no messages are lost.

MSMQ contains no native publish/subscribe mechanism, so NServiceBus must use
storage-based publishing. This means that when you publish a message, NServiceBus
looks for subscribers in some sort of persistent data store. This boils down to a
lookup in a database, after which an independent message is sent to each registered
subscriber. We will discuss storage and persistence concerns in the next section.

In order to subscribe, NServiceBus uses message-based subscriptions, meaning that
the subscriber endpoint will send a specialized subscription request message to the
publisher endpoint. Of course, all of this happens automatically.

MSMQ also supports the Distributed Transaction Coordinator (DTC), so
by default, all operations within your message handlers operate within a transaction
shared by your database and MSMQ, giving you a lot of safety and guaranteeing
once-and-only-once message delivery.

You can ind a repository of sample NServiceBus projects that use the MSMQ
transport, at https://github.com/Particular/NServiceBus.Msmq.Samples.

RabbitMQ
RabbitMQ is an open source queuing system that implements the Advanced
Message Queuing Protocol (AMQP). Rabbit is a broker-style transport (the
messaging architecture is centralized) and is a great solution for cloud platforms
such as Amazon EC2. However, it contains no support for the DTC.

Normally, a lack of DTC support would mean that you, as a developer, could not
count on once-and-only-once delivery of messages, which we are accustomed
to with MSMQ, but would have to settle for at-least-once delivery instead. This
looser delivery guarantee means we need to be on the lookout for messages being
processed more than once, which means our handlers would have to be completely
idempotent or take compensating actions to account for duplicate messages.

https://github.com/Particular/NServiceBus.Msmq.Samples

Hosting

[58]

NServiceBus 5.0 introduces the Outbox feature, a way of accounting for these
potential duplicate messages so that you, as a developer, don't have to worry
about them. The Outbox feature will be covered in more detail in Chapter 7,
Advanced Coniguration.

RabbitMQ also contains native Publish/Subscribe support. Instead of sending copies
of a message to each subscriber, messages are published to a topic, which fans out to
any queues that are subscribed. Also, for a centralized queuing system, you will need
to provide a connection string to the RabbitMQ server or clustered server. Clustered
servers are recommended to ensure high availability.

RabbitMQ is available via the NServiceBus.RabbitMQ NuGet package. You can
ind a repository of sample NServiceBus projects that use the RabbitMQ transport, at
https://github.com/Particular/NServiceBus.RabbitMQ.Samples.

SQL Server
Since you are reading a book about a .NET technology, I can only assume you've heard
of Microsoft SQL Server. Using SQL Server as a transport can be a great choice for small
projects by teams that already use SQL Server. Because the messaging infrastructure
is stored in the same database as your business data, distributed transactions are not
needed to obtain fault tolerance; a simple database transaction can be used instead.
The performance of this transport (in message throughput per second) is on par with
MSMQ. However, because all endpoints will be querying a single SQL Server instance,
this level of performance is shared among all endpoints in your system.

In addition to these beneits, the SQL Server transport will provide a nice way to get
data in and out of legacy systems running on SQL Server, using stored procedures,
triggers, and so on.

SQL Server is obviously not inherently a queuing technology. It works by polling
against a queue table that it creates in your database. In order not to ping your SQL
Server instance to death, it implements a back-off strategy between messages, waiting
for successively longer times between attempts when no messages are available, up
to a maximum of one second. When messages are coming in, the back-off wait is
minimized so that messages can be received and processed as quickly as possible.

Like MSMQ, the SQL Server transport uses message-based subscriptions and
storage-driven publishing. The storage, of course, is best managed in the same
SQL Server database, which we will discuss shortly.

The SQL Server transport is available via the NServiceBus.SqlServer NuGet package.
You can ind a repository of sample NServiceBus projects that use the SQL Server
transport, at https://github.com/Particular/NServiceBus.SqlServer.Samples.

https://github.com/Particular/NServiceBus.RabbitMQ.Samples
https://github.com/Particular/NServiceBus.SqlServer.Samples

Chapter 4

[59]

Windows Azure
There are actually two Windows Azure transports: one that supports Windows
Azure Queues and another that supports the Windows Azure Service Bus. In
general, Azure Queues are simpler, and the Azure Service Bus provides more
advanced features at the expense of additional complexity.

Both Azure transports enable NServiceBus to operate either entirely within the cloud
or in a hybrid cloud/on-premise scenario. Additionally, both are alike in that they do
not support the Distributed Transaction Coordinator. However, Azure Queues are
essentially a simple REST-based Get/Put/Peek API, whereas the Azure Service Bus
supports native publish/subscribe via topics.

This comparison is very simplistic; each transport has many more of its own
idiosyncrasies. For a detailed comparison, you should read the article, Azure Queues
and Service Bus Queues – Compared and Contrasted, at http://msdn.microsoft.com/
en-us/library/azure/hh767287.aspx.

The Windows Azure Queues transport is available via the NServiceBus.Azure.
Transports.WindowsAzureStorageQueues NuGet package, and the Windows
Azure Service Bus transport is available via the NServiceBus.Azure.Transports.
WindowsAzureServiceBus NuGet package. You can ind a repository of sample
NServiceBus projects that use the Azure transports at https://github.com/
Particular/NServiceBus.Azure.Samples.

Persistence
Like most applications, every now and then, NServiceBus has the need to store
some data, but unlike most applications, NServiceBus does this in a completely
conigurable way. You can choose to use one of the oficial persistence libraries
according to your organization's needs, or you can choose to write your own.

NServiceBus uses persistence to store subscriptions for transports that use
storage-based publishing, as we have already seen. It also stores saga and timeout
data, which we will learn about in Chapter 6, Sagas. Persistence is also used by the
Gateway, which we will learn about in Chapter 9, Administration, and by the Outbox
feature, which we will learn about in Chapter 7, Advanced Coniguration.

A persistence mechanism is deined by a class inheriting NServiceBus.
Persistence.PersistenceDefinition, which is inserted into the cfg.
UsePersistence<T>() method, which we have already seen. The supported
mechanisms available from Particular are InMemoryPersistence,
NHibernatePersistence, RavenDBPersistence, and AzurePersistence.

http://msdn.microsoft.com/en-us/library/azure/hh767287.aspx
http://msdn.microsoft.com/en-us/library/azure/hh767287.aspx
https://github.com/Particular/NServiceBus.Azure.Samples
https://github.com/Particular/NServiceBus.Azure.Samples

Hosting

[60]

In-memory persistence
The examples we have seen so far have all used in-memory persistence:

cfg.UsePersistence<InMemoryPersistence>();

This is the only persistence mechanism that is built into the NServiceBus core, and as
such, it makes up a great choice for quick development, easy demos, unit tests, and
(this will be a shocker) sample code in an introductory book, but not much else.

In a production system, you need to use something else, but you do have to make a
decision and conigure something in most cases, which is what the samples I have
shown do. Otherwise, you will get an exception when your endpoint starts up
because persistence has not been conigured.

In-memory persistence can be very useful during development, especially during
fast iterations. With in-memory persistence, it is no big deal to experiment, because
nothing is left behind in storage when you stop the endpoints. When using real
persistence, outdated stored subscriptions can cause unintended side effects if you’re
not expecting them.

On the other hand, when using in-memory persistence, it might appear as if an
endpoint is not subscribed because subscription request messages get sent between
endpoints in an unexpected order. Additionally, if you restart one endpoint, it will
not receive all the subscription requests it should have had, and you will ind your
event handlers are not being run. You can combat this by adjusting the start order
of debugging in the solution's property pages, but just knowing about this behavior
makes it pretty unlikely that you'll be caught off-guard by its effects.

If you wish to use in-memory persistence during development, you will need
a method to easily switch to something more stable for test and production
environments. We will discuss strategies for this in Chapter 9, Administration.

NHibernate
With NHibernate persistence, you can allow NServiceBus to persist its data in either
Microsoft SQL Server or Oracle. One might think that using NHibernate would, in
theory, allow any relational database to be used, and while you might be able to
get it to work, SQL Server and Oracle are the only systems tested and supported by
Particular. Surely, any attempt to use Microsoft Access would most certainly end
in tears.

Chapter 4

[61]

After including the NServiceBus.NHibernate NuGet package, you can conigure its
use like this:

cfg.UsePersistence<NHibernatePersistence>();

Of course, this isn't enough. We will need to know what database to connect to.
For that, we use the familiar construct of a connection string:

<connectionStrings>

 <add name="NServiceBus/Persistence"

 connectionString="CONN_STR_HERE" />

</connectionStrings>

The connection string needs to point to a database with permissions to modify the
database structure, in order to create the tables NServiceBus needs to store its data.

The connection string can be speciied in the conig ile, as shown in the preceding
code, or if you like, you can also conigure in this way:

cfg.UsePersistence<NHibernatePersistence>()
 .ConnectionString("CONN_STR_HERE");

There are also additional extension methods that can be used after coniguring
NHibernate persistence to customize things, for instance, to disable schema updates, or
to use specialized NHibernate coniguration settings, which we won't get into here. One
very interesting extension, however, is the enabling of caching for subscription lookups:

.EnableCachingForSubscriptionStorage(TimeSpan.FromMinutes(10))

In transports that use storage-based publishing, every published message will require
a trip to the database to look for the destination endpoints. This is a safe-by-default
approach; so that brand new subscribers don't miss out on a message published due
to an out-of-date cache. If, however, you have an endpoint that publishes frequently,
and you know that your list of subscribers will not be changing, or that new
subscribers can tolerate missing messages for a time, then you can ask NServiceBus to
cache this list of subscribers for a certain period of time for an easy performance boost.

More documentation for NHibernate persistence is available on the Particular
website, and you can ind a repository of sample NServiceBus projects that use
NHibernate persistence at https://github.com/Particular/NServiceBus.
NHibernate.Samples.

https://github.com/Particular/NServiceBus.NHibernate.Samples
https://github.com/Particular/NServiceBus.NHibernate.Samples

Hosting

[62]

RavenDB
In NServiceBus 3.0, the default persistence switched from NHibernate to RavenDB,
and the RavenDB server was installed as a part of the NServiceBus installation process.
In some ways, this was great because a document database was well-equipped to
handle some of the unstructured data that NServiceBus needed to store. In addition,
it made getting started quickly very easy because NServiceBus could rely on a
convention to create the necessary database locally without user intervention—no
connection string was needed.

However, this came with trade-offs. The RavenDB binaries were required to be
ILMerged (merging the intermediate machine language of an external assembly
by a specialized tool after compilation) with the NServiceBus assembly as internal
namespaces, which meant you could not specify your own DocumentStore object for
NServiceBus to use. If you wanted to use RavenDB for your application, there was
effectively a wall between NServiceBus and your code that could not be torn down.
Additionally, any new versions of the RavenDB assemblies would require a new
version of NServiceBus because NServiceBus was hardcoded to the ILMerged versions.

So in NServiceBus 4.0, a new method called Costura was used to embed RavenDB
as assembly resources so that a version of the RavenDB client code could be selected
at runtime. This solved the ILMerge problems, but instead created incompatibilities
when NServiceBus had to select and use different versions of the RavenDB client.

NServiceBus 5.0 takes a new direction, moving the RavenDB code to a separate
NuGet package, which can version itself in lockstep with the RavenDB client code.

After including the NServiceBus.RavenDB NuGet package, you can conigure its use
like this:

cfg.UsePersistence<RavenDBPersistence>();

Similar to NHibernate persistence, you can use a connection string to point to the
RavenDB server using the connection string name, NServiceBus/Persistence/
RavenDB. Alternatively, you can build a RavenDB IDocumentStore object yourself
and add it in the code as follows:

cfg.UsePersistence<RavenDBPersistence>()

 .SetDefaultDocumentStore(documentStore);

There are additional extension methods that allow you to specify separate document
stores for the various features that NServiceBus stores data for.

More documentation on RavenDB persistence is available on the Particular
Software website.

Chapter 4

[63]

Windows Azure
Clearly, Azure persistence is a great choice if you are using one of the Azure message
transports. To use it, include the NServiceBus.Azure Nuget package and then
conigure with this line of code:

cfg.UsePersistence<AzureStoragePersistence>();

Azure storage requires quite a bit more coniguration, depending on whether
you are hosting on-premise or in the cloud. For details (about both), refer to the
documentation on the Particular Software website.

Polyglot persistence
I have to admit that I really like the word polyglot for some reason, which means
able to use several languages. If you want to use one type of persistence for one feature,
and another type of persistence for another feature for some reason, you can actually
do so.

For each type of persistence, the UsePersistence<T>() method supports a method
that will enable you to specify what features to use it for. This is best illustrated by a
simple, if somewhat contrived, example:

cfg.UsePersistence<InMemoryPersistence>()

 .For(Storage.Subscriptions);

cfg.UsePersistence<NHibernatePersistence>()

 .For(Storage.Timeouts, Storage.Sagas);

cfg.UsePersistence<RavenDBPersistence>()

 .For(Storage.Outbox);

Message serialization
As we have already seen, our NServiceBus messages are plain old C# classes or
interfaces, but these must be serialized in some way so that they can be transmitted
using the underlying queuing infrastructure.

Hosting

[64]

The default choice for a message serializer is XML, which requires no coniguration
whatsoever, unless you want to set some advanced options on the serializer itself.
However, NServiceBus also supports JSON, BSON, and Binary serialization out of
the box:

cfg.UseSerialization<XmlSerializer>();

cfg.UseSerialization<JsonSerializer>();

cfg.UseSerialization<BsonSerializer>();

cfg.UseSerialization<BinarySerializer>();

Like the persistence coniguration options, the serializers expose various settings
through extension methods, although none are important enough to mention here.

While XML serialization is the default serialization in NServiceBus 5.0 (and in all
previous versions), this will not always be the case. The plan for future versions
of NServiceBus is to switch to JSON serialization as default, as JSON is a lot more
eficient than XML in terms of bytes sent over the wire, but this switch will require
NServiceBus to be able to simultaneously consume messages formatted with
multiple serializers to maintain forward compatibility.

Knowing that a switch to JSON as default is in process, and if you are, as the title of
this book suggests, "learning NServiceBus" to begin development of a new system,
it would be a good idea to select JSON as your serializer now.

It's worth noting that the XML serializer used by NServiceBus is not
the same as the built-in .NET XML serializer. There are no attributes to
control the output of the XML serializer, and KnownTypesAttribute,
which is used to represent polymorphic data structures, is not
supported. In addition, certain types that you might expect to be
serializable are not supported.

The .NET serializer is primarily concerned with lexibility and the
ability to tailor the output. The NServiceBus XML serialization, on the
other hand, is primarily concerned with speed.

Message contracts should be very speciic and concrete. Message
properties cannot be interface types such as IList, ISet, or
IDictionary because there would be no way to instantiate those
properties. Similarly, message property types cannot be abstract
base classes because there is no way to guarantee that the endpoint
receiving the message will know about all the possible inherited types.

Chapter 4

[65]

Transactions
Each message transport has recommended transaction settings that it will select by
default, but NServiceBus gives you the ability to override these if you choose to do so.
For example, the following command can be used to disable distributed transactions:

cfg.Transactions().DisableDistributedTransactions();

Several other methods, which are easily discoverable via IntelliSense, will also
allow you to enable distributed transactions (as they are not turned on by default
for every transport), enable and disable transactions in general, set the transaction
isolation level and timeout settings, and control whether or not message handlers
get wrapped with a TransactionScope.

Purging the queue on startup
Self-hosting NServiceBus is usually done in a web application or a smart client.
Because of this, the messages received when self-hosting (if any) are usually events,
and the intent of those events is usually something along the lines of "something has
happened on the server, so the data you are holding in the cache is now invalid."

If a web application or smart client is ofline for a period of time, as is the case when
Internet Information Services (IIS) decides to spin down an idle website, a backlog
of incoming messages may pile up, and it's quite possible that all of those messages
will be instructions to remove items from a cache that is already empty because
the application has just started up. So why would we want to bother processing
these messages?

To avoid this situation, NServiceBus offers the option to purge the input queue when
the endpoint starts up, as follows:

cfg.PurgeOnStartup(true);

While this option is quite common when self-hosting a web application, it is
generally considered to be a very bad idea on a hosted endpoint, although the
same coniguration will work in both places.

Installers
Installers are tasks that can run to set up an endpoint for the irst time. We will learn
how to make our own installers in Chapter 9, Administration, but the most common
installers we usually think about are the tasks that create the endpoint's queues if
they are missing.

Hosting

[66]

Whether in a hosted endpoint or in self-hosting, installers will automatically run by
default if there is a debugger attached. This is totally a convenience thing; it means
that when we press F5 in Visual Studio, we don't have to worry about ensuring that
queues have been created.

If a debugger is not attached, it's a different story. A hosted endpoint will run its
installers when it is installed as a Windows Service, and not every time it starts up.
This is good practice for hosted endpoints and generally works quite well.

A self-hosted endpoint running in the wild will not run its installers at all unless
you ask it to. Your options are to manage queue creation through some type of
deployment system (Octopus Deploy, Puppet, or similar systems) or to simply
ask NServiceBus to do it for you:

cfg.EnableInstallers();

More deployment considerations will be discussed in Chapter 9, Administration.

Startup
In a hosted endpoint, we don't have to do anything to start the bus; that is handled
for us. We only set options on the BusConfiguration object. When self-hosting,
however, we have to explicitly start the bus ourselves. Back in our example code,
we had this line:

IBus Bus = NServiceBus.Bus.Create(cfg).Start();

It really can't get any simpler than that. The Create() method returns an
IStartableBus instance, which we can then start to return the IBus instance
to share it with the rest of our application.

The IStartableBus interface implements IDisposable, which means we can use it
in a using block if we only need the bus for a short time for some reason. For most
applications, however, the bus's lifetime will mirror that of the host app. The IBus
instance is fairly expensive to create (as the length of this chapter can attest), so you
won't want to create a new instance every time some action occurs. Instead, create it
when the application starts up and dispose it when the application shuts down.

Chapter 4

[67]

Send-only endpoints
At some point, we may create an application that only sends messages to backend
services. This is common with web applications where no message handlers exist. In this
case, there is no reason to create a bunch of queues, or waste processing time checking
those queues for incoming messages, as we already know that there will be none, and if
there are no queues, then we don't have any need for an endpoint name either.

In this case, we can use a slightly different method to start the bus:

ISendOnlyBus SendOnlyBus = NServiceBus.Bus.CreateSendOnly(cfg);

A send-only bus contains a subset of the methods found in a normal bus, omitting
some of the methods from IBus that don't make any sense when you can't receive
a message.

If we look back at our example from Chapter 1, Getting on the IBus, we can now
see that the web application there would be a perfect candidate for a send-only
endpoint. The only reason it was written as a full endpoint was to demonstrate the
simple addition of message handlers in Chapter 2, Messaging Patterns, when we began
processing events in the web application.

Summary
In this chapter, we dissected the process of hosting and coniguring an NServiceBus
endpoint both using the NServiceBus Host and in our own application. We now
know how to select a message transport, persistence strategy, message serializer,
and quite a few other options as well.

At this point, you may be thinking that there are a lot of settings that will need to be
repeated for every single endpoint you create, and there could be a lot of endpoints.
Well, fear not. At the very least, you could create a factory class in a shared assembly
to provide each endpoint with a preconigured BusConfiguration instance. In
Chapter 7, Advanced Coniguration, you will learn an even better way to manage this
shared coniguration, and in Chapter 9, Administration, you will learn how to manage
the differences in it as we move from our development environment to production,
and everywhere in between.

Now that we have a deeper understanding of how NServiceBus is hosted, in the next
chapter, we will explore several advanced messaging techniques.

Advanced Messaging
In the previous chapter, we learned how NServiceBus works from the ground up,
providing the foundation needed to ultimately host our message handlers. Now
we will learn about advanced messaging techniques that will allow us to take full
advantage of those message handlers.

Unobtrusive mode
We have seen how using events can help us to decouple business processes from
each other. By keeping associations between loosely coupled modules, we can
prevent our system from becoming an interconnected ball of mud that is dificult
to maintain in the long term.

However, throughout this book, we have been marking our commands with
ICommand and our events with IEvent. This introduces a dependency on the
NServiceBus.Core.dll assembly that contains those interfaces. Isn't that a
bad thing?

As it turns out, it can be. When you create your assembly of messages in this way, you
compile it against a speciic version of NServiceBus.Core.dll. Then another service
consumes that assembly. If you now want to update one service to a new version of
NServiceBus, you have a problem. You have to update both services at once. This is
not the glorious decoupled autonomous service utopia we signed up for.

Luckily, there is another way to identify our commands and events that does not rely
on marker interfaces. The only reason we did things this way in the previous chapters
was to make the examples easier to follow while we learned some of the basics.

Advanced Messaging

[70]

Unobtrusive mode is the capability to identify messages by convention instead of
marker interfaces. Starting with the BusConfiguration instance, cfg, which we
used in the previous chapter, we can conigure our unobtrusive mode conventions
like this:

cfg.Conventions()

 .DefiningCommandsAs(Func<Type, bool> definesCommands)

 .DefiningEventsAs(Func<Type, bool> definesEvents)

 .DefiningMessagesAs(Func<Type, bool> definesMessages)

Each method accepts a Func<Type, bool> parameter which allows you to
programmatically deine which types will be viewed as commands, events, or
messages. Most of the time, your conventions should be based on the namespace of
the type. If you noticed, in the examples in this book, we have been careful to create
folders for commands and events, which means that our message namespaces will
follow predictable patterns that we can use to specify our conventions.

While you can deine any convention you want, here is a good strategy to start with:

• All message types must have non-null namespaces. Bare classes outside a
namespace are fairly uncommon and would be dificult to reason about, so
let's just assume we won't do this. You would also want to be sure to check
for a null namespace so that your conventions don't throw a null reference
attempting to call StartsWith or EndsWith on the namespace name.

• If your company uses a single top-level namespace on all classes, such as the
company name, all message types must have a namespace starting with that
company name. This ensures that your convention won't accidentally apply
to classes in any .NET Framework or third-party libraries.

• If you do not have a single top-level namespace (such as Packt. in this
chapter's sample code), then at least specify that any namespace that starts
with NServiceBus or System cannot be a message. You may need to add to
this list if you use any third-party libraries that you discover accidentally it
the rest of your conventions.

• Deine commands as any type whose namespace ends with Commands.

• Deine events as any type whose namespace ends with Events or Contracts.

• Deine messages as any type whose namespace ends with
InternalMessages, or if you prefer, simply Messages.

Chapter 5

[71]

As a short example, this snippet deines the convention for commands:

cfg.Conventions()

 .DefiningCommandsAs(t => t.Namespace != null

 && t.Namespace.StartsWith("Packt.")

 && t.Namespace.EndsWith("Commands"))

Check out the code samples for this chapter to see complete examples of unobtrusive
conventions, including commands, events, internal messages, and more. Each project
deines its conventions in a class called MessageConventions.cs, complete with
comments to describe why the conventions were chosen. No, seriously! Go and get
the downloadable code for this chapter right now. It may be one of the most valuable
things in this entire book. Don't worry; I'll wait. Are you back? Good!

You may be confused about why there is a separate convention
for messages. Aren't all messages either commands or events?
As it turns out, there are some messages that are neither, such as

reply messages, which we will cover in Chapter 6, Sagas.

TimeToBeReceived attribute
There is an additional convention we must deine—the TimeToBeReceived
attribute, which was covered in Chapter 3, Preparing for Failure. After all, what good is
unobtrusive mode if we would still need to reference NServiceBus.Core.dll to use
this attribute?

We can create a simple convention for TimeToBeReceived, like this:

.DefiningTimeToBeReceivedAs(t => t.Name.EndsWith("Expires")

 ? TimeSpan.FromSeconds(30)

 : TimeSpan.MaxValue)

While this will work if our needs are simple, this convention has some room
for improvement because a single duration of 30 seconds may not be appropriate
for all instances. Take a look at the ConventionsSample project included with this
chapter for an example of a novel way to tackle this problem—using relection to
ind any attribute called TimeToBeReceived, which we would deine right in our
message assembly.

There are a few more concepts similar to TimeToBeReceived that require their own
conventions, which will be covered later in this chapter. We will cover conventions
for those topics as they are introduced.

Advanced Messaging

[72]

All the remaining examples in this book will use unobtrusive mode, and it is highly
recommended as best practice for all your NServiceBus systems.

Rumor has it that, on rare occasions, we developers sometimes
screw things up. In the extremely unlikely event that this
happens to you while establishing your unobtrusive mode
conventions, remember that the NServiceBus host outputs the
number of message types detected to the console on startup
with log-level INFO. This can be a helpful way to verify that our
conventions are picking up all the types we think they should.

Message versioning
If you've ever had to build and then maintain a web service for any signiicant
amount of time, you would have probably dealt with the struggles that versioning
those systems can have. Adding a new web method is easy enough, but what
happens when the business wants to take the DoSomethingSpecial web method and
add a new parameter to it? Many times this results in frustrated developers creating
a DoSomethingSpecial2 method, and then old methods can never be cleaned up
because it may be impossible to ensure that external clients have updated their
codebase. Over time, these things build up and result in a very messy API that is
very dificult for a newcomer to decipher or support.

So how do you support versioning in a message-based system? Let's take another
look at an example from Chapter 2, Messaging Patterns, containing the event
that announced that a user had been created. Of course, now that we are using
unobtrusive mode, we have taken off the IEvent marker interface:

public interface IUserCreatedEvent

{

 Guid UserId { get; set; }

 string Name { get; set; }

 string EmailAddress { get; set; }

}

What's missing from this event? A common requirement in an event is some sort of
timestamp. After all, messages are not guaranteed to arrive in order, so if two events
are telling us the current price of bananas, how would we know without a timestamp
which one was correct?

Chapter 5

[73]

To add a timestamp to a message without breaking any current subscribers, we can
inherit from the original message. The following code will add a timestamp to the
IUserCreatedEvent:

public interface IUserCreatedWithTimeEvent : IUserCreatedEvent

{

 DateTime Timestamp { get; set; }

}

Now, instead of publishing an IUserCreatedEvent interface, we publish an
IUserCreatedWithTimeEvent interface, and we can have handlers for both
message types:

// Publisher

Bus.Publish<IUserCreatedWithTimeEvent>(e =>

{

 // Set properties of e

});

// Newer Subscriber

public class UserHandler : IHandleMessages<IUserCreatedWithTimeEvent>

{

 public void Handle(IUserCreatedWithTimeEvent e) { }

}

// Older Subscriber

public class OlderHandler : IHandleMessages<IUserCreatedEvent>

{

 public void Handle(IUserCreatedEvent e) { }

}

Polymorphic dispatch
This example works because of polymorphic dispatch. When we publish the
interface named IUserCreatedWithTimeEvent, NServiceBus says, "here is a
message with properties called UserId, Name, EmailAddress, and Timestamp.
It is both an IUserCreatedEvent and an IUserCreatedWithTimeEvent events."
It will then publish the message to any subscriber who has subscribed to receive
either type of event.

We publish one event, and both subscribers get the information they expect to
receive. This means that we can upgrade our publisher irst, and worry about
upgrading any subscribers later. This gives us the lexibility to upgrade our system
component by component without having to bring the whole system down.

Advanced Messaging

[74]

Polymorphic dispatch enables additional capabilities as well. Consider the following
event deinition for polymorphic dispatch:

public interface ICorporateUserCreatedEvent : IUserCreatedEvent

{

 int CompanyId { get; set; }

}

Now we can publish IUserCreatedEvent for normal users, which will only invoke
the handlers speciically for that event type. For corporate users, we can publish an
interface named ICorporateUserCreatedEvent, and the message handlers for both
the event types will be invoked. This enables us to hook additional functionality that
is dependent upon CompanyId to the corporate user. When writing these types of
polymorphic message handlers, we can package multiple handlers together into one
message endpoint.

Events as interfaces
Message versioning using inheritance makes a lot of sense. It means V2 inherits from
V1, V3 inherits from V2, and so on. However, polymorphic dispatch also enables
some other interesting scenarios that would never be possible in a traditional web
service or Remote Procedure Call (RPC) system.

Because we have been using interfaces to represent our events, we can take
advantage of the fact that interfaces, unlike classes, support multiple inheritance.

Suppose that, in addition to our IUserCreatedEvent interface, we also had
an IUserLoggedInEvent interface, and because you had to verify your email
address after your user was created and before you could log in, these operations
never happened at the same time. Now suppose that we are going to integrate an
enterprise user database system where all email addresses were already veriied.
We need to support single sign-on between these two systems. So, if a user comes
from the corporate site, where we already know their email address, they are
automatically created and logged in.

This scenario would lead to these message deinitions, with the properties removed
for brevity:

public interface IUserCreatedEvent { }

public interface IUserLoggedInEvent { }

public interface IUserCreatedBySingleSignOnEvent :
IUserCreatedEvent, IUserLoggedInEvent { }

Chapter 5

[75]

When we publish IUserCreatedBySingleSignOnEvent, it will be received by
subscribers of IUserCreatedEvent and IUserLoggedInEvent, in addition to the
endpoints that subscribe to IUserCreatedBySingleSignOnEvent directly. Each
handler gets the data it needs to do its job, and our event deinitions provide a clear
deinition of how the events are interrelated.

Specifying the handler order
Because of polymorphic dispatch, it's possible that there could be multiple handlers
within an endpoint that all act upon the same message because of the inheritance
chain for that message. In addition, it's possible to deploy several handlers for the
same type to the same endpoint, although as each handler adds to the amount of
work that must be done within a transaction, this isn't always the best idea.

In these cases, all relevant handlers for a message are organized in a pipeline.
One transaction is created, and then each handler is executed for that message,
one after the other. There is no guarantee what order the handlers will run in,
as all the handlers should do their work autonomously.

At some point, it may become necessary to control the order in which handlers run.
This is, in most cases, a code smell, as it indicates that your message handlers are
not truly autonomous. Perhaps, if handlers must run in a speciic order, they
should be refactored into one single handler, or the worklow should perhaps
be divided so that the procedure is broken up into two different messages that
can be processed independently.

In short, every effort should be made to avoid having to control the order of handler
execution, but real life is messy and exceptions to the rule do exist.

One common mistake is to refer to this process as "message ordering"
when this could not be further from the truth. In a distributed system,
messages can arrive in any order, and nothing can change that. This
process sets the message handler ordering—the order in which the
handlers for a given message will be executed.

If there's absolutely no other way around it, you can set message handler ordering on
your BusConfiguration instance:

// To have only one handler execute before all the rest

cfg.LoadMessageHandlers<FirstHandler>();

// Or if we need to specify multiple orderings

cfg.LoadMessageHandlers(First<FirstHandler>.Then<SecondHandler>()

 .AndThen<AndSoOnHandler>());

Advanced Messaging

[76]

The .AndThen<THandler>() method can be called as many times as is necessary,
or not at all, to have an ordering of only two handlers, but you should deinitely
exercise restraint and avoid going overboard.

The Particular team is aware that this API is less than ideal, and so there is a good
chance it could be removed in a future version of NServiceBus. You have been warned!
This is really a leftover from prior versions of NServiceBus where certain handlers
might have needed to be run irst in order to do things such as authorize incoming
messages. Nowadays, we have much better methods to accomplish these kinds of
cross-cutting concerns, such as message mutators and modifying the NServiceBus
pipeline directly, which we will learn about in Chapter 7, Advanced Coniguration.

Whenever multiple handlers execute on the same message, it's
important to note that two or more handlers may try to edit the
same database entity within the same transaction, so it is very
helpful if our data persistence technology supports the Identity
Map pattern. In this pattern, database records are cached in memory
during a transaction so that a second edit to the same entity will
not overwrite the irst. Instead, after the initial load of a record,
subsequent loads return the same cached entity, and all edits persist
as a single operation. If you're using Entity Framework, NHibernate,
or RavenDB, you're covered as they all support this pattern.
You can read more about the identity map pattern at http://
martinfowler.com/eaaCatalog/identityMap.html.

Message actions
As noted in the previous section, sometimes we will do something in a message
handler relating directly to the messaging infrastructure, independent of business
logic or data access.

Stopping a message
For whatever reason, we might need to not only stop a message in the current
handler, but stop all pending handlers from executing as well, normally because
of a message authorization scheme. In order to do that, we simply call this method:

IBus.DoNotContinueDispatchingCurrentMessageToHandlers();

When we call this method, the message is consumed successfully, and the ambient
transaction will be committed. We are just electing to stop running additional
handlers on it.

http://martinfowler.com/eaaCatalog/identityMap.html
http://martinfowler.com/eaaCatalog/identityMap.html

Chapter 5

[77]

Deferring a message
Sometimes, we cannot process a message immediately and need to wait just a little
bit. We can instruct the bus to put the message back on the queue, essentially moving
it to the back of the line:

IBus.HandleCurrentMessageLater();

However, if the queue is empty at that moment, we will just wind up processing
this message again on the next round trip, so be careful when trying to implement a
fairness scheme in this way. There is no way to ind out how many times a message
has been deferred with this method, so it would be easy to get stuck in a loop
processing the same message over and over.

Be careful if your message handler (or maybe a different message handler) is doing
database work before calling the HandleCurrentMessageLater() method. No
outgoing messages will be sent from a message handler if you call this method, but
the ambient transaction will still commit, which means that any modiications you
make to the database will persist. This is useful if you want to log the reason why you
are deferring the message so that you can make a decision based on that later, but it
can be a surprise if you were expecting the database transaction to be rolled back.

A more useful type of deferral is a timed deferral, commonly necessary when calling
external web services that have rate limits. In this case, the delay that is possible by
sending the message to the back of the line may not be long enough, so we instruct
the bus to defer a message for a speciic amount of time:

IBus.Defer(DateTime processAt, object message);

IBus.Defer(TimeSpan delay, object message);

Instead of just moving to the back of the line, these messages are sent to the
Timeout Manager, which uses a combination of queues and persistent storage
to put a message into a holding pattern until it is ready to be dispatched, at which
point the Timeout Manager will add it back to the main input queue. We will learn
more about timeouts in Chapter 6, Sagas.

Advanced Messaging

[78]

Forwarding messages
In Chapter 3, Preparing for Failure, we covered message auditing, which means
sending a copy of all messages received by an endpoint to another address.
Sometimes, however, you would like a little more ine-grained control over
that, especially if you are only trying to debug a problem with one speciic
message type.

To forward a message programmatically, call this method:

IBus.ForwardCurrentMessageTo(string destination);

It is important to note that this only forwards the message; message processing
will still continue. Therefore, if you are trying to move message handlers from one
endpoint to another and use forwarding to redirect that message, you may also
need to call Bus.DoNotContinueDispatchingCurrentMessageToHandlers(). The
forwarded message will still be treated as a successfully processed message and will
also end up in the audit queue.

Message headers
NServiceBus messages support bundling message metadata (data not directly
related to the business purpose of the message) in the message headers. This allows
handling certain tasks at an infrastructure level without having to always remember
to put certain properties in commands and events.

The API used to deal with message headers is fairly simple:

string IBus.GetMessageHeader(object msg, string key);

void IBus.SetMessageHeader(object msg, string key, string value);

In addition to getting and setting your own headers, NServiceBus includes several
headers for its own purposes, and these can be quite informative and educational.
For easy access, the header names used by NServiceBus are available as constant
strings in the NServiceBus.Headers class. They're much easier to see, however, in
the ServiceInsight tool, which we will cover in Chapter 8, The Service Platform.

Message headers should only be used for infrastructure purposes, and never for
business data. Don't be tempted to use message headers just because two message
contracts share a similar property. A good message header use case would be
information to authenticate, authorize, or sign a message.

Chapter 5

[79]

Property encryption
If your message contains certain information that should be encrypted, such
as credit card numbers or other data you want to keep away from prying eyes,
you can instruct NServiceBus to perform encryption on a property level:

public class MessageWithASecretCmd : ICommand

{

 public string ClearText { get; set; }

 public WireEncryptedString SecretText { get; set; }

}

If you'd like to use unobtrusive mode conventions, you can use this code:

public class MessageWithASecretCmd

{

 public string ClearText { get; set; }

 public string SecretTextEncrypted { get; set; }

}

// Convention Definition

cfg.Conventions()

 .DefiningEncryptedPropertiesAs(pi =>
 pi.Name.EndsWith("Encrypted"));

In order to use property encryption, we will also need to enable it for the endpoint
and conigure the encryption key in the App.config or Web.config ile:

// Endpoint configuration

cfg.RijndaelEncryptionService();

// Configuration Section

<section name="RijndaelEncryptionServiceConfig"
 type="NServiceBus.Config.RijndaelEncryptionServiceConfig,
 NServiceBus.Core"/>

// Configuration Element

<RijndaelEncryptionServiceConfig Key="BASE_64_KEY">

 <ExpiredKeys>

 <add Key="OLD_BASE_64_KEY_1" />

 <add Key="OLD_BASE_64_KEY_2" />

 </ExpiredKeys>

</RijndaelEncryptionServiceConfig>

// Or configure the keys in code

cfg.RijndaelEncryptionService("BASE_64_KEY",
optionalListOfExpiredKeys);

Advanced Messaging

[80]

The concept of expired keys allows you to transition from an expired key to a new
key without needing to update every part of your system. Newly created messages
containing encrypted properties will be encrypted with the active key, but existing
in-light messages encrypted with an older key will still be successfully decrypted.

Of course, the encrypted data is only as safe as you keep the key, so storing the
encryption key in the conig ile or source code of every single endpoint is probably
not the best idea. For this reason, it would be a good idea to store this value in a
centralized location and then provide it to each endpoint via a custom coniguration
provider. We will learn how to do this in Chapter 9, Administration.

Property encryption is a good procedure if we only want to encrypt a limited
amount of information. If you have a requirement of encrypting entire messages,
you can easily do this with message mutators, which we will cover in Chapter 7,
Advanced Coniguration.

Transporting large payloads
When using any message queuing system, you will discover that very large
messages are not a good idea. With MSMQ, there is a limit of 4 MB per message.

This may seem like a lot, but consider the situation we mentioned in Chapter 1,
Getting on the IBus, where we're processing images for our clients. You might be
able to squeeze most images into an MSMQ message, but you shouldn't bank
on it. These days, 12-megapixel cameras that create 2.5 MB JPEG images (let's not
even talk about RAW) are fairly commonplace, and once the message serializer
Base64-encodes the byte array in the message, you'll be looking at 3.3 MB. That's
way too close for comfort considering that the average number of megapixels
has nowhere to go but up. Now consider the limits on most cloud-based message
transports that are frequently much less than one megabyte!

Some other queuing systems don't have a hard limit, but that doesn't mean creating
huge messages is a good idea. Because of the implications of shufling all of these
messages in the memory, there will be a practical limitation even though it is not
enforced.

In any case, the more compact your messages, the better your system will perform.
Stufing large objects in your messages is not best practice, but what other option
do you have?

Chapter 5

[81]

The solution is to take those large objects and transport them by some other means,
but doing this manually for every message would be a pain in the neck. Luckily, we
don't have to do this. NServiceBus will use the Data Bus to transport these objects for
us with just a small bit of coniguration.

Within our message contracts, we can easily specify that a property should be
transported by the data bus and not as part of the body of the message:

[TimeToBeReceived("1.00:00:00")]

public class ProcessPhotoCmd : ICommand

{

 public DataBusProperty<byte[]> PhotoBytes { get; set; }

}

Notice the wrapper class that indicates the data bus property, and also note that
we're using the TimeToBeReceived attribute, which lets the data bus know when
it can clean up the attachments for messages that have expired. You can omit this
attribute if you want, but then you might have to clean up expired items manually.

You may be wondering why the data bus payload isn't removed immediately
once the message is successfully processed. It's important to remember that if an
event includes a data bus property, then multiple handlers may need to access the
same payload, and it's impossible for any given handler to know how many other
subscribers are out there.

Of course, using the DataBusProperty<T> wrapper does not it with
unobtrusive mode, but we have a way to specify the data bus convention as a
Func<PropertyInfo, bool> expression. Here's a simple example that deines that
any property name ending with DataBus is a data bus property and following is a
rewritten command deinition:

cfg.Conventions()

 .DefiningDataBusPropertiesAs(pi => pi.Name.EndsWith("DataBus"));

[TimeToBeReceived("1.00:00:00")]

public class ProcessPhotoCmd

{

 public byte[] PhotoBytesDataBus { get; set; }

}

Note that when using conventions, you can use simple types without the
DataBusProperty<T> wrapper object. The data bus serializer is able to distinguish
between the two forms.

Advanced Messaging

[82]

The ConventionsSample project included with this chapter
contains an additional sample implementation of a DataBus
convention that doesn't require special naming conventions.

We also need to specify what kind of data bus any given endpoint will use. This is a
decision similar to a message transport or serializer—we make it once for an entire
system and use it throughout.

NServiceBus comes with one data bus implementation out of the box that stores the
large objects in a ile share:

cfg.FileShareDataBus(@"\\server\share");

FileShareDataBus is a great choice for a system that's completely on premise
or connected by VPN, where all endpoints have access to the same ile share.
You can create your own implementation (for instance, to transfer via FTP, or
store in Azure Blob storage, or Amazon S3) by implementing the IDataBus interface,
which has fairly simple Start, Put, and Get methods. The Put and Get methods are
self-explanatory, and the Start method allows you to start a routine to periodically
clean up expired items.

Any custom data bus implementation has to be speciically registered with the
NServiceBus framework. Here is a sneak preview of NServiceBus's dependency
injection system, which we will learn about in depth in Chapter 7, Advanced
Coniguration. Starting from our familiar BusConfiguration instance as follows:

cfg.RegisterComponents(reg =>

 reg.RegisterSingleton<IDataBus>(new MyDataBusProvider()));

While the data bus is very useful, we must remember that the data bus operation is
separated from dispatching the message itself through the message transport. While
unlikely, it would be possible for the data bus operation to fail (for instance, due to a
failed FTP server or a disk full error) even though the associated message is sent, so
we must be ready to handle that eventuality.

Exposing web services
Shocking as it may sound, not every computer on the planet runs Windows
and the .NET Framework. Sometimes, we may even need to exchange data
with our cross-platform brethren. When there is only an occasional need to
swap data with another platform, NServiceBus allows us to expose a command
handler as a Windows Communication Foundation (WCF) web service with very
little effort on our part.

Chapter 5

[83]

In order to expose a web service, we will need the following:

• A command message, implementing ICommand or deined using unobtrusive
mode conventions. This will serve as the input to the web service.

• An enum that will serve as the return value for the web service.

• A handler class that processes the command and then performs
Bus.Return<ResponseEnumType>(ResponseEnumType returnCode)
to return the response.

Once we have these in place, we can create a web service very easily, at least as far as
the NServiceBus code is concerned:

public class MyWebSvc : WcfService<MyCmd, MyResponse>

{

}

The NServiceBus host will ind this class and wire up the service for you. All that is
left is to specify the necessary WCF coniguration, from which we cannot escape.

The main pain in specifying the WCF coniguration is the contract, which takes
the "stringiied" form of IWcfService<MyCmd, MyResponse> implemented by the
WcfService<MyCmd, MyResponse> class.

<endpoint contract="NServiceBus.IWcfService`2[[MyNS.MyCmd,
MyAssembly, Version=1.0.0.0, Culture=neutral,
PublicKeyToken=null],[MyNS.MyResponse, MyAssembly,
Version=1.0.0.0, Culture=neutral, PublicKeyToken=null]]" />

Note the backtick after IWcfService and the double square brackets. This is how
.NET represents the type name for the generic type in plain text.

To see the full WCF coniguration, check out the WcfSample project included
with the code for this chapter. Once the web service is exposed, you can access the
service's endpoint URL to see the boilerplate web service page and link to the WSDL
for the service. The code sample demonstrates connecting to the service using a
standard service proxy class generated by Visual Studio.

Hosting a WCF service requires NServiceBus to bind to
a port to listen to requests. This may require you to run
Visual Studio with elevated privileges.

With an NServiceBus handler exposed as a WCF service, we can place a message
on the service bus from a remote client that does not run its own instance of the bus,
such as a third-party partner, a desktop application written in WPF or WinForms, or
even a remote application written in a non-.NET language.

Advanced Messaging

[84]

NServiceBus command handlers exposed as web services are meant to be hosted
by the NServiceBus host. While it is technically possible to host it while self-hosting
within a web application, doing so would require that the command handler also be
hosted within the web application's AppDomain, which presents problems if you
ever plan to load-balance the webapp.

Additionally, the web service capability should not be used for cross-site messaging.
This can be accomplished with the Gateway component, which will be discussed in
more detail in Chapter 9, Administration.

Summary
This chapter explored advanced messaging techniques that allow you to really take
control of what happens during message handler execution. We started by learning
how to create message assemblies without a dependency on NServiceBus itself,
which grants us the ultimate freedom to perform updates to different components in
our system independently.

After that, we learned some details about the messaging pipeline, including how we
can take advantage of polymorphic dispatch to version our messages, how we can
control the order of message handlers in the pipeline, and actions we can take on the
messages when they are in the pipeline.

Lastly, we learned how to encrypt message properties, transport large payloads over
the data bus, and how we can expose the processing of a command as a WCF service
as an option to interact with remote client code that may be on a different platform.

Until now, we have been dealing with fairly simple messaging examples where a
message comes in, is processed, and has a result. In the next chapter, we will learn
about sagas, which enable us to organize all of these message handlers together to
perform complex business processes that are long-running, sometimes spanning
many minutes, all the way up to months and years.

Sagas
Long-running business processes are all around us. A retailer can't ship a product
until after the credit card has been charged, but only if the user hasn't canceled the
order in the meantime. After spending a certain amount of money, a customer attains
preferred status, entitling them to free shipping. Frequent lyers with Gold status
get more frequent upgrades to irst class and access to special airport lounges where
they get free beer. And really, is there anything more important than free beer?

Long-running processes
Normally, these processes are controlled by ugly behemoths called batch jobs or
scheduled tasks. They run in the dead of night and update our data depending upon
the business rules of the day. But what happens when this is no longer good enough?

The data needs of most companies are growing year on year. What happens when
the database contains so many records that the nightly batch job takes longer than
off-peak hours will permit, and causes too much of a performance penalty to be
run during peak hours? What happens if you work in an industry where there is no
such thing as off-peak hours? And, of course, let's not forget that most batch jobs are
notoriously brittle and prone to failure.

Perhaps, the more troublesome problem with the old way of doing things is our own
user's expectations. Consider the frequent lyer that has just lown the last mile to
achieve Gold status. They can check their miles on their smartphone app, and they
know they should be able to access the airport lounge with the free beer, but they are
denied entry. "It's okay," says the attendant, "you just have to wait for the overnight
batch job. You can access the lounge tomorrow."

This isn't any way to treat our customers. Luckily, we can create a business
process that is reliable and real-time, and leaves all our batch jobs in the past
where they belong.

Sagas

[86]

Deining a saga
A saga is a different way to represent these long-running business processes, by
taking multiple message handlers, similar to the ones we've created in the previous
chapters, and organizing them together with shared state that persists over time. A
message designed to start the process will create a new instance of stored saga data,
and subsequent messages will all share and update this data throughout the saga's
lifetime. Each saga message handler retains all of the same capabilities, such as fault
tolerance and automatic retry, that we've come to rely upon, but with the simple
addition of the stored state.

To demonstrate how to build a saga, we will revisit the example of the project
from the irst two chapters, modiied slightly to support the unobtrusive mode
conventions we learned in Chapter 5, Advanced Messaging. We will be implementing
email veriication, meaning that before the user is created in the database, we will
send them an email containing a code. Then the user must click on a link in that
email to prove they own the address before we create the user in the database.

Now let's start building our saga in the UserService project. We're going to be
redeining how the CreateNewUserCmd message is handled, so for now, comment
out the entirety of the UserCreator class.

Sagas deine behavior and implement business rules, so it's sometimes
helpful to think of them as policies. Therefore, we will be calling our saga
VerifyUserEmailPolicy, creating a new class ile for this, and starting
with the following structure, all in the same ile:

public class VerifyUserEmailPolicy : Saga<VerifyUserEmailPolicyData>

{

 private static readonly ILog log = LogManager

 .GetLogger(typeof(VerifyUserEmailPolicy));

}

public class VerifyUserEmailPolicyData : ContainSagaData

{

 public virtual string Name { get; set; }

 [Unique]

 public virtual string EmailAddress { get; set; }

 public virtual string VerificationCode { get; set; }

}

You will need to add using declarations for the NServiceBus.Saga and
NServiceBus.Logging namespaces to get all the references in the preceding
code to resolve correctly.

Chapter 6

[87]

This code deines the saga class itself and the data storage it uses. The data class is
the saga's memory and automatically persists between messages. The properties
shown are the information we will need to store for the duration of our saga. The
class also inherits other properties from the ContainSagaData base class, which are
used internally by NServiceBus and should be ignored.

Note that we mark the EmailAddress property with the Unique attribute to let
NServiceBus know that we only ever plan to have one active saga per email address.
This hint allows NServiceBus to work with the underlying saga storage to create
constraints that ensure that only one thread can modify the saga data at once. I
am also marking all the saga properties as virtual because this is required by the
NHibernate saga persister, if that's the persistence we elect to use. We will discuss
more on this in the following sections.

Before we proceed, note that Visual Studio isn't very happy with us right now
because Saga<TSagaData> is an abstract class and we haven't implemented a
required abstract method. So let's quickly allow Visual Studio to implement the
abstract class for us, and remove NotImplementedException so that what we'll have
left will look like this:

protected override void ConfigureHowToFindSaga(
 SagaPropertyMapper<VerifyUserEmailPolicyData> mapper)

{

}

This is a signiicant change in NServiceBus 5.0. In previous versions, this was a
virtual method, and forgetting to implement it was the cause of much pain and
suffering. We'll return to ill this momentarily.

Now let's add a handler for the CreateNewUserCmd message that the UserCreator
class previously handled. Implement IAmStartedByMessages<CreateNewUserCmd>
on the saga class. This deines a Handle (CreateNewUserCmd message) method
identical to IHandleMessages<T>, but carries the additional instruction to the saga to
create a new saga instance if it can't ind an existing instance in the data store.

Implement the Handle() method as shown here:

public void Handle(CreateNewUserCmd message)

{

 this.Data.Name = message.Name;

 this.Data.EmailAddress = message.EmailAddress;

 this.Data.VerificationCode = Guid.NewGuid()

 .ToString("n").Substring(0, 4);

 Bus.Send(new SendVerificationEmailCmd

 {

 Name = message.Name,

Sagas

[88]

 EmailAddress = message.EmailAddress,

 VerificationCode = Data.VerificationCode,

 IsReminder = false

 });

}

It's important to note that Bus is already provided for us in the saga's
base class. This trips a lot of people up! If you start with a normal
handler class with an injected Bus instance and then convert that
handler into a saga, be sure to remove your injected Bus property, or it
will mask the base class instance, and things won't work properly.

Our saga data is available through the base Saga<T> class as this.Data. Because this
message starts the saga, this data needs to be set for the irst time. In this example,
we set VerificationCode to a random string by generating a Guid and taking the
irst four characters. In real life, we would want this veriication code to be longer,
but we're going to have to test this later and would not enjoy typing out an entire
Guid by hand!

After setting up the saga data, we send a new command called
SendVerificationEmailCmd. The handler of this command should format and send
an email to the user containing a link that will include the veriication code. The idea
behind the IsReminder property is that we can enable sending two slightly different
versions of the email: one initially and one after some length of time has elapsed to
remind the user to verify their account in case they have forgotten. We will cover this
later in the Dealing with time section.

We won't cover creating the command or the handler for this as it should be old
hat by now! However, an implementation that simply logs the data to the console
is included in the full code sample with this chapter. Remember, you will also need
to deine the message routing for the SendVerificationEmailCmd command in
the App.config ile.

Finding saga data
Wait a second! We said that IAmStartedByMessages<T> tells the saga to create
a new saga instance if the existing saga data is not found, but how does it know
where to look for the saga data?

Chapter 6

[89]

As it turns out, we need to give NServiceBus a bit of help with this, by telling it how
to match message properties with saga data. Because the ConfigureHowToFindSaga
method is now abstract in 5.0, we have already created it, but now we have to ill in
the details using the mapper object it provides:

mapper.ConfigureMapping<CreateNewUserCmd>(msg => msg.EmailAddress)

 .ToSaga(data => data.EmailAddress);

The ConfigureMapping<TMessageType> method accepts an Expression
(a specialized lambda expression that can be evaluated at runtime) that identiies a
property on the incoming message to match with the saga data. Then, with the result,
we call the ToSaga method that accepts a similar expression pointing to the matching
property in the saga data. So in essence, this entire expression says, "Find a property
on the CreateNewUserCmd message called EmailAddress, and then ind a saga
instance that has the same value for its EmailAddress."

There is an additional method of inding a saga—by implementing
IFindSagas<TSagaData>.Using<TMessage>. This is considerably
more advanced and requires interacting directly with the saga storage.
The ConfigureHowToFindSaga() method should be suficient for
most use cases.

When two or three properties together uniquely identify the saga,
a much simpler strategy is to combine these values into a single
composite key and store that as a separate property.

For example, if a saga is identiied by the combination of CustomerId
and OrderId, you would create a string property called SagaKey that
equals CustomerId + "/" + OrderId, and then pass that value
around in all your messages.

Ending a saga
When the user receives this email, they are obviously going to be very excited to join
your site, so they are going to click on it immediately. Let's handle this next.

In the website's HomeController class, add the following action method:

public ActionResult VerifyUser(string email, string code)

{

 var cmd = new UserVerifyingEmailCmd

 {

 EmailAddress = email,

Sagas

[90]

 VerificationCode = code

 };

 ServiceBus.Bus.Send(cmd);

 return Json(new { sent = cmd });

}

This should look similar to the CreateUser action method that we already have.
The routing information we have in the Web.config ile routes all messages from
our UserService.Messages assembly to the UserService endpoint, so we shouldn't
need to add anything there.

Now we can handle this new message within our saga. This new message cannot
possibly start the saga because our business process cannot create it until after the
saga has started. So we must implement IHandleMessages<UserVerifyingEmail
Cmd> on the saga just like we would with a normal message handler. Implement the
Handle method like this:

public void Handle(UserVerifyingEmailCmd message)

{

 if(message.VerificationCode == this.Data.VerificationCode)

 {

 Bus.Send(new CreateNewUserWithVerifiedEmailCmd

 {

 EmailAddress = this.Data.EmailAddress,

 Name = this.Data.Name

 });

 this.MarkAsComplete();

 }

}

All we are doing is checking to ensure that the incoming veriication code matches
the one we already have stored in our saga data. If it does, we send another new
message (available in the sample code but not shown here) to create the user for real,
and then call the MarkAsComplete() method.

The MarkAsComplete() method inishes the saga and instructs the infrastructure
that we can throw away the related saga data, as it will not be needed anymore.

As we have added a new message, we also need to remember to add a new saga
mapping to our ConfigureHowToFindSaga method:

this.ConfigureMapping<CreateNewUserCmd>(msg =>
 msg.EmailAddress).ToSaga(data => data.EmailAddress);

this.ConfigureMapping<UserVerifyingEmailCmd>(msg =>
 msg.EmailAddress).ToSaga(data => data.EmailAddress);

Chapter 6

[91]

When the CreateNewUserWithVerifiedEmailCmd message is received, we want
to create the user the same way as we did before we started our saga example.
To do this, switch over to the UserCreator.cs ile, uncomment it, and replace
CreateNewUserCmd with CreateNewUserWithVerifiedEmailCmd, within both the
interface and the Handle() method.

At this point, we have covered all of the user interactions, assuming that the user is
paying attention, and we can now test the system:

1. Run UserService, WelcomeEmailService, and ExampleWeb.

2. In the web browser, navigate to /CreateUser?name=David&email=david@
example.com.

3. UserService should tell us that it's sending a veriication email with the
veriication code. Jot that down so that we can simulate the email click.

4. To simulate the link click, navigate to /VerifyUser?email=david@example.
com&code={VerificationCode}.

5. UserService should tell us that it's now creating the user.

6. WelcomeEmailService should tell us that it is sending the welcome email.

So we can see how we have inserted a business policy before the creation of a user.
We didn't have to change the schema of our user database to support a non-veriied
type of user. In fact, we wouldn't have to change our data layer at all! But we're still
missing the element of time.

Dealing with time
Right now, you might be saying that we could have implemented what we have so
far using a database table for temporary users, and that all we'd need is a cleanup
batch job to clear out the users that never follow through. However, to do so would
be to miss the great lexibility that sagas offer.

At their core, sagas are entities that contain multiple message handlers with shared
state, but they also offer the ability to set a timeout, which is like setting an alarm
clock to wake you up at some point in the future. This ensures that the process does
not have to stop just because no new messages come in.

But what is better than just an anonymous alarm clock is that we're also able to pass
some state into the future, so our saga will not only wake up on command but also
know why it woke up.

Sagas

[92]

In our case, we want two timeouts. When the user irst attempts to register, we
want a wake-up call two days later so that we can remind the user to complete
the registration, just in case they get busy and forget about us. Then we want an
additional wakeup call after seven days so that we can remove their information
and clean up the database.

First, we need to deine our timeout messages. Add these classes to the
VerifyUserEmailPolicy.cs ile, outside the main VerifyUserEmailPolicy class:

public class VerifyUserEmailReminderTimeout

{

}

public class VerifyUserEmailExpiredTimeout

{

}

The difference between these two classes is just enough state so that when the
timeout is triggered, we will know why. Timeouts are like messages, and they can
contain properties to pass additional state information. However, the simpler you
can make them, the better.

In order to set the alarm clock for these timeouts, add the following code to the end
of the Handle(CreateNewUserCmd message) method:

this.RequestTimeout<VerifyUserEmailReminderTimeout>(

 TimeSpan.FromDays(2));

this.RequestTimeout<VerifyUserEmailExpiredTimeout>(

 TimeSpan.FromDays(7));

This overload of the RequestTimeout() method speciies the type of timeout
message, and the timeout duration using a TimeSpan object. Since we have no state
properties to set, NServiceBus will create the timeout for us. There are several other
overloads that make the following combinations of options possible:

• Specify the duration as an absolute DateTime object or as a TimeSpan object

• Supply an instance of the timeout message with any state properties
already illed

• Supply an Action<T> delegate to set state properties for the timeout message

Now we need to handle our timeouts within the saga. To do this, implement the
IHandleTimeouts<T> interface on the saga class for both the timeout types. The
implementation for this interface is a method named Timeout, which is shown here:

public void Timeout(VerifyUserEmailReminderTimeout state)

{

 Bus.Send(new SendVerificationEmailCmd

Chapter 6

[93]

 {

 Name = Data.Name,

 EmailAddress = Data.EmailAddress,

 VerificationCode = Data.VerificationCode,

 IsReminder = true

 });

}

public void Timeout(VerifyUserEmailExpiredTimeout state)

{

 this.MarkAsComplete();

}

As we can see, if the timeout is the reminder use case that occurs after two days, we'll
send the same message we used earlier to send the user an email, except that this time,
we specify that it will be a reminder email using the IsReminder = true lag.

If the timeout is the expiration use case that occurs after seven days, then we will
use the MarkAsComplete() method to inish the saga, after which our saga data
will be removed.

If any message (whether a normal message or a timeout) arrives at the saga after
MarkAsComplete() is called, then the infrastructure will ignore that message.
Therefore, if the user attempts to verify their account just after it expires, that message
will be ignored and the user will not be veriied. Conversely, if the user veriies their
account an instant before the timeout is ired, then the timeout will be ignored.

Design guidelines
In any instance where you might use a batch job or scheduled task, or in situations
that involve complex, ever-changing business requirements, the saga pattern is
generally a good it. However, there are some things you should keep in mind.

Business logic only
While it may be tempting to throw a whole bunch of logic, data access, and the
whole kitchen sink into a saga, this is not a good idea.

Although saga data storage is abstracted to be very easy to work with, remember that
at some point, data needs to be saved using the persistence strategy you selected for
your endpoint, which could be NHibernate or RavenDB. Or you could even roll your
own saga storage by creating and registering an implementation of ISagaPersister
(we will cover dependency injection in Chapter 7, Advanced Coniguration).

Sagas

[94]

No matter which persistence mechanism is used, if there are a lot of messages
being processed in parallel, then there will be contention on the saga storage, which
you don't want to exacerbate, for example, by adding data access to the ambient
transaction. Additionally, if you use a different database for your business data, you
would force the extra overhead of a distributed transaction to the database being used.

For this reason, message handlers within sagas should be used for message
processing and business logic only. Messages or timeouts go in, decisions are made,
and then messages or timeouts come out. Any additional work should be carried
out by independent message handlers. Think of the saga like the captain of the ship.
The captain gives orders but doesn't actually drive!

Therefore, we have a need to dispatch a command from the saga to an independent
handler, and then have that handler report back the status. We dispatch the command
the same way we're accustomed to, using Bus.Send(), but when it's time to report
back, we use Bus.Reply() instead:

public class MyHandler : IHandleMessages<MyCmd>

{

 public void Handle(MyCmd message)

 {

 // Do work!

 Bus.Reply<ReplyMsg>(m => /* set props of m */);

 }

}

There's even a bonus! NServiceBus will know that you are replying in response to
a command sent from a saga, and it will take care of correlating the reply message
back to the correct saga instance. This means that, in this example, you don't even
have to add a mapping for the ReplyMsg class in ConfigureHowToFindSaga().
Of course, we could also publish a message from the handler, and the saga could
subscribe to it like any other message.

At some point, your saga may need to report back to the originator, that is, the
sender of the message that started the saga. The Bus.Reply() method won't
work in this case, as it only replies to the sender of the message currently being
processed. To reply back to the sender of the message that started it all, call the saga's
ReplyToOriginator() method instead.

When using unobtrusive mode conventions, reply messages are neither commands
nor events. Instead, they must it the .DefiningMessagesAs()convention. In this
book, we deine these messages by a namespace ending with InternalMessages.

Chapter 6

[95]

Saga lifetime
The example we showed in this chapter features a saga with a very deinite lifespan,
but that isn't the way it always has to be. Sagas don't necessarily ever have to end.

Consider the frequent lyer story from the beginning of the chapter. In order
to obtain Gold status to get into the executive suite, you had to have lown
50,000 miles within the past calendar year. How would we write a saga for this?

The saga data would store a running total of miles and your current lyer status. If
you lew from New York to Los Angeles, the running total would be incremented
by roughly 2,800 miles, and a timeout would be set to decrement the running total
by 2,800 miles 365 days from now. If the running total went over 50,000 or back
under 50,000, then events would be published to announce that your Gold status
had changed. However, the saga would never be completed.

This is the same concept as any sort of preferred customer situation where the sum
of something over a given time range drives a business outcome, but this is hardly
the only type of never-ending saga. Any sort of scheduler that manages interactions
around a given resource could be a never-ending saga. Consider a process charged
with downloading and processing an RSS feed for content integration. The saga
could be charged with setting a timeout to download the feed again, 15 minutes after
it is successfully processed, and if unsuccessful, change the download status to an
error state and publish an event so that administrators can take a look at the remote
feed, ix it, and then transition it back into the active state.

Savvy readers may notice that there really isn't much of a
conceptual difference between a saga that never ends and an
Aggregate Root in the parlance of Domain Driven Design.

Saga patterns
Sagas can be as varied as the developers who create them, but generally, they follow
two basic patterns.

Sagas that follow the controller pattern take an active management role, sending
commands to speciic endpoints and waiting for their replies before advancing to the
next step. This is a straightforward way to direct a process through a worklow. It
allows you to repeat sections, make decisions, and respond to error conditions with
compensating actions.

Sagas

[96]

Sagas that follow the observer pattern will passively listen for events from other
services, and will use that information to coordinate some activity, generally by
publishing its own event after all the events it is interested in have been received.

These two styles are the relection of the two types of messages. The controller
pattern sends commands, and the observer pattern reacts to events. In reality,
these two styles can be mixed in any number of combinations.

An in-depth examination of various saga patterns is beyond the scope of this book.
However, the topic has already been covered thoroughly by NServiceBus champion
Jimmy Bogard. To learn more, check out his series of posts on saga implementation
patterns on his blog at http://lostechies.com/jimmybogard/2013/05/14/saga-
patterns-wrap-up/.

Messages that start sagas
The important thing to remember is that when you're dealing with messaging,
messages aren't guaranteed to arrive in the order they were published, or in any order
whatsoever! Generally, this means that multiple incoming events can start a saga, and
you need to plan for messages to arrive in the order you would least expect.

Consider a saga that controls the shipping of a product. In the following diagram,
we have Sales, Billing, and Shipping services. The Sales service publishes an
OrderAccepted event, and upon receiving this, the Billing service charges the
credit card and publishes an OrderBilled event.

http://lostechies.com/jimmybogard/2013/05/14/saga-patterns-wrap-up/
http://lostechies.com/jimmybogard/2013/05/14/saga-patterns-wrap-up/

Chapter 6

[97]

The Shipping service will contain a saga that waits to receive OrderAccepted and
OrderBilled, and after that, the product can be shipped. At irst, we might be
tempted to say that only OrderAccepted can start the saga. After all, OrderBilled
cannot be published until after the Billing service receives OrderAccepted.

But not so fast! Even though, logically, OrderBilled cannot happen in time until
after OrderAccepted, it might be possible for the copy of OrderAccepted bound
for the Shipping service to be delayed temporarily, perhaps because a server is
temporarily ofline. If this happens, OrderBilled could arrive and be processed by
the Shipping service irst.

If OrderBilled does not start the saga, then no saga data will be found and
the message must be discarded. This is not good. Instead, we need to allow the
OrderBilled event to start the saga, populate the saga data, and then check to
ensure that all of the saga's conditions (both OrderAccepted and OrderBilled
have been received) have been met, no matter which message arrives irst.

The key takeaway here is that a saga can be started by more messages than
you might at irst think. Unless a message cannot occur until after a saga has
processed its irst message (like UserVerifyingEmailCmd, or if the saga itself
sends the message), then you should implement it as IAmStartedByMessages<T>,
not IHandleMessages<T>. Of course, for every message implemented as
IAmStartedByMessages<T>, you should ill in the saga data properties with the
assumption that they all are uninitialized.

Retraining business stakeholders
Perhaps, the biggest challenge when creating sagas is not a technical challenge at all,
but a human one. For years, we have trained our business stakeholders to think in
terms of batch jobs and scheduled tasks. When they give you requirements, it will
likely be couched in these terms.

Just as it requires us as developers to think in a different way when we build
messaging systems, so must we retrain our business stakeholders as well. All we need
to do is ask the right questions. For example, in our example of the frequent lyer
program, if we point out that running a nightly batch job will mean that the newly
minted Gold Member will not be able to access the executive lounge until the next day,
business stakeholders will likely be quick to point out that this isn't what they really
want, but that they were making assumptions based on the tools they knew were
available. With a little back and forth, you can discover the true system requirements.

Sagas

[98]

Persistence concerns
Storing saga data depends upon a saga persister that is able to translate our
C# classes into a data store and back again. Because the different persistence
mechanisms behave in wildly different ways, this introduces some behavior
that we need to be aware of when creating our saga data classes.

We won't really discuss in-memory persistence because it is not it for production
use, and because by just storing the object in memory, it really doesn't have to do
much of anything. However, we do need to mention a few things about RavenDB
and NHibernate.

RavenDB
RavenDB is a document database that serializes C# class structures to JSON and then
stores that JSON in its data store, identiied by an ID. This makes it capable of storing
a potentially complex object graph without a lot of hassle.

However, one implementation detail of RavenDB is that while storing or loading
a document by its ID is a fully transactional operation, querying by any other
document property is not. This is because RavenDB uses asynchronously updated
indexes for queries by anything other than the ID. This means that the RavenDB
saga persister must rely on the Unique attribute mentioned earlier in order to build a
pointer document to the saga itself.

In our example for this chapter, we have EmailAddress as our unique attribute.
The RavenDB saga persister will generate a unique ID based on the value of the
email address, and use that as the ID of a document that will point to the saga
document. RavenDB can then return both documents in one fully transactional
round trip to the database.

This information might come in useful if you go to RavenDB Studio to look at
stored saga data, but the primary takeaway here is just how important the Unique
attribute is to the RavenDB saga persister. If it is not included, the persister will
be forced to query the asynchronously updated index store, which may mean
(especially under conditions of high load) that it will fail to ind a saga's data,
which should actually exist.

Chapter 6

[99]

NHibernate
As suggested by its name, the NHibernate saga persister uses NHibernate, an
object-relational mapper, to map saga data properties to a relational database. This
means that NHibernate needs to examine your saga data and create a database table
for each saga type, with columns for all of your properties. If your saga contains a
child object, this means that property names will be concatenated to force your data
into one table. If your saga data contains a collection, either of primitive or complex
types, NHibernate will have to create an additional table to store those values.

Saga data must be transactional, and so locks must be taken out on saga data tables.
So the more tables your saga data is forced into, the more you might observe locking
and contention. When using the NHibernate saga persister, it may be worth your
time to minimize the amount of tables necessary to get the best performance.

Additionally, in order to provide the ability to lazy load information from the
database without inheriting from a special NHibernate base class, all properties used
with the NHibernate saga persister must be marked as virtual. If you forget this,
you will get a The following types may not be used as proxies exception. Luckily,
these exceptions also point you to exactly what you need to correct.

NHibernate requires virtual properties because behind the scenes, it will create a
class that inherits from your saga data class, intercepting your requests for data.
This means that if a saga message handler doesn't need access to a collection (and
by extension, an additional table) it won't bother to load from (and put a lock on)
that table. In order to inherit from your class and intercept your properties, all
those properties must be marked as virtual. It's a small price to pay for a pretty
important performance optimization.

Azure
Windows Azure includes many cloud services, but the NServiceBus persistence
mechanism for Azure utilizes Azure Table Storage Service, which is fairly limited
in comparison to a full relational database. If you are using Azure storage for your
sagas, your saga data must be lat (there must be no nested entities or collections)
and only a limited set of data types (string, int, long, double, bool, DateTime,
Guid, and byte[]) are supported. Full details about Azure storage can be found here
at http://msdn.microsoft.com/en-us/library/azure/dd179338.aspx.

http://msdn.microsoft.com/en-us/library/azure/dd179338.aspx

Sagas

[100]

For the other uses of NServiceBus persistence, such as subscription storage, Azure
Table Storage works quite well because the data is very structured to begin with. In
sagas, it can be quite a bit more constraining in all but the simplest of sagas, but you
may be able to get by with a few design workarounds. For example, in a saga where
you are tracking completion of multiple tasks with numeric IDs, you could store a list
of IDs as a comma-delimited list inside a string instead of a nested collection.

If the Azure storage proves to be too limiting, you have other options that you
could utilize. The RavenDB saga persister can be used from Azure to connect to
a RavenDB database hosted in RavenHQ (cloud-hosted RavenDB is available at
http://ravenhq.com/) or a RavenDB database hosted on Azure, which you can
ind in the Azure Marketplace. You can also use the NHibernate saga persister to
connect to SQL Azure. As we learned in Chapter 4, Hosting, it is fairly simple to select
a different persistence mechanism just for saga data, using the following pattern:

cfg.UsePersistence<TPersistence>().For(Storage.Sagas);

Unit testing
When we were covering saga timeouts, you may have found yourself wondering
just how to test something that wasn't supposed to happen for seven days, let
alone an entire year!

One option would be to temporarily set all the timeouts to something so short that
you could observe it before your lunch break, but this approach is problematic
for several reasons. It's still hard to test this way, as you must make the timeouts
long enough for you to have time to be ready and observe what happens, but short
enough so that you don't get bored, zone out, and miss what it was you were trying
to see in the irst place. Then you're in for a world of hurt when you eventually forget
to set those test values back before committing your code!

A much better approach is to take advantage of the NServiceBus testing framework,
which is available through the NServiceBus.Testing NuGet package. You gain the
ability to verify your long-running business processes quickly, along with all the
other beneits of unit testing. Sagas are meant to deine constantly changing business
rules, so it is very useful to have a suite of automated regression tests to alert you to
a problem after changes are made.

To get started with testing a saga, create a new class library and use NuGet to install
the NServiceBus.Testing package and whichever unit testing framework you prefer.
All the examples in this book will use NUnit. In addition, you will need to add
references to the assembly that contains your saga and any message assemblies it uses.

http://ravenhq.com/

Chapter 6

[101]

The irst step is to initialize the testing framework:

[TestFixture]

public class VerifyUserEmailPolicyTests

{

 public VerifyUserEmailPolicyTests()

 {

 Test.Initialize();

 }

}

This is analogous to starting up the bus when self-hosting. The Initialize()
method also has overloads that support specifying the assemblies or types to scan.
Mostly, however, the parameterless Initialize() method will work ine.

Note that we initialized the testing framework within the class constructor. Some
testing frameworks have explicit methods for setup and tear-down. Just be sure that
the framework is initialized before you start running tests or you will run into errors
when the code you are testing tries to access the bus.

With the testing framework initialized, we can start to test our saga:

var testSaga = Test.Saga<VerifyUserEmailPolicy>();

We use the type of our saga as the generic parameter, which returns an object
that will allow us to start our test script. We wouldn't have to assign our saga
to a variable, but it can be helpful in order to separate tests from each other.

Each test follows a pattern that can be expressed using a variation on this simple phrase:

"I expect that {things will happen} when {a trigger occurs}."

Let's see how this pattern works out with a sample test, and then we'll break it down:

CreateNewUserCmd createUser = new CreateNewUserCmd

{

 Name = "David",

 EmailAddress = "david@example.com"

};

string correctCode = null;

testSaga.ExpectSend<SendVerificationEmailCmd>(cmd =>

 {

 correctCode = cmd.VerificationCode;

Sagas

[102]

 return cmd.EmailAddress == createUser.EmailAddress

 && cmd.Name == createUser.Name;

 })

 .ExpectTimeoutToBeSetIn<VerifyUserEmailReminderTimeout>(

 (timeout, timespan) => timespan == TimeSpan.FromDays(2))

 .ExpectTimeoutToBeSetIn<VerifyUserEmailExpiredTimeout>(

 (timeout, timespan) => timespan == TimeSpan.FromDays(7))

 .When(saga => saga.Handle(createUser));

Going down to the bottom, to the When() method, we see that the trigger is the saga
receiving the CreateNewUserCmd message that starts it. Our expectations are detailed
as follows:

• We expect the saga to send a SendVerificationEmailCmd message. We pass
it to a delegate to verify that properties are set on the message as we expect.
We also use the delegate to get the generated veriication code out so that we
can use it in the next test.

• We expect a timeout to be set for 2 days in order to trigger the reminder email.

• We expect a timeout to be set for 7 days in order to cause the saga to expire.

From here, we could begin the next test without even stopping for a semicolon, but
it's useful to separate them so that the Test/Expect/When pattern is easier to see in
the code, not to mention step through in the debugger.

The testing framework contains several Expect() methods, covering everything from
sending and publishing, not sending or publishing, replying, returning, and setting
timeouts, and a few When() methods to cover receiving messages and timeouts.
Besides these, a few other methods are needed to round out the testing suite.

If your saga requires any external dependencies, you can set them up at the
beginning of the test:

Test.Saga<TSagaType>()

 .WithExternalDependencies(saga =>

 {

 // Configure saga dependencies here

 })

 // Expect clauses

 .When(saga => saga.Handle(command));

Chapter 6

[103]

You can also set incoming properties on a message:

Test.Saga<TSagaType>()

 // Expect clauses

 .SetIncomingHeader("Header-Key", "Header-Value")

 .SetMessageId(messageId)

 .When(saga => saga.Handle(command));

Lastly, we need to be able to make assertions about whether the saga has completed
or not. We can make this assertion between tests, or right after the When() clause:

Test.Saga<TSagaType>

 // Expect clauses

 .When(saga => saga.Handle(command))

 .AssertSagaCompletionIs(true);

Note that it is just as useful to assert that a saga is not complete!

For a complete example of a test suite for our example saga, check out the sample
code included with this chapter.

Testing events as interfaces
In this book, I have advocated implementing events as interfaces for the reasons
outlined in Chapter 5, Advanced Messaging. This does introduce a bit of a wrinkle;
without a concrete class, you can't build an instance of an event to feed it to the
saga under test.

The test framework has a helper for the following code:

// Option 1: Create an instance of a message that we can set
properties on

var evt = Test.CreateInstance<TMessage>();

// Option 2: Create an instance of a message and run an initializer
action on it

var evt = Test.CreateInstance<TMessage>(Action<TMessage> action);

Sagas

[104]

Scheduling
By now, you're probably thinking that Saga timeouts sound great, but what if you
just need to run something on a schedule? Maybe you're thinking you'll create an
IWantToRunWhenBusStartsAndStops class with a Timer. Well if you are, stop right
there! NServiceBus can bring the power of timeouts to you without the full ceremony
of a saga:

public class ScheduleTasks : IWantToRunWhenBusStartsAndStops

{

 public IBus Bus { get; set; }

 public Schedule Schedule { get; set; }

 public void Start()

 {

 Schedule.Every(TimeSpan.FromMinutes(5)).Action(() =>

 {

 Bus.Send<DoSomethingEvery5MinutesCmd>();

 });

 Schedule.Every(TimeSpan.FromMinutes(5)).Action("Task Name", () =>

 {

 Bus.Send<DoNamedTaskEvery5MinutesCmd>();

 });

 }

 public void Stop() { }

}

The scheduler is like a mini-saga that can send messages at particular times. The
important thing to keep in mind while using schedules is to steer clear of any custom
logic. The scheduler should only initiate a message. Then you can do whatever needs
to be done within the transactional safety of a message handler. If you ind yourself
wanting to introduce logic into the schedule, you should upgrade to a full saga, or
use a more full-featured scheduling library such as Quartz.NET.

On endpoint startup, a scheduled task is dispatched immediately, and then the
timeout for the next run is only valid for the current run of the AppDomain. Therefore,
it is possible for a task to run more frequently than the schedule if, for example,
the server restarts in the middle. As such, this feature is best suited for short-range
timeouts of the order of minutes rather than long timeouts of multiple days.

Chapter 6

[105]

Summary
In this chapter, we learned how to use sagas to create long-running business
processes that bring the reliability we've come to associate with message handlers to
a realm previously occupied by brittle and unreliable batch jobs and scheduled tasks.

We learned how to deine a saga and its data, and how to ind a saga's data based on
an incoming message. We also learned how to request timeouts so that a saga can
wake itself up at some point in the future, and how to end a saga if required.

Then we learned the importance of restricting a saga's activities to business logic
only, segregating data access and other work to other message handlers that can
communicate back to the saga with reply messages. We discussed saga lifetime, the
controller and observer saga patterns, and the importance of retraining our business
stakeholders, who might be too used to the old way of doing things to realize what
can be accomplished using messaging.

We learned how we can leverage unit testing to validate our business logic. As sagas
tend to represent constantly changing business rules, the ability to unit-test will help
us to ensure that our test cases do not fail when we make a change to the system.

Lastly, we learned how we can use the scheduling API to reliably schedule messages
to be sent on a ixed schedule with minimal fuss.

In the next chapter, we will take a look at how to administer an NServiceBus system
so that we can successfully manage our code in production.

Advanced	Coniguration
Neo: What are you trying to tell me? That I can dodge bullets?

Morpheus: No, Neo. I'm trying to tell you that when you're ready, you won't
have to.

-The Matrix (Warner Bros., 1999)

When I irst saw The Matrix, before it was kind of ruined by its two sequels, it
absolutely blew my mind. At this point in the movie, Neo has been shown the Matrix
and he has discovered that he can manipulate it, to a certain extent, to be stronger,
faster, and more awesome than everyone else. However, Neo hasn't yet fully made
the leap and realized that he can remake the Matrix in any way he pleases.

You are Neo right now. You have learned a lot about the Matrix, that is,
NServiceBus, but you are still playing by its rules. In reality, NServiceBus is an
amazingly pluggable and conigurable piece of software. Some of its rules can be
bent. Others can be broken. In this chapter, you will learn how to conigure and
reconigure NServiceBus into something completely unrecognizable, if you choose.
I'll teach you how to bend the spoon.

First, you will learn how to modify NServiceBus through its general extension points
using custom dependency injection. After this, you'll learn a few more advanced
coniguration constructs before the (new for 5.0) NServiceBus pipeline is covered,
which provides the ultimate ability to add or replace behaviors in the incoming
and outgoing message pipelines in order to remake NServiceBus in any way you
might choose.

Why dodge bullets when you can stop them in their tracks? I'll leave the
uncomfortable black leather outits up to you.

Advanced Coniguration

[108]

Extending NServiceBus
NServiceBus allows you to conigure the host process by implementing speciic
interfaces that it will ind when performing assembly scanning on startup.
This includes two coniguration interfaces, IConfigureThisEndpoint and
INeedInitialization, that deine a Customize method, which gives you access to the
BusConfiguration instance, and an IWantToRunWhenBusStartsAndStops endpoint
startup interface, which allows you to perform nonconiguration startup tasks.

Let's take a look at these interfaces in the order in which they are executed.

IConigureThisEndpoint
We have already seen this interface, as the single class that implements it
(commonly called the EndpointConfig) deines an endpoint hosted by the
NServiceBus Host process. When the host process starts up, it scans all the
assemblies in the runtime directory for this interface, and when it's found,
NServiceBus gives the class implementing it the irst chance to conigure
NServiceBus through the BusConfiguration object.

The EndpointConfig also sometimes implements at least one other interface, either
AsA_Client or AsA_Server. AsA_Server signiies that this is a server endpoint, and
as such, it should be set up to be a transactional endpoint, not purging the input
queue on startup. By contrast, AsA_Client indicates that the endpoint operates more
like a web application: nontransactional and with no message handlers as well as
purging the input queue on startup. This is fairly uncommon, so most of the time,
we will use AsA_Server for our NServiceBus Host endpoints.

In the previous versions of NServiceBus, there was also an
AsA_Publisher interface to indicate that the endpoint will
publish messages, requiring setup of subscription storage and
a few other things. (I personally would tend to forget about
this during live coding demos, much to my repeated chagrin.)

In NServiceBus 5.0, AsA_Publisher is deprecated.
NServiceBus is smart enough to conigure settings for
message publishing when necessary.

While AsA_Server still exists in the NServiceBus 5.0 public
API, its behavior is the default and its implementation is a
no-op, so it isn't really required to include it. AsA_Client is
the only meaningful modiier interface left.

The coniguration of NServiceBus settings is now order independent, so allowing the
endpoint-speciic settings to be made irst in the EndpointConfig class allows the
internal features of NServiceBus to conigure themselves without stepping on your toes.

Chapter 7

[109]

INeedInitialization
The workhorse of NServiceBus coniguration is INeedInitialization. Every class
that implements this interface will be detected by NServiceBus on startup and it will
be activated, both in an NServiceBus Host endpoint and in a self-hosted endpoint.
Similar to IConfigureThisEndpoint, it offers a Customize() method that gives you
access to the BusConfiguration instance:

public class MyInit : INeedInitialization

{

 public void Customize(BusConfigurationcfg)

 {

 // Perform customizations here

 }

}

Because these classes are automatically detected and invoked and the signature of
the Customize method is exactly the same as IConfigureThisEndpoint, this is the
perfect place to centralize all the endpoint settings that are common to your entire
system. You can create a single assembly named YourCompany.Conventions with
all of your settings deined in the INeedInitialization classes, and then drop this
assembly into each and every endpoint, both hosted and self-hosted. With this in
place, your EndpointConfig classes can be, for the most part, completely empty.

In the previous versions of NServiceBus, the order of certain
coniguration steps made a lot more difference, and as a result, there
were a lot more coniguration interfaces that provided access to the
conig at different times in the startup process. Now that the precise
ordering of different coniguration steps is no longer necessary, these
interfaces from the older versions of NServiceBus are all obsolete:

• IWantCustomInitialization

• IWantToRunBeforeConfiguration

• IWantCustomLogging

In addition to these that are already obsolete, the following two
extension points will eventually be made obsolete in NServiceBus 6.0,
so it will be unwise to start using them now:

• IWantToRunBeforeConfigurationIsFinalized

• IWantToRunWhenConfigurationIsComplete

It is one of the great achievements of NServiceBus 5.0 that you can
use INeedInitialization for all of your coniguration needs.

Advanced Coniguration

[110]

IWantToRunWhenBusStartsAndStops
This is the last general extension point. It is unique since it is not necessarily a
coniguration point but a way to deine the application startup (or teardown) tasks
when the service bus has been fully conigured. It has the Start() and Stop()
methods, allowing you to perform cleanup operations when the endpoint stops,
although Stop() is not invoked for send-only endpoints.

In the previous versions of NServiceBus, this interface was called
IWantToRunAtStartup, so you will most likely see lots of
examples on the Internet using this old name.

Because they are not focused on coniguring the system, classes that implement
IWantToRunWhenBusStartsAndStops are usually more geared toward the local
endpoint code and are not generally shared in conventions assemblies between
multiple endpoints. You also have full access to dependency injection, meaning that
you can inject an IBus instance and send or publish messages. As such, it is probably
only a matter of time until you ind yourself creating one for debugging to quickly
send a message each time you press the Enter key.

It is important to remember that unlike a message handler, these methods have
no ambient transactions or try/catch semantics. So, it is possible for an uncaught
exception here to cause the entire process to fail. Therefore, it's not a good idea to
do a lot of work here. Send a message and have it processed transactionally instead!

The Stop() method can be a little dificult to observe. When an endpoint is installed
as a Windows service, it ires when the service stops. You can also observe it from a
console window if you interrupt the process by pressing Ctrl + C.

An implementation of IWantToRunWhenBusStartsAndStops is a great place to create
a quick interface in order to test messages during debugging by allowing you to
send messages based on the console input. Apart from this, it isn't common to have
widespread use of them in a production system. One possible production use case
will be to provision a resource needed by the endpoint at startup and then tear it
down when the endpoint stops.

Chapter 7

[111]

Dependency injection
You already know that you can use the BusConfiguration instance provided by
IConfigureThisEndpoint or INeedInitialization to set many of the options
introduced in Chapter 4, Hosting, which gives you a great amount of control over
how the bus operates, but you can also make your own customizations. This will
usually involve dependency injection.

Let's say that we want to be able to create unit tests in order to verify how our
handlers react to time. Testing with code that is time dependent is dificult since the
time is always changing. So, instead of using DateTime.Now or DateTime.UtcNow
directly, we'll create an interface to abstract the implementation of retrieving the
current time and an implementation class that will provide the true time when we're
not running a test:

public interface ITimeProvider

{

 DateTime Now { get; }

 DateTime UtcNow { get; }

}

public class DateTimeProvider : ITimeProvider

{

 public DateTime Now

 {

 get { return DateTime.Now; }

 }

 public DateTimeUtcNow

 {

 get { return DateTime.UtcNow; }

 }

}

We will create another class called MockTimeProvider that will allow us to adjust the
meaning of Now in the middle of a test, but we'll ignore that for now. At the moment,
we are concerned with how to get our DateTimeProvider class injected into our
message handler classes so that we can use it.

Advanced Coniguration

[112]

To conigure our DateTimeProvider class in the dependency injection container, we
start with our BusConfiguration instance from either our EndpointConfig class or
an INeedInitialization class and begin to register our components. We'll continue
to call the BusConfiguration instance by the name cfg for brevity. Here, I will use
the multiline lambda expression (with the curly braces after =>) because it is fairly
common to want to register more than one dependency:

cfg.RegisterComponents(reg =>

{

 reg.ConfigureComponent<DateTimeProvider>(

 DependencyLifecycle.SingleInstance);

});

The preceding code will look at the DateTimeProvider class to determine which
services it provides, or in other words, which interfaces it implements. In this case,
it implements ITimeProvider, so it registers that a DateTimeProvider object should
be returned whenever an ITimeProvider parameter is requested.

The DependencyLifecycle.SingleInstance enumeration member speciies that
only one instance of DateTimeProvider will be created and it will be returned on
every request for ITimeProvider. The other choices for DependencyLifecycle
are InstancePerCall, which speciies that a new DateTimeProvider instance
will be created for every request, and InstancePerUnitOfWork, which means that
a new DateTimeProvider instance will be created for each unit of work. We will
cover units of work later in this chapter. We are using SingleInstance because
our implementation is inherently thread safe and there's really no reason to create
multiple objects.

There are additional overloads for the ConfigureComponent method, which accept
factory delegates that allow you to specify how to construct the object being injected,
but these are generally only used in advanced scenarios.

All the ConfigureComponent methods return an IComponentConfig instance that
allows you to instruct the container to set properties on the injected objects:

string connStr = "Your DB Connection String";

reg.ConfigureComponent<DataStore>(
 DependencyLifecycle.InstancePerCall)
 .ConfigureProperty(ds => ds.ConnectionString, connStr);

Chapter 7

[113]

The preceding code takes an expression that points to a property on the object
and a value to ill it with. This way, your DataStore object is injected with the
ConnectionString property already illed in. You can daisy-chain as many calls
to the ConfigureProperty method as you need using a luent style.

Using these methods, you can abstract a lot of services that your message handlers will
need to do their job, resulting in a code that is more maintainable and more testable.
You will also be able to easily swap out different implementations depending on
the environment you are in, such as Development, Test, QA, or Production. We will
explore how to do this in more detail in Chapter 9, Administration.

Unit of work
Because messages are processed in a pipeline of handlers, you will, at times, have to
execute code before the irst handler and after the last handler. This is necessary for
data stores that follow the unit of work pattern, such as NHibernate or RavenDB,
where you need to create a database session before handling a message and then
commit or rollback any changes at its completion. One method to accomplish this is
by using a unit of work implementation. We will discuss another method when we
cover the pipeline later in this chapter.

In order to deine a unit of work implementation, you must irst implement the
NServiceBus.UnitOfWork.IManageUnitsOfWork interface. Here, we have an
example that will simply write messages to the console:

public class ConsoleUnitOfWork : IManageUnitsOfWork

{

 public void Begin()

 {

 Console.WriteLine("---Begin message---");

 }

 public void End(Exception ex = null)

 {

 Console.WriteLine("---End message---");

 }

}

Advanced Coniguration

[114]

The Begin() method is invoked before the irst message handler is executed, and the
End() method is invoked after all the message handlers have completed execution.
If an error occurs during message processing, an exception is passed into the End()
method, otherwise it will be null.

Unit of work implementations are not automatically invoked; you need to
speciically instruct the dependency injection container to use them, as follows:

public class ConfigureUOW : INeedInitialization

{

 public void Customize(BusConfiguration cfg)

 {

 cfg.RegisterComponents(reg =>

 {

 reg.ConfigureComponent<ConsoleUnitOfWork>(

 DependencyLifecycle.InstancePerCall);

 });

 }

}

While it might seem odd that we need to wire this up ourselves, given how much
we have seen NServiceBus wire up for us already, we need to control this ourselves.
Ordering in unit of work implementations can be very important, so we can't leave it
up to any assembly scanning magic. We need to deine the handlers in an order that
makes sense.

Message mutators
Message mutators provide the ability to modify a message either on the way in or
out of a message handler. There are two different categories of message mutators:
applicative and transport message mutators.

An applicative message mutator is used to act on individual messages. They are
the ideal place to perform tasks such as validation. Access to a message is provided
as an object, so usually some amount of relection is required to implement anything
of substance. There are three possible interfaces to implement to create an applicative
message mutator:

• Implement IMutateOutgoingMessages to manipulate messages being sent
from the endpoint

• Implement IMutateIncomingMessages to manipulate messages being
received by the endpoint

• Implement IMessageMutator, which itself implements both the previously
mentioned interfaces, to manipulate both incoming and outgoing messages

Chapter 7

[115]

A transport message mutator is used to act on transport messages, which contain
the message serialized to a byte stream and ready to pass to the message transport,
getting you much closer to the bare metal. You can even manipulate the bytes
of your message, which means that a transport message mutator is the perfect
place to implement functionality such as full-message encryption, signing, header
manipulation, or compression. There are three possible interfaces to implement to
create a transport message mutator:

• Implement IMutateOutgoingTransportMessages to manipulate transport
messages being sent from the endpoint

• Implement IMutateIncomingTransportMessages to manipulate transport
messages being received by the endpoint

• Implement IMutateTransportMessages, which implements both of the
aforementioned interfaces, to manipulate both incoming and outgoing
transport messages

Message mutators are not automatically conigured by the dependency injection
container for the same reason as unit of work implementations, so you must
register them yourself:

reg.ConfigureComponent<MyMessageMutator>(
 DependencyLifecycle.InstancePerCall);

The NServiceBus pipeline
Abstractions such as unit of work and message mutators are useful when they
perfectly it what we need to do with them. However, they are abstractions
after all, and all nontrivial abstractions, to some degree, are leaky.

What does this mean? If you take a look back at the API for a unit of work, for
example, we only get a Begin() and End() method to do any useful work. While
this is extremely valuable in some cases, it can also be extremely limiting. Try using
it to wrap the message processing in a try/catch or using block, for instance, you will
quickly ind that the abstraction is ighting against you, not for you.

With NServiceBus 5.0, you get the full power of the new NServiceBus pipeline,
giving you the ability to get ridiculously close to the metal and customize nearly
every aspect of how NServiceBus sends and receives messages.

Advanced Coniguration

[116]

The pipeline is new in NServiceBus 5.0 and was originally conceived by the
Particular team as a way to simplify and streamline how all the different parts of
NServiceBus were wired up together. It was also very useful internally for providing
customers with customized solutions to unique and novel requirements, but they
quickly found that it will be very useful as a general NServiceBus feature as well.

The pipeline itself is based on a Russian Doll Model, meaning that various behaviors
are nested within each other, similar to Russian nesting dolls, as shown in the
following diagram:

As you can see in the preceding diagram, each behavior is required to call the next()
action, which transfers control to the next behavior in the chain, and after a behavior
is completed, the control falls back to the outer behavior.

In NServiceBus 5.0, many features that were previously implemented by other
means have all been refactored to exist as behaviors. If you're of the curious type,
relecting on the NServiceBus assemblies with a tool such as JetBrains dotPeek to
ind the source code for the classes that implement IBehavior<T> can be a very
educational experience.

Chapter 7

[117]

Building behaviors
A behavior is a class that contains an Invoke() method that takes some action on an
incoming or outgoing message and passes along control to the next step by calling
the next() action. In addition, a behavior can communicate with other behaviors in
the pipeline via a shared context object.

Here's the simplest possible behavior for an incoming message. Since it does nothing,
I'll call it a NoOpBehavior class:

public class NoOpBehavior : IBehavior<IncomingContext>

{

 public void Invoke(IncomingContext context, Action next)

 {

 next();

 }

}

The corresponding behavior for an outgoing message will use an OutgoingContext
parameter in place of the IncomingContext parameter shown. This behavior does
nothing, but the lack of distractions serves to illustrate exactly how a behavior
operates. It is called at some point when a message is being processed; it can take
some actions on the message or communicate with other behaviors via the context,
and then it cedes control to the next behavior in the line by calling the next() action.

What is really useful is that eventually, the next step in the chain will be completed
and the code execution will resume in our behavior just after the next() action is
called. This opens up a lot of interesting possibilities such as the following:

public void Invoke(IncomingContext context, Action next)

{

 // Take action before the next behavior begins

 // by calling next() at the end of Invoke

 next();

}

public void Invoke(IncomingContext context, Action next)

{

 next();

 // Take action after the next behavior ends

 // by calling next() at the beginning of Invoke

}

public void Invoke(IncomingContext context, Action next)

{

 // Wrap the next action in a using or try/catch/finally

Advanced Coniguration

[118]

 using(var something = new DisposableThing())

 {

 // Add the thing to the context for use in other locations

 // in the pipeline

 context.Set(something);

 next();

 }

}

Of course, when you fall out of the end of your Invoke() method, control will be
delivered back to the behavior before you in line. All of this is possible without any
one behavior knowing much of anything about any of the others. All that each one
needs is the rules for how to follow each other in line and someone to set them up in
the proper order.

Ordering behaviors
Behaviors don't really have any concept of ordering on their own. Instead, they are
contained within steps, which are basically named items arranged in an order. You
can think of steps as buckets arranged in a line, which can contain behaviors.

NServiceBus contains 16 well-known steps in the aptly named WellKnownStep class.
These well-known steps, in their order of execution, are given in the following table:

Incoming pipeline Outgoing pipeline

CriticalTime MutateOutgoingMessages

AuditProcessedMessage CreatePhysicalMessage

CreateChildContainer SerializeMessage

ExecuteUnitOfWork MutateOutgoingTransportMessage

MutateIncomingTransportMessage DispatchMessageToTransport

DeserializeMessages

ExecuteLogicalMessages

MutateIncomingMessages

LoadHandlers

InvokeSaga

InvokeHandlers

These well-known steps, of course, contain their own behaviors, which perform the
activities suggested by their names, but they also serve as landmarks that control
the ordering of steps added by NServiceBus plugins or by us. To do this, we create
a class that inherits RegisterStep class.

Chapter 7

[119]

Here is an example that will place a behavior just before LoadHandlers. As you'll
see in just a bit, this makes it possible to use your behavior to inject dependencies
into your message handler classes.

It's customary to make this step registration class an inner class of the behavior class
itself (that is, nested inside it) in order to keep the two together:

public class MyBehaviorRegistration : RegisterStep

{

 public MyBehaviorRegistration()
 : base("StepName", typeof (MyBehavior), "Step Description")

 {

 this.InsertBefore(WellKnownStep.LoadHandlers);

 }

}

The RegisterStep base class contains the InsertBefore, InsertAfter,
InsertBeforeIfExists, and InsertAfterIfExists methods to control where
the step will be placed. Each method accepts either a WellKnownStep instance
or the step's name as a string.

Keep in mind that a step might not necessarily exist. A notable example is the
well-known step InvokeSaga, which is not created if no sagas are present in
the code at runtime. You can specify multiple rules of both the Insert* and
Insert*IfExists types in order to determine a step's position. NServiceBus will
make sure that all are heeded, or it will throw an exception if you have asked for
something that is impossible.

One last thing is needed to wire up our step containing our behavior. The ordering of
the steps is critical, so they must be registered manually with the pipeline:

public class MyStepInit : INeedInitialization

{

 public void Customize(BusConfigurationcfg)

 {

 cfg.Pipeline.Register<MyBehaviorRegistration>();

 }

}

Using an independent INeedInitialization parameter in this manner will
allow you to register multiple steps in their correct order. However, if you have
one step that is largely independent, you can easily combine step registration and
initialization in the same class:

public class MyBehaviorRegistration : RegisterStep,
 INeedInitialization

Advanced Coniguration

[120]

{

 public MyBehaviorRegistration()
 : base("StepName", typeof (MyBehavior), "Step Description")
 {

 this.InsertBefore(WellKnownStep.InvokeHandlers);

 }

 public void Customize(BusConfigurationcfg)

 {

 cfg.Pipeline.Register<MyBehaviorRegistration>();

 }

}

If you recall that steps are like buckets that might contain a behavior, the registration
process makes a lot more sense. We need an IBehavior class to contain our
code, a RegisterStep class to hold the behavior and control its ordering, and
an INeedInitialization class to register the behavior.

The code sample included with this chapter contains an example of a pipeline
behavior that illustrates the ability to wrap next() within a using block,
including all the code necessary to register the step with the pipeline.

Replacing behaviors
In rare situations, you might decide that you want to completely replace the
NServiceBus implementation of a behavior. For example, let's say you wanted to
make the transition from XML to JSON serialization, but you couldn't update every
endpoint at the same time. Some will be upgraded and will send JSON, but others
will still be sending XML. You will need a deserialization behavior that is capable of
snifing the transport message's contents, determining whether it was JSON or XML,
and deserializing accordingly.

It will be silly to remove a step only to create a new step in the same position. In this
situation, we can simply swap out the existing behavior with a new one. Take the
following code snippet as an example:

public class ReplaceDeserializeStep : INeedInitialization

{

 public void Customize(BusConfigurationcfg)

 {

 cfg.Pipeline.Replace(WellKnownStep.DeserializeMessages,
 typeof(XmlOrJsonDeserializeBehavior),
 "Deserializes all the things!");

 }

}

Chapter 7

[121]

The hard part, of course, is writing the code for the behavior itself, because it will
replace the built-in NServiceBus code; this isn't a decision to undertake lightly. The
code in the built-in NServiceBus behaviors is extensively tested and battle-ready;
proceed at your own risk!

The pipeline context
The hello world of pipeline behaviors just prints some stuff out to the console, but this
isn't all that useful. After all, we can do this much more easily with a unit of work
implementation. What really makes a behavior useful is the context object.

Both IncomingContext and OutgoingContext inherit from the BehaviorContext
class, which gives you access to the Builder in order to do dependency injection,
and a series of methods (Get/Set, TryGet/TrySet, and Remove) that make the
context function similar to a strongly-typed property bag.

With the Builder, you can create objects in your behavior, insert them into the context,
and then have the container grab that instance back out of the context when it builds
the message handler classes. You will commonly want to do this with a database
context, such as an Entity Framework DbContext or RavenDB IDocumentSession.
The behavior will create the object and wrap it in a proper using block, and then you
will want access to this from within all your message handlers.

There are a couple tricks to pull this off. First, you will need to do this before
the LoadHandlers step, because this is where the container instantiates the
handler classes, and you have to have your database context DbContext or
IDocumentSession or whatever else registered in the context before then, so that
they can be injected into the handlers. The second trick is to use the Builder to fetch
the PipelineExecutor class for the dependency injection registration:

// Register the dependency that the behavior will create

cfg.RegisterComponents(reg =>

 reg.ConfigureComponent<TDependency>(builder => {

 // First we use the builder to get the PipelineExecutor.

 var pipelineExec = builder.Build<PipelineExecutor>();

 // Now that we have that, get at the current

 // pipeline context and fetch our dependency

 return pipelineExec.CurrentContext.Get<TDependency>();

 }, DependencyLifecycle.InstancePerCall));

The sample behavior in this chapter's sample code contains a complete example of
how to do this.

Advanced Coniguration

[122]

In addition to what is provided by BehaviorContext, the IncomingContext
parameter also provides access to the incoming physical and logical messages.
These messages will give you the ability to create behaviors that mimic message
mutators, access to the current message handler class being executed, and a
DoNotInvokeAnyMoreHandlers() method, which gives you a functionality similar
to Bus.DoNotContinueDispatchingCurrentMessageToHandlers() but with
signiicantly fewer keystrokes!

The OutgoingContext parameter also gives you access to the outgoing physical and
logical messages, in addition to the incoming transport messages for the cases where
you are sending a message from a message handler, plus some delivery options for
the message being sent.

These are really just building blocks, which have the ability to tweak everything about
incoming and outgoing messages at their most basic level. This might not give you the
power to actually dodge bullets, but it is certainly enough to do a ton of interesting
NServiceBus customizations much more easily than has ever been possible.

Outbox
One of the new features in NServiceBus 5.0 is important to understand, especially
if you plan to run NServiceBus in the cloud. The Outbox feature is designed as a
replacement for the Distributed Transaction Coordinator (DTC), and it is turned on
by default for the RabbitMQ transport (which does not support DTC) but is turned
off by default for other transports that support the DTC.

In order to understand Outbox, we should irst understand, at least at a high level,
what the DTC does for us.

DTC 101
Many resources, such as SQL Server or MSMQ for example, support local
transactions that are unique to that resource. The SqlTransaction class is an
example of a local transaction on a SQL Server resource.

DTC is a service built into Windows that is capable of controlling multiple local
transactions simultaneously. A resource that supports the DTC can automatically
upgrade its local transaction to a distributed transaction that is managed by the DTC.
When we do a transactional receive against MSMQ, for example, and then perform
database work, the transaction is promoted to a DTC transaction.

Chapter 7

[123]

The DTC then becomes responsible for coordinating all these local transactions that
have been enlisted in the distributed transaction using a two-phase commit process,
which ensures that either all resource managers commit successfully or all of them
abort it, ensuring consistency. In the irst phase of a two-phase commit, called the
Prepare phase, the DTC asks all the enlisted resource managers whether they are
prepared to commit. In the second phase, called the Commit phase, the DTC gives
all resource managers clearance to commit, assuming that all parties responded with
a yes during the Prepare phase.

In its default coniguration with the MSMQ transport, the DTC gives you the ability
to retry your failed messages at will. Most of the time, your endpoint behavior
will consist of receiving messages, making database changes, and sending new
messages. These are all transactional activities that are wrapped up in one distributed
transaction, so you can rest easy with the guarantee that all will succeed together or
all will fail together.

However, the DTC does have its costs. All the chatter can be very expensive.
When you're mostly on one machine, as will be the case with a local MSMQ and one
database resource, it's not such a big deal. However, in the cloud, where resources
aren't even guaranteed to live in the same datacenter, all of this communication to
get all the enlisted cohorts on the same page can have a deleterious effect on your
system's performance. Nobody claims that DTC transactions are blazing fast, but we
generally accept them for the convenience and security they offer.

Life without distributed transactions
So, how would life be without distributed transactions? If you can guarantee that
your message handlers are all idempotent, then you wouldn't need to do anything.
With idempotent message handlers, messages can be processed any number of times
and can fail at any point and we'd be no worse for wear. Unfortunately, life isn't
always this tidy.

Let's say that in our message handler, we're creating a new entity and then
publishing an event with the new entity's ID. Clearly, this is not idempotent; if the
endpoint were to fail after the database transaction is committed but before the
event is published, we can have duplicate ghost entities created. So, as a irst step,
we will need to run incoming messages through a deduplication process, meaning
that we log a list of completed message IDs in the same database where we store
our business data, taking advantage of that same local transaction. Then, if we
ind ourselves handling the very same message again, we know that we can safely
discard it.

Advanced Coniguration

[124]

This addresses part of the problem but does not solve it. Because we want to
publish an event during our message handling logic, and the sending of this message
happens within the scope of a separate transaction, that publish will send out its
message immediately, while the database transaction containing our business table
updates and deduplication updates can roll back. In this case, our event will be
announcing the creation of a database entity that was rolled back and, therefore, does
not exist! Distributed transactions would have saved us from this problem because
the outgoing message would also enlist in the transaction and would not actually
have been dispatched until the transaction was committed.

The Outbox feature solves this problem by also deduplicating messages on the way
out. Instead of talking directly to the queuing infrastructure, outgoing messages are
stored in the database within the same transaction as the business data updates and
the incoming message deduplication. After the database transaction successfully
commits, NServiceBus can then read the outgoing messages back out of the database
and forward them on to the queuing system.

If the server crashes after the database transaction but before the Outbox messages
are sent out, NServiceBus will read the Outbox messages again and send them to
their respective queues. It is possible that this can generate duplicate messages on the
way out, but because the Outbox contains the unique IDs for the outgoing messages,
these messages will have matching IDs and will be handled by the incoming message
deduplication logic.

The following diagram provides a visual representation of message handling using
the Outbox feature:

Execute Handlers

(Outgoing Msgs in RAM)

Queue Transaction

Supress Queue Tx

Message De-Duplication

Store Bus Operations

Dispatch Messages

Mark as Dispatched

Database Transaction

DB

Outgoing Messages

Incoming Message

Chapter 7

[125]

It's critical, however, to understand that while the igure shows the database
transaction nested within the queue transaction, one does not control the other;
they are completely independent transactions. It is only through the Outbox's
coordination and message deduplication that you can make it behave as if you
were using the DTC instead.

Outbox coniguration
As mentioned previously, Outbox is enabled by default for the RabbitMQ transport
because it doesn't support the DTC. However, we know that the DTC adds a chitchat
overhead to our endpoints, so it is not completely inconceivable that you might want
to use Outbox instead in certain situations in order to try to eke out every last bit of
performance from an endpoint while still retaining transactional safety.

As of the release of NServiceBus 5.0, Outbox storage has only
been implemented for NHibernate persistence, although this is
likely to change in the future. For up-to-date information, visit
http://docs.particular.net/nservicebus/no-dtc.

In these cases, you need to be very careful if the Outbox endpoint will be sending
any messages to any DTC endpoints or to an older NServiceBus version 4.x
endpoint. Remember that the way the Outbox works, it is entirely possible to end up
sending duplicate messages, which another Outbox-enabled endpoint will handle
through deduplication. If duplicates arrive at a DTC-enabled endpoint, it is not going
to perform deduplication and will assume that each message must be processed.

Because of this potential for double processing messages, any DTC-enabled endpoint
receiving messages from an Outbox-enabled endpoint must be idempotent! Really,
this warning can extend to any non-Outbox endpoint, but if an endpoint doesn't
have the DTC or the Outbox, then you're already on your own as far as idempotence
is concerned anyway.

In order to make it nearly impossible to accidentally mess this up, enabling the
Outbox on any transport other than RabbitMQ requires a double opt-in. First, you
must enable Outbox from a BusConfiguration instance:

cfg.EnableOutbox();

Then, you also must add a bit of conig:

<appSettings>

 <add key="NServiceBus/Outbox" value="true" />

</appSettings>

http://docs.particular.net/nservicebus/no-dtc

Advanced Coniguration

[126]

Together, these two settings should ensure that you don't accidentally enable the
Outbox on a DTC-enabled transport without really thinking it through.

Although SQL Server supports the DTC, there is a supported
coniguration for using the Outbox with the SQL Server transport,
but the coniguration is a little too involved to be covered here.
For coniguration details, please visit the oficial documentation at
http://docs.particular.net/nservicebus/no-dtc.

Session sharing
For Outbox to work, the Outbox storage must be in the same database as the
business data you're acting upon. Otherwise, it will be possible for the business
data to commit (you create the entity in the database) and the Outbox transaction to
roll back, causing no messages to go out. Alternatively, the Outbox transaction can
commit and the business data transaction can roll back. Either situation is bad.

In order to accomplish this, you must share the NHibernate session between the
Outbox and the business data. To do this, inject a NHibernateStorageContext
dependency into your handler, which will give you access to the current System.
Data.IDbConnection, NHibernate.ISession, and NHibernate.ITransaction.

Summary
In this chapter, you learned how to conigure NServiceBus to its fullest potential.
First, we explored the interfaces that we can implement in order to make our own
customizations and learned how we can use dependency injection to inject our own
dependencies into the framework.

You learned a few easy ways to extend the NServiceBus pipeline via the unit of
work pattern and message mutators, which can be useful if the goal we have in mind
aligns well with the API. Failing that, you learned how to take control of the entire
incoming and outgoing message pipelines in order to insert your own behaviors or
replace existing ones.

Lastly, you learned about Outbox, which gives you equivalent protection to the DTC
when it isn't available to you or if you purposefully decide to throw it out.

Like Neo in the Matrix, you can now exercise complete control over your environment
when you're jacked into your NServiceBus code and bend the framework to your
wishes. In the next chapter, you will discover the rest of the tools in the Service
Platform, and you will learn how they make your NServiceBus messaging systems
easier to debug, monitor, and build.

http://docs.particular.net/nservicebus/no-dtc

The Service Platform
Leaving aside my irst programming experiences as a kid, banging out AppleTalk
BASIC on my Apple IIGS, the irst time I started any serious computer programming
was in C and C++ as part of the electrical engineering curriculum in college, before
I had the realization that I was destined to program computers for a living. For the
record, all I remember from electrical engineering is that V=IR, P=IV, and everything
else that is important can be essentially derived using calculus.

In order to complete our programming assignments in school, we would access a
university server using SSH (or yikes, could it have been telnet?), type our programs
in vi, emacs, or pico, and then compile them with gcc.

I loved programming but I absolutely hated that. I have never been any good at vi;
I struggle to remember how to tell it I want to quit. I was okay with pico, but I seem
to remember spending more time on one assignment iguring out how to set up an
FTP ile sync (so that I could write code locally in my graphical editor) than I did
actually writing the code for the assignment itself.

I hope I don't offend any of my colleagues and contemporaries nowadays who use
vim. You have to do what works for you, but it wasn't for me.

I love my IDE. Maybe that's an extension of my engineering training, a love of tools.
I love how it gives me IntelliSense so that I don't have to remember everything at
once. I also love how it shows me a lot of information about my project at a glance,
and how it reminds me what to do when I'm stupid.

Being stuck without an IDE is a lot like the feeling you get when trying to run a
distributed messaging system without appropriate tooling. This was what it was like
to run a system based on NServiceBus 2.0 when I started using the framework, and
it's very similar to what it would be like with any other service bus framework.

The Service Platform

[128]

The tools that Windows provides to manage MSMQ, for lack of a better word,
suck. This led many developers to fork over dollars on a tool called QueueExplorer,
but even that tool had no awareness of how NServiceBus used MSMQ, so certain
operations might have resulted in unintended side effects. I tried building my
own tools, but I wasn't in the business of building tools, so predictably, they were
awful. Of course, now NServiceBus supports many different transports, making this
problem much more dificult.

The team at Particular realized this and built tools to address the need for different
platforms. There are separate tools to make the business of managing, debugging,
monitoring, and building distributed systems easier than ever before. Together with
NServiceBus, they constitute the Particular Service Platform. Consider them your
IDE for building and maintaining distributed systems.

ServiceControl
The heart of the Service Platform is ServiceControl, an invisible service that runs on
a central server and stores information about every message that runs through your
system. Actually, if we were to use the metaphor of the human body, ServiceControl
is the brain. It knows everything about your system that is knowable.

You may have noticed that the app.config ile for every endpoint you've created has
included an AuditConfig section pointing to a queue named audit. This means that
every endpoint has been forwarding a copy of every processed message to the audit
queue. Lucky for you, that queue has not overlowed yet, because ServiceControl
(which you installed with the Platform Installer) has been busy consuming all of those
messages and feeding the data into an embedded RavenDB database.

From the data stored in this database, ServiceControl exposes a REST API that allows
the rest of the Service Platform tools to interact with the data. By default, this API is
exposed at http://localhost:33333/api.

If you browse to the preceding link, you'll get a JSON response that gives some
insight into the available endpoints, should you choose to go down that route, as
shown in the following screenshot:

http://localhost:33333/api

Chapter 8

[129]

In addition to slogging through copies of every message successfully processed
out of the audit queue, ServiceControl is also receiving the messages from your
error queue, storing data in its database, and then dropping those messages into an
error.log queue, ready to be returned to their original source queues in the future
if you choose.

If we allowed the ServiceControl database to retain all of its data forever, our hard
disks would ill up just the same as if it built up in the audit queue. Therefore, we
can't really keep ServiceControl's data forever. By default, data for an audit message
(which is itself a copy of the actual original message) is stored for 30 days, measured
in hours. The process to purge the data is run once a minute so that it never has to
work through too much of backlog at once.

As a part of being safe by default, error messages are never
purged, since an error message is the primary copy of a message.

You can conigure the expiration policy to store messages for a longer or shorter
period; you just need to be prepared to handle the disk space requirements of
your decision. However, the size should be kept to a manageable amount. If you
require true long-term storage of audit messages, perhaps for compliance with a
governmental mandate, it would be advisable to use the ServiceControl API to
extract audit messages (and perhaps only a subset by type) and store them in an
external database.

If you do extend the expiration policy, it is important to note that the underlying
RavenDB store will not automatically give space back to the OS when the size of
the database itself contracts.

The expiration policy along with several other settings (API host, port, log directory,
database location, and more) is conigurable via the ServiceControl.exe.config
ile in your ServiceControl installation folder. For full details, visit the ServiceControl
documentation at http://docs.particular.net/servicecontrol/.

http://docs.particular.net/servicecontrol/

The Service Platform

[130]

If you are using a transport besides MSMQ, you will deinitely need to conigure it
to use your chosen transport at the very least. This will also require downloading
the assemblies for that transport, and coniguring ServiceControl to use them. For
detailed instructions, see http://docs.particular.net/servicecontrol/multi-
transport-support.

ServiceInsight
If ServiceControl is the brain of your distributed system, then ServiceInsight is
the eyes. The centralized API serving data about our messages enables us to have
a desktop application that provides a GUI to visualize those messages and their
interactions. This is the application that can help us debug and understand what our
messaging system is up to. It is also one of the primary ways in which we can return
a failed message to its original source, regardless of what messaging transport our
system uses.

When you launch ServiceInsight, you will be greeted by a window containing
several dockable areas that you can rearrange as you please. This window is
shown in the following screenshot:

http://docs.particular.net/servicecontrol/multi-transport-support
http://docs.particular.net/servicecontrol/multi-transport-support

Chapter 8

[131]

Endpoint Explorer
The Endpoint Explorer panel shows the ServiceControl API URL as a root node
with a listing of endpoint names under it. You can click on each endpoint to ilter the
Messages window to display only messages lowing through that endpoint, or you
can click on the ServiceControl URL to show all messages again.

If you go the Tools menu and select Connect to ServiceControl, you can select a
different ServiceControl URL to connect to, for example, to switch from viewing
development information on your own system, to a QA or Production system on a
remote server. Remember, the all of the data comes from the REST API, so you only
need to know the URL.

Messages
The Messages window panel shows a grid of recently received messages, with
MessageID, Message Type, Time Sent, Critical Time, Processing Time, and
Delivery Time for each.

The Message Properties window shows all the attributes of the message, separated
by categories. Of particular note is the Errors category, which will contain the full
exception trace for an error queue message. No need to dig through logiles; it's all
right here!

If you want, you can quickly ilter messages using the Search Messages box just
above the grid, which searches across pretty much any ield.

Main view
While this area does not have a label identifying it, ServiceInsight contains a main
region that mostly displays visualizations for a speciic message. It contains tabs
for Flow Diagram, Saga, Sequence Diagram, Headers, Body, and Logs.

Flow Diagram
The Flow Diagram tab of the main area (shown as active in the preceding
screenshot) shows all messages that have a cause-and-effect relationship with each
other. Each box represents a message. Commands are shown with a single-arrow
icon, while events are shown as a three-arrow fan-out icon. Additionally, the arrows
between messages show a distinction between commands (solid line and arrowhead)
and events (dotted line and open arrow). The Show Endpoints button can be toggled
to show the endpoint that sends (above) and receives (below) each message.

The Service Platform

[132]

If we rerun the solution from Chapter 6, Sagas, wherein we introduced the saga, which
included verifying the email address through the browser, we will see 5 message(s)
found in the Messages view, resulting in two message lows as shown here:

The irst low starts with our CreateNewUserCmd message, resulting in a
SendVerificationEmailCmd message being sent. When NServiceBus sends
a message while another is being processed, it passes along same value in a
ConversationId header, allowing ServiceInsight to determine that they are
related in the same message low.

Chapter 8

[133]

Next, a UserVerifyingEmailCmd message is sent as the result of our input in the
MVC app, so this is the start of a new conversation, and thus, a new message low.
The result of this command is a CreateNewUserCmd message being sent, which
results in an IUserCreatedEvent message being published.

When you click on a message's type label, a pop-up box will display some
information on the right, but the really useful parts are the actions on the left.

Copy Conversation Id and Copy Message URI allow you to capture information
about what you're looking at so that you can send it to another developer. The
Message URI is especially interesting. ServiceInsight registers the si:// URI scheme
so that you can exchange a URI with others by email or chat. When they click on it on
their system, it will launch ServiceInsight and instantly show them what you're seeing.

The Service Platform

[134]

Search by Message Id will put the current message's ID into the search box so that
you can hone in on messages directly related to the current message.

Retry Message, which would be available in case of an error, will return the message
to its source queue. Ideally, you aren't seeing any errors right now, so go back to
the code in Chapter 6, Sagas, throw an exception in one of the handlers, and then
refresh ServiceInsight. You should see an exchange where the message throwing the
exception is shown in red. Then ix the error and use ServiceInsight to retry the error.
In moments, you can refresh and the message will have changed to a Successful state.

Saga
If you look at the low diagram, just under the timestamps in most of the messages
for the code from Chapter 6, Sagas, you will see inverted text identifying our
VerifyUserEmailPolicy saga. An icon to the left of the saga name denotes whether
the saga was initiated/updated by the message, originated from the saga (sent
during a saga handler), or completed the saga.

If you click on the saga information, it will switch over to the Saga tab, where (unless
you have skipped ahead) you will likely see nothing interesting. This is because
ServiceInsight needs a bit more information about the saga to draw any fancy
diagrams for you.

To ix this problem, we just add an additional NuGet package to any endpoint where
we have sagas deployed:

PM>Install-Package ServiceControl.Plugin.Nsb5.SagaAudit

You are certainly welcome to do this yourself if you like, but if
you're in a hurry, the code sample for this chapter is a copy of
the code from Chapter 6, Sagas, with additional items added to
demonstrate the capabilities of the Service Platform tools.

Chapter 8

[135]

With the additional package installed, we can run through the procedure of creating
and verifying a new user, and when we examine the Saga tab in ServiceInsight, we
will see a low diagram similar to what is shown in the following screenshot:

The diagram shows incoming messages on the left, and how they caused outgoing
messages and timeouts on the right. It also shows any changes to the saga data
caused by the message. In this case, we didn't wait around for a timeout, but in the
case of a timeout, that will also be shown as an input on the left side. If the saga
completes, we will see the date of completion at the bottom. At each stage, we see
timestamps. If we click on the Show Message Data button, we will see the properties
(which are not in the screenshot) of each incoming and outgoing message as well.

This visualization is a very powerful tool to help us understand a concept that is
admittedly fairly abstract and instantly visualize how message lows affect each
other, which helps us to verify that the result we got was the result we intended.

The Service Platform

[136]

Sequence Diagram
A sequence diagram is a time-honored mechanism to visualize how different actors
interact, and in what order. This is especially important for a messaging system,
where the behavior of the system is largely deined by endpoints communicating
with each other via messages.

The preceding diagram shows each endpoint involved in a conversation along the
top axis, with time (not to scale) increasing as you travel downward. Messages sent
from one endpoint to another travel horizontally between parallel endpoint lines,
and messages sent by one endpoint and received by the same endpoint (as in the
CreateNewUserWithVerifiedEmailCmd in the diagram) simply travel down that
endpoint's timeline. Most messages are shown just by the message's type name with
saga information (if available), but the message currently selected in the message list
is highlighted in a blue box.

By clicking on any message, you can get the same information that you get from
other views within ServiceInsight, or you can elect to retry messages that have failed.
Additionally, clicking on any saga name will switch views over to the Saga tab as
previously mentioned.

Message handlers are shown by gray bars along an endpoint's timeline, which will
display critical time, delivery time, and processing time if you hover over them.

Chapter 8

[137]

NServiceBus developers have been drawing sequence diagrams for years to describe
and document messaging systems. They are a brand new addition to ServiceInsight,
but the utility they offer in validating a system's design and assisting in debugging
cannot be understated.

Other tabs
There are a few other tabs within the main region that share space with Flow Diagram
and Saga. They don't really merit an entire section, but are deinitely useful:

• The Headers tab displays all the message headers for the selected message with
the exact name and raw formatting used in the message itself. This differs from
the Message Properties window where much of the same data is displayed,
but it is shown cleaned up, categorized, and it for human understanding. If
you need to copy and paste a raw value, this is the place to do it. The Headers
tab is also the place to look for any custom header you have added to a
message, which will not display in the Message Properties window.

• The Body tab will display the message as serialized to the transport. For
example, if you use the XML Serializer, you will see XML in this view.

• The Logs tab shows the details of ServiceInsight communicating with
ServiceControl. If you ever have a problem with ServiceInsight or
ServiceControl, this information could be very helpful to send to
Particular Support.

ServicePulse
If ServiceControl is our brain, and ServiceInsight is our eyes, then ServicePulse is
our ears, listening for things that go wrong. It's our nose too, as it lets us know when
something doesn't smell quite right.

Of course, the metaphor about hearing and smelling is a bit
misplaced because ServicePulse is just a web application that
queries ServiceControl data. It's ServiceControl that knows
these things, but it's ServicePulse that shows it to us.

ServicePulse is a web application that displays the health of our system. It allows
us to see which endpoints are running and responsive, and which ones may have
failed. It shows us messages that have failed and allows us to retry or archive those
messages. It also allows us to conigure custom checks to ensure that resources
outside our system (that our system requires) are also healthy.

The Service Platform

[138]

The default URL for ServicePulse is http://localhost:9090, but of course, just as
with ServiceControl, this is conigurable. If you launch ServicePulse, you will see the
Dashboard view, which shows an overview of Endpoints, Failed Messages, and
Custom Checks, along with a log of recent events.

Now let's dig into each of these three capabilities.

Endpoint activity
The irst time you load ServicePulse, you may ind that it's reporting your endpoints
as inactive. Well, this is probably true; you are likely not running any of the demos
from this book at the moment, so those endpoints are indeed down, but even if you
do have an endpoint running, it may show up as unhealthy.

This is because the healthy state in ServicePulse depends upon heartbeat messages
sent periodically from each endpoint to the central audit queue, but NServiceBus
doesn't do this by default. To enable this behavior, we need to add a reference to
a NuGet package:

PM> Install-Package ServiceControl.Plugin.Nsb5.Heartbeat

With this package installed in our endpoint, heartbeats will be sent to the
ServiceControl queue every 30 seconds, and if ServiceControl fails to receive
that message, the endpoint will be considered as failed.

http://localhost:9090

Chapter 8

[139]

This turns out to be really useful because we can see at a glance that all our endpoints
are running and responsive in a real way. We will see endpoints as failed if the
server is down, if there is a network partition or if the Windows service is technically
running (as far as the service control manager can tell) but isn't successfully processing
messages for some reason.

Failed messages
Now that we know our endpoints are running and processing messages, we
would like to know when any of those messages fail and go to the error queue. In
ServiceInsight, we saw all messages, both successful and failed, but in ServicePulse
we are focusing speciically on the failures. This makes ServicePulse the ideal tool for
use by operations personnel.

Below the summary is a list of all failures, with the ability to archive or retry a single
message or batches of messages. Again, we can examine the full exception trace, and
there is no need to dig through the logiles.

The Service Platform

[140]

Custom checks
Our NServiceBus system does not exist in a vacuum. It will depend upon other things
to operate; for example, we might need an FTP server or web service to be up for our
messages to be successfully processed. If a remote server goes down, we can ind out
about it before our messages start to fail. With NServiceBus and ServicePulse, we can
create custom checks that run in alongside our message handling code written for
custom checks. These custom checks will monitor our external resources for us and
report the state through ServicePulse so that we will have a clearer view of all the
things affecting our system at any given moment.

When a custom check enters a failed state, we see a notiication in ServicePulse
similar to what is shown in the following screenshot:

We can create a custom check directly within any endpoint. All we need to do is
reference a NuGet package and create a class to perform the check.

First, we include the NuGet package within our endpoint:

PM> Install-Package ServiceControl.Plugin.Nsb5.CustomChecks

Once we've included the package, we have access to the PeriodicCheck class, which
we can extend to create our own custom check:

public class CheckOnFtpServer : PeriodicCheck

{

 publicMyCustomCheck() :

 base("id", "category", TimeSpan.FromMinutes(1))

 {

 }

 public override CheckResultPerformCheck()

 {

 // Check the server. If everything is ok...

Chapter 8

[141]

 returnCheckResult.Pass;

 // Otherwise...

 returnCheckResult.Failed("Failure reason");

 }

}

We have to override the constructor, and when we do so, we provide an identiier, a
category, and how often the check should be run. Within the constructor, we could
also set up anything else required for the check, if necessary.

Within the PerformCheck() method, we perform the steps to check on our external
resource and return CheckResult to indicate success or failure. In the case of failure,
we can include a reason (for example, the message from an exception) so that we
know a little more about the cause of the failure.

Custom checks are wired up automatically. Just create the class and NServiceBus
will run them for you.

It's also possible to create a different kind of custom check where you
control how and when the check is triggered, as opposed to creating
it on a rigid schedule, by extending the CustomCheck class and
calling the ReportPass() and ReportFailed(reason) methods.
This is ideal to use when reporting the status of resources that have
events, to report a change in their status, so that you can instantly
report its status to ServicePulse without delay.

The sample code for this chapter includes a custom check called SampleCustomCheck
within the UserService project, which runs every 15 seconds and reports failure
whenever the minute of the current time is an odd number. You can run the project,
switch to the Custom Checks section of ServicePulse, and then watch the warning
appear or disappear as each minute passes.

Getting notiied
The only thing that's left now is how to learn about a message failure without
needing to hover in front of your computer and staring at ServicePulse all day
and night.

Notiications are a very personal thing. Some organizations might want an email
sent to a support account. Others might want to receive an SMS notiication. Other
possibilities include invoking some public API, or a HipChat notiication, just to
name a few. It's impossible to make everyone happy, so the Service Platform doesn't
have any notiication method built in. Instead, it gives you the tools to create a
notiication according to whatever business rules you see as suitable.

The Service Platform

[142]

ServiceControl contains an assembly called ServiceControl.Contracts, which
contains the MessageFailed event. You can create a separate NServiceBus endpoint
that subscribes to this message and then notiies you according to your preference.

The sample code for this chapter includes a FailureMonitor project that contains
the basic code to listen for and respond to message failures. There are a few
important things to keep in mind:

• The ServiceControl.Contracts assembly can be included in your project
most easily by installing the ServiceControl.Contracts NuGet package.

• ServiceControl uses JSON serialization for its internal messages, so your
subscribing endpoint will need to use the JSON serializer even if the rest of
your system uses XML.

• You will need to supply unobtrusive mode conventions to identify the
ServiceControl events as events.

• Remember to register the subscription in your App.config ile.
The MessageFailed event is published from the Particular.
ServiceControl endpoint.

• Within your notiication handler, you can construct a URL that will open the
message in ServiceInsight, which can be very helpful to quickly debug an issue.

Refer to the sample code to see all of this in action. From within the message handler,
you have access to a wealth of information about the failed message—practically
anything that would be available to you within ServiceInsight. Note that you can
also create notiiers for the time when heartbeats stop or are restored, by subscribing
to the HeartbeatStopped and HeartbeatRestored events.

With this information and a little extra hand-rolled code, you'll be well on your way
to emailing, texting, or chatting failure notiications in no time.

ServiceMatrix
The last piece of the Service Platform is our hands and feet (remember our human
body metaphor?)—it allows us to build things and move quickly. In other words,
ServiceMatrix is a graphical tool that helps us prototype and build NServiceBus
systems quickly.

ServiceMatrix should have been installed in Visual Studio when you installed the
Service Platform. If not, it can be installed separately from http://particular.net/
downloads or directly within Visual Studio from the Extensions and Updates dialog
in the Tools menu. Note that there are different versions of ServiceMatrix for Visual
Studio 2012 and 2013, so make sure you install the correct one for your version.

http://particular.net/downloads
http://particular.net/downloads

Chapter 8

[143]

To get started, open Visual Studio and create a new project, selecting the
NServiceBus v5 System template under the Visual C# category.

If you only have NServiceBus System available, it means you are
using an old version of ServiceMatrix. Update the version through
Extensions and Updates in the Visual Studio Tools menu.

After a lot of boilerplate is generated for you, you'll have a design surface inviting
you to create a new endpoint, and a Solution Builder tool window, in addition to
the familiar Solution Explorer. From the Solution Builder, you can manage the
elements in your solution from a conceptual level of endpoints and services, rather
than the physical level of assemblies and classes.

The Service Platform

[144]

The following screenshot depicts the design of the ServiceMatrixExample project
included with this chapter's sample code, which is a simple recreation of the new
user example we've been using throughout this book:

ServiceMatrix enforces the best practices of rigid service-oriented architecture. In
doing so, it separates the concept of services from endpoints. A service is a logical
boundary. An endpoint, on the other hand, is a physical unit of deployment, or in
other words, an executable. Components from multiple services (multiple handlers)
can be deployed to the same endpoint, and conversely, the components from one
service can be split among multiple handlers. You can see in the screenshot how
elements of the UserService service are deployed in the Website endpoint and in the
UserService endpoint. Sometimes, perhaps often, services and endpoints can share
the same name like WelcomeEmailService, which can either increase or decrease
confusion, depending on your point of view.

When you launch a solution created with ServiceMatrix, several things will happen.

Firstly, any NServiceBus Host endpoint within the solution will be launched.
ServiceMatrix will automatically add the NuGet packages for heartbeats and saga
instrumentation so that the corresponding ServiceInsight and ServicePulse features
will work without any speciic action on your part.

Secondly, ServiceInsight will be automatically launched with the search ield
prepopulated to a debug session identiier, which all endpoints generated during the
debug session will carry. This makes it easy to identify the results of your test run in
ServiceInsight.

Chapter 8

[145]

Thirdly, ServiceMatrix will create a web interface for any MVC website that allows
you to test sending any messages through your system, complete with form ields to
ill in any properties you add in the code.

This is quite a bit easier than using query string parameters to populate commands
as we used in the previous chapters.

ServiceMatrix brings the platform full-circle. You can quickly design your system
graphically, determine which messages are sent by which services, deploy the
message handlers to the endpoints, test your message lows, and then evaluate your
work in ServiceInsight. If you like, you can continue to develop your system in
ServiceMatrix, or if you wish, you can disconnect ServiceMatrix from your solution
and proceed with only the code at any point. However, after disconnecting, you
cannot go back to ServiceMatrix because newly added items will not be in sync with
ServiceMatrix any longer.

This book does not aim to be an exhaustive guide to ServiceMatrix. To do that topic
justice, we might have to write another book. The tool is also changing and being
improved upon so quickly that any attempt to document it completely on printed
pages would be a fool's errand. The best way to get comfortable with the tool is
to start experimenting with it. Of course, there is also documentation available at
http://docs.particular.net/servicematrix/, which can be updated far more
easily than this text.

http://docs.particular.net/servicematrix/

The Service Platform

[146]

Summary
With the Service Platform, Particular delivers on their promise to create the most
developer-friendly service bus for .NET. Other packages might be cheaper, or
even free, but you often get what you pay for, and you'll end up paying countless
developer hours dealing with the other guy's shortcomings.

With the Particular Service Platform, ServiceControl is your brain, knowing
everything about all the messages lowing through your system. ServiceInsight
becomes your eyes, giving you the ability to see how messages interact and visualize
message lows. ServicePulse constitutes your ears and nose, listening for trouble and
letting you know if it smells like something is burning. And inally, ServiceMatrix
serves as our hands and feet, allowing us to move fast and break things as Facebook
CEO Mark Zuckerberg once said, except that I will leave breaking things as optional
and up to you.

Now that we have a handle on all of the tools of the Service Platform, in the next
chapter, we will cover how to administer an NServiceBus messaging system
in production.

Administration
By now, we've learned all the basics of NServiceBus and can create a system to do
just about anything, but none of that will do us any good if we can't get our code
deployed to production.

In this chapter, we will learn about issues related to deploying and managing a
production system using NServiceBus. We will learn how to install our processes as
services and how to manage the transitions between different environments. We will
also learn how to monitor our production system and scale that system out as the
load increases. Finally, we'll take a look at virtualization, an important component
used to create truly reliable systems.

Service installation
Throughout this book, we've been testing our service endpoints by running them
with NServiceBus.Host.exe as a console process. This is really convenient for
development; when we deploy it to a different environment, we need stability in a
Windows service. Luckily, NServiceBus makes this ridiculously easy to do. The same
NServiceBus host process that runs as a console process during development can
install itself as a Windows service with a few simple command-line switches:

> NServiceBus.Host.exe -install [Profile(s)]

 -serviceName="MyServiceName"

 -displayName="My Service"

 -description="Description of MyServiceName"

 -username="mydomain\myusername"

 -password="mypassword"

Administration

[148]

This is the basic command that will install an endpoint as a Windows service,
allowing us to set the service name and description, and also to run the service
under permissions other than the default service account. Not all of the parameters
are required, but this set of parameters will cover most cases.

Ignore the proiles for a moment; we will cover these in the Proiles section later.

The serviceName is the name of the service used in the Windows Registry and in
the NET START or NET STOP console commands, whereas the display name and
description are the strings that you will see in the Windows Service Manager. If
you omit the service name, display name, or description, NServiceBus will assign
default values based on the endpoint name. If you recall from Chapter 4, Hosting, the
endpoint name deines the pattern for the queues that are created for the endpoint as
well. The fact that the queue and service names will match when this convention is
used is very useful.

By default, NServiceBus will append a version string to the display name of the
service. This is the version from the AssemblyFileVersion attribute on the assembly
containing the EndpointConfig class.

It's recommended to come to an agreement with your IT
department about how Windows services will be named, and
then to always use all three of these parameters when installing
to guarantee consistency.

The -username and -password parameters must be used
together, and allow you to specify the account the service will
run under. If these parameters are not supplied, the service will
run under a local service account.

It is easy to uninstall a service, which you can do like this:

> NServiceBus.Host.exe -uninstall -serviceName:"MyServiceName"

Whenever you specify a service name on installation, you must also specify that
name to uninstall.

If you ever ind yourself without a copy of this book, then you can quickly
summon a refresher on the host process's command-line options using any
of the following commands:

> NServiceBus.Host.exe -?

> NServiceBus.Host.exe –h

> NServiceBus.Host.exe --help

Chapter 9

[149]

The help text also includes more information on more advanced command-line
switches.

Installing services requires elevated privileges. If User Account
Control (UAC) is enabled on your system, make sure you launch
the console window with elevated privileges irst because you won't
have the opportunity to do so while the install process is running.

Infrastructure installers
Whenever you deploy an endpoint, it's recommended that you uninstall and reinstall
the endpoint to give infrastructure installers an opportunity to run. Infrastructure
installers are components that make a modiication to the system in order for the
endpoint to run, such as the component that creates the endpoint's queues, and the
component that initializes performance counters for the endpoint.

When we're developing locally, infrastructure installers run automatically when
there is a debugger attached, or in other words, when we hit F5 within Visual Studio.
When we deploy to production, however, this is not the case. The infrastructure
installers will require elevated privileges to create queues and performance counters,
and then the endpoint will generally run as a less privileged user.

When using MSMQ, pay special attention to the privileges assigned
to the queues. Mismatches in queue permissions (for example, if the
infrastructure installers in a web application created the queues as
the NetworkService user before coniguring alternate credentials)
can cause all sorts of problems when NServiceBus cannot read
messages from the queue.

It's also possible to create your own infrastructure installers by creating a class
that implements INeedToInstallSomething. This enables you to create your own
necessary bits of infrastructure with elevated privileges at endpoint installation time:

public class CustomInstaller : INeedToInstallSomething

{

 public void Install(string identity, Configure config)

 {

 // You are probably running as administrator. Be nice!

 }

}

Administration

[150]

While NServiceBus host endpoints will run infrastructure installers when the
endpoint is installed as a service, for a web endpoint, you must determine how to
handle this capability yourself. You can either create queues manually as part of
the deployment process (this can be accomplished with PowerShell for example) or
you can include cfg.EnableInstallers() on your BusConfiguration instance to
request that NServiceBus create them when the web application starts up.

Side-by-side installation
When deploying an endpoint update to production, it's very valuable to be able
to deploy it side by side with the version it is replacing. This gives you a true
zero-downtime upgrade, as the old endpoint will continue to run and process
messages even as you are installing the new one.

To support this scenario, add the -sideBySide lag during service installation,
which will result in the version (which, of course, you will need to manage) being
appended to the service name (the code name used by the Windows Registry) as
well as to the service description.

After installation, you will have two services (MyService 1.0.0 and MyService 2.0.0)
installed and running, acting as competing consumers against the same input queue,
and both actively processing messages.

Now that both are processing messages, you can actively monitor the endpoint logs
and error queue. If you see anything ishy, you can disable the V2 endpoint, return
any failed messages to the source queue (to be processed by the V1 endpoint) and
look into the issue.

Once you are conident that the upgrade was successful, you can simply deactivate
and uninstall the V1 endpoint.

Of course, in order to attempt a side-by-side installation, your code must be able
to deal with new messages arriving at the older endpoint and being processed by
that endpoint. Side-by-side deployments are best suited for situations where overall
message interactions are the same but handler implementations have changed.

Chapter 9

[151]

Proiles
In a lot of software systems, you'll either see a litany of different settings in a
coniguration ile, or a single coniguration value and a huge wall of settings in
a switch statement in code. This is not so with NServiceBus. NServiceBus uses a
concept called a proile to activate different options within an endpoint based on
environment or capability.

Many of the dependency injection containers support a feature similar
to proiles. If you are using a custom DI container, it may be a better
idea to rely on your container's features for use with your own code.
The exception where you must use NServiceBus proiles is when you
are registering custom code to be used by NServiceBus itself.

A proile can be activated on an endpoint by including its full class name as a
command-line parameter, or by including it with the installation options when
installing an endpoint as a service. For instance, to run an endpoint with the Lite
proile, run the following code:

> NServiceBus.Host.exe NServiceBus.Lite

All the built-in NServiceBus proiles are located directly in the NServiceBus
namespace. These proiles fall into two categories: environmental proiles
and feature proiles.

Environmental proiles
Environmental proiles can help you to manage the elements of a system through
the different phases of development. NServiceBus includes three environmental
proiles: Lite, Integration, and Production.

In previous versions of NServiceBus, environmental proiles controlled a lot more
functionality, but as of NServiceBus 5.0, the differences are fairly slight and mostly
still exist only for backward compatibility. By default, an NServiceBus endpoint will
run in the Production proile, so many developers won't have a need for them, but if
you choose to take advantage of them, they can help to switch features on and off for
different phases of your development life cycle.

Administration

[152]

Out of the box, there are a few tiny differences between the environmental proiles:

• Lite proile: This will not forward failed messages to the error queue so that
you don't have to deal with cleaning up many errors potentially generated
during iterative development.

• Integration proile: This does not have any remarkable aspects, and it
arguably only exists for backward compatibility with older versions of
NServiceBus. However, it could be useful to install endpoints to staging
environments with this proile, as you can write your own proile handlers
(which we will see shortly), which could accomplish tasks such as switching
to different persistence strategies.

• Production proile: This is the default and is just as unremarkable as the
Integration proile, but it also inherits from the PerformanceCounters feature
proile that we will learn about shortly, so all of its attributes are also invoked.

Feature proiles
Feature proiles help you to modify speciic endpoint features programmatically:

• PerformanceCounters proile: This activates the performance counters for
the endpoint. Because the Production proile inherits from this proile, the
Production proile also enables performance counters by association. We
will learn more about this in the Monitoring section.

• MsmqMaster, MsmqDistributor, and MsmqWorker proiles: These
(available via a separate NServiceBus.Distributor.Msmq NuGet package)
are used for scaling out an endpoint using the MSMQ transport. We'll discuss
these proiles in detail in the Scaling out section.

You can activate more than one proile on an endpoint by including multiple
parameters. When installing an endpoint, you can place the proile names
anywhere within the install command, but I recommend placing them right
after the -install lag.

Customizing proiles
Beyond the default behavior for each proile, we can create our own proile-based
customizations. This gives us the ability to change the NServiceBus host (usually
via dependency injection), similar to what we learned in Chapter 7, Advanced
Coniguration, but speciically targeted to one or more proiles.

Adding code to be executed for a proile is as simple as implementing
IHandleProfile<T>, where T is one of the proile classes that implements
the IProfile marker interface.

Chapter 9

[153]

For example, let's say you had an account expiration policy, and you wanted to use
shorter times in your integration environment than in real life. You could represent
this as an interface called IDetermineAccountExpiration. Then, we could create
a class that returns very short expiration times suitable for a test environment, and
register it only for the Integration proile, as follows:

public class ConfigTestExpirations : IHandleProfile<Integration>
{
 public void ProfileActivated(Configure config)
 {
 // Leave empty, see the tip box below
 }

 public void ProfileActivated(BusConfiguration config)
 {
 config.RegisterComponents(reg =>
 reg.ConfigureComponent<TestAccountExpiration>(
 DependencyLifecycle.SingleInstance));
 }
}

Unfortunately, the transition from the static Configuration
class in NServiceBus 4.x to the BusConfiguration instance in
NServiceBus 5.0 makes the implementation of a proile handler a bit
awkward in the short term. In the IHandleProfile<T> interface,
the ProfileActivated(Configure config) method is
marked as obsolete (and will be removed in NServiceBus 6.0), but as
of now, it still exists, and to have a valid class that implements the
interface, your proile handler must implement the obsolete method
anyway. So for now, implement the method and leave it empty.
NServiceBus will not call it. If you want, you can mark your method
with ObsoleteAttribute as well.

If we want, we can also implement IWantTheListOfActiveProfiles within
one of our proile handlers to get all the active proiles injected into our class.
This is what the scale-out handlers for the MsmqMaster, MsmqWorker, and
MsmqDistributor proiles use to ensure that they are not applied simultaneously,
as they are incompatible with each other. For example, you may want to take some
action in the Production proile if the current endpoint is also a master node:

public class KnowsAllProfiles : IHandleProfile<Production>,
 IWantTheListOfActiveProfiles
{
 public IEnumerable<Type>ActiveProfiles { get; set; }

 // Obsolete method omitted

Administration

[154]

 public void ProfileActivated(BusConfiguration config)

 {

 if(ActiveProfiles.Contains(typeof(MsmqMaster))

 {

 // Do something

 }

 }

}

We can also implement the IWantTheEndpointConfig interface to have the
EndpointConfig class injected into our proile handler. This is useful if you
want to make decisions based on the endpoint's identity.

To make decisions for any proile, there is an interface called IHandleAnyProfile,
which combines a catch-all proile handler with IWantTheListOfActiveProfiles
so that we can make decisions such as, "if the Production proile is active, do X.
Otherwise, do Y":

public class DecisionProfile : IHandleAnyProfile

{

 public IEnumerable<Type>ActiveProfiles { get; set; }

 // Obsolete method omitted

 public void ProfileActivated(BusConfigurationconfig)

 {

 if(ActiveProfiles.Contains(typeof(Production))

 {

 // Register a real implementation of something

 }

 else

 {

 // Register a test implementation instead

 }

 }

}

We can even create additional proiles to handle tasks for us. For example, say a
subset of our endpoints needed to have support for the Data Bus, as covered in
Chapter 5, Advanced Messaging:

namespace Packt

{

 public class NeedsDataBus : IProfile { }

 public class DataBusSetup: IHandleProfile<NeedsDataBus>

 {

 public void ProfileActivated(BusConfiguration config)

Chapter 9

[155]

 {

 // Set up the data bus here

 }

 }

}

With this additional custom proile, we can easily conigure the Data Bus on any
endpoint that needs it by adding Packt.NeedsDataBus to the installation script.

NServiceBus will invoke all the proile handlers for the proile (or proiles) we
specify on the command line and any base classes or interfaces as well. This means
we can inherit a proile from one of the built-in proiles to extend them, or create our
own that directly implements IProfile to start from scratch.

Proile handlers are invoked between IConfigureThisEndpoint.Customize()and
INeedInitialization.Customize(). If multiple proiles are used on the command
line, you should not assume that their handlers will execute in any speciic order.

Logging proiles
Because the logging framework must be set up properly before the rest of our code
runs, logging gets special treatment with respect to proiles. You can implement
IConfigureLoggingForProfile<T> to make proile-dependent logging choices:

public class ProdLogging : IConfigureLoggingForProfile<Production>

{

 public void Configure(IConfigureThisEndpoint specifier)

 {

 // Set up logging

 }

}

As we can see, the EndpointConfig class is passed directly to the Configure
method. This is useful because we can determine the endpoint's identity and use that
information to set up the logging. For instance, we may want to conigure logiles to
be written to a Universal Naming Convention (UNC) path in a directory based on
the endpoint name.

Unlike normal proiles, only one logging proile can be
activated, as it won't make sense to conigure logging
more than once.

Administration

[156]

Customizing the log level
If you're familiar with log4Net or NLog, you may be looking for a large coniguration
block to change the log level, but you won't ind it. In part to combat the sixth fallacy
of distributed computing—there is one administrator—NServiceBus deines most of
the logging coniguration in the code where it is up to the application developer to
deine. The one bit left to the system administrator is the log level, which the system
administrator must be able to adjust at runtime to diagnose an issue.

By default, NServiceBus will log at the INFO threshold, but this can be adjusted using
the following coniguration:

<!-- Configuration Section -->

<section name="Logging"

 type="NServiceBus.Config.Logging, NServiceBus.Core"/>

<!-- Configuration Element -->

<Logging Threshold="WARN" />

The log levels used by NServiceBus, from the least severe to the most severe, are
DEBUG, INFO, WARN, ERROR, and FATAL.

You could also generate the Logging section using the
PowerShell Add-NServiceBusLoggingConfig cmdlet.

Managing conigurations
Once you begin releasing code out of development, you will need a way to manage
coniguration changes. When we develop a system, we generally run all the
endpoints and have all our message queues on our local machine. When we deploy
to new environments, we will need to deploy endpoints to multiple machines and
make changes to our coniguration.

Our irst option is to modify the actual coniguration ile. As an NServiceBus
solution can begin to comprise many different endpoints, I urge you not to try
to do this manually.

Visual Studio 2010 introduced a simple method to transform a Web.config ile when
publishing a website, called XML Document Transform. Unfortunately, this process
only supported Web.config iles, which was a major oversight, leaving App.config
iles out in the cold. Luckily, time has passed and tooling has gotten better, so you
don't need to let this limitation slow you down these days.

Chapter 9

[157]

One fairly low-tech solution is the SlowCheetah plugin for Visual Studio. This
extension allows you to transform App.config iles as well as Web.config iles
right within Visual Studio, using the same transformation language. This can be
utilized as a part of an automated build-and-deploy process.

A more comprehensive solution would be to use a full deployment automation
system such as Octopus Deploy. In addition to automating deployments to all of
your environments, Octopus Deploy natively supports coniguration transforms.
Deployment automation software is a great investment to make for any software
system, but doubly so for distributed systems that are comprised of many processes
that can be deployed independently.

Also, there may be situations where you will want a different way to specify
coniguration information, perhaps stored in a centralized database. In order to
support this, NServiceBus provides the IProvideConfiguration<T> interface,
which you can implement to provide the information that would normally live
in the App.config ile.

As an example, this class provides the TransportConfig that speciies the number of
message retries:

public class ProvideTransportConfig :

 IProvideConfiguration<TransportConfig>

{

 public TransportConfigGetConfiguration()

 {

 return new TransportConfig { MaxRetries = 3 };

 }

}

Note that you'll have to add a reference to System.Configuration in order to
reference the coniguration classes that inherit from ConfigurationSection.
Also, this class will be called multiple times—whenever NServiceBus needs the
information from the coniguration section—so you need to be prepared to cache the
data if it is expensive to create; for example, data from a database or web service call.

You can even use IProvideConfgiuration<T> for your own custom coniguration
sections. Instead of using the ConfigurationManager class from the .NET
Framework's System.Configuration to access conig data, you can instead call
cfg.GetSettings().GetConfigSection<MyConfigSection>() from any place
where you have a BusConfiguration instance. This will irst look for a registered
coniguration provider class, and if none is found, it will default to the values in
the App.config or Web.config ile.

Administration

[158]

Monitoring performance
NServiceBus makes it easy to monitor the performance of any endpoint that has
the performance counters enabled, which includes any endpoint installed with the
production proile. After having installed NServiceBus and a service with counters
enabled, you will ind these counters in the NServiceBus category in the Windows
Performance Monitor:

• Number of message failures per second

• Number of messages pulled from the input queue per second

• Number of messages successfully processed per second

• Critical time

• SLA Violation Countdown

The last two are especially interesting. Critical time is the age of the oldest message
in the queue, or in other words, the length of the queue's backlog in seconds. This is
important because it is how business stakeholders will judge the capability of your
system. In a messaging system, your business stakeholders probably don't care what
your overall throughput is; what they really care about is whether their work gets
done within a length of time that they deem reasonable. Critical time gives you the
ability to measure that.

If business stakeholders give you a hard-and-fast requirement for how fast messages
must be processed, you can codify that in your system as a Service Level Agreement
(SLA), and then as load and the critical time starts to increase, NServiceBus will
estimate how long it will take before that SLA is breached, and deliver that information
to us in the form of the SLA Violation Countdown performance counter. This
provides a common measurement (in the form of time) to monitor all your endpoints,
regardless of their individual SLA settings. NServiceBus doesn't do anything by
default when the SLA is breached, but the performance counter arms you with the
data so that you can take a response that is appropriate to your business requirements.

We can deine an endpoint's SLA by decorating the EndpointConfig class with
EndpointSLAAttribute, specifying any string that can be converted to TimeSpan.
Here, we deine an example of an SLA of one minute:

[EndpointSLA("0:01:00")]

public class Endpoint : IConfigureThisEndpoint, AsA_Server

{

 // Body omitted

}

Chapter 9

[159]

An alternate way to specify the Endpoint SLA is from a BusConfiguration instance
inside EndpointConfig, INeedInitialization, and so on, which allows you to use
the more friendly methods of specifying TimeSpan:

public void Customize(BusConfiguration cfg)

{

 cfg.EnableSLAPerformanceCounter(TimeSpan.FromMinutes(1));

}

Armed with the critical time and an SLA violation countdown, and given today's
easy access to cloud resources, it's fairly simple to create a system that is capable of
automatically provisioning more workers to handle unexpected loads.

While this information can be very useful, none of it will matter if nobody is
listening. It's critically important to work with your IT department to establish
monitoring for these performance counters and establish monitoring practices as
a regular part of your service deployment process. All performance counters are
available via Windows Management Instrumentation (WMI), which makes it very
easy to integrate with almost any existing monitoring infrastructure.

Scalability
One of the greatest strengths of NServiceBus is that it allows you to easily add
scalability to any system. We can easily add more threads to scale up, or distribute
the processing of messages among multiple servers to scale out.

Scaling up
Multithreading is hard. If you've ever tried to design a multithreaded program, then
you already know this. NServiceBus makes this a lot easier because it has already
divided all our work into messages that represent discrete, independent tasks. So as
long as we don't do anything stupid in our message handlers (such as sharing state),
we can allow NServiceBus to ramp up the number of threads that process messages
with relative safety.

This gives service applications the same lexibility that web servers enjoy. In the
same way that HTTP requests are processed by a web server, largely in parallel
by multiple threads, an NServiceBus endpoint can process messages on multiple
threads. The difference is that a web server must process all incoming requests
immediately and spin up more threads in the thread pool to handle an increased
load. If there's too much load on a web server, everything jams up.

Administration

[160]

In an NServiceBus endpoint, we have the luxury of a queue that will hang on to all the
incoming messages until we're ready for them, so we set a ixed number of threads that
are available to process messages, unlike a web server. If the load increases, we don't
crash our server; it just takes a little longer for messages to be processed.

To scale up an endpoint, we'll revisit the TransportConfig element we irst
learned about in Chapter 3, Preparing for Failure. In the following example,
we conigure the thread count (the concurrency level) to 3 using the
MaximumConcurrencyLevel attribute:

<TransportConfigMaxRetries="5"

 MaximumConcurrencyLevel="3"

 MaximumMessageThroughputPerSecond="3" />

We will also take this opportunity to demonstrate another useful parameter of the
TransportConfig element, MaximumMessageThroughputPerSecond. If omitted,
this defaults to zero and means that message throughput is limited only by the
capability of the hardware. However, we may want to limit throughput artiicially
if, for example, we are integrating with a third-party web service that imposes a
maximum number of requests per second. This automates the process of managing a
throughput quota, which can be very dificult to do manually, especially when using
multiple processing threads.

Scaling out
When a website has too much load to be handled by one server, we use a network
load balancer to distribute incoming requests to multiple servers, thus increasing
total capacity. We can do the same thing with NServiceBus. The mechanism differs
just slightly depending upon your chosen transport.

For broker-style transports (RabbitMQ, SQL Server, and Windows Azure), scaling
out couldn't be simpler. All we have to do is install the same handler endpoint
on additional machines, all connecting to the same input queue. This creates a
competing consumer pattern, where multiple servers (in fact, multiple threads on
multiple servers) compete to process messages from a single source.

MSMQ is a bit of a different beast in this respect. People commonly ask why
they can't just use a network load balancer to scale out an MSMQ endpoint the
same way they would scale a web server. Unfortunately, MSMQ's transactional
message processing does not work with load balancers because the message
acknowledgements can't be returned to the sending machine once the IP address
of the sender is masked by the load balancer.

Chapter 9

[161]

Instead, we can support scaling out an MSMQ-based NServiceBus endpoint using the
NServiceBus.Distributor.Msmq NuGet package. When this package is included in
an endpoint, that endpoint can be installed in one of three different modes:

• An endpoint installed as a distributor will monitor the main input queue and
distribute incoming messages to registered workers who report that they are
ready for work.

• An endpoint installed as a worker will maintain its own input queue and
process messages arriving at that queue. When it has completed processing
a message, it will request more work from the distributor.

• A master node combines the functionality of a distributor and worker in the
same endpoint instance.

All of this is made possible with a few additional queues that NServiceBus creates
automatically. The distributor maintains the following queues:

• Input queue: This is used to receive incoming messages

• Control queue: This is used to receive notiications that a worker is ready to
process a message

• Storage queue: This is used to keep track of workers that are idle when no
work is available

A master node and a worker node working together can be represented
diagramatically as follows:

Administration

[162]

Incoming messages (1) arriving at the input queue of a master node will be
intercepted by the distributor component running inside the process. The master
node contains both the distributor component and a worker instance.

When a worker instance is ready to process a message, it will send ReadyMessage (2)
to the distributor's control queue (the ready messages look like empty messages with
additional control headers on the wire). If the distributor has a message waiting in its
input queue, it will forward that message to the worker's private input queue (3) and
the worker will process it. If the distributor has no remaining work, it will store the
ReadyMessage in its storage queue (not pictured) so that it knows which workers are
available when the next message arrives. The storage queue also enables the distributor
to remember which workers are available in case the distributor is restarted.

Any NServiceBus endpoint with the distributor NuGet package can operate as
either a distributor or a worker by enabling the NServiceBus.MsmqDistributor
or NServiceBus.MsmqWorker proiles on the command line when the service
endpoint is installed.

These proile names have been changed from NServiceBus 4.x, where
the distributor components were included in the core NServiceBus
assembly and did not contain the Msmq- preixes. The distributor
components were removed from the core to prevent confusion
because they are only necessary for the MSMQ transport.

A master node offers the ultimate scaling lexibility. You can deploy an endpoint
as a master node to start out, and as system load increases, you can easily provision
additional worker nodes pointing back to the original master.

In order to ind its master node, all a worker needs to know is the name of the server
its master is hosted on:

<!-- Config Section -->

<section name="MasterNodeConfig"

 type="NServiceBus.Config.MasterNodeConfig, NServiceBus.Core" />

<!-- Config Element -->

<MasterNodeConfig Node="MasterNodeServer"/>

You can also generate the MasterNodeConfig section using the
PowerShell Add-NServiceBusMasterNodeConfig cmdlet.

NServiceBus assumes that the endpoint name will be the same on all servers, so as
long as it knows the server where the master node is hosted, it can deduce the names
of the master node's control queue and data queue, which are the only queues the
worker needs to be able to communicate with the master.

Chapter 9

[163]

If you are the kind of person who simply must go against the grain, or if you
just want to try running the distributor and workers on only one computer for
educational value, you'll need to specify the addresses of the master node's control
queue and data queue explicitly. You can do this via optional attributes on the
UnicastBusConfig element we're already familiar with:

<UnicastBusConfig

 DistributorControlAddress="Master.Control@MasterServer"

 DistributorDataAddress="Master@MasterServer">

 <MessageEndpointMappings>

 <!-- Normal message routing entries -->

 </MessageEndpointMappings>

</UnicastBusConfig>

The real elegance of the NServiceBus master node and worker model is that you
deploy the same package to every server that runs the endpoint. The code is the
same and the coniguration is the same for every server that runs the endpoint.
The only thing that's different is the proile that you specify on the command line
when installing the service. This really makes code updates a snap!

Decommissioning a MSMQ worker
Because MSMQ worker nodes maintain their own input queue, just turning off a
worker could result in messages remaining there, unable to be processed by other
workers. Therefore, in order to decommission an MSMQ worker, some steps need
to be taken to avoid losing data.

First, you will need the NServiceBus PowerShell cmdlets. These are available in the
NServiceBus.PowerShell NuGet package. For full details on how to import these
cmdlets to Visual Studio or to a full PowerShell console window, see http://docs.
particular.net/nservicebus/managing-nservicebus-using-powershell.

Now that you have access to the cmdlets, let's assume that you are decommissioning
a worker from the MyEndpoint endpoint on Server B, while the distributor for
MyEndpoint lives on Server A. We can now execute this:

PS> Remove-NServiceBusMSMQWorker MyEndpoint@ServerB
 MyEndpoint@ServerA

The cmdlet takes care of iguring out the exact name of the distributor's control
queue and sends it a message to deregister the worker. Inside the distributor, the
Session ID for the worker in question is set to disconnected. Now, any incoming
ReadyMessage the worker sends to the distributor will not match, and the worker
won't receive any more work.

http://docs.particular.net/nservicebus/managing-nservicebus-using-powershell
http://docs.particular.net/nservicebus/managing-nservicebus-using-powershell

Administration

[164]

Once the worker chews through all the messages assigned to it and its input queue
is empty, you can safely shut down and uninstall the endpoint. If you executed the
cmdlet in an error, simply restart the endpoint. A new session ID will be generated
and the distributor will assign the worker additional work as requested.

For broker-style transports, all the messages are stored centrally, so you can simply
shut down any worker at will with no adverse side effects.

Extreme scale
Because MSMQ relies on the distributor to scale out, it does suffer from some
limitations not present in a broker-style transport, where you can simply add
more nodes at any point. The distributor presents a single chokepoint for the
overall throughput, and messages can only be processed as fast as the distributor
can dish out work to worker nodes. Generally, a distributor will max out at about
500 messages per second using the distributor included in NServiceBus 5.0.

Because an MSMQ system is decentralized, each node has its own maximum
throughput. By contrast, a broker-based system will have a maximum throughput
for the entire system, which is shared amongst all nodes connected to it.

In order to obtain extreme scaling with MSMQ, it is necessary to partition the
incoming messages between multiple distributors, each of which can have multiple
connected workers. This can be done by sending messages directly to a speciic
endpoint using Bus.Send("Queue@SpecificServer", msg), using either a
natural partition key (such as a client ID) or in a round-robin fashion. In this case,
your application is taking ownership of the routing of messages, rather than the
conigured message endpoint mappings.

Multiple sites
Most queuing technologies can only operate within a local network, which presents
some problems when communication is needed between geographically separated
sites. A canonical example is a headquarters site that must exchange messages with
regional ofices.

The best approach to geographic separation is to establish a VPN connection
between sites. As far as NServiceBus is concerned, a VPN connection makes
geographically separated sites part of the same local network, and NServiceBus
can operate more or less normally. Of course, some messages will have a little
farther to travel than others, and the message transport's built-in capabilities
will cover instances when the VPN connection is not always reliable.

Chapter 9

[165]

The reality, however, is that a VPN connection is not always a possibility. If it is not
available, the only method we can reliably use to communicate between sites and
through irewalls is HTTP.

For this, NServiceBus provides the gateway component in the NServiceBus.
Gateway NuGet package. The gateway takes care of communicating with remote
endpoints via HTTP (or HTTPS) so that you don't have to waste time exposing
custom web services.

As we learned in Chapter 3, Preparing for Failure, communicating over HTTP is error-
prone, but NServiceBus takes care of this for us. It includes a hash with each message
to prevent transmission errors, automatically retries failed messages, and performs
deduplication to ensure that messages are delivered once and only once.

The gateway does come with some limitations:

• Not all messages are transmitted over the gateway. Transmitting a message
to a remote site requires you to opt in by specifying the names of the
destination sites.

• Because only select messages are transmitted over the gateway, you should
create special messages whose only purpose is this inter-site communication.

• Publish and subscribe is not supported across site boundaries.

• The gateway can only be used to bridge the gap between logically different
sites. It cannot be used to facilitate disaster recovery scenarios where the
remote site is a copy of the primary site. Use your existing IT infrastructure
(SAN snapshots, SQL log shipping, and so on) for these scenarios instead.

To send a message over the gateway, we use the SendToSites() method:

Bus.SendToSites(new[] { "SiteA", "SiteB" }, crossSiteCmd);

As a bonus, the gateway includes enough header information with the message so that
the receiving end can send a reply message with the standard Bus.Reply() method.

The App.config ile stores the incoming URLs that the gateway's HTTP server will
use to listen for incoming messages, as well as the outgoing URLs that correspond
to each remote site name. This allows an administrator to update the URLs in
coniguration without requiring a code update.

Coniguring the gateway and securing it with HTTPS (which is optional, but highly
recommended) is an advanced topic, which is beyond the scope of this book.
For more information, check out the gateway's documentation at http://docs.
particular.net/nservicebus/the-gateway-and-multi-site-distribution.

http://docs.particular.net/nservicebus/the-gateway-and-multi-site-distribution
http://docs.particular.net/nservicebus/the-gateway-and-multi-site-distribution

Administration

[166]

Virtualization
The single most important investment you can make in your infrastructure has nothing
to do with NServiceBus at all, and everything to do with hardware virtualization.

The whole point of NServiceBus is to provide transactional messaging so that you
don't lose data. This is moot if you host NServiceBus on a physical server that
could go up in smoke at any moment, taking its messages with it. With a properly
conigured virtualized environment, this risk basically disappears. In the event of a
hardware failure, the hypervisor should be able to migrate the virtual machine image
to another host, often completely transparently, where it will resume processing
messages without missing a beat.

Besides hardware failures, driver problems are the other main cause of catastrophic
system failures. In most cases, virtualization removes this problem as well because
the drivers are abstracted, generic drivers managed by the virtualization platform
in order to support hosting the guest system on different host architectures. In most
cases, an incompatibility like this would only happen when applying system updates
such as service packs. In these cases, with virtualization, you can take a complete
backup of the virtual machine before applying the update, and restore it to its
original state in case of a failure.

MSMQ message storage
If you are using MSMQ as your transport, then MSMQ stores its messages on the
same hard drive as the host operating system by default, which can be problematic.
Whether or not you decide to take advantage of hardware virtualization, it's a smart
idea to change the storage location of your messages to a Storage Area Network
(SAN) with its own built-in redundancy. If you do not virtualize, this network will
make it easier to recover your messages in the event of a system failure, or to reattach
the storage to a new host that can take over the processing from a failed host.

If you do virtualize, your virtual systems are probably already stored on a SAN,
so you may be wondering what the beneit of separate storage would be. Keeping
messages stored in separate storage from the OS creates less data churn on the drive
and can make it easier to perform hot backups of the OS partition without taking the
virtual server ofline.

To change the storage location for MSMQ, right-click on the Message Queuing
manager in Computer Management and select Properties. The relevant paths
can be modiied in the Storage tab.

Chapter 9

[167]

Clustering
Because broker-based transports are centralized in nature, they represent a
single point of failure. Therefore, any broker-style transport should be clustered in
order to ensure they are available to your endpoints at all times. As you embrace
NServiceBus, you will quickly notice your message broker becoming the heart of
your business processes, so you need to have resources and personnel in place to
maintain the infrastructure in good working order at all times.

For the SQL Server transport, this means ensuring that your SQL Server instance is
deployed on a failover cluster that is well-monitored and maintained by a team of
DBAs familiar with SQL failover clustering. For RabbitMQ, this means establishing a
RabbitMQ cluster with highly available queues. It's important to note that queues in
RabbitMQ are located only on a single node in a cluster by default.

Of course, when using the Azure transport, Microsoft will take care of your concerns
about high availability for you.

As a bus-style transport, MSMQ is not centralized in nature, so a failure of any one
node only affects the messages traveling through that node as long as it is down,
leaving the rest of the system free to operate more or less normally. However, you may
need to make selected nodes highly available, perhaps to ensure that SLAs are met, on
nodes where the requirement for high availability outweighs the increased complexity.

It is possible to deploy a Windows service powered by the NServiceBus Host as
a clustered resource on a Windows Failover Cluster. In this case, you also need a
clustered MSMQ and DTC instance. Generally, you will cluster only an endpoint
deployed as a master node, or perhaps only as a distributor. The failover cluster
ensures that messages continue to low at all times, and separate servers containing
only worker nodes provide redundant processing ability.

While clustering MSMQ endpoints, you will also want to ensure that all nodes can
access the shared persistence for subscription storage, timeouts, sagas, and so on. If
you are using NHibernate persistence, for example, with a centralized SQL Server
database, then you don't have to worry (assuming your database is highly available).
If you are using a more distributed persistence strategy, such as independent
RavenDB databases on each node, then you will probably need to cluster the
RavenDB instance for the highly available node as well.

Administration

[168]

Transport administration
Of course, administering NServiceBus also means administering the underlying
message transport. NServiceBus does a pretty good job of freeing you from the
nitty-gritty of your underlying transport, but it can't completely absolve you of
dealing with it from time to time.

For the MSMQ transport, the NServiceBus community champion, Daniel Marbach,
has compiled an exhaustive list of resources that are very helpful both in diagnosing
potential problems and deepening your understanding of MSMQ's inner workings,
at http://www.planetgeek.ch/2014/09/02/administration-of-msmq/.

For ActiveMQ, the best source of information is the oficial ActiveMQ documentation
at http://activemq.apache.org/.

For RabbitMQ, the best source is the oficial RabbitMQ server documentation at
https://www.rabbitmq.com/admin-guide.html.

Most developers electing to use SQL Server as a transport should view SQL Server
itself as a fairly known quantity, with existing organizational assets in place to
monitor and maintain it. The tables and infrastructure created by the SQL Server
transport are easy to inspect in SQL Server Management Studio or to proile with
SQL Server Proiler. Even so, you may want to take a look at the source code for
the SQL Server transport at https://github.com/Particular/NServiceBus.
SqlServer to gain an insight into what is being generated and executed as part of
the NServiceBus integration.

Finally, for the Azure transports, you may want to explore the oficial Service
Bus documentation at http://azure.microsoft.com/en-us/documentation/
services/service-bus/, the oficial Azure Storage Queues documentation at
http://azure.microsoft.com/en-us/documentation/services/storage/,
and the NServiceBus Azure Transport documentation at http://docs.particular.
net/nservicebus/windows-azure-transport.

http://www.planetgeek.ch/2014/09/02/administration-of-msmq/
http://activemq.apache.org/
https://www.rabbitmq.com/admin-guide.html
https://github.com/Particular/NServiceBus.SqlServer
https://github.com/Particular/NServiceBus.SqlServer
http://azure.microsoft.com/en-us/documentation/services/service-bus/
http://azure.microsoft.com/en-us/documentation/services/service-bus/
http://azure.microsoft.com/en-us/documentation/services/storage/
http://docs.particular.net/nservicebus/windows-azure-transport
http://docs.particular.net/nservicebus/windows-azure-transport

Chapter 9

[169]

Summary
In this chapter, we learned how to manage an NServiceBus system in a production
environment, how to use the NServiceBus host's ability to install as a Windows Service,
and how to use proiles to modify how the host runs in different environments. We
also learned how to write our own code to target different proiles and how to create
our own custom proiles.

We learned how to manage coniguration as we deploy to new environments, and
how we can provide that coniguration information programmatically, even by
loading it from a centralized database.

Next, we learned how to monitor a production endpoint using NServiceBus
performance counters, and how to deine an SLA for an endpoint programmatically.
In order to make sure we meet that SLA, we learned how to scale an endpoint. We
also learned how to scale up by increasing the maximum concurrency level for an
endpoint, and how to scale out using a competing consumer pattern for broker-style
transports, or using the distributor component for MSMQ.

In order to bridge the gap between logically different and geographically separated
sites, we learned about the gateway component and its capabilities. We discussed
the importance of hardware virtualization in creating reliable infrastructure that we
cannot attain with non-virtualized servers. Then we ended the chapter by briely
discussing clustering options for high availability and reviewing some sources for
administration information for each of the supported message transports.

In the next chapter, we will review what we have learned in this book and cover
resources where you can ind more information about NServiceBus.

Where to Go from Here?
This book was not meant to be an exhaustive guide on every single gritty detail
of NServiceBus, let alone the theories of service-oriented architecture that are the
underpinnings of its architecture. Instead, this book has aimed to be more of a guide
to the essentials that will give you a running start so that you can create your own
reliable distributed systems as quickly as possible.

As a result of this approach, there is more to learn, but let's pause for a moment to
take stock of what we have covered in these pages.

What we've learned
If you recall, back at the beginning of Chapter 1, Getting on the IBus, I shared
several stories of problematic development scenarios, many from my own
personal experience. Let's take a look back and relect on how NServiceBus
could prove useful in each situation.

In the irst scenario, we were getting deadlocks when updating values in several
database tables within a transaction. With NServiceBus, we would separate this
action into many different commands, each of which would update the values in
one table. By dividing the process, we would create less locking, minimizing the
chance of deadlocks in the irst place, and automated retry would ensure that the
occasional deadlock didn't pose a huge problem. The database would be technically
inconsistent for a short period of time until all the commands completed execution,
but our business stakeholders would be very happy that end users are no longer
getting error messages.

Where to Go from Here?

[172]

In the second scenario, we were losing orders and revenue because of a transient
database error, such as a deadlock or even a database failover event. With NServiceBus,
the database calls would be handled in a message handler, separate from the website
code. During the times when the database threw an error, automatic retries would
kick off until the command was processed correctly. Best of all, the web tier only had
to send a command and then was able to report back to the user that the order was
accepted, even though all of the work hadn't technically been done yet.

In the third scenario, an image processing system was growing too big for the
hardware it was running on. With NServiceBus, we would replace the app with an
endpoint that processes one image per command. If the load increased a little, we
could scale up by increasing the maximum concurrency level to use more processing
threads on that machine. If the load increased a lot, we could scale out by adding
another worker endpoint on a different server. We would deine an SLA on the
endpoint according to our business needs, and we would use the NServiceBus
performance counters to ensure that we were meeting that SLA so that we would
know when we needed to add more processing resources.

In the fourth scenario, we were integrating with a third-party web service and also
updating a local database. The data got out of sync as a result of the web service
timing out. With NServiceBus, we send a command to update the local database, and
once that completes, we send a new command to call the web service. When the web
service times out, automatic retries ensure that the call is completed successfully.

In the ifth scenario, we were sending emails as part of a lengthy business process,
and a naïve retry policy was causing end users to get multiple copies of the same
email. With NServiceBus, sending the email is handled within a separate handler, so
it is isolated from the rest of the business processes and the mail is sent only once.
The part of the business process that is failing will beneit from automatic retries.

In the sixth scenario, a webpage began a long-running backend process, while
the browser displayed an interstitial page similar to the page you see when you
search for lights on a travel site. Because of unreliable messaging techniques, the
integration was brittle and the backend process didn't always execute as planned.
With NServiceBus, we ensure that the command we send from the website will
get picked up by the backend process. The web application subscribes to an event
published when the process completes, ensuring that even if the site is served by a
web farm, every server will know when the process is inished. The browser can then
use either traditional polling via jQuery or a real-time web socket library such as
SignalR to determine the right time to advance to the next page.

Chapter 10

[173]

In the seventh scenario, a nightly batch job designed to be run during off hours was
taking so long that it was intruding on peak hours. With NServiceBus, we design
sagas to react to events as they happen so that we don't need to run big batch jobs to
update the whole database every night. As a bonus, our business processes become
more real-time, which likely aligns much more closely with what our business
stakeholders really want.

In the inal scenario, we were spending way too much money purchasing on-premise
infrastructure to handle trafic spikes that happened only rarely. We were looking
for a way to transition business processes to the cloud so that we could dynamically
provision additional infrastructure as needed and at much lower cost. With
NServiceBus, we can transfer some of our workload to the message handlers that we
deploy on Windows Azure, where we can scale them up or down as needed.

Hopefully, this book has demonstrated how NServiceBus can ease these pains, helping
you to create software systems that are more reliable, scalable, and maintainable. It
might even make building those systems more fun. Investing in NServiceBus as a part
of your business infrastructure will pay dividends for years to come.

What next?
• There are many places to go to ind out more about NServiceBus. Of

course, I would be remiss if I did not irst mention the oficial NServiceBus
documentation, at http://docs.particular.net.

• NServiceBus boasts a very active and user-friendly community. You
can ind them at the oficial Particular Software discussion group, at
https://groups.google.com/forum/#!forum/particularsoftware.

• If you're not in the mood for discussion, Stack Overlow may be a better
place to go for any question that needs an answer. Be sure to tag your
questions with the nservicebus tag. There are several community members
(including me) who use this tag, looking to help out others in need. Also, be
sure to read other tagged questions. There's a good chance your question has
been asked before at http://stackoverflow.com/tags/nservicebus.

• Remember that while NServiceBus is not free, it is still open source software. If
you like, you can dive deep into the source code by looking up the NServiceBus
GitHub repository, at https://github.com/Particular/NServiceBus.
There are many other repositories within the Particular organization as well,
containing the sources to all the pieces of the Particular Service Platform puzzle.

• Lastly, be sure to check out the NServiceBus Champions (http://
particular.net/champions), a worldwide group of NServiceBus
community leaders. It is deinitely worth your time to follow them
on Twitter or read their personal blogs.

http://docs.particular.net
https://groups.google.com/forum/#!forum/particularsoftware
http://stackoverflow.com/tags/nservicebus
https://github.com/Particular/NServiceBus
http://particular.net/champions
http://particular.net/champions

Index

A

ACID (Atomicity, Consistency, Isolation,
and Durability) 24

ActiveMQ
URL 168

Advanced Message Queuing Protocol
(AMQP) 57

applicative message mutator 114
assembly, NServiceBus

scanning 54
Azure

about 99
storage, URL 99

Azure Storage Queues documentation
URL 168

B

BASE (Basically Available, Soft state,
Eventual consistency) 25

batch jobs 85
Begin() method 114
behaviors

building 117, 118
ordering 118-120
replacing 120

business stakeholders
retraining 97

C

CAP theorem (Consistency, Availability,
and Partition tolerance) 25

clustering 167

commands
consistency, achieving with

messaging 26, 27
eventual consistency 24, 25
versus events 23

competing consumer pattern 160
conigurations

managing 156, 157
control queue 161
critical time 158
custom checks, ServicePulse 140, 141

D

DataBus 81, 82
deadlock 40
dependency injection 55, 111, 112
design, saga

business logic only 93, 94
business stakeholders, retraining 97
guidelines 93
messaging 96, 97
saga lifetime 95
saga patterns 95

Distributed Transaction
Coordinator (DTC) 9, 57 122

E

endpoint activity, ServicePulse 138, 139
Endpoint Explorer, ServiceInsight 131
endpoint name, NServiceBus

selecting 54
environmental proiles

about 151
integration proile 152
lite proile 152

[176]

production proile 152
error queues and replay

about 42
automatic retries 40, 41
RetryDemo 44
second-level retries 42, 43

errors
replaying 42

events
about 28
as interfaces 74, 75
publishing 29-31
subscribing to 31-33
versus commands 23

F

Fallacies of Distributed Computing 24, 47
fault tolerance 38-40
feature proiles 152

MSMQMaster, MSMQDistributor, and
MSMQWorker proiles 152

PerformanceCounters proile 152
First-Level Retries (FLR) 43
Flow Diagram, ServiceInsight 131-134

G

gateway
URL 165

GitHub repository
URL 173

H

handler order
specifying 75, 76

hosting
startup 66

hosting, types
about 51
NServiceBus-hosted endpoints 52
self-hosted endpoints 53

I

IConigureThisEndpoint 108
idempotent 47

Identity Map pattern 76
INeedInitialization 109
in-memory persistence 60
input queue 161
installers 65, 66
integration proile 152
Internet Information Services (IIS) 65
IWantToRunWhenBusStartsAndStops 110

L

licensing
URL 19

lite proile 152
log level

customizing 156

M

MarkAsComplete() method 90
message

actions 76
assembly, creating 10, 11
auditing 46
deferring 77
expiry 45
forwarding 78
handler, creating 12, 13
handler order, specifying 75, 76
headers 78
large payloads, transporting 80-82
property encryption 79, 80
sending, from MVC application 14
sending 23
stopping 76
unobtrusive mode 70, 71
versioning 72

message mutator
applicative message mutator 114
transport message mutator 115

message routing 33-35
message serialization 63, 64
Messages, ServiceInsight 131
messages, ServicePulse

failed 139
message transport 55
message, versioning

about 72

[177]

events, as interfaces 74
polymorphic dispatch 73

Microsoft Message Queuing (MSMQ)
about 85, 57
Distributed Transaction

Coordinator (DTC) 57

Model View Controller. See MVC
MSMQ

URL 168
MSMQMaster, MSMQDistributor, and

MSMQWorker proiles 152
MSMQ message storage 166
MSMQ worker

decommissioning 163
multiple sites 164
MVC

about 5
website, creating 14-17

MVC application
message, sending from 14

N

NHibernate 99
NHibernate persistence 60, 61
NServiceBus

about 5-7
assembly, scanning 54
champions, URL 173
code, retrieving 7-9
dependency injection 55
documentation, URL 173
endpoint name, selecting 54
example 10
extending 108
fault tolerance 38-40
hosting 51
IConigureThisEndpoint 108
INeedInitialization 109
IWantToRunWhenBusStartsAndStops 110
learnings 171-173
message assembly, creating 10, 11
message-based subscriptions 57
message handler, creating 12
message, sending from MVC application 14
message transport 55, 56
Microsoft Message Queuing (MSMQ) 57

MVC website, creating 14-17
Particular Software discussion

group, URL 173
performances, monitoring 158, 159
persistence 59
RabbitMQ 57
service endpoint, creating 11, 12
solution, running 18-20
SQL Server 58
storage-based publishing 57
transport, need for 56
Windows Azure 59

NServiceBus 5.0
about 115
Outbox 122
URL 125

NServiceBus Azure Transport
documentation

URL 168
NServiceBus command

and RPC request, differences 23
NServiceBus-hosted endpoints 52
NServiceBus NuGet packages

about 9
NServiceBus 9
NServiceBus.Host 9
NServiceBus.Testing 9

NServiceBus performance counters 9
NServiceBus PowerShell cmdlets

URL 163

O

Outbox
about 122
coniguring 125
distributed transactions,

life without 123, 124
DTC 101 122, 123
session, sharing 126

P

PerformanceCounters proile 152
performances

monitoring 158, 159
persistence, NServiceBus

about 59

[178]

in-memory persistence 60
NHibernate persistence 60, 61
Polyglot persistence 63
RavenDB persistence 62
Windows Azure persistence 63

persistence, saga
about 98
Azure 99
NHibernate 99
RavenDB 98

pipeline, NServiceBus
about 115, 116
behavior, building 117, 118
behavior, ordering 118-120
behavior, replacing 120
behaviors 121, 122

poison messages 40
Polyglot persistence 63
polymorphic dispatch 73
production proile 152
proiles

about 151
customizing 152-155
environmental proiles 151, 152
feature proiles 152
logging 155

property
encrypting 79, 80

Q

QueueExplorer 128
queues

control queue 161
input queue 161
purging, on startup 65
storage queue 161

R

RabbitMQ
about 57
URL 58, 168

RavenDB 98
RavenDB persistence 62
Remote Procedure Call (RPC) 23, 74
RetryDemo 44, 45

RPC request
and NServiceBus command, differences 23

S

saga
controller pattern 95
data, inding 88, 89
deining 86-88
design, guidelines 93
ending 89-91
implementation patterns, blog 96
lifetime 95
long-running processes 85
messaging 96, 97
observer pattern 96
patterns 95
persistence 98
time, dealing with 91-93

saga, ServiceInsight 134, 135
scalability

about 159
scaling out 160
scaling up 159, 160

scaling out
about 160-162
endpoint, installation modes 161
extreme scale 164

scheduled tasks 85
scheduling 104
second-level retries 42, 43
self-hosted endpoints 53
semi-transient errors 42
send-only endpoints 67
sequence diagram, ServiceInsight 136, 137
Service Bus documentation

URL 168
ServiceControl

about 128, 129
documentation, URL 129
URL 128

service endpoint
creating 11, 12

ServiceInsight
about 130
Endpoint Explorer 131
Main view 131

[179]

Messages 131
ServiceInsight, main view

about 131
Body tab 137
Flow Diagram 131-133
Headers tab 137
Logs tab 137
other tabs 137
saga 134, 135
sequence diagram 136, 137

service installation
about 147, 148
infrastructure installers 149
side-by-side installation 150

Service Level Agreement (SLA) 158
ServiceMatrix

about 142-145
URL 145

Service-oriented architecture (SOA) 5
ServicePulse

about 137, 138
custom checks 140, 141
endpoint activity 138, 139
failed messages 139
notiications, getting 141, 142

SLA Violation Countdown performance
counter 158

SQL Server 58
SQL Server transport

URL 168
Stack Overlow

URL 173
storage queue 161

T

time, saga
dealing with 91-93

TimeToBeReceived attribute 71
transactional processing 38-40
transactions 65
transport

administration 168
transport message mutator 115

U

unit of work 113, 114
unit testing

about 100-103
events, as interfaces 103

Universal Naming Convention (UNC) 155
unobtrusive mode 69-71
User Account Control (UAC) 149

V

virtualization
about 166
clustering 167
MSMQ message storage 166

W

Web service
exposing 82-84
integration 46-49

WellKnownStep class 118

Windows Azure. See Azure
about 59
URL 59

Windows Azure persistence 63
Windows Communication Foundation

(WCF) web service 82
Windows Management Instrumentation

(WMI) 159
Windows Presentation

Foundation (WPF) 51

Thank you for buying

Learning NServiceBus
Second Edition

About Packt Publishing
Packt, pronounced 'packed', published its irst book, Mastering phpMyAdmin for Effective MySQL
Management, in April 2004, and subsequently continued to specialize in publishing highly
focused books on speciic technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books give
you the knowledge and power to customize the software and technologies you're using to get
the job done. Packt books are more speciic and less general than the IT books you have seen in
the past. Our unique business model allows us to bring you more focused information, giving
you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order
to continue its focus on specialization. This book is part of the Packt Enterprise brand, home
to books published on enterprise software – software created by major vendors, including
(but not limited to) IBM, Microsoft, and Oracle, often for use in other corporations. Its titles
will offer information relevant to a range of users of this software, including administrators,
developers, architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it irst before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Learning NServiceBus
ISBN: 978-1-78216-634-4 Paperback: 136 pages

Build reliable and scalable distributed software
systems using the industry leading .NET Enterprise
Service Bus

1. Replace batch jobs with a reliable process.

2. Create applications that compensate for
system failure.

3. Build message-driven systems.

Mastering NServiceBus and

Persistence
ISBN: 978-1-78217-381-6 Paperback: 286 pages

Design and build various enterprise solutions
using NServiceBus while utilizing persistence
enterprise objects

1. Learn how to utilize the robust features of
NServiceBus to create, develop, and architect
C# enterprise systems.

2. Customize NServiceBus to use persistent
components to meet your business needs.

3. Explore the vast opportunities to extend
NServiceBus for uses beyond basic enterprise
systems using this practical tutorial.

Please check www.PacktPub.com for information on our titles

JBoss ESB Beginner's Guide
ISBN: 978-1-84951-658-7 Paperback: 320 pages

A comprehensive, practical guide to developing
service-based applications using the Open Source
JBoss Enterprise Service Bus

1. Develop your own service-based applications,
from simple deployments through to complex
legacy integrations.

2. Learn how services can communicate with
each other and the beneits to be gained from
loose coupling.

3. Contains clear, practical instructions for service
development, highlighted through the use of
numerous working examples.

Mule ESB Cookbook
ISBN: 978-1-78216-440-1 Paperback: 428 pages

Over 40 recipes to effectively build your enterprise
solutions from the ground up using Mule ESB

1. Step-by-step practical recipes to get started with
Mule ESB 3.4.

2. Learn to effectively use Mule ESB in a
real-world scenario.

3. Expert advice on using ilters, connecting
with cloud, integrating with web services,
and much more.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	Foreword
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting on the IBus
	Why use NServiceBus?
	Getting the code
	NServiceBus NuGet packages

	Our first example
	Creating a message assembly
	Creating a service endpoint
	Creating a message handler
	Sending a message from an MVC application
	Creating the MVC website

	Running the solution
	Summary

	Chapter 2: Messaging Patterns
	Commands versus events
	Eventual consistency
	Achieving consistency with messaging

	Events
	Publishing an event
	Subscribing to an event

	Message routing
	Summary

	Chapter 3: Preparing for Failure
	Fault tolerance and transactional processing
	Error queues and replay
	Automatic retries
	Replaying errors
	Second-level retries
	RetryDemo

	Messages that expire
	Auditing messages
	Web service integration and idempotence
	Summary

	Chapter 4: Hosting
	Hosting types
	NServiceBus-hosted endpoints
	Self-hosted endpoints

	Assembly scanning
	Choosing an endpoint name
	Dependency injection
	Message transport
	Reasons to use a different transport
	MSMQ
	RabbitMQ
	SQL Server
	Windows Azure

	Persistence
	In-memory persistence
	NHibernate
	RavenDB
	Windows Azure
	Polyglot persistence

	Message serialization
	Transactions
	Purging the queue on startup
	Installers
	Startup
	Send-only endpoints

	Summary

	Chapter 5: Advanced Messaging
	Unobtrusive mode
	TimeToBeReceived attribute

	Message versioning
	Polymorphic dispatch
	Events as interfaces

	Specifying the handler order
	Message actions
	Stopping a message
	Deferring a message
	Forwarding messages
	Message headers

	Property encryption
	Transporting large payloads
	Exposing web services
	Summary

	Chapter 6: Sagas
	Long-running processes
	Defining a saga
	Finding saga data
	Ending a saga
	Dealing with time
	Design guidelines
	Business logic only
	Saga lifetime
	Saga patterns
	Messages that start sagas
	Retraining business stakeholders

	Persistence concerns
	RavenDB
	NHibernate
	Azure

	Unit testing
	Testing events as interfaces

	Scheduling
	Summary

	Chapter 7: Advanced Configuration
	Extending NServiceBus
	IConfigureThisEndpoint
	INeedInitialization
	IWantToRunWhenBusStartsAndStops

	Dependency injection
	Unit of work
	Message mutators
	The NServiceBus pipeline
	Building behaviors
	Ordering behaviors
	Replacing behaviors
	The pipeline context

	Outbox
	DTC 101
	Life without distributed transactions
	The Outbox configuration
	Session sharing

	Summary

	Chapter 8: The Service Platform
	ServiceControl
	ServiceInsight
	Endpoint Explorer
	Messages
	Main view
	Flow Diagram
	Saga
	Sequence Diagram
	Other tabs

	ServicePulse
	Endpoint activity
	Failed messages
	Custom checks
	Getting notified

	ServiceMatrix
	Summary

	Chapter 9: Administration
	Service installation
	Infrastructure installers
	Side-by-side installation

	Profiles
	Environmental profiles
	Feature profiles
	Customizing profiles
	Logging profiles
	Customizing the log level

	Managing configurations
	Monitoring performances
	Scalability
	Scaling up
	Scaling out
	Decommissioning a MSMQ worker
	Extreme scale

	Multiple sites
	Virtualization
	MSMQ message storage
	Clustering

	Transport administration
	Summary

	Chapter 10: Where to Go from Here?
	What we've learned
	What next?

	Index

