
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Learning Rails 3

Simon St.Laurent, Edd Dumbill, and Eric J. Gruber

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

www.allitebooks.com

http://www.allitebooks.org

Learning Rails 3
by Simon St.Laurent, Edd Dumbill, and Eric J. Gruber

Copyright © 2012 Simon St.Laurent, Edd Dumbill, Eric J. Gruber. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Simon St.Laurent
Production Editor: Iris Febres
Proofreader: Jasmine Perez

Indexer: Lucie Haskins
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrators: Robert Romano, Rebecca Demarest,

and Jessamyn Read

July 2012: First Edition.

Revision History for the First Edition:
2012-07-11 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449309336 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Learning Rails 3, the image of the tarpans, and related trade dress are trademarks
of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-30933-6

[M]

1342467902

www.allitebooks.com

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449309336
http://www.allitebooks.org

Table of Contents

Preface . xi

1. Starting Up Ruby on Rails . 1
If You Run Windows, You’re Lucky 2
Getting Started at the Command Line 3
Starting Up Rails 8
Test Your Knowledge 9

Quiz 9
Answers 9

2. Rails on the Web . 11
Creating Your Own View 11
What Are All Those Folders? 14
Adding Some Data 16
How Hello World Works 18
Adding Logic to the View 20
Test Your Knowledge 22

Quiz 22
Answers 22

3. Adding Web Style . 23
I Want My CSS! 23
Specifying Stylesheets 28
Creating a Layout for a Controller 29
Choosing a Layout from a Controller 31
Sharing Template Data with the Layout 33
Setting a Default Page 34
Test Your Knowledge 36

Quiz 36
Answers 36

iii

www.allitebooks.com

http://www.allitebooks.org

4. Managing Data Flow: Controllers and Models . 37
Getting Started, Greeting Guests 37
Application Flow 42
Keeping Track: A Simple Guestbook 44

Connecting to a Database Through a Model 44
Connecting the Controller to the Model 47

Finding Data with ActiveRecord 52
Test Your Knowledge 54

Quiz 54
Answers 54

5. Accelerating Development with Scaffolding and REST . 57
A First Look at Scaffolding 57
REST and Controller Best Practices 61

Websites and Web Applications 61
Toward a Cleaner Approach 63

Examining a RESTful Controller 64
Index: An Overview of Data 69
Show: Just One Row of Data 71
New: A Blank Set of Data Fields 71
Edit: Hand Me That Data, Please 72
Create: Save Something New 72
Put This Updated Record In 74
Destroy It 75

Escaping the REST Prison 76
Test Your Knowledge 76

Quiz 76
Answers 77

6. Presenting Models with Forms . 79
More Than a Name on a Form 79
Generating HTML Forms with Scaffolding 80
Form as a Wrapper 84
Creating Text Fields and Text Areas 87
Labels 89
Creating Checkboxes 90
Creating Radio Buttons 91
Creating Selection Lists 93
Dates and Times 95
Creating Helper Methods 97
Test Your Knowledge 100

Quiz 100
Answers 100

iv | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

7. Strengthening Models with Validation . 103
Without Validation 103
The Original Model 106
The Power of Declarative Validation 106
Managing Secrets 109

Customizing the Message 109
Limiting Choices 111
Testing Format with Regular Expressions 112
Seen It All Before 112
Numbers Only 113

A Place on the Calendar 114
Testing for Presence 115

Beyond Simple Declarations 115
Test It Only If 115
Do It Yourself 116

Test Your Knowledge 117
Quiz 117
Answers 117

8. Improving Forms . 119
Adding a Picture by Uploading a File 119

File Upload Forms 120
Model and Migration Changes 120
Results 126

Standardizing Your Look with Form Builders 129
Supporting Your Own Field Types 130
Adding Automation 132
Integrating Form Builders and Styles 134

Test Your Knowledge 137
Quiz 137
Answers 138

9. Developing Model Relationships . 139
Connecting Awards to Students 140

Establishing the Relationship 140
Supporting the Relationship 141
Guaranteeing a Relationship 145

Connecting Students to Awards 146
Removing Awards When Students Disappear 146
Counting Awards for Students 147

Nesting Awards in Students 148
Changing the Routing 149
Changing the Controller 150

Table of Contents | v

www.allitebooks.com

http://www.allitebooks.org

Changing the Award Views 153
Connecting the Student Views 156
Is Nesting Worth It? 158

Many-to-Many: Connecting Students to Courses 159
Creating Tables 159
Connecting the Models 161
Adding to the Controllers 162
Adding Routing 164
Supporting the Relationship Through Views 164

What’s Missing? 172
Test Your Knowledge 172

Quiz 172
Answers 173

10. Managing Databases with Migrations . 175
What Migrations Offer You 175
Migration Basics 176

Migration Files 177
Running Migrations Forward and Backward 178

Inside Migrations 180
Working with Tables 181
Data Types 181
Working with Columns 183
Indexes 183
Other Opportunities 184

Test Your Knowledge 185
Quiz 185
Answers 185

11. Debugging . 187
Creating Your Own Debugging Messages 187
Raising Exceptions 188
Logging 188
Working with Rails from the Console 190
The Ruby Debugger 195
Test Your Knowledge 199

Quiz 199
Answers 199

12. Testing . 201
Test Mode 201
Setting Up a Test Database with Fixtures 202
Unit Testing 206

vi | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Functional Testing 212
Calling Controllers 214
Testing Responses 215
Dealing with Nested Resources 216

Integration Testing 218
Beyond the Basics 220
Test Your Knowledge 221

Quiz 221
Answers 221

13. Sessions and Cookies . 223
Getting Into and Out of Cookies 223
Storing Data Between Sessions 230
Test Your Knowledge 235

Quiz 235
Answers 235

14. Users and Authentication . 237
Installation 237
Storing Identities 239
Storing User Data 239
Wiring OmniAuth into the Application 240
Classifying Users 248
More Options 255
Test Your Knowledge 256

Quiz 256
Answers 256

15. Routing . 257
Creating Routes to Interpret URIs 258

Specifying Routes with match 258
Globbing 260
Regular Expressions and Routing 261
A Domain Default with root 261
Named Routes 262
Mapping Resources 263
Nesting Resources 264
Route Order and Priority 265
Checking the Map 265

Generating URIs from Views and Controllers 266
Pointing url_for in the Right Direction 266
Adding Options 267

Infinite Possibilities 267

Table of Contents | vii

www.allitebooks.com

http://www.allitebooks.org

Test Your Knowledge 268
Quiz 268
Answers 268

16. From CSS to SASS . 271
Getting Started 271
Sassy Style 272

Variables 272
Mixins 274
Nesting 275

Making Everything Work Together 276
Becoming Sassier 279

Test Your Knowledge 280
Quiz 280
Answers 280

17. Managing Assets and Bundles . 281
The Junk Drawer 281

Sprockets 282
Dissecting The Pipeline 283
Putting It All Together 283
Bundler 286

Test Your Knowledge 290
Quiz 290
Answers 290

18. Sending Code to the Browser: JavaScript and CoffeeScript 291
Sending JavaScript to the Browser 292
Simplifying with CoffeeScript 293

Have Some Sugar with your CoffeeScript 295
Converting to CoffeeScript 297

Test Your Knowledge 298
Quiz 298
Answers 298

19. Mail in Rails . 299
Sending Mail Messages 299
Receiving Mail 304

Setup 305
Processing Messages 305

Test Your Knowledge 308
Quiz 308
Answers 308

viii | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

20. Pushing Further into Rails . 309
Changing to Production Mode 309
Deploying Is Much More Than Programming 310
Joining the Rails Ecosystem 313

Keep Up with Rails 313
Ruby 313
Working With and Around Rails 314
Keep Exploring 314

A. An Incredibly Brief Introduction to Ruby . 315

B. An Incredibly Brief Introduction to Relational Databases . 335

C. An Incredibly Brief Guide to Regular Expressions . 343

D. Glossary . 353

Index . 371

Table of Contents | ix

Preface

Everyone cool seems to agree: Ruby on Rails is an amazing way to build web
applications. Ruby is a powerful and flexible programming language, and Rails takes
advantage of that flexibility to build a web application framework that takes care of a
tremendous amount of work for the developer. Everything sounds great!

Except, well… all the Ruby on Rails books talk about this “Model-View-Controller”
thing, and they start deep inside the application, close to the database, most of the time.
From an experienced Rails developer’s perspective, this makes sense—the framework’s
power lies largely in making it easy for developers to create a data model quickly, layer
controller logic on top of that, and then, once all the hard work is done, put a thin layer
of interface view on the very top. It’s good programming style, and it makes for more
robust applications. Advanced Ajax functionality seems to come almost for free!

From the point of view of someone learning Ruby on Rails, however, that race to show
off Rails’ power can be extremely painful. There’s a lot of seemingly magical behavior
in Rails that works wonderfully—until one of the incantations isn’t quite right and
figuring out what happened means unraveling all that work Rails did. Rails certainly
makes it easier to work with databases and objects without spending forever thinking
about them, but there are a lot of things to figure out before that ease becomes obvious.

If you’d rather learn Ruby on Rails more slowly, starting from pieces that are more
familiar to the average web developer and then moving slowly into controllers and
models, you’re in the right place. You can start from the HTML you already likely know,
and then move more deeply into Rails’ many interlinked components.

This updated version of Learning Rails covers version 3.2. There are
substantial changes from earlier versions. Rails itself keeps changing,
even in ways that affect beginners.

Who This Book Is For
You’ve probably been working with the Web for long enough to know that writing web
applications always seems more complicated than it should be. There are lots of parts

xi

to manage, along with lots of people to manage, and hopefully lots of visitors to please.
Ruby on Rails has intrigued you as one possible solution to that situation.

You may be a designer who’s moving toward application development or a developer
who combines some design skills with some programming skills. You may be a
programmer who’s familiar with HTML but who lacks the sense of grace needed to
create beautiful design—that’s a fair description of one of the authors of this book,
anyway. Wherever you’re from, whatever you do, you know the Web well and would
like to learn how Rails can make your life easier.

The only mandatory technical prerequisite for reading this book is direct familiarity
with HTML and a general sense of how programming works. You’ll be inserting Ruby
code into that HTML as a first step toward writing Ruby code directly, so understanding
HTML is a key foundation. (If you don’t know Ruby at all, you probably want to look
over Appendix A or at least keep it handy for reference.)

Cascading Style Sheets (CSS) will help you make that HTML look a lot nicer, but it’s
not necessary for this book. Similarly, a sense of how JavaScript works may help.
Experience with other templating languages (like PHP, ASP, and ASP.NET) can also
help, but it isn’t required.

You also need to be willing to work from the command line sometimes. The commands
aren’t terribly complicated, but they aren’t (yet) completely hidden behind a graphical
interface.

Who This Book Is Not For
We don’t really want to cut anyone out of the possibility of reading this book, but there
are some groups of people who aren’t likely to enjoy it. Model-View-Controller purists
will probably grind their teeth through the first few chapters, and people who insist
that data structures are at the heart of a good application are going to have to wait an
even longer time to see their hopes realized. If you consider HTML just a nuisance that
programmers have to put up with, odds are good that this book isn’t for you. Most of
the other Ruby on Rails books, though, are written for people who want to start from
the model!

Also, people who are convinced that Ruby and Rails are the one true way may have
some problems with this book, which spends a fair amount of time warning readers
about potential problems and confusions they need to avoid. Yes, once you’ve worked
with Ruby and Rails for a while, their elegance is obvious. However, reaching that level
of comfort and familiarity is often a difficult road. This book attempts to ease as many
of those challenges as possible by describing them clearly.

xii | Preface

What You’ll Learn
Building a Ruby on Rails application requires mastering a complicated set of skills. You
may find that—depending on how you’re working with it, and who you’re working
with—you only need part of this tour. That’s fine. Just go as far as you think you’ll need.

At the beginning, you’ll need to install Ruby on Rails. We’ll explore different ways of
doing this, with an emphasis on easier approaches to getting Ruby and Rails
operational.

Next, we’ll create a very simple Ruby on Rails application, with only a basic view and
then a controller that does a very few things. From this foundation, we’ll explore ways
to create a more sophisticated layout using a variety of tools, learning more about Ruby
along the way.

Once we’ve learned how to present information, we’ll take a closer look at controllers
and what they can do. Forms processing is critical to most web applications, so we’ll
build a few forms and process their results, moving from the simple to the complex.

Forms can do interesting things without storing data, but after a while it’s a lot more
fun to have data that lasts for more than just a few moments. The next step is setting
up a database to store information and figuring out how the magic of Rails’
ActiveRecord makes it easy to create code that maps directly to database structures—
without having to think too hard about database structures or SQL.

Once we have ActiveRecord up and running, we’ll explore scaffolding and its possi-
bilities. Rails scaffolding not only helps you build applications quickly, it helps you
learn to build them well. The RESTful approach that Rails emphasizes will make it
simpler for you to create applications that are both attractive and maintainable. For
purposes of illustration, using scaffolding also makes it easier to demonstrate one task
at a time, which we hope will make it easier for you to understand what’s happening.

Ideally, at this point, you’ll feel comfortable with slightly more complicated data mod-
els, and we’ll take a look at applications that need to combine data in multiple tables.
Mixing and matching data is at the heart of most web applications.

We’ll also take a look at testing and debugging Rails code, a key factor in the frame-
work’s success. Migrations, which make it easy to modify your underlying data
structures (and even roll back those changes if necessary), are another key part of Rails’
approach to application maintainability.

The next step will be to add some common web applications elements like sessions and
cookies, as well as authentication. Rails (with the help of gems for authentication) can
manage a lot of this work for you.

We’ll also let Rails stretch its legs a bit, showing off its recent support for Syntactically
Awesome Stylesheets (Sass), CoffeeScript scripting, bundle management, and sending
email messages.

Preface | xiii

By the end of this tour, you should be comfortable with working in Ruby on Rails. You
may not be a Rails guru yet, but you’ll be ready to take advantage of all of the other
resources out there for becoming one.

Ruby and Rails Style
It’s definitely possible to write Ruby on Rails code in ways that look familiar to
programmers from other languages. However, that code often isn’t really idiomatic
Ruby, as Ruby programmers have chosen other paths. In general, this book will always
try to introduce new concepts using syntax that’s likely to be familiar to developers
from other environments, and then explain what the local idiom does. You’ll learn to
write idiomatic Ruby that way (if you want to), and at the same time you’ll figure out
how to read code from the Ruby pros.

We’ve tried to make sure that the code we present is understandable to those without
a strong background in Ruby. Ruby itself is worth an introductory book (or several),
but the Ruby code in a lot of Rails applications is simple, thanks to the hard work the
framework’s creators have already put into it. You may want to install Rails in Chap-
ter 1, and then explore Appendix: “An Incredibly Brief Introduction to Ruby” before
diving in.

Other Options
There are lots of different ways to learn Rails. Some people want to learn Ruby in detail
before jumping into a framework that uses it. That’s a perfectly good option, and if you
want to start that way, you should explore the following books:

• Learning Ruby by Michael Fitzgerald (O’Reilly, 2007)

• The Ruby Programming Language by David Flanagan and Yukhiro Matsumoto
(O’Reilly, 2008)

• Ruby Pocket Reference by Michael Fitzgerald (O’Reilly, 2007)

• Programming Ruby, Third Edition by Dave Thomas with Chad Fowler and Andy
Hunt (Pragmatic Programmers, 2008)

• The Well-Grounded Rubyist by David A. Black (Manning, 2009)

• Eloquent Ruby by Russ Olsen (Addison-Wesley, 2011)

• Metaprogramming Ruby by Paolo Perrotta (Pragmatic Programmers, 2010)

You may also want to supplement (or replace) this book with other books on Rails. If
you want some other resources, you can explore:

• For maximum excitement, try http://railsforzombies.com/, a training tool that
includes video and exercises.

xiv | Preface

http://shop.oreilly.com/product/9780596529864.do
http://shop.oreilly.com/product/9780596516178.do
http://shop.oreilly.com/product/9780596514815.do
http://railsforzombies.com/

• Try http://railscasts.com/ for all kinds of detailed programming demonstrations in
a video format.

• Ruby on Rails 3 Tutorial by Michael Hartl (Addison-Wesley, 2010), provides a
faster-moving introduction that covers many more extensions for Rails.

• The Rails 3 Way by Obie Fernandez (Addison-Wesley, 2010), takes a big-book
reference approach for developers who already know their way.

• Agile Web Development with Rails, Fourth Edition, (Pragmatic Programmers,
2010), by Sam Ruby, Dave Thomas, and David Heinemeier Hansson gives a de-
tailed explanation of a wide range of features.

Ideally, you’ll want to make sure that whatever books or online documentation you
use cover at least Rails 3.0 (or later). Rails’ perpetual evolution has unfortunately made
it dangerous to use a lot of formerly great but now dated material (some of it works,
some of it doesn’t).

Finally, key resources you should always explore are the Ruby on Rails Guides (http://
guides.rubyonrails.org/), which provide an excellent and well-updated overview for a
lot of common topics. Sometimes they leave gaps or demand more background
knowledge than beginners have, but they’re a wonderful layer of documentation at a
level above the basic (though also useful) API documentation at http://api.rubyonrails
.org/.

Rails Versions
The Rails team is perpetually improving Rails and releasing new versions. This book
was updated for Rails 3.2.3 and Ruby 1.9.2.

If You Have Problems Making Examples Work
When you’re starting to use a new framework, error messages can be hard, even
impossible, to decipher. We’ve included occasional notes in the book about particular
errors you might see, but it seems very normal for different people to encounter different
errors as they work through examples. Sometimes it’s the result of skipping a step or
entering code just a little differently than it was in the book. It’s probably not the result
of a problem in Rails itself, even if the error message seems to come from deep in the
framework. That isn’t likely an error in the framework, but much more likely a problem
the framework is having in figuring out how to deal with the unexpected code it just
encountered.

If you find yourself stuck, here are a few things you should check:

What version of Ruby are you running?
You can check by entering ruby -v. All of the examples in this book were written
with Ruby 1.9.2. You can also use Ruby 1.8.7 with Rails, but many of the examples

Preface | xv

http://railscasts.com/
http://guides.rubyonrails.org/
http://guides.rubyonrails.org/
http://api.rubyonrails.org/
http://api.rubyonrails.org/

here (especially those using hashes) may not always work for you. Versions of Ruby
older than 1.8.7 may cause problems for Rails 3.x, and even version 1.9.1 of Ruby
causes problems. Chapter 1 explores how to install Ruby, but you may need to
find documentation specific to your specific operating system and environment.

What version of Rails are you running?
You can check by running rails -v. You might think that you should be able to
use the examples here with any version of Rails 3.x, but Rails keeps changing in
ways that break even simple code even among the 3.x versions. The examples on
the book’s site include a number of versions from Rails 2.1 to Rails 3.2. If you’re
running a version of Rails other than 3.2, especially an earlier version, you will
encounter problems.

Are you calling the program the right way?
Linux and Mac OS X both use a forward slash, /, as a directory separator, whereas
Windows uses a backslash, \. This book uses the forward slash, but if you’re in
Windows, you may need to use the backslash. Leaving out an argument can also
produce some really incomprehensible error messages.

Is the database connected?
By default, Rails expects you to have SQLite up and running, though some instal-
lations use MySQL or other databases. If you’re getting errors that have “sql” in
them somewhere, it’s probably the database. Check that the database is installed
and running, that the settings in database.yml are correct, and that the permissions,
if any, are set correctly.

Are all of the pieces there?
Most of the time, assembling a Rails application, even a simple one, requires
modifying multiple files—at least a view and a controller. If you’ve only built a
controller, you’re missing a key piece you need to see your results; if you’ve only
built a view, you need a controller to call it. As you build more and more complex
applications, you’ll need to make sure you’ve considered routing, models, and
maybe even configuration and plug-ins. What looks like a simple call in one part
of the application may depend on pieces elsewhere.

Eventually, you’ll know what kinds of problems specific missing pieces cause, but
at least at first, try to make sure you’ve entered complete examples before running
them.

It’s also possible to have files present but with the wrong permissions set. If you
know a file is there, but Rails can’t seem to get to it, check to make sure that
permissions are set correctly.

Did you save all the files?
Of course this never happens to you. However, making things happen in Rails often
means tinkering with multiple files at the same time, and it’s easy to forget to save
one as you move along. This can be especially confusing if it was a configuration
or migration file. Always take a moment to make sure everything you’re editing
has been saved before trying to run your application.

xvi | Preface

Are your routes right?
If you can’t get a page to come up, you probably have a problem with your routes.
This is a more common problem when you’re creating controllers directly, as you
will be up through Chapter 4, rather than having Rails generate scaffolding. Check
config/routes.rb.

Is everything named correctly?
Rails depends on naming conventions to establish connections between data and
code without you having to specify them explicitly. This works wonderfully, until
you have a typo somewhere obscure. Rails also relies on a number of Ruby con-
ventions for variables, prefacing instance variables with @ or symbols with :. These
special characters make a big difference, so make sure they’re correct.

Is the Ruby syntax right?
If you get syntax errors, or sometimes even if you get a nil object error, you may
have an extra space, missing bracket, or similar issue. Ruby syntax is extremely
flexible, so you can usually ignore the discipline of brackets, parentheses, or
spaces—but sometimes it really does matter.

Is another Rails app running?
Jumping quickly between programs can be really confusing. In a normal develop-
ment cycle, you’ll just have one app running, and things just work. When you’re
reading a book, especially if you’re downloading the examples, it’s easy to start an
app, close the window you use to explore it, and forget it’s still running underneath.
Definitely stop one server before running another while you’re exploring the apps
in this book.

Are you running the right program?
Yes, this sounds weird. When you’re developing real programs, it makes sense to
leave the server running to check back and forth with your changes. If you’re testing
out a lot of small application examples quickly, though, you may have problems.
Definitely leave the server running while you’re working within a given example,
but stop it when you change chapters or set off to create a new application with
the rails command.

Does your model specify attr_accessible?
Rails tightened its security rules in Rails 3.2, requiring that models include an
attr_accessible declaration at the start, identifying which fields can be reached
through Rails. Older code, even code from earlier versions of this book, generally
didn’t do this. If you get error messages like “Can’t mass-assign protected
attributes,” this is likely the problem.

Did the authors just plain screw up?
Obviously, we’re working hard to ensure that all of the code in this book runs
smoothly the first time, but it’s possible that an error crept through. You’ll want
to check the errata, described in the next section, and download sample code,
which will be updated for errata.

Preface | xvii

It’s tempting to try Googling errors to find a quick fix. Unfortunately, the issues just
described are more likely to be the problem than something else that has clear
documentation. The Rails API documentation (http://api.rubyonrails.org/) might be
helpful at times, especially if you’re experimenting with extending an example. There
shouldn’t be much out there, though, beyond the book example files themselves that
you can download to fix an example.

If You Like (or Don’t Like) This Book
If you like—or don’t like—this book, by all means, please let people know. Amazon
reviews are one popular way to share your happiness (or lack of happiness), or you can
leave reviews on the site for this book:

http://www.oreilly.com/catalog/9781449309336/

There’s also a link to errata there. Errata gives readers a way to let us know about typos,
errors, and other problems with the book. The errata will be visible on the page
immediately, and we’ll confirm it after checking it out. O’Reilly can also fix errata in
future printings of the book and on Safari, making for a better reader experience pretty
quickly.

We hope to keep this book updated for future versions of Rails and will also incorporate
suggestions and complaints into future editions.

Conventions Used in This Book
The following font conventions are used in this book:

Italic
Indicates pathnames, filenames, and program names; Internet addresses, such as
domain names and URLs; and new items where they are defined.

Constant width

Indicates command lines and options that should be typed verbatim; names and
keywords in programs, including method names, variable names, and class names;
and HTML element tags.

Constant width bold
Indicates emphasis in program code lines.

Constant width italic

Indicates text that should be replaced with user-supplied values.

This icon signifies a tip, suggestion, or general note.

xviii | Preface

www.allitebooks.com

http://api.rubyonrails.org/
http://www.oreilly.com/catalog/9781449309336/
http://www.allitebooks.org

This icon indicates a warning or caution.

Using Code Examples
The code examples for this book, which are available from http://oreil.ly/Learning
Rails3, come in two forms. One is a set of examples, organized by chapter, with each
example numbered and named. These examples are referenced from the relevant chap-
ter. The other form is a dump of all the code from the book, in the order it was presented
in the book. That can be helpful if you need a line that didn’t make it into the final
example, or if you want to cut and paste pieces as you walk through the examples.
Hopefully, the code will help you learn.

So far, the code examples for this electronic version of the book have stayed in sync
with the code examples for the print book, updated for errata.

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Learning Rails 3 by Simon St.Laurent,
Edd Dumbill, and Eric J. Gruber. Copyright 2012 Simon St.Laurent, Edd Dumbill, and
Eric Gruber, 978-1-449-30933-6.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online (www.safaribooksonline.com) is an on-demand digital
library that delivers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and cre-
ative professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi-
zations, government agencies, and individuals. Subscribers have access to thousands

Preface | xix

http://oreil.ly/LearningRails3
http://oreil.ly/LearningRails3
mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals

of books, training videos, and prepublication manuscripts in one fully searchable
database from publishers like O’Reilly Media, Prentice Hall Professional, Addison-
Wesley Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco
Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe
Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course
Technology, and dozens more. For more information about Safari Books Online, please
visit us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://oreil.ly/LearningRails3

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
Thanks to Mike Loukides for thinking that Rails could use a new and different ap-
proach, and for supporting this project along the way. Tech reviewers Gregg Pollack,
Shelley Powers, Mike Fitzgerald, Eric Berry, David Schruth, Mike Hendrickson, and
Mark Levitt all helped improve the first edition of the book tremendously. For this
edition, Aaron Sumner, David DeMello, and Alan Harris went through the details
carefully, finding many changes we’d overlooked and making helpful suggestions. The
rubyonrails-talk group provided regular inspiration, as did the screencasts and podcasts
at http://railscasts.com/.

xx | Preface

http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://oreil.ly/LearningRails3
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://railscasts.com/

Edd Dumbill wishes to thank his lovely children, Thomas, Katherine, and Peter, for
bashing earnestly on the keyboard, and his coauthor, Simon St.Laurent, for his patient
encouragement in writing this book.

Simon St.Laurent wants to thank Angelika St.Laurent for her support over the course
of writing this, even when it interfered with dinner, and Sungiva and Konrad St.Laurent
for their loudly shouted suggestions. Simon would also like to thank Edd Dumbill for
his initial encouragement and for making this book possible.

Eric would like to thank his lovely wife for enduring many late-night endeavors to learn
about this wonderful world of code, his parents and sister for always encouraging him
to find his own path, his community of designers and developers in the Lawrence area,
Aaron Sumner for being a patient guide in the Ruby world, and his children, who inspire
him to learn how to code well enough to teach it to them (if that’s what they want).

We’d all like to thank Jasmine Perez for cleaning up our prose, Iris Febres for getting
this book through production, and Lucie Haskins for the patient work it takes to build
an index.

Preface | xxi

CHAPTER 1

Starting Up Ruby on Rails

Before you can use Rails, you have to install it. Even if it’s already installed on your
computer, you may need to consider upgrading it. In this chapter, we’ll take a look at
some ways of installing Ruby, Rails, and the supporting infrastructure. Please feel very
welcome to jump to whatever pieces of this section interest you and skip past those
that don’t. Once the software is working, we’ll generate the basic Rails application,
which will at least let you know if Rails is working. However you decide to set up Rails,
in the end you’re going to have a structure like that shown in Figure 1-1.

Figure 1-1. The many components of a Rails installation

1

All of these options are free. You don’t need to spend any money to use
Rails, unless maybe you feel like buying a nice text editor.

Figure 1-2. The Rails welcome page

If You Run Windows, You’re Lucky
Windows users (at last) can get a basic installation of Rails and supporting tools—
everything you need to use this book—far more easily than anyone else. EngineYard’s
Rails Installer, which you can get at http://railsinstaller.org/ , provides all the key
components in a one-click installation. Visit the site, download the installer, and watch
the video; after that, you should be ready to move ahead to “Starting Up
Rails” on page 8.

Really, it’s that easy! (Well, except that you may have to tell Windows Defender not
to block the port Rails uses to present the site. It’s also possible that you’ll have to install
developer tools on newer versions of Windows.)

2 | Chapter 1: Starting Up Ruby on Rails

http://railsinstaller.org/

As this book was going to print, an initial version of RailsInstaller ap-
peared for Mac OS X at http://railsinstaller.org/. Macintosh users may
also be lucky now. Linux users still await a “coming soon” version.

Getting Started at the Command Line
Installing Rails by hand requires installing Ruby (preferably 1.9.2 or later), installing
Gems, and then installing Rails. You will eventually also need to install SQLite, MySQL,
or another relational database, though SQLite is already present on the Mac and in
many Linux distributions.

As this book was going to print, an initial version of RailsInstaller ap-
peared for Mac OS X at http://railsinstaller.org. Macintosh users may
also be lucky now, while Linux users still await a “coming soon” version.

Ruby comes standard on a number of Linux and Macintosh platforms. To see whether
it’s there, and what version it has, enter ruby -v at the command prompt. You’ll want
Ruby 1.8.7 or 1.9.2, so you may need to update it to a more recent version:

• On Mac OS X, Snow Leopard (10.6) and Lion (10.7) include Ruby 1.8.7, and
Leopard (10.5) includes Ruby 1.8.6, but the previous version of OS X included
Ruby 1.8.2. If you’re on Tiger (10.4) or an earlier version of OS X, you’ll need to
update Ruby itself, a challenge that’s beyond the scope of this book. You may want
to investigate MacPorts, and the directions at http://nowiknow.wordpress.com/
2007/10/07/install-ruby-on-rails-for-mac/. For a more comprehensive installation,
explore http://paulsturgess.co.uk/articles/show/46/. (You should ignore the versions
of Rails installed with OS X - they’re guaranteed to be out of date.)

• Most distributions of Linux include Ruby, but you’ll want to use your package
manager to make sure it’s updated to 1.9.2. Some, notably Ubuntu and Debian,
will name the gem command gem1.9.

• For Windows, unless you’re a hardened tinkerer, it’s much easier to use Rails
Installer. If you’re feeling strong, the One-Click Ruby Installer (http://rubyinstaller
.rubyforge.org/) is probably your easiest option, though there are other alternatives,
including Cygwin (http://www.cygwin.com/), which brings a lot of the Unix envi-
ronment to Windows.

A saner long-term approach to installing Ruby and Rails also includes installing rvm,
the Ruby Version Manager, which frees you from having to worry about what version
of Ruby your system decided it should have as well as giving you better options for
managing a clean work environment. You can find out more about rvm at http://rvm
.beginrescueend.com/. (It was created by Wayne E. Seguin, the same person who created

Getting Started at the Command Line | 3

http://railsinstaller.org/
http://railsinstaller.org
http://nowiknow.wordpress.com/2007/10/07/install-ruby-on-rails-for-mac/
http://nowiknow.wordpress.com/2007/10/07/install-ruby-on-rails-for-mac/
http://paulsturgess.co.uk/articles/show/46/
http://rubyinstaller.rubyforge.org/
http://rubyinstaller.rubyforge.org/
http://www.cygwin.com/
http://rvm.beginrescueend.com/
http://rvm.beginrescueend.com/

Rails Installer.) If that doesn’t seem right to you, you can also find out more on how to
install Ruby on a variety of platforms, see http://www.ruby-lang.org/en/downloads/.

If rvm isn’t for you, you may also want to explore rbenv (https://github
.com/sstephenson/rbenv/), a much smaller and simpler approach to
switching between versions of Ruby.

RubyGems (often just called Gems) is also starting to come standard on a number of
platforms, most recently on Mac OS X Leopard and Snow Leopard, but if you need to
install Gems, see the RubyGems User Guide’s instructions at http://www.rubygems.org/
read/chapter/3/.

If you use MacPorts, apt-get, or a similar package installer, you may
want to use it only to install Ruby, and then proceed from the command
line. You certainly can install Gems and Rails with these tools, but Gems
can update itself, which can make for very confusing package update
issues.

Once you have RubyGems installed, Rails and its many dependencies are just a
command away (though the output has grown more verbose with every version of
Rails):

~ simonstl$ gem install rails
 SimonMacBook:living_book_2010_rails_3 simonstl$ gem install rails
 Fetching: i18n-0.6.0.gem (100%)
 Fetching: [many more]..
 Depending on your version of ruby, you may need to install ruby rdoc/ri data:

 <= 1.8.6 : unsupported
 = 1.8.7 : gem install rdoc-data; rdoc-data --install
 = 1.9.1 : gem install rdoc-data; rdoc-data --install
 >= 1.9.2 : nothing to do! Yay!
 Fetching: railties-3.2.3.gem (100%)
 Fetching: bundler-1.0.22.gem (100%)
 Fetching: rails-3.2.3.gem (100%)
 Successfully installed i18n-0.6.0
 Successfully installed multi_json-1.1.0
 Successfully installed activesupport-3.2.3
 Successfully installed builder-3.0.0
 Successfully installed activemodel-3.2.3
 Successfully installed rack-1.4.1
 Successfully installed rack-cache-1.2
 Successfully installed rack-test-0.6.1
 Successfully installed journey-1.0.1
 Successfully installed hike-1.2.1
 Successfully installed tilt-1.3.3
 Successfully installed sprockets-2.1.2
 Successfully installed erubis-2.7.0
 Successfully installed actionpack-3.2.3

4 | Chapter 1: Starting Up Ruby on Rails

http://www.ruby-lang.org/en/downloads/
https://github.com/sstephenson/rbenv/
https://github.com/sstephenson/rbenv/
http://www.rubygems.org/read/chapter/3/
http://www.rubygems.org/read/chapter/3/

 Successfully installed arel-3.0.0
 Successfully installed tzinfo-0.3.31
 Successfully installed activerecord-3.2.3
 Successfully installed activeresource-3.2.3
 Successfully installed mime-types-1.17.2
 Successfully installed polyglot-0.3.3
 Successfully installed treetop-1.4.10
 Successfully installed mail-2.4.4
 Successfully installed actionmailer-3.2.3
 Successfully installed thor-0.14.6
 Successfully installed rack-ssl-1.3.2
 Successfully installed json-1.6.5
 Successfully installed rdoc-3.12
 Successfully installed railties-3.2.3
 Successfully installed bundler-1.0.22
 Successfully installed rails-3.2.3
 30 gems installed
 Installing ri documentation for i18n-0.6.0...
 [lots more documentation notices]

You may need to use sudo, which gives your command the power of the root (admin-
istrative) account, if you’re working in an environment that requires root access for the
installation—otherwise, you can just type gem install rails. That will install the latest
version of Rails, which may be more recent than 3.2.3, as well as all of its dependencies.
gem install rails will install the latest official release of Rails, which at present is 3.2.3.
It will not install any Rails betas. (To see which version of Rails is installed, enter rails
-v at the command line.)

You may also need to install the sqlite3 gem, which isn’t automatically installed by the
Rails gem but is needed for development. That’s gem install sqlite3.

If you’re ever wondering which gems (and which versions of gems) are installed, type
gem list --local. For more information on gems, just type gem, or visit http://rubygems
.rubyforge.org/.

You can see the documentation that gems have installed by running the
command gem server, and visiting the URL (usually http://localhost:
8808) that command reports. When you’re done, you can turn off the
server with Ctrl-C.

Once you have Rails installed, you can create a Rails application easily from the
command line. Here’s what it looks like in its extended glory, but you don’t need to
read it every time:

Getting Started at the Command Line | 5

http://rubygems.rubyforge.org/
http://rubygems.rubyforge.org/
http://localhost:8808
http://localhost:8808

~ $ rails new hello01
 create
 create README.rdoc
 create Rakefile
 create config.ru
 create .gitignore
 create Gemfile
 create app
 create app/assets/images/rails.png
 create app/assets/javascripts/application.js
 create app/assets/stylesheets/application.css
 create app/controllers/application_controller.rb
 create app/helpers/application_helper.rb
 create app/mailers
 create app/models
 create app/views/layouts/application.html.erb
 create app/mailers/.gitkeep
 create app/models/.gitkeep
 create config
 create config/routes.rb
 create config/application.rb
 create config/environment.rb
 create config/environments
 create config/environments/development.rb
 create config/environments/production.rb
 create config/environments/test.rb
 create config/initializers
 create config/initializers/backtrace_silencers.rb
 create config/initializers/inflections.rb
 create config/initializers/mime_types.rb
 create config/initializers/secret_token.rb
 create config/initializers/session_store.rb
 create config/initializers/wrap_parameters.rb
 create config/locales
 create config/locales/en.yml
 create config/boot.rb
 create config/database.yml
 create db
 create db/seeds.rb
 create doc
 create doc/README_FOR_APP
 create lib
 create lib/tasks
 create lib/tasks/.gitkeep
 create lib/assets
 create lib/assets/.gitkeep
 create log
 create log/.gitkeep
 create public
 create public/404.html
 create public/422.html
 create public/500.html
 create public/favicon.ico
 create public/index.html
 create public/robots.txt

6 | Chapter 1: Starting Up Ruby on Rails

www.allitebooks.com

http://www.allitebooks.org

 create script
 create script/rails
 create test/fixtures
 create test/fixtures/.gitkeep
 create test/functional
 create test/functional/.gitkeep
 create test/integration
 create test/integration/.gitkeep
 create test/unit
 create test/unit/.gitkeep
 create test/performance/browsing_test.rb
 create test/test_helper.rb
 create tmp/cache
 create tmp/cache/assets
 create vendor/assets/javascripts
 create vendor/assets/javascripts/.gitkeep
 create vendor/assets/stylesheets
 create vendor/assets/stylesheets/.gitkeep
 create vendor/plugins
 create vendor/plugins/.gitkeep
 run bundle install
Fetching source index for https://rubygems.org/
Using rake (0.9.2.2)
Using i18n (0.6.0)
Using multi_json (1.1.0)
Using activesupport (3.2.1)
Using builder (3.0.0)
Using activemodel (3.2.1)
Using erubis (2.7.0)
Using journey (1.0.1)
Using rack (1.4.1)
Using rack-cache (1.1)
Using rack-test (0.6.1)
Using hike (1.2.1)
Using tilt (1.3.3)
Using sprockets (2.1.2)
Using actionpack (3.2.1)
Using mime-types (1.17.2)
Using polyglot (0.3.3)
Using treetop (1.4.10)
Using mail (2.4.1)
Using actionmailer (3.2.1)
Using arel (3.0.0)
Using tzinfo (0.3.31)
Using activerecord (3.2.1)
Using activeresource (3.2.1)
Using bundler (1.0.22)
Using coffee-script-source (1.2.0)
Using execjs (1.3.0)
Using coffee-script (2.2.0)
Using rack-ssl (1.3.2)
Using json (1.6.5)
Using rdoc (3.12)
Using thor (0.14.6)
Using railties (3.2.1)

Getting Started at the Command Line | 7

Installing coffee-rails (3.2.2)
Installing jquery-rails (2.0.0)
Using rails (3.2.1)
Using sass (3.1.15)
Installing sass-rails (3.2.4)
Using sqlite3 (1.3.5)
Using uglifier (1.2.3)
Your bundle is complete! Use `bundle show [gemname]` to see where a
bundled gem is installed.

This also gets longer and longer with each new version of Rails. Also, the bundle
install piece may pause for a long moment.

Rails application directories are just ordinary directories. You can move
them, obliterate them and start over, or do whatever you need to do
with ordinary file-management tools. Each application directory is also
completely independent—the general “Rails environment” just gener-
ates these applications.

Starting Up Rails
To start Rails, you’ll need to move into the directory you just created—cd hello01—
and then issue your first command to get the WEBrick server busy running your
application:

~ $ rails server
=> Booting WEBrick
=> Rails 3.2.1 application starting in development on http://0.0.0.0:3000
=> Call with -d to detach
=> Ctrl-C to shutdown server
[2012-02-20 08:48:06] INFO WEBrick 1.3.1
[2012-02-20 08:48:06] INFO ruby 1.9.2 (2010-12-25) [x86_64-darwin10.5.0]
[2012-02-20 08:48:06] INFO WEBrick::HTTPServer#start: pid=89377 port=3000

Rails is now running, and you can watch any errors it encounters through the extensive
logging you’ll see in this window.

By default, rails server binds only to localhost at 0.0.0.0 or 127.0.0.1,
and the application isn’t visible from other computers. Normally, that’s
a security feature, not a bug, though you can specify an address for the
server to use with the -b option (and -p for a specific port) if you want
to make it visible.

For more details on options for using rails server, just enter rails
server -h.

If you now visit http://localhost:3000, you’ll see the same welcome screen shown
previously in Figure 1-2. When you’re ready to stop Rails, you can just press Ctrl-C.

8 | Chapter 1: Starting Up Ruby on Rails

http://localhost:3000

You frequently can leave Rails running while coding. In development
mode, you can make many changes to your application with the server
running, and you won’t have to restart the server to see them. If you
change configuration, add scopes, or install gems, though, you’ll need
to restart.

WEBrick (http://www.webrick.org/) is written in Ruby and bundled with recent releases
of Ruby. It’s very convenient for Ruby development, with or without Rails. It’s an
excellent testing server, but not designed for large scale deployment.

If you’ve never used Ruby before, now would be a good time to explore Appendix A,
which teaches some key components of the language inside of a very simple Rails
application.

Depending on how you set up your Rails environment and how you use
Bundler, described in Chapter 17, you may need to preface your calls
to rails, rake, and similar mechanisms with bundle exec to make sure
you’re running exactly the version of the tools you expect to be running.
If this seems like a lot of extra typing, visit http://robots.thoughtbot.com/
post/15346721484/use-bundlers-binstubs to learn about binstubs, a way
to avoid this.

Test Your Knowledge

Quiz
1. What’s the name of the Ruby application packaging utility and how do you install

Rails with it?

2. In what instances would you avoid WEBrick?

3. Why should you install a particular version of Ruby on your platform when Ruby
already comes installed?

Answers
1. RubyGems, or just “gems,” which is run with the gem command, is Ruby’s

application packager. To install the latest version of Rails and all its dependencies,
just type gem install rails.

2. WEBrick is great for testing your Rails applications, but definitely not the best
choice for deployments where performance matters.

3. Rails only works well on certain versions of Ruby, including 1.8.7 and 1.9.2.

Test Your Knowledge | 9

http://www.webrick.org/
http://robots.thoughtbot.com/post/15346721484/use-bundlers-binstubs
http://robots.thoughtbot.com/post/15346721484/use-bundlers-binstubs

CHAPTER 2

Rails on the Web

Now that you have Rails installed, it’s time to make Rails do something—not
necessarily very much yet, but enough to show you what happens when you make a
call to a Rails application, and enough to let you do something to respond when those
calls come in. There’s a long tradition in computer books of starting out with a program
that says “hello” to the programmer. We’ll follow that tradition and pursue it a bit
further to make clear how Rails can work with HTML. You’re welcome, of course, to
make Rails say whatever you’d like.

The work in this chapter depends on the hello application created in
Chapter 1. If you didn’t create one, go back and explore the directions
given there. You can also find the files for the first demonstration in
ch02/hello01 of the downloadable code.

Creating Your Own View
Saying “hello” is a simple thing, focused exclusively on putting a message on a screen.
To get started, we can post that message using a view including HTML that will get
sent to the browser.

Rails actually won’t let you create views directly. Its controller-centric perspective
requires that views be associated with controllers. While that might seem like a bit of
an imposition, it’s not too hard to work around.

Creating anything in Rails requires going to the command line. Open a terminal or
command window and go to the home directory of your Rails application.

Then type:

 rails generate controller hello index

rails generate’s first argument, controller, specifies that it should generate code for
a controller, in this case named hello, the second argument. Finally, including index
at the end requests a view named index, bound to the hello controller.

11

Model-View-Controller
“You keep talking about views, controllers, and models. What is all that?”

It’s a bit of programmer-speak: Model-View-Controller, or MVC, is an old idea that
got its start in the Smalltalk programming world of the 1970s. The model is the
underlying data structure, specific to the task the program is addressing; controllers
manage the flow of data into and out of those objects; and views present the information
provided by those controllers to users.

MVC is an excellent approach for building maintainable applications, as each layer
keeps its logic to itself. Views might include a bit of code for presenting the data from
the controller, but most of the logic for moving information around should be kept in
the controller, and logic about data structures should be kept in the model. If you want
to change how something looks, but not change the logic or the data structures, you
can just create a new view, without disrupting everything underneath it.

As you see more of Rails, in this book and elsewhere, you’ll probably come to appreciate
MVC’s virtues, though it can seem confusing and constraining at first. Chapter 4 will
explain how Rails uses MVC in more detail.

You’ll see something like:

1 create app/controllers/hello_controller.rb
2 route get "hello/index"
3 invoke erb
4 create app/views/hello
5 create app/views/hello/index.html.erb
6 invoke test_unit
7 create test/functional/hello_controller_test.rb
8 invoke helper
9 create app/helpers/hello_helper.rb
10 invoke test_unit
11 create test/unit/helpers/hello_helper_test.rb
12 invoke assets
13 invoke coffee
14 create app/assets/javascripts/hello.js.coffee
15 invoke scss
16 create app/assets/stylesheets/hello.css.scss

Depending on how your Rails installation worked, it’s possible that
you’ll receive a message requesting that you run bundle install first.
Run that, and then you should be able to generate controllers (and
everything else) without a hitch.

The create entries identify directories and files that the generator created itself. You’ll
see a new controller in line 1, a new views directory in line 4, the index file
(index.html.erb) we requested in line 5, a template for creating tests for that controller
in line 7, and a helper in line 9, plus a helper for tests in line 11. Lines 14 and 16 create

12 | Chapter 2: Rails on the Web

supporting CoffeeScript (which compiles to JavaScript) and Sass (which compiles to
CSS) files respectively. (The .rb file extension is the conventional extension for Ruby
files; .erb is the common extension for Embedded Ruby files.)

If you foul up a rails generate command, you can issue rails
destroy to have Rails try to fix your mistakes.

Rails 3.x requires one more step before we can run the application. Rails used to have
default routing rules that made it easy to quickly test a controller’s existence, but in
Rails 3.x those rules are turned off. To fix this, you’ll need to visit the config/routes.rb
file. At the very bottom, you’ll see:

match ':controller(/:action(/:id))(.:format)'
end

Remove the # that has been bolded above. Then Rails will know where to find your
code—don’t worry about why quite yet—and the index file is now available to the
application. Run rails server to get it going, and then take a look at http://localhost:
3000/hello/, hello in the application. Figure 2-1 shows what Rails created to start with.

This isn’t pretty, but there’s already something to learn here. Note that the URL that
brought up this page is http://localhost:3000/hello/. As the page itself says, though, the
file is in app/views/hello/index.html.erb. There’s a web server running and it’s serving
files out of the application’s directory, but Rails uses its own rules, not the file structure,
to decide what gets presented at what URL. For right now, it’s enough to know that
the name of the controller, hello, will bring up its associated view, which is defined by
the index.html.erb file.

Figure 2-1. The generated index file identifies its home

Creating Your Own View | 13

http://localhost:3000/hello/
http://localhost:3000/hello/
http://localhost:3000/hello/

The initial contents of that file are fairly simple, like those of Example 2-1.

Example 2-1. The default contents of index.html.erb

<h1>Hello#index</h1>
<p>Find me in app/views/hello/index.html.erb</p>

The Rails designers didn’t even give these generated pieces a full HTML document
structure. Since the generated code will get replaced anyway, it doesn’t matter very
much. It’s not that Rails doesn’t care about the surrounding markup, but rather that
the surrounding markup usually comes from layouts, which are covered in the next
chapter. For this chapter’s purposes, however, the view is enough to work with.

For starters, we’ll just modify the file a little bit so that it presents a slightly friendlier
hello, as shown in Example 2-2.

Example 2-2. The new contents of index.html.erb

<h1>Hello!</h1>
<p>This is a greeting from app/views/hello/index.html.erb</p>

If you save that file and then reload, you’ll see something like Figure 2-2.

Putting one simple HTML page in the slightly obscure location of a generated HTML
page isn’t incredibly exciting, but it’s a start.

What Are All Those Folders?
You might have noticed the large set of folders Rails created for an application. We’ll
explore most of these in detail over the course of this book, but for now, here’s a quick
guide to what’s there:

Figure 2-2. A revised greeting

14 | Chapter 2: Rails on the Web

app
Where you build your application’s core. It includes subfolders for controllers,
assets (like images, stylesheets, and JavaScript), helpers, models, and views.

config
Hosts database configuration, URL routing rules, and the Rails environment struc-
tures for development, testing, and deployment. You’ll also see a config.ru file in
the main application directory. Rails uses that to start your application, and you
shouldn’t touch that for now.

db
Provides a home to scripts used to manage relational database tables.

doc
Collects documentation generated from Ruby code using RubyDoc. RubyDoc is a
documentation generator for Ruby, much like JavaDoc. For a lot more
information, see http://www.ruby-doc.org/.

lib
Holds code that doesn’t quite fit into the model, view, or controller classifications,
typically code that’s shared by these components or plug-ins you install. The
tasks subdirectory contains Rake tasks for your application.

log
Gathers log data—not just errors, but very rich information on requests, how they
were processed, how long it took to process them, and session data from the
request.

public
Contains mostly static HTML and the favicon.ico file for your application, as well
as things like 404 Not Found error reporting pages.

script
The home for the prebuilt code you’ll be using to generate, run, and interact with
large portions of your Rails application.

test
Contains code—generated at first, but updated by you—for testing your Rails
application.

tmp
Rails’ internal home for session variables, temporary files, cached data, etc.

vendor
Houses plug-ins and gems from outside of Rails itself. Also, if the application has
been frozen to a particular version of Rails, that version may be stored here.

Most of the time you’ll work in app or test, with some ventures into public to work on
the few parts of your application that Rails doesn’t control directly.

What Are All Those Folders? | 15

http://www.ruby-doc.org/

Adding Some Data
As pretty much every piece of Rails documentation will suggest, views are really meant
to provide users with a perspective on data managed by a controller. It’s a little strange
to run through all this generation and layers of folders just to create an HTML file. To
start taking advantage of a little more of Rails’ power, we’ll put some data into the
controller for hello, hello_controller.rb, and then incorporate that data into the view.

If you open app/controllers/hello_controller.rb, you’ll see the default code that Rails
generated, like that in Example 2-3.

Example 2-3. A very basic controller that does nothing

class HelloController < ApplicationController

 def index
 end
end

This is the first real Ruby code we’ve encountered, so it’s worth explaining a bit. The
name of the class, HelloController, was created by the script generator based on the
name we gave, Hello. Rails chose this name to indicate the name and type of the class,
using its normal convention for controllers. Controllers are defined as Ruby classes,
which inherit (<) most of their functionality from the ApplicationController class. (You
don’t need to know anything about ApplicationControllers, or even classes—at least
not yet—so if you don’t understand at this point, just enjoy the generated code and
keep reading.)

If you need to learn more about Ruby to be comfortable proceeding,
take a look at Appendix: An Incredibly Brief Introduction to Ruby.

def index is the start of the index method, which Rails will call by default when it’s
asked for a Hello. As you can see, it comes to a nearly immediate end, which is followed
by the end for the class as a whole. If we want to make the index method do anything,
we’ll have to add some logic. For our current purposes, that logic can stay extremely
simple. Defining a few variables, as shown in Example 2-4, will let us play with the
basic interactions between controllers and views, and allow the view to do a few more
interesting things. (Example 2-4 is part of the code in ch02/hello02.)

Example 2-4. A basic controller that sets some variables

class HelloController < ApplicationController

 def index
 @message="Hello!"

16 | Chapter 2: Rails on the Web

www.allitebooks.com

http://www.allitebooks.org

 @count=3

 @bonus="This message came from the controller."
 end
end

Variables whose names start with @ are called instance variables. They belong to the
class that defines them and have the convenient property of being accessible from the
associated view.

When choosing variable names, always be very careful to avoid the
enormous list of reserved words presented at http://oldwiki.rubyonrails
.org/rails/pages/ReservedWords/.

If you use those names, you may find not only that your programs don’t
run correctly, but also that the supporting development environment
misbehaves in strange and annoying ways.

To actually use those variables, make some changes to the view as in Example 2-5.

Example 2-5. Modifying index.html.erb to use instance variables from the controller

<h1><%= @message %></h1>
<p>This is a greeting from app/views/hello/index.html.erb</p>
<p><%= @bonus %></p>

There are two new pieces here, highlighted in bold. Each contains the name of one of
the instance variables from hello_controller.rb, surrounded by the <%= and %> tags.
When Rails processes this document, it will replace the <%= ... %> with the value inside.
You can, of course, create those values from much more complex sources than just a
simple variable, but it’s easier to see what’s happening here in a simple example.

Adding Some Data | 17

http://oldwiki.rubyonrails.org/rails/pages/ReservedWords/
http://oldwiki.rubyonrails.org/rails/pages/ReservedWords/

The <% and %> tags are delimiters used by ERb, Embedded Ruby. ERb is
part of Ruby and is used extensively in Rails. ERb isn’t the only way to
generate result views with Rails, but it’s definitely the most common.

The result, shown in Figure 2-3, incorporates the variables from HelloController into
the resulting document.

If you do a View Source and look at the contents of the HTML body element, shown in
Example 2-6, the ERb markup has completely disappeared, replaced by the instance
variable values.

Example 2-6. HTML that Rails generated based on Examples 2-4 and 2-5

<h1>Hello!</h1>
<p>This is a greeting from app/views/hello/index.html.erb</p>

<p>This message came from the controller.</p>

How Hello World Works
The Hello World programs are actually doing a lot of work, as shown in Figure 2-4,
though most of it happens transparently.

Figure 2-3. Resulting document incorporating instance variables from the controller

18 | Chapter 2: Rails on the Web

Figure 2-4. Simplified processing path for the Hello World programs

When the code runs, Rails interprets the request for http://localhost:3000/hello/ as a call
to the Hello controller. It has a list of routing rules, managed through a config/
routes.rb file you can edit—this is just the default behavior. Controllers can have mul-
tiple methods, but the default method (just like when you request an HTML file) is
index. Rails routing functionality then calls the index method, which sets up some basic
variables.

When the controller is done, Rails passes its data to the view in the app/views/hello
directory. How does it know to go there? Thanks to the magic of naming conventions,
that view processing (possibly including layouts) generates an HTML result, which gets
sent to the browser.

Rails applications have lots of moving parts, but you can usually look at the parts and
guess (or control) what Rails is going to do with them. As you’ll see in later chapters,
the connections between controllers, models, and databases rely heavily on such
naming conventions and default behaviors. The connections that Rails creates in this
way won’t solve all of your problems all of the time, but they do make it easy to solve
a wide variety of problems most of the time. Figure 2-5 shows the pathways Rails built
on naming conventions in the view and controller.

How Hello World Works | 19

http://localhost:3000/hello/

Figure 2-5. Paths Rails follows through naming conventions

Rails 2.2 and earlier versions had a security hole, allowing content to
come up from the controller to the view without checking to see if it
included an HTML injection or cross-site scripting (XSS) attack. You
had to use the h or sanitize to clean up content. Rails 3 checks content
automatically, simplifying your work and sparing you some typing. If
you need to include HTML, you can use the raw method and
html_safe property as described at http://asciicasts.com/episodes/204-xss
-protection-in-rails-3/ or in “Creating Helper Methods” on page 97 in
Chapter 6.

Adding Logic to the View
You can also put more sophisticated logic into the views, thanks to the <% and %> tags.
(The opening tag lacks the = sign.) These tags let you put Ruby code directly into your

20 | Chapter 2: Rails on the Web

http://asciicasts.com/episodes/204-xss-protection-in-rails-3/
http://asciicasts.com/episodes/204-xss-protection-in-rails-3/

ERb files. We’ll start with a very simple example, shown in Example 2-7, that takes
advantage of the count variable in the controller. (This example is part of the ch02/
hello03 code sample.)

Example 2-7. Modifying index.html.erb to present the @bonus message as many times as @count
specifies

<h1><%= @message %></h1>
<p>This is a greeting from app/views/hello/index.html.erb</p>

<% for i in 1..@count %>
 <p><%= @bonus %></p>
<% end %>

The count variable now controls the number of times the bonus message appears
because of the for...end loop, which will simply count from 1 to the value of the
count variable.

The for loop is familiar to developers from a wide variety of program-
ming languages, but it’s not especially idiomatic Ruby. Ruby developers
would likely use a times construct instead, such as:

<% @count.times do %>
<p><%= @bonus %></p>
<% end %>

Depending on your fondness for punctuation, you can also replace the
do and end with curly braces, as in:

<% @count.times { %>
<p><%= @bonus %></p>
<% } %>

As always, you can choose the approach you find most comfortable,
though brackets and for loops aren’t considered the standard idiom.

The loop will run three times, counting up to the value the controller set for the
count variable. As a result, “This message came from the controller.” will appear three
times, as shown in Figure 2-6.

It’s not the most exciting page, but it’s the foundation for a lot more work to come.

If you want to comment out ERb lines, you can just insert a # symbol
after the <%. For example, <%#= @message %> would do nothing, because
of the #.

Adding Logic to the View | 21

Test Your Knowledge

Quiz
1. What is the difference between <% and <%=?

2. How much logic should you put in your ERb files?

3. How does Rails know what controller goes with what view, if you don’t tell it?

4. Which method can you use to insert HTML that comes to the view from the
controller?

Answers
1. When you use <%=, Rails will insert the return value of the code you’ve used into

the document. If you use <%, nothing will be added to the document.

2. In general, you should put as little logic into your ERb files as possible. You may
need to put some logic there to make sure that users get the right presentation of
the information you’re sharing, or to build an interface for them to work with it.
However, you should avoid putting much else there.

3. Once you’ve turned on the default routing rule, Rails maps controllers to views
through naming conventions, unless your code specifies otherwise.

4. The raw method will let you include markup directly. This is dangerous, so use it
sparingly!

Figure 2-6. The Hello page after the loop executes

22 | Chapter 2: Rails on the Web

CHAPTER 3

Adding Web Style

The application presented in Chapter 2 is pretty appalling, visually. You’re not likely
to want to present pages that look like that to your visitors, unless they’re fond of the
early 1990s retro look. Rails provides a number of features that will help you make your
views present results that look the way you think they should look, and do so consis-
tently.

This chapter will explore Rails features for supporting CSS and HTML,
but it can’t be an HTML or CSS tutorial. If you need one of those, try
Jennifer Niederst Robbins’ Learning Web Design (O’Reilly, 2007) or
David Sawyer McFarland’s CSS: The Missing Manual (O’Reilly, 2009).

I Want My CSS!
Figure 3-1, the result of the last chapter’s coding, is not exactly attractive.

Figure 3-1. The hello page after the loop executes

23

http://shop.oreilly.com/product/9780596527525.do
http://shop.oreilly.com/product/9780596802455.do

Even this fairly hopeless page, however, can be improved with the bit of CSS shown in
Example 3-1.

Example 3-1. A simple stylesheet for a simple page

body { font-family:sans-serif;
 }

h1 {font-family:serif;
 font-size: 24pt;
 font-weight: bold;
 color:#F00 ;
 }

Better CSS would of course be a good idea, but this will get things started. We could
put this stylesheet right into the index.html.erb file as an internal style element, but it’s
usually easier to manage external stylesheets kept in separate files. As noted earlier,
though, Rails has its own sense of where files should go. In this case, stylesheets should
go into the app/assets/stylesheets directory. Before Rails 3.1, it would have made sense
to call Example 3-1 hello.css, but since Rails 3.1 added asset management (discussed
in Chapter 17), it makes more sense for now to put it into the hello.css.scss Rails created
when you generated the controller. This is actually a Sass file, which will get a lot more
attention in Chapter 16. For now, just add the CSS to the file, making it look like
Example 3-2.

Example 3-2. Adding CSS to the SCSS file

// Place all the styles related to the Hello controller here.
// They will automatically be included in application.css.
// You can use Sass (SCSS) here: http://sass-lang.com/

 body { font-family:sans-serif;
 }

 h1 {font-family:serif;
 font-size: 24pt;
 font-weight: bold;
 color:#F00 ;
 }

The result, combining the HTML generated by the view with the newly linked style-
sheet, is shown in Figure 3-2. It’s not beautiful, but you now have control over styles.

So Rails will now pick up that CSS, but how does it know?

How did the stylesheet get linked from the head element? Chapter 2 mentioned that
the surrounding HTML document structure came from a layout. Layouts are stored in
app/views/layouts, and in this case, we’ll be using the default application.html.erb file,
which gets applied when there aren’t any more specific layouts for a view. (You can
find all of these files in ch03/hello04.) Its initial contents include an HTML5 DOCTYPE

24 | Chapter 3: Adding Web Style

declaration, a basic HTML document structure, and some links to additional compo-
nents, as shown in Example 3-3:

Example 3-3. The application.html.erb file created by Rails

<!DOCTYPE html>
 <html>
 <head>
 <title>Hello01</title>
 <%= stylesheet_link_tag "application", :media => "all" %>
 <%= javascript_include_tag "application" %>
 <%= csrf_meta_tags %>
 </head>
 <body>

 <%= yield %>

 </body>
 </html>

While the title might be a surprise, this code was generated in the very first iteration of
Hello samples, so that’s what’s in use. You can certainly change it.

More important, however, are the stylesheet_link_tag, javascript_include_tag,
csrf_meta_tag, and yield. The first is the key piece needed for setting styles, the next
for JavaScript, the next avoids cross-site request forgery (CSRF). The yield is where
the content from your view will go, as the HTML generated with that layout (Exam-
ple 3-4) shows.

Example 3-4. HTML generated by the application.html.erb file

<!DOCTYPE html>
 <html>
 <head>
 <title>Hello01</title>

Figure 3-2. A very slightly prettier “Hello!” using CSS

I Want My CSS! | 25

 <link href="/assets/application.css?body=1" media="all" rel="stylesheet"
 type="text/css" />
 <link href="/assets/hello.css?body=1" media="all" rel="stylesheet" type="text/css" />
 <script src="/assets/jquery.js?body=1" type="text/javascript"></script>
 <script src="/assets/jquery_ujs.js?body=1" type="text/javascript"></script>
 <script src="/assets/hello.js?body=1" type="text/javascript"></script>
 <script src="/assets/application.js?body=1" type="text/javascript"></script>
 <meta content="authenticity_token" name="csrf-param" />
 <meta content="HENkZLxuUaswIRUh9tV7w1SZpuE24dZWVjSKf6TRuR8=" name="csrf-token" />
 </head>
 <body>

 <h1>Hello!</h1>
 <p>This is a greeting from app/views/hello/index.html.erb</p>
 <p>This message came from the controller.</p>
 <p>This message came from the controller.</p>
 <p>This message came from the controller.</p>

 </body>
 </html>

The application is using the default layout, so why not grab all the possibly relevant
stylesheets? If you look more closely, though, it’s including /assets/hello.css, which
doesn’t exist. Manually visiting http://localhost:3000/assets/hello.css brings up Exam-
ple 3-5.

Example 3-5. CSS generated from the hello.css.scss file

/* line 4, .../ch03/hello04/app/assets/stylesheets/hello.css.scss */
 body {
 font-family: sans-serif;
 }

/* line 6, .../ch03/hello04/app/assets/stylesheets/hello.css.scss */
 h1 {
 font-family: serif;
 font-size: 24pt;
 font-weight: bold;
 color: #F00;
 }

That’s the CSS all right, with some extra debugging information to indicate where it
came from. Fortunately, these comments only appear when you run the application in
development mode, and will disappear in production mode.

There’s more, though. Because the default link is to "application", not "hello", there
is also a link to /assets/application.css. There is an application.css file, which looks like
Example 3-6.

26 | Chapter 3: Adding Web Style

www.allitebooks.com

http://localhost:3000/assets/hello.css
http://www.allitebooks.org

Example 3-6. Original contents of the application.css file

/*
* This is a manifest file that'll automatically include all the stylesheets
* available in this directory and any sub-directories. You're free to add
* application-wide styles to this file and they'll appear at the top of the
* compiled file, but it's generally better to create a new file per style scope.
*= require_self
*= require_tree .
 */

If you actually load http://localhost:3000/assets/application.css, however, you’ll see that
those require statements have compiled hello.css into the resulting file.

Example 3-7. CSS generated from the application.css file

/*
* This is a manifest file that'll automatically include all the stylesheets
* available in this directory and any subdirectories. You're free to add
* application-wide styles to this file and they'll appear at the top of the
* compiled file, but it's generally better to create a new file per style scope.
*/
/* line 5, /.../hello04/app/assets/stylesheets/hello.css.scss */
 body {
 font-family: sans-serif;
 }

/* line 7, /.../hello04/app/assets/stylesheets/hello.css.scss */
 h1 {
 font-family: serif;
 font-size: 24pt;
 font-weight: bold;
 color: #F00;
 }

The API documentation doesn’t explain why you should want two copies of the same
CSS delivered to the browser, but perhaps it helps with debugging when CSS comes
from multiple sources. In production mode, this compilation goes further, requiring
you to precompile your assets before running the application, and only references one
resulting stylesheet.

The layout file also creates a few links to JavaScript files (which this code doesn’t
currently use), something that looks like it must have come from the csrf_meta_tag,
and the content generated by the view where the yield used to be.

A lot of sites use the same general structure—headers, stylesheets, and often
navigation—across many or all pages. While you certainly could create a copy of the
layout file for every controller your application uses, that would violate a core principle
of Rails: Don’t Repeat Yourself, or DRY. Much of the time, it’ll make much more sense
to create a layout that acts as the default for your entire application, and only create
different layouts for the cases where you actually need them.

I Want My CSS! | 27

http://localhost:3000/assets/application.css

For simple applications and for getting started, this works wonderfully. There are, of
course, more precise ways of specifying both layouts and stylesheets.

What’s That Yield?
It kind of makes sense that a layout would yield control to a more specific template and
then pick up again, but a yield has a more specific meaning in Ruby, one you’ll doubt-
less see more often as you work with it.

Ruby programmers like to play with blocks. Blocks are nameless chunks of code, usu-
ally contained in curly braces ({}). Many Ruby methods can accept, in addition to the
usual parameters, a block of code. When yield appears, that block of code gets exe-
cuted. In this case, the block that gets called is the result of the controller and view
template processing, and so the proper content gets inserted into the layout.

Specifying Stylesheets
You can make Rails include only the stylesheets you want with a little extra work on
the stylesheet_link_tag. Instead of the stylesheet_link_tag "application" element
shown in Example 3-3, you can just write:

<%= stylesheet_link_tag 'hello' %>

When Rails processes the document, it will convert that into something like:

<link href="/assets/hello.css?body=1" media="screen"
rel="Stylesheet" type="text/css" />

This keeps Rails from including everything you might or might not want from assets/
stylesheets. If that isn’t quite what you had in mind, you can pass style

sheet_link_tag more detailed parameters:

<%= stylesheet_link_tag 'hello', :media => "all", :type => "text/css", %>

This will produce:

<link href="/assets/hello.css?body=1" media="all" rel="Stylesheet"
type="text/css" />

What happened there? What are all of those strange things with colons in front and
=> arrows behind? They’re named parameters for the stylesheet_link_tag method. The
names with colons in front of them are called symbols, which is a bit confusing.

It’s easiest to read the colon as meaning “the thing named” and the => as “has the value
of.” This means that the thing named media has the value of all, the thing named
type has the value of text/css, and so on. The stylesheet_link_tag method assembles
all of these pieces to create the final link element.

28 | Chapter 3: Adding Web Style

Creating a Layout for a Controller
As you develop your application, different components will likely have different looks,
and relying on a single layout for the entire application will make less and less sense.
It’s easy to create a layout that works with a specific view, separating the document
structure and supporting resources from the presentation logic without falling back to
a generic application-wide layout.

Creating a specific layout for your particular controller is simple—just create a layout
with the name of your controller plus .html.erb in the app/views/layouts folder. If Rails
finds a layout with the name of the controller (and hasn’t been told to use another
layout in code), it uses it. If it can’t find one, it defaults to application.html.erb (This
approach is demonstrated in ch03/hello05.) The naming conventions Rails follows to
decide on a layout are shown in Figure 3-3.

To demonstrate how this works, copy application.html.erb to hello.html.erb and modify
it slightly to see the difference, as shown in Example 3-8. (This is included in ch03/
hello05.)

Example 3-8. Slightly modified layout for hello.html.erb

<!DOCTYPE html>
 <html>
 <head>
 <title><%= @message%></title>
 <%= stylesheet_link_tag "application", :media => "all" %>
 <%= javascript_include_tag "application" %>
 <%= csrf_meta_tag %>
 </head>
 <body>
 <p>(using hello layout)</p>
 <%= yield %>

Figure 3-3. Deciding which layout to use, based on naming conventions

Creating a Layout for a Controller | 29

 </body>
 </html>

The (using hello layout) text just gives us a visible marker to see that content is coming
from the hello.html.erb layout. (It’ll go away immediately after this example.) When
opened in the browser, the layout and view will combine to produce the HTML shown
in Example 3-9.

Example 3-9. Combining a layout and a view produces a complete result

<!DOCTYPE html>
<html>
 <head>
 <title>Hello!</title>
 <link href="/assets/application.css?body=1" media="all" rel="stylesheet"
 type="text/css" />
 <link href="/assets/hello.css?body=1" media="all" rel="stylesheet"
 type="text/css" />
 <script src="/assets/jquery.js?body=1" type="text/javascript"></script>
 <script src="/assets/jquery_ujs.js?body=1" type="text/javascript"></script>
 <script src="/assets/hello.js?body=1" type="text/javascript"></script>
 <script src="/assets/application.js?body=1" type="text/javascript"></script>
 <meta content="authenticity_token" name="csrf-param" />
 <meta content="HENkZLxuUaswIRUh9tV7w1SZpuE24dZWVjSKf6TRuR8=" name="csrf-token" />
 </head>
 <body>
 <p>(using hello layout)</p>
 <h1>Hello!</h1>
 <p>This is a greeting from app/views/hello/index.html.erb</p>
 <p>This message came from the controller.</p>
 <p>This message came from the controller.</p>
 <p>This message came from the controller.</p>

 </body>
</html>

There’s another piece here worth noting, highlighted in Example 3-9. The title
element contains the same content—coming from the @message variable—as the orig-
inal view did. The layout has access to all of the same variables as the view. If you were
creating a layout that was going to be used for many different controllers, you might
want to choose a more specific variable name for that piece, say @page_title, and make
certain that all of your controllers support it.

30 | Chapter 3: Adding Web Style

Figure 3-4. Applying a layout to a view

Choosing a Layout from a Controller
Left to its own devices, Rails assumes that each view has a layout file associated with
it by the naming convention, or uses the default for the application. There are many
cases, though, where groups of related views share a common layout, but that layout
isn’t necessarily the application default. It’s much easier to manage that common layout
from a single file rather than having to change a layout for every controller every time
the design changes.

The simplest way to make this work is to have controllers specify what layout they
would like to use. If standardization is your main purpose, adding a layout declaration
like that shown in Example 3-10 (included in ch03/hello06) will work.

Example 3-10. Specifying a layout choice in a controller

class HelloController < ApplicationController

 layout "standardLayout"

 def index
 @message="Hello!"
 @count=3
 @bonus="This message came from the controller."
 end
end

Instead of looking for app/views/layouts/hello.html.erb to be the layout, Rails will now
look for app/views/layouts/standardLayout.html.erb.

Choosing a Layout from a Controller | 31

The layout call needs to happen outside of a method definition, on its
own, or you will get mysterious undefined method 'layout' errors. It’s
not that layout is undefined, exactly, but that it must be in the right
place.

The layout call can also take nil (for no layout) or a symbol as a method reference. If
there is a method reference, that method will determine which layout is used. Exam-
ple 3-11 shows what this might look like.

Example 3-11. Choosing a layout based on program calculations

class HelloController < ApplicationController

 layout :adminOrUser

 def index
 ...
 end

private
 def adminOrUser
 if adminAuthenticated
 "admin_screen"
 else
 "user_screen"
 end
 end
end

In this case, layout took a reference to the adminOrUser method, which returned either
the admin_screen layout or the user_screen layout as its choice depending on the value
of the adminAuthenticated variable (whose value is calculated somewhere else).

One other feature of layout is worth noting, though we’re not ready to use it yet. If
your application can return, say, XML or RSS instead of HTML, you may want to be
able to turn off your HTML layout in cases where it won’t be wanted. You might say:

layout "standardLayout", :except => :rss
layout "standardLayout", :except => [:rss, :xml, :text_only]

The first one uses the layout except when RSS has been requested, while the second
uses the layout except for requests for RSS, XML, and text formats. You could also
work the opposite way, saying to use the layout only for HTML:

layout "standardLayout", :only => :html

You can also select a layout (or no layout) using the render function.
(You may want to do this if your controller includes multiple actions
that need their own layouts.)

32 | Chapter 3: Adding Web Style

Sharing Template Data with the Layout
Layouts and view templates share the same information from the controller, but there
may be times when a view template should include information that needs to be
embedded in the layout. This might be navigation particular to different areas of a site,
or personalization, or some kind of status bar, for instance, that shows the user how
far they’ve gone through a particular task.

Example 3-12 shows a modified template (included in ch03/hello07) that creates a
numbered list HTML fragment that the layout in Example 3-13 will include separately
—actually, before—it includes the main template output. The structure created by the
<% content_for(:list) do %> code in Example 3-12 is called upon by the <%=
yield :name %> tag in Example 3-13.

Example 3-12. index.html.erb with newly added HTML structure for separate inclusion

<h1><%= @message %></h1>
<p>This is a greeting from app/views/hello/index.html.erb</p>

<% for i in 1..@count %>
<p><%= @bonus %></p>
<% end %>

<% content_for(:list) do %>

<% for i in 1..@count %>
<%= @bonus %>
<% end %>

<% end %>

Example 3-13. Layout template with added yield, exposing the list from Example 3-12

<!DOCTYPE html>
 <html>
 <head>
 <title><%=@message%></title>
 <%= stylesheet_link_tag "application" %>
 <%= javascript_include_tag "application" %>
 <%= csrf_meta_tag %>
 </head>
 <body>
 <%= yield :list %>
 <!--layout will incorporate view-->
 <%= yield %>

 </body>
 </html>

The result, shown in Figure 3-5, isn’t exactly beautiful, but it demonstrates that a tem-
plate can create content that a layout can include anywhere it likes.

Sharing Template Data with the Layout | 33

Always remember that this works because the template has executed before the layout
adds its own ideas. You can communicate from the template to the layout, but not from
the layout to the template.

Setting a Default Page
Before moving on to more “serious” concerns about developing applications, there’s
one question that web developers always seem to ask about 15 minutes into their first
Rails experience: How do I set a default page for the application?

The Rails welcome page, shown in Figure 1-2, is just plain ugly. There are two ways to
change that:

• Edit the public/index.html file and put in something more to your liking

• Delete the public/index.html file and tweak the config/routes.rb file

Figure 3-5. Layout including content created as a separate piece by a template

34 | Chapter 3: Adding Web Style

The first one is pretty easy, but it doesn’t integrate very tightly with your Rails
application. The second approach (also demonstrated in ch03/hello07) lets you pick a
controller that will run if the Rails application is run without specifying a controller—
that is, in the test environment, by directly visiting http://localhost:3000/.

To make this work, you’ll need to enter an extra line in the config/routes.rb file. Near
the bottom of that, you’ll see:

You can have the root of your site routed with map.root --
just remember to delete public/index.html.
root :to => "welcome#index"

Change the last line of that to:

 root :to => "hello#index"

Save the file, make sure you’ve deleted or renamed the public/index.html file, and restart
your server. You should see something like Figure 3-6.

Don’t worry if this edit seems mysterious. You’ll learn more about how routing works
starting in Chapter 4, with a lot more detail to come in Chapter 15.

Figure 3-6. Accessing a controller by default, when the URL doesn’t specify one

Setting a Default Page | 35

http://localhost:3000/

Test Your Knowledge

Quiz
1. Where would you put your CSS stylesheet, and how should you connect it to your

view?

2. How does Rails know which layout to apply to a particular view?

3. What does that yield thing do?

4. How do I send data from the view template to the layout?

Answers
1. Stylesheets go in the assets/stylesheets directory, and you (or Rails) connect them

to your views (or layouts) by putting a call to stylesheet_link_tag in the head
element.

2. By default, Rails will apply the layout in app/views/layout/application.html.erb to
all of your views. However, if there is a layout file in app/views/layout/ that has the
same name as a view, Rails will use that instead.

3. The yield method hands control to a different block of code, one that was passed
with parameters. Rails often handles this quietly, making it easy to share data
between, for example, layouts and views.

4. The layout has access to all of the same variables the view uses. You don’t need to
do anything special to pass variables to the layout, even if you want the layout to
apply them early in your HTML document.

36 | Chapter 3: Adding Web Style

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 4

Managing Data Flow:
Controllers and Models

It’s time to meet the key player in Rails applications. Controllers are the components
that determine how to respond to user requests and coordinate responses. They’re at
the heart of what many people think of as “the program” in your Rails applications,
though in many ways they’re more of a switchboard. They connect the different pieces
that do the heavy lifting, providing a focal point for application development. The
model is the foundation of your application’s data structures, which will let you get
information into and out of your databases.

Controllers are important, certainly a “key player,” but don’t get too
caught up in them. When coming from other development environ-
ments, it’s easy to think that controllers are the main place you should
put application logic. As you get deeper into Rails, you’ll likely learn the
hard way that a lot of code you thought belonged in the controller really
belonged in the model, or sometimes in the view.

Getting Started, Greeting Guests
Controllers are Ruby objects. They’re stored in the app/controllers directory of your
application. Each controller has a name, and the object inside of the controller file is
called nameController.

Demonstrating controllers without getting tangled in all of Rails’ other components is
difficult, so for an initial tour, the application will be incredibly simple. (You can see
the first version of it in ch04/guestbook01.) Guestbooks were a common (if kind of
annoying) feature on early websites, letting visitors “post messages” so that the site’s
owner could tell who’d been there. (The idea has since evolved into more sophisticated
messaging, like Facebook’s Timeline.)

37

If you’ve left any Rails applications from earlier chapters running under
rails server, it would be wise to turn them off before starting a new
application.

To get started, create a new Rails application, as we did in Chapter 1. If you’re working
from the command line, type:

 rails new guestbook

Rails will create the usual pile of files and folders. Next, you’ll want to change to the
guestbook directory and create a controller:

cd guestbook
rails generate controller entries
 create app/controllers/entries_controller.rb
 invoke erb
 create app/views/entries
 invoke test_unit
 create test/functional/entries_controller_test.rb
 invoke helper
 create app/helpers/entries_helper.rb
 invoke test_unit
 create test/unit/helpers/entries_helper_test.rb
 invoke assets
 invoke coffee
 create app/assets/javascripts/entries.js.coffee
 invoke scss
 create app/assets/stylesheets/entries.css.scss

If you then look at app/controllers/entries_controller.rb, which is the main file we’ll work
with here, you’ll find:

class EntriesController < ApplicationController
end

This doesn’t do very much. However, there’s an important relationship in that first
line. Your EntriesController inherits from ApplicationController. The Application
Controller object lives in app/controllers/application_controller.rb, and it also doesn’t
do very much initially, but if you ever need to add functionality that is shared by all of
the controllers in your application, you can put it into the ApplicationController
object.

To make this controller actually do something, we’ll add a method. For right now, we’ll
call it sign_in, creating the very simple object in Example 4-1.

38 | Chapter 4: Managing Data Flow: Controllers and Models

Example 4-1. Adding an initial method to an empty controller

class EntriesController < ApplicationController

 def sign_in

 end

end

We’ll also need a view, so that Rails has something it can present to visitors. You can
create a sign_in.html.erb file in the app/views/entries/ directory, and then edit it, as
shown in Example 4-2.

You can also have Rails create a method in the controller, as well as a
basic view at the same time that it created the controller, by typing:

rails generate controller entries sign_in

You can work either way, letting Rails generate as much (or as little)
code as you like.

Example 4-2. A view that lets users see a message and enter their name

<h1>Hello <%= @name %></h1>

<%= form_tag :action => 'sign_in' do %>
 <p>Enter your name:
 <%= text_field_tag 'visitor_name', @name %></p>

 <%= submit_tag 'Sign in' %>

<% end %>

Example 4-2 has a lot of new pieces to it because it’s using helper methods to create a
basic form. Helper methods take arguments and return text, which in this case is HTML
that helps build your form. The following particular helpers are built into Rails, but
you can also create your own:

• The form_tag method takes the name of our controller method, sign_in, as
its :action parameter.

• The text_field_tag method takes two parameters and uses them to create a form
field on the page. The first, visitor_name, is the identifier that the form will use to
describe the field data it sends back to the controller, while the second is default
text that the field will contain. If the user has filled out this form previously, and
our controller populates the @name variable, it will list the user’s name. Otherwise,
it will be blank.

• The last helper method, submit_tag, provides the button that will send the data
from the form back to the controller when the user clicks it.

Getting Started, Greeting Guests | 39

Once again, you’ll need to enable routing for your controller. You’ll need to edit the
config/routes.rb file. Remove the # that has been bolded below:

match ':controller(/:action(/:id))(.:format)'
 end

If you start up the server and visit http://localhost:3000/entries/sign_in, you’ll see a
simple form like Figure 4-1.

Figure 4-1. A simple form generated by a Rails view

Now that we have a way to send data to our controller, it’s time to update the controller
so that it does something with that information. In this very simple case, it just means
adding a line, as shown in Example 4-3.

Example 4-3. Making the sign_in method do something

class EntriesController < ApplicationController

 def sign_in
 @name = params[:visitor_name]
 end

end

The extra line gets the visitor_name parameter from the request header sent back by
the client and puts it into @name. (If there wasn’t a visitor_name parameter, as would
be normal the first time this page is loaded, @name will just be blank.)

If you enter a name into the form, you’ll now get a pretty basic hello message in return,
as shown in Figure 4-2. The name will also be sitting in the form field for another round
of greetings.

40 | Chapter 4: Managing Data Flow: Controllers and Models

http://localhost:3000/entries/sign_in

Figure 4-2. A greeting that includes the name that was entered

If, instead of Figure 4-2, you get a strange error message about “wrong
number of arguments (1 for 0),” check your code carefully. You’ve
probably added a space between params and [, which produces a syntax
error whose description isn’t exactly clear. (This seems to have gone
away in Ruby 1.9.2.)

The controller is now receiving information from the user and passing it to a view,
which can then pass more information.

There is one other minor point worth examining before we move on, though: how did
Rails convert the http://localhost:3000/entries/sign_in URL into a call to the sign_in
method of the entries controller? If you look in the config directory of your application,
you’ll find the routes.rb file, which contains the rule we enabled for choosing what gets
called when a request comes in:

match ':controller(/:action(/:id(.:format)))'

In this case, entries mapped to :controller, and sign_in mapped to :action. Rails
used this simple mapping to decide what to call. We don’t have an :id or a :format—
yet. (And as Chapter 2 demonstrated, if there hadn’t been an :action, Rails would have
defaulted to an :action named index.) Figure 4-3 shows how Rails breaks down a URL
to decide where to go.

Getting Started, Greeting Guests | 41

http://localhost:3000/entries/sign_in

Figure 4-3. How the default Rails routing rules break a URL down into component parts to decide
which method to run (needs rules at top updated)

You can also see your routes by typing rake routes from the command
line. This gives you a slightly more compact version and shows how
Rails interpreted the routes.rb file.

Application Flow
The Rails approach to handling requests, shown in Figure 4-4, has a lot of moving parts
between users and data.

42 | Chapter 4: Managing Data Flow: Controllers and Models

Figure 4-4. How Rails breaks down web applications

Rails handles URL processing instead of letting the web server pick which file to execute
in response to the request. This allows Rails to use its own conventions for deciding
how a request gets handled, called routing, and it allows developers to create their own
routing conventions to meet their applications’ needs.

The router sends the request information to a controller. The controller decides how
to handle the request, centralizing the logic for responding to different kinds of requests.

Application Flow | 43

The controller may interact with a data model (or several), and those models will
interact with the database if necessary. The person writing the controller never has to
touch SQL, though, and even the person writing the model should be able to stay away
from it.

Once the controller has gathered and processed the information it needs, it sends that
data to a view for rendering. The controller can pick and choose among different views
if it needs to, making it easy to throw an XML rendering on a controller that was
originally expecting to be part of an HTML-generating process. You could offer a variety
of different kinds of HTML—basic, Ajax, or meant for mobile—from your applications
if necessary. Rails can even, at the developer’s discretion, generate basic views
automatically, a feature called scaffolding. Scaffolding makes it extremely easy to get
started on the data management side of an application without getting too hung up on
its presentation.

The final result comes from the view, and Rails sends it along to the user. The user, of
course, doesn’t need to know how all of this came to pass—the user just gets the final
view of the information, which hopefully is what they wanted.

Now that you’ve seen how this works in the big picture, it’s time to return to the details
of making it happen.

Keeping Track: A Simple Guestbook
Most applications will need to do more with data—typically, at least, they’ll store the
data and present it back as appropriate. It’s time to extend this simple application so
that it keeps track of who has stopped by, as well as greeting them. This requires using
models. (The complete application is available in ch04/guestbook02.)

As Chapter 5 will make clear, in most application development, you will
likely want to create your models by letting Rails create a scaffold, since
Rails won’t let you create a scaffold after a model with the same name
already exists. Nonetheless, understanding the more manual approach
will make it much easier to work on your applications in the long run.

Connecting to a Database Through a Model
Keeping track of visitors will mean setting up and using a database. This should be easy
when you’re in development mode, as Rails now defaults to SQLite, which doesn’t
require explicit configuration. (When you deploy, you’ll still want to set up a database,
typically MySQL, as discussed in Chapter 20.) To test whether SQLite is installed on
your system, try issuing the command sqlite3 -help from the command line. If it’s
there, you’ll get a help message. If not, you’ll get an error, and you’ll need to install
SQLite.

44 | Chapter 4: Managing Data Flow: Controllers and Models

Once the database engine is functioning, it’s time to create a model. Once again, it’s
easiest to use generate to lay a foundation, and then add details to that foundation.
This time, we’ll create a simple model instead of a controller and call the model entry:

rails generate model entry
 invoke active_record
 create db/migrate/20110221152951_create_entries.rb
 create app/models/entry.rb
 invoke test_unit
 create test/unit/entry_test.rb
 create test/fixtures/entries.yml

For our immediate purposes, two of these files are critical. The first is app/models/
entry.rb, which is where all of the Ruby logic for handling a person will go. The second,
which defines the database structures and thus needs to be modified first, is in the db/
migrate/ directory. It will have a name like [timestamp]_create_entries.rb, where
[timestamp] is the date and time when it was created. It initially contains what’s shown
in Example 4-4.

Example 4-4. The default migration for the entry model

1 class CreateEntries < ActiveRecord::Migration
2 def change
3 create_table :entries do |t|
4
5 t.timestamps
6 end
7 end
8 end

There’s a lot to examine here before we start making changes. First, note on line 1 that
the class is called CreateEntries. The model may be for an entry, but the migration will
create a table for more than one entry. Rails names tables (and migrations) for the plural,
and can handle most common English irregular pluralizations. (In cases where the
singular and plural would be the same, you end up with an s added for the plural, so
deer become deers and sheep become sheeps.) Many people find this natural, but other
people hate it. For now, just go with it—fighting Rails won’t make life any easier.

Also on line 1, you can see that this class inherits most of its functionality from the
Migration class of ActiveRecord. ActiveRecord is the Rails library that handles all the
database interactions. (You can even use it separately from Rails, if you want to.)

The action begins on line 2 with the change method. Rails used to have separate
self.up and self.down methods, one to build tables and one to take them down, but
Rails 3.1 got smarter. It’s smart enough to understand how to run change backwards
to roll back the migration—effectively it provides you with “undo” functionality
automatically.

Keeping Track: A Simple Guestbook | 45

This example takes the slow route through creating a model so you can
see what happens. In the future, if you’d prefer to move more quickly,
you can also add the names and types of data on the command line, as
you will do when generating scaffolding in Chapter 5.

The change method operated on a table called Entries. Note that the migration is not
concerned with what kind of database it works on. That’s all handled by the
configuration information. You’ll also see that migrations, despite working pretty close
to the database, don’t need to use SQL—though if you really want to use SQL, it’s
available.

Storing the names people enter into this very simple application requires adding a single
column:

create_table :entries do |t|
 t.string :name
 t.timestamps
end

The new line refers to the table (t) and creates a column of type string, which will be
accessible as :name.

In older versions of Rails, that new line would have been written:

t.column :name, string

The old version still works, and you’ll definitely see migrations written
this way in older applications and documents. The new form is a lot
easier to read at a glance, though.

The t.timestamps line is there for housekeeping, tracking “created at” and “updated
at” information. Rails also will automatically create a primary key, :id, for the table.
Once you’ve entered the new line (at line 4 of Example 4-4), you can run the migration
with the Rake tool:

$ rake db:migrate
(in /Users/simonstl/rails/guestbook)
== CreateEntries: migrating ==
-- create_table(:entries)
 -> 0.0021s
== CreateEntries: migrated (0.0022s) ===

Rake is Ruby’s own version of the classic command-line Unix make tool, and Rails uses
it for a wide variety of tasks. (For a full list, try rake --tasks.)

46 | Chapter 4: Managing Data Flow: Controllers and Models

www.allitebooks.com

http://www.allitebooks.org

If you want to run precisely the version of rake that was installed with
your application, run bundle exec rake db:migrate instead. It may or
may not matter, depending on the details of your Rails installation. See
Chapter 17 for more information on bundle. Also, in some Rails instal-
lations, you may receive a message after attempting to run rake
db:migrate that the command won’t run due to version incompatibili-
ties and, in that case, using run bundle exec may be your only option.

In this case, the db:migrate task runs all of the previously unapplied change (or
self.up) migrations in your application’s db/migrate/ folder. db:rollback gives you an
undo option for the previous by running the change methods backwards (or the
self.down methods if present).

Now that the application has a table with a column for holding names, it’s time to turn
to the app/models/entry.rb file. Its initial contents are very simple:

class Entry < ActiveRecord::Base
 # attr_accessible :title, :body
end

The Entry class inherits from the ActiveRecord library’s Base class, but has no
functionality of its own. It used to be able to stay that way—Rails provides enough
capability that nothing more was needed. Unfortunately, Rails’ superpowers turned
out to create some security leaks, in particular problems with mass assignment letting
attackers set values they shouldn’t. To avoid mysterious errors from Rails, and to permit
your code to assign values to the :name property, you need to explicitly specify that it’s
OK with attr_accessible, as the comment suggests. Change the model to look like:

class Entry < ActiveRecord::Base
 attr_accessible :name
end

This tells Rails that it’s allowed to set values for :name, and only for :name.

Remember that the names in your models also need to stay away from
the list of reserved words presented at http://oldwiki.rubyonrails.org/
rails/pages/ReservedWords/.

Connecting the Controller to the Model
As you may have guessed, the controller is going to be the key component transferring
data that comes in from the form to the model, and then it will be the key component
transferring that data back out to the view for presentation to the user.

Storing data using the model

To get started, the controller will just blindly save new names to the model, using the
code highlighted in Example 4-5.

Keeping Track: A Simple Guestbook | 47

http://oldwiki.rubyonrails.org/rails/pages/ReservedWords/
http://oldwiki.rubyonrails.org/rails/pages/ReservedWords/

Example 4-5. Using ActiveRecord to save a name

class EntriesController < ApplicationController

 def sign_in
 @name = params[:visitor_name]
 @entry = Entry.create({:name => @name})

 end

end

The highlighted line combines three separate operations into a single line of code, which
might look like:

 @myEntry = Entry.new
 @myEntry.name = @name
 @myEntry.save

The first step creates a new variable, @myEntry, and declares it to be a new Entry object.
The next line sets the name property of @myEntry—effectively setting the future value
of the column named “name” in the Entries table—to the @name value that came in
through the form. The third line saves the @myEntry object to the table.

The Entry.create approach assumes you’re making a new object, takes the values to
be stored as named parameters, and then saves the object to the database.

Both the create and the save method return a boolean value indicating
whether or not saving the value to the database was successful. For most
applications, you’ll want to test this, and return an error if there was a
failure.

These are the basic methods you’ll need to put information into your databases with
ActiveRecord. (There are many shortcuts and more elegant syntax, as Chapter 5 will
demonstrate.) This approach is also a bit too simple. If you visit http://localhost:3000/
entries/sign_in/, you’ll see the same empty form that was shown in Figure 4-1. However,
because @entry.create was called, an empty name will have been written to the table.
The log data that appears in the server’s terminal window shows:

 (0.1ms) begin transaction
 SQL (87.3ms) INSERT INTO "entries" ("created_at", "name",
 "updated_at") VALUES (?, ?, ?) [["created_at", Mon, 20 Feb 2012 16:18:14
UTC +00:00], ["name", nil], ["updated_at", Mon, 20
Feb 2012 16:18:14 UTC +00:00]]
 (7.1ms) commit transaction

The nil is the problem here because it really doesn’t make sense to add a blank name
every time someone loads the form without sending a value. On the bright side, we
have evidence that Rails is putting information into the Entries table, and if we enter a
name, say “Zaphod,” we can see the name being entered into the table:

48 | Chapter 4: Managing Data Flow: Controllers and Models

http://localhost:3000/entries/sign_in/
http://localhost:3000/entries/sign_in/

 (0.1ms) begin transaction
 SQL (0.6ms) INSERT INTO "entries" ("created_at", "name", "updated_at")
 VALUES (?, ?, ?) [["created_at", Mon, 20 Feb 2012 16:18:48 UTC +00:00],
 ["name", "Zaphod"], ["updated_at", Mon, 20 Feb 2012 16:18:48 UTC +00:00]]

It’s easy to fix the controller so that NULLs aren’t stored—though as we’ll see in
Chapter 7, this kind of validation code really belongs in the model. Two lines, high-
lighted in Example 4-6, will keep Rails from entering a lot of blank names.

Example 4-6. Keeping blanks from turning into permanent objects

class EntriesController < ApplicationController

 def sign_in
 @name = params[:visitor_name]
 unless @name.blank?
 @entry = Entry.create({:name => @name})
 end
 end

end

Now Rails will check the @name variable to make sure that it has a value before putting
it into the database. unless @name.blank? will test for both nil values and blank entries.
(blank? is a Rails method extending Ruby’s String objects.)

If you want to get rid of the NULLs you put into the database, you can run rake
db:rollback and rake db:migrate (or rake db:migrate:redo to combine them) to drop
and rebuild the table with a clean copy. In this case, you should stop the server before
running rake and restart it when you’re done.

== CreateEntries: reverting ==
 -- drop_table(:entries)
 -> 0.0012s
== CreateEntries: reverted (0.0013s) ===

== CreateEntries: migrating ==
 -- create_table(:entries)
 -> 0.0015s
== CreateEntries: migrated (0.0016s) ===

If you want to enter a few names to put some data into the new table, go ahead. The
next example will show how to get them out.

Retrieving data from the model and showing it

Storing data is a good thing, but only if you can get it out again. Fortunately, it’s not
difficult for the controller to tell the model that it wants all the data, or for the view to
render it. For a guestbook, it’s especially simple, as we just want all of the data every
time.

Keeping Track: A Simple Guestbook | 49

Getting the data out of the model requires one line of additional code in the controller,
highlighted in Example 4-7.

Example 4-7. A controller that also retrieves data from a model

class EntriesController < ApplicationController

 def sign_in
 @name = params[:visitor_name]
 if !@name.blank? then
 @entry = Entry.create({:name => @name})
 end

 @entries = Entry.all

 end

end

The Entry object includes a find method—like new and save, inherited from its parent
ActiveRecord::Base class without any additional programming. If you run this and look
in the logs, you’ll see that Rails is actually making a SQL call to populate the @entry
array:

 Entry Load (0.4ms) SELECT "entries".* FROM "entries"

Next, the view, still in views/entries/sign_in.html.erb, can show the contents of that
array, to the site’s visitors see who’s come by before, using the added lines shown in
Example 4-8.

Example 4-8. Displaying existing users with a loop

<h1>Hello <%= @name %></h1>

<%= form_tag :action => 'sign_in' do %>
 <p>Enter your name:
 <%= text_field_tag 'visitor_name', @name %></p>

 <%= submit_tag 'Sign in' %>

<% end %>
<p>Previous visitors:</p>

<% @entries.each do |entry| %>
 <%= entry.name %>
<% end %>

The loop here iterates over the @entries array, running as many times as there are entries
in @entries. @entries, of course, holds the list of names previously entered, pulled from
the database by the model that was called by the controller in Example 4-7. For each

50 | Chapter 4: Managing Data Flow: Controllers and Models

entry, the view adds a list item containing the name value, referenced here as
entry.name. The result, depending on exactly what names you entered, will look some-
thing like Figure 4-5.

Figure 4-5. The guestbook application, now displaying the names of past visitors

It’s a lot of steps, yes, but fortunately you’ll be able to skip a lot of those steps as you
move deeper into Rails. Building this guestbook didn’t look very much like the
“complex-application-in-five-minutes” demonstrations that Rails’ promoters like to
show off, but now you should understand what’s going on underneath the magic. After
the apprenticeship, the next chapter will get into some journeyman fun.

Looking Under the Hood
Every now and then, you may find something missing, or need to see what exactly is
coming into your view. Rails includes a number of useful pieces that, while you should
never ever use them in production code, can help you see the data that Rails is providing
to your view.

To see everything Rails is sending, add this to your view:

<%= debug(assigns) %>

The results of that are both overwhelming and kind of repetitive, but you can hunt
through there for useful pieces. For just the parameters that came in from a request, use:

<%= debug(params) %>

Keeping Track: A Simple Guestbook | 51

Other arguments to debug that might be useful in certain situations are base_path,
controller, flash, request, response, and session.

Finding Data with ActiveRecord
The find method and its relatives are common in Rails, usually in controllers. It’s
constantly used as find(id) to retrieve a single record with a given id, while the similar
all method retrieves an entire set of records. There are four basic ways to call find, and
then a set of options that can apply to all of those uses:

find by id
The find method is frequently called with a single id, as in find(id), but it can also
be called with an array of ids, like find (id1, id2, id3, ...) in which case find
will return an array of values. Finally, you can call find ([id1, id2]) and retrieve
everything with id values between id1 and id2.

find all
Calling the all method—User.all, for example—will return all the matching
values as an array.

find first
Calling first—User.first, for example—will return the first matching value only.
If you want this to raise an error if no matching record is found, add an exclamation
point, as first!.

find last
Calling last—User.last, for example— will return the first matching value only.
Just as with first, if you want this to raise an error if no matching record is found,
add an exclamation point, as last!.

The options, which have evolved into chainable methods, give you much more control
over what is queried and which values are returned. All of them actually modify the
SQL statements used to query the database and can accept SQL syntax, but you don’t
need to know SQL to use most of them. This list of options is sorted by your likely
order of needing them:

where

The where method lets you limit which records are returned. If, for example, you
set:

Users.all.where("registered = true")

then you would only see records with a registered value of true. :conditions also
has another form. You could instead write:

Users.all.where(:registered => true)

52 | Chapter 4: Managing Data Flow: Controllers and Models

This will produce the same query and makes it a little more readable to list multiple
conditions. Also, if conditions are coming in from a parameter or some other data
source you don’t entirely trust, you may want to use the array form of :conditions:

Users.all.where("email = ?", params[:email])

Rails will replace the ? with the value of the :email parameter that came from the
user, after sanitizing it.

order

The order method lets you choose the order in which records are returned, though
if you’re using first or last it will also determine which record you’ll see as first
or last. The simplest way to use this is with a field name or comma-separated list
of field names:

Users.order("family_name, given_name")

By default, the order will sort in ascending order, so the option just shown would
sort family_name values in ascending order, using given_name as a second sort field
when family_name values are the same. If you want to sort a field in descending
order, just put DESC after the field name:

Users.order("family_name DESC, given_name DESC")

This will return the names sorted in descending order.

limit

The limit option lets you specify how many records are returned. If you wrote:

Users.limit(10)

you would receive only the first 10 records back. (You’ll probably want to specify
order to ensure that they’re the ones you want.)

offset

The offset option lets you specify a starting point from which records should be
returned. If, for instance, you wanted to retrieve the next 10 records after a set
you’d retrieved with limit, you could specify:

Users.limit(10).offset(10)

readonly

Retrieves records so that you can read them, but cannot make any changes.

group

The group option lets you specify a field that the results should group on, like the
SQL GROUP BY clause.

lock

Lets you test for locked rows.

joins, include, select, and from
These let you specify components of the SQL query more precisely. You may need
them as you delve into complex data structures, but you can ignore them at first.

Finding Data with ActiveRecord | 53

Rails also offers dynamic finders, which are methods it automatically supports based
on the names of the fields in the database. If you have a given_name field, for example,
you can call find_by_given_name(name) to get the first record with the specified name,
or find_all_by_given_name(name) to get all records with the specified name. These are a
little slower than the regular find method, but may be more readable.

Rails also offers an elegant way to create more readable queries with
scopes, which you should explore after you’ve found your way around.

Test Your Knowledge

Quiz
1. Where would you put code to which you want all of your controllers to have access?

2. How do the default routes decide which requests to send to your controller?

3. What does the change method do in a migration?

4. What three steps does the create method combine?

5. How do you test to find out whether a submitted field is blank?

6. How can you retrieve all of the values for a given object?

7. How can you find a set of values that match a certain condition?

8. How can you retrieve just the first item of a set?

Answers
1. Code in the ApplicationController class, stored at app/controllers/application_con-

troller.rb, is available to all of the controllers in the project.

2. The default routes assume that the controller name follows the first slash within
the URL, that the controller action follows the second slash, and that the ID value
follows the third slash. If there’s a dot (.) after the ID, then what follows the dot
is considered the format requested.

3. The change method is called when Rake runs a migration. The code explains what
to create moving forward, but Rails can also run it backwards. It usually creates
tables and fields.

4. The create method creates a new object, sets its properties to those specified in
the parameters, and saves it to the database.

54 | Chapter 4: Managing Data Flow: Controllers and Models

5. You can test to see whether something is blank using an if statement and the
blank? method, as in:

if @name.blank? then
 something to do if blank
end

6. To retrieve all values for a given object, use .all.

7. To retrieve a set of values, use .where(conditions).

8. To get the first of a set, use .first. You may need to set an :order parameter to
make sure that your understanding of “first” and Rails’ understanding of “first”
are the same.

Test Your Knowledge | 55

CHAPTER 5

Accelerating Development with
Scaffolding and REST

The example in the previous chapter contained the key components you need to work
with Rails and began to demonstrate how they work together. Rails is more than just
a set of components, however—it’s a tightly knit package that includes tools to get you
started more quickly. Rails can even teach you some best practices while making your
work easier.

A First Look at Scaffolding
So, how do Rails developers build applications more quickly? One key piece of the
puzzle is scaffolding. Instead of building a detailed controller and view, you can let
Rails put up an interface to your data. In most cases, the scaffolding will be temporary,
something you build on and replace, but in some cases, the scaffolding may be enough
to do what you need. The scaffolding also provides an excellent way to see what Rails’
creators think is a good way to accomplish common tasks.

To get started, create a new application named guestbook:

$ rails new guestbook

Then change to that directory:

$ cd guestbook

And then create a model and supporting scaffolding with a single command from the
command line. (You can also find all of these files in ch05/guestbook03.)

$ rails generate scaffold Person name:string
 invoke active_record
 create db/migrate/20120220162923_create_people.rb
 create app/models/person.rb
 invoke test_unit
 create test/unit/person_test.rb
 create test/fixtures/people.yml

57

 route resources :people
 invoke scaffold_controller
 create app/controllers/people_controller.rb
 invoke erb
 create app/views/people
 create app/views/people/index.html.erb
 create app/views/people/edit.html.erb
 create app/views/people/show.html.erb
 create app/views/people/new.html.erb
 create app/views/people/_form.html.erb
 invoke test_unit
 create test/functional/people_controller_test.rb
 invoke helper
 create app/helpers/people_helper.rb
 invoke test_unit
 create test/unit/helpers/people_helper_test.rb
 invoke assets
 invoke coffee
 create app/assets/javascripts/people.js.coffee
 invoke scss
 create app/assets/stylesheets/people.css.scss
 invoke scss
 create app/assets/stylesheets/scaffolds.css.scss

This command makes Rails do a lot of different things. First, examine the initial line:

 rails generate scaffold Person name:string

It tells Rails to generate scaffolding, based around a model named Person, whose
content is a name that is a string. If the model has more pieces to it—and most will—
you can just keep listing the different data fields and their types.

Given this information, Rails goes on to create:

• A data migration to establish the tables needed for the model

• A model (with accompanying tests and fixtures for the tests)

• A new route that will map user requests to the controller

• A controller to send data among the different components

• Four views (index, edit, show, and new), in addition to a supporting partial form
(_form.html.erb) that reduces code duplication

• Tests for the controller

• An empty file for helper methods

• A CoffeeScript file for scripting the pages

• Two stylesheets, people and scaffold, for all of those views

You’ll need to run the migration file with rake db:migrate, and then you can run rails
server to fire up the application. Visit http://localhost:3000/people, and you’ll see some-
thing like Figure 5-1.

58 | Chapter 5: Accelerating Development with Scaffolding and REST

http://localhost:3000/people

Figure 5-1. The index page of the newly generated application

While Figure 5-1 lacks the “Hello” of the application built in the previous chapter, and
the form field to enter your name isn’t right on the first page, it’s still basically the same
idea. You can see who visited, and you can enter new names. If you click on the “New
person” link, you’ll see the screen in Figure 5-2, which lets you enter a new name.

Figure 5-2. Entering a new name

When you enter a name and click the Create button, you’ll see a page representing the
newly created person, as shown in Figure 5-3. (The URL, though it points to a single
person, still uses the plural form, “people,” as the record is one of a set.)

A First Look at Scaffolding | 59

Figure 5-3. A newly created person

There are two options here. Edit will let you change the name (as shown in Fig-
ure 5-4), while clicking Back returns you to the original (index) page—only now you’ll
see the name in a table, as shown in Figure 5-5.

Figure 5-4. Updating an existing person

Figure 5-5. The new list of people, with options for modifying them

60 | Chapter 5: Accelerating Development with Scaffolding and REST

It’s not quite as simple as the application built by hand in the previous chapter, but
much of it is actually identical. The migration file looks just like the one created by
hand (plus or minus some whitespace), and the model has exactly as much new code
in it as the one built by hand: an attr_accessible :name declaration.

The scaffolding’s action takes place in the single line added to the routing file, in a
controller that needs a careful explanation, and in the views, which don’t do very much
that you haven’t already seen before. To understand why this controller works the way
it does, though, there’s another story that needs to be told. Fortunately, it’s a RESTful
story.

REST and Controller Best Practices
REST is an approach to building web applications that takes as much advantage of the
underlying structure of the Web as possible. This makes a lot of things more
comfortable:

• Users will find that the applications work as they’d like in their web browsers. They
can bookmark pages and come back to them, and the URLs are actually
meaningful.

• Network administrators can use all their preferred techniques for managing web
traffic without worrying about disrupting an application.

• You, of course, get the greatest benefits. REST-based architecture is a very neat fit
with Rails’ MVC approach, and makes it easier to keep track of which code does
what where. Rails is also set up to make it extremely easy for you to use REST,
supporting a number of ways for you to say, “I’d like this to behave RESTfully.”

REST doesn’t create new techniques so much as dust off old techniques and encourage
developers to use them as they were designed to be used. Of course, even early in the
Web’s development, developers hacked and slashed their way into a different style of
programming, so there are some adjustments to make. Fortunately, Rails makes it easy
to adjust and opens new horizons in doing so.

REST stands for REpresentational State Transfer, which describes what
happens, but isn’t the most immediately meaningful explanation.

Websites and Web Applications
Web developers have historically used two HTTP methods to get information into and
out of sites: GET and POST. On the surface, GET used the “data-fits-into-the-query-
string” approach, whereas POST used the “we-have-a-nice-clean-URL-with-data-
elsewhere” approach. There’s more to it than that, though.

REST and Controller Best Practices | 61

Much of the Web is read-only, and for those applications, GET worked very smoothly.
Browser caches and proxy servers could check once in a while to see if a page had
changed. For many applications, where POSTs were used to add new data and GETs
were used to see that data, things weren’t much more complicated. Unfortunately,
though, the reliance on GET and POST overloaded those methods and created some
problems.

For GET, the most obvious problem was that URLs became very large very quickly as
more and more data was exchanged. Beyond that, though, were some other creative
issues:

• Proxy servers generally treated a GET request as an opportunity to cache infor-
mation and reduce the amount of traffic needed next time. This could lead to
sensitive data stored on a not-necessarily-secure proxy server and could also create
some strange problems around the proxy server checking whether the result had
changed when another request came through with the same data.

• Some applications used links containing GET requests to ask for changes in data—
even deletions. (Think http://example.com/doIt/?action=delete.) As the quest for
speed became more important, developers came up with browser extensions that
pre-fetched information from links in the document… and activated these actions
without the user expecting it. Oops.

The general rule with GET has become “make sure that none of your GET requests do
anything dangerous.” GET requests are supposed to be idempotent, yielding the same
result even when issued multiple times. No GET request changes the results of the next
GET request to the same resource, for example.

PUT and DELETE requests are also supposed to be idempotent—
PUTting the same thing repeatedly yields the same data that was PUT,
while DELETE-ing the same thing repeatedly yields the same nothing-
ness. HEAD requests, which are basically a GET returning headers only,
are also idempotent.

POST had a simpler problem that could be avoided through careful programming, and
a harder problem that was largely political:

• Pretty much nothing created with POST was bookmarkable, unless the receiving
application immediately created a redirect to something reflecting the result of the
POST. Entire applications were often written so that users could bookmark only
the front page. For internal applications this might be tolerable, but all these POST
requests also blocked search engines, which pretty much only used GET.

• Once it became clear that using GET for heavy lifting created problems, POST
wound up carrying nearly all of the data transfers from users to the server, and then
pretty much all purely computer-to-computer transfers. XML-RPC, SOAP, and

62 | Chapter 5: Accelerating Development with Scaffolding and REST

http://example.com/doIt/?action=delete

most discussions of “web services” really meant “HTTP POST to a given URL”
when they said Web.

The old way of working with the Web mostly worked, but it clearly had some dark
corners and plenty of room for improvement. As it turned out, all the pieces needed
for that improvement already existed.

Toward a Cleaner Approach
Although developers had become accustomed to using just these two methods, and
browsers had given them the greatest support, HTTP had more pieces to offer than just
GET and POST. The two most important of these are PUT and DELETE, which
combine with GET and POST to give HTTP a complete set of verbs for manipulating
data.

HTTP also has a HEAD method, which is kind of a GET-lite frequently
used to check on the freshness of cached data, and OPTIONS and
TRACE. Rails uses HEAD.

How can you manage data with just POST, GET, PUT, and DELETE?

As it turns out, it’s a familiar question for many programmers, who often work with
the cheerfully named CRUD model, which stands for Create, Read, Update, and
Destroy. If you’ve worked with SQL, you’re already familiar with INSERT, SELECT,
UPDATE, and DELETE. That basic set of verbs manages practically everything we do
with databases, and the art of using SQL is about skillfully combining those generic
verbs with specific data to accomplish the tasks you need to accomplish.

While CRUD is relatively easy to understand and implement, it’s far
from the only or best way to implement REST-based applications. How-
ever, CRUD is definitely the fastest way to get started using REST in
Rails, and is often a substantial improvement over less structured
options.

In Rails, this is typically described as show, create, update, and destroy, as you saw in
the links in Figure 5-5. You’ll also see that pattern in the controller Rails creates as part
of the scaffolding. Working this way requires a shift in the way developers think about
controllers, and about writing web applications generally.

The example created in the previous chapter treated the controller as a container for
actions, or verbs. You could, if you wanted, write an entire Rails application in a single
controller, with a method for every action it offers the user, and views to match. Those
methods would then work with a variety of different models, getting information into
and out of the application. If that became too large a mess, you could use a number of

REST and Controller Best Practices | 63

controllers to group different methods, though there would be lots of different ways to
group them.

The example built with scaffolding takes a very different approach. The publicly
available verbs are standardized—each controller implements the same verbs. Instead
of being a container for a wide variety of actions, the controller becomes a standardized
piece connecting a data model to the Web: a noun.

This maps perfectly to the way that REST expects the Web to work. Our familiar URLs
(or Uniform Resource Identifiers, URIs, as REST prefers to call them) connect the client
to a resource on the server. These resources are the nouns that the HTTP verbs work
on, and the controller makes sure that those standardized verbs work in predictable
ways on the data models underneath.

REST offers one last bonus. “Resources” are information, not necessarily information
frozen into a particular representation. If a user wants the same information in JSON
instead of HTML, the resource should (if you’re being nice, and Rails is nice by default)
be able to provide the information as JSON. By using Rails’ RESTful features, you’re
not just creating a website, but a resource that other applications can interact with.
This also makes it much easier to create Ajax applications on top of Rails, and to build
mashups. Effectively, it’s what a rich interpretation of “web services” should have
meant in the first place.

Thinking too hard about resources can lead to some complicated
philosophical irritations. The authors have learned through painful
experience that trying to sort out the proper relationship of XML name-
spaces to the resources that identify them is infinitely complicated, as is
interpreting the meaning of a fragment identifier (#id) in any situation
where the same resource can produce multiple data representations.

The answer to these irritations is simple: don’t think about them. If you
find yourself going down the resource philosophy rathole, step back and
focus on something more practical. These issues can create the
occasional practical problem, but generally they sit quietly unless stirred
up.

Examining a RESTful Controller
Rails scaffolding is a very conscious implementation of REST, an example generally
worth emulating and extending. Even in cases where browser limitations keep REST
from working as simply as it should, Rails fills the gaps so that you can focus on building
your application, not on corner cases. The simple one-field application shown earlier
is enough to demonstrate the principles that Rails has used to generate the scaffolding.

Opening the app/controllers/people_controller.rb file reveals Example 5-1. It defines
seven methods, each prefaced with a sample of the HTTP request that should call it.
This chapter will explore each method individually, but take a moment to explore the

64 | Chapter 5: Accelerating Development with Scaffolding and REST

whole thing and get a feel for what’s going on, and how these methods are similar and
different.

Example 5-1. A RESTful controller created as part of Rails scaffolding

class PeopleController < ApplicationController
 # GET /people
 # GET /people.json
 def index
 @people = Person.all

 respond_to do |format|
 format.html # index.html.erb
 format.json { render json: @people }
 end
 end

 # GET /people/1
 # GET /people/1.json
 def show
 @person = Person.find(params[:id])

 respond_to do |format|
 format.html # show.html.erb
 format.json { render json: @person }
 end
 end

 # GET /people/new
 # GET /people/new.json
 def new
 @person = Person.new

 respond_to do |format|
 format.html # new.html.erb
 format.json { render json: @person }
 end
 end

 # GET /people/1/edit
 def edit
 @person = Person.find(params[:id])
 end

 # POST /people
 # POST /people.json
 def create
 @person = Person.new(params[:person])

 respond_to do |format|
 if @person.save
 format.html { redirect_to @person, notice: 'Person was successfully
created.' }
 format.json { render json: @person, status: :created, location: @person }
 else

Examining a RESTful Controller | 65

 format.html { render action: "new" }
 format.json { render json: @person.errors, status: :unprocessable_entity }
 end
 end
 end

 # PUT /people/1
 # PUT /people/1.json
 def update
 @person = Person.find(params[:id])

 respond_to do |format|
 if @person.update_attributes(params[:person])
 format.html { redirect_to @person, notice: 'Person was successfully updated.' }
 format.json { head :no_content }
 else
 format.html { render action: "edit" }
 format.json { render json: @person.errors, status: :unprocessable_entity }
 end
 end
 end

 # DELETE /people/1
 # DELETE /people/1.json
 def destroy
 @person = Person.find(params[:id])
 @person.destroy

 respond_to do |format|
 format.html { redirect_to people_url }
 format.json { head :no_content }
 end
 end
 end

How can this scaffold support seven methods when REST only has four verbs? If you
look closely, the first four methods are all based on GET requests for slightly different
things:

• The index method answers GET requests for a listing of all the available data.

• The show method answers GET requests to display a single record from the dataset.

• The new method answers GET requests for a form to create a new record. (It doesn’t
actually create a record directly—note the use inside the method of new but not
save.)

• The edit method answers GET requests for an editable version of a single record
from the dataset, gathering its components and sending them out as a form.

The other three methods are the other three REST verbs:

• The create method responds to POSTs that send new data to create a new record.
If it can create it, the method then redirects to a page showing the new record.

66 | Chapter 5: Accelerating Development with Scaffolding and REST

• The update method responds to PUTs that send data modifying an already-existing
record. Like create, it tests whether the change was successful, and redirects.

• The destroy method responds to DELETEs, obliterating the requested record.

Figure 5-6 illustrates the processing paths these seven methods support and how they’re
reached.

Examining a RESTful Controller | 67

Figure 5-6. The many paths through a REST-based resource

68 | Chapter 5: Accelerating Development with Scaffolding and REST

Because not all browsers directly support PUT and DELETE in forms,
Rails uses a hidden field approach to support them, as you’ll see in the
next chapter.

All of these methods reach the controller thanks to the line the generator added to the
top of config/routes.rb:

resources :people

Unlike match, which defined a simple routing by fragmenting the URL, resources
expects a particular set of routes reflecting RESTful expectations. If you want to see the
full set of routes it created, run rake routes. You’ll see something like:

$ rake routes
 people GET /people(.:format) people#index
 POST /people(.:format) people#create
 new_person GET /people/new(.:format) people#new
edit_person GET /people/:id/edit(.:format) people#edit
 person GET /people/:id(.:format) people#show
 PUT /people/:id(.:format) people#update
 DELETE /people/:id(.:format) people#destroy

That’s a lot of new pieces from one line of code, but don’t worry—the basic handling
for all of those pieces has already been created for you.

When you see people#index, it refers to the index action of the people
controller. Older versions of rake routes used to report this more ver-
bosely, as {:action=>"index", :controller=>"people"}.

If your applications stay simple enough, these methods will take care of most of your
needs for getting information from views to models and back again. You’re welcome
to skip the next section and jump to the end of the chapter if you’d prefer to work on
getting things built immediately, but there’s much more to learn from these simple bits
of code if you’re interested. They are an excellent guide to the basics of getting things
done in Rails.

Index: An Overview of Data
Example 5-2 contains the index method, the most likely starting point for a visitor
exploring the data.

Example 5-2. The index method shows all the records in HTML or JSON

GET /people
GET /people.json
 def index
 @people = Person.all

Examining a RESTful Controller | 69

 respond_to do |format|
 format.html # index.html.erb
 format.json { render json: @people }
 end
end

As the comments indicate, this responds to requests for people or for people.json. Just
as Example 4-7 did, it makes a call to the Person model’s find method, passing it the
parameter :all to indicate that it should return everything, using the abbreviated syntax
Person.all to do so. The big change here from the previous example is that this method
can return the information as JSON, not just as HTML, because of the respond_to do
|format| block.

The respond_to method is a feature of ActionController, a wrapper that lets you create
responses in various formats while building on the same data. The format object comes
to the controller through Rails routing, typically identifying that a particular request
wants a response in HTML or JSON format. How does Rails know what the client
wants? Through the HTTP Accept header and through the file extension on the URL.
(In the routing files, you’ll frequently see :format to pick up the file extension.)

If you want to return XML, you’ll want to explore the to_xml method.

Calls to format are testing whether this particular request wants that format as a
response. If it does, Rails runs the block of code that follows format.type. The reference
to the index.html.erb file is just a comment, set off by #. That comment (and others like
it through the generated controller) is there to make it easier for humans to see what
Rails will do, not to tell Rails what to do.

If it’s easier, you can think of respond_to as being like a switch...case
statement, though the underlying mechanism is a little different. Figur-
ing out exactly how it works is a project better reserved for when you’re
feeling very comfortable with Ruby—but you don’t need a deep under-
standing of the details to use it.

The default scaffold tests for HTML and JSON, though other formats, like XML, are
available. This controller will, depending on what the client wants, either use the stan-
dard HTML-generating view for a response or generate a JSON file from the @people
object. Figure 5-7 shows how a JSON response might look in the browser.

70 | Chapter 5: Accelerating Development with Scaffolding and REST

Figure 5-7. A JSON response listing people

Show: Just One Row of Data
Example 5-3 contains the show method, the most likely starting point for a visitor
exploring the data.

Example 5-3. The show method extracts one row of data to display

GET /people/1
GET /people/1.json
def show
 @person = Person.find(params[:id])

 respond_to do |format|
 format.html # show.html.erb
 format.json { render json: @person }
 end
end

The only new feature here is the use of find with the :id value taken from the
parameters. Rails’ routing will populate the :id value based on the number following
the controller name in the URL, whether or not a format is specified. The :id value is
central to Rails’ RESTful processing approach, as resources have controller names that
identify their source and :id values that let users and developers focus more tightly on
specific records.

New: A Blank Set of Data Fields
Example 5-4 contains the new method, which presents a form users can fill out to add
data to the database.

Example 5-4. The new method collects data structure information and sends it to a form

GET /people/new
GET /people/new.json
def new

Examining a RESTful Controller | 71

 @person = Person.new

 respond_to do |format|
 format.html # new.html.erb
 format.json { render json: @person }
 end
end

The new method highlights Rails’ strength in working flexibly with data structures. The
call to Person.new creates a new blank data structure based on the Person model, but
Rails uses that data structure in an unusual way. This controller will simply pass it to
the view in new.html.erb, without ever having to consider questions like, “What is the
schema for this data?” The controller is spared the problem of worrying about the
structures that come through the model and can simply pass them on to the next level
of Rails components.

Remember, the new method creates a blank data structure, but it doesn’t actually do
anything to the database. The blank structure created here will be used as a template
for the view to do its work, and then thrown away. The actual changes to the database
will come when the create method receives data for a new record, and it will populate
and save a new record.

Edit: Hand Me That Data, Please
The edit method, shown in Example 5-5, is the last of the GET-based methods, and
the simplest.

Example 5-5. The edit method collects a record to send it out for user editing

GET /people/1/edit
 def edit
 @person = Person.find(params[:id])
 end

edit retrieves a single Person record and passes it on to the view, which will populate
a form with the data and let the user make changes. Like new, edit itself doesn’t make
any changes. The actual changes to the data will come in through the update method.

Create: Save Something New
The create method, shown in Example 5-6, is extremely busy relative to its peers, doing
a lot of things other methods haven’t done before.

Example 5-6. The create method saves an incoming record to the database

POST /people
POST /people.json
def create
 @person = Person.new(params[:person])

72 | Chapter 5: Accelerating Development with Scaffolding and REST

 respond_to do |format|
 if @person.save
 format.html { redirect_to @person, notice: 'Person was successfully created.' }
 format.json { render json: @person, status: :created, location: @person }
 else
 format.html { render action: "new" }
 format.json { render json: @person.errors, status: :unprocessable_entity }
 end
 end
end

The first thing that the create method does is create a new Person object based on
the :person parameters from the form. The scaffolding forms, as the next chapter will
demonstrate, return the data neatly packaged so that Rails doesn’t have to inspect every
field. It can move through as a unit.

The respond_to do |format| block also does much more here. It opens with:

if @person.save

This does two things. First, it attempts to save the record to the database through the
Person model. Second, @person.save returns a true or false value that the if statement
will process to determine what it should send back to the user.

If it’s true—i.e., the save was successful—the application uses the :notice functionality
(described in the next chapter, where you can see what it connects to) to let the user
know the operation was a success.

Then, if the request wanted HTML back, it redirects the user to the show method for
the new @person object, using the redirect_to helper method. (redirect_to under-
stands the routing table and can reliably send the visitor to the right place.) If the request
wanted JSON back, it executes a more complicated rendering:

render json: @person, status: :created, location: @person

As it was for index and the other methods, the JSON will be generated based on the
@person object. The HTTP response will also include a 201 Created status header and
identify its location as where the @person object can be shown. (200 OK is the normal
header, though 404 Not Found is probably the header most people recognize.)

The response if there’s an error—@person.save returned false—is to report back to
the user, sending the incoming data to another copy of the form for creating people:

 else
 format.html { render action: "new" }
 format.json { render json: @person.errors, status: :unprocessable_entity }
 end

If an HTML response has been requested, the user will just get a blank field for a new
entry attempt. If a JSON response was requested, the sender will get a little more
information back—a 422 Unprocessable Entity message and the errors from the
@person object.

Examining a RESTful Controller | 73

Put This Updated Record In
The update method, shown in Example 5-7, is much like the create method except that
it responds to a PUT instead of a POST and updates a record instead of creating one.
Otherwise, it’s very similar.

Example 5-7. The update method changes a record and saves the result

PUT /people/1
PUT /people/1.json
 def update
 @person = Person.find(params[:id])

 respond_to do |format|
 if @person.update_attributes(params[:person])
 format.html { redirect_to @person, notice: 'Person was successfully updated.' }
 format.json { head :no_content }
 else
 format.html { render action: "edit" }
 format.json { render json: @person.errors, status: :unprocessable_entity }
 end
 end
 end

The request will include an ID value in the URL that the Rails router will send as :id
to the controller. Like a POST request, it will also come with parameters, which in this
case will represent the updated data.

The key lines here are:

@person = Person.find(params[:id])
...
if @person.update_attributes(params[:person])

While the create method used new to create a fresh record from the parameters that
arrived with the form, the update method uses find to get the record that is to be changed
based on :id, and then it uses the update_attributes method to try changing those
values to the parameters from the form. The value returned by update_attributes
determines whether it sends back successful responses or an error message.

The successful response to a JSON update is notably different from the successful
response to a JSON create—instead of sending the new JSON document, all that the
updater gets is HTTP headers, created with the head method, indicating a 204 No Content
response. (HTTP responses in the 200 range are successful; 204 just means that there
isn’t a message beyond success.)

74 | Chapter 5: Accelerating Development with Scaffolding and REST

Destroy It
The final method is destroy, shown in Example 5-8, which responds to HTTP DELETE
requests.

Example 5-8. The destroy method removes a Person record

DELETE /people/1
 # DELETE /people/1.json
 def destroy
 @person = Person.find(params[:id])
 @person.destroy

 respond_to do |format|
 format.html { redirect_to(people_url) }
 format.json { head :no_content }
 end
 end

One notable aspect of this code is that it contains absolutely nothing that will ask the
sender to reconsider. Make certain that your view code asks users if they really truly
mean it before you call this method. (The views generated by the scaffolding do ask,
fortunately.)

Destroying a record is a two-step process. First, Rails locates the object to destroy by
its :id with the find method, and then it issues a call to that object’s destroy method.
Unlike save or update_attributes, the destroy method is just assumed to have
happened. Since there isn’t actually a record to show, the response uses a redirect to
the main list of entries as its HTML response and a blank “No content” as its JSON
response.

If you’d like to experiment with some much more powerful scaffolding,
you might want to explore ActiveScaffold, which is available from https:
//github.com/activescaffold/active_scaffold/. It goes far beyond the basics
Rails provides, into Ajax and a higher level of automation.

Now that you’ve seen how all of these pieces work, it’s time to do more creative things
with the pieces. The next chapter will examine how to do a lot more with forms and
data models and how to use the controller to connect them.

Micro-Applications
While much of the excitement around Rails lies in its ability to create large-scale web
applications quickly, it has another powerful side that’s less frequently discussed.
Thanks to scaffolding and Rails’ transparent use of SQLite, you can quickly and easily
build smaller applications with Rails, keeping track of whatever information you’d like.

Even with a single table, it’s easy to build things like address lists, infinitely expandable
glossaries, expense trackers, and so on. With the multimodel approaches you’ll learn

Examining a RESTful Controller | 75

https://github.com/activescaffold/active_scaffold/
https://github.com/activescaffold/active_scaffold/

in Chapter 9, you’ll be able to build more sophisticated applications that manage a lot
more data but still don’t require huge amounts of effort to build or run. Add the
authentication features in Chapter 14, and you can even share your applications with
some friends.

Most people think of applications scaling up, but the ability to scale down comfortably
makes it a lot easier to experiment with Rails development and to solve some of the
minor data-handling problems life presents. “Web scale” is any scale, including small
scale.

Escaping the REST Prison
While REST is extremely powerful, developers used to working in other environments
may be cursing at this point, wondering whether they really need to build every part of
their application according to this weird new paradigm.

Don’t worry: you don’t have to. You could, if you wanted, stick with the GET/POST
approach shown in earlier chapters. Rails doesn’t enforce RESTfulness.

However, you may want to explore a combination of approaches. If a page is only ever
going to be reached with GET, use a simple controller and view or even a static page
where appropriate. If a page needs to manage more sophisticated data input and output,
then use REST to simplify that process. In a more complex application, it might make
sense to use REST for cases where data is coming in or being edited, and to use simpler
controllers for situations where the application is just presenting information.

The remainder of this book is going to use the combination approach. REST is just too
convenient for getting structured data in and out of a website to ignore, but when REST
isn’t necessary, there’s no need to let it dominate.

(And, of course, Rails’ simple approach to REST isn’t entirely loved by the REST world
either, but making Rails substantially more RESTful would take some major redesign.)

Test Your Knowledge

Quiz
1. How many files does Rails create in response to a single script/generate

scaffold request?

2. In REST, how do HTTP GET, PUT, POST, and DELETE map to the “CRUD” of
create, read, update, and destroy?

3. What does “idempotent” mean?

76 | Chapter 5: Accelerating Development with Scaffolding and REST

4. How do you make sure a result can be bookmarked?

5. Why do four basic REST functions end up making seven different methods in the
controller?

6. What does resources :people mean?

7. How do you specify responses in different formats?

8. How does an ID value connect to a specific resource?

9. What happens if you send a Rails application a chunk of JSON?

Answers
1. Rails creates a lot of files in response to a script/generate scaffold request, though

some of them may exist already. It will create index, show, new, and edit view files,
as well as one with the name of the object specified. It will also create a model, test,
test fixture, migration, controller, test controller, and helper class, and add a route
to the routing table, plus stylesheets and scripts. So, the answer is usually 17.

2. GET maps to read. POST maps to create. PUT maps to update. DELETE maps to
destroy.

3. Idempotent means that you can call the same method as many times as you want
and still get the same result. A GET request should be idempotent, and no matter
how many GET requests you make, none of those GET requests will change what
is returned on the next call.

4. The easiest way to make sure that something can be bookmarked is to make it
consistently accessible through a GET request to a particular URL. (Making this
work with other request methods often means presenting their results as a redirect
to a GET. That way the results are bookmarkable, and the transaction only happens
once.)

5. The four REST methods map neatly to CREATE, READ, UPDATE, and DELETE
for a single resource, but there are a few other operations needed to make the
application more usable to humans. All of them use GET. index shows a listing of
all the resources available. The new method provides a form you can use to create
a new resource. The edit method provides a form you can edit to modify an existing
resource. Those forms then call the create and update methods, respectively.

6. resources :people creates a huge collection of routes that connect specific URLs
to the REST methods for working with :people objects.

7. You can provide replies in different formats using the respond to do |format| call
inside of a controller.

8. By default, the Rails uses REST-based routing to connect to resources whose
primary key matches the ID value provided in the URI.

9. If you send the JSON as part of a POST or PUT, Rails will check the JSON to see
if it matches Rails’ expectations for the data structure that should go there. If it

Test Your Knowledge | 77

doesn’t match, it will reply with an error. If it does match, it will create a new record
based on the data (POST) or modify an existing record (PUT).

78 | Chapter 5: Accelerating Development with Scaffolding and REST

CHAPTER 6

Presenting Models with Forms

The previous chapter showed how Rails makes it easy to create simple applications
using scaffolding, but a key aspect of Rails scaffolding is that it isn’t meant to be
permanent. This doesn’t necessarily mean that you’ll tear it down completely and start
over, but it usually means that you’ll at least make substantial improvements to make
it more attractive. This is especially important where information is coming in from
users. While Rails scaffolding provides basic functionality, you’re very likely going to
want to improve on the forms it creates.

More Than a Name on a Form
To demonstrate a reasonably complete set of HTML form features, the application
needs to support more than one data field and needs to support fields in a variety of
different types. Rails, because it works with a wide variety of databases, supports a
narrower set of types than each of those databases. The types of fields that Rails
supports through ActiveRecord include:

:string
:text
:integer
:float
:decimal
:datetime
:timestamp
:time
:date
:binary
:boolean

The :string type is generally limited to 255 characters, whereas :text can hold longer
data. The :integer, :float, and :decimal types all hold numbers, although integers
may not have a fractional part to the right of the decimal point.
The :datetime, :timestamp, :time, and :date types hold the classically complicated
combination values used to represent dates and times. The :binary type can hold

79

unstructured binary data, often called BLOBs (Binary Large Objects). (You’ll need to
decide how you want to handle binary data—just stuffing it into a database isn’t always
the right answer.) Finally, the :boolean is the simplest type, accepting only the values
of 1 and 0, equal to true and false.

HTML forms offer a variety of ways to enter data that doesn’t map one-to-one to the
data types Rails uses:

• Text fields (normal, hidden, and password)

• Text areas

• Checkboxes

• Radio buttons

• Selection lists (including multiple selections and grouped selections)

• File uploads

• Other buttons (submit, reset)

To demonstrate how these pieces work with ActiveRecord data types, we’ll create an
application with the following data fields:

Ordinary strings
Name, secret, country, email

Long strings
Description

Boolean
“Can we send you email?”

Numbers
An integer for specifying graduation year, a floating-point number for body
temperature, and a decimal for price

Dates and Times
The user’s birthday and a favorite time of day

File uploads deserve separate coverage, so we will explore them in
Chapter 8 in the section “Adding a Picture by Uploading a
File” on page 119.

Yes, these choices are somewhat whimsical, but they’ll provide a framework in which
to explore how Rails supports data types and how you can build on that support.

Generating HTML Forms with Scaffolding
Although this application is approaching the point beyond which much generated code
becomes more of a hassle than a help, it makes sense to create one last round of

80 | Chapter 6: Presenting Models with Forms

scaffolding, replacing the application from the previous chapter. After this, we’ll work
within the same application for a while, as this kind of tearing down and rebuilding is
only a good idea at the very beginning of a project.

To get started, create a new application. Move or rename the old guestbook application
to get it out of the way, and then run rails new guestbook. Then, run the following
clunky mess from the command line at the top level of the newly created application:

rails generate scaffold Person name:string secret:string country:string
email:string description:text can_send_email:boolean graduation_year:integer
body_temperature:float price:decimal birthday:date favorite_time:time

This kind of long list of data structures in the scaffolding is annoying. It’s hard to type,
and what’s worse, if you find that you made a mistake after you’ve already modified
the generated code, you have a painful choice.

You can either rerun the scaffolding generation and lose all your changes to the logic,
or you can modify the migration, the model, and the views by hand. Rails scaffolding
generators just overwrite the old code—there’s no support for more subtle fixes.

Neither of these is a fun way to fix a typo, so remember: when you first generate scaf-
folding, it’s easier to get things right the first time. This doesn’t mean you need to get
everything right all at once—no one ever does—but adding new features to code is
generally much more fun than fixing a typo. It may be easiest to set up the command
in a text editor and then paste it in after checking it carefully. (You can also find the
resulting files for this particular command in ch06/guestbook04.)

Before going further, examine the change method in the migration this created in
db/migrate/*_create_people.rb, shown in Example 6-1. (It won’t actually be
*_create_people.rb—the * will be replaced by a timestamp.)

Example 6-1. Creating a richer table with many data types from a migration

def change
 create_table :people do |t|
 t.string :name
 t.string :secret
 t.string :country
 t.string :email
 t.text :description
 t.boolean :can_send_email
 t.integer :graduation_year
 t.float :body_temperature
 t.decimal :price
 t.date :birthday
 t.time :favorite_time

 t.timestamps
 end
 end

Generating HTML Forms with Scaffolding | 81

As requested, Rails created a structure containing many fields of various types. For
now, this will do for a demonstration, though eventually there will be change in the
data model that requires change to the migration. Run rake db:migrate, and the
migration will build the database table for the application.

The model Rails created is simple, just allowing access to the fields you just created:

class Person < ActiveRecord::Base
 attr_accessible :birthday, :body_temperature, :can_send_email, :country,
:description, :email, :favorite_time, :graduation_year, :name, :price, :secret
end

Next, it’s time to look at the form that Rails created for making new people, app/views/
people/new.html.erb, shown in Example 6-2.

Example 6-2. The new.html.erb file contains very little

<h1>New person</h1>

<%= render 'form' %>

<%= link_to 'Back', people_path %>

Using <%= render 'form' %>, Rails put the meat of the form into a partial, a separate
file that can be included by reference. Partials are great for avoiding some kinds of
repetition, offering a flexible means of sharing consistent pieces of pages across your
application. Chapter 8 will cover a few additional options that might help you do even
better at avoiding repetition. Rails’ naming conventions mean that form will get inter-
preted as _form.html.erb, which is shown in Example 6-3.

Example 6-3. The _form.html.erb file supports basic input functionality

<%= form_for(@person) do |f| %>
 <% if @person.errors.any? %>
 <div id="error_explanation">
 <h2><%= pluralize(@person.errors.count, "error") %>
 prohibited this person from being saved:</h2>

 <% @person.errors.full_messages.each do |msg| %>
 <%= msg %>
 <% end %>

 </div>
 <% end %>

 <div class="field">
 <%= f.label :name %>

 <%= f.text_field :name %>
 </div>
 <div class="field">
 <%= f.label :secret %>

 <%= f.text_field :secret %>
 </div>
 <div class="field">

82 | Chapter 6: Presenting Models with Forms

 <%= f.label :country %>

 <%= f.text_field :country %>
 </div>
 <div class="field">
 <%= f.label :email %>

 <%= f.text_field :email %>
 </div>
 <div class="field">
 <%= f.label :description %>

 <%= f.text_area :description %>
 </div>
 <div class="field">
 <%= f.label :can_send_email %>

 <%= f.check_box :can_send_email %>
 </div>
 <div class="field">
 <%= f.label :graduation_year %>

 <%= f.text_field :graduation_year %>
 </div>
 <div class="field">
 <%= f.label :body_temperature %>

 <%= f.text_field :body_temperature %>
 </div>
 <div class="field">
 <%= f.label :price %>

 <%= f.text_field :price %>
 </div>
 <div class="field">
 <%= f.label :birthday %>

 <%= f.date_select :birthday %>
 </div>
 <div class="field">
 <%= f.label :favorite_time %>

 <%= f.datetime_select :favorite_time %>
 </div>
 <div class="actions">
 <%= f.submit %>
 </div>
<% end %>

There are some useful new features in the highlighted parts. First, almost at the top of
the form, is a section that shows any validation errors in the data fields, an interface
component you’ll want to consider carefully as you develop richer data. (Do you want
to present error messages at the top? Mixed in with the form? Both?)

The form_for method sets up an f variable that the other methods here will rely on for
context. Because it is so central to form building with Rails, it is described in depth in
the next section.

The :description, which is intended to be a longer piece of text, gets a textarea to
contain it:

 <%= f.text_area :description %>

Generating HTML Forms with Scaffolding | 83

Similarly, the boolean :can_send_email gets a checkbox:

 <%= f.check_box :can_send_email %>

Most of the numbers, except graduation_year, get plain text_fields, but the date and
time are handled differently:

<%= f.date_select :birthday %>
...
<%= f.datetime_select :favoriteTime %>

Rails has its own set of controls for handling the always-thorny problem of entering
dates and times. They might not be exactly the approach you prefer, but for now, they’re
the default. Start up the server, and visit http://localhost:3000/people. As you can see in
Figure 6-1, they’re easily the most intricate form control Rails generates by default, but
using a series of drop-down boxes to specify a date and time isn’t most people’s idea
of fun. Replacing them isn’t simple, though.

Figure 6-1 is a foundation for a form, but it’s also a challenge. Users generally want
something that is more exciting that this, and more helpful.

To create especially helpful forms, you’ll likely want to use JavaScript
or CoffeeScript, as explored in Chapter 18. However, even without
client-side programming, there are lots of opportunities for improve-
ment beyond what’s shown here.

Form as a Wrapper
The form_for helper method sets up the entire form, creating the HTML form element
but also providing context for all of the fields in the form. The form_for method is a bit
sneaky, too. Both the new.html.erb view and the edit.html.erb view use form_for the
same way:

<%= form_for(@person) do |f| %>
...
<% end %>

However, the generated form element looks very different, depending on what exactly
is in @person. If @person is just an empty object structure, form_for will work on the
assumption that this is to create a new object. If @person actually contains data, how-
ever, form_for will assume that its form is editing that object and create a different-
looking form element, plus a hidden field to enable Rails’ REST capabilities.

When given an empty @person object, form_for prepares for a new person:

<form accept-charset="UTF-8" action="/people" class="new_person" id="new_person"
 method="post">
<div style="margin:0;padding:0;display:inline"><input name="utf8" type="hidden"
 value="✓" />
<input name="authenticity_token" type="hidden"
 value="3n9kItTmatJjGyaW6y86tR1FCQH8H74h8kOgBoJB3U8=" /></div>

84 | Chapter 6: Presenting Models with Forms

http://localhost:3000/people

Figure 6-1. Basic form generated by Rails scaffolding

Form as a Wrapper | 85

Note that the action goes to people, generically. The class and id reflect a new person,
and the method is simply post.

When given an @person object with content, however, form_for switches to editing a
person:

<form accept-charset="UTF-8" action="/people/1" class="edit_person"
id="edit_person_1" method="post">
<div style="margin:0;padding:0;display:inline"><input name="utf8" type="hidden"
value="✓" />
<input name="_method" type="hidden"
value="put" /><input name="authenticity_token" type="hidden"
value="3n9kItTmatJjGyaW6y86tR1FCQH8H74h8kOgBoJB3U8=" /></div>

The action now goes to a URL that includes the ID of the object being edited, and the
class and id attributes change values. The method stays at post—but the hidden
input with the name _method almost immediately after the form is there to indicate that
it should really be treated as a put. (As Chapter 5 noted, browsers don’t all support the
HTTP verbs PUT and DELETE, so this input element is designed to help Rails get
around that, using POST but indicating that it should be treated differently.)

Rails’ REST capabilities make form_for seem extra smart, but if you’re not creating
forms explicitly for a RESTful environment, you need to know a few more things about
this method. form_for understands Rails’ routing and will choose its attributes based
on that routing.

The form_for method is part of ActionView’s FormHelper module, and the way that
Rails’ RESTful scaffolding uses it relies quite completely on its default behavior. Rails
takes @person as its one clue to what you want and treats it as a much more complex
call to form_for. The form_for object can take more arguments:

A type
Instead of just listing @person and letting form_for guess at the structure we
intended, this could have specified :person as the type, followed by the @person
object.

A URL
The :url named parameter lets you specify a URL for the action attribute. It’s
unlikely that you’ll just point directly to a URL, unless it’s one outside of your Rails
application. More typically, you’ll ask Rails to create a URL that points to a con-
troller in your application, something like :url => { :action => "celebrate" }.

HTML attributes
The scaffolding populated the form element’s method, class, and id attributes
automatically, but if you wanted to specify an id of special_form, a class of
my_form, and a method of put, you could specify:

:html => { :id => 'special_form', :class => 'my_form', method => 'put' }

Combined into one, somewhat strange call, this could look like:

86 | Chapter 6: Presenting Models with Forms

<%= form_for :person, @person, :url => { :action => "celebrate" },
 :html => { :id => 'special_form', :class => 'my_form',
 method => 'put' } do |f| %>

The form_for method also sets up the variable f, which provides the context all of the
other fields will need to do their work, letting you use a shorter form to call their helper
methods. (You don’t have to call this variable f, but it’s a conveniently short, while still
memorable enough, name.)

Rails also supports :remote and :builder for creating unobtrusive Java-
Script hooks and specifying a FormBuilder.

Also, Rails has created an input element named authenticity_token, which is based on
the session ID. Rails uses this internally to minimize cross-site request forgery (CSRF)
attacks, as discussed in Chapter 20. This only gets used for PUT, POST, and DELETE
requests—GET requests should all be safe by design. (If, of course, you designed your
application so that GET requests just return information—not change it.)

If other developers want to script your Rails application from the out-
side, they certainly can—that’s what the JSON side of REST is for.

Finally, you should know that you can create forms in Rails applications without using
form_for. You can, of course, create HTML forms by hand. Rails also offers the
form_tag method for creating forms as well as a set of form field helper methods (also
ending in _tag) if you want to create forms programmatically, but aren’t binding them
directly to a model.

Creating Text Fields and Text Areas
Rails’ scaffolding included only two kinds of text fields in the body of the form:

<%= f.text_field :name %>
...
<%= f.text_area :description %>

Creating a field using text_field results in a single-line form field, generating HTML
like:

<input id="person_name" name="person[name]" size="30" type="text" />

The text_area results aren’t much more complicated, though they support rows and
columns rather than just a size in characters:

Creating Text Fields and Text Areas | 87

<textarea cols="40" id="person_description" name="person[description]"
rows="20"></textarea>

Both of these use a convention to come up with an id attribute, one that could be handy
if you need to apply stylesheets. Both also use a convention to create the name attribute,
type[property], which you’ll need to know if you want to create HTML forms by hand
that feed into Rails controllers. The rest is fairly generic—a size of 30 characters for the
text_field and 40 columns by 20 rows for the text_area.

If you want to add more attribute values to your text_area or text_field, or change
the default values, you can just add named parameters. For example, to change the size
of the description to 30 columns by 10 rows, you could write:

<%= f.text_area :description, :cols => 30, :rows => 10 %>

This will generate:

<textarea cols="30" id="person_description" name="person[description]"
rows="10"></textarea>

That same approach works for any attribute you want to add or modify, though you
should definitely be cautious about modifying the name attribute, which the Rails con-
troller will use to figure out which data maps to which object property.

There are two other options for text fields that Rails supports. You’ve already seen Rails
use the first, hidden fields, for things like the authenticity_token field and the
_method hack, but both of those just kind of happened. If you want to create an explicit
hidden field, use the hidden_field method, like:

<%= f.hidden_field :graduation_year %>

The graduation year value will be included in the page, but not visibly:

<input id="person_graduation_year" name="person[graduation_year]"
type="hidden" />

(Hidden fields are probably not what you want in forms creating new objects, but you
may find other uses for them elsewhere in your applications.)

The other type of text field is useful mostly for passwords and related tasks. You can
create a password field using the password_field method. In this example, it would be
good for hiding the secret field, as in:

<%= f.password_field :secret %>

which generates:

<input id="person_secret" name="person[secret]" size="30"
type="password" />

That input field will put up asterisks for each character entered, hiding the value of the
field from shoulder-surfing wrong-doers.

88 | Chapter 6: Presenting Models with Forms

You can use text_area, text_field, and the other form-field-generator
methods without the f context object at the start of them. If you want
to do that, you need to specify an object directly in the call, though, as
the first argument. That would look like:

<%= text_area :person, :description %>

instead of:

<%= f.text_area :description %>

You can use either version within a form_for tag, which is very helpful
when you need to mix code from multiple sources.

If you’re looking through the Rails API documentation and wondering
why what they describe looks a bit different from what you’re writing,
this may be the cause of the disconnect.

Labels
Rails and Rails scaffolding support a common feature of HTML that makes forms feel
much more professional: labels. When labels are explicitly connected to the fields,
clicking on the label shifts focus to the field. It gives users a bigger target to hit and
simplifies accessibility as well.

Labels are easy. To make the headline “Name” associate with the field right below it,
the scaffolding code uses:

<p>
 <%= f.label :name %>

 <%= f.text_field :name %>
 </p>

The generated HTML contains a bit of extra information the browser uses to make the
association:

<p>
 <label for="person_name">Name</label>

 <input id="person_name" name="person[name]" size="30" type="text" />
 </p>

If you click on the word “Name,” focus will shift to the field for entering a name just
below it.

If you want the label to say something other than the name of the field, just add a string
as the second argument, as in:

<%= f.label :name, 'Your name' %>

This will generate:

<label for="person_name">Your name</label>

Labels | 89

The label method is a nice feature, but at the same time, it seems as if there’s a good
deal of repetition going on in this code, something you’ll see how to fix in Chapter 8.

Creating Checkboxes
Checkboxes are mostly simple. They can be checked or not checked, and Rails maps
their contents to a boolean value transparently. This simple request for a checkbox:

<%= f.check_box :can_send_email %>

yields this bit of HTML:

<input name="person[can_send_email]" type="hidden" value="0" />
<input id="person_can_send_email" name="person[can_send_email]"
 type="checkbox" value="1" />

That’s a little more complicated than expected, though. Why is there a second input
element of type hidden? It’s another Rails workaround, providing a default value in case
the checkbox isn’t checked:

The HTML specification says unchecked check boxes are not successful, and thus web
browsers do not send them. Unfortunately this introduces a gotcha: if an Invoice model
has a paid flag, and in the form that edits a paid invoice the user unchecks its check box,
no paid parameter is sent.... To prevent this the helper generates an auxiliary hidden field
before the very check box. The hidden field has the same name and its attributes mimic
an unchecked check box.1

If the checkbox is checked, that value will go through. If not, the value of the hidden
input with the same name will go through.

The check_box method has a few more tricks to offer. As was possible with the text
fields, you can specify additional attributes—perhaps class for CSS styling?—with
named parameters:

<%= f.check_box :can_send_email, :class => 'email' %>

This will produce a checkbox with a class attribute:

<input class="email" name="person[can_send_email]" type="hidden" value="0" />
<input id="person_can_send_email" name="person[can_send_email]" type="checkbox"
value="1" />

You can also specify that the box should be checked if you want, which will override
the value that comes into the form from the underlying object. Use this with caution:

<%= f.check_box :can_send_email, {:class => 'email', :checked=>"checked"} %>

Notice that there are now curly braces around the arguments that specify attributes.
They aren’t strictly necessary, but checkboxes allow for some additional arguments
where they will be necessary, even if there is only one attribute given a value. More

1. From the API docs (http://api.rubyonrails.com/classes/ActionView/Helpers/FormHelper.html/).

90 | Chapter 6: Presenting Models with Forms

http://api.rubyonrails.com/classes/ActionView/Helpers/FormHelper.html/

precisely, you can also specify return values in place of 1 and 0 if you’d like, if your
code is set up to support them:

<%= f.check_box :can_send_email, {:class => 'email'}, "yes", "no" %>

This will generate:

<input class="email" name="person[can_send_email]" type="hidden" value="no" />
<input id="person_can_send_email" name="person[can_send_email]" type="checkbox" value="yes" />

For most of the helper functions that create form components, the options hash is the
last argument, and you can just list the named parameters for the attribute values at
the end, without the braces around them. However, because checkboxes have the
arguments for checked and unchecked values after the options hash, you need to specify
the attributes in the middle, in curly braces, if you specify values for checked and un-
checked. Ruby will give you strange errors if the braces are missing and the values
appear at the end. (If you don’t specify values for checked and unchecked, you can just
include named parameters without the braces as usual.)

If you’re using Rails’ built-in boolean type to store data from your
checkboxes, don’t specify values for checked and unchecked. The
default 1 and 0 are correct for this situation, and Rails won’t know what
to do with other values (unless, of course, you provide code for
processing them).

Creating Radio Buttons
Creating radio buttons is a little more complicated and not something that the scaf-
folding will do for you. Just as when you create radio buttons in HTML, radio buttons
in Rails are created as independent objects, united only by a naming convention. Radio
buttons are often effectively used for small selection lists, so this example will focus on
the country field, offering just a few options.

For the first round, we’ll just create some linked buttons by brute force, as shown in
Example 6-4.

Example 6-4. Asking Rails to create a specific list of linked radio buttons

<fieldset>
 <legend>Country</legend>
 <%= f.radio_button :country, 'USA' %> <%= f.label "person_country_usa", "USA" %>

 <%= f.radio_button :country, 'Canada' %> <%= f.label "person_country_canada",
 "Canada" %>

 <%= f.radio_button :country, 'Mexico' %> <%= f.label "person_country_mexico",
 "Mexico" %>

 </fieldset>

This will generate the result shown in Figure 6-2.

The HTML this created is pretty simple:

Creating Radio Buttons | 91

<fieldset>
 <legend>Country</legend>
 <input id="person_country_usa" name="person[country]" type="radio" value="USA" />
 <label for="person_person_country_usa">USA</label>

 <input id="person_country_canada" name="person[country]" type="radio"
 value="Canada" />
 <label for="person_person_country_canada">Canada</label>

 <input id="person_country_mexico" name="person[country]" type="radio"
 value="Mexico" />
 <label for="person_person_country_mexico">Mexico</label>

</fieldset>

If the underlying :country object had had a value that matched any of these, Rails would
have added a checked="checked" attribute to the input element. Since it’s a new object,
none of these is checked by default and the user has to check one themselves.

You probably won’t always want to specify each of the buttons and its label by hand
in the view template. Creating a set of radio buttons from a hash isn’t difficult and
makes it easier for a controller to specify what should appear in a view. Example 6-5
creates a hash (this should normally come from the controller), sorts it, and then uses
it to create a set of four radio buttons.

Example 6-5. Creating a sorted set of linked radio buttons from a hash

<% nations = { 'United States of America' => 'USA', 'Canada' => 'Canada',
 'Mexico' => 'Mexico', 'United Kingdom' => 'UK' }%>

<fieldset>
 <legend>Country</legend>
 <% list = nations.sort
 list.each {|x| %>

Figure 6-2. Simple radio buttons added to a Rails-based form

92 | Chapter 6: Presenting Models with Forms

 <%= f.radio_button :country, x[1] %>
<label for="<%= ("person_country_" + x[1].downcase) %>">
<%= x[0] %></label>

 <% } %>
</fieldset>

The first line creates a nations hash. The long names act as keys to shortened country
names as values. Why? Well, if you think about how radio buttons work, human users
are selecting the keys (the long names) that lead to the values (the short names) that
we actually send to the computer. (This will also make it much easier to change the
radio buttons into a selection list later.)

Within the area that previously listed radio buttons explicitly, there is Ruby code that
sorts the hash into an array, using sort. Then list.each loops over the array, running
once for each object in the array. In this case, because the hash had two values, the x
array that comes out of the loop contains the key, indexed at 0, and the value, indexed
at 1. The next line puts the key, x[0], into the value of the radio button and uses the
longer name, x[1], for the label, using the f.radio_button method to create the actual
markup.

Figure 6-3 shows the resulting radio buttons. The generated HTML underneath them
looks like:

<fieldset>
 <legend>Country</legend>
 <input id="person_country_canada" name="person[country]" type="radio" value="Canada" />
 <label for="person_country_canada">Canada</label>

 <input id="person_country_mexico" name="person[country]" type="radio" value="Mexico" />
 <label for="person_country_mexico">Mexico</label>

 <input id="person_country_uk" name="person[country]" type="radio" value="UK" />
 <label for="person_country_uk">United Kingdom</label>

 <input id="person_country_usa" name="person[country]" type="radio" value="USA" />
 <label for="person_country_usa">United States of America</label>

</fieldset>

Of course, you won’t usually generate radio buttons by declaring a hash explicitly.
Radio buttons and selection lists are both typically used in Rails to connect one data
model to another. Chapter 9 will get into greater detail about how multiple models
work.

Creating Selection Lists
Selections lists are, in many ways, like radio buttons on a larger scale. Rather than filling
a screen with radio buttons, a list lets you hide the options except during that critical
time when you’re actually making a selection. Showing radio buttons for over 190
countries would take up a huge amount of screen real estate. Selection lists offer a much
more compact but still convenient way for users to make choices.

Rails has a number of helper methods for creating selection lists, but the simplest place
to start is the select method. In its most basic form, select takes two arguments: the

Creating Selection Lists | 93

attribute that populates it and a set of choices. Choices can be represented in a number
of different ways, from a simple array of strings to a hash or other more complex set of
values.

Using an array of strings, the call to create a selection list might look like:

<p>
<%= f.label :country %>

<%= f.select :country, [['Canada', 'Canada'],
 ['Mexico', 'Mexico'],
 ['United Kingdom', 'UK'],
 ['United States of America', 'USA']]%>
</p>

This uses a two-dimensional array, in which the display values come first, and the values
that go to the server come second. Under the HTML result shown in Figure 6-4, this
generates:

<p>
<label for="person_country">Country</label>

<select id="person_country" name="person[country]"><option
value="Canada">Canada</option>
<option value="Mexico">Mexico</option>
<option value="UK">United Kingdom</option>
<option value="USA">United States of America</option></select>
 </p>

You can also set a default choice for your selections by adding a selected named
parameter:

<%= f.select :country, [['Canada', 'Canada'],
 ['Mexico', 'Mexico'],

Figure 6-3. Radio buttons generated from a sorted hash

94 | Chapter 6: Presenting Models with Forms

 ['United Kingdom', 'UK'],
 ['United States of America', 'USA']],
:selected => 'USA'%>

This generates the same markup, except that the option element for USA now looks like:

<option value="USA" selected="selected">United States of America</option>

(Rails normally sets :selected to the current value of the field.) You can also use
select with a hash, instead of specifying the array. Example 6-6 shows how this looks
much like it did for the radio buttons in Example 6-5.

Example 6-6. Creating a sorted selection list from a hash

<% nations = { 'United States of America' => 'USA', 'Canada' => 'Canada', 'Mexico'
=> 'Mexico', 'United Kingdom' => 'UK' }%>

 <p>
 <%= f.label :country %>

 <% list = nations.sort %>
 <%= f.select :country, list %>
 </p>

Rails also offers a number of specific selection fields, including one for time zones
(time_zone_select). Additionally, if you decide that you want to get really fancy, you
can create multilevel selection lists with option_groups_from_collection_for_select.
You can also create selection lists that let users choose multiple values by setting
the :multiple option to true.

The country_select method proved a bit controversial, mostly because
of the base list of countries it uses. It moved out of Rails after version
2.1 and into a plug-in you can find at https://github.com/chrislerum/
country_select/.

Dates and Times
Rails also provides support for basic date and time entry, as was shown in the form
generated by the scaffolding. The scaffolding started out with:

 <div class="field">
 <%= f.label :birthday %>

Figure 6-4. A selection list created from an array of strings

Dates and Times | 95

https://github.com/chrislerum/country_select/
https://github.com/chrislerum/country_select/

 <%= f.date_select :birthday %>
 </div>
 <div class="field">
 <%= f.label :favorite_time %>

 <%= f.time_select :favorite_time %>
 </div>

And these generated the neat-looking but very inconvenient selection lists shown in
Figure 6-5.

Besides the date_select and datetime_select methods, Rails also offers time_selectand
has a variety of helper methods for individual pieces of dates and times. Rails offers
some options that can make these interfaces more customizable, but picking days off
a 31-item selection list or minutes off a 60-item list is pretty much always going to be
a less-than-fun user experience. You’ll probably want to turn to more attractive date
and time interfaces from Ajax libraries or revert to simple text boxes, but in case you
have an application where you want to use these methods, the options for them include:

:start_year

By default, Rails sets the start year to five years before the current date. You can
specify an earlier (or later) date if you need to, by specifying :start_year => value.

:end_year

Rails also sets the end year to five years after the current date. Again, you can specify
a later (or earlier) date by specifying :end_year => value.

:use_month_numbers

If you’d prefer to have the months listed by number rather than by name,
set :use_month_numbers => true.

:discard_day

Some date applications don’t need days. You can set :discard_day => true to
simply not include the day field. You can also do the same with :discard_month
or :discard_year, and for times and datetimes, you can do the same
with :discard_hour, :discard_minute, and :discard_seconds.

:disabled

Setting :disabled => true tells Rails to show the date, but doesn’t allow change.
The values will appear in gray. (It works for other fields as well.)

:include_blank

Setting :include_blank => true tells Rails to include a blank choice at the top of
each selection list, so users don’t have to specify every single component of a date.

Figure 6-5. Rails default approach of using selection lists for dates and times

96 | Chapter 6: Presenting Models with Forms

:include_seconds

Specifying :include_seconds => true adds a field for seconds to times and
datetimes.

:order

Using the order option lets you specify the sequence for the different components
of the date or time. You list the components as an array, such as :order =>
[:month, :day, :year].

Creating Helper Methods
So far, this chapter has shown you how to use a number of the helper methods that
come with Rails. You can also create your own helper methods. There are lots of good
reasons to do so:

Less repetition
You can come closer to Rails’ DRY (Don’t Repeat Yourself) ideal if you can com-
bine multiple pieces into a single invocation.

More readable code
You can see more obviously which pieces of your code are actually doing the same
work when they call the same method, instead of perpetually reinventing the wheel.

More consistency
The same code used in multiple places will rarely stay identical.

Sharing across views
Multiple views within an application can reference the same helper methods.

Creating helper methods might not be your very first priority in creating an application,
but once you have a basic idea of what you want to create in your views, it’s a good
idea to start assembling common tasks into helper methods.

Within the application directory structure, helper methods go into the app/helpers
directory. At this point, the guestbook application will have two files there:
application_helper.rb and people_helper.rb. Helper methods that are defined in
application_helper.rb are available to views throughout the entire Rails application,
whereas methods defined in people_helper.rb are only available to views that pertain to
operations on the person model. For now, the helper methods built in this section can
go in people_helper.rb and graduate to application_helper.rb if you think they’re worth
sharing across the application.

If you have helper methods with the same names in people_helper.rb
and in application_helper.rb, the method in people_helper.rb will take
precedence.

Creating Helper Methods | 97

The first helper method will take the Example 6-5 code for generating radio buttons
from a hash. Example 6-7 shows what’s left when this is reduced to a call to the
buttons helper method.

Example 6-7. Creating a sorted set of linked radio buttons from a hash with a helper method

<% nations = { 'United States of America' => 'USA', 'Canada' => 'Canada', 'Mexico' =>
'Mexico', 'United Kingdom' => 'UK' }%>

<%= buttons(:person, :country, nations) %>

The buttons method is in the people_helper.rb file, the contents of which are shown in
Example 6-8.

Example 6-8. A helper method for creating a sorted set of linked radio buttons from a hash

1 module PeopleHelper
2
3 def buttons(model_name, target_property, button_source)
4 html=''
5 list = button_source.sort
6 html << '<fieldset><legend>Country</legend>'
7 list.each {|x|
8 html << radio_button(model_name, target_property, x[1])
9 html << (x[0])
10 html << '
'
11 }
12 html << '</fieldset>'
13 return html.html_safe
14 end
15
16 end

There’s a lot going on in the buttons method. It’s contained by the PeopleHelper mod-
ule, which was originally empty in the version created by the scaffolding. Lines 2
through 15 are all new additions. This version of buttons, defined starting on line 3,
looks more like the older version of the helper functions, taking a model name as its
first argument, then the targeted property, and then the source from which the radio
buttons will be created.

Because the helper function isn’t in the view, there isn’t any ERb markup here. Instead,
the helper function builds a string, starting in line 4. Often, the first declaration of the
string includes the first tag, but as the radio buttons don’t have a containing element,
this starts with the empty string. Line 5 adds the legend element. Lines 5 and 6 are the
same logic for sorting the hash as was used in the original code from Example 6-4, but
the contents of the loop, in lines 8 to 10, are very different.

Lines 8 through 10 all append something to the html variable, using the << operator.
Line 8 appends radio button markup created through Rails’ radio_button helper. Line
9 appends the text the user will see, and line 10 appends a
 tag, putting a line
break between the buttons. Rails developers often avoid mixing explicit markup with

98 | Chapter 6: Presenting Models with Forms

code, preferring to use content_tag or other helper methods—but you can use markup
here if you think it’s appropriate.

Line 12 just closes the loop over the hash, but line 13 is a bit unusual. Explicit return
statements aren’t necessary in Ruby methods unless you’re returning multiple results
or want to break at an unexpected time. Ruby will assume that the last variable you
touched is the return value. However, using return is a good way to avoid surprises,
and if you feel like writing briefer code, you can leave off return and just write html
there. The .htmlsafe marks the returned string as OK for Rails to include without
escaping it.

By using .htmlsafe (or the raw method), you’re taking complete respon-
sibility for ensuring that the content of that string isn’t going to cause
problems. In this case, where all of the content came from the applica-
tion itself, it is safe—but be very careful about flagging things that do
include user-provided content.

If you leave off line 13 completely, however, you’ll have an unpleasant surprise, shown
in Figure 6-6. It looks like html was the last variable touched in line 9, but the each loop
block, which closes in line 10, is actually considered the last thing touched. The value
of the block is the underlying array, which shows up to yield this unfortunate result.

A more sophisticated helper method, shown in Example 6-9, could check the list of
items to select from, and decide whether to represent it as a radio buttons or a list,
depending on length. It adds an extra if statement, highlighted in the code. This may
or may not be a level of smarts you want to build into your helper methods, but it
certainly demonstrates how custom helper methods can assemble just a little more logic
for your views.

Example 6-9. A helper method that chooses between radio buttons and selection lists

module PeopleHelper
 def button_select(model_name, target_property, button_source)
 html=''
 list = button_source.sort
 if list.length <4
 html << '<fieldset><legend>Country</legend>'
 list.each {|x|
 html << radio_button(model_name, target_property, x[1])
 html << (x[0])
 html << '
'
 }
 html << '</fieldset>'

Figure 6-6. Instead of radio buttons, an all too visible array

Creating Helper Methods | 99

 else
 html << ' <label for="person_country">Country</label>
'
 html << select(model_name, target_property, list)
 end
 return html.html_safe
 end
end

You’ll need to change the call from buttons to button_select in _form.html.erb, too.

<% nations = { 'United States of America' => 'USA', 'Canada' => 'Canada',
'Mexico' => 'Mexico', 'United Kingdom' => 'UK' }%>

<%= button_select(:person, :country, nations) %>

Test Your Knowledge

Quiz
1. How many properties and data types can you specify in a call to rails generate

scaffold?

2. Where does Rails actually specify the data types for properties?

3. What is the difference between the form_for method and the form_tag method
explored earlier?

4. How do you add HTML attributes to the HTML generated by Rails’ helper
methods?

5. Why does Rails’ check_box helper create an extra hidden form field?

6. How do you specify which option in a selection box is the default?

7. Where should you put helper methods you create?

8. Why would you use a partial?

Answers
1. As many as your operating system will let you put on a single command line. They

get inconvenient quickly—if you want to add a huge number, you may want to
edit that command line in a text editor and make sure it’s right before putting it in.

2. The only place that the data types are specified in Rails is in the migrations. Once
the migrations build the database, Rails gets its understanding of the data types
from the database. (This is very different from Java development, for example.)

3. The form_for method creates an entire environment with context based on an
ActiveRecord class that other helper methods can use to create their own fields

100 | Chapter 6: Presenting Models with Forms

within the form. The form_tag method is mostly about wrapping the form in an
appropriate form tag. The helpers called inside of form_tag are on their own.

4. You can generate HTML attributes using named parameters put inside of a
parameter named :html, such as :html => { :id => 'person_form', :class =>
'generic_form' }, or you can just pass the parameters directly, without wrapping
them in the :html => { ... }.

5. The input element with a hidden type is there to ensure that a value is returned to
the Rails application if the checkbox isn’t checked.

6. You specify a default value with the :selected named parameter.

7. Helper methods go in the app/helpers directory. Helpers that should be available
across the entire application go into application_helper.rb, while helpers that apply
to a specific view go into files named viewname_helper.rb.

8. Partials let you put code that would otherwise repeat across your application into
a single convenient location. They’re a perfect example of Rails’ support for its
“Don’t Repeat Yourself” mantra.

Test Your Knowledge | 101

CHAPTER 7

Strengthening Models with Validation

At this point, you have most of the ingredients needed to create simple web applications
in Rails, provided you’re willing to stick to a single database table. There’s one large
problem remaining: users (and programs connecting through web services) don’t
always put in the data you want them to put in. Making your application work reliably
requires checking information as it comes in and interacting with users so that they
know how to get it right.

As you’ll see throughout this chapter, Rails expects all data validation
to happen in the model layer and provides tools that make it easy to do
there. If you find yourself putting data-checking code into the views or
the controllers, pause for a moment—you’re quite likely doing some-
thing wrong.

The one probable exception is if you’re adding warnings for users work-
ing in your forms, avoiding a round trip to the server, but you should
never rely on those to limit your data to the correct types. All that work
should do is give users more information more rapidly.

Without Validation
You might think, since the examples in Chapter 6 defined data types, that Rails will be
doing some basic content checking—ensuring that numeric data actually includes
numbers, for example.

Nope. Rails and the Rails scaffolding give you places where you can add validation
code, but absolutely none of it is built-in. The easiest way to see what happens is to try
putting in bad data, as shown in Figure 7-1.

The text fields might not be the data you want, but at least they’re text. The boolean
value and the dates are constrained to a few choices by the interface design already—
you can’t choose bad data. The form control for Graduation won’t let you keep text in
it, though it doesn’t understand “thousands,” either. However, “twenty-six,” and “not”

103

aren’t numbers. But Rails doesn’t care—it accepts those strings and converts them to
a number: 0 (zero), as shown in Figure 7-2.

You can see what happened by looking at the data that scrolled by in the rails
server window when the request went in. You don’t need a detailed understanding of
SQL to find the problem—looking at the data going in will show it. Example 7-1 lists
the data going into the Rails app and then shows the SQL INSERT with the data moving
out from the Rails app to the database.

Figure 7-1. Entering bad data into a form

104 | Chapter 7: Strengthening Models with Validation

Example 7-1. Behind the scenes for bad data flowing to the application

Started POST "/people" for 127.0.0.1 at 2012-02-20 12:18:15 -0500
Processing by PeopleController#create as HTML
 Parameters: {"utf8"=>"✓",
"authenticity_token"=>"A/Z8vCOlXzYSDJarLutojHjzpUIrhcQ5mhGCLgIFL4w=",
"person"=>{"name"=>"Sploink", "secret"=>"", "country"=>"Canada", "email"=>"sasdas",
"description"=>"true", "can_send_email"=>"1", "graduation_year"=>"",
"body_temperature"=>"twenty-six",
 "price"=>"not", "birthday(1i)"=>"2012", "birthday(2i)"=>"2", "birthday(3i)"=>"20",
"favorite_time(1i)"=>"2012", "favorite_time(2i)"=>"2", "favorite_time(3i)"=>"20",
"favorite_time(4i)"=>"17", "favorite_time(5i)"=>"16"}, "commit"=>"Create Person"}
 (0.1ms) begin transaction
 SQL (53.1ms) INSERT INTO "people" ("birthday", "body_temperature", "can_send_email",
"country", "created_at", "description", "email", "favorite_time", "graduation_year",
"name", "price", "secret",
 "updated_at") VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)
[["birthday", Mon, 20 Feb 2012],
["body_temperature", 0.0], ["can_send_email", true], ["country", "Canada"],
["created_at", Mon, 20 Feb 2012 17:18:16 UTC +00:00], ["description", "true"],
 ["email", "sasdas"], ["favorite_time", Mon,
20 Feb 2012 17:16:00 UTC +00:00], ["graduation_year", nil], ["name", "Sploink"], ["price",

Figure 7-2. Nonnumeric data converted to zeros in a “successful” creation

Without Validation | 105

#<BigDecimal:102e79d68,'0.0',9(9)>], ["secret", ""],
["updated_at", Mon, 20 Feb 2012 17:18:16 UTC +00:00]]
 (4.8ms) commit transaction
Redirected to http://localhost:3000/people/1
Completed 302 Found in 79ms (ActiveRecord: 58.0ms)

The parameters are complicated by the many pieces of incoming dates that use a naming
convention to identify their parts, but it’s clear that “twenty-six” and “not” went into
the Rails application. In the SQL command going to the database, both price and
body_temperature went in as 0.0.

Between receiving the data and sending it to the database, Rails converted those values
to numbers. The strings became zero (0.0), since they weren’t actually numeric. Fixing
this problem will require spending some time in the model, developing barriers that
check incoming data and stop it if they don’t match your application’s requirements.

The Original Model
The person.rb file has been lurking in the models directory since the application was
created. You might expect it to contain a list of fields for each person, defining data
types and such. Instead, it looks like Example 7-2.

Example 7-2. The foundation of all Rails models

class Person < ActiveRecord::Base
 attr_accessible :birthday, :body_temperature, :can_send_email, :country,
:description, :email, :favorite_time, :graduation_year, :name, :price, :secret
end

That’s pretty quiet, except for the attr_accessible declaration, because the connec-
tions between Rails and the database are running purely on naming conventions. The
Rake migration set up the database, as Example 6-1 demonstrated, and that’s where
all the data type information went. Perhaps it’s even disturbingly quiet, as most object-
oriented programming includes some specific information about object properties in
the class definition that creates them.

Rails’ minimalist approach to model classes, however, lets you focus on the pieces you
need to contribute to the model. Having the definitions elsewhere may mean that you
sometimes have to look around to figure out what you’re working on—especially if
you’re modifying code someone else wrote—but it also makes a clean slate truly clean.

The Power of Declarative Validation
You could write code that tests each property’s value as it arrives, and there may be
times when you need to do that, but Rails offers a simpler approach that works for the
vast majority of cases: declarative validation. (You can find the complete example
shown here in ch07/guestbook05.)

106 | Chapter 7: Strengthening Models with Validation

Instead of checking to see if a value is present, for instance, you can just write:

the name is mandatory
 validates_presence_of :name

The validates_presence_of declaration activates Rails’ internal validation tools, which
can automatically block the addition of a record that’s missing a name and report an
error to the user, as shown in Figure 7-3.

How did the model reach through the controller, all the way into the view, and make
that happen? It’s worth walking back through once to trace the path Rails took.
Example 7-3 shows the HTML that generated those messages.

Example 7-3. Model errors reported in HTML from the view

<form accept-charset="UTF-8" action="/people" class="new_person" id="new_person"
method="post"><div style="margin:0;padding:0;display:inline">
<input name="utf8" type="hidden" value="✓" />
<input name="authenticity_token" type="hidden"
value="VuQCbAEYz4AEOY3R/QM/QUZbLcmlNShaApdrU9OByYA=" /></div>
 <div id="error_explanation">
 <h2>1 error prohibited this person from being saved:</h2>

 Name can't be blank

Figure 7-3. Failing a simple validation

The Power of Declarative Validation | 107

 </div>

 <div class="field">
 <div class="field_with_errors"><label
for="person_name">Name</label></div>

 <div class="field_with_errors"><input id="person_name"
name="person[name]" size="30" type="text" value="" /></div>

 </div>
 <div class="field">
 <label for="person_secret">Secret</label>

 <input id="person_secret" name="person[secret]" size="30" type="password"
 value="" />
 </div>

The first piece, the error_explanation div, came from this code in the view (or partial):

 <% if @person.errors.any? %>
 <div id="error_explanation">
 <h2><%= pluralize(@person.errors.count, "error") %> prohibited this person from
 being saved:</h2>

 <% @person.errors.full_messages.each do |msg| %>
 <%= msg %>
 <% end %>

 </div>
<% end %>

Rails inserted the fieldWithErrors div around the name field through the usual field
creation method in the view (or partial):

<%= f.text_field :name %>

This kind of automatic error presentation is another reason it’s a good idea to use Rails’
built-in methods for creating fields, rather than handcoding your own HTML in them.

The controller also took part in the action. If you look back at the PeopleController’s
create method, you’ll see:

POST /people
 # POST /people.json
 def create
 @person = Person.new(params[:person])

 respond_to do |format|
 if @person.save
 format.html { redirect_to(@person) }
 format.json { render json: @person, status: :created, location: @person }
 else
 format.html { render action: "new" }
 format.json { render json: @person.errors, status: :unprocessable_entity }
 end

108 | Chapter 7: Strengthening Models with Validation

 end
 end

If the controller has an error, @person.save will fail, returning false. If the request is
for HTML, the controller will render a new copy of the form for creating a new person
entry. All of the error information will pass through to that view automatically. If it is
a JSON request, it will also report back the errors.

One major benefit of putting validation in the model is that your vali-
dation will apply to any effort to change your data—whether it came
from users over the Web, from programs accessing your application
through REST-based web services, or from something you built into the
program yourself.

Now that we’ve seen how the errors flow out from the model to the view, it’s time to
examine how to set up the validation declarations that make it all happen.

Managing Secrets
While we’d like visitors to enter their names, it’s usually best not to be too picky about
names, because they come in so many varieties. On the other hand, the :secret field
is ripe with opportunities for demanding expectations. Along the way, this example
will demonstrate how you can use multiple validations on the same field in sequence.

Customizing the Message
The :secret field needs to be present. Sometimes, though, it’s worth telling a user why
a particular mistake matters rather than just insisting, “field_name can’t be blank.”
Rails makes that easy to do by letting you specify a :message to go with your validation.
If the validation fails, the user sees the :message. The code below adds a message to the
test for :secret’s presence:

secret is also mandatory, but let's alter the default Rails message to be
more friendly
 validates_presence_of :secret,
 :message => "must be provided so we can recognize you in the future"

If the user leaves the :secret field blank, they’ll see a custom error message as shown
in Figure 7-4.

Even if the user provides a :secret, though, not all :secrets are created equal. Another
set of validations will test the actual content of :secret, as shown here:

ensure secret has enough letters, but not too many
 validates_length_of :secret, :in => 6..24

ensure secret contains at least one number
 validates_format_of :secret, :with => /[0-9]/,

Managing Secrets | 109

 :message => "must contain at least one number"

ensure secret contains at least one upper case
 validates_format_of :secret, :with => /[A-Z]/,
 :message => "must contain at least one upper case character"

ensure secret contains at least one lower case
 validates_format_of :secret, :with => /[a-z]/,
 :message => "must contain at least one lower case character"

The first of these validations tests the length of :secret, making sure that it lies between
a 6-character minimum and a 24-character maximum:

validates_length_of :secret, :in => 6..24

Rails is smart enough that if a user enters a secret that’s too short, it will report back that:

Secret is too short (minimum is 6 characters)

And it will do the same for the maximum. There probably isn’t any need to customize
the :message. However, the next three validations use the power of regular expressions.
Regular expressions, or regexes, are compact but powerful patterns that Rails will test
against the value of :secret. If the testing of :secret against the regular expression
specified in :with returns true, then the validation passes and all is well. If it flunks the
test, then the specified message will go out to the user.

Figure 7-4. A custom error message sent to the user

110 | Chapter 7: Strengthening Models with Validation

All of these tests will be performed in sequence, and the user will see an error message
reflecting all the tests that flunked. For example, a blank :secret will yield the full set
shown in Figure 7-5.

Regular expressions are a complex subject you can study to nearly
infinite depth. Appendix C can get you started. Jeffrey Friedl’s Mastering
Regular Expressions (O’Reilly, 2006) is pretty much the classic overview
of the field, but Tony Stubblebine’s Regular Expression Pocket Refer-
ence (O’Reilly, 2007) is a concise guide to the capabilities and syntax in
different environments.

Limiting Choices
The form created in the previous chapter only supported four values for the :country
field. Limiting the values in the form, however, isn’t very limiting. Other values could
come in from other forms or, more simply, from a JSON request using the REST
interface. If we want to limit the values it can have, the data model is the place to do that:

the country field is a controlled vocabulary: we must check that
its value is within our allowed options
 validates_inclusion_of :country, :in => ['Canada', 'Mexico', 'UK', 'USA'],
 :message => "must be one of Canada, Mexico, UK or USA"

Right after the attr_accessible declaration, the validates_inclusion_of method
requires an :in parameter that lists the possible choices as an array, and in this

Figure 7-5. A multiply validated (and multiply flunked) secret

Managing Secrets | 111

http://shop.oreilly.com/product/9780596528126.do
http://shop.oreilly.com/product/9780596528126.do
http://shop.oreilly.com/product/9780596514273.do
http://shop.oreilly.com/product/9780596514273.do

case :message specifies what the user will see if it fails. There’s also a validates_exclu
sion_of method that’s very similar, but flunks if the value provided matches one of the
specified values.

Testing Format with Regular Expressions
Regular expressions are useful for ensuring that :secret contained certain patterns, but
sometimes you want to make sure that a field actually matches a pattern. The :email
field is a good candidate for this, even though the simple regular expressions used to
check email addresses are hard to read if you haven’t spent a whole lot of time with
regular expressions:

email should read like an email address; this check isn't exhaustive,
but it's a good start
 validates_format_of :email,
 :with => /\A([^@\s]+)@((?:[-a-z0-9]+\.)+[a-z]{2,})\Z/i,
 :message => "doesn't look like a proper email address"

The validates_format_of method takes a field to check and a regular expression for
the :with parameter. You’ll want to provide a :message parameter, since Rails isn’t going
to know how to turn the regular expression into meaningful explanations for ordinary
web application users.

Seen It All Before
Validation isn’t always about the specific content of a field coming in. Sometimes it’s
about how incoming data compares to existing data. The simplest and probably most
common comparison is that for uniqueness. You don’t want multiple users to have the
same username or multiple objects to have the same supposedly unique identifier, for
example.

You could write some code that checks all of the entries in your existing database to
make sure that the new entry is unique, but Rails is happy to do that for you:

how do we recognize the same person coming back? by their email address
so we want to ensure the same person only signs in once
 validates_uniqueness_of :email, :case_sensitive => false,
 :message => "has already been entered, you can't sign in twice"

The :case_sensitive property lets you specify whether textual values should be com-
pared so that differences in case matter. The default value is true, but as email addresses
are not case-sensitive, false is a better option here. The :message is useful for explaining
just what happened.

By default, validates_uniqueness_of checks :email only against the other values in the
same database column. If you wanted to ensure that data was unique across multiple
columns, the :scope property would let you do that. For instance, to check :email
against :email plus :name against :name and :secret against :secret, you could write:

112 | Chapter 7: Strengthening Models with Validation

validates_uniqueness_of :email, :case_sensitive => false,
 :scope => [:name, :secret],
 :message => "has already been entered, you can't sign in twice"

Using :scope makes more sense in more complicated applications with multiple unique
identifiers. This kind of combining of multiple fields into a single scope is similar to
the concept of a compound key in many databases.

Numbers Only
While many fields accept any text the user wants to provide, applications tend to prefer
4.1 to “four and one-tenth” for numeric fields. By default, as Figure 7-2 showed, Rails
doesn’t check that only numeric data goes into numeric fields. When it puts text data
into the database, the type conversion will yield a zero—probably not what’s appro-
priate most of the time. Of course, though, Rails lets you check this easily, along with
a lot of details that you may need to support your particular use of numbers.
The :graduation_year field, for example, comes with a lot of constraints as well as some
openness. That’s easy to check using validates_numericality_of:

Graduation year must be numeric, and within sensible bounds.
However, the person may not have graduated, so we allow a
nil value too. Finally, it must be a whole number (integer).
 validates_numericality_of :graduation_year, :allow_nil => true,
 :greater_than => 1920, :less_than_or_equal_to => Time.now.year,
 :only_integer => true

The first parameter here actually relaxes constraints. Specifying :allow_nil => true
allows the value to stay blank. Only nonblank values will have their value checked.

:allow_nil is available for all of the validates methods. You’ll want to
use it wherever you don’t mean to place demands on users.

The next two parameters are a verbose way of saying > and <=. A set of parameters for
testing numbers is offered by the validates_numericality_of method:

equal_to

Tests that the value being validated is equal to the value provided in the parameter.

even

Tests that the value is an even number (dividing by 2 yields no remainder).

greater_than

Tests that the value being validated is greater than the value provided in the
parameter.

greater_than_or_equal_to

Tests that the value being validated is greater than or equal to the value provided
in the parameter.

Managing Secrets | 113

less_than

Tests that the value being validated is less than the value provided in the parameter.

less_than_or_equal_to

Tests that the value being validated is less than or equal to the value provided in
the parameter.

odd

Tests that the value is an odd number (dividing by 2 yields a remainder of one).

only_integer

Tests that the value being validated is an integer, with no fractional part.

The named parameters have values. For the methods that make comparisons, the value
is the argument against which the incoming value will be compared. These can be
simple values or method calls, such as :less_than_or_equal_to => Time.now.year. For
the boolean tests (even, odd, only_integer), the value specifies whether or not the test
counts for validation, and the default value for all of them is false.

The next two fields, :body_temperature and :price, are also numbers, with relatively
simple validations:

Body temperature doesn't have to be a whole number, but we ought to
constrain possible values. We assume our users aren't in cryostasis.
validates_numericality_of :body_temperature, :allow_nil => true,
 :greater_than_or_equal_to => 60,
 :less_than_or_equal_to => 130, :only_integer => false

validates_numericality_of :price, :allow_nil => true,
 :only_integer => false

A Place on the Calendar
You could test date components individually, but more typically you’ll want to test
whether or not the date falls within a given range. Rails makes this easy with the
validates_inclusion_of method, already examined previously, and its inverse,
validates_exclusion_of:

Restrict birthday to reasonable values, i.e., not in the future and not
before 1900
validates_inclusion_of :birthday,
 :in => Date.civil(1900, 1, 1) .. Date.today,
 :message => "must be between January 1st, 1900 and today"

The :in parameter actually takes a list of possible values (an enumerable object, tech-
nically), and in this case, the definition creates a list of values between January 1, 1900
(thanks to the Date.civil method) and today’s date (thanks to the Date.today method).

114 | Chapter 7: Strengthening Models with Validation

Testing for Presence
The :allow_nil parameter noted earlier lets you say that things don’t need to be present,
but there are also times when the only validation you want to perform is to make certain
that a given field contains a value. In this case, validates_presence_of is extremely
convenient:

Finally, we just say that favorite time is mandatory.
While the view only allows you to post valid times, remember
that models can be created in other ways, such as from code
or web service calls, so it's not safe to make assumptions
based on the form.
validates_presence_of :favorite_time

As the comment reminds, while an HTML form can make some explicit demands of
users, you should avoid writing code that assumes that all data will be coming in
through the form. Using REST-based approaches, a lot of your objects may arrive or
be changed through JSON (or maybe XML, if you set that up) sent over HTTP.

Beyond Simple Declarations
The tests shown above are valuable, but also limited. They test a single value against a
limited set of possibilities and don’t allow interactions among different values. While
Rails makes it easy to do easy things, it fortunately also makes it fairly easy to do more
complicated things. (You can find these more complicated examples in ch07/
guestbook06.)

Test It Only If
One of the simplest tests is to require a validation if, and only if, another condition is
met. The :if parameter, available on every test, lets you define those conditions.
(There’s a corresponding :unless parameter that works similarly but in the opposite
direction.) The easiest way to use :if is to point it at a method that returns a boolean
value. That way your code can stay readable, and you can put whatever complications
are involved in the test into a more maintainable and testable separate method.

This example uses the value of the :can_send_email field to determine whether
the :description field must have a value. Neither is a field that would typically need
much validation, but they can easily be treated as connected:

if person says 'can send email', then we'd like them to fill their
description in, so we understand who it is we're sending mail to
validates_presence_of :description, :if => :require_description_presence?

we define the supporting condition here
def require_description_presence?
 self.can_send_email
end

Beyond Simple Declarations | 115

The validates_presence_of method will only perform its test if the condition specified
by the :if parameter returns true. The :if parameter’s value comes from the
require_description_presence? method, which in this case simply returns the value of
can_send_mail.

Two small things to note about the require_description_presence?
method: first, its name ends in a question mark, which is an easy way
to flag that a method returns a boolean value. Second, it doesn’t seem
to do anything—but Ruby returns the value of the last thing touched,
so the value of self.can_send_email becomes the return value. (And
self here and throughout is optional, more a verbal tic for reminding
the programmer of what’s being called than a necessary part of the pro-
gram.)

Do It Yourself
While Rails’ built-in validation is very helpful for a broad range of data checking, there
are always going to be times when it’s just not enough. For example, while Rails can
check the length of a string in characters, you might want to count words instead.

Performing such checks requires two steps. First, you need to create a call to your
method using validate, which should point to readily identifiable methods that contain
your custom logic. To indicate that validation failed, use self.errors.add, as shown in
Example 7-4. This will tell Rails that there is an error and which field it applies to, as
well as give you a chance to add a message to the user.

Example 7-4. Custom validation with validate and self.errors

validate :description_length_words

def description_length_words
 # only do this validation if description is provided
 unless self.description.blank? then
 # simple way of calculating words: split the text on whitespace
 num_words = self.description.split.length
 if num_words < 5 then
 self.errors.add(:description, "must be at least 5 words long")
 elsif num_words > 50 then
 self.errors.add(:description, "must be at most 50 words long")
 end
 end
end

When you perform validation this way, you have to do more work but gain some con-
trol. The unless self.description.blank? line is necessary because you can’t just spec-
ify allow_nil => true. This is because allow_nil is a parameter of the validate method,
not a general test in Ruby, so your description_length_words method does not have
access to it. Similarly, there aren’t any automatically generated messages. You have to

116 | Chapter 7: Strengthening Models with Validation

provide them. And finally, of course, you’re responsible for all of the validation logic
itself.

Rails also offers a validates_each method that can help you create more
descriptively named validations. For more, see http://apidock.com/rails/
ActiveModel/Validations/ClassMethods/validates_each/.

Test Your Knowledge

Quiz
1. How much type-checking does Rails do against the types you specified in your

migrations?

2. What happens when a validation error is reported?

3. How do you customize the error notifications users see when their data doesn’t
match up to your validator’s expectations?

4. How do you test the detailed syntax of user-entered data to make sure it matches
a particular pattern?

5. If there’s more than one error reported by the validator methods, what does Rails
do?

6. How do you specify if something may be either valid or blank?

7. How do you specify that a value has to be outside of a particular range?

8. How can you specify that a validation applies only if another value in the form has
a particular value?

Answers
1. Rails does no type-checking by default. It just coerces the data that came in to the

matching type, and if it doesn’t match, too bad. You have to provide explicit val-
idation code for every field you create.

2. Validation errors block the saving of records. The model sends the data back
through the controller to the view, adding messages about what is wrong with the
data so the view can display them.

3. The :message named parameter lets you provide a specific notification. Rails will
do some notifying by default, in basic cases, but you’re generally wise to add your
own messages.

Test Your Knowledge | 117

http://apidock.com/rails/ActiveModel/Validations/ClassMethods/validates_each/
http://apidock.com/rails/ActiveModel/Validations/ClassMethods/validates_each/

4. The validates_format_of method lets you test against regular expressions, or you
can write your own more complicated tests by extending validation through the
validate method.

5. Rails will report all of the messages from all of the validating methods to the user
and highlight all of the fields with errors. It won’t save the data to the database
until it is submitted again and passes validation.

6. You can allow blank entries by specifying :allow_nil => true as an attribute on
your validation. That permits the field to either have a correct value or no value at
all.

7. The validates_exclusion_of method lets you make sure a value is outside of a given
range.

8. The :if parameter lets you define conditions where validation applies.

118 | Chapter 7: Strengthening Models with Validation

CHAPTER 8

Improving Forms

Now that you can safely get information between your users and your applications, it’s
time to examine some ways to do it better. Here are a few more features to explore:

• Supporting file uploads, a common website feature that steps outside of the simple
form field to database column mapping

• Designing form builders, which make it easier to create forms that look the way
you think they should, not the way Rails does it by default

Once you’ve figured out these pieces, you’ll have a reasonably complete understanding
of the options Rails offers for creating classic web applications. Ajax still lies ahead,
but the basics are still useful for a wide variety of situations.

Adding a Picture by Uploading a File
Since we’re building a collection of people, it might be nice to know what they look
like. Adding file uploads to Rails applications requires making changes in several dif-
ferent places:

• The form for creating and editing a person needs a file upload field.

• The model representing person data needs to handle the file data.

• A new migration needs to add a field for the file extension, because pictures come
in different formats.

• The view that shows a person should display the picture, too!

One key piece of a Rails application is missing here: the controller. The controller
doesn’t actually need to do anything more than it is already doing: passing data between
the view and the model. One more piece of data, even a big chunk like a photo file,
isn’t going to make a difference to that default handling. (You can find the complete
files for this example in ch08/guestbook07.)

119

This chapter will show how to handle uploaded files directly. There are
some plug-ins, notably carrierwave, that can handle uploaded files for
you. The example here is to show you how to handle uploads and man-
age files.

File Upload Forms
The simplest step seems to be adding the file upload field to the form, in app/views/
people/_form.html.erb:

 <div class="field">
 <%= f.label :photo %>

 <%= f.file_field :photo %>
 </div>

Well, almost. Including a file upload changes the way an HTML form is submitted,
changing it to a multipart form. For creating a new person, this means shifting from an
HTML result that looks like:

<form action="/people" method="post">

to a result that looks like:

<form action="/people/" enctype="multipart/form-data" method="post">

Adding the enclosure type means that Rails will know to look for an attachment after
the main body of form field data has arrived.

That means a little more work on the form tag, created by the form_for method in our
partial, _form.html.erb. In the old form, before the upload was added, it looked like:

<%= form_for(@person) do |f| %>

In the new form, it has a few more pieces:

<%= form_for(@person, :html => { :multipart => true }) do |f| %>

Fortunately, updating this one form partial takes care of changes needed both to create
a record with the upload and to edit one.

Model and Migration Changes
Adding a photo requires somewhat more effort than adding another ordinary field to
the application, mostly because it (usually) doesn’t make sense to store potentially large
chunks of media data like photos directly in a database. For this demonstration, it
makes much better sense to store the photo in the filesystem, renamed to match the ID
of the person it goes with.

There’s still one catch that requires accessing the database, though: photo files come
in lots of different formats, and there’s little reason to restrict users to a single format.
That will require keeping track of which file extension is used for the uploaded file by
storing that in the database. Doing that will require creating a migration, in addition

120 | Chapter 8: Improving Forms

to adding a lot of logic to the model. The combination of filesystem and database use
is shown in Figure 8-1.

Figure 8-1. Uploading a file into the public directory, with metadata stored in the database

A migration for an extension

Chapter 10 will explore migrations in much greater depth, but this migration is rela-
tively simple. Rails will apply migrations in the sequence of their filenames, with the
opening number being the critical piece. The db/migrate folder already contains a
migration whose name ends in _create_people.rb, defining a CreatePeople class. To
make it easy for us to figure out what’s going on, the next migration will contain an
AddPhotoExtensionToPerson class. Following the same naming convention, this will be
a timestamp followed by _add_photo_extension_to_person.rb. To create the migration
file, enter:

rails generate migration add_photo_extension_to_person

For more detail on creating migrations by hand, see Chapter 10. This
one is simple enough that you can probably follow along without the
full tutorial, though.

Adding a Picture by Uploading a File | 121

The newly generated migration won’t have much in it, but you need to add details.
There doesn’t need to be very much inside this migration, as it only creates (and
destroys, if necessary) one field, :extension, of type :string:

class AddPhotoExtensionToPerson < ActiveRecord::Migration
 def change
 add_column :people, :extension, :string
 end

end

When this migration is run, it will add a new column to the :people table that will be
used to store :extension data. If rolled back, it deletes that column.

To run the migration, just run rake db:migrate as usual. The Rake tool will find the
new migration file, know that it hasn’t run it yet, and add the column to the exist-
ing :people table, as requested:

== 2 AddPhotoExtensionToPerson: migrating ========================
 -- add_column(:people, :extension, :string)
 -> 0.0757s
 == 2 AddPhotoExtensionToPerson: migrated (0.0759s) ===============

You’ll also need to add :photo to the list of attr_accessible properties at the top of
app/models/person.rb. The new migration doesn’t take care of that (recently added to
Rails) detail for you.

attr_accessible, again

Even though you’ll be adding the extension as a column in the database, the information
is still coming to the application as :photo. That means you need to extend the
attr_accessible declaration in the app/models/person.rb to read:

 attr_accessible :birthday, :body_temperature, :can_send_email,
:country, :description, :email, :favorite_time, :graduation_year, :name, :price,
 :secret, :photo

Leave that off, and you’ll get lots of “Can’t mass-assign protected attributes: photo”
messages.

Extending a model beyond the database

Data storage issues should all be handled in the model. Normally, Rails will save any
properties that come into the model that have names corresponding to columns in the
corresponding database table.

122 | Chapter 8: Improving Forms

Behind the scenes, ActiveRecord keeps track of which tables contain
which columns and uses that information to generate a lot of code
automatically. In development mode, it checks tables and generates
code constantly, which is part of why development mode is slow but
extremely flexible.

However, the migration just shown didn’t create a column that would map to :photo;
just one for :extension. This is deliberate. Because these photos will be stored as files
outside of the database, Rails shouldn’t handle them automatically. Explicit model
code, in app/models/person.rb, will have to do that. Fortunately, Rails has an easy (and
declarative) way to make sure the code for storing the photo runs after the rest of
validation has happened, with its after_save callback method:

after the person has been written to the database, deal with
writing any image data to the filesystem
 after_save :store_photo

Unfortunately, Rails doesn’t have a built-in store_photo method. That requires coding.

The after_save method is one of several callback methods supported
by ActiveRecord. Note that there are after and before methods for
create, destroy, save, update, validation, validation_on_create, and
validation_on_update. If you need to tweak ActiveRecord’s data-
handling, these can be valuable tools.

store_photo, the last method in the Person class, will call on some other methods that
also need to be written, but it’s probably still easiest to look at store_photo first before
examining the methods on which it depends:

private

called after saving, to write the uploaded image to the filesystem
def store_photo
 if @file_data
 # make the photo_store directory if it doesn't exist already
 FileUtils.mkdir_p PHOTO_STORE
 # write out the image data to the file
 File.open(photo_filename, 'wb') do |f|
 f.write(@file_data.read)
 end
 # ensure file saved only when it newly arrives at model being saved
 @file_data = nil
 end
end

First, note that this method comes after the private keyword, making it invisible outside
of the model class to which it belongs. Controllers and views shouldn’t be calling
store_photo directly. Only other methods within the same model should be able to call

Adding a Picture by Uploading a File | 123

it. (It’s not required that you make this method private, but it makes for cleaner code
overall.)

Anything that appears after the private keyword will be treated as pri-
vate, so if you have other public code (like the next few methods), be
sure to put it above this line in the file.

Within the method itself, the first line, if @file_data, is simple—if there is actually
data to be stored, then it’s worth proceeding. Otherwise, this isn’t necessary. Then
there’s a call to Ruby’s file-handling classes, creating a directory for the photos. (This
causes no harm if the directory already exists.) The next few lines open a file whose
name is specified by photo_filename; write the data to it, and close it. At the end,
store_photo sets @file_data to nil to make sure the file doesn’t get stored again else-
where in the application.

This takes care of saving the file, which is the last thing done as the model finishes up
its work on a form submission, but more details get attended to earlier, paving the way
for saving the file. The photo= method takes care of a few details when a submission
arrives:

when photo data is assigned via the upload, store the file data
for later and assign the file extension, e.g., ".jpg"
def photo=(file_data)
 unless file_data.blank?
 # store the uploaded data into a private instance variable
 @file_data = file_data
 # figure out the last part of the filename and use this as
 # the file extension. e.g., from "me.jpg" will return "jpg"
 self.extension = file_data.original_filename.split('.').last.downcase
 end
end

The def for this method looks a bit unusual because it takes advantage of a Rails con-
vention for writing to model attributes. Writing def photo=(file_data) creates a
method that grabs the file_data content for :photo, which Rails creates based on the
contents of the file_field from the HTML form. It defines what happens when
person.photo is assigned a value. That file_data content gets moved to an
@file_data instance variable that is private to the model but is accessible to any of the
methods within it. (@file_data is what store_photo referenced, for instance.)

The photo= method also handles the one piece of the filename that will get stored in
the database—the file extension. It gets the original name, splits off the piece after the
last ., and lowercases it. (You don’t have to be this draconian, but it does make for
simpler maintenance.) Note that photo= just assigns a value to the extension variable
of the current Person object. ActiveRecord will save that value automatically, as it maps
to the :extension column created by the migration.

The next few pieces are filename housekeeping:

124 | Chapter 8: Improving Forms

File.join is a cross-platform way of joining directories;
we could have written "#{Rails.root}/public/photo_store"
PHOTO_STORE = File.join Rails.root, 'public', 'photo_store'

where to write the image file to
 def photo_filename
 File.join PHOTO_STORE, "#{id}.#{extension}"
 end

return a path we can use in HTML for the image
 def photo_path
 "/photo_store/#{id}.#{extension}"
 end

PHOTO_STORE provides the application with a path to this Rails application’s public
directory, where static files can go. The photo_filename method gets called by
store_photo when it needs to know where the photo file should actually go on its host
machine’s filesystem. You can see that instead of preserving the original filename, it
uses the id—the primary key number for this Person—when it creates a name for the
photo. This may seem like overkill, but it has the convenient virtue of avoiding filename
conflicts. Otherwise, if multiple people had uploaded me.jpg, some of them would be
surprised by the results.

The photo_path method handles filename housekeeping for views that need to display
the image. It’s unconcerned with where the file exists in the server’s file system and
focuses instead on where it will appear as a URL in the Rails application. Again,
photo_path uses the id to create the name. Its one line, a string, actually is the return
value.

There’s another housekeeping function that supports the view. Not everyone will nec-
essarily have a photo, and broken image icons aren’t particularly attractive. To simplify
dealing with this, the model includes a has_photo method that checks to see if there’s
a file corresponding to the id and extension of the current record:

if a photo file exists, then we have a photo
 def has_photo?
 File.exists? photo_filename
 end

Remember, Ruby will treat the last value created by a method as its return value—in
this case, the response to File.exists?. This returns true if there is a file corresponding
to the id and extension, and false if there isn’t.

Showing it off

The last piece that the application needs is a way to show off the picture. That’s a simple
addition in the show.html.erb view:

<p>
 Photo:
 <% if @person.has_photo? %>
 <%= image_tag @person.photo_path %>

Adding a Picture by Uploading a File | 125

 <% else %>
 No photo.
 <% end %>
</p>

The has_photo? method from the model lets the view code decide whether or not to
create an img element for the photo. If there is one, it uses the model’s photo_path
method for the src attribute, pointing to the file in the public directory’s photo_store
directory. If not, there’s plain text with the message “No photo” rather than a broken
image icon.

Results
It’s time to try this code. Running rails server fires up the application, which at first
glance looks very similar to earlier versions, as shown in Figure 8-2. (And yes, displaying
everyone’s “secret” isn’t very secret, but we’ll get to a much better solution in Chap-
ter 14.)

Figure 8-2. A list of users who might have photos

If you click the “New Person” link or go to edit an existing record, you’ll see a new field
for the photo, shown in Figure 8-3.

When a photo is uploaded, it is stored in the application’s public directory, in a
photo_store directory, as shown in Figure 8-4. Note that there is a skipped number—
only records which actually have photos leave any trace here.

126 | Chapter 8: Improving Forms

Figure 8-3. A file field in the person form

Figure 8-4. Stored photos in the public/photo_store directory

Showing a page for a record that includes a photo yields the photo embedded in the
page, as shown in Figure 8-5. (Note that at present there aren’t any constraints on photo
size. You could constrain it, but you’ll have to install a graphics library, configure it,
and connect it to Ruby and Rails.)

Adding a Picture by Uploading a File | 127

Figure 8-5. A record displaying an uploaded photo

Records that don’t have an associated photo just get the “No photo” message shown
in Figure 8-6.

128 | Chapter 8: Improving Forms

Figure 8-6. A record unadorned with a photo—but spared a broken image icon

This isn’t quite a simple process, but multimedia usually stretches frameworks built
around databases. Rails is flexible enough to let you choose how to handle incoming
information and work with the file system to develop a solution that fits. (And if this
isn’t quite the right solution for you, don’t worry—many people are working out their
own solutions to these issues and sharing them.)

It is possible for programs treating your application as a REST-based
web service to send photos as multipart/form-data. However, Rails’
default approach to generating JSON responses won’t give them an easy
way to retrieve the photos unless the programs understand the
photo_store/id.extension convention.

Standardizing Your Look with Form Builders
While Rails scaffolding is a convenient way to get started, you may have noticed that
it’s pretty repetitive and not especially attractive. Some of this can be fixed with judi-
cious use of CSS, but Rails supports more permanent fixes through the use of form
builders. Creating form builders is an opportunity to define how your data will be pre-
sented to users and how they’ll interact with that data. Form builders also let you create
abstractions that keep programmers out of the visual details of your application while
still giving them full access to views.

Standardizing Your Look with Form Builders | 129

The basic concepts behind form builders are simple, though you can use them to create
complex and intricate components. You can use form builders in multiple ways, start-
ing from simple wrapping of your own special types and developing through more
complex ways to change the ways forms are written.

You can also combine form builders with Ruby metaprogramming to
create your own terse yet descriptive syntaxes for creating forms, but
metaprogramming is way beyond the scope of this book. If you
encounter an application with view code that looks nothing like you
expected, though, that may be what’s going on.

Supporting Your Own Field Types
Chapter 6 showed how Rails supported a variety of data types by default, including a
more complicated (if not very user-friendly) set of controls for entering dates. While
the built-in set of widgets is helpful, you’re definitely not limited to it. You can build
reusable form components that match your needs more precisely.

This can be very useful when you have components that take the same limited set of
values. Chapter 6 showed a helper method for creating drop-down lists or radio buttons
depending on the number of choices, culminating in Example 8-1.

Example 8-1. A helper method that chooses between radio buttons and selection lists

def button_select(model_name, target_property, button_source)
 html=''
 list = button_source.sort
 if list.length <4
 html << '<fieldset><legend>Country</legend>'
 list.each {|x|
 html << radio_button(model_name, target_property, x[1])
 html << h(x[0])
 html << '
'
 }
 html << '</fieldset>'
 else
 html << ' <label for="person_country">Country</label>
'
 html << select(model_name, target_property, list)
 end
 return html.html_safe
 end
end

Rather than create a generic helper method whose focus is on the kind of HTML it
generates, it can be more appealing to create a form builder method whose focus is on
data that’s appropriate for a given model. Linking the HTML specifically to a given
model makes it vastly easier to keep interfaces consistent. Example 8-2, included in
ch08/guestbook08, shows a form builder method, country_select, that is designed
specifically for use with the :country field.

130 | Chapter 8: Improving Forms

Example 8-2. A form builder, stored in app/helpers/tidy_form_builder.rb, providing a method more
tightly bound to the expectations of the country field

class TidyFormBuilder < ActionView::Helpers::FormBuilder

our country_select calls the default select helper with the
choices already filled in
 def country_select(method, options={}, html_options={})
 select(method, [['Canada', 'Canada'],
 ['Mexico', 'Mexico'],
 ['United Kingdom', 'UK'],
 ['United States of America', 'USA']],
 options, html_options)
 end
end

Note that form builders, which go in the app/helpers directory, all inherit from the
ActionView::Helpers::FormBuilder class. (If you look at older Rails code, prior to ver-
sion 2.2, you may find Rails’ own former country_select method with a much larger
selection of countries.) The methods inside the class will then be made available to
views that specify that they want to use this helper.

The country_select method is built using the select helper method already explored
in Chapter 6. It takes a method parameter and options and html_options, like the
select method does. What does the method parameter do? You probably think of the
method as the field—:name, for example. You can see how much more tightly bound
country_select is to :country—it wouldn’t be of much use for any other field, unless
you have, say, different kinds of fields expecting the same list of countries. The result
is a select field seeded with the choices you’ve deemed acceptable for country.

Note that the options and html_options arguments are simply passed
through. Preserving them offers developers more flexibility when they
go to apply your form builder in different situations.

Calling the form builder requires two things. First, the view has to reference the
TidyFormBuilder, and then it has to actually call country_select. Unlike helper classes,
where a naming convention is enough to connect supporting code with the view, form
builders require an explicit call. (You will likely use the same builder for multiple views
in any case, as :country might turn up in a lot of different contexts.)

As was the case for the multipart form, calling the builder means adding a :builder
parameter to the form_for:

<%= form_for(@person, :html => { :multipart => true }, :builder => TidyFormBuilder)
do |f| %>

Rails will know to look for TidyFormBuilder in /app/helpers/tidy_form_builder.rb.
Actually, calling the method is pretty simple. Just replace:

Standardizing Your Look with Form Builders | 131

<p>
 <%= f.label :country %>

 <%= f.select (:country, [['Canada', 'Canada'],
 ['Mexico', 'Mexico'],
 ['United Kingdom', 'UK'],
 ['United States of America', 'USA']]) %>
 </p>

with:

<div class="field">
 <%= f.label :country %>

 <%= f.country_select :country %>
</div>

The results will be identical, but the logic around the country object is much better
encapsulated, and just plain easier to use, in the builder version.

Adding Automation
The Rails helper methods are certainly useful, but they tend to map directly to HTML
markup. When you have multiple related markup components for a single field, code
can start to feel messy very quickly. That’s true even when they’re as simple as an input
field with a label, like this from the scaffolding:

<p>
 <%= f.label :name %>

 <%= f.text_field :name %>
</p>

Multiply that by a hundred fields, and there’s a lot of repetitive code around. Remem-
ber, the Rails mantra is “Don’t Repeat Yourself” (DRY), and there’s a huge opportunity
to avoid repetition here.

Although it’s kind of a separate task from the country selector, this can also happen
easily inside of the TidyFormBuilder, as shown in ch08/guestbook09. In fact, it’s easy for
it to take place there because methods in the builder can use the same names as the
helper methods and subclass them, adding the extra functionality needed to simplify
the view code. About the only tricky part is making sure that your subclassed methods
use the same signature—list of parameters—as the originals, which just means check-
ing the Rails API documentation:

def text_field(method, options={})
 ...
end

The text_field method takes a method parameter. The options array is the usual set of
options. Once the signature is set up, the single line of code inside combines a label
with a call to the original method to create a return value:

def text_field(method, options={})
 label_for(method, options) + super(method, options)
end

132 | Chapter 8: Improving Forms

Calling super, in the second half of this line, means to call the original text_field
method, which gets passed the method and options objects. The first half of the line calls
another method, however, adding the label. The label_for method is declared at the
end of the TidyFormBuilder class and is private, as it is for internal use only:

private

 def label_for(method, options={})
 label(options.delete(:label) || method).safe_concat("
")
 end

The label method is the same as usual and is concatenated to a
 tag. Note first
that you can’t just use the usual + for concatenation. Because of Rails’ defenses against
cross-site scripting, you have to use the safe_concat method. Otherwise Rails will
escape the < and >, and you’ll have a mess on your form.

If you find that you can’t use .safe_concat on a string, check to make
sure that you control its contents. If you do, then call .html_safe on the
string. It will become a ActiveSupport::SafeBuffer object, and
the .safe_concat method will be available.

There’s also something tricky going on in the arguments to label:

options.delete(:label) || method)

This looks for an option named :label, letting you specify label text for the field through
a :label parameter. Accessing the :label value through delete seems strange, but
delete does two things: it removes the :label parameter from the options array, which
will keep it from passing through to the super call, and it also returns the :label
parameter’s value, if there is one. (This was optional in Rails 2.1, but appears to be
mandatory in Rails 2.2 and later.) If there isn’t a :label, the || will fall through to
method, which will create a label with the default—the internal name of the field.

The call to create a field is now much simpler:

<%= f.text_field :name %>

The other methods, with more complex signatures, need a bit more code, but it’s the
same basic logic, as these two demonstrate:

def datetime_select(method, options = {}, html_options = {})
 label_for(method, options) + super(method, options, html_options)
end

def select(method, choices, options = {}, html_options = {})
 label_for(method, options) + super(method, choices, options, html_options)
end

def check_box(method, options = {}, checked_value = "1", unchecked_value = "0")
 label_for(method, options) + super(method, options, checked_value,

Standardizing Your Look with Form Builders | 133

unchecked_value)
end

And again, the calls to create a select list and a checkbox become simpler:

<%= f.check_box :can_send_email %>

<%= f.datetime_select :favorite_time %>

There’s one last bit to notice. Remember how country_select calls the select method?
It now calls the method that provides the label. That means that you can simplify:

<p>
 <%= f.label :country %>

 <%= f.country_select :country %>
</p>

to:

<p>
<%= f.country_select :country %>
</p>

The next step will reduce this even further, while making it easier to style and manip-
ulate the resulting HTML.

Integrating Form Builders and Styles
All of those <div class="field"> and </div> tags are calling out for simplification, but
there’s another opportunity here: to add additional information to the form that will
help users fill it out properly. The WrappingTidyBuilder, included in ch08/guest-
book10, is much like the prior TidyBuilder, including its country_select method and
its methods for providing labels. It goes in app/views/wrapping_tidy_form_builder.rb.
It also, however, takes advantage of the work it’s putting into wrapping to add some
extra information to fields that are required. This requires a few extra components:

• A :required option specified in calls from the view

• A wrap_field method that puts the opening and closing tags around the label and
form fields

• Calls to wrap_field from the other methods

• A bit of extra code in the label method that adds a textual indicator that a field is
required

• Support for the new wrapper in a CSS stylesheet used for pages built with these
methods

• Linking that CSS stylesheet to your application through an addition to the layout
file

The :required option is specified in calls to the form builder’s methods, if desired:

<%= f.text_field :name, :required => true %>

134 | Chapter 8: Improving Forms

<%= f.password_field :secret, :required => true %>

<%= f.country_select :country, :required => true %>

:required, in this code, is only about how the field should be presented. Specifying
whether a field should genuinely be required is better done in the model validation
described in Chapter 7.

The wrap_field method, like the label_for method, comes after private in the code,
making it callable only within the class or subclasses. It’s not very complicated, choos-
ing what value to use for the class attribute based on the contents of the :required
option:

def wrap_field(text, options={})
 field_class = "field"
 if options[:required]
 field_class = "field required"
 end
 "<div class='#{field_class}'>".html_safe.safe_concat(text).safe_concat("</div>")
end

By default, class, which gives CSS stylesheets a hook for formatting the div, will just
contain “field.” It’s a form field. If :required is true, however, it will have the value
“field required.” The class attribute can contain multiple values separated by spaces,
so this means that the stylesheet can format this div as both a form field and as required.

The other methods need to call wrap_field, which makes them slightly more compli-
cated. Therefore, the following:

def text_field(method, options={})
 label_for(method, options) + super(method, options)
end

grows to become this:

def text_field(method, options={})
 wrap_field(label_for(method, options) + super(method, options), options)
end

Looking through the parentheses, this means that wrap_field gets called with the text
generated by the older methods, along with the options that it also needs to explore.

This wrapping happens for all of the public methods in WrappingTidyBuilder, with one
important exception: country_select. Why? Because country_select already calls
select, which will do the wrapping for it.

Connecting a field option to CSS styling is a good idea, but there’s one problem: not
every browser uses CSS. Remember Lynx, the text-only web browser? It’s still out there,
and so are a lot of different browsers that don’t use CSS. Some are screen readers, others
are simplified browsers for cell phones and other devices. To address that possibility,
modifying label_for will add an asterisk to required fields, using the same logic that
wrap_field had used:

Standardizing Your Look with Form Builders | 135

def label_for(method, options={})
 label = label(options.delete(:label) || method)
 if options[:required]
 label.safe_concat(" *")
 end
 label.safe_concat("
")
end

If the :required option is set to true, this means that the label will have an extra
* appended after the label and before the

 break between the label and the field.

You’ll need to connect this builder to the view in /app/views/people/_form.html.erb in
its form_for declaration:

<%= form_for(@person, :html => { :multipart => true },
 :builder => WrappingTidyFormBuilder) do |f| %>

The last piece needed is a stylesheet. The stylesheet itself will go into the assets/style-
sheets/ directory, most reasonably appended to the already-generated people.css.scss.
From there, it will be accessible to your application.

Four styles are defined. One is for the field, another for the label inside the field, another
for the asterisk in the required_mark-classed span, and a last one is for the fields marked
required:

/* styles for our forms */

div.field {
 margin-top: 0.5em;
 margin-bottom: 0.5em;
 padding-left: 10px;
}

div.field label {
 font-weight: bold;
}

div.field span.required_mark {
 font-weight: bold;
 color: red;
}

/* draw attention to required fields */

div.required {
 padding-left: 6px;
 border-left: 4px solid #dd0;
}

So, what does all this look like? Figure 8-7 gives you a sense of what’s happened. Note
the bars along the left edge of the required fields (yellow on the screen) and the red
asterisks after their labels.

136 | Chapter 8: Improving Forms

The first time through, this seems like a lot of work. And the first time through, it is.
The good news, however, is that once you’ve done this, all that work is easy to reuse.
You can change the stylesheet without having to go back to the layout. You can change
the wrap_field method to do whatever you like. Once the infrastructure is built, it’s
much easier to change the details or to assign different details to different people work-
ing on a project, without fear of collision.

Figure 8-7. Extra formatting created through a form builder and CSS

Test Your Knowledge

Quiz
1. How much change did the controller need to handle file uploads?

2. What goes into a migration when you add a field to a table?

3. How do you make methods invisible (and uncallable) outside of their class?

Test Your Knowledge | 137

4. Are form builders for binding presentation to a specific piece of your model, or for
supporting more general form construction?

5. Do builders map to controllers automatically?

6. Why (and when) are form builders worth the extra trouble of creating them?

Answers
1. The controller needed no change at all. All of the changes were in the views, to give

users the ability to upload and display the file, and in the model, to handle the file
when it arrived and when it was needed.

2. A migration that adds a field needs an add_column call defining the field in the
change method.

3. Placing method definitions after the private keyword makes them usable only
within the class.

4. They can be used for both general form construction and the creation of reusable
components tightly bound to a particular model. You can even mix the two
approaches in the same class.

5. No. Helper methods can bind to controllers through naming conventions, but
using form builders requires adding a :builder argument to your form_for call.

6. Form builders are a great idea when they let you avoid repeating yourself. Used
properly, they can make it easy for an application to look consistent, even if many
different developers are working on different parts of the project.

138 | Chapter 8: Improving Forms

CHAPTER 9

Developing Model Relationships

Everything you’ve done so far has been in the context of an application with one and
only one table. That’s actually enough power to run a lot of different projects, from
contact managers to time-series data collection. However, you’ll quickly find that most
of the projects for which it’s worth creating a web application require more than just
one table. Fortunately, Rails makes that easy, giving you the tools you need to create
multiple tables and manage even complex relationships between them.

If you don’t know much about databases, now is a good time to visit
Appendix B, An Incredibly Brief Introduction to Relational Databases.
Up to this point, it’s been possible to largely forget that there was a
relational database underneath the application, except for some
mechanics. From this point on, you’ll need to understand how tables
work in order to understand how Rails models work. (You still don’t
need to understand SQL, however.)

Working with multiple tables is, on the surface, pretty simple. Every Rails model maps
to a table, so working with multiple tables just means working with multiple models.
The hard part is managing the relationships between the tables—which in Rails
demands managing the relationships between models.

Most of the steps for working with multiple models are the same as for working with
single models, just done once for each table. Once the models are created, though, the
real work begins. Some of it can be done easily and declaratively, while other parts
require thinking ahead and writing your own code. This chapter marks the point where
Rails itself can’t directly support the operations suggested by your data models, and so
there’s a lot of coding to do. While the scaffolding still provides a helpful supporting
framework, there’s a lot of editing to do on models, migrations, routes, controllers, and
views.

139

Once again, it’s important to emphasize how much easier it is to create
a Rails application from scratch rather than trying to build it on top of
an existing database. If you’re trying to retrofit an old database with a
shiny new Rails interface, odds are good that you need a much more
advanced book than this one. You’ll need to learn what goes on behind
the scenes, not just how they work when all is well.

Connecting Awards to Students
The guestbook example of the previous few chapters isn’t the best foundation on which
to demonstrate a multi-table application, so it’s time to change course. If you’d like to
get an overview of the structures this chapter will create, these structures will be the
same as those introduced in Appendix B, using students, awards, and courses. (The
first version of them can be found in ch09/students01.)

Start by creating a new application:

rails new students

Then cd students, and create a student model and the usual related scaffolding:

rails generate scaffold student given_name:string middle_name:string
family_name:string date_of_birth:date grade_point_average:decimal
start_date:date

Then create a second model, award, and its scaffolding:

rails generate scaffold award name:string year:integer student_id:integer

The students application now contains two models, one for students and one for
awards. Students will receive awards, and awards will be connected to students, but
Rails doesn’t know that yet. The rails generate command gives a hint of this because
it includes a student_id field, an integer that will connect to the (unspecified but
automatic) id field of the students model.

Establishing the Relationship
To tell Rails about the connections between the two models, you need to modify the
models. In app/models/student.rb, add the following between the class line and the end:

a student can have many awards
 has_many :awards

And in app/models/award.rb, add:

every award is linked to a student, through student_id
 belongs_to :student

These two declarations establish a relationship between the two models. Student
records have awards—students don’t have to have awards, but they can have many of
them. Awards, however, for purposes of this example, are always linked to students.

140 | Chapter 9: Developing Model Relationships

Technically, has_many and belongs_to are method names. They just
happen to look like declarations, and it’s a lot easier to think of them
that way.

Now Rails knows about the connections between the models. What is it going to do
to support that relationship, and what’s still up to you?

Rails doesn’t add automatic checking or validation to ensure that the relationships
between objects work. It doesn’t require, for example, that every award have a valid
student_id. It doesn’t change the scaffolding that was already built. Establishing the
connection in the model is just the first step toward building the connection into your
application.

Rails does provide some help in doing that, though. With these declarations, Rails adds
methods to your classes, making it much easier for a student object to work with its
award objects and for an award object to work with its student objects. You can find a
complete listing of the methods added in the API documentation for has_many and
belongs_to. For now, it probably makes sense to show how the association can help.

You’ll need to run rake db:migrate and rails server to start the app. Once it’s running,
visit http://localhost:3000/students/new to create a student record you can then link from
an awards record.

Supporting the Relationship
There is only one reference to a possible connection in the original forms created by
the scaffolding: a field (which was specified when you created the awards), meant to
hold the student_id, on the forms for entering and editing awards (http://localhost:
3000/awards/new), shown in Figure 9-1.

As it turns out, while you can enter numbers corresponding to students in the student
field (if you know them, figuring them out from the URLs for student records), there
isn’t any constraint on the numbers that go there. Awards can go to nonexistent stu-
dents. It’s easy to improve the situation, though, by adding a select field to the app/
views/awards/_form.html.erb partial:

<div class="field">
 <%= f.label :student_id %>

 <%= f.select :student_id, Student.find(:all , :order => "family_name,
given_name").collect {|s|
 [(s.given_name + " " + s.family_name), s.id]} %>
 </div>

The highlighted piece there might seem indigestible, but it’s a fairly common way to
create select lists based on related collections. The select method needs a field to bind
to—:student_id—as its first parameter. The second parameter is a collection for the
list to display. Student gets an object referring to the students model. The find method,

Connecting Awards to Students | 141

http://localhost:3000/students/new
http://localhost:3000/awards/new
http://localhost:3000/awards/new

which you’ve encountered before in show.html.erb templates, retrieves the list of all
(:all) student records, sorted by family name and then given names (thanks to
the :order parameter).

Although calling Student.find(:all) works, it’s better practice for
views to reference only the instance variables—i.e., the variables with
names prefixed by @—rather than connecting directly to a model.

The find method doesn’t quite finish the work, though. You could stop here, if you
were content to list object reference information in the select field. To show something
a little more meaningful, however—both to the human user and to the program inter-
preting what comes back from the form—you need to specify both what gets displayed
in the select field and the value that will get sent back.

That’s where the collect method is useful. It takes a block as an argument ({}). The
|s| is a very brief way of saying that Ruby should loop through the collection of students
and put each row into a variable named s. On each iteration of the loop, the block will
return an array, contained in [and]. Each of those arrays, which will become lines in
the select list, will have two values. The first is the name of the student, generated by
concatenating its given_name to a space and its family_name. That value will be displayed
to the user. The second is the id value for the student, and that value will be what comes
back from the form to the server.

All of that work creates the simple form shown in Figure 9-2, with its drop-down box
for students.

Figure 9-1. A basic awards form, where you can enter student numbers if you happen to know them

142 | Chapter 9: Developing Model Relationships

When the user submits this form, Rails gets back a “1” identifying the student’s id. (At
least it will if the students table looks like Figure B-1 in Appendix B.) That will go in
the student_id field in the table. A “1” will be puzzling for humans, though. To fix that,
in app/views/awards/, in show.html.erb, replace:

<%= @award.student_id %>

with:

<%= @award.student.given_name %> <%= @award.student.family_name %>

and in index.html.erb, replace:

<%= award.student_id %>

with:

<%= award.student.given_name %> <%= award.student.family_name %>

Note that the @award variable (just award in index.html.erb) suddenly has a new method.
Of course it understood student_id—that’s a field defined by the original rails gener
ate command. But the student method, and its methods given_name and family_name,
are new. Those features are the result of Rails recognizing the belongs_to declaration
and providing a more convenient notation for getting to the specific student that this
particular award belongs_to.

While using student is great, there’s one problem with the code just shown—it keeps
repeating itself to combine given_name and family_name. There’s a way to avoid that
and to simplify most of this code. In the model for student (in app/models/student.rb),
add a method called name that returns a simpler form:

Figure 9-2. An awards form that minimizes guesswork about students

Connecting Awards to Students | 143

def name
 given_name + " " + family_name
end

Like the methods representing database fields, the name method will be available from
awards, as in:

<%= @award.student.name %>

or:

<%= f.select :student_id, Student.find(:all).collect {|s|
 [s.name, s.id]} %>

You’ll now get the cleaner-looking result shown in Figure 9-3 for a little less work.

The name method creates what is often called an attribute on the model,
acting as a method for retrieving its value. If you want to create attributes
which can be assigned values, the convention would suggest a name like
name=, along the lines of the photo= method described in “Extending a
model beyond the database” on page 122.

Awards are now connected to students, but there still isn’t any enforcement of that
connection, just a form field that makes it difficult to enter anything else. Even with
the form, though, there are corner cases—someone could, for example, delete a student
after the form had been sent to a user. Or, more likely, a REST request could send JSON
with a bad student_id—fixing up the view hasn’t changed anything in the model.

Figure 9-3. Showing a record with a name instead of a student ID number

144 | Chapter 9: Developing Model Relationships

Guaranteeing a Relationship
Rails itself doesn’t provide a simple mechanism for validating that the student_id
matches a student. You could, if you’re handy with the underlying database, add such
constraints through migrations. If you’d rather do something that feels like it’s Rails,
however, and operates within the model instead of the database, you can install the
validates_existence_of plug-in, described at https://github.com/perfectline/validates
_existence/. From your application’s top directory, issue the command:

gem install validates_existence

In the Gemfile, add gem "validates_existence", ">= 0.4" underneath the entry for
Rails itself. Then add this line underneath the belongs_to declaration of app/models/
award.rb:

validates_existence_of :student

Now, if you restart the server and try to save an award record with a student that doesn’t
exist, you’ll get a message like that shown in Figure 9-4. (Note that because the student
was deleted, his or her name isn’t available in the select list, and Giles Boschwick comes
up again.)

Figure 9-4. Enforcing the existence of students for every award

Connecting Awards to Students | 145

https://github.com/perfectline/validates_existence/
https://github.com/perfectline/validates_existence/

The error message appears twice because validation messages for both
attribute and model were added as the default behavior in version 0.5.0.
If you’d like to remove this behavior, use the following validation in-
stead: validates_existence_of :student, :both => false.

If you don’t check for the existence of the student, then users will see a strange and
incomprehensible message about a nil object when the view tries to process
award.student.name, so this is most likely an improvement.

You could decide to use Rails’ built-in validates_associated method
for this purpose, but it goes beyond checking whether there is an asso-
ciated record all the way into checking whether there is a valid associated
record. Depending on your needs, that could be more appropriate, but
validates_existence_of is lighter-weight.

Later in this chapter, you’ll see another approach to connecting awards to students that
helps avoid these problems: nested resources.

Connecting Students to Awards
So, awards now have a basic understanding of the student records to which they con-
nect. What can student records do with awards?

Removing Awards When Students Disappear
Although in reality you might want to keep award listings around when students leave,
for demonstration purposes it’s worth considering the problem of orphaned records.
The validates_existence_of plug-in described earlier can check that a corresponding
student record exists at the time the award record is created, but once the record has
been created, validation doesn’t notice, for example, if the student is deleted. Keeping
award records in sync with student records requires something more active.

Rails makes it very easy to make sure that when student records are deleted, the cor-
responding awards records are also deleted. You just need to add an option to the
has_many declaration in app/models/student.rb:

has_many :awards, :dependent => :destroy

This is powerful and easy, but beware: those deletions will take place without any
further confirmation. Once the user agrees to delete a student record, all of the awards
records connected to that student will also disappear.

146 | Chapter 9: Developing Model Relationships

Counting Awards for Students
While adding the awards list to the main list of students could get really verbose, it
does make sense to add a count of awards received to the list of students. If you add
the set of awards listed in Figure B-3 of Appendix B, you’ll have an awards list like that
shown in Figure 9-5.

Adding a count of these awards to the students list that’s in app/views/students/
index.html.erb is simple. There needs to be a new column for awards, so at the end of
the first row (in the first tr element), add:

<th>Awards</th>

And then, after:

<td><%= student.start_date %></td>

add:

<td><%= student.awards.count %></td>

Just as every award object now has a student object because of belongs_to, every
student object has an awards object, thanks to the has_many declaration. Getting a count
of awards for that student is as simple as specifying count. Figure 9-6 shows the results
of these additions.

You’ll probably want to format them more beautifully, but the basic data is there. It
also makes sense to add a list of awards to each of the individual student views, so that
users can see what students have won as they review the records. Thanks to the
awards method, it isn’t difficult to add an awards table to app/views/students/
show.html.erb:

Figure 9-5. A brief awards list

Connecting Students to Awards | 147

<h3>Awards</h3>
<table>
 <tr>
 <th>Name</th>
 <th>Year</th>
 <th>Student</th>
 </tr>

<% for award in @student.awards %>
 <tr>
 <td><%= award.name %></td>
 <td><%= award.year %></td>
 <td><%= award.student.name %></td>
 </tr>
<% end %>
</table>

In the view, the @student variable contains the current student. Running a for loop over
the collection returned by @student.awards, which contains only the awards for the
current student, lets you put the information about the awards into a table. You’ll get
a result like that shown in Figure 9-7.

Nesting Awards in Students
The connections between students and awards are workable, but the way that the two
models are handled by the web application doesn’t reflect their actual roles in the data
models. Depending on your application and your preferences, this may be perfectly
acceptable. There is, however, a better way to represent the awards model that more
clearly reflects its relationship to students, implemented in ch09/students02.

Figure 9-6. A students list complete with count of awards

148 | Chapter 9: Developing Model Relationships

The models will stay the same, and the views will stay almost the same. The main things
that will change are the routing and the controller logic. Chapter 13 will explain routing
in much greater depth, but for now it’s worth exploring the ways that routing can reflect
the relationships of your data models.

If the work involved in creating a nested resource seems overwhelming,
don’t worry. It’s not mandatory Rails practice, though it is certainly a
best practice. Unfortunately, it’s just complicated enough that it’s hard
to automate—but maybe someday this will all disappear into a friendlier
rails generate command.

Changing the Routing
Near the top of the config/routes.rb file are the lines:

resources :awards

resources :students

Delete them, and replace them with:

resources :students do
 resources :awards
end

Figure 9-7. A student record with awards listed

Nesting Awards in Students | 149

The nested code reflects a nested resource relationship.

You’ll still be able to visit http://localhost:3000/students/, but http://localhost:3000/
awards/ will return an error. The routing support that the link_to methods expected
when the original scaffolding was built has been demolished. The views in the app/
views/awards directory are now visible only by going through students, and this change
of position requires some changes to the views.

Instead of the old URLs, which looked like:

http://localhost:3000/awards/2

the URLs to awards now follow a more complicated route:

http://localhost:3000/students/3/awards/2

That added students/3 reflects that the award with the id of 2 belongs to the student
with the id of 3.

Changing the Controller
While changing the routing is a one-line exercise, the impact on the awards controller
is much more complicated. Most of it reflects the need to limit the awards to the speci-
fied student. Example 9-1 shows the new controller, with all changes bolded and com-
mented. Most of the changes simply add the student object as context.

Example 9-1. Updating a controller to represent a nested resource

class AwardsController < ApplicationController

 before_filter :get_student
 # :get_student is defined at the bottom of the file,
 # and takes the student_id given by the routing and
 # converts it to an @student object.

 def index
 @awards = @student.awards
 # was @awards = Award.find(:all)

 respond_to do |format|
 format.html # index.html.erb
 format.json { render json: @awards }
 end
 end

 # GET /awards/1
 # GET /awards/1.json
 def show
 @award = @student.awards.find(params[:id])
 # was Award.find(params[:id])

 respond_to do |format|
 format.html # show.html.erb
 format.json { render json: @award }

150 | Chapter 9: Developing Model Relationships

http://localhost:3000/students/
http://localhost:3000/awards/
http://localhost:3000/awards/

 end
 end

 # GET /awards/new
 # GET /awards/new.json
 def new
 @student = Student.find(params[:student_id])
 @award = @student.awards.build
 # was @award = Award.new

 respond_to do |format|
 format.html # new.html.erb
 format.json { render json: @award }
 end
 end

 # GET /awards/1/edit
 def edit
 @award = @student.awards.find(params[:id])
 # was @award = Award.find(params[:id])
 end

 # POST /awards
 # POST /awards.json
 def create
 @award = @student.awards.build(params[:award])
 # was @award = Award.new(params[:award])
 respond_to do |format|
 if @award.save
 format.html { redirect_to student_awards_url(@student), notice:
 'Award was successfully created.' }
 # was redirect_to(@award)
 format.json { render json: @award, status: :created, location: @award }
 else
 format.html { render action: "new" }
 format.json { render json: @award.errors, status: :unprocessable_entity }
 end
 end
 end

 # PUT /awards/1
 # PUT /awards/1.json
 def update
 @award = @student.awards.find(params[:id])
 # was @award = Award.find(params[:id])

 respond_to do |format|
 if @award.update_attributes(params[:award])
 format.html { redirect_to student_awards_url(@student), notice:
 'Award was successfully updated.' }
 # was redirect_to(@award)
 format.json { head :ok }
 else
 format.html { render action: "edit" }
 format.json { render json: @award.errors, status: :unprocessable_entity }

Nesting Awards in Students | 151

 end
 end
 end

 # DELETE /awards/1
 # DELETE /awards/1.json
 def destroy
 @award = @student.awards.find(params[:id])
 # was @award = Award.find(params[:id])
 @award.destroy

 respond_to do |format|
 format.html { redirect_to (student_awards_path(@student)) }
 # was redirect_to(awards_url)
 format.json { head :ok }
 end
 end

 private
 # get_student converts the student_id given by the routing
 # into an @student object, for use here and in the view.
 def get_student
 @student = Student.find(params[:student_id])
 end
end

Most of these changes, in some form or another, convert a reference to awards generally
to a reference to an award that applies to a particular student. You’ll see some naming
inconsistencies as that context forces different syntax: find(:all) simply disappears,
new becomes build, and awards_url becomes student_awards_url. These new, different
methods are created automatically by Rails thanks to the routing changes made earlier.
Eventually these shifts will feel normal to you.

The new AwardsController uses one new technique. It starts with a before_filter, a
call to code that will get executed before everything else does. In this case, the
before_filter calls the get_student method, which helps reduce the amount of repe-
tition in the controller. The controller will receive the student_id value from routing,
taking from the URL. Practically all of the time, though, it makes more sense to work
with the corresponding Student object. The get_student method takes the
student_id and uses it to retrieve the matching object and place it in the @student vari-
able. That simplifies the methods in the controller and will also be used in the views.

It’s not hard to imagine a circumstance in which users want a complete
list of awards and students. You can still provide one—it’s just an extra
step beyond the nested resource, requiring its own routing, controller
method, and view.

152 | Chapter 9: Developing Model Relationships

Changing the Award Views
If users visit the new URLs at this point, they’ll get some strange results. Rails routing
originally defined one set of methods to support the old approach, and not only the
results but also the method names and parameters need to change.

In the old version of app/views/awards/index.html.erb, the Show/Edit/Destroy links
looked like Example 9-2, while the updated version looks like Example 9-3. Updates
are marked in bold.

Example 9-2. Code for displaying awards before nesting by student

<h1>Listing awards</h1>

<table>
 <tr>
 <th>Name</th>
 <th>Year</th>
 <th>Student</th>
 </tr>

<% for award in @awards %>
 <tr>
 <td><%= award.name %></td>
 <td><%= award.year %></td>
 <td><%= award.student.name %></td>
 <td><%= link_to 'Show', award %></td>
 <td><%= link_to 'Edit', edit_award_path(award) %></td>
 <td><%= link_to 'Destroy', award, :confirm => 'Are you sure?', :method =>
:delete %></td>
 </tr>
<% end %>
</table>

<%= link_to 'New award', new_award_path %>

Example 9-3. Displaying the awards on a student-by-student basis

<h1>Awards for <%= @student.name %></h1>

<% if !@student.awards.empty? %>
 <table>
 <tr>
 <th>Name</th>
 <th>Year</th>
 </tr>

 <% for award in @awards %>
 <tr>
 <td><%= award.name %></td>
 <td><%= award.year %></td>
 <td><%= link_to 'Show', [@student, award] %></td>
 <td><%= link_to 'Edit', edit_student_award_path(@student, award) %></td>

Nesting Awards in Students | 153

 <td><%= link_to 'Destroy', [@student, award], :confirm => 'Are you sure?',
:method => :delete %></td>
 </tr>
 <% end %>
 </table>

<% else %>
 <p><%= @student.given_name %> hasn't won any awards yet.</p>
<% end %>

<p>
 <%= link_to 'New award', new_student_award_path(@student) %> |
 <%= link_to 'Back', @student %>
</p>

In the new version, Example 9-3, the additional information about the student informs
nearly every interaction. The headline (h1) has acquired the name of a specific student,
rather than just being “Awards” generally. There’s extra logic—the if and else state-
ments—to make sure that awards are only displayed for students who have awards,
presenting a polite message for students without awards.

The largest changes, however, are in the logic that creates links. The Show and Destroy
links change arguments, from just award to [@student, award], reflecting the additional
information link_to will need to create a proper link. The links for Edit and New Award
call a different method, new_student_award_path, which will work through the nested
resource routing to generate a link pointing to the right place. Given an argument for
both a student and an award, it will generate a link to edit that award; given just a
student argument, it will generate a link to create a new award for that student.

There’s also a new Back link that goes back to the student’s page. That’s completely
new navigation, necessary because of the extra context this page now has. Figure 9-8
shows what all of this looks like for Jules Miller, with his two awards, while Fig-
ure 9-9 shows the result for Milletta Stim, who hasn’t won any yet.

Figure 9-8. The awards list, scoped to a particular student

154 | Chapter 9: Developing Model Relationships

Figure 9-9. The awards list, when the student doesn’t have any awards yet

The changes to show.html.erb are smaller, turning the links from:

<%= link_to 'Edit', edit_award_path(@award) %> |
<%= link_to 'Back', awards_path %>

to:

<%= link_to 'Edit', edit_student_award_path(@student, @award) %> |
<%= link_to 'Back', student_awards_path(@student) %>

The information displayed is the same, and context has little effect except on the links.
Everything still looks like Example 9-3, except that the URL is different and you’d see
a different link in the status bar if you rolled over Edit or Back.

There are also some minor changes to new.html.erb and edit.html.erb. Both of them get
new headlines:

<h1>New award for <%= @student.name %></h1>

and:

<h1>Editing award for <%= @student.name %></h1>

Yet again, the links at the bottom change (though only the second line applies to
new.html.erb):

<%= link_to 'Show', [@student, @award] %> |
<%= link_to 'Back', student_awards_path(@student) %>

In _form.html.erb, the form_for call changes from:

<%= form_for(@award) do |f| %>

to:

<%= form_for([@student, @award]) do |f| %>

You should also delete the :student_id selector.

Given an array of arguments instead of a single argument, form_for can automatically
adjust to get the routing right for its data. The rest of the form fields look the same,

Nesting Awards in Students | 155

except that the select call to create the picklist for students disappears completely, as
that information comes from context.

Figure 9-10 shows the form for entering a new award in use, and Figure 9-11 shows the
form for editing an existing award.

Figure 9-10. Entering a new award for a particular student

Figure 9-11. Editing an award—note the disappearance of the select box

Connecting the Student Views
There’s one last set of things to address: adding links from the student views to the
awards views. Awards used to have their own independent interface, but now they’re
deeply dependent on students. There are only two places where adding links makes
clear sense, though: in the index listing and in the view that shows each student.

In show.html.erb, add a link to the awards for the student between Edit and Back with:

156 | Chapter 9: Developing Model Relationships

<%= link_to 'Awards', student_awards_path(@student) %> |

As shown in Figure 9-12, that’ll give you a path to the awards for a student. (You might
drop the existing list of awards there, too.)

Figure 9-12. Adding a link from a student to a student’s awards

That may actually be all the interface you want, but sometimes it’s easier to look at a
list of students and click on an Awards button for them. To add that, you need to add
a column to the table displayed in index.html.erb. Between the links for Edit and
Destroy, add:

<td><%= link_to 'Awards', student_awards_path(student) %></td>

The result will look like Figure 9-13. If users click on the Awards links, that will bring
them to pages like Figures 9-8 and 9-9.

Nesting Awards in Students | 157

Figure 9-13. Students listing with connection to awards for each

Is Nesting Worth It?
Shifting awards from having their own interface to an interface subordinate to students
was a lot of work. It’s fairly clear why nesting resources is the “right” approach in
Rails—it makes the has_many/belongs_to relationship explicit on every level, not just
in the model. The work in the routing and the controller establishes the changes nec-
essary for both the regular web user interface and the RESTful web services interface
to work this way. The views, unfortunately, take some additional effort to bring in line,
and you may have had a few ideas of your own while reading this about how you’d like
them to work.

In the abstract, nesting is a great idea, but at the same time, it requires a lot of careful
work to implement correctly in the views layer. That work may or may not be your first
priority, though if you’re going to nest resources, it’s easier done earlier in the imple-
mentation process rather than later.

If you’ve built nested resources, you may find situations where you need to build
additional interfaces. Sometimes the supposedly subordinate model is the main one
people want to work with. In the awards example, most of the time people might want
to know what awards a student has received, or add an occasional award, and the nested
interface will work just fine. However, if lots of awards are given out across an entire
school at the end of the year, and one person has the task of entering every award into
the system, that person might want a more direct interface rather than walking through

158 | Chapter 9: Developing Model Relationships

the nesting. This situation could be addressed with an extra view that looked more like
the ones earlier in the chapter.

Whether or not you decide to nest your own resources, you now have the information
you need to do so, and you’ll know what you’re working with should you encounter
Rails applications built using nested resources.

Many-to-Many: Connecting Students to Courses
The other frequent relationship between tables or models is many-to-many. A student,
for example, can be taking zero or more courses, while a course can have zero or more
students. (Students with zero courses might not yet have registered for anything, while
courses with zero students might be awaiting registration or just unpopular.)

The relationship between the two is, from a modeling standpoint, even, so there won’t
be any need for nested resources, just a lot of connections. As usual, it makes sense to
move up from the database through models to controllers and views to produce the
code in ch09/students03. And also as usual, while Rails provides you with a foundation,
you’re still going to need to add a lot to that foundation.

Remember, don’t name a table “classes,” or you will have all kinds of
strange Rails disasters because of name conflicts. “Courses” is a safer
option.

Creating Tables
Building a many-to-many relationship requires creating tables—not just a single table,
but a many-to-many relationship that will require adding two tables beyond the student
table already in the application. One will be the actual course list, and the other the
table that joins courses to students, as shown in Figure B-5 of Appendix B. Creating
the course list—which will need a full set of scaffolding—is simple:

rails generate scaffold course name:string

Creating the join table requires an extra few steps. Start by creating a migration:

rails generate migration CreateCoursesStudents

Doing this will create a migration file in db/migrate with a name that ends in
create_courses_students.rb. Unfortunately, when you open it, all you’ll see is:

class CreateCoursesStudents < ActiveRecord::Migration
 def up
 end

 def down
 end
end

Many-to-Many: Connecting Students to Courses | 159

Once again, you’ve reached the boundaries of what autogenerated code will do for you,
for the present. (Rails also seems to go with the up and down approach for migrations
created outside of a scaffolding context instead of change.) Creating the connecting
table will require coding the migration directly. A simple approach, building just on
what you’ve seen in previous generated migrations, looks like:

class CreateCoursesStudents < ActiveRecord::Migration
 def up
 create_table :courses_students, :id => false do |t|
 t.integer :course_id, :null => false
 t.integer :student_id, :null => false
 end
 end

 def down
 drop_table :courses_students
 end
end

All of this depends on meeting Rails’ expectations for naming conventions. The table
name is the combination of the two models being joined in alphabetical order, and the
fields within the table are id values for each of the other models.

There is one performance-related issue to consider here. Rails has used the id value for
tables as its main approach for getting data into and out of them rapidly. The id value,
which you don’t have to specify, is automatically indexed. If you want your application
to be able to move through the many course_id and student_id values in this table,
however, you’ll need to add an index, as in:

class CreateCoursesStudents < ActiveRecord::Migration
 def self.up
 create_table :courses_students, :id => false do |t|
 t.integer :course_id, :null => false
 t.integer :student_id, :null => false
 end

 # Add index to speed up looking up the connection, and ensure
 # we only enrol a student into each course once
 add_index :courses_students, [:course_id, :student_id], :unique => true
 end

 def self.down
 remove_index :courses_students, :column => [:course_id, :student_id]
 drop_table :courses_students
 end
end

Indexes will be explained in greater detail in Chapter 13. Before moving on to the next
steps, run rake db:migrate to build your tables.

160 | Chapter 9: Developing Model Relationships

Connecting the Models
Like has_many and belongs_to, has_and_belongs_to_many is a declaration that goes in
the model. In app/models/student.rb, add:

a student can be on many courses, a course can have many students
 has_and_belongs_to_many :courses

And in app/models/course.rb, add:

a student can be on many courses, a course can have many students
 has_and_belongs_to_many :students

That’s all you need to do to establish the connection. Rails will automatically—thanks
to naming conventions—use the courses_students table you built to keep track of the
connections between students and courses.

You may find it useful to add some convenience methods to the model, depending on
what you need in your interfaces. In the students model, it makes sense to add some
logic that answers basic questions and returns some information that Rails won’t pro-
vide automatically. These build, of course, on the courses object that Rails did add to
the model. First, a convenience method checks to see whether a given student is enrolled
in a specified course:

def enrolled_in?(course)
 self.courses.include?(course)
end

The enrolled_in? method uses the include? method of courses to check whether a
particular course is included in the list. If it is, then the student is enrolled, and
include? and enrolled_in? will both return true. Otherwise, they return false.

The enrolled_in? convenience method will get called many times as the
number of courses grows, executing the same query repeatedly. For
now, its clarity is probably more important than its performance, but
as you get more familiar with how Rails interacts with databases, you
will want to optimize this method for better performance.

A similarly useful convenience method returns the list of courses that a student is not
yet enrolled in, making it easy to create logic and forms that will let them enroll:

def unenrolled_courses
 Course.find(:all) - self.courses
end

This one-liner does some tricky set arithmetic. First, it calls Course.find(:all) to get a
full list of all the courses available. Then it calls self.courses to get a list of the courses
that already apply to this particular student. Finally, it does subtraction—set subtrac-
tion—removing the courses in self.courses from the full list. The - doesn’t just have
to mean subtracting one number from another.

Many-to-Many: Connecting Students to Courses | 161

The has_and_belongs_to_many relationship is somewhat controversial,
and some developers may prefer to use a has_many :through relation-
ship, creating the intermediate table by hand.

Adding to the Controllers
Many-to-many relationships don’t demand the kinds of controller change that nested
resources did. You don’t need to change method calls inside of the generated code, but
you may want to add some additional methods to support functionality for both courses
and students. While the added methods in the models focused on data manipulation,
the methods in the controllers will add logic supporting interfaces to that data. The
basic RESTful interfaces will remain, and the new interfaces will supplement them with
some extra functionality specific to the combination of the two models.

In app/controllers/courses_controller.rb, the currently simple application only needs
one extra method:

GET /courses/1/roll
def roll
 @course = Course.find(params[:id])
end

The roll method, which will need a roll.html.erb view, will just provide a list of which
students are in a given course, for roll call. The :id parameter will identify which course
needs a list.

There’s more to add in app/controllers/students_controller.rb, as we need a way to add
students to and remove them from courses. First, though, it makes sense to create a
means of listing which courses a student is in:

GET /students/1/courses
def courses
 @student = Student.find(params[:id])
 @courses = @student.courses
end

As the :get_student method did for awards, the courses method takes an id value given
it by the routing and turns it into an object—in this case a pair of objects, representing
a given student and the courses he or she is taking.

The next two methods are pretty different from the controller methods the book has
shown so far. Instead of passing data to a view, they collect information from the routing
and use it to manipulate the models, and then redirect the user to a more ordinary page
with the result. The first, course_add, takes a student_id and a single course_id and
adds the student to that course:

POST /students/1/course_add?course_id=2
(note no real query string, just
convenient notation for parameters)

162 | Chapter 9: Developing Model Relationships

def course_add

 #Convert ids from routing to objects
 @student = Student.find(params[:id])
 @course = Course.find(params[:course])

 if not @student.enrolled_in?(@course)
 #add course to list using << operator
 @student.courses << @course
 flash[:notice] = 'Student was successfully enrolled'
 else
 flash[:error] = 'Student was already enrolled'
 end
 redirect_to :action => :courses, :id => @student
end

The course_add method uses the enrolled_in? method defined earlier in the model to
check if the student is already in the course. If not, it adds the appropriate course object
to the list of courses for that student and reports that all went well using
flash[:notice]. If the student was already enrolled, it blocks the enrollment and reports
the problem using flash[:error]. Then it redirects to a list of courses for the student,
which will show the flash message as well as the list.

The remove method, for demonstration purposes, is a little bit different. It accepts a list
of courses to remove the student from. It then tests the list to see if the student was
actually enrolled and deletes the record connecting the student to the course if so. It
also logs the removal to the info log of the application, and then redirects to the same
page as course_add, listing the courses for a student:

POST /students/1/course_remove?courses[]=
def course_remove

 #Convert ids from routing to object
 @student = Student.find(params[:id])

 #get list of courses to remove from query string
 course_ids = params[:courses]

 unless course_ids.blank?
 course_ids.each do |course_id|
 course = Course.find(course_id)
 if @student.enrolled_in?(course)
 logger.info "Removing student from course #{course.id}"
 @student.courses.delete(course)
 flash[:notice] = 'Course was successfully deleted'
 end
 end
 end
 redirect_to :action => :courses, :id => @student
end

Many-to-Many: Connecting Students to Courses | 163

Adding Routing
Making those controllers work requires telling Rails that they exist and how they should
be called. Again, Chapter 13 will explain routing in greater depth, but you can add
extra methods to an existing REST resource through its :member named parameter. To
add the roll method to the routing the scaffolding created, add a member to config/
routes.rb:

resources :courses do
 member do
 get :roll
 end
end

For students, there are more methods, so the member list is a bit more complicated,
though generally similar:

resources :students do
 resources :awards

 member do
 get :courses
 post :course_add
 post :course_remove
 end

end

At this point, Rails knows how to find the extra methods. All that’s left is adding support
for them to the views.

Supporting the Relationship Through Views
Cementing the relationship between students and courses requires giving users access
to the functionality provided by the controllers and models. This can happen on several
levels—application-wide navigation, showing counts in related views, and view sup-
port for the newly created controllers.

Establishing navigation

The views created by the scaffolding give basic access to both the students and the
courses, but there’s no user-interface connection, or even a navigation connection,
between them. A first step might add links to both the student pages and the course
pages, letting users move between them. As this is moving toward navigation for the
application and as it will get used across a lot of different pages, it makes sense to create
a navigation partial for easy reuse.

To do that, create a new file, app/views/application/_navigation.html.erb. (You’ll need
to create the application directory.) Its contents are simple, creating links to the main
lists of students and courses:

164 | Chapter 9: Developing Model Relationships

<p>
 <%= link_to "Students", students_url %> |
 <%= link_to "Courses", courses_url %>
</p>

<hr />

You could reference this partial from every view, but that’s an inconvenient way to
reference a partial that was meant to reduce the amount of repetition needed in the first
place. Instead, add it to the layout for the entire app in app/views/layouts/applica-
tion.html.erb. In each file, insert the boldfaced code below the body tag:

<body>

<%= render 'navigation' %>

<%= yield %>

Every page in the application will now have links to the Students and Courses main
index page, as shown in Figure 9-14.

Figure 9-14. Navigation links to Students and Courses

Showing counts

The index page for students, app/views/students/index.html.erb, currently lists a count
for awards, and you can add a count for courses the same way. You need to insert a
heading, <th>Courses</th>, in the first tr element, just before <th>Awards</th>, and
then insert:

Many-to-Many: Connecting Students to Courses | 165

<td><%= student.courses.count %></td>

just before the count of awards. Figure 9-15 shows what this looks like, though the
header names are abbreviated a bit to make the table fit better. Note that there aren’t
any students in courses yet—the interface for adding them hasn’t yet been built.

Figure 9-15. Students list showing course counts

Although the app/views/courses/index.html.erb file has less in it, you can add
<th>Enrolled</th> in the first tr element and insert:

<td><%= course.students.count %></td>

Figure 9-16 shows the courses list, which hasn’t been shown previously, though the
RESTful interface made it easy to add the courses used in Appendix B.

166 | Chapter 9: Developing Model Relationships

Figure 9-16. Course list showing enrollment counts

Again, no one is registered for any courses yet, so adding that functionality is a natural
next step.

Enrolling students in courses

The critical piece for connecting students to courses is, of course, the form for adding
courses to students. That form could be linked from the main list if you wanted, but
for now we’ll update the app/views/students/show.html.erb form so that it acts as the
gateway to a student’s awards and courses. There are two pieces to this. First, add a
list of courses, perhaps in place of the awards list:

<p>
 Courses:
 <% if !@student.courses.empty? %>
 <%= @student.courses.collect {|c| link_to(c.name, c)}.join(", ").html_safe%>
 <% else %>
 Not enrolled on any courses yet.
 <% end %>
</p>

This is much more compact than the table of awards. The if checks to see whether the
student is registered for any courses. If so, it builds a compact list of courses using the
collect method. If not, it just says so.

Second, add a link in the cluster of link_to calls at the bottom of the file:

<%= link_to 'Edit', edit_student_path(@student) %> |
<%= link_to 'Courses', courses_student_path(@student) %> |

Many-to-Many: Connecting Students to Courses | 167

<%= link_to 'Awards', student_awards_path(@student) %> |
<%= link_to 'Back', students_path %>

Bear in mind that where the navigation partial called courses_url, this calls
courses_student_path with a specific student. That will take the user to a page such as
http://localhost:3000/students/1/courses—which hasn’t been created yet. To create that
page, create a courses.html.erb file in the app/views/students directory. Example 9-4
shows one possible approach to creating a form for registering and unregistering stu-
dents from courses.

Example 9-4. A courses.html.erb view for registering and removing students from courses

<h1><%= @student.name %>'s courses</h1>

<% if @courses.length > 0 %>
 <%= form_tag(course_remove_student_path(@student)) do %>
 <table>
 <tr>
 <th>Course</th>
 <th>Remove?</th>
 </tr>
 <% for course in @courses do %>
 <tr>
 <td><%= course.name %></td>
 <td><%= check_box_tag "courses[]", course.id %></td>
 </tr>
 <% end %>
 </table>

 <%= submit_tag 'Remove checked courses' %>
 <% end %>
<% else %>
 <p>Not enrolled in any courses yet.</p>
<% end %>

<h2>Enroll in new course</h2>

<% if @student.courses.count < Course.count then %>
 <%= form_tag(course_add_student_path(@student)) do %>
 <%= select_tag(:course,
 options_from_collection_for_select(@student.unenrolled_courses,
 :id, :name)) %>
 <%= submit_tag 'Enroll' %>
 <% end %>
<% else %>
 <p><%= @student.name %> is enrolled in every course.</p>
<% end %>

<p><%=link_to "Back", @student %></p>

This view contains two forms. Unlike most of the previous forms, these are created
with the form_tag rather than the form_for method because they aren’t bound to a
particular model. The first form appears if the student is already enrolled in any courses,

168 | Chapter 9: Developing Model Relationships

http://localhost:3000/students/1/courses

allowing the user to remove them from those courses. The second form appears if there
are courses that the student hasn’t yet enrolled in. (More sophisticated program logic
might set a different kind of limit.) Each of the forms connects to a controller method
on students—course_remove for the first one and course_add for the second.

The form for removing courses uses a list of checkboxes generated from the list of
courses, while the form for adding them uses the somewhat more opaque but very
powerful options_from_collection_for_select method. This helper method takes a
collection—here, the list of courses returned by @student.unenrolled_courses, and two
values. The first, :id, is the value to return if a line in the select form is chosen, and the
second, :name, is the value the user should see in the form.

Figure 9-17 shows the page before a student has registered for any courses, while
Figure 9-18 shows the confirmation and removal options available once the student
has signed up for their first course.

Figure 9-17. Adding courses, the first time around

Many-to-Many: Connecting Students to Courses | 169

Figure 9-18. Adding or removing courses after a student has signed up

The checkboxes will create the parameters for course_remove and are a good choice
when you want to operate on multiple objects at once. The select box is much slower
and produces the results needed for the single-parameter course_add. You will, of
course, want to choose interface components that match your users’ needs.

There’s one last component in need of finishing: the view that corresponds to the
roll method on the courses controller. In app/views/courses/show.html.erb, add this
link between the scaffolding’s link_to calls for Edit and Back:

<%= link_to 'Roll', roll_course_path(@course) %> |

That will add the link shown in Figure 9-19, which will let users get to the list of
students.

Figure 9-19. A (very brief) course description with a link to the roll call list

170 | Chapter 9: Developing Model Relationships

The actual roll call list code, shown in Example 9-5, and belonging in app/views/courses/
roll.html.erb, is another simple table.

Example 9-5. Generating a roll call list through the connections from courses to students

<h1>Roll for <%= @course.name %></h1>

<% if @course.students.count > 0 %>
 <table>
 <tr>
 <th>Student</th>
 <th>GPA</th>
 </tr>
 <% for student in @course.students do %>
 <tr>
 <td><%=link_to student.name, student %></td>
 <td><%= student.grade_point_average %></td>
 </tr>
 <% end %>
 </table>
<% else %>
 <p>No students are enrolled.</p>
<% end %>

<p><%= link_to "Back", @course %></p>

The list of students is accessible from the @course object that the roll method in the
controller exposed. That method didn’t have anything specific to do with students, but
because the students for the course are included in the course object, all of their infor-
mation is available for display in the table, as shown in Figure 9-20. The links that
link_to generated let you go directly to the student’s record, making it easy to modify
students who are in a particular course.

Figure 9-20. A roll call that connects to records for students in the class

Many-to-Many: Connecting Students to Courses | 171

What’s Missing?
At this point, you should be starting to get a sense of what’s involved in building a real
Rails application. These examples really just scratch the surface, both of what’s nec-
essary and of what’s possible.

While the students and courses application has gone much further into Rails than pre-
vious applications, it’s still largely built on the scaffolding. The connections between
course and student interfaces could be deepened. The new methods, while certainly
functional, don’t follow the same clean architectural lines that their RESTful prede-
cessors had, taking a more direct path to getting things done. And finally, they don’t
offer the same JSON-in/JSON-out functionality of their RESTful predecessors.

There are also a few more relationships you can explore as you get further into Rails
development. The has_and_belongs_to_many relationship can be used, for example, to
connect a table to foreign keys in the same table, creating a self-referential join. There’s
also has_many :through, which lets you connect one table to another through an inter-
mediate table, rather than directly with a foreign key. And finally, there’s has_one, which
is much like has_many, but limits itself to one connection.

Which of those opportunities are priorities for you depends on the needs of your own
application. You may have related tables that need only occasional connections, or
tables whose connections aren’t modified directly by users. A JSON-based API may be
central for you, or it may be a pointless luxury that the RESTful scaffolding already
overindulges in. Your allegiance to REST may not yet be that firm, in any event.

There’s always more you could do, but at this point you have the basics you need to
build real applications. The next few chapters will give you additional tools and tech-
niques, and there’s always more to learn, but congratulations! You now know most of
what needs to be done to build an application.

Test Your Knowledge

Quiz
1. Where do you specify data relationships?

2. How much effort does Rails put into enforcing relationships between models?

3. What does the collect method do?

4. How can you check to see whether a related record exists?

5. Why would you want to go to the trouble of creating a nested resource?

6. When would you use a before_filter?

7. What does form_for do when it is passed an array for its first argument?

172 | Chapter 9: Developing Model Relationships

8. What two columns are needed in a join table?

9. Why would you want to index the columns of a join table?

10. Where do you tell Rails about new methods you’ve added to the scaffolding?

Answers
1. Relationships are specified in models. The models on both sides of any given

relationship must identify how they relate to the other model. For example, a
has_many relationship in one model should be matched by a belongs_to relationship
in another model.

2. Rails doesn’t put any effort into enforcing relationships between models. If you
have constraints to impose, you need to create code that checks and enforces them.

3. The collect method iterates over a collection and gathers the results from a block.
It’s an easy way to turn a list of data into a select list, for instance.

4. You could check for a related record with find, but in most validation contexts it’s
easier to use the validates_existence_of gem. (If you want to check for a related
valid record, then Rails’ built-in validates_associated will work.)

5. Nested resources have some programming aesthetic appeal, but they’re also useful
for making relationships explicit and easily enforceable.

6. before_filters are useful anytime you have code that should run in advance of all
of the other methods being called. It might be initialization code, or code that tests
that certain conditions have been met.

7. The form_for method uses the first argument to establish the target for the form’s
results. If the first argument is a single object, it will create a URL pointing to that
object. If the first argument is an array containing more than one object, it assumes
that the first object contains the second, and generates a URL reflecting a nested
resource relationship.

8. A join table needs a column to store id values for each of the two models it connects.
By Rails conventions, these columns are named model_id. A column linking to
students, for example, should be student_id.

9. Indexing both of the columns in a join table will give you much better response
times than leaving them unindexed.

10. You’ll need to add information about new methods in the routes.rb file, and create
views for them as well.

Test Your Knowledge | 173

CHAPTER 10

Managing Databases with Migrations

Migrations might seem strange at first, but over time they’ll become a very ordinary
part of your work, whether you generate them automatically or customize them by
hand. Rails’ approach to managing data structures is very different from the traditional
separation of database design from programming. While Rails still maintains a separate
toolkit for defining data structures, that toolkit attempts to improve on the traditional
SQL Data Definition Language (DDL) by wrapping DDL in Ruby code.

Migrations are something of a world of their own in the Rails environment, but they
are still recognizably Rails, built into the same development process. Migrations are all
written in Ruby code, using a fairly small set of conventions. This book has used mi-
grations throughout—you can write much of a Rails application without them—but
until the last chapter (and then only once), those migrations were generated using Rails’
inventive scripts. Once you move past those scripts, migrations are a little more diffi-
cult, but still not that complicated.

The details of migrations may not be your first priority. You can safely
skip this chapter and come back to it if database and data structure
management seem like good reading for a really rainy day.

What Migrations Offer You
Migrations are part of Rails’ general effort to separate developers from direct contact
with databases. From a Rails perspective, databases are kind of a “giant hash in the
sky,” a conveniently persistent storage system for data that shouldn’t need much direct
attention. While it’s good to have a general idea of the database structures underneath
your application and to know what tables and rows are so you can communicate with
people outside of Rails development, in many ways Rails itself represents a revolt
against database culture in web programming. (Rails apps still largely run on relational
databases, though the linkages are breaking down and NoSQL options are starting to
appear.)

175

Migrations reflect the approach Rails takes to databases. Rails expects database struc-
tures to grow and change as the application itself grows and changes. There won’t be
a large planning meeting at the start of a project to lay out database structures and
responsibility for maintaining them—responsibility for the database lies with the same
programmers who are writing the rest of the code. Those programmers will make
changes as and when they see fit.

As a result, migrations are effectively lists of changes. Each migration is a set of
instructions that applies to the results of the previous migration. The first migration
creates the first table and probably some rows and columns, and later migrations can
create their own tables or modify existing tables.

Also, understanding that programmers can (and do) make mistakes, migrations are
designed to be reversible. As long as you take care to be certain your migrations are
reversible, migrations offer an incredibly flexible approach that lets you make changes
to your database whenever and wherever necessary. (Some operations, of course, can’t
be reversible.)

Because Rails works hard at staying independent of any given database implementa-
tion, migrations also offer you a convenient technique for creating your application
using one database for development or testing and yet another for deployment. They
also offer a means of moving improvements created by developers after an application
has been released to the live release of that application—though, of course, patching
live databases supporting real users who might complain remains a scary project.

It’s generally a good idea to stick to migrations when managing data-
bases for use with Rails. You may know a lot about MySQL, SQLite,
PostgreSQL, Oracle, or whatever database engine you’ve chosen, and
be able to tweak your application’s database for better performance.
Everything will go along fine—until Rails discovers that its migrations’
opinion of what your database contains is different from what is actually
there.

You may especially have a hard time rolling back migrations as a result,
and it’ll require careful work to transfer the work you did in the database
to the live production environment as well.

You certainly can work on your databases directly. Sometimes that will
be necessary, especially if you’re trying to retrofit Rails to a previously
existing database. It’s probably wise, however, to be very cautious about
doing that until you’re completely confident in how these interactions
work.

Migration Basics
Migrations are maintained in files stored in the db/migrate folder. Each file contains
one more-or-less discrete set of changes to the underlying database. Unlike most of the

176 | Chapter 10: Managing Databases with Migrations

code you write, migrations are not automatically run when you start up Rails, instead
waiting for an explicit command from the rake tool.

Migration Files
Prior to Rails 2.1, migration files had relatively comprehensible names, such as
001_create_people.rb. Rails 2.1 brought a new naming convention, in which the first
part of the name changed from being a sequential number to being a much longer
timestamp, like 20120701211008_create_students.rb. The new wider names are
incredibly annoying if you’re just one developer creating applications on a laptop with
a narrow screen, but help avoid name collisions if you’re a developer working on a team
where multiple people can check in their own migrations. (Perhaps the team developers
have larger monitors as well?)

If you really prefer the shorter names, and don’t fear conflicts, add the
line config.active_record.timestamped_migrations = false to your
config/application.rb file.

While you can create migration files by hand, if you’re going to work with migrations
in the new world of timestamps, you should probably stick to using generate, which
will handle all of that for you. You can edit those files afterward if needed. Many
generate calls will create migrations as part of their work toward creating a model and
supporting infrastructure, but if you just want to create a blank migration, enter the
command rails generate migration NameOfMigration, where NameOfMigration is a rea-
sonably human-comprehensible description of what the migration is going to do. (For
the name, you can use CamelCase or underscores_between_words.) Your result, depend-
ing on the name you give it, will look something like Example 10-1.

Example 10-1. An empty migration file, fresh from rails generate

class EmptyMigration < ActiveRecord::Migration
 def self.up
 end

 def self.down
 end
end

All migrations are descended from ActiveRecord::Migration. The self.up and
self.down methods are the heart of the migration. In theory, at least, they should be
strictly symmetrical. Everything created in self.up should vanish when self.down is
called, leaving the database structure in the same state it had before the migration was
run. If you let these two methods get out of sync, you’ll have a very hard time recovering.

Migration Basics | 177

As always, the rails generate command has smarts and surprises. If
you name a migration along the lines of AddAgeToPeople and specify
age:integer, Rails will create a migration that adds a field named age to
the people table, sparing you some typing. (It also works the other way
with migrations with names that begin with Remove.)

Rails also offers, as previous chapters demonstrated, a change method. The scaffolding
generally uses this approach. It works best for simple migrations. Rails knows how to
reverse these methods:

add_column

add_index

add_timestamps

create_table

remove_timestamps

rename_column

rename_index

rename_table

add_column

If you go beyond these, however, you need to use self.up and self.down instead of
change.

While you’ll obviously be paying attention when writing your applica-
tions, and the generators shouldn’t create problems, there’s one situa-
tion that might still bite you: an unsaved file you’re editing. If you think
you’ve made changes and run the migration forward, but didn’t save
the file, and then save the file and roll the migration back...

Unfortunately, fixing it really depends on what exactly you did. Just be
careful to make sure that you’ve saved all of your files when editing
migrations before running them.

Running Migrations Forward and Backward
You apply migrations to the database using the Rake tool. You can run rake --tasks
to see the ever-growing list of tasks it supports, and most of the database-related tasks
are prefixed with db:. While you’re learning Rails, there are only three tasks that you
really need to know, and two more you should be aware of:

db:migrate

You’ll run rake db:migrate frequently to update your database to support the latest
tables and columns you’ve added to your application. If you run your application
and get lots of strange missing or nil object errors, odds are good that you forgot
to run rake db:migrate. It also updates the db/schema.rb file, which is a one-stop
description of your database.

178 | Chapter 10: Managing Databases with Migrations

db:rollback

If you made changes but they didn’t quite work out, rake db:rollback will let
you remove the last migration applied. If you want to remove multiple migrations,
you can specify rake db:rollback STEP=n, where n is the number of migrations you
want to go back. Be careful—when Rails deletes a column or table, it discards the
data. It also updates the db/schema.rb file, which is a one-stop description of your
database.

db:drop

If things have gone really wrong with your migrations, rake db:drop offers you a
“throw it all away and start over” option, obliterating the database you’ve built—
and all its data.

db:reset

Using rake db:reset is a little different from using rake db:drop—it obliterates the
database and then builds a new one using the db/schema.rb file, reflecting the last
structure you’d created.

db:create

The rake db:create command tells the database to create a new database for your
application, without requiring you to learn the internal details of whatever database
system you’re using. (You must, of course, have the right permissions to create that
database.)

Most of the time, rake db:migrate will be your primary interaction with rake. When
you run it, it will show information on each migration it runs, as shown in Exam-
ple 10-2, using the migrations from the previous chapter. (The start of each migration
is bolded to make it easier to review the output.)

Example 10-2. Output from Rake, for a set of four migrations

$ rake db:migrate
== CreateStudents: migrating ===
-- create_table(:students)
 -> 0.0629s
== CreateStudents: migrated (0.0636s) ==

== CreateAwards: migrating ===
-- create_table(:awards)
 -> 0.0017s
== CreateAwards: migrated (0.0019s) ==

== CreateCourses: migrating ==
-- create_table(:courses)
 -> 0.0015s
== CreateCourses: migrated (0.0017s) ===

== CreateCoursesStudents: migrating ==
-- create_table(:courses_students, {:id=>false})
 -> 0.0010s
-- add_index(:courses_students, [:course_id, :student_id], {:unique=>true})

Migration Basics | 179

 -> 0.0009s
== CreateCoursesStudents: migrated (0.0021s) =================================

The timing information may be more than you need to know, but you can see what got
called in what migration. If something goes wrong, it will definitely let you know.

Rails will happily let you perform operations on multiple tables from
within a single migration. Eventually, that may be an attractive option,
but when you’re first starting out, it’s usually easier to figure out what’s
going on, especially what’s going wrong, when each migration operates
only on a single table.

Inside Migrations
The easiest way to familiarize yourself with migrations is (as is often the case with Rails)
to examine what Rails puts in them with rails generate. In Chapter 9, we created a
students model with:

rails generate scaffold student given_name:string middle_name:string
family_name:string date_of_birth:date grade_point_average:decimal
start_date:date

That code generated many files, but the migration it created went into db/
20120220210620_create_students.rb and contained the code shown in Example 10-3.

Example 10-3. Code for setting up a table, created with self.up and self.down

class CreateStudents < ActiveRecord::Migration
 def change
 create_table :students do |t|
 t.string :given_name
 t.string :middle_name
 t.string :family_name
 t.date :date_of_birth
 t.decimal :grade_point_average
 t.date :start_date

 t.timestamps
 end
end

Here, because Rails understands how to reverse the create_table method, it just uses
a change method. Versions of Rails before 3.1 would create the more verbose (and still
functioning) code shown in Example 10-4.

Example 10-4. Code for setting up a table, created with self.up and self.down

class CreateStudents < ActiveRecord::Migration
 def self.up
 create_table :students do |t|
 t.string :given_name

180 | Chapter 10: Managing Databases with Migrations

 t.string :middle_name
 t.string :family_name
 t.date :date_of_birth
 t.decimal :grade_point_average
 t.date :start_date

 t.timestamps
 end
 end

 def self.down
 drop_table :students
 end
end

You can also generate migrations with rails generate migration migration_name.
Normally, migrations that create new tables start their names with create, while
migrations that add to existing tables start their names with add.

Working with Tables
Most of the activity in the migration generated by the scaffolding, shown in Exam-
ple 10-1, is in the change or self.up method. self.down, if present, drops the whole
students table, which also disposes of any contents it had, so it can skimp on details,
just ordering drop_table :students. As you might suspect, drop_table just removes the
table and all of its columns and data completely.

The self.up method uses create_table for two purposes. First, it creates
the :students table. Second, it establishes a context. Much like form_for with its block
and its f variable for establishing context, create_table creates a block and conven-
tionally uses a t variable for context.

The rest of the calls inside the create_table block begin with that t. While they look
like declarations, making migrations nearly as easy to read as database schemas, they
are actually method calls, using the name of the data type as the method.

There isn’t any listing here for an id value, even though Rails uses ids
for practically everything. Rails will automatically add an id to tables
you create with create_table, unless you specify the :id => false
option.

Data Types
As noted earlier, Rails supports 11 data types directly:

:string

:text

:integer

Inside Migrations | 181

:float

:decimal

:datetime

:timestamp

:time

:date

:binary

:boolean

Each of these types can be created by calling its name after t.. For example,
t.string :given_name creates a column in the :students table of type string that’s
named given_name. And t.date :date_of_birth creates a column in the :students table
of type date that’s named date_of_birth.

In older versions of Rails (prior to 2.0), those two declarations would have been written:

t.column :given_name, string
t.column :date_of_birth, string

You may still encounter this older form in old documentation and in code. It still works,
but it’s less convenient, so use the newer form.

t.timestamps is not the same as t.timestamp. It is unique, a convenience method Rails
uses to manage creation and modification times as created_at and updated_at columns.
(You can remove timestamps with t.remove_timestamps.)

Each of the data types can accept named parameters as well:

• All of them accept :default => value, though the results may not be what you
expect since this doesn’t pass through to the model. New models won’t have the
default value, users won’t see them, and they’ll be overwritten by whatever the
users enter, even if it’s nothing.

• All types also accept :null => true|false, where the boolean value identifies
whether or not a null value is acceptable. Set this to false to limit the column to
nonnull values.

• :string, :text, :binary, and :integer types accept :limit => size. The size is the
permitted length of the value in characters or bytes.

• The :decimal data type also accepts :precision and :scale parameters.
The :precision parameter specifies how many digits the number can have, while
the :scale parameter specifies how many of those digits appear after the decimal
point.

Always specify :precision and :scale if your application might move
across different databases, like the common case of SQLite in develop-
ment and MySQL in production. Different databases treat :decimal
slightly differently, but specifying these parameters will minimize
surprises.

182 | Chapter 10: Managing Databases with Migrations

You may find it useful to express these constraints in the migration for implementation
in the database layer, but in most cases, you’ll probably find it easier to establish these
in the model layer, with the validations discussed in Chapter 7. (Sometimes specify-
ing :precision and :scale is recommended for :decimal types because of database
incompatibilities, however.)

You can, if necessary, create custom types specific to a given database.
If you really, truly are certain you want to do that, study the
config.active_record.schema_format setting that’s in the config/
environment.rb file. In general, though, while it’s nice to know that you
can do this, you usually shouldn’t.

Working with Columns
When you’re first starting out, most of your data structure creation will be whole tables
at a time. Once you’ve established your application, however, new ideas are bound to
flow. You’ll probably create some new tables, but you’ll also create or remove columns
within your existing tables. Conveniently, migrations support add_column and
remove_column methods.

Chapter 8 used a migration to add a column for file extensions:

class AddPhotoExtensionToPerson < ActiveRecord::Migration
 def self.up
 add_column :people, :extension, :string
 end

 def self.down
 remove_column :people, :extension
 end
end

The first argument for add_column is the table to add the column to. The second argu-
ment is the name of the column, and the third column is the type. You can add extra
options as discussed earlier in the section “Data Types” on page 181 if you want, as
named parameters following the type.

The remove_column method is simpler, taking just the table and the column to remove.
There’s also a remove_columns method that lets you specify multiple column names.

Indexes
Indexes (or indices if you prefer) speed up information retrieval, but slow down writes
because the index also has to be updated. By default, the only column Rails tells the
database to index is the id column, which it references constantly. If you have other
columns that you’ll be searching regularly, notably columns in join tables, you’ll defi-
nitely want to learn about add_index and remove_index. The many-to-many example in

Inside Migrations | 183

Chapter 9 used them in a migration for building the join table between courses and
students:

class CreateCoursesStudents
 def change
 create_table :courses_students, :id => false do |t|
 t.integer :course_id, :null => false
 t.integer :student_id, :null => false
 end

 # Add index to speed up looking up the connection, and ensure
 # we only enrol a student into each course once
 add_index :courses_students, [:course_id, :student_id], :unique => true
end
end

After this migration’s change method has created the courses_students table, it calls
the add_index method. The first argument is always the table to receive the index. The
second argument can either be the column to be indexed or an array listing columns.
You could have indexed each of the columns in the above add_index method with two
calls:

add_index :courses_students, :course_id, :unique => true
add_index :courses_students,:student_id, :unique => true

However, calling the add_index method with a two-component array created a different
kind of index, indexing the values of each column to the other. For a join table, that’s
the most efficient approach.

You can also specify two options. The first, :unique, indicates whether all values in the
column have to be unique. The examples just shown set it to true, but if you’re indexing
content other than id values, the default of false may be more appropriate. (More
typically, these kinds of constraints are applied in Rails rather than the database, at the
model level.) You can also name the index through the :name parameter.

If you reverse this with rake db:rollback, rails will call the remove_index method
before and then the drop_table method.

Other Opportunities
Migrations offer many other possibilities for creative database manipulation, advanced
development, and general trouble-causing. Additionally, the ActiveRecord::Connec
tionAdapters::SchemaStatements class, which contains most of the methods useful for
creating migrations, offers a wide variety of other options you may want to explore.
Many, like rename_column and rename_table, have fairly obvious functionality. Here’s
the list of what’s out there:

add_index_options

add_index_sort_order

add_timestamps

184 | Chapter 10: Managing Databases with Migrations

assume_migrated_upto_version

change_column

change_column_default

change_table

columns

columns_for_remove

distinct

index_name_for_remove

initialize_schema_migrations_table

native_database_types

options_include_default?

quoted_columns_for_index

remove_timestamps

rename_column

rename_table

structure_dump

table_alias_for

table_exists?

The Rails documentation describes all of these in much greater depth.

One final method, not listed here, is worth noting: execute. The execute method lets
you issue SQL commands to the database. If you’re really fond of SQL, that may be
something you want to explore, though it’s probably not the best option for your first
few outings with Rails.

Test Your Knowledge

Quiz
1. How do you run migrations forward?

2. How do you create a new migration?

3. What should the self.down method do in a migration?

4. What Rails data type should you use to represent currency values?

5. How do you add a new field to a record?

Answers
1. With the rake db:migrate command.

Test Your Knowledge | 185

2. To keep in line with Rails’ timestamp-based naming convention, it’s best to use
rails generate migration NameOfMigration, and then edit the resulting file in the
db/migrate directory.

3. The self.down method defines what should happen if the migration is rolled back
using rake db:rollback. The tables, column, and indexes created in self.up need
a corresponding removal process in self.down. If you used the change method,
however, you do not need a self.down method.

4. The :decimal type is the most precise way to keep track of money. It can keep track
of cents to the right of the decimal point and will contain values with a fixed number
of decimal places much more accurately than :float.

5. New fields get created with add_column, as “fields” are represented as columns and
the records that contain them as rows.

186 | Chapter 10: Managing Databases with Migrations

CHAPTER 11

Debugging

When you’re first starting out in Rails, it’s easy to wonder what exactly is going on at
any given moment. Web applications by their very nature are tricky to debug, as so
much happens before you see an answer. Fortunately, Rails includes tools to figure out
what’s going wrong while applications are running. Debugging tools keep evolving,
but there’s a basic set you should understand from the beginning.

Creating Your Own Debugging Messages
I’m sure it was facetious, but an old programmer once told me that “the real reason the
PRINT statement was invented was for debugging.” While it may not be aesthetically
pleasing to dump variable values into result screens, it’s often the easiest thing to do in
early development. All controller instance variables are available to the view, so if you
want to see what they contain, you can just write something like:

<%= @student %>

to display the contents of @student. However, if the object has much complexity and
isn’t just a string, it will insert something like:

#<Student:0x21824f8>

into the HTML for the page. All you’ll see is the #.

Rails does, however, offer a way to make this more useful. The DebugHelper class offers
a helper method named debug. While it won’t magically debug your programs, it will
present these kinds of messages in a slightly prettier form, as YAML (Yet Another
Markup Language). Instead of <%= @student %>, for example, you could write <%=
debug(@student) %>. The debug method would give you:

--- !ruby/object:Student
attributes:
 start_date: "2006-09-12"
 updated_at: 2011-07-17 23:04:03
 id: "2"
 family_name: Stim

187

 given_name: Milletta
 date_of_birth: "1989-02-02"
 created_at: 2011-07-03 18:34:59
 grade_point_average: "3.94"
 middle_name: Zorgas
attributes_cache: {}

If you need to take a quick look at what’s happening and see it on the page where it’s
happening, this can be a useful technique.

Raising Exceptions
Sometimes you want to know what a variable looks like inside of a controller, before
data is reaching your page. There’s an easy way to abuse Ruby’s mechanism for raising
exceptions, raise, which will show you that information. This only works in develop-
ment mode, but then, it’s really a better idea to do debugging in development rather
than production.

To use this clumsy but sometimes useful mechanism, just add a raise in your code—
in this case, in app/controllers/award_controller.rb:

 # GET /awards/1
 # GET /awards/1.json
 def show
 @award = @student.awards.find(params[:id])
 # was Award.find(params[:id])
 raise @award.to_yaml
 respond_to do |format|
 format.html # show.html.erb
 format.json { render json: @award }
 end
 end

When you go to show an award, you’ll get a YAML dump like the one shown in
Figure 11-1. It shows you all the information in the award variable.

You can also constrain your exceptions by combining them with if statements and
similar conditionals, though if you do this, be especially careful to take them out when
you’re done using it. It’s easy to forget about an exception you raise only occasionally,
and users who encounter it in a production environment will only see a “We’re sorry,
but something went wrong” message.

Logging
You may not have thought of it this way, but you’ve been working with Rails logs since
the first time you entered rails server. All of that information flowing by is the
development log. You can find all of it in the log directory of your application, stored
in the development.log file. (There are also test.log and production.log files there for use

188 | Chapter 11: Debugging

when your application runs in test or development mode, as described in the next
chapter.)

While Rails is certainly generous with the information that it sends to the log in devel-
opment mode, that sheer volume can make it hard to find things. It may also not be
sending what you want to see. If you want to send something specific to the log, use
the logger object in your model, controller, or view. In a model or controller, this would
look like:

logger.info 'This is a message to send to the log'

while in the view it would look like:

<% logger.info 'This is a message to send to the log' %>

You can use <%= rather than <% to send the message to both the screen and the logger
if you want to combine a visible message with a permanent record:

<%= logger.info 'This is a message for the view and the log' %>

The user would then see “This is a message for the view and the log” on her screen,
and it would also be stored in the log file.

One piece of information that is logged and is worth pointing out is timing information.
You’ll find lines in the log like:

Figure 11-1. The ugly but helpful result of a deliberately raised exception

Logging | 189

Completed in 0.01451 (68 reqs/sec) | Rendering: 0.00775 (53%) |
DB: 0.00093 (6%) | 200 OK

That tells you how fast the whole thing was completed, how long the view processing
took (rendering), and how long the database processing (DB) took. The last entry on
the line is the HTTP response. You should note that Rails can probably execute the
code much faster when in production; during development, it’s loading, reloading, and
logging a lot of extra information.

There may also be times you want to make certain that certain information isn’t logged.
This is most important for sensitive information and is easily accomplished with the
filter_parameter_logging method:

filter_parameter_logging :password

You can put these calls in the controllers that receive the affected parameters. However,
if you want to filter parameters that apply to many controllers (like password data), it’s
safest to put these calls in app/controllers/application.rb, where they will apply to all
controllers.

Working with Rails from the Console
Rails is so thoroughly web-facing that it can be difficult to imagine working with it from
the command line, but it does indeed offer rails console. When you run rails
console rather than rails server, Rails starts up a special environment using the
Interactive Ruby Shell (irb) instead of firing up a web server. This shell has the full
context of your application, so you can load data from your databases, play with mod-
els, and generally take a look around.

You can, if you want, have rails console and rails server running at
the same time in different windows.

The console shell lets you interact with your application from the command line with
the full powers of Ruby at your disposal. Most Ruby books include a lot more detail
about irb, some even running all of their examples there, but in Rails it’s good mostly
for playing with models and testing methods.

To get started, try running rails console --sandbox in one of your applications, say
the final students/courses application from Chapter 9. You’ll see something like:

$ rails console --sandbox
Loading development environment in sandbox (Rails 3.2.1)
Any modifications you make will be rolled back on exit
ruby-1.9.2-p136 :001 >

190 | Chapter 11: Debugging

If you actually want to make changes to your database, you can leave off the
--sandbox option (which can be abbreviated -s). For the first few visits, it feels safer to
know that none of the changes made from the console will last beyond the console
session. Everything gets rolled back once the session ends.

To start actually working with some data, load an object into a variable. Rails will not
only load the object, it will show all the details of the underlying fields. (It always shows
the return value.)

ruby-1.9.2-p136 :001 > s=Student.find(2)
Student Load (26.2ms) SELECT "students".* FROM "students" WHERE "students"."id" = ?
LIMIT 1
 [["id", 2]] => #<Student id: 2, given_name: "Milletta", middle_name: "Zorgos",
 family_name: "Stim", date_of_birth: "2007-02-02", grade_point_average:
 #<BigDecimal:1010c1f00,'0.394E1',18(18)>, start_date: "2012-09-12",
 created_at: "2012-02-20 21:10:34", updated_at: "2012-02-20 21:10:34">

The model included something that isn’t shown here, though: a simpler name method.
You can call that from the console, too:

ruby-1.9.2-p136 :002 > s.name
=> "Milletta Stim"

All of the methods on the model are available to you here. In fact, if you’re going to be
working with one object for a long time, you can create a new irb console session that’s
in the context of that object. This lets you call methods and explore without constantly
prefacing method names with the variable you used:

ruby-1.9.2-p136 :003 > irb s
ruby-1.9.2-p136 :001 > name
 => "Milletta Stim"
ruby-1.9.2-p136 :002 > cList=courses
 Course Load (0.2ms) SELECT "courses".* FROM "courses" INNER JOIN "courses_students"
 ON "courses"."id" = "courses_students"."course_id" WHERE "courses_students".
 "student_id" = 2
 => [#<Course id: 1, name: "Reptiles: Friend or Foe?", created_at: "2012-02-20
22:03:47", updated_at: "2012-02-20 22:03:47">, #<Course id: 5, name: "Advanced
Bolt Design", created_at: "2012-02-20 22:04:28", updated_at: "2012-02-20 22:04:28">]

When you’re done working inside of this object, you can just type quit or exit, and
you’ll get an exit message like:

ruby-1.9.2-p136 :004 > exit
 => #<IRB::Irb: @context=#<IRB::Context:0x00000103021080>, @signal_status=:IN_EVAL,
 @scanner=#<RubyLex:0x0000010301dd18>>

This means you are no longer in the object.

You can, of course, change the values in your objects as well:

> s.middle_name='Zorgas'
=> "Zorgas"

(If you get an error about “undefined local variable,” you’re probably still in the irb
session, not the main console.) If you want to see what values have changed—before

Working with Rails from the Console | 191

you save them—you can use the y method (for YAML, a convenient data exchange
format):

ruby-1.9.2-p136 :005 > y s
--- !ruby/object:Student
attributes:
 id: 2
 given_name: Milletta
 middle_name: Zorgas
 family_name: Stim
 date_of_birth: 2007-02-02
 grade_point_average: 3.94
 start_date: 2012-09-12
 created_at: 2012-02-20 21:10:34.268306 Z
 updated_at: 2012-02-20 21:10:34.268306 Z
 => nil

You can also call the save method:

> s.save
 (0.2ms) SAVEPOINT active_record_1
 (0.1ms) RELEASE SAVEPOINT active_record_1
 => true

The reported return value is true, so the save succeeded. If you’re using the sandbox,
when the sandboxed session ends, this will be rolled back:

> exit
 (0.6ms) rollback transaction

The console also provides two convenience objects you may want to use on their own.
The first, helper, gives you instant access to all of the helper methods in your applica-
tion. If you want to test out a method with a set of arguments, just call the method from
helper, as in this call to number_to_human_size:

> helper.number_to_human_size 1092582135
=> "1.02 GB"

The other convenience object, app, gives you access to your full application context,
including the routing table. This lets you do things like test your routing with:

ruby-1.9.2-p136 :008 > app.url_for :action=>"index", :controller=>"courses"
=> "http://www.example.com/courses"
ruby-1.9.2-p136 :009 > app.url_for :action=>"new", :controller=>"courses"
=> "http://www.example.com/courses/new"

You can also test named routes, which are ubiquitous in RESTful development, but
first you need to activate access to the methods which present them with:

> include Rails.application.routes.url_helpers

Then you can do things like:

> new_course_path
=> "/courses/new"

192 | Chapter 11: Debugging

You can also call your controllers using the app object, using the app.get, app.post,
app.put, and app.delete methods from ActionController::Integration::Session. The
results of these may not be exactly what you expect. For example:

> app.get "/students/2"
 Student Load (0.3ms) SELECT "students".* FROM "students" WHERE "students"."id" = ?
LIMIT 1 [["id", "2"]]
 (0.2ms) SELECT COUNT(*) FROM "courses" INNER JOIN "courses_students" ON
"courses"."id" = "courses_students"."course_id" WHERE "courses_students"."student_id" = 2
 Course Load (0.1ms) SELECT "courses".* FROM "courses" INNER JOIN
"courses_students" ON "courses"."id" = "courses_students"."course_id" WHERE
"courses_students"."student_id" = 2
 Award Load (0.2ms) SELECT "awards".* FROM "awards" WHERE "awards"."student_id" = 2
 Student Load (0.2ms) SELECT "students".* FROM "students" WHERE "students"."id" = 2
LIMIT 1
 => 200

You see all the queries executed in processing the request, but the result is 200. The
200 just means that the request was processed successfully and some kind of response
produced. A 404 would be the classic “Not Found” error, meaning that Rails couldn’t
find an action matching that path, and 500 would be a more severe error. You can take
a closer look at what happened by asking the app object for the parameters:

> app.controller.params
 => {"action"=>"show", "controller"=>"students", "id"=>"2"}

This breakdown makes it clear how the routing interpreted the request and called the
controller. You can also get to the response itself, though the presentation isn’t quite
beautiful:

> app.response.body
 => "<!DOCTYPE html>\n<html>\n<head>\n <title>Students
</title>\n <link href=\"/assets/application.css?body=1\" media=\"all\"
rel=\"stylesheet\" type=\"text/css\" />\n<link href=\"/assets/awards.css?body=1\"
media=\"all\" rel=\"stylesheet\" type=\"text/css\" />\n<link
href=\"/assets/courses.css?body=1\" media=\"all\" rel=\"stylesheet\"
type=\"text/css\" />\n<link href=\"/assets/scaffolds.css?body=1\"
media=\"all\" rel=\"stylesheet\" type=\"text/css\" />\n<link
href=\"/assets/students.css?body=1\" media=\"all\" rel=\"stylesheet\"
type=\"text/css\"
/>\n <script src=\"/assets/jquery.js?body=1\" type=\"text/javascript\">
</script>\n<script src=\"/assets/jquery_ujs.js?body=1\" type=\"text/javascript\">
</script>\n<script
src=\"/assets/awards.js?body=1\" type=\"text/javascript\">
</script>\n<script src=\"/assets/courses.js?body=1\"
type=\"text/javascript\"></script>\n<script
src=\"/assets/students.js?body=1\" type=\"text/javascript\">
</script>\n<script src=\"/assets/application.js?body=1\"
 type=\"text/javascript\"></script>\n
<meta content=\"authenticity_token\" name=\"csrf-param\" />\n<meta
content=\"NsFJ0fxytqtTBWclpgI8elq1jRI1BMq/3ir9SOcFr9Y=\" name=\"csrf-token\" />
\n</head>\n<body>\n\n<p>\nStudents |\nCourses\n</p>\n
<hr />\n\n<p id=\"notice\"></p>\n\n<p>\n

Working with Rails from the Console | 193

Given name:\n Milletta\n</p>\n\n<p>\n
Middle name:\n Zorgas\n</p>\n\n<p>\n
Family name:\n Stim\n</p>\n\n<p>\n
Date of birth:\n 2007-02-02\n</p>\n\n<p>\n
Grade point average:\n 3.94\n</p>\n\n<p>\n
Start date:\n 2012-09-12\n</p>\n\n<p>\n
Courses:\n
Reptiles: Friend or Foe?,
Advanced Bolt Design\n</p>\n\n<h3>Awards</h3>\n
<table>\n<tr>\n<th>Name</th>\n<th>Year</th>\n
<th>Student</th>\n</tr>\n<tr>\n<td>Cleanest
Fingernails</td>\n<td>2012</td>\n<td>Milletta
Stim</td>\n</tr>\n</table>\n\n
Edit |\nCourses |
\nAwards |\nBack\n\n\n</body>\n</html>\n"

You can also see all of the header information, doubtlessly more than you explicitly set:

> app.headers
 => {"Content-Type"=>"text/html; charset=utf-8", "X-UA-Compatible"=>"IE=Edge",
 "ETag"=>"\"7c67a2f2af604f6aa3d6835da2f17189\"", "Cache-Control"=>"max-age=0,
 private, must-revalidate", "Set-Cookie"=>"_students_session=BAh7B0kiD3Nlc3Npb25
 faWQGOgZFRkkiJWUxNGNiOTEwZGU1Njg3N2Q4MGE4MzZmOGVlMjRhNTc2BjsAVEkiEF9jc3JmX3Rva2Vu
 BjsARkkiMU5zRkowZnh5dHF0VEJXY2xwZ0k4ZWxxMWpSSTFCTXEvM2lyOVNPY0ZyOVk9BjsARg%3D%3D-
 -e0da5ba86394465cd6cc1eb3e4edfd66b5146057; path=/; HttpOnly",
 "X-Request-Id"=>"065e57b0ece745589221fd734ccbe693",
 "X-Runtime"=>"0.168976", "Content-Length"=>"2022"}

If you’re working from the console and making changes to the code at the same time,
there’s one more key command you’ll want to know: reload!. Rails’ console isn’t as
instantly adapting, even in development mode, as its web interfaces. When you issue
the reload! command, the console will reload your updated application code and use
it. There’s just one thing to watch out for, though: if you’ve created objects already,
they’ll still be using the old code. You’ll need to tear them down and replace them if
you want to test them out with the new code.

The console is a great place to “get your hands dirty” and play with code directly. It
lets you tinker with your application much more directly than is easily possible through
the web interface. However, it definitely has some limitations. It’ll probably take a while
to grow comfortable using it—the error messages are often cryptic. It’s obviously not
a great place to experiment with interfaces. It’s very easy to enter a typo and not figure
it out before something important has changed or broken.

Most importantly, though, the console is outside of your main application flow. Testing
in the console is not usually testing the way the application really works. Not only that,
it’s not a structured set of tests so much as poking around to see what happens. While
the console is useful, it’s definitely not your only or best choice for making sure your
application behaves correctly.

194 | Chapter 11: Debugging

The Ruby Debugger
The console is fun for tinkering and can be extremely useful for trying things out, but
it’s a completely separate process from the way you (and your users) normally run Rails
applications.

If you’d rather do your debugging within a normal web-served Rails, the most common
current approach uses the Ruby debugger. It’s installed as a gem called ruby-debug in
Ruby 1.8, or ruby-debug19 if you’re using Ruby 1.9. From the command line, you can
install it with:

$ gem install ruby-debug19
Fetching: columnize-0.3.6.gem (100%)
Fetching: archive-tar-minitar-0.5.2.gem (100%)
Fetching: ruby_core_source-0.1.5.gem (100%)
Fetching: linecache19-0.5.12.gem (100%)
Building native extensions. This could take a while...
Fetching: ruby-debug-base19-0.11.25.gem (100%)
Building native extensions. This could take a while...
Fetching: ruby-debug19-0.11.6.gem (100%)
Successfully installed columnize-0.3.6
Successfully installed archive-tar-minitar-0.5.2
Successfully installed ruby_core_source-0.1.5
Successfully installed linecache19-0.5.12
Successfully installed ruby-debug-base19-0.11.25
Successfully installed ruby-debug19-0.11.6
6 gems installed
Installing ri documentation for columnize-0.3.6...
...

If you get a “Can’t find header files for ruby” error message, your Ruby
install has left off some of the developer-only components. Header files
are not installed automatically with Mac OS X, for example. You’ll need
to install Xcode tools from the Optional Installs/Xcode Tools.mpkg
directory on the original OS X DVD. (This is a large and long install!)
On other platforms, you may need to install a ruby-devel package.

Once the gem is installed, you can use Ruby debugger with any Rails application on
your computer, but you have to tell the Rails app to make the debugger available. To
do this, open the Gemfile and uncomment the line:

gem 'ruby-debug19', :require => 'ruby-debug'

This will make the debugger available in development mode (where you are now). You
should probably only add it so that it applies in development mode, and leave
test.rb and production.rb alone.

The Ruby Debugger | 195

If ruby-debugger19 gives you headaches, you might want to explore an
alternative at https://github.com/cldwalker/debugger/.

The next step is to add the debugger call in one of the controller methods. For a test,
modify the create method in app/controllers/students_controller.rb (as is done in ch11/
students05) so that it looks like:

def create
 @student = Student.new(params[:student])
 debugger
 respond_to do |format|
 if @student.save
 flash[:notice] = 'Student was successfully created.'
 format.html { redirect_to(@student) }
 format.xml { render :xml => @student, :status => :created, :location =>
@student }
 else
 format.html { render :action => "new" }
 format.xml { render :xml => @student.errors, :status =>
:unprocessable_entity }
 end
 end
 end

Now, start the application with rails server --debugger, The visit http://localhost:
3000/students/new to enter a new student. You’ll see something like Figure 11-2.

The most important part of Figure 11-2 is the status bar at the lower left: Waiting for
localhost…. That’s unusual, unless you’ve accidentally put an infinite loop into your
application. If you check the logs in the window where you ran rails server, you’ll
see that it’s waiting for your input at an (rdb:1) prompt:

ch11/students05a/app/controllers/students_controller.rb:51
respond_to do |format|
(rdb:9)

196 | Chapter 11: Debugging

https://github.com/cldwalker/debugger/
http://localhost:3000/students/new
http://localhost:3000/students/new

Figure 11-2. Waiting for a response because the debugger kicked in

The line above the prompt is the next statement to be executed, if you type next.
Unsurprisingly, it’s the line right after debugger. If you type list, you can see where
you are, marked by =>:

(rdb:1) list
 [46, 55] in ch11/students05a/app/controllers/students_controller.rb
 46 # POST /students
 47 # POST /students.json
 48 def create
 49 @student = Student.new(params[:student])
 50 debugger
 => 51 respond_to do |format|
 52 if @student.save
 53 format.html { redirect_to @student, notice:
 'Student was successfully created.' }
 54 format.json { render json:
 @student, status: :created, location: @student }
 55 else

To see a list of the available commands, type help. The main ones you’ll need at first
to move through code are:

• next (or step) to move forward to the next line

The Ruby Debugger | 197

• cont to leave the debugger and let the program continue

• quit to leave the debugger and shut down Rails

Following code for any extended period will likely drop you into the Rails framework
code, which may be confusing at first. You’ll want to enter your debugger commands
and other breakpoints close to where you think problems exist, or patiently wait for
Rails to get out of your way.

While you’re in the debugger, you will probably want to inspect variables, which you
can do with the p (or pp) command:

(rdb:1) p @student
#<Student id: nil, given_name: "Geramiah", middle_name: "Tinke", family_name:
 "Weruzian", date_of_birth: "1989-02-18", grade_point_average:
 #<BigDecimal:20de0d8,'0.377E1',8(8)>,
 start_date: "2007-09-16", created_at: nil, updated_at: nil>

If you want a prettier view of the data or if you’re just more comfortable in irb, you can
jump into irb and tinker as you like. When you’re done working in irb, type exit or
quit and you’ll be returned to the debugger shell. (When you enter irb, the prompt
changes to >>, and when you exit, it returns to (rdb:#), where # is a number.) For
example, the following session goes into irb to print the @student object as YAML, using
the y command explored earlier:

(rdb:1) irb
(rdb:9) y @student
--- !ruby/object:Student
attributes:
 id:
 given_name: Geramiah
 middle_name: Tinke
 family_name: Weruzian
 date_of_birth: 1989-02-18
 grade_point_average: 3.77
 start_date: 2012-04-01
 created_at:
 updated_at:
nil

(rdb:9) exit
/Users/simonstl/Documents/RailsOutIn/current/code/ch11/students001d/app/
controllers/students_controller.rb:62
respond_to do |format|
(rdb:1)

In development mode, Rails will reload your files for every request before you get into
the debugger, but if you want the debugger to reload your files for every step, you can
issue the command set autoreload. It will go much more slowly, but sometimes that’s
OK for delicate surgery.

198 | Chapter 11: Debugging

For much more detail on using the Ruby debugger with Rails, check out the ever-
improving Debugging Ruby on Rails Guide at http://guides.rubyonrails.org/debugging
_rails_applications.html/.

Test Your Knowledge

Quiz
1. What’s the easiest way to present debugging information in a Rails view?

2. Where can you find information about how quickly different aspects of a request
were handled?

3. How can you test routing from the console?

4. How do you tell your program to support the Ruby debugger?

5. How do you let your program continue when you exit the Ruby debugger?

Answers
1. The debug method makes it easy to present the complete contents of an object in

a mostly readable YAML representation.

2. Rails includes a lot of timing information in its development log, which is available
both in the terminal window for rails server and in the log/development.log file.

3. You can test simple routes by calling app.url_for. If you need to test named routes,
include Rails.application.routes.url_helpers and then try calling the path
methods.

4. By uncommenting the gem 'ruby-debug19', :require => 'ruby-debug' line in the
Gemfile file and starting the server with rails server --debugger.

5. When you use the cont command, rather than the quit command, the debugger
lets Rails get back to what it was doing. The quit command exits the debugger and
shuts down the application.

Test Your Knowledge | 199

http://guides.rubyonrails.org/debugging_rails_applications.html/
http://guides.rubyonrails.org/debugging_rails_applications.html/

CHAPTER 12

Testing

Testing can spare you much of the work you learned to do in the previous chapter,
replacing spot-check debugging with more structured and thorough repetitive testing.
Ruby culture places a high value on testing, and Ruby and Rails have grown up with
agile development methods where testing is assumed to be a normal part of develop-
ment. While testing is a complicated subject worthy of a book or several, it’s definitely
worthwhile to start including tests early in your project development, even while you’re
still learning the Rails landscape.

Rails provides a number of facilities for creating and managing tests. This chapter will
explore Rails’ basic testing setup and note some options for building more advanced
test platforms. (Examples for this chapter are in ch12/students06.)

As you get deeper into Rails culture, you’ll find many people using other
testing frameworks, notably RSpec, Cucumber, and Capybara, with
Factory Girl managing fixtures. It’s probably easiest, though, to start by
understanding the foundations provided in Rails itself and then moving
on when you need more sophisticated features or a particular approach.

Test Mode
Up to this point, all the code in this book has been run in development mode. Rails
supports three different environments for running applications. Each of them has its
own database, as well as its own settings:

Development
Development is the default mode. In development mode, Rails loads and reloads
code every time a request is made, making it easy for you to see changes without
a cache getting in the way. It’s also typical to use SQLite as the database, as Rails
isn’t going to be working at high speed anyway.

201

Test
Test mode runs like production mode, without reloading code, and has its own
database so that tests can run against a consistent database. You could use a fancier
database for test mode (and might want to if you suspect strange database inter-
actions), but for getting started, the default of SQLite is fine.

Production
Production mode maximizes Rails’ efficiency. It doesn’t reload code, enabling it to
cache the program and run much faster. Logging is much briefer and error messages
are shortened, as giving users a complete stack trace probably isn’t helpful. It also
does more automatic and directed caching of results, sparing users a wait for the
same code to run again.

You can switch among the three modes by using the -e option of rails server:

rails server -e production

The settings for all three modes are in the config directory. The environment.rb file
contains default configuration settings used by all three modes, but the environments
directory contains development.rb, production.rb, and test.rb files whose settings over-
ride those in environment.rb.

The database.yml file contains the database connection settings for all three modes. By
default, it specifies SQLite databases named db/development.sqlite3, db/test.sqlite3, and
db/production.sqlite3. As you get closer to deploying applications, you’ll want to con-
sider other possible database installations, particularly for production, but for now,
these defaults are fine. It’s time, though, to set up a database for testing.

Setting Up a Test Database with Fixtures
Automated testing needs a stable database environment in which to do its work. The
contents of the development database will—and should—change on a regular basis as
you tinker, try things out, and experiment to see just how well everything works. This
is wonderful for a human development process, but that level of change is dreadful
when a computer is testing an application. Once the testing framework is told which
value to check for, it can’t choose another value because it knows someone else was
playing with the data. In fact, if previous tests change the data, the order in which tests
are conducted could itself become an issue, masking some bugs and falsely reporting
others.

Rails provides this stable environment two ways. First, as noted earlier, it maintains a
separate test environment, complete with its own database. Second, the testing envi-
ronment expects that developers will define stable data, called fixtures, for use in that
database. Every time a new test is run, the database is reset to that stable set of data.
It’s a slow way to do things, but it’s extremely reliable.

202 | Chapter 12: Testing

Fixtures are written in YAML. You don’t need to know much about YAML to use and
create them, however—though you should definitely be aware that whitespace is sig-
nificant. Rails, in fact, has been creating fixtures in addition to the scaffolding all along.
If you check the test/fixtures directory of the courses and students application, you’ll
see files named awards.yml, courses.yml, and students.yml. Their contents aren’t par-
ticularly exciting, though, as Example 12-1 demonstrates.

Example 12-1. The students.yml fixture file created by Rails

Read about fixtures at http://api.rubyonrails.org/classes/ActiveRecord/Fixtures.html

one:
 given_name: MyString
 middle_name: MyString
 family_name: MyString
 date_of_birth: 2012-02-20
 grade_point_average: 9.99
 start_date: 2012-02-20

two:
 given_name: MyString
 middle_name: MyString
 family_name: MyString
 date_of_birth: 2012-02-20
 grade_point_average: 9.99
 start_date: 2012-02-20

Each field has a value, set by the Rails generator to reflect its type, and there are two
records, but you may want something more reflective of the data your application is
likely to contain, like Example 12-2.

Example 12-2. A more realistic, though still brief, students.yml fixture

giles:
 given_name: Giles
 middle_name: Prentiss
 family_name: Boschwick
 date_of_birth: 1989-02-15
 grade_point_average: 3.92
 start_date: 2006-09-12

milletta:
 given_name: Milletta
 middle_name: Zorgos
 family_name: Stim
 date_of_birth: 1989-04-17
 grade_point_average: 3.94
 start_date: 2006-09-12

jules:
 given_name: Jules
 middle_name: Bloss
 family_name: Miller
 date_of_birth: 1988-11-12

Setting Up a Test Database with Fixtures | 203

 grade_point_average: 2.76
 start_date: 2006-09-12

It’s up to you whether you’d like the data to echo the development database, but
somewhat meaningful data can be useful when you’re trying to find your way through
results, especially failures.

If you try to run tests based on the generated fixtures and your migra-
tions set constraints on which fields can be null, you’ll get a lot of mys-
terious errors. In SQLite, they suggest that your database and all of its
tables are missing—even though they’re not. When using MySQL, the
error message at least narrows things down to fields, but that still doesn’t
explain why there’s a problem.

The scaffold fixtures may work for testing incredibly simple applica-
tions, but most of the time you’ll be much better off defining your own
fixtures carefully.

There’s more you can do in upgrading fixtures than improving readability, however.
The fixtures Rails created don’t know very much about relationships between models
because the fixtures were generated before you told Rails about the relationship. So,
for example, the generated fixture for awards looks like Example 12-3.

Example 12-3. The generated awards.yml fixture, without much real data

one:
 name: MyString
 year: 1
 student_id: 1

two:
 name: MyString
 year: 1
 student_id: 1

Rails knows that student_id is a number and gives it a value of 1, which should connect
to a student, although as you might have noticed in Example 12-1, the students.yml
fixture didn’t include id values. The database might start its id count at 1, or it might
not.

Fixture data isn’t validated before it’s loaded into the database. While
this might conceivably offer more testing flexibility, you should never
assume that fixture data will validate against the model until you’ve
made certain that it does.

Example 12-4 shows a better way to create this fixture, taking advantage of the names
in the student.yml file that was shown in Example 12-2.

204 | Chapter 12: Testing

Example 12-4. The awards.yml fixture, populated with semi-real data and links to students

instead of computing student_id for each award and giving students
explicit id fields, we reference the student by the name of their
fixture

skydiving:
 name: Sky Diving Prowess
 year: 2007
 student: giles

frogman:
 name: Frogman Award for Underwater Poise
 year: 2008
 student: jules

It’s important to note that the names of students used to make the connections aren’t
coming from the given_name field. They’re the names that were assigned to each student
object in the fixture. The same thing applies to the fixture, only it can actually refer to
multiple students, not just one. The original fixture, shown in Example 12-5, doesn’t
even specify any students for courses. Example 12-6, by contrast, establishes relation-
ships, using the names of the fixtures.

Example 12-5. The generated courses.yml fixture, with very little content

one:
 name: MyString

two:
 name: MyString

Example 12-6. The courses.yml fixture, populated with sort of real data

instead of making us write elaborate and fragile data structures,
the fixtures engine knows how to turn the 'students' list into a
collection of records to insert into the courses_students table.

opera:
 name: Mathematical Opera
 students: giles, milletta

it's safest to quote strings, especially if they contain colons
reptiles:
 name: "Reptiles: Friend or Foe?"
 students: giles, jules

immoral:
 name: "Immoral Aesthetics"
 students: milletta

The fixtures setup is smart enough to establish the many-to-many connection between
courses and students and build the necessary table, when given data like Example 12-6.

Setting Up a Test Database with Fixtures | 205

Once you have your fixtures set up, you can try running rake test. You’ll probably get
a lot of errors, because the tests themselves still expect the older nonsense fixtures. A
lot of errors is a normal place to start in testing, however—it just means there’s a lot
to do!

When you run rake test, Rails will clone the structure (but not the content) of your
development database into the test database. It doesn’t run the migrations against the
test database directly, but it does check to make sure your database is up-to-date with
its migrations. If it isn’t, you’ll get a warning like:

You have 4 pending migrations:
 20080627135838 CreateStudents
 20080627140324 CreateCourses
 20080627144242 CreateCoursesStudents
 20080627150307 CreateAwards
Run "rake db:migrate" to update your database then try again.

If you get major error messages that sound like your database can’t be found, as noted
in the warning earlier, check your fixtures to ensure that every field your migrations
said had to be there has an actual value.

Once you have the fixtures set up, it’s time to move on to the tests.

Unit Testing
Unit testing lets you work with your data on a pretty atomic level—checking valida-
tions, data storage, and similarly tightly focused issues. Rails scaffolding gives you only
a very simple placeholder file, shown in Example 12-7. Even if it wasn’t commented
out, that code is definitely not sufficient for any real testing, and you should add unit
tests that test validations for each field in your model.

Unit testing, in Rails’ unique way of performing it, is only about testing
models. If you have previous experience with testing in other environ-
ments, this can be confusing. If Rails is your first testing experience,
don’t worry about it, but remember that unit testing in Rails is different
from unit testing elsewhere.

Example 12-7. The mostly useless generated unit test file, test/unit/award_test.rb

require 'test_helper'

class AwardTest < ActiveSupport::TestCase
 # test "the truth" do
 # assert true
 # end
end

206 | Chapter 12: Testing

Example 12-7 does show one feature of testing—the assert statement, which expects
its argument to return true and reports a test failure if it doesn’t. (You can also use
deny to report failure on true.)

Unit tests are pretty straightforward to write, though are rarely exciting code. In general,
they should reflect the validations performed by the model. Example 12-8 shows a
definition for the award model that highlights some easily tested constraints.

Example 12-8. An award model with constraints defined

class Award < ActiveRecord::Base
 attr_accessible :name, :student_id, :year
 # every award is linked to a student, through student_id
 belongs_to :student

 validates_presence_of :name, :year

 # particular award can only be given once in every year
 validates_uniqueness_of :name, :scope => :year,
 :message => "already been given for that year"

 # we started the award scheme in 1980
 validates_inclusion_of :year, :in => (1980 .. Date.today.year)
end

Unit tests work on a single instance of a model, so the uniqueness constraint isn’t an
appropriate test, but the presence of names and years as well as the year being 1980 or
later is easily tested. Example 12-9 shows a set of tests, stored in test/unit/
award_test.rb, that check to make sure that the year constraint is obeyed.

Example 12-9. Testing to ensure that the year constraint behaves as expected

require 'test_helper'

class AwardTest < ActiveSupport::TestCase
 def test_validity_of_year

 # test for rejection of missing year
 award = Award.new({:name => "Test award"})
 assert !award.valid?

 # test under lower boundary
 award.year = 1979
 assert !award.valid?

 # lower boundary
 award.year = 1980
 assert award.valid?

 # top boundary
 award.year = Date.today.year
 assert award.valid?

 # top boundary case, award isn't valid for next year

Unit Testing | 207

 award.year = Date.today.year + 1
 assert !award.valid?
 end
end

All of the tests in the test_validity_of_year method call the valid? method of the
award object created in the first line. The valid? method checks an object with a set of
values against the validations specified in the model definition. In this case, each
assertion pushes against a rule about the value for year.

Unit test purists prefer to have only one assertion per test. In normal
unit testing, they’re completely correct—this ensures that tests are iso-
lated from each other, reducing the odds of missing an error or reporting
false errors. However, Rails “unit” tests are really model tests, which are
something a little different, but it’s probably still appropriate to limit
tests to a single assertion.

First, the newly created award has a :name argument specified, but no :year. That award
object should fail validation because the model checks for the presence of year. Then
the method assigns a value that is too low to be acceptable and again looks for a failure.
Then it tests right on the minimum value, looking this time for a positive result. The
next two assertions test on the top boundary and then just beyond that boundary. The
first should work, and the second should not.

If you ever feel like simply having a test fail, the flunk method lets you
fail with a message.

Awards are relatively simple, however. The many-to-many courses-students relation-
ship is a lot more complicated. It’s easier to test from one side, though, rather than
trying to test from both, so courses will get the simple test file shown in Exam-
ple 12-10, just checking that the course has a name, while students get the much more
complicated tests shown in Example 12-11.

Example 12-10. Simple tests for the courses model, just examining basic functionality

require 'test_helper'

class CourseTest < ActiveSupport::TestCase
 def test_validity
 course = Course.new
 assert !course.valid?
 course.name = "New course"

208 | Chapter 12: Testing

 assert course.valid?
 end
end

Example 12-11. More complicated tests for students, testing validity and whether they can be enrolled
in courses

require 'test_helper'

class StudentTest < ActiveSupport::TestCase

 fixtures :students, :courses

 def test_validity
 elvis = Student.new({:given_name => "Elvis",
 :family_name => "Prendergast"})
 assert !elvis.valid?, "Should require date of birth, start date"
 elvis.date_of_birth = "1989-02-03"
 elvis.start_date = Date.today
 assert elvis.valid?, "Failed even with all required info"
 end

 def test_name
 elvis = Student.new({:given_name => "Elvis",
 :family_name => "Prendergast"})
 assert_equal elvis.name, "Elvis Prendergast", "name method screwed up"
 end

def test_enrolled_in
 giles = students(:giles)
 assert giles.enrolled_in?(courses(:reptiles)), "Giles not enrolled in reptiles?"
 assert !giles.enrolled_in?(courses(:immoral)), "Giles should stay out of
 Immoral Aesthetics"
 end

 def test_unenrolled_courses
 giles = students(:giles)
 milletta = students(:milletta)
 assert_equal [courses(:reptiles)], milletta.unenrolled_courses
 assert_equal [courses(:immoral)], giles.unenrolled_courses
 elvis = Student.new({:given_name => "Elvis",
 :family_name => "Prendergast"})
 assert_equal Course.find(:all), elvis.unenrolled_courses
 end
end

The first line of the class specifies the fixtures that need to be loaded for these tests:

fixtures :students, :courses

The first two test methods in the class, test_validity and test_name, are much like the
tests used on awards, simply ensuring that the student model behaves as described.
The test_validity method creates a new object and first makes sure that it fails when

Unit Testing | 209

missing required information, then adds the information and makes sure that it passes.
(You could, of course, add extra assertions to test each additional field.) These
assert methods include an extra argument, a message to be reported if the test fails.
That may or may not be easier for you to manage than the line number automatically
reported.

The test_name method creates a student with a given and family name, then tests the
name method to see if it returns the expected value. It uses a new method, assert_equal,
that expects the values of its two arguments to be equal. If they aren’t, it reports a
failure. (There’s also assert_not_equal for the opposite situation.)

The next two methods, test_enrolled_in and test_unenrolled_courses, are more com-
plicated and rely on the fixtures heavily. The test_enrolled_in method doesn’t actually
set any values, it just checks to see whether a given student—the one identified
as :giles—is enrolled in the courses specified:

def test_enrolled_in
 giles = students(:giles)
 assert giles.enrolled_in?(courses(:reptiles)), "Giles not enrolled in reptiles?"
 assert !giles.enrolled_in?(courses(:immoral)), "Giles should stay out of Immoral
 Aesthetics"
 end

According to the courses fixture, which was shown in Example 12-6, Giles (:giles in
the fixtures) should be enrolled in Reptiles, Friend or Foe (:reptiles), but not enrolled
in Immoral Aesthetics (:immoral). This test makes sure that the enrolled_in? method
reflects that.

The last test method here, test_unenrolled_courses, relies on the fixtures and also
creates a new record for comparison:

def test_unenrolled_courses
 giles = students(:giles)
 milletta = students(:milletta)
 assert_equal [courses(:reptiles)], milletta.unenrolled_courses
 assert_equal [courses(:immoral)], giles.unenrolled_courses
 elvis = Student.new({:given_name => "Elvis",
 :family_name => "Prendergast"})
 assert_equal Course.find(:all), elvis.unenrolled_courses
 end

The first two lines create student objects from the fixture identifiers. The first
assert_equal call checks to make sure that the list of classes in which milletta is not
enrolled is an array containing the Reptiles, Friend or Foe (:reptiles) class, which
corresponds to the fixture. Then, the next call checks that giles is not enrolled in
Immoral Aesthetics (:immoral). Finally, the method creates a new elvis student, and
checks to make sure that his list of unenrolled courses is the same as the list of all
courses. He hasn’t enrolled in anything yet, after all!

If you run these tests, you’ll get a brief report. (rake test:units lets you run only the
unit tests, or you can use rake test or just rake to run all of the tests.)

210 | Chapter 12: Testing

$ rake test:units
 Loaded suite ...gems/rake-0.9.2.2/lib/rake/rake_test_loader
 Started

 Finished in 0.758487 seconds.

 6 tests, 15 assertions, 0 failures, 0 errors, 0 skips

 Test run options: --seed 19138

The periods under Started each represent a successful test, while an F would represent
a failure and E an error, something that interfered with running the test.

If a test fails—maybe the fixtures reported Giles taking Immoral Aesthetics—you’ll see
something like:

$ rake test:units
 Loaded suite /Users/simonstl/.rvm/gems/ruby-1.9.2-p136@rails32/gems/
 rake-0.9.2.2/lib/rake/rake_test_loader
 Started
 ..F...
 Finished in 0.824598 seconds.

 1) Failure:
 test_enrolled_in(StudentTest) [.../Rails3.2/ch12/students06/test/unit/
 student_test.rb:21]:
 Giles should stay out of Immoral Aesthetics

 6 tests, 15 assertions, 1 failures, 0 errors, 0 skips

You could track it down by line number, but the message can also be meaningful.

After finishing this section, unit tests may seem to test things that are perhaps too
simple. These were just little pokes and prods, checking to see whether something fairly
obvious would happen or not. There are a few reasons these (and other kinds of tests)
are valuable, however:

• Unit tests accumulate over time, and as a project grows, especially when multiple
developers work on it, they serve as a warning that something has changed, prob-
ably not for the better.

• Most programmers think about creating code and then testing it afterward. A dif-
ferent, perhaps more effective approach, is to write tests first and then write code
that answers the tests. There may be more back and forth to it than that, as devel-
opment often inspires more functionality and more tests, but defining tests first
creates a clear target to aim for. This is known as Test-Driven Development (TDD).

• Once you’ve written a test, it’ll run every time you tell Rails to perform testing.
You don’t need to go back through your application by hand to make sure that
things that once worked still worked—the test suite will tell you.

These simple tests of models may seem too simple, but they build a critical foundation
that other work can build on.

Unit Testing | 211

If you get tired of calling all of your tests and just want to focus on one,
you can try something like rake test:units TEST=test/unit/foo.rb.

Functional Testing
Unit testing checks on data validation and simple connections, but there’s a lot more
happening in the typical Rails application. Controllers are the key piece connecting
data to users, supporting a number of complex interactions that need more sophisti-
cated testing than checking validation or data. Controllers need functional tests that
can examine the actions they were supposed to perform. In Rails, these tests are defined
in files in the tests/functional directory.

Functional testing, in Rails’ unique way of performing it, is only about
testing controllers. Again, if you have previous experience with testing
in other environments or move on later to other environments, this can
be confusing.

Unlike the unit tests generated by Rails, which did nothing, the functional tests created
by the REST scaffolding at least provide a basic structure that’s useful, though it only
tests a very basic set of possibilities. (The functional tests created for ordinary control-
lers are a placeholder like the unit test one.) The courses_controller_test.rb file shown
in Example 12-12 is capable of calling the REST methods and making sure they work
—except, of course, the fixtures generated by the scaffolding will create problems.

Example 12-12. An almost-functional functional test set generated by Rails for the courses controller

require 'test_helper'

class CoursesControllerTest < ActionController::TestCase
 setup do
 @course = courses(:opera)
 end

 test "should get index" do
 get :index
 assert_response :success
 assert_not_nil assigns(:courses)
 end

 test "should get new" do
 get :new
 assert_response :success
 end

 test "should create course" do
 assert_difference('Course.count') do

212 | Chapter 12: Testing

 post :create, course: @course.attributes
 end

 assert_redirected_to course_path(assigns(:course))
 end

 test "should show course" do
 get :show, id: @course
 assert_response :success
 end

 test "should get edit" do
 get :edit, id: @course
 assert_response :success
 end

 test "should update course" do
 put :update, id: @course, course: @course.attributes
 assert_redirected_to course_path(assigns(:course))
 end

 test "should destroy course" do
 assert_difference('Course.count', -1) do
 delete :destroy, id: @course
 end

 assert_redirected_to courses_path
 end
end

You could use these generated tests as a foundation with the new fixtures by making a
few changes, highlighted in Example 12-13, which also adds a bit more specific detail
to the test.

Example 12-13. An improved functional test for the courses controller

require 'test_helper'

class CoursesControllerTest < ActionController::TestCase
 def test_should_get_index
 get :index
 assert_response :success
 assert_not_nil assigns(:courses)
 end

 def test_should_get_new
 get :new
 assert_response :success
 end

 def test_should_create_course
 assert_difference('Course.count') do
 post :create, :course => { :name => "Cattle Rustling" }
 end

Functional Testing | 213

 assert_redirected_to course_path(assigns(:course))
 end

 def test_should_show_course
 get :show, :id => courses(:opera).id
 assert_response :success
 end

 def test_should_get_edit
 get :edit, :id => courses(:opera).id
 assert_response :success
 end

 def test_should_update_course
 put :update, :id => courses(:opera).id, :course => { :name => "Singing" }
 assert_redirected_to course_path(assigns(:course))
 end

 def test_should_destroy_course
 assert_difference('Course.count', -1) do
 delete :destroy, :id => courses(:opera).id
 end

 assert_redirected_to courses_path
 end
end

The changes are relatively minor, shifting from the generic :one to its replacement in
the courses fixture, :opera, and supporting names for courses when they’re created
instead of using blank names, which the model forbids. However, creating functional
tests, or modifying them as will be necessary to support the nested resource approach
awards use, requires understanding a new set of assertions and methods for calling
controllers. Both let you test what the controller would have done in response to an
HTTP call.

Calling Controllers
Controllers are called using the get, put, post, and delete methods, with the actual
method to be called listed as the first argument and any necessary parameters listed as
named parameters after that. Functional testing does not actually create an HTTP
request and answer it. Instead, it skips over the issues of routing and goes to the con-
troller directly.

If you want to make HTTP requests in your tests, you can—but in the
integration testing.

214 | Chapter 12: Testing

For RESTful calls, you’ll want to test all seven of the methods Rails generates, four with
get and one each with put, post, and delete. For other controllers, you’ll want to write
calls for each method and address them appropriately. The get method as shown here
only passes an id value, but you can set other parameters as desired. The put and
post methods both need additional parameters to work, however, taking a :course that
itself contains a :name. Think of these as form fields rather than objects. For example,
the post looks like:

post :create, :course => { :name => "Cattle Rustling" }

The post method will call the controller’s create method, giving it parameters for
a :course. The only parameter here is :name, set to Cattle Rustling. It works the same
as entering Cattle Rustling into a form that was fed to this method.

Instead of specifying the method name with a symbol, you can pass these
methods a URL fragment as a string. However, you should leave that
usage to integration testing, covered later in this chapter.

Testing Responses
The new assertion methods relate to specific controller actions and their effects:

assert_not_nil_assigns

Allows the test to check on whether the controller set values for the view to use,
though the test doesn’t actually call the view. This just makes sure that a given
variable is not left as nil.

assert_response

Compares the HTTP response code that the controller sends to its argu-
ment. :success is the most common argument (for 200 OK), while :redirect (for
300–399 responses), :missing (404), and :error (500–599) are also common. (If
you have a specific response in mind, you can just give the HTTP response code
number as the argument.)

assert_redirected_to

Lets you check not just the response code, but the location to which the controller
redirected the request.

assert_difference

Makes it easy to check on the number of records in the database, taking a method
to call and an integer reflecting the difference. An added record would just be +1,
the default, while a deleted record would be –1. assert_difference takes a block
as its argument and must wrap around the call to the controller with do and end
statements. (There’s also an assert_no_difference for when you don’t want there
to be any difference.)

Functional Testing | 215

Most of these are fairly readable, but it’s worth examining the most complicated test
in detail:

def test_should_create_course
 assert_difference('Course.count') do
 post :create, :course => { :name => "Cattle Rustling" }
 end

 assert_redirected_to course_path(assigns(:course))
 end

This method tests the creation of a course. It opens with an assert_difference method,
which will check the count of courses at the beginning and check again when it
encounters the end statement. Between those checks, the post method calls the course
controller’s create method. As an argument, post sends create what looks like a form
for a course, specifying a :name of Cattle Rustling. After that, assert_difference rea-
ches the end and checks to see if the count indeed increased by 1, the default. If the
count didn’t increase, the assertion reports a failure, but otherwise, it reports success.

The second assertion checks to where the method redirected the visitor. It uses the
assigns method to reach into the variables the controller created and get the course
object, and checks that the path specified by the redirection is the same as the path to
that course object created using course_path.

Dealing with Nested Resources
Making awards a nested resource under students took some work in Chapter 9, and
similar considerations apply in the testing process as well. Example 12-14 shows the
functional tests for awards, from tests/functional/awards_controller_test.rb, highlight-
ing areas that needed additional information to support the nesting.

Example 12-14. Adding support for a nested resource to functional testing

require 'test_helper'

class AwardsControllerTest < ActionController::TestCase
 def test_should_get_index
 get :index, :student_id => students(:giles).id
 assert_response :success
 assert_not_nil assigns(:awards)
 end

 def test_should_get_new
 get :new, :student_id => students(:giles).id
 assert_response :success
 end

 def test_should_create_award
 assert_difference('Award.count') do
 post :create, :award => { :year => 2008, :name => 'Test award' },
:student_id => students(:giles).id
 end

216 | Chapter 12: Testing

 assert_redirected_to assert_redirected_to student_awards_url(students(:giles)))
 end

 def test_should_show_award
 get :show, :id => awards(:skydiving).id, :student_id => students(:giles).id
 assert_response :success
 end

 def test_should_get_edit
 get :edit, :id => awards(:skydiving).id, :student_id => students(:giles).id
 assert_response :success
 end

 def test_should_update_award
 put :update, :id => awards(:skydiving).id, :award => { }, :student_id =>
students(:giles).id
 assert_redirected_to student_awards_url(students(:giles))
 end

 def test_should_destroy_award
 assert_difference('Award.count', -1) do
 delete :destroy, :id => awards(:skydiving).id,:student_id =>
students(:giles).id
 end

 assert_redirected_to student_awards_path(students(:giles))
 end
end

All of these echo the changes in Chapter 9 and are necessary to making the tests work
with a nested resource that needs a student context for its controller to operate. The
method names for paths change, gaining a student_ prefix, and all of the calls to get,
put, post, and delete also need a :student_id parameter.

Running these functional tests should produce results such as:

$ rake test:functionals
(in /Users/simonstl/Documents/RailsOutIn/current/code/ch12/students005)
/System/Library/Frameworks/Ruby.framework/Versions/1.8/usr/bin/ruby -Ilib:test
"/Library/Ruby/Gems/1.8/gems/rake-0.8.1/lib/rake/rake_test_loader.rb"
"test/functional/awards_controller_test.rb"
"test/functional/courses_controller_test.rb"
"test/functional/students_controller_test.rb"
Loaded suite /Library/Ruby/Gems/1.8/gems/rake-0.8.1/lib/rake/rake_test_loader
Started
.........................
Finished in 0.608977 seconds.

25 tests, 53 assertions, 0 failures, 0 errors

Functional Testing | 217

Integration Testing
Integration testing is the most complicated testing Rails supports directly. It tests com-
plete requests coming in from the outside, running through routing, controllers, mod-
els, the database, and even views. Rails does not generate any integration tests by
default, as creating them requires detailed knowledge of the complete application and
what it is supposed to do. Integration tests are stored in tests/integration and look much
like the classes for other kinds of tests. They call similar methods and also make
assertions, but the assertions are different and the flow can cover multiple interactions,
as Example 12-15 demonstrates.

Example 12-15. An integration test that tries adding a student

require 'test_helper'

Integration tests covering the manipulation of student objects

class StudentsTest < ActionController::IntegrationTest

 def test_adding_a_student
 # get the new student form
 get '/students/new' # could be new_students_path

 # check there are boxes to put the name in
 # trivial in our case, but illustrates how to check output HTML
 assert_select "input[type=text][name='student[given_name]']"
 assert_select "input[type=text][name='student[family_name]']"

 assert_difference('Student.count') do
 post '/students', :student => {
 :given_name => "Fred",
 :family_name => "Smith",
 :date_of_birth => "1999-09-01",
 :grade_point_average => 2.0,
 :start_date => "2008-09-01"
 }
 end

 assert_redirected_to "/students/#{assigns(:student).id}"
 follow_redirect!

 # for completeness, check it's showing some of our data
 assert_select "p", /Fred/
 assert_select "p", /2008\-09\-01/
 end

end

Instead of calling the create method directly, as the functional tests would do,
test_adding_a_student starts by using the get method—with a URI fragment rather
than a function name—to retrieve the form needed for adding a student.

218 | Chapter 12: Testing

Next, the method examines that form with assert_select, one of Rails’ methods for
testing HTML documents to see if they contain what you expect them to contain. In
the first of those two statements, assert_select tries to match the pattern:

input[type=text][name='student[given_name]']

That would be an input element with a type attribute set to text and a name attribute
set to student[given_name]. (The single quotes are necessary to keep the [and] from
causing trouble with the match pattern syntax.) The form should match that, as it
contains:

<input id="student_given_name" name="student[given_name]" size="30"
 type="text" />

Once Rails has performed those assertions, it moves to actually submitting a new stu-
dent. There’s no way for Rails itself to actually fill in the form and press the submit
button (though Capybara can do that). The test does the next best thing, issuing a
POST request that reflects what the form would have done, from inside of an
assert_difference call that looks for an added student:

assert_difference('Student.count') do
 post '/students', :student => {
 :given_name => "Fred",
 :family_name => "Smith",
 :date_of_birth => "1999-09-01",
 :grade_point_average => 2.0,
 :start_date => "2008-09-01"
 }
 end

Again, the call is to a URL, not to a method name, though this post call includes
parameters designed to reflect the structure that would be returned by the form Rails
generated. The page showing this student, Fred Smith, should come back from Rails
for display through a redirect, so the next assertion watches for that:

assert_redirected_to "/students/#{assigns(:student).id}"

The assertion can grab the id value for the new student, whatever it is, from the con-
troller, using the all-powerful assigns method. If it gets sent somewhere other than it
expects, it will report failure.

The next call is fairly self-explanatory:

follow_redirect!

There’s one last step needed here: checking that response to see if it reflects expecta-
tions. Following the redirect lets the test continue to the final part of the interaction,
in which Rails shows off the newly created student. Here, the test uses more
assert_select statements in a slightly different syntax:

assert_select "p", /Fred/
assert_select "p", /2008\-09\-01/

Integration Testing | 219

When given a string and a regular expression as arguments, assert_select will look for
elements of the type given in the string (here, p) that contain values matching the ex-
pression. Appendix C has more details on regular expressions, but the first of these is
just the string Fred, while the other is an escaped version of 2008-09-01. These are, of
course, the values that the test set earlier, and they should appear in the document.
Will they?

$ rake test:integration
Loaded suite .../gems/rake-0.9.2.2/lib/rake/rake_test_loader
Started
.
Finished in 1.036746 seconds.

1 tests, 6 assertions, 0 failures, 0 errors, 0 skips

It all worked.

Creating useful integration tests is difficult. It requires plotting a path through your
application, deciding which pieces are relevant, and which are not. As your application
grows in complexity and interdependence, they may become critical, though smaller
applications can often do without them for a long while.

If assert_select isn’t enough for your view-testing experiments, Rails
offers many more options, including assert_tag, assert_no_tag,
assert_dom_equal, assert_dom_not_equal, assert_select_encoded, and
assert_select_rjs.

Beyond the Basics
Testing is central to Rails development, but virtually everyone has a different perspec-
tive on what they want from testing. While the tools demonstrated in this chapter
provide a common core of functionality, many developers supplement or replace the
testing approach built into Rails with other alternatives. If you want to explore further,
you should explore RSpec, Cucumber, and the broader world of Test-Driven Devel-
opment and Behavior-Driven Development.

RSpec takes testing to a higher level, letting you create stories with your code, testing
the results of those stories in a way that lets you see what was supposed to happen and
what did or didn’t happen as well. It makes it much easier in particular to create tests
first and then write code to fill them in. For a lot more on RSpec, visit http://rspec.info/.

Cucumber pushes further on testing, toward customer acceptance testing. While RSpec
tests will likely be tests you write to hold your code accountable, Cucumber tests will
likely come from customers, even if you’re the one to translate their expectations into
a concrete set of tests. For more on Cucumber, see http://cukes.info/.

220 | Chapter 12: Testing

http://rspec.info/
http://cukes.info/

For more on both RSpec and Cucumber, see The RSpec Book: Behavior
Driven Development with RSpec, Cucumber, and Friends (Pragmatic
Programmers, 2010).

Add Factory Girl to manage test data and Capybara for more advanced integration
testing, and you can make sure your applications work. Even if you stick with the basic
Rails testing functionality, your applications should prove much more reliable and your
need for debugging will be much less.

Test Your Knowledge

Quiz
1. What three modes can Rails run applications under by default?

2. How much data do you need to put into fixtures?

3. Can the results of one test mess up the results of a test that comes later?

4. How do you check to make sure a variable contains an acceptable value?

5. What kind of component gets tested with Rails functional tests?

6. How do you send a controller a fake HTTP POST request?

7. How do you know whether a controller redirected a request?

8. How can you tell whether a response includes a td element containing a particular
value?

Answers
1. Rails can run in development mode, test mode, and production mode. You can

define your own modes if you want as well.

2. Your fixtures should include all the kinds of data you want to run tests against.

3. Each test should be completely independent, as Rails will reload all of the fixtures
between tests. No test should have an effect on any other test. (If you have multiple
assertions within a single test, however, they can interact.)

4. The valid? method lets you ask a model if its value would pass validation.

5. In Rails, functional tests are tests of controllers.

6. The post method lets you see how a controller would respond to a POST request.

7. The assert_redirected method lets you test whether the controller sent a simple
response or a redirect.

Test Your Knowledge | 221

8. The assert_select method lets you specify an element name and a match pattern
it should contain, and tells you whether an element whose content matches that
pattern exists.

222 | Chapter 12: Testing

CHAPTER 13

Sessions and Cookies

The Web was built to do one thing at a time. Each request is, from the point of view
of the client and server, completely independent of every other. A group of requests
might all operate on the same database, and there can be clear paths from one part of
an application to another, but for the most part, HTTP and scalable web application
design both try to keep requests as independent as possible. It makes the underlying
infrastructure easier.

Rails balances that simplicity of infrastructure with application developers’ need for a
coherent way to maintain context. Rails supports several mechanisms for keeping track
of information about users. If you want to keep track of users manually, you can work
with cookies. If you want to keep track of users for a brief series of interactions, Rails’
built-in session support should meet your needs.

If you want to keep track of users on a long-term basis, you’ll want to
use the authentication tools covered in Chapter 14.

Getting Into and Out of Cookies
Like nearly every web framework, Rails provides support for cookies. Cookies are small
pieces of text, usually less than 4 KB long, that servers can set on browsers and browsers
will pass back with requests to servers. Browsers keep track of where cookies came
from and only report cookies’ values to the server where they came from originally.
JavaScript code can reach into a cookie from a web page, but Rails itself is more inter-
ested in setting and receiving cookies through the HTTP headers for each request and
response.

223

When cookies first appeared, they were loved by developers who saw
them as a way to keep track of which user was visiting their site, and
hated by privacy advocates. Much of that uproar has calmed, because
cookies have become a key part of functionality that users like, but
there’s still potential for abuse, as various advertising and social net-
works demonstrate constantly.

To stay on the good side of potentially cranky users, it’s best to set cookie
lifetimes to relatively brief periods and use longer cookies only when
users request them (as in the classic “remember me” checkboxes for
logins). Never store sensitive information directly in cookies, either!

In most cases, your application probably doesn’t need to access cookies directly. Rails’
built-in support for sessions and the tools for user authentication can both manage all
of the overhead of keeping track of users for you. However, if you want to use cookies
directly, either because you have specific needs for them or because you’re interacting
with other code (say, a JavaScript library) that expects a particular cookie to provide it
with a key value, then the demonstration below should give you a clear idea how it
works. Figure 13-1 provides an overall picture of how cookies flow through an
application.

Figure 13-1. The flow of cookies between Rails, the browser, and code in the browser

224 | Chapter 13: Sessions and Cookies

Because cookies are about storing data on the client, not the server, a really simple
example will do. To get started, this example will build on one of the simplest examples
in this book so far, the first version of the entry controller with its sign_in method from
Chapter 4. (Code for this example is in ch13/guestbook011.)

If you’d rather create a new blank copy of this application, run rails
new guestbook, then cd guestbook if necessary, and then finally rails
generate controller entry. You’ll also need to uncomment the match
':controller(/:action(/:id))(.:format)' line at the end of config/
routes.rb to allow routing to find this controller.

Example 13-1 shows the new app/controllers/entry_controller.rb file, with changes from
the Chapter 4 version in bold.

Example 13-1. Keeping track of names entered with a cookie

class EntryController < ApplicationController
 def sign_in
 @previous_name = cookies[:name]
 @name = params[:visitor_name]
 cookies[:name] = @name
 end
end

The new first line collects the previous name entered from the cookie and stores it as
@previous_name so the view can display it. (The cookie data comes to the server through
the HTTP request headers.) The second line, as before, gathers the new name from
the :visitor_name field of the form, and the third line stores that name (even if it’s
empty) as a cookie that will be transmitted to the browser through the HTTP response
headers.

The view in app/views/entry/sign_in.html.erb just needs three extra lines to show the
previous name if there was one, as shown in Example 13-2. (If you made a fresh start,
you may need to create the file.)

Example 13-2. Reporting a previous name to the user

<html>
<head><title>Hello <%= @name %></title></head>

<body>
<h1>Hello <%= @name %></h1>
<%= form_tag :action => 'sign_in' do %>
 <p>Enter your name:
 <%= text_field_tag 'visitor_name', @name %></p>

 <%= submit_tag 'Sign in' %>
<% end %>
<% unless @previous_name.blank? %>
<p>Hmmm... the last time you were here, you said you were <%= @previous_name

Getting Into and Out of Cookies | 225

%>.</p>
<% end %>
</body>
</html>

This tests to see whether a previous name was set and, if so, presents the user with what
they’d entered. All this really does is demonstrate that the cookie is keeping track of
something entered in a past request, making it available to the current request.

The HTTP headers that carry the cookie back and forth are normally invisible, though
not that interesting. You can see cookie information in most browsers through a pref-
erences or info setting. At the beginning, this application looks much like its predeces-
sor, as shown in Figure 13-2.

Figure 13-2. A simple name form, though now one with a cookie behind it

In Firefox, you call up the cookie inspection window at Tools/Page Info, then the
Security tab, and then the View Cookies button halfway down the screen on the right-
hand side. You’ll see something like Figure 13-3.

For now, the :name cookie is the one that matters, and as you can see, its content is
blank. It came from localhost, because this is a test session on the local machine. The
path is set to /, the Rails default, making it accessible to any page that comes from the
localhost server. It gets sent with all HTTP connections and will expire “at end of
session”—as soon as the user quits the browser. Users can, of course, delete the cookie
immediately with the Remove Cookie button.

If you enter a name, say, “Zimton,” and click the “Sign in” button, you’ll see something
like Figure 13-4.

226 | Chapter 13: Sessions and Cookies

Figure 13-3. A cookie named “name” with a blank value

Figure 13-4. The form, with a new name set

Because the :name cookie was previously set to an empty string, the query message still
isn’t shown, but this time the trigger is set. If you inspect the cookie, you’ll see that
the :name cookie’s value is now “Zimton,” as shown in Figure 13-5.

Getting Into and Out of Cookies | 227

Figure 13-5. The name cookie, now set with a value of “Zimton”

If you enter a new name, say “Zimtonito,” and click the “Sign-in” button, the Rails
application will get “Zimtonito” through the form, while still getting “Zimton” from
the cookie. This time, it will ask why the name has changed, as shown in Figure 13-6.

Figure 13-6. Changing names over the session produces a response

Storing the name information in the cookie gives Rails a memory of what happened
before and lets it notice a change.

If you choose to use cookies directly, rather than relying on Rails’ other mechanisms
for keeping track of interactions across requests, there are a few more parameters you
should know about when setting cookies. If you set more than just a value for a cookie,

228 | Chapter 13: Sessions and Cookies

the syntax changes. To set both a value and a path for the :name cookie, for example,
you would change:

cookies[:name] = @name

to:

cookies[:name] = { :value => @name, :path => '/entry' }

The available parameters include:

:value

The value for the cookie, usually a short string. (Typically this is a database key,
but make sure not to store anything genuinely secret.)

:domain

The domain to which the cookie applies. This has to be a domain that matches
with the domain the application runs at. For example, if an application was hosted
at http://myapp.example.com/, :domain could be set to http://myapp.example.com
or http://example.com/. If it was set to http://example.com/, the cookie could be read
from http://myapp.example.com/, http://yourapp.example.com/, or http://anything
.example.com/.

:path

The path to which the cookie applies. Like :domain, the :path must be all or part
of the path from which the call is being made. From /entry/sign_in, it could be set
to /, to /entry, or to /entry/sign_in. The cookie can only be read from URLs that
could have set that path. (By default, this is /, making the cookie available to
everything at your domain.)

:expires

The time at which the cookie will expire. The easiest way to set this is with Ruby’s
time methods, such as 5.minutes or 12.hours.from_now.

:secure

If set to true, the cookie is only reported or sent over secure HTTP (HTTPS)
connections.

:http_only

If true, the cookie is transmitted over HTTP or HTTPS connections, but is not
available to JavaScript code on those pages.

Anytime you find yourself using cookies, especially if you’re doing complicated things
with cookies, you should consider using sessions or authentication instead.

If your code tries to set multiple cookies in a single request, a bug in the
Rack framework underneath Rails may combine them into a single Set-
Cookie header. Some server software (Passenger, Mongrel, etc.) works
around this by sniffing for that and splitting the header into multiple
Set-Cookie headers. If not, only the first cookie will be set in this case.

Getting Into and Out of Cookies | 229

http://myapp.example.com/
http://myapp.example.com
http://example.com/
http://example.com/
http://myapp.example.com/
http://yourapp.example.com/
http://anything.example.com/
http://anything.example.com/

Storing Data Between Sessions
Cookies are useful for keeping track of a piece of information between page changes,
but as you may have noticed in Figures 13-3 and 13-5, Rails was already setting a cookie,
a session cookie, with each request. Rather than manage cookies yourself, you can let
Rails do all of that work and move one step further back from the details. (This example
is available in ch13/guestbook012.)

Sessions are a means of keeping track of which user is making a given request. Rails
doesn’t know anything specific about the user, except that he has a cookie with a given
value. Rails uses that cookie to keep track of users and lets you store a bit of information
that survives between page requests.

You can set and retrieve information about the current session from the session object,
which is available to your controller and view. Because it’s a better idea in general to
put logic into the controller, Example 13-3, which is a new version of the
app/controllers/entry_controller.rb file, shows what’s involved in storing an array in the
session object, retrieving it, and modifying it to add names to the list. Virtually all of
it replaces code that was in Example 13-1, with only the retrieval of the name from the
form staying the same.

Example 13-3. Working with an array stored in the session object

class EntryController < ApplicationController
 def sign_in
 #get names array from session
 @names=session[:names]

 #if the array doesn't exist, make one
 unless @names
 @names=[]
 end

 #get the latest name from the form
 @name = params[:visitorName]

 if @name
 # add the new name to the names array
 @names << @name
 end

 # store the new names array in the session
 session[:names]=@names
 end
end

230 | Chapter 13: Sessions and Cookies

Most of the new code is about working with an array rather than a simple field. It’s not
a big problem if a string is empty, whereas trying to add new entries to a nonexistent
array is a bigger problem. The sign_in method gets the names array from the session
object and puts it in @names. If the session object doesn’t have a names object, it will
return nil, so the unless creates a names array if necessary. Then the method retrieves
the latest visitorName from the form and adds it to the @names array. The very last line
puts the updated version of the @names array back into the session object so that the
next call will have access to it.

Example 13-3 is more verbose than it needs to be, as you could work
on session[:names] directly. However, it’s a bit clearer to work with the
@names instance variable, and this approach lets the view work strictly
with instance variables.

The view requires fewer changes—just a test that the list of names exists and a loop to
display the names if it does. The changes to app/views/entry/sign_in.html.erb are high-
lighted in Example 13-4.

Example 13-4. Reporting a set of previous names to the user

<html>
<head><title>Hello <%= @name %></title></head>

<body>
<h1>Hello <%= @name %></h1>

<%= form_tag :action => 'sign_in' do %>
 <p>Enter your name:
 <%= text_field_tag 'visitorName', @name %></p>

 <%= submit_tag 'Sign in' %>
<% end %>

<% if @names %>

 <% @names.each do |name| %>
 <%= name %>
 <% end %>

<% end %>

</body>
</html>

Storing Data Between Sessions | 231

As Figures 13-7 through 13-9 demonstrate, the application now remembers what
names have been entered before.

Figure 13-7. The first iteration, where no previous names are recorded in the session object

Figure 13-8. The second iteration, where one previous name has been recorded in the session object

232 | Chapter 13: Sessions and Cookies

Figure 13-9. The third iteration, where two previous names have been recorded in the session object

If you quit your browser and return, or try a different browser, you’ll get the empty
result shown in Figure 13-8 again, as the session changes. This application is very dif-
ferent from the application at the end of Chapter 4, which stored names from everyone
in the same database. Because this application relies on the session object, only the
names entered in this browser at this time will appear. That session identifier will vanish
when the user quits their browser because the session cookie will be deleted, and those
names will no longer be accessible.

The session object builds on the cookie functionality described in the previous section,
but Rails takes care of all the cookie handling. For simple applications, where you’re
just going to store something small in the session, you now know everything you need
to know and can skip ahead if you’d like.

There are, of course, more details, more things you can tweak. First of all, you can turn
sessions off if you have an application that doesn’t need them and want a little speed
boost. Just add session :off at the top of controller classes or, for the whole applica-
tion, in app/controllers/application_controller.rb. (You can turn individual controllers
back on with session :on, and the documentation for ActionController::Ses

sionManagement shows many more options for controlling when sessions are used.)

Just as with cookies, you can limit the use of sessions to secure HTTPS connections.
To do so, just start off with session :session_secure => true. Sessions will stop working
over regular HTTP connections and only work when HTTPS is in use.

The hard question about sessions is where the data is actually stored. A key reason that
HTTP is stateless is that it takes a lot of computing time to look up the state for every
single transaction. Those queries can become a bottleneck, especially when you want
to do things like distribute an application across multiple servers. Rails offers a number
of options for solving those problems. There are only two you should consider early in
your Rails career, however. Both are illustrated in Figure 13-10.

Storing Data Between Sessions | 233

Figure 13-10. Two models for storing data in sessions

The first, the CookieStore, is what Rails uses by default and requires much less work
on your part. Unles you have a reason to do otherwise, this is definitely an easier choice.
All of the data that goes into the session object for a given session is stored directly in
the cookie Rails uses to track the session. In some ways, this is extremely convenient
—all the session information comes with the request, and the users’ browsers become
a gigantic distributed data storage system for the Rails application. On the other hand,
this limits the overall storage to 4K, the limit of cookie size, and it means that all of the
session information is constantly transferred back and forth in a simple and easily
decrypted hash. If you can accept the size limit and the openness, though, it’s easy.

The second approach, the ActiveRecord SessionStore, stores only an identifier token
in the session cookie, and stores the actual session data in the database. To make this
work, you need to make a few changes described at http://api.rubyonrails.org/classes/
ActiveRecord/SessionStore.html. However, you won’t have to change anything about
the way you actually use the session object in your controllers. Rails will automatically
switch over to the database approach. The only change you might notice is the removal
of that 4K limit.

Even without the 4K limit, you’ll find that it’s much more efficient to store only minimal
information in the session, preferably an identifier that can link to the necessary infor-
mation in your application. It reduces the overhead for every request substantially.

Flashing in Rails
The Rails flash mechanism doesn’t support state across separate user requests like the
other mechanisms in this chapter. (Nor does it have anything to do with Adobe’s Flash
technology.) It does, however, provide an easy way to maintain state within a user
request that gets answered with a redirect.

234 | Chapter 13: Sessions and Cookies

http://api.rubyonrails.org/classes/ActiveRecord/SessionStore.html
http://api.rubyonrails.org/classes/ActiveRecord/SessionStore.html

When a controller calls redirect_to, which is common in RESTful PUT and POST
handling, the method that gets the redirect starts off with a fresh set of variables. You
can’t work in one controller method and then pass the rest of the work to another
controller method while retaining the variable context.

There’s one exception to this context reset—the flash mechanism. Most of the time,
flash just gets used for sending messages from a controller to a view generated by
another controller, as in this scaffolding excerpt:

flash[:notice] = 'Course was successfully updated.'
format.html { redirect_to(@course) }

In the layout for the course views, this line reveals the contents of that flash:

<p style="color: green"><%= flash[:notice] %></p>

Although :notice is the most common key used with flash, you could also
use :warning, :error—or any other key that seems appropriate to your task.
(:notice, :warning, and :error work automatically with the templates Rails generates,
which is convenient.)

There are only a few catches. First, you should always keep the contents of the flash
simple and small. It’s stored in the session and, like everything else in the session, should
be as lightweight as possible. Second, the contents only survive one redirect. If you
want to keep the contents across multiple redirects, you’ll need to call flash.keep before
each additional redirect. Similarly, you can call flash.discard to get rid of the flash.

You can also use flash.now, which makes the values you set available for immediate
use, in case, for example, your code has an error and never reaches a redirect.

Test Your Knowledge

Quiz
1. How much information should you store in cookies?

2. How do you specify how long a cookie will last?

3. Where does Rails normally store the information you put in the cookie object?

4. What does calling flash do?

Answers
1. You should store as little information in cookies as your application can manage.

2. Cookie lifespans default to expiring when the user quits the browser, but can be
set to more specific lengths of time with the :expires parameter.

Test Your Knowledge | 235

3. By default, Rails stores the cookie objects information directly in the cookie, on
the user’s browser, but note that you can change this by modifying your config/
environment.rb file.

4. The flash method lets you set a message to be shown to the user even after a
redirect.

236 | Chapter 13: Sessions and Cookies

CHAPTER 14

Users and Authentication

While sessions expand your application-building possibilities, almost any interactive
application that will be around for a while needs to be able to keep track of users. You
might be a little startled to hear that Rails itself doesn’t include any mechanisms for
tracking users, unlike most current web frameworks. That isn’t so much a failure as an
opportunity for developers to create their own authentication approaches. Because you
may want to allow users to log in through other services instead of a local username
and password, the OmniAuth gem is a good place to start. (The code for this example
is available in ch14/students007.)

OmniAuth uses Rack, staying a layer below most of your Rails work, and the conve-
nience of offering both local and remote login possibilities is hard to beat.

You can find out much more about OmniAuth at https://github.com/
intridea/omniauth/; in particular, there’s a list of authentication strate-
gies at https://github.com/intridea/omniauth/wiki/List-of-Strategies/.

I strongly recommend Ryan Bates’ Railscasts presentations at http://
railscasts.com/episodes/241-simple-omniauth/ and http://railscasts.com/
episodes/304-omniauth-identity/. They start by using remote authenti-
cation and then come back to local. That may or may not be what you
want when you’re getting started.

This chapter follows many of Bates’ approaches, but focuses on local
authentication. Code is also simplified to be more readable for Ruby
newbies, though this makes it somewhat more verbose and less efficient.
It should still be compatible with the additional features Bates demon-
strates and with other work people have built on his foundation.

Installation
The easiest way to install OmniAuth is to modify your application’s Gemfile. Open the
file and look for the commented out #gem 'bcrypt-ruby', '~> 3.0.0' line. Uncomment

237

https://github.com/intridea/omniauth/
https://github.com/intridea/omniauth/
https://github.com/intridea/omniauth/wiki/List-of-Strategies/
http://railscasts.com/episodes/241-simple-omniauth/
http://railscasts.com/episodes/241-simple-omniauth/
http://railscasts.com/episodes/304-omniauth-identity/
http://railscasts.com/episodes/304-omniauth-identity/

that (OmniAuth needs it for local authentication), and add gem 'omniauth-identity'
below it:

 # To use ActiveModel has_secure_password
gem 'bcrypt-ruby', '~> 3.0.0'
gem 'omniauth-identity'

Then run bundle install from the command line. You’ll see something like:

Fetching source index for http://rubygems.org/
Using rake (0.9.2.2)
Using multi_json (1.0.4)
Using activesupport (3.1.3)
Using builder (3.0.0)
...
Installing bcrypt-ruby (3.0.1) with native extensions
Using bundler (1.0.21)
Using coffee-script-source (1.1.3)
...
Using coffee-rails (3.1.1)
Installing hashie (1.2.0)
Using jquery-rails (1.0.19)
Installing omniauth (1.0.2)
Installing omniauth-identity (1.0.0)
Using rails (3.1.3)
Using sass (3.1.11)
...
Using validates_existence (0.7.1)
Your bundle is complete! Use `bundle show [gemname]` to see where a
bundled gem is installed.

Bundler installed the bcrypt-ruby, omniauth-identity, omniauth, and hashie gems—
because hashie and omniauth were necessary dependencies.

Even though the gems are installed, Rails won’t know to use them unless you tell it to
do so. To make this work, create a new file in config/initializers called omniauth.rb.
Then add the following code to it:

Rails.application.config.middleware.use OmniAuth::Builder do
 provider :identity
end

That tells Rails to load OmniAuth when it starts, and to tell OmniAuth to use the
strategy called identity. Over the long run, you will likely list other strategies here—
you can use Twitter, Facebook, Google, and many others for identification. (Strategies
are also often called providers, especially in code.)

Now that the installation is complete, it’s time to build a lot of necessary infrastructure
into the application.

238 | Chapter 14: Users and Authentication

Storing Identities
OmniAuth’s identity strategy requires a name (a human-friendly name), email (an email
address used as the password), and password_digest (a hash of the password). They’ll
go in a model named identity, which you can create with the following commands:

$ rails generate model identity name:string email:string password_digest:string
$ rake db:migrate

OmniAuth provides an ActiveRecord based set of tools for connecting to that data. To
activate it, you’ll need to open the freshly created app/models/identity.rb file, and change
the class it inherits fron. To do this, change the class from ActiveRecord::Base to
OmniAuth::Identity::Models::ActiveRecord and adding two fields:

class Identity < OmniAuth::Identity::Models::ActiveRecord
 attr_accessible :email, :name, :password_digest :password, :password confirmation
end

Storing User Data
Creating identities provides a hook for OmniAuth’s identity strategy, but your appli-
cation really needs to work with users. In the long run, you might allow users to log in
with other strategies, and not all of your users will be found in the list of identities.
Many people only create a model here, but for now create a scaffold. That will make it
easier later to create some basic infrastructure for managing users:

$ rails generate scaffold user provider:string uid:string name:string
$ rake db:migrate

The user model will contain a provider string—which, in these first experiments, will
always contain “identity”—a user ID, abbreviated uid, and a name. (At minimum, you
need the provider, and uid, but having name makes it a lot easier to create welcoming
interfaces.)

Yes, creating a scaffold creates forms that let people modify and delete
users. It’s a minor security hole, one you’ll fix later in the chapter.
Because it’s just users, it doesn’t provide any access to password infor-
mation either, which is stored in the identities table.

When the time comes, OmniAuth will send an auth object that contains these key
components (and more). To be ready to process those pieces, add a class method that
the SessionsController can call, User.create_with_omniauth, to /app/models/user.rb:

class User < ActiveRecord::Base
 attr_accessible :name, :provider, :uid

 # This is a class method, callable from SessionsController
 # hence the "User."
 def User.create_with_omniauth(auth)

Storing User Data | 239

 user = User.new()
 user.provider = auth["provider"]
 user.uid = auth["uid"]
 user.name = auth["info"]["name"]
 user.save
 return user
 end
end

This will give you quick access to the basic information you need to know about your
user. You can, of course, extend this class to keep track of more information if you
need. The id value of the user record will be the key used to figure out who is logged
into a given session, as well.

Wiring OmniAuth into the Application
OmniAuth does most of its work underneath Rails, as a Rack application, but you still
need to connect it to Rails with some routes and controller actions as well as building
links to it into the user interface.

OmniAuth uses a few key URL conventions to communicate with your application.
When you want to ask OmniAuth to authenticate a user, you have them
visit /auth/:provider, where :provider is the name of your authentication strategy—
in this case, identity. OmniAuth also provides /auth/:provider/register, for users to
connect to a service for the first time. You don’t have to create routes for these;
OmniAuth already takes care of that in Rack when it’s initialized.

That means that linking to a login and registration page is simple, just specifying a
connection. We’ll still have to handle the results that come back, but the initial con-
nection is pretty simple. For the students and courses application, it might make sense
to have visitors be able to log in or register from any place in the application. Imagine
for now that the content is all public, but making changes requires authorization. The
easiest way to do that, for now, is to add another partial that handles authentication
to the /app/views/layouts/application.html.erb file, just as we did for navigation back in
Chapter 9:

<body>
<%= render 'authentication' %>
<%= render 'navigation' %>

<%= yield %>

Then create /app/views/application/_authentication.html.erb, and insert:

<p>
<%= link_to "Log in", "/auth/identity" %> |
<%= link_to "Register", "/auth/identity/register" %>
</p>
<hr />

240 | Chapter 14: Users and Authentication

This will make the main students page look like Figure 14-1. If all goes well—though
it doesn’t work yet—you should see Figure 14-2 if you click on Log in, and Fig-
ure 14-3 for Register.

If you bravely enter information into the registration screen and click the “Connect”
button, though, you’ll find yourself less than welcome, as shown in Figure 14-4.

OmniAuth needs the Rails application to handle /auth/:provider/callback. In this
case, the :provider is identity, and the application hasn’t established a route for it. It

Figure 14-1. Students listing with added authentication options

Figure 14-2. OmniAuth Identity’s simple login screen

Wiring OmniAuth into the Application | 241

uses the same route both for new registrations and for logins, so handling it only
requires one addition to config/routes.rb:

match "/auth/:provider/callback" => "sessions#create"

You don’t have to link it to sessions necessarily, but since most logins last for a session
(or perhaps longer), and this is creating a session, it makes good sense. Of course, you
have to create a sessions controller. First, at the command line, call:

$ rails generate controller sessions

Before moving further ahead, it makes sense to see what’s coming back from
OmniAuth. There are two key places to look. First, have the controller just plain tell
you:

class SessionsController < ApplicationController

def create
 raise request.env["omniauth.auth"].to_yaml
end

end

raise creates an error, but it also reports what OmniAuth sent in a more or less human
readable form shown in Figure 14-5.

Figure 14-3. OmniAuth Identity’s simple registration screen

242 | Chapter 14: Users and Authentication

Figure 14-5. What OmniAuth is reporting

Figure 14-4. OmniAuth Identity’s registration fails

Wiring OmniAuth into the Application | 243

This lets you see the name and email address, though the hashes for the password
credentials are just listed as a :map:Hashie::Mash object. If you want more detail, the
other place to look is the console window (or log/development.log), where you’ll find:

Started POST "/auth/identity/register" for 127.0.0.1 at 2012-01-16 13:39:16 -0500
Binary data inserted for `string` type on column `password_digest`
[1m [36m SQL (19.1ms) [0m [1m INSERT INTO "identities" ("created at",
"name", "password_digest", "updated_at") VALUES (?, ?, ?, ?, ?)[0m
[["created_at", Mon, 16 Jan 2012 18:39:17 UTC +00:00], ["email",
"zaphod@example.com"], ["name", "Zaphod Torminox"],
["password_digest", "$2a$10$8P/upZ/8bw.IrvKGOLJkj.6oRRglHHOUhVolFj3SQi76TxzIlA1ky"],
["updated_at", Mon, 16 Jan 2012 18:39:17 UTC +00:00]]
 Processing by SessionsController#create as HTML
 Parameters: {"name"=>"Zaphod Torminox", "email"=>"zaphod@example.com",
"password"=>"[FILTERED]", "password_confirmation"=>"[FILTERED]",
"provider"=>"identity"}
WARNING: Can't verify CSRF token authenticity
Completed 500 Internal Server Error in 11ms

RuntimeError (--- !map:OmniAuth::AuthHash
provider: identity
uid: "3"
info: !map:OmniAuth::AuthHash::InfoHash
 name: Zaphod Torminox
 email: zaphod@example.com
credentials: !map:Hashie::Mash {}

extra: !map:Hashie::Mash {}

):
 app/controllers/sessions_controller.rb:3:in `create'

This shows the same YAML dump, but you can see that OmniAuth already stored the
content in the identities data table (not the users table, just OmniAuth’s own identities
table) before passing it on to the callback. That happens because you made the Identity
model inherit from OmniAuth::Identity::Models::ActiveRecord.

A more useful result creates a session with the information in request.env instead.

def create
 auth = request.env["omniauth.auth"]
 if (User.find_by_provider_and_uid(auth["provider"], auth["uid"]))
 user = User.find_by_provider_and_uid(auth["provider"], auth["uid"])
 else
 user = User.create_with_omniauth(auth)
 end
 session[:user_id] = user.id
 redirect_to root_url, :notice => "Welcome!"
 end

This receives the auth information from OmniAuth, in particular provider and uid. If
there already is a user with those credentials, it logs in the user. If not, it creates a new
user based on the information OmniAuth has already made sure works. Then it sets a
session variable to the ID for the user, and sends the user on to the root page for the

244 | Chapter 14: Users and Authentication

application. (You may want to customize that last action in particular.) If you haven’t
already, make sure that you have root :to => 'students#index' in your config/
routes.rb file, or you’ll get strange error messages about “No route matches [GET] “/””.

Having the user id in the session is useful, but it’s more of a hook than something useful
in itself. Making that hook friendlier is easy to accomplish by adding a private helper
method to app/controllers/application_controller.rb. All it does is make an
@current_user variable available:

helper_method :current_user

def current_user
 if session[:user_id]
 @current_user ||= User.find(session[:user_id])
 else
 @current_user = nil
 end
 end

Once you have an @current_user variable available, letting users know they’re signed
in becomes easy. Just modify /app/views/application/_authentication.html.erb to read:

<p>
 <% if current_user %>
 Welcome <%= current_user.name %>!
 <% else %>
 <%= link_to "Log in", "/auth/identity" %> |
 <%= link_to "Register", "/auth/identity/register" %>
 <% end %>
</p>
<hr />

Now the user knows how they’re logged in, as shown in Figure 14-6.

There’s one last mandatory piece before moving on. Users need a way to logout of the
system without restarting their browser. Making this work requires adding a method
to the sessions controller, adding a route, and adding a bit of HTML to the authenti-
cation helper to give users access to it. None of this work goes back to OmniAuth
directly—it’s all about closing out a session in the Rails layer.

First, the /app/controllers/sessions_controller.rb needs an extra method:

def destroy
 session[:user_id] = nil
 redirect_to root_url, :notice => "Goodbye!"
end

destroy is pretty simple. It sets the session’s :user_id value to nil, shutting down further
use of the session, and sends the user to the site’s welcome page with a goodbye
message.

While signing in was a response to the /auth/:provider/callback response to
OmniAuth, and went to the create method of the session object, there won’t be any

Wiring OmniAuth into the Application | 245

such callback for destroy. Instead, because exposing the session object directly seems
odd, we’ll create a /signout route that calls the destroy method:

match "/signout" => "sessions#destroy", :as => :signout

Including :as => :signout just makes the link code from the /app/views/application/
_authentication.html.erb partial prettier:

<p>
 <% if current_user %>
 Welcome <%= current_user.name %>!
 | <%= link_to "Sign Out", signout_path %>
 <% else %>
 <%= link_to "Log in", "/auth/identity" %> |
 <%= link_to "Register", "/auth/identity/register" %>
 <% end %>
</p>
<hr />

This will produce the option to sign out, as shown in Figure 14-7, and when the user
signs out, they’ll see Figure 14-8.

There’s just one kind of major problem: authentication doesn’t actually do anything
yet. Users can still view, create, edit, and delete courses, students, and awards, whether
or not they log into the application. Fixing that isn’t difficult, fortunately. You’ll need
to create a before_filter, check_login, that checks to see if there is a current user logged
in through the current browser session. If not, it bounces the user to the login page.

Figure 14-6. Displaying the OmniAuth identity

246 | Chapter 14: Users and Authentication

The easiest place to put this code is in the application_controller.rb file, just below
current_user. This is probably excessively simple-minded code, not written for ele-
gance, but it shouldn’t be too difficult to see how it works:

def check_login
 unless logged_in?
 redirect_to "/auth/identity"
 end
end

def logged_in?
 if session[:user_id]
 return true
 else
 return false
 end
end

To actually use this code, you need to add:

before_filter :check_login

to the top of any controller you want protected by a login requirement. For the Students
controller, the top of the file might look like:

class StudentsController < ApplicationController
 before_filter :check_login

Figure 14-7. Displaying the logout link

Wiring OmniAuth into the Application | 247

 # GET /students
 # GET /students.json

If you add that to the controllers for students, courses, and awards, users will find
themselves redirected to the login page if they try to access any students, courses, or
awards pages without having authenticated first. That’s a good start, though of course,
they can just register a new account there, and then move on to whatever changes they
wanted. You may want a little more control than that.

Classifying Users
Most applications have at least two categories of users: administrators and ordinary
users. Many applications have finer-grained permissions, but this is a good place to
start, and why you created scaffolding instead of just a model when setting up users in
the first place. Code for this is available in ch14/students008.

The first step toward creating an extra category of users is to create a migration with a
suitable name:

rails generate migration AddAdminFlagToUsers

In the newly created migration, under db/migrate, change the migration file with the
name ending in add_admin_flag_to_users so that it looks like Example 14-1.

Figure 14-8. Signed out—options for logging in return

248 | Chapter 14: Users and Authentication

Example 14-1. A migration for adding a boolean administration flag to the users table

class AddAdminFlagToUsers < ActiveRecord::Migration
 def change
 add_column :users, :admin, :boolean, :default => false, :null => false
 end
end

This adds one column to the users table, a boolean named admin. It defaults to false
—most users will not be administrators and can’t have a null value. Run rake
db:migrate to run the migration and add the column.

Now it’s time to explore the user scaffolding to make it easy to specify which users are
administrators. In app/views/users, modify _form.html.erb so it looks like Example 14-2.

Example 14-2. Adding a checkbox to indicate an administrator

<%= form_for(@user) do |f| %>
 <% if @user.errors.any? %>
 <div id="error_explanation">
 <h2><%= pluralize(@user.errors.count, "error") %> prohibited this user from being
 saved:</h2>

 <% @user.errors.full_messages.each do |msg| %>
 <%= msg %>
 <% end %>

 </div>
 <% end %>

 <div class="field">
 <%= f.label :provider %>

 <%= @user.provider %>
 </div>
 <div class="field">
 <%= f.label :uid %>

 <%= @user.uid %>
 </div>
 <div class="field">
 <%= f.label :name %>

 <%= f.text_field :name %>
 </div>
 <div class="field">
 <%= f.label :admin %>

 <%= f.check_box :admin %>
 </div>

 <div class="actions">
 <%= f.submit %>
 </div>
<% end %>

Classifying Users | 249

It doesn’t make sense to update provider or ID by hand, so those just display here, but
the key is the checkbox for admin. That lets you specify that a user is an administrator,
as shown in Figure 14-9.

Now that users have an administrative flag, and now that there is at least one user with
the admin flag set to true, it’s time to make that flag matter. You can centralize most
of this work in the app/controllers/application_controller.rb file. It’s easy to create an
authorized? method that supplements the logged_in? method to let you establish
somewhat finer-grained control.

Typically, ordinary users have read access while more privileged users, like adminis-
trators, can make changes. In a RESTful application environment, this can be easily
implemented by letting users GET anything they want, while only privileged users can
use POST, PUT, or DELETE. Rails has a request.get? method that returns true for
GET and false for everything else. That makes it possible to write that the user must
be logged in and either GETting something or having admin privileges as:

logged_in? && (request.get? || current_user.admin?)

First, this checks to see if the user is logged in. If not, Ruby wont bother evaluating the
righthand side of the && expression, the part in parentheses, and Rails will reject the
request. If the user is logged in, Ruby next evaluates whether the incoming request was

Figure 14-9. Setting a user to be an admin

250 | Chapter 14: Users and Authentication

a GET. If it was, great—there’s no need to evaluate the other side of the || expression,
and the user is granted access. If it wasn’t, then Ruby checks to see whether the
current_user object has its admin flag set. If yes, then permission is granted, because
admins can make any kind of HTTP call they want. If not, then permission is denied,
because some evil user is trying to make changes they’re not allowed to make.

Checking authorization should look like:

protected
 def authorized?
 logged_in? && (request.get? || current_user.admin?)
 end

This can go near the bottom of the app/controllers/application_controller.rb file, just
above the final end statement. You should also change the check_login method to look
like:

def check_login
 unless authorized?
 redirect_to "/auth/identity"
 end
 end

At this point, you can save the files and call rails server. If you log in with the account
you set to be administrator (or don’t log in at all), the application works just like it did
before. The more interesting case, of course, is to create a new user with fewer permis-
sions, and examine the new user’s experience. Figures 14-10 to 14-13 show how a newly
created user steps through the application.

Figure 14-10. A new user, freshly welcomed

Classifying Users | 251

Figure 14-11. The students page works as planned for the new user

Figure 14-12. The editing page also works for the new user

252 | Chapter 14: Users and Authentication

Figure 14-13. The new user’s attempt to edit a student is finally blocked and they face a new login
screen

The beginning of this user’s journey goes as planned. Zoid gets a screen name
(14-10), then visits the students page (Figure 14-11) where all the data is visible. Feeling
curious, though, Zoid tries the Edit link for one of the students and is rewarded with
the editing page (Figure 14-12). It’s only when Zoid tries to submit the edits that the
authorization? method decides it’s time to lock him out (Figure 14-13).

From a strictly data security point of view, this is fine. The user can’t change data
without proper authorization. From the user’s point of view, though, the interface is
lying, offering opportunities that look like they should be available. As an interface
issue, this is a problem with the views and can be solved by checking whether the current
user is an administrator before presenting those options. This needs to be checked in
each of the index.html.erb files for students, courses, and awards—a little repetition is
necessary. The changes, though, are just a pair of if statements, highlighted in Exam-
ple 14-3.

Example 14-3. Removing inappropriate choices from a user with limited powers

<h1>Listing students</h1>

<table>
 <tr>
 <th>Given name</th>
 <th>Middle name</th>
 <th>Family name</th>
 <th>DOB</th>
 <th>GPA</th>
 <th>Start date</th>
 <th>Courses</th>
 <th>Awards</th>
 </tr>

<% for student in @students %>
 <tr>

Classifying Users | 253

 <td><%= student.given_name %></td>
 <td><%= student.middle_name %></td>
 <td><%= student.family_name %></td>
 <td><%= student.date_of_birth %></td>
 <td><%= student.grade_point_average %></td>
 <td><%= student.start_date %></td>
 <td><%= student.courses.count %></td>
 <td><%= student.awards.count %></td>
 <td><%= link_to 'Show', student %></td>
 <td><%= link_to 'Awards', student_awards_path(student) %></td>
<% if current_user.admin? %>
 <td><%= link_to 'Edit', edit_student_path(student) %></td>
 <td><%= link_to 'Destroy', student, :confirm => 'Are you sure?', :method =>
:delete %></td>
<% end %>
 </tr>
<% end %>
</table>

<% if current_user.admin? %>
<%= link_to 'New student', new_student_path %>
<% end%>

This just removes the Edit, Destroy, and New options. (The Awards entry moves up a
line, above Edit, to reduce the number of if statements needed.) Now, when Zoid logs
in and visits the students page, he’ll see just the options he’s allowed to use (Fig-
ure 14-14):

Figure 14-14. A more limited array of options appropriate to an ordinary user

There are a few other features that need the same treatment, like the link to the form
for enrolling students in courses from the app/views/students/show.html.erb file. Every

254 | Chapter 14: Users and Authentication

reasonably sophisticated application that has moved beyond the basic CRUD interface
will have a few of these cases.

It’s convenient to check results by keeping multiple browser windows
open, logged into different user accounts. Remember, though, that Rails
is tracking authentication status through sessions, which use cookies,
that apply to the whole browser and not just a single window.

The easy way to deal with this is to open two different browsers and log
in to the application separately in each of those, rather than in two dif-
ferent windows in the same browser.

There’s still one leftover that may be worth addressing, depending on your security
needs. The authorization? method has secured the data, and the view no longer shows
the user options they can’t really use, but if a user knows the URL for the edit form, it
will still open. It’s a GET request, after all. This is a good reason to make sure that these
forms don’t display any information that isn’t publicly available through other means.
If this is an issue, it may be worth the effort of adding authorization checks to every
controller method that could spring a leak.

More Options
A complete application would support many more tasks around authentication. A few
of the most notable include:

• Logging in through Twitter, Facebook, and others (the Railscasts cover this)

• An interface for managing users and privileges

• Letting users stay logged into their account on a given browser

• Finer-grained permissions for different categories of users

• Mechanisms that let users reset their passwords

• Email address verification

• Detailed account settings that let users set preferences

All of these things, however, are projects with details that vary widely across different
applications. The OmniAuth gem supports some of these options, such as connecting
the password system to email, but most of this is work that’s very dependent on what
precisely you want to build. The users model is a model like any other: you can extend
it, connect tables to it, and build whatever system you’d like behind your application.
The OmniAuth gem gives you a foundation, and you can build whatever you need on top
of it.

More Options | 255

Test Your Knowledge

Quiz
1. Where is user and password information stored?

2. How do you tell a controller that users must be logged in to use that controller?

3. Where do you modify the rules that authorize users to have certain privileges?

4. How do you keep the logs from storing potentially sensitive security-related
information?

Answers
1. User and password information is stored in the database, in a model you name

when you first generate the authentication mechanisms.

2. The before_filter :check_login method will block requests by unauthenticated
users.

3. You can redefine the authorized? method in the ApplicationController class in
app/controllers/application_controller.rb.

4. You can keep sensitive information out of the logs with filter_parameter_logging.

256 | Chapter 14: Users and Authentication

CHAPTER 15

Routing

Rails routing can shock developers who are used to putting their code in files wherever
they want to put them. After the directory-based approach of traditional HTML and
template-based development, Rails’ highly structured approach looks very strange.
Almost nothing, except for a few pieces in the public folder, is anywhere near where its
URI might have suggested it was. Of course, this may not be so shocking if you’ve spent
a lot of time with other frameworks or blogs—there are many applications that control
the meanings of URIs through mechanisms other than the file system.

If you prefer to read “URI” as the older and more familiar URL, that’s
fine. Everything works the same here. (And the core method Rails uses
to generate URIs is, of course, url_for, in the UrlModule.)

Rails routing turns requests to particular URIs into calls to particular controllers and
lets you create URIs from within your applications. Its default routing behavior, espe-
cially when combined with resource routes generated through scaffolding, is often
enough to get you started building an application, but there’s a lot more potential if
you’re willing to explore Rails routing more directly. You can create interfaces with
memorable (and easily bookmarkable) addresses, arrange related application func-
tionality into clearly identified groups, and much, much more.

What’s more, you can even change routes without breaking your application’s user
interface, as the routing functionality also generates the addresses that the Rails view
helper methods put into your pages.

Changing routing can have a dramatic impact on the web services aspect
of your applications. Programs that use your applications for JSON-
based services aren’t likely to check the human interface to get the new
address, and won’t know where to go if you change routing. Routing is
effectively where you describe the API for your projects, and you
shouldn’t change that too frequently without reason. (It can also break
user bookmarks.)

257

Creating Routes to Interpret URIs
Rails routing is managed through a single file, config/routes.rb. When Rails starts up,
it loads this file, using it to process all incoming requests.

If you’re in development mode, which you usually are until deployment,
Rails will reload routes.rb whenever you change it. In production mode,
you have to stop and restart the server.

The default routes.rb contains a lot of help information that can get you started with
the routes for your application, but it helps to know the general scheme first. In routing,
Rails takes its fondness for connecting objects through naming conventions and lets
you specify the conventions. Doing that means learning another set of conventions, of
course!

Specifying Routes with match
The smallest, simplest place to start figuring out how Rails handles routing is to examine
the old default rule, even though it is now commented out in new applications. (The
examples in Chapters 2 through 4 turned it on to get simple controllers running.) It
lurks at the bottom of the file and, if you’ve activated it, gets called if nothing above it
matched. You’ll always want to put higher-priority routes above lower-priority ones,
since the first match wins. The old default rule looks like:

match ':controller(/:action(/:id))(.:format)'

The match method is the foundation of routing, though what it does can be mysterious
until you compare it to some actual URIs. The argument to match is a string that can
break a URI down into component parts. Parentheses indicate optional components.
A URI could just name the controller. It could also list an action (method) and—if it
lists and action—could specify an ID. Any of those could also take an option format,
typically .html or .json.

For example, if your Rails server on localhost, port 3000, had a controller named
people that had an action named show, and you wanted to apply that to the record with
the id of 20, this rule would let you do that with a call to:

http://localhost:3000/people/show/20

When Rails gets this, it looks for a rule that looks like it matches the URI structure. It
checks the default rules last, but when it encounters the first default rule, Rails knows
from this to set :controller to people, :action to show, and :id to 20. The symbols
(prefaced with colons) act as matching wildcards for the routing. Rails uses that infor-
mation to call the PeopleController’s show method, passing it 20 as the :id parameter.

258 | Chapter 15: Routing

If a request comes in that would match ':controller' or ':controller/', Rails assumes
that the next piece would be index, much as web servers expect index.html to be a
default file. The :action will be set to index. Also, Rails ignores the name of the web
server in routing, focusing on the parts of the URI after the web server name.

Routing rules also work in reverse. The link_to helper method and the many other
methods link_to supports can take a :controller, an :action, and optionally even
an :id, and generate a link to a URL for accessing them. For example:

link_to :controller => 'people', :action => 'show', :id => 20

would, working with the default rule, produce:

http://localhost:3000/people/show/20

The last parenthetical option in the same rule supports format requests. If a user wanted
to request JSON specifically, she could write:

http://localhost:3000/people/show/20.json

Rails will set :controller to people, :action to show, :id to 20, and :format to json.
Then it uses that information to call the PeopleController’s show method, passing it
20 as the :id parameter and json as the :format parameter.

If your controller checks the :format parameter—Chapter 5 examined respond_to, the
easiest way to do this—and the value is one you’ve checked for, your controller can
send a response in the requested format. This isn’t limited to HTML or JSON—you
can specify other formats through the extension. If your controller supports them, vis-
itors will get what they expect. If not, they might be disappointed, but nothing should
break.

You could and probably should also specify the format through the
MIME content-type header in the HTTP request, but that doesn’t get
checked in ordinary Rails routing.

There are many different ways to use match. The approach that the default rules take
—presenting a string filled with symbols that connect to pieces of a URI—is simple,
but a rather blunt instrument. The match method offers another approach that lets you
specify URIs quite precisely: explicit specification of the URI and directions for where
to send its processing. This looks like:

match 'this/uri/exactly' :controller => "myController", :action =>
"myAction"

Using either of these rules, if a request comes in to a Rails server at localhost:3000,
looking like:

http://localhost:3000/this/uri/exactly

Creating Routes to Interpret URIs | 259

Rails will call the myController controller’s myAction method to handle the request. You
could also specify the same thing with the shortcut notation of:

match 'this/uri/exactly', => myController#myAction

While explicitly declaring mappings from individual URIs to particular controller
actions is certainly precise, it’s also not very flexible. Fortunately, you can mix symbols
into the strings however you think appropriate to create combinations that meet your
needs. For example, you might have a route that looks like:

match ':action/awards', :controller => 'prizes'

if Rails encountered a URI like:

http://localhost:3000/show/awards

Then it would route the call to the show method of the prizes controller.

The match method supports one other important technique. Calls to it aren’t limited
to the :controller, :action, :id, and :format parameters. You can call it with any
parameters you want—:part_number, :ingredient, or :century, for example—and
those parameters will be sent along to the controller as well. What’s more, you can mix
those symbols into the URI string for automatic extraction, making it possible to create
routes like:

match 'awards/:first_name/:last_name/:year' => 'prizes#show'

Then it would route the call to the show method of the prizes controller, with the
arguments :first_name, :last_name, and :year.

You can get even more parameters through the query string. They aren’t
mapped by the router specifically, but they still become part of the par-
ams collection sent to the controller. This is a feature that creates some
risks, as users may be able to inject unexpected additional parameters
this way.

Globbing
While it’s useful to have the default route retrieve an id value and pass it to the con-
troller, some applications need to pull more than one component from a given URI.
For example, in an application that makes use of taxonomies (trees of formal terms),
you might want to support those tree structures in the URI. If, for example, “floor”
could refer to “factory floor” in one context, “dance floor” in another context, and
“price floor” in yet another context, you might want to have URIs that looks like:

http://localhost:3000/taxonomy/factory/floor
http://localhost:3000/taxonomy/dance/floor
http://localhost:3000/taxonomy/price/floor

260 | Chapter 15: Routing

The only piece that the routing tool needs to be able to identify is taxonomy, but the
method that gets called also needs the end of the URI as a parameter. A route that can
process that might look like:

match 'taxonomy/*steps' => 'taxonomy#show_tree'

The asterisk before steps indicates that the rest of the URI is to be “globbed” and passed
to the showTree method as an array, accessible through the :steps parameter. The
show_tree method might then start out looking like:

def show_tree
 steps = params[:steps]

 end

If the method had been called via http://localhost:3000/taxonomy/factory/floor, the
steps variable would now contain ['factory', 'floor']; if called via http://localhost:
3000/taxonomy/factory/equipment/mixer, the steps variable would now contain
['factory', 'equipment', 'mixer']. Globbing makes it possible to gather a lot of
information from a URI.

You may encounter old documentation or code written on the assumption that globs
can only appear at the end of a match string. This is no longer true. If you put something
after a glob and Rails finds a specific match, the globbing will stop there. You can even
have multiple globs in a match string, though it’s probably not a good idea to get too
carried away.

Regular Expressions and Routing
While Rails is inspecting incoming request addresses, you might want to have it be a
little more specific. For example, you might create a route that checks to make sure
that the id values are numeric, not random text, and presents an error page if the id
value has problems. To do this, you can specify regular expressions in parameters for
your routes:

match ':controller/:action/:id', :id => /\d+/
match ':controller/:action/:id' => 'errors#bad_id'

The first rule looks like the default rules, but checks to make sure that the :id value is
composed of digits. (Regular expressions are explained in Appendix C.) If the id is
composed of digits, the routing goes on as usual to the appropriate :controller
and :action with the :id as a parameter. If it isn’t, Rails proceeds to the next message,
which sends the user to a completely different errors controller’s bad_id method.

A Domain Default with root
Often when prototyping, developers (and especially designers) like to start with the top
page in a site, the landing page visitors will see if they just enter the domain name. The
vision for this “front door” often sets expectations for other pages in the site, and the

Creating Routes to Interpret URIs | 261

http://localhost:3000/taxonomy/factory/floor
http://localhost:3000/taxonomy/factory/equipment/mixer
http://localhost:3000/taxonomy/factory/equipment/mixer

front door gets plenty of emphasis because it’s often the first (or only) page users see.
Even in an age where Google sends users to pages deep inside of a site, users often click
to “the top” to figure out where they landed.

There are two ways to build this front door in Rails. The first way, which may do
well enough at the outset, is to create a static HTML file that is stored as public/
index.html. That page can then have links that move users deeper into your applica-
tion’s functionality. It’s more likely, however, that projects will quickly outgrow that,
as updating a static page in an otherwise dynamic application means extra hassle when
things change.

The second approach deletes public/index.html and uses routing to specify where to
send users who visit just the domain name. The easiest way to do this is to use root,
which appears (commented out) in the config/routes.rb file. If you want visitors to the
domain name to receive a page from the entry method of the welcome controller, you
could write:

root :to => "welcome#entry"

Except that it can only apply to the top point of your URL hierarchy, root works much
like match. Although it appears deep in the routes.rb file, it probably makes sense to
move the root route to the top, as routes get checked in order and the top page of an
application is often a busy place.

Named Routes
While you could use simple match for all of your routes, you’d miss out on a lot of
convenience facilities Rails could provide your application. By naming routes, you gain
helper methods for paths and URLs, making your application more robust and more
readable.

How do you name a route? It’s simple—just add as to the declaration of your route.
For example, to create a route named login, you could write:

match '/sessions/new', :controller => 'sessions', :action => 'new', :as => login

Once you’ve done this, you’ll have two new helper methods, login_path and
login_url. The first will return /sessions/new and the second http://localhost:3000/
sessions/new (if you’re running it in the default server). That may not seem that
important, but once you have something like this scattered through your views:

<%= link_to "Login", login_path %>

it’s nice to be able to change where those point just by modifying a single line of the
routes.rb file.

262 | Chapter 15: Routing

Mapping Resources
If you’re building REST-based applications, you will become very familiar with resour
ces. It both saves you tremendous effort and encourages you to follow a common and
useful pattern across your applications. Chapters 5 through 9 have already explored
how REST works in context, but there are a few more options you should know about
and details to explore. A simple resources call might look like:

resources :people

That one line converts into seven different mappings from calls to actions. Each REST-
based controller has seven different methods for handling requests. Table 15-1 catalogs
the many things this call creates.

Table 15-1. Routing created by a single resources call

Name HTTP method Match string Parameters

people GET /people {:action=>"index”, :controller=>"people"}

POST /people {:action=>"create”, :controller=>"people"}

new_person GET /people/new {:action=>"new”, :controller=>"people"}

edit_person GET /people/:id/edit {:action=>"edit”, :controller=>"people"}

person GET /people/:id {:action=>"show”, :controller=>"people"}

PUT /people/:id {:action=>"update”, :controller=>"people"}

DELETE /people/:id {:action=>"destroy”, :controller=>"people"}

For all of the routes that use HTTP GET methods, Rails creates a named route. As
discussed later in the chapter, you can use these to support _path and _url helper
methods with link_to and all of the other methods that need a path or URL for linking.

If your application contains Ruby singleton objects, you should use
resource rather than resources for its routing. It does most of the same
work, but supporting a single object rather than a set. (Singleton objects
have an include Singleton declaration in their class file, which marks
it as deliberately allowing only one object of that kind in the
application.)

This resources call, its seven routes, and the supporting seven controller methods are
all it takes to support the scaffolding. However, there will likely be times when you
want to add an extra method to do something specific. You can do that without
disrupting the existing RESTful methods by using member , which lets you specify actions
that apply to individual resources. For example, to add the roll method to the cour
ses resource, Chapter 9 called:

resources :courses do
 member do

Creating Routes to Interpret URIs | 263

 get :roll
 end
end

In addition to the seven methods, the routing now supports an extra. The named route
roll_course uses the GET method, as the parameter suggests. It calls the roll method
on the courses controller, which you’ll have to create.

If you need multiple extra methods, you just list them in the member block:

resources :students do
 resources :awards

 member do
 get :courses
 post :course_add
 post :course_remove
 end
end

Nesting Resources
Chapter 9 went into extended detail on the many steps necessary to create an applica-
tion using RESTful nested resources, in which only awards that applied to a given
student were visible. Making that change required a shift at many levels, but the change
inside of the routing was relatively small. Instead of two routing declarations in
routes.rb:

resources :awards
resources :students

they combined into a containing block and a nested block:

resources :students do
 resources :awards
end

The resulting routes still create seven routes for :awards, but they all look a little dif-
ferent. Instead of names such as award and new_award, they shift to student_award and
new_student_award, highlighting their nested status. Their paths are all prefixed
with /student/:student_id, as the award-specific parts of their URIs will appear after
that, “below” students in the URI hierarchy.

You can also specify multiple resources to nest by placing them in the containing block.
If students also have, say, pets, you could make that a nested resource as well in a single
declaration:

resources :students do
 resources :awards
 resources :pets
end

264 | Chapter 15: Routing

Route Order and Priority
Using wildcards makes it likely—even probable—that more than one routing rule
applies to an incoming URI. This could have produced an impenetrable tangle, but
fortunately Rails’ creators took a simple approach to tie-breaking: rules that come ear-
lier in the routes.rb file have higher priority than rules that appear later. Rails will test
a URI until it comes to a match, and then it doesn’t look any further.

In practice, this means that you’ll want to put more specific rules nearer the top of your
routes.rb file and rules that use more wildcards further down. That way the more spe-
cific rules will always get processed before the wildcards get a chance to apply them-
selves to the same URI.

Checking the Map
As your list of routes grows, and especially as you get into some of the more complicated
routing approaches, you may want to ask Rails exactly what it thinks the current routes
are. The simplest way to do this is to use the rake routes command. Sometimes its
results won’t be a big surprise, as when you run it on a new application with only the
default routes:

/:controller(/:action(/:id))(.:format) :controller#:action

If you run it on a more complicated application, one with resources, you’ll get back a
lot more detail—names of routes, methods, match strings, and parameters:

student_awards GET /students/:student_id/awards(.:format) awards#index

POST /students/:student_id/awards(.:format) awards#create

new_student_award GET /students/:student_id/awards/new(.:format) awards#new

edit_student_award GET /students/:student_id/awards/:id/edit(.:format) awards#edit

student_award GET /students/:student_id/awards/:id(.:format) awards#show

PUT /students/:student_id/awards/:id(.:format) awards#update

DELETE /students/:student_id/awards/:id(.:format) awards#destroy

courses_student GET /students/:id/courses(.:format) students#courses

course_add_student POST /students/:id/course_add(.:format) students#course_add

course_remove_student POST /students/:id/course_remove(.:format) students#course_remove

students GET /students(.:format) students#index

POST /students(.:format) students#create

new_student GET /students/new(.:format) students#new

edit_student GET /students/:id/edit(.:format) students#edit

student GET /students/:id(.:format) students#show

PUT /students/:id(.:format) students#update

DELETE /students/:id(.:format) students#destroy

...

Creating Routes to Interpret URIs | 265

And that’s just for one resource! (OK, a resource with another nested in it.) Note that
Rails lines these routes up on the HTTP method being called, which is not always the
easiest way to read it. If you have lots of routes, and especially lots of resources, you’ll
need some good search facilities to find what you’re looking for.

If you’re working on Mac OS X or Linux and just want to find one route
in the haystack, you may find it useful to do something like rake routes
| grep root, piping the output of rake routes through the grep search
program. In this case, it would be looking for a line with root in it. If
you try that in ch14/students08, you’ll get back a response like:

root / students#index

Generating URIs from Views and Controllers
Setting up these routes does more than connect URIs to your application. It also makes
it easy for you to build connections between different parts of your application. Code
can tell Rails what functionality it should point to, and Rails will generate an appro-
priate URI. There are many methods that generate URIs (form_for, link_to, and a host
of others), but all of them rely on url_for, a helper method in the UrlModule class.

Pointing url_for in the Right Direction
The method signature for url_for doesn’t tell you very much about how to call it:

url_for(options = {})

Remember, the parentheses around the method arguments are optional,
as are the curly braces ({}) around the options hash.

Early Rails applications often called url_for by specifying all of the parts needed to
create a URI—:controller, :action, and maybe :id:

url_for :action => 'bio', :controller => 'presidents', :id => '39'

This would produce a URI like:

/presidents/bio/39

There’s a simpler approach, though, if you just want to point to a particular object, say
an @president object that has an id of 39:

url_for @president

Rails will check through its naming conventions, looking for a named route that
matches the object specified. It will then call the named route’s _path helper method—

266 | Chapter 15: Routing

in this case, probably president_path. The value returned by that helper will end up in
the URI, likely as:

/presidents/39

To point to nested resources, you need to provide a little more information, two argu-
ments in an array:

url_for [@student, @award]

And the result would be something like:

/students/1/awards/2

You can also point to a nested resource by calling its _path helper methods explicitly.
For an award nested under a student, you could produce the same result with:

url_for student_award_path(@student, @award)

Adding Options
The options array is good for more than just specifying the pieces that will go into the
URI. It lets you specify how the URI should appear, and add or override details. The
available options include:

:anchor

Lets you add a fragment identifier to the end of your URI, separated by a # sign.
This can be very effective when you want to point users to a specific item in a long
list.

:only_path

When true (which it is by default), url_for will only return the path part of the
URI, the part that comes after the protocol, host name, and port. If you want a
complete (absolute) URI, this should be set to false.

:trailing_slash

When true, this adds a slash at the end of URIs. While this may meet your ex-
pectations for working with directories (or things that look like directories) on the
Web, it unfortunately can cause issues with caching, so use it cautiously. This
defaults to false.

:host, :port, and :protocol
These let you specify a particular host (including port number) and protocol. If
these are specified, the full absolute URI will be returned, regardless of
what :only_path was set to.

Infinite Possibilities
Rails routing is implemented using a DSL—a Domain-Specific Language. Ruby lets
developers build all kinds of functionality into a very concise form, but at the same
time, DSLs can become pretty mind-bending quickly. Routing in particular can grow

Infinite Possibilities | 267

extremely complicataed if you try to take advantage of too many cool Rails features.
There are many more possibilities than a Learning book can reasonably cover. Among
them are:

• Using resources with a block

• Custom parameters and conditions

• Abandoning numeric id values in favor of more descriptive unique names

• More precisely defined nested resources with path and name prefixes

• Multiple levels of nesting (possible, though not such a good idea)

• Testing routes with assert_generates, assert_recognizes, and assert_routing

• Debugging routes from the console

• Extending routing

Once you’ve run out of things to do with the possibilities explored in this chapter, and
feel confident that you understand how Rails is routing requests, you can take the next
steps forward into deepest Rails.

Test Your Knowledge

Quiz
1. How often does Rails reload the routes.rb file?

2. How do you set the routing for the empty URL, which is usually the home or
landing page for a site?

3. If there are multiple routes that could match a given URL, how does Rails choose?

4. How do you tell Rails to just “grab the rest of this URL and put it into a parameter”?

5. How many routes does a single plain resources call create?

6. What’s the fastest way to see Rails’ list of routes?

7. How do you add a fragment identifier to the end of a URL created with url_for?

Answers
1. In development mode, Rails checks to see if the routes.rb file has changed and

reloads it if it has. In production mode, Rails doesn’t check, and you’ll need to stop
and restart the server to update routes.

2. The root method lets you tell Rails how to handle requests aimed at the top of your
site. You’ll also need to delete or rename public/index.html.

268 | Chapter 15: Routing

3. Rails always applies the first route that matches a given URL, starting from the top
of routes.rb.

4. Globbing, using an asterisk, lets you halt further processing of a chunk of the URL
and send it along to the controller method as a parameter.

5. resources creates an astounding seven routes, representing seven different meth-
ods built on REST, with and without a format.

6. The rake routes command will show you the list of routes Rails believes it has.

7. The :anchor parameter lets you specify a fragment identifier, which comes after #
at the end of the URL.

Test Your Knowledge | 269

CHAPTER 16

From CSS to SASS

Chapter 3 showed how to add a small amount of CSS to make a Rails application more
visually appealing, but only scratched the surface of styling. Rails has added a powerful
new component that will help take some of the pain out of styling your app: Sass.

Originally written as an add-on Ruby gem, Sass became part of Rails as of version 3.1.
Sass bills itself as a “meta-language on top of CSS” that allows for greater control over
styling. If you’ve ever built a website and wished you could assign a color as a variable
or eliminate repetition in your stylesheet (among other things), Sass comes to the res-
cue.

Read more about Sass at http://sass-lang.com/about.html.

Getting Started
Sass actually has two syntax styles and corresponding extensions: .sass and .scss. In the
early days of Sass, files ending in .sass used a syntax with an indented system (called,
amazingly enough, “Sass”). Whereas typical CSS like that seen in Chapter 3 would have
the styles fall between curly brackets such as { and }, code in a .sass file would not look
the same. For example, CSS code like this:

 #container {
 background: #FFF;
 color: #000;
 text-align: left;
 }

Would look like this in Sass:

 #container
 background: #FFF
 color: #000
 text-align: left

271

http://sass-lang.com/about.html

This code is amazingly clean. It’s beautiful. Sadly, it’s not compatible as straight-up
CSS without having Sass generate it as such. Therein lies the power of the newer syn-
tax, .scss, also known as “Sassy CSS.”

As the world’s browsers move to take advantage of the CSS3 spec, SCSS is waiting in
the wings. If your stylesheet is a valid CSS3 document, it’s also valid SCSS. All you need
is the right file extension on your stylesheet coupled with Sass power in the background
and you’ve got yourself a powerful tool well-suited for the rapid development nature
of building with Rails.

It’s a little bit more complex than that, but not by much.

To get started using Sass in your Rails application, simply add .scss to any existing
stylesheets you want to use Sass with. For example, layout.css (found in app/assets/
stylesheets) should be renamed layout.css.scss. Although you won’t notice any imme-
diate changes to your app, you are using Sass.

Sassy Style
Sass adds a lot of components to CSS, including variables, mixins, and nesting.

Variables
If you’ve altered styles of any medium- or large-scale website, you’re bound to have run
into the problem of repetitious code within the labyrinth of your stylesheets. Now that
the Rails “don’t repeat yourself” mantra is fully ingrained into your web development
philosophy, variables in Sass can help eliminate repetitious code.

You’ve made your headings, links, bold words, classes, etc., all the same color to match
a client’s logo. So, your stylesheet might look something like this:

 h2 {
 color: #66FF00;
 font-size: 20px;
 }

 b {
 color: #66FF00;
 }

 .standout {
 color: #66FF00;
 font-style: italic;
 }

 a {
 color: #66FF00;
 }

272 | Chapter 16: From CSS to SASS

Already you can see a problem of repetitious code developing. Yes, it’s true that a little
refactoring of this code could maybe make things easier. But as the stylesheet grows in
size, inevitably it also will grow in complexity. Thanks to Sass, we can make this simpler
by assigning the

color: #66FF00;

as a variable:

 $lime-green: “#66FF00;”
 $branding-colors: $lime-green;

 h2 {
 color: $branding-colors;
 font-size: 20px;
 }

 bold {
 color: $branding-colors;
 }

 .standout {
 color: $branding-colors;
 font-style: italic;
 }

 a {
 color: $branding-colors;
 }

Uh-oh. The client called and that lime green color you were using ended up getting
changed to a bold blue color. In the old days, that might require a little find-and-replace
work. But since we’re working smarter with our Sass, we simply create a new variable.
With one line of code, we change the color throughout our application.

 $bold-blue: #000066;
 $lime-green: #66FF00;
 $branding-colors: $bold-blue;

 h2 {
 color: $branding-colors;
 font-size: 20px;
 }

 b {
 color: $branding-colors;
 }

 .standout {
 color: $branding-colors;
 font-style: italic;
 }

 a {

Sassy Style | 273

 color: $branding-colors;
 }

You can now play around with that even more. Do the links need to be green? Call

color: $lime-green;

then. Should some things be blue and others green? Assign the colors to new variables
to your heart’s content. Need to add sizes to a variable? Call

$margin: 10px;

or use the many functions available as seen at http://sass-lang.com/docs/yardoc/Sass/
Script/Functions.html to expand your variables even further.

Your days of find-and-replace hell are drawing to a close.

Mixins
It’s an exciting time to be a web developer. Browser manufacturers are pushing the
envelope allowing implementation of the ever-evolving specifications for HTML5 and
CSS3, and giving web developers an excellent toy box to play in.

All of this progress brings with it a little bit of instability. As of this writing, CSS3’s box-
shadow property works well in Firefox, Safari, Chrome, Opera, and even (gasp!)
Internet Explorer 9. When fully implemented across all modern browsers, all you’ll
need to do is utilize this code to get subtle shadow evenly around an element, like this
coding to shadow an img tag with a shadow class:

 img.shadow {
 box-shadow: 0 0 5px #888;
 }

Doesn’t that look nice? No more do images need to have shadows applied directly to
the image file. Instead, the shadow class can easily bring shadowing to any image on
the website. Need the shadow a different color or with a bigger blur distance? That can
easily be adjusted with this style.

There’s just one problem: not all the browsers mentioned above support the native
coding for box-shadow, even though they still implement them in practice using a
vendor prefix like so:

 img.shadow {
 -moz-box-shadow: 0 0 5px #888;
 -webkit-box-shadow: 0 0 5px#888;
 box-shadow: 0 0 5px #888;
 }

Vendor prefixes must come first to work properly.

274 | Chapter 16: From CSS to SASS

http://sass-lang.com/docs/yardoc/Sass/Script/Functions.html
http://sass-lang.com/docs/yardoc/Sass/Script/Functions.html

Mixins allow you to “mix in” code into other areas of your style sheet to make it
reusable. I once had to go through by stylesheet and eliminate the vendor prefixes in
multiple places from my stylesheet after adoption of the CSS3 property I was using
became fairly ubiquitous. If I could have used mixins that day, I would have only needed
to change my code once, rather than the multiple places it was flung throughout my
stylesheet.

Instead of this:

 img.shadow {
 -moz-box-shadow: 0 0 5px #888;
 -webkit-box-shadow: 0 0 5px#888;
 box-shadow: 0 0 5px #888;
 }

My mixin could have been defined like so:

 @mixin shadowed-boxes {
 -moz-box-shadow: 0 0 5px #888;
 -webkit-box-shadow: 0 0 5px #888;
 box-shadow: 0 0 5px #888;
 }

Now all I would need to do is include the mixin name, shadowed-boxes, into my code:

 img.shadow {
 @include shadowed-boxes;
 }

And I can keep re-using the mixin in my CSS wherever I wanted to use the previously
specified shadowing:

 header {
 @include shadowed-boxes;
 }

 div.topstory {
 @include shadowed-boxes;
 }

And so on.

Nesting
Sass can help trim the size and increase readability of style sheet code through the use
of nesting. We’ve already seen nesting quite a bit in our Ruby code, but with CSS?

Yes, it’s here, and it’s fantastic.

Here’s a personal example. Often I’ll include an h1 inside of a header. It’s a common
design convention, one that might look like this:

 header {
 width: 960px;
 margin: 0 auto;

Sassy Style | 275

 border: 1px solid #000;
 }

 header h1 {
 font-style: italic;
 font-size: 1.5em;
 color: red;
 }

But with nesting support in Sass, your CSS can be written like this instead:

 header {
 width: 960px;
 margin: 0 auto;
 border: 1px solid #000;

 h1 {
 font-style: italic;
 font-size: 1.5em;
 color: red;
 }
 }

The difference is subtle, but you can see the h1 is nested inside the curly brackets for
the header.

But wait, there’s more! You can also self-reference elements in your stylesheets. In this
evermore touchscreen device world, I tend to shy away from using :hover pseudo-
classes with my links. But I’m a big believer in keeping my visited links a different color
than unvisited ones, which play out like this in a Sass-powered stylesheet:

 a {
 color: #03507B;
 text-decoration: none;
 &:hover {
 text-decoration: underline;
 }
 }

The key thing to notice here is the ampersand. Our code is taking advantage of nesting,
but as you know, a:hover isn’t really nested (it is a pseudo class after all), but the a is
the parent of :hover in this instance. That’s where the ampersand comes in, represent-
ing the parent in nested CSS.

Making Everything Work Together
When building the students app, we ended up using several scaffolds, and for each one,
a corresponding stylesheet in the app/assets/stylesheets directory. Using what you’ve
learned about Sass, let’s apply it to our Students application.

First you’ll need to do a bit of housekeeping. It’s common practice to break down styles
into separate stylesheets for better organization. Having one really long stylesheet can

276 | Chapter 16: From CSS to SASS

be a pain to manage as a project grows. But you also need to ensure your application
knows about all your Sassy stylesheets and includes them for use.

In the Students application, navigate to app/assets/stylesheets. Find the application.css
file and rename it as application.css.scss. From there, we need to import all the other
stylesheets using the @import directive:

 /*
 * This is a manifest file that will automatically include all the stylesheets
 * available in this directory and any subdirectories. You're free to add application-wide
 * styles to this file and they'll appear at the top of the compiled file, but it's
 * generally better to create a new file per style scope.
 *= require_self
 *= require_tree
 */

 @import "awards.css.scss";
 @import "scaffolds.css.scss";
 @import "students.css.scss";

There’s just one tiny little problem with the above code: Sprockets, which we’ll dive
deeper into in the next chapter. For now, you’ll need to know that Sprockets uses this
code, *= require_tree, to load all the files in the stylesheets directory. However, each
of the files are loaded individually rather than bundled together in a way that Rails can
use to process Sass code from all your stylesheets in the same namespace. This means
that variables and mixins defined in one file may not be available to other files.

By removing *= require_tree from your application.css.scss file and using the @import
directive to use the files you specify, your app can now share all the variables, mixins
and nested CSS of the imported style sheets. With your app running, you can see the
compiled stylesheet at http://localhost:3000/assets/application.css.

This is a good start; all the stylesheets are being brought together in one place thanks
to Sass magic. Now we’ll open up the students.css.scss file in the app/assets/stylesheets
directory and get to work on some better style.

Let’s style the h1 of the students index page, and also the names of the students.

$bluish: #0067A1;
 $student-color: $bluish;

 body h1 {
 background-color: $student-color;
 padding: 10px;
 color: #FFF;
 margin: 0;
 }

 td.name {
 color: $student-color;
 }

We’ll also modify the table in app/views/students/index.html.erb for simplicity.

Making Everything Work Together | 277

http://localhost:3000/assets/application.css

 <h1>Listing students</h1>

 <table>
 <tr>
 <th>Student Name</th>
 <th>Date of birth</th>
 <th>Grade point average</th>
 <th>Start date</th>
 <th>Awards</th>
 <th></th>
 <th></th>
 <th></th>
 </tr>

 <% @students.each do |student| %>
 <tr>
 <td class="name">
 <%= student.given_name %>
 <%= student.middle_name %>
 <%= student.family_name %>
 </td>
 <td><%= student.date_of_birth %></td>
 <td><%= student.grade_point_average %></td>
 <td><%= student.start_date %></td>
 <td><%= student.awards.count %></td>
 <td><%= link_to 'Show', student %></td>
 <td><%= link_to 'Edit', edit_student_path(student) %></td>
 <td><%= link_to 'Destroy', student, confirm: 'Are you sure?',
 method: :delete %></td>
 </tr>
 <% end %>
 </table>

 <%= link_to 'New Student', new_student_path %>

Head over to http://localhost:3000/students and check out the changes. The h1 and the
table cell with the name class share the same color, bluish. If we decided to play with
other colors, we’d simply need to create a new color variable like $redish: #DB4327;
and assign it to the $student-color like so:

$student-color: $redish;

It’s time to mix in a shadow around the entire body element. We can stay in the
students.css.scss file, and put this bit of code right above our color variables:

 @mixin bodyshadow {
 -moz-box-shadow: 0 0 5px #888;
 -webkit-box-shadow: 0 0 5px #888;
 box-shadow: 0 0 5px #888;
 }

body {
 @include bodyshadow;
 padding: 4px;

278 | Chapter 16: From CSS to SASS

http://localhost:3000/students

 width: 80%;
 }

A quick refresh of the page, and if your browser supports CSS3, it should look like the
page shown in Figure 16-1:

Figure 16-1. Our application begins to show a little style

If there is one thing that makes me nervous, it’s the possibility I might accidentally
delete something. Thankfully, if I were to click the “Destroy” link I’d get a dialog box
asking me if I really wanted to do that, but we can do better. We’ll make the link stand
out and make it painfully obvious.

In our students.css.scss file, we’ll throw this bit of code at the bottom:

 a {
 color: #0B3641;
 &:hover {
 background-color: #FFF;
 color: #23C331;
 }
 &.destroy {
 color: #DB4327;
 }
 }

While this changes the color of the links ever so slightly, it does two more dramatic
changes: nesting makes hovered links turn green and that “Destroy” link stays red
(Figure 16-2) by adding a destroy class.

To make this all work, we just need to modify one last bit on our index.html.erb file in
the students view:

 <td><%= link_to 'Destroy', student, confirm: 'Are you sure?', method: :delete,
 :class => 'destroy' %></td>

becomes:

 # <%= link_to 'Destroy', page, :confirm => 'Are you sure? This cannot be undone.',
 :method => :delete %>

Becoming Sassier
Our look at Sass is a good beginning to satisfy most left-brained developers, but the
aesthetically oriented will want to go further. The Sass official website (http://sass-lang
.com/), has all documentation, tutorials, and code examples. Be sure to check out the
functions page in the documentation at http://sass-lang.com/docs/yardoc/Sass/Script/
Functions.html.

Making Everything Work Together | 279

http://sass-lang.com/
http://sass-lang.com/
http://sass-lang.com/docs/yardoc/Sass/Script/Functions.html
http://sass-lang.com/docs/yardoc/Sass/Script/Functions.html

You may also want to explore the Pragmatic Guide to Sass (Pragmatic Programmers,
2011).

Test Your Knowledge

Quiz
1. What file extension do you need to start using Sass?

2. What can you use to assign values in your stylesheet?

3. Is there a way to reuse code with several values assigned to it?

4. How can you refactor your CSS code to make it more readable?

5. You’re ready to use Sass through your application. How do you implement it?

Answers
1. Change your stylesheet from .css to .css.scss.

2. Like Ruby code, variables can be used to keep your CSS code less repetitious.

3. Mixins allow for very reusable code, like when used with the ever-evolving CSS3
specification.

4. Sass can help trim the size and increase readability of style sheet code through the
use of nesting.

5. Change your application.css extension to application.css.scss, use the @import
directive to import other CSS partials you want available across your application,
and remove the code *= require_tree from the application.css.scss file.

Figure 16-2. Our app now shows red “Destroy” links, prompting us to delete with caution

280 | Chapter 16: From CSS to SASS

CHAPTER 17

Managing Assets and Bundles

Our journey through Rails has been a magical one so far, hasn’t it? Generators that
build entire application structures. Validations in one line of code. Object-relational
mapping that helps make creating a database schema a breeze. Relationships that make
sense.

Is it any wonder that companies like Hulu, LivingSocial, Shopify, 37signals, and many
more are using Ruby on Rails to build amazing products? It’s a web developer’s play-
land, filled with tools to make the process fun and productive.

Much of the joy of building with Rails comes from embracing the limitations it creates.
The structure of the framework means you have to figure out how to build your appli-
cation the way Rails wants you to build it. Unfortunately, for the longest time, Javascript
and CSS were treated as “second-class citizens,” shoehorned into the public folder to
fight for themselves. Because the framework dictates how you’ll use it, front-end
designers had to live with the status quo.

All of that changed with Rails 3.1. In the final three chapters, we’ll examine how changes
to the Rails framework finally brought Javascript and CSS into the framework (literally)
and what it means for the future of front-end development in Rails.

The Junk Drawer
Prior to Rails 3.1, the public directory served as a “junk drawer” where stylesheets,
scripts, images, HTML, text, and other files would live. Got some new pics? Throw
them in public/images. Need a print style stylesheet? That went in public/stylesheets.
PDFs? Not a problem.

281

Watch the RailsConf 2011 keynote where David Heinemeier Hansson
(DHH) talks about the junk drawer, the asset pipeline, and more at http:
//www.rubyinside.com/dhh-keynote-streaming-live-from-railsconf-2011
-right-here-right-now-4769.html. Should you want to create an app from
the start without Sprockets turned on, run rails new appname --skip-
sprockets when creating a new application.

DHH was right: the public directory had become a catch-all for non-Ruby/Rails items
and wasn’t treated equally to the rest of the framework. There was nothing framework-
specific about the public directory other than we needed somewhere to put those files,
shown in Figure 17-1 After all, we want our application to have style, interactivity, and
images, right?

Sprockets
Sprockets is a library that began shipping with Rails 3.1 for compiling and serving web
assets like JavaScript and CSS files. It also serves as a “preprocessor pipeline,” which
means it can use languages like Sass/SCSS, as we saw in Chapter 16, and CoffeeScript,
which we’ll learn about in Chapter 18.

The Sprockets library can be downloaded for use with Rails prior to 3.1
at https://github.com/sstephenson/sprockets/.

It turns out that Sprockets is now quite a big deal for Rails. Sprockets gives rise to
JavaScript and CSS becoming first-class citizens, all because of that preprocessor pipe-
line it adds to a Rails application.

Figure 17-1. The sad tale of a public directory from an application prior to Rails 3.1

282 | Chapter 17: Managing Assets and Bundles

http://www.rubyinside.com/dhh-keynote-streaming-live-from-railsconf-2011-right-here-right-now-4769.html
http://www.rubyinside.com/dhh-keynote-streaming-live-from-railsconf-2011-right-here-right-now-4769.html
http://www.rubyinside.com/dhh-keynote-streaming-live-from-railsconf-2011-right-here-right-now-4769.html
https://github.com/sstephenson/sprockets/

So what does “big deal” mean? It fundamentally changed how images, JavaScript and
CSS are handled within the Rails ecosystem, moving them out of the junk drawer and
into first-class citizen status.

Dissecting The Pipeline
When we generated our students application, Rails automatically created a set of
directories inside of a directory called assets (app/assets, shown in Figure 17-2). Those
directories — images, javascripts, stylesheets — not surprisingly are the new homes
for their respective assets. No longer relegated to the public directory, Sprockets has
plans for them now.

As of Rails 3.1, the asset pipeline is turned on by default. Should you
decide against it, therefore, edit config/application.rb and place con
fig.assets.enabled = false in the file.

Putting It All Together
Let’s see how all of this works together. Make sure your students app is running. If not,
start it in the command line by running rails server. In your browser, visit http://
localhost:3000/assets/application.css.scss. You’ll see something like Figure 17-3.

As you can see, all of your stylesheets are complied into one long file. Because we added
the @import directive to our app/assets/application.css.scss file in the last chapter,

Figure 17-2. The assets directory with our generated images, javascripts, and stylesheets subdirectories
on our Students application

The Junk Drawer | 283

http://localhost:3000/assets/application.css.scss
http://localhost:3000/assets/application.css.scss

Sprockets uses the information in the top of the file, the manifest, to compile the file
we see at http://localhost:3000/assets/application.css.scss.

This file includes loads of information. As you scroll down the file you’ll notice each
block of style information is preceded with its location in your application. This is quite
handy for debugging. Quickly glance at your CSS, see what you want to modify, and
you’ll be given the line number and location so you can find it with ease.

The stylesheets are loaded in the order the @import directives are listed in applica-
tion.css.scss. If you have a file like scaffold.css.scss that doesn’t change much, you could
have it load last in the manifest by listing it last in application.css.scss. That will save
you time and go easy on your eyes when sifting through the compiled stylesheet.

Although all this information is handy, it can be a bit hard to decipher if you start
loading several different stylesheets. To make reading the complied CSS a little bit
easier, adding a commented line of code at the top of each individual stylesheet file
makes for easier reading.

For example, a simple line of code like this:

 /* ---------- SCAFFOLDS.CSS.SCSS ---------- */

Translates to a visual break in the page like so:

 a.destroy {
 color: #DB4327;
 }

Figure 17-3. Our application.css.scss file, compiled and compressed with all our imported stylesheets

284 | Chapter 17: Managing Assets and Bundles

http://localhost:3000/assets/application.css.scss

 /* ---------- SCAFFOLDS.CSS.SCSS ---------- */
 /* line 2, /Users/rumblestrut/Webapps/students01/app/assets/stylesheets/
 scaffolds.css.scss */
 body {
 background-color: #fff;
 color: #333;
 font-family: verdana, arial, helvetica, sans-serif;
 font-size: 13px;
 line-height: 18px;
 }

It should come as no surprise that additional file types in the asset pipeline can be
viewed in a browser by following their path:

• app/assets/application.js is accessible at http://localhost:3000/assets/application.js.

• app/assets/places.js.coffee (we’ll discuss CoffeeScript in the next chapter) is acces-
sible at http://localhost:3000/assets/places.js.coffee.

• app/assets/images/rails.png is accessible at http://localhost:3000/assets/rails.png.

The same goes for other files in the pipeline. In fact, you’re not limited to only images,
stylesheets, or JavaScripts. Create a new folder in the assets directory called text, and
inside of it is a file called hello.txt. Open that file, type the word “Hi” in it, and then
close and save.

If you were to try and access http://localhost:3000/assets/hello.txt, you’d get a routing
error. Restart the app and Rails will add the new directory and its contents to the load
path. Access http://localhost:3000/assets/hello.txt now and you’ll see something like
Figure 17-4.

Figure 17-4. Our plain text file available for all the world to see

You’ve already seen that the pipeline can be used inside the app/assets directory. In
addition, there are two other places in your application that can use pipeline assets:

The Junk Drawer | 285

http://localhost:3000/assets/application.js
http://localhost:3000/assets/places.js.coffee
http://localhost:3000/assets/rails.png
http://localhost:3000/assets/hello.txt
http://localhost:3000/assets/hello.txt

lib/assets
Perhaps you have code that isn’t tied down to this application, but you maintain
it. Since you’ve claimed responsibility for this bit of code, put it here. An example
of this would be if a company had assets that were used in-house by a variety of
applications. For code that’s maintained by a third party, that would be more at
home in vendor/assets.

vendor/assets
Got a favorite jQuery plugin? Fan of Eric Meyer’s Reset CSS? Those third-party
assets belong here.

Not to leave the public directory out; you can put assets there, but they’ll be served as
static files only—no dynamic action there.

The pipeline uses app/assets, lib/assets, and vendor/assets by reducing the number of
requests a browser makes to render your application’s web pages. Fewer requests lead
to faster loading of web pages, and ultimately lead to a faster application.

This makes sense. We might have multiple stylesheets, but Sprockets works to compile
them all into one master CSS (or SCSS) file. The same goes for JavaScript files. Sprockets
does the work for us in the background, minimizing and compressing files, removing
whitespace and comments.

Lastly, it might be helpful to know how to link to these wonderful files in your appli-
cation. You’ve already seen how to link to stylesheets and JavaScript, respectively:

• <%= stylesheet_link_tag ‘application’ %>

• <%= javascript_link_tag ‘application’ %>

And anywhere in your application, you can link directly to an image by using image_tag:

• <%= image_tag “rails.png” %>

Bundler
One of the more interesting aspects of working on a Rails project is its community. If
you’re stuck on a program, mailing lists, forums, books, blogs, and user groups can
help you get over the hump.

Another great addition to the community—a by-product of the open source movement
itself—is the prevalence of tools that are widely available, and often, free. Such is the
case with gems: Ruby libraries written by others in the community to add more features
to your application.

You’ve already seen gems in action: rake is a gem that is part of the Rails core.
OmniAuth is a gem that provides multi-provider authentication. Even Rails itself is a
gem—you remember running “gem install rails,” right?

286 | Chapter 17: Managing Assets and Bundles

Although many of the gems available are useful, free, and fun to explore, managing
them properly used to be like herding cats. That is, until Bundler came along and
changed everything.

Bundler is a gem management tool for the “cat herding” aspect of your Ruby applica-
tion’s dependencies. When you first created your students application, the last com-
mand to run before you could proceed was bundle install. That command caused
your computer to run out, grab all the dependencies for a basic Rails app, and then
install them for you, as shown in Figure 17-5.

Adding a gem is as simple as editing a text file. In the root of your application is a file
called Gemfile. Say you wanted to add the Friendly_Id gem. Open Gemfile in a text
editor and add gem 'friendly_id' in the file. Save it, then switch back over to the
command line and run bundle install. You’ll see something like Figure 17-6.

There’s another important file being modified by Bundler that we’ll need to take a look
at: Gemfile.lock. This file will “lock down” which version of a gem has was installed
initially (clever name, eh?). If you had created an app using friendly_id version 3.2.1,
you’d still be using that version until you manually updated the gem.

This makes your application more portable: you’ll always be using the exact same
version of the gem, which protects from future upgrades that could break your app
before you’re ready. When you are ready to update a specific gem, running the com-

Figure 17-5. “Your bundle is complete!” means Bundler has taken care of all of your gem dependencies
for you and you’re ready to get started building your app

Figure 17-6. Editing the Gemfile so Bundler will fetch the necessary gem and its dependencies when ran

The Junk Drawer | 287

mand bundle update with the gem name will do that. Of course, your Gemfile.lock file
will be updated as well, like this: bundle update friendly_id.

But what if you want to just update everything? Run bundle update with no arguments
and it’ll all be taken care of.

You’ll notice we haven’t even really talked about version numbers. In a way, version
numbers aren’t needed when installing gems in your Gemfile, as Bundler will always
fetch the latest version by default. There is a way to change that. Adding the version
for the gem in Gemfile will prohibit Bundler from updating the gem, even if bundle
update is run, as you can see in Figure 17-7.

You’ll need to run the bundle exec command when executing some
commands, such as migrating a database: bundle exec rake

db:migrate. In doing so, you ensure your application is using the gem
specified in your Gemfile.

If you want even more control over which versions of a gem Bundler manages, here are
some helpful arguments:

gem ‘gemname’, ‘2.11.12’

As mentioned above, this keeps gemfile.lock at this version for a gem, until you
update it manually.

gem ‘gemname’, ‘~> 2.11.12’

The tilde tells Bundler to only update the last number when bundle is executed.
So if a new version, say 2.11.13 comes out, bundle will update your gem to that
version. But if 2.12.2 was available, the gem would not upgrade to 2.12.

gem ‘gemname’, ‘>= 2.11.12’

Bundler will only update if the gem that has been released is greater than or equal
to 2.11.12.

It’s worth noting that a good practice for adding gems to your Gemfile includes either
setting an explicit version number, or by using the ~>. Keeping these versions locked
down until you’ve had a chance to fully test them with your application could save you
a lot of heartache should the gem have gone through major changes since your last
upgrade.

Figure 17-7. With the version number passed as an argument for the friendly_id gem installation, it
will stop updating even if bundle update is ran

288 | Chapter 17: Managing Assets and Bundles

And since we’re all fans of rapid development, a neat thing about Bundler is that it can
check a gem’s dependencies more quickly if a version number is specified in the
Gemfile.

If you’re looking to update a published gem, head over to http://www.rubygems.org/
and find the one you’re wanting to update. The site has a nifty little feature: click on
the clipboard icon and it will copy the exact bit of code needed for your Gemfile, like so:

gem 'friendly_id', '~> 4.0.5'

Just paste it in and you’re ready to run bundle install to get updating.

Episode 45 of the Ruby Rouges podcast discusses how Bundler deals
with version numbers and dependencies. Find it online at http://rubyro
gues.com/045-rr-bundler-with-andre-arko/.

The last thing we’ll talk about is groups. Back in your Gemfile, you’ll notice a section
of gems grouped together.

Gems used only for assets and not required
 # in production environments by default.
 group :assets do
 gem 'sass-rails', '~> 3.1.5'
 gem 'coffee-rails', '~> 3.1.1'
 gem 'uglifier', '>= 1.0.3'
 end

In the above code, the group is called “assets.” As noted in the comments, these gems
are not used in the product environment by default. That’s because in config/applica-
tion.rb, shown in Figure 17-8, the line Bundler.require(*Rails.groups(:assets =>
%w(development test))) set development and test environments as the default.

Groups helps control when a gem should be installed or loaded. In the case of the
application I was working on at the beginning of this section, had it been using Bundler,
I could have created two groups: one for loading gem for development and another for
using for the production environment.

Perhaps using the nifty-generators gem was enough to get me started building a layout
during development, but when it came time to launch with custom code, it was un-
necessary to include it in production. Groups allows me to specify that like so:

Figure 17-8. The config/application.rb shows Bundler’s default configuration for groups

The Junk Drawer | 289

http://www.rubygems.org/
http://rubyrogues.com/045-rr-bundler-with-andre-arko/
http://rubyrogues.com/045-rr-bundler-with-andre-arko/

 group :development do
 gem 'nifty-generators', '~> 0.4.6'
 end

 group :production do

 end

There’s much more to Bundler and its capabilities. For more information, run bundle
help to get a full list of commands, or visit Bundler’s official website at http://gembundler
.com.

Test Your Knowledge

Quiz
1. After Ruby on Rails 3.1, what change made JavaScript and CSS files have the same

“status” as Ruby files?

2. What tool manages gems within a Rails application?

3. What resource can you use to find gems and find out about updates?

4. Is it possible to specify different groups of gems for each environment (develop-
ment, test, production)?

Answers
1. The Sprockets library began shipping with Rails 3.1 for compiling and serving web

assets like JavaScript and CSS files. It also serves as a “preprocessor pipeline,”
which means it can use languages like Sass/SCSS, and CoffeeScript.

2. Bundler is for managing gems. It uses your Gemfile to install gems and their de-
pendencies within a project.

3. The website http://www.rubygems.org/ is the home of the RubyGems application.
It has lots of information about using, creating, and sharing gems. The site will
even provide you with the exact bit of code you need to stick in your Gemfile to
install or update gems.

4. Yes. By using groups in your Gemfile, you control when a gem will be installed or
loaded. If you were playing around with different types of gems while building your
application in development, you could leave out unused ones for production
through a group.

290 | Chapter 17: Managing Assets and Bundles

http://gembundler.com
http://gembundler.com
http://www.rubygems.org/

CHAPTER 18

Sending Code to the Browser:
JavaScript and CoffeeScript

Rails has had a complicated and tumultuous relationship with JavaScript. It emerged
at about the same time that Ajax development was making JavaScript popular again,
and Rails eagerly integrated Ajax tools. Remote JavaScript (RJS) templates let devel-
opers create JavaScript with Ruby, Rails helped the Prototype library find its footing,
and a variety of helper methods provided extra support in view templates.

Those solutions put Rails ahead of the crowd for a while, but developments in Rails
and in the larger JavaScript world led to better conclusions. Rails’ shift toward REST-
based approaches made RJS and the various helper methods seem less necessary, as
code in the client could easily request XML and then JSON data from the server.
Developers could cleanly separate their client and server logic that way, making it easier
to maintain applications. In the JavaScript world, jQuery overtook Prototype to become
the dominant JavaScript library. As JavaScript use became more complicated, many
developers turned to CoffeeScript to simplify their code.

Rails 3.x has noticed and adapted to these shifts. jQuery replaced Prototype as the
default framework, RJS has faded, and many helper methods were deprecated and are
disappearing. Rails has also applied the same approaches demonstrated in Chap-
ter 16 and Chapter 17 to make using CoffeeScript simple, while still allowing the use
of plain old JavaScript.

Perhaps not surprisingly, CoffeeScript, like Sprockets and Sass, lives
outside of the Rails framework independently of what ships with recent
versions. You can find the original project’s page at http://jashkenas.git
hub.com/coffee-script/.

291

http://jashkenas.github.com/coffee-script/
http://jashkenas.github.com/coffee-script/

Sending JavaScript to the Browser
When you created the awards and students controllers for our application, CoffeeScript
files were generated inside of app/assets/javascripts: awards.js.coffee and students.js.cof-
fee, respectively. If you want to use JavaScript itself, you’ll need to rename the stu-
dents.js.coffee file to students.js, but it would work just fine. Code for this is available
in ch18/students0X.

All you need is a little JavaScript to play with. Since Rails has jQuery built in, we’ll use
that. We’ll add a visual cue to those who are putting in data into the students applica-
tion. The code shown in Example 18-1 will do the trick.

Example 18-1. JavaScript for highlighting a form field

 $(document).ready(function(){
 $("input").focus(function() {
 $(this).parent().addClass("curFocus")
 });
 $("input").blur(function() {
 $(this).parent().removeClass("curFocus")
 });
 });

When used with a form, this little snippet of code will use jQuery to highlight an input
field when the cursor is in a text field (focus), and then remove the highlighting when
we’ve moved on (blur). It does this by dynamically adding a class of curFocus to the
parent of our input, which is a div in this case.

The code is fairly straightforward. From the second line you could read it like this:
when there is a focus on the input, add a class of curFocus to the parent. And then, the
second argument is: when there is a blur on the input, remove the curFocus from the
parent (again, the div).

You’ll also need to add a little CSS to get our desired effect. In app/assets/stylesheets/
students.css.scss, add this to the bottom of the file:

 div.curFocus {
 background: #fdecb2;
 @include bodyshadow;
 width: 250px;
 }

This stylesheet makes the field stand out, giving it a nice background and a bodyshadow
mixin, and sets the width of the div to 250 pixels to it doesn’t stretch the width of the
page. Save your file, then load up http://locahost:3000/students/new in your browser to
see the result in Figure 18-1.

It’s close, but it’s off a little bit because of that class that gets added to the div. You can
add a little bit of padding to the div itself to help fix this. Back in your stylesheet, add
the following to the bottom as well.

292 | Chapter 18: Sending Code to the Browser: JavaScript and CoffeeScript

http://locahost:3000/students/new

 div.field {
 padding: 10px;
 }

Now you can refresh the page in the browser and see the finished result in Figure 18-2.

Simplifying with CoffeeScript
We’re quickly moving toward a future very similar to that envisioned by Star Trek. If
you’ve ever watched the shows, you’ll see much of the technology starting to take shape
in one way or another in modern times. Perhaps it’s the realization of a self-fulfilling
prophecy for technology, but handheld communicators, handheld tablet reading
devices, and small devices that analyze our world are all becoming real products.

One of the more interesting technologies to me in the Star Trek (and other science
fiction) universe is that of the universal translator. The remarkable device translates
hard to understand languages into something familiar, with a small computer doing all
the work for you.

In a way, that’s how CoffeeScript works.

CoffeeScript is a programming language, written in CoffeeScript, that compiles into
JavaScript. Similar to the universal translator, you can write CoffeeScript code that is
“translated” to JavaScript. If you’ve written JavaScript code, you’ll instantly see

Figure 18-1. Our students application with our jQuery CoffeeScript in place

Simplifying with CoffeeScript | 293

CoffeeScript’s appeal: it can spit out JavaScript with about one-third less code, it runs
fast, and the clean syntax is similar to Ruby’s beautiful code.

The backstory behind the CoffeeScript parser is available at http://cof
feescript.org/documentation/docs/grammar.html.

As of version 3.1, CoffeeScript ships with Ruby on Rails out of the box.

As with Sass, the quickest way to get started with CoffeeScript is by appending .coffee
to your .js scripts to make them valid CoffeeScript files, such as example.js.coffee. Unlike
Sass, however, you’ll need to understand CoffeeScript’s syntax for it to work correctly.

To really get down into the meat of all that CoffeeScript has to offer, we
recommend you check out Alex MacCaw’s The Little Book on Coffee-
Script (O’Reilly).

Figure 18-2. A little padding goes a long way

294 | Chapter 18: Sending Code to the Browser: JavaScript and CoffeeScript

http://coffeescript.org/documentation/docs/grammar.html
http://coffeescript.org/documentation/docs/grammar.html
http://shop.oreilly.com/product/0636920024309.do
http://shop.oreilly.com/product/0636920024309.do

Have Some Sugar with your CoffeeScript
Like the universal translator, CoffeeScript does some amazing work in the background
to make its magic known. Unlike our science fiction example, we need to do a little
more to help it achieve our goals.

CoffeeScript borrows from the Python programming language in that it uses syntactic
whitespace. This means you’ll need to be consistent with your tabs for each line of
code. As a Rubyist, you’re likely familiar with the practice of two spaces for indentation.
This will work fine in CoffeeScript.

CoffeeScript is much more finicky about whitespace than Ruby. You
can be inconsistent with two spaces on one line and three on the next
for indentation and Ruby code will run without a hitch. In CoffeeScript,
though, you’ll need to keep the same convention throughout your code
for it to run.

CoffeeScript changes JavaScript syntax in a few key ways.

Curly braces
Spend any bit of time with JavaScript and the use of (what some might consider,
ugly) curly braces {} becomes prominent. With CoffeeScript, these are a thing of
the past! You can safely remove curly braces from your code, but be sure to use
consistent indentation.

The var call
Used to declare a variable in JavaScript, the var call isn’t used in CoffeeScript. You’ll
never need to write var; the compiler takes care of that for you.

Return statements
Return statements are also not necessary. CoffeeScript will automatically return
whatever you have at the end of a function call, implying that it is a return.

Speaking of functions, their definitions have been replaced by the -> symbol. You
can remove parentheses around an argument if you’d like. This isn’t required.
Sometimes it just feels better to have the parentheses around an argument, but it’s
your call. There is one exception: if there isn’t an argument, you’ll need a set of
empty parentheses instead.

You can even put function definitions on one line if you like, provided it’s short
enough to be a good fit for that. function show_alert() would be written as
show_alert() ->.

Semicolons
JavaScript’s experienced a few controversies over semicolons lately. Most of the
time, those aren’t needed either. You can safely remove them in CoffeeScript.

Simplifying with CoffeeScript | 295

Comments
While the double slash, //, might work just fine in JavaScript, you’ll need to use
the hash character, #, to start a comment line in CoffeeScript, just like in Ruby.
Multi-line comments are encapsulated within a set of three hash characters.

This is a comment

 ###
 This is a multi-line comment.
 How are you doing today?
 ###

If/Else Conditionals
Now we really start to see elegance with how CoffeeScript can reduce the amount
of code used. When you can remove parentheses and curly brackets, then delimit
your conditions through indentations (that whitespace we referenced above),
things just get cleaner.

So JavaScript code that looks like this:

 var d, time;

 d = new Date();
 time = d.getHours();

 if (time < 10) {
 document.write("Good morning");
 } else {
 document.write("Good day");
 }

ends up using a little bit less code in CoffeeScript:

 d = new Date()
 time = d.getHours()

 if time < 10
 document.write "Good morning"
 else
 document.write "Good day"

You also can put if statements on one line, but you’ll need to use the then keyword
for CoffeeScript to be aware of the beginning of the block.

if (time < 10) then document.write "Good morning" else document.write "Good day"

Arrays
You can easily make arrays by using whitespace and square brackets.

authors = [Simon, Edd, Eric]

296 | Chapter 18: Sending Code to the Browser: JavaScript and CoffeeScript

Converting to CoffeeScript
We could easily cut and paste Example 18-1 and throw it into our application for use,
as is. But, we wouldn’t be taking advantage of CoffeeScript’s syntax, and should the
need arise to add more functionality, we wouldn’t be harnessing the value of using less
code for the same result.

Instead, we’ll keep our .coffee file intact and go with CoffeeScript instead. Our finished
product will look like Example 18-2, available in ch18/students0Y.

Example 18-2. CoffeeScript for highlighting a form field

 $(document).ready ->
 $("input").focus ->
 $(this).parent().addClass("curFocus")
 $("input").blur ->
 $(this).parent().removeClass("curFocus")

Run the application, and you’ll see the same result as Figure 18-2.

Taking a cue from what we’ve learned earlier in this chapter, you can see the obvious
gains in having less code. There are fewer lines (five compared to eight), no curly
brackets, no semicolons, no traditional function calls. Much of it looks the same, just
simpler. Now, imagine this times a couple of hundred lines of code as our project scales
up and you’ll really start to see what a difference CoffeeScript can make.

Like with Sass, you can see all the compiled files rolled up into one by visiting your
browser at http://localhost:3000/assets/application.js. You’ll need to scroll all the way
to the bottom, but there our newly added JavaScript code will be, ready for use.

A friend of mine who teaches banjo lessons was telling me about his process of intro-
ducing new players to the art. Although he could start with teaching his students how
to read notation, key changes, flats and sharps, he has decided on a different route.

Instead, his method has the students begin by learning tablature. In case you’re not
familiar with the concept, tablature, or tabs, is a way to learn how to play an instrument
by learning where your fingers will go on the fretboard of an instrument, rather than
going into the weighty details of music theory.

Purists might say this isn’t the correct way to learn, that a student should begin with
the most rudimentary of music basics and then work from there. As an instructor, my
friend’s intention is simple: once a student learns how to play a song quickly from the
start, it creates a desire to learn more and progress from there.

CoffeeScript shouldn’t be the only thing you learn for how to make JavaScript, just as
tabs aren’t the only way to learn banjo or guitar. CoffeeScript isn’t required to have
JavaScript code in your application. But it can be an excellent way to get started with
JavaScript development, and get you started on the path to better front-end
development.

Simplifying with CoffeeScript | 297

http://localhost:3000/assets/application.js

As with the complicated nature of JavaScript, this is by no means an exhaustive over-
view of CoffeeScript’s syntax, or its power. There’s much more to delve into as you
learn how it can be used with your application.

Test Your Knowledge

Quiz
1. What is the default JavaScript framework used by Rails?

2. How can you start using CoffeeScript in your application?

3. CoffeeScript’s syntax is more simplified than JavaScript’s in several ways—what
can you avoid using?

Answers
1. The popular jQuery library replaced the long-used Prototype framework.

2. The quickest way to get started with CoffeeScript is by appending .coffee to your .js
scripts to make them valid CoffeeScript files, such as example.js.coffee.

3. Curly braces, the var call, return statements and semicolons are not used by Cof-
feeScript.

298 | Chapter 18: Sending Code to the Browser: JavaScript and CoffeeScript

CHAPTER 19

Mail in Rails

Most of Rails is built around HTTP, but there will be times you also want to send or
receive email messages. Rails 3 includes some major upgrades to the ActionMailer sys-
tem, making it almost as easy to send and receive mail messages as it is to send and
receive information over HTTP. Because mail systems are separate from Rails, there’s
still some difficulty in connecting Rails to mail servers, but you can at least get started
pretty easily.

Sending Mail Messages
Telling Rails to send email messages requires putting a little bit of infrastructure in
place, creating views specifying what the messages should say, and telling Rails when
to send what. Except that it’s an extra piece that goes outside the usual HTTP context,
it’s not very difficult.

First, you need to generate a mailer:

$ rails generate mailer AwardMailer
 create app/mailers/award_mailer.rb
 invoke erb
 create app/views/award_mailer
 invoke test_unit
 create test/functional/award_mailer_test.rb

That creates a new directory, app/mailers. Mailers aren’t really models, controllers, or
views, so they get a separate place. Inside of that folder, award_mailer.rb offers a very
basic start:

 class AwardMailer < ActionMailer::Base
 default from: "from@example.com"
 end

Setting defaults is useful, and the from field is probably the one most likely to be con-
sistent. You can also set default to, subject, cc, and bcc fields if you want. For now,
change from@example.com to something more useful.

299

Next, we need to create a method that can actually do something, in this case send a
notice that an award has been given. (Perhaps this triggers a handmade award certifi-
cate.)

class AwardMailer < ActionMailer::Base
 default from: "simonstl@simonstl.com"

 def award_email(award)
 @award = award
 mail(:to => 'Simon St.Laurent <simonstl@example.com>', :subject => "Award from
 Learning Rails")
 end
end

There’s no actual content there beyond the subject line, though. The content, like the
content of a web page delivered by Rails, comes from a view. Unlike web page content,
however, mail can include multiple main pieces. Typically, one is HTML, for those
who like their email vivid, and one is plain text, for those who just want the basics.
ActionMailer now supports this convention automatically. All you have to do is create
two views, one for plain text and one for HTML.

The plain text one is very simple, and goes in /app/views/award_mailer/
award_email.text.erb. (The ERb file gets its name from the method within the mailer.)

The <%= @award.name %> award for
<%= @award.year %> has gone to <%= @award.student.name %>.

The HTML one in /app/views/award_mailer/award_email.html.erb has the same con-
tent, except of course that it has a lot more markup:

<!DOCTYPE html>
<html>
 <head>
 <meta content="text/html; charset=UTF-8" http-equiv="Content-Type" />
 </head>
 <body>
 <h1>Award Notification</h1>
 <p>The <%= @award.name %> award for <%= @award.year %> has gone to
 <%= @award.student.name %>.</p>
 </body>
</html>

Rails doesn’t yet know that it’s supposed to actually send email when an award is
assigned. That requires adding a line of code to the controller, here placed in the
create method.

def create
 @award = @student.awards.build(params[:award])
 # was @award = Award.new(params[:award])

 # Tell the AwardMailer to send a notice Email
 AwardMailer.award_email(@award).deliver
 respond_to do |format|...

300 | Chapter 19: Mail in Rails

 end
end

You can tell Rails to send mail whenever you think it appropriate, but
controllers are usually the most logical place to do it.

Rails just needs one more piece of information before it’s ready to send a message. What
mailserver should it use? This information goes in the configuration files (/config/envi-
ronments/development.rb for use in development mode and /config/environments/pro-
duction.rb for production mode). It’s very likely you’ll have a different setting for each
of these modes, and in test mode, Rails delivers messages to a queue for inspection
rather than sending them out to actual mail servers.

There are two different ways you can send email. You can have Rails deliver to a local
sendmail process, which is probably the best approach on a server. If that’s not an
option, which is likely when you’re developing on a laptop, you can have Rails contact
an SMTP server to send the message, just as your email client normally would. The
default is SMTP.

For testing, you may want to explore the MailCatcher gem, available
from http://mailcatcher.me/.

To send mail over SMTP, you’ll need to specify at least the server address, maybe the
port, and maybe a lot more information for authentication. A simple configuration
might look like:

config.action_mailer.delivery_method = :smtp
 config.action_mailer.smtp_settings = {
 :address => "mail.example.com",
 :port => 25,
 }

If you need to do something more complex—which is likely in an age where email is
barely trusted—see the detailed configuration for Gmail at http://guides.rubyonrails
.org/action_mailer_basics.html#action-mailer-configuration-for-gmail.

Now, finally, you can send a message. Start up the server with rails server, and go to
a page for a student. Then, using the navigation at the bottom of their student page,
go to their Awards page, shown in Figure 19-1.

Click on New award, and you’ll be able to enter a new award, as shown in Figure 19-2.

When you click the Create Award button, you’ll get the usual response shown in
Figure 19-3, but you’ll also have an email message like that in Figure 19-4.

Sending Mail Messages | 301

http://mailcatcher.me/
http://guides.rubyonrails.org/action_mailer_basics.html#action-mailer-configuration-for-gmail
http://guides.rubyonrails.org/action_mailer_basics.html#action-mailer-configuration-for-gmail

If you look at the source (or in your logs), you’ll see all of the work Rails did for you,
assembling the headers and the multipart message.

Return-Path: <simonstl@simonstl.com>
X-Original-To: simonstl@simonstl.com
Delivered-To: simonstl@simonstl.com
Received: from localhost.localdomain
(cpe-24-59-184-80.twcny.res.rr.com [24.59.184.80])
 by mail.simonstl.com (Postfix) with ESMTPS id 0C48418C0031
 for <simonstl@simonstl.com>; Sat, 14 Apr 2012 11:51:00 -0400 (EDT)
Date: Sat, 14 Apr 2012 11:50:58 -0400
From: simonstl@simonstl.com
To: "Simon St.Laurent" <simonstl@simonstl.com>
Message-ID: <4f899ce2c967c_23d81a3d39852766@SimonMacBook.local.mail>
Subject: Award from Learning Rails
Mime-Version: 1.0
Content-Type: multipart/alternative;
 boundary="--==_mimepart_4f899ce2c5004_23d81a3d398524c9";
 charset=UTF-8
Content-Transfer-Encoding: 7bit

----==_mimepart_4f899ce2c5004_23d81a3d398524c9
Date: Sat, 14 Apr 2012 11:50:58 -0400
Mime-Version: 1.0
Content-Type: text/plain;

Figure 19-1. Awards page for a student

302 | Chapter 19: Mail in Rails

 charset=UTF-8
Content-Transfer-Encoding: 7bit
Content-ID: <4f899ce2c7c55_23d81a3d3985256b@SimonMacBook.local.mail>

The Chemistry Wizard award for 2012 has gone to Greva James.

----==_mimepart_4f899ce2c5004_23d81a3d398524c9
Date: Sat, 14 Apr 2012 11:50:58 -0400
Mime-Version: 1.0
Content-Type: text/html;
 charset=UTF-8
Content-Transfer-Encoding: 7bit
Content-ID: <4f899ce2c8bb3_23d81a3d39852623@SimonMacBook.local.mail>

<!DOCTYPE html>
<html>
 <head>
 <meta content="text/html; charset=UTF-8" http-equiv="Content-Type" />
 </head>
 <body>
 <p>The Chemistry Wizard award for 2012 has gone to Greva James.</p>

 </body>
</html>

 ----==_mimepart_4f899ce2c5004_23d81a3d398524c9--

Figure 19-2. Creating a Chemistry Wizard award

Sending Mail Messages | 303

Rails can do more for you. You can include images (linked or inline), send attachments,
send the email to multiple recipients, or add headers to your heart’s delight. It’s prob-
ably safest to start simple, and then add features as your application needs them.

Receiving Mail
While sending email out is probably a more common scenario in most web develop-
ment, there will also be times when you want your application to process incoming

Figure 19-3. Award created (web version)

Figure 19-4. Award created (email version)

304 | Chapter 19: Mail in Rails

email messages. ActionMailer also supports this, after a setup process that may be more
difficult than the Rails-specific part of the work.

Setup
Retrieving email is harder than sending it, because so much depends on the details of
how your server delivers it. Servers could use dovecot, getmail, or any of a variety of
tools to take mail out of the incoming queue and put it in specific mailboxes. Unfortu-
nately, there’s no way for this book to explain configuring mail servers to pass mail to
Rails without growing much larger.

All of the setup variations, though, collect incoming messages and send them directly
to a class in the Rails application. While Rails does its own routing for incoming HTTP
requests, the mail server configuration handles the question of which Rails method will
get to receive which email message.

Processing Messages
Once the servers are feeding messages to Rails, the Mail library (https://github.com/
mikel/mail/) will help your application process them. The easiest way to do this is to
create a new mailer with a receive method.

For a simple, if not particularly secure, demonstration, ch17/students11 shows how to
make this work. It processes messages formatted like Example 19-1 to adjust the GPA
of a student, identified by their id number. Run rails generate mailer Student
Mailer to create a mailer base. Then make it look like the app/mailers/stu-
dent_mailer.rb file shown in Example 19-2. It will check incoming mail to see if it’s
from the right person, and parse the message body with regular expressions to see if it
should change a student’s GPA. Perhaps most important, it logs its results.

Example 19-1. An email message sent to the Rails application to change a student’s GPA

From: foo@bar.org
Subject: Score

Student: 2
GPA: 3.45

Example 19-2. Processing incoming emails to see if they came from an administrator, extracting their
content with regular expressions, and then making a change to the student data

class StudentMailer < ActionMailer::Base

 def receive(email)
 return unless email.subject =~ /^Score/

 sender = email.from[0]
 user = User.find_by_email(sender)
 unless user == 'edd@example.org'
 logger.error "Refusing scores message from unauthorized sender"

Receiving Mail | 305

https://github.com/mikel/mail/
https://github.com/mikel/mail/

 return
 end

 # we've passed the first test -- email's from an admin user
 # and has a subject starting with 'Score'

 # extract the text content from the message
 content = email.multipart? ? (email.text_part ? email.text_part.body.decoded :
 nil) : email.body.decoded

 # search through the content line-by-line for student and GPA
 content.split(/\r?\n/).each do |l|
 if l =~ /Student:\s*(\d+)/i then
 @student = Student.find_by_id($1.to_i)
 end
 if l =~ /GPA:\s*(\d+\.\d+)/i then
 @gpa = $1.to_f
 end
 end

 # if the data's here, make the change.

 if @student and @gpa
 @student.update_attribute('grade_point_average', @gpa)
 logger.info "Updated GPA of #{@student.name} to #{@gpa}"
 else
 logger.error "Couldn't interpret scores message"
 end
 end
end

The first few steps check that the message belongs to this processor. First, it checks for
a subject line starting with “Score,” and just returns, ending this processing, if it
doesn’t. Then it checks the from address, compares it to the list of email addresses for
users, and again, returns if the user isn’t an administrator.

The next part of the method pushes regular expressions hard, first splitting the body
of the message on a new line, and then extracting the student’s id and their new GPA
by testing a match pattern and extracting the matched value, if there is one, from $1.
The last part is much simpler, just setting that student’s GPA to the one specified.

When processing email, using logger.info and logger.error is a good
idea. No one’s going to be seeing a response come back, unless you
extend this to emailing an acknowledgment back. Log messages make
these kinds of processing much easier to debug.

To try this out, you can send an email message if you’ve configured your server. If not,
there’s a complete test message, with headers and content, in the test.msg file at the top
level of the students011 directory, which looks like Example 19-3.

306 | Chapter 19: Mail in Rails

Example 19-3. A test message for trying out Rails’ ability to process incoming email

Return-Path: <simonstl@simonstl.com>
X-Original-To: simonstl@simonstl.com
Delivered-To: simonstl@simonstl.com
Received: from SimonMacBook.local (cpe-24-59-184-80.twcny.res.rr.com [24.59.184.80])
 by mail.simonstl.com (Postfix) with ESMTPSA id 5384D18C0031
 for <simonstl@simonstl.com>; Sat, 14 Apr 2012 12:48:30 -0400 (EDT)
Message-ID: <4F89AA5A.4060203@simonstl.com>
Date: Sat, 14 Apr 2012 12:48:26 -0400
From: "Simon St.Laurent" <simonstl@simonstl.com>
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.6; rv:11.0)
Gecko/20120327 Thunderbird/11.0.1
MIME-Version: 1.0
To: "Simon St.Laurent" <simonstl@simonstl.com>
Subject: Score
Content-Type: text/plain; charset=ISO-8859-1; format=flowed
Content-Transfer-Encoding: 7bit

Student: 1
GPA: 3.34

You can create a similar message by sending yourself an email and then
looking at it through View Source or similar.

A shorter message with fewer headers would do, but this certainly shows Action-
Mailer’s ability to cut through the cruft. Run the Rails application with rails server
and then, if you’re in Linux, OS X, or another Unix-like operating system, call (in a
separate window if necessary):

 cat test.msg | rails runner 'StudentMailer.receive(STDIN.read)'

or, if you’re in Windows:

rails runner 'StudentMailer.receive(STDIN.read) < test.msgs

In the log, you’ll see:

Refusing scores message from unauthorized sender

Followed by the message it refused. If you change the from line so that it contains an
edd@example.org, however, you’ll get:

 [1m[36mStudent Load (0.3ms)[0m [1mSELECT "students".* FROM "students"
WHERE "students"."id" = 1 LIMIT 1[0m
 [1m[35m (0.1ms)[0m begin transaction
 [1m[36m (0.0ms)[0m [1mcommit transaction[0m
 Updated GPA of Giles Boschwick to 3.34

It’s a small taste of what Rails can do with email, and it opens up tremendous possi-
bilities beyond the reach of the Web. You’ll definitely want to provide more security

Receiving Mail | 307

around this, but it shows how you can take content from email, process it, and integrate
it with your application.

The rails runner command lets you call pieces of your Rails application
directly. It’s a convenient way to do things like inject content from a
shell script, start a long-running process, or, as in this case, test some-
thing out.

Test Your Knowledge

Quiz
1. Where do you tell Rails how to send email?

2. How do you specify which variables fit where in a given mail message?

3. What Rails command-line tool can you use to call pieces of your Rails application
directly?

Answers
1. The configuration files in config/environments/, such as development.rb, test-

ing.rb, and production.rb, are a good place to specify the settings that Rails should
use to send outgoing mail.

2. A model class extending ActionMailer::Base containing a method that sets email
parameters can handle all of the header information for email messages, and a view
(one each for HTML and text) can define their content.

3. The rails runner call lets you communicate directly with your Rails application
from the command line.

308 | Chapter 19: Mail in Rails

CHAPTER 20

Pushing Further into Rails

At this point, Rails should seem much less mysterious. You should understand how to
build fairly sophisticated Rails applications, the magic of assembling applications by
naming convention. As much as you’ve learned, though, there’s much further that you
could go.

Changing to Production Mode
So far, you’ve likely been running all of your code in development or testing mode.
Shifting to production mode is kind of like graduating. Running your application in
production mode means that it runs all of its queries against your production database,
and that it loads Rails’ configuration from config/environments/production.rb. You also
should precompile your assets with bundle exec rake assets:precompile, as the pro-
duction environment won’t do that automatically. (You can set Rails up to do that, but
it will likely create efficiency problems.)

The way Rails is set up by default, the shift in environments to production mode results
in changes to the following configuration settings:

config.cache_classes = true
Rails doesn’t check to see if any code has changed every request, so everything runs
a lot faster in production mode.

config.action_controller.perform_caching = true
Caching is enabled, letting Rails optimize its performance by minimizing redun-
dant processing.

config.action_controller.consider_all_requests_local = false
Verbose error reporting is disabled, so Rails won’t confess all to total strangers.
Only users coming in from localhost (on the same machine) will see the full report.
Instead, most users will get much briefer error messages, and you’ll need to check
the log files to figure out what’s causing those error messages. The logs will also
have much more concise reporting, especially of database requests.

309

config.whiny_nils = false
In development mode, Rails raises an exception if you try to call a method on an
object whose value is nil In production mode, it doesn’t. You have to be respon-
sible for catching this kind of error, likely through formal testing and trying the
application out in development mode.

config.log_level = :info
Development logs are much terser, shifting from :debug-level reporting to record-
ing only items at :info level or more important.

You can, of course, configure production mode however you’d like in config/environ-
ments/production.rb but the defaults probably make sense for most applications. For
much more on Rails configuration, see http://guides.rubyonrails.org/configuring.html.

There is one production default that may cause you trouble if you want
to test production mode on the WEBrick server. Because Rails is usually
run in environments where another server (say, Apache or nginx) han-
dles the static assets, config.serve_static_assets defaults to false in
production mode. If you’re trying out production mode in WEBrick,
you’ll probably want to turn that to true.

Finally, although Rails offers just development, testing, and production environments,
you don’t likely want to leap from development mode to live production. For anything
larger than a trivial application, you’ll want to try out your app in production mode on
a staging server to make sure everything behaves as expected before putting it into real
live production on a server your visitors can reach.

Deploying Is Much More Than Programming
Most of this book teaches you to write Rails applications by yourself, on a single
machine. You need to have those skills before you can move on to the challenges of
deploying applications to the Web (or even to an intranet), but you’ll quickly find
there’s more to learn. Part of the challenge of learning that, though, is that everyone’s
path will be different. Even as more and more people use Rails, there are more practices,
toolsets, and needs that fragment the way people actually use Rails.

Just a few of those divisions include:

Solitary programmers and teams
This book has assumed that a single reader is working with it, exploring what’s
here, and writing code. You may have shared it with others, but the kinds of
instructions given here are broadly meant for individual learners who can try things
out and make their own mistakes.

If you’re working in a team environment, those rules will change. Some teams do
operate as groups of individuals who work separately and have responsibility for

310 | Chapter 20: Pushing Further into Rails

http://guides.rubyonrails.org/configuring.html

their own territory, but many divide responsibilities. The group may decide on data
structures and have one person implement the migrations. A designer may create
an overall look for the application and the rest of the team just creates views and
styles within that approach. You may never have to think about the remaining
deployment questions in this list, because someone else handles them—or you may
have to deal with all or parts of them.

Source code management
Whether you work by yourself or as part of a team, you’ll probably find some kind
of source code management helpful. Filesystems with backups are an OK start, but
usually when I need to revert code I find it was from the wrong timeframe for the
backup to be helpful.

There are lots of choices in source code management, but the current leader seems
to be git (http://git-scm.com/). Git makes it easy to have your own local copy with
branches for whatever changes you want, supports a variety of collaboration styles,
and is getting extra support lately from github (http://github.com/), which adds a
layer of social and management functions on top.

Databases
You’ve probably been using SQLite as you worked through this book. It’s the
default for Rails development mode, and by far the easiest choice. Unfortunately,
easy stops being a virtue when you have thousands or millions of users to serve—
you need speed and scale. While you can deploy Rails applications with a SQLite
database, it only makes sense for tiny ones, and preferably applications that pri-
marily read rather than write to the database.

The obvious choice for deployment has been MySQL, which scales better and gets
along well with Rails. However, some developers are starting to look for more
powerful relational databases (like PostgreSQL), and many are looking beyond
relational databases to the NoSQL world of CouchDB, MongoDB, Cassandra, and
many more. MySQL is still a reasonable place to start, but there are a lot more
possibilities to consider now.

Servers, or not really
Putting complex applications on the Web used to be all about servers. You’d buy
or lease the biggest or smallest box that fit your needs and your budget, and then
you had full control of that server to do whatever you needed.

Today, while you certainly still can have your own servers, you’re more likely to
rent hosting, and in many cases you’re renting a virtual server that only looks like
a coherent server to you, but is in reality scattered across a farm of servers sup-
porting many virtual servers. If you’re tired of managing servers and all of their
details, however, you can instead lease hosting services with Rails at their heart
rather than Linux or another operating system. Engine Yard (http://www.engine
yard.com/) and Heroku (http://www.heroku.com/) both offer Rails services where
you think in terms of the application, not in terms of which resources you have to
provide to run the application.

Deploying Is Much More Than Programming | 311

http://git-scm.com/
http://github.com/
http://www.engineyard.com/
http://www.engineyard.com/
http://www.heroku.com/

(Web) Application servers
There was a while when it seemed that nearly everything on the Web was hosted
by the Apache server or Microsoft’s Internet Information Server. Rails wasn’t a
comfortable fit with either of those, and developers explored a lot of possibilities,
including Mongrel, lighttpd, and more.

If you’re choosing tools for a server, rather than using a cloud service, you may
have to figure out what works best here. Common choices include nginx or Apache
using Phusion Passenger (see http://www.modrails.com/) and http://unicorn.bogo
mips.org/), IIS using FastCGI, or (especially if you’re hiding Rails in an enterprise
environment) various approaches using JRuby to run Rails in a Java environment.
(And no, deploying to production using WEBrick is not a good idea, unless you
expect a very limited number of users.)

Testing tools and approaches
Chapter 12 introduced you to testing with Rails’ own tools, which will certainly
get you started. Testing, though, is somewhere between a practice and a religion
in the Rails community, with many different sects offering different tools and
methodologies.

If you’re working on a team, you probably need to learn the approach your team
is using. If not, or if you get to decide what the team uses, you have a lot of choices
ahead of you. RSpec and Cucumber are among the most popular tools, but different
levels of testing—unit, functional, integration, performance, stress, and security—
all have toolsets and methodologies.

Deployment tools
There’s much more to deploying an application these days than copying over some
files, modifying configuration, and maybe restarting a server. It’s one thing to run
a migration adding fields, copying data into them from old fields, and then deleting
the old fields in the quiet of SQLite at your desk, but are you ready to do that on
a live public system with real data? Or to switch other supporting tools in and out?

Tools like Capistrano (https://github.com/capistrano/) let you manage the Rails part
of changes to your application, and you may also want to look into Chef or Puppet
for broader provisioning support, especially on multiple machines. For a lot more
information on this side of Rails, see Deploying Rails: Automate, Deploy, Scale,
Maintain, and Sleep at Night (Pragmatic Programmers, 2012).

Monitoring and metrics tools
You’ve tested your code, deployed it, made sure it works. How do you know it
keeps working? How do you know how well it works? How do you figure out why
it works so well—or not so well?

There are all kinds of tools for monitoring your site, working at all kinds of levels.
Cloud providers may provide you with their own metrics, and servers have logs,
but many different tools can aggregate, visualize, and let you manipulate data.
Nagios, Ganglia, Cacti, and many more are available. For a simpler start, you might

312 | Chapter 20: Pushing Further into Rails

http://www.modrails.com/
http://unicorn.bogomips.org/
http://unicorn.bogomips.org/
https://github.com/capistrano/

try the Exception Notification gem, available at https://github.com/rails/exception
_notification/.

Update strategies
OK, you have all of those parts. Your app is up and running, and you have happy
users.

How often do you update your application? What kinds of updates will you make,
and how will you make sure they don’t disrupt your user’s expectations and
experience? This is less about tooling and more about project decisions, but like
everything else, there are a lot of decisions to make.

Joining the Rails Ecosystem
You’ve done a lot of practical work now, but what can you learn and share?

Keep Up with Rails
Rails 3.2 was the latest and greatest when this book was originally written, but Rails
continues to evolve, and 4.0 is on the way. An easy way to keep an eye on Rails is to
visit Riding Rails, the website for core Rails development announcements, at http://
weblog.rubyonrails.com/.

If you’d like to talk rather than read, the #rubyonrails IRC channel on http://irc.freenode
.net is usually busy. Additionally, in email, the rubyonrails-talk list on (see groups.google
.com/group/rubyonrails-talk for more details) churns through 40 or more messages a
day, at all levels of difficulty.

Screencasts and podcasts are another good way to learn more about Rails. You can find
free tutorial screencasts at http://railscasts.com/, for example, and they have a pro service
at http://railscasts.com/pro/ for a fee.

Ruby
Ruby is an immensely powerful and flexible language. It makes it possible, even some-
times easy, to perform complicated tasks in a few lines of code. Its metaprogramming
capabilities and facilities for creating Domain-Specific Languages (DSLs) allow devel-
opers to create frameworks optimized for particular tasks. Rails takes full advantage of
these features and offers an opportunity to learn how they can simplify application
development.

At the same time, though, these features can be among the most confusing, as they
don’t look quite like the normal Ruby programming you’d find in an ordinary tutorial.
They can make reading documentation and source code difficult when you’re not
familiar with the techniques being used.

Joining the Rails Ecosystem | 313

https://github.com/rails/exception_notification/
https://github.com/rails/exception_notification/
http://weblog.rubyonrails.com/
http://weblog.rubyonrails.com/
http://irc.freenode.net
http://irc.freenode.net
http://railscasts.com/
http://railscasts.com/pro/

Once you’ve gotten comfortable in Rails, learning more Ruby is probably the best way
to jump-start your learning process. A thorough understanding of Ruby will let you
write more efficient and sometimes even more readable code. It will help you to look
through the Rails source code when documentation isn’t quite clear enough about what
something is supposed to do. It will let you repackage your functionality as libraries or
plug-ins, making it easier to reuse your code.

Part of the promise of Rails is that you don’t need to write a lot of code to get things
done, but once you’ve started applying Rails, you’ll want to know a lot more about
Ruby. When you’re ready to explore more deeply, try The Ruby Programming Lan-
guage (O’Reilly, 2008), The Well-Grounded Rubyist (Manning, 2009), Eloquent Ruby
(Addison-Wesley, 2011), Programming Ruby (Pragmatic Programmers, 2009), or the
Ruby Cookbook (O’Reilly, 2006).

Working With and Around Rails
Rails is a powerful set of tools. What if you don’t need that power, though, and want
to do a lot less?

One of the best features of Rails 3.x is that it runs on top of Rack. Rails uses Rack to
process HTTP requests, but because it runs on Rack it’s easy to combine Rails with
other pieces built on Rack, whether you’re in development mode or in production.
Most of the tools for hosting and deploying Rails expect Rack as the base, and can work
with other applications or frameworks built on Rack.

If you’re building a tiny application that needs to do one thing and do it well, you may
want to explore writing applications directly on top of Rack (http://rack.rubyforge
.org/). OmniAuth, described in Chapter 14, is built this way. Because it plays more of
a supporting role, it fits neatly lower in the stack than Rails itself. It gains efficiency and
isolation, and can rely on callbacks and redirects to communicate its information to
Rails.

If the Rack API is too close to the protocol for you, take a look at Sinatra (http://www
.sinatrarb.com/). Sinatra is still extremely small, but provides a Domain Specific Lan-
guage for handling HTTP requests. It’s still close to the protocol, but automates much
of the ordinary HTTP work. It provides a simple routing approach, and can support
extensions, helpers, and more. You can even do things like write Sinatra applications
that include ActiveRecord, giving you access to parts of Rails that might be convenient
while running with much less overhead. If you want to explore Sinatra, take a look at
Sinatra: Up and Running (O’Reilly, 2011).

Keep Exploring
Rails may not directly meet all of your web development needs, but the community
and capabilities are growing fast. At this point, you’re probably not a Rails expert, but
hopefully this book has given you the foundation you need to become one.

314 | Chapter 20: Pushing Further into Rails

http://shop.oreilly.com/product/9780596516178.do
http://shop.oreilly.com/product/9780596516178.do
http://shop.oreilly.com/product/9780596523695.do
http://rack.rubyforge.org/
http://rack.rubyforge.org/
http://www.sinatrarb.com/
http://www.sinatrarb.com/
http://shop.oreilly.com/product/0636920019664.do

APPENDIX A

An Incredibly Brief
Introduction to Ruby

Fortunately, you don’t need to know a whole lot of Ruby to get real work done with
Rails. The creators of Rails have used many of Ruby’s most advanced features to make
Rails easy to work with, but fortunately you can enjoy the benefits without having to
know the details. This appendix explains the basics you’ll need to perform typical tasks
in Rails and should help you get started. For a lot more detail on Ruby, try Learning
Ruby (O’Reilly, 2007), The Ruby Programming Language (O’Reilly, 2008), The Well-
Grounded Rubyist (Manning, 2009), or Programming Ruby (Pragmatic Programmers,
2009).

If you’ve never worked with a programming language before, this
appendix may go too fast for you. It’s hard to be incredibly brief and
cover the basics at the same time. However, if you’ve worked with Java-
Script before, you should be able to get started here.

Ruby is a beautiful but sometimes mystifying language, and probably a
better choice as a second language to learn rather than a first language.

Because this is a Rails book, examples will work inside of the Rails framework, in a
Rails view and controller, rather than from the command line. If you haven’t touched
Rails before, it makes sense to read Chapter 1 first and get Rails installed, and then
come back here for more instruction.

How Ruby Works
Ruby is an object-oriented language. Although it’s often compared to Perl, because
Ruby code often looks like Perl, Ruby’s object-orientation goes much deeper. Practi-
cally everything in Ruby is an object.

315

http://shop.oreilly.com/product/9780596529864.do
http://shop.oreilly.com/product/9780596529864.do
http://shop.oreilly.com/product/9780596516178.do

What does that mean?

Objects are combinations of logic and data that represent a (usually mostly) coherent
set of tasks and tools for getting them accomplished. Programming objects aren’t quite
as concrete as objects in the real world, often created and destroyed (or at least aban-
doned for cleanup later) in fractions of a second. Nonetheless, in those brief moments—
or in the hours, days, or years they could also exist—they provide a practical means of
getting things done.

In some sense, a program is a big toolchest filled with these objects, and programming
is about assembling objects to put into the chest. Ruby provides some starter objects
and a means of creating new objects and, of course, ways to start these objects inter-
acting with each other so that the program actually runs.

There are a few other important things to know about Ruby. They’re probably most
important if you’re coming to Ruby from other programming languages that have dif-
ferent expectations, but they all affect the way you’ll write Ruby programs:

• Ruby is an interpreted language, meaning that Ruby reads through the code and
decides how to execute it while it’s running, rather than reading it and turning it
into a highly optimized set of instructions before it actually runs. (There are a few
people working on ways to create a compiled Ruby, but that’s unusual.) While that
slows things down, it also adds a lot of flexibility.

• Ruby also has really flexible syntax expectations. Most of the time this makes things
easier—you don’t need to type parentheses around method parameters most of
the time. Other times, however, you’ll find yourself facing mysterious error mes-
sages because you didn’t include parentheses and the situation is slightly ambig-
uous. (This book tries to warn you about these kinds of situations when they appear
in Rails.)

• Ruby uses dynamic typing.1 Some languages (notably Java, C, and C++) expect
that the programmer will always know, and always specify, the kind of information
they expect to store in a given information container, a variable. Locking that down
in advance makes it easy to do some kinds of optimization. Ruby has taken another
path, leaving variables open enough to contain any kind of information and be
created at any time. Again, this allows for a much more flexible approach, in which
operations can change what they do based on context. Sometimes, however, it
means that things can go wrong in strange and unpredictable ways if something
unexpected is in a variable.

• Ruby supports blocks and closures. You don’t need to know how to create methods
that work with blocks or closures in order to use Rails, but you definitely do need
to know how to call methods that expect a block of code as an argument. At first,
your best choice for dealing with these features will be to look at sample code and

1. Sometimes this is called “duck typing” because when Ruby processes information, “if it looks like a duck
and quacks like a duck, it’s a duck.”

316 | Appendix A: An Incredibly Brief Introduction to Ruby

use it as a foundation rather than trying to step back and figure out how this should
work in the abstract.

• Ruby lets advanced developers perform metaprogramming, even creating Domain
Specific Languages (DSLs), which are kind of like their own miniature programming
language focused on a particular task. You don’t need to know how to do meta-
programming to use Rails, but you should be aware that Rails uses these techni-
ques. Sometimes you’ll encounter something that claims to be Ruby but seems very
strange and too specialized to be part of the Ruby language. Odds are good that
metaprogramming is involved. As with blocks and closures, it’s often best to start
out by emulating sample code to work toward figuring it out.

Ruby is a very powerful language. It’s not hard to get started in Ruby, but you should
at least be aware of these powerful techniques so you can recognize them when you
encounter them. Knowing that these possibilities exist may help reduce your frustration
when you encounter mysterious difficulties.

How Rails Works
Rails is a set of Ruby objects and naming conventions that together make up a frame-
work. Installing Rails is a first step toward building an application, but while it gives
you many useful objects that can run happily in a web environment, there’s a lot miss-
ing, a lot you have to provide.

You can buy a beehive—a set of boxes with frames that the bees will inhabit and fill
with honey. It’ll have a top, a base, an entrance, a number of useful architectural fea-
tures, and a nice coat of paint. It looks like a beehive when it’s set up. Unfortunately,
setting up a beehive is just the first step. To make a beehive work, you have to add bees,
who will finish building their home, collect useful nectar and pollen, and make the hive
interact with the world.

Rails gives you an empty beehive. You don’t add bees, exactly, but you do populate it
with your own logic. That logic turns Rails from an empty container into a dynamic
application, connected to the outside world and performing the tasks you define.

The rest of this appendix will teach Ruby within the Rails framework, explaining the
language in the context you’ll likely be using it.

If you want to stay at the command line, you can also run much of this
code in irb, the Ruby command-line interface described in Chapter 11.

How Rails Works | 317

Getting Started with Classes and Objects
Most of the Rails files you’ll work with and create define classes. (They do so even when
they don’t have explicit class definitions, as Rails performs some of its magic in the
background.) The clearest place to work with objects in Rails is in the controller classes.
To get started, therefore, go to the command line and create a new application and a
new controller:

rails testbed
...
cd testbed
...
rails generate controller Testbed index

You’ll also need to let Rails know how to find the controller you just created. To do
this, visit the config/routes.rb file. At the very bottom, you’ll see:

match ':controller(/:action(/:id))(.:format)'
 end

Remove the # that has been bolded above. Then Rails will know where to find your
code—don’t worry about why quite yet.

For the rest of this appendix, there are only two files that matter: app/views/testbed/
index.html.erb and app/controllers/testbed_controller.rb. For right now, replace the
contents of app/views/testbed/index.html.erb with:

<%= @result %>

That will make it easy to see the results of the code in the controller, which is a clearer
place to explore Ruby. (@result is a variable whose value various examples will set.)

If you open app/controllers/testbed_controller.rb, you’ll see the code below. It doesn’t
yet do anything, except tell the programmer what it is and what it derives from:

class TestbedController < ApplicationController
 def index
 end

end

The first line, class TestbedController < ApplicationController, tells you two im-
portant things. First, it tells you that this file contains a class definition, for a class
named TestbedController. Second, it tells you—you can read < as “inherits from”—
that this class is descended from ApplicationController. Even though this file is basi-
cally empty, it inherits a lot from ApplicationController. Well, actually, even though
ApplicationController is almost as empty (see app/controllers/application_control-
ler.rb if you’re curious), it inherits from ActionController::Base, a key part of the Rails
framework that provides a lot of functionality for connecting controllers with requests
and data.

318 | Appendix A: An Incredibly Brief Introduction to Ruby

Fortunately, one of the benefits of Rails is that you almost never need
to worry what’s actually done in the superclasses, as these ancestors are
called. It’s strange to say “don’t look” in a tutorial—but you really don’t
have to look, and certainly not at first.

The next two lines define an empty method, index, which the next section will improve
on. Finally, the closing end brings the definition of the TestbedController class to its
conclusion.

So, this is a class. What’s an object?

An object is an instance of a class. This class defines what a TestbedController looks
like. When Rails gets a request that it thinks requires a TestbedController, it reads the
class definition and creates an object that will perform as that class specifies. If neces-
sary, Rails will create places to store the object’s data as well as connections to call its
methods. Rails may create many different TestbedController objects at the same time
(one per request), but all will use the same definition. The process of creating an object
from a class definition is called instantiation.

Comments
While they don’t actually do anything in a Ruby program, comments are critical for
making code readable, especially complicated code. Ruby comments start with a #
character and continue to the end of that line. If a line starts with #, then the entire line
is a comment. If a line starts with code and then includes a # (outside of a quoted string
or regular expression), then everything to the right of the # is considered a comment
and ignored. For example:

This whole line is a comment
x = 2 # x is assigned the value 2, and the comment is ignored.

Comments are useful for humans, especially when you read someone else’s code or
return to a project after a long while away, but Ruby will just ignore them.

Variables, Methods, and Attributes
TestbedController is a pretty dull class so far. If you start Rails with rails server, and
visit http://localhost:3000/testbed/, you’ll get a mostly blank response. There’s nothing
in @result, because TestbedController’s index method doesn’t actually do anything.

That’s easily fixed. Change the definition of index to:

def index
 @result = 'hello'
end

Variables, Methods, and Attributes | 319

http://localhost:3000/testbed/

Now, when you load the page, you’ll see “hello” as the result. (This is not exciting
enough to deserve a screenshot.)

Variables
@result is a variable, a container for information. Because the name of the variable
started with @, it is an instance variable, connected to the object in such a way that other
objects can see it. That lets the view retrieve it to shows its value. The new line of code
assigned (=) an expression to the @result variable, the string hello.

The string was surrounded with single quotes (') to indicate that it was a string, a series
of characters, rather than another variable name or something else entirely. If you need
to include an apostrophe or single quote inside of a single-quoted string, just put a
backslash (\) in front of the quote, as in 'Hello! Ain\'t it a pretty day?'. This is
called escaping the quote, hiding it from normal processing.

Ruby also lets you surround strings with double quotes. Double-quoted
strings offer a lot more escaping functionality, but single-quoted strings
are simpler and faster to work with. If you’re used to putting double
quotes around strings, that will still work, but you may want to explore
the documentation to learn what you’re getting yourself into.

@result could take a variety of different kinds of values; Ruby isn’t picky about what
goes into its variable containers. You can assign it numbers, objects, boolean values—
pretty much anything that comes to mind in Ruby work. Ruby will do its best to figure
out what to do with the values you assign to your variables. For example, you could
write:

def index
 one = 1
 two = 2
 @result = one + two
end

The value of @result would be 3, what you get for evaluating the expression one +
two, which leads to adding 1 and 2. (Note that one and two are local variables—they
don’t have an @ in front of their names, and are only available within the index method.)
If, however, you’d written:

def index
 one = 'one'
 two = 'two'
 @result = one + two
end

the value of @result would be onetwo, because the plus operator (+) combines strings
sequentially (also called concatenating them) instead of adding their numeric values.

320 | Appendix A: An Incredibly Brief Introduction to Ruby

When Ruby runs that line of code, it checks to see what types are in the values before
deciding how the operator will behave.

Ruby isn’t as flexible as some other dynamically typed languages. If you
set one to 'one' and two to 2, you’d get the error message “can't convert
Fixnum into String.” Ruby may not keep close track of what types your
variables have, but effectively it’s your responsibility to do so.

While programmers often think of their code as determining the main flow of logic
through an application, from a user’s point of view most of what’s interesting is what
happens to the variables. Does data go to the right place? Is it stored properly? What
are the results of calculations on that data?

Variables are the places you store that data as they follow these paths through your
applications. You can assign values to variables and change those values. You can per-
form operations on those values (like +, –, *, /, and much, much more), and pass vari-
ables to methods as arguments.

Arrays and hashes

Sometimes a variable should hold more than just one value. It needs to contain a list,
a list of lists, or even a collection where values are connected to names. Ruby supports
these needs with arrays, which are simple lists, and hashes, which are collections of
named data.

Arrays start out simple. While you can create arrays more programmatically with the
Array object, it’s easiest to create an array by surrounding a comma-separated list of
values with square brackets:

my_array = [1, 2, 'tweet']

The values can be any Ruby expression. This one happens to mix two numbers and a
string. You can reference specific items by number. For example, you might redefine
the index method to look like:

def index
 my_array = [1, 2, 'tweet']
 @result = my_array[2]
end

If you’ve done a lot of programming, you might not be surprised that the @result vari-
able ends up containing tweet. Why? Because Ruby counts arrays from zero, not from
one. my_array[0] is 1, my_array[1] is 2, and, of course, my_array[2] is tweet.

Sometimes you’ll want to have lists containing lists. Ruby supports this by letting you
put arrays inside of arrays:

myNestedArray= [[1, 2, 'tweet'], [3, 4, 'woof'], [5, 6, 'meow']]

Variables, Methods, and Attributes | 321

If you wanted to reach the meow, you’d go to item 2 of the overall array, and then item
2 of the array inside of item 2, as in:

def index
 myNestedArray= [[1, 2, 'tweet'], [3, 4, 'woof'], [5, 6, 'meow']]
 @result = myNestedArray[2][2]
end

You can mix arrays of any size you’d like inside of another array, or even
mix in ordinary values. There’s no requirement that the array structure
must be consistent.

Hashes are just a little more complicated. Hashes, also called maps or associative arrays,
contain keys and values. Keys are effectively names that correspond to values. Within
a given hash, all of the keys have to be unique. (Values can duplicate as necessary,
though.) The easiest way to create a hash is with a hash literal:

myHash={ 'one' => 1, 'two' => 2, 'three' => 'tweet' }

To retrieve items from the hash, just call for them by name, as in:

def index
 myHash={ 'one' => 1, 'two' => 2, 'three' => 'tweet' }
 @result = myHash['two']
 end

In this case, @result will contain 2, as that corresponds to the name two. As with arrays,
you can also create hashes through the Hash object and its methods.

Both the key and the value can have any type: you can use numbers, or strings, or, as
Rails often does, especially in method calls, symbols.

Symbols

Rails uses symbols—names preceded by a colon, like :courses or :students—practi-
cally everywhere. They get used like variables, to refer to models. They get used as labels
for options in method calls. When you’re first starting out in Rails, your best option is
to study the examples and see where symbols are used and where other kinds of vari-
ables are used. Then, just follow the established pattern.

Why does Rails use symbols? The short answer is efficiency. Ruby handles symbols
with less processing than strings. The long answer is a lot more complicated than that,
involving the metaprogramming glue that holds the framework together. When you’re
ready to extend the Rails framework yourself, you’ll need to learn the details. Until
then, you don’t need a deep understanding.

322 | Appendix A: An Incredibly Brief Introduction to Ruby

Methods
So far, all of the action in these examples have taken place in one method: index. You
may have the occasional controller with just one method, but most classes contain more
than one method. Methods can call each other, passing each other data, establishing
program logic through these many interconnections. A simple demonstration in the
same testbed controller can show how this works:

class TestbedController < ApplicationController
 def index
 @result = addThem(1, 2)
 end

 def addThem (firstNumber, secondNumber)
 firstNumber + secondNumber
 end

end

When index is called, it sets a value for @result. The expression it uses, however, is a
call to another method, addThem, which is given two arguments, 1 and 2.

The arguments are shown here in parentheses because most other lan-
guages use them, and it’s a little easier to imagine what happens. How-
ever, the parentheses are optional in Ruby and often omitted.

The addThem method specifies that it takes two parameters, named firstNumber and
secondNumber. The expression on the second line, firstNumber + secondNumber, will be
evaluated, yielding 3. Ruby methods return the last value they produced, so addThem
will tell index that its answer is 3. @result will be set to 3, which will be presented
through the view.

If you prefer, you could write return firstNumber + secondNumber,
making it explicit that the value is the return value for the method.
However, you won’t see this done frequently in other people’s Ruby
code.

Privacy, please

Because of the way Rails routing works, the addThem method is currently exposed to the
public—though there isn’t a view for it, it won’t get useful arguments, and so on.
Fortunately, Ruby offers a way to hide such methods from public view while keeping
them accessible to other methods in the same class. Just add the keyword private before
addThem is defined:

class TestbedController < ApplicationController
 def index

Variables, Methods, and Attributes | 323

 @result = addThem (1, 2)
 end

 private

 def addThem (firstNumber, secondNumber)
 return firstNumber + secondNumber
 end
end

Methods that follow the private are still available to the other methods in the class,
but can no longer be called from outside of it.

Ruby also offers public and protected keywords for specifying access to
methods, but they aren’t frequently needed in Rails programming.

super

The methods explicitly listed in the TestbedController class are only a subset of the
methods the class actually contains, because of the opening declaration:

class TestbedController < ApplicationController

All of the methods that are defined in ApplicationController will also be available in
TestbedController. If you want some different behavior in TestbedController, you can
override methods—defining new methods with the same name and arguments.

Chapter 8 shows how overriding methods can work, but there’s frequently one small
problem. As often as not, the new method wants to do what the old method did, plus
something additional. For example, this was a method overriding the text_field
method from ActionView::Helpers::FormBuilder:

class TidyFormBuilder < ActionView::Helpers::FormBuilder
....
def text_field(method, options={})
 label_for(method, options) + super(method, options)
end

The text_field method here wants to create a label, and then call the original method
that it was overriding. The call to super isn’t to a method called super—it’s to the
text_field method specified in the ActionView::Helpers::FormBuilder class. This is a
common technique when you need to tweak the functionality the framework provides.

Calling methods: advanced options

While you probably won’t be writing methods as sophisticated as the ones in the Rails
framework itself for a little while, there are a few techniques you should understand
for calling those methods.

324 | Appendix A: An Incredibly Brief Introduction to Ruby

The first, simpler one, is Rails’ frequent use of methods that take an options hash as
an argument. While reading the Rails API documentation, you might encounter some-
thing like:

text_field_tag(name, value = nil, options = {})

The method name is text_field_tag, and it takes a name argument and a value argument
which has a default value of nil. But what is options = {}, especially since most calls
to text_field_tag don’t even use { and }?

options = {} provides a way for methods to accept named parameters, taking hash
with named values specified elsewhere in the documentation. In a more formal world,
the named parameters would form a hash literal inside of { and }, but Ruby doesn’t
require that level of formality. You could write:

text_field_tag 'Name', 'Jim', {:maxlength => 15, :disabled => true}

But more typically you’ll see:

text_field_tag 'Name', 'Jim', :maxlength => 15, :disabled => true

In general, named parameters go at the end of the method call, and the curly braces are
optional. There are times, however, when the braces are necessary, as noted in the
section “Creating Checkboxes” on page 90 in Chapter 6.

The second, harder one, is Rails’ use of methods that take an unnamed block of code
as an argument. This happens frequently with helper methods as well as in the migra-
tion code explored in Chapter 10, but it’s a pattern that can appear anywhere. Some-
times, as in the layout issues discussed in Chapter 2, the block-passing is just a quiet
part of the framework, and you only notice it because of a yield call.

The key to recognizing a method that takes a block as an argument is the &proc or pair
of curly braces at the end of the list of arguments, and examples that show the method
wrapping around other code, usually with do. The typical form looks pretty similar,
whether in straight Ruby code or in ERb view markup. For example, create_table in
a migration looks like:

create_table :awards do |t|
 t.string :name
 t.integer :year
 t.integer :student_id
end

A form_for call, meanwhile, looks like:

<%= form_for([@student, @award]) do |f| %>
 <%= f.error_messages %>
 <p>
 <%= f.label :name %>

 <%= f.text_field :name %>
 </p>
 <p>
 <%= f.label :year %>

 <%= f.text_field :year %>

Variables, Methods, and Attributes | 325

 </p>
 <p><%= f.submit "Create" %></p>
<% end %>

Each of these calls does something when it is first called. create_table orders the cre-
ation of a database table, while form_for creates an HTML form element. They don’t
just complete and disappear, however—they create a context, using do, that applies
until the end statement. The t variable and the f variable provide information that makes
it possible for the calls inside of the do to be much shorter (and much less repetitive)
than would otherwise be necessary.

When you’re working in Ruby code, you’ll often use { and } in place of
do and end. It’s easier to read do and end amidst the < and > of the HTML
markup, though.

Rails uses blocks for other purposes as well. Chapter 2 explains how the yield statement
lets a method execute code passed to it as a block when it seems convenient. Some
helper methods (notably benchmark and cache) use blocks this way.

If you want to become a Ruby pro, studying techniques for using blocks
as arguments is a good way to familiarize yourself with ways that Ruby
makes amazing things happen in a very compact amount of code.

Attributes
Ruby attributes lie somewhere between methods and variables. Well, actually,
attributes are methods, but when used, they feel like variables. Attributes are methods
that end in =, and they get called whenever you assign a value to the property with that
name. Chapter 8 used a photo= method to capture incoming data when the photo field
arrived from a form. You may find use for them eventually in your Rails development,
but at the beginning, it’s mostly useful to know the technique exists.

Logic and Conditionals
Classes, variables, and simple methods may carry some basic applications a surprisingly
long way, but most applications need more logic. This quick tour through Ruby’s con-
trol structures will give you more tools for building your applications.

Operators
Your program logic will depend on combining variables with operators into expres-
sions. Those expressions then get resolved into results, which may be used to assign

326 | Appendix A: An Incredibly Brief Introduction to Ruby

values to variables, or to give an answer about whether a test passed or failed. Most
Ruby operators should look familiar if you’ve ever used a programming language
before. The following table shows an abbreviated list of operators you’re likely to
encounter in your first forays into Rails:

Operator Use(s)

+ Addition, concatenation, making numbers positive

– Subtraction, removing from collections, making numbers negative

* Multiplication

/ Division

% Modulo (remainder from integer division)

! Not

** Exponentiation (2**3 is 8, 10**4 is 10000)

<< Shift bits left, or add to a collection

< Less than

<= Less than or equal to

>= Greater than or equal to

> Greater than

<=> General comparison—less than yields –1, equal returns 0, greater than 1, and not comparable nil

== Equal to (note that a single = is just assignment and always returns true)

=== Tests to see whether objects are of same class

!= Not equal to

=~ Tests a regular expression pattern for a match (see Appendix C)

!~ Tests a regular expression pattern for no match

&& Boolean AND (use to combine test expressions)

|| Boolean OR

and Boolean AND (lower precedence)

or Boolean OR (lower precedence)

not Not (lower precedence)

.. Range creator, including end value

... Range creator, excluding end value

defined? Tests variable definition, returns details

Nearly all of these can take on other meanings, as Ruby lets developers redefine them.
Usually they’ll behave as you expect, but if they don’t, you may need to examine the
context you’re programming in.

Logic and Conditionals | 327

if, else, unless, and elsif
The if statement is pretty much at the heart of all computer programming. Though it
might be very painful, nearly all code could be rewritten as if statements. The basic
approach looks like:

if expression
 thingsToDo
end

To create a simple example again, return to the TestbedController:

class TestbedController < ApplicationController
 def index
 @result = 'First is greater than or equal to last.'
 first=20
 last=25
 if first < last
 @result = 'First is smaller than last.'
 end
 end
end

Because the value of first is less than the value of last, the first < last expression
will evaluate to true, and @result will be set to First is smaller than last. For eval-
uation purposes, anything except for false or nil will evaluate to true. Definitely try
changing the values of first and last and reloading.

The if statement has a simple opposite: unless. It performs its tasks if the expression
returns false. While you don’t really need it, it can make some code more readable:

def index
 @result = 'First is smaller than last.'
 first=20
 last=25
 unless first < last
 @result = 'First is greater than or equal to last.'
 end
end

The unless first < last statement means exactly the same as if !(first < last).

Sometimes you want to do something more when your first test fails. This calls for the
else statement, which lets you do things instead of what you had planned if your if or
unless succeeded. You could rewrite these two little methods as:

def index
 first=20
 last=25
 if first < last
 @result = 'First is smaller than last.'
 else
 @result = 'First is greater than or equal to last.'
 end
end

328 | Appendix A: An Incredibly Brief Introduction to Ruby

and:

def index
 first=20
 last=25
 unless first < last
 @result = 'First is greater than or equal to last.'
 else
 @result = 'First is smaller than last.'
 end
end

Using an else can both make your code’s results more explicit for later developers who
have to maintain it, and support your efforts to do different things based on a single test.

There’s one last option in regular if statements: elsif, which combines an else and
an if. You can only use it with if, not with unless, but you can have as many elsifs
as you want. A simple example that extends the logic of the previous code is:

def index
 first=20
 last=25
 if first < last
 @result = 'First is smaller than last.'
 elsif first == last
 @result = 'First is equal to last.'
 else
 @result = 'First is greater than last.'
 end
 end

Note that it’s elsif, not elseif, and that the double equals sign (==) tests for equality
rather than assigning a value. Using a single equals sign in a comparison is a common
mistake for new arrivals from other languages. Not only does it assign the value, it
always returns true, satisfying the conditional test.

There is still one other variation on if that you might encounter. Instead of:

if expression
 thingsToDo
end

it looks like:

somethingToDo if expression

It’s more concise and sometimes more readable, but it can certainly confuse you if
you’re looking for neatly indented logical statements. If you want, though, you can
write:

@result = 'First is greater then last' if first > last

Logic and Conditionals | 329

?:
The ?: operator isn’t precisely a statement, but it works like an abbreviated if/else
statement. It’s mostly used in cases where you need to return a slightly different result
for one of two cases. It starts with a test expression, then has a question mark (?), then
the value returned if the test expression is true, then a colon (:), and then the value
returned if the test expression is false. You could rewrite the earlier if/else example as:

def index
 first=20
 last=25
 @result = (first < last ? 'First is smaller than last.' : 'First is greater than
or equal to last.')
end

Again, the message reported would be that First is smaller than last., but you can
try changing the values to see what happens.

case and when
If your if statements start sprouting elsifs everywhere, it may be time to switch to
case and when statements. These let you specify an expression in the case, and then test
it against various conditions. You could rewrite the earlier test as:

def index
 first=20
 last=25
 case
 when first < last
 @result ='First is smaller than last.'
 when first == last
 @result ='First is equal to last.'
 when first > last
 @result ='First is greater than last.'
 end
end

There are actually many ways to write case statements. If you want to reduce repetition,
you might try:

def index
 first=20
 last=25
 @result = case
 when first < last
 'First is smaller than last.'
 when first == last
 'First is equal to last.'
 when first > last
 'First is greater than last.'
 end
end

330 | Appendix A: An Incredibly Brief Introduction to Ruby

This works because case returns a value, and the when clauses just set that value. You
can also add an else clause to the end of your case statement, to catch the situation
where none of your when clauses matched.

Ruby ignores all when conditions after the first match, unlike many C-
syntax languages that require break statements to skip over subsequent
test after the first match.

Loops
Evaluations are useful, but sometimes you want to just go around and around until
you’ve tested something a set number of times, a particular condition is met, or you
just plain run out of additional data to process. Ruby offers all kinds of ways to go
around and around.

while and until

The while and until methods let you create loops that run for as long as the specified
condition is true (while) or false (until). Both of these take a do...end block that
will be run until the loop decides to stop. A simple example that demonstrates this is
counting. With while, counting from 1 to 10 might look like:

def index
 count=1
 @result =' '
 while count <= 10 do
 @result = @result + count.to_s + " "
 count= count + 1
 end
end

The first time through the loop, count starts out with a value of one, and the condition
count <= 10 evaluates to true, so Ruby proceeds into the loop. The string value of
count gets tacked onto the end of @result, with a space for clarity, and then the value
of count is increased by one. When the end corresponding to the do is reached, the loop
goes back to its start at while and evaluates the condition. If the condition is still
true, it goes through the loop again; if not, it ends the loop and goes forward. In this
case, it hits the end at the end of the index method, and we’re done. The view reports
@result, which is “1 2 3 4 5 6 7 8 9 10.”

The to_s method on count converts its numeric value to a string. The
to_s method is a general facility for turning Ruby objects into strings.
You may want to support this in your own programming, as it is often
easier to see the state of something when it can be expressed as a string.

You could write the same thing with until, except that the condition would be reversed:

Logic and Conditionals | 331

def index
 count=1
 @result =' '
 until count > 10 do
 @result = @result + count.to_s + " "
 count= count + 1
 end
end

You will doubtless have more exciting conditions than incrementing variables, but
remember: Rails can do many things for you, but it won’t protect you from an infinite
loop. If your conditions aren’t met (or refused for until), your code will go on and on
until you halt it or it runs out of resources. Always make sure that the loop will come
to a halt by itself, no matter what you feed it.

Just Counting

If you know how many times you want something to go around in a loop, you can use
the times method on any numeric variable. times takes a block, marked with {}, which
it will run that many times. For example:

def index
 count=3
 @result =''
 count.times {
 @result = @result + "count "
 }
end

will produce "count count count" as the loop goes around three times.

for

A for loop takes a variable and a collection. In its simplest counting approach, the
collection is a range, specified with a starting value, then two periods (..), and then an
end value. The variable will be set to a value from the range as the loop proceeds, and
will advance one step every time the loop hits end until it’s done:

def index
 count=13
 @result =' '
 for i in 1..count
 @result = @result + i.to_s + " "
 end
end

Of course, like most things Ruby, the for loop has greater powers than just this. You
can use it to iterate over an array:

def index
my_array= [5, 4, 3, 2, 1]
@result =' '
 for i in my_array
 @result = @result + i.to_s + " "

332 | Appendix A: An Incredibly Brief Introduction to Ruby

 end
end

The loop will go through the array to produce “5 4 3 2 1.” You can do even fancier
things with hashes, extracting both the key and the value:

def index
my_hash= { 'one' => 1, 'two' => 2, 'three' => 3, 'four' => 4 }
@result =' '
 for key,value in my_hash
 @result = @result + "key: " + key + " - value: " + value.to_s + "
"
 end
end

As always, don’t expect the hash to be reported in any given order. Ruby reserves the
right to present hashes however it wants. You’ll see a result something like:

key: three - value: 3
key: two - value: 2
key: one - value: 1
key: four - value: 4

These are a few of the simpler ways to use loops in Ruby. There’s much more to explore.

Many More Possibilities
Ruby offers, and Rails can use, a variety of other structures for passing control through
a program:

• return, break, next, and redo statements for moving through or from loops

• throw and catch statements for breaking out of code

• Iterators that go beyond loops

• raise, rescue, retry, and ensure statements for exceptions

Rails doesn’t allow the use of Ruby’s BEGIN and END statements, however, or its support
for threads.

Logic and Conditionals | 333

APPENDIX B

An Incredibly Brief Introduction to
Relational Databases

“I thought the whole point of Rails was that it hid the database and just let me write
Ruby code! Why do I need to know about these things?”

Rails has all kinds of features for building web applications, but its foundation com-
ponent is the way that it lets you get information into and out of relational databases.
You can build simple applications without knowing much about databases, just telling
Rake to do a few things and making sure you gave Rails the right data type for each
field. You don’t need to know Structured Query Language (SQL), the classic language
for working with databases.

Building a more complex Rails application, though, really demands at least a basic
understanding of how relational databases work. It helps to think about tables and
their connections when defining Rails models, at least when you first set them up.

You may be hearing a lot about NoSQL databases as an alternative
approach. They’re definitely moving forward, with tools like CouchDB,
MongoDB, Riak, and many others competing for attention. They’re not
yet, however, at the heart of Rails.

Tables of Data
The foundational idea underneath relational databases is a simple but powerful struc-
ture. Each table is a set of sets, and within a single table all of these sets have the same
data structure, containing a list of named fields and their values. For convenience, each
set within a table is called a row, and each field within that row is part of a larger named
column, as shown in Figure B-1. It looks a lot like a spreadsheet with named columns
and unnamed rows.

335

Figure B-1. The classic row–column approach to tables

The resemblance to a spreadsheet is only superficial, however. Spreadsheets are built
on grids, but those grids can have anything in them that any user wants to put in any
given place in the spreadsheet. It’s possible to build a spreadsheet that is structured like
a database table, but it’s definitely not required. Databases offer much less of that kind
of flexibility, and in return can offer tremendous power because of their obsession with
neatly ordered data. Every row within a table has to have the same structure for its data,
and calculations generally take place outside of the tables, not within them. Tables just
contain data.

You also don’t normally interact with database tables as directly as you do spreadsheets,
though sometimes applications offer a spreadsheet-like grid view as an option for
editing them. Instead, you define the table structures with a schema, like that shown
in Table B-1, and move data in and out with code.

Table B-1. A schema for the table in Figure B-1

Field name Data type

id :integer

given_name :string

middle_name :string

family_name :string

date_of_birth :date

grade_point_average :float

start_date :date

Depending on the database, schemas can be very simple and terse or very complicated
and precisely defined. Rails isn’t that interested in the details of database schema
implementations, however, because its “choose your own database backend” approach
limits how tightly it can bond to any particular one. As a result, Rails takes the terse
and simple approach, supporting only these basic data types:

:string
:text
:integer

336 | Appendix B: An Incredibly Brief Introduction to Relational Databases

:float
:decimal
:datetime
:timestamp
:time
:date
:binary
:boolean

Rails won’t create a database schema much more complicated than the one shown in
Figure B-2, though it will probably add some extra pieces to the schema that you don’t
need to worry about. There are timestamps, which Rails adds even when you don’t ask
for them, and IDs, which you don’t control but which come up in URLs all the time.
The Rails ID serves another function inside the database: it’s a primary key, a unique
identifier for that row in the table. Databases can find information very rapidly when
given that key.

Figure B-2. Multiple but unconnected tables in a database

Limitations of Tables
There is a huge amount of data out there that doesn’t fit neatly into tables. Most of the
time, in web applications, you can just put the pieces that do fit into tables, and put
the pieces that don’t fit easily (like pictures, or XML files) in the filesystem somewhere.

If you get into situations where little of the information you’re working with fits neatly
into tables—lots of hierarchical information, for instance—you may want to go looking
for other kinds of tools. You might need a different kind of database, an XML store
maybe, and you probably won’t find Rails to be your best option. Rails bindings for
XML databases could be very cool—ActiveDocument?—but certainly aren’t a main-
stream tool at present. NoSQL databases, though, are pioneering this kind of territory.

Tables of Data | 337

Connecting Tables
You can build many simple applications on a single-table database, but at some point,
working within a single table is just way too constraining. The next step might be add
another table to the application, say for some completely separate set of issues. A users
table that identifies users and their administrative roles might be the next thing you
add to an application, as shown in Figure B-2.

With these tables, you can write an application that checks to see if users have the rights
to make changes to the other table. You could add lots of other disconnected tables to
the database as well (and sometimes you’ll have disconnected tables), but at the same
time, this isn’t taking advantage of the real power of relational databases. They’re much
more than a place to store information in tables: they’re a place to manage related
information effectively and efficiently.

So, how does that work? Remember the primary key? Rails uses it to get to records
quickly, but the database can also use it internally. That means that it’s easy for data
in one table to refer to a row in another using that same primary key. That yields
structures like the one shown in Figure B-3.

Figure B-3. Connected tables in a database

Establishing connections between tables is simple—one just has to reference the other
using its key. When you link to a record in another table by storing the key for that
record in your own table, that key is called a foreign key. By using foreign keys to connect
to primary keys, databases can assemble related information very quickly. Whose
“2007 Best Handwriting” award was that? Student 1, who we can find out is Giles
Boschwick by checking the other table.

You can link tables to tables to tables. You might, for example, have a table that lists
who presented each award, which links to the award table the same way that the award
table linked to the students table, as shown in Figure B-4.

338 | Appendix B: An Incredibly Brief Introduction to Relational Databases

Figure B-4. Connected tables in a database

With tables linked this way, you can ask questions like, “Which presenters gave Jules
Bloss Miller awards in 2007?” and get the answer of, “Dr. Milo Jonstein, DDS” and
“Mr. James Withers.” You—or more likely a program—can follow the IDs and the
links to those IDs to come up with the right answer.

Using Tables to Connect Tables
These kinds of links allow the table doing the pointing to establish one connection per
row. That might lead to no connections to some rows in the targeted table, one
connection to a row, or even many connections to given rows in the targeted table. You
can constrain those options, but there’s one kind of connection that isn’t supported by
this simple mechanism. It doesn’t allow for many-to-many relationships.

A classic many-to-many relationship is students and classes. Often, each student takes
many classes. Each class contains many students. The mechanism shown in Figures
B-3 and B-4 isn’t very good at this. You could create multiple fields for holding multiple
links to the same table, but any time you have more than one field pointing at the same
table, you’re setting yourself up for some complicated processing. It’s hard to know
how many pointers you’ll need, and all of your code would have to look in multiple
different places to establish connections. None of this is fun.

It’s fine, even normal, to have multiple foreign keys in a table, as long
as they all reference different tables.

There is, however, a convenient way to represent many-to-many relationships without
creating a tangle. Instead of putting pointers from one table to another inside of the

Tables of Data | 339

table, you create a third table that contains pointers to the two other tables. If you need
to represent multiple relationships between different rows in the two tables to be joined,
it’s easy—just add another row specifying the connection in the table representing
connections.

Figure B-5 shows the students table, a new courses table, and a new table connecting
them. (For convenience of drawing, the courses table has its ID values on the right side,
and the join table has its mostly useless ID in the middle, but it doesn’t really matter.
You can leave IDs out of join tables entirely if you want.)

Figure B-5. Connected tables in a database

If you work through the connections, you can see that course 5125, Mathematical
Opera, is popular, at least in these tiny fragments of what is probably a larger data set.
It has Jules Miller, Greva James, and Giles Boschwick in it. Working the other direction,
you can also see that Jules Miller is taking both Mathematical Opera and Lavatory
Decorations of Ancient Rome. Using this approach, students can have many courses,
and courses can have many students, and all our queries need to do is ask for all of the
connections.

Remember, in Rails, you never want to name a table (or other object)
“class.” Rails has a lot of reserved words that can lead to very strange
errors.

Granularity
In addition to linking through keys, there’s one other critical aspect of database table
design that you should know before embarking on writing applications: data granu-
larity matters! If you read traditional explanations of relational databases, you’ll see a

340 | Appendix B: An Incredibly Brief Introduction to Relational Databases

lot about normalization, which is the process of creating tables that can be easily
manipulated through code.

Much of normalization is about reducing duplication, which is usually best done by
breaking data into multiple tables, as shown earlier. Another key part, however, is
deciding how small (or large) each field in a table should be.

In the students table, shown originally in Figure B-1, each piece of a student’s name
had a separate field. Why? Well, it’s pretty ordinary to want to sort a list of students
by last name. It’s also normal to leave out middle names in most correspondence. That’s
much easier to do when the pieces are already broken out, and avoids the problem of
figuring out which part of a name is which algorithmically. In the presenter’s table in
Figure B-4, it probably wasn’t worth breaking out those pieces—the name would go
on a certificate once and never be examined again.

Doubtless, some purists would want those presenters’ titles and names broken into
smaller pieces, and you could do that. The question, though, is always going to be what
you want to do with the data. If you’re not interested in sorting the presenters’ names,
it may not be worth the extra effort on your part of fragmenting them. Similarly, if you
only use street addresses for mailing, it might make sense to keep them as one field
rather than separating house number from street number.

Problems, of course, arise when you realize that you really did need to sort a list of
addresses by street or presenters by last name. Splitting existing data into smaller pieces
once you’ve already built an application can be extremely annoying. For your first few
applications, you may want to err on the side of breaking things up, as it’s easier to
recombine separate fields than to split them out again.

Rails makes combining those fragmented fields easier with the
composed_of method.

Once these structures are built, you can write queries that look for those connections—
in SQL or in Rails. (Rails will effectively write the SQL query for you.)

Databases, Tables, and Rails
For more than a decade, most web applications that used a database used Structured
Query Language (SQL) to move information into and out of databases. SQL is a pow-
erful tool for creating and manipulating database structures, as well as for moving
information in and out of those structures, but it’s tightly focused on database projects
only. You can’t build a complete web application using SQL, so historically developers
have written the bulk of their applications in another language, and then made SQL
calls against a database. Developers needed to know both SQL and the other language.

Databases, Tables, and Rails | 341

Rails changes all of this, taking the position that it’s better to manage data and logic in
the same language, in this case Ruby. ActiveRecord abstracts the SQL calls away,
though they still exist if you look through the development logs. At the same time, Rake
and migrations handle the care and feeding of the database, defining and creating (or
removing) tables. You define the tables in Ruby, and call rake db:migrate to make
things happen.

If you already know SQL, you have a bit of an advantage when it comes to debugging
Rails applications by checking logs and tinkering inside of the database. You may,
however, have a disadvantage in getting started with Rails, as Rails pretty much expects
developers to put the SQL toolkit away. There may be times when SQL is still actually
necessary, so Rails supports a find_by_sql method, but in general, if you find yourself
writing SQL, odds are good that you just haven’t found a better way to do things in
Rails itself.

You do have one critical choice to make regarding databases, however: which database
to use with Rails. By default, SQLite is the default database. It’s easy to use with minimal
configuration, keeps its information in a single (easily transferred) file, and is widely
available.

For many applications, though, you will want to consider heavier-duty options that
can handle more simultaneous connections. For many people, MySQL will be the right
choice—heftier than SQLite, but not as intimidating as PostgreSQL. Bindings for all
three are built into Rails by default, so that part’s relatively easy, and bindings for many
other databases are available as plug-ins.

You don’t need to be a database expert to learn Rails. You will want to have adminis-
trators who know how to manage, optimize, and backup whatever database system
you choose to use for deployment—but those issues should get addressed after you’ve
finished learning Rails. You may want to pick up Learning MySQL (O’Reilly, 2006) if
you’re new to relational databases and you want to take your knowledge to the next
level. If you want details on SQLite, try Using SQLite (O’Reilly, 2010).

342 | Appendix B: An Incredibly Brief Introduction to Relational Databases

http://shop.oreilly.com/product/9780596008642.do
http://shop.oreilly.com/product/9780596521196.do

APPENDIX C

An Incredibly Brief Guide to
Regular Expressions

Ruby, like many other languages, contains a powerful text-processing shortcut that
looks like it was created by cats walking on the keyboard. Regular expressions can be
very difficult to read, especially as they grow longer, but they offer tremendous power
that’s hard to re-create in Ruby code. As long as you stay within a modest subset of
regular expressions, you can get a lot done without confusing anyone—yourself
included—who’s trying to make sense out of your program logic.

For a more detailed tutorial, see Mike Fitzgerald’s Introducing Regular Expressions
(O’Reilly, 2012). For a much more comprehensive guide to regular expressions, see
Jeffrey E. F. Friedl’s classic Mastering Regular Expressions (O’Reilly, 2006) or Tony
Stubblebine’s compact but extensive Regular Expression Pocket Reference (O’Reilly,
2007). Jan Goyvaerts’ and Steven Levithan’s Regular Expressions Cookbook (O’Reilly,
2009) is an excellent compendium of ready-to-use expressions and approaches.

What Regular Expressions Do
Regular expressions help your programs find chunks of text that match patterns you
specify. Depending on how you call the regular expression, you may get:

A yes/no answer
Something matched or it didn’t

A set of matches
All of the pieces that matched your query, so you can sort through them

A new string
If you specified that this was a search-and-replace operation, you may have a new
string with all of the replacements made

343

http://shop.oreilly.com/product/0636920012337.do
http://shop.oreilly.com/product/9780596528126.do
http://shop.oreilly.com/product/9780596514273.do
http://shop.oreilly.com/product/0636920023630.do

Regular expressions also offer incredible flexibility in specifying search terms. A key
part of the reason that regular expressions look so arcane is that they use symbols to
specify different kinds of matches, and matches on characters that aren’t easily typed.

Starting Small
The most likely place that you’re going to use regular expressions in Rails is the
validates_format_of method demonstrated in Chapter 7, which is shown here as
Example C-1.

Example C-1. Validating data against regular expressions

ensure secret contains at least one number
 validates_format_of :secret, :with => /[0-9]/,
 :message => "must contain at least one number"

ensure secret contains at least one upper case
 validates_format_of :secret, :with => /[A-Z]/,
 :message => "must contain at least one upper case character"

ensure secret contains at least one lower case
 validates_format_of :secret, :with => /[a-z]/,
 :message => "must contain at least one lower case character"

These samples all use regular expressions in their simplest typical use case: testing to
see whether a string contains a pattern. Each of these will test :secret against the
expression specified by :with. If the pattern in :with matches, then validation passes.
If not, then validation fails and the :message will be returned. Removing the Rails trim,
the first of these could be stated roughly in Ruby as:

if :secret =~ /[0-9]/
 #yes, it's there
else
 #no, it's not
end

The =~ is Ruby’s way of declaring that the test is going to compare the contents of the
left operand against the regular expression on the right side. It doesn’t actually return
true or false, though—it returns the numeric position at which the first match begins,
if there is a match, and nil if there are none. You can treat it as a boolean evaluator,
however, because nil always behaves as false in a boolean evaluation, and other non-
false values are the same as true.

344 | Appendix C: An Incredibly Brief Guide to Regular Expressions

There isn’t room here to explain them, but if you need to do more with
regular expressions than just testing whether there’s a match, you’ll be
interested in the $~ variable (or Regexp.last_match), which gives you
access to more detail on the results of the matching. A variety of methods
on the String object, notably sub, gsub, and slice, also use regular
expressions for slicing and dicing. You can also retrieve match results
with $1 for the first match, $2 for the second, and so on, variables created
by the match.

There’s one other feature in these simple examples worth a little more depth. Reading
them, you might have thought that /[0-9]/ was a regular expression. It’s a regular
expression object, but the expression itself is [0-9]. Ruby uses the forward slash as a
delimiter for regular expressions, much like quotes are used for strings. Unlike strings,
though, you can add flags after the closing slash, as you’ll see later.

If you’d prefer, you can also use Regexp.new to create regular expression objects. (This
usually makes sense if your code needs to meet changing circumstances on the fly at
runtime.)

The Simplest Expressions: Literal Strings
The simplest regular expressions are simply literal strings. There are plenty of times
when it’s enough to search against a fixed search pattern. For example, you might test
for the presence of the string “Ruby”:

sentence = "Ruby is the best Ruby-like programming language."
sentence =~ /Ruby/
=> 0 - The first instance of 'Ruby' appears at position 0.

Character Classes
Example C-1 tested against letters and numbers, but there are many ways to do that.
[a-z] is a good way to test for lowercase letters in English, but many languages use
characters outside of that range. Regular expression character classes let you create sets
of characters as well as use predefined groups of characters to identify what you want
to target.

To create your own character class, use the square braces: [and]. Within the square
braces, you can either list the characters you want, or create a set of characters with the
hyphen. To match all the (guaranteed) English vowels in lowercase, you would write:

/[aeiou]/

If you wanted to match both upper- and lowercase vowels, you could write:

/[aeiouAEIOU]/

Character Classes | 345

(If you wanted to ignore case entirely in your search, you could also use the i modifier
described earlier: /[aeiou]/i.)

You can also mix character classes in with other parts of a search:

/[Rr][aeiou]by/

That would match Ruby, ruby, raby, roby, and a lot of other variations with upper- or
lowercase R, followed by a lowercase vowel, followed by by.

Sometimes listing all the characters in a class is a hassle. Regular expressions are difficult
enough to read without huge chunks of characters in classes. So instead of:

/[abcdefghijklmnopqrstuvwxyz]/

you can just write:

/[a-z]/

As long as the characters you want to match form a single range, that’s simple—the
hyphen just means “everything in between.”

There’s also a “not” option available, in the ^ character. You can reverse /[aeiou]/ by
writing:

/^[aeiou]/

Regular expressions also offer built-in character classes, listed in Table C-1, that can
make regular expressions more readable—at least, more readable once you’ve learned
what they mean.

Table C-1. Regular expression special character classes

Syntax Meaning

. Match any character. (Without the m modifier, it doesn’t match newlines; with the m modifier, it does.)

\d Matches any digit. (Just 0–9, not other Unicode digits.)

\D Matches any nondigit.

\s Matches whitespace characters: tab, carriage return, newline, form feed.

\S Matches nonwhitespace characters.

\w Matches word characters: A–Z, a–z, and 0–9.

\W Matches all nonword characters.

Escaping
Of course, even in simple strings there can be a large problem: lots of characters you’ll
want to test for are used by regular expression engines with a different meaning. The
square braces around [0-9] are helpful for specifying that it’s a set starting with zero
and going to nine, but what if you’re actually searching for square braces?

346 | Appendix C: An Incredibly Brief Guide to Regular Expressions

Fortunately, you can “escape” any character that regular expressions use for something
else by putting a backslash in front of it. An expression that looks for left square brackets
would look like \[. If you need to include a backslash, just put a second backslash in
front of it, as in \\.

Some characters, particularly whitespace characters, are also just difficult to represent
in a string without creating strange formatting. Table C-2 shows how to escape them
for convenient matching.

Table C-2. Escapes for whitespace characters

Escape sequence Meaning

\f Form feed character

\n Newline character

\r Carriage return character

\t Tab character

Modifiers
Sometimes you want to be able to search for strings without regard to case, and you
don’t want to put a lot of effort into creating an expression that covers every option.
Other times you want to search against a string that contains many lines of text, and
you don’t want the expression to stop at the first line. For these situations, where the
underlying rules change, Ruby supports modifiers, which you can put at the end of the
expression or specify through the Regexp object. A complete list of modifiers is shown
in Table C-3.

Table C-3. Regular expression modifier options

Modifier character Effect

i Ignore case completely.

m Multiline matching—look past the first newline, and allow . and \n to match newline characters.

x Use extended syntax, allowing whitespace and comments in expressions. (Probably not the first thing

you want to try!)

o Only interpolate #{} expressions the first time the regular expression is evaluated. (Again, unlikely when

starting out.)

u Treat the content of the regular expression as Unicode. (By default, it is treated as the same as the content

it is tested against.)

e, s, n Treat the content of the regular expression as EUC, SJIS, and ASCII, respectively, like u does for Unicode.

Of these, i and m are the only ones you’re likely to use at the beginning. To use them
in a regular expression literal, just add them after the closing /:

Modifiers | 347

sentence = "I think Ruby is the best Ruby-like programming language."
sentence =~ /ruby/i
=> 8 - "ruby" first appears at character 8.

If you want to use multiple options, you can. /ruby/iu specifies case-insensitive
Unicode matching, for instance.

Anchors
Sometimes you want a match to be meaningful only at an edge: the start or the end, or
maybe a word in the middle. You might even want to define your own edge—something
is important only when it’s next to something else. Ruby’s regular expression engine
lets you do all of these things, as well as match only when your match is not against an
edge. Table C-4 lists common anchor syntax.

Table C-4. Regular expression anchors

Syntax Meaning

^ When at the start of the expression, means to match the expression only against the start of the target

(or a line within the target, when multiline matching is on).

$ When at the end of the expression, means to match the expression only against the end of the target

(or the end of a line within the target, when multiline matching is on).

\A When at the start of the expression, means to match the expression only against the start of the target

string, not lines within it.

\Z When at the end of the expression, means to match the expression only against the end of the target

string, not lines within it.

\b Marks a boundary between words, up against whitespace.

\B Marks something that isn’t a boundary between words.

(?=expression) Lets you define your own boundary, by limiting the match to things next to expression.

(?!expression) Lets you define your own boundary, by limiting the match to things that are not next to

expression.

These make a little more sense if you see them in action. For example, if you only want
to match “The” when it’s at the start of a line, you could write:

/^The/

If you wanted to match “1991” when it’s at the end of a line, you could write:

/1991$/

If multiline matching was on, and you wanted to make sure these matches apply only
at the start or end of the string, you would write them as:

/\AThe/
/1991\Z/

348 | Appendix C: An Incredibly Brief Guide to Regular Expressions

The \b anchor is really useful when you want to match a word, not places where a
sequence falls in the middle of a word. For example, if you wanted to match “the”
without matching “Athens” or “Promethean,” you could write:

/\bthe\b/

Alternately, if you wanted to match “the” only when it was part of another word, you
could use \B to write:

/\Bthe\B/

The last two items in Table C-4 let you specify boundaries of your own—not just
whitespace or the start or end, but any characters you want.

Sequences, Repetition, Groups, and Choices
Specifying a simple match pattern may take care of most of what you need regular
expressions for in Rails, but there are a few additional pieces you should know about
before moving on. Even if you don’t match something that needs these, knowing what
they look like will help you read other regular expressions when you encounter them.

There are three classic symbols that indicate whether an item is optional or can repeat,
plus a notation that lets you specify how much something should repeat, as shown in
Table C-5.

Table C-5. Options and repetition

Syntax Meaning

? The pattern right before it should appear 0 or 1 times.

* The pattern right before it should appear 0 or more times.

+ The pattern right before it should appear 1 or more times.

{number} The pattern before the opening curly brace should appear exactly number times.

{number,} The pattern before the opening curly brace should appear at least number times.

{number1, number2} The pattern before the opening curly brace should appear at least number1 times but no

more than number2 times.

You might think you’re ready to go create expressions armed with this knowledge, but
you’ll find some unpleasant surprises. The regular expression:

/1998+/

might look like it will match one or more instances of “1998,” but it will actually match
“199” followed by one or more instances of “8”. To make it match a sequence of 1998s,
you would write:

/(1998)+/

If you wanted to specify, say, two to five occurrences of 1998, you’d write:

Sequences, Repetition, Groups, and Choices | 349

/(1998){2,5}/

The parentheses can also be helpful when specifying choices, though for a slightly
different reason. If you wanted to match, say, 2013 or 2014, you could use | to write:

/2013|2014/

The | divides the whole expression into complete expressions to its left or right, rather
than just grabbing the previous character, so you don’t need parentheses around either
2013 or 2014. Nonetheless, if you wanted to do something like match 2013, 2014, or
2017, you might not want to write:

/2013|2014|2017/

You could instead write something more like:

/201(3|4|7)/

Parentheses also “capture” matched text for later use, and that capturing
may determine how you structure parentheses. It’s probably not the first
place you’ll want to start, though.

Greed
There’s one last feature of the repetition operators that can cause unexpected results:
by default, they’re greedy. This isn’t a question of computing virtue, but rather one of
how much content a regular expression can match at one go. This is a common issue
in things like HTML, where you might see something like:

Example.com

You might think you could match the HTML tags simply with an expression like:

/<.*>/

But instead of matching the opening tag and closing tag separately, that expression will
grab everything from the opening < to the closing > of , because it can. If you want
to restrain a given expression so that it takes the smallest possible matching bite, add
a ? behind any of the repetition operators:

/<.*?>/

Greed matters more when you use regular expressions to extract content from long
strings, but it can yield confusing results even in supposedly simple matching. If you
have mysterious problems, greed is a good thing to check for.

350 | Appendix C: An Incredibly Brief Guide to Regular Expressions

More Possibilities
Regular expressions have nearly infinite depth, and this appendix has barely begun to
scratch the surface, either of expressions or the ways you can use them in Ruby and
Rails. A few of the things this incredibly brief guide hasn’t been able to include are:

• Using expressions to fragment a string into smaller pieces

• Referencing earlier matches later in an expression

• Creating named groups

• Commenting regular expressions

• A variety of special syntax forms using parentheses

For more detail on using regular expressions specifically with Ruby, see The Ruby Pro-
gramming Language by David Flanagan and Yukihiro Matsumoto.

More Possibilities | 351

http://shop.oreilly.com/product/9780596516178.do
http://shop.oreilly.com/product/9780596516178.do

APPENDIX D

Glossary

Speaking in Rails
Rails, like many communities, has developed its own language. You need to know a
lot of that language to understand what other people are saying, even when those people
are trying to be helpful. This glossary gives you a quick guide to some common terms
used in Rails that aren’t obvious to outsiders and provides the extra Rails meanings for
words used elsewhere that have acquired additional meaning in Rails. Hopefully this
will make it easier for you to understand Rails documentation and conversation, but
of course, new terms will emerge over time:

37signals
The company where Rails was born, emerging from their Basecamp product.

ACID
Atomicity, Consistency, Isolation, Durability. A set of principles, usually imple-
mented with relational databases and transactions, that are intended to ensure data
reliability. Rails is not designed with ACID as a priority, though transactions are
available as a plug-in. (In a different meaning, there are also a variety of “Acid”
tests for CSS implementation conformance.)

ActionController
The part of the Rails library that directly interacts with incoming HTTP requests,
including routing, parameter passing, session management, and deciding how to
render a response. Controller objects are the main way in which Rails developers
interact with ActionController.

ActionMailer
The part of the Rails library that manages incoming and outgoing email.

ActionPack
The combination of ActionController and ActionView, which provides a complete
package for dealing with and responding to HTTP requests.

353

ActionView
The part of the Rails library that generates responses to HTTP requests, based on
information received from ActionController.

ActiveRecord
The Rails library that handles mappings between the database and Ruby classes.
ActiveRecord is pretty much the foundation of Rails, but it can be used outside of
Rails as well.

ActiveSupport
A collection of classes that were developed for Rails, but that can be used in any
Ruby environment.

acts_as
A common naming convention used in Rails, typically with plug-ins, to indicate
that part of a model operates using code provided elsewhere.

adapter
Code, usually Ruby or Ruby and other languages, that connects ActiveRecord to
a specific database.

aggregation
Often used to describe collecting RSS or Atom syndication feeds, but has another
meaning in Rails. Aggregation lets you create simpler ways to access combinations
of data using the composed_of method. You might do this to combine first and last
names, or address parts, or other pieces that can be broken down but that are often
conveniently used together.

Agile
A variety of software development techniques that tend to focus on smaller-scale
iterative development rather than on top-down “waterfall” design and
implementation.

Ajax
Originally Asynchronous JavaScript and XML, this former acronym now refers
more broadly to web development where methods within a page call back to the
server and make smaller changes to a page rather than calling for a complete refresh
every time. Ajax applications often resemble desktop applications more closely
because of this added flexibility.

assertion
Claims made in test methods whose results will be reported.

assets
In Rails parlance, assets are information outside of your application and its data-
base—images are a classic example—that are incorporated by reference. Assets
don’t need to be entirely outside of the application, however. Chapter 8 shows how
to have Rails manage the arrival of image assets.

association
A relationship between fields in a database.

354 | Appendix D: Glossary

Atom
An XML-based format originally used for syndicating information from blogs, but
now moving into many applications where data needs to flow from site to site.

attributes
Attributes are information about an ActiveRecord model class, such as what fields
it contains, what types they hold, and so on. Usually, Rails figures out what the
attributes are directly from the application database, which knows what they are
because they were set by migrations.

authentication
The process of establishing the identity of a user (or of other process) by verifying
the validity of some kind of credentials. Using usernames and passwords as cre-
dentials is a classic authentication mechanism, but many others are possible.

authorization
The process of granting privileges to an authenticated user. Examples of privileges
include rights to execute certain commands and access to specific data. These re-
strictions can be enforced in the view, in the controller, or in both.

Basecamp
A collaboration tool (http://www.basecamphq.com/) developed by 37signals and
DHH. DHH realized while building Basecamp that the underlying framework
could be reused for a lot of other projects, and that became the foundation of Rails.

benchmark
Code used to determine and compare performance. Generic benchmarks used to
test things like CPU performance are the most common usage, but you could create
your own benchmarks to test performance specific to your application.

block
Chunks of code that can be passed among Ruby methods. Rails uses blocks to
implement much of its view functionality, using this technique to connect code
from different files into a coherent program.

Builder
An API used to generate XML files from Ruby objects.

business rules
Logic that is specific to a given application, and often specific to a given business.
They specify rules for data that go beyond the computer-specific “This variable
must be a string” to more complex rules like, “This date must be no earlier than
x and no later than y” or “All expense reports must come with explicit and
authenticated approval before consideration for payment.”

CamelCase
Rails does not do CamelCase, except in class names. CamelCase uses uppercase
letters to identify the beginnings of new words. Rails more typically keeps every-
thing lowercase, using underscores (_) to separate the words.

Speaking in Rails | 355

http://www.basecamphq.com/

Capistrano
A Ruby tool for automating running scripts on remote computers, typically used
to deploy Rails applications and their updates.

class
A collection of methods and properties that together provide a definition for the
behavior of objects.

component
A bad idea that disappeared in Rails 2.0, becoming a plug-in. Components mixed
rendering and controller logic, and created applications that were both messy and
slow.

console
A command-line interface to Rails applications, which is accessible through
rails console (also see irb).

Content type
In HTTP requests (and network requests generally), content types are used to
identify the kind of content being sent. Content types are often called MIME types,
from their original development as Multipurpose Internet Main Extensions.

controller
The switchboard for Rails applications, controllers connect information coming
in from requests to appropriate data models and develop response data that is then
presented through views.

cookie
A small (typically less than 4 kilobytes) chunk of text that is stored in a user’s
browser and sent to the server that created it along with requests. Cookies can be
used to track users across multiple requests, making it much simpler to maintain
state across requests. In general, however, you should never store any significant
information in cookies.

cron
A Unix approach to scheduling tasks that need to run on a regular basis. “Cron
jobs” are managed through the crontab configuration file, and the cron daemon
makes sure they get executed as requested. (Rails itself doesn’t use cron, but you
could use cron to manage periodic background housekeeping on a server, for
instance.)

CRUD
Create, Retrieve, Update, and Delete (sometimes Destroy). The basic functions
needed by most data manipulation programs. SQL is very CRUD-like, as is REST.

CSS
Cascading Style Sheets, a vocabulary for specifying how precisely web pages should
be displayed on screen, in print, or in other media. In a Rails application, a CSS
stylesheet is typically an extra file or files kept in the public/stylesheets directory,
referenced from each view that uses it.

356 | Appendix D: Glossary

CSV
Comma-separated values, a common if basic method for sharing tabular data.

CVS
Not the American pharmacy/convenience store, but the Concurrent Versioning
System, used to manage different versions of programs and related files. In Rails,
CVS has typically been replaced by Subversion or Git.

DELETE
An HTTP verb that means what it says—to delete the resource the DELETE request
is addressed to.

deployment
Putting something out in the “real world,” typically moving an application from
development to operation.

development
The mode in which you’ll most likely modify and create code. In Rails, develop-
ment uses a different database and settings from the test or production modes.

DHH
David Heinemeier Hansson, the creator of Rails and its lead developer. For more
DHH, see his blog, http://www.loudthinking.com/.

DOM
Document Object Model, the standard API for manipulating HTML documents
in a web browser. (It’s also used for XML and HTML outside of the browser.)

DRY
Don’t Repeat Yourself—a central principle of Rails development.

duck typing
“If it walks like a duck and quacks like a duck, it’s a duck.” A way of determining
what type an object has by looking at what it contains and how it behaves, rather
than by looking for an explicit label on it. Duck typing is built into the Ruby
language.

dynamic scaffold
Automatically generated HTML that would let you tinker with a model and the
underlying data without actually creating any views. Discontinued in Rails 2.0 in
favor of static scaffolding.

dynamic typing
See duck typing, described earlier.

Edge Rails
The latest and (sometimes) greatest version of Rails, Edge Rails lets you develop
with the most recent updates to the framework. Exciting for advanced developers,
but potentially explosive for beginners. (Note that you can freeze Rails versions if
one goes by that you really liked or, worse, a new one appeared that broke your
code.)

Speaking in Rails | 357

http://www.loudthinking.com/

ERb
Embedded Ruby, the syntax used for Rails views and layouts. ERb lets you mix
HTML (or other text-based formats) with Ruby code.

Erubis
An implementation of ERb that is both faster and offers several extensions to ERb.
For more information, see http://www.kuwata-lab.com/erubis/. You can use Erubis
with or without Rails.

exception
A signal sent by a method call as it terminates (using raise) to indicate that things
didn’t go correctly. You can deal with exceptions using rescue.

filter
Controller code that lets you wrap your actions with other code that will get run
before, after, or around your actions’ code.

Firebug
A Firefox plug-in for debugging JavaScript and a wide variety of other aspects of
web development.

fixture
Data created for the explicit purpose of using it to test your Rails applications.
Fixtures are specified in YAML and provide a customizable set of data you can use
to check the functionality of your Rails code. They are stored in the test/fixtures
directory.

flash
While you can include Adobe Flash content as external assets in your Rails appli-
cation, flash in a Rails context more frequently refers to a method for passing
objects between actions. You can set a message in the controller using flash and
then retrieve and display that message in a view, for example.

form builder
A class containing methods for creating HTML forms. Form builders are typically
used to create consistent-looking interfaces across an application and to present
complex aspects of your models that need additional interface support.

fragments
Pieces of views that you’ve asked Rails to cache so that they will be available on
subsequent requests.

freezing
Locking your Rails application down so that it runs on a particular version of Rails,
no matter what version of Rails you install on your computer more generally. For
production applications, this provides a much more reliable running environment.
You freeze and unfreeze through the Rake tool.

gem
A package for a Ruby program or library that makes it easy to install across systems.
Rails is distributed as a gem.

358 | Appendix D: Glossary

http://www.kuwata-lab.com/erubis/

generate
Generate, or rails generate as it is called from the command line, is a program
you can use to have Rails create a wide variety of different types of code for you.
In general, when creating new functionality, you should let Rails generate much of
the code and then customize it, rather than writing from scratch.

GET
The most commonly used HTML request, which has the general meaning of
“retrieve content from the specified URL.” GET requests are supposed to be idem-
potent and, despite the availability of query parameters, should not be used to
change information in an application.

Git
An application for sharing code and code development across many computers
and developers. Ruby on Rails itself is now developed using Git to store and manage
the code.

Github
A website, http://github.com/, that provides hosting for your git repositories as well
as a variety of social features for managing projects.

h
A method commonly used in the past for escaping potentially dangerous content,
removing HTML content that could create security problems. Rails now uses h by
default.

hash
An unordered collection of name-value pairs. You can retrieve the values by asking
for them by name. (You need to know the name to do that, of course!)

HEAD
An HTTP verb that is very similar to GET, but that only retrieves the headers, not
the body of the request.

helper method
Provides support for commonly performed operations in view code. Helpers are a
little less formal than form builders, which typically have more understanding of
the context in which they work. Rails provides a wide variety of helper methods
for common tasks like generating HTML, and you can add your own helper meth-
ods as well.

HTML
HyperText Markup Language, a common language used to present information
over the web. HTML files define web pages, including content, formatting, scripts,
and references to external resources.

HTTP
HyperText Transfer Protocol, along with HTML, is the foundation on which the
Web is built. HTTP supports requests that include a verb (like GET, POST, PUT,
or DELETE) along with a variety of supporting information. Those requests are

Speaking in Rails | 359

http://github.com/

then answered by a responding server, which reports a [Response Code] and hope-
fully some information useful to whoever initiated the request. HTTP is itself built
on top of TCP/IP, typically using port 80 to receive requests.

HTTPS
Like HTTP, but encrypted. Technically, the HyperText Transfer Protocol over
Secure Socket Layer. HTTPS works much like HTTP, except that the web server
adds a layer of encryption using public key certificates, it runs on port 443, and
browsers are typically much more cautious about caching information that arrived
over HTTPS.

id
An identifying value. In Rails, usually the primary key from a table of data, used
for quick access to a particular row or object. In HTML, a unique identifier for one
element in a document, often used for styling.

idempotent
A fancy word for a specific meaning of reliable. If an action is idempotent, you can
perform that action repeatedly without changing the result.

irb
A command-line shell prompt for interacting with Ruby directly, irb lets you try
out code in a much simpler environment than Rails.

IRC
Internet Relay Chat, a key part of the communications that hold the Rails com-
munity together. You can find a lot more information on Rails and IRC, including
servers, channels, and clients, at http://wiki.rubyonrails.org/rails/pages/IRC/.

iterator
A method that loops through a set of objects, working on each object in the set once.

JSON
JavaScript Object Notation, a text-based format for exchanging objects. Douglas
Crockford “discovered” it already existing inside of JavaScript and made it a pop-
ular interchange format. It’s often seen as a more programming-oriented comple-
ment or competitor to XML. (It’s also a subset of YAML.)

jQuery
The most commonly used JavaScript framework, available at http://jquery.com/.
Now included in Rails 3.x.

layout
A file containing the beginning and end of the HTML documents to be returned
by views, allowing views to focus on the content of documents rather than on the
headers and foots.

Leopard
Mac OS X 10.5, notable mostly for improvements to its Ruby support, which make
it much easier to use and update Rails. (Rails comes preinstalled now, though in
an old version.)

360 | Appendix D: Glossary

http://wiki.rubyonrails.org/rails/pages/IRC/
http://jquery.com/

lighttpd
A new web server designed to be smaller and more efficient than Apache.

linking
Rails supports traditional HTML linking, but in many cases you’ll want to use a
helper method to create links between the components in your applications.

Matz
Yukihiro Matsumoto, creator and maintainer of the Ruby language. “Matz is nice,
and so we are nice” (MINASWAN) is a key principle of Ruby culture.

Mass assignment
A convenience feature that turned into a headache. Mass assignment made it easy
to pass ActiveRecord a set of parameters and have it assign values based on those
parameters automatically. Unfortunately if the parameters contain unexpected
data, perhaps added by a query string, it could assign values you didn’t want,
opening the door to attackers. These attacks are prevented in Rails 3.2.3 and later
by requiring attrib_accessible declarations in models specifiying which fields can
be mass-assigned.

Merb
Originally “Mongrel plus ERb,” Merb was a Ruby-based MVC framework that was
smaller and more modular than Rails—but was absorbed into Rails 3.x.

method
A unit of code that accomplishes a task.

migration
Instructions for changing a database to add or remove structures that Rails will
access. The Rake tool is used to apply or roll back migrations.

mock object
A technique for testing Rails applications that creates objects that expect particular
methods to be called, and that exposes more information on the objects for easier
debugging.

mod_rails
See Passenger.

model
Code that handles the interactions between Rails and a database. Models contain
data validation code—code that combines or fragments information to meet user
or database expectations—and pretty much anything else you need to say about
the data itself. However, models do not contain information about the actual
structure or schema of the data they manage—that is kept in the database itself,
managed by migrations.

Mongrel
A Ruby-based web server now used as the default server for Rails applications when
run from the command line. In production, a “pack of mongrels” often runs behind
an Apache web server, connecting HTTP requests to Rails.

Speaking in Rails | 361

MVC
Model-View-Controller, an architecture for building interactive applications that
lies at the heart of the Rails framework. (See Chapter 3 for a lot more information.)

MySQL
A popular open source relational database, commonly used to store data for larger
Rails applications.

naming conventions
The glue that holds Rails together, letting applications figure out which pieces
connect to which pieces without requiring a formal mapping table. Rails makes
naming conventions feel more natural by supporting features like pluralization.

nginx
An asynchronous event-driven web server and mail proxy available from http://
nginx.org/.

nil
A value that means “no value.” Nil also evaluates to false in comparisons.

object
An instance of a class, combining the logic from the methods of the class with
properties specific to that particular object.

ORM
Object-Relational Mapping, the hard part of getting object-oriented languages and
relational databases to work together. Rails addresses this using ActiveRecord and
makes it (mostly) transparent through naming conventions.

pagination
Chopping up long lists of data into smaller, more digestible chunks. In Rails 2.0,
pagination moved out from the core framework into plug-ins, most notably
will_paginate.

partial
A piece of view code designed to produce part of a document. Multiple views can
then reference the partial so that they don’t have to repeat the logic it already
contains. Partial names are prefixed with _.

Passenger
An Apache module, also called mod_rails, for deploying Rails applications behind
an Apache web server. Also works with nginx.

Pickaxe book
Programming Ruby, the first major book on Ruby, published by the Pragmatic
Programmers. Its third edition covers Ruby 1.9.

plug-in
Additional code, often packaged as a gem, that you can use to provide additional
functionality to Rails.

362 | Appendix D: Glossary

http://nginx.org/
http://nginx.org/

pluralization
A feature of ActiveRecord that generates much controversy. Models have singular
names, like person, while views and controllers use plurals of those names, because
they work with many instances of the models. Rails has a set of defaults that handle
both standard English pluralization and some common irregulars, like person and
people, child and children. There are cases where pluralization doesn’t work in
English, but fortunately they rarely affect programming.

POST
An HTTP method that sends information to a given URI. POST is mapped to
CREATE in REST-based Rails applications, though POST has been used as a gen-
eral “send-this-stuff-over-there-via-HTTP” method in the past.

Postfix
A commonly used mail server on Unix and Linux computers.

PostgreSQL
A more powerful but somewhat more daunting open source database that is
frequently used by developers who want more control than MySQL provides, or
access to specific extensions, like the geographic data work in PostGIS.

Pound
A proxying load balancer designed to pass HTTP requests from a web server to
other servers in the background.

Pragmatic Programmers
The Pragmatic Programmers, Dave Thomas and Andy Hunt, and their publishing
company (http://www.pragprog.com/). They’ve written and published a wide vari-
ety of books on Ruby and Rails, and run related training courses.

private
Private methods and properties appear in Ruby classes after the private keyword,
and are only accessible to other code in that same class.

Prototype
A basic JavaScript library for Ajax development that reduces the amount of
redundant code needed to build an application.

proxy server
Proxy servers (or proxies) receive requests on one end and then resubmit them to
other servers. Proxies can be used to manage performance, to provide caching, to
hide servers from users (and vice versa), for filtering, or for pretty much anything
you want to do with an HTTP request between the request and the response.

PUT
An HTTP method used to send a file to a URI. In Rails RESTful routing, PUT maps
to UPDATE, replacing content that was previously there with new content.

Speaking in Rails | 363

http://www.pragprog.com/

quirks mode
A technique used by several browsers to support web pages formatted with older
(broken) browsers in mind, while still allowing developers to specify that their
pages should be processed using newer and generally more correct standards.

RailsConf
A conference focused on Rails, usually once a year in North America and once a
year in Europe. For more information, see http://railsconf.com/.

Rake
A command-line tool that originally was Ruby’s replacement for the make build
tool commonly used by Unix applications. Thanks to its scriptable extensibility,
it has turned into a one-stop toolkit for applying migrations to databases, checking
up on routes, freezing and unfreezing the version of Rails used by a given applica-
tion, and many more tasks.

RDoc
The documentation generator used by most Ruby applications, including Rails.
The Rails API documentation all gets built through RDoc.

redirect
Responding to a request to one URI by telling the requester to visit a different URI.

regex
Regular expression, a compact if sometimes inscrutable means of describing pat-
terns to match against targeted text.

render
To convert data from one form to another, usually to present it. Web browsers
render HTML into readable pages, while Rails views render data from Rails into
HTML that gets sent to users’ web browsers.

request
In HTTP, a request is a message sent from a client to a server, identifying a resource
(a URI) and providing a method—usually GET, PUT, POST, or DELETE.

resource
For Rails development purposes, it’s probably easiest to think of a resource as code
identified by a URI (or URL). It’s the code that will get called once Rails routing
has examined the request and decided where to send it. (Outside of Rails, it can
be a deeply philosophical notion at the heart of web architecture and infinite
debates about web architecture.)

response
In HTTP, a response is a message sent from a server to a client in response to a
request. It generally includes a status code as well as headers describing the kind
of response, and data to present the client.

REST
Not a vacation. Technically, “Representational State Transfer,” but really just a
sane way to handle interactions on the Web in a way that takes full advantage of

364 | Appendix D: Glossary

http://railsconf.com/

the underlying web architecture instead of chucking it and building something
entirely different. Rails 2.0 includes a lot of features designed to make building
REST-based applications easier. (See Chapter 5 for a lot more detail.)

REXML
An XML parser built into Ruby.

RJS
An obsolete kind of Rails template used to generate JavaScript, typically for Ajax
applications.

RMagick
A gem that lets Ruby applications manipulate graphics using the ImageMagick
library.

route
To send from one place to another. In Rails, the routing code examines requests
coming to the server from various clients and decides based on their URIs which
controller should respond to them.

RSS
An acronym of various meanings that refers to several different XML formats for
syndicating information from one site (typically weblogs, but also newspapers,
periodicals, and others of sites) to clients and other servers that might be interested.

RubyForge
A site (http://rubyforge.org/) that hosts a wide variety of open source Ruby software
projects in development. You can use it as a place to share code you write or to
find code others have already created.

rvm
The Ruby Version Manager, which helps you manage both versions of Ruby itself
and Ruby resources, notably gems. More information available at https://rvm.be
ginrescueend.com/.

scaffold
Code that gets you started, much as scaffolding on a construction project lets
workers get to the parts of a building they need to modify. Scaffolding most fre-
quently refers to the REST-based set of models, views, and controllers created by
rails generate scaffold.

scale
Scale reflects size. If a program scales, it can survive growing rapidly from serving
only a few simultaneous users to serving thousands or even millions of users.

Script.aculo.us
A JavaScript library, built on top of Prototype, for creating Ajax applications and
effects, often used in Rails-based Ajax development.

session
A series of HTTP interactions between a single client and the web server. Sessions
are usually tracked with cookies or with explicit logins.

Speaking in Rails | 365

http://rubyforge.org/
https://rvm.beginrescueend.com/
https://rvm.beginrescueend.com/

singleton
An object that has only one instance in a given application. You shouldn’t (and
generally can’t) create more than one of it.

SOAP
Originally the Simple Object Access Protocol, it proved not very simple, not nec-
essarily bound to objects, and not exactly a protocol. SOAP is the foundation of
most web services applications that don’t use REST, taking a very different
approach to communications between applications.

SQL
The Structured Query Language is a common foundation used by databases to
create and destroy structures for holding data, and to place and retrieve data inside
of them. While SQL is extremely useful, Rails actually hides most SQL interactions
so that developers can work with Ruby objects only, rather than having to think
in both Ruby and SQL.

SQLite
A simple database that stores its information in a single file. (In Rails, that file is
kept in the db directory.) SQLite is extremely convenient for initial development,
but slows down dramatically as the number of users grows.

Subversion
A program used to manage different versions of programs and related files across
many computers and developers. Many developers building Rails applications use
Subversion, but the Rails code itself is now managed in Git.

symbols
Ruby identifiers prefaced with colons that Rails uses for pretty much every variable
that gets passed from model to view to controller, as well as for named parameters.
Symbols look and behave like variables for most ordinary programming purposes,
but they give Rails tremendous flexibility.

template
Templates are files used to generate output. In Rails, views are written as templates,
typically ERb or Builder templates, though a variety of other template formats are
available as extensions.

test
Code designed to put a particular application piece through its paces. Rails comes
complete with support for creating your own unit tests (does a model behave pre-
dictably?), functional tests (does a method do what it should?), integration tests
(do these methods work together?). You can also create performance tests (how
fast does this go, anyway?), and use stubs and mock objects to isolate components
for testing.

threads
If you came to Rails from Java or a similar language, you may be looking around
for threads. Ruby has threads after all—why doesn’t Rails? Well, Rails is single-

366 | Appendix D: Glossary

threaded, handling requests in a single thread. There are lots of ways around this,
including having multiple instances of Rails servers all accessing the same database.

Tiger
Mac OS X 10.4, notable mostly for including an old version of Ruby that made it
hard to install and use Rails.

UDDI
Universal Description, Discovery, and Integration, a supposedly magical but now
largely forgotten piece of the web services picture. It was designed to help devel-
opers and programmers find SOAP-based web services.

Unicode
The industry-standard way to identify characters. Originally, Unicode mapped one
character to each of 65,535 bytes, but as that space filled, it became clear that things
were more complicated. Ruby’s Unicode support improved substantially in version
1.9, but most things will work fine in 1.8.6.

URI
Uniform Resource Identifier, a slightly polished up and abstracted version of the
old URL that can be used to identify all kinds of things, no longer bound to a few
protocols. In REST-based Rails applications, URIs connect to applications in a
generally unsurprising way.

URL
Uniform Resource Locator, the identifers that hold together the web. URLs specify
a scheme (like http, ftp, or mailto) that maps to a particular protocol, and the rest
of the URL provides information that, used with software supporting the scheme,
gets you to the information the URL points to. (Or, if the information is gone, an
error message.)

UTC
Coordinated Universal Time, formerly known as Greenwich Mean Time (GMT)
or Zulu Time. Time zones are generally expressed as offsets from UTC. (UTC is a
“compromise abbreviation” between English and French.)

UTF-8
A common encoding for Unicode characters. Old ASCII files are naturally UTF-8
compliant, but characters outside the ASCII range are encoded into multibyte rep-
resentations. UTF-16 uses two bytes for most commonly used Unicode characters
(on the Basic Multilingual Plane) and encodes characters outside of that range into
multibyte sequences.

validate
Checking that something is what it’s supposed to be. In Rails, data validation
should be performed in the model, though some checks may also be performed in
view code—for example, in Ajax applications that do as much on the client as
possible.

Speaking in Rails | 367

view
The aspect of a Rails program that presents data and opportunities for interaction
to users, whether those are users of web browsers getting HTML or other programs
using XML or JSON or something else entirely.

Web 2.0
What happens when the world finally “gets” the Web instead of treating it as a
place to present brochures and catalogs, recognizing that the interactions among
millions of people are creating new and (often) useful things.

web developer
A generic term for people who build applications or sites for the Web. Also, a
Firefox plug-in that makes it easy to inspect various aspects of client-side website
functionality as well as turn them on or off.

web service
Using the Web for program-to-program communication, rather than the classic
model of a human at a web browser interacting with a server. Web services devel-
opment has largely bifurcated into SOAP-based (or WS-*) development and REST
development. Rails 2.0 took a decisive shift toward REST, though you can still
write SOAP web services in Rails if you want to.

WEBrick
A Ruby-based web server that is built into standard Ruby distributions since ver-
sion 1.8.0. Recent releases of Rails typically use Mongrel instead.

why (the lucky stiff)
Author of “Why’s (Poignant) Guide to Ruby” (http://poignantguide.net/ruby/),
why’s former very active site at http://whytheluckystiff.net/ was shut down in 2009.
His work has been collected at the whymirror GitHub account (http://whymirror
.github.com/).

WSDL
The Web Services Description Language, used most frequently by SOAP-based (or
WS-*) web service developers, provides a way of describing a web service that pro-
grams and humans can use to develop code for interacting with it.

XHTML
Extensible HTML—basically HTML with XML syntax. If you’re doing a lot of Ajax
work, using XHTML can simplify some of your debugging, but it hasn’t exactly
caught the world on fire.

XML
Extensible Markup Language is a widely used format for storing information. It
insists on precise syntax, but can support a very wide and customizable set of data
structures.

XMLHttpRequest
A JavaScript method that lets a program running in a web browser communicate
with the server that delivered the page, using the full set of verbs in the HTTP

368 | Appendix D: Glossary

http://poignantguide.net/ruby/
http://whytheluckystiff.net/
http://whymirror.github.com/
http://whymirror.github.com/

protocol. It is supported by all of the major graphical web browsers, though
implementation details are only recently becoming consistent across implementa-
tions. XMLHttpRequest is at the heart of Ajax development.

XML-RPC
An early web services protocol that let developers make remote procedure calls
using a particular (and very verbose) XML vocabulary sent over HTTP requests.

XSS
Cross-site scripting is a security hazard that allows crackers to interfere with your
program’s logic by inserting their own logic into your HTML. The main means of
ensuring that your applications don’t encounter it is to treat content that might
have originated from outside of your immediate control as hostile, accepting as
little HTML as your application’s needs can tolerate. The h method makes it gen-
erally easy to escape any HTML that does come through.

YAML
Yet Another Markup Language, YAML was originally developed as a more
programming-centric alternative to XML. Ruby supports YAML for object persis-
tence. Rails uses YAML for configuration information. (And as it turns out, largely
by coincidence, JSON is a subset of YAML.)

yield
A sometimes mind-boggling Ruby feature that lets methods take a block of code
along with the rest of their parameters and then call that code with yield when
needed. Among other things, this is how Rails implements the relationship between
views and layouts.

Speaking in Rails | 369

Index

Symbols
character, 319
() (parentheses), 350
: (colon), 28, 322
; (semicolon), 295
< (inheritance), 16
<% %> tags, 17
?: operator, 330
@ (at sign), 17, 320
[] (square brackets), 296, 345
\ (backslash), 347
_ (underscore), 355
{} (curly braces)

arguments specifying attributes, 90
blocks of code in, 28, 325
CoffeeScript and, 295

| (pipe), 350

A
ACID principles, 353
action attribute (form element), 86
ActionController

defined, 353
respond_to method, 70
Session class, 193
SessionManagement class, 233

ActionMailer
defined, 353
sending and receiving email, 299–308

ActionPack, 353
ActionView

defined, 354
FormBuilder class, 324
FormHelper module, 86

ActiveRecord
Base class, 47, 50
callback methods supported, 123
data types supported, 79–80
defined, 45, 354
finding data with, 52–54
Migration class, 177
saving names with, 47–49
SchemaStatements class, 184
SessionStore class, 234

ActiveScaffold, 75
ActiveSupport

defined, 354
SafeBuffer class, 133

acts_as naming convention, 354
adapters, defined, 354
add_column method, 178, 183
add_index method, 178, 183
add_index_options method, 184
add_index_sort_order method, 184
add_timestamps method, 178, 184
after_save method, 123
aggregation, defined, 354
Agile techniques, 354
Ajax, defined, 354
:all parameter (find method), 52, 70, 142
:allow_nil parameter (validate methods), 113,

115
:anchor option (url_for method), 267
anchors for regular expressions, 348
app folder, 15
app object (console), 193
application.html.erb file, 24
application.rb file, 177, 190, 283
ApplicationController class, 16, 38

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

371

application_controller.rb file, 38, 233
application_helper.rb file, 97
arrays

CoffeeScript and, 296
creating, 321
defined, 321
stored in session objects, 230
variables and, 321–322

assert statement, 207
assertions

defined, 354
unit testing and, 208

assert_difference method, 215, 219
assert_dom_equal method, 220
assert_dom_not_equal method, 220
assert_equal method, 210
assert_generates method, 268
assert_not_equal method, 210
assert_not_nil_assigns method, 215
assert_no_difference method, 215
assert_no_tag method, 220
assert_recognizes method, 268
assert_redirected_to method, 215
assert_response method, 215
assert_routing method, 268
assert_select method, 219
assert_select_encoded method, 220
assert_select_rjs method, 220
assert_tag method, 220
assets

defined, 354
Sprockets library and, 282, 283
working with, 283–286

assigns method, 219
associations

counting, 147
defined, 354
deleting, 146

assume_migrated_upto_version method, 184
at sign (@), 17, 320
Atom format, 355
attributes

arguments specifying, 90
defined, 326, 355

attr_accessible method
form improvement example, 122
:name property, 47, 61

auth object, 239
authentication

defined, 355
OmniAuth and, 237–248

authorization, defined, 355
automating form building, 132–134

B
backslash (\), 347
Base class, 47, 50
Basecamp tool, 355
Bates, Ryan, 237
before_filter method, 152
BEGIN statement, 333
belongs_to method, 140, 143
benchmarks, defined, 355
Binary Large Objects (BLOBs), 80
:binary type, 79, 181
blank? method, 55
BLOBs (Binary Large Objects), 80
blocks of code, 28, 316, 355
:boolean type, 80, 181
box-shadow property (CSS), 274–275
Builder API, 355
:builder parameter (form_for method), 87,

131
bundle exec command, 288, 309
bundle install command, 8, 12, 287
Bundler tool, 286–290
business rules, 355

C
CamelCase convention, 355
Capistrano tool, 356
Capybara testing framework, 201, 221
carrierwave plug-in, 119
Cascading Style Sheets (see CSS (Cascading

Style Sheets))
case statement, 330
:case_sensitive property

(validates_uniqueness_of method),
112

change method, 45, 178, 180
change_column method, 184
change_column_default method, 184
change_table method, 184
character classes, 345–346
checkboxes in forms, 90
checked attribute (input element), 92
check_box method, 90

372 | Index

class attribute
form builders and, 135
form element, 86

class attribute (check_box method), 90
classes

character, 345–346
defined, 356
inheritance and, 16

classifying users, 248–255
closures, defined, 316
CoffeeScript

additional information, 294
converting to, 297
creating forms, 84
sending to browsers, 293–298

collect method, 167
colon (:), 28, 322
columns method, 184
columns, managing, 183
columns_for_remove method, 184
comma-separated values (CSV), 357
command line

accessing from various environments, 3
Rails installation, 3–8

comments
CoffeeScript and, 296
functionality, 319

components, defined, 356
composed_of method, 354
Concurrent Versioning System (CVS), 357
conditionals (see logic and conditionals)
config folder, 15
config.action_controller.consider_all_requests

_local setting, 309
config.action_controller.perform_caching

setting, 309
config.cache_classes setting, 309
config.log_level setting, 310
config.serve_static_assets setting, 310
config.whiny_nils setting, 310
console

debugging from, 190–194
defined, 356

cont command (Ruby debugger), 198
content types, 356
controllers

adding data to, 16–18
adding many-to-many relationships to,

162–163

application flow and, 43
associating views with, 11
best practices, 61–64
changing in nested resources, 150–152
choosing layouts from, 31–32
connecting to models, 47–51
creating layouts for, 29–30
creating methods in, 39
defined, 12, 356
finding, 318
generating URIs from, 266–267
getting started with, 37–41
managing data flow, 37
redirect_to method, 235
RESTful implementation, 64–75
testing, 214
working with session object, 230

converting to CoffeeScript, 297
cookies

defined, 223, 356
functionality, 223–229
setting lifetimes for, 223
storing data between sessions, 230–234

CookieStore class, 234
Coordinated Universal Time (UTC), 367
country_select method, 95, 131–135
create method

before and after methods for, 123
functional testing and, 215, 216
functionality, 72
RESTful controller example, 66
return values in, 48

create_table method
creating blocks, 181
reversing, 178, 180
usage example, 325

Crockford, Douglas, 360
cron daemon, 356
cross-site request forgery (CSRF), 25, 87
cross-site scripting (XSS), 20, 369
CRUD model, 63, 356
CSRF (cross-site request forgery), 25, 87
csrf_meta_tag method, 25
CSS (Cascading Style Sheets)

adding to SASS files, 23–28
additional information, 23
box-shadow property, 274–275
defined, 356
integrating with form builders, 134–137

Index | 373

specifying stylesheets, 28
CSV (comma-separated values), 357
Cucumber testing framework, 201, 220
curly braces {}

arguments specifying attributes, 90
blocks of code in, 28, 325
CoffeeScript and, 295

CVS (Concurrent Versioning System), 357
Cygwin, 3

D
data

adding to controllers, 16–18
finding with ActiveRecord, 52–54
rendering, 44, 364
retrieving from models, 49–51
storing between sessions, 230–234
storing using cookies, 230–234
storing using models, 47–49
storing with OmniAuth, 239
viewing data being sent, 51

Data Definition Language (DDL), 175
data flow

getting started example, 37–41
keeping track of, 44–51
process overview, 42

data types, 79–80, 181–183
data validation (see validation)
database.yml file, xvi, 202
databases

connecting through models, 44–47
deployment considerations, 311
extending models beyond, 122–125
managing with migrations, 175–186
removing NULLs from, 49
test, 202–206

:date type, 79, 181
dates and times in forms, 95–97
:datetime type, 79, 181
datetime_select method, 96
date_select method, 96
db folder, 15, 366
db:create task, 179
db:drop task, 179
db:migrate task, 47, 49, 178
db:reset task, 179
db:rollback task, 47, 49, 179
DDL (Data Definition Language), 175
debug method, 51, 187

debugging
creating debugging messages, 187
logging, 188
raising exceptions, 188
Ruby debuggeg, 195–199
working from console, 190–194

DebugHelper class, 187
:decimal type, 79, 181
declarative validation, 106–109
def keyword, 16
default domain, setting, 261
default pages, setting, 34
:default parameter (data types), 182
delete method, 193, 214
DELETE requests (HTTP)

functionality, 62, 63, 357
RESTful controller example, 67

delimiters, ERb supported, 17
deployment

considerations for, 310–313
defined, 357

destroy method
before and after methods for, 123
functionality, 75
RESTful controller example, 67

development mode, 201, 310, 357
development.log file, 188
development.rb file, 202
DHH (David Heinemeier Hansson), 281, 357
:disabled parameter (date and time methods),

96
discard method (flash messaging), 235
:discard_day parameter (date and time

methods), 96
distinct method, 184
div element, 108
doc folder, 15
DOM (Document Object Model), 357
:domain option (cookie object), 229
Domain Specific Languages (DSLs), 267, 317
domain, default, 261
drop_table method, 181, 184
DRY principle, 27, 132, 357
DSLs (Domain Specific Languages), 267, 317
duck typing, 316, 357
dynamic finders, 54
dynamic scaffolds, 357
dynamic typing, 316, 357

374 | Index

E
Edge Rails, 357
edit method

functionality, 72
RESTful controller example, 66

else statement, 296, 328
elsif statement, 329
email messages

receiving, 304–308
sending, 299–304

Embedded Ruby (ERb)
defined, 358
delimiters supported, 17

end keyword, 16
END statement, 333
:end_year parameter (date and time methods),

96
EngineYard Rails Installer, 2, 3
environment.rb file, 202
equal_to parameter (validates_numericality_of

method), 113
ERb (Embedded Ruby)

defined, 358
delimiters supported, 17

.erb file extension, 13
:error key (flash messaging), 235
:error parameter (assert_response method),

215
Erubis (Ruby impllementation), 358
escaping regular expressions, 346
even parameter (validates_numericality_of

method), 113
exceptions

defined, 358
raising in debugging, 188

execute method, 185
exit command (irb session), 191
:expires option (cookie object), 229
Extensible HTML (XHTML), 368
Extensible Markup Language (XML), 368

F
Factory Girl gem, 201, 221
files, uploading to forms, 119–129
filters, defined, 358
filter_parameter_logging method, 190
find method

:all parameter, 52, 70, 142

:first parameter, 52
:id value, 52, 71, 75
:last parameter, 52
retrieving records with, 52–54

find_by_sql method, 342
Firebug plug-in, 358
:first parameter (find method), 52
fixtures

defined, 202, 358
setting up test databases with, 202–206

flash messaging
defined, 358
discard method, 235
keep method, 235
now method, 235
session state and, 234

:float type, 79, 181
flunk method, 208
folders, list of commonly used, 14
for statement, 20–21, 332
foreign keys, 338
form builders

automating building with, 132–134
building reusable form components, 130–

132
defined, 358
integrating with styles, 134–137
standardizing look with, 129

form element
action attribute, 86
class attribute, 86
creating, 84
id attribute, 86

format, testing with regular expressions, 112
FormBuilder class, 324
FormHelper module (ActionView), 86
forms

adding pictures to, 119–129
checkboxes in, 90
creating helper methods, 97–100
data types supported, 79–80
dates and times in, 95–97
generating with scaffolding, 80–84
labels in, 89
radio buttons in, 91–93
selection lists in, 93
standardizing with form builders, 129–137
text fields and text areas in, 87–88
uploading files to, 119–129

Index | 375

as wrappers, 84–87
form_for method

:builder parameter, 87, 131
file uploads with, 120
functionality, 84–87
:remote parameter, 87
:url parameter, 86
usage example, 83, 325

form_tag method, 39, 168
fragments, defined, 358
freezing applications, 358
from method, 53
functional testing

calling controllers, 214
nested resources and, 216–217
process overview, 212–214
testing responses, 215–216

G
gem install rails command, 5
gem install sqlite3 command, 5
gem install validates_existence command, 145
gem list command, 5
gem server command, 5
gemfile.lock file, 287
gems

authentication, 237
debugging, 195
defined, 358
managing, 286–290
testing, 201, 221

generate program (see rails generate
commands)

get method, 193, 214
GET requests (HTTP)

functionality, 61–63, 359
RESTful controller example, 66

Git application, 311, 359
Github website, 311, 359
globbing, 260
GMT (Greenwich Mean Time), 367
granularity, data, 340
greater_than parameter

(validates_numericality_of method),
113

greater_than_or_equal_to parameter
(validates_numericality_of method),
113

greedy operators, 350

Greenwich Mean Time (GMT), 367
group method, 53
groups in regular expressions, 349
guestbooks

managing data flow example, 37, 44–51
scaffolding example, 57–61

H
h method, 359
Hansson, David Heinemeier, 281, 357
hashes

defined, 322, 359
variables and, 321–322

has_and_belongs_to_many method, 161, 172
has_many method

functionality, 140
:through parameter, 161, 172
usage example, 146

head element
csrf_meta_tag method in, 25
javascript_include_tag method in, 25
linking stylesheets from, 24
stylesheet_link_tag method in, 25

HEAD requests (HTTP), 63, 359
Hello World programs

CSS and, 23–28
how they work, 18–20

helper methods
building reusable form components, 130
creating, 97–100
defined, 359

hidden_field method, 88
:host option (url_for method), 267
HTML (HyperText Markup Language)

additional information, 23
defined, 359

HTML forms (see forms)
html_safe property, 20, 99
HTTP (HyperText Transfer Protocol), 359
HTTP requests

defined, 364
functional testing and, 214
routing, 43

HTTP responses
defined, 364
testing, 215–216

HTTP sessions
cookies and, 223–229
defined, 365

376 | Index

storing data between, 230–234
HTTPS (HyperText Transfer Protocol over

Secure Socket Layer), 360
:http_only option (cookie object), 229
Hunt, Andy, 363
HyperText Markup Language (HTML)

additional information, 23
defined, 359

HyperText Transfer Protocol (HTTP), 359
HyperText Transfer Protocol over Secure

Socket Layer (HTTPS), 360

I
id (identifying value), 360
id attribute

form element, 86
text areas and text fields, 88

:id value (find method), 52, 71, 75
idempotent

defined, 360
HTTP requests as, 62

identities, storing, 239
:if parameter (validation methods), 115
if statement, 296, 328
@import directive, 277, 284
:in parameter (validates_inclusion_of method),

111, 114
include method, 53
:include_blank parameter (date and time

methods), 96
:include_seconds parameter (date and time

methods), 97
index method

adding logic to, 16
functionality, 69–70
RESTful controller example, 66
setting up variables, 19

index.html.erb file, 24
indexes, managing, 183
index_name_for_remove method, 184
inheritance (<), 16
initialize_schema_migrations_table method,

184
input element

checked attribute, 92
form usage example, 86
hidden type, 90

installing OmniAuth, 237
installing Rails

via command line, 3–8
installation components, 1
starting up Rails, 8
Windows installations, 2

instance variables, 17, 320
:integer type, 79, 181
integration testing, 218–220
Interactive Ruby Shell (irb), 190, 360
Internet Relay Chat (IRC), 360
irb (Interactive Ruby Shell), 190, 360
IRC (Internet Relay Chat), 360
iterator method, 360

J
JavaScript

creating forms, 84
sending to browsers, 292

JavaScript Object Notation (JSON)
defined, 360
REST best practices, 64

javascript_include_tag method, 25
joins method, 53
jQuery framework

defined, 360
Rails support, 292

JSON (JavaScript Object Notation)
defined, 360
REST best practices, 64

K
keep method (flash messaging), 235
keys in hashes, 322

L
label method, 90, 133, 134
labels in forms, 89
label_for method, 133, 135
:last parameter (find method), 52
layout files, 360
layout method, 32
layouts

choosing from controllers, 31–32
creating for controllers, 29–30
sharing template data with, 33

legend element, 98
Leopard operating system, 360

Index | 377

less_than parameter
(validates_numericality_of method),
114

less_than_or_equal_to parameter
(validates_numericality_of method),
114

lib folder, 15
lighttpd web server, 361
limit method, 53
:limit parameter (data types), 182
linking, defined, 361
link_to method, 150, 167, 259
Linux environment

accessing command line, 3
identifying Ruby version, 3

list command (Ruby debugger), 197
literal strings, regular expressions and, 345
lock method, 53
log folder, 15
logger object

error method, 306
functionality, 189
info method, 306

logging debugging, 188
logic and conditionals

?: operator, 330
adding logic to views, 20–21
additional possibilities, 333
case statement, 330
CoffeeScript and, 296
else statement, 296, 328
elsif statement, 329
for statement, 20–21, 332
if statement, 296, 328
operators, 326
times method, 332
unless statement, 328
until statement, 331
when statement, 330
while statement, 331

looping logic
for statement, 20–21, 332
times method, 332
until statement, 331
while statement, 331

M
Macintosh environment

accessing command line, 3

identifying Ruby version, 3
many-to-many relationships

adding routing, 164
adding to controllers, 162–163
connecting models, 161
creating tables, 159–160
example of, 339
functionality, 159
supporting through views, 164–171

mapping resources, 263
mass assignment, 361
match method, 258–260
Matsumoto, Yukihiro, 361
Matz (Yukihiro Matsumoto), 361
Merb framework, 361
:message parameter

validates_format_of method, 344
validates_presence_of method, 109

metaprogramming, 130, 313, 317
method parameter (text_field method), 132
methods

calling advanced options, 324–326
creating for unit testing, 209–211
creating in controllers, 39
defined, 361
dynamic finders, 54
functionality, 323
helper, 97–100, 130, 359
overriding, 324
private, 323, 363

Migration class, 177
migration files

creating, 121
functionality, 177–178
naming convention for, 177

migrations
data types and, 181–183
default for entry model, 45
defined, 361
examining, 180
functionality, 175
indexes and, 183
process overview, 176–180
running forward and backward, 178–180
working with columns, 183
working with table, 181

MIME types, 356
MINASWAN principle, 361

378 | Index

:missing parameter (assert_response method),
215

mixins, 274–275
mock object technique, 361
Model-View-Controller (MVC), 12, 362
models

connecting, 161
connecting controllers to, 47–51
connecting to databases through, 44–47
counting associations, 147
creating, 140
declarative validation and, 106–109
defined, 361
deleting associations, 146
developing relationships, 139
establishing relationships, 140
example without validation, 103–106
extending beyond databases, 122–125
generating scaffolding based around, 58
guaranteeing relationships, 145
managing data flow, 37
managing secrets, 109
many-to-many relationships, 159–171
nested resources in, 148–159
supporting relationships, 141–144
testing, 206–211
with forms (see forms)

modifiers for regular expressions, 347
mod_rails module, 312, 362
Mongrel web server, 361
monitoring and metrics tools, 312
MVC (Model-View-Controller), 12, 362
MySQL database, 311, 362

N
name attribute (text areas and text fields), 88
name method, 144
named parameters, 28
named routes, 262
naming conventions

defined, 362
migration files, 177
variables, 17

native_database_types method, 184
navigation, establishing in views, 164
nested resources

changing controllers, 150–152
changing routing, 149
changing views, 153–156

connecting views, 156–158
functional testing and, 216–217
functionality, 148
routing and, 264
usage considerations, 158

nesting in Sass, 275
new method

functionality, 71
RESTful controller example, 66

next command (Ruby debugger), 197
nginx web server, 312, 362
nil value, 362
normalization, defined, 341
:notice key (flash messaging), 235
now method (flash messaging), 235
:null parameter (data types), 182
NULLs, removing from databases, 49

O
Object-Relational Mapping (ORM), 362
objects

defined, 316, 362
working with, 318

odd parameter (validates_numericality_of
method), 114

:off option (session object), 233
offset method, 53
OmniAuth gem

connecting to Rails, 240–248
functionality, 237
installing, 237
storing identities, 239
storing user data, 239

:on option (session object), 233
One-Click Ruby Installer, 3
only_integer parameter

(validates_numericality_of method),
114

:only_path option (url_for method), 267
operators

greedy, 350
listed, 326

options_from_collection_for_select method,
169

options_include_default? method, 184
option_groups_from_collection_for_select

method, 95
order method, 53
:order parameter (date and time methods), 97

Index | 379

ORM (Object-Relational Mapping), 362
overriding methods, 324

P
p command (Ruby debugger), 198
pagination, defined, 362
parentheses (), 350
partials, defined, 82, 362
Passenger module, 312, 362
passwords

authentication and, 355
creating text fields for, 88
storing in identities, 239

password_field method, 88
:path option (cookie object), 229
permanent objects, blanks and, 49
Pickaxe book, 362
pictures, adding to forms, 119–129
pipe (|), 350
plug-ins, defined, 362
pluralization feature, 363
:port option (url_for method), 267
post method, 193, 214
POST requests (HTTP)

functionality, 61–63, 363
RESTful controller example, 66

Postfix mail server, 363
PostgreSQL database, 311, 363
Pound load balancer, 363
pp command (Ruby debugger), 198
Pragmatic Programmers, 363
:precision parameter (data types), 182
primary keys, 337, 360
private keyword, 123, 323, 363
private methods, 323, 363
private properties, 363
production mode, 202, 309
production.rb file, 202, 309
program logic (see logic and conditionals)
properties, private, 363
protected keyword, 324
:protocol option (url_for method), 267
Prototype library, 363
proxy servers

defined, 363
GET requests and, 62

public folder, 15, 281
public keyword, 324
put method, 193, 214

PUT requests (HTTP)
functionality, 62, 63, 363
RESTful controller example, 67

Q
quirks mode technique, 364
quit command (irb session), 191
quit command (Ruby debugger), 198
quoted_columns_for_index method, 184

R
Rack API, 314
radio buttons in forms, 91–93
radio_button method, 98
rails console command, 190, 356
rails destroy command, 13
Rails framework

additional information, xiv
application flow, 42
creating views, 11–14
DRY principle, 27, 132, 357
folders and, 14
functionality, 314, 317
installation components, 1
installing via command line, 3–8
starting up, 8
Windows installations, 2

rails generate command, 13, 359
rails generate controller command, 11, 39,

225
rails generate mailer command, 305
rails generate migration command, 177
Rails Installer (EngineYard), 2, 3
rails new appname command, 281
rails new guestbook command, 81, 225
rails server command

--debugger option, 196
-e option, 202

Railscasts presentations, 237
RailsConf conference, 281, 364
raise statement, 188, 242, 358
rake command, 46, 49, 364
rake routes command, 42, 266
rake test command, 206, 210
raw method, 20, 99
.rb file extension, 13
rbenv tool, 4
RDoc documentation generator, 364

380 | Index

readonly method, 53
receiving email messages, 304–308
:redirect parameter (assert_response method),

215
redirects

defined, 364
following in testing, 219
testing requests for, 215

redirect_to method, 235
Regexp class, 344
regular expressions

additional information, 111, 343, 351
anchors for, 348
character classes and, 345–346
defined, 343, 364
escaping, 346
extracting email content with, 306
greedy operators, 350
groups in, 349
literal strings and, 345
modifiers for, 347
repetition in, 349
routing and, 261
sequences in, 349
testing format with, 112
usage examples, 344
validating data against, 344

relational databases
SQL and, 341
tables of data, 335–341

reload! command (console), 194
:remote parameter (form_for method), 87
remove_column method, 183
remove_columns method, 183
remove_index method, 183
remove_timestamps method, 178, 182, 184
rename_column method, 178, 184
rename_index method, 178
rename_table method, 178, 184
render function, 32
rendering data, 44, 364
repetition in regular expressions, 349
Representational State Transfer (REST)

best practices, 61–64
defined, 61, 364
examining controllers, 64–75

request.get? method, 250
requests (HTTP)

defined, 364

functional testing and, 214
routing, 43

:required parameter, 134, 135
require_description_presence? method, 116
resources

defined, 64, 364
mapping, 263
nested, 148–159, 216–217, 264

respond_to method, 70
responses (HTTP)

defined, 364
testing, 215–216

REST (Representational State Transfer)
best practices, 61–64
defined, 61, 364
examining controllers, 64–75

return statements, CoffeeScript and, 295
REXML parser, 365
Riding Rails website, 313
RJS templates, 291, 365
RMagick gem, 365
root method, 262
routes.rb file

reloading, 258
resource rules in, 69, 264
root rules in, 262
routing rules in, xvii, 13, 19, 258
rule priority in, 265

routing
adding to many-to-many relationships, 164
changing in nested resources, 149
checking maps, 265
defined, 365
domain default and, 261
generating URIs from views and controllers,

266–267
globbing and, 260
impact of changing on web services, 257
mapping resources, 263
named routes and, 262
nesting resources and, 264
regular expressions and, 261
requests, 43
route order and priority, 265
specifying routes with match method, 258–

260
RSpec testing framework, 201, 220
RSS formats, 365
Ruby debugger, 195–199

Index | 381

Ruby language
additional information, xiv, 314
attributes, 326
classes and objects, 318
comments, 319
functionality, 313, 315–317
identifying version installed, 3
logic and conditionals, 326–333
methods, 323–326
variables, 320–322

Ruby Version Manager (rvm), 3, 365
ruby-debug gem, 195
RubyForge website, 365
RubyGems, 4
rvm (Ruby Version Manager), 3, 365

S
SafeBuffer class, 133
safe_concat method, 133
Sass

adding CSS to, 23–28
additional information, 279
application example, 276–280
defined, 271
mixins support, 274–275
nesting support, 275
syntax styles, 271
variables and, 272–274

.sass file extension, 271
save method (ActiveRecord), 48, 123
save method (console), 192
scaffolding

adding validation, 103
defined, 44, 365
generating forms with, 80–84
guestbooks example, 57–61
micro-applications and, 75
RESTful controllers, 64–75
static, 357
working with tables, 181

:scale parameter (data types), 182
scale, defined, 365
schemas, defined, 336
SchemaStatements class, 184
:scope property (validates_uniqueness_of

method), 112
script folder, 15
script.aculo.us library, 365
script/generate scaffold request, 77

.scss file extension, 271
secrets, managing with validation, 109, 344
:secure option (cookie object), 229
Seguin, Wayne E., 3
select method

creating lists from related collections, 141
functionality, 93
selected parameter, 94
specifying query components, 53

selected parameter (select method), 94
selection lists in forms, 93
self.down method, 45, 177
self.up method, 45, 177
semicolon (;), 295
sending email messages, 299–304
sequences in regular expressions, 349
Session class, 193
session object, 230–234
SessionController class, 239
SessionManagement class, 233
sessions (HTTP)

cookies and, 223–229
defined, 365
storing data between, 230–234

SessionStore class, 234
:session_secure option (session object), 233
set autoreload command, 198
show method

functionality, 71
RESTful controller example, 66

sign_in method, 39
Simple Object Access Protocol (SOAP), 366
Sinatra DSL, 314
singleton

defined, 366
resource mapping and, 263

SOAP (Simple Object Access Protocol), 366
source code management, 311
Sprockets library, 282, 283
SQL (Structured Query Language), 341, 366
SQLite database

as default, 44
defined, 366
verifying installation of, 44

square brackets [], 296, 345
:start_year parameter (date and time methods),

96
static scaffolding, 357
step command (Ruby debugger), 197

382 | Index

storing data
between sessions, 230–234
OmniAuth and, 239
using cookies, 230–234
using models, 47–49

:string type, 79, 181
Structured Query Language (SQL), 341, 366
structure_dump method, 184
stylesheets (see CSS (Cascading Style Sheets))
stylesheet_link_tag method, 25, 28
submit_tag method, 39
Subversion program, 366
:success parameter (assert_response method),

215
sudo program, 5
super keyword, 324
symbols

colons and, 28, 322
defined, 322, 366

T
tables

connecting, 338–340
creating, 159–160
data granularity, 340
functionality, 335–337
limitations of, 337
schemas and, 336
working with migrations, 181

table_alias_for method, 184
table_exists? method, 184
TDD (Test-Driven Development), 211
templates

defined, 366
sharing data with layouts, 33

test folder, 15
test mode, 202
Test-Driven Development (TDD), 211
test.rb file, 202
testing, 115

(see also validation)
defined, 366
deployment considerations, 312
format with regular expressions, 112
functional, 212–217
integration, 218–220
setting up test databases with fixtures, 202–

206
test mode, 201

unit, 206–211
text areas in forms, 87–88
text fields in forms, 87–88
:text type, 79, 181
text_area method, 87–88
text_field method, 87–88, 132, 324
text_field_tag method, 39, 325
37signals, 353
Thomas, Dave, 363
threads, defined, 366
:through parameter (has_many method), 161,

172
Tiger operating system, 367
:time type, 79, 181
times and dates in forms, 95–97
times method, 332
:timestamp type, 79, 181
time_select method, 96
title element, 30
tmp folder, 15
:trailing_slash option (url_for method), 267

U
UDDI (Universal Description, Discovery, and

Integration), 367
underscore (_), 355
Unicode standard, 367
Uniform Resource Identifier (see URI)
Uniform Resource Locator (URL), 367
unit testing, 206–211
Universal Description, Discovery, and

Integration (UDDI), 367
:unless parameter (validation methods), 115
unless statement, 328
until statement, 331
update method

before and after methods for, 123
functionality, 74
RESTful controller example, 67

update strategies, 313
update_attributes method, 74
uploading files to forms, 119–129
URI (Uniform Resource Identifier)

checking routing approaches, 265
defined, 367
domain default and, 261
generating, 257
generating from views and controllers, 266–

267

Index | 383

globbing and, 260
mapping resources, 263
named routes and, 262
nesting resources and, 264
regular expressions and routing, 261
route order and priority, 265
specifying routes with match method, 258–

260
URL (Uniform Resource Locator), 367
:url parameter (form_for method), 86
UrlModule class, 257, 266
url_for method, 257, 266–267
users

classifying, 248–255
storing data about, 239

:use_month_numbers parameter (date and
time methods), 96

UTC (Coordinated Universal Time), 367
UTF-8 encoding, 367

V
valid? method, 208
validate method, 116
validates_each method, 117
validates_exclusion_of method, 114
validates_existence_of method, 145, 146
validates_format_of method, 112, 344
validates_inclusion_of method, 111, 114
validates_numericality_of method, 113
validates_presence_of method, 107, 109, 115,

116
validates_uniqueness_of method, 112
validation

against regular expressions, 344
checking with unit testing, 206–211
declarative, 106–109
defined, 367
managing secrets, 109, 344
testing only if, 115

validation method, 123
validation_on_create method, 123
validation_on_update method, 123
:value option (cookie object), 229
variables

arrays and hashes in, 321–322
CoffeeScript and, 295
defined, 316, 320
instance, 17, 320
naming conventions, 17

Sass support, 272–274
vendor folder, 15
views

adding logic to, 20–21
application flow and, 44
associating with controllers, 11
changing in nested resources, 153–156
connecting in nested resources, 156–158
creating, 11–14
defined, 368
displaying data being sent, 51
generating URIs from, 266–267
supporting many-to-many relationships

through, 164–171
working with session object, 230

W
:warning key (flash messaging), 235
Web 2.0, 368
web developers

defined, 368
deployment considerations, 310–313

web services
defined, 368
impact of changing routing on, 257

Web Services Description Language (WSDL),
368

WEBrick web server, 9, 368
when statement, 330
where method, 52
while statement, 331
whitespace characters

CoffeeScript and, 296
escaping, 347

why the lucky stiff (author), 368
whymirror GitHub account, 368
will_paginate plug-in, 362
Windows environment

accessing command line, 3
identifying Ruby version, 3
installing Rails, 2

:with parameter (validates_format_of method),
112, 344

wrappers, forms as, 84–87
wrap_field method, 134
WSDL (Web Services Description Language),

368

384 | Index

X
Xcode tools, 195
XHTML (Extensible HTML), 368
XML (Extensible Markup Language), 368
XML-RPC protocol, 369
XMLHttpRequest method, 368
XSS (cross-site scripting), 20, 369

Y
YAML (Yet Another Markup Language), 203,

369
yield method, 25, 28, 369

Z
Zulu Time, 367

Index | 385

About the Authors
Simon St.Laurent is a web developer, network administrator, computer book author,
and XML troublemaker living in Ithaca, NY. His books include XML: A Primer, XML
Elements of Style, and Building XML Applications, Cookies, and Sharing Bandwidth. He
is a contributing editor to XMLhack.com and an occasional contributor to XML.com.

Edd Dumbill is a technologist, writer, and programmer based in California. He is the
program chair for the O’Reilly Strata and Open Source Convention Conferences.

Eric J. Gruber works as a web developer in municipal government for the City of
Lawrence, KS (http://www.lawrenceks.org/) and freelances with his company, Rum-
blestrut (http://www.rumblestrut.com/).

Colophon
The animals on the cover of Learning Rails 3 are tarpans (Equus ferus ferus). The tarpan
was a wild horse that lived in Europe and Asia and died out in the 19th century. Smaller
and stockier than a modern domestic horse, it was mouse-gray in color with a dark
mane and a black stripe down its back. The breed was known to be intelligent, curious,
and independent.

The ancient tarpan ranged from southern France and Spain to central Russia. Its decline
was caused by the growth of the European human population in the 17th and 18th
centuries, which encroached on the tarpan’s natural habitat. Tarpans were also hunted
for their meat. The last wild tarpan died in Ukraine in 1879, and the last pure tarpan
died in a Russian zoo eight years later, at which point the species officially became
extinct.

However, you can still see a tarpan today, thanks to two German zoologists who suc-
ceeded in genetically recreating the breed in the 1930s. Heinz and Lutz Heck began a
breeding program while working at a Munich zoo, believing that genes still present in
the gene pool of an overall species could be used to recreate extinct breeds. They
combined the genes of living horses who showed similar characteristics to the ancient
tarpan, and bred the first modern tarpan at the zoo in 1933. This new form of tarpan,
known as the Heck horse, is a phenotypic copy of the original wild breed, meaning that
it resembles the ancient tarpan but is not exactly the same genetically. Today, there are
about 50 tarpans in North America, all of which trace back to the original project in
Munich. Most of them are owned by private breeders who are trying to increase the
tarpan population. There are not many more than 100 tarpans in the world.

The cover image is from Richard Lydekker’s Royal Natural History. The cover font is
Adobe ITC Garamond. The text font is Linotype Birka; the heading font is Adobe
Myriad Condensed; and the code font is LucasFont’s TheSansMonoCondensed.

http://www.XMLhack.com/
http://www.XML.com
http://www.lawrenceks.org/
http://www.rumblestrut.com/

	Table of Contents
	Preface
	Who This Book Is For
	Who This Book Is Not For
	What You’ll Learn
	Ruby and Rails Style
	Other Options
	Rails Versions
	If You Have Problems Making Examples Work
	If You Like (or Don’t Like) This Book
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Starting Up Ruby on Rails
	If You Run Windows, You’re Lucky
	Getting Started at the Command Line
	Starting Up Rails
	Test Your Knowledge
	Quiz
	Answers

	Chapter 2. Rails on the Web
	Creating Your Own View
	What Are All Those Folders?
	Adding Some Data
	How Hello World Works
	Adding Logic to the View
	Test Your Knowledge
	Quiz
	Answers

	Chapter 3. Adding Web Style
	I Want My CSS!
	Specifying Stylesheets
	Creating a Layout for a Controller
	Choosing a Layout from a Controller
	Sharing Template Data with the Layout
	Setting a Default Page
	Test Your Knowledge
	Quiz
	Answers

	Chapter 4. Managing Data Flow: Controllers and
 Models
	Getting Started, Greeting Guests
	Application Flow
	Keeping Track: A Simple Guestbook
	Connecting to a Database Through a Model
	Connecting the Controller to the Model
	Storing data using the model
	Retrieving data from the model and showing it

	Finding Data with ActiveRecord
	Test Your Knowledge
	Quiz
	Answers

	Chapter 5. Accelerating Development with Scaffolding and REST
	A First Look at Scaffolding
	REST and Controller Best Practices
	Websites and Web Applications
	Toward a Cleaner Approach

	Examining a RESTful Controller
	Index: An Overview of Data
	Show: Just One Row of Data
	New: A Blank Set of Data Fields
	Edit: Hand Me That Data, Please
	Create: Save Something New
	Put This Updated Record In
	Destroy It

	Escaping the REST Prison
	Test Your Knowledge
	Quiz
	Answers

	Chapter 6. Presenting Models with Forms
	More Than a Name on a Form
	Generating HTML Forms with Scaffolding
	Form as a Wrapper
	Creating Text Fields and Text Areas
	Labels
	Creating Checkboxes
	Creating Radio Buttons
	Creating Selection Lists
	Dates and Times
	Creating Helper Methods
	Test Your Knowledge
	Quiz
	Answers

	Chapter 7. Strengthening Models with Validation
	Without Validation
	The Original Model
	The Power of Declarative Validation
	Managing Secrets
	Customizing the Message
	Limiting Choices
	Testing Format with Regular Expressions
	Seen It All Before
	Numbers Only

	A Place on the Calendar
	Testing for Presence

	Beyond Simple Declarations
	Test It Only If
	Do It Yourself

	Test Your Knowledge
	Quiz
	Answers

	Chapter 8. Improving Forms
	Adding a Picture by Uploading a File
	File Upload Forms
	Model and Migration Changes
	A migration for an extension
	attr_accessible, again
	Extending a model beyond the database
	Showing it off

	Results

	Standardizing Your Look with Form Builders
	Supporting Your Own Field Types
	Adding Automation
	Integrating Form Builders and Styles

	Test Your Knowledge
	Quiz
	Answers

	Chapter 9. Developing Model Relationships
	Connecting Awards to Students
	Establishing the Relationship
	Supporting the Relationship
	Guaranteeing a Relationship

	Connecting Students to Awards
	Removing Awards When Students Disappear
	Counting Awards for Students

	Nesting Awards in Students
	Changing the Routing
	Changing the Controller
	Changing the Award Views
	Connecting the Student Views
	Is Nesting Worth It?

	Many-to-Many: Connecting Students to Courses
	Creating Tables
	Connecting the Models
	Adding to the Controllers
	Adding Routing
	Supporting the Relationship Through Views
	Establishing navigation
	Showing counts
	Enrolling students in courses

	What’s Missing?
	Test Your Knowledge
	Quiz
	Answers

	Chapter 10. Managing Databases with Migrations
	What Migrations Offer You
	Migration Basics
	Migration Files
	Running Migrations Forward and Backward

	Inside Migrations
	Working with Tables
	Data Types
	Working with Columns
	Indexes
	Other Opportunities

	Test Your Knowledge
	Quiz
	Answers

	Chapter 11. Debugging
	Creating Your Own Debugging Messages
	Raising Exceptions
	Logging
	Working with Rails from the Console
	The Ruby Debugger
	Test Your Knowledge
	Quiz
	Answers

	Chapter 12. Testing
	Test Mode
	Setting Up a Test Database with Fixtures
	Unit Testing
	Functional Testing
	Calling Controllers
	Testing Responses
	Dealing with Nested Resources

	Integration Testing
	Beyond the Basics
	Test Your Knowledge
	Quiz
	Answers

	Chapter 13. Sessions and Cookies
	Getting Into and Out of Cookies
	Storing Data Between Sessions
	Test Your Knowledge
	Quiz
	Answers

	Chapter 14. Users and Authentication
	Installation
	Storing Identities
	Storing User Data
	Wiring OmniAuth into the Application
	Classifying Users
	More Options
	Test Your Knowledge
	Quiz
	Answers

	Chapter 15. Routing
	Creating Routes to Interpret URIs
	Specifying Routes with match
	Globbing
	Regular Expressions and Routing
	A Domain Default with root
	Named Routes
	Mapping Resources
	Nesting Resources
	Route Order and Priority
	Checking the Map

	Generating URIs from Views and Controllers
	Pointing url_for in the Right Direction
	Adding Options

	Infinite Possibilities
	Test Your Knowledge
	Quiz
	Answers

	Chapter 16. From CSS to SASS
	Getting Started
	Sassy Style
	Variables
	Mixins
	Nesting

	Making Everything Work Together
	Becoming Sassier

	Test Your Knowledge
	Quiz
	Answers

	Chapter 17. Managing Assets and Bundles
	The Junk Drawer
	Sprockets
	Dissecting The Pipeline
	Putting It All Together
	Bundler

	Test Your Knowledge
	Quiz
	Answers

	Chapter 18. Sending Code to the Browser: JavaScript and CoffeeScript
	Sending JavaScript to the Browser
	Simplifying with CoffeeScript
	Have Some Sugar with your CoffeeScript
	Converting to CoffeeScript

	Test Your Knowledge
	Quiz
	Answers

	Chapter 19. Mail in Rails
	Sending Mail Messages
	Receiving Mail
	Setup
	Processing Messages

	Test Your Knowledge
	Quiz
	Answers

	Chapter 20. Pushing Further into Rails
	Changing to Production Mode
	Deploying Is Much More Than Programming
	Joining the Rails Ecosystem
	Keep Up with Rails
	Ruby
	Working With and Around Rails
	Keep Exploring

	Appendix A. An Incredibly Brief Introduction to
 Ruby
	How Ruby Works
	How Rails Works
	Getting Started with Classes and Objects
	Comments
	Variables, Methods, and Attributes
	Variables
	Arrays and hashes
	Symbols

	Methods
	Privacy, please
	super
	Calling methods: advanced options

	Attributes

	Logic and Conditionals
	Operators
	if, else, unless, and elsif
	?:
	case and when
	Loops
	while and until
	Just Counting
	for

	Many More Possibilities

	Appendix B. An Incredibly Brief Introduction to Relational Databases
	Tables of Data
	Connecting Tables
	Using Tables to Connect Tables
	Granularity

	Databases, Tables, and Rails

	Appendix C. An Incredibly Brief Guide to Regular
 Expressions
	What Regular Expressions Do
	Starting Small
	The Simplest Expressions: Literal Strings
	Character Classes
	Escaping
	Modifiers
	Anchors
	Sequences, Repetition, Groups, and Choices
	Greed
	More Possibilities

	Appendix D. Glossary
	Speaking in Rails

	Index

