
www.allitebooks.com

http://www.allitebooks.org

Learning Web Design

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Learning Web Design
Third Edition

A Beginner’s Guide to (X)HTML, Style Sheets, and Web Graphics

Jennifer Niederst Robbins

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

www.allitebooks.com

http://www.allitebooks.org

Learning Web Design, Third Edition
A Beginner’s Guide to (X)HTML, Style Sheets, and Web Graphics

by Jennifer Niederst Robbins

Copyright © 2007 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly Media books may be purchased for educational, business, or sales promotional use. Online editions are also avail-
able for most titles (safari.oreilly.com). For more information, contact our corporate/institutional sales department: 800-998-
9938 or corporate@oreilly.com.

Editor: Linda Laflamme

Production Editor: Philip Dangler

Cover Designer: Mark Paglietti

Interior Designer: Ron Bilodeau

Print History:

March 2001: First edition.

June 2003: Second edition.

June 2007: Third edition.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. “O’Reilly Digital Studio” and related trade dress are
trademarks of O’ReillyMedia, Inc. Photoshop, Illustrator, Dreamweaver, Elements, HomeSite, and Fireworks are either regis-
tered trademarks or trademarks of Adobe Systems Incorporated in the United States and/or other countries. Microsoft and
Expression Web are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other
countries. Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trade-
marks. Where those designations appear in this book, and O’ReillyMedia, Inc. was aware of a trademark claim, the designa-
tions have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume no responsibility for
errors or omissions, or for damages resulting from the use of the information contained herein.

This book uses RepKoverTM, a durable and flexible lay-flat binding.

ISBN-10: 0-596-52752-7
ISBN-13: 978-0-596-52752-5
[C]

www.allitebooks.com

http://www.allitebooks.org

v

Preface . xiii

Part I Getting Started

Chapter 1
Where Do I Start� . 3

Am I Too Late? . 4

Where Do I Start? . 4

What Do I Need to Learn? . 5

Do I Need to Learn Java? . 8

What Do I Need to Buy? . 12

What You’ve Learned . 18

Test Yourself . 18

Chapter 2
How the Web Works . 19

The Internet Versus the Web . 19

Serving Up Your Information . 20

A Word About Browsers . 20

Web Page Addresses (URLs) . 21

The Anatomy of a Web Page . 23

Putting It All Together. 26

Test Yourself . 28

Browser Versions . 29

CONTENTS

www.allitebooks.com

http://www.allitebooks.org

Contentsvi

Chapter 3
The Nature of Web Design . 29

Alternative Browsing Environments . 32

User Preferences . 35

Different Platforms . 38

Connection Speed . 39

Browser Window Size and Monitor Resolution . 40

Monitor Color . 44

Know Your Audience. 47

Keeping the Big Picture in Mind . 48

Test Yourself . 48

Part II HTML Markup for Structure

Chapter 4
Creating a Simple Page . 51
(HTML Overview)

A Web Page, Step by Step . 51

Before We Begin, Launch a Text Editor . 52

Step 1: Start with Content . 55

Step 2: Give the Document Structure . 57

Step 3: Identify Text Elements . 60

Step 4: Add an Image . 63

Step 5: Change the Look with a Style Sheet . 66

When Good Pages Go Bad . 67

Test Yourself . 69

(X)HTML Review: Document Structure Elements . 70

Chapter 5
Marking up Text . 71

Building Blocks . 72

Lists . 76

Adding Line Breaks . 79

The Inline Text Element Round-up . 81

Generic Elements (div and span) . 86

Some Special Characters . 89

Putting It All Together. 91

Test Yourself . 93

(X)HTML Review: Text Elements . 94

www.allitebooks.com

http://www.allitebooks.org

Contents vii

Chapter 6
Adding Links. 95

The href Attribute . 96

Linking to Pages on the Web . 97

Linking Within Your Own Site . 98

Targeting a New Browser Window . 108

Mail Links . 111

Test Yourself . 111

(X)HTML Review: The Anchor Element . 113

Chapter 7
Adding Images . 115

First, a Word on Image Formats . 115

The img Element . 116

Imagemaps . 123

Test Yourself . 126

(X)HTML Review: Image and Imagemap Elements . 127

Chapter 8
Basic Table Markup . 129

How Tables Are Used . 129

Minimal Table Structure . 130

Table Headers . 134

Spanning Cells . 134

Cell Padding and Spacing. 136

Captions and Summaries . 138

Table Accessibility . 139

Wrapping Up Tables . 140

Test Yourself . 142

(X)HTML Review: Table Elements . 142

Chapter 9
Forms . 143

How Forms Work . 143

The form Element . 145

Variables and Content . 147

Form Accessibility Features . 148

The Great Form Control Round-up . 150

Form Layout and Design . 162

Test Yourself . 162

(X)HTML Review: Forms . 163

www.allitebooks.com

http://www.allitebooks.org

Contentsviii

Chapter 10
Understanding the Standards . 165

Everything You’ve Wanted to Know About HTML But Were Afraid to Ask 165

Enter XHTML . 169

From the Browser’s Point of View . 174

Declaring the Document Type . 174

Which One Should You Use? . 176

Validating Your Documents . 177

Character Encoding . 180

Putting It All Together. 181

Test Yourself . 183

Part III CSS For Presentation

Chapter 11
Cascading Style Sheets Orientation 187

The Benefits of CSS . 187

How Style Sheets Work . 188

The Big Concepts . 194

Moving Forward with CSS . 200

Test Yourself . 202

Chapter 12
Formatting Text . 203
(Plus More Selectors)

The Font Properties . 204

Changing Text Color . 217

A Few More Selector Types . 218

Text Line Adjustments . 222

Underlines and Other “Decorations” . 225

Changing Capitalization . 226

Spaced Out . 227

Test Yourself . 230

Review: Font and Text Properties . 232

www.allitebooks.com

http://www.allitebooks.org

Contents ix

Chapter 13
Colors and Backgrounds . 233
(Plus Even More Selectors and External Style Sheets)

Specifying Color Values . 233

Foreground Color . 238

Background Color . 239

Introducing.... Pseudoclass Selectors . 240

Pseudoelement Selectors . 242

Background Images . 246

The Shorthand background Property . 254

Finally, External Style Sheets . 254

Style Sheets for Print (and Other Media) . 257

Test Yourself . 259

Review: Color and Background Properties . 260

Chapter 14
Thinking Inside the Box . 261
(Padding, Borders, and Margins)

The Element Box . 261

Setting the Content Dimensions . 262

Padding . 266

Borders . 269

Margins . 275

Assigning Display Roles . 281

The Box Model in Review . 282

Test Yourself . 282

Review: Basic Box Properties . 284

Chapter 15
Floating and Positioning. 285

Normal Flow . 285

Floating . 286

Positioning Basics . 295

Relative Positioning . 296

Absolute Positioning . 297

Fixed Positioning . 307

Test Yourself . 309

Review: Basic Layout Properties . 310

www.allitebooks.com

http://www.allitebooks.org

Contentsx

Chapter 16
Page Layout with CSS . 311

Page Layout Strategies . 311

Fixed Layouts . 314

Elastic Layouts . 316

Page Layout Templates . 318

Centering a Fixed Width Page . 334

CSS Layouts in Review . 335

Test Yourself . 336

Chapter 17
CSS Techniques . 337

Style Properties for Tables . 337

Changing List Bullets and Numbers . 340

Using Lists for Navigation . 344

Image Replacement Techniques . 347

CSS Rollovers. 349

Wrapping Up Style Sheets . 354

Test Yourself . 354

Review: Table and List Properties . 356

Part IV Creating Web Graphics

Chapter 18
Web Graphics Basics . 359

Image Sources . 359

Meet the Formats . 362

Image Size and Resolution . 373

Working with Transparency . 377

Web Graphics 101 Summary. 385

Test Yourself . 385

Contents xi

Chapter 19
Lean and Mean Web Graphics . 387

Why Optimize? . 387

General Optimization Strategies . 388

Optimizing GIFs . 390

Optimizing JPEGs . 394

Optimizing PNGs . 400

Optimize to File Size . 401

Optimization in Review . 402

Test Yourself . 402

Part V From Start to Finish

Chapter 20
The Site Development Process . 405

1. Conceptualize and Research. 405

2. Create and Organize Content . 407

3. Develop the “Look and Feel” . 408

4. Produce a Working Prototype . 409

5. Test It . 410

6. Launch the Site . 413

7. Maintain the Site . 413

The Development Process in Review . 413

Test Yourself . 414

Chapter 21
Getting Your Pages on the Web. 415

www.“YOU”.com! . 415

Finding Server Space . 417

The Publishing Process . 421

Transferring Files with FTP . 423

Test Yourself . 426

Contentsxii

Appendix A
Answers . 427

Appendix B
CSS 2.1 Selectors . 451

Index . 453

xiii

Hello and welcome to the third edition of Learning Web Design! When I first

started writing it, I figured, “It’s just an update... I’ll just make a few tweaks

and it will be done in a jiffy.” I couldn’t have been more wrong. As it turns out,

pretty much everything about web design changed since I wrote the second

edition four years ago. Most significantly, web designers as well as browser

developers are finally abiding by the standards for writing and styling web

pages set forth by the World Wide Web Consortium (W3C). You’ll learn a lot

more about these standards throughout the book.

What it means is that using HTML markup for visual effects is out—HTML

for describing the meaning and structure of content is in. Table-based layouts

are out—style sheet-driven layouts are in. And the font element, spacer GIFs,

and other clever hacks of the past... forget about it! They’re all history.

This edition has been completely rewritten to be in compliance with the

standards and modern web design practices. The markup chapters emphasize

using HTML to describe your content accurately, not as a tool for formatting

the appearance of text. And now you will find seven chapters on Cascading

Style Sheets (CSS), where the second edition had just one.

But like the first two editions, this book addresses the specific needs and con-

cerns of beginners of all backgrounds, including seasoned graphic designers,

programmers looking for a more creative outlet, office assistants, recent col-

lege graduates, work-at-home moms, and anyone else wanting to learn how

to design web sites. I’ve done my best to put the experience of sitting in my

beginner web design class into a book, with exercises and tests along the way,

so you get hands-on experience and can check your progress.

I start at square one, with answers to common beginner questions and an

explanation of how the Web works. By the end of the book, you’ll have the

skills necessary to create multicolumn CSS layouts with optimized graphic

files, and you’ll know how to get them on the Web. You can start at the very

beginning, or feel free to jump in at any point.

The Companion
Web Site
Be sure to visit the companion
web site for this book at
learningwebdesign.com. It
features materials for the exercises,
downloadable articles, lists of links
from the book, updates, and other
good stuff.

The Companion
Web Site
Be sure to visit the companion
web site for this book at
learningwebdesign.com. It
features materials for the exercises,
downloadable articles, lists of links
from the book, updates, and other
good stuff.

PREFACE

Prefacexiv

Acknowledgments

Whether you are reading this book on your own or using it as a companion

to a web design course, I hope it gives you a good head start and that you

have fun in the process.

Acknowledgments
I want to thank my editors, Brian Sawyer, Chuck Toporek, Linda Laflamme,

and Steve Weiss, for their valuable input to this new edition. A special thank

you goes to my technical reviewer, Aaron Gustafson, for his expert guidance,

generosity, and for keeping on the straight and narrow when it comes to

standards compliance.

Thanks also to the others who contributed hands-on time to the creation of

this book: Ron Bilodeau for the updated interior design, Rob Romano for the

figure production, Chris Reilley for helping me envision some of the more

complex figures, Sohaila Abdulali for copyediting, Reg Aubry for writing the

index, and everyone else who helped with the project.

Finally, I want to thank my Mom, Dad, brother Liam, and the whole Robbins

clan for their inspiration and continued support while I labored to crank

out this edition. And it pleases me greatly, Jeff and Arlo, to tell you that I am

finally done writing. Thanks for putting up with me being half there.

O’Reilly Would Like to Hear From You
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)

707-829-0515 (international/local)

707-829-0104 (fax)

There is a web page for this book, which lists errata and additional informa-

tion. You can access this page at:

http://www.oreilly.com/catalog/9780596527525

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about books, conferences, software, Resource Centers,

and the O’Reilly Network, see the O’Reilly web site at:

http://www.oreilly.com

Conventions Used
in This Book
The following typographic
conventions are used in this book:

Italic

 Used to indicate URLs, email
addresses, filenames, and
directory names, as well as for
emphasis

Colored roman text

 Used for special terms that are
being defined and for cross-
reference.

Constant width

 Used to indicate code examples
and keyboard commands

Colored constant width

 Used to indicate (X)HTML tags
and attributes, and used for
emphasis in code examples.

Constant width italic

 Used to indicate placeholders for
attribute and style sheet property
values.

Conventions Used
in This Book
The following typographic
conventions are used in this book:

Italic

 Used to indicate URLs, email
addresses, filenames, and
directory names, as well as for
emphasis

Colored roman text

 Used for special terms that are
being defined and for cross-
reference.

Constant width

 Used to indicate code examples
and keyboard commands

Colored constant width

 Used to indicate (X)HTML tags
and attributes, and used for
emphasis in code examples.

Constant width italic

 Used to indicate placeholders for
attribute and style sheet property
values.

IN THIS PART

Chapter 1
Where Do I Start?

Chapter 2
How the Web Works

Chapter 3
The Nature of Web Design

GETTING STARTED PART I

3

IN THIS CHAPTER

Am I too late?

Where do I start?

What do I need to learn?

Do I need to learn Java?
What other languages do

I need to know?

What software
and equipment do I

need to buy?

The Web has been around for well over a decade now, experiencing euphoric

early expansion, an economic-driven bust, an innovation-driven rebirth, and

constant evolution along the way. One thing is certain: the Web as a com-

munication and commercial medium is here to stay.

For many people, it’s a call to action—a new career opportunity, an incentive

to keep up with competitors, or just a chance to get stuff out there for the

world to see. But the world of web design can also seem overwhelming.

Through my experience teaching web design courses and workshops, I’ve

had the opportunity to meet people of all backgrounds who are inter ested in

learning how to build web pages. Allow me to introduce you to just a few:

“I’ve been a print designer for 17 years, and now all my clients want web
sites.”

“I work as a secretary in a small office. My boss has asked me to put
together a small internal web site to share company information among
employees.”

“I’ve been a programmer for years, but I want to try my hand at more
visual design. I feel like the Web is a good opportunity to explore new
skills.”

“I am an artist and I want to know how to get samples of my paintings
and sculpture online.”

“I’m a designer who has watched all my colleagues switch to web design
in the last few years. I’m curious about it, but I feel like I may be too
late.”

Whatever the motivation, the first question is always the same: “Where do I

start?” It may seem like there is an overwhelming amount of stuff to learn and

it’s not easy to know where to jump in. But you have to start somewhere.

This chapter attempts to put the learning curve in perspective by answering

the most common questions I get asked by people ready to make the leap. It

provides an introduction to the disciplines, technologies, and tools associated

with web design.

WHERE DO I
START?

CHAPTER 1

Part I: Getting Started4

Am I Too Late?

Am I Too Late?
That’s an easy one—absolutely not! Although it may seem that everyone in

the whole world has a personal web page, or that your colleagues are all light-

years ahead of you in web experience, I can assure you that you’re not late.

The Web has become an essential part of standard business practice. We’re at

the point where we just assume that a business, regardless of its size, will have

a useful web site. It also remains a uniquely powerful tool for self-publishing,

whether to a small circle of friends or to a worldwide audience. We can be

certain that there will be a steady need for web designers and developers.

Where Do I Start?
Your particular starting point will no doubt depend on your background and

goals. However, a good first step for everyone is to get a basic understanding

of how the Web and web pages work. That you are reading this book now

shows that you are already on the right track. Once you learn the fundamen-

tals, there are plenty of resources on the Web and in bookstores for you to

further your learning in specific areas. One way to get up to speed quickly

is to take an introductory web design class. If you don’t have the luxury of a

full-semester course, even a weekend or one-day seminar can be extremely

useful in getting over that first hump.

You’ll learn that the term “web design” has come to encompass many skills,

and you don’t necessarily need to learn all of them (most people don’t). This

chapter introduces the various disciplines and paths you may take.

Similarly, there are many levels of involvement in web design, from just build-

ing a site for yourself to making it a full-blown career. You may enjoy being

a full-service web site developer or just specializing in one skill, like Flash

development. There are a lot of ways you can go.

If your involvement in web design is purely at the hobbyist level, or if you

have just one or two web projects you’d like to publish, you may find that a

combination of personal research (like reading this book), taking advantage

of available templates, and perhaps even investing in solid web design tools

(such as Dreamweaver from Adobe) may be all you need to accomplish the

task at hand.

If you are interested in pursuing web design as a career, you’ll need to bring

your skills up to a professional level. Employers may not require a web

design degree, but they will expect to see sample web sites that demonstrate

your skills and experience. These sites can be the result of class assignments,

personal projects, or a simple site for a small business. What’s important is

that they look professional and have clean, working HTML and style sheets

behind the scenes. Getting an entry-level job and working as part of a team is

The first step is
understanding the
fundamentals of how the
Web works.

I Just Want a Blog!
You don’t necessarily need to
become a web designer to start
publishing your words and pictures
on the Web. You can start your own
“blog” or personal journal site using
one of the free or inexpensive blog
hosting services. These services
provide templates that spare you
the need to learn HTML (although it
still doesn’t hurt). These are three of
the most popular as of this writing:

Blogger (www.blogger.com)

TypePad (www.typepad.com)

LiveJournal (www.livejournal.
com)

If you use a Mac, Apple’s iWeb
software makes it simple to publish
blogs (including video) using one of
several stylish templates.





What Do I Need to Learn?

Chapter 1, Where Do I Start 5

a great way to learn how larger sites are constructed and can help you decide

which aspects of web design you would like to pursue.

What Do I Need to Learn?
This one’s a big question. The short answer is “not everything.” A more accu-

rate answer depends on where you are starting and what you want to do.

As mentioned earlier, the term “web design” has become a catch-all for a

process that actually encompasses a number of different disciplines, from

graphic design to serious programming. We’ll take a look at each of them.

If you are designing a small web site on your own, you will need to wear

many hats. The good news is that you probably won’t notice. Consider that

the day-to-day upkeep of your household requires you to be part-time chef,

housecleaner, accountant, diplomat, gardener, and construction worker—but

to you it’s just the stuff you do around the house. In the same way, as a solo

web designer, you’ll be part-time graphic designer, writer, producer, and infor-

mation architect, but to you, it’ll just feel like “making web pages.” Nothing

to worry about.

There are also specialists out there whom you can hire to fill in the skills you

don’t have. For example, I have been creating web sites for more than a decade

and I still hire programmers and multimedia developers when my clients

require those features. That allows me to focus on the parts I do well.

Large-scale web sites are almost always created by a team of people, number-

ing from a handful to hundreds. In this scenario, each member of the team

focuses on just one facet of the site building process. If that is the case, you

may be able to simply adapt your current set of skills and interests to the

new medium.

The following are some of the core disciplines involved in the web design

process, along with brief descriptions of the skills required in each area.

Graphic design

Because the Web is a visual medium, web pages require attention to presenta-

tion and design. The graphic designer makes decisions regarding everything

you see on a web page: graphics, type, colors, layout, etc. As in the print

world, graphic designers play an important role in the success of the final

product. If you work as a graphic designer in the web design process, you may

never need to learn any backend programming languages. (I didn’t.)

If you are interested in doing the visual design of commercial sites profes-

sionally, I strongly recommend graphic design training as well as a strong

proficiency in Adobe Photoshop (the industry standard). If you are already

a graphic designer, you will be able to adapt your skills to the Web easily.

If you are not interested
in becoming a jack-of-all-
trades solo web designer,
you may choose to
specialize and work as part
of a team or as a freelance
contractor.

If you are not interested
in becoming a jack-of-all-
trades solo web designer,
you may choose to
specialize and work as part
of a team or as a freelance
contractor.

“Web design” actually combines a
number of disciplines, including:

Graphic design

Information design

Interface design

HTML, style sheet, and graphic
production

Scripting and programming

Multimedia









A t A G l A n c e

www.allitebooks.com

http://www.allitebooks.org

Part I: Getting Started6

What Do I Need to Learn?

Because graphics are a big part of web design, even hobbyist web designers

will need to know how to use some image-editing software, at minimum.

If you don’t have visual design experience, you may want to do some personal

research on the fundamentals of graphic design. The following books will

give you a good start on rounding out your design skills.

The Non-Designer’s Design Book, Second Edition by Robin Williams (Peachpit

Press, 2003)

The Non-Designer’s Web Book, Third Edition by Robin Williams and John

Tollett (Peachpit Press, 2005)

Design Basics, Sixth Edition by David Lauer and Stephen Pentak (Harcourt

College Publishers, 2004)

Graphic Design Solutions, Third Edition by Robin Landa (Thomson Delmar

Learning, 2005).

Information design

One easily overlooked aspect of web design is information design, the orga-

nization of content and how you get to it. Information designers (also called

“information architects”) deal with flow charts and diagrams and may never

touch a graphic or text file; however, they are a crucial part of the creation

of the site.

It is possible to find courses specifically about information design, although

they are likely to be at the graduate level. Again, some personal research and

experience working on a team will go a long way toward rounding out this

skill. If you think you may be interested in this aspect of web development,

check out these books:

Information Architecture for the World Wide Web: Designing Large-Scale Web

Sites, Third Edition by Lou Rosenfeld and Peter Morville (O’Reilly, 2006) for

a good overview.

Information Architecture: Blueprints for the Web, by Christina Wodtke (New

Riders, 2002)

Interface design

If graphic design is concerned with how the page looks, interface design

focuses on how the page works. The concept of usability, how easily visitors

can accomplish their goals on the site, as well as the general experience of

using the site, is a function of the interface design. The interface of a web site

Frontend Versus
Backend
You may hear web designers and
developers say that they specialize in
either the frontend or backend of
web site creation.

Frontend design

“Frontend” refers to any aspect of the
design process that appears in or
relates directly to the browser. This
book focuses primarily on frontend
web design.

The following tasks are commonly
considered to be frontend disciplines:

Graphic design

Interface design

Information design as it pertains
to the user’s experience of the
site

Site production, including HTML
documents, style sheets and
JavaScript

Backend development

“Backend” refers to the programs
and scripts that work on the server
behind the scenes to make web
pages dynamic and interactive. In
general, backend web development
falls in the hands of experienced
programmers, but it is good for all
web designers to be familiar with
backend functionality.

The following tasks take place on the
backend:

Information design as it pertains
to how the information is
organized on the server

Forms processing

Database programming

Content management systems

Other server-side web
applications using Perl/CGI, PHP,
ASP, JSP, Ruby on Rails, Java and
other programming languages.














What Do I Need to Learn?

Chapter 1, Where Do I Start 7

includes the methods for doing things on a site: buttons, links, navigation

devices, etc., as well as the functional organization of the page. In most cases,

the interface, information archictecture, and visual design of a site are tightly

entwined.

Often, the interface design falls into the hands of a graphic designer by

default; in other cases, it is handled by an interface design specialist or the

information designer. Some interface designers have backgrounds in software

design. It is possible to find courses on interface design; however, this is an

area that you can build expertise in by a combination of personal research,

experience in the field, and common sense. You may also find these popular

books on web usability helpful:

Don’t Make Me Think, A Common Sense Approach to Web Usability, Second

Edition, by Steve Krug (New Riders, 2005)

The Elements of User Experience: User-Centered Design for the Web, by Jesse

James Garrett (New Riders, 2002)

Document production

A fair amount of the web design process involves the creation and trouble-

shooting of the documents, style sheets, scripting, and images that make up

a site. The process of writing HTML and style sheet documents is commonly

referred to as authoring.

The people who handle production need to have an intricate knowledge of

HTML (the markup language used to make web documents) and style sheets,

and often additional scripting or programming skills. At large web design

firms, the team that handles the creation of the files that make up the web site

may be called the “development” or “production” department. In some cases,

the tasks may be separated out into specialized positions for CSS designer,

HTML author/coder, and client-side programmer.

This book will teach you the basics of web authoring, including how to

write HTML documents, create style sheets, and produce web graphics.

Fortunately, it’s not difficult to learn. Once you’ve gotten the fundamentals

under your belt, the trick is to practice by creating pages and learning from

your mistakes. There are also authoring tools that speed up the production

process, as we’ll discuss later in this chapter.

In addition to the HTML document and style sheets, each of the images that

appear on the page need to be produced in a way that is appropriate and

optimized for web delivery. Graphics production techniques are covered in

Part IV.

The topics of information and
interface design are covered in
more detail in my article “Building
Usable Web Sites”, available
as a PDF download at www.
learningwebdesign.com.

O n l I n e R e S O U R c e

Part I: Getting Started8

Do I Need to Learn Java?

Scripting and programming

Advanced web functionality (such as forms, dynamic content, and interactiv-

ity) requires web scripts and sometimes special programs and applications

running behind the scenes. Scripting and programming is handled by web

programmers (also called developers). Developers who specialize in the pro-

gramming end of things may never touch a graphic file or have input on how

the pages look, although they need to communicate well with the informa-

tion and interface designers to make sure their scripts meet intended goals

and user expectations.

Web scripting and programming definitely requires some traditional com-

puter programming prowess. While many web programmers have degrees

in computer science, it is also common for developers to be self-taught.

Developers I know usually start by copying and adapting existing scripts,

then gradually add to their programming skills on the job. If you have no

experience with programming languages, the initial learning curve may be

a bit steep.

Teaching web programming is beyond the scope of this book. It is possible

to turn out competent, content-rich, well-designed sites without the need

for programming, so hobbyist web designers should not be discouraged.

However, once you get into collecting information via forms or serving

information on demand, it is usually necessary to have a programmer on the

team.

Multimedia

One of the cool things about the Web is that you can add multimedia ele-

ments to a site, including sound, video, animation, and Flash movies for

interactivity (see sidebar). You may decide to add multimedia skills to your

web design toolbelt, or you may decide to become a specialist. If you are not

interested in becoming a multimedia developer, you can always hire one.

There is a constant call for professional Flash developers and people who

know how to produce audio and video files that are appropriate for the Web.

Web development companies usually look for people who have mastered the

standard multimedia tools, and have a good visual sensibility and an instinct

for intuitive and creative multimedia design. Professional Flash developers are

also expected to know ActionScript for adding advanced behaviors to Flash

movies and interfaces.

Do I Need to Learn Java?
You’d be surprised at the number of times I’ve heard the following: “I want

to get into web design so I went out and bought a book on Java.” I usually

respond, “Well, go return it!” Before you spend money on a big Java book,

A Little More About
Flash
Adobe Flash (previously Macromedia
Flash, previously FutureSplash) is a
multimedia format created especially
for the Web. Flash gives you the
ability to create full-screen animation,
interactive graphics, integrated audio
clips, even scriptable games and
applications, all at remarkably small
file sizes. Some sites use Flash instead
of (X)HTML for their entire interface,
content, and functionality.

Flash has a number of advantages:

Because it uses vector graphics,
files are small and the movie can
be resized without loss of detail.
Real-time anti-aliasing keeps the
edges smooth.

It is a streaming format, so movies
start playing quickly and continue
to play as they download.

You can use ActionScript to
add behaviors and advanced
interactivity, allowing Flash to
be used as the frontend for
dynamically generated content
or e-commerce functions.

The Flash plug-in is well-
distributed, so support is reliable.

On the downside:

The fact that a plugin is required
to play Flash media makes some
developers squeamish.

Content may be lost for
nongraphical browsers. However,
Flash has many features to
improve accessibility.

The software required to create
Flash content is often expensive,
and the learning curve is steep.

Flash is not appropriate for all sites
and it is not poised to replace
(X)HTML. However, when used well,
it can create a big impact and a
memorable user experience.

For more information, look for
“Adobe Flash” at Wikipedia.org.















Do I Need to Learn Java?

Chapter 1, Where Do I Start 9

I’m here to tell you that you don’t need to know Java programming (or any

programming, for that matter) to make web sites.

The following is a list of technologies associated with web development. They

are listed in general order of complexity and in the order that you might want

to learn them. Bear in mind, the only requirements are HTML and Cascading

Style Sheets. Where you draw the line after that is up to you.

HTML/XHTML

HTML (HyperText Markup Langage) is the language used to create web page

documents. The updated version, XHTML (eXtensible HTML) is essentially

the same language with stricter syntax rules. We’ll get to the particulars of

what makes them different in Chapter 10, Understanding the Standards. It is

common to see HTML and XHTML referred to collectively as (X)HTML, as

I will do throughout this book when both apply.

(X)HTML is not a programming language; it is a markup language, which

means it is a system for identifying and describing the various components of

a document such as headings, paragraphs, and lists. You don’t need program-

ming skills—only patience and common sense—to write (X)HTML.

Everyone involved with the Web needs a basic understanding of how HTML

works. The best way to learn is to write out some pages by hand, as we will

be doing in the exercises in this book.

If you end up working in web production, you’ll live and breathe (X)HTML.

Even hobbyists will benefit from knowing what is going on under the hood.

The good news is that it’s simple to learn the basics.

Web-related programming
“languages” in order of increasing
complexity:

HTML/XHTML

Style sheets

JavaScript/DOM scripting

Server-side scripting

XML

Java








A t A G l A n c e

It is common to see HTML
and XHTML referred to
collectively as (X)HTML.

The World Wide Web Consortium
The World Wide Web Consortium (called the W3C for short) is the organization
that oversees the development of web technologies. The group was founded in
1994 by Tim Berners-Lee, the inventor of the Web, at the Massachusetts Institute of
Technology (MIT).

In the beginning, the W3C concerned itself mainly with the HTTP protocol and the
development of the HTML. Now, the W3C is laying a foundation for the future of the
Web by developing dozens of technologies and protocols that must work together
in a solid infrastructure.

For the definitive answer on any web technology question, the W3C site is the place
to go:

www.w3.org

For more information on the W3C and what they do, see this useful page:

www.w3.org/Consortium/

Part I: Getting Started10

Do I Need to Learn Java?

CSS (Cascading Style Sheets)

While (X)HTML is used to describe the content in a web page, it is Cascading

Style Sheets (CSS) that describe how you want that content to look. In the

web design biz, the way the page looks is known as its presentation. CSS is

now the official and standard mechanism for formatting text and page lay-

outs.

CSS also provides methods for controlling how documents will be presented

in media other than the traditional browser on a screen, such as in print and

on handheld devices. It also has rules for specifying the non-visual presen-

tation of documents, such as how they will sound when read by a screen

reader.

Style sheets are also a great tool for automating production, because you can

make changes to all the pages in your site by editing a single style sheet docu-

ment. Style sheets are supported to some degree by all modern browsers.

Although it is possible to publish web pages using (X)HTML alone, you’ll

probably want to take on style sheets so you’re not stuck with the browser’s

default styles. If you’re looking into designing web sites professionally, profi-

ciency at style sheets is mandatory.

Style sheets are discussed further in Part III.

JavaScript/DOM scripting

Despite its name, JavaScript is not at all related to Java. JavaScript is a script-

ing language that is used to add interactivity and behaviors to web pages,

including these (just to name a few):

Checking form entries for valid entries

Swapping out styles for an element or an entire site

Making the browser remember information about the user for the next

time they visit

JavaScript is a language that is commonly used to manipulate the elements

on the web page or certain browser window functions. There are other web

scripting languages, but JavaScript (also called ECMAScript) is the standard

and most ubiquitous.

You may also hear the term DOM scripting used in relation to JavaScript.

DOM stands for Document Object Model, and it refers to the standard-

ized list of web page elements that can be accessed and manipulated using

JavaScript (or another scripting language). DOM scripting is an updated term

for what used to be referred to as DHTML (Dynamic HTML), now consid-

ered an obsolete approach.

Writing JavaScript is programming, so it may be time-consuming to learn if

you have no prior programming experience. Many people teach themselves

•

•

•

The Web Design
Layer Cake
Contemporary web design is
commonly visualized as being made
up of three separate “layers.”

The content of the document with
its (X)HTML markup makes up
the Structure Layer. It forms the
foundation upon which the other
layers may be applied.

Once the structure of the document
is in place, you can add style sheet
information to control how the
content should appear. This is called
the Presentation Layer.

Finally, the Behavior Layer includes
the scripts that make the page an
interactive experience.

N OT E

When this book says “style sheets” it
is always referring to Cascading Style
Sheets, the standard style sheet language
for the World Wide Web.

Do I Need to Learn Java?

Chapter 1, Where Do I Start 11

JavaScript by reading books and following and modifying existing examples.

Most web-authoring tools come with standard scripts that you can use right

out of the box for common functions.

If you want to be a professional web developer, JavaScript is the first scripting

language you should learn. However, plenty of designers rely on developers to

add JavaScript behaviors to their designs. So while JavaScript is useful, learn-

ing to write it is not mandatory for all web designers. Teaching JavaScript

is outside the scope of this book; however, Learning JavaScript by Shelley

Powers (O’Reilly, 2006) is certainly a good place to start if you want to learn

more.

Server-side programming

Some web sites are collections of static (X)HTML documents and image files,

but most commercial sites have more advanced functionality such as forms

handling, dynamically generated pages, shopping carts, content management

systems, databases, and so on. These functions are handled by special web

applications running on the server. There are a number of scripting and pro-

gramming languages that are used to create web applications, including:

CGI Scripts (written in C+, Perl, Python, or others)

Java Server Pages (JSPs)

PHP

VB.NET

ASP.NET

Ruby on Rails

Developing web applications is programmer territory and is not expected of all

web designers. However, that doesn’t mean you can’t offer such functionality to

your clients. It is possible to get shopping carts, content management systems,

mailing lists, and guestbooks as prepackaged solutions, without the need to

program them from scratch.

XML

If you hang around the web design world at all, you’re sure to hear the acro-

nym XML (which stands for eXtensible Markup Language). XML is not a

specific language in itself, but rather a robust set of rules for creating other

markup languages.

To use a simplified example, if you were publishing recipes, you might use

XML to create a custom markup language that includes the elements <ingre-

dient>, <instructions>, and <servings> that accurately describe the types of

information in your recipe documents. Once labeled correctly, that informa-

tion can be treated as data. In fact, XML has proven to be a powerful tool for

•

•

•

•

•

•

Ajax for
Applications
The latest web technique to create
a big stir is Ajax, which stands for
Asynchronous JavaScript and
XML.

Ajax is a technique for creating
interactive web applications. The
significant advantage to using
Ajax for web applications is that it
allows the content on the screen to
change instantly, without refreshing
the whole page. This makes using
the application more like a desktop
program than a web page because
controls react instantly, without all
that pesky waiting for server calls
and page redraws.

As a beginner, you aren’t likely to
be writing Ajax-based applications
right off the bat, but it is useful to
be familiar with what it is and what
it can do.

To learn more, I recommend
searching for “Ajax” at Wikipedia.
org. The Ajax listing provides a solid
explanation as well as a list of links to
Ajax resources.

Part I: Getting Started12

What Do I Need to Buy?

sharing data between applications. Despite the fact that XML was developed

with the Web in mind, it has actually had a larger impact outside the web

environment because of its data-handling capabilities. There are XML files

working behind the scenes in an increasing number of software applications,

such as Microsoft Office, Adobe Flash, and Apple iTunes.

Still, there are a number of XML languages that are used on the Web. The most

prevalent is XHTML, which is HTML rewritten according the the stricter rules

of XML. There is also RSS (Really Simple Syndication or RDF Site Summary)

that allows your content to be shared as data and read with RSS feed readers,

SVG (Scalable Vector Graphics) that uses tags to describe geometric shapes,

and MathML that is used to describe mathematical notation.

As a web designer, your direct experience with XML is likely to be limited

to authoring documents in XHTML or perhaps adding an RSS feed to a web

site. Developing new XML languages would be the responsibility of program-

mers or XML specialists.

Java

Although Java can be used for creating small applications for the Web

(known as “applets”), it is a complete and complex programming language

that is typically used for developing large, enterprise-scale applications. Java

is considered one of the “big guns” and is overkill for most web site needs.

Learn Java only if you want to become a Java programmer. You can live your

life as a web designer without knowing a lick of Java (most web designers

and developers do).

What Do I Need to Buy?
It should come as no surprise that professional web designers require a fair

amount of gear, both hardware and software. One of the most common

questions I’m asked by my students is, “What should I get?” I can’t tell you

specifically what to buy, but I will provide an overview of the typical tools

of the trade.

Bear in mind that while I’ve listed the most popular commercial software

tools available, many of them have freeware or shareware equivalents which

you can download if you’re on a budget (try CNET’s Download.com). With

a little extra effort, you can get a full web site up and running without big

cash.

What Do I Need to Buy?

Chapter 1, Where Do I Start 13

Equipment

For a comfortable web site creation environment, I recommend the following

equipment:

A solid, up-to-date computer. Windows, Linux, or Macintosh is fine.

Creative departments in professional web development companies tend

to be Mac-based. Although it is nice to have a super-fast machine, the

files that make up web pages are very small and tend not to be too taxing

on computers. Unless you’re getting into sound and video editing, don’t

worry if your current setup is not the latest and greatest.

Extra memory. Because you’ll tend to bounce between a number of applica-

tions, it’s a good idea to have enough RAM installed on your computer

that allows you to leave several memory-intensive programs running at

the same time.

A large monitor. While not a requirement, a large or high-resolution moni-

tor makes life easier. The more monitor real estate you have, the more

windows and control panels you can have open at the same time. You can

also see more of your page to make design decisions.

Just make sure if you’re using a high-resolution monitor (1280 × 1024 or

1600 × 1200), that you design for users with smaller monitors in mind.

Most professional web sites these days are designed to fit in an 800 ×
600 monitor as the lowest common denominator. Also keep in mind that

when working in high resolution, the text and graphics may look smaller

to you than to users with lower resolutions or larger pixel size. Be sure to

take a look at your pages under a variety of viewing conditions.

A second computer. Many web designers find it useful to have a test

computer running a different platform than the computer they use for

development (i.e., if you design on a Mac, test on a PC). Because browsers

work differently on Macs than on Windows machines, it’s critical to test

your pages in as many environments as possible, and particularly on the

current Windows operating system. If you are a hobbyist web designer

working at home, check your pages on a friend’s machine.

A scanner and/or digital camera. If you anticipate making your own graph-

ics, you’ll need some tools for creating images or textures. I know a

designer who has two scanners: one is the “good” scanner, and the other

he uses to scan things like dead fish and rusty pans. Because web graph-

ics are low resolution, you don’t need a state-of-the-art, mega-pixel digital

camera to get decent results.

Software

There’s no shortage of software available for creating web pages. In the early

days, we just made do with tools originally designed for print. Today, there are

wonderful tools created specifically with web design in mind that make the

Run Windows on
Your Mac
If you have a Macintosh computer
with an Intel chip, you don’t need
a separate computer to test in a
Windows environment. It is now
possible to run Windows right on
your Mac.

Apple offers the free Boot Camp, as
part of the Leopard OS X release,
that allows you to switch to
Windows on reboot.

There is also Parallels Desktop for
Mac, a commercial program that
allows you to toggle between
operating systems easily. For more
information see www.parallels.com.

Both options require that you
purchase a copy of Microsoft
Windows, but it sure beats buying a
whole machine.

Part I: Getting Started14

What Do I Need to Buy?

process more efficient. Although I can’t list every available software release

(you can find other offerings as well as the current versions of the following

programs in software catalogs), I’d like to introduce you to the most common

and proven tools for web design. Note that you can download trial versions

of many of these programs from the company web sites, as listed in the At a

Glance: Popular Web Design Software sidebar later in this chapter.

Web page authoring

Web-authoring tools are similar to desktop publishing tools, but the end

product is a web page (an (X)HTML file and its related style sheet and image

files). These tools provide a visual “WYSIWYG” (What You See Is What You

Get; pronounced “whizzy-wig”) interface and shortcuts that save you from

typing repetitive (X)HTML and CSS. The following are some popular web-

authoring programs:

Adobe (previously Macromedia) Dreamweaver. This is the industry stan-

dard due to its clean code and advanced features.

N OT E

Since acquiring Dreamweaver, Adobe has discontinued GoLive, its own advanced
WYSIWYG editor. As of this writing, the last version, CS2, is still available for pur-
chase.

Microsoft Expression Web (Windows only). Part of Microsoft’s suite of

professional design tools, MS Expression Web boasts standards-compli-

ant code and CSS-based layouts. Microsoft no longer offers its previous

web editor, FrontPage, which was notorious for proprietary and sloppy

code.

Nvu (Linux, Windows, and Mac OS X). Don’t want to pay for a WYSIWYG

editor? Nvu (pronounced N-view, for “new view”) is an open source tool

that matches many of the features in Dreamweaver, yet is downloadable

for free at nvu.com.

HTML editors

HTML editors (as opposed to authoring tools) are designed to speed up the

process of writing HTML by hand. They do not allow you edit the page visu-

ally as WYSIWYG authoring tools (listed previously) do. Many professional

web designers actually prefer to author HTML documents by hand, and they

overwhelmingly recommend the following four tools:

TextPad (Windows only). TextPad is a simple and inexpensive plain-text

code editor for Windows.

What Do I Need to Buy?

Chapter 1, Where Do I Start 15

Adobe (Macromedia) HomeSite (Windows only). This tool includes short-

cuts, templates, and even wizards for more complex web page authoring.

BBEdit by Bare Bones Software (Macintosh only). Lots of great shortcut

features have made this the leading editor for Mac-based web develop-

ers.

TextMate by MacroMates (Macintosh only). This advanced text editor fea-

tures project management tools and an interface that is integrated with

the Mac operating system. It is growing in popularity because it is easy to

use, feature-rich, and inexpensive.

Graphics software

You’ll probably want to add pictures to your pages, so you will need an image-

editing program. We’ll look at some of the more popular programs in greater

detail in Part IV. In the meantime, you may want to look into the following

popular web graphics–creation tools:

Adobe Photoshop. Photoshop is undeniably the industry standard for image

creation in both the print and web worlds. If you want to be a professional

designer, you’ll need to know Photoshop thoroughly.

Adobe (Macromedia) Fireworks. This web graphics program combines a

drawing program with an image editor and vector tools for creating illus-

trations. It also features advanced tools for outputting web graphics.

Adobe Photoshop Elements. This lighter version of Photoshop is designed

for photo editing and management, but some hobbyists may find that it

has all the tools necessary for putting images on web pages.

Adobe Illustrator. This vector drawing program is often used to create illus-

trations. You can output web graphics directly from Illustrator, or bring

them into Photoshop for additional fine-tuning.

Corel Paint Shop Pro (Windows only). This full-featured image editor is

popular with the Windows crowd, primarily due to its low price (only $99

at the time of this printing).

Multimedia tools

Because this is a book for beginners, I won’t focus on advanced multimedia

elements; however, it is still useful to be aware of the software that is available

to you should you choose to follow that specialty:

Adobe (Macromedia) Flash. This is the hands-down favorite for adding

animation, sound, and interactive effects to web pages due to the small

file size of Flash movies.

www.allitebooks.com

http://www.allitebooks.org

Part I: Getting Started16

What Do I Need to Buy?

Apple QuickTime and iMovie. You can use the QuickTime Player Pro to do

basic audio and video editing and exports. iMovie is another good and

affordable tool for exporting video for the Web.

Apple Final Cut Pro. For more advanced video editing, Final Cut Pro is an

industry favorite.

Microsoft Windows Movie Maker. Windows Media is growing in popularity

on the Web. This simple movie editor for Windows lets you easily create

movies in Windows Media format. Microsoft also offers Window Media

Encoder to convert existing movies to Windows Media format.

Adobe After Effects. This is the industry standard for creating motion graph-

ics and visual effects.

Sony Sound Forge. Sound Forge is a full-featured professional audio edit-

ing program. Sony also offers Sound Forge Audio Studio for entry-level

users.

Audacity. For the budget-conscious, Audacity is a powerful, cross-platform,

open source audio editing program, and you can’t beat the price...it’s

free!

Internet tools

Because you will be dealing with the Internet, you need to have some tools

specifically for viewing and moving files over the network:

A variety of browsers. Because browsers render pages differently, you’ll want

to test your pages on as many browsers as possible. There are hundreds

of browsers on the market, but these are best supported on Windows and

Macintosh:

Windows:

Internet Explorer (the current
version and at least two prior
versions)

Firefox

Netscape

Opera

Safari 3

Macintosh OS X:

Safari

Firefox

Macintosh OS 9:

Internet Explorer 5 (Note that most developers
do not test on this browser because it accounts
for a miniscule fraction of web traffic.)

A file-transfer program (FTP). An FTP program enables you to upload

and download files between your computer and the computer that will

serve your pages to the Web. The web authoring tools listed earlier all

have FTP programs built right in. There are also dedicated FTP pro-

grams as listed below. See Chapter 21, Getting Your Pages on the Web,

for more information on file uploading.

exercise 1-1 |
Taking stock

Now that you’re taking that first step
in learning web design, it might be
a good time to take stock of your
assets and goals. Using the lists in
this chapter as a general guide,
try jotting down answers to the
following questions:

What are your web design goals?
To become a professional web
designer? To make personal web
sites only?

Which aspects of web design
interest you the most?

What current skills do you have
that will be useful in creating web
pages?

Which skills will you need to
brush up on?

Which hardware and software
tools do you already have for web
design?

Which tools do you need to buy?
Which tools would you like to
buy eventually?













What Do I Need to Buy?

Chapter 1, Where Do I Start 17

Windows: Macintosh OS X:

WS_FTP

CuteFTP

AceFTP

Filezilla

Transmit

Fetch

Interarchy

Terminal application. If you know your way around the Unix operating sys-

tem, you may find it useful to have a terminal (command line) application

that allows you to type Unix commands on the server. This may be useful

for setting file permissions, moving or copying files and directories, or

managing the server software.

Windows users can install a Linux emulater called Cygwin for com-

mand line access. There is also PuTTY, a free Telnet/SSH client. Mac OS

X includes an application called Terminal that is a full-fledged terminal

application giving you access to the underlying Unix system and the abil-

ity to use SSH to access other command line systems over the Internet.

Web Page Authoring

Adobe (Macromedia) Dreamweaver

 www.adobe.com

Microsoft Expression Web

 www.microsoft.com/products/
expression

Nvu (open source web page editor)

 www.nvu.com

Apple iWeb

 apple.com/ilife/iweb

HTML Editing

Adobe (Macromedia) HomeSite

 www.adobe.com

BBEdit by Bare Bones Software

 www.barebones.com

TextMate by MacroMates

 www.macromates.com

TextPad for Windows

 www.textpad.com

Graphics

Adobe Photoshop

Adobe Photoshop Elements

Adobe Illustrator

Adobe (Macromedia) Fireworks

 www.adobe.com

Corel Paint Shop Pro

 www.corel.com

Multimedia

Adobe (Macromedia) Flash

 www.adobe.com

Apple iMovie

 www.apple.com/ilife/imovie

Apple Final Cut Studio (includes Final Cut
Pro, Soundtrack Pro, Motion, and DVD
Studio)

 www.apple.com/software/

Windows Media Encoder

Windows Movie Maker

 www.microsoft.com/windows/
windowsmedia/

Browsers

Microsoft Internet Explorer

 www.microsoft.com/windows/ie

Firefox

 www.mozilla.com/firefox

Netscape Navigator

 browser.netscape.com

Opera

 www.opera.com

Networking

WS_FTP, CuteFTP, AceFTP and others for
WIndows available at:

 www.download.com

Transmit (for Macintosh OSX)

 www.panic.com

Interarchy (for Macintosh OSX)

 www.interarchy.com

Cygwin (Linux emulator for Windows)

 www.cygwin.com

PuTTY (telnet/SSH terminal emulator)

 www.chiark.greenend.org.
uk/~sgtatham/putty/

A t A G l A n c e

Popular Web Design Software

Part I: Getting Started18

What You’ve Learned

What You’ve Learned
The lesson to take away from this chapter is: “you don’t have to learn every-

thing.” And even if you want to learn everything eventually, you don’t need to

learn it all at once. So relax, don’t worry. The other good news is that, while

many professional tools exist, it is possible to create a basic web site and get

it up and running without spending much money by using freely available or

inexpensive tools and your existing computer setup.

As you’ll soon see, it’s easy to get started making web pages—you will be able

to create simple pages by the time you’re done reading this book. From there,

you can continue adding to your bag of tricks and find your particular niche

in web design.

Test Yourself
Each chapter in this book ends with a few questions that you can answer to

see if you picked up the important bits of information. Answers appear in

Appendix A.

Match these web professionals with the final product they might be

responsible for producing.

A. Graphic designer

B. Production department

C. Information designer

D. Web programmer

_____ (X)HTML and CSS documents

_____ PHP scripts

_____ Photoshop page sketch

_____ Site diagram

What does the W3C do?

Match the web technology with its appropriate task:

A. HTML and XHTML

B. CSS

C. JavaScript

D. Ruby on Rails

E. XML

_____ Checks a form field for a valid entry

_____ Creates a custom server-side web application

_____ Identifies text as a second-level heading

_____ Defines a new markup language for sharing
 financial information

_____ Makes all second-level headings blue

What is the difference between frontend and backend web development?

What is the difference between a web-authoring program and an HTML-

editing tool?

1.

2.

3.

4.

5.

19

IN THIS CHAPTER

An explanation of
the Web, as it relates

to the Internet

The role of the server

The role of the browser

Introduction to URLs and
their components

The anatomy of a web page

I got started in web design in early 1993—pretty close to the start of the Web

itself. In web time, that makes me an old-timer, but it’s not so long ago that

I can’t remember the first time I looked at a web page. It was difficult to tell

where the information was coming from and how it all worked.

This chapter sorts out the pieces and introduces some basic terminology

you’ll encounter. If you’ve already spent time perusing the Web, some of this

information will be a review. If you’re starting from scratch, it is important

to have all the parts in perspective. We’ll start with the big picture and work

down to specifics.

The Internet Versus the Web
No, it’s not a battle to the death, just an opportunity to point out the distinction

between these two words that are increasingly being used interchangeably.

The Internet is a network of connected computers. No company owns the

Internet (i.e., it is not equivalent to a service like America Online); it is a

cooperative effort governed by a system of standards and rules. The purpose

of connecting computers together, of course, is to share information. There

are many ways information can be passed between computers, including

email, file transfer (FTP), and many more specialized modes upon which the

Internet is built. These standardized methods for transferring data or docu-

ments over a network are known as protocols.

The World Wide Web (known affectionately as “the Web”) is just one of

the ways information can be shared over the Internet. It is unique in that it

allows documents to be linked to one another using hypertext links—thus

forming a huge “web” of connected information. The Web uses a protocol

called HTTP (HyperText Transfer Protocol). If you’ve spent any time using

the Web, that acronym should look familiar because it is the first four letters

of nearly all web site addresses, as we’ll discuss in an upcoming section.

HOW THE WEB
WORKS

CHAPTER 2

Part I: Getting Started20

Serving Up Your Information

Serving Up Your Information
Let’s talk more about the computers that make up the Internet. Because they

“serve up” documents upon request, these computers are known as servers.

More accurately, the server is the software (not the computer itself) that

allows the computer to communicate with other computers; however, it is

common to use the word “server” to refer to the computer, as well. The role

of server software is to wait for a request for information, then retrieve and

send that information back as quickly as possible.

There’s nothing special about the computers themselves…picture anything

from a high-powered Unix machine to a humble personal computer. It’s the

server software that makes it all happen. In order for a computer to be part

of the Web, it must be running special web server software that allows it to

handle Hypertext Transfer Protocol transactions. Web servers are also called

“HTTP servers.”

There are many server software options out there, but the two most popu-

lar are Apache (open source software, see sidebar) and Microsoft Internet

Information Services (IIS). Apache is freely available for Unix-based comput-

ers and comes installed on Macs running Mac OS X. There is a Windows ver-

sion as well. Microsoft IIS is part of Microsoft’s family of server solutions.

Each computer on the Internet is assigned a unique numeric IP address (IP

stands for Internet Protocol). For example, the computer that hosts oreilly.com

has the IP address 208.201.239.37. All those numbers can be dizzying, so for-

tunately, the Domain Name System (DNS) was developed that allows us to refer

to that server by its domain name, oreilly.com, as well. The numeric IP address

is useful for computers, while the domain name is more accessible to humans.

Matching the text domain names to their respective numeric IP addresses is the

job of a separate DNS server.

It is possible to configure your web server so that more than one domain

name is mapped to a single IP address, allowing several sites to share a single

server.

A Word About Browsers
We now know that the server does the servin’, but what about the other half

of the equation? The software that does the requesting is called the client.

On the Web, the browser is the client software that makes requests for docu-

ments. The server returns the documents for the browser to display.

The requests and responses are handled via the HTTP protocol, mentioned

earlier. Although we’ve been talking about “documents,” HTTP can be used

to transfer images, movies, audio files, and all the other web resources that

commonly make up web sites or are shared over the Web.

A Brief History
of the Web
The Web was born in a particle
physics laboratory (CERN) in
Geneva, Switzerland in 1989. There,
a computer specialist named Tim
Berners-Lee first proposed a system
of information management that
used a “hypertext” process to link
related documents over a network.
He and his partner, Robert Cailliau,
created a prototype and released
it for review. For the first several
years, web pages were text-only. It’s
difficult to believe that in 1992 (not
that long ago), the world had only
50 web servers, total.

The real boost to the Web’s
popularity came in 1992 when
the first graphical browser (NCSA
Mosaic) was introduced. This allowed
the Web to break out of the realm of
scientific research into mass media.
The ongoing development of the
Web is overseen by the World Wide
Web Consortium (W3C).

If you want to dig deeper into the
Web’s history, check out these sites:

Web Developers’ Virtual Library

WDVL.com/Internet/History

W3C’s History Archives

www.w3.org/History.html

Open source
Open source software is developed
as a collaborative effort with the
intent to make its source code
available to other programmers for
use and modification. Open source
programs are usually available for
free.

t e R m I n O l O G y

Web Page Addresses (URLs)

Chapter 2, How the Web Works 21

When we think of a browser, we usually think of a window on a computer

monitor with a web page displayed in it. These are known as graphical brows-

ers or desktop browsers. The most popular graphical browser is Internet

Explorer for Windows, with over 80% of web traffic as of this writing.

However, there are many other popular browsers, including Firefox, Safari,

Opera, and Netscape.

Although it’s true that the Web is most often viewed on traditional graphical

browsers, it is important to keep in mind that there are all sorts of browsing

experiences. Users with sight disabilities may be listening to a web page read

by a screen reader. Some browsers are small enough to fit into cell phones or

PDAs. The sites we build must be readable in all of these environments.

Bear in mind also that your web pages may look and work differently even on

up-to-date graphical browsers. This is due to varying support for web tech-

nologies and users’ ability to set their own browsing preferences. Dealing with

the ways browsers and users affect your pages is discussed in Chapter 3, The

Nature of Web Design.

Web Page Addresses (URLs)
With all those web pages on all those servers, how would you ever find

the one you’re looking for? Fortunately, each document has its own special

address called a URL (Uniform Resource Locator). It’s nearly impossible to

get through a day without seeing a URL (pronounced “U-R-L,” not “erl”)

plastered on the side of a bus, printed on a business card, or broadcast on a

television commercial.

N OT E

Among developers, there is a movement to use the more technically accurate term URI
(Uniform Resource Identifier) for identifying the name of a resource. On the street and
even on the job, however, you’re still likely to hear URL.

Some URLs are short and sweet. Others may look like crazy strings of char-

acters separated by dots (periods) and slashes, but each part has a specific

purpose. Let’s pick one apart.

Server-side and Client-side
Often in web design, you’ll hear reference to “client-side” or “server-side” applications.
These terms are used to indicate which machine is doing the processing. Client-side
applications run on the user’s machine, while server-side applications and functions
use the processing power of the server computer.

t e R m I n O l O G y

Server-side and Client-side
Often in web design, you’ll hear reference to “client-side” or “server-side” applications.
These terms are used to indicate which machine is doing the processing. Client-side
applications run on the user’s machine, while server-side applications and functions
use the processing power of the server computer.

t e R m I n O l O G y

Intranets and
Extranets
When you think of a web site, you
generally assume that it is accessible
to anyone surfing the Web. However,
many companies take advantage of
the awesome information sharing
and gathering power of web sites
to exchange information just within
their own business. These special
web-based networks are called
intranets. They are created and
function like ordinary web sites, only
they are on computers with special
security devices (called firewalls)
that prevent the outside world
from seeing them. Intranets have
lots of uses, such as sharing human
resource information or providing
access to inventory databases.

An extranet is like an intranet,
only it allows access to select
users outside of the company. For
instance, a manufacturing company
may provide its customers with
passwords that allow them to
check the status of their orders in
the company’s orders database. Of
course, the passwords determine
which slice of the company’s
information is accessible. Sharing
information over a network is
changing the way many companies
do business.

Part I: Getting Started22

Web Page Addresses (URLs)

The parts of a URL

A complete URL is generally made up of three components: the protocol, the

site name, and the absolute path to the document or resource, as shown in

Figure 2-1.

http://

 The first thing the URL does is define the protocol that will be used for

that particular transaction. The letters HTTP let the server know to use

Hypertext Transfer Protocol, or get into “web-mode.”

N OT E

Sometimes you’ll see a URL that begins with https://. This is an indication that it is a
secure server transaction. Secure servers have special encryption devices that hide delicate
content, such as credit card numbers, while they are transferred to and from the browser.

www.jendesign.com

 The next portion of the URL identifies the web site by its domain name.

In this example, the domain name is jendesign.com. The “www.” part

at the beginning is the particular host name at that domain. The host

name“www” has become a convention, but is not a rule. In fact, some-

times the host name may be omitted. There can be more than one web site

at a domain (sometimes called subdomains). For example, there might

also be development.jendesign.com, clients.jendesign.com, and so on.

/2007/samples/first.html

 This is the absolute path to the requested HTML document, first.html.

The words separated by slashes indicate the pathway through directory

levels, starting with the root directory of the host, to get to first.html.

Because the Internet originally comprised computers running the Unix

operating system, our current way of doing things still follows many

Unix rules and conventions (hence the /).

To sum it up, the example URL says it would like to use the HTTP protocol

to connect to a web server on the Internet called www.jendesign.com and

request the document first.html (located in the samples directory, which is in

the 2007 directory).

1

2

3

http:// www.jendesign.com /2007/samples/first.html

Host name Domain name

Protocol1 Name of site2 Absolute path3

Directory path Document

Figure 2-1. The parts of a URL.

http:// www.jendesign.com /2007/samples/first.html

Host name Domain name

Protocol1 Name of site2 Absolute path3

Directory path Document

Figure 2-1. The parts of a URL.

Hey, There’s No
http:// on That URL!
Because all web pages use the
Hypertext Transfer Protocol, the
http:// part is often just implied.
This is the case when site names are
advertised in print or on TV, as a way
to keep the URL short and sweet.

Additionally, browsers are
programmed to add http://
automatically as a convenience to
save you some keystrokes. It may
seem like you’re leaving it out, but
it is being sent to the server behind
the scenes.

When we begin using URLs to create
hyperlinks in (X)HTML documents in
Chapter 6, Adding Links, you’ll learn
that it is necessary to include the
protocol when making a link to a
web page on another server.

N OT E

A group of folks are working to abolish
the “www” subdomain. Read more at
no-www.org.

The Anatomy of a Web Page

Chapter 2, How the Web Works 23

Default files

Obviously, not every URL you see is so lengthy. Many addresses do not

include a file name, but simply point to a directory, like these:

http://www.oreilly.com
http://www.jendesign.com/resume/

When a server receives a request for a directory name rather than a specific

file, it looks in that directory for a default document, typically named index.

html, and sends it back for display. So when someone types in the above

URLs into their browser, what they’ll actually see is this:

http://www.oreilly.com/index.html
http://www.jendesign.com/resume/index.html

The name of the default file (also referred to as the index file) may vary, and

depends on how the server is configured. In these examples, it is named index.

html, but some servers use the file name default.htm. If your site uses server-

side programming to generate pages, the index file might be named index.php

or index.asp. Just check with your server administrator to make sure you give

your default file the proper name.

Another thing to notice is that in the first example, the original URL did not

have a trailing slash to indicate it was a directory. When the slash is omitted,

the server simply adds one if it finds a directory with that name.

The index file is also useful for security. Some servers (depending on their

configuration) return the contents of the directory for display in the browser

if the default file is not found. Figure 2-2 shows how

the documents of the housepics directory are exposed

as the result of a missing default file. One way to pre-

vent people snooping around in your files is to be sure

there is an index file in every directory. Your system

administrator may also add other protections to pre-

vent your directories from displaying in the browser.

The Anatomy of a Web
Page
We’re all familiar with what web pages look in the

browser window, but what’s happening “under the

hood?”

At the top of Figure 2-3, you see a basic web page as it

appears in a browser. Although you can view it as one

coherent page, it is actually made up of three separate

files: an HTML document (index.html) and two graph-

ics (kitchen.gif and spoon.gif). The HTML document is

running the show.

Providing the URL for a directory (rather
than a specific filename) prompts the server
to look for a default file, typically called
index.html.

index.html

Some servers are configured to return a listing of the
contents of that directory if the default file is not found.

Figure 2-2. Some servers display the contents of the directory if an
index file is not found.

Part I: Getting Started24

The Anatomy of a Web Page

HTML documents

You may be as surprised as I was to learn that the graphically rich and inter-

active pages we see on the Web are generated by simple, text-only documents.

That’s right: plain old ASCII text (meaning it has just letters, numbers, and a

few symbol characters). This text file is referred to as the source document.

Take a look at index.html, the source document for the Jen’s Kitchen web page.

You can see it contains the text content of the page plus special tags (indicated

with angle brackets, < and >) that describe each text element on the page.

Adding descriptive tags to a text document is known as “marking up” the

document. Web pages use a markup language called the HyperText Markup

Language, or HTML for short, that was created especially for documents with

hypertext links. HTML defines dozens of text elements that make up docu-

ments such as headings, paragraphs, emphasized text, and of course, links.

There are also HTML elements that add information about the document

(such as its title) and that add media such as images, videos, Flash movies, or

applets to the page.

N OT E

The discussion of HTML in this section also applies to its updated version, XHTML
(eXtensible Hypertext Markup Language). The document in Figure 2-3 is actually
authored in XHTML.

A quick introduction to HTML

You’ll be learning about HTML in detail in Part II, so I don’t want to bog you

down with too much detail right now, but there are a few things I’d like to

point out about how HTML works and how browsers handle it.

Read through the HTML document in Figure 2-3 and compare it to the brows-

er results. It’s easy to see how the elements marked up with HTML tags in the

source document correspond to what displays in the browser window.

First, you’ll notice that the text within brackets (for example, <body>) does

not display in the final page. The browser only displays the content of the

element; the markup is hidden. The tags provide the name of the HTML ele-

ment—usually an abbreviation such as “h1” for “heading level 1,” or “em” for

“emphasized text.”

Second, you’ll see that most of the HTML tags appear in pairs surrounding

the content of the element. In our HTML document, <h1> indicates that the

following text should be a level-1 heading; </h1> indicates the end of the

heading. Some elements, called empty elements, do not have content. In our

sample, the <hr /> tag indicates an empty element that tells the browser to

“draw a horizontal rule (line) here.”

exercise 2-1 |
View source

You can see the (X)HTML file for
any web page by choosing View ➝
Page Source or (View ➝ Source) in
your browser’s menu. Your browser
will open the source document in
a separate window. Let’s take a look
under the hood of a web page.

Enter this URL into your browser:

www.learningwebdesign.com/
materials/chapter02/
kitchen.html

You should see the HTML source
from Figure 2-3.

Select View ➝ Page Source
(or View ➝ Source) from the
browser menu. A window opens
showing the source document
shown in the figure.

The source for most sites is
considerably more complicated.
View the source of oreilly.com
or the site of your choice. Don’t
worry if you don’t understand
what’s going on. Much of it will
look more familiar by the time
you are done with this book.

Keep in mind that while learning
from others’ work is fine, the all-out
stealing of other people’s code is
poor form (or even illegal). If you
want to use code as you see it, ask
for permission and always give credit
to those who did the work.

1.

1.

3.

The Anatomy of a Web Page

Chapter 2, How the Web Works 25

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html>
<head>
<title>Jen's Kitchen</title>
</head>
<body>

<h1>Welcome to the future home of Jen's Kitchen</h1>

<p>If you love to read about cooking and eating, would like to learn of some
of the best restaurants in the world, or just want a few choice recipes to add to your
collection, this is the site for you!</p>

<p>We're busy putting the site together.
Please check back soon.</p>

<hr />

<p>Copyright 2006, Jennifer Robbins</p>
</body>
</html>

index.html

The web page shown in this
browser window actually
consists of three separate files:
and HTML text document and
two graphics. Tags in the HTML
document gives the browser
instructions for how the text is to
be handled and where the images
should be placed.

kitchen.gif spoon.gif

Figure 2-3. The source file and images that make up a simple web page.

www.allitebooks.com

http://www.allitebooks.org

Part I: Getting Started26

Putting It All Together

When I first began writing HTML, it helped me to think of the tags and text

as “beads on a string” that the browser deals with one by one, in sequence.

For example, when the browser encounters an open bracket (<) it assumes

all of the following characters are part of the markup until it finds the clos-

ing bracket (>). Similarly, it assumes all of the content following an opening

<h1> tag is a heading until it encounters the closing </h1> tag. This is the

manner in which the browser parses the HTML document. Understanding

the browser’s method can be helpful when troubleshooting a misbehaving

HTML document.

But where are the pictures?

Obviously, there are no pictures in the HTML file itself, so how do they get

there when you view the final page?

You can see in Figure 2-3 that each image is a separate graphic file. The

graphics are placed in the flow of the text with the HTML image element

(img) that tells the browser where to find the graphic (its URL). When the

browser sees the img element, it makes another request to the server for the

image file, and then places it in the content flow. The browser software brings

the separate pieces together into the final page.

The assembly of the page generally happens in an instant, so it appears as

though the whole page loads all at once. Over slow connections or on slower

computers, or if the page includes huge graphics, the assembly process may

be more apparent as images lag behind the text. The page may even need to

be redrawn as new images arrive (although you can construct your pages in

a way to prevent that from happening).

Putting It All Together
To wrap up our introduction to how the Web works, let’s trace the stream of

events that occur with every web page that appears on your screen (Figure 2-4).

You request a web page by either typing its URL (for example, http://jen-

skitchensite.com) directly in the browser, or by clicking on a link on the

page. The URL contains all the information needed to target a specific

document on a specific web server on the Internet.

Your browser sends an HTTP Request to the server named in the URL

and asks for the specific file. If the URL specifies a directory (not a file), it

is the same as requesting the default file in that directory.

The server looks for the requested file and issues an HTTP response.

If the page cannot be found, the server returns an error message. The

message typically says “404 Not Found,” although more hospitable

error messages may be provided.

1

2

3

a.

Putting It All Together

Chapter 2, How the Web Works 27

4 The browser parses the
document. If it has images, the browser
contacts the server again for each
graphic file.

5 The page is assembled in
the browser window.

HTTP request

HTTP response

2 The browser sends
an HTTP request.

Server

Oops, no file

If the file is not on the server,
it returns an error message.

Server Contents

index.html

Browser

1 Type in a URL or click on a link in the browser.

3 The server looks for the file and
responds with an HTTP response.

“I see that you requested a directory,
so I’m sending you the default file,
index.html. Here you go.”

masthead.gif

spoon.gif

index.html

masthead.gif

spoon.gif

Figure 2-4. How browsers display web pages.

If the document is found, the server retrieves the requested file and

returns it to the browser.

The browser parses the HTML document. If the page contains images,

(indicated by the HTML img element), the browser contacts the server

again to request each image file specified in the markup.

The browser inserts each image in the document flow where indicated by

the img element. And voila! The assembled web page is displayed for your

viewing pleasure.

b.

4

5

Part I: Getting Started28

Test Yourself

Test Yourself
Let’s play a round of “Identify that Acronym!” The following are a few basic

web terms mentioned in this chapter. Answers are in Appendix A.

HTML a) Home of Mosaic, the first graphical browser

W3C b) The location of a web document or resource

CERN c) The markup language used for all web documents

HTTP d) Matches domain names with numeric IP addresses

IP e) A limited set of letters, numbers and symbols

URL f) Internet Protocol

NCSA g) Particle physics lab where the Web was born

DNS h) Protocol for transferring web documents on the Internet

ASCII i) The organization that monitors web technologies

Answers: __

1.

2.

3.

4.

5.

6.

7.

8.

9.

29

IN THIS CHAPTER

How variables on the
user’s end affect the

way your page looks and
performs, including:

 Browser version

 Alternative browsing
devices

 User preferences

 Platform

 Connection speed

 Browser window size
and monitor resolution

 Monitor color

As a web designer, you spend a lot of time creating pages and tweaking them

until they look good in your browser. Before you grow too attached to the

way your page looks on your screen, you should know that it is likely to look

different to other people. That’s just the nature of web design—you can’t

guarantee that everyone will see your page the way you do. The way your site

looks and performs is at the mercy of a number of variables such as browser

version, platform, monitor size, and the preferences or special needs of each

individual user. Your page may also be viewed on a mobile device like a cell

phone, or using an assistive device like a screen magnifier or a screen reader.

This unpredictable nature of the Web is particularly challenging if you have

experience designing for print, where what you design stays put. As a print

designer who made the transition to web design, I found I needed to let go

of controlling things such as page size, typography, and precise color. Having

a solid understanding of the web environment allows you to anticipate and

plan for these shifting variables. Eventually, you’ll develop a feel for it.

This chapter looks at the ways in which browsers, user configurations, plat-

form, connection speed, computer monitors, and alternative browsing envi-

ronments affect the design and functionality of web pages. It suggests some

tips for coping along the way.

Browser Versions
One of the biggest challenges in designing for the Web is dealing with

the multitude of browsers in current use. Although the current version of

Microsoft Internet Explorer running on Windows makes up the lion’s share

(60 to 80% as of this writing), there are at least a dozen browser versions that

web developers pay attention to, and hundreds more obscure or antiquated

browsers still in use. See the sidebar, Browser Roll Call, for more information

on relevant browsers.

In the no-so-distant past, browsers were so incompatible that web authors

were forced to create two separate sites, one for Internet Explorer and one

for Netscape (the only two players at the time). Fortunately, things have

THE NATURE OF
WEB DESIGN

CHAPTER 3

The nature of web
design is that there is no
guarantee that everyone
will see your page the way
you do.

Part I: Getting Started30

Browser Versions

Browser Roll Call
It is important that web developers be familiar with the browsers in current use.
Although there are hundreds of browsers out there, only about a dozen make up 99%
of browser usage. The A-list browsers in Table 3-1 offer solid standards support and
represent the vast majority of web traffic.

Older and niche browsers listed in Table 3-2 may be tested to be sure that the content
is available and accessible, but there is no effort made to reproduce the A-list browsing
experience on these browsers.

It should be noted that the browsers listed here, and the Usage Statistics in particular,
reflect the browser landscape as of the writing of this book. Things are sure to be different
by the time you are reading this. For updated browser statistics, go to www.thecounter.
com or www.w3schools.com/browsers. Of course, the most meaningful statistics are those
taken from your own site. 3% of visitors to your blog and 3% on a site like Yahoo! are
different sized crowds indeed, and may warrant different support decisions.

Table 3-1. A-list browsers (generally tested for a consistent presentation and scripting experience)

Browser version Platforms Released Stats* Notes

Internet Explorer 7 Windows XP, Linux,
Unix

2006 14% IE7 improves support for CSS2 and fixes many of
the bugs in IE6. It’s share will eventually surpass IE6

Internet Explorer 6 Windows, Linux,
Unix

2001 58% IE6 usage will decrease as IE7 is distributed.

Internet Explorer 5.5
and 5

Windows, Linux,
Unix

2001 (5.5)
1999 (5)

1% There are significant differences in the way IE5
and 5.5 supports CSS, requiring workarounds
until these versions finally go away. Some develop-
ers have already stopped supporting IE5 with the
release of IE7.

Mozilla Firefox 1.0 Windows, Linux,
Unix, Macintosh

2005 12% Fast and standards-compliant, this is the recom-
mended browser of the development community.

Netscape 7 & 8 Windows, Linux,
Unix, Macintosh

2002 1% Netscape once dominated; now it is barely a blip
on the radar.

Opera 8+ Windows, Linux,
Unix, Macintosh

2005 1% Opera is popular in the development community
for its small size and standards compliance.

Safari 1.0 and 2.0 Macintosh OS X 2002 (1.0)
2005 (2.0)

3% Safari comes with OS X. Safari 2.0 offers the most
advanced CSS support of any current browser.

Safari 3.0 Macintosh OS X,
WIndows 2007

2007 n/a In public beta as of this writing.

Table 3-2. Older browser versions (tested only to make sure content is available and accessible)

Netscape 4 Windows, Linux,
Unix, Macintosh

1999 < .5% Netscape 4 has only partial support for CSS and
other standards. It is represtentative of legacy
browsers.

IE 5 (Mac) Macintosh 2000 < 1% The best standards-compliant browser option for
users who must still use Mac OS 9

Lynx (or other text only
browser)

old versions for
Windows, Mac, Unix

1992 n/a A text only browser is useful for testing the accessi-
bility of content on less-than-optimal browsers.

* Usage statistics taken from TheCounter.com in April 2007.

N OT E

For a complete list of all browers, old
and new, see browsers.evolt.org.

For Further Reading
The article “Graded Browser Support”
by Nate Koechley at Yahoo!’s
Developer Network aptly sums up the
contemporary approach to browser
support. Read it at developer.yahoo.
com/yui/.articles/gbs/gbs.html

Browser Versions

Chapter 3, The Nature of Web Design 31

improved dramatically now that browsers have better support for web stan-

dards established by the World Wide Web Consortium (W3C for short). The

situation will continue to improve as older, problematic browser versions

such as Internet Explorer 5 and Netscape 4 fade out of existence.

Fortunately, nearly all browsers in use today support HTML 4.01 and

XHTML standards, with only a few exceptions. That doesn’t mean that an

(X)HTML document will look identical on all browsers—there may still be

slight differences in the default rendering of text and form elements. That’s

because browsers have their own internal style sheets that determine how

each element looks by default.

Instead, the new challenge for cross-browser consistency comes in the varying

support of certain aspects of Cascading Style Sheets (CSS). Although most

of the basic style sheet properties can be used reliably, there are still some

bugs and inconsistencies that may cause unexpected results. Figure 3-1 shows

how the same web page may be rendered differently based on the browser’s

support of CSS.

Coping with various browser versions

How do professional web designers and developers cope with the multitude

of browsers and their varying capabilities? Here are a few guidelines.

Don’t sweat the small stuff. As a web designer, you must allow a certain

amount of variation. It’s the nature of the medium. What is important

isn’t that form input boxes are all precisely 15 pixels tall, but that they

work. The first lesson you’ll learn is that you have to let go.

Stick with the standards. Following web standards—(X)HTML for docu-

ment structure and CSS for presentation—as documented by the W3C

is your primary tool for ensuring your site is as consistent as possible on

all standards-compliant browsers (that’s approximately 99% of browsers

in current use).

Internet Explorer 5 (Windows 2000)
Because of IE5Win’s implementation of CSS, centering
is broken, columns overlap, and the tabs run together.

Firefox 1.5
This page appears as the author intended.

Figure 3-1. The same web page may
look different on different browsers. In
this case, the problem is in inconsistent
implementation of certain style
properties by IE5 (Win). Fortunately, the
percentage of web traffic using IE5 (Win)
is down around 2% and shrinking with the
release of IE7 in 2006.

Internet Explorer 5 (Windows 2000)
Because of IE5Win’s implementation of CSS, centering
is broken, columns overlap, and the tabs run together.

Firefox 1.5
This page appears as the author intended.

Figure 3-1. The same web page may
look different on different browsers. In
this case, the problem is in inconsistent
implementation of certain style
properties by IE5 (Win). Fortunately, the
percentage of web traffic using IE5 (Win)
is down around 2% and shrinking with the
release of IE7 in 2006.

Part I: Getting Started32

Alternative Browsing Environments

Start with good markup. When an (X)HTML document is written in logi-

cal order and its elements are marked up in a meaningful way, it will be

usable on the widest range of browsing environments, including the old-

est browsers, future browsers, and mobile and assistive devices. It may

not look exactly the same, but the important thing is that your content

is available.

Don’t use browser-specific (X)HTML elements. There are markup elements

and attributes out there that work only with one browser or another, a

remnant from the browser wars of old. Don’t use them! (You won’t learn

them here.)

Become familiar with the aspects of CSS that are likely to cause problems.

Using style sheets effectively takes some practice, but experienced devel-

opers know which properties are “safe,” and which require some extra

tweaks to get consistent results on all current browsers.

Alternative Browsing Environments
The previous section focused on issues relevant to graphical browsers used

on desktop or laptop computers. It is critical to keep in mind, however, that

people access content on the Web in many different ways. Web designers

must build pages in a manner that creates as few barriers as possible to get-

ting to information, regardless of the user’s ability and the device used to

access the Web. In other words, you must design for accessibility.

Accessibility is a major topic of discussion in the web design world, and a

priority for all web designers. While intended for users with disabilities such

as poor vision or limited mobility, the techniques and strategies developed for

accessibility also benefit other users with less-than-optimum browsing expe-

riences, such as handheld devices, or traditional browsers over slow modem

connections or with the images and JavaScript turned off. Accessible sites are

also more effectively indexed by search engines such as Google. The extra

effort in making your site accessible is well worth the effort.

Users with disabilities

There are four broad categories of disabilities that affect how people interact

with their computers and the information on them:

Vision impairment. People with low or no vision may use an assistive

device such as a screen reader, Braille display, or a screen magnifier to

get content from the screen. They may also simply use the browser’s text

zoom function to make the text large enough to read.

Mobility impairment. Users with limited or no use of their hands may

use special devices such as modified mice and keyboards, foot pedals, or

joysticks to navigate the Web and enter information.

•

•

Browsercam
A good shortcut for checking how
your page looks in a variety of
browsers (without installing them
all yourself) is to use a subscription
service like Browsercam.com. For a
monthly fee, just enter the URL of
your page, and Browsercam captures
the screen image in every browser
configuration you can imagine.
Check it out at www.browsercam.
com. It is not a substitute for testing
performance (you can’t tell if the
scripts are working), but it can catch
style sheet and even markup issues.

D e V e l O P m e n t t I P

Accessibility vs.
Availability
Web accessibility guru, Derek
Featherstone, draws an interesting
and useful distinction between
“accessibility” for users with
disabilities and “availability” for
users with alternative devices such
as mobile phones. Read his blog
entry at www.boxofchocolates.
ca/archives/2005/08/25/accessibility-
and-availability

F O R F U R t H e R R e A D I n G

Alternative Browsing Environments

Chapter 3, The Nature of Web Design 33

Auditory impairment. Users with limited or no hearing will miss out

on audio aspects of multimedia, so it is necessary to provide alternatives,

such as transcripts for audio tracks or captions for video.

Cognitive impairment. Users with memory, reading comprehension,

problem solving, and attention limitations benefit when sites are design

ed simply and clearly. These qualities are helpful to anyone using your

site.

The lesson here is that you shouldn’t make assumptions about how your

users are accessing your information. They may be hearing it read aloud.

They may be pushing a button to jump from link to link on the page. The

goal is to make sure your content is accessible, and the site is as easy to use

as possible.

The mobile Web

The increased popularity of the Web, combined with the growing reliance on

handheld devices such as cell phones, PDAs, and palm-top computers, has

resulted in web browsers squeezing into the coziest of spaces.

Although most content accessible on mobile devices has been developed

specifically for that type of browser, an increasing number of devices now

include microbrowsers capable of displaying the same web content that you’d

see on your PC. Microbrowsers are designed to accommodate limited display

area, lower memory capacity, and low bandwidth abilities. Some have only

basic HTML support and others support the current web standards.

One limitation of handheld devices is screen size. Mobile displays are roughly

only 240 pixels square, although some have dimensions as small as 128 pixels

or as large as 320. That’s not much room to look at a typical web site. Mobile

browsers deal with the limited screen size the best they can. Some shrink the

page to fit by displaying the text content as it appears in the HTML source

document, and resizing the images to fit the screen. Others simply allow hori-

zontal scrolling. Figure 3-2 shows the Jen’s Kitchen page as it might appear in

a microbrowser on a cell phone.

Dealing with diversity

The best way to accommodate the needs of all your visitors is to design with

accessibility in mind. Accessible design not only helps your disabled visitors,

but also those using the Web on the go or under any less-than-ideal condi-

tions. You’ll also improve the quality of your content as perceived by search

engine indexing programs.

The W3C started the Web Accessibility Initiative to address the need to make

the Web usable for everyone. They developed the Web Content Accessibility

Guidelines (WCAG) to help developers create accessible sites. You can

•

•

Figure 3-2. This is the Jen’s Kitchen
web page from Chapter 2 as it might
appear on a mobile device. (The image
was taken using the Openwave Mobile
Browser Simulator available at developer.
openwave.com.)

Figure 3-2. This is the Jen’s Kitchen
web page from Chapter 2 as it might
appear on a mobile device. (The image
was taken using the Openwave Mobile
Browser Simulator available at developer.
openwave.com.)

N OT E

Adobe Creative Suite 3 features many
tools for designing and optimizing appli-
cations for mobile devices. Learn more at
adobe.com.

N OT E

Adobe Creative Suite 3 features many
tools for designing and optimizing appli-
cations for mobile devices. Learn more at
adobe.com.

Part I: Getting Started34

Alternative Browsing Environments

read them all at www.w3.org/TR/1999/WAI-WEBCONTENT-19990505. The

United States government used the Priority 1 points of the WCAG as the

basis for its Section 508 accessibility guidelines (see the sidebar, Government

Accessibility Guidelines: Section 508).

While accessibility and the techniques for achieving it are vast topics, I’ve

summarized some of the guiding principles and provided pointers to useful

resources here.

Start with clean HTML. When your source document has been marked up

with appropriate, meaningful HTML elements and the content appears

in a logical order, your content will make sense in the widest variety of

circumstances, whether it is read aloud or displayed on a tiny handheld

screen.

Provide alternatives. Always provide alternatives to non-text content such as

alternative text or long descriptions for images, transcripts for audio, and

captions for video content, to better serve users with various disabilities.

Allow text to resize. If you use style sheets to specify font size, do so in rela-

tive measurements such as percentages or ems (a unit of measurement for

text equal to a capital “M”) so that users can resize it with the browser’s

“text zoom” feature (when available).

Don’t put text in graphics. Although it may be tempting to control the

typography of a headline by putting it in a graphic, doing so makes it less

accessible by removing that content from the document. It also prevents

users from resizing the text.

Use accessibility features when creating HTML tables and forms. There are

a number of attributes in HTML 4.01 and XHTML that improve acces-

sibility by explicitly labeling columns or form fields. They’re only useful

if you take the time to use them correctly. We’ll address these features in

the tables and forms chapters, respectively.

Be careful with colors and backgrounds. Be sure that there is plenty of con-

trast between the foreground and background colors you specify. When

using background images, be sure to also specify a similarly colored back-

ground color so text is legible, should the image not load properly.

For further reading

The following resources are good starting points for further exploration on

web accessibility.

The Web Accessibility Initiative (WAI), www.w3.org/WAI

WebAIM: Web Accessibility in Mind, www.webaim.org

Dive Into Accessibility: 30 days to a more accessible web site, diveintoac-

cessibility.org

•

•

•

User Preferences

Chapter 3, The Nature of Web Design 35

Building Accessible Websites, by Joe Clark (New Riders) provides a com-

prehensive overview. Joe Clark’s web site (joeclark.org/access) features Joe’s

latest thinking and discussions on accessibility issues.

User Preferences
At the heart of the original web concept lies the belief that the end user

should have ultimate control over the presentation of information. For that

reason, browsers are built with features that enable users to set the default

appearance of the pages they view. Users’ settings will override yours, and

there’s not much you can do about it. This ensures that users who need to

alter the presentation to meet special needs, such as enlarging type to com-

pensate for imparied vision (or even just to read while leaning back in their

chairs), are able to do so.

•

If you create a site for a Federal agency, you are required by
law to comply with the Section 508 Guidelines that ensure that
electronic information and technology is available to people
with disabilities. State and other publicly funded sites may also
be required to comply.

The following guidelines, excerpted from the Section 508
Standards at www.section508.gov, provide a good checklist for
basic accessibility for all web sites.

A text equivalent for every non-text element shall be
provided (e.g., via “alt”, “longdesc”, or in element content).

Equivalent alternatives for any multimedia presentation shall
be synchronized with the presentation.

Web pages shall be designed so that all information
conveyed with color is also available without color, for
example from context or markup.

Documents shall be organized so they are readable without
requiring an associated style sheet.

Redundant text links shall be provided for each active region
of a server-side image map.

Client-side image maps shall be provided instead of server-
side image maps except where the regions cannot be
defined with an available geometric shape.

Row and column headers shall be identified for data tables.

Markup shall be used to associate data cells and header cells
for data tables that have two or more logical levels of row or
column headers.

1.

2.

3.

4.

5.

6.

7.

8.

Frames shall be titled with text that facilitates frame
identification and navigation.

Pages shall be designed to avoid causing the screen to
flicker with a frequency greater than 2 Hz and lower than
55 Hz.

A text-only page, with equivalent information or
functionality, shall be provided to make a web site comply
with the provisions of this part, when compliance cannot be
accomplished in any other way. The content of the text-only
page shall be updated whenever the primary page changes.

When pages utilize scripting languages to display content,
or to create interface elements, the information provided by
the script shall be identified with functional text that can be
read by assistive technology.

When a web page requires that an applet, plug-in or other
application be present on the client system to interpret
page content, the page must provide a link to a plug-in or
applet that complies with §1194.21(a) through (l).

When electronic forms are designed to be completed
online, the form shall allow people using assistive
technology to access the information, field elements, and
functionality required for completion and submission of the
form, including all directions and cues.

A method shall be provided that permits users to skip
repetitive navigation links.

When a timed response is required, the user shall be alerted
and given sufficient time to indicate more time is required.

9.

10.

11.

12.

13.

14.

15.

16.

Government Accessibility Requirements: Section 508

www.allitebooks.com

http://www.allitebooks.org

Part I: Getting Started36

User Preferences

Simply by changing preference settings in the browser, anyone can affect the

appearance and functionality of web pages (including yours) in the following

ways.

Change the font face and size. The text zoom feature in modern brows-

ers makes it easy to make text larger or smaller on the fly. Users might

also change the font face in addition to the size using font settings in the

browser Preferences. I’ve seen CAD designers with super-high monitor

resolution set their default type at 24 points to make text easily readable

from a comfortable distance. I’ve looked over the shoulder of a kid who

set his browser to render all text in a graffiti font, just because he could.

You simply don’t know how your text will look on the other end. Figure

3-3 shows how the Jen’s Kitchen page might look with different user

preferences.

Change the background and text colors. These days, users are less likely to

alter the color settings in their browsers just for fun as they did when all

web pages were comprised of black text on gray backgrounds. However,

some users with impaired vision may use the browser preferences to ensure

that all text is dark on a light background with plenty of contrast.

Ignore style sheets or apply their own. Savvy users with specific needs

may create their own style sheets that apply to all the sites they view.

Others may choose to simply turn style sheets off, for whatever reason.

Turn images off. Users can opt to turn off the graphics completely. You’d

be surprised at how many people do this to alleviate the wait for band-

width-hogging graphics over slow modem connections. Make sure your

pages are at least functional with the graphics turned off. Although add-

ing alternative text for each image helps (and it’s required in HTML 4.01

and XHTML), it is not visible to 100% of your users. Figure 3-4 shows

how a missing image with alternative text looks on several browsers with

the images turned off. As you can see, if there is text in the graphic, it

will be lost to Safari users because of Safari’s poor support for alternative

text.

Turn off Java and JavaScript. Your visitors can turn off technologies such

as Java or JavaScript with the push of a button. With Java turned off, Java

applets will not function. It is actually fairly common for users to turn

off JavaScript due to security issues (real or perceived). Figure 3-5 shows

a page that uses a Java applet for its main navigation. With Java turned

off, the page is a dead end. Similarly, all of the main content on the web

page at the bottom of Figure 3-5 disappears if JavaScript is not enabled.

The lesson is to avoid relying on technology that can be turned on and

off for critical content.

Turn off pop-up windows. Because pop-up ads have become such a nuisance,

some browsers make it easy to prevent pop-up windows from opening.

•

•

•

•

•

•

Figure 3-3. A document can look very
different as a result of the user’s browser
settings.

Figure 3-3. A document can look very
different as a result of the user’s browser
settings.

User Preferences

Chapter 3, The Nature of Web Design 37

Images on

IE6-Win (alt text on)

Safari (Mac OS X)

Firefox (same for Win and Mac)

IE6-Win (alt text off)

Netscape 7 (Win)

Figure 3-4. It is possible for users to
turn image loading off in their browsers.
Although providing alternative text helps,
it is not 100% foolproof. Notice that the
link labels are lost in IE 6 for Windows
(when the Alt text option is turned off) and
Safari on the Mac. This is another reason
to be careful with the way you use images
on your pages.

JavaScript ON

JavaScript OFF

Java ON

Java OFF

Content disappears

Navigation
 disappears

Figure 3-5. The site on the top loses all
of its navigation when Java is turned off.
In the site at the bottom of the figure, the
main content disappears when JavaScript
is not on. Both sites serve as a lesson
not to require special functionality for
essential content.

Part I: Getting Started38

Different Platforms

Users also have a say about which fonts and plug-ins are installed on their

computers, which can affect their experience of your site as well. Even if you

specify a particular font in a style sheet, that font won’t be used if it isn’t

found on the user’s hard drive (we’ll talk more about fonts in Chapter 12,

Formatting Text). And as mentioned earlier, some media formats are depen-

dent on plug-ins that must be downloaded and installed.

Coping with user preferences

How do you deal with user preferences? It basically comes down to “if you

can’t beat ‘em, join ‘em.”

Design for flexibility. Whether for good reason or on a whim, the user has

the final say on how pages look in the browser. The trend in contempo-

rary web design is to build flexibility into the page. Techniques include

using CSS layout techniques that specifically allow text size to change or

providing multiple style sheets. We’ll look at some of those techniques in

Part III.

Make sure your content is accessible without images, scripts, applets, and

plug-ins. Be prepared for the fact that some users opt to turn these fea-

tures off in their browsers. It is a good idea to test your site under minimal

conditions to make sure content is not lost and that there are no dead

ends. Always provide alterative text for images and alternative means of

accessing your important information or media.

Different Platforms
Another variable that affects how users see your pages is the platform, or

operating system, of their computers. Although most web users have personal

computers running some version of the Windows operating system, a sig-

nificant portion view the Web from Macintosh computers and Unix/Linux

systems. The user’s platform affects:

Font availability and display. Operating systems come with different

fonts installed, so you can’t assume that a font that comes installed on

Windows will be available for everyone else. In addition, text tends to

have a different look from platform to platform due to the methods used

for sizing and rendering. Typography on the Web is discussed in more

detail in Chapter 12.

The rendering of form elements. Form elements such as scrolling lists

and pull-down menus tend to take on the general appearance of the oper-

ating system, and therefore appear quite differently from one platform to

another. They may also be sized differently, which comes into play if you

are attempting to fit form elements into a space of a specific size.

 • Availability of plug-in media players. Browsers use plug-ins (or ActiveX

controls on Windows) to play media such as streaming video, audio, or

•

•

exercise 3-1 | Playing
with preferences

See how bad you can get your
favorite web pages to look. Keep in
mind that some users may be doing
this to you.

Launch your browser. Select Edit
➝ Preferences from the menu.

In Internet Explorer, select Web
Content and Language/Fonts. In
Firefox, select General then Fonts
and Colors.

Have fun setting new text and
background colors. Change the
size and fonts of the text. Be
sure to check or uncheck boxes
so that your preferences will
override the document’s settings.
Try turning off image display.

Now have a look at some web pages.
How do you like their makeover?







Connection Speed

Chapter 3, The Nature of Web Design 39

Flash movies that have been embedded on a web page. Fortunately, very

popular players like the Flash Player are available for all platforms. Be

aware, however, that some plug-in releases for Macintosh and Unix lag

behind the Windows versions (the Windows Media Player, for example)

or are not supported at all.

Coping with different platforms

These are a few strategies for dealing with the fact that your page will be

viewed on different platforms.

Allow some variation. You’ve heard this tip before in the previous section. As

long as your content is available and functional, the small details don’t

matter. You’ll get the hang of designing for flexibility to allow for changing

font and form control sizes.

Specify common fonts and provide alternatives. There are a handful of fonts

that are available cross-platform, and you should always provide a list

back-up fonts should your specified font not be found. Specifying fonts

is discussed in Chapter 12.

Be sure media players are available for all platforms. Before you commit

to a particular media format, make sure that it will be accessible for all

platforms. If the necessary plug-in isn’t available for everyone, provide an

alternative format, if possible. It has become common for media sites to

offer a choice between QuickTime, Windows Media, and RealMedia and

let the user pick the format they prefer.

Don’t mimic a particular operating system in your interface design. OK, this

might just be a personal peeve of mine, but web sites (and pop-up ads) that

use Windows-style menu bars and buttons just look silly on my Mac.

Connection Speed
Remember that a web page is published over a network, and it needs to go

zipping through the lines as little bundles of data before it reaches the end

user. In most cases, the speed of that connection is a mystery.

On the high end, folks with T1 connections, cable modems, ISDN, and other

high-speed Internet access may be viewing your pages at a rate of up to 500

KB per second. The percentage of people accessing the Web with broadband

connections is steadily increasing. As of this writing, roughly 70% of Internet

users in the United States access the Internet via broadband*, and it is steadily

climbing. That percentage rises to 90% in the U.S. workplace.

* According to Nielsen/Net Ratings (www.netratings.com) as published by WebSiteOptimization.

com in August, 2006 (www.websiteoptimization.com/bw0604/).

Part I: Getting Started40

Browser Window Size and Monitor Resolution

The remaining 30% are dialing in with modems whose speed can range from

56 Kbps to as slow as 14.4 Kbps. For these users, data transfer rates of 1 KB

per second are common.

N OT E

There are other factors that affect download times, including the speed of the server,
the amount of traffic it is receiving when the web page is requested, and the general
congestion of the lines.

Coping with unknown connection speed

When you’re counting on maintaining the interest of your readers, every millisec-

ond counts. For this reason, it’s wise to follow the golden rules of web design:

Keep your files as small as possible. It should be fairly intuitive that larger

amounts of data will require more time to arrive. One of the worst cul-

prits for hogging bandwidth is graphics files, so it is especially important

that you spend time optimizing them for the Web. (I discuss some strate-

gies for doing this in Chapter 19, Creating Lean and Mean Web Graphics.)

(X)HTML files, although generally just a few kilobytes (KB) in size, can

be optimized as well by removing redundant markup and extra spaces.

Audio, video, and multimedia content also consume lots of bandwidth

and should be compressed appropriately. Because you know a web page is

designed to travel, do your best to see that it travels light.

Know your audience. In some cases, you can make assumptions as to the con-

nection speeds of your typical users. For example, if you are creating a video

sharing site, you can optimize the site for performance over high-bandwidth

connections. Because most people have access to high-bandwidth Internet

in the workplace, you may be a bit more lenient on file sizes for sites with

a professional audience. However, if your site is aimed at consumers or the

classroom, be especially frugal with your byte count.

Browser Window Size and Monitor
Resolution
Although you may prefer the way your page looks when the window is just

larger than the masthead you designed, the fact is users can set the window as

wide or narrow as they please. You really have no idea how big your page will

be: as large as the user’s monitor will allow, or smaller according to personal

preference or to accommodate several open windows at once.

But don’t worry. Not only will you become familiar with how your content

behaves at different window sizes, there are also design techniques that can

make the page layout more predictable. I’ll talk about them a bit in this sec-

tion and then in detail in Chapter 16, Page Layout Templates.

For global broadband statistics,
see the statistics published by the
Organisation for Economic Co-
operation and Development at www.
oecd.org.

O n l I n e R e S O U R c e

Browser Window Size and Monitor Resolution

Chapter 3, The Nature of Web Design 41

Go with the flow

Let’s take a look at what happens to text content on web pages when the

window is resized. Unlike print pages, web pages are fluid. Take a look at the

web page in Figure 3-6. By default, elements like headings, paragraphs, and

lists stack up (sort of like blocks), and the text within them flows in to fill the

available width of the window or other container space. This is what is called

the normal flow of the document.

Now look at what happens when the page is resized, as shown in the figure

on the right. The block elements stay stacked up in order, but the lines of text

in them rebreak and reflow to fill the new, narrower space, resulting in more

text lines and a longer page overall.

That means you can’t be sure that your intro paragraph will be exactly a cer-

tain number of lines as you can in print. In addition, if the browser window

is very wide, the lines of text will be very long, perhaps even too wide to be

read comfortably. We’ll address some of these issues in a moment, but first,

let’s look at what we do know about typical browser window dimensions.

Web page dimensions

Because browser windows can only be opened as large as the monitors dis-

playing them, standard monitor resolution (the total number of pixels avail-

able on the screen) is useful in anticipating the likely dimensions of your

page. This is particularly true on Windows machines, because the browser

window is typically maximized to fill the monitor. The sidebar, Common

Monitor Resolutions, lists the most popular resolutions as well as how much

space that leaves for your content.

As of this writing, most commercial web sites are designed to fit in an 800

× 600 monitor, the smallest monitor that is still in significant use. Allowing

Figure 3-6. In the normal text flow, headings and paragraphs stack up, but the text within
them flows to fill the available width. If the width changes, the text reflows.
Figure 3-6. In the normal text flow, headings and paragraphs stack up, but the text within
them flows to fill the available width. If the width changes, the text reflows.

exercise 3-2 |
Get a feel for the
normal flow

If you have a browser and
access to the Web, you can play
along with Figure 3-6. Make sure
your browser window is not
optimized to fill the screen.

Enter the following URL into your
browser:

www.w3.org/MarkUp

Make the browser as wide as your
monitor will allow. Now make it
extremely narrow. How many lines of
text are at the top? What happens to
the headline? What happens to the
pink box?

Part I: Getting Started42

Browser Window Size and Monitor Resolution

for the browser chrome and operating system menus, that leaves a canvas

area of approximately 775 × 425 pixels for your web content. See the sidebar,

Designing “Above the Fold,” that describes some of the important content

elements you may want to fit in that modest space.

There is an emerging trend toward wider web pages that fill 1024 and even

1280 pixel monitor widths. This is particularly true for sites aimed at a techni-

cal and creative audience where it may be assumed that the audience is view-

ing from an up-to-date computer with a high-resolution monitor.

Coping with browser window size

How do you cope with the unknown-window-size dilemma? Two page layout

approaches have developed in reaction to the need to accommodate changing

browser window dimensions:

Common Monitor Resolutions
Table 3-3 lists the most common monitor resolutions from smallest to largest. It does
not include the dimensions of widescreen laptop monitors, as there are currently no
usage statistics for those resolutions.

The canvas dimensions refer to the amount of space left in the browser window
after all of the controls for the operating system and the buttons and scrollbars
for the browser (known as chrome) are accounted for. The canvas measurements
reflect the available space in Internet Explorer 6 on Windows (the most popular
browser/platform configuration). On browsers on Macintosh OS X, the canvas space
is approximately five pixels wider and 40 pixels taller than IE6(Win).

Finally, the usage statistics reflect those gathered by TheCounter.com for the month
of October, 2006. The percentage of 800 × 600 monitors is declining steadily, so it is
worth taking a look at the Global Stats on TheCounter.com for updated statistics. Of
course, the most meaningful resolution stats will come from your own site.

Table 3-3. Common monitor resolutions

Resolution Canvas Size (IE6/Win) % of Users (Oct ‘06)

640 × 480 620 × 309 < 1 %

800 × 600 780 × 429 22 %

1024 × 768 1004 × 597 56 %

1152 × 864 1132 × 793 3 %

1280 × 1024 1260 × 853 13 %

1600 × 1200 1580 × 1129 < 1%

What Is a Pixel?
If you look closely at an image on a
computer monitor, you can see that
it looks like a mosaic made up of tiny,
single-colored squares. Each square is
called a pixel.

t e R m I n O l O G y

Browser Window Size and Monitor Resolution

Chapter 3, The Nature of Web Design 43

Liquid layouts

 Liquid layouts resize and adapt to the changing window size (Figure

3-7). When the window gets narrower, so do the columns, and the text is

allowed to re-wrap as necessary. Liquid layouts are in keeping with the

behavior of the normal flow and the spirit of the medium. They also don’t

require choosing a target resolution for development; however, on very

large monitors, the line lengths may get too long to read comfortably.

Figure 3-7. An example of a liquid layout (screenshots taken from clagnut.com/
blog/269).
Figure 3-7. An example of a liquid layout (screenshots taken from clagnut.com/
blog/269).

Newspaper editors know the importance of putting the most
important information “above the fold,” that is, visible when the
paper is folded and on the rack. This principle applies to web
design as well.

Web designers have adopted the term “above the fold” to
refer to the first screenful of a web page. It’s what users will
see without scrolling, and it bears the burden of holding their
attention and enticing them to click in or scroll down further.
Some elements you should consider placing above the fold
include:

The name of the site and your logo (if you have one)

Your primary message

Some indication of what your site is about (e.g., shopping,
directory, magazine, etc.)

Navigation to key parts of the site







Crucial calls to action, such as “Register Now”

Any other important information, such as a toll-free number

An advertising banner (your advertisers may require it)

But how much is a “screenful?” Unfortunately, this varies by
browser window size. Your available space could be as small as
760 × 400 pixels in a browser on an 800 × 600 monitor.

In general, the level of confidence in what will be seen on
the first “page” is highest in the top-left corner of the browser
window and then diminishes as the pages moves down and
to the right. When the browser window is made very small, the
bottom and the right edge are the most likely to be cut off. One
strategy for page layout is to put your most important elements
and messages in that top-left corner and work out from there
through hierarchies of importance.





Designing “Above the Fold”

Part I: Getting Started44

Monitor Color

Fixed layouts

 Fixed (or fixed-width) layouts keep the content at a particular width,

measured in pixels, regardless of window size (Figure 3-8). While fixed

layouts promise more predictable pages and line lengths, they may result

in awkward empty space on large monitors. There is also a risk of users

missing out on content on the right edge if their browsers are not as wide

as the layout.

Liquid and fixed layout techniques are discussed in greater detail in Chapter

16.

N OT E

There are other layout techniques, namely Elastic and Zoom layouts, that respond to
font size rather than browser dimensions. They are also introduced in Chapter 16.

Monitor Color
As long as we’re talking about monitors, let’s look at another impact they

have on your design: the display of color. I’ll never forget my first lesson in

web color. I had designed a headline graphic that used a rich forest green as

a background. I proudly put the page up on the server, and when I went into

my boss’s office to show him my work, the graphic came up on his screen

with a background of pitch black. It was then that I learned that not everyone

(including my boss) was seeing my colors the way I intended them.

When you’re publishing materials that will be viewed on computer monitors,

you need to deal with the varying ways computers handle color. The differ-

ences fall under two main categories: the brightness of the monitor and the

number of colors.

Figure 3-8. The design on the left (Faded Flowers by Mani Sheriar at csszengarden.
com) uses a fixed-width page positioned on the left. When the browser window is resized
larger, the extra space is added to the right of the page. The page on the right (Dragen by
Matthew Buchanan , also at CSS Zen Garden) has the fixed-width page centered in the
browser window. Extra space is split on the left and right margins.

Figure 3-8. The design on the left (Faded Flowers by Mani Sheriar at csszengarden.
com) uses a fixed-width page positioned on the left. When the browser window is resized
larger, the extra space is added to the right of the page. The page on the right (Dragen by
Matthew Buchanan , also at CSS Zen Garden) has the fixed-width page centered in the
browser window. Extra space is split on the left and right margins.

Monitor Color

Chapter 3, The Nature of Web Design 45

Brightness

That rich forest green I described earlier was a victim of varying gamma set-

tings. Gamma refers to the overall brightness of a computer monitor’s display,

and its default setting varies from platform to platform.

Macintoshes are generally calibrated to a lighter gamma setting than

Windows machines. That means that Mac-based designers may be surprised

to find their graphics look much darker to users on Windows or Unix (which

is what happened to me). Images created under Windows will look washed

out on a Mac. Figure 3-9 shows the same page viewed at different gamma

settings. Note how detail is lost in the photos at the darker gamma setting.

Number of colors

Monitors also differ in the number of colors they are able to display. As of

this writing, over 80% of users have 24-bit monitors, capable of display-

ing nearly 17 million colors. The remainder have 16-bit monitors that dis-

play approximately 65,000 colors. With that color-displaying potential,

any color you choose should display smoothly.

In the early ’90s when the Web was young, most users used 8-bit moni-

tors capable of displaying only 256 colors. Web designers were forced to

choose colors from a restrictive web palette of 216 cross-platform colors

(Figure 3-10) if they wanted them to display smoothly (that is, without a

speckled pattern called dithering). Now that 8-bit monitors account for

fewer than 1% of web traffic, it is no longer necessary to jump through

those hoops. So while you may hear about the web palette and come

across it in web authoring or graphics programs, know that you’re no

longer restricted to it.

Macintosh gamma

Windows gamma

Figure 3-9. Gamma refers to the overall brightness of monitors. Windows and Unix
machines tend to be darker (the result of higher gamma settings) than Macs.

Macintosh gamma

Windows gamma

Figure 3-9. Gamma refers to the overall brightness of monitors. Windows and Unix
machines tend to be darker (the result of higher gamma settings) than Macs.

Figure 3-10. The obsolete web palette.
Now that nearly all web users have
monitors with thousands or millions of
colors, you no longer need to restrict
yourself to web-safe colors.

Figure 3-10. The obsolete web palette.
Now that nearly all web users have
monitors with thousands or millions of
colors, you no longer need to restrict
yourself to web-safe colors.

www.allitebooks.com

http://www.allitebooks.org

Part I: Getting Started46

Monitor Color

What is worth noting, however, is that 16-bit monitors use a completely

different color spectrum than 24-bit monitors; i.e., it is not a subset of

the 24-bit color space. For that reason, when you specify a color numeri-

cally in a style sheet or use it in an image, the 16-bit monitor always

needs to shift it slightly to a color in its spectrum. Whether it gets shift-

ed lighter or darker depends on whether the color is in an image or

specified in a style sheet, whether it is in the foreground or the back-

ground, which browser and platform is used. In other words, it’s com-

pletely unpredictable. The same color may shift different directions in

the foreground and background of the same document.

What this means is that it is difficult to match a foreground color and

background color seamlessly for users with 16-bit monitors (Figure 3-11).

This may be problematic if you want an image to blend seamlessly with a

background image or color, even if they have identical RGB values. While

it will be seamless for the majority of users with 24-bit color monitors,

16-bit users will see the rectangular edges of the image in front of the

background and the seamless effect will be ruined. This issue is easily

remedied by using a transparent graphic format that permits the back-

ground color to show through. Transparency is discussed in Chapter 18,

Web Graphics Basics.

Coping with monitor color variation

Here are some tips and tricks for dealing with color variations from monitor

to monitor.

Let go of precise color control. Yes, once again, the best practice is to

acknowledge that the colors you pick won’t look the same to everyone,

and live with it. Precise color is not a priority in this medium where the

colors you see can change based on the plaform, monitor bit-depth, or

even the angle of the laptop screen.

Simulate alternative Gamma settings while you design. Since the major-

ity of the web audience today uses Windows machines, designers using

Macintosh computers need to be more diligent in testing designs for

clarity on Windows. You can simulate what your graphics will look

like on Windows using Adobe Photoshop by selecting View→ Proof

Setup → Windows RGB (or Macintosh RGB if you are designing on

Windows). If it is too light or too dark, make manual adjustments as

necessary to the image itself to fix it. To see how the entire page will

look with Windows gamma, you can set the brightness of your monitor

darker using the Display settings in the System Preferences, or try the

inexpensive GammaToggle software that lets you switch back and forth

between gamma settings (GammaToggle is available for US$15 from

ThankYouWare, www.thankyouware.com).

Figure 3-11. On 16-bit monitors, RGB
colors get shifted around. In this figure,
although the graphic in the foreground
uses the identical RGB values as the color
in the background, you can still see the
outline of the image on the page (top). The
only way to fix this is to make the image
transparent and allow the background to
show through (bottom).

Figure 3-11. On 16-bit monitors, RGB
colors get shifted around. In this figure,
although the graphic in the foreground
uses the identical RGB values as the color
in the background, you can still see the
outline of the image on the page (top). The
only way to fix this is to make the image
transparent and allow the background to
show through (bottom).

Know Your Audience

Chapter 3, The Nature of Web Design 47

Use transparent images for smooth transitions to the background. There is

no way to prevent a noticeable mismatch of foreground and background

colors on 16-bit monitors. If you want to be absolutely sure that there is

no rectangle around your image for over 99% of users, use a transparent

GIF or PNG instead (Figure 3-11).

Know Your Audience
We’ve established that there are many unknown factors to consider when

designing a web page. But there’s one thing that you hopefully do know

something about when you begin the design process: your target audience.

In professional web development companies, researching the characteristics

and needs of the target audience is one of the most important parts of the

design process.

A good understanding of your audience can help you make better design

decisions. Let’s take a look at a few examples:

Scenario 1: A site that sells educational toys. If your site is aimed at a con-

sumer audience, you should assume that a significant portion of your

audience will be using your site from home computers. They may not

keep up with the very latest browser versions, or they may be using an

AOL browser, or even surfing the Web with their TVs, so don’t rely too

heavily on cutting-edge web technologies. They may also be connecting to

the Internet through modem connections, so keep your files extra small

to prevent long download times. When your bread and butter depends

on sales from ordinary consumers, it’s best to play it safe with your page

design. You can’t afford to alienate anyone.

Scenario 2: A site with resources for professional graphic designers.

Because graphic designers tend to have larger computer monitors, this is

a case for which you may safely design for an 1024 × 768 pixel screen size.

In addition, if they are accessing your pages from work, they are likely to

have a connection to the Internet that is faster than the standard modem

connection, so you can be a little more lax with the number of size of

graphics you put on the page (plus, a good-looking site will be part of the

draw for your audience).

Scenario 3: A site used to share company information for in-house use

only (also known as an intranet). This is the ideal situation for a web

designer because many of the “unknowns” become easily known. Often,

a company’s system administrator will install the same browser on all

machines and keep them up-to-date. Or you might know that everyone

will be working on Windows machines with standard 1024 × 768 moni-

tors. Bandwidth becomes less of an issue when documents are served

internally. You should be able to take advantage of some features that

would be risky in the standard web environment.

Part I: Getting Started48

Keeping the Big Picture in Mind

Keeping the Big Picture in Mind
This chapter should help you to set expectations when starting to design

your first web pages. It’s not as precise a medium as print, and you shouldn’t

try to force it to be so. Let go of the details and go with the flow. Focus your

time and attention on making sure that your content is available for all users,

regardless of their browsing devices.

As we dive into the details of (X)HTML and CSS in the following chapters, it

will be useful to keep the nature of the Web in mind.

Test Yourself
This chapter covers a number of the quirks of the Web that every new web

designer will need to become accustomed to. Describe how each of these

factors affect your role as a web designer. Be specific. Answers appear in

Appendix A.

The variety of browsers in use

Macs, PCs, and Unix/Linux systems

Each user’s browser preferences

Resizable browser windows

Modem connections

Users with assistive devices

1.

2.

3.

4.

5.

6.

IN THIS PART

Chapter 4
Creating a Simple Page

(HTML Overview)

Chapter 5
Marking Up Text

Chapter 6
Adding Links

Chapter 7
Adding Images

Chapter 8
Basic Table Markup

Chapter 9
Forms

Chapter 10
Understanding the

Standards

HTML MARKUP
FOR STRUCTURE PART II

51

IN THIS CHAPTER

An introduction to (X)HTML
elements and attributes

A step-by-step
demonstration

of marking up a
simple web page

The elements that provide
document structure

Basic text and
image elements

A simple style sheet

Troubleshooting
broken web pages

Part I provided a general overview of the web design environment. Now that

we’ve covered the big concepts, it’s time to roll up our sleeves and start creat-

ing a real web page. It will be a simple page, but even the most complicated

pages are based on the principles described here.

In this chapter, we’ll create a simple web page step by step so you can get a feel

for what it’s like to mark up a document with (X)HTML tags. The exercises

allow you to work along.

This is what I want you to get out of this chapter:

Get a feel for how (X)HTML markup works, including an understanding

of elements and attributes.

See how browsers interpret (X)HTML documents.

Learn the basic structure of an (X)HTML document.

Get a first glimpse of a style sheet in action.

Don’t worry about learning the specific text elements or style sheet rules

at this point; we’ll get to those in the following chapters. For now, just pay

attention to the process, the overall structure of the document, and the new

terminology.

A Web Page, Step by Step
You got a look at an (X)HTML document in Chapter 2, How the Web Works,

but now you’ll get to create one yourself and play around with it in the

browser. The demonstration in this chapter has five steps that cover the basics

of page production.

Step 1: Start with content. As a starting point, we’ll add raw text content and

see what browsers do with it.

Step 2: Give the document structure. You’ll learn about (X) HTML elements

and the elements that give a document its structure.

•

•

•

•

CREATING A
SIMPLE PAGE
(HTML Overview)

CHAPTER 4

Part II: HTML Markup for Structure52

Before We Begin, Launch a Text Editor

Step 3: Identify text elements. You’ll describe the content using the appropri-

ate text elements and learn about the proper way to use (X)HTML.

Step 4: Add an image. By adding an image to the page, you’ll learn about

attributes and empty elements.

Step 5: Change the look with a style sheet. This exercise gives you a taste of

formatting content with Cascading Style Sheets.

By the time we’re finished, you will have written the source document for

the page shown in Figure 4-1. It’s not very fancy, but you have to start some-

where.

We’ll be checking our work in a browser frequently throughout this demon-

stration—probably more than you would in real life—but because this is an

introduction to (X)HTML, it is helpful to see the cause and effect of each

small change to the source file along the way.

Before We Begin, Launch a Text
Editor
In this chapter and throughout the book, we’ll be writing out (X)HTML

documents by hand, so the first thing we need to do is launch a text editor.

The text editor that is provided with your operating system, such as Notepad

(Windows) or TextEdit (Macintosh), will do for these purposes. Other text

editors are fine as long as you can save plain text (ASCII) files with the .html

extension. If you have a WYSIWYG web authoring tool such as Dreamweaver

or FrontPage, set it aside for now. I want you to get a feel for marking up a

document manually (see the sidebar, (X)HTML the Hard Way).

Figure 4-1. In this chapter, we’ll write the source document for this web page step by step.Figure 4-1. In this chapter, we’ll write the source document for this web page step by step.

HTML the Hard Way
With all the wonderful web-
authoring tools out there today,
chances are you will be using one to
create your pages.

You may be asking, “If the tools are
so great, do I need to learn HTML at
all?” The answer is yes, you do. You
may not need to have every element
memorized, but some familiarity is
essential for everyone who wants to
make web pages. If you apply for a
“web designer” position, employers
will expect that you know your way
around an (X)HTML document.

I stand by my method of teaching
(X)HTML the old-fashioned way—by
hand. There’s no better way to truly
understand how markup works than
typing it out, one tag at a time, then
opening your page in a browser. It
doesn’t take long to develop a feel
for marking up documents properly.

Understanding (X)HTML will make
using your authoring tools easier
and more efficient. In addition, you
will be glad that you can look at a
source file and understand what
you’re seeing. It is also crucial for
troubleshooting broken pages or
fine-tuning the default formatting
that web tools produce.

(X)HTML
(X)HTML is a shorthand way to
refer to both HTML and its latest
version, XHTML. Authors may
write documents in either version.
For a detailed explanation of
the differences, see Chapter 10,
Understanding the Standards.

t e R m I n O l O G y

Before We Begin, Launch a Text Editor

Chapter 4, Creating A Simple Page (HTML Overview) 53

This section shows how to open new documents in Notepad and TextEdit.

Even if you’ve used these programs before, skim through for some special set-

tings that will make the exercises go more smoothly. We’ll start with Notepad;

Mac users can jump ahead.

Creating a new document in Notepad
(Windows users)

These are the steps to creating a new document in Notepad on Windows XP

(Figure 4-2).

Open the Start menu and navigate to Notepad (in Accessories). 1

Clicking on Notepad will open a new document window, and you’re

ready to start typing. 2

Next, we’ll make the extensions visible. This step is not required to make

(X)HTML documents, but it will help make the file types more clear at a

glance. In any Explorer window, select “Folder Options...” from the Tools

menu 3 and select the “View” tab. 4 Find “Hide extensions for known

file types” and uncheck that option. 5 Click OK to save the preference

and the file extensions will now be visible.

1.

2.

3.

Figure 4-2. Creating a new document in Notepad.

1	Open the Start menu and navigate to Notepad (All Programs > Accessories > Notepad)

2Clicking on Notepad will
open a new document.

3To make the extensions visible go to My Computer > Tools > Folder Options

4
Select the View tab.

5
Find “Hide extensions
for known file types”

and uncheck. Then click
OK to save preference.

Figure 4-2. Creating a new document in Notepad.

1	Open the Start menu and navigate to Notepad (All Programs > Accessories > Notepad)

2Clicking on Notepad will
open a new document.

3To make the extensions visible go to My Computer > Tools > Folder Options

4
Select the View tab.

5
Find “Hide extensions
for known file types”

and uncheck. Then click
OK to save preference.

Part II: HTML Markup for Structure54

Before We Begin, Launch a Text Editor

Creating a new document in TextEdit
(Macintosh users)

By default, TextEdit creates “rich text” documents, that is, documents that

have hidden style formatting instructions for making text bold, setting font

size, and so on. (X)HTML documents need to be plain text documents, so

we’ll need to change the Format, as shown in this example (Figure 4-3).

Use the Finder to look in the Applications folder for TextEdit. When

you’ve found it, double-click the name or icon to launch the application.

TextEdit opens a new document. You can tell from the text formatting menu

at the top that you are in Rich Text mode 1. Here’s how you change it.

Open the Preferences dialog box from the TextEdit menu.

There are three settings you need to adjust:

Select “Plain text”. 2

Select “Ignore rich text commands in HTML files”. 3

Turn off “Append ‘.txt’ extensions to plain text files”. 4

When you are done, click the red button in the top-left corner. 5

Quit TextEdit and restart it to open a new document with the new Plain

Text settings. The formatting menu will no longer be on the new

document.6

1.

2.

3.

4.

5.

6.

1 The formatting menu indicates the
document is in Rich Text Format

2
This makes TextEdit
open new documents
in Plain Text Format

3
Check this so TextEdit
will display the HTML
source document.
Otherwise, it displays
HTML elements as
they would appear in
a browser.

4 Turn off the .txt extension so that you
can name your files with .html

5 Close the window
when you’re done

6 Plain Text documents have no menuRich Text to Plain text

Figure 4-3. Launching TextEdit and choosing Plain Text settings in the Preferences.

1 The formatting menu indicates the
document is in Rich Text Format

2
This makes TextEdit
open new documents
in Plain Text Format

3
Check this so TextEdit
will display the HTML
source document.
Otherwise, it displays
HTML elements as
they would appear in
a browser.

4 Turn off the .txt extension so that you
can name your files with .html

5 Close the window
when you’re done

6 Plain Text documents have no menuRich Text to Plain text

Figure 4-3. Launching TextEdit and choosing Plain Text settings in the Preferences.

To make it easy to get to TextEdit
later, follow these instructions to save
it in the Dock. With TextEdit running,
click and hold on its icon in the Dock,
then select “Keep in Dock” from the
pop-up menu. The next time you
need it, you can double-click its icon
in the Dock, launch the program,
and alleviate to the need to navigate
to the Applications folder.

t I P

Step 1: Start with Content

Chapter 4, Creating A Simple Page (HTML Overview) 55

Step 1: Start with Content
Now that we’ve got our new document, it’s time to get typing. A web page

always starts with content, so that’s where we begin our demonstration.

Exercise 4-1 walks you through entering the raw text content and saving the

document in a new folder.

exercise 4-1 | Entering content

Type the content for the home page into the new document in your text editor.
Just copy it as you see it here. Keep the line breaks the same for the sake of
playing along.

Black Goose Bistro

The Restaurant
The Black Goose Bistro offers casual lunch and dinner fare in a
hip atmosphere.

Catering
You have fun... we’ll handle the cooking. Black Goose Catering can
handle events from snacks for bridge club to elegant corporate
fundraisers.

Location and Hours
Seekonk, Massachusetts;
Monday through Thursday 11am to 9pm, Friday and Saturday, 11am to
midnight

Select “Save” or “Save as” from the File menu to get the Save As dialog box (Figure
4-4). The first thing you need to do is create a new folder that will contain all of
the files for the site (in other words, it’s the local root folder).

Windows: Click the folder icon at the top to create the new folder. ➊
Mac: Click the “New Folder” button. ➋

1.

2.

Figure 4-4. Saving index.html in a new folder called “bistro”.

Windows XP Mac OS X

1

2

Figure 4-4. Saving index.html in a new folder called “bistro”.

Windows XP Mac OS X

1

2

exercise 4-1 | Entering content

Type the content for the home page into the new document in your text editor.
Just copy it as you see it here. Keep the line breaks the same for the sake of
playing along.

Black Goose Bistro

The Restaurant
The Black Goose Bistro offers casual lunch and dinner fare in a
hip atmosphere.

Catering
You have fun... we’ll handle the cooking. Black Goose Catering can
handle events from snacks for bridge club to elegant corporate
fundraisers.

Location and Hours
Seekonk, Massachusetts;
Monday through Thursday 11am to 9pm, Friday and Saturday, 11am to
midnight

Select “Save” or “Save as” from the File menu to get the Save As dialog box (Figure
4-4). The first thing you need to do is create a new folder that will contain all of
the files for the site (in other words, it’s the local root folder).

Windows: Click the folder icon at the top to create the new folder. ➊
Mac: Click the “New Folder” button. ➋

1.

2.

Figure 4-4. Saving index.html in a new folder called “bistro”.

Windows XP Mac OS X

1

2

Figure 4-4. Saving index.html in a new folder called “bistro”.

Windows XP Mac OS X

1

2

Naming Conventions
It is important that you follow these
rules and conventions when naming
your files:

Use proper suffixes for your files.
(X)HTML files must end with
.html (some servers allow .htm).
Web graphics must be labeled
according to their file format: .gif
or .jpg (.jpeg is also acceptable).

Never use character spaces within
filenames. It is common to use
an underline character or dash
to visually separate words within
filenames, such as robbins_bio.
html or robbins-bio.html.

Avoid special characters such as ?,
%, #, /, :, ;, •, etc. Limit filenames
to letters, numbers, underscores,
hyphens, and periods.

Filenames may be case-sensitive,
depending on your server
configuration. Consistently using
all lowercase letters in filenames,
while not necessary, makes your
filenames easier to manage.

Keep filenames short. Short
names keep the character count
and file size of your (X)HTML
file in check. If you really must
give the file a long, multiword
name, you can separate words
with capital letters, such as
ALongDocumentTitle.html,
or with underscores, such as
a_long_document_title.html, to
improve readability.

Self-imposed conventions. It is
helpful to develop a consistent
naming scheme for huge sites.
For instance, always using
lowercase with underscores
between words. This takes
some of the guesswork out of
remembering what you named
a file when you go to link to it
later.

www.allitebooks.com

http://www.allitebooks.org

Part II: HTML Markup for Structure56

Step 1: Start with Content

N OT E

The raw text file for this exercise is available online at www.learningwebdesign.com/
materials/.

Learning from step 1

Our content isn’t looking so good (Figure 4-5). The text is all run togeth-

er—that’s not how it looked in the original document. There are a couple of

things to be learned here. The first thing that is apparent is that the browser

ignores line breaks in the source document. (The sidebar, What Browsers

Ignore, lists other information in the source that are not displayed in the

browser window.)

Second, we see that simply typing in some content and naming the document

.html is not enough. While the browser can display the text from the file, we

haven’t indicated the structure of the content. That’s where (X)HTML comes in.

We’ll use markup to add structure: first to the (X)HTML document itself (com-

ing up in Step 2), then to the page’s content (Step 3). Once the browser knows

the structure of the content, it can display the page in a more meaningful way.

Name the new folder bistro, and save the text file as index.html in it. Windows
users, you will also need to choose “All Files” after “Save as type” to prevent
Notepad from adding a “.txt” extension to your filename. The filename needs
to end in .html to be recognized by the browser as a web document. See the
sidebar, Naming Conventions, for more tips on naming files.

Just for kicks, let’s take a look at index.html in a browser. Launch your favorite
browser (I’m using Firefox) and choose “Open” or “Open File” from the File menu.
Navigate to index.html and select the document to open it in the browser. You
should see something like the page shown in Figure 4-5. We’ll talk about the
results in the following section.

3.

Figure 4-5. The home page content in a browser.Figure 4-5. The home page content in a browser.

What Browsers
Ignore
Some information in the source
document will be ignored when it is
viewed in a browser, including:

Line breaks (carriage returns). Line
breaks are ignored. Text and
elements will wrap continuously
until a new block element, such
as a heading (h1) or paragraph
(p), or the line break (br)
element is encountered in the
flow of the document text.

Tabs and multiple spaces. When
a browser encounters a tab or
more than one consecutive
blank character space, it
displays a single space. So if the
document contains:

 long, long ago

the browser displays:

 long, long ago

Unrecognized markup. A
browser simply ignores any
tag it doesn’t understand or
that was incorrectly specified.
Depending on the element
and the browser, this can have
varied results. The browser may
display nothing at all, or it may
display the contents of the tag
as though it were normal text.

Text in comments. Browsers will
not display text between the
special <!-- and --> tags used
to denote a comment. See the
(X)HTML Comments sidebar
later in this chapter.

Step 2: Give the Document Structure

Chapter 4, Creating A Simple Page (HTML Overview) 57

Step 2: Give the Document Structure
We’ve got our content saved in an .html document—now we’re ready to start

marking it up.

Introducing... the HTML element

Back in Chapter 2, How the Web Works, you saw examples of (X)HTML ele-

ments with an opening tag (<p> for a paragraph, for example) and closing tag

(</p>). Before we start adding tags to our document, let’s look at the structure

of an HTML element and firm up some important terminology. A generic

(X)HTML element is labeled in Figure 4-6.

Elements are identified by tags in the text source. A tag consists of the ele-

ment name (usually an abbreviation of a longer descriptive name) within

angle brackets (< >). The browser knows that any text within brackets is hid-

den and not displayed in the browser window.

The element name appears in the opening tag (also called a start tag) and

again in the closing (or end) tag preceded by a slash (/). The closing tag works

something like an “off” switch for the element. Be careful not to use the simi-

lar backslash character in end tags (see the tip, Slash vs. Backslash).

The tags added around content are referred to as the markup. It is important

to note that an element consists of both the content and its markup (the start

and end tags). Not all elements have content, however. Some are empty by

definition, such as the img element used to add an image to the page. We’ll

talk about empty elements a little later in this chapter.

One last thing...capitalization. In this book, all elements are lowercase, and I

recommend that you follow the same convention. Even though it isn’t strictly

required for HTML documents, it is required for XHTML documents, so

keeping all your markup lowercase brings you one step closer to being com-

patible with future web standards. See the sidebar, Do As I Say, Not As They

Do, for details.

Opening tag

Element

<element name> Content here </element name>

Closing tag
(starts with a /)

Content
(may be text and/or other HTML elements)

Example: <h1> Black Goose Bistro </h1>

Figure 4-6. The parts of an (X)HTML element.

Opening tag

Element

<element name> Content here </element name>

Closing tag
(starts with a /)

Content
(may be text and/or other HTML elements)

Example: <h1> Black Goose Bistro </h1>

Figure 4-6. The parts of an (X)HTML element.

An element consists of
both the content and its
markup.

Slash vs. Backslash
(X)HTML tags and URLs use the slash
character (/). The slash character is
found under the question mark (?) on
the standard QWERTY keyboard.

It is easy to confuse the slash with
the backslash character (\), which is
found under the bar character (|). The
backslash key will not work in tags or
URLs, so be careful not to use it.

t I P

Part II: HTML Markup for Structure58

Step 2: Give the Document Structure

Basic document structure

Much like you and me, (X)HTML documents have a head and a body. The

head of the document (also sometimes called the header) contains descriptive

information about the document itself, such as its title, the style sheet it uses,

scripts, and other types of “meta” information. The body contains the actual

content that displays in the browser window.

Figure 4-7 shows the minimal skeleton of an (X)HTML document*. First, the

entire document is contained within an html element. The html element is

called the root element because it contains all the elements in the document,

and it may not be contained within any other element. It is used for both

HTML and XHTML documents.

The head comes next and contains the title element. According to the

(X)HTML specifications, every document must contain a descriptive title.

The body element comes after the head and contains everything that we want

to show up in the browser window. The document structure elements do not

affect how the content looks in the browser (as you’ll see in a moment), but

they are required to make the document valid (that is, to properly abide by

the (X)HTML standards).

Are you ready to add some structure to the Black Goose Bistro home page?

Open the index.html document and move on to Exercise 4-2.

�	Technically, there are other bits of information that are required for HTML and XHTML docu-

ments to validate, such as a document type definition and an indication of the character set used

in the document. We’ll discuss those in Chapter 10, but for the current introductory discussion

these are the only elements you need to worry about.

The minimal structure of an (X)HTML document:

1 Identifies the document as written in HTML or XHTML
2 The head provides information about the document
3 A descriptive title is required
4 The body contains the content that displays in the browser

<html>

<head>
<title> Title here </title>
</head>

<body>

</body>

</html>

Web page content here.

2

4

1

3

Figure 4-7. The minimal structure of an (X)HTML document.

The minimal structure of an (X)HTML document:

1 Identifies the document as written in HTML or XHTML
2 The head provides information about the document
3 A descriptive title is required
4 The body contains the content that displays in the browser

<html>

<head>
<title> Title here </title>
</head>

<body>

</body>

</html>

Web page content here.

2

4

1

3

Figure 4-7. The minimal structure of an (X)HTML document.

Do As I Say,
Not As They Do
If you view the source of a few
web pages, you are likely to
see markup that looks different
from the examples in this book.
That’s because this book teaches
contemporary authoring methods
that are in keeping with the stricter
requirements of XHTML. If you’re
learning markup for the first time,
you might as well learn to do it like
the pros do it.

Lax markup practices are partly due
to the fact that the rules of HTML
are less stringent than XHTML.
In addition, browsers have been
forgiving of incorrect markup, so
designers have gotten away with
bad habits for years.

I recommend following these
guidelines even for documents
written with HTML.

Capitalization. In HTML, element
names are not case sensitive, so
you could write , ,
or . Most professionals,
however, keep all elements
and attributes in lowercase for
consistency and to be in line
with future (X)HTML standards.

Quotation marks. All attribute
values should be in quotation
marks, even though in HTML,
certain values were okay
without them.

Closing elements. In HTML, it is
okay to omit the closing tag for
certain block elements (such
as a paragraph or list item),
however, it is safer to close every
element in the document.

Complex tables for layout. Old-
school web design is well-
known for its use of complex
nested tables for page layout.
Now that style sheets can
handle the same thing, the
table-based approach is
obsolete.

Step 2: Give the Document Structure

Chapter 4, Creating A Simple Page (HTML Overview) 59

N OT E

The correct terminology is to say that the
title element is nested within the head
element. We’ll talk about nesting more in
later chapters.

exercise 4-2 | Adding basic structure

Open the newly created document, index.html, if it isn’t open already.

Put the entire document in an HTML root element by adding an <html> start
tag at the very beginning and an end </html> tag at the end of the text. This
identifies the document as marked up in HTML (although XHTML uses html
as well in order to be backwards compatible). Throughout the exercises in this
chapter, we’ll be writing markup according to the rules of XHTML.

Next, create the document head that contains the title for the page. Insert <head>
and </head> tags before the content. Within the head element, add the title, “Black
Goose Bistro”, surrounded by opening and closing <title> tags.

Finally, define the body of the document by wrapping the content in <body> and
</body> tags. When you are done, the source document should look like this (the
markup is shown in color to make it stand out):

<html>

<head>
 <title>Black Goose Bistro</title>
</head>

<body>
Black Goose Bistro

The Restaurant
The Black Goose Bistro offers casual lunch and dinner fare in a hip
atmosphere.

Catering Services
You have fun... we’ll do the cooking. Black Goose Catering can handle
events from snacks for bridge club to elegant corporate fundraisers.

Location and Hours
Bakers Corner in Seekonk, Massachusetts;
Monday through Thursday 11am to 9pm, Friday and Saturday, 11am to
midnight
</body>

</html>

Save the document in the bistro directory, so that it overwrites the old version.
Open the file in the browser or hit “refresh” or “reload” if it is open already. Figure
4-8 shows how it should look now.

1.

2.

3.

4.

5.

Figure 4-8. The home page in a browser after the document structure elements
have been defined.
Figure 4-8. The home page in a browser after the document structure elements
have been defined.

Don’t Forget a
Good Title
Not only is a title element required
for every document, it is quite useful
as well. The title is what is displayed
in a user’s Bookmarks or Favorites list.
Descriptive titles are also a key tool
for improving accessibility, as they
are the first thing a person hears
when using a screen reader. Search
engines rely heavily on document
titles as well. For these reasons, it’s
important to provide thoughtful
and descriptive titles for all your
documents and avoid vague titles,
such as “Welcome” or “My Page.” You
may also want to keep the length of
your titles in check so they are able
to display in the browser’s title area.

Part II: HTML Markup for Structure60

Step 3: Identify Text Elements

Not much has changed after structuring the document, except that the

browser now displays the title of the document in the top bar. If someone

were to bookmark this page, that title would be added to their Bookmarks

or Favorites list as well (see the sidebar, Don’t Forget a Good Title). But the

content still runs together because we haven’t given the browser any indica-

tion of how it is broken up. We’ll take care of that next.

Step 3: Identify Text Elements
With a little markup experience under your belt, it should be a no-brainer

to add the markup that identifies headings and subheads (h1 and h2), para-

graphs (p), and emphasized text (em) to our content, as we’ll do in Exercise

4-3. However, before we begin, I want to take a moment to talk about what

we’re doing and not doing when marking up content with (X)HTML.

Introducing...semantic markup

The purpose of (X)HTML is to provide meaning and structure to the content.

It is not intended to provide instructions for how the content should look (its

presentation).

Your job when marking up content is to choose the (X)HTML element that

provides the most meaningful description of the content at hand. In the biz,

we call this semantic markup. For example, the first heading level on the page

should be marked up as an h1 because it is the most important heading on

the page. Don’t worry about what that looks like in the browser...you can

easily change that with a style sheet. The important thing is that you choose

elements based on what makes the most sense for the content.

In addition to adding meaning to content, the markup gives the document

structure. The way elements follow each other or nest within one another

creates relationships between the elements. This document structure is the

foundation upon which we can add presentation instructions with style

sheets, and behaviors with JavaScript. We’ll talk about document structure

more in Part III, when we discuss Cascading Style Sheets.

Although HTML was intended to be used strictly for meaning and structure

since its creation, that mission was somewhat thwarted in the early years of

the Web. With no style sheet system in place, HTML was extended to give

authors ways to change the appearance of fonts, colors, and alignment. Those

presentational extras are still out there, so you may run across them when

you “view source.” In this book, however, we’ll focus on using HTML and

XHTML the right way, in keeping with the new standards-based approach of

contemporary web design.

Okay, enough lecturing. It’s time to get to work on that content in Exercise 4-3.

(X)HTML Comments
You can leave notes in the source
document for yourself and others
by marking them up as comments.
Anything you put between
comment tags (<!-- -->) will not
display in the browser and will not
have any effect on the rest of the
source.

<!-- This is a comment -->
<!-- This is a
 multiple-line comment
 that ends here. -->

Comments are useful for labeling
and organizing long (X)HTML
documents, particularly when they
are shared by a team of developers.
In this example, comments are
used to point out the section of the
source that contains the navigation.

<!-- start global nav -->

 ...

<!-- end global nav -->

Bear in mind that although the
browser will not display comments
in the web page, readers can see
them if they “view source,” so be sure
that the comments you leave are
appropriate for everyone.

Step 3: Identify Text Elements

Chapter 4, Creating A Simple Page (HTML Overview) 61

Now we’re getting somewhere. With the elements properly identified, the

browser can now display the text in a more meaningful manner. There are a

few significant things to note about what’s happening in Figure 4-9.

Block and inline elements

While it may seem like stating the obvious, it is worth pointing out that the

heading and paragraph elements start on new lines and do not run together

as they did before. That is because they are examples of block-level elements.

Browsers treat block-level elements as though they are in little rectangular

boxes, stacked up in the page. Each block-level element begins on a new line,

and some space is also usually added above and below the entire element by

default. In Figure 4-10, the edges of the block elements are outlined in red.

By contrast, look at the text we marked up as emphasized (em). It does not

start a new line, but rather stays in the flow of the paragraph. That is because

the em element is an inline element. Inline elements do not start new lines;

Open the document index.html in your text editor, if it isn’t
open already.

The first line of text, “Black Goose Bistro,” is the main heading
for the page, so we’ll mark it up as a Heading Level 1 (h1)
element. Put the opening tag, <h1>, at the beginning of the
line and the closing tag, </h1>, after it, like this.

<h1>Black Goose Bistro</h1>

Our page also has three subheads. Mark them up as Heading
Level 2 (h2) elements in a similar manner. I’ll do the first
one here; you do the same for “Catering” and “Location and
Hours”.

<h2>The Restaurant</h2>

Each h2 element is followed by a brief paragraph of text, so
let’s mark those up as paragraph (p) elements in a similar
manner. Here’s the first one; you do the rest.

<p>The Black Goose Bistro offers casual lunch and
dinner fare in a hip atmosphere.</p>

Finally, in the Catering section, I want to emphasize that
visitors should just leave the cooking to us. To make text
emphasized, mark it up in an emphasis element (em)
element, as shown here.

<p>You have fun... we'll handle the cooking!
Black Goose Catering can handle events from
snacks for bridge club to elegant corporate
fundraisers.</p>

1.

2.

3.

4.

5.

Now that we’ve marked up the document, let’s save it as we
did before, and open (or refresh) the page in the browser.
You should see a page that looks much like the one in
Figure 4-9. If it doesn’t, check your markup to be sure that
you aren’t missing any angle brackets or a slash in a closing
tag.

6.

exercise 4-3 | Defining text elements

Figure 4-9. The home page after the content has been marked
up in (X)HTML elements.

Part II: HTML Markup for Structure62

Step 3: Identify Text Elements

they just go with the flow. In Figure 4-10, the inline em element is outlined in

light blue.

The distinction between block-level and inline elements is important. In

(X)HTML markup, whether an element is block-level or inline restricts what

other elements it may contain. For example, you can’t put a block-level ele-

ment within an inline element (such as a paragraph within a link). Block-

level and inline elements also behave differently when it comes to applying

Cascading Style Sheets.

Default styles

The other thing that you will notice about the marked-up page in Figures 4-9

and 4-10 is that the browser makes an attempt to give the page some visual

hierarchy by making the first-level heading the biggest and boldest thing on

the page, with the second-level headings slightly smaller, and so on.

How does the browser determine what an h1 should look like? It uses a style

sheet! All browsers have their own built-in style sheets that describe the

default rendering of (X)HTML elements. The default rendering is similar

from browser to browser (for example, h1s are always big and bold), but there

are some variations (block quotes may or may not be indented). The appear-

ance is also affected by the user’s preferences, discussed in Chapter 3, The

Nature of Web Design.

Figure 4-10. The outlines show the structure of the elements in the home page.Figure 4-10. The outlines show the structure of the elements in the home page.

Browsers have built-in
style sheets that describe
the default rendering of
(X)HTML elements.

Browsers have built-in
style sheets that describe
the default rendering of
(X)HTML elements.

Step 4: Add an Image

Chapter 4, Creating A Simple Page (HTML Overview) 63

If you think the h1 is too big and clunky as the browser renders it, just change

it with a style sheet rule. Resist the urge to mark up the heading with another

element just to get it to look better (for example, using an h3 instead of an h1

so it isn’t as large). In the days before ubiquitous style sheet support, elements

were abused in just that way. Now that there are style sheets for controlling

the design, you should always choose elements based on how accurately they

describe the content, and don’t worry about the browser’s default rendering.

We’ll fix the presentation of the page with style sheets in a moment, but first,

let’s add an image to the page.

Step 4: Add an Image
What fun is a web page with no image? In Exercise 4-4, we’ll add an image

to the page using the img element. Images will be discussed in more detail in

Chapter 7, Adding Images, but for now, it gives us an opportunity to introduce

two more basic markup concepts: empty elements and attributes.

Empty elements

So far, all of the elements we’ve used in the Black Goose Bistro home page

have followed the syntax shown in Figure 4-1: a bit of text content surround-

ed by start and end tags.

A handful of elements, however, do not have text content because they are

used to provide a simple directive. These elements are said to be empty. The

image element (img) is an example of such an element; it tells the browser

to get an graphic file from the server and insert it into the flow of the text at

that spot in the document. Other empty elements include the line break (br),

horizontal rule (hr), and elements that provide information about a docu-

ment but don’t affect its displayed content, such as the meta element.

The syntax for empty elements is slightly different for HTML and XHTML.

In HTML, empty elements don’t use closing tags—they are indicated by a

single tag (,
, or <hr>, for example) inserted into the text, as shown

in this example that uses the br element to insert a line break.

<p>1005 Gravenstein Highway North
Sebastopol, CA 95472</p>

In XHTML, all elements, including empty elements, must be closed (or ter-

minated, to use the proper term). Empty elements are terminated by adding

a trailing slash preceded by a space before the closing bracket, like so:

 ,
, and <hr />. Here is that example again, this time using

XHTML syntax.

<p>1005 Gravenstein Highway North
Sebastopol, CA 95472</p>

Part II: HTML Markup for Structure64

Step 4: Add an Image

Attributes

Obviously, an tag is not very useful by itself... there’s no way to know

which image to use. That’s where attributes come in. Attributes are instruc-

tions that clarify or modify an element. For the img element, the src (short

for “source”) attribute is required, and provides the location of the image file

via its URL.

The syntax for attributes is as follows:

<element attribute-name="value">Content</element>

or for empty elements:

<element attribute-name="value" />

For another way to look at it, the attribute structure of an img element is

labeled in Figure 4-11.

Here’s what you need to know about attributes:

Attributes go after the element name in the opening tag only, never in the

end tag.

There may be several attributes applied to an element, separated by

spaces in the opening tag. Their order is not important.

Attributes take values, which follow an equals sign (=).

A value might be a number, a word, a string of text, a URL, or a measure-

ment depending on the purpose of the attribute.

Always put values within quotation marks. Although quotation marks

aren’t required around all values in HTML, they are required in XHTML.

You might as well do it the more future-compatible way from the start.

Either single or double quotation marks are acceptable as long as they are

used consistently, however, double quotation marks are the convention.

•

•

•

•

•

Attribute Attribute

Attribute name ValueValue Attribute name

Attribute names and values are separated by an equals sign (=)

Multiple attributes are separated by a space

Figure 4-11. An element with attributes.

Attribute Attribute

Attribute name ValueValue Attribute name

Attribute names and values are separated by an equals sign (=)

Multiple attributes are separated by a space

Figure 4-11. An element with attributes.

Step 4: Add an Image

Chapter 4, Creating A Simple Page (HTML Overview) 65

Some attributes are required, such as the src and alt attributes in the

img element.

The attribute names available for each element are defined in the

(X)HTML specifications; in other words, you can’t make up an attribute

for an element.

Now you should be more than ready to try your hand at adding the img ele-

ment with its attributes to the Black Goose Bistro page in the next exercise.

•

•

If you’re working along, the first thing you’ll need to do is
get a copy of the image file on your hard drive so you can
see it in place when you open the file locally. The image file
is provided in the materials for this chapter. You can also get
the image file by saving it right from the sample web page
online at www.learningwebdesign.com/chapter4/bistro.
Right-click (or Ctrl-click on a Mac) on the goose image and
select “Save to disk” (or similar) from the pop-up menu as
shown in Figure 4-12. Be sure to save it in the bistro folder
with index.html.

1. Once you’ve got the image, insert it at the beginning of
the first-level heading by typing in the img element and its
attributes as shown here:

<h1><img src="blackgoose.gif" alt="Black Goose
logo" />Black Goose Bistro</h1>

The src attribute provides the name of the image file that
should be inserted, and the alt attribute provides text that
should be displayed if the image is not available. Both of
these attributes are required in every img element.

Now save index.html and open or refresh it in the browser
window. The page should look like the one shown in Figure
4-13. If it doesn’t, check to make sure that the image file,
blackgoose.gif, is in the same directory as index.html. If
it is, then check to make sure that you aren’t missing any
characters, such as a closing quote or bracket, in the img
element markup.

2.

3.

exercise 4-4 | Adding an image

Figure 4-12. Saving an image file from a page on the Web.

Windows users:
Right-click on the image to access the
pop-up menu and select the option for
saving the picture.

Mac users:
Ctrl-click on the image to access
the pop-up menu and select the
option for saving the image. The
actual text may vary depending
on the browser you are using.

Figure 4-13. The Black Goose Bistro home page with the Black
Goose logo inline image.

Part II: HTML Markup for Structure66

Step 5: Change the Look with a Style Sheet

Step 5: Change the Look
with a Style Sheet
Depending on the content and purpose of your web site, you may decide

that the browser’s default rendering of your document is perfectly adequate.

However, I think I’d like to pretty up the Black Goose Bistro home page a bit

to make a good first impression on potential patrons. “Prettying up” is just

my way of saying that I’d like to change its presentation, which is the job of

Cascading Style Sheets (CSS).

In Exercise 4-5, we’ll change the appearance of the text elements and the

page background using some simple style sheet rules. Don’t worry about

understanding them all right now—we’ll get into CSS in more detail in Part

III. But I want to at least give you a taste of what it means to add a “layer” of

presentation onto the structure we’ve created with our XHTML markup.

Open index.html if it isn’t open already.

We’re going to use the style element to apply an
embedded style sheet to the page. (This is just one of the
ways to add a style sheet; the others are covered in Chapter
11, Style Sheet Orientation.)

The style element is placed inside the head of the
document. It uses the required type attribute to tell the
browser the type of information in the element (text/css
is currently the only option). Start by adding the style
element to the document as shown here:

1.

2.

<head>
 <title>Black Goose Bistro</title>
 <style type="text/css">

 </style>
</head>

Now, type the following style rules within the style element
just as you see them here. Don’t worry if you don’t know
exactly what is going on... you’ll learn all about style rules in
Part III.

 <style type="text/css">
 body {
 background-color: #C2A7F2;
 font-family: sans-serif;
 }
 h1 {
 color: #2A1959;
 border-bottom: 2px solid #2A1959;
 }
 h2 {
 color: #474B94;
 font-size: 1.2em;
 }
 h2, p {
 margin-left: 120px;
 }
 </style>

Now it’s time to save the file and take a look at it in the
browser. It should look like the page in Figure 4-14. If it
doesn’t, go over the style sheet code to make sure you didn’t
miss a semi-colon or a curly bracket.

3.

4.

exercise 4-5 | Adding a style sheet

Figure 4-14. The Black Goose Bistro page after CSS style rules
have been applied.

When Good Pages Go Bad

Chapter 4, Creating A Simple Page (HTML Overview) 67

We’re finished with the Black Goose Bistro page. Not only have you written

your first XHTML document, complete with a style sheet, but you’ve learned

about elements, attributes, empty elements, block-level and inline elements,

the basic structure of an (X)HTML document, and the correct use of markup

along the way.

When Good Pages Go Bad
The previous demonstration went very smoothly, but it’s easy for small things

to go wrong when typing out (X)HTML markup by hand. Unfortunately,

one missed character can break a whole page. I’m going to break my page on

purpose so we can see what happens.

What if I had forgotten to type the slash (/) in the closing emphasis tag

()? With just one character out of place (Figure 4-15), the remainder of

the document displays in emphasized (italic) text. That’s because without

that slash, there’s nothing telling the browser to turn “off” the emphasized

formatting, so it just keeps going.

g.

<h2>Catering</h2>
<p>You have fun... we'll handle the cooking. Black Goose
Catering can handle events from snacks for bridge club to elegant
corporate fundraisers.</p>

Without the slash, the browser
does not know to turn the
emphasized text “off,” and the
remainder of the page is
rendered as emphasized text
(italics).

Figure 4-15. When a slash is omitted, the browser doesn’t know when the element ends,
as is the case in this example.

g.

<h2>Catering</h2>
<p>You have fun... we'll handle the cooking. Black Goose
Catering can handle events from snacks for bridge club to elegant
corporate fundraisers.</p>

Without the slash, the browser
does not know to turn the
emphasized text “off,” and the
remainder of the page is
rendered as emphasized text
(italics).

Figure 4-15. When a slash is omitted, the browser doesn’t know when the element ends,
as is the case in this example.

N OT E

Omitting the slash in the closing tag (in
effect, omitting the closing tag itself) for
certain block elements, such as headings
or paragraphs, may not be so dramatic.
Browsers interpret the start of a new
block element to mean that the previous
block element is finished.

Part II: HTML Markup for Structure68

When Good Pages Go Bad

I’ve fixed the slash, but this time, let’s see what would have happened if I

had accidentally omitted a bracket from the end of the first <h2> tag (Figure

4-16).

See how the headline is missing? That’s because without the closing tag

bracket, the browser assumes that all the following text—all the way up to

the next closing bracket (>) it finds—is part of that <h2> tag. Browsers don’t

display any text within a tag, so my heading disappeared. The browser just

ignored the foreign-looking element name and moved on to the next ele-

ment.

Making mistakes in your first (X)HTML documents and fixing them is a

great way to learn. If you write your first pages perfectly, I’d recommend fid-

dling with the code as I have here to see how the browser reacts to various

changes. This can be extremely useful in troubleshooting pages later. I’ve

listed some common problems in the sidebar, Having Problems? Note that

these problems are not specific to beginners. Little stuff like this goes wrong

all the time, even for the pros.

Missing
headline

<h2The Restaurant</h2>
<p>The Black Goose Bistro offers casual lunch and dinner fare
in a hip atmosphere. The menu changes regularly to highlight
the freshest ingredients.</p>

<h2The

Without the bracket, all the following characters are
interpreted as part of a long, unrecognizable element name,
and “The Restaurant” disappears from the page.

Figure 4-16. A missing end bracket makes all the following content part of the tag, and
therefore it doesn’t display.

Missing
headline

<h2The Restaurant</h2>
<p>The Black Goose Bistro offers casual lunch and dinner fare
in a hip atmosphere. The menu changes regularly to highlight
the freshest ingredients.</p>

<h2The

Without the bracket, all the following characters are
interpreted as part of a long, unrecognizable element name,
and “The Restaurant” disappears from the page.

Figure 4-16. A missing end bracket makes all the following content part of the tag, and
therefore it doesn’t display.

Having Problems?
The following are some typical
problems that crop up when
creating web pages and viewing
them in a browser:

I’ve changed my document, but
when I reload the page in my
browser, it looks exactly the same.

 It could be you didn’t save your
document before reloading,
or you may have saved it in a
different directory.

Half my page disappeared.

 This could happen if you are
missing a closing bracket (>) or a
quotation mark within a tag. This
is a common error when writing
(X)HTML by hand.

I put in a graphic using the img
element, but all that shows up is a
broken graphic icon.

 The broken graphic could mean
a couple of things. First, it might
mean that the browser is not
finding the graphic. Make sure
that the URL to the image file
is correct. (We’ll discuss URLs
further in Chapter 6, Adding
Links.) Make sure that the image
file is actually in the directory
you’ve specified. If the file is
there, make sure it is in one of
the formats that web browsers
can display (GIF, JPEG, or PNG)
and that it is named with the
proper suffix (.gif, .jpeg or .jpg, or
.png, respectively).

Test Yourself

Chapter 4, Creating A Simple Page (HTML Overview) 69

Test Yourself
Now is a good time to make sure you’re understanding the basics of markup.

Use what you’ve learned in this chapter to answer the following questions.

Answers are in Appendix A.

What is the difference between a tag and an element?

Write out the minimal structure of an (X)HTML document.

Mark whether each of these file names is an acceptable name for a web

document by circling “Yes” or “No.” If it is not acceptable, provide the

reason why.

 a. Sunflower.html Yes No

 b. index.doc Yes No

 c. cooking home page.html Yes No

 d. Song_Lyrics.html Yes No

 e. games/rubix.html Yes No

 f. %whatever.html Yes No

 All of the following markup examples are incorrect. Describe what is

wrong with each one, then write it correctly.

 a.

 b. <i>Congratulations!<i>

 c. linked text</a href="file.html">

 d. <p>This is a new paragraph<\p>

1.

2.

3.

4.

Part II: HTML Markup for Structure70

(X)HTML Review: Document Structure Elements

How would you mark up this comment in an (X)HTML document so

that it doesn’t display in the browser window?

 product list begins here

(X)HTML Review:
Document Structure Elements
This chapter introduced the elements that establish the structure of the

document. The remaining elements introduced in the exercises will be treated

in more depth in the following chapters.

Element Description

html The root element that identifies the document as (X)HTML

head Identifies the head of the document

title Gives the page a title

body Identifies the body of the document that holds the content

5.

71

IN THIS CHAPTER

Choosing the best element
for your content

Using block elements
to identify the major

components of the
document.

Adding line breaks

Comparing inline elements

Creating custom elements
with the versatile generic

elements, div and span

Adding special characters
to your document

In the previous chapter, you learned the hows and whys of (X)HTML markup.

This chapter introduces the elements you have to choose from for marking up

text content. There probably aren’t as many of them as you might think, and

really just a handful that you’ll use with regularity.

Before we get to the element roll-call, this is a good opportunity for a reminder

about the importance of meaningful (semantic) and well-structured markup.

In the early years of web design, it was common to choose elements based on

how they looked in the browser. Don’t like the size of the h1? Hey, use an h4

instead. Don’t like bullets on your list? Make something list-like using line

break elements. But no more! Those days are over thanks to reliable browser

support for style sheets that do a much better job at handling visual presenta-

tion than (X)HTML ever could.

You should always choose elements that describe your content as accurately

as possible. If you don’t like how it looks, change it with a style sheet. A

semantically marked up document ensures your content is available and

accessible in the widest range of browsing environments, from desktop com-

puters to cell phones to screen readers. It also allows non-human readers,

such as search engine indexing programs, to correctly parse your content and

make decisions about the relative importance of elements on the page.

Your content should also read in a logical order in the source. Doing so

improves its readability in all browsing environments. Information that

should be read first should be at the beginning of the (X)HTML source docu-

ment. You can always use style sheets to position elements where you want

them on the final web page.

With these guidelines in mind, it is time to meet the (X)HTML text elements,

starting with the block-level elements.

Choose elements that
describe your content as
accurately as possible.

Choose elements that
describe your content as
accurately as possible.

MARKING UP
TEXT

CHAPTER 5

Part II: HTML Markup for Structure72

Building Blocks

Building Blocks
When creating a web page, I always start with my raw content in a text file

and make sure that it has been proofread and is ready to go. I put in the docu-

ment structure elements (html, head, title, and body). I also identify which

version of (X)HTML I’m using in a DOCTYPE declaration, but we’ll get to

that in Chapter 10, Understanding the Standards. Then I am ready to divide

the content into its major block-level elements.

Block-level elements make up the main components of content structure. As

mentioned in Chapter 4, Creating a Simple Page, block-level elements always

start on a new line and usually have some space added above and below,

stacking up like blocks in the normal flow of the document.

There are surprisingly few text block-level elements. Table 5-1 lists (nearly)

all of them (see note).

Table 5-1. Block-level elements for text content

Type Element(s)

Headings h1, h2, h3, h4, h5, h6

Paragraphs p

Block (long) quotes blockquote

Preformatted text pre

Various list elements ol, ul, li, dl, dt, dd

Horizontal rules (lines) hr

We’ve already used some of these in the exercises in the previous chapter. In

this section we’ll take a closer look at block-level elements and the rules for

how they are used.

Paragraphs

Paragraphs are the most rudimentary elements of a text document. You indicate

a paragraph with the p element. Simply insert an opening <p> tag at the begin-

ning of the paragraph and a closing </p> tag after it, as shown in this example.

<p>Serif typefaces have small slabs at the ends of letter strokes. In
general, serif fonts can make large amounts of text easier to read.</p>

<p>Sans-serif fonts do not have serif slabs; their strokes are square
on the end. Helvetica and Arial are examples of sans-serif fonts. In
general, sans-serif fonts appear sleeker and more modern.</p>

Paragraphs may contain text, images and other inline elements, but they may

not contain other block elements, including other p elements, so be sure never

to put the elements listed in Table 5-1 between paragraph tags.

<p>...</p>
A paragraph element

<p>...</p>
A paragraph element

N OT E

Tables and forms are also block-level
elements, but they are treated in their
own respective chapters. The generic div
block-level element is introduced later in
this chapter.

N OT E

You must assign an element to all the text
in a document. In other words, all text
must be enclosed in some sort of block
element. Text that is not contained within
tags is called “naked” or “anonymous” text,
and it will cause a document to be invalid.
For more information about checking
documents for validity, see Chapter 10.

Building Blocks

Chapter 5, Marking Up Text 73

In HTML, it is acceptable to omit the closing </p> tag, but in XHTML, the

closing tag must be there. For reasons of forward-compatibility, it is recom-

mended that you always close paragraph (and all) elements.

Headings

In the last chapter, we used the h1 and h2 elements to indicate headings for

our Black Goose Bistro page. There are actually six levels of headings in

(X)HTML, from h1 to h6. Because headings are used to provide logical hier-

archy or outline to a document, it is proper to start with the Level 1 heading

(h1) and work down in numerical order. Doing so not only improves accessi-

bility, but helps search engines (information in higher heading levels is given

more weight). Using heading levels consistently throughout a site—using h1

for all article titles, for example—is also recommended.

This example shows the markup for four heading levels. Additional heading

levels would be marked up in a similar manner.

<h1>Type Design</h1>

<h2>Serif</h2>

<p>Serif typefaces have small slabs at the ends of letter strokes. In
general, serif fonts can make large amounts of text easier to read.</p>

<h3>Baskerville</h3>

<h4>Description</h4>
<p>Description of the Baskerville typeface.</p>

<h4>History</h4>
<p>The history of the Baskerville typeface.</p>

<h3>Georgia</h3>
<p>Description and history of the Georgia typeface.</p>

You can use a style sheet to specify the

appearance of the heading levels. By default,

they will be displayed in bold text, starting

in very large type for h1s with each con-

secutive level in smaller text, as shown in

Figure 5-1.

<h1>...</h1>
<h2>...</h2>
<h3>...</h3>
<h4>...</h4>
<h5>...</h5>
<h6>...</h6>
Heading elements

<h1>...</h1>
<h2>...</h2>
<h3>...</h3>
<h4>...</h4>
<h5>...</h5>
<h6>...</h6>
Heading elements

h1

h2

h3

h4

h4

h3

Figure 5-1. The default rendering of four
heading levels. Their appearance can be
changed easily with a style sheet.

Part II: HTML Markup for Structure74

Building Blocks

Long quotations

If you have a long quotation, a testimonial, or a section of copy from another

source, particularly one that spans four lines or morae, you should mark it up

as a blockquote element. It is recommended that content within blockquotes

be contained in other elements, such as paragraphs, headings, or lists, as

shown in this example.

<p>Renowned type designer, Matthew Carter, has this to say about his
profession:</p>

<blockquote>
 <p>Our alphabet hasn't changed in eons; there isn't much latitude in
what a designer can do with the individual letters.</p>

 <p>Much like a piece of classical music, the score is written
down – it’s not something that is tampered with – and yet, each
conductor interprets that score differently. There is tension in the
interpretation.</p>
</blockquote>

Figure 5-2 shows the default rendering of the blockquote example. This can

be altered with CSS.

Preformatted text

Early on, you learned that browsers ignore white space such as line returns

and character spaces in the source document. But in some types of infor-

mation, such as code examples or poetry, the white space is important for

conveying meaning. For these purposes, there is the preformatted text (pre)

element. It is a unique element in that it is displayed exactly as it is typed—

including all the carriage returns and multiple character spaces. By default,

preformatted text is also displayed in a constant-width font (one in which all

the characters are the same width, also called monospace), such as Courier.

The pre element in this example displays as shown in Figure 5-3. The second

part of the figure shows the same content marked up as a paragraph (p) ele-

ment for comparison.

<blockquote>...</blockquote>
A lengthy, block-level quotation

<blockquote>...</blockquote>
A lengthy, block-level quotation

Figure 5-2. The default rendering of a blockquote element.Figure 5-2. The default rendering of a blockquote element.

<pre>...</pre>
Preformatted text

<pre>...</pre>
Preformatted text

N OT E

There is also the inline element, q, for
short quotations in the flow of text. We’ll
talk about it later in this chapter.

N OT E

The white-space:pre CSS property can
also be used to preserve spaces and
returns in the source. Unlike the pre
element, text formatted with the white-
space property is not displayed in a
constant-width font.

Building Blocks

Chapter 5, Marking Up Text 75

<pre>
This is an example of
 text with a lot of
 curious
 white space.
</pre>

<p>
This is an example of
 text with a lot of
 curious
 white space.
</p>

Figure 5-3. Preformatted text is unique in that the browser displays the white space
exactly as it is typed into the source document. Compare it to the paragraph element in
which line returns and character spaces are ignored.

Figure 5-3. Preformatted text is unique in that the browser displays the white space
exactly as it is typed into the source document. Compare it to the paragraph element in
which line returns and character spaces are ignored.

<hr /> (XHTML)
<hr> (HTML)

A horizontal rule

Horizontal Rules
If you want to add a divider between sections, you can insert a horizontal rule (hr)
element between blocks of text. When browsers see an hr element, they insert a
shaded horizontal line in its place by default. Because horizontal rules are block-level
elements, they always start on a new line and have some space above and below.
The hr element is an empty element—you just drop it into place where you want
the rule to occur, as shown in this XHTML example and Figure 5-4. Note that in
HTML, the hr element is written simply as <hr>.

<h3>Times</h3>
<p>Description and history of the Times typeface.</p>
<hr />
<h3>Georgia</h3>
<p>Description and history of the Georgia typeface.</p>

Some authors use the hr element as a logical divider between sections, but hide
it in the layout with a style rule. For visual layouts, it is common to create a rule by
specifying a colored border before or after an element with CSS.

Figure 5-4. The default rendering of a horizontal rule.Figure 5-4. The default rendering of a horizontal rule.

Part II: HTML Markup for Structure76

Lists

Addresses

Last, and well, least, is the address element that is used to provide contact

information for the author or maintainer of the document. It is generally

placed at the beginning or end of a document or a large section of a docu-

ment. You shouldn’t use the address element for all types of addresses, such as

mailing addresses, so its use is fairly limited. Here’s an example of its intended

use (the “a href” parts are the markup for links... we’ll get to those in Chapter

6, Adding Links).

<address>
Contributed by Jennifer Robbins,
O’Reilly Media
</address>

Lists
Sometimes it is necessary to itemize information instead of breaking it into

paragraphs. There are three main types of lists in (X)HTML:

Unordered lists. Collections of items that appear in no particular order.

Ordered lists. Lists in which the sequence of the items is important.

Definition lists. Lists that consist of terms and definitions.

All list elements—the lists themselves and the items that go in them—are

block-level elements, which means that they always start on a new line by

default. In this section, we’ll look at each list type in detail.

Unordered lists

Just about any list of examples, names, components, thoughts, or options

qualify as unordered lists. In fact, most lists fall into this category. By default,

unordered lists display with a bullet before each list item, but you can change

that with a style sheet, as you’ll see in a moment.

To identify an unordered list, mark it up as a ul element. The opening

tag goes before the first list item and the closing tag goes after the last

item. Then, each item in the list gets marked up as a list item (li) by enclosing

it in opening and closing li tags as shown in this example. Notice that there

are no bullets in the source document. They are added automatically by the

browser (Figure 5-5).

 Serif
 Sans-serif
 Script
 Display
 Dingbats

•

•

•

<address>...</address>
Contact information

<address>...</address>
Contact information

...
Unordered list

...
 List item within an unordered list

...
Unordered list

...
 List item within an unordered list

N OT E

The only thing that is permitted within
an unordered list (that is, between the
start and end ul tags) is one or more list
items. You can’t put other elements in
there, and there may not be any untagged
text. However, you can put any element,
even other block elements, within a list
item (li).

Lists

Chapter 5, Marking Up Text 77

But here’s the cool part. We can take that same unordered list markup, and

radically change its appearance by applying different style sheets, as shown

in Figure 5-6. In the figure, I’ve turned off the bullets, added bullets of my

own, made the items line up horizontally, even made them look like graphical

buttons. The markup stays exactly the same.

Ordered lists

Ordered lists are for items that occur in a particular order, such as step-by-

step instructions or driving directions. They work just like unordered lists

described earlier, except they are defined with the ol element (for ordered

list, naturally). Instead of bullets, the browser automatically inserts numbers

before ordered list items, so you don’t need to number them in the source

document. This makes it easy to rearrange list items without renumbering

them.

Ordered list elements must contain one or more list item elements, as shown

in this example and in Figure 5-7:

 Gutenburg develops moveable type (1450s)
 Linotype is introduced (1890s)
 Photocomposition catches on (1950s)
 Type goes digital (1980s)

Figure 5-6. With style sheets, you can give the same unordered list many different looks. Figure 5-6. With style sheets, you can give the same unordered list many different looks.

...
Ordered list

...
 List item within an ordered list

...
Ordered list

...
 List item within an ordered list

Figure 5-5. The default rendering of the sample unordered list. The bullets are added
automatically by the browser.

Nesting Lists
Any list can be nested within
another list; it just has to be placed
within a list item. This example
shows the structure of an unordered
list nested in the second ordered list
item.

When you nest an unordered list
within another unordered list, the
browser automatically changes the
bullet style for the second-level list.
Unfortunately, the numbering style
is not changed by default when you
nest ordered lists. You need to set
the numbering styles yourself using
style sheets.

Part II: HTML Markup for Structure78

Lists

If you want a numbered list to start at a number other than “1,” you can use

the start attribute in the ol element to specify another starting number, as

shown here:

<ol start="17">
 Highlight the text with the text tool.
 Select the Character tab.
 Choose a typeface from the pop-up menu.

The resulting list items would be numbered 17, 18, and 19, consecutively.

N OT E

The start attribute is not supported in the “Strict” versions of HTML and
XHTML, so you have to use CSS generated text (beyond the scope of this book)
instead. Unfortunately, generated text is not supported by IE6(Win) and earlier.
If you need to alter numbering in a way that is supported by all browsers, stick
with the “Transitional” version of (X)HTML and use the start attribute. The dif-
ference between Strict and Transitional is explained in Chapter 10.

Definition lists

Definition (or dictionary) lists are used for lists of terms with their respective

definitions. They are a bit different from the other two list types in format. The

whole list is marked up as a definition list (dl) element. The content of a dl is

some number of terms (indicated by the dt element) and definitions (indicated

by the dd element). Here is an example of a brief definition list (Figure 5-8).

<dl>
 <dt>Linotype</dt>
 <dd>Line-casting allowed type to be selected, used, then recirculated
into the machine automatically. This advance increased the speed of
typesetting and printing dramatically.</dd>

 <dt>Photocomposition</dt>
 <dd>Typefaces are stored on film then projected onto photo-sensitive
paper. Lenses adjust the size of the type.</dd>

 <dt>Digital type</dt>
 <dd><p>Digital typefaces store the outline of the font shape in a
format such as Postscript. The outline may be scaled to any size for
output.</p>
 <p>Postscript emerged as a standard due to its support of
graphics and its early support on the Macintosh computer and Apple
laser printer.</p>
 </dd>

</dl>

<dl>...</dl>
A definition list

<dt>...</dt>
A term

<dd>...</dt>
A definition

<dl>...</dl>
A definition list

<dt>...</dt>
A term

<dd>...</dt>
A definition

Figure 5-7. The default rendering of an ordered list. The numbers are added
automatically by the browser.

Changing Bullets
and Numbering
You can use the list-style-type
style sheet property to change the
bullets and numbers for lists. For
example, for unordered lists, you
can change the shape from the
default dot to a square or an open
circle, substitute your own image,
or remove the bullet altogether. For
ordered lists, you can change the
numbers to roman numerals (I., II.,
III. or i., ii., iii.), letters (A., B., C., or a.,
b., c.), and several other numbering
schemes. Changing the style of lists
with CSS is covered in Chapter 17.

Adding Line Breaks

Chapter 5, Marking Up Text 79

The dl element is only allowed to contain dt and dl elements. It is okay

to have multiple definitions with one term and vice versa. You can not put

block-level elements (like headings or paragraphs) in terms (dt), but the defi-

nition (dd) can contain any type of content (inline or block-level elements).

At this point, you’ve been introduced to all of the elements for defining dif-

ferent blocks of text. In Exercise 5-1 (following page), you’ll get a chance to

mark up a document yourself and try them out.

Adding Line Breaks
All of the elements we’ve seen so far start automatically on new lines. But

sometimes it is desirable to add a line break within the flow of text. Because

we know that the browser ignores line breaks in the source document, we

need a specific directive to tell the browser to “add a line break here.”

The inline line break element (br) does exactly that. The classic use of the

br element is to break up lines of addresses or poetry. It is an empty ele-

ment, which means it does not have content. Just add the br element (

in HTML,
 in XHTML) in the flow of text where you want a break to

occur, as shown in here and in Figure 5-9.

<p>
So much depends
upon

a red wheel
barrow
</p>

 (XHTML)

 (HTML)

A line break

 (XHTML)

 (HTML)

A line break

Figure 5-9. Line breaks are inserted at each br element.Figure 5-9. Line breaks are inserted at each br element.

Figure 5-8. The default rendering of a definition list. Definitions are set off from the terms
by an indent.

Part II: HTML Markup for Structure80

Adding Line Breaks

Unfortunately, the br element is easily abused (see Warning). Consider

whether using the CSS white-space property (introduced in Chapter 12,

Formatting Text) might be a better alternative for maintaining line breaks

from your source without extra markup.

exercise 5-1 | Fun with block elements

Below you will find the raw text of a recipe web page. The document structure
elements have been added, but it’s up to you to decide which element is the best
match for each block of content. The complete list of block elements is provided on
this page as a reminder of what you have to choose from, but you won’t necessarily
use all of them in this example.

You can write the tags right on this page. Or, if you want to use a text editor and see
the results in a browser, this text file is available online at www.learningwebdesign.
com/materials. The resulting code appears in Appendix A.

<html>
<head><title>Tapenade Recipe</title></head>
<body>

Tapenade (Olive Spread)

This is a really simple dish to prepare and it's always a big hit at
parties. My father recommends:

"Make this the night before so that the flavors have time to blend.
Just bring it up to room temperature before you serve it. In the
winter, try serving it warm."

Ingredients

1 8oz. jar sundried tomatoes
2 large garlic cloves
2/3 c. kalamata olives
1 t. capers

Instructions

Combine tomatoes and garlic in a food processor. Blend until as smooth
as possible.

Add capers and olives. Pulse the motor a few times until they are
incorporated, but still retain some texture.

Serve on thin toast rounds with goat cheese and fresh basil garnish
(optional).

</body>

</html>

Text Block Elements
headings h1, h2, h3, h4, h5, h6

paragraph p

long quotes blockquote

preformatted pre

author contact address

unordered list ul

ordered list ol

list item li

definition list dl

term dt

definition dd

A t A G l A n c e

WA R N I N G

Be careful that you aren’t using br ele-
ments to force breaks into text that really
ought to be a list. For instance, don’t do
this:

<p>milk

bread

orange juice

</p>

If it’s a list, use the semantically correct
unordered list element instead, and turn
off the bullets with style sheets.

 milk
 bread
 orange juice

The Inline Text Element Round-up

Chapter 5, Marking Up Text 81

The Inline Text Element Round-up
Most (X)HTML text elements are inline elements, which means they just

stay in the flow of text and do not cause line breaks. Inline text elements fall

into two general categories: semantic elements and presentational elements.

Those terms should be familiar by now.

The semantic elements describe the meaning of the text; for example, an

acronym or emphasized text. The presentational elements provide descrip-

tions of the element’s typesetting or style, such as bold, italic, or underlined.

It should come as no surprise that the presentational inline elements are

discouraged from use in contemporary web design where style information

should kept be separate from the markup. For that reason, we’ll pay more

attention to the preferred semantic elements in this section.

Semantic inline elements

The semantic text elements describe the enclosed text’s meaning, context

or usage. The way they look when they appear in the browser window

depends on a style sheet, either one you provide or the browser’s built-in

default rendering.

Despite all the types of information you could add to a document, there are

only a dozen of these elements in (X)HTML. Table 5-2 lists all of them. We’ll

discuss each in more detail in this section.

Table 5-2. Semantic inline text elements

Element Description

abbr abbreviation

acronym acronym

cite citation; a reference to another document, such as a book title

code program code sample

del deleted text; indicates an edit made to a document

dfn the defining instance or first occurrence of a term

em emphasized text

ins inserted text; indicates an insertion in a document

kbd keyboard; text entered by a user (for technical documents)

q short, inline quotation

samp sample output from programs

strong strongly emphasized text

var a variable or program argument (for technical documents)

Deprecated
Elements
A number of elements and attributes
in (X)HTML have been deprecated,
which means they are being phased
out and are discouraged from use.
You may run across them in existing
markup, so it is worthwhile knowing
what they are, but there is no reason
to use them in your documents.

Most of the deprecated elements
and attributes are presentational
and have analogous style sheet
properties that should be used
instead. Others are simply obsolete
or poorly supported.

The following is a complete list of
deprecated elements.

applet inserts a Java applet

basefont establishes default font
 settings for a document

center centers its content

dir directory list (replaced
 by unordered lists)

font font face, color, and size

isindex inserts a search box

menu menu list (replaced by
 unordered lists)

s strike-through text

strike strike-through text

u underlined text

Part II: HTML Markup for Structure82

The Inline Text Element Round-up

Adding emphasis to text

There are two elements that indicate that text should be emphasized: em for

emphasized text and strong for strongly emphasized text. Emphasized text

elements almost always display in italics by default, but of course you can

make them display any way you like with a style sheet. Strong text typically

displays in bold text. Screen readers may use a different tone of voice to con-

vey emphasized text, which is why you should use an em or strong element

only when it makes sense semantically, not just to achieve italic or bold text.

The following is a brief example of emphasized and strong text elements in

the flow of a paragraph element. Figure 5-10 should hold no surprises.

<p>Garamond is a really popular typeface, but Times is a
really really popular typeface.</p>

Short quotations

Use the quotation (q) element to mark up short quotations, such as “To be or

not to be” in the flow of text, as shown in this example.

Matthew Carter says, <q>Our alphabet hasn't changed in eons.</q>

According to the HTML 4.01 Recommendation, browsers should automati-

cally add quotation marks around q elements, so you don’t need to include

them in the source document. Many standards-compliant browsers (Firefox,

IE7(Win), Netscape, Opera, Safari, and IE on the Mac) do just that.

Unfortunately, Internet Explorer 5, 5.5, and 6 on Windows, which account for

as much as 70% of web traffic as of this writing, do not (Figure 5-11). That

makes using the q element kind of tricky: if you leave the quotation marks out,

IE5 and 6 users won’t see them, but if you include them, everyone else will see

them twice. As old versions vanish, the q element will become more useful.

...
Emphasized inline text

...
Strongly emphasized inline text

...
Emphasized inline text

...
Strongly emphasized inline text

Figure 5-10. The default rendering of emphasized and strong text.Figure 5-10. The default rendering of emphasized and strong text.

<q>...</q>
Short inline quotation

<q>...</q>
Short inline quotation

Mozilla Firefox 1

Internet Explorer 6

Figure 5-11. Standards-compliant
browsers, such as Mozilla Firefox (top)
automatically add quotation marks
around q elements; Internet Explorer 6 for
Windows (bottom) does not. Support is
fixed in IE7.

Mozilla Firefox 1

Internet Explorer 6

Figure 5-11. Standards-compliant
browsers, such as Mozilla Firefox (top)
automatically add quotation marks
around q elements; Internet Explorer 6 for
Windows (bottom) does not. Support is
fixed in IE7.

The Inline Text Element Round-up

Chapter 5, Marking Up Text 83

Abbreviations and acronyms

Marking up shorthand terms as acronyms and abbreviations provides

useful information for search engines, screen readers, and other devices.

Abbreviations, indicated by the abbr element, are shortened versions of a

word ending in a period (Conn. for Connecticut, for example). Acronyms,

indicated by the acronym element, are abbreviations formed by the first let-

ters of the words in a phrase (such as WWW or USA). Both elements use the

title attribute to provide the long version of the shortened term, as shown

in this example.

<acronym title="American Type Founders">ATF</acronym>

<abbr title="Points">pts.</abbr>

Citations

The cite element is used to identify a reference to another document, such

as a book, magazine, article title, and so on. Citations are typically rendered

in italic text by default. Here’s an example:

<p>Passages of this article were inspired by <cite>The Complete Manual
of Typography</cite> by James Felici.</p>

Defining terms

In publishing, the first and defining instance of a word or term is often

called out in some fashion. In this book, defining terms are set in blue text.

In (X)HTML, you can identify them with the dfn element and format them

visually using style sheets. They are also useful for foreign phrases where a

translation can be provided by a title attribute.

<p><dfn>Script typefaces</dfn> are based on handwriting.</p>

Program code elements

A number of inline elements are used for describing the parts of technical

documents, such as code (code), variables (var), program samples (samp), and

user-entered keyboard strokes (kbd). For me, it’s a quaint reminder of HTML’s

origins in the scientific world (Tim Berners-Lee developed HTML to share

documents at the CERN particle physics lab in 1989).

Code, sample, and keyboard elements typically render in a constant-width

(also called monospace) font such as Courier by default. Variables usually

render in italics.

Inserted and deleted text

The ins and del elements are used to mark up changes to the text and indi-

cate parts of a document that have been inserted or deleted (respectively).

Chief Executive Officer:<del title="retired">Peter Pan<ins>Pippi
Longstockings</ins>

<abbr>...</abbr>
Abbreviation

<acronym>...</acronym>
Acronym

<abbr>...</abbr>
Abbreviation

<acronym>...</acronym>
Acronym

<cite>...</cite>
Citation

<cite>...</cite>
Citation

<dfn>...</dfn>
Defining term

<dfn>...</dfn>
Defining term

<code>...</code>
Code

<var>...</var>
Variable

<samp>...</samp>
Program sample

<kbd>...</kbd>
User-entered keyboard strokes

<code>...</code>
Code

<var>...</var>
Variable

<samp>...</samp>
Program sample

<kbd>...</kbd>
User-entered keyboard strokes

N OT E

The acronym element is likely to go away
in future versions of (X)HTML in favor
of using the abbr element for all acro-
nyms and abbreviations.

Part II: HTML Markup for Structure84

The Inline Text Element Round-up

Presentational inline elements

The remaining inline text elements in the (X)HTML specification provide

typesetting instructions for the enclosed text. Like all inline text elements,

these elements have an opening tag and a closing tag, so you should already

be familiar with how they work.

As I mentioned earlier, professional web authors are careful to keep style

information like this out of the (X)HTML document. I’m not saying that you

should never use these elements; they are perfectly valid elements and many

of them (such as bold and italic) are included in future versions of XHTML

currently in development.

I am encouraging you, however, to consider whether there might be another

way to mark up the content that provides meaning and not just style instruc-

tions. There’s an alternative—whether it’s a semantic element or a style sheet

property—for just about every element in this category.

All of the presentational inline text elements along with the recommended

alternatives are listed in Table 5-3.

Adios, !
The font element—an inline
element used to specify the size,
color, and font face for text—is the
poster child for what went wrong
with HTML. It was first introduced
by Netscape Navigator as a means
to give authors control over font
formatting not available at the
time. Netscape was rewarded with
a temporary slew of loyal users,
but the HTML standard and web
development community paid a
steep price in the long run. The font
element is emphatically deprecated,
and you shouldn’t use it... ever.

Not only does font add no semantic
value, it also makes site updates
more laborious because every
font element needs to be hunted
down and changed. Compare this
to style sheets that let you reformat
elements throughout a site with a
single rule edit.

The font element has three
attributes, all of which have been
deprecated as well:

color specifies the color of the
text

face specifies a font or list of
fonts (separated by commas).

size specifies the size for the font
on a scale of 1 to 7, with 3 as the
default.

Be aware that some WYSIWYG web
authoring tools still make heavy
use of the font element unless you
specify that you want all styles to be
handled with CSS.







exercise 5-2 | Fix it

This document was written by someone who doesn’t know as much about modern
markup practices as you do. It needs some work.

Some markup is incorrect and needs to be fixed, some elements could be marked
up more accurately, and there is one element that was overlooked but should be
marked up for better accessibility. In all, there will be seven changes. Some of them
are obvious, and some of them are subtle.

You can make your changes right on this page, or download the source from www.
learningwebdesign.com/materials/ and edit the file in a text editor. The improved
markup is provided in Appendix A.

<h1>You've Won!

<p>Congratulations! You have just won dinner for two at the

highly acclaimed Blue Ginger restaurant in Wellesley, Mass. In

addition to dinner, you will receive an autographed copy of Ming

Tsai's book, <i>Blue Ginger</i>. To redeem your prize, go to our site

and enter your prize code (Example: <tt>RPZ108-BG</tt>). We're sure

you're going to <i>love</i> it!<p>

The Inline Text Element Round-up

Chapter 5, Marking Up Text 85

Table 5-3. Presentational inline text elements

Element Description Alternative

b bold text Use the strong element instead if appropriate, or use the font-weight CSS prop-
erty: font-weight: bold

big makes text slightly larger
than the default text size

In CSS, use a relative font-size keyword to make text display slightly larger than
the surrounding text: font-size: bigger

center centers the enclosed text Use the CSS text-align property to center the text in an element:
text-align: center

font specifies the size, color, and
typeface (see the Adios,
! sidebar)

All of the functionality of the font element has been replaced by the font-fam-
ily, font-size, and color CSS properties:

Example: font-family: sans-serif; font-size: 120%; color: white;

i italic text Use the em element instead if appropriate, or use the CSS font-style property:
font-style: italic

s* strike-through text Use the CSS text-decoration property to make text display with a line through
it: text-decoration: line-through

small makes text slightly smaller
than the default text size

Use a CSS relative font-size keyword to make text display slightly smaller
than the surrounding text: font-size: smaller

strike* strike-through text Use the CSS text-decoration property to make text display with a line through
it: text-decoration: line-through

sub subscript (smaller font posi-
tioned below the text base-
line)

Use a combination of the font-size and vertical-align CSS properties to
resize and position subscript text: font-size: smaller; vertical-align:
sub;

sup superscript (smaller font
positioned slightly above the
text baseline)

Use a combination of the font-size and vertical-align CSS properties to
resize and position subscript text: font-size: smaller; vertical-align:
sup;

tt teletype; displays in constant-
width (monospace) font, such
as courier

Use a code, samp, or kbd element, if appropriate. Otherwise use the font-family
property to select a specific or generic fixed-width font:
font-family: “Andale Mono”, monospace;

u* underlined text Use the CSS text-decoration property to make text display with a line under it:
text-decoration: underline

* These elements have been “deprecated” in HTML 4.01, which means they will be phased out of future versions of XHTML.

Part II: HTML Markup for Structure86

Generic Elements (div and span)

Generic Elements (div and span)
There are endless types of information in the world, but as you’ve seen, not

all that many semantic elements. Fortunately, (X)HTML provides two generic

elements that can be customized to describe your content perfectly. The div

(short for “division”) element is used to indicate a generic block-level ele-

ment, while the span element is used to indicate a generic inline element. You

give a generic element a name using either an id or class attribute (we’ll talk

about those more in just a moment).

The div and span elements have no inherent presentation qualities of their

own, but you can use style sheets to format the content however you like.

In fact, generic elements are a primary tool in standards-based web design

because they enable authors to accurately describe content and offer plenty

of “hooks” for adding style rules.

We’re going to spend a little time on div and span (as well as the id and class

attributes, also called element identifiers) because they will be powerful tools

once we start working with Cascading Style Sheets. Let’s take a look at how

authors use these elements to structure content.

Divide it up with a div

The div element is used to identify a block-level division of text. You can use

a div like a container around a logical grouping of elements on the page. By

marking related elements as a div and giving it a descriptive name, you give

context to the elements in the grouping. That comes in handy for making the

structure of your document clear but also for adding style properties. Let’s

look at a few examples of div elements.

In this example, a div element is used as a container to group an image and

two paragraphs into a “listing”.

<div class="listing">

 <p><cite>The Complete Manual of Typography</cite>, James Felici</p>
 <p>A combination of type history and examples of good and bad type.
 </p>
</div>

By putting those elements in a div, I’ve made it clear that they are conceptu-

ally related. It also allows me to style to p elements within listings differently

than other paragraphs on the page.

Here is another common use of a div used to break a page into sections for

context, structure, and layout purposes. In this example, a heading and sev-

eral paragraphs are enclosed in a div and identified as the “news” section.

<div id="news">
 <h1>New This Week</h1>
 <p>We've been working on...</p>
 <p>And last but not least,... </p>
</div>

<div>...</div>
Generic block-level element

...
Generic inline element

<div>...</div>
Generic block-level element

...
Generic inline element

It is possible to nest div elements
within other div elements, but
don’t go overboard. You should
always strive to keep your markup as
simple as possible, so only add a div
element if it is necessary for logical
structure or styling.

m A R K U P t I P

Generic Elements (div and span)

Chapter 5, Marking Up Text 87

Now that I have an element known as “news,” I could use a style sheet to

position it as a column to the right or left of the page.

Get inline with span

A span offers all the same benefits as the div element, except it is used for

inline elements that do not introduce line breaks. Because spans are inline

elements, they can only contain text and other inline elements (in other

words, you cannot put block-level elements in a span). Let’s get right to some

examples.

In this example, each telephone number is marked up as a span and classified

as “phone.”

 Joan: 999.8282
 Lisa: 888.4889
 Steve: 888.1628
 Morris: 999.3220

You can see how the labeled spans add meaning to what otherwise might be

a random string of digits. It makes the information recognizable not only to

humans but to (theoretical) computer programs that know what to do with

“phone” information. It also enables us to apply the same style to phone

numbers throughout the site.

Element identifiers

In the previous examples, we saw the element identifiers, id and class, used

to give names to the generic div and span elements. Each identifier has a spe-

cific purpose, however, and it’s important to know the difference.

The id identifier

The id identifier is used to identify a unique element in the document. In

other words, the value of id must be used only once in the document. This

makes it useful for assigning a name to a particular element, as though it

were a piece of data. See the sidebar, id and class Values, for information on

providing names for the id attribute.

This example uses the book’s ISBN number to uniquely identify each listing.

No two book listings may share the same id.

<div id="ISBN0321127307">

 <p><cite>The Complete Manual of Typography</cite>, James Felici</p>
 <p>A combination of type history and examples of good and bad type.</
p>
</div>

Not Just for divs
The id and class attributes may
be used with nearly all (X)HTML
elements, not just div and span.
For example, you could identify an
unordered list as “navigation” instead
of wrapping it in a div.

<ul id="navigation">
 ...
 ...
 ...

In HTML 4.01, id and class attributes
may be used with all elements
except base, basefont, head, html,
meta, param, script, style, and
title. In XHTML, id support has
been added to those elements.

Part II: HTML Markup for Structure88

Generic Elements (div and span)

<div id="ISBN0881792063">

 <p><cite>The Elements of Typographic Style</cite>, Robert
 Bringhurst</p>
 <p>This lovely, well-written book is concerned foremost with
creating beautiful typography.</p>
</div>

Web authors also use id when identifying the various sections of a page.

With this method, there may not be more than one “header,” “main,” or other

named div in the document.

<div id="header">
(masthead and navigation here)
</div>

<div id="main">
(main content elements here)
</div>

<div id="links">
(list of links here)
</div>

<div id="news">
(news sidebar item here)
</div>

<div id="footer">
(copyright information here)
</div>

The class identifier

The class attribute is used for grouping similar elements; therefore, unlike

the id attribute, multiple elements may share a class name. By making ele-

ments part of the same class, you can apply styles to all of the labeled ele-

ments at once with a single style rule. Let’s start by classifying some elements

in the earlier book example. In this first example, I’ve added class attributes

to certain paragraphs to classify them as “descriptions.”

<div id="ISBN0321127307" class="listing">

 <p><cite>The Complete Manual of Typography</cite>, James Felici</p>
 <p class="description">A combination of type history and examples of
good and bad type.</p>
</div>

<div id="ISBN0881792063" class="listing">

 <p><cite>The Elements of Typographic Style</cite>, Robert
Bringhurst</p>
 <p class="description">This lovely, well-written book is concerned
foremost with creating beautiful typography.</p>
</div>

I’ve also classified each div as a “listing.” Notice how the same element may

have both a class and an id identifier. It is also possible for elements to

The id attribute is used to identify.

The class attribute is used to

t I P

id and class Values
The values for id and class
attributes should start with a letter
(A-Z or a-z) or underscore (although
Internet Explorer 6 and earlier have
trouble with underscores, so they
are generally avoided). They should
not contain any character spaces or
special characters. Letters, numbers,
hyphens, underscores, colons, and
periods are okay. Also, the values are
case-sensitive, so “sectionB” is not
interchangeable with “Sectionb.”

Some Special Characters

Chapter 5, Marking Up Text 89

belong to multiple classes. In this example, I’ve classified each div as a “book”

to set them apart from “cd” or “dvd” listings elsewhere in the document.

<div id="ISBN0321127307" class="listing book">

 <p><cite>The Complete Manual of Typography</cite>, James Felici</p>
 <p class="description">A combination of type history and examples of
good and bad type.</p>
</div>

<div id="ISBN0881792063" class="listing book">

 <p><cite>The Elements of Typographic Style</cite>, Robert
 Bringhurst</p>
 <p class="description">This lovely, well-written book is concerned
foremost with creating beautiful typography.</p>
</div>

This should have given you a good introduction to how div and span are used

to provide meaning and organization to documents. We’ll work with them

even more in the style sheet chapters in Part III.

Some Special Characters
There’s just one more text-related topic before we move on.

Some common characters, such as the copyright symbol ©, are not part of

the standard set of ASCII characters, which contains only letters, numbers,

and a few basic symbols. Other characters, such as the less-than symbol (<),

are available, but if you put one in an (X)HTML document, the browser will

interpret it as the beginning of a tag.

Characters such as these must be escaped in the source document. Escaping

means that instead of typing in the character itself, you represent it by its

numeric or named character reference. When the browser sees the character

reference, it substitutes the proper character in that spot when the page is

displayed.

There are two ways of referring to a specific character: by an assigned

numeric value (numeric entity) or using a predefined abbreviated name for

the character (called a named entity). All character references begin with a

“&” and end with an “;”.

Some examples will make this clear. I’d like to add a copyright symbol to

my page. The typical Mac keyboard command, Option-G, which works in

my word processing program, won’t work in XHTML. Instead, I must use

the named entity © (or its numeric equivalent ©) where I want the

symbol to appear (Figure 5-12).

<p>All content copyright © 2007, Jennifer Robbins</p>

or:

<p>All content copyright © 2007, Jennifer Robbins</p>

Part II: HTML Markup for Structure90

Some Special Characters

(X)HTML defines hundreds of named entities as part of the markup lan-

guage, which is to say you can’t make up your own entity. Table 5-4 lists some

commonly used character references. If you’d like to see them all, the complete

list of character references has been nicely assembled online by the folks at

the Web Standards Project at www.webstandards.org/learn/reference/charts/

entities/.

Table 5-4. Common special characters and their character references

Character Description Name Number

 Character space (nonbreaking
space)

& Ampersand & &

' Apostrophe '
(XHTML only)

'

< Less-than symbol (useful for dis-
playing markup on a web page)

< <

> Greater-than symbol (useful for
displaying markup on a web
page)

> &$062;

© Copyright © ©

® Registered trademark ® ®

™ Trademark ™ ™

£ Pound £ £

¥ Yen ¥ ¥

€ Euro € €

– En-dash – –

— Em-dash — —

‘ Left curly single quote ‘ ‘

’ Right curly single quote ’ ’

“ Left curly double quote “ “

” Right curly double quote ” ”

• Bullet • •

... Horizontal ellipses … …

Figure 5-12. The special character is substituted for the character reference when the
document is displayed in the browser.

Character
References in
XHTML
There are a few ways in which
XHTML is different than HTML when
it comes to character references.

First, XHTML defines a character
entity for apostrophe ('),
that was curiously omitted from
the HTML spec.

In XHTML, every instance of an
ampersand must be escaped
so that it is not interpreted as
the beginning of a character
entity, even when it appears in
the value of an attribute. For
example,

<img src="sno.jpg"
alt="Sifl & Olly Show" />





Non-breaking
Spaces
One interesting character to know
about is the non-breaking space
(). Its purpose is to ensure that
a line doesn’t break between two
words. So, for instance, if I mark up
my name like this:

Jennifer Robbins

I can be sure that they will always
stay together on a line.

Non-breaking spaces are also
commonly used to add a string of
character spaces to text (remember
that browsers ignore consecutive
character spaces in the source
document). But if it’s space you’re
after, first consider whether a style
sheet margin, padding, or white-
space property might be a better
option than a string of space
characters.

Putting It All Together

Chapter 5, Marking Up Text 91

Putting It All Together
So far, you’ve learned how to mark up elements and you’ve met all of the

(X)HTML elements for adding structure and meaning to text content. Now

it’s just a matter of practice. Exercise 5-3 gives you an opportunity to try out

everything we’ve covered so far: document structure elements, block ele-

ments, inline elements and character entities. Have fun!

N OT E

This text file is available online at www.
learningwebdesign.com/materials. The
resulting markup is in Appendix A.

exercise 5-3 | Text markup practice

Now that you’ve been introduced to all of the text elements, you can put them to
work by marking up a menu for the Black Goose Bistro. The raw text is shown below.
You can type it in or get the raw text file online (see note). Once you have the raw
content, follow the instructions following the copy. The resulting page is shown in
Figure 5-13.

Black Goose Bistro | Summer Menu

Baker’s Corner Seekonk, Massachusetts, Hours: M-T: 11 to 9, F-S; 11 to
midnight

Appetizers

Black bean purses
Spicy black bean and a blend of mexican cheeses wrapped in sheets of
phyllo and baked until golden. $3.95

Southwestern napoleons with lump crab -- new item!
Layers of light lump crab meat, bean and corn salsa, and our handmade
flour tortillas. $7.95

Main courses

Shrimp sate kebabs with peanut sauce
Skewers of shrimp marinated in lemongrass, garlic, and fish sauce then
grilled to perfection. Served with spicy peanut sauce and jasmine
rice. $12.95

Grilled skirt steak with mushroom fricasee
Flavorful skirt steak marinated in asian flavors grilled as you like
it*. Served over a blend of sauteed wild mushrooms with a side of blue
cheese mashed potatoes. $16.95

Jerk rotisserie chicken with fried plantains -- new item!
Tender chicken slow-roasted on the rotisserie, flavored with spicy and
fragrant jerk sauce and served with fried plantains and fresh mango.
$12.95

* We are required to warn you that undercooked food is a health risk.

Part II: HTML Markup for Structure92

Putting It All Together

Enter the document structure elements first. Give the document the title “Black
Goose Bistro Summer Menu.”

Use div elements to divide the page into four unique sections named “header,”
“appetizers,” “main,” and “warnings,” in that order as appropriate.

Identify the first- and second-level headings (h1 and h2). In the first-level heading,
change the vertical bar character to a bullet character.

Make the restaurant information a paragraph. Delete the comma after
“Massachusetts” and start “hours” on a new line with a br element.

Choose the best list elements for the menu item listings (Appetizers and Main
Courses). Mark up the lists and each item in them.

Make the footnote at the bottom of the menu a paragraph.

Make the asterisk for the footnote superscript. Make the asterisk in the menu
description superscript as well.

Two of the dishes are new items. Change the double hyphens to an em-dash
character and strongly emphasize “new items!” Classify the title of each new dish
as “newitem”.

Classify each price as “price” using span elements.

Label the paragraph in the “warnings” div as a “footnote” using a class identifier.

Save the file and name it menu_summer. html (you can save it in the bistro directory
you created in Chapter 4). Check your page in a browser.

Markup tips:

Choose the element that best fits the meaning of the selected text.

Don’t forget to close elements with closing tags.

Put all attribute values in quotation marks

“Copy and paste” is your friend when adding the same markup to multiple
elements. Just be sure what you copied is correct before you paste it throughout
the document.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.






Figure 5-13. The finished menu page.Want More
Practice?
Try marking up your own résumé.
Start with the raw text, then add
document structure elements, block
elements, then inline elements as
we’ve done in Exercise 5-3. If you
don’t see an element that matches
your information just right, try
creating one using a div or a span.

Test Yourself

Chapter 5, Marking Up Text 93

Test Yourself
Were you paying attention? Here is a rapid-fire set of questions to find out.

Add the markup to add a quick horizontal rule between these paragraphs.

 <p>People who know me know that I love to cook.</p>

 <p>I’ve created this site to share some of my favorite
 recipes.</p>

What does “deprecated” mean?

What’s the difference between a blockquote and a q element?

What element displays white space exactly as it is typed into the source

document?

What is the difference between a ul and an ol?

How do you remove the bullets from an unordered list? (Be general, not

specific.)

What element would you use to provide the full name of the W3C in the

document? Can you write out the complete markup?

What is the difference between a dl and a dt?

What is the difference between id and class?

Name the characters generated by these character entities:

 — ___________ & ___________

 ___________ © ___________

 • ___________ ™ ___________

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Part II: HTML Markup for Structure94

(X)HTML Review: Text Elements

(X)HTML Review: Text Elements
The following is a summary of the elements we covered in this chapter.

Block-level elements

address author contact address

blockquote blockquote

h1...h6 headings

p paragraph

hr horizontal rule

List elements (block-level)

dd definition

dl definition list

dt term

li list item (for ul and ol)

ol ordered list

ul unordered list

Semantic inline elements

abbr abbreviation

acronym acronym

cite citation

code code sample

del deleted text

dfn defining term

em emphasized text

ins inserted text

kbd keyboard text

q short quotation

samp sample output

strong strongly emphasized

var variable

Presentational inline elements

b bold

big big

br line break

center centered text

font size, color, face

i italic

s strike-through

small small text

strike strike-through

sub subscript

sup superscript

tt teletype

u underlined

Generic elements

div block-level division

span inline span of text

95

IN THIS CHAPTER

Making links to
external pages

Making relative
links to documents
on your own server

Linking to a specific
point in a page

Adding “mailto” links

Targeting new windows

If you’re creating a page for the Web, chances are you’ll want it to point to

other web pages, whether to another section of your own site or to someone

else’s. You can even link to another spot on the same page. Linking, after all, is

what the Web is all about. In this chapter, we’ll look at the markup that makes

links work: to other sites, to your own site, and within a page.

If you’ve used the Web at all, you should be familiar with the highlighted

text and graphics that indicate “click here.” There is one element that makes

linking possible: the anchor (a).

<a>...
Anchor element (hypertext link)

The content of the anchor element becomes the hypertext link. Simply wrap

a selection of text in opening and closing <a>... tags and use the href

attribute to provide the URL of the linked page. Here is an example that cre-

ates a link to the O’Reilly Media web site:

Go to O'Reilly.com

To make an image a link, simply put the img element in the anchor element:

The only restriction is that because anchors are inline elements, they may

only contain text and other inline elements. You may not put a paragraph,

heading, or other block element between anchor tags.

Most browsers display linked text as blue and underlined, and linked images

with a blue border. Visited links generally display in purple. Users can change

these colors in their browser preferences, and, of course, you can change the

appearance of links for your sites using style sheets. I’ll show you how in

Chapter 13, Colors and Backgrounds.

When a user clicks on the linked text or image, the page you specify in the

anchor element loads in the browser window. The linked image markup

sample shown previously might look like Figure 6-1.

ADDING LINKS

CHAPTER 6

Anchor Syntax
The simplified structure of the anchor
element is:

linked text or
image

A t A G l A n c e

Part II: HTML Markup for Structure96

The href Attribute

The href Attribute
You’ll need to tell the browser which document to link to, right? The href

(hypertext reference) attribute provides the address of the page (its URL) to

the browser. The URL must always appear in quotation marks. Most of the

time you’ll point to other (X)HTML documents; however, you can also point

to other web resources, such as images, audio, and video files.

Because there’s not much to slapping anchor tags around some content, the

real trick to linking comes in getting the URL correct.

There are two ways to specify the URL:

Absolute URLs provide the full URL for the document, including the

protocol (http://), the domain name, and the pathname as necessary. You

need to use an absolute URL when pointing to a document out on the

Web.

Example: href="http://www.oreilly.com/"

Sometimes, when the page you’re linking to has a long URL pathname, the

link can end up looking pretty confusing (Figure 6-2). Just keep in mind

that the structure is still a simple container element with one attribute.

Don’t let the pathname intimidate you.

Relative URLs describe the pathname to the linked file relative to the cur-

rent document. It doesn’t require the protocol or domain name—just the

pathname. Relative URLs can be used when you are linking to another

document on your own site (i.e., on the same server).

Example: href="recipes/index.html"

In this chapter, we’ll add links using absolute and relative URLs to my cook-

ing web site, Jen’s Kitchen (see sidebar). Absolute URLs are easy, so let’s get

them out of the way first.

•

•

WA R N I N G

One word of caution: if you choose to
change your link colors, it is recom-
mended that you keep them consistent
throughout your site so as not to confuse
your users.

Figure 6-1. When a user clicks on the linked text or image, the page you specify in the
anchor element loads in the browser window.

URL vs. URI
The W3C and the development
community are moving away from
the term URL (Uniform Resource
Locator) toward the more generic
and technically accurate URI (Uniform
Resource Identifier).

At this point, “URL” has crossed over
into the mainstream vocabulary.
Because it is more familiar, I will
be sticking with it throughout the
discussions in this chapter.

If you like to geek out on this
kind of thing, I refer you to the
documentation that defines URIs and
their subset, URLs: www.gbiv.com/
protocols/uri/rfc/rfc3986.html.

t e R m I n O l O G y

Linking to Pages on the Web

Chapter 6, Adding Links 97

Linking to Pages on the Web
Many times, you’ll want to create a link to a page that you’ve found on the

Web. This is known as an “external” link because it is going to a page outside

of your own server or site. To make an external link, you need to provide the

absolute URL, beginning with http:// (the protocol). This tells the browser,

“Go out on the Web and get the following document.”

I want to add some external links to the Jen’s Kitchen home page (Figure 6-3).

First, I’ll link the list item “The Food Network” to the site www.foodtv.com. I

marked up the link text in an anchor element by adding opening and closing

anchor tags. Notice that I’ve added the anchor tags inside the list item (li)

element. That’s because block-level elements, such as li, may not go inside

the inline anchor element.

 <a>The Food Network

Next, I add the href attribute with the complete URL for the site.

 The Food Network

And voila! That’s all there is to it. Now “The Food Network” will appear as a

link, and will take my visitors to that site when they click it.

Figure 6-2. An example of a long URL. Although it may make the anchor tag look
confusing, the structure is the same.

<a href="http://www.mapquest.com/cgi-bin/ia_find?link=btwn%2Ftwn-map_results
&random=996&event=find_search&uid=udu3.vz9s875r6de%3Arxua1wgrb
&SNVData=3mad3-9.fy%2528at2u67_%2529f82u67%253bah7-%253d%253a
%2528_%253d%253abad672%253d%253d1su672%253d0%2Crb%253b7&
country=United+States&address=472+Massachusetts+Ave.&city=Cambridge
&State=MA&Zip=&Find+Map=Get+Map">Directions to the Middle East Restaurant

Opening and closing anchor tags

Linked text
href attribute with URL

URL Wrangling
If you are linking to a page with a
long URL, it is helpful to copy the
URL from the location toolbar in
your browser and paste it into your
(X)HTML document. That way, you
avoid mistyping a single character
and breaking the whole link.

m A R K U P t I P

exercise 6-1 | Make an external link

Open the file index.html from the jenskitchen folder. Make the list item, “Epicurious,”
link to its web page at www.epicurious.com, following my example.

 The Food Network
 Epicurious

When you are done, you can save index.html and open it in a browser. If you have an
Internet connection, you can click on your new link and go to the Epicurious site. If
the link doesn’t take you there, go back and make sure that you didn’t miss anything
in the markup.

Work Along with
Jen’s Kitchen

All the files for the Jen’s Kitchen web
site are available online at www.
learningwebdesign.com/materials.
Download the entire directory,
making sure not to change the way
its contents are organized.

The resulting markup for all of the
exercises is provided in Appendix A.

The pages aren’t much to look at,
but they will give you a chance to
develop your linking skills.

t R y I t

Figure 6-3. Finished Jen’s Kitchen
page

Part II: HTML Markup for Structure98

Linking Within Your Own Site

Linking Within Your Own Site
A large portion of the linking you’ll do will be between pages of your own

site: from the home page to section pages, from section pages to content

pages, and so on. In these cases, you can use a relative URL—one that calls

for a page on your own server.

Without “http://”, the browser looks on the current server for the linked

document. A pathname, the notation used to point to a particular file or

directory, tells the browser where to find the file. Web pathnames follow the

Unix convention of separating directory and filenames with forward slashes

(/). A relative pathname describes how to get to the linked document starting

from the location of the current document.

Relative pathnames can get a bit tricky. In my teaching experience, nothing

stumps beginners like writing relative pathnames, so we’ll take it one step at

a time. There are exercises along the way that I recommend you do as we go

along.

All of the pathname examples in this section are based on the structure of the

Jen’s Kitchen site shown in Figure 6-4. When you diagram the structure of the

directories for a site, it generally ends up looking like an inverted tree with the

root directory at the top of the hierarchy. For the Jen’s Kitchen site, the root

directory is named jenskitchen. For another way to look at it, there is also a

view of the directory and subdirectories as they appear in the Finder on my

Mac (Windows users see one directory at a time).

/
jenskitchen

images/

about.html index.html

recipes/

jenskitchen.gif spoon.gif

salmon.html tapenade.html

pasta/

couscous.html linguine.html

The diagram and the view of the
Mac OS Finder reveal the structure
of the jenskitchen directory.

Figure 6-4. A diagram of the jenskitchen site structure

/
jenskitchen

images/

about.html index.html

recipes/

jenskitchen.gif spoon.gif

salmon.html tapenade.html

pasta/

couscous.html linguine.html

The diagram and the view of the
Mac OS Finder reveal the structure
of the jenskitchen directory.

Figure 6-4. A diagram of the jenskitchen site structure

N OT E

On PCs and Macs, files are organized
into “folders,” but in the web develop-
ment world, it is more common to refer to
the equivalent and more technical term,
“directory.” A folder is just a directory
with a cute icon.

Important
Pathname Don’ts
When you are writing relative
pathnames, it is critical that you
follow these rules to avoid common
errors:

Don’t use backslashes (\). Web
URL pathnames use forward
slashes (/) only.

Don’t start with the drive name
(D:, C:, etc.). Although your
pages will link to each other
successfully while they are on
your own computer, once they
are uploaded to the web server,
the drive name is irrelevant and
will break your links.

Don’t start with file://. This also
indicates that the file is local and
causes the link to break when it
is on the server.

Linking Within Your Own Site

Chapter 6, Adding Links 99

Linking within a directory

The most straightforward relative URL to write is to another file within the

same directory. When you are linking to a file in the same directory, you only

need to provide the name of the file (its filename). When the URL is a single

file name, the server looks in the current directory (that is, the directory that

contains the (X)HTML document with the link) for the file.

In this example, I want to make a link from my home page (index.html) to

a general information page (about.html). Both files are in the same directo-

ry (jenskitchen). So from my home page, I can make a link to the information

page by simply providing its filename in the URL (Figure 6-5):

About the site...

/
jenskitchen

images/

about.html index.html

recipes/

jenskitchen.gif spoon.gif

salmon.html tapenade.html

pasta/

couscous.html linguine.html

The diagram shows that index.html and
about.html are in the same directory.

From index.html:
About this page...

The server looks in the same directory as the current document for this file.

Figure 6-5. Writing a relative URL to another document in the same directory.

/
jenskitchen

images/

about.html index.html

recipes/

jenskitchen.gif spoon.gif

salmon.html tapenade.html

pasta/

couscous.html linguine.html

The diagram shows that index.html and
about.html are in the same directory.

From index.html:
About this page...

The server looks in the same directory as the current document for this file.

Figure 6-5. Writing a relative URL to another document in the same directory.

A link to just the filename
indicates the linked file is
in the same directory as
the current document.

exercise 6-2 | Link in the same directory

Open the file about.html from the jenskitchen folder. Make the paragraph, “Back to
the home page” at the bottom of the page link back to index.html. Remember that
the anchor element must be contained in the p element, not the other way around.

<p>Back to the home page</p>

When you are done, you can save about.html and open it in a browser. You don’t
need an Internet connection to test links locally (that is, on your own computer).
Clicking on the link should take you back to the home page.

Part II: HTML Markup for Structure100

Linking Within Your Own Site

Linking to a lower directory

But what if the files aren’t in the same directory? You have to give the

browser directions by including the pathname in the URL. Let’s see how this

works.

Getting back to our example, my recipe files are stored in a subdirectory

called recipes. I want to make a link from index.html to a file in the recipes

directory called salmon.html. The pathname in the URL tells the browser to

look in the current directory for a directory called recipes, and then look for

the file salmon.html (Figure 6-6):

Garlic Salmon

From index.html:
Garlic Salmon

The server looks in the same directory as the current document for the
recipes directory

The diagram shows that salmon.html is
one directory lower than index.html.

/
jenskitchen

images/

about.html index.html

recipes/

jenskitchen.gif spoon.gif

salmon.html tapenade.html

pasta/

couscous.html linguine.html

Figure 6-6. Writing a relative URL to a document that is one directory level lower than
the current document

From index.html:
Garlic Salmon

The server looks in the same directory as the current document for the
recipes directory

The diagram shows that salmon.html is
one directory lower than index.html.

/
jenskitchen

images/

about.html index.html

recipes/

jenskitchen.gif spoon.gif

salmon.html tapenade.html

pasta/

couscous.html linguine.html

Figure 6-6. Writing a relative URL to a document that is one directory level lower than
the current document

exercise 6-3 | Link one directory down

Open the file index.html from the jenskitchen folder. Make the list item, “Tapenade
(Olive Spread)” link to the file tapenade.html in the recipes directory. Remember to
nest the elements correctly.

Tapenade (Olive Spread)

When you are done, you can save index.html and open it in a browser. You should
be able to click your new link and see the recipe page for tapenade. If not, make sure
that your markup is correct and that the directory structure for jenskitchen matches
the examples.

Linking Within Your Own Site

Chapter 6, Adding Links 101

Now let’s link down to the file called couscous.html, which is located in the

pasta subdirectory. All we need to do is provide the directions through two

subdirectories (recipes, then pasta) to couscous.html (Figure 6-7):

Couscous with Peas and Mint

Directories are separated by forward slashes. The resulting anchor tag tells the

browser, “Look in the current directory for a directory called recipes. There

you’ll find another directory called pasta, and in there is the file I’d like to

link to, couscous.html.”

Now that we’ve done two directory levels, you should get the idea of how

pathnames are assembled. This same method applies for relative pathnames

that drill down through any number of directories. Just start with the name

of the directory that is in same location as the current file, and follow each

directory name with a slash until you get to the linked file name.

From index.html:
Couscous

The server looks in the same directory as the current document for the
recipes directory, and then looks for the pasta directory.

The diagram shows that couscous.html is
two directories lower than index.html.

/
jenskitchen

images/

about.html index.html

recipes/

jenskitchen.gif spoon.gif

salmon.html tapenade.html

pasta/

couscous.html linguine.html

Figure 6-7. Writing a relative URL to a document that is two directory levels lower than
the current document.

From index.html:
Couscous

The server looks in the same directory as the current document for the
recipes directory, and then looks for the pasta directory.

The diagram shows that couscous.html is
two directories lower than index.html.

/
jenskitchen

images/

about.html index.html

recipes/

jenskitchen.gif spoon.gif

salmon.html tapenade.html

pasta/

couscous.html linguine.html

Figure 6-7. Writing a relative URL to a document that is two directory levels lower than
the current document.

When linking to a file
in a lower directory,
the pathname must
contain the names of the
subdirectories you go
through to get to the file.

exercise 6-4 | Link two directories down

Open the file index.html from the jenskitchen folder. Make the list item, “Linguine
with Clam Sauce” link to the file linguine.html in the pasta directory.

Linguine with Clam Sauce

When you are done, you can save index.html and open it in a browser. Click on the
new link to get the delicious recipe.

Part II: HTML Markup for Structure102

Linking Within Your Own Site

Linking to a higher directory

So far, so good, right? Here comes the tricky part. This time we’re going to go

in the other direction and make a link from the salmon recipe page back to

the home page, which is one directory level up.

In Unix, there is a pathname convention just for this purpose, the “dot-dot-

slash” (../). When you begin a pathname with a ../, it’s the same as telling

the browser “back up one directory level” and then follow the path to the

specified file. If you are familiar with browsing files on your desktop with, it

is helpful to know that a “../” has the same effect as clicking the “Up” button

in Windows Explorer or the left-arrow button in the Finder on Mac OS X.

Let’s start by making a link back to the home page (index.html) from salmon.

html. Because salmon.html is in the recipes subdirectory, we need to back up a

level to jenskitchen to find index.html. This pathname tells the browser to “go

up one level,” then look in that directory for index.html (Figure 6-8):

<p>[Back to home page]</p>

Note that we don’t need to write out the name of the higher directory (jen-

skitchen) in the pathname. The ../ stands in for it.

From salmon.html:
[Back to the home page]

The ../ moves you up one level: from within the recipes directory up and
into the jenskitchen directory. There you find index.html.

The diagram shows that index.html is
one directory level higher than salmon.html.

jenskitchen directory

../

/
jenskitchen

images/

about.html index.html

recipes/

jenskitchen.gif spoon.gif

salmon.html tapenade.html

pasta/

couscous.html linguine.html

recipes

pasta

Figure 6-8. Writing a relative URL to a document that is one directory level higher than
the current document.

From salmon.html:
[Back to the home page]

The ../ moves you up one level: from within the recipes directory up and
into the jenskitchen directory. There you find index.html.

The diagram shows that index.html is
one directory level higher than salmon.html.

jenskitchen directory

../

/
jenskitchen

images/

about.html index.html

recipes/

jenskitchen.gif spoon.gif

salmon.html tapenade.html

pasta/

couscous.html linguine.html

recipes

pasta

Figure 6-8. Writing a relative URL to a document that is one directory level higher than
the current document.

exercise 6-5 | Link to
a higher directory

Open the file tapenade.html
from the recipes directory. At the
bottom of the page, you’ll find this
paragraph.

<p>[Back to the home page]</p>

Using the notation described in this
section, make this text link back to
the home page (index.html) located
one directory level up.

Each ../ at the beginning
of the pathname tells
the browser to go up
one directory level to
look for the file.

Linking Within Your Own Site

Chapter 6, Adding Links 103

But how about linking back to the home page from couscous.html? Can you

guess how you’d back your way out of two directory levels? Simple, just use

the dot-dot-slash twice (Figure 6-9).

A link on the couscous.html page back to the home page (index.html) would

look like this:

<p>[Back to home page]</p>

The first ../ backs up to the recipes directory; the second ../ backs up to the

top-level directory where index.html can be found. Again, there is no need to

write out the directory names; the ../ does it all.

From couscous.html:
[Back to the home page]

The first ../ moves you up one level: from within pasta to recipes.
The second ../ moves you from recipes up to jenskitchen.
There you find index.html.

The diagram shows that index.html is two
directory levels higher than couscous.html.

jenskitchen directory

../

/
jenskitchen

images/

about.html index.html

recipes/

jenskitchen.gif spoon.gif

salmon.html tapenade.html

pasta/

couscous.html linguine.html

recipes

pasta

../

Figure 6-9. Writing a relative URL to a document that is two directory levels higher than
the current document.

From couscous.html:
[Back to the home page]

The first ../ moves you up one level: from within pasta to recipes.
The second ../ moves you from recipes up to jenskitchen.
There you find index.html.

The diagram shows that index.html is two
directory levels higher than couscous.html.

jenskitchen directory

../

/
jenskitchen

images/

about.html index.html

recipes/

jenskitchen.gif spoon.gif

salmon.html tapenade.html

pasta/

couscous.html linguine.html

recipes

pasta

../

Figure 6-9. Writing a relative URL to a document that is two directory levels higher than
the current document.

exercise 6-6 | Link up two directory levels

OK, now it’s your turn to give it a try. Open the file linguine.html and make the last
paragraph link to back to the home page using ../../ as I have done.

<p>[Back to the home page]</p>

When you are done, save the file and open it in a browser. You should be able to link
to the home page.

N OT E

I confess to still sometimes silently chant-
ing “go-up-a-level, go-up-a-level” for
each ../ when trying to decipher a com-
plicated relative URL. It helps me sort
things out.

Part II: HTML Markup for Structure104

Linking Within Your Own Site

Site root relative pathnames

All web sites have a root directory, which is the directory that contains all the

directories and files for the site. So far, all of the pathnames we’ve looked at are

relative to the document with the link. Another way to write a pathname is to

start at the root directory and list the sub-directory names until you get to the

file you want to link to. This kind of pathname is known as site root relative.

In the Unix pathname convention, the root directory is referred to with a for-

ward slash (/) at the start of the pathname. The site root relative pathname in

the following link reads, “Go to the very top-level directory for this site, open

the recipes directory, then find the salmon.html file” (Figure 6-10):

Garlic Salmon

Note that you don’t need to write the name of the root directory (jenskitchen)

in the URL—the forward slash (/) stands in for it and takes the browser to

the top level. From there, it’s a matter of specifying the directories the brows-

er should look in.

Because this link starts at the root to describe the pathname, it will work

from any document on the server, regardless of which sub-directory it may

be located in. Site root relative links are useful for content that might not

always be in the same directory, or for dynamically generated material. They

also make it easy to copy and paste links between documents. On the down-

side, however, the links won’t work on your local machine because they will

be relative to your hard drive. You’ll have to wait until the site is on the final

server to check that links are working.

From any document on the site:
Garlic Salmon

The (/) at the beginning of the path name tells the browser to start at
the root directory (jenskitchen).

/
jenskitchen

images/

about.html index.html

recipes/

jenskitchen.gif spoon.gif

salmon.html tapenade.html

pasta/

couscous.html linguine.html

Figure 6-10. Writing a relative URL starting at the root directory.

From any document on the site:
Garlic Salmon

The (/) at the beginning of the path name tells the browser to start at
the root directory (jenskitchen).

/
jenskitchen

images/

about.html index.html

recipes/

jenskitchen.gif spoon.gif

salmon.html tapenade.html

pasta/

couscous.html linguine.html

Figure 6-10. Writing a relative URL starting at the root directory.

Site root relative links are
generally preferred due to
their flexibility.

Linking Within Your Own Site

Chapter 6, Adding Links 105

It’s the same for images

The src attribute in the img element works the same as the href attribute in

anchors when it comes to specifying URLs. Since you’ll most likely be using

images from your own server, the src attributes within your image elements

will be set to relative URLs.

Let’s look at a few examples from the Jen’s Kitchen site. First, to add an image

to the index.html page, the markup would be:

The URL says, “Look in the current directory (jenskitchen) for the images

directory; in there you will find jenskitchen.gif.”

Now for the piece de résistance. Let’s add an image to the file couscous.html:

This is a little more complicated than what we’ve seen so far. This pathname

tells the browser to go up two directory levels to the top-level directory and,

once there, look in the images directory for a image called spoon.gif. Whew!

Of course, you could simplify that path by going the site root relative route, in

which case, the pathname to spoon.gif (and any other file in the images direc-

tory) could be accessed like this:

The trade-off is that you won’t see the image in place until the site is uploaded

to the server, but it does make maintenance easier once it’s there.

exercise 6-7 | Try a few more

Before we move on, you may want to try your hand at writing a few more relative
URLs to make sure you’ve really gotten it. You can just write your answers below, or if
you want to test your markup to see if it works, make changes in the actual files. You’ll
need to add the text to the files to use as the link (for example, “Go to the Tapenade
recipe” for the first question). Answers are in Appendix A.

Create a link on salmon.html to tapenade.html.

Create a link on couscous.html to salmon.html.

Create a link on tapenade.html to linguine.html.

Create a link on linguine.html to about.html.

Create a link on tapenade.com to www.allrecipes.com.

1.

2.

3.

4.

5.

exercise 6-7 | Try a few more

Before we move on, you may want to try your hand at writing a few more relative
URLs to make sure you’ve really gotten it. You can just write your answers below, or if
you want to test your markup to see if it works, make changes in the actual files. You’ll
need to add the text to the files to use as the link (for example, “Go to the Tapenade
recipe” for the first question). Answers are in Appendix A.

Create a link on salmon.html to tapenade.html.

Create a link on couscous.html to salmon.html.

Create a link on tapenade.html to linguine.html.

Create a link on linguine.html to about.html.

Create a link on tapenade.com to www.allrecipes.com.

1.

2.

3.

4.

5.

N OT E

Any of these pathnames could be site root
relative, but write them relative to the
listed document for the practice.

A Little Help from
Your Tools
If you use a WYSIWYG authoring
tool to create your site, the tool
generates relative URLs for you. Be
sure to use one of the automated
link tools (such as the Browse
button or GoLive’s “Point and Shoot”
function) for links and graphics.
Some programs, such as Adobe
Dreamweaver and Microsoft
Expression Web, have built-in site
management functions that adjust
your relative URLs even if you
reorganize the directory structure.

Part II: HTML Markup for Structure106

Linking Within Your Own Site

Linking to a specific point in a page

Did you know you can link to a specific point in a web page? This is useful

for providing shortcuts to information at the bottom of a long scrolling page

or for getting back to the top of a page with just one click. You will sometimes

hear linking to a specific point in the page referred to as linking to a document

fragment.

Linking to a particular spot within a page is a two-part process. First, you

identify the destination, and then you make a link to it. In the following

example, I create an alphabetical index at the top of the page that links down

to each alphabetical section of a glossary page (Figure 6-11). When users click

on the letter “H,” they’ll jump down on the page to the “H” heading lower

on the page.

Step 1: Naming the destination

I like to think of this step as planting a flag in the document so I can get back

to it easily. To create a destination, use the id attribute to give the target ele-

ment in the document a unique name (that’s “unique” as in the name may

only appear once in the document, not “unique” as in funky and interesting).

In web lingo, this is the fragment identifier.

You may remember the id attribute from Chapter 5, Marking Up Text where

we used it to name generic div and span elements. Here, we’re going to use it

to name an element so that it can serve as a fragment identifier, that is, the

destination of a link.

Here is a sample of the source for the glossary page. Because I want users to

be able to link directly to the “H” heading, I’ll add the id attribute to it and

give it the value “startH” (Figure 6-11 1).

<h1 id="startH">H</h1>

Step 2: Linking to the destination

With the identifier in place, now I can make a link to it.

At the top of the page, I’ll create a link down to the “startH” fragment 2. As

for any link, I use the a element with the href attribute to provide the location

of the link. To indicate that I’m linking to a fragment, I use the octothorpe

symbol (#), also called a hash or number symbol, before the fragment name.

<p>... F | G | H | I | J ...</p>

And that’s it. Now when someone clicks on the “H” from the listing at the

top of the page, the browser will jump down and display the section starting

with the “H” heading 3.

N OT E

Linking to another spot on the same
page works well for long, scrolling pages,
but the effect may be lost on a short web
page.

N OT E

Remember that id values must start
with a letter or an underscore (although
underscores may be problematic in some
versions of IE).

To the Top!
It is common practice to add a link
back up to the top of the page when
linking into a long page of text. This
alleviates the need to scroll back after
every link.

A U t H O R I n G t I P

Linking Within Your Own Site

Chapter 6, Adding Links 107

<h2 id="startH">H</h2>
<dl>
<dt>hexadecimal</dt>
<dd>A base-16 numbering system that uses the characters 0-9 and
A-F. It is used in CSS and HTML for specifying color values</dd>

<p>... | F | G | H | I | J ...</p>

Create a link to the destination. The # before the name is necessary to identify
this as a fragment and not a filename.

Identify the destination using the id attribute.1

2

3

Figure 6-11. Linking to a specific destination within a single web page.

Named Anchors
The old way of identifying a
destination in a document was to
place a named anchor element. A
named anchor is an a element that
uses the name attribute (for providing
the unique fragment identifier)
instead of href, for example:

<h2>H</
h2>

Named anchors are not underlined
when the page displays in the
browser.

The name attribute is no longer used
with the a element in XHTML, so the
recommended practice is to simply
identify the element itself with the
id attribute (as we’ve done in this
chapter). It also keeps the markup
simple and semantically sound.
(Note that name is still used for
certain form input elements.)

If, for some reason, you must
support Netscape 4 or other out-of-
date browsers for the .1% of people
still using them, you will need to
include a named anchor because
old browsers do not support the id
attribute for naming fragments.

Part II: HTML Markup for Structure108

Targeting a New Browser Window

Linking to a fragment in another document

You can link to a fragment in another document by adding the fragment

name to the end of the URL (absolute or relative). For example, to make a

link to the “H” heading of the glossary page from another document in that

directory, the URL would look like this:

See the Glossary, letter H

You can even link to specific destinations in pages on other sites by putting

the fragment identifier at the end of an absolute URL, like so:

See the Glossary,

letter H

Of course, you don’t have any control over the named fragments in other

people’s web pages. The destination points must be inserted by the author

of those documents in order to be available to you. The only way to know

whether they are there and where they are is to “View Source” for the page

and look for them in the markup. If the fragments in external documents

move or go away, the page will still load; the browser will just go to the top of

the page as it does for regular links.

Targeting a New Browser Window
One problem with putting links on your page is that when people click on

them, they may never come back. One solution to this dilemma is to have the

linked page open in a new browser window. That way, your visitors can check

out the link and still have your content available where they left it.

The downside is that opening new windows is problematic for accessibility.

New windows may be confusing to some users, particularly those who are

accessing your site via a screen reader or other assistive device. At the very

least they may be perceived as an annoyance rather than a convenience,

particularly now that we are regularly bombarded with pop-up advertising.

Finally, because it is common to configure your browser to block pop-up

windows, you risk having the users miss out on the content in the new

window altogether.

The method you use to open a link in a new browser window depends on

whether you want to control its size. If the size of the window doesn’t matter,

you can use (X)HTML alone. However, if you want to open the new window

with particular pixel dimensions, then you need to use JavaScript. Let’s look

at both of these techniques.

exercise 6-8 | Linking
to a fragment

Want some practice linking to
specific destinations? Open the file
glossary.html in the materials folder
for this chapter. It looks just like the
document in Figure 6-11.

Identify the h2 “A” as a destination
for a link by naming it “startA”
with an id attribute.

<h2 id="startA">A</h2>

Make the letter “A” at the top of
the page a link to the named
anchor. Don’t forget the #.

A

Repeat steps 1 and 2 for every letter
across the top of the page until you
really know what you are doing (or
until you can’t stand it anymore). You
can help users get back to the top of
the page, too.

Make the heading “Glossary” a
destination named “top.”

<h1 id="top">Glossary</h1>

Add a paragraph element
containing “TOP” at the end of
each lettered section. Make “TOP”
a link to the identifier that you
just made at the top of the page.

<p>TOP</p>

Copy and paste this code to the
end of every letter section. Now
your readers can get back to the
top of the page easily throughout
the document.

1.

2.

3.

4.

Targeting a New Browser Window

Chapter 6, Adding Links 109

A new window with markup

To open a new window using (X)HTML markup, use the target attribute in

the anchor (a) element to tell the browser the name of the window in which

you want the linked document to open. Set the value of target to _blank or to

any name of your choosing. Remember with this method, you have no con-

trol over the size of the window, but it will generally open at the same size as

the most recently opened window in the user’s browser.

Setting target="_blank" always causes the browser to open a fresh window.

For example:

O'Reilly

If you target “_blank” for every link, every link will launch a new window,

potentially leaving your user with a mess of open windows.

A better method is to give the target window a specific name, which can then

be used by subsequent links. You can give the window any name you like

(“new,” “sample,” whatever), as long as it doesn’t start with an underscore. The

following link will open a new window called “display.”

O'Reilly

If you target the “display” window from every link on the page, each linked

document will open in the same second window. Unfortunately, if that sec-

ond window stays hidden behind the user’s current window, it may look as

though the link simply didn’t work.

Opening a window with JavaScript

If you want to control the dimensions of your new win-

dow, you’ll need to use JavaScript, a scripting language

that adds interactivity and conditional behaviors to

web pages. Teaching JavaScript is beyond the scope of

this book, but you can use this simple window-open-

ing script. Copy it exactly as it appears here, or (thank

goodness) copy and paste it from the document win-

dowscript.html provided in the materials for this chapter

(at www.learningwebdesign.com/materials).

Figure 6-12. JavaScript allows you to open
a window at a specific pixel size.
Figure 6-12. JavaScript allows you to open
a window at a specific pixel size.

Targeting Frames
The target attribute is also useful
with framed documents. A framed
document is one in which the
browser is divided into multiple
windows, or frames, each displaying
a separate (X)HTML document. If you
give each frame a name, you can use
the target attribute in links to make
a linked document open in a specific
frame. Frames, while once popular,
have largely gone out of style due to
usability and accessibility problems.

Part II: HTML Markup for Structure110

Targeting a New Browser Window

The script in the following example opens a new window that is 300 pixels

wide by 400 pixels high (Figure 6-12).

There are two parts to the JavaScript. The first is the script itself ➊; the sec-

ond is a reference to the script within the link ➋.

<html>
<head>
 <title>Artists</title>

➊ <script type="text/javascript">
 // <![CDATA[
 var properties = { width: 300,
 height: 400,
 scrollbars: 'yes',
 resizable: 'yes' };
 function popup(){
 var link = this.getAttribute('href');
 var prop_str = '';
 for(prop in properties){
 prop_str = prop_str + prop + '=' + properties[prop] + ',';
 }
 prop_str = prop_str.substr(0, prop_str.length - 1);
 var newWindow = window.open(link, '_blank', prop_str);
 if(newWindow){
 if(newWindow.focus) newWindow.focus();
 return false;
 }
 return true;
 }
 function setupPopups(){
 var links = document.getElementsByTagName('a');
 for(var i=0; i<links.length; i++){
 if(links[i].getAttribute('rel') &&
 links[i].getAttribute('rel') == 'popup') links[i].
onclick = popup;
 }
 }
 window.onload = function(){
 setupPopups();
 }
 //]]>
 </script>
</head>

<body>
<h1>Artists</h1>

➋ Tom Waits
 Brian Eno

</body>
</html>

When a user clicks on a link with a rel attribute set to “popup,” this script

kicks into action and opens the linked document in a new window that is

sized according to the width and height property settings (300 × 400 pixels

in this example).

Mail Links

Chapter 6, Adding Links 111

This script opens any link with a rel attribute set to “popup” in a new win-

dow set to a specific size. You can set the width and height of the window to

any pixel dimensions in the properties list at the beginning of the script (in

bold). You can also decide whether the window has scrollbars and whether

the user can resize the window by setting the “scrollbars” and “resizable” vari-

ables to “yes” or “no.” The property values are the only portion of the script

that should be customized. The rest should be used as-is.

In the body of the document, you’ll see that each link includes the rel

attribute set to “popup” ➋. Links without this rel value will not trigger the

script.

Mail Links
Here’s a nifty little linking trick: the mailto link. By using the mailto protocol

in a link, you can link to an email address. When the user clicks on a mailto

link, the browser opens a new mail message preaddressed to that address in

a designated mail program.

A sample mailto link is shown here:

Contact Al Klecker

As you can see, it’s a standard anchor element with the href attribute. But the

value is set to mailto:name@address.com.

The browser has to be configured to launch a mail program, so the effect

won’t work for 100% of your audience. If you use the email itself as the linked

text, nobody will be left out if the mailto function does not work.

Test Yourself
The most important lesson in this chapter is how to write URLs for links and

images. Here’s another chance to brush up on your pathname skills.

Using the directory hierarchy shown in Figure 6-13, write out the markup for

the following links and graphics. I filled in the first one for you as an example.

The answers are located in Appendix A.

This diagram should provide you with enough information to answer the

questions. If you need hands-on work to figure them out, the directory struc-

ture is available in the test directory in the materials for this chapter. The

documents are just dummy files and contain no content.

In index.html (the site’s home page), write the markup for a link to

tutorial.html.

 ...

1.

Spam-Bots
Be aware that by putting an email
address in your document source,
you will make it susceptible to
receiving unsolicited junk email
(known as spam). People who
generate spam lists sometimes use
automated search programs (called
bots) to scour the Web for email
addresses.

One solution is to encrypt the
email address so that it is hidden
from email-harvesting robots but
accessible to human readers. The
Enkoder from Automatic Labs
will do this for you. It is available
via an online form or as a Mac
OS X application. Get Enkoder at
/automaticlabs.com/products/
enkoder.

Otherwise, if you don’t want
to risk getting spammed, keep
your email address out of your
(X)HTML document.

Part II: HTML Markup for Structure112

Test Yourself

In index.html, write the anchor element for a link to instructions.html.

Create a link to family.html from the page tutorial.html.

Create a link to numbers.html from the family.html page, but this time,

start with the root directory.

Create a link back to the home page (index.html) from the page instruc-

tions.html.

In the file intro.html, create a link to the web site for this book (www.

learningwebdesign.com).

Create a link to instructions.html from the page greetings.html.

2.

3.

4.

5.

6.

7.

/
somesite

images/

index.html tutorial.html

examples/

instructions.html intro.html

french/

friends.html family.html

spanish/

food.html greetings.html

german/

money.html numbers.htmlcolors.html

arrow.gif logo.gif

Figure 6-13. The directory structure for the Test Yourself questions.

/
somesite

images/

index.html tutorial.html

examples/

instructions.html intro.html

french/

friends.html family.html

spanish/

food.html greetings.html

german/

money.html numbers.htmlcolors.html

arrow.gif logo.gif

Figure 6-13. The directory structure for the Test Yourself questions.

The ../ (or multiples of them) always
appears at the beginning of the
pathname and never in the middle. If
the pathnames you write have ../ in
the middle, you’ve done something
wrong.

t I P

(X)HTML Review: The Anchor Element

Chapter 6, Adding Links 113

Create a link back to the home page (index.html) from money.html.

We haven’t covered the image (img) element in detail yet, but you should be

able to fill the relative URLs after the src element to specify the location of

the image files for these examples.

To place the graphic arrow.gif on the page index.html, the URL is:

 To place the graphic arrow.gif on the page intro.html, the tag is:

To place the graphic bullet.gif on the friends.html page, the tag is:

(X)HTML Review: The Anchor Element
There’s really only one element relevant to linking:

Element and attributes Description

a Anchor (hypertext link) element

href="url" Location of the target file

name="text" Obsolete method for naming an anchor to cre-
ate a fragment

8.

9.

10.

11.

115

IN THIS CHAPTER

Adding images
to a web page

Using the src, alt, width,
and height attributes

Creating an imagemap

A web page with all text and no pictures isn’t much fun. The Web’s explosion

into mass popularity is due in part to the fact that there are images on the

page. Before the Web, the Internet was a text-only tundra.

Images appear on web pages in two ways: as part of the inline content or as til-

ing background images. Background images are added using Cascading Style

Sheets and are talked about at length in Chapter 13, Colors and Backgrounds.

In this chapter, we’ll focus on adding image content to the document using

the inline img element.

Inline images may be used on web pages in several ways:

As a simple image. An image can be used on a web page much as it is used

in print, as a static image that adds information, such as a company logo

or an illustration.

As a link. As we saw in the previous chapter, an image can be used as a link

to another document by placing it in the anchor element.

As an imagemap. An imagemap is a single image that contains multiple

links (“hotspots”) that link to other documents. We’ll look at the markup

used to add clickable areas to images in this chapter as well.

With the emergence of standards-driven design and its mission to keep all

matters of presentation out of the document structure, there has been a shift

away from using inline images for purely decorative purposes. See the sidebar,

Decorate Images Move on Back, on the following page for more information

on this trend.

First, a Word on Image Formats
We’ll get to the img element and markup examples in a moment, but first it’s

important to know that you can’t put just any image on a web page. In order

to be displayed inline, images must be in the GIF, JPEG, or PNG file format.

Chapter 18, Web Graphics Basics explains these formats and the image types

they handle best. In addition to being in an appropriate format, image files

ADDING IMAGES

CHAPTER 7

Part II: HTML Markup for Structure116

The img Element

need to be named with the proper suffixes—.gif, .jpg (or .jpeg), and .png,

respectively—in order to be recognized by the browser. Browsers use the suf-

fix to determine how to display the image.

If you have a source image that is in another popular format such as TIFF,

BMP, or EPS, you’ll need to convert it to a web format before you can add it

to the page. If, for some reason, you must keep your graphic file in its origi-

nal format, you can make it available as an external image, by making a link

directly to the image file, like this:

Get the drawing

Browsers use helper applications to display media they can’t handle alone.

The browser matches the suffix of the file in the link to the appropriate

helper application. The external image may open in a separate application

window or within the browser window if the helper application is a plug-in,

such as the QuickTime plug-in. The browser may also ask the user to save the

file or open an application manually.

Without further ado, let’s take a look at the img element and its required and

recommended attributes.

The img Element

 (XHTML)

 (HTML)

Adds an inline image

The img element tells the browser, “Place an image here.” You add it in the flow

of text at the point where you want the image to appear, as in this example.

Because it is an inline element, it does not cause any line breaks, as shown in

Figure 7-1.

<p>I had been wanting to go to Tuscany
for a long time, and I was not disappointed.</p>

Figure 7-1. By default, inline images are aligned with the baseline of the surrounding
text, and they do not cause a line break.

When the browser sees the img element, it makes a request to the server and

retrieves the image file before displaying it on the page. Even though it makes

a separate request for each image file, the speed of networks and computers

Decorative Images
Move on Back
Images that are used purely for
decoration have more to do with
presentation than document
structure and content. For that
reason, they should be controlled
with a style sheet rather than the
(X)HTML markup.

Using CSS, it is possible to place
an image in the background of
the page or in any text element
(a div, h1, li, you name it). These
techniques are introduced in
Chapters 13 and 19 of this book.

There are several benefits to
specifying decorative images only in
an external style sheet and keeping
them out of the document structure.
Not only does it make the document
cleaner and more accessible, it also
makes it easier to make changes
to the look and feel of a site than
when presentational elements are
interspersed in the content.

For inspiration on how visually rich
a web page can be with no img
elements at all, see the CSS Zen
Garden site at www.csszengarden.
com.

Decorative Images
Move on Back
Images that are used purely for
decoration have more to do with
presentation than document
structure and content. For that
reason, they should be controlled
with a style sheet rather than the
(X)HTML markup.

Using CSS, it is possible to place
an image in the background of
the page or in any text element
(a div, h1, li, you name it). These
techniques are introduced in
Chapters 13 and 19 of this book.

There are several benefits to
specifying decorative images only in
an external style sheet and keeping
them out of the document structure.
Not only does it make the document
cleaner and more accessible, it also
makes it easier to make changes
to the look and feel of a site than
when presentational elements are
interspersed in the content.

For inspiration on how visually rich
a web page can be with no img
elements at all, see the CSS Zen
Garden site at www.csszengarden.
com.

The img Element

Chapter 7, Adding Images 117

usually makes it appear to happen instantaneously (unless you are dialing in

on a slow modem connection).

The src and alt attributes shown in the sample are required. The src attri-

bute tells the browser the location of the image file. The alt attribute provides

alternative text that displays if the image is not available. We’ll talk about src

and alt a little more in upcoming sections.

There are a few other things of note about the img element:

It is an empty element, which means it doesn’t have any content. You just

place it in the flow of text where the image should go.

In XHTML, empty elements need to be terminated, so the img element is

written . In HTML, it’s simply .

It is an inline element, so it behaves like any other inline element in the

text flow. Figure 7-2 demonstrates the inline nature of image elements.

When the browser window is resized, the line of images reflows to fill the

new width.

The img element is what’s known as a replaced element because it is

replaced by an external file when the page is displayed. This makes it

different from text elements that have their content right there in the

(X)HTML source (and thus are non-replaced).

By default, the bottom edge of an image aligns with the baseline of text,

as shown in Figures 7-1 and 7-2. Using Cascading Style Sheets, you can

float the image to the right or left margin and allow text to flow around

it, control the space and borders around the image, and change its vertical

alignment. There are deprecated (X)HTML attributes for handling image

alignment (see the sidebar, Deprecated img Attributes, next page), but they

are discouraged from use and don’t offer such fine-tuned control anyway.

Figure 7-2. Inline images are part of the normal document flow. They reflow when the browser window is resized.

•

•

•

•

•

The src and alt attributes
are required in the img
element.

The src and alt attributes
are required in the img
element.

Part II: HTML Markup for Structure118

The img Element

Providing the location with src

src="URL"
Source (location) of the image

The value of the src attribute is the URL of the image file. In most cases,

the images you use on your pages will reside on your server, so you will use

relative URLs to point to them. If you just read Chapter 6, Adding Links, you

should be pretty handy with writing relative URLs by now. In short, if the

image is in the same directory as the (X)HTML document, you can just refer

to the image by name in the src attribute:

Developers usually organize the images for a site into a directory called

images or graphics. There may even be separate image directories for each

section of the site. If an image is not in the same directory as the document,

you need to provide the relative pathname to the image file.

Of course, you can place images from other web sites as well (just be sure that

you have permission to do so). Just use an absolute URL, like this:

Organize Your Images
It is common to store all the graphics in their own directory (usually called images or
graphics). You can make one images directory to store all the graphics for the whole
site or create an images directory in each subdirectory (subsection) of the site.

Once you have your directory structure in place, be careful to save your graphics
in the proper directory every time. Also be sure that the graphics are in the proper
format and named with the .gif, .jpg, or .png suffix.

D e V e l O P m e n t t I P

Providing alternate text with alt

alt="text"
Alternative text

Every img element must also contain an alt attribute that is used to provide

a brief description of the image for those who are not able to see it, such as

users with screen readers, Braille, or even small mobile devices. Alternate text

(also referred to as alt text) should serve as a substitute for the image con-

tent—serving the same purpose and presenting the same information.

<p>If you're and you know it
clap your hands.</p>

Deprecated img
Attributes
In the past, image placement
was handled with presentational
attributes that have since been
deprecated. For the sake of
thoroughness, I’m listing them here
with the recommendation that you
not use them.

border

 Specifies the width of a border
around an image. Use one of the
CSS border properties instead.

align

 Changes the vertical and
horizontal alignment of the
image. It is also used to float the
image to the left or right margin
and allow text to wrap around it.
This is now handled with the CSS
float property.

hspace

 Holds space to the left and right
of an image floated with the
align attribute. Space around
images should be handled with
the CSS margin property.

vspace

 Holds space above and below an
image floated with the align
attribute. Again, the margin
property is now the way to add
space on any side of an image.

Deprecated img
Attributes
In the past, image placement
was handled with presentational
attributes that have since been
deprecated. For the sake of
thoroughness, I’m listing them here
with the recommendation that you
not use them.

border

 Specifies the width of a border
around an image. Use one of the
CSS border properties instead.

align

 Changes the vertical and
horizontal alignment of the
image. It is also used to float the
image to the left or right margin
and allow text to wrap around it.
This is now handled with the CSS
float property.

hspace

 Holds space to the left and right
of an image floated with the
align attribute. Space around
images should be handled with
the CSS margin property.

vspace

 Holds space above and below an
image floated with the align
attribute. Again, the margin
property is now the way to add
space on any side of an image.

The img Element

Chapter 7, Adding Images 119

A screen reader might indicate the image and its alt value this way:

“If you’re image happy and you know it clap your hands.”

If an image is purely decorative, or does not add anything meaningful to the

text content of the page, it is recommended that you leave the value of the alt

attribute empty, as shown in this example and other examples in this chapter.

Note that there is no character space between the quotation marks.

Do not omit the alt attribute altogether, however, because it will cause the

document to be invalid (validating documents is covered in Chapter 10,

Understanding the Standards). For each inline image on your page, consider

what the alternative text would sound like when read aloud and whether that

enhances or is just obtrusive to a screen-reader user’s experience.

Alternative text may benefit users with graphical browsers as well. If a user

has opted to turn images off in the browser preferences or if the image sim-

ply fails to load, the browser may display the alternative text to give the user

an idea of what is missing. The handling of alternative text is inconsistent

among modern browsers, however, as shown in Figure 7-3.

With image displayed IE 6 and 7 (Windows)

Firefox 1.5 and 2; Netscape 7 (Windows and Mac) Safari (Mac)

Figure 7-3. Most browsers display alternative text in place of the image (either with an
icon or as inline text) if the image is not available. Safari for Macintosh OS X is a notable
exception.

Long descriptions

Alternative text is a good start toward improving the accessibility of non-text

content, but it is intended to be brief and succinct. For complex images, such

as floor-plans, charts, graphs, and informational photographs, alternative text

is not enough to fully convey the content. For those images, you may provide

a longer description of the image using the longdesc attribute.

The value of the longdesc attribute is the URL of an external (X)HTML

document containing the long description, as shown here:

<img src="executiveking.jpg" alt="photo of executive king room"
longdesc="executiveking-ld.html" />

Take Advantage of
Caching
Here’s a tip for making images
display more quickly and reducing
the traffic to your server. If you use
the same image in multiple places
on your site, be sure each img
element is pointing to the same
image file on the server.

When a browser downloads an
image file, it stores it in the disk
cache (a space for temporarily
storing files on the hard disk). That
way, if it needs to redisplay the page,
it can just pull up a local copy of the
source document and image files
without making a new trip out to
the remote server.

When you use the same image
repetitively in a page or a site, the
browser only needs to download
the image once. Every subsequent
instance of the image is grabbed
from the local cache, which means
less traffic for the server and faster
display for the end user.

The browser recognizes an image
by its entire pathname, not just
the filename, so if you want to take
advantage of file caching, be sure
that each instance of your image
is pointing to the same image file
on the server (not multiple copies
of the same image file in different
directories).

t I P

Take Advantage of
Caching
Here’s a tip for making images
display more quickly and reducing
the traffic to your server. If you use
the same image in multiple places
on your site, be sure each img
element is pointing to the same
image file on the server.

When a browser downloads an
image file, it stores it in the disk
cache (a space for temporarily
storing files on the hard disk). That
way, if it needs to redisplay the page,
it can just pull up a local copy of the
source document and image files
without making a new trip out to
the remote server.

When you use the same image
repetitively in a page or a site, the
browser only needs to download
the image once. Every subsequent
instance of the image is grabbed
from the local cache, which means
less traffic for the server and faster
display for the end user.

The browser recognizes an image
by its entire pathname, not just
the filename, so if you want to take
advantage of file caching, be sure
that each instance of your image
is pointing to the same image file
on the server (not multiple copies
of the same image file in different
directories).

t I P

Part II: HTML Markup for Structure120

The img Element

The content of the executiveking-ld.html document reads:

<p>The photo shows a room with a sliding-glass door looking out onto
a green courtyard. On the right side of the room, starting in the far
corner, is a small desk with a light and a telephone, then a king-sized
bed with 3 layers of pillows and a floral bed-spread, then a small
night stand with a lamp. Opposite the bed is an armoire with the doors
open revealing a flat-screen television and a small refrigerator.</p>

Back to rooms page

Unfortunately, many browsers and assistive devices do not support the

longdesc attribute. As a backup, some developers provide a D-link (a capital

letter “D” linked to the long description document) before or after the image.

Others use a descriptive caption as the link.

Making image content accessible with alt and longdesc attributes is a rich

topic. I’ve provided a sidebar with pointers to online resources that discuss

the various strategies and give tips on writing descriptive and alternate text.

Providing width and height dimensions

width="number"
Image width in pixels

height="number"
Image height in pixels

The width and height attributes indicate the dimensions of the image in

number of pixels. Sounds mundane, but these attributes can speed up the

time it takes to display the final page.

When the browser knows the dimensions of the images on the page, it can

busy itself laying out the page while the image files themselves are download-

ing. Without width and height values, the page is laid out immediately, and

then reassembled each time an image file arrives from the server. Telling the

browser how much space to hold for each image can speed up the final page

display by seconds for some users.

N OT E

You can specify the width and height of an image element using style sheets as well,
and it could be said that pixel dimensions are a matter of presentation, therefore
the job of style sheets exclusively. On the other hand, these attributes provide basic
and useful information about the image, and seeing as the W3C has not deprecated
them for the img element, it is still recommended that you provide width and height
attributes for every image.

Image Accessibility
There is more to say about image
accessibility than I can fit in this
chapter. I encourage you to start
your research with these resources.

“Chapter 6, The Image Problem”
from the book Building
Accessible Websites by Joe
Clark (joeclark.org/book/sashay/
serialization/Chapter06.html)

Techniques for WCAG 2.0;
Working Draft of Web Content
Accessibility Guidelines (www.
w3.org/TR/2006/WD-WCAG20-
TECHS-20060427). Look under
General and HTML techniques
for information on images and
longdesc.

“The alt and title attributes”
by Roger Johansson
(www.456bereastreet.com/
archive/200412/the_alt_and_
title_attributes)







O n l I n e R e S O U R c e S

Image Accessibility
There is more to say about image
accessibility than I can fit in this
chapter. I encourage you to start
your research with these resources.

“Chapter 6, The Image Problem”
from the book Building
Accessible Websites by Joe
Clark (joeclark.org/book/sashay/
serialization/Chapter06.html)

Techniques for WCAG 2.0;
Working Draft of Web Content
Accessibility Guidelines (www.
w3.org/TR/2006/WD-WCAG20-
TECHS-20060427). Look under
General and HTML techniques
for information on images and
longdesc.

“The alt and title attributes”
by Roger Johansson
(www.456bereastreet.com/
archive/200412/the_alt_and_
title_attributes)







O n l I n e R e S O U R c e S

Using a Browser to
Find Pixel Dimensions
You can find the pixel dimensions of
an image by opening it in an image
editing program, of course, but did
you know you can also use a web
browser?

Using Firefox, Netscape, or Safari (but
not Internet Explorer for WIndows),
simply open the image file, and its
pixel dimensions display in the
browser’s title bar along with the
filename. It’s a handy shortcut I use
all the time because I always seem
to have a browser running.

Using a Browser to
Find Pixel Dimensions
You can find the pixel dimensions of
an image by opening it in an image
editing program, of course, but did
you know you can also use a web
browser?

Using Firefox, Netscape, or Safari (but
not Internet Explorer for WIndows),
simply open the image file, and its
pixel dimensions display in the
browser’s title bar along with the
filename. It’s a handy shortcut I use
all the time because I always seem
to have a browser running.

The img Element

Chapter 7, Adding Images 121

Match values with actual pixel size

Be sure that the pixel dimensions you provide are the actual dimensions of

the image. If the pixel values differ from the actual dimensions of your image,

the browser resizes the image to match the specified values (Figure 7-4).

width="144" height="72"

width="72" height="72"
(actual size of image)

width="144" height="144"

Figure 7-4. Browsers resize images to match the provided width and height values. It is
strongly recommended not to resize images in this way.

Although it may be tempting to resize images in this manner, you should

avoid doing so. Even though the image may appear small on the page, the

large image with its corresponding large file size still needs to download. You

shouldn’t force a big download on a user when all you want is a small image

on your page. It is much better to take the time to resize the image itself in an

image editing program, then place it as actual size on the page.

Not only that, resizing with attributes usually results in a blurry and

deformed image. In fact, if your images ever look fuzzy when viewed in a

browser, the first thing to check is that the width and height values match the

dimensions of the image exactly.

Avoid resizing images
with HTML. It forces an
unnecessarily large file to
download and results in a
poor-quality image.

Avoid resizing images
with HTML. It forces an
unnecessarily large file to
download and results in a
poor-quality image.

Part II: HTML Markup for Structure122

The img Element

You’re back from Italy and it’s time to post some of your travel
photos to share them with your friends and family. In this
exercise, you’ll add thumbnail images to a travelog and make
them link to larger versions of the photos.

All the thumbnails and photos you need have been created
for you. I’ve given you a head-start on the XHTML files as
well. Everything is available at www.learningwebdesign.com/
materials. Put a copy of the tuscany folder on your hard drive,
making sure to keep it organized as you find it. As always, the
resulting markup is listed in Appendix A.

This little site is made up of a main page (index.html) and
separate XHTML documents containing each of the larger
image views (Figure 7-5). Although it is possible to link directly
to the image file, it is better form to place the image on a page.

First, we’ll add the thumbnails, then we’ll add the full-size
versions to their respective pages. Finally, we’ll make the
thumbnails link to those pages. Let’s get started.

Open the file index.html, and add the small thumbnail
images to this page to accompany the text. I’ve done the
first one for you:

<h2>Pozzarello</h2>
<p><img src="thumbnails/window_100.jpg" alt="view
from the bedroom window" width="75" height="100"
/></p>

I’ve put the image in its own p element so that it stays on
its own line with the following paragraph starting below
it. Because all of the thumbnail images are located in the
thumbnails directory, I provided the pathname in the URL.
I also added a description of the image and the width and
height dimensions.

Now it’s your turn. Add the image countryside_100.jpg to
the empty p element under the h2, “On the Road.” Be sure to
include the pathname, an alternative text description, and
pixel dimensions (100 wide by 75 high).

In addition, add both sienna_100.jpg and duomo_100.jpg
to the empty p element under the subhead, “Sienna.” Again,
add alt text and pixel dimensions (these are 75 wide by 100
high).

When you are done, save the file and open it in the browser
to be sure that the images are visible and appear at the right
size.

Next, add the images to the individual XHTML documents.
I’ve done window.html for you:

<h1>The View Through My Window</h1>
<p><img src="photos/window.jpg" alt="view out the
window of the rolling Tuscan hills" width="375"
height="500" /></p>

Notice that the full-size images are in a directory called
photos, so that needs to be reflected in the pathnames.

Add images to countryside.html, sienna.html, and duomo.
html, following my example. Hint: all of the images are 500
pixels on their widest side and 375 pixels on their shortest
side, although the orientation varies.

Save each file and check your work by opening them in the
browser window.

1.

2.

Figure 7-5. Travelog photo siteFigure 7-5. Travelog photo site

exercise 7-1 | Adding and linking images

Imagemaps

Chapter 7, Adding Images 123

Imagemaps
In your web travels, I’m sure you’ve run across a single image that has multiple

“hotspots,” or links, within it (Figure 7-6). These images are called imagemaps.

peas.html tomato.html carrots.html

Figure 7-6. An imagemap has multiple links within one image.

Putting several links in one image has nothing to do with the image itself;

it’s just an ordinary image file placed with an img element. Rather, the image

merely serves as the frontend to the mechanisms that match particular

mouse-click coordinates to a URL.

The real work is done by a map in the source document that matches sets of

pixel coordinates to their respective link information. When the user clicks

somewhere within the image, the browser passes the pixel coordinates of the

pointer to the map, which in turn generates the appropriate link. When the

Back in index.html, link the thumbnails to their respective
files. I’ve done the first one here.

<h2>Pozzarello</h2>
<p><img src="thumbnails/
window_100.jpg" alt="view from the bedroom
window" width="75" height="100" /></p>

Notice that the URL is relative to the current document
(index.html), not to the location of the image (the
thumbnails directory).

Make the remaining thumbnail images links to each of the
documents.

When you are done, save index.html and open it in a
browser. You’ll see that linked images display with a blue
outline (until you click them, then it should be purple
indicating you’ve visited that link). We’ll learn how to turn
that border off in Chapter 14, Thinking Inside the Box.

3. If all the images are visible and you are able to link to
each page and back to the home page again, then
congratulations, you’re done!

Like a little more practice?

If you’d like more practice, you’ll find two additional images
(sweets.jpg and lavender.jpg) with their thumbnail versions
(sweets_100.jpg and lavender_100.jpg) in their appropriate
directories. This time, you’ll need to add your own descriptions
to the home page and create the XHTML documents for the
full-size images from scratch.

For an added challenge, create a new directory called
photopages in the tuscany directory. Move all of the .html
documents except index.html into that directory then update
the URLs on those pages so that the images are visible again.

Part II: HTML Markup for Structure124

Imagemaps

cursor passes over a hotspot, the cursor changes to let the user know that the

area is a link. The URL may also appear in the browser’s status bar. Because

the browser does the matching of mouse coordinates to URLs, this type of

imagemap is called a client-side imagemap (see Note).

N OT E

In the early days of the Web, all imagemaps were processed on the server. Server-side
imagemaps (indicated by the ismap attribute in the img element) are now completely
obsolete due to accessibility issues and the fact that they are less portable than the
client-side variety.

Due to new techniques and philosophies in web design, imagemaps are wan-

ing in popularity (see the sidebar, CSS Imagemaps). Imagemaps generally

require text to be sunk into an image, which is sternly frowned upon. In terms

of site optimization, they force all regions of the image to be saved in the same

file format, which may lead to unnecessarily large file sizes. That said, take a

look at what it takes to make a client-side imagemap.

The parts of an imagemap

Client-side imagemaps have three components:

An ordinary image file (.gif, .jpg/.jpeg, or .png) placed with the img element.

The usemap attribute within that img element that identifies which map to

use (each map is given a name)

A map element that is a container for some number of area elements. Each

area element corresponds to a clickable area in the imagemap and con-

tains the pixel coordinate and URL information for that area. We’ll look

at a map in detail in a moment.

Creating the map

Fortunately, there are tools that generate maps so you don’t have to write out

the map by hand. Nearly all web-authoring and web graphics tools currently

on the market (Adobe’s Dreamweaver, Fireworks, and Photoshop/ImageReady

being the most popular) have built-in imagemap generators. You could also

download shareware imagemap programs (see the sidebar Imagemap Tools).

Figure 7-7 shows the imagemap interface in Dreamweaver, but the process for

creating the map is essentially the same for all imagemap tools:

Open the image in the imagemap program (or place it on the page in a

web-authoring tool).

Define an area that will be “clickable” by using the appropriate shape

tools: rectangle, circle, or polygon (for tracing irregular shapes) ฀.

1.

2.

CSS Imagemaps
Imagemaps don’t work well with
text-only browsers, and thus
are considered a hindrance to
accessibility. As an alternative to a
traditional imagemap, you can also
use CSS to create links over an image
in a way that is semantically sound
and accessible to everyone. The
technique is based on putting the
large image in the background of
an image and positioning invisible
links at particular locations over the
image.

For a complete tutorial, see the
article “Night of the Image Map”
by Stuart Robinson at A List
Apart (alistapart.com/articles/
imagemap). A web search for “CSS
Imagemaps” will turn up additional
demonstrations.

CSS Imagemaps
Imagemaps don’t work well with
text-only browsers, and thus
are considered a hindrance to
accessibility. As an alternative to a
traditional imagemap, you can also
use CSS to create links over an image
in a way that is semantically sound
and accessible to everyone. The
technique is based on putting the
large image in the background of
an image and positioning invisible
links at particular locations over the
image.

For a complete tutorial, see the
article “Night of the Image Map”
by Stuart Robinson at A List
Apart (alistapart.com/articles/
imagemap). A web search for “CSS
Imagemaps” will turn up additional
demonstrations.

<map>...</map>
Client-side imagemap

<area /> XHTML
<area> HTML

Strongly emphasized inline text

<map>...</map>
Client-side imagemap

<area /> XHTML
<area> HTML

Strongly emphasized inline text

Imagemaps

Chapter 7, Adding Images 125

While the shape is still highlighted, enter a URL for that area in the text

entry field provided B. Enter alternative text for the area as well C.

When the image is selected, the Properties panel
gives you the imagemap tool options.

Place the imagemap image where you want it in the document.

Shape tools

Name the map

Enter the URL Enter alt text

฀

D

B C

Figure 7-7. Adding a “hotspot” to an imagemap using Dreamweaver.

Continue adding shapes and their respective URLs for each clickable area

in the image.

Select the type of imagemap you want to create—client-side is the only

practical option.

Give the map a name in the provided map name field D.

Add the map to the (X)HTML document. Web-authoring tools, such as

Dreamweaver, insert the map automatically. If you are using ImageReady

or another tool, you need to export or save the map code, then copy and

paste it into the (X)HTML file. The map can go at the top or the bottom

of the document; just make sure to keep it together. Then make sure that

the img element points to the correct map name.

Save the (X)HTML document and open it in your browser.

Interpreting a map

Even if you use a tool to generate a map for you (and I recommend that you

do), it is good to be familiar with the parts of the map. The following markup

example shows the map for the imagemap shown in Figure 7-5. This particu-

lar map was generated by Dreamweaver, but it would be the pretty much the

same regardless of the tool that wrote it.

3.

4.

5.

6.

7.

8.

Imagemap Tools
There are a few imagemap tools
available as shareware and freeware
for both Windows systems and Mac.
Try MapEdit by Tom Boutell, available
at www.boutell.com/mapedit/. There
is a recommended $10 shareware
fee. You can also do a search for
“imagemap” at CNET’s Download.
com for additional options.

Imagemap Tools
There are a few imagemap tools
available as shareware and freeware
for both Windows systems and Mac.
Try MapEdit by Tom Boutell, available
at www.boutell.com/mapedit/. There
is a recommended $10 shareware
fee. You can also do a search for
“imagemap” at CNET’s Download.
com for additional options.

Part II: HTML Markup for Structure126

1 <map name="veggies" id="veggies">
2

฀ <area shape="poly" coords="56,5,45,32,18,32,39,52,30,80,56,64,85,82,76,5
1,97,33,68,31,58,4,55,5" href="peas.html" alt="pea icon" />

B <area shape="rect" coords="127,9,196,79" href="tomato.html" alt="tomato
icon" />

C <area shape="circle" coords="270,46,37" href="carrots.html" alt="carrot
icon" />

</map>

3 <p></p>

This marks the beginning of the map. I gave the map the name veggies.

Dreamweaver has used both the name and id attributes to identify the map

element. Both attributes have been included in order to be both backward

(name) and forward (id) compatible. Within the map element there are area

elements representing each hot spot in the image.

 2 Each area element has several attributes: the shape identifier (shape),

pixel coordinates (coords), the URL for the link (href), and alternative

text (alt). In this map there are three areas corresponding to the rectangle,

circle, and polygon that I drew over my image:

The list of x,y coordinates for the polygon (poly) identifies each of the

points along the path of the star shape containing a pea.

The x,y pixel coordinates for the rectangle (rect) identify the top-left,

and bottom-right corners of the area over the tomato.

The pixel coordinates for the circle (circle) identify the center point

and the length of the radius for the area with the carrots.

 3 The img element now sports the usemap attribute that tells the browser

which map to use (veggies). You can include several imagemapped

images and their respective maps in a single (X)HTML document.

1�

฀

B

C

exercise 7-2 | Making
an imagemap

The image (veggies.gif) shown in this
section and Figure 7-8 is available
in the materials directory for this
chapter.

If you have Dreamweaver, you
can use Figure 7-7 to help make
your own imagemap. The general
steps for making an imagemap are
outlined above, but you’ll need to
consult the documentation for a
detailed explanation of how to use
your program.

Your resulting pixel coordinates
are not likely to be identical to the
ones shown in this chapter because
dragging hotspot areas is not an
exact science. What matters is that
the area is covered well enough
that the user will go to the page as
expected.

veggies.gif

Figure 7-8. Try your hand at making
an imagemap.

exercise 7-2 | Making
an imagemap

The image (veggies.gif) shown in this
section and Figure 7-8 is available
in the materials directory for this
chapter.

If you have Dreamweaver, you
can use Figure 7-7 to help make
your own imagemap. The general
steps for making an imagemap are
outlined above, but you’ll need to
consult the documentation for a
detailed explanation of how to use
your program.

Your resulting pixel coordinates
are not likely to be identical to the
ones shown in this chapter because
dragging hotspot areas is not an
exact science. What matters is that
the area is covered well enough
that the user will go to the page as
expected.

veggies.gif

Figure 7-8. Try your hand at making
an imagemap.

Test Yourself

Test Yourself

Chapter 7, Adding Images 127

Test Yourself
Images are a big part of the web experience. Answer these questions to see

how well you’ve absorbed the key concepts of this chapter. The correct

answers can be found in Appendix A.

Which two attributes must be included in every img element?

Write the markup for adding an image called furry.jpg that is in the

same directory as the current document.

Why is it necessary to include alternative text? There are two main

reasons.

What is the advantage of including width and height attributes for every

graphic on the page?

What might be going wrong if your images don’t appear when you view

the page in a browser? There are three key explanations.

What does the usemap attribute do?

1.

2.

3.

4.

5.

6.

Part II: HTML Markup for Structure128

(X)HTML Review: Image and Imagemap Elements

(X)HTML Review:
Image and Imagemap Elements
The following is a summary of the elements we covered in this chapter:

Element and attributes Description

img Inserts an inline image

src="url" The location of the image file

alt="text" Alternative text

width="number" Width of the graphic

height="number" Height of the graphic

usemap="usemap" Indicates a client-side imagemap (preferred)

ismap="ismap" Indicates a server-side imagemap

longdesc="url" Points to a document with a long description
of the image

title="text" Provides a “tool tip” when the user mouses
over the image. Can be used for supplemental
information about the image.

map Map information for an imagemap

name="text" The legacy method for giving the map a name

id="text" The current method for giving the map a
name

area Contains information for a clickable area in an
imagemap

shape="rect|circle|poly" Shape of the linked area

coords="numbers" Pixel coordinates for the linked area

href="url" Target file for the link

129

IN THIS CHAPTER

How tables are used

Basic table structure

The importance of headers

Spanning rows and columns

Cell padding and spacing

Captions and Summaries

Making tables accessible

Before we launch into the markup for tables, let’s check in with our progress

so far. We’ve covered a lot of territory: how to establish the basic structure

of an (X)HTML document, how to mark up text to give it meaning and

structure, how to make links, and how to add image content to the page.

That’s really the majority of what you need to do for most straightforward

web content.

This chapter and Chapter 9, Forms describe the markup for specialized con-

tent that you might not have a need for right away. Feel free to skip these

chapters and go directly to Chapter 10, Understanding the Standards to learn

more about XHTML, standards compliance, and validation. Or, if you’re get-

ting really antsy to make your pages look good, skip right to Part III and start

playing with Cascading Style Sheets. The tables and forms chapters will be

here when you’re ready for them.

Are you still with me? Great. Let’s talk tables. We’ll start out by reviewing

how tables should be used, then learn the elements used to create HTML

tables. Remember, this is an HTML chapter, so we’re going to focus on the

markup that structures the content into tables, and we won’t be concerned

with how the tables look. Like any web content, the appearance (or presenta-

tion, as we say in the web development world) of tables should be handled

with style sheets.

How Tables Are Used
HTML tables were created for instances when you need to add tabular mate-

rial (data arranged into rows and columns) to a web page. Tables may be used

to organize calendars, schedules, statistics, or other types of information as

shown in Figure 8-1. Note that “data” doesn’t necessarily mean numbers. A

table cell may contain any sort of information, including numbers, text ele-

ments, even images and multimedia objects.

BASIC TABLE
MARKUP

CHAPTER 8

Part II: HTML Markup for Structure130

Minimal Table Structure

w3.org

lifetimetv.com

mbta.com

Figure 8-1. Examples of tables used for tabular information, such as charts, calendars, and schedules.

In visual browsers, the arrangement of data in rows and columns gives read-

ers an instant understanding of the relationships between data cells and their

respective header labels. Bear in mind when you are creating tables, however,

that some readers will be hearing your data read aloud with a screen reader

or reading Braille output. Later in this chapter, we’ll discuss measures you

can take to make table content accessible to users who don’t have the benefit

of visual presentation.

In the days before style sheets, tables were the only option for creating multi-

column layouts or controlling alignment and white space. Layout tables,

particularly the complex nested table arrangements that were once standard

web design fare, are no longer necessary and are strongly discouraged. See the

sidebar, Using Layout Tables, for more information. This chapter focuses on

(X)HTML tables as they are intended to be used.

Minimal Table Structure
Let’s take a look at a simple table to see what it’s made of. Here is a small table

with three rows and three columns that lists nutritional information.

Menu item Calories Fat

Chicken noodle soup 120 2

Caesar salad 400 26

Figure 8-2 reveals the structure of this table according to the (X)HTML

table model. All of the table’s content goes into cells that are arranged into

rows. Cells contain either header information (titles for the columns, such as

“Calories”) or data, which may be any sort of content.

All of the table’s content
goes into cells that are
arranged into rows.

All of the table’s content
goes into cells that are
arranged into rows.

Minimal Table Structure

Chapter 8, Basic Table Markup 131

header cell
Menu item

data cell
Chicken Soup

data cell
Caesar Salad

header cell
Calories

data cell
120

data cell
400

header cell
Fat (g)

data cell
2

data cell
26

row

row

row

table

Figure 8-2. Tables are made up of rows that contain cells. Cells are the containers for
content.

Simple enough, right? Now let’s look at how those parts translate into

(X)HTML elements (Figure 8-3).

<th>Menu item</th>

<td>Chicken Soup</td>

<td>Caesar Salad</td>

<th>Calories</th>

<td>120</td>

<td>400</td>

<th>Fat (g)</th>

<td>2</td>

<td>26</td>

<tr>

<tr>

<tr>

<table>

</table>

</tr>

</tr>

</tr>

Figure 8-3. The elements that make up the basic structure of a table.

Figure 8-3 shows the elements that identify the table (table), rows (tr, for

“table row”), and cells (th, for “table headers,” and td, for “table data”). Cells

are the heart of the table, because that’s where the actual content goes. The

other elements just hold things together.

What we don’t see are column elements (see note). The number of columns

in a table is determined by the number of cells in each row. This is one of the

things that make (X)HTML tables potentially tricky. Rows are easy—if you

want the table to have three rows, just use three tr elements. Columns are

different. For a table with four columns, you need to make sure that every row

has four td or th elements; the columns are implied.

N OT E

There are two column-related elements in HTML 4.01 and XHTML: col for identi-
fying a column and colgroup for establishing related groups of columns. They were
created to add a layer of information about the table that can potentially speed up
its display, but they are not part of HTML’s row-centric table model. See the sidebar,

Advanced Table Elements, for more information.

Written out in a source document, the markup for the table in Figure 8-3

would look more like the sample below. It is common to stack the th and td

elements in order to make them easier to find in the source. This does not

affect how they are rendered by the browser.

Using Layout Tables
Complex tables were once the
norm for creating interesting web
page layouts, but now that style
sheets offer an alternative, this use
of (X)HTML tables is discouraged.
Not only are they not semantically
sound, but they can be a real
hindrance to accessibility. The
professional web design community
is leaving layout tables in the dust.

If you still choose use table elements
to create the grid of the page, follow
these guidelines:

Use only the minimal table
elements (table, tr, and td).

Avoid nesting tables within
tables.

Avoid tricks like empty rows and
transparent GIF images used
solely for adjusting the spacing.

Use style sheets to control all
presentational aspects of the
table and its contents, such as
colors, alignment, spacing, and
column width.

Make sure that your content still
reads in a logical order in the
source document when all of the
table markup is removed. Tables
that read in a logical order are
said to linearize well. This is the
way visitors with screen readers
will encounter the page.

Layout tables are not necessarily
evil or even inaccessible if handled
responsibly. While we are still in a
period of transition with varying
browser support for CSS layout
features, they are still the choice of
some designers.











Part II: HTML Markup for Structure132

Minimal Table Structure

<table>
 <tr>
 <th>Menu item</th>
 <th>Calories</th>
 <th>Fat (g)</th>
 </tr>
 <tr>
 <td>Chicken noodle soup</td>
 <td>120</td>
 <td>2</td>
 </tr>
 <tr>
 <td>Caesar salad</td>
 <td>400</td>
 <td>26</td>
 </tr>

</table>

Remember, all the content for a table must go in cells; that is, within td or

th elements. You can put any content in a cell: text, a graphic, even another

table.

Start and end table tags are used to identify the beginning and end of the

table. The table element may only directly contain some number of tr (row)

elements. The only thing that can go in the tr element is some number of td

or th elements. In other words, there may be no text content within the table

and tr elements that isn’t contained within a td or th.

Finally, Figure 8-4 shows how the table would look in a simple web page, as

displayed by default in a browser. I know it’s not exciting. Excitement hap-

pens in the CSS chapters. What is worth noting is that tables are block-level

elements, so they always start on new lines.

Figure 8-4. The default rendering of our sample table in a browser (Firefox).

Stylin’ Tables
Once you build the structure of the
table in the markup, it’s no problem
adding a layer of style to customize
its appearance.

Style sheets can and should be used
to control these aspects of a table’s
visual presentation. We’ll get to all
the formatting tools you’ll need in
the following chapters:

In Chapter 12, Formatting Text:

Font settings for cell contents

Text color in cells

In Chapter 14, Thinking Inside the
Box:

Table dimensions (width and
height)

Borders

Cell padding (space around cell
contents)

Margins around the table

In Chapter 13, Colors and
Backgrounds:

Background colors

Tiling background images

In Chapter 17, CSS Techniques:

Special properties for controlling
borders and spacing between
cells
















Stylin’ Tables
Once you build the structure of the
table in the markup, it’s no problem
adding a layer of style to customize
its appearance.

Style sheets can and should be used
to control these aspects of a table’s
visual presentation. We’ll get to all
the formatting tools you’ll need in
the following chapters:

In Chapter 12, Formatting Text:

Font settings for cell contents

Text color in cells

In Chapter 14, Thinking Inside the
Box:

Table dimensions (width and
height)

Borders

Cell padding (space around cell
contents)

Margins around the table

In Chapter 13, Colors and
Backgrounds:

Background colors

Tiling background images

In Chapter 17, CSS Techniques:

Special properties for controlling
borders and spacing between
cells
















Minimal Table Structure

Chapter 8, Basic Table Markup 133

The following is the source for another table. Can you tell how many rows

and columns it will have when it is displayed in a browser?

<table>
 <tr>
 <td>Sufjan Stevens</td>
 <td>Illinoise</td>
 <td>Asthmatic Kitty Records</td>
 	</tr>
			<tr>
 <td>The Shins</td>
 <td>Oh Inverted World</td>
 <td>Sub-pop Records</td>
 	</tr>
</table>

If you guessed that it’s a table with two rows and three columns, you’re cor-

rect. Two tr elements create two rows; three td elements in each row create

three columns.

The sample table in this section has been stripped down to its
bare essentials to make its structure clear while you learn how
tables work. It is worth noting, however, that there are other
table elements and attributes that offer more complex semantic
descriptions and improve the accessibility of tabular content. A
thoroughly marked-up version of the sample table might look
like this:

<table summary="A listing of calorie and fat
content for each of the most popular menu items">

<caption>Nutritional Information</caption>

<thead>
 <tr>
 <th scope="column">Menu item</th>
 <th scope="column">Calories</th>
 <th abbr="fat" scope="column">Fat (g)</th>
 </tr>
</thead>

<tbody>
 <tr>
 <td>Chicken noodle soup</td>
 <td>120</td>
 <td>2</td>
 </tr>
 <tr>
 <td>Caesar salad</td>
 <td>400</td>
 <td>26</td>
 </tr>
</tbody>
</table>

Row group elements

You can describe rows or groups of rows as belonging to a
header, footer, or the body of a table using the thead, tfoot,
and tbody elements respectively. Some user agents (another
word for a browsing device) may repeat the header and footer
rows on tables that span multiple pages. Authors may also use
these elements to apply styles to various regions of a table.

Column group elements

Columns may be identified with the col element or put into
groups using the colgroup element. This is useful for adding
semantic context to information in columns and may be used
to calculate the width of tables more quickly.

Accessibility features

Accessibility features such as captions and summaries for
providing descriptions of table content, and the scope and
headers attributes for explicitly connecting headers with their
respective content are discussed later in this chapter.

An in-depth exploration of the advanced table elements are
beyond the scope of this book, but you may want to do more
research if you anticipate working with data-heavy tables. For
a detailed explanation, see the HTML 4.01 Recommendation at
www.w3.org/TR/REC-html40/struct/tables.html.

Advanced Table Elements

Part II: HTML Markup for Structure134

Table Headers

Table Headers
As you can see in Figure 8-4, the text marked up as headers (th elements) are

displayed differently from the other cells in the table (td elements). The dif-

ference, however, is not purely cosmetic. Table headers are important because

they provide information or context about the cells in the row or column

they precede. The th element may be handled differently than tds by alterna-

tive browsing devices. For example, screen readers may read the header aloud

before each data cell (“Menu item, Caesar salad, Calories, 400, Fat-g, 26”).

In this way, they are a key tool for making table content accessible. Don’t try

to fake headers by formatting a row of td elements differently than the rest of

the table. Conversely, don’t avoid using th elements because of their default

rendering (bold and centered). Mark up the headers semantically and change

the presentation later with a style rule.

That covers the basics. Before we get more fancy, try your hand at Exercise 8-1.

Spanning Cells
One fundamental feature of table structure is cell spanning, which is the

stretching of a cell to cover several rows or columns. Spanning cells allows

you to create complex table structures, but it has the side effect of making the

markup a little more difficult to keep track of. You make a header or data cell

span by adding the colspan or rowspan attributes, as we’ll discuss next.

Column spans

Column spans, created with the colspan attribute in the td or th element,

stretch a cell to the right to span over the subsequent columns (Figure 8-6).

Here a column span is used to make a header apply to two columns. (I’ve

added a border around cells to reveal the table structure in the screenshot.)

<table>
 <tr>
 <th colspan="2">Fat</th>
 </tr>
 <tr>

exercise 8-1 | Making a simple table

Try writing the markup for the table shown in Figure 8-5. You can open an HTML editor
or just write it down on paper. The finished markup is provided in Appendix A.

(Note, I’ve added a 1-pixel border around cells with a style rule just to make the
structure clear. You won’t include this in your version.)

Be sure to close all table elements. Not only is it required in XHTML and recommended
practice in all HTML documents, some browsers will not display the table at all if the
end table tag (</table>) is missing.

exercise 8-1 | Making a simple table

Try writing the markup for the table shown in Figure 8-5. You can open an HTML editor
or just write it down on paper. The finished markup is provided in Appendix A.

(Note, I’ve added a 1-pixel border around cells with a style rule just to make the
structure clear. You won’t include this in your version.)

Be sure to close all table elements. Not only is it required in XHTML and recommended
practice in all HTML documents, some browsers will not display the table at all if the
end table tag (</table>) is missing.

Figure 8-5. Write the markup for this table.

Spanning Cells

Chapter 8, Basic Table Markup 135

 <td>Saturated Fat (g)</td>
 <td>Unsaturated Fat (g)</td>
 </tr>
</table>

Figure 8-6. The colspan attribute stretches a cell to the right to span the specified
number of columns.

Notice in the first row (tr) that there is only one th element, while the second

row has two td elements. The th for the column that was spanned over is no

longer in the source; the cell with the colspan stands in for it. Every row

should have the same number of cells or equivalent colspan values. For

example, there are two td elements and the colspan value is 2, so the implied

number of columns in each row is equal.

Row spans

Row spans, created with the rowspan attribute, work just like column spans,

except they cause the cell to span downward over several rows. In this exam-

ple, the first cell in the table spans down three rows (Figure 8-8).

<table>
 <tr>
 <th rowspan="3">Serving Size</th>
 <td>Small (8oz.)</td>
 </tr>
 <tr>
 <td>Medium (16oz.)</td>
 </tr>
 <tr>
 <td>Large (24oz.)</td>
 </tr>
</table>

exercise 8-2 | Column spans

Try writing the markup for the table shown in Figure 8-7. You can open an HTML
editor or just write it down on paper. Don’t worry if your table doesn’t look exactly
like the one shown here. The rules have been added to reveal the cell structure.
Check Appendix A for the final markup.

Figure 8-7. Practice column spans by writing the markup for this table.

exercise 8-2 | Column spans

Try writing the markup for the table shown in Figure 8-7. You can open an HTML
editor or just write it down on paper. Don’t worry if your table doesn’t look exactly
like the one shown here. The rules have been added to reveal the cell structure.
Check Appendix A for the final markup.

Figure 8-7. Practice column spans by writing the markup for this table.

Some hints:

For simplicity’s sake, this table uses all
td elements.

The second row shows you that the
table has a total of three columns.

When a cell is spanned over, its td
element does not appear in the table.







Some hints:

For simplicity’s sake, this table uses all
td elements.

The second row shows you that the
table has a total of three columns.

When a cell is spanned over, its td
element does not appear in the table.







WA R N I N G

Be careful with colspan values; if you
specify a number that exceeds the number
of columns in the table, most browsers
will add columns to the existing table,
which typically screws things up.

Part II: HTML Markup for Structure136

Cell Padding and Spacing

Figure 8-8. The rowspan attribute stretches a cell downward to span the specified
number of rows.

Again, notice that the td elements for the cells that were spanned over (the

first cells in the remaining rows) do not appear in the source.

Cell Padding and Spacing
By default, cells are sized just large enough to fit their contents (see the left

example in Figure 8-10), but often, you’ll want to add a little breathing room

around tabular content. There are two kinds of space that can be added in and

around table cells: cell padding and cell spacing, using the cellpadding and

cellspacing attributes, respectively. These attributes may be used with the table

element only. In other words, you can’t apply them to tr, td, or th elements.

Because matters of spacing are presentational, we’ll talk about CSS alterna-

tives to these attributes as part of the discussion.

Cell padding

Cell padding is the amount of space held between the contents of the cell

and the cell border. If you don’t specify any cell padding, the cells will have

the default value of one pixel of padding. Figure 8-10 shows the result of the

following markup compared to a sample in which no padding or spacing is

specified.

<table cellpadding="15">
 <tr>
 <td>CELL 1</td>
 <td>CELL 2</td>
 </tr>

exercise 8-3 | Row spans

Try writing the markup for the table shown in Figure 8-9. If you’re working in an
HTML editor, don’t worry if your table doesn’t look exactly like the one shown here.
The resulting markup is provided in Appendix A.

Figure 8-9. Practice row spans by writing the markup for this table.

exercise 8-3 | Row spans

Try writing the markup for the table shown in Figure 8-9. If you’re working in an
HTML editor, don’t worry if your table doesn’t look exactly like the one shown here.
The resulting markup is provided in Appendix A.

Figure 8-9. Practice row spans by writing the markup for this table.

Some hints:

Rows always span downward, so the
“oranges” cell is part of the first row.

Cells that are spanned over do not
appear in the table code.





Some hints:

Rows always span downward, so the
“oranges” cell is part of the first row.

Cells that are spanned over do not
appear in the table code.





Cell Padding and Spacing

Chapter 8, Basic Table Markup 137

 <tr>
 <td>CELL 3</td>
 <td>CELL 4</td>
 </tr>
</table>

By default, table cells
expand just enough to fit

Cell padding adds space between the edge of
the cell and its contents.

NOTE: I have used style sheets to add a gray rule around cells and a black rule around the table for
demonstration purposes.

cellpadding="15"

15 pixels

Figure 8-10. The cellpadding attribute adds space between the cell contents and the
cell border.

Because the cellpadding attribute may be used with the table element only,

the cellpadding value applies to all the cells in the table. In other words,

you can’t specify different amounts of padding for individual cells with this

attribute.

However, you can apply padding amounts on a cell-by-cell basis using the

padding property in CSS. In fact, you can add padding to any (X)HTML

element, as we’ll discuss in Chapter 14. Because CSS offers much more fine-

tuned control over spacing within the cell, the clunky and presentational

cellpadding attribute is going by the wayside. See the sidebar, Presentational

Table Attributes, for other table-related attributes that are being phased out

in favor of style sheet controls.

Cell spacing

Cell spacing is the amount of space held between cells, specified in number

of pixels (Figure 8-11). If you don’t specify anything, the browser will use the

default value of two pixels of space between cells.

<table cellpadding="15" cellspacing="15">
 <tr>
 <td>CELL 1</td>
 <td>CELL 2</td>
 </tr>
 <tr>
 <td>CELL 3</td>
 <td>CELL 4</td>
 </tr>
</table>

Many authors explicitly set both
the cellpadding and cellspacing
attributes to 0 (zero) to override
browser settings and clear the way
for style sheet properties.

t I P

Part II: HTML Markup for Structure138

Captions and Summaries

NOTE: I have used style sheets to add a gray rule around cells and a black rule around the table for
demonstration purposes.

15 pixels

Cell spacing adds space between cells

cellspacing="15"

Figure 8-11. The cellspacing attribute adds space between cells.

There is no CSS property that exactly replicates the cellspacing attribute,

although you can adjust the amount of space between cells by setting the

border-collapse property for the table to separate, then use the border-

spacing property to specify the amount of space between borders. The

problem with this technique is that it is not supported by Internet Explorer

6 and earlier, which accounts for a large percentage of web traffic as of this

writing. For the time being, if you absolutely need cell spacing for all your

visitors, the cellspacing attribute is the only option. This will change even-

tually as versions 6 and earlier go away.

Captions and Summaries
There are two methods for providing additional information about a table:

captions and summaries. The difference is that the caption is displayed with

the table in visual browsers, while the summary is not displayed but may be

used by assistive devices. Both captions and summaries are useful tools in

improving table accessibility.

The caption element

The caption element is used to give a table a title or brief description. The

caption element must be the first thing within the table element, as shown

in this example that adds a caption to the nutritional chart from earlier in

the chapter.

<table>
 <caption>Nutritional Information</caption>
 <tr>
 <th>Menu item</th>
 <th>Calories</th>
 <th>Fat (g)</th>
 </tr>
 <tr>
 <td>Chicken noodle soup</td>

Presentational
Table Attributes
These table attributes are no longer
necessary now that there are well-
supported CSS properties that offer
even better control of the details.

width

Specifies the width of the table
in pixels or percentage. Use the
CSS width property instead.

border

Adds a “3-D” shaded border
around cells and the table. The
CSS border property offers more
flexibility for setting border
styles and colors.

align

Sets the horizontal alignment
of cell contents to left, right,
or center. This attribute is
deprecated in favor of the
text-align CSS property.

valign

Sets the vertical alignment of
cell contents to top, bottom, or
middle. The vertical-align style
property is a better choice.

bgcolor

Applies a solid background color
to a cell, row, or whole table.
This attribute is deprecated in
favor of the background-color
property.

rules

Adds rules between rows,
columns, or groups. Use the CSS
border property instead.

Table Accessibility

Chapter 8, Basic Table Markup 139

 <td>120</td>
 <td>2</td>
 </tr>
 <tr>
 <td>Caesar salad</td>
 <td>400</td>
 <td>26</td>
 </tr>

</table>

The caption is displayed above the table by default as shown in Figure 8-12,

although you can use a style sheet property (caption-side) to move it below

the table.

Figure 8-12. The table caption is displayed above the table by default.

The summary attribute

Summaries are used to provide a more lengthy description of the table and

its contents. They are added using the summary attribute in the table element,

as shown here.

<table summary="A listing of the calorie and fat content for each of
the most popular menu items">
 <caption>Nutritional Information</caption>

 ...table continues...

</table>

The summary is not rendered in visual browsers, but may be used by screen

readers or other assistive devices to give visually impaired users a better

understanding of the table’s content, which sighted users could understand

at a glance. This alleviates the need to listen to several rows of data before

deciding whether to continue with the table data or skip it.

Be careful not to get carried away with table descriptions. They should be

clear and succinct and used only when the caption isn’t sufficient.

Table Accessibility
We’ve looked at headers, captions, and summaries as methods for improv-

ing the accessibility of table content. The HTML 4.01 Recommendation also

provides a few additional attributes related to accessibility.

Part II: HTML Markup for Structure140

Wrapping Up Tables

abbr

 The abbr attribute is used in a table header (th) element to provide an

abbreviated version of the header to be read aloud by a screen reader in

place of a longer, more cumbersome version.

<th abbr="diameter">Diameter measured in earths</th>

scope

 The scope attribute explicitly associates a table header with the row,

column, rowgroup, or colgroup in which it appears. This example uses the

scope attribute to declare that a header cell applies to the current row.

<tr>
 <th scope="row">Mars</th>
 <td>.95</td>
 <td>.62</td>
 <td>0</td>
</tr>

headers

 For really complicated tables in which scope is not sufficient to associ-

ate a table data cell with its respective header (such as when the table

contains multiple spanned cells), the headers attribute is used in the td

element to explicitly tie it to a header. The header (th) element is named

using the id attribute, as shown in this example.

<th id="diameter">Diameter measured in earths</th>
...many other cells...

<td headers="diameter">.38</td>
...many other cells...

</th>

This section obviously only scratches the surface. In-depth instruction on

authoring accessible tables is beyond the scope of this beginner book, but I

enthusiastically refer you to these useful articles:

“Techniques for Accessible HTML Tables” by Steve Ferg (www.ferg.org/

section508/accessible_tables.html)

“Creating Accessible Tables,” at WebAIM (www.webaim.org/techniques/tables)

Wrapping Up Tables
This chapter gave you a good overview of the components of (X)HTML

tables. Exercise 8-4 puts most of what we covered together to give you a little

more practice at authoring tables.

After just a few exercises, you’re probably getting the sense that writing table

markup manually, while not impossible, gets tedious and complicated quick-

ly. Fortunately, web authoring tools such as Dreamweaver provide an interface

that make the process much easier and time-efficient. Still, you’ll be glad that

you have a solid understanding of table structure and terminology, as well as

the preferred methods for changing their appearance.

•

•

Wrapping Up Tables

Chapter 8, Basic Table Markup 141

Now it’s time to put together the table writing skills you’ve
acquired in this chapter. Your challenge is to write out the
source document for the table shown in Figure 8-13.

Figure 8-13. The table challenge.

I’ll walk you through it a step at a time.

The first thing to do is open a new document in your text
editor and set up its overall structure (html, head, title, and
body elements). Save the document as table.html in the
directory of your choice.

Next, in order to make the boundaries of the cells and table
more clear when you check your work, I’m going to have
you add some simple style sheet rules to the document.
Don’t worry about understanding exactly what’s happening
here (although it’s fairly intuitive); just insert this style
element in the head of the document exactly as you see it
here.

<head>
 <title>Table Challenge</title>
 <style type="text/css">
 td, th { border: 1px solid #CCC }
 table {border: 1px solid black }
 </style>
</head>

Now it’s time to start building the table. I usually start
by setting up the table and adding as many empty row
elements as I’ll need for the final table as placeholders, as
shown here (it should be clear that there are five rows in this
table).

<body>

<table>
 <tr></tr>
 <tr></tr>
 <tr></tr>
 <tr></tr>
 <tr></tr>
</table>

</body>

1.

2.

3.

Start with the top row and fill in the th and td elements
from left to right, including any row or column spans as
necessary. I’ll help with the first row.

The first cell (the one in the top left corner) spans down the
height of two rows, so it gets a rowspan attribute. I’ll use a th
here to keep it consistent with the rest of the row. This cell
has no content.

<table>
 <tr>
 <th rowspan="2"></th>
 </tr>

The cell in the second column of the first row spans over
the width of two columns, so it gets a colspan attribute:
<table>
 <tr>
 <th rowspan="2"></th>
 <th colspan="2">A common header for two
subheads</th>
 </tr>

The cell in the third column has been spanned over, so we
don’t need to include it in the markup. The cell in the fourth
column also spans down two rows.

<table>
 <tr>
 <th rowspan="2"></th>
 <th colspan="2">A common header for two
 subheads</th>
 <th rowspan="2">Header 3</th>
 </tr>

Now it’s your turn. Continue filling in the th and td elements
for the remaining four rows of the table. Here’s a hint: the
first and last cells in the second column have been spanned
over. Also, if it’s bold in the example, make it a header.

To complete the content, add the title over the table using
the caption element.

Next, add 4 pixels of space between the cells using the
cellspacing attribute.

Finally, improve the accessibility of the site by providing
a summary of your choice. Also, use the scope attribute to
make sure that the Thing A, Thing B, and Thing C headers are
associated with their respective rows.

Save your work and open the file in a browser. The table
should look just like the one on this page. If not, go back
and adjust your markup. If you’re stumped, the final markup
for this exercise is listed in Appendix A.

4.

5.

6.

7.

8.

9.

exercise 8-4 | The table challenge

Part II: HTML Markup for Structure142

Test Yourself

Test Yourself
The answers to these questions are in Appendix A.

What are the parts/elements of a basic (X)HTML table?

Why don’t professional web designers use tables for layout anymore?

What is the difference between a caption and a summary?

When would you use the col (column) element?

Find five errors in this table markup.

<caption>Primetime Television 1965</caption>
<table>
 Thursday Night
 	<tr></tr>
 <th>7:30</th>
 	<th>8:00</th>
 <th>8:30</th>
 <tr>
 		<td>Shindig</td>
 <td>Donna Reed Show</td>
 <td>Bewitched</td>
			<tr>
 <colspan>Daniel Boone</colspan>
 <td>Laredo</td>
			</tr>
</table>

(X)HTML Review: Table Elements
The following is a summary of the elements we covered in this chapter:

Element and attributes Description

table Establishes a table element

cellpadding="number" Space within cells

cellspacing="number" Space between cells

summary="text" A description of the table for nonvisual browsers

td Establishes a cell within a table row

colspan="number" Number of columns the cell should span

rowspan="number" Number of rows the cell should span

headers="header name" Associates a data cell with a header

th Table header associated with a row or column

colspan="number" Number of columns the cell should span

rowspan="number" Number of rows the cell should span

scope="row|column|rowgroup|colgroup" Associates the header with a row, row group, column, or column group.

tr Establishes a row within a table

caption Gives the table a title that displays in the browser.

1.

2.

3.

4.

5.

143

IN THIS CHAPTER

How forms work

The form element

POST versus GET

Variables and values

Form controls, including
text entry fields, buttons,
menus, and hidden data

Form accessibility features

A word about form layout

It’s hard to go on the Web without encountering some sort of form, whether

you’re making a purchase, signing up for a mailing list, or requesting product

information. Although forms have a wide range of uses, from simple search

boxes to complex online shopping interfaces, they are all built out of the

same components.

This chapter introduces web forms, how they work, and the markup used to

create them.

How Forms Work
There are two parts to a working form. The first part is the form that you see

on the page itself. Forms are made up of buttons, text fields, and pull-down

menus (collectively known as form controls) used to collect information from

the user. Forms may also contain text and other elements.

The other component of a web form is an application or script on the server

that processes the information collected by the form and returns an appro-

priate response. It’s what makes the form work. In other words, putting up

an (X)HTML page with form elements isn’t enough. Web applications and

scripts require progamming know-how that is beyond the scope of this book,

however, the Getting Your Forms to Work sidebar later in this chapter pro-

vides some options for getting the scripts you need.

From data entry to response

If you are going to be creating web forms, it is beneficial to understand what

is happening behind the scenes. This example traces the steps of a transaction

using a simple form that gathers names and email addresses for a mailing list;

however, it is typical of the process for most forms.

Your visitor, let’s call her Sally, opens the page with a web form in the

browser window. The browser sees the form control elements in the

markup and replaces them with the appropriate form controls, including

two text entry fields and a submit button (shown in Figure 9-1).

1.

FORMS

CHAPTER 9

Part II: HTML Markup for Structure144

How Forms Work

Name = Sally Strongarm
Email = strongarm@example.com

Response
(HTML)

Data

Web application

Figure 9-1. What happens behind the scenes when a web form is submitted.

Sally would like to sign up for this mailing list, so she enters her name

and email address into the fields and submits the form by clicking the

“Submit” button.

The browser collects the information she entered, encodes it (see sidebar),

and sends it to the web application on the server.

The web application accepts the information and processes it (that is,

does whatever it is programmed to do with it). In this example, the name

and email address are added to a database.

2.

3.

4.

A Word about
Encoding
Form data is encoded using the
same method used for URLs in
which spaces and other characters
that are not permitted are translated
into their hexadecimal equivalents.
For example, each space character
in the collected form data is
represented by the character string
%20 and a slash (/) character is
replaced with %2F. You don’t need
to worry about this; the browser
handles it automatically.

The form Element

Chapter 9, Forms 145

The web application also returns a response. The kind of response sent

back depends on the content and purpose of the form. Here, the response

is a simple web page that contains a thank you for signing up for the mail-

ing list. Other applications might respond by reloading the (X)HTML

form page with updated information, by moving the user on to another

related form page, or by issuing an error message if the form is not filled

out correctly, to name only a few examples.

The server sends the web application’s response back to the browser

where it is displayed. Sally can see that the form worked and that she has

been added to the mailing list.

The form Element
Forms are added to web pages using (no surpise here) the form element. The

form element is a container for all the content of the form, including some

number of form controls, such as text entry fields and buttons. It may also

contain block elements, (h1, p, and lists, for example), however, it may not

contain another form element.

This sample source document contains a form similar to the one shown in

Figure 9-1.

<html>
<head>
 <title>Mailing List Signup</title>
</head>
<body>
 <h1>Mailing List Signup</h1>

 <form action="/cgi-bin/mailinglist.pl" method="post">
 <fieldset>
 <legend>Join our email list</legend>
 <p>Get news about the band such as tour dates and special MP3
releases sent to your own in-box.</p>

 <label for="name">Name:</label>
 <input type="text" name="name" id="name" />
 <label for="name">Email:</label>
 <input type="text" name="email" id="email" />

 <input type="submit" value="Submit" />
 </fieldset>
 </form>

</body>
</html>

In addition to being a container for form control elements, the form element

has some attributes that are necessary for interacting with the form-process-

ing program on the server. Let’s take a look at each.

5.

6.

Be careful not to nest form elements
or allow them to overlap. A form
element must be closed before the
next one begins.

t I P

Be careful not to nest form elements
or allow them to overlap. A form
element must be closed before the
next one begins.

t I P

N OT E

It is current best practice to wrap form
controls in lists, most commonly ordered
lists as shown in this example. Not only
is it semantically correct, it also makes
it easier to format the form with style
sheets later.

CGI (Common
Gateway Interface)
The Common Gateway Interface
(CGI) is what allows the server to
communicate with other programs.
These are usually scripts (called CGI
scripts) written in the Perl, C, or C++
programming languages. The most
common use of CGI scripts is forms
processing. Most servers follow the
convention of keeping CGI scripts
in a special directory named cgi-bin
(short for CGI-binaries), as shown in
our example. As other more web-
focused options for interfacing
with databases become available,
such as ASP and PHP, traditional
CGI programming is getting less
attention.

Part II: HTML Markup for Structure146

The form Element

The action attribute

The action attribute provides the location (URL) of the application or script

(sometimes called the action page) that will be used to process the form. The

action attribute in this example sends the data to a script called mailinglist.pl.

The script is the cgi-bin directory on the same server as the HTML document

(you can tell because the URL is site root relative).

<form action="/cgi-bin/mailinglist.pl" method="post">...</form>

The .pl suffix indicates that this form is processed by a Perl script (Perl is a

scripting language). It is also common to see web applications that end with

the following:

.php, indicating that a PHP program is doing the work. PHP is an open

source scripting language most commonly used with the Apache web

server.

.asp, for Microsoft’s ASP (Active Server Pages) programming environment

for the Microsoft Internet Information Server (IIS).

.jsp, for JavaServer Pages, a Java-based technology similar to ASP.

When you create a web form, you most likely will be working with a devel-

oper or server administrator who will provide the name and location of the

program to be provided by the action attribute.

The method attribute

The method attribute specifies how the information should be sent to the

server. Let’s use this data gathered from the sample form in Figure 9-1 as an

example.

name = Sally Strongarm

email = strongarm@example.com

When the browser encodes that information for its trip to the server, it looks

like this (see the earlier sidebar if you need a refresher on encoding):

name=Sally%20Strongarm&email=strongarm%40example.com

There are only two methods for sending this encoded data to the server:

POST or GET indicated using the method attribute in the form element. We’ll

look at the difference between the two methods in the following sections. Our

example uses the POST method, as shown here:

<form action="/cgi-bin/mailinglist.pl" method="post">...</form>

The POST method

When the form’s method is set to POST, the browser sends a separate server

request containing some special headers followed by the data. Only the server

sees the content of this request, thus it is the best method for sending secure

information such as credit card or other personal information.

•

•

•

Getting Your Forms
to Work
You don’t need to learn to be a
programmer to make working
web forms for your site. There are
a number of options for adding
interactivity to a form.

Use Hosting Plan
Goodies

Many site hosting plans include
access to scripts for simple functions
such as guestbooks, mailing lists, and
so on. More advanced plans may
even provide everything you need
to add a full shopping cart system
to your site as part of your monthly
hosting fee. Documentation or a
technical support person should be
available to help you use them.

Download and Install

There are many free or inexpensive
scripts available that you can
download and run on your site.
Just be sure that your hosting plan
permits you to install scripts before
you get started. Some script sources
include:

Matt’s Script Archive
(www.scriptarchive.com)

The PHP Resource Index
(php.resourceindex.com)

PHP Builder (phpbuilder.com)

PHP Classes (phpclasses.com)

Hire a Programmer

If you need a custom solution, you
may need to hire a programmer
who has Perl, PHP, ASP or other web-
related programming skills. Tell your
programmer what you are looking to
accomplish with your form and he
or she will suggest a solution. Again,
you need to make sure you have
permission to install scripts on your
server under your current hosting
plan, and that the server supports
the language you choose.

Variables and Content

Chapter 9, Forms 147

The POST method is also preferable for sending a lot of data, such as a

lengthy text entry, because there is no character limit as there is for GET.

The GET method

With the GET method, the encoded form data gets tacked right onto the URL

sent to the server. A question mark character separates the URL from the fol-

lowing data, as shown here:

get http://www.bandname.com/cgi-bin/mailinglist.pl?name=Sally%20Strongar
m&email=strongarm%40example.com

The GET method is appropriate if you want users to be able to bookmark

the results of a form submission (such as a list of search results). Because the

content of the form is in plain sight, GET is not appropriate for forms with

private personal or financial information. In addition, because there is a 256

character limit on what can be appended to a URL, GET may not be used for

sending a lot of data or when the form is used to upload a file.

In this chapter, we’ll stick with the more popular POST method. Now that

we’ve gotten through the technical aspects of the form element, we can take

on the real meat of forms—form controls.

Variables and Content
Web forms use a variety of controls (also sometimes called widgets) that

allow users to enter information or choose options. Control types include

various text entry fields, buttons, menus, and a few controls with special

functions. They are added to the document using a collection of form control

elements that we’ll be examining one by one in the upcoming Great Form

Control Round-up section.

As a web designer, it is important to be familiar with control options to make

your forms easy and intuitive to use. It is also useful to have an idea of what

form controls are doing behind the scenes.

The name attribute

The job of a form control is to collect one bit of information from a user. In

the form example a few pages back, the text entry fields are used to collect

the visitor’s name and email address. To use the technical term, “name” and

“email” are two variables collected by the form. The data entered by the user

(“Sally Strongarm” and “strongarm@example.com”) is the value or content

of the variable.

The name attribute identifies the variable name for the control. In this exam-

ple, the text gathered by a textarea element is identified as the “comment”

variable:

<textarea name="comment" rows="4" cols="45">Would you like to add a
comment?</textarea>

N OT E

In XHTML documents, the value of
the method attribute (post or get) must
be provided in all lowercase letters. In
HTML, however, POST and GET are not
case-sensitive and are commonly listed in
all uppercase by convention.

N OT E

In XHTML documents, the value of
the method attribute (post or get) must
be provided in all lowercase letters. In
HTML, however, POST and GET are not
case-sensitive and are commonly listed in
all uppercase by convention.

Part II: HTML Markup for Structure148

Form Accessibility Features

When a user enters a comment in the field (“This is the best band ever!”),

it would be passed to the server as a name/value (variable/content) pair like

this:

comment=This%20is%20the%20best%20band%20ever!

All form control elements must include a name attribute so the form-process-

ing application can sort the information. The only exceptions are the submit

and reset button elements because they have special functions (submitting

or resetting the form) not related to data collection.

Naming your variables

You can’t just name controls willy-nilly. The web application that processes

the data is programmed to look for specific variable names. If you are design-

ing a form to work with a preexisting application or script, you need to find

out the specific variable names to use in the form so they are speaking the

same language. You can get the variable names from the developer you are

working with, your system administrator, or from the instructions provided

with a ready-to-use script on your server.

If the script or application will be created later, be sure to name your variables

simply and descriptively. In addition, each variable must be named uniquely,

that is, the same name may not be used for two variables. You should also

avoid putting character spaces in variable names; use an underscore or period

instead.

We’ve covered the basics of the form element and how variables are named.

Another fundamental part of marking up tables like the professionals do is

including elements and attributes that make the form accessible.

Form Accessibility Features
It is essential to consider how users without the benefit of visual browsers

will be able to understand and navigate through your web forms. Fortunately,

HTML 4.01 introduced a number of elements that improve form accessibility

by enabling authors to label the heck out of them. As for many accessibility

features, the new form elements provide ways to make semantic connections

between the components of a form clear. The resulting markup is not only

more semantically rich, but there are also more elements available to act as

“hooks” for style sheet rules. Everybody wins!

Labels

Although we may see the label “Address” right next to a text field for entering

an address in a visual browser, in the source, the label and field may be sepa-

rated, such as when they appear in separate table cells. The label element is

used to associate descriptive text with its respective form field. This provides

important context for users with speech-based browsers.

Form Accessibility Features

Chapter 9, Forms 149

Each label element is associated with exactly one form control. There are two

ways to use it. One method, called implicit association, nests the control and

its description within a label element, like this:

<label>Male: <input type="radio" name="gender" value="M" /></label>
<label>Female: <input type="radio" name="gender" value="F" /></label>

The other method, called explicit association, matches the label with the

contro’ls id reference The for attribute says which control the label is for. This

approach is useful when the control is not directly next to its descriptive text

in the source. It also offers the potential advantage of keeping the label and

the control as two distinct elements, which may come in handy when align-

ing them with style sheets.

<label for="form-login-username">Login account:</label>
<input type="text" name="login" id="form-login-username" />

<label for="form-login-password">Password:</label>
<input type="password" name="password" id="form-login-password" />

fieldset and legend

The fieldset element is used to indicate a logical group of form controls.

A fieldset may also include a legend element that provides a caption for the

enclosed fields.

Figure 9-2 shows the default rendering of the following example in Firefox

1.0, but you could also use style sheets to change the way the fieldset and

legend appear.

<fieldset>
<legend>Customer Information</legend>

 <label>Full name: <input type="text" name="name" /></label>
 <label>Email: <input type="text" name="email" /></label>
 <label>State: <input type="text" name="state" /></label>

</fieldset>

<fieldset>
<legend>Mailing List Sign-up</legend>

 <label>Add me to your mailing list <input type="radio"
name="list" value="yes" checked="checked" /></label>
 <label>No thanks <input type="radio" name="list" value="no" />
</label>

</fieldset>

To keep your form-related IDs
separate from other IDs on the page,
consider prefacing them with “form-”
as shown in the examples.

Another technique for keeping
forms organized is to give the form
element an ID, and include it in the
IDs for the the controls it contains,
as follows:

<form id="form-login">

<input id="form-login-username" />

<input id="form-login-password" />

t I P

To keep your form-related IDs
separate from other IDs on the page,
consider prefacing them with “form-”
as shown in the examples.

Another technique for keeping
forms organized is to give the form
element an ID, and include it in the
IDs for the the controls it contains,
as follows:

<form id="form-login">

<input id="form-login-username" />

<input id="form-login-password" />

t I P

Figure 9-2. The default rendering of
fieldsets and legends (shown in Firefox 1.0
on Mac OS X).

Part II: HTML Markup for Structure150

The Great Form Control Round-up

The Great Form Control Round-up
This is the fun part—playing with the markup that adds form controls to

the page. Armed with your basic knowledge of how forms and form controls

function as well as the markup used for accessibility, this markup should

make sense. This section introduces the elements used to create:

Text entry controls

Submit and reset buttons

Radio and checkbox buttons

Pull-down and scrolling menus

File selection and upload control

Hidden controls

We’ll pause along the way to allow you to try them out by constructing the

questionnaire form shown in Figure 9-3.

As you’ll see, the majority of controls are added to a form using the input ele-

ment. The functionality and appearance of the input element changes based

on the type attribute.

Figure 9-3. The contest entry form we’ll be building in the exercises in this chapter.

•

•

•

•

•

•

The Great Form Control Round-up

Chapter 9, Forms 151

Text entry controls

There are three basic types of text entry fields in web forms: single-line text

fields, password entry fields, and multiline text entry fields.

Single-line text field

<input type="text" />
Single-line text entry control

One of the most simple types of form control is the text entry field used for

entering a single word or line of text. It is added to the form using the input

element with its type attribute set to text, as shown here and Figure 9-4 ฀.

<label for="form-city">City:</label> <input type="text" name="city"
value="Your Hometown" size="25" maxlength="50" id="form-city" />

The name attribute is required for identifying the variable name. The id

attribute binds this control to its associated label (although it could also be

referenced by style sheets and scripts). This example also includes a number

of additional attributes:

value

 The value attribute specifies default text that appears in the field when

the form is loaded. When you reset a form, it returns to this value.

size

 By default, browsers display a text-entry box that is 20 characters wide,

but you can change the number of characters using the size attribute.

maxlength

 By default, users can type an unlimited number of characters in a text

field regardless of its size (the display scrolls to the right if the text exceeds

the character width of the box). You can set a maximum character limit

using the maxlength attribute if the forms processing program you are

using requires it.

C Multi-line text entry

฀ Text entry field

B Password entry

Figure 9-4. Examples of the text-entry control options for web forms.

N OT E

The input element is an empty ele-
ment, so in XHTML documents, it must
include a trailing slash as shown in these
examples. In HTML documents, the final
slash should be omitted.

N OT E

The input element is an empty ele-
ment, so in XHTML documents, it must
include a trailing slash as shown in these
examples. In HTML documents, the final
slash should be omitted.

N OT E

The specific rendering style of form con-
trols varies by operating system and
browser version.

N OT E

The specific rendering style of form con-
trols varies by operating system and
browser version.

Part II: HTML Markup for Structure152

The Great Form Control Round-up

Password text entry field

<input type="password" />
Password text control

A password field works just like a text entry field, except the characters are

obscured from view using asterisk (*) or bullet (•) characters, or another

character determined by the browser.

It’s important to note that although the characters entered in the password

field are not visible to casual onlookers, the form does not encrpyt the infor-

mation, so it should not be considered a real security measure.

Here is an example of the markup for a password field. Figure 9-4 B shows

how it might look after the user enters a password in the field.

<label for="form-pswd">Log in:</label> <input type="password"
name="pswd" size="8" maxlength="8" id="form-pswd" />

Multiline text entry field

<textarea>...</textarea>
Multiline text entry control

At times, you’ll want your users to be able enter more than just one line

of text. For these instances, use the textarea element that is replaced by a

multi-line, scrollable text entry box when displayed by the browser (Figure

9-4 C).

<label for="form-entry">Official contest entry:</label>

<textarea name="contest_entry" rows="5" cols="100" id="form-entry">Tell
us why you love the band in 50 words or less. Five winners will get
backstage passes!</textarea>

Unlike the empty input element, the textarea element has content between

its opening and closing tags. The content of the textarea element is the intial

content of the text box when the form is displayed in the browser.

In addition to the required name attribute, the textarea element uses the fol-

lowing attributes:

rows

 Specifies the number of lines of text the area should display. Scrollbars

will be provided if the user types more text than fits in the allotted

space.

cols

 Specifies the width of the text area measured in number of characters.

disabled and
readonly
The disabled and readonly
attributes can be added to any form
control element to prevent users
from selecting them. When a form
element is disabled, it cannot be
selected. Visual browsers may render
the control as grayed-out. The
disabled state can only be changed
with a script. This is a useful attribute
for restricting access to some form
fields based on data entered earlier
in the form.

The readonly attribute prevents the
user from changing the value of the
form control (although it can be
selected). This enables developers to
use scripts to set values for controls
contingent on other data entered
earlier in the form.

disabled and
readonly
The disabled and readonly
attributes can be added to any form
control element to prevent users
from selecting them. When a form
element is disabled, it cannot be
selected. Visual browsers may render
the control as grayed-out. The
disabled state can only be changed
with a script. This is a useful attribute
for restricting access to some form
fields based on data entered earlier
in the form.

The readonly attribute prevents the
user from changing the value of the
form control (although it can be
selected). This enables developers to
use scripts to set values for controls
contingent on other data entered
earlier in the form.

The Great Form Control Round-up

Chapter 9, Forms 153

Submit and reset buttons

There are a number of different kinds of buttons that can be added to web

forms. The most fundamental is the submit button. When clicked, the submit

button immediately sends the collected form data to the server for processing.

The reset button returns the form controls to the state they were in when the

form loaded.

N OT E

Forms that contain only one form field do not require a submit button; the data will
be submitted when the user hits the Enter or Return key. A submit button must be
included for all other forms.

Both submit and reset buttons are added using the input element. As men-

tioned earlier, because these buttons have specific functions that do not

include the entry of data, they are the only form control elements that do not

require the name attribute.

<input type="submit" />
Submits the form data to the server

<input type="reset" />
Resets the form controls to their default settings

Submit and reset buttons are straightforward to use. Just place them in the

appropriate place in the form, in most cases, at the very end. By default, the

submit button displays with the label “Submit” or “Submit Query” and the

reset button is labeled “Reset.” Change the text on the button using the value

attribute as shown in the reset button in this example (Figure 9-5).

<p><input type="submit" /> <input type="reset" value="Start over" /></p>

Submit button Reset button

Figure 9-5. Submit and reset buttons.

At this point, you know enough about form markup to start building the

questionnaire shown in Figure 9-3. Exercise 9-1 walks you through the first

steps.

A Few More
Buttons
There are a handful of custom
button elements that are a little off
the beaten path for beginners, but
in the interest of thoroughness, here
they are tucked off in a sidebar.

Image buttons

<input type="image" />

This type of input control allows you
to replace the submit button with an
image of your choice. The image will
appear flat, not like a 3-D button.

Custom input button

<input type="button" />

Setting the type of the input
element to “button” creates a
button that can be customized
with a scripting language such as
JavaScript. It has no predefined
function on its own, as submit and
reset buttons do.

The button element

<button>...</button>

The button element is a flexible
element for creating custom buttons
similar to those created with the
input element. The content of the
button element (text and/or images)
is what gets displayed on the button.
In this example, a button element is
used as a submit button. The button
includes a label and a small image.

<button type="submit"
name="submit"><img
src="thumbs-up.gif" alt="" />
Ready to go.
</button>

For more information on what you
can do with the button element,
read “Push My Button” by Aaron
Gustafson at digital-web.com/
articles/push_my_button.

Part II: HTML Markup for Structure154

The Great Form Control Round-up

exercise 9-1 | Starting the contest form

Here’s the scenario. You are the web designer in charge of creating the entry form for
the Forcefield Sneakers’“Pimp your shoes” Contest. The copy editor has handed you a
sketch (Figure 9-6) of the form’s content, complete with notes of how some controls
should work. There are sticky notes from the programmer with information about the
script and variable names you need to use.

Your challenge is to turn the sketch into a functional online form. I’ve given you a
head start by creating a bare-bones document containing the text content and some
minimal markup and styles. This document, contest_entry.html, is available online
at www.learningwebdesign.com/materials. The source for the entire finished form is
provided in Appendix A if you want to check your work.

Pimp My Shoes Contest Entry Form

Want to trade in your old sneakers for a custom pair of Forcefields?
Make a case for why your shoes have got to go and you may be
one of ten lucky winners.

Contest Entry Information

Name:

City:

State:

My shoes are SO old

 (Your entry must be no more than 300 characters long)

Design your custom Forcefields:
Custom shoe design

Color:
() Red
() Blue
() Black
() Silver

Features (choose as many as you want):
 [] Sparkle laces

[X] Metallic logo
 [] Light-up heels
 [] MP3-enabled
Size
(sizes reflect standard men s sizing):

Pimp My Shoes! Reset

5

This form should be sent to
http://www.learningwebdesign.com/
contest.phpvia the POST method.Name the text fields “name”,’ “city”,

“state”, and “story”, respectively.

Change the Submit button text

Name the controls in this section

“color”, “features” and “size”,

respectively.

It should say this when the page loads.
Don’t let them enter more than 300 chars.

Make sure metallic logo
is selected by default

Pull-down menu with
sizes 5 through 13

Figure 9-6. A sketch of the contest entry form.

The Great Form Control Round-up

Chapter 9, Forms 155

Open contest_entry.html in a text editor.

The first thing we’ll do is put everything after the intro paragraph into a form
element. The programmer has left a note specifying the action and the method to
use for this form. The resulting form element should look like this:

<form action="http://www.learningwebdesign.com/contest.php"
method="post">

...

</form>

In this exercise, we’ll work on the “Contest Entry Information” section of the form.
Start by creating a fieldset that contains the Name, City, State, and “My Shoes”
labels. Use the title “Contest Entry Information” as the legend for that fieldset. In
addition, mark up the form fields as an ordered list. The resulting markup is shown
here.

<fieldset>
<legend>Contest Entry Information</legend>

 Name:
 City:
 State:
 My shoes are SO old...

</fieldset>

Now we’re ready to add the first three short text entry form controls. Here’s the
first one; you insert the other two.

Name: <input type="text" name="name" />

Hint: Be sure to name the input elements as specified in the programmer’s note.

Now add a multiline text area for the shoe description in a new paragraph,
following the instructions in the note:

My shoes are SO old...

<textarea name="story" rows="4" cols="60" maxlength="300">(Your entry
must be no more than 300 characters long.)</textarea>

Finally, let’s make sure each form control is explicitly tied to its label using the “for/
id” label method. I’ve done the first one; you do the other three.

<label for="form-name">Name:</label> <input type="text"
name="name" id="form-name" />

We’ll skip the rest of the form for now until we get a few more
controls under our belt, but we can add the submit and reset
buttons at the end, just before the </form> tag. Note that we
need to change the text on the submit button.

<p><input type="submit" value="Pimp my shoes!" />
<input type="reset" /></p>
</form>

Now, save the document and open it in a browser. The parts
that are finished should generally match Figure 9-3. If it doesn’t,
then you have some more work to do.

Once it looks right, take it for a spin by entering some information
and submitting the form. You should get a response like the one
shown in Figure 9-7 (yes, contact.php actually works, but sorry, the
contest is make-believe.)

1.

2.

3.

4.

5.

6.

7.

8.

Figure 9-7. You should see a response
page like this if your form is working.
Figure 9-7. You should see a response
page like this if your form is working.

Part II: HTML Markup for Structure156

The Great Form Control Round-up

Radio and checkbox buttons

Both checkbox and radio buttons make it simple for your visitors to choose

from a number of provided options. They are similar in that they function

like little on/off switches that can be toggled by the user and are added using

the input element. They serve distinct functions, however.

A form control made up of a collection of radio buttons is appropriate when

only one option from the group is permitted, or, in other words, when the

selections are mutually exclusive (such as Yes or No, or Male or Female).

When one radio button is “on,” all of the others must be “off,” sort of the

way buttons used to work on old radios—press one button in and the rest

pop out.

When checkboxes are grouped together, however, it is possible to select as

many or as few from the group as desired. This makes them the right choice

for lists in which more than one selection is okay.

Radio buttons

<input type="radio" />
Radio button

Radio buttons are added to a form with the input element with the type

attribute set to radio. The name attribute is required. Here is the syntax for a

minimal radio button:

<input type="radio" name="variable" />

In this example, radio buttons are used as an interface for users to enter their

age group (a person can’t belong to more than one age group, so radio but-

tons are the right choice). Figure 9-8 shows how radio buttons are rendered

in the browser.

<fieldset>
<legend>How old are you?</legend>

 <label><input type="radio" name="age" value="under24"
 checked="checked" /> under 24</label>
 <label><input type="radio" name="age" value="25-34" /> 25 to 34
 </label>
 <label><input type="radio" name="age" value="35-44" /> 35 to 44
 </label>
 <label><input type="radio" name="age" value="over45" /> 45+
 </label>

</fieldset>

Notice that all of the input elements have the same variable name (“age”), but

their values are different. Because these are radio buttons, only one button

can be checked at a time, and therefore, only one value will be sent to the

server for processing when the form is submitted.

N OT E

In XHTML documents, the value of the
checked attribute must be explicitly set
to checked, as shown in the example.

In HTML documents, you don’t need
to write out the value for the checked
attribute. It can be minimized, as shown
here:

<input type="radio" name="foo"
checked />

The examples in this chapter follow
XHTML syntax in which all attributes
have explicit values.

N OT E

In XHTML documents, the value of the
checked attribute must be explicitly set
to checked, as shown in the example.

In HTML documents, you don’t need
to write out the value for the checked
attribute. It can be minimized, as shown
here:

<input type="radio" name="foo"
checked />

The examples in this chapter follow
XHTML syntax in which all attributes
have explicit values.

The Great Form Control Round-up

Chapter 9, Forms 157

Radio buttons Checkbox buttons

Figure 9-8. Radio buttons (left) are appropriate when only one selection is permitted. Checkboxes
(right) are best when users may choose any number of choices, from none to all of them.

You can decide which button is checked when the form loads by adding the

checked attribute to the input element. In this example, the button next to

“under 24” will be checked by default.

Also notice in this example that both the button input and its text label are

contained in a single label element. The advantage to this method is that

users may click anywhere on the whole label to select the button.

Checkbox buttons

<input type="checkbox" />
Checkbox button

Checkboxes are added using the input element with its type set to checkbox.

As with radio buttons, you create groups of checkboxes by assigning them

the same name value. The difference, as we’ve already noted, is that more than

one checkbox may be checked at a time. The value of every checked button

will be sent to the server when the form is submitted. Here is an example of

a group of checkbox buttons used to indicate musical interests. Figure 9-8

shows how they look in the browser:

<fieldset>
<legend>What type of music do you listen to?</legend>

 <label><input type="checkbox" name="genre" value="punk"
checked="checked" /> Punk rock</label>
 <label><input type="checkbox" name="genre" value="indie"
checked="checked" /> Indie rock</label>
 <label><input type="checkbox" name="genre" value="techno" />
Techno </label>
 <label><input type="checkbox" name="genre" value="rockabilly" />
Rockabilly</label>

</fieldset>

Checkboxes don’t necessarily need to be used in groups, of course. In this

example, a single checkbox is used to allow visitors to opt in for special pro-

motions. The value of the control will only be passed along to the server if

the user checks the box.

<p><input type="checkbox" name="optin" value="yes" /> Yes, send me news
and special promotions by email.</p>

N OT E

This list of options has been marked
up semantically as an unordered list
because the order of the options is not
significant.

N OT E

This list of options has been marked
up semantically as an unordered list
because the order of the options is not
significant.

Part II: HTML Markup for Structure158

The Great Form Control Round-up

In Exercise 9-2, you’ll get a chance to add both radio and checkbox buttons

to the contest entry form.

Menus

Another option for providing a list of choices is to put them in a pull-down

or scrolling menu. Menus tend to be more compact than groups of buttons

and checkboxes.

<select>...</select>
Menu control

<option>...</option>
An option within a menu

<optgroup>...</optgroup>
A logical grouping of options within a menu

You add both pull-down and scrolling menus to a form with the select

element. Whether the menu pulls down or scrolls is the result of how you

specify its size and whether you allow more than one option to be selected.

Let’s take a look at both menu types.

The next two questions in the sneaker contest entry form use
radio buttons and checkboxes for selecting options. Open the
contest_entry.html document and follow these steps.

Before we start working on the buttons, group the Color,
Features, and Size questions in a fieldset with the legend
“Custom Shoe Design.”

<h2>Design your custom Forcefields:</h2>
<fieldset>
<legend>Custom Shoe Design</legend>
 Color...
 Features...
 Size...
</fieldset>

Create another fieldset just for the Color options, using the
description as the legend as shown here. Also mark up the
options as an unordered list.

<fieldset>
<legend>Color (choose one):</legend>

 Red
 Blue
 Black
 Silver

</fieldset>

1.

2.

With the structure in place, now we can add the form
controls. The Color options should be radio buttons because
shoes can be only one color. Insert a radio button before
each option, and while you’re at it, associate each with its
respective label by putting both in a single label element.
Follow this example for the remaining color options.

<label><input type="radio" name="color"
value="red" /> Red</label>

Mark up the Features options as you did the Color options,
creating a fieldset, legend, and unordered list. This time,
however, the type will be checkbox. Be sure the variable
name for each is “features,” and that the metallic logo option
is preselected as noted on the sketch.

Save the document and check your work by opening it in a
browser to make sure it looks right, then submit the form to
make sure it’s functioning properly.

3.

4.

5.

exercise 9-2 | Adding radio buttons and checkboxes

The next two questions in the sneaker contest entry form use
radio buttons and checkboxes for selecting options. Open the
contest_entry.html document and follow these steps.

Before we start working on the buttons, group the Color,
Features, and Size questions in a fieldset with the legend
“Custom Shoe Design.”

<h2>Design your custom Forcefields:</h2>
<fieldset>
<legend>Custom Shoe Design</legend>
 Color...
 Features...
 Size...
</fieldset>

Create another fieldset just for the Color options, using the
description as the legend as shown here. Also mark up the
options as an unordered list.

<fieldset>
<legend>Color (choose one):</legend>

 Red
 Blue
 Black
 Silver

</fieldset>

1.

2.

With the structure in place, now we can add the form
controls. The Color options should be radio buttons because
shoes can be only one color. Insert a radio button before
each option, and while you’re at it, associate each with its
respective label by putting both in a single label element.
Follow this example for the remaining color options.

<label><input type="radio" name="color"
value="red" /> Red</label>

Mark up the Features options as you did the Color options,
creating a fieldset, legend, and unordered list. This time,
however, the type will be checkbox. Be sure the variable
name for each is “features,” and that the metallic logo option
is preselected as noted on the sketch.

Save the document and check your work by opening it in a
browser to make sure it looks right, then submit the form to
make sure it’s functioning properly.

3.

4.

5.

exercise 9-2 | Adding radio buttons and checkboxes

The Great Form Control Round-up

Chapter 9, Forms 159

Pull-down menus

The select element displays as a pull-down menu by default when no size

is specified or if the size attribute is set to 1. In pull-down menus, only one

item may be selected. Here’s an example (shown in Figure 9-9):

<label for="form-fave">What is your favorite 80s band?<label>

<select name="EightiesFave" id="form-fave">
 <option>The Cure</option>
 <option>Cocteau Twins</option>
 <option>Tears for Fears</option>
 <option>Thompson Twins</option>
 <option value="EBTG">Everything But the Girl</option>
 <option>Depeche Mode</option>
 <option>The Smiths</option>
 <option>New Order</option>
</select>

You can see that the select element is just a container for a number of option

elements. The content of the chosen option element is what gets passed to the

web application when the form is submitted. If for some reason you want to

send a different value than what appears in the menu, use the value attribute

to provide an overriding value. For example, if someone selects “Everything

But the Girl” from the sample menu, the form submits the value “EBTG” for

the “EightiesFave” variable.

You will make a menu like this one for selecting a shoe size in Exercise 9-3.

Scrolling menus

To make the menu display as a scrolling list, simply specify the number of

lines you’d like to be visible using the size attribute. This example menu has

the same options as the previous one, except it has been set to display as a

scrolling list that is six lines tall (Figure 9-10).

<label f0r="EightiesBands">What 80s bands did you listen to?</label>
<select name="EightiesBands" size="6" multiple="multiple"
f0r="EightiesBands">
 <option>The Cure</option>
 <option>Cocteau Twins</option>
 <option selected="selected">Tears for Fears</option>
 <option selected="selected">Thompson Twins</option>
 <option value="EBTG">Everything But the Girl</option>
 <option>Depeche Mode</option>
 <option>The Smiths</option>
 <option>New Order</option>
</select>

You may notice a few new attributes tucked in there. The multiple attribute

allows users to make more than one selection from the scrolling list. Note

that pull-down menus do not allow multiple selections; when the browser

detects the multiple attribute, it displays a small scrolling menu automati-

cally by default.

Figure 9-9. Pull-down menus pop open
when the user clicks on the arrow or bar.
Figure 9-9. Pull-down menus pop open
when the user clicks on the arrow or bar.

Figure 9-10. A scrolling menu with
multiple options selected.
Figure 9-10. A scrolling menu with
multiple options selected.

N OT E

The multiple and selected attributes
can be minimized in HTML, as we saw
for the checked attribute earlier in this
chapter.

N OT E

The multiple and selected attributes
can be minimized in HTML, as we saw
for the checked attribute earlier in this
chapter.

Part II: HTML Markup for Structure160

The Great Form Control Round-up

Use the selected attribute in an option element to make it the default value

for the menu control. Selected options are highlighted when the form loads.

The selected attribute can be used with pull-down menus as well.

Grouping menu options

You can use the optgroup element to create conceptual groups of options.

The required label attribute in the optgroup element provides the heading

for the group. Figure 9-11 shows how option groups are rendered in modern

browsers.

<select name="icecream" multiple="multiple">
<optgroup label="traditional">
 <option>vanilla</option>
 <option>chocolate</option>
</optgroup>
<optgroup label="fancy">
 <option>Super praline</option>
 <option>Nut surprise</option>
 <option>Candy corn</option>
</optgroup>
</select>

N OT E

The label attribute in the option element is not the same as the label element used to
improve accessibility.

Figure 9-11. Option groups as rendered in
a modern browser.
Figure 9-11. Option groups as rendered in
a modern browser.

exercise 9-3 | Adding a menu

The only other control that needs to be added to the contest entry is a pull-down
menu for selecting a shoe size.

First, delimit the Size question in a fieldset with “Size” as the legend. This time, a
list doesn’t make sense, so mark the line up as a paragraph.

<fieldset>
<legend>Size<legend>
 <p>Sizes reflect standard men's sizes:</p>
</fieldset>

Insert a select menu element with the shoe sizes (5 to 13), and explicitly
associate it with its label (using “for/id”).

<p><label for="size">Size (sizes reflect men's sizing):</label>
<select name="size" id="size">
<option>5</option>
...insert more options here...
</select>
</p>

Save the document and check it in a browser. You can submit the form, too, to be
sure that it’s working. You should get the Thank You response page listing all of
the information you entered in the form.

Congratulations! You’ve built your first working web form.

1.

2.

3.

exercise 9-3 | Adding a menu

The only other control that needs to be added to the contest entry is a pull-down
menu for selecting a shoe size.

First, delimit the Size question in a fieldset with “Size” as the legend. This time, a
list doesn’t make sense, so mark the line up as a paragraph.

<fieldset>
<legend>Size<legend>
 <p>Sizes reflect standard men's sizes:</p>
</fieldset>

Insert a select menu element with the shoe sizes (5 to 13), and explicitly
associate it with its label (using “for/id”).

<p><label for="size">Size (sizes reflect men's sizing):</label>
<select name="size" id="size">
<option>5</option>
...insert more options here...
</select>
</p>

Save the document and check it in a browser. You can submit the form, too, to be
sure that it’s working. You should get the Thank You response page listing all of
the information you entered in the form.

Congratulations! You’ve built your first working web form.

1.

2.

3.

The Great Form Control Round-up

Chapter 9, Forms 161

File selection control

Web forms can collect more than just data. They can also be used to transmit

external documents from a user’s hard drive. For example, a printing company

could use a web form to receive artwork for a business card order. A magazine

could use a form on their site to collect digital photos for a photo contest.

The file selection control makes it possible for users to select a document

from the hard drive to be submitted with the form data. It is added to the

form using our old friend the input element with its type set to file.

<input type="file" />
File selection field

The browser displays a “file” input as a text field with a button that allows

the user to navigate the hard drive and select the file for upload. The markup

sample below and Figure 9-12 shows a file selection control used for photo

submissions.

<form action="/client.php" method="post" enctype="multipart/form-data">

 <p><label for="form-photo">Send a photo to be used as your online
icon (optional):</label>

 <input type="file" name="photo" size="28" id="form-photo" /></p>

</form>

It is important to note that when a form contains a file selection input ele-

ment, you must specify the encoding type (enctype) of the form as multi-

part/form-data and use the POST method. The size attribute in this example

sets the character width of the text field.

Figure 9-12. A file selection form field.

Hidden controls

There may be times when you need to send information to the form process-

ing application that does not come from the user. In these instances, you can

use a hidden form control that sends data when the form is submitted, but is

not visible when the form is displayed in a browser.

<input type="hidden" />
File selection field

Hidden controls are added using the input element with the type set to hid-

den. Its sole purpose is to pass a name/value pair to the server when the form

Part II: HTML Markup for Structure162

Form Layout and Design

is submitted. In this example, a hidden form element is used to provide the

location of the appropriate thank you document to display when the transac-

tion is complete.

<input type="hidden" name="success-link" value="http://www.example.com/
littlechair_thankyou.html" />

I’ve worked with forms that have had dozens of hidden controls in the form

element before getting to the parts that the user actually fills out. This is

the kind of information you get from the application programmer, system

administrator, or whoever is helping you get your forms processed. If you are

using a canned script, be sure to check the accompanying instructions to see

if any hidden form variables are required.

That rounds out the form control round-up. Learning how to insert form

controls is one part of the forms production process, but you have to consider

the design, layout, and appearance of the form as well.

Form Layout and Design
I can’t close this chapter without saying a few words about form design,

even though the chapters in this (X)HTML section are not concerned with

presentation.

You can use Cascading Style Sheets to alter the font, size, and color of form

labels and controls as you would any other element. Just refining the look of

controls will go a long way toward giving your forms a look that is consistent

with the rest of your site.

The real challenge to formatting forms is alignment. In the past, tables were

used to bring alignment and balance to form components. However, using

data table elements for page layout is considered a no-no in this age of

semantic markup. You can certainly achieve the same alignment effects using

Cascading Style Sheets alone. The strategy is to float labels and input element

so they appear next to one another on a given indent. Unfortunately, it

requires some CSS moves that are beyond the scope of this book, although

you will learn the fundamental concepts in Chapter 15, Floating and

Positioning. A web search for “form alignment with CSS” will turn up plenty

of online tutorials.

Test Yourself
Ready to put your web form know-how to the test? Here are a few questions

to make sure you got the basics.

Decide whether each of these forms should be sent via the GET or POST

method:

A form for accessing your bank account online ________

1.

WA R N I N G

Fieldsets and legends tend to throw some
curve-balls when it comes to styling. For
example, background colors in fieldsets
are handled differently from browser to
browser. Legends are unique in that their
text doesn’t wrap. Be sure to do lots of
testing if you style these form elements.

WA R N I N G

Fieldsets and legends tend to throw some
curve-balls when it comes to styling. For
example, background colors in fieldsets
are handled differently from browser to
browser. Legends are unique in that their
text doesn’t wrap. Be sure to do lots of
testing if you style these form elements.

Designing Forms
You may want to check out these
articles at A List Apart that address
form usability and styling.

“Sensible Forms: A Form Usability
Checklist,” by Brian Crescimanno
(www.alistapart.com/articles/
sensibleforms)

“Prettier Accessible Forms,” by
Nick Rigby (www.alistapart.com/
articles/prettyaccessibleforms)





F O R F U R t H e R R e A D I n G

Designing Forms
You may want to check out these
articles at A List Apart that address
form usability and styling.

“Sensible Forms: A Form Usability
Checklist,” by Brian Crescimanno
(www.alistapart.com/articles/
sensibleforms)

“Prettier Accessible Forms,” by
Nick Rigby (www.alistapart.com/
articles/prettyaccessibleforms)





F O R F U R t H e R R e A D I n G

(X)HTML Review: Forms

Chapter 9, Forms 163

A form for sending t-shirt artwork to the printer ________

A form for searching archived articles ________

A form for collecting long essay entries ________

Which form control element is best suited for the following tasks? When

the answer is “input,” be sure to also include the type. Some tasks may

have more than one correct answer.

Choose your astrological sign from 12 signs.

Indicate whether you have a history of heart disease (yes or no).

Write up a book review.

Select your favorite ice cream flavors from a list of eight flavors.

Select your favorite ice cream flavors from a list of 25 flavors.

Each of these markup examples contains an error. Can you spot what it

is?

<input name="country" value="Your country here." />

<checkbox name="color" value="teal" />

<select name="popsicle">
 <option value="orange" />
 <option value="grape" />
 <option value="cherry" />
</select>

<input type="password" />

<textarea name="essay" height="6" width="100">Your story.</textarea>

(X)HTML Review: Forms
We covered this impressive list of elements and attributes related to forms in

this chapter:

Element and attributes Description

button Generic input button

name="text" Supplies a unique variable name for the control

value="text" Specifies the value to be sent to the server

type="submit|reset|button" The type of custom button

fieldset Groups related controls and labels

2.

3.

N OT E

The id attribute can be used with any
of these elements to give a unique name
(also called an id reference).

N OT E

The id attribute can be used with any
of these elements to give a unique name
(also called an id reference).

Part II: HTML Markup for Structure164

(X)HTML Review: Forms

Element and attributes Description

form Form element

action="url" Location of forms processing program (required)

id="text" Gives the form a unique name (“id reference”)

method="get|post" The method used to submit the form data

enctype="content type" The encoding method, generally either application/x-www-form-urlen-
coded (default) or multipart/form-data

input Creates a variety of controls, based on the type value

type="text|password|checkbox|radio|submit|
reset|file|hidden|image button"

The type of input

checked="checked" Preselects a checkbox or radio button

disabled="disabled" Disables the control so it cannot be selected

maxlength="number" The maximum number of characters that can be entered into a text,
password, or file text field

name="text" Supplies a unique variable name for the control

readonly="readonly" Makes the control unalterable by the user

size="number" The character width of a text, password, or file field

value="text" Specifies the value to be sent to the server

label Attaches information to controls

for="text" Identifies the associated control by its id reference

legend Assigns a caption to a fieldset

optgroup Defines a group of options

label="text" Supplies label for a group of option

disabled="disabled" Disables the option so it cannot be selected

option An option within a select menu control

disabled="disabled" Disables the option so it cannot be selected

label="text" Supplies an alternate label for the option

selected="selected" Preselects the option

value="text" Supplies an alternate value for the option

select Pull-down menu or scrolling list

disabled="disabled" Disables the control so it cannot be selected

multiple="multiple" Allows multiple selctions in a scrolling list

name="text" Supplies a unique variable name for the control

readonly="readonly" Makes the control unalterable by the user

size="number" The height of the scrolling list in text lines

textarea Multi-line text entry field

cols="number" The width of the text area in characters

disabled="disabled" Disables the control so it cannot be selected

name="text" Supplies a unique variable name for the control

readonly="readonly" Makes the control unalterable by the user

rows="number" The height of the text area in text lines

165

IN THIS CHAPTER

The history of HTML

The three versions of HTML:
Strict, Transitional, and

Frameset

Introduction to XHTML
and its stricter syntax

requirements

Using Document Type
(DOCTYPE) Declarations

Standards vs. Quirks
mode in browsers

Validating your markup

Indicating a document’s
character encoding

I’m going to warn you right now... this is a big, geeky chapter full of some

pretty dry material. But I know you can handle it. If you have any notion of

doing web development professionally, you’ll be required to know it. Even if

you don’t, it’s important stuff.

Professional web designers know that the best way to ensure consistency

and accessibility across multiple browsers and devices is to write standards

compliant web documents. Standards compliance simply means that your

documents abide by all of the rules in the latest Recommendations published

by the World Wide Web Consortium (the W3C). That includes HTML and

XHTML for markup, but also other standards for style sheets (CSS) and

accessibility.

This chapter covers what it takes to get compliant. It gets into the nitty-

gritty on HTML and XHTML and their various versions. It begins with a fair

amount of story-telling, painting the picture of (X)HTML’s past, present, and

future. Once you have a feel for the big picture, the markup requirements that

follow will make a lot more sense. So sit back and enjoy the tale of HTML

and XHTML. (If you’re thinking, “C’mon! I don’t have time for this... just tell

me what I need to put in my document!” then you can skip to the last section

in this chapter, Putting It All Together, for the bottom line.)

Everything You’ve Wanted to Know
About HTML But Were Afraid to Ask
By now you’re familiar with (X)HTML—you’ve even gotten handy with it.

But did you know that there have been many versions of HTML since its

creation by Tim Berners-Lee in 1991? The quick rundown that follows sums

up HTML’s journey and should provide some useful context for where we are

today. Read the sidebar, HTML Version History, for more details.

HTML and what we know as the Web got their start at a particle physics

lab (CERN) in Switzerland where Tim Berners-Lee had an idea for sharing

research documents via a hypertext system. Instead of inventing a method

UNDERSTANDING
THE STANDARDS

CHAPTER 10

Part II: HTML Markup for Structure166

Everything You’ve Wanted to Know About HTML But Were Afraid to Ask

for marking up shared documents from scratch, he used SGML (Standard

Generalized Markup Language) as the basis for what he coined the Hypertext

Markup Language (HTML for short). He took many elements such as p and

h1 through h6 right from SGML, then invented the anchor (a) element for

adding hypertext links.

Early versions of HTML (HTML + and HTML 2.0) built on Tim’s early work

with the intent of making it a viable publishing option for a greater world-

wide audience.

HTML gets muddied...

In 1994, Mosaic Communications introduced the Netscape browser and took

the Web by storm. Their most notable “contribution” to web technology was

the introduction of many proprietary extensions to HTML that improved

the presentation of web documents (in Netscape only, naturally). When

Microsoft finally entered the browser scene in 1996 with Internet Explorer

3.0, they countered by developing their own proprietary HTML extensions

and web technologies. This divisive one-upping is generally referred to as the

Browser Wars, and we are still living with the fallout.

The original HTML draft. Tim Berners-Lee based his original
markup language for hypertext documents on the syntax
and elements in SGML, but added the anchor (a) element
for adding hypertext links. To see a very early version
of HTML, see this document dated 1992: www.w3.org/
History/19921103-hypertext/hypertext/WWW/MarkUp/
MarkUp.html.

HTML +. This version of HTML, written by Dave Raggett in
1993 and 1994, builds upon Berners-Lee’s original version,
adding elements such as figures, tables, and forms. Many
of the ideas developed here made it into later versions,
but the specific elements (such as fig for figures) were left
behind. You can see it at www.w3.org/MarkUp/HTMLPlus/
htmlplus_1.html.

HTML 2.0. This was a proposed standard developed by Tim
Berners-Lee and the HTML Working Group at IETF (Internet
Engineering Task Force) in 1995. It is available online at
www.w3.org/MarkUp/1995-archive/html-spec.html. At this
point, the Web was still in its infancy. In fact, Microsoft had
not yet released its Internet Explorer browser. Netscape,
however, had emerged on the scene and was busy adding
elements to HTML that worked only on its browser.

HTML 3.2. This is the first Recommendation released by the
newly-formed W3C in 1996 (www.w3.org/TR/REC-html32).
It is a snapshot of all the HTML elements in common use
at the time and includes many extensions to HTML that
were the result of the notorious Browser War between
Netscape and Microsoft. Many of these extensions are
presentational, and in hindsight, most would say they
should have never been incorporated in the standard.

HTML 4.0 and 4.01. HTML 4.0, released as a Recommendation
in 1998, got HTML back on track by acknowledging that
all matters of presentation should be handled with CSS
and remain separate from document markup. Many of
the presentational elements and attributes introduced
in HTML 3.2 were kept because they were in widespread
use, however, they were labeled as deprecated. HTML
4.0 also introduced a number of accessibility and
internationalization features. The updated HTML 4.01
Recommendation fixed some small issues and was
released in 1999. You can see it online at www.w3.org/TR/
html401. HTML 4.01 is the current version of HTML. It also
served as the basis for the XHTML 1.0 Recommendation.

HTML Version History
Here is a quick look at HTML’s bumpy history.

Chapter 10, Understanding the Standards 167

Meanwhile, a formal HTML standard was being discussed by the internation-

al academic community, but it lagged behind commercial development, and

Netscape and Microsoft weren’t waiting for it. Finally, the newly-formed W3C

put a stake in the ground and released its first Recommendation, HTML 3.2,

in 1996. HTML 3.2 documented the current state of HTML markup, includ-

ing many of the popular presentational elements and attributes introduced

by the browser developers and gobbled up by site designers. The integrity of

HTML had been compromised, and we’re still cleaning up the mess.

...and back on track

HTML 4.0 and 4.01 (the slight revision that superseded it in 1999) set out

to rectify the situation by emphasizing the separation of presentation from

content. All matters of presentation were handed off to the newly developed

Cascading Style Sheets (CSS) standard. The other major advances in HTML

4.0 and 4.01 were a number of accessibility and internationalization features

that aimed to make the Web available to everyone. HTML 4.01 is the most

current version of HTML. (We’ll get to its prim and proper identical cousin,

XHTML, in a moment.)

It would be nice if we could just end there and say, “so use HTML 4.01,” but

it’s not so simple. There are actually three versions of HTML 4.01 to be aware

of: Transitional, Strict, and Frameset. Let’s look at what they are and how

they differ.

HTML in three flavors

The authors of the HTML 4.01 Recommendation had a dilemma on their

hands. They had a vision of how HTML should work, given the standardiza-

tion of style sheets and scripting languages. Unfortunately, the practical fact

was, by that time, millions of web pages had been written in legacy HTML.

They could not enforce a radical change to the standard overnight.To address

this problem, they created several versions of HTML.

Transitional

The “Transitional” version includes most of the presentational extensions to

HTML that were in common use. This option was made available to ease web

authors as well as browser and tools developers out of their old habits. The

presentational elements (like center) and attributes (like bgcolor and align)

were marked as deprecated, indicating that they would be removed from

future versions of HTML. The HTML 4.01 Recommendation urges the web

community to avoid using deprecated elements and attributes. Now that CSS

is well supported by virtually all browsers, that is finally easy to do.

N OT E

To see an itemized list of the chang-
es made between the HTML 3.2 and
HTML 4.0, as well as between HTML 4.0
and 4.01, see this page on the W3C site:
www.w3.org/TR/REC-html40/appen-
dix/changes.html#h-A.1.1.14.

N OT E

To see an itemized list of the chang-
es made between the HTML 3.2 and
HTML 4.0, as well as between HTML 4.0
and 4.01, see this page on the W3C site:
www.w3.org/TR/REC-html40/appen-
dix/changes.html#h-A.1.1.14.

Everything You've Wanted to Know About HTML But Were Afraid to Ask

Part II: HTML Markup for Structure168

Enter XHTML

Strict

At the same time, the W3C created a “Strict” version of HTML 4.01 that omits

all of the deprecated elements and gets HTML into the state they ultimately

wanted it to be in.

Frameset

The third version of HTML is the “Frameset” version, which describes the

content of framed documents. Frames make it possible to divide the browser

into multiple windows, each displaying a different HTML document. Frames

are constructed with a frameset document that defines the frame structure

and the content of each frame. Frameset documents are fundamentally dif-

ferent from other HTML documents because they use the frameset element

instead of body. This technicality earned them their own HTML specifica-

tion.

N OT E

Due to serious usability and accessibility issues, frames are rarely used in contempo-
rary web design, and therefore are not included in this beginners book. You can find
them documented in my other book, Web Design in a Nutshell (O’Reilly Media), and
other comprehensive web design how-to books. A PDF copy of the Frames chapter
from the second edition of this book is available at learningwebdesign.com.

Meet the DTDs

Now you know that HTML has three versions, but let’s talk about it in a

slightly more technical way, using some terminology that will come in handy

later.

When you create a markup language such as HTML, it is useful to document

it in a Document Type Definition, or simply DTD, particularly if large groups

of people will be using that language. A DTD defines all of the elements and

attributes in the language, as well as the rules for using them.

What the W3C actually did was write three slightly different DTDs for

HTML 4.01: the Transitional DTD, Strict DTD, and Frameset DTD.

DTDs are dense documents with a syntax that takes a while to learn to read.

Luckily, you probably will never need to. But just to give you an idea, Figure

10-1 shows a small snippet of the HTML 4.01 DTD that defines the p and

h1–h6 elements and their available attributes. If you are the curious type, you

can take a peek at the full Strict DTD here: www.w3.org/TR/html4/strict.dtd.

Don’t worry about understanding exactly what everything means; it is suf-

ficient to know that there are three HTML 4.01 DTDs.

That’s where the development of HTML stopped, but the story doesn’t end

there....

HTML 5?
A group of developers are working
on a new version of HTML that
would be better suited for the
computer-program-like applications
that are changing the way we use
the Web. The Web Applications 1.0
specification (also dubbed “HTML 5”)
is still in early development as of this
writing. To track its progress, check
in on the Web Hypertext Application
Technology Working Group’s site at
www.whatwg.org.

HTML 5?
A group of developers are working
on a new version of HTML that
would be better suited for the
computer-program-like applications
that are changing the way we use
the Web. The Web Applications 1.0
specification (also dubbed “HTML 5”)
is still in early development as of this
writing. To track its progress, check
in on the Web Hypertext Application
Technology Working Group’s site at
www.whatwg.org.

Enter XHTML

Chapter 10, Understanding the Standards 169

<!--=================== Paragraphs =============================-->

<!ELEMENT P - O (%inline;)* -- paragraph -->
<!ATTLIST P
 %attrs; -- %coreattrs, %i18n, %events --
 >

<!--=================== Headings ===============================-->

<!--
 There are six levels of headings from H1 (the most important)
 to H6 (the least important).
-->

<!ELEMENT (%heading;) - - (%inline;)* -- heading -->
<!ATTLIST (%heading;)
 %attrs; -- %coreattrs, %i18n, %events --
 >

Figure 10-1. An excerpt from the HTML 4.01 Strict DTD that defines paragraph and
heading elements.

Enter XHTML
Meanwhile... at the XML ranch...

As the Web grew in popularity, it was clear that there was a need and desire

to share all sorts of information: chemical notation, mathematical equations,

multimedia presentations, financial information, and so on ad infinitum. As

we’ve seen, HTML is fairly limited in the types of content it can describe, so it

wasn’t going to cut it alone. There needed to be a way to create more special-

ized markup languages.

The W3C took another look at SGML but ultimately decided it was too vast

and powerful for the job. Instead, they took a subset of its rules and created

XML (eXtensible Markup Language), a metalanguage for creating markup

languages for information and data shared over the Web or other networks.

With XML, authors can create custom markup languages that suit any sort of

information (see the XML on the Web sidebar for some examples). It is even

possible for a single document to use several XML-based markup languages.

It should be evident that with all those custom element and attribute names,

the markup must be authored very carefully to rule out potential confusion.

Browsers may know what to do if a p element is missing its closing tag, but

what should it do with that unclosed recipe element? Thus, the rules for

marking up XML documents are much more strict than those for HTML.

Rewriting HTML

W3C had a vision of an XML-based Web with many specialized markup

languages working together. The first thing they needed to do was rewrite

HTML, the cornerstone of the Web, according to the stricter rules of XML so

that it could play well with others. And that’s exactly what they did.

XML on the Web
XML has proven itself to be such
a powerful language for handling
information and data that there is
more XML used outside the Web
than on it. However, there are several
XML languages for the Web that
are well-established (although not
necessarily in widespread use).

RSS (Really Simple
Syndication or RDF Site
Summary)

RSS is used for syndicating web
content so that it can be shared
and read as a data feed by RSS feed
readers. The language provides
metadata about the content (such
as its headline, author, description,
an originating site). RSS has become
extremely popular because it is built
into the functionality of many blog
publishing systems.

SVG (Scalable Vector
Graphics)

This is a markup language for
describing two-dimensional
graphics, including vector paths,
images, and text. Currently, you must
install an SVG Viewer to view SVG
graphics.

SMIL (Synchronized
Multimedia Integration
Language)

This XML language is used to
describe the content and timing of
multimedia presentations that can
combine video, audio, images, and
text.

MathML (Mathematical
Markup Language)

MathML is used to describe
mathematical notation capturing
both its structure and content so it
can be served and processed on the
Web.

XML on the Web
XML has proven itself to be such
a powerful language for handling
information and data that there is
more XML used outside the Web
than on it. However, there are several
XML languages for the Web that
are well-established (although not
necessarily in widespread use).

RSS (Really Simple
Syndication or RDF Site
Summary)

RSS is used for syndicating web
content so that it can be shared
and read as a data feed by RSS feed
readers. The language provides
metadata about the content (such
as its headline, author, description,
an originating site). RSS has become
extremely popular because it is built
into the functionality of many blog
publishing systems.

SVG (Scalable Vector
Graphics)

This is a markup language for
describing two-dimensional
graphics, including vector paths,
images, and text. Currently, you must
install an SVG Viewer to view SVG
graphics.

SMIL (Synchronized
Multimedia Integration
Language)

This XML language is used to
describe the content and timing of
multimedia presentations that can
combine video, audio, images, and
text.

MathML (Mathematical
Markup Language)

MathML is used to describe
mathematical notation capturing
both its structure and content so it
can be served and processed on the
Web.

Part II: HTML Markup for Structure170

Enter XHTML

The result is XHTML. The “X” stands for “eXtensible” and it indicates its con-

nection to XML. The first version, XHTML 1.0, is nearly identical to HTML

4.01. It shares the same elements and attributes; there are even three DTDs

(Transitional, Strict, and Frameset). It was also written with features that

make it backward compatible with HTML and HTML browsers.

XHTML Syntax

What makes XHTML documents different is that because XHTML is an

XML language, correct syntax is critical. Elements must be closed and prop-

erly nested... attributes must be in quotation marks... all in the interest of

eliminating confusion. Documents with correct XML syntax are said to be

well-formed.

N OT E

In addition to stricter syntax rules, XHTML adds other XML-specific features and
rules that weren’t necessary in HTML 4.01.

The following is a checklist of the requirements of XHTML documents. If

none of these seem particularly shocking, it’s because the examples in this

book have been following XHTML syntax all along. However, if you have

prior experience with HTML or view the source of web pages written in lax

HTML, there are some significant differences.

XHTML 1.0 is the first in a growing family of XHTML document
types that have been released or are being developed by
the W3C. A brief introduction to each follows. For up-to-date
information, visit www.w3.org/MarkUp.

XHTML 1.1

You can think of this as a stricter version of XHTML 1.0 Strict.
It is the first version of XHTML to be liberated from legacy
HTML by eliminating all elements and attributes that control
presentation. XHTML 1.1 documents also must identify
themselves as XML applications, not as HTML (as XHTML 1.0
documents may do). Unfortunately, not all browsers support
XHTML 1.1 documents, which is why developers opt for XHTML
1.0 as of this writing.

Modularization of XHTML

This Recommendation breaks the XHTML language into task-
specific modules (sets of elements that handle one aspect or
type of object in a document).

XHTML Basic

This is a stripped down version of XHTML that includes just
the elements that are appropriate to microbrowsers used in
handheld devices.

XHTML 2.0

XHTML 2.0 is a rethinking of HTML that includes new elements
and new ways of doing things in order to be purely semantic
and highly accessible. It is being developed and is a Working
Draft as of this writing, and therefore is not in common use.
However, because it is an XML language, it is supported by
browsers that support XML. To learn more about it, see www.
w3.org/TR/xhtml2 (the Introduction section is particularly
helpful).

Beyond XHTML 1.0

XHTML 1.0 is the first in a growing family of XHTML document
types that have been released or are being developed by
the W3C. A brief introduction to each follows. For up-to-date
information, visit www.w3.org/MarkUp.

XHTML 1.1

You can think of this as a stricter version of XHTML 1.0 Strict.
It is the first version of XHTML to be liberated from legacy
HTML by eliminating all elements and attributes that control
presentation. XHTML 1.1 documents also must identify
themselves as XML applications, not as HTML (as XHTML 1.0
documents may do). Unfortunately, not all browsers support
XHTML 1.1 documents, which is why developers opt for XHTML
1.0 as of this writing.

Modularization of XHTML

This Recommendation breaks the XHTML language into task-
specific modules (sets of elements that handle one aspect or
type of object in a document).

XHTML Basic

This is a stripped down version of XHTML that includes just
the elements that are appropriate to microbrowsers used in
handheld devices.

XHTML 2.0

XHTML 2.0 is a rethinking of HTML that includes new elements
and new ways of doing things in order to be purely semantic
and highly accessible. It is being developed and is a Working
Draft as of this writing, and therefore is not in common use.
However, because it is an XML language, it is supported by
browsers that support XML. To learn more about it, see www.
w3.org/TR/xhtml2 (the Introduction section is particularly
helpful).

Beyond XHTML 1.0

Enter XHTML

Chapter 10, Understanding the Standards 171

Element and attribute names must be lowercase.

 In HTML, element and attribute names are not case-sensitive, which

means that you could write , , or and it’s all the same.

Not so in XML. When XHTML was written, all element and attribute

names were defined as lowercase. Attribute values do not need to be low-

ercase, except in cases where a predefined list of values is provided for the

attribute.

All elements must be closed (terminated).

 Although it is okay to omit the closing tag of certain HTML elements (p

and li, for example), in XHTML, every element must be closed (or ter-

minated, to use the proper term).

Empty elements must be terminated too.

 This termination rule extends to empty elements as well. To do this, sim-

ply add a slash before the closing bracket, indicating the element’s ending.

In XHTML, a line break is entered as
. Some browsers have a prob-

lem with this syntax, so to keep your XHTML digestible to all browsers,

add a space before the slash (
) and the terminated empty element

will slide right through.

Attribute values must be in quotation marks.

 In XHTML, all attribute values must be contained in quotation marks

(in HTML, certain attribute values could get away without them). Single

or double quotation marks are acceptable as long as they are used con-

sistently. Furthermore, there should be no extra white space (character

spaces or line returns) before or after the attribute value inside the quota-

tion marks.

All attributes must have explicit attribute values.

 XML (and therefore XHTML) does not support attribute minimization,

the SGML practice in which certain attributes can be reduced to just the

attribute value. So, while in HTML you can write checked to indicate that

a form button be checked when the form loads, in XHTML you need to

explicitly write out checked="checked".

Elements must be nested properly.

 Although it has always been a rule in HTML that elements should be

properly nested, in XHTML the rule is strictly enforced. Be sure that the

closing tag of a contained element appears before the closing tag of the

element that contains it. This will be more clear with an example. Be sure

to do this:

 <p>I can fly</p>

 and not this:

 <p>I can fly</p>.

Part II: HTML Markup for Structure172

Enter XHTML

Always use character entities for special characters.

 All special characters (<, >, and & for example) must be represented in

XHTML documents by their character entities (see Chapter 5, Marking

Up Text for an explanation of entities). Character entities are required in

attribute values and document titles as well. For example, in the attribute

value “Crocco & Lynch” must be written this way in XHTML:

Use id instead of name as an identifier.

 In XHTML, the id attribute replaces the name attribute when used as an

identifier (such as when creating a document fragment). In fact, the name

attribute has been deprecated on all elements except form controls, in

which case it has a special and distinct function of naming data variables.

Unfortunately, older browsers such as Netscape 4 do not support this

use of id. If your pages absolutely must work for Netscape 4, you’ll need

to use both name and id, and live with the XHTML error. This should

become a non-issue as older browsers finally fade away entirely.

Scripts must be contained in a CDATA section.

 We won’t talk much about scripting in this book, but I’ll include this

XHTML syntax rule here for the sake of being thorough. In XHTML, you

need to put scripts in a CDATA section so they will be treated as simple

text characters and not parsed as XML markup. Here is an example of the

syntax:

 <script type="type/javascript">
 // <![CDATA[
 ... JavaScript goes here...
 //]]>
 </script>

Follow additional nesting restrictions.

 In HTML, there are some basic nesting restrictions (for example, don’t put

a p inside another p or put a block-level element in an inline element).

XHTML adds a few more nesting restrictions:

a must not contain other a elements.

pre must not contain the img, object, big, small, sub, or sup elements.

button must not contain the input, select, textarea, label, button, form,

fieldset, iframe or isindex elements.

label must not contain other label elements..

form must not contain other form elements

•

•

•

•

•

CDATA
CDATA, short for “character data,”
is one of the basic data types you
can provide in an XML document.
Most elements and many attributes
in (X)HTML are defined in the DTDs
as containing CDATA. Browsers
interpret the sequence of characters
in CDATA in a manner that should be
familiar:

Character entities are replaced
with characters

Line wraps are ignored

Carriage returns, tabs, and
multiple consecutive character
spaces are reduced to a single
character space

When CDATA is identified in the
style and script elements,
however, it is treated a little
differently. Instead of being parsed,
it is passed along to the application
as is.

Data types, also called tokens, have
their origin in SGML. Other data
types include PCDATA (parsed
character data), ID and NAME tokens
(restricted to beginning with a
letter), and NUMBER (must contain
one digit 0–9).






CDATA
CDATA, short for “character data,”
is one of the basic data types you
can provide in an XML document.
Most elements and many attributes
in (X)HTML are defined in the DTDs
as containing CDATA. Browsers
interpret the sequence of characters
in CDATA in a manner that should be
familiar:

Character entities are replaced
with characters

Line wraps are ignored

Carriage returns, tabs, and
multiple consecutive character
spaces are reduced to a single
character space

When CDATA is identified in the
style and script elements,
however, it is treated a little
differently. Instead of being parsed,
it is passed along to the application
as is.

Data types, also called tokens, have
their origin in SGML. Other data
types include PCDATA (parsed
character data), ID and NAME tokens
(restricted to beginning with a
letter), and NUMBER (must contain
one digit 0–9).






Enter XHTML

Chapter 10, Understanding the Standards 173

Namespace and language requirements

In addition to the rules listed above, because XHTML is an XML language,

there are a few required attributes for the html root element that are not used in

HTML. The html element for XHTML documents must be written like this:

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">

The xmlns attribute stands for XML namespace. A namespace is a conven-

tion established in XML to identify the language (also called a vocabulary)

used by a document or element. Because XML allows several languages to be

used in a document, there is the potential for overlap in element names. For

example, how is an XML parser to know whether the a element is an XHTML

anchor or an “answer” from some hypothetical XML language used for test-

ing? With XML namespaces, you can make your intention clear. In XHTML

documents, you must identify the xmlns as XHTML using the unique identi-

fier for XHTML, as shown.

The lang and xml:lang attributes are two ways of specifying the language of

the document. The value is a standardized two- or three-letter language code.

Chances are if you are reading this book, you will be authoring documents

in English (en). For a complete list of language codes, see www.loc.gov/stan-

dards/iso639-2/langcodes.html.

This is a good time to put some of this book-learning to use. Exercise 10-1

gives you a chance to convert an HTML document to XHTML.

Using the guidelines in the previous section, convert this
perfectly correct HTML markup to XHTML 1.0. In the end, you
will need to make six syntax changes to make the conversion
complete. The changes and resulting markup are provided in
Appendix A.

<HTML>

<HEAD>
<TITLE>Popcorn & Butter</TITLE>
</HEAD>

<BODY>
<H1>Hot Buttered Popcorn</H1>

<P><IMG SRC="popcorn.jpg" ALT="bowl of
popcorn" WIDTH=250 HEIGHT=125></P>

<H2>Ingredients</H2>

 popcorn
 butter
 salt

<H2>Instructions</H2>

<P>Pop the popcorn. Meanwhile, melt the
butter. Transfer the popped popcorn into
a bowl, drizzle with melted butter, and
sprinkle salt to taste.

</BODY>
</HTML>

exercise 10-1 | Defining text elements

Using the guidelines in the previous section, convert this
perfectly correct HTML markup to XHTML 1.0. In the end, you
will need to make six syntax changes to make the conversion
complete. The changes and resulting markup are provided in
Appendix A.

<HTML>

<HEAD>
<TITLE>Popcorn & Butter</TITLE>
</HEAD>

<BODY>
<H1>Hot Buttered Popcorn</H1>

<P><IMG SRC="popcorn.jpg" ALT="bowl of
popcorn" WIDTH=250 HEIGHT=125></P>

<H2>Ingredients</H2>

 popcorn
 butter
 salt

<H2>Instructions</H2>

<P>Pop the popcorn. Meanwhile, melt the
butter. Transfer the popped popcorn into
a bowl, drizzle with melted butter, and
sprinkle salt to taste.

</BODY>
</HTML>

exercise 10-1 | Defining text elements

Part II: HTML Markup for Structure174

From the Browser’s Point of View

From the Browser’s Point of View
The W3C was not the only one dealing with the logistics of moving to a prop-

er (X)HTML standard. The browser developers also had a difficult choice at

hand: get rigorous about standards conformance and break millions of exist-

ing web pages or maintain the status quo.

The solution was to do both. Standards compliant browsers now operate

in two modes. “Standards” mode follows the rules as written in the HTML

4.01 and XHTML DTDs. The other mode, known as “Quirks” mode, is more

like the way browsers have always behaved, forgiving legacy and even sloppy

markup.

The problem with Quirks mode is that it is unpredictable. Browsers have dif-

ferent ways of handling non-standard (see note) and incorrect markup, which

may be okay for a personal site but is certainly unacceptable for professional

web sites. By contrast, when you write standards-compliant documents and

tell the browser to display it in Standards mode, you have a much better idea

of what your users will be getting.

So how do you tell the browser to use Standards mode? I’m glad you asked.

Declaring the Document Type
If you’ve made the effort to write a standards compliant document, it makes

sense that you’d want it displayed in the browser’s Standards mode. To do this,

simply tell the browser what type of (X)HTML document it is by identifying

the (X)HTML version (that is, the DTD) that you followed in a document

type (DOCTYPE) declaration at the beginning of the document.

The fact is that (X)HTML documents were always required to start with a

DOCTYPE declaration in order to be valid (we’ll talk more about validation

in a moment). It’s really only incidental that the presence of a valid DOCTYPE

declaration is now being used to trigger Standards mode in browsers (see the

sidebar, DOCTYPE Switching). In the years of fast and loose HTML author-

ing, the declaration was commonly omitted. Now, however, professional

developers include a valid DOCTYPE declaration in every document.

This is an example of a DOCTYPE declaration that indicates the docu-

ment has been written according to the rules of the HTML 4.01 Strict DTD.

DOCTYPE declarations must appear before the opening <html> tag.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/HTML4.01/strict.dtd">
<html>
...document continues...

Let’s pick it apart and see what it’s made of. The <! at the beginning tells the

browser that what follows is a declaration, not an HTML element, and that

what is being declared is the document type (DOCTYPE) for a document with

N OT E

By non-standard markup, I am referring
to the elements and attributes that were
introduced by browser developers and
are still in common use, but that did
not make it into the official HTML or
XHTML Recommendation. Many non-
standard elements and attributes are still
supported by current browser versions in
Quirks mode (however, they may still be
browser-specific).

N OT E

By non-standard markup, I am referring
to the elements and attributes that were
introduced by browser developers and
are still in common use, but that did
not make it into the official HTML or
XHTML Recommendation. Many non-
standard elements and attributes are still
supported by current browser versions in
Quirks mode (however, they may still be
browser-specific).

DOCTYPE Switching
When building Internet Explorer 5
for the Macintosh, lead engineer
Tantek Çelik invented and coded
a stop-gap solution that served
two communities of authors:
those writing standards-compliant
documents and those who were
authoring based on familiar browser
behaviors.

The method now known as
DOCTYPE switching uses the
inclusion and content of a valid
DOCTYPE declaration to toggle the
rendering mode of certain browsers.
If the browser detects a correct
declaration, it figures the author
must know what they’re doing and
expect their page to be rendered
according to the rules of the
standards.

If no declaration or an invalid
declaration is found, the browser
reverts back to Quirks mode,
allowing nonstandard markup, hacks,
minor errors, and workarounds that
were common in legacy authoring
practices.

DOCTYPE Switching
When building Internet Explorer 5
for the Macintosh, lead engineer
Tantek Çelik invented and coded
a stop-gap solution that served
two communities of authors:
those writing standards-compliant
documents and those who were
authoring based on familiar browser
behaviors.

The method now known as
DOCTYPE switching uses the
inclusion and content of a valid
DOCTYPE declaration to toggle the
rendering mode of certain browsers.
If the browser detects a correct
declaration, it figures the author
must know what they’re doing and
expect their page to be rendered
according to the rules of the
standards.

If no declaration or an invalid
declaration is found, the browser
reverts back to Quirks mode,
allowing nonstandard markup, hacks,
minor errors, and workarounds that
were common in legacy authoring
practices.

Declaring the Document Type

Chapter 10, Understanding the Standards 175

HTML as its root element. The next string of characters, PUBLIC "-//W3C//DTD

HTML 4.01//EN" is what’s called a public identifier, which is basically a

unique way of identifying a particular DTD. Finally, there is a URL for the

Strict DTD that serves as an alternate unique identifier for browsers that don’t

understand the other method.

Available DOCTYPE declarations

The good news is that you don’t really need to remember how to write that all

out. “Copy-and-paste” is the way to go when it comes to adding DOCTYPE

declarations to your documents, or, if you are using an up-to-date web

authoring program, one will be inserted for you automatically. You can find

the whole list at the W3C site at www.w3.org/QA/2002/04/valid-dtd-list.html.

I’ve also included a text document containing these declarations in the mate-

rials for this chapter at www.learningwebdesign.com/materials.

The most commonly used DTDs are also presented here as a reference.

HTML DTDs

Strict

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">

Transitional

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">

Frameset

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN"
 "http://www.w3.org/TR/html4/frameset.dtd">

XHTML 1.0 DTDs

Strict

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

Transitional

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

Frameset

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">

Part II: HTML Markup for Structure176

Which One Should You Use?

Which One Should You Use?
With so many DTDs to choose from, it may seem daunting to choose the best

one. Here are some guidelines to help you.

Transitional or strict

If you are learning markup for the first time, there is no reason to learn legacy

HTML practices or use deprecated attributes, so you’re well on the way to

compliance with one of the Strict DTD versions.

However, if you inherit a site that has already been heavily marked up using

deprecated elements and attributes, and you don’t have time or resources to

rewrite the source, then a Transitional DTD may be the appropriate choice.

HTML or XHTML

Whether to use HTML or XHTML is a more subtle issue. XHTML offers a

number of benefits, some of which leverage the power of XML:

It is future-proof, which means that it will be compatible with the web

technologies and browsers that are on the horizon. XHTML is the way of

the future, but because it is backward compatible, you can start using it

right away.

Its stricter syntax requirements make it easier for screen readers and other

assistive devices to handle.

Stricter markup rules such as closing all elements makes style sheet appli-

cation cleaner and more predictable.

Many mobile devices such as cell phones and PDAs are adopting XHTML

as the authoring standard, so your pages will work better on those

devices.

It can be combined with other XML languages in a single document.

As an XML language, it can be parsed and used by any XML software.

You can take information and data from XML applications and port it

into XHTML more easily. To use the proper term, XML data can be easily

transformed into XHTML.

While it is true that the future of web markup will be based on XHTML,

HTML is certainly not dead. It remains a viable option, and is universally

supported by current browsers. If none of the benefits listed above sound like

a compelling reason to take on XHTML, HTML is still okay.

However, because you are learning this stuff for the first time, and because the

differences between XHTML and HTML are really quite minor, you might

as well learn to write in the stricter XHTML syntax right off the bat, then

you’ll be one step ahead of the game. Writing well-formed XHTML is even

•

•

•

•

•

•

•

Validating Your Documents

Chapter 10, Understanding the Standards 177

easier if you are using a web authoring tool such as Adobe (Macromedia)

Dreamweaver or Microsoft Expression Web because you can configure it to

write code in XHTML automatically—just be sure you have the latest version

of the software so it is up to speed with the latest requirements.

What the pros do

For professional-caliber web site production, most web developers follow the

XHTML 1.0 Strict DTD. Doing so makes sure that the markup is semantic

and does not use any of the deprecated and presentational elements and

attributes (style sheets are used instead, as is the proper practice). It also has

all of the benefits of XHTML that were just listed. This isn’t to say that you

have to make all of your web sites XHTML Strict too, but I thought you might

like to know.

Validating Your Documents
The other thing that professional web developers do is validate their markup.

What does that mean? To validate a document is to check your markup to

make sure that you have abided by all the rules of whatever DTD you are

using. Documents that are error-free are said to be valid. It is strongly recom-

mended that you validate your documents, especially for professional sites.

Valid documents are more consistent on a variety of browsers, they display

more quickly, and are more accessible.

Right now, browsers don’t require documents to be valid (in other words,

they’ll do their best to display them, errors and all), but any time you stray

from the standard you introduce unpredictability in the way the page is dis-

played or handled by alternative devices. Furthermore, one day there will be

strict XHTML browsers that will require valid and well-formed documents.

So how do you make sure your document is valid? You could check it yourself

or ask a friend, but humans make mistakes, and you aren’t really expected to

memorize every minute rule in the specifications. Instead, you use a valida-

tor, software that checks your source against the DTD you specify. These are

some of the things validators check for:

The inclusion of a DOCTYPE declaration. Without it the validator

doesn’t know which version of HTML or XHTML to validate against.

An indication of the character encoding for the document (character

encoding is covered in the next section).

The inclusion of required rules and attributes.

Non-standard elements.

Mismatched tags.

•

•

•

•

•

Validation Tools
Developers use a number of helpful
tools for checking and correcting
errors in (X)HTML documents. These
are a few of the most popular.

HTML Tidy

 HTML Tidy, by Dave Raggett,
checks (X)HTML documents for
errors and corrects them. There
is an online version available
at infohound.net/tidy. Find out
about downloadable versions
of HTML Tidy at www.w3.org/
People/Raggett/tidy and tidy.
sourceforge.net.

Firebug

 Firebug is a popular plug-in to
the Firefox browser that debugs
(X)HTML, CSS, and JavaScript,
among many other features. It is
available as a free download at
addons.mozilla.org/firefox/1843.

Validation Tools
Developers use a number of helpful
tools for checking and correcting
errors in (X)HTML documents. These
are a few of the most popular.

HTML Tidy

 HTML Tidy, by Dave Raggett,
checks (X)HTML documents for
errors and corrects them. There
is an online version available
at infohound.net/tidy. Find out
about downloadable versions
of HTML Tidy at www.w3.org/
People/Raggett/tidy and tidy.
sourceforge.net.

Firebug

 Firebug is a popular plug-in to
the Firefox browser that debugs
(X)HTML, CSS, and JavaScript,
among many other features. It is
available as a free download at
addons.mozilla.org/firefox/1843.

Part II: HTML Markup for Structure178

Validating Your Documents

Nesting errors.

DTD rule violations.

Typos, and other minor errors.

The W3C offers a free online validator at validator.w3.org. Figure 10-2 shows

the W3C Markup Validation Service as it appeared as of this writing (they

are known to make tweaks and improvements). There are three options for

checking a page: enter the URL of a page on the Web, upload a file from your

computer, or just paste the source into a text area on the page. The best way

to get a feel for how the validation process works is to try it yourself. Give it

a go in Exercise 10-2.

•

•

•

Figure 10-2. The W3C’s Markup
Validation Service.
Figure 10-2. The W3C’s Markup
Validation Service.

exercise 10-2 | Validating a document

In this exercise, you’ll validate some documents using the W3C validation service. The
documents in this exercise are provided for you online at www.learningwebdesign.
com/materials.

Start by validating the document blackgoose.html (it should look familiar because it
was the basis of the examples in Chapter 4, Creating a Simple Page). I’ve included a
DOCTYPE declaration that instructs the validator to validate the document against
the HTML 4.01 Strict DTD. I’ve also purposefully introduced a few errors to the
document. Knowing what the errors are in advance will give you a better feel for how
the validator finds and reports errors.

The required title element is missing in the head element.

The img element is missing the required alt attribute. Note also that the img
element uses HTML syntax, that is, it does not have a trailing slash.

The p elements are not closed.

OK, let’s get validating!

Make sure you have a copy of blackgoose.html on your hard drive. Open a
browser and go to validator.w3.org. We’ll use the “Validate by File Upload” option.
Select “Browse” and navigate to blackgoose.html. Once you’ve selected it, click the
“Check” button on the validator page.

The validator immediately hands back the results (Figure 10-3). It should come
as no surprise that “this page is not HTML 1.0 Strict. ”There are apparently three
things that prevent it from being so.

First, although it is not listed as an error, it complains that it could not find the
Character Encoding. We’ll talk about character encodings in the next section, so
let’s not worry about that one for now.

The first real error listed is that the head element is “not finished.” If you look at the
source, you can see that there is indeed a closing </head> tag there, so that isn’t
the issue. The problem here (as hinted in the second paragraph under the error
listing) is that the element is missing required content. In this case, it’s the missing
title element that is generating the error. This is a good example of the fact that
validation error messages can be a bit cryptic, but at least it points you to the line
of code that is amiss so you can start troubleshooting.

The second error, as expected, is the missing alt attribute in the img element.






1.

2.

Validating Your Documents

Chapter 10, Understanding the Standards 179

Try adding a title element and alt attribute, save the file, and validate it again.
This time it should “tentatively” pass. It still doesn’t like that missing character
encoding, but we know we can take care of that later.

Figure 10-3. The error report generated by the W3C validator.

Now let’s validate another document, x-blackgoose.html. It is identical to the
blackgoose.html that we just validated, except it specifies the XHTML 1.0 Strict
DTD in its DOCTYPE declaration. This will give us a chance to see how the rules for
XHTML differ from HTML.

Go to validator.w3.org and upload x-blackgoose.html. It is not valid, of course,
and there is still that character encoding problem. But look at the new list of
errors—there are 14 compared to only two when we validated it as HTML. I’m not
going to show them all in a figure, but I will call your attention to a few key issues.

First, look at Error 3, “Line 27 column 30: end tag for “img” omitted.” The problem
here is that although img is an empty element, it must be terminated with a
closing slash in XHTML ().

Now look at Error 5 that states something to the effect that you aren’t allowed to
use an h2 in this context. It’s saying that because it thinks you are trying to put an
h2 inside an unclosed img element, which doesn’t make any sense.

The lesson here is that one error early in the document can generate a whole
list of errors down the line. It is a good idea to make obvious changes, and then
revalidate to see the impact of the correction.

Try fixing the img element by adding the alt attribute and the trailing slash, then
reupload the document and check it. There will still be a long list of errors, but
now they are related to the p elements not being closed. Continue fixing errors
until you get the document to be “tentatively” validated.

Now it’s time to take care of the character encoding so we can get a true sense of
accomplishment by having our documents validate completely.

3.

4.

5.

Part II: HTML Markup for Structure180

Character Encoding

Character Encoding
Before I show you how to specify the character encoding for your documents,

I think it is useful to know what a character encoding is.

Because the Web is worldwide, there are hundreds of written languages

with a staggering number of unique character shapes that may need to

be displayed on a web page. These include not only the various alphabets

(Western, Hebrew, Arabic, and so on), but also ideographs (characters that

indicate a whole word or concept) for languages such as Chinese, Japanese,

and Korean.

Various sets of characters have been standardized for use on computers and

over networks. For example, the set of 256 characters most commonly used

in Western languages has been standardized and named Latin-1 (or ISO 8859-

1, to use its formal identifier). Latin-1 was the character encoding used for

HTML 2.0 and 3.0, and you can still use it for documents today.

Unicode

The big kahuna of character sets, however, is Unicode (ISO/IEC 10646),

which includes the characters for most known languages of the world. There

are tens of thousands of characters in Unicode, and room in the specification

for roughly a million. The Unicode character set may be encoded (converted

to ones and zeros) several ways, the most popular being the UTF-8 encoding.

You may also see UTF-16 or UTF-32, which use different numbers of bytes

to describe characters.

UTF-8 is the recommended encoding for all HTML 4.01, XHTML, and XML

documents. You may remember seeing “Falling back to UTF-8” in the error

message in the validator results Now you know that it was just assuming you

wanted to use the default character encoding of Unicode for your document

type.

Specifying the character encoding

There are several ways to associate a character encoding with a document.

One way is to ask your server administrator to configure the server to include

the character encoding in the HTTP header, a chunk of information that a

server attaches to every web document before returning it to the browser.

However, because this information can be separated from the document

content, the W3C also recommends that you include the character encoding

in the document itself.

In HTML 4.01 and XHTML 1.0 documents, character encoding is indicated

using a meta element (see the sidebar, XML Declarations for the method

for XML documents). The meta element is an empty element that provides

information about the document, such as its creation date, author, copyright

N OT E

Other specialized character encodings
include ISO 8859-5 (Cyrillic), ISO 8859-
6 (Arabic), ISO 8859-7 (Greek), ISO
8859-8 (Hebrew), and three Japanese
encodings (ISO-2022-JP, SHIFT_JIS, and
EUC-JP).

N OT E

Other specialized character encodings
include ISO 8859-5 (Cyrillic), ISO 8859-
6 (Arabic), ISO 8859-7 (Greek), ISO
8859-8 (Hebrew), and three Japanese
encodings (ISO-2022-JP, SHIFT_JIS, and
EUC-JP).

XML Declarations
The character encoding for XML
documents should be provided in an
XML declaration. XML declarations
indicate the version of XML used in
the document and may also include
the character encoding.

The following is an example of
the XML declaration that the W3C
recommends for XHTML documents.
It must appear before the DOCTYPE
declaration.

<?xml version="1.0"
encoding="utf-8"?>

XML declarations are not required
for all XML documents, but the
W3C encourages authors to include
them in XHTML documents. They
are required when the character
encoding is something other than
the defaults UTF-8 or UTF-16.

Unfortunately, despite the W3C’s
encouragement, XML declarations
are usually omitted because they
are problematic for current HTML
browsers.

XML Declarations
The character encoding for XML
documents should be provided in an
XML declaration. XML declarations
indicate the version of XML used in
the document and may also include
the character encoding.

The following is an example of
the XML declaration that the W3C
recommends for XHTML documents.
It must appear before the DOCTYPE
declaration.

<?xml version="1.0"
encoding="utf-8"?>

XML declarations are not required
for all XML documents, but the
W3C encourages authors to include
them in XHTML documents. They
are required when the character
encoding is something other than
the defaults UTF-8 or UTF-16.

Unfortunately, despite the W3C’s
encouragement, XML declarations
are usually omitted because they
are problematic for current HTML
browsers.

Putting It All Together

Chapter 10, Understanding the Standards 181

information, and, as we’ll focus on in this section, the character encoding and

the type of file.

The meta element goes in the head of the document, as shown in this XHTML

example (note the trailing slash in the empty meta element):

<head>
 <meta http-equiv="content-type" content="text/html;charset=utf-8" />
 <title>Sample document</title>
</head>

The http-equiv attribute identifies that this meta element is providing infor-

mation about the content type of the document.

The content attribute provides the details of the content type in a two-part

value. The first part says that this is an HTML text file (in technical terms, it

identifies its media type as text/html). But wait, didn’t we just say that this

is in an XHTML document? That’s fine. XHTML 1.0 documents can mas-

querade as HTML text documents for reasons of backward compatibility

(XHTML 1.1 documents, however, must be identified as application/xml, and

unfortunately, browsers don’t support that well quite yet).

Finally, we get to the second part that specifies the character encoding for this

document as utf-8.

For another look, here is a meta element for an (X)HTML document that uses

the Latin-1 character encoding. Try it out yourself in Exercise 10-3.

<meta http-equiv="content-type" content="text/html;charset=ISO-8859-1">

Putting It All Together
Okay! We’ve covered a lot of ground in this chapter in the effort to kick your

documents up a notch into true standards compliance. We looked at the vari-

ous versions of HTML and XHTML and what makes them different, how

to specify which version (DTD) you used to write your document and how

browsers use that information, how to validate your document, and how to

specify its character encoding and media type.

N OT E

Information provided by the http-equiv
attribute is processed by the brows-
er as though it had received it in an
HTTP header. Thus, it is an HTTP
EQUIValent.

N OT E

Information provided by the http-equiv
attribute is processed by the brows-
er as though it had received it in an
HTTP header. Thus, it is an HTTP
EQUIValent.

exercise 10-3 | Adding the character encoding

In the earlier exercise, you should have fixed all of the errors in blackgoose.html (the
HTML document) and x-blackgoose.html (the XHTML version of the same content).
The meta element with the character encoding should be all that stands between
you and the thrill of validating against the Strict DTDs.

Try adding the meta element as shown in the previous section to both documents,
and reupload them in the validator.

HINT: Be sure that the meta element has a trailing slash in the XHTML document, and
be sure to omit the space and slash in the HTML version.

exercise 10-3 | Adding the character encoding

In the earlier exercise, you should have fixed all of the errors in blackgoose.html (the
HTML document) and x-blackgoose.html (the XHTML version of the same content).
The meta element with the character encoding should be all that stands between
you and the thrill of validating against the Strict DTDs.

Try adding the meta element as shown in the previous section to both documents,
and reupload them in the validator.

HINT: Be sure that the meta element has a trailing slash in the XHTML document, and
be sure to omit the space and slash in the HTML version.

Part II: HTML Markup for Structure182

Putting It All Together

What it boils down to is that the minimal document structure for standards

compliant documents have a few extra elements than the basic skeleton we

created back in Chapter 4. The following examples show the minimal markup

for HTML 4.01 Strict and XHTML 1.0 Strict documents (you can adapt these

by changing the DTD in the DOCTYPE declaration and the character encod-

ing). The good news is that, if you’ve read the chapter, now you understand

exactly what the extra markup means.

HTML 4.01 strict

This is the minimal document structure for HTML 4.01 Strict documents as

recommended by the W3C.

<!DOCTYPE	html	PUBLIC	"-//W3C//DTD	HTML	4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>
 <title>An HTML 4.01 Strict document</title>
 <meta	http-equiv="content-type"	content="text/html;charset=utf-8">
</head>

<body>
 <p>... The document content goes here ...</p>
</body>

</html>

XHTML 1.0 strict

This is the minimal document structure for XHTML 1.0 Strict documents as

recommended by the W3C.

<!DOCTYPE	html	PUBLIC	"-//W3C//DTD	XHTML	1.0	Strict//EN"
 	"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html	xmlns="http://www.w3.org/1999/xhtml"	xml:lang="en"	lang="en">

<head>
 <title>An XHTML 1.0 Strict document</title>
 <meta	http-equiv="content-type"	content="text/html;charset=utf-8"	/>
</head>

<body>
 <p>... The document content goes here ...</p>
</body>

</html>

Note that this example omits the XML declaration (see the XML Declarations

sidebar earlier in this chapter), because it is problematic for current browsers

as of this writing.

N OT E

These document templates are also avail-
able for download at www.learningweb-
design.com/materials/.

N OT E

These document templates are also avail-
able for download at www.learningweb-
design.com/materials/.

Test Yourself

Chapter 10, Understanding the Standards 183

Test Yourself
This chapter was information-packed. Are you ready to see how much you

absorbed?

Who fought in the infamous Browser Wars of the 1990s?

What is the difference between Transitional and Strict HTML 4.01?

How are HTML 4.01 Strict and XHTML 1.0 Strict the same? How are

they different?

Name four significant syntax requirements in XHTML.

Look at these valid markup examples and determine whether each is

HTML or XHTML:

1.

2.

3.

4.

5.

Part II: HTML Markup for Structure184

Test Yourself

What extra attributes must be applied to the html element in XHTML

documents?

How do you get a standards compliant browser to display your page in

Standards Mode?

Name two advantages that XHTML offers over HTML.

What is ISO 8859-1?

6.

7.

8.

9.

IN THIS PART

Chapter 11
Cascading Style Sheets

Orientation

Chapter 12
Formatting Text

(Plus More Selectors)

Chapter 13
Colors and Backgrounds

(Plus Even More Selectors
and External Style Sheets)

Chapter 14
Thinking Inside the Box

(Padding, Borders,
and Margins)

Chapter 15
Floating and Positioning

Chapter 16
Page Layout with CSS

Chapter 17
CSS Techniques

CSS FOR
PRESENTATION PART III

187

IN THIS CHAPTER

The benefits and power
of Cascading Style

Sheets (CSS)

How (X)HTML markup
creates a document

structure

Writing CSS style rules

Attaching styles to the
(X)HTML document

The big CSS concepts of
inheritance, the cascade,

specificity, rule order, and
the box model

You’ve seen style sheets mentioned quite a bit already, and now we’ll finally

put them to work and start giving our pages some much needed style.

 Cascading Style Sheets (CSS) is the W3C standard for defining the pre-

sentation of documents written in HTML, XHTML, and, in fact, any XML

language. Presentation, again, refers to the way the document is displayed or

delivered to the user, whether on a computer screen, a cell phone display, or

read aloud by a screen reader. With style sheets handling the presentation,

(X)HTML can get back to the business of defining document structure and

meaning, as intended.

CSS is a separate language with its own syntax. This chapter covers CSS ter-

minology and fundamental concepts that will help you get your bearings for

the upcoming chapters, where you’ll learn how to change text and font styles,

add colors and backgrounds, and even do basic page layout using CSS. Will

you be a style sheet expert by the end of Part III? Probably not. But you will

have a solid foundation for further reading, and lots of practice.

N OT E

See the section, Moving Forward with CSS, at the end of this chapter for books and
sites that will help you continue your education.

The Benefits of CSS
Not that you need further convincing that style sheets are the way to go, but

here is a quick run-down of the benefits of using style sheets.

Better type and layout controls. Presentational (X)HTML never gets

close to offering the kind of control over type, backgrounds, and layout

that is possible with CSS.

Less work. You can change the appearance of an entire site by editing one

style sheet. Making small tweaks and even entire site redesigns with style

sheets is much easier than when presentation instructions are mixed in

with the markup.

•

•

CASCADING STYLE
SHEETS ORIENTATION

CHAPTER 11

Part III: CSS for Presentation188

How Style Sheets Work

Potentially smaller documents and faster downloads. Old school prac-

tices of using redundant font elements and nested tables make for bloated

documents. Not only that, you can apply a single style sheet document to

all the pages in a site for further byte savings.

More accessible sites. When all matters of presentation are handled by

CSS, you can mark up your content meaningfully, making it more acces-

sible for nonvisual or mobile devices.

Reliable browser support. Nearly every browser in current use supports

all of CSS Level 1 and the majority of CSS Level 2. (See the sidebar, Meet

the Standards, for what is meant by CSS “levels.”)

Come to think of it, there really aren’t any disadvantages to using style sheets.

There are some lingering hassles from browser inconsistencies, but they can

either be avoided or worked around if you know where to look for them. It’s

by no means a reason to put off using CSS right away.

The power of CSS

We’re not talking about minor visual tweaks here, like changing the color

of headlines or adding text indents. When used to its full potential, CSS is

a robust and powerful design tool. My eyes were opened by the variety and

richness of the designs at CSS Zen Garden (www.csszengarden.com). Figure

11-1 shows just a few of my favorites. All of these designs use the exact same

XHTML source document. Not only that, it doesn’t include a single img ele-

ment (all of the images are used as backgrounds). But look how different each

page looks—and how sophisticated—that’s all done with style sheets.

Granted, it takes a lot of practice to be able to create CSS layouts like those

shown in Figure 11-1. Killer graphic design skills help too (unfortunately, you

won’t get those in this book). I’m showing this to you up front because I want

you to be aware of the potential of CSS-based design, particularly because the

examples in this beginners’ book tend to be simple and straightforward. Take

your time learning, but keep your eye on the prize.

How Style Sheets Work
It’s as easy as 1-2-3!

Start with a document that has been marked up in HTML or XHTML.

Write style rules for how you’d like certain elements to look.

Attach the style rules to the document. When the browser displays the

document, it follows your rules for rendering elements (unless the user

has applied some mandatory styles, but we’ll get to that later).

OK, so there’s a bit more to it than that, of course. Let’s give each of these steps

a little more consideration.

•

•

•

1.

2.

3.

Meet the Standards
The first official version of CSS (the
CSS Level 1 Recommendation, a.k.a
CSS1) was officially released in 1996,
and included properties for adding
font, color, and spacing instructions
to page elements. Unfortunately,
lack of dependable browser support
prevented the widespread adoption
of CSS for several years.

CSS Level 2 (CSS2) was released
in 1998. It most notably added
properties for positioning that
allowed CSS to be used for page
layout. It also introduced styles for
other media types (such as print,
handheld, and aural) and more
sophisticated methods for selecting
elements for styling. CSS Level 2,
Revision 1 (CSS2.1) makes some
minor adjustments to CSS2 and is
a working draft as of this writing.
Fortunately, most current browsers
support the majority of the CSS1,
CSS2, and CSS2.1 specifications.

In fact, some browsers are already
supporting features from CSS Level
3 (CSS3) that is still in development.
It adds support for vertical text,
improved handling of tables and
international languages, better
integration with other XML
technologies, and other little perks
like multiple background images in
a single element and a larger list of
color names.

Keep up to date with the W3C’s
development of CSS at www.w3.org/
Style/CSS.

Meet the Standards
The first official version of CSS (the
CSS Level 1 Recommendation, a.k.a
CSS1) was officially released in 1996,
and included properties for adding
font, color, and spacing instructions
to page elements. Unfortunately,
lack of dependable browser support
prevented the widespread adoption
of CSS for several years.

CSS Level 2 (CSS2) was released
in 1998. It most notably added
properties for positioning that
allowed CSS to be used for page
layout. It also introduced styles for
other media types (such as print,
handheld, and aural) and more
sophisticated methods for selecting
elements for styling. CSS Level 2,
Revision 1 (CSS2.1) makes some
minor adjustments to CSS2 and is
a working draft as of this writing.
Fortunately, most current browsers
support the majority of the CSS1,
CSS2, and CSS2.1 specifications.

In fact, some browsers are already
supporting features from CSS Level
3 (CSS3) that is still in development.
It adds support for vertical text,
improved handling of tables and
international languages, better
integration with other XML
technologies, and other little perks
like multiple background images in
a single element and a larger list of
color names.

Keep up to date with the W3C’s
development of CSS at www.w3.org/
Style/CSS.

How Style Sheets Work

Chapter 11, Cascading Style Sheets Orientation 189

Faded Flowers
by Mani Sheriar

CSS Zen Dragen
by Matthew Buchanan

Shaolin Yokobue
by Javier Cabrera

By the Pier
by Peter OngKelmscott

Organica Creativa
by Eduardo Cesario

Kelmscott
by Bronwen Hodgkinson

Contemporary Nouveau
by David Hellsing

Figure 11-1. These pages from the CSS Zen Garden use the same XHTML source
document, but the design is changed using exclusively CSS (used with permission of CSS
Zen Garden and the individual designers).

Part III: CSS for Presentation190

How Style Sheets Work

1. Marking up the document

You know a lot about marking up content from the previ-

ous chapters. For example, you know that it is important

to choose (X)HTML elements that accurately describe the

meaning of the content. You’ve also heard me say that the

markup creates the structure of the document, sometimes

called the structural layer, upon which the presentation

layer can be applied.

In this and the upcoming chapters, you’ll see that having

an understanding of your document’s structure and the

relationships between elements is central to your work as

a style sheet author.

To get a feel for how simple it is to change the look of a

document with style sheets, try your hand at Exercise 11-1.

The good news is that I’ve whipped up a little XHTML

document for you to play with.

2. Writing the rules

A style sheet is made up of one or more style instructions

(called rules) that describe how an element or group of ele-

ments should be displayed. The first step in learning CSS is

to get familiar with the parts of a rule. As you’ll see, they’re

fairly intuitive to follow. Each rule selects an element and

declares how it should look.

The following example contains two rules. The first makes

all the h1 elements in the document green; the second

specifies that the paragraphs should be in a small, sans-

serif font.

h1 { color: green; }
p { font-size: small; font-family: sans-serif; }

N OT E

Sans-serif fonts do not have a little slab (a serif) at the ends of strokes and tend to look
more sleek and modern. We’ll talk a lot more about fonts in Chapter 12, Formatting
Text.

In CSS terminology, the two main sections of a rule are the selector that iden-

tifies the element or elements to be affected, and the declaration that provides

the rendering instructions. The declaration, in turn, is made up of a property

(such as color) and its value (green), separated by a colon and a space. One or

more declarations are placed inside curly brackets, as shown in Figure 11-3.

exercise 11-1 |
Your first style sheet

In this exercise, we’ll add a few simple styles to a short
article. The XHTML document, twenties.html and its
associated image, twenty_20s.jpg, are available at www.
learningwebdesign.com/materials/. First, open the
document in a browser to see how it looks by default
(it should look something like Figure 11-2). You can also
open the document in a text editor and get ready to
follow along when this exercise continues in the next
section.

Figure 11-2. This what the article looks like without
any style sheet instructions. Although we won’t be
making it beautiful, you will get a feel for how styles
work.

How Style Sheets Work

Chapter 11, Cascading Style Sheets Orientation 191

selector { property: value; } selector {
 property1: value1;
 property2: value2;
 property3: value3;
 }

declaration declaration block

Figure 11-3. The parts of a style sheet rule.

Selectors

In the previous small style sheet example, the h1 and p elements are used as

selectors. This most basic type of selector is called an element type selector.

The properties defined for each will apply to every h1 and p element in the

document, respectively. In upcoming chapters, I’ll introduce you to more

sophisticated selectors that you can use to target elements, including ways to

select groups of elements and elements that appear in a particular context.

Mastering selectors—that is, choosing the best type of selector and using it

strategically—is an important step in becoming a CSS Jedi Master.

Declarations

The declaration is made up of a property/value pair. There can be more than

one declaration in a single rule; for example, the rule for p element above

has both the font-size and font-family properties. Each declaration must

end with a semicolon to keep it separate from the following declaration (see

note). If you omit the semicolon, the declaration and the one following it will

be ignored. The curly brackets and the declarations they contain are often

referred to as the declaration block (Figure 11-3).

Because CSS ignores whitespace and line returns within the declaration

block, authors typically write each declaration in the block on its own line,

as shown in the following example. This makes it easier to find the properties

applied to the selector and to tell when the style rule ends.

p {
 font-size: small;
 font-family: sans-serif;
}

Note that nothing has really changed here—there is still one set of curly

brackets, semicolons after each declaration, etc.. The only difference is the

insertion of line returns and some character spaces for alignment.

The heart of style sheets lies in the collection of standard properties that

can be applied to selected elements. The complete CSS specification defines

dozens of properties for everything from text indent to how table headers

should be read aloud. This book covers the most common and best sup-

ported properties (see note).

N OT E

Technically, the semicolon is not required
after the last declaration in the block, but
it is recommended that you get into the
habit of always ending declarations with
a semicolon. It will make adding declara-
tions to the rule later that much easier.

N OT E

Technically, the semicolon is not required
after the last declaration in the block, but
it is recommended that you get into the
habit of always ending declarations with
a semicolon. It will make adding declara-
tions to the rule later that much easier.

N OT E

For a complete list of properties in the
current CSS2.1 standards, go straight
to the W3C Recommendation at www.
w3.org/TR/CSS21/propidx.html, or con-
sult a comprehensive CSS reference book
such as CSS: The Definitive Guide by
Eric Meyer or Web Design in a Nutshell
by Jennifer Robbins (that’s me), both
published by O’Reilly Media.

N OT E

For a complete list of properties in the
current CSS2.1 standards, go straight
to the W3C Recommendation at www.
w3.org/TR/CSS21/propidx.html, or con-
sult a comprehensive CSS reference book
such as CSS: The Definitive Guide by
Eric Meyer or Web Design in a Nutshell
by Jennifer Robbins (that’s me), both
published by O’Reilly Media.

Part III: CSS for Presentation192

How Style Sheets Work

Values are dependent on the property. Some proper-

ties take length measurements, some take color values,

others have a predefined list of keywords. When using

a property, it is important to know which values it

accepts; however, in many cases, simple common sense

will serve you well.

Before we move on, why not get a little practice writing

style rules yourself in the continuation of Exercise 11-1.

Open twenties.html in a text editor. In the head of the
document you will find that I have set up a style element for
you to type the rules into. The style element is used to embed
a style sheet in the head of an (X)HTML document.

To begin, we’ll just add the small style sheet that we just looked
at in this section. Type the following rules into the document,
just as you see them here.

<style type="text/css">
h1 {
 color: green;
}
p {
 font-size: small;
 font-family: sans-serif;
}
</style>

Save the file and take a look at it in the browser. You should
notice some changes (if your browser already uses a sans-serif
font, you may only see size change). If not, go back and check
that you included both the opening and closing curly bracket
and semicolons. It’s easy to accidentally omit these characters,
causing the style sheet not to work.

Now we’ll change and add to the style sheet to see how easy
it is to write rules and see the effects of the changes. Here
are a few things to try (remember that you need to save the
document after each change in order for the changes to be
visible when you reload it in the browser).

Make the h1 element “gray” and take a look at it in the
browser. Then make it “blue”. Finally, make it “red”. (We’ll
run through the complete list of available color names in
Chapter 13, Colors and Backgrounds.)

Add a new rule that makes the h2 elements red as well.

Add a 100 pixel left margin to paragraph (p) elements using
this declaration:
 margin-left: 100px;

Remember that you can add this new declaration to the
existing rule for p elements.








Add a 100 pixel left margin to the h2 headings as well.

Add a red, 1-pixel border to the bottom of the h1 element
using this declaration:
 border-bottom: 1px solid red;

Move the image to the right margin and allow text to flow
around it with the float property. The shorthand margin
property shown in this rule adds zero pixels space on the
top and bottom of the image and 12 pixels space on the left
and right of the image (the values are mirrored in a manner
explained in Chapter 14, Thinking Inside the Box).

img {
 float: right;
 margin: 0 12px;
}

When you are done, the document should look something like
the one shown in Figure 11-4.






exercise 11-1 | Your first style sheet (continued)

Figure 11-4. The article after adding the small style sheet from
the example. As I said, not beautiful, just different.

Providing Measurement Values
When providing measurement values, the unit must
immediately follow the number , like this:

{ margin: 2em; }

Adding a space before the unit will cause the property not to
work.

INCORRECT: { margin: 2 em; }

It is acceptable to omit the unit of measurement for zero values:

{ margin: 0; }

How Style Sheets Work

Chapter 11, Cascading Style Sheets Orientation 193

3. Attaching the styles to the document

In the previous exercise, we embedded the style sheet right in the XHTML

document using the style element. That is just one of three ways that style

information can be applied to an (X)HTML document. You’ll get to try each

of these out soon, but it is helpful to have an overview of the methods and

terminology up front.

External style sheets. An external style sheet is a separate, text-only docu-

ment that contains a number of style rules. It must be named with the

.css suffix. The .css document is then linked to or imported into one or

more (X)HTML documents (we’ll discuss how in Chapter 13). In this way,

all the files in a web site may share the same style sheet. This is the most

powerful and preferred method for attaching style sheets to content.

Embedded style sheets. This is the type of style sheet we worked with in the

exercise. It is placed in a document using the style element and its rules

apply only to that document. The style element must be placed in the

head of the document and it must contain a type attribute that identifies

the content of the style element as “text/css” (currently the only available

value). This example also includes a comment (see Comments in Style

Sheets sidebar).

<head>
 <title>Required document title here</title>
 <style type="text/css">
 /* style rules go here */
 </style>
</head>

The style element may also include the media attribute used to target

specific media such as screen, print, or handheld devices. These are dis-

cussed in Chapter 13 as well.

Inline styles. You can apply properties and values to a single element using

the style attribute in the element itself, as shown here:

 <h1 style="color: red">Introduction</h1>

To add multiple properties, just separate them with semicolons, like this:

 <h1 style="color: red; margin-top: 2em">Introduction</h1>

Inline styles apply only to the particular element in which they appear.

Inline styles should be avoided, unless it is absolutely necessary to over-

ride styles from an embedded or external style sheet. Inline styles are

problematic in that they intersperse presentation information into the

structural markup. They also make it more difficult to make changes

because every style attribute must be hunted down in the source. These

disadvantages sound a lot like those for the obsolete font element, don’t

they?

Comments in Style
Sheets
Sometimes, it is helpful to leave
yourself or your collaborators
comments in a style sheet. CSS has
its own comment syntax, shown
here:

/* comment goes here */

Content between the /* and */ will
be ignored when the style sheet is
parsed, which means you can leave
comments anywhere in a style sheet,
even within a rule.

body { font-size: small;
 /* temporary */ }

Comments in Style
Sheets
Sometimes, it is helpful to leave
yourself or your collaborators
comments in a style sheet. CSS has
its own comment syntax, shown
here:

/* comment goes here */

Content between the /* and */ will
be ignored when the style sheet is
parsed, which means you can leave
comments anywhere in a style sheet,
even within a rule.

body { font-size: small;
 /* temporary */ }

Part III: CSS for Presentation194

The Big Concepts

 Exercise 11-2 gives you an opportunity to write an inline style and see

how it works. We won’t be working with inline styles after this point for

the reasons listed earlier, so here’s your chance.

The Big Concepts
There are a few big ideas that you need to get your head around to be com-

fortable with how Cascading Style Sheets behave. I’m going to introduce you

to these concepts now so we don’t have to slow down for a lecture once we’re

rolling through the style properties. Each of these ideas will certainly be

revisited and illustrated in more detail in the upcoming chapters.

Inheritance

Are your eyes the same color as your parents’? Did you inherit their hair

color? Your unique smile? Well, just as parents pass down traits to their chil-

dren, (X)HTML elements pass down certain style properties to the elements

they contain. Notice in Exercise 11-1, when we styled the p elements in a small,

sans-serif font, the em element in the second paragraph became small and

sans-serif as well, even though we didn’t write a rule for it specifically (Figure

11-5). That is because it inherited the styles from the paragraph it is in.

p {font-size: small; font-family: sans-serif;}

Unstyled paragraph

Paragraph with style
rule applied

The emphasized text (em) element is small and sans-serif even
though it has no style rule of its own. It inherits the styles from
the paragraph that contains it.

Figure 11-5. The em element inherits styles that were applied to the paragraph.

Document structure

This is where an understanding of your document’s structure comes in. As

I’ve noted before, (X)HTML documents have an implicit structure or hierar-

chy. For example, the sample article we’ve been playing with has an html root

element that contains a head and a body, and the body contains heading and

paragraph elements. A few of the paragraphs, in turn, contain inline elements

like images (img) and emphasized text (em). You can visualize the structure as

an upside-down tree, branching out from the root, as shown in Figure 11-6.

exercise 11-2 |
Applying an inline
style

Open the article, twenties.html,
in whatever state you last left it in
Exercise 11-1. If you worked to the
end of the exercise, you will have
a rule that applies a color to the h2
elements.

Now, write an inline style that makes
the second h2 purple. We’ll do that
right in the opening h2 tag using the
style attribute as shown here:

<h2 style="color: purple">
Connect-the-Dots</h2>

Now that heading is purple,
overriding whatever color it had
been set before. The other h2
heading is unaffected.

exercise 11-2 |
Applying an inline
style

Open the article, twenties.html,
in whatever state you last left it in
Exercise 11-1. If you worked to the
end of the exercise, you will have
a rule that applies a color to the h2
elements.

Now, write an inline style that makes
the second h2 purple. We’ll do that
right in the opening h2 tag using the
style attribute as shown here:

<h2 style="color: purple">
Connect-the-Dots</h2>

Now that heading is purple,
overriding whatever color it had
been set before. The other h2
heading is unaffected.

The Big Concepts

Chapter 11, Cascading Style Sheets Orientation 195

html

head body

title style h1 p p h2 p p p h2 p p

em img em em

Figure 11-6. The document tree structure of the sample document, twenties.html.

Parents and children

The document tree becomes a family tree when it comes to referring to the

relationship between elements. All the elements contained within a given

element are said to be its descendants. For example, all of the h1, h2, p, em,

and img elements in the document in Figure 11-6 are descendants of the body

element.

An element that is directly contained within another element (with no inter-

vening hierarchical levels), is said to be the child of that element. Conversely,

the containing element is the parent. For example, the em element is the child

of the p element, and the p element is its parent.

All of the elements higher than a particular element in the hierarchy are its

ancestors. Two elements with the same parent are siblings. We don’t refer to

“aunts” or “cousins,” so the analogy stops there. This may all seem academic,

but it will come in handy when writing CSS selectors.

Pass it on

When you write a font-related style rule using the p element as a selector, the

rule applies to all of the paragraphs in the document as well as the inline text

elements they contain. We’ve seen the evidence of the em element inheriting

the style properties applied to its parent (p) back in Figure 11-5. Figure 11-7

demonstrates what’s happening in terms of the document structure diagram.

Note that the img element is excluded because font-related properties do not

apply to images.

When you learn a new property,
it is a good idea to note whether
it inherits. Inheritance is noted for
every property listing in this book.
For the most part, inheritance
follows your expectations.

c S S t I P

When you learn a new property,
it is a good idea to note whether
it inherits. Inheritance is noted for
every property listing in this book.
For the most part, inheritance
follows your expectations.

c S S t I P

Part III: CSS for Presentation196

The Big Concepts

p {font-size: small; font-family: sans-serif;}

html

head body

title style h1 p p h2 p p p h2 p p

em img em em

Figure 11-7. Certain properties applied to the p element are inherited by their children.

Notice that I’ve been saying “certain” properties are inherited. It’s important

to note that some style sheet properties inherit and others do not. In gen-

eral, properties related to the styling of text—font size, color, style, etc.—are

passed down. Properties such as borders, margins, backgrounds, and so on

that affect the boxed area around the element tend not to be passed down.

This makes sense when you think about it. For example, if you put a border

around a paragraph, you wouldn’t want a border around every inline element

(such as em, strong, or a) it contains as well.

You can use inheritance to your advantage when writing style sheets. For

example, if you want all text elements to be rendered in the Verdana font face,

you could write separate style rules for every element in the document and

set the font-face to Verdana. A better way would be to write a single style rule

that applies the font-face property to the body element, and let all the text

elements contained in the body inherit that style (Figure 11-8).

p {font-size: small; font-family: sans-serif;}

html

head body

title style h1 p p h2 p p p h2 p p

em img em em

If you apply a font-related property to the body
element, it will be passed down to all the text elements
in the document (note that font properties do not apply
to the img element, so it is excluded).

Figure 11-8. All the elements in the document inherit certain properties applied to the
body element.

The Big Concepts

Chapter 11, Cascading Style Sheets Orientation 197

Any property applied to a specific element will override the inherited values

for that property. Going back to the article example, we could specify that

the em element should appear in a serif font, and that would override the

inherited sans-serif setting.

Conflicting styles: the cascade

Ever wonder why they are called “cascading” style sheets? CSS allows you

to apply several style sheets to the same document, which means there

are bound to be conflicts. For example, what should the browser do if a

document’s imported style sheet says that h1 elements should be red, but its

embedded style sheet has a rule that makes h1s purple?

The folks who wrote the style sheet specification anticipated this problem

and devised a hierarchical system that assigns different weights to the vari-

ous sources of style information. The cascade refers to what happens when

several sources of style information vie for control of the elements on a page:

style information is passed down until it is overridden by a style command

with more weight.

For example, if you don’t apply any style information to a web page, it will be

rendered according to the browser’s internal style sheet (we’ve been calling

this the default rendering). However, if the web page’s author provides a style

sheet for the document, that has more weight and overrides the browser’s

styles. Individual users can apply their own styles to documents as well, as

discussed in the Reader Style Sheets sidebar.

As we’ve learned, there are three ways to attach style information to the source

document, and they have a cascading order as well. Generally speaking, the

closer the style sheet is to the content, the more weight it is given. Embedded

style sheets that appear right in the document in the style element have

more weight than external style sheets. In the example that started this sec-

tion, the h1 elements would end up purple as specified in the embedded style

sheet, not red as specified in the external .css file that has less weight. Inline

styles have more weight than embedded style sheets because you can’t get any

closer to the content than a style right in the element’s opening tag.

To prevent a specific rule from being overridden, you can assign it

“importance” with the !important indicator, as explained in the Assigning

Importance sidebar.

The sidebar, Style Sheet Hierarchy, provides an overview of the cascading

order from general to specific.

Specificity

Once the applicable style sheet has been chosen, there may still be conflicts;

therefore, the cascade continues at the rule level. When two rules in a single

style sheet conflict, the type of selector is used to determine the winner. The

Reader Style Sheets
It is possible for users to write their
own style sheets and apply them
to the pages they see with their
browser. The CSS Recommendation
refers to these as reader style sheets
(in practice, it is more common to
use the term user style sheets).

Normally, style rules provided by
an author style sheet (external,
embedded, or inline) override the
reader’s style sheet. However, if the
user marks a style as “important,” it
will trump all other styles provided
by the author and the browser (see
the Assigning Importance sidebar).

So, for example, a user with impaired
vision could write a style rule
that makes all web text appear in
extra large black text on a white
background and be guaranteed to
see it that way. That’s precisely the
W3C’s intent in allowing reader style
sheets and giving them the power
to override all other styles.

Reader Style Sheets
It is possible for users to write their
own style sheets and apply them
to the pages they see with their
browser. The CSS Recommendation
refers to these as reader style sheets
(in practice, it is more common to
use the term user style sheets).

Normally, style rules provided by
an author style sheet (external,
embedded, or inline) override the
reader’s style sheet. However, if the
user marks a style as “important,” it
will trump all other styles provided
by the author and the browser (see
the Assigning Importance sidebar).

So, for example, a user with impaired
vision could write a style rule
that makes all web text appear in
extra large black text on a white
background and be guaranteed to
see it that way. That’s precisely the
W3C’s intent in allowing reader style
sheets and giving them the power
to override all other styles.

Part III: CSS for Presentation198

The Big Concepts

more specific the selector, the more weight it is given to override conflicting

declarations.

It’s a little soon to be discussing specificity because we’ve only looked at one

type of selector (and the least specific type, at that). For now, put the term

specificity and the concept of some selectors overriding others on your radar.

We will revisit it in Chapter 12 when you have more selector types under

your belt.

Rule order

Finally, if there are conflicts within style rules of identical weight, whichever

one comes last in the list “wins.” Take these three rules, for example:

<style type="text/css">
 p { color: red; }
 p { color: blue; }
 p { color: green; }
</style>

In this scenario, paragraph text will be green because the last rule in the style

sheet, that is, the one closest to the content in the document, overrides the

earlier ones.

Style Sheet
Hierarchy
Style information can come from
various sources, listed here from
general to specific. Items lower in
the list will override items above
them:

Browser default settings

User style settings (set in a
browser as a “reader style sheet”)

Linked external style sheet
(added with the link element)

Imported style sheets
(added with the @import
function)

Embedded style sheets
(added with the style element)

Inline style information
(added with the style attribute
in an opening tag)

Any style rule marked !important
by the author

Any style rule marked !important
by the reader (user)
















Style Sheet
Hierarchy
Style information can come from
various sources, listed here from
general to specific. Items lower in
the list will override items above
them:

Browser default settings

User style settings (set in a
browser as a “reader style sheet”)

Linked external style sheet
(added with the link element)

Imported style sheets
(added with the @import
function)

Embedded style sheets
(added with the style element)

Inline style information
(added with the style attribute
in an opening tag)

Any style rule marked !important
by the author

Any style rule marked !important
by the reader (user)
















Assigning Importance
If you want a rule not to be overridden by a subsequent conflicting rule, include the
!important indicator just after the property value and before the semicolon for that
rule. For example, to make paragraph text blue always, use the following rule:

p {color: blue !important;}

Even if the browser encounters an inline style later in the document (which should
override a document-wide style sheet), like this one:

<p style="color: red">

that paragraph will still be blue, because the rule with the !important indicator
cannot be overridden by other styles in the author’s style sheet.

The only way an !important rule may be overridden is by a conflicting rule in a
reader (user) style sheet that has also been marked !important. This is to ensure that
special reader requirements, such as large type for the visually impaired, are never
overridden.

Based on the previous examples, if the reader’s style sheet includes this rule:

p {color: black;}

the text would still be blue, because all author styles (even those not marked
!important) take precedence over the reader’s styles. However, if the conflicting
reader’s style is marked !important, like this:

p {color: black !important;}

the paragraphs will be black and cannot be overridden by any author-provided style.

The Big Concepts

Chapter 11, Cascading Style Sheets Orientation 199

N OT E

This “last-one-listed wins” rule applies in other contexts in CSS as well. For example,
later declarations in a declaration block can override earlier declarations. In addition,
external style sheets listed later in the source will be given precedence over those listed
above them (even style sheets embedded with the style element).

The box model

As long as we’re talking about “big CSS concepts,” it is only appropriate

to introduce the cornerstone of the CSS visual formatting system: the box

model. The easiest way to think of the box model is that browsers see every

element on the page (both block and inline) as being contained in a little

rectangular box. You can apply properties such as borders, margins, padding,

and backgrounds to these boxes, and even reposition them on the page.

We’re going to go into a lot more detail about the box model in Chapter 14,

but having a general feel for the box model will benefit you even as we discuss

text and backgrounds in the following two chapters.

To see the elements roughly the way the browser sees them, I’ve written style

rules that add borders around every content element in our sample article.

h1 { border: 1px solid blue; }
h2 { border: 1px solid blue; }
p { border: 1px solid blue; }
em { border: 1px solid blue; }
img { border: 1px solid blue; }

Figure 11-9 shows the results. The borders reveal the shape of each block ele-

ment box. There are boxes around the inline elements (em and img), as well.

Notice that the block element boxes expand to fill the available width of the

browser window, which is the nature of block elements in the normal docu-

ment flow. Inline boxes encompass just the characters or image they contain.

Figure 11-9. Rules around all the elements reveal their element boxes.

Part III: CSS for Presentation200

Moving Forward with CSS

Grouped Selectors

Hey! This is a good opportunity to show you a handy style rule shortcut. If

you ever need to apply the same style property to a number of elements, you

can group the selectors into one rule by separating them with commas. This

one rule has the same effect as the five rules listed previously. Grouping them

makes future edits more efficient and results in a smaller file size.

h1, h2, p, em, img { border: 1px solid blue; }

Now you’ve got two selector types in your toolbox: a simple element selector,

and grouped selectors.

Moving Forward with CSS
This chapter covered all the fundamentals of Cascading Style Sheets, includ-

ing rule syntax, ways to apply styles to a document, and the central concepts

of inheritance, the cascade, and the box model. Style sheets should no longer

be a mystery, and from this point on, we’ll merely be building on this founda-

tion by adding properties and selectors to your arsenal as well as expanding

on the concepts introduced here.

CSS is a vast topic, well beyond the scope of this book. The bookstores and

Web are loaded with information about style sheets for all skill levels. I’ve

compiled a list of the resources I’ve found the most useful during my learning

process. I’ve also provided a list of popular tools that assist in writing style

sheets in the CSS Tools sidebar.

Books

There is no shortage of good books on CSS out there, but these are the ones

that taught me, and I feel good recommending them.

Cascading Style Sheets: The Definitive Guide, Second Edition, by Eric Meyer

(O’Reilly)

Web Standards Solutions: The Markup and Style Handbook, by Dan Cederholm

(Friends of Ed)

The Zen of CSS Design: Visual Enlightenment for the Web, by Dave Shea and

Molly E. Holzschlag (New Riders)

Eric Meyer on CSS: Mastering the Language of Web Design, by Eric Meyer

(New Riders)

Online Resources

The sites on the following page are good starting points for online explora-

tion of style sheets.

Pop Quiz
Can you guess why I didn’t just add
the border property to the body
element and let it inherit to all the
elements in the grouped selector?

Answer:

Because border is one of those
properties that is not inherited, as
noted earlier.

Pop Quiz
Can you guess why I didn’t just add
the border property to the body
element and let it inherit to all the
elements in the grouped selector?

Answer:

Because border is one of those
properties that is not inherited, as
noted earlier.

Moving Forward with CSS

Chapter 11, Cascading Style Sheets Orientation 201

World Wide Web Consortium (www.w3.org/Style/CSS)

 The World Wide Web Consortium oversees the development of web tech-

nologies, including CSS.

A List Apart (www.alistapart.com)

 This online magazine features some of the best thinking and writing

on cutting-edge, standards-based web design. It was founded in 1998 by

Jeffrey Zeldman and Brian Platz.

css-discuss (www.css-discuss.org)

 This is a mailing list and related site devoted to talking about CSS and

how to use it.

Inspirational CSS showcase sites

If you are looking for excellent examples of what can be done with CSS, check

out these sites.

CSS Zen Garden (www.cssgarden.com)

 This is a showcase site for what can be done with CSS, a single XHTML

file, and the creative ideas of hundreds of designers. Its creator and keeper

is standards expert Dave Shea. See the companion book listed above.

CSS Beauty (www.cssbeauty.com)

 A showcase of excellent sites designed in CSS.

Informative personal sites

Some of the best CSS resources are the blogs and personal sites of individuals

with a passion for CSS-based design. These are only a few, but they provide a

good entry point into the online standards community.

Stopdesign (www.stopdesign.com)

 Douglas Bowman, CSS and graphic design guru, publishes articles and

trend-setting tutorials.

Mezzoblue (www.mezzoblue.com)

 This is the personal site of Dave Shea, creator of the CSS Zen Garden.

Meyerweb (www.meyerweb.com)

 This is the personal site of the king of CSS, Eric Meyer.

Molly.com (www.molly.com)

 This is the blog of prolific author and web-standards activist Molly E.

Holzschlag.

Simplebits (www.simplebits.com)

 This is the personal site of standards guru and author Dan Cederholm.

CSS Tools
The W3C maintains a list of current
CSS authoring tools on the CSS
home page at www.w3.org/Style/
CSS/#editors. Here are a couple that I
can personally recommend.

Web Developer
Extension

Web developers are raving about
the Web Developer extension for
Firefox and Mozilla browsers, written
by Chris Pederick. The extension
adds a toolbar to the browser with
tools that enable you to analyze and
manipulate any page in the window.
You can edit the style sheet for the
page you are viewing as well as get
information about the (X)HTML and
graphics. It also validates the CSS,
(X)HTML, and accessibility of the
page. Get it at chrispederick.com/
work/firefox/webdeveloper or from
the Addons page at mozilla.org.

Web Authoring
Programs

Current WYSIWYG authoring
programs such as Adobe
Dreamweaver and Microsoft
Expression Web can be configured
to write a style sheet for you
automatically as you design the
page. The downside is that they
are not always written in the most
efficient manner (for example, they
tend to overuse the class attribute
to create style rules). Still, they may
give you a good head start on the
style sheet that you can then edit
manually.

CSS Tools
The W3C maintains a list of current
CSS authoring tools on the CSS
home page at www.w3.org/Style/
CSS/#editors. Here are a couple that I
can personally recommend.

Web Developer
Extension

Web developers are raving about
the Web Developer extension for
Firefox and Mozilla browsers, written
by Chris Pederick. The extension
adds a toolbar to the browser with
tools that enable you to analyze and
manipulate any page in the window.
You can edit the style sheet for the
page you are viewing as well as get
information about the (X)HTML and
graphics. It also validates the CSS,
(X)HTML, and accessibility of the
page. Get it at chrispederick.com/
work/firefox/webdeveloper or from
the Addons page at mozilla.org.

Web Authoring
Programs

Current WYSIWYG authoring
programs such as Adobe
Dreamweaver and Microsoft
Expression Web can be configured
to write a style sheet for you
automatically as you design the
page. The downside is that they
are not always written in the most
efficient manner (for example, they
tend to overuse the class attribute
to create style rules). Still, they may
give you a good head start on the
style sheet that you can then edit
manually.

Part III: CSS for Presentation202

Test Yourself

Test Yourself
Here are a few questions to test your knowledge of the CSS basics. Answers

are provided in Appendix A.

Identify the various parts of this style rule:

 blockquote { line-height: 1.5; }

selector: _______________ value: ____________________

property: ______________ declaration: ________________

What color will paragraphs be when this embedded style sheet is applied

to a document? Why?

 <style type="text/css">
 p { color: purple; }
 p { color: green; }
 p { color: gray; }
 </style>

Rewrite each of these CSS examples. Some of them are completely incor-

rect and some could just be written more efficiently.

p {font-face: sans-serif;}
 p {font-size: 1em;}
 p {line-height: 1.2em;}

blockquote {
 font-size: 1em
 line-height: 150%
 color: gray }

body
 {background-color: black;}
 {color: #666;}
 {margin-left: 12em;}
 {margin-right: 12em;}

p {color: white;}
 blockquote {color: white;}
 li {color: white;}

<strong style="red">Act now!

1.

2.

3.

a.

b.

c.

d.

e.

html

head body

title style h1 p

p p

img

h2 ph2

strong li li li

ul

div id= intro div id= main

Figure 11-10. The document structure of a sample document.

Circle all the elements in the diagram that

you would expect to appear in red when the

following style rule is applied to an XHTML

document with the structure diagrammed in

Figure 11-10. This rule uses a type of selec-

tor you haven’t seen yet, but common sense

should serve you well.

 div#intro { color: red; }

4.

203

IN THIS CHAPTER

The font-related properties

Text color

Text line settings such
as line height, indents,

and alignment

Underlines and overlines

Capitalization

Letter and word spacing

Descendant (contextual),
ID, and class selectors

Specificity 101

Now that you’ve gotten your feet wet formatting text, are you ready to jump

into the deep end? By the end of this chapter, you’ll pick up fourteen new CSS

properties used to manipulate the appearance of text. Along the way, you’ll

also learn how to use more powerful selectors for targeting elements in a

particular context, and with a specific id or class name.

Throughout this chapter, we’ll be sprucing up the Black Goose Bistro online

menu that we marked up back in Chapter 5, Marking Up Text. I encourage

you to work along with the exercises to get a feel for how the properties

work. Figure 12-1 shows how the menu looked the last time we saw it and

how it will look when we’re done. It’s not a masterpiece, but it is certainly an

improvement.

Before

After

Figure 12-1. Before and after views of the Black Goose Bistro menu that we’ll be working
on in this chapter.

FORMATTING
TEXT
(Plus More Selectors)

CHAPTER 12

Part III: CSS for Presentation204

The Font Properties

The Font Properties
When I design a text document (especially for print, but also for the Web),

one of the first things I do is specify the font. In CSS, fonts are specified using

a little bundle of font-related properties for typeface, size, weight, and font

style. There is also a shortcut property that lets you specify all of the font

attributes in one fell swoop.

The nature of the Web makes specifying type tricky, if not downright

frustrating, particularly if you have experience designing for print (or even

formatting text in a word processing program). Because you have no way of

knowing which fonts are loaded on users’ machines, you can’t be sure that

everyone will see text in the font you’ve chosen. And because the default font

size varies by browser and user preferences, you can’t be sure how large or

small the type will appear, as well. We’ll address the best practices for dealing

with these font challenges as we go along.

Specifying the font name

Choosing a typeface, or font family as it is called in CSS, is a good place to

start. Let’s begin with the easy part: using the property font-family and its

values.

font-family
Values: one or more font or generic font family names, separated by commas | inherit

Default: depends on the browser

Applies to: all elements

Inherits: yes

Use the font-family property to specify a font or list of fonts by name as

shown in these examples.

body { font-family: Arial; }
tt { font-family: Courier, monospace; }
p { font-family: "Trebuchet MS", Verdana, sans-serif; }

All font names, with the exception of generic font families, must be capital-

ized. For example, use “Arial” instead of “arial”. Notice that font names that

contain a character space (such as Trebuchet MS in the third example) must

appear within quotation marks. Use commas to separate multiple font names

as shown in the second and third examples. You might be asking, “Why

specify more than one font?” That’s a good question, and it brings us to one

of the challenges of specifying fonts for web pages.

Font limitations

Browsers are limited to displaying fonts that are already installed on the user’s

machine. So, although you may want the text to appear in Futura, if Futura

is not installed on the user’s computer, the browser’s default font will be used

instead.

The font-related properties:

font-family

font-size

font-weight

font-style

font-variant

font








A t A G l A n c e

The font-related properties:

font-family

font-size

font-weight

font-style

font-variant

font








A t A G l A n c e

A Word About
Property Listings
Each new property listing in this
book is accompanied by information
on how it behaves and how to use it.
Here is a quick explanation of each
part of property listings.

Values

 These are the accepted values
for the property according to the
CSS2.1 specification. Predefined
values appear in code font
(for example, small, italic, or
small-caps) and must be typed
in exactly as shown.

Default

 This is the value that will be used
for the property by default, that is,
if no other value is specified. Note
that the browser uses a style sheet
with values that may vary from
the defaults defined in CSS.

Applies to

 Some properties apply only to
certain types of elements, such as
block or table elements.

Inherits

 This indicates whether the
property will be passed down
to the selected element’s
descendants. See Chapter
11, Cascading Style Sheets
Orientation for an explanation of
inheritance.

A Word About
Property Listings
Each new property listing in this
book is accompanied by information
on how it behaves and how to use it.
Here is a quick explanation of each
part of property listings.

Values

 These are the accepted values
for the property according to the
CSS2.1 specification. Predefined
values appear in code font
(for example, small, italic, or
small-caps) and must be typed
in exactly as shown.

Default

 This is the value that will be used
for the property by default, that is,
if no other value is specified. Note
that the browser uses a style sheet
with values that may vary from
the defaults defined in CSS.

Applies to

 Some properties apply only to
certain types of elements, such as
block or table elements.

Inherits

 This indicates whether the
property will be passed down
to the selected element’s
descendants. See Chapter
11, Cascading Style Sheets
Orientation for an explanation of
inheritance.

The Font Properties

Chapter 12, Formatting Text 205

Fortunately, CSS allows you to provide a list of back-up fonts should your

first choice not be available. In the third example above, if the browser does

not find Trebuchet MS, it will use Verdana, and if Verdana is not available, it

will substitute some other sans-serif font.

Generic font families

That last option, “some other sans-serif font,” bears more discussion. “Sans-

serif” is just one of five generic font families that you can specify with the

font-family property. When you specify a generic font family, the browser

chooses an available font from that stylistic category. Figure 12-2 shows

examples from each family. Generic font family names do not need to be

capitalized.

serif

 Examples: Times, Times New Roman, Georgia

 Serif typefaces have decorative serifs, or slab-like appendages, on the ends

of certain letter strokes.

sans-serif

 Examples: Arial, Arial Black, Verdana, Trebuchet MS, Helvetica, Geneva

 Sans-serif typefaces have straight letter strokes that do not end in serifs.

They are generally considered easier to read on computer monitors.

monospace

 Examples: Courier, Courier New, and Andale Mono

 In monospace (also called constant width) typefaces, all characters take

up the same amount of space on a line. For example, a capital W will be

no wider than a lowercase i. Compare this to proportional typefaces (such

as the one you’re reading now) that allot different widths to different char-

acters.

cursive

 Examples: Apple Chancery, Zapf-Chancery, and Comic Sans

 Cursive fonts emulate a script or handwritten appearance. These are

rarely specified for professional web pages.

fantasy

 Examples: Impact, Western, or other decorative font

 Fantasy fonts are purely decorative and would be appropriate for head-

lines and other display type. Fantasy fonts are rarely used for web text due

to cross-platform availability and legibility.

All of the font properties
are related to the shapes
of characters.

All of the font properties
are related to the shapes
of characters.

Part III: CSS for Presentation206

The Font Properties

Serif Decorative
serif stroke

Straight
strokes

Sans-serif

Times Georgia

Times New Roman Lucida (Mac)

Veranda Trebuchet MS

Arial Arial Black

Courier

Courier New Andale Mono

Comic Sans Snell

Stencil Mojo

Apple Chancery

Imapct

Monospace

Cursive

Fantasy

Monospace font
(equal widths)

Proportional font
(different widths)

Figure 12-2. Examples of the five generic font families.

Font specifying strategies

The best practice for specifying fonts for web pages is to start with your first

choice, provide some similar alternatives, then end with a generic font family

that at least gets users in the right stylistic ballpark. Here’s another example

of this strategy in action. With this style rule, I specify that I’d prefer that users

see all the text in Verdana, but I’d settle for Arial, or Helvetica, or, if all else

fails, I’ll let the browser choose an available sans-serif font for me.

body { font-family: Verdana, Arial, Helvetica, sans-serif; }

Because a font will only show up if it’s on a user’s hard drive, it makes sense

to specify fonts that are the most commonly available. Although there are

countless fonts out there, the fact is that because licensed copies of fonts cost

big bucks, most users stick with the fonts that are installed by their operating

You’ll find that the majority of
professional web sites use Verdana
because it was specially designed to
be legible at small sizes on computer
monitors. This is a common value
line-up for font-family:

Verdana, Arial, sans-serif

D e S I G n t I P

You’ll find that the majority of
professional web sites use Verdana
because it was specially designed to
be legible at small sizes on computer
monitors. This is a common value
line-up for font-family:

Verdana, Arial, sans-serif

D e S I G n t I P

The Font Properties

Chapter 12, Formatting Text 207

system or other applications. Font copyright also prevents designers from just

making cool fonts available for download.

For these reasons, web designers tend to specify fonts from the Microsoft

Core Web Fonts collection. These come installed with Windows, Internet

Explorer, and Microsoft Office, so it is likely that they will find their way onto

all Windows and even most Apple and Linux computers. Not only are they

widely available, they were designed to be legible on low-resolution computer

screens. Table 12-1 lists the fonts in the collection.

Table 12-1. Core Web Fonts from Microsoft

Serif Georgia, Times New Roman

Sans Serif Arial, Arial Black, Trebuchet MS, Verdana

Monospace Courier New, Andale Mono

Miscellaneous Comic Sans, Impact, Webdings

So, as you see, specifying fonts for the Web is more like merely suggesting

them. You don’t have absolute control over which font your users will see. It’s

one of those web design quirks you learn to live with.

Now seems like a good time to get started formatting the Black Goose

Bistro menu. We’ll add new style rules one at a time as we learn each new

property.

N OT E

There are techniques for using graphics
and even small Flash movies for head-
lines in order to achieve more stylized
typography than can be handled with
CSS alone. These image replacement
techniques are not appropriate for large
amounts of text, however. Read more
about image replacement in Chapter 17,
CSS Techniques.

N OT E

There are techniques for using graphics
and even small Flash movies for head-
lines in order to achieve more stylized
typography than can be handled with
CSS alone. These image replacement
techniques are not appropriate for large
amounts of text, however. Read more
about image replacement in Chapter 17,
CSS Techniques.

exercise 12-1 | Formatting a menu

In this exercise, we’ll add font properties to the Black Goose Bistro menu document,
menu-summer.html, that you marked up back in Chapter 5. A fresh and validated
copy, complete with DOCTYPE declaration, is available at www.learningwebdesign.
com/materials. Open the document in a text editor. You can also open it in a browser
to see its “before” state. It should look similar to the page shown in Figure 12-1. Hang
onto this document, because this exercise will continue as we pick up additional font
properties.

We’re going to use an embedded style sheet for this exercise. Start by adding
a style element with its required type attribute to the head of the document
(remember, the only place a style element can go is in the head), like this:

<head>
 <title>Black Goose Bistro</title>
 <style type="text/css">

 </style>
</head>

1.

exercise 12-1 | Formatting a menu

In this exercise, we’ll add font properties to the Black Goose Bistro menu document,
menu-summer.html, that you marked up back in Chapter 5. A fresh and validated
copy, complete with DOCTYPE declaration, is available at www.learningwebdesign.
com/materials. Open the document in a text editor. You can also open it in a browser
to see its “before” state. It should look similar to the page shown in Figure 12-1. Hang
onto this document, because this exercise will continue as we pick up additional font
properties.

We’re going to use an embedded style sheet for this exercise. Start by adding
a style element with its required type attribute to the head of the document
(remember, the only place a style element can go is in the head), like this:

<head>
 <title>Black Goose Bistro</title>
 <style type="text/css">

 </style>
</head>

1. N OT E

If your browser is configured to use
Verdana or a sans-serif font as its default
font, you won’t see much of a change
after adding this rule. Hang in there,
more changes are to come.

N OT E

If your browser is configured to use
Verdana or a sans-serif font as its default
font, you won’t see much of a change
after adding this rule. Hang in there,
more changes are to come.

Part III: CSS for Presentation208

The Font Properties

Specifying font size

Use the aptly-named font-size property to specify the size of the text.

font-size
Values: length unit, percentage, xx-small | x-small | small | medium | large | x-large |

xx-large | smaller | larger | inherit

Default: medium

Applies to: all elements

Inherits: yes

You can specify text in a several ways:

At a specific size using one of the CSS length units (see the sidebar, CSS

Units of Measurement, for a complete list), as shown here:

 h1 { font-size: 1.5em; }

When specifying a number of units, be sure the unit abbreviation imme-

diately follows the number, with no extra character space in between:

 INCORRECT h1 { font-size: 1.5 em; } /*space before the em*/

•

CSS Units of
Measurement
CSS2 provides a variety of units of
measurement. They fall into two
broad categories: absolute and
relative.

Absolute units

Absolute units have predefined
meanings or real-world equivalents.

pt points (1/72 inch in CSS2.1)

pc picas (1 pica = 12 points)

mm millimeters

cm centimeters

in inches

Absolute units should be avoided
for web page style sheets because
they are not relevant on computer
screens. However, if you are creating
a style sheet to be used when the
document is printed, they may be
just the ticket.

Relative units

Relative units are based on the
size of something else, such as the
default text size, or the size of the
parent element.

em a unit of measurement equal to
the current font size.

ex approximately the height of a
lowercase “x” in the font.

px pixel, considered relative
because it varies with display
resolution, particularly between
low resolution screens and high
resolution print output.

% percentage values, although
not a unit of measurement, are
another way to specify relative size.

It is recommended that you stick
with ems, percentage values, or
a combination of the two when
specifying text size.

CSS Units of
Measurement
CSS2 provides a variety of units of
measurement. They fall into two
broad categories: absolute and
relative.

Absolute units

Absolute units have predefined
meanings or real-world equivalents.

pt points (1/72 inch in CSS2.1)

pc picas (1 pica = 12 points)

mm millimeters

cm centimeters

in inches

Absolute units should be avoided
for web page style sheets because
they are not relevant on computer
screens. However, if you are creating
a style sheet to be used when the
document is printed, they may be
just the ticket.

Relative units

Relative units are based on the
size of something else, such as the
default text size, or the size of the
parent element.

em a unit of measurement equal to
the current font size.

ex approximately the height of a
lowercase “x” in the font.

px pixel, considered relative
because it varies with display
resolution, particularly between
low resolution screens and high
resolution print output.

% percentage values, although
not a unit of measurement, are
another way to specify relative size.

It is recommended that you stick
with ems, percentage values, or
a combination of the two when
specifying text size.

I would like all the text on the page to appear in Verdana or some other sans-serif
font. Instead of writing a rule for every element in the document, we will write
one rule for the body element that will be inherited by all the elements it contains.
Add this rule to the embedded style sheet.

<style type="text/css">

 body {font-family: Verdana, sans-serif;}

</style>

Save the document and reload the page in the browser. It should look like Figure 12-
3. We’ll work on the font size in the next installment.

2.

Figure 12-3. The menu in the Verdana or sans-serif font.Figure 12-3. The menu in the Verdana or sans-serif font.

The Font Properties

Chapter 12, Formatting Text 209

As a percentage value, sized up or down from the element’s default or

inherited font size:

 h1 { font-size: 150%; }

Using one of the absolute keywords (xx-small, x-small, small, medium,

large, x-large, xx-large). On most current browsers, medium corresponds

to the default font size:

 h1 { font-size: x-large; }

Using a relative keyword (larger or smaller) to nudge the text larger or

smaller than the surrounding text:

 strong { font-size: larger; }

I’m going to cut to the chase and tell you that, despite all these options, the

only acceptable values for font-size in contemporary web design are em

measurements, percentage values, and keywords. These are preferred because

they allow users to resize text using the text-zoom feature on their browser.

This means you can size the text as you prefer it (generally smaller than the

most common default 16 pixel text), but still rest assured that users can make

it larger if they have special needs or preferences.

While it may be tempting to specify text in actual pixel measurements, Internet

Explorer (all versions) does not allow text-zoom on type sized in pixels. That

means users are stuck with your 10 or 11 pixel type, even if they are unable to

read it. That’s a big no-no in terms of accessibility. In addition, all of the abso-

lute units such as pt, pc, in, mm, and cm are out because they are irrelevant on

computer monitors (although they may be useful for print style sheets).

Working with keywords

Many web designers like to specify type size using one of the predefined

absolute keywords: xx-small, x-small, small, medium, large, x-large, xx-

large. The keywords do not correspond to particular measurements, but

rather are scaled consistently in relation to one another. The default size

is medium in current browsers. Figure 12-4 shows how each of the absolute

keywords renders in a browser when the default text is set at 16 pixels. I’ve

included samples in Verdana and Times to show that, even with the same

base size, there is a big difference in legibility at sizes small and below.

Figure 12-4. Text sized with absolute keywords.

•

•

•

Part III: CSS for Presentation210

The Font Properties

The benefit of keywords is that current browsers in Standards Mode will never

let text sized in keywords render smaller than 9 pixels, so they protect against

illegible type (although I would still opt for Verdana for better readability).

On the downside, the size keywords are imprecise and unpredictable. For

example, while most browsers scale each level up by 120%, some browsers use

a scaling factor of 150%. Another notable problem is that Internet Explorer 5

and 5.5 for Windows use small as the default (not medium), meaning your text

will display a lot smaller for users with those browsers. Fortunately, with the

introduction of IE 7, these old versions are slowly going away.

The relative keywords, larger and smaller, are used to shift the size of text

relative to the size of the parent element text. The exact amount of the size

change is determined by each browser, and is out of your control. Despite that

limitation, it is an easy way to nudge type a bit larger or smaller if the exact

proportions are not critical.

Figure 12-5 shows the result of this simple bit of markup (note that the inline

styles were used just to keep the example compact).

<p>There are two relative keywords:
 larger and
 smaller. They are used to
shift the size of text relative to the parent element.</p>

Figure 12-5. Relative size keywords make text slightly larger or smaller than the surrounding text.

Working with percentages and ems

By far the most popular way to specify font sizes for the Web is using em

measurements or percentage values, or a combination of the two. Both ems

and percentages are relative measurements, which means they are based on

another font size, namely, the font-size of the parent element.

In this example, the font-size of the h1’s parent element (body) is 16 pixels, so

the resulting size of the h1 would be 150% of that, or 24 pixels.

body { font-size: 16px; }
h1 { font-size: 150%; } /* 150% of 16 = 24 */

If no font-size properties have been specified, relative measurements are

based on the browser’s base font size, which is 16 pixels in most browsers. Of

course, users can resize their base font as small or as large as they like, so there

is no guaranteed starting size, only a reasonable guess.

An em is a relative unit of measurement that, in traditional typography, is

based on the width of the capital letter M (thus, the name “em”). In the CSS

specification, an em is calculated as the distance between baselines when the

N OT E

Don’t confuse the em unit of measure-
ment with the em (X)HTML element used
to indicate emphasized text. They are
totally different things.

N OT E

Don’t confuse the em unit of measure-
ment with the em (X)HTML element used
to indicate emphasized text. They are
totally different things.

The Font Properties

Chapter 12, Formatting Text 211

font is set without any extra space between the lines (also known as leading).

For text with a font size of 16 pixels, an em measures 16 pixels; for 12 pixel

text, an em equals 12 pixels, and so on, as shown in Figure 12-6.

em box

24px type
1em=24px

12px type
1em=12px

16px type
1em=16px

Figure 12-6. An em is based on the size of the text.

Once the dimensions of an em for a text element is calculated by the browser,

it can be used for all sorts of measurements, such as indents, margins, the

width of the element on the page, and so on.

For text sizing, an em value works like a scaling factor, similar to a percent-

age. As in the previous example, if the base font size is 16 pixels, giving h1

elements a font-size of 1.5 ems makes them 24 pixels high.

body { font-size: 16px; }
h1 { font-size: 1.5em; } /* 1.5 x 16 = 24 */

For the most part, ems and percentages can be used interchangeably when

specifying type size. It’s mostly a matter of preference.

There are a few snags to working with ems. One is that due to rounding

errors, there is a lot of inconsistency among browsers and platforms when

text size is set in fractions of an em. There are also documented problems in

Internet Explorer when font-size is specified at sizes smaller than 1em. It is

safest to use ems to scale text larger.

For both ems and percentages, there is the lingering issue of not knowing the

base font size. We are left with best guesses, and the assumption that users

probably have their default font size set to a size that is comfortable to read,

and we probably shouldn’t muck around with it too much. There is much

more to the font size story. The Font Sizing Techniques sidebar lists some

good resources for further research.

N OT E

Although I’ve set the size of the body text in pixels in the previous two examples for
explanation purposes, you wouldn’t want to do that in the real world because the text
could not be zoomed in Internet Explorer.

In the meantime, we can add some font-size properties to the sample menu

in the continuation of Exercise 12-1.

Font Sizing
Techniques
Sizing type for web pages is
problematic and the subject of
much debate even among seasoned
web designers.

One popular method for sizing text
is to make the text slightly smaller
globally (using the body element)
with a percentage value, then size
all the elements up as appropriate
using em measurements. The
following articles provide slightly
different takes on that method.

How to Size Text Using
Ems, by Richard Rutter (www.
clagnut.com/blog/348) is a
detailed how-to that makes
em increments easy to use. The
comments to this blog entry are
also informative and give good
insight into the varying opinions
on how web text should be sized.

Owen Briggs’ article on Text
Sizing is the result of exhaustive
cross-browser testing. Hundreds
of screenshots are available if
you want the proof. This article is
a little dated, but still brings up
relevant issues. Read it at www.
thenoodleincident.com/tutorials/
box_lesson/font/index.html.

If keywords are vexing you, read
Todd Fahrner’s classic article, CSS
Design: Size Matters on A List
Apart (www.alistapart.com/articles/
sizematters/). It is a little dated (for
example, support in Netscape 4
figures prominently), but it provides
some useful background information
and workarounds.





Font Sizing
Techniques
Sizing type for web pages is
problematic and the subject of
much debate even among seasoned
web designers.

One popular method for sizing text
is to make the text slightly smaller
globally (using the body element)
with a percentage value, then size
all the elements up as appropriate
using em measurements. The
following articles provide slightly
different takes on that method.

How to Size Text Using
Ems, by Richard Rutter (www.
clagnut.com/blog/348) is a
detailed how-to that makes
em increments easy to use. The
comments to this blog entry are
also informative and give good
insight into the varying opinions
on how web text should be sized.

Owen Briggs’ article on Text
Sizing is the result of exhaustive
cross-browser testing. Hundreds
of screenshots are available if
you want the proof. This article is
a little dated, but still brings up
relevant issues. Read it at www.
thenoodleincident.com/tutorials/
box_lesson/font/index.html.

If keywords are vexing you, read
Todd Fahrner’s classic article, CSS
Design: Size Matters on A List
Apart (www.alistapart.com/articles/
sizematters/). It is a little dated (for
example, support in Netscape 4
figures prominently), but it provides
some useful background information
and workarounds.





Part III: CSS for Presentation212

The Font Properties

exercise 12-1 | Formatting a menu
(continued)

Let’s refine the size of some of the text elements to give the online menu a more
sophisticated appearance. Open menu_summer.html in a text editor and follow the
steps below. You can save the document at any point and take a peek in the browser
to see the results of your work. You should also feel free to try out other size values
along the way.

I would prefer that the body text for the document appear smaller than the
common 16 pixel default. I am going to set the size of the body to small, which
renders at approximately 12 pixels on most current browsers. If it ends up too
small for some users, they can always zoom the text up, since it was specified
with a keyword.

body { font-size: small; }

Now let’s get that giant h1 under control. I’m going to make it one and a half
times larger than the body text size with an em measurement. I could also use
font-size: 150% to accomplish the same thing.

h1 { font-size: 1.5em; }

Figure 12-7 shows the result of our font sizing efforts.

smaller h1

Before

After (the font-size is set to small)

Figure 12-7. The online menu after a few minor font-size changes.

I want to point out that at this point, I don’t really know exactly how many pixels tall
the h1s will be for every user. They’re likely to be 18 pixels, but they may be smaller or
much larger. The important part is that I’ve set my desired proportion of h1 elements
to the surrounding text. If the user resizes or zooms the text, that proportion stays
the same.

1.

2.

The Font Properties

Chapter 12, Formatting Text 213

Font weight (boldness)

After font families and size, the remaining font properties are straightfor-

ward. For example, if you want a text element to appear in bold, use the

font-weight property to adjust the boldness of type.

font-weight
Values: normal | bold | bolder | lighter | 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 |

900 | inherit

Default: normal

Applies to: all elements

Inherits: yes

As you can see, the font-weight property has many predefined values, includ-

ing descriptive terms (normal, bold, bolder, and lighter) and nine numeric

values (100 to 900) for targeting various weights of a font if they are available.

Because most fonts common on the Web have only two weights, normal (or

roman) and bold, the only font weight value you will use in most cases is

bold. You may also use normal to make text that would otherwise appear in

bold (such as strong text or headlines) appear at a normal weight.

The numeric chart is an interesting idea, but because there aren’t many fonts

with that range of weights and because browser support is spotty, they are not

often used. In general, numeric settings of 600 and higher result in bold text,

although even that can vary by browser, as shown in Figure 12-8.

Rendered on Safari Rendered on Firefox (Mac)

Figure 12-8. The effect of font-weight values.

About inherit
You will see that CSS properties
include inherit in their list of
keyword values. The inherit value
allows you to explicitly force an
element to inherit a style property
value from its parent. This may come
in handy to override other styles
applied to that element and to
guarantee that the element always
matches its parent.

About inherit
You will see that CSS properties
include inherit in their list of
keyword values. The inherit value
allows you to explicitly force an
element to inherit a style property
value from its parent. This may come
in handy to override other styles
applied to that element and to
guarantee that the element always
matches its parent.

exercise 12-1 | Formatting a menu
(continued)

Back to the menu. I’ve decided that I’d like all of the menu item names to be in
bold text. What I’m not going to do is wrap each one in tags... that would be so
1996! I’m also not going mark them up as strong elements... that is not semantically
accurate. Instead, the right thing to do is simply apply a style to the semantically
correct dt (definition term) elements to make them all bold at once. Add this rule to
your style sheet, save the file, and try it out in the browser (Figure 12-9).

dt { font-weight: bold; }

exercise 12-1 | Formatting a menu
(continued)

Back to the menu. I’ve decided that I’d like all of the menu item names to be in
bold text. What I’m not going to do is wrap each one in tags... that would be so
1996! I’m also not going mark them up as strong elements... that is not semantically
accurate. Instead, the right thing to do is simply apply a style to the semantically
correct dt (definition term) elements to make them all bold at once. Add this rule to
your style sheet, save the file, and try it out in the browser (Figure 12-9).

dt { font-weight: bold; }

Part III: CSS for Presentation214

The Font Properties

Figure 12-9. Using the font-weight property to dt elements in the menu.

Font style (italics)

The font-style property affects the posture of the text, that is, whether the

letter shapes are vertical (normal) or slanted (italic and oblique).

font-style
Values: normal | italic | oblique | inherit

Default: normal

Applies to: all elements

Inherits: yes

Italic and oblique are both slanted versions of the font. The difference is

that the italic version is usually a separate typeface design with curved letter

forms, while oblique text takes the normal font design and just slants it. The

truth is that in most browsers, they may look exactly the same (see Figure

12-10). You’ll probably only use the font-style property to make text italic

or to make text that is italicized by default (such as emphasized text) display

as normal.

Figure 12-10. Italic and oblique text.

The Font Properties

Chapter 12, Formatting Text 215

Figure 12-11. Applying the font-style property to the strong elements.

Font Variant (Small Caps)

Some typefaces come in a “small caps” variant. This is a separate font design

that uses small uppercase-style letters in place of lowercase letter designs.

The one-trick-pony font-variant property is intended to allow designers to

specify such a small-caps font for text elements.

font-variant
Values: normal | small-caps | inherit

Default: normal

Applies to: all elements

Inherits: yes

In most cases, a true small caps font is not available, so browsers simulate

small caps by scaling down uppercase letters in the current font, as you’ll see

when we add some small caps text to the menu next. To typography sticklers,

this is less than ideal and results in inconsistent stroke weights, but you may

find it an acceptable option for adding variety to small amounts of text.

h1 in small caps

Figure 12-12. Using font-variant for small caps.

exercise 12-1 |
Formatting a menu
(continued)

Now that all the menu item names
are bold, some of the text I’ve
marked as strong isn’t standing out
very well, so I think I’ll make them
italic for further emphasis. To do
this, simply apply the font-style
property to the strong element.

strong { font-style: italic;
}

Once again, save and reload. It
should look like the detail shown in
Figure 12-11.

exercise 12-1 |
Formatting a menu
(continued)

Now that all the menu item names
are bold, some of the text I’ve
marked as strong isn’t standing out
very well, so I think I’ll make them
italic for further emphasis. To do
this, simply apply the font-style
property to the strong element.

strong { font-style: italic;
}

Once again, save and reload. It
should look like the detail shown in
Figure 12-11.

exercise 12-1 |
Formatting a menu
(continued)

Just for kicks, let’s set the first level
heading (h1) in small caps so we can
try out this font-variant property.
Remember that you can add this
property to the existing h1 rule. The
result is shown in Figure 12-12. If you
find it kind of clunky, don’t worry,
we’ll be undoing it later.

h1 {
 font-size: 1.5em;
 font-variant: small-caps;
}

exercise 12-1 |
Formatting a menu
(continued)

Just for kicks, let’s set the first level
heading (h1) in small caps so we can
try out this font-variant property.
Remember that you can add this
property to the existing h1 rule. The
result is shown in Figure 12-12. If you
find it kind of clunky, don’t worry,
we’ll be undoing it later.

h1 {
 font-size: 1.5em;
 font-variant: small-caps;
}

Part III: CSS for Presentation216

The Font Properties

The shortcut font property

Specifying multiple font properties for each text element could get repetitive

and lengthy, so the creators of CSS provided the shorthand font property that

compiles all the font-related properties into one rule.

font
Values: font-style font-weight font-variant font-size/line-height

font-family (see also values in System Fonts sidebar) | inherit

Default: depends on default value for each property listed

Applies to: all elements

Inherits: yes

The value of the font property is a list of values for all the font properties we

just looked at, separated by character spaces. In this property, the order of the

values is important:

{ font: style weight variant size/line-height font-family }

At minimum, the font property must include a font-size value and a font-fami-

ly value, in that order. Omitting one or putting them in the wrong order causes the

entire rule to be invalid. This is an example of a minimal font property value:

p { font: 1em sans-serif; }

Once you’ve met the size and family requirements, the other values are

optional and may appear in any order prior to the font-size. When style,

weight, or variant are omitted, they will revert back to normal. There is one

value in there, line-height, that we have not seen before. As it sounds, it

adjusts the height of the text line from baseline to baseline. It appears just

after font-size, separated by a slash, as shown in these examples.

h3 { font: oblique bold small-caps 1.5em/1.8em Verdana, Arial,
sans-serif; }

h2 { font: bold 1.75em/2 sans-serif; }

Let’s use the shorthand font property to make some changes to the h2 headings.

System Fonts
The font property also allows
designers to specify fonts from
the operating system of the user’s
computer or other viewing device.
This may be useful when designing
a web application that blends in
with the surrounding desktop
environment. The system font values
for the font property are:

caption

 used for captioned controls
(buttons, menus, etc.)

icon

 used to label icons

menu

 used in drop-down menus and
menu lists

message-box

 used in dialog boxes

small-caption

 used for labeling small controls

status-bar

 used in window status bars

System Fonts
The font property also allows
designers to specify fonts from
the operating system of the user’s
computer or other viewing device.
This may be useful when designing
a web application that blends in
with the surrounding desktop
environment. The system font values
for the font property are:

caption

 used for captioned controls
(buttons, menus, etc.)

icon

 used to label icons

menu

 used in drop-down menus and
menu lists

message-box

 used in dialog boxes

small-caption

 used for labeling small controls

status-bar

 used in window status bars

One last tweak to the menu, then we’ll take a brief break. I
want the h2 headings to be in a bold, Georgia (serif) typeface
to stand out from the surrounding text. I also want it to be
1.2 times larger than the body font. Instead of writing out
three declarations, we’ll combine them in one shorthand font
property. Add this rule to the style sheet, save your work, and
take another look in the browser (Figure 12-13). Notice that the
font-size and font-family are next to one another and are the
last things in the list of values.

h2 { font: bold 1.2em Georgia, serif; }

You might find it redundant that I included the bold font-
weight value in this rule. After all, the h2 elements were already
bold, right? The thing about shorthand properties is that if you
omit a value, it is reset to the default value for that property;
it doesn’t just leave it the way it was before. In this case,
the default value for font-weight is normal. Because a style
sheet rule we’ve written overrides the browser’s default bold
rendering of headings, the h2s would appear in normal weight
text if we don’t explicitly make them bold in the font property.
Shorthand properties can be tricky that way... pay attention
that you don’t leave something out and override a default or
inherited value you were counting on.

exercise 12-1 | Formatting a menu (continued)

Changing Text Color

Chapter 12, Formatting Text 217

h2 after {font: bold 1.2em Georgia, serif;}h2 before

Figure 12-13. Changing multiple properties for h2 elements with the shorthand font
property

Changing Text Color
You got a glimpse of how to change text color in Chapter 11, and to be honest,

there’s not a lot more to say about it here. You change the color of text with

the color property.

color
Values: color value (name or numeric) | inherit

Default: depends on the browser and user’s preferences

Applies to: all elements

Inherits: yes

Using the color property is very straightforward. The value of the color

property can be one of 17 predefined color names or a numeric value describ-

ing a specific RGB color. Here are a few examples, all of which make the h1

elements in a document gray:

h1 { color: gray; }

h1 { color: #666666; }

h1 { color: #666; }

Don’t worry about the numeric values for now—I just wanted you to see

what they look like. RGB color is discussed in detail in Chapter 13, Colors

and Backgrounds, so in this chapter, we’ll just stick with the fairly limited list

of color names (see sidebar) for demonstration purposes.

Color is inherited, so you could change the color of all the text in a document

by applying the color property to the body element, as shown here:

body { color: fuchsia; }

OK, so you probably wouldn’t want all your text to be fuchsia, but you get

the idea.

Color Names
The 17 standard color names
defined in CSS2.1:

black silver gray

white maroon red

purple fuchsia green

lime olive yellow

navy blue teal

aqua orange (2.1 only)

A t A G l A n c e

Color Names
The 17 standard color names
defined in CSS2.1:

black silver gray

white maroon red

purple fuchsia green

lime olive yellow

navy blue teal

aqua orange (2.1 only)

A t A G l A n c e

Part III: CSS for Presentation218

A Few More Selector Types

For the sake of accuracy, I want to point out that the color property is not

strictly a text-related property. In fact, according to the CSS specification, it

is used to change the foreground (as opposed to the background) color of an

element. The foreground of an element consists of both the text it contains

as well as its border.

When you apply a color to an element (including image elements), that color

will be used for the border as well, unless there is a specific border-color

property that overrides it. We’ll talk more about borders and border color in

Chapter 14, Thinking Inside the Box.

Before we add color to the online menu, I want to take a little side trip and

introduce you to a few more types of selectors that will give us much more

flexibility in targeting elements in the document for styling.

A Few More Selector Types
So far, we’ve been using element names as selectors. In the last chapter, you

saw how selectors can be grouped together in a comma-separated list so you

can apply properties to several elements at once. Here are examples of the

selectors you already know.

element selector p { color: navy; }

grouped selectors p, ul, p, td, th { color: navy; }

The disadvantage of selecting elements this way, of course, is that the prop-

erty (in this case, navy blue text) will apply to every paragraph and other

listed elements in the document. Sometimes, you want to apply a rule to a

particular paragraph or paragraphs. In this section, we’ll look at three selec-

tor types that allow us to do just that: descendant selectors, ID selectors, and

class selectors.

Descendant selectors

A descendant selector targets elements that are contained within (therefore

descendants of) another element. It is an example of a contextual selector,

because it selects the element based on its context or relation to another ele-

ment. The sidebar, Other Contextual Selectors, lists some more.

Descendant selectors are indicated in a list separated by a character space.

This example targets emphasized text (em) elements, but only when they

appear in list items (li). Emphasized text in paragraphs and other elements

would be unaffected (Figure 12-14).

li em { color: olive; }

A character space between
element names means that
the second element must
be contained within the
first.

A character space between
element names means that
the second element must
be contained within the
first.

A Few More Selector Types

Chapter 12, Formatting Text 219

li em {property: value;}

html

head body

title style h2p

em

ul

em li li li em

em em

Figure 12-14. Only em elements within li elements are selected. The other em elements
are unaffected.

Here’s another example that shows how contextual selectors can be grouped

in a comma-separated list, just as we saw earlier. This rule targets em ele-

ments, but only when they appear in h1, h2, and h3 headings.

h1 em, h2 em, h3 em { color: red; }

It is also possible to nest descendant selectors several layers deep. This exam-

ple targets em elements that appear in anchors (a) in ordered lists (ol).

ol a em { font-variant: small-caps; }

ID selectors

Way back in Chapter 5, Marking Up Text, we learned about the id attribute

that gives an element a unique identifying name (its id reference). The id

attribute can be used with any (X)HTML element, and it is commonly used

to give meaning to the generic div and span elements. (We also saw it used

in Chapter 6, Adding Links to create document fragments and in Chapter 9,

Forms to associate a text label with its respective form control.)

ID selectors allow you to target elements by their id values. The symbol that

identifies ID selectors is the octothorpe (#), also called a hash symbol.

Here is an example of a list item with an id reference.

<li id="catalog1234">Happy Face T-shirt

Now you can write a style rule just for that list item using an ID selector, like

so (notice the # preceding the id reference):

li#catalog1234 { color: red; }

Because id values must be unique in the document, it is acceptable to omit

the element name. This rule is equivalent to the last one:

#catalog1234 { color: red; }

Other Contextual
Selectors
Descendant selectors are one of
three types of contextual selectors.
The other two, child selectors
and adjacent sibling selectors, are
defined in CSS2.1 but unfortunately,
are not supported in Internet
Explorer 6 and earlier. They are
supported in IE7.

A child selector is similar to a
descendant selector, but it targets
only the direct children of a given
element (there may be no other
hierarchical levels in between).
They are indicated with the greater
than symbol (>). This rule affects
emphasized text, but only when it
is directly contained in a p element.
The em elements in other elements,
such as list items (li) or anchors (a)
would not be affected.

p > em {font-weight: bold; }

An adjacent sibling selector is used
to target an element that comes
directly after another element with
the same parent. It is indicated with
a plus (+) sign. This rule gives special
treatment just to paragraphs that
follow an h1. Other paragraphs are
unaffected.

h1 + p {font-style: italic;}

Other Contextual
Selectors
Descendant selectors are one of
three types of contextual selectors.
The other two, child selectors
and adjacent sibling selectors, are
defined in CSS2.1 but unfortunately,
are not supported in Internet
Explorer 6 and earlier. They are
supported in IE7.

A child selector is similar to a
descendant selector, but it targets
only the direct children of a given
element (there may be no other
hierarchical levels in between).
They are indicated with the greater
than symbol (>). This rule affects
emphasized text, but only when it
is directly contained in a p element.
The em elements in other elements,
such as list items (li) or anchors (a)
would not be affected.

p > em {font-weight: bold; }

An adjacent sibling selector is used
to target an element that comes
directly after another element with
the same parent. It is indicated with
a plus (+) sign. This rule gives special
treatment just to paragraphs that
follow an h1. Other paragraphs are
unaffected.

h1 + p {font-style: italic;}

The # symbol identifies an
ID selector.
The # symbol identifies an
ID selector.

ID values must start with a letter
(A-Z or a-z). In addition to let-
ters, the name may contain digits
(0-9), hyphens (-), underscores (_),
colons (:), and periods (.).

R e m I n D e R

ID values must start with a letter
(A-Z or a-z). In addition to let-
ters, the name may contain digits
(0-9), hyphens (-), underscores (_),
colons (:), and periods (.).

R e m I n D e R

Part III: CSS for Presentation220

A Few More Selector Types

You can also use an ID selector as part of a contextual selector. In this example,

a style is applied only to li elements that appear within any element identi-

fied as “sidebar.” In this way, you can treat list items in the sidebar differently

than all the other list items on the page without any additional markup.

#sidebar li { margin-left: 10px; }

You should be beginning to see the power of selectors and how they can be

used strategically along with well-planned, semantic markup.

Class selectors

One last selector type, then we can get back to text style properties. The other

element identifier you learned about in Chapter 5 is the class identifier, used

to classify elements into a conceptual group. Unlike the id attribute, multiple

elements may share a class name. Not only that, an element may belong to

more than one class.

You can target elements belonging to the same class with, you guessed it, a

class selector. Class names are indicated with a period (.) in the selector. For

example, to select all paragraphs with class="special", use this selector (the

period indicates the following word is a class selector):

p.special { color: orange; }

To apply a property to all elements of the same class, omit the element name

in the selector (be sure to leave the period; it’s the character that indicates a

class). This would target all paragraphs and any other element that has been

marked up with class="special".

.special { color: orange; }

Specificity 101

In Chapter 11, I introduced you to the term specificity, which refers to the fact

that more specific selectors have more weight when it comes to handling

style rule conflicts. Now that you know a few more selectors, it is a good time

to revisit this very important concept.

The actual system CSS uses for calculating selector specificity is quite com-

plicated, but this list of selector types from most to least specific should serve

you well in most scenarios.

ID selectors are more specific than (and will override)

Class selectors, which are more specific than (and will override)

Contextual selectors, which are more specific than (and will override)

Individual element selectors

So, for example, if a style sheet has two conflicting rules for the strong element,

strong { color: red;}
h1 strong { color: blue; }

•

•

•

•

The period (.) symbol
indicates a class selector.
The period (.) symbol
indicates a class selector.

Try using a contextual (descendant)
selector before adding unnecessary
class attributes to your markup. It
will keep your markup simple and
your style sheet streamlined. To read
more, see Tantek Çelik’s blog post,
Context before Class, at tantek.com/
log/2002/12.html#atoc_cbeforec. It
is a few years old, but still relevant.

c S S t I P

Try using a contextual (descendant)
selector before adding unnecessary
class attributes to your markup. It
will keep your markup simple and
your style sheet streamlined. To read
more, see Tantek Çelik’s blog post,
Context before Class, at tantek.com/
log/2002/12.html#atoc_cbeforec. It
is a few years old, but still relevant.

c S S t I P

The Universal
Selector
CSS2 introduced a universal
element selector (*) that matches
any element (like a wildcard in
programming languages). The style
rule

* {color: gray; }

makes every element in a document
gray. It is also useful as a contextual
selector, as shown in this example
that selects all elements in an intro
section:

#intro * { color: gray; }

The universal selector causes
problems with form controls in some
browsers. If your page contains form
inputs, the safest bet is to avoid the
universal selector.

The Universal
Selector
CSS2 introduced a universal
element selector (*) that matches
any element (like a wildcard in
programming languages). The style
rule

* {color: gray; }

makes every element in a document
gray. It is also useful as a contextual
selector, as shown in this example
that selects all elements in an intro
section:

#intro * { color: gray; }

The universal selector causes
problems with form controls in some
browsers. If your page contains form
inputs, the safest bet is to avoid the
universal selector.

A Few More Selector Types

Chapter 12, Formatting Text 221

the contextual selector (h1 strong) is more specific and therefore has more

weight than the element selector.

You can use specificity strategically to keep your style sheets simple and your

markup minimal. For example, it is possible to set a style for an element (p, in

this example), then override when necessary by using more specific selectors.

p { line-height: 1.2em; }
blockquote p { line-height: 1em; }
p.intro { line-height: 2em; }

In these examples, p elements that appear within a blockquote have a smaller

line height than ordinary paragraphs. However, all paragraphs with a class

of “intro” will have a 2em line height, even if it appears within a blockquote,

because class selectors are more specific than contextual selectors.

Understanding the concepts of inheritance and specificity are critical to mas-

tering CSS. There is a lot more to be said about specificity, including a tuto-

rial by Andy Clarke that uses a Star Wars analogy to bring the point home.

References are provided in the More About Specificity sidebar.

Now, back to the menu. Fortunately, our Black Goose Bistro has been marked

up thoroughly and semantically, so we have a lot of options for selecting spe-

cific elements. Give these new selectors a try in Exercise 12-2.

More About
Specificity
The specificity overview in this
chapter is enough to get you
started, but when you get more
experienced and your style sheets
become more complicated, you may
find that you need a more thorough
understanding of the inner workings.

For the very technical explanation of
exactly how specificity is calculated,
see the CSS Recommendation at
www.w3.org/TR/2003/WD-CSS21-
20030915/cascade.html#specificity.

Eric Meyer provides a thorough, yet
more digestible, description of this
system in his book, Cascading Style
Sheets, The Definitive Guide, 2nd
Edition (O’Reilly Media).

I also recommend the online article,
CSS: Specificity Wars, by Andy
Clarke which explains specificity
in terms of “Sith power” using
characters from Star Wars (www.
stuffandnonsense.co.uk/archives/
css_specificity_wars.html). He also
provides a list of links to further
specificity resources.

More About
Specificity
The specificity overview in this
chapter is enough to get you
started, but when you get more
experienced and your style sheets
become more complicated, you may
find that you need a more thorough
understanding of the inner workings.

For the very technical explanation of
exactly how specificity is calculated,
see the CSS Recommendation at
www.w3.org/TR/2003/WD-CSS21-
20030915/cascade.html#specificity.

Eric Meyer provides a thorough, yet
more digestible, description of this
system in his book, Cascading Style
Sheets, The Definitive Guide, 2nd
Edition (O’Reilly Media).

I also recommend the online article,
CSS: Specificity Wars, by Andy
Clarke which explains specificity
in terms of “Sith power” using
characters from Star Wars (www.
stuffandnonsense.co.uk/archives/
css_specificity_wars.html). He also
provides a list of links to further
specificity resources.

exercise 12-2 | Using selectors

This time, we'll add a few more style rules using descendant, ID, and class selectors
combined with the font and color properties we’ve learned about so far.

I’d like to add some color to the “new item!” elements next to certain menu item
names. They are marked up as strong, so we can apply the color property to the
strong element. Add this rule to the embedded style sheet, save the file, and
reload it in the browser.

strong { color: maroon; }

That worked, but now the strong element “Very spicy” in the description is
maroon, too, and that’s not what I want. The solution is to use a contextual
selector that targets only the strong elements that appear in dt elements. Try this
and take a look.

dt strong { color: maroon; }

Look at the document source and you will see that the content has been divided
into three unique divs: header, appetizers, and entrees. We can use these to our
advantage when it comes to styling. For now, let’s do something simple and make
all the text in the header teal. Because color inherits, we only need to apply the
property to the div and it will be passed down to the h1 and p.

#header { color: teal; }

Now let’s get a little fancier and make the paragraph inside the header italic in
a way that doesn’t affect the other paragraphs on the page. Again, a contextual
selector is the answer. This rule selects only paragraphs contained within the
header section of the document.

#header p { font-style: italic; }

1.

2.

3.

exercise 12-2 | Using selectors

This time, we'll add a few more style rules using descendant, ID, and class selectors
combined with the font and color properties we’ve learned about so far.

I’d like to add some color to the “new item!” elements next to certain menu item
names. They are marked up as strong, so we can apply the color property to the
strong element. Add this rule to the embedded style sheet, save the file, and
reload it in the browser.

strong { color: maroon; }

That worked, but now the strong element “Very spicy” in the description is
maroon, too, and that’s not what I want. The solution is to use a contextual
selector that targets only the strong elements that appear in dt elements. Try this
and take a look.

dt strong { color: maroon; }

Look at the document source and you will see that the content has been divided
into three unique divs: header, appetizers, and entrees. We can use these to our
advantage when it comes to styling. For now, let’s do something simple and make
all the text in the header teal. Because color inherits, we only need to apply the
property to the div and it will be passed down to the h1 and p.

#header { color: teal; }

Now let’s get a little fancier and make the paragraph inside the header italic in
a way that doesn’t affect the other paragraphs on the page. Again, a contextual
selector is the answer. This rule selects only paragraphs contained within the
header section of the document.

#header p { font-style: italic; }

1.

2.

3.

Part III: CSS for Presentation222

Text Line Adjustments

Text Line Adjustments
The next batch of text properties has to do with the treatment of whole lines

of text rather than the shapes of characters. They allow web authors to for-

mat web text with indents, extra leading (space between lines), and different

horizontal alignments, similar to print.

I want to give special treatment to all of the prices on the menu. Fortunately, they
have all been marked up with span elements, like this:

$3.95

So now all we have to do is write a rule using a class selector to change the font
to Georgia or some serif font and make them italic.

.price {
 font-style: italic;
 font-family: Georgia, serif;
}

Similarly, I can change the appearance of the text in the header that has been
marked up as belonging to the “label” class to make them stand out.

.label {
 font-weight: bold;
 font-variant: small-caps;
 font-style: normal;
}

Finally, there is a warning at the bottom of the page that I want to make small
and red. It has been given the class “warning,” so I can use that as a selector to
target just that paragraph for styling. While I’m at it, I’m going to apply the same
style to the sup element (the footnote asterisk) earlier on the page so they match.
Note that I’ve used a grouped selector so I don’t need to write a separate rule.

p.warning, sup {
 font-size: x-small;
 color: red;
}

Figure 12-15 shows the results of all these changes.

Figure 12-15. The current state of the Black Goose Bistro online menu.

4.

5.

6.

Text Line Adjustments

Chapter 12, Formatting Text 223

Line height

The line-height property defines the minimum distance from baseline to

baseline in text. A baseline is the imaginary line upon which the bottoms of

characters sit. Line height in CSS is similar to leading in traditional typeset-

ting. Although the line height is calculated from baseline to baseline, most

browsers split the extra space above and below the text, thus centering it in

the overall line height (Figure 12-16).

The line-height property is said to specify a “minimum” distance because if

you put a tall image on a line, the height of that line will expand to accom-

modate it.

line-height
Values: number, length measurement, percentage | normal | inherit

Default: normal

Applies to: all elements

Inherits: yes

These examples show three different ways of making the line height twice the

height of the font size.

p { line-height: 2; }

p { line-height: 2em; }

p { line-height: 200%; }

When a number is specified alone, as shown in the first example, it acts as a

scaling factor that is multiplied by the current font size to calculate the line-

height value. Line heights can also be specified in one of the CSS length units,

but once again, the relative em unit is your best bet. Ems and percentage val-

ues are based on the current font size. In the three examples, if the text size is

16 pixels, the calculated line height would be 32 pixels (see Figure 12-16).

Size of 1 em for this text

Baseline

line-height: 2em;

line height is set to 2em
(twice the text size);
the extra space is divided
equally above and below
the text line, centering it
vertically in the line height.

Figure 12-16. In CSS, line height is measured from baseline to baseline, but browsers
center the text vertically in the line height.

WA R N I N G

There is a bug in Internet Explorer 6
and earlier that causes line height to get
screwy when the element contains an
inline image (or other replaced element).
For details, see positioniseverything.net/
explorer/lineheightbug.html.

WA R N I N G

There is a bug in Internet Explorer 6
and earlier that causes line height to get
screwy when the element contains an
inline image (or other replaced element).
For details, see positioniseverything.net/
explorer/lineheightbug.html.

Part III: CSS for Presentation224

Text Line Adjustments

Indents

The text-indent property indents the first line of text by a specified amount

(see note).

text-indent
Values: length measurement, percentage | inherit

Default: 0

Applies to: block-level elements and table cells

Inherits: yes

You can specify a length measurement or a percentage value for text-indent.

Percentage values are calculated based on the width of the parent element.

Here are a few examples. The results are shown in Figure 12-17.

p#1 { text-indent: 2em; }

p#2 { text-indent: 25%; }

p#3 { text-indent: -35px; }

2em

25%

–35px

Figure 12-17. Examples of the text-indent property.

Notice in the third example, a negative value was specified and that’s just fine.

It will cause the first line of text to hang out to the left of the left text edge

(also called a hanging indent).

The text-indent property inherits, but it is worth noting that the calculated

values will be passed on to descendant elements. So if a div is set to 800 pix-

els wide with a 10% indent, a text-indent of 80 pixels will be passed down

(not the 10% value).

Horizontal Alignment

You can align text for web pages just as you would in a word processing or

desktop publishing program with the text-align property.

N OT E

The text-indent property indents just
the first line of a block. If you want space
along the whole side of the text block,
use one of the margin or padding prop-
erties to add it.

Designers may be accustomed to specify-
ing indents and margins in tandem, but
to be consistent with how CSS handles
them, margins will be discussed as part
of the box model in Chapter 16.

N OT E

The text-indent property indents just
the first line of a block. If you want space
along the whole side of the text block,
use one of the margin or padding prop-
erties to add it.

Designers may be accustomed to specify-
ing indents and margins in tandem, but
to be consistent with how CSS handles
them, margins will be discussed as part
of the box model in Chapter 16.

If you use a hanging indent, be
sure that there is also a left margin
applied to the element. Otherwise,
the hanging text may disappear off
the left edge of the browser window.

D e S I G n t I P

If you use a hanging indent, be
sure that there is also a left margin
applied to the element. Otherwise,
the hanging text may disappear off
the left edge of the browser window.

D e S I G n t I P

Underlines and Other “Decorations”

Chapter 12, Formatting Text 225

text-align
Values: left | right | center | justify | inherit

Default: left for languages that read left to right; right for languages that read right to left;

Applies to: block-level elements and table cells

Inherits: yes

This is a fairly straightforward property to use. The results of the various

text-align values are shown in Figure 12-18.

text-align: left aligns text on the left margin

text-align: right aligns text on the right margin

text-align: center centers the text in the text block

text-align: justify aligns text on both right and left margins

text-align: left

text-align: right

text-align: center

text-align: justify

Figure 12-18. Examples of text-align values.

Good news—only four more text properties to go! Then we’ll be ready to try

a few of them out in the Black Goose Bistro menu.

Underlines and Other “Decorations”
If you want to put a line under, over, or through text, or if you’d like to turn

the underline off under links, then the text-decoration is the property for

you.

text-decoration
Values: none | underline | overline | line-through | blink | inherit

Default: none

Applies to: all elements

Inherits: no, but since lines are drawn across child elements they may look like they are “decorated” too

Part III: CSS for Presentation226

Changing Capitalization

The values for text-decoration are intuitive and are shown in Figure 12-19

text-decoration: underline underlines the element

text-decoration: overline draws a line over the text

text-decoration: line-through draws a line through the text

text-decoration: blink makes text flash on and off

The most popular use of the text-decoration property is turning off the

underlines that appear automatically under linked text, as shown here:

a { text-decoration: none; }

There are a few cautionary words to be said regarding text-decoration.

First, be sure there are other cues such as color, weight, or a bottom bor-

der to compensate.

On the flip-side, because underlines are such a strong visual cue to “click

here,” underlining text that is not a link may be misleading and frustrat-

ing. Consider whether italics may be an acceptable alternative.

Finally, there is no reason to make your text blink. Internet Explorer won’t

support it anyway.

Changing Capitalization
I remember when desktop publishing programs introduced a nifty feature

that let me change the capitalization of text on the fly. This made it easy to see

how my headlines might look in all capital letters without needing to retype

them. CSS includes this feature as well with the text-transform property.

text-transform
Values: none | capitalize | lowercase | uppercase | inherit

Default: none

Applies to: all elements

Inherits: yes

When you apply the text-transform property to a text element, it changes

its capitalization when it renders without changing the way it is typed in the

source. The values are as follows (Figure 12-20):

text-transform: none as it is typed in the source

text-transform: capitalize capitalizes the first letter of each word

text-transform: lowercase makes all letters lowercase

text-transform: uppercase makes all letters uppercase

•

•

•

text-decoration: underline

text-decoration: overline

text-decoration: line-through

Figure 12-19. Examples of text-
decoration values.

text-decoration: underline

text-decoration: overline

text-decoration: line-through

Figure 12-19. Examples of text-
decoration values.

If you turn off underlines
under links, do so with
care because the underline
is a strong visual cue that
something is clickable.

If you turn off underlines
under links, do so with
care because the underline
is a strong visual cue that
something is clickable.

Spaced Out

Chapter 12, Formatting Text 227

text-transform: normal (as was typed in)

text-transform: capitalize

text-transform: lowercase

text-transform: uppercase

Figure 12-20. The text-transform property changes the capitalization of characters
when they are displayed, regardless of how they are typed in the source.

Spaced Out
The final two text properties in this chapter are used to insert space between

letters (letter-spacing) or words (word-spacing) when the text is displayed.

letter-spacing
Values: length measurement, normal | inherit

Default: normal

Applies to: all elements

Inherits: yes

word-spacing
Values: length measurement, normal | inherit

Default: normal

Applies to: all elements

Inherits: yes

The best way to get to know these properties is by example. When you

provide a length measurement, that much space will be added between the

letters of the text (letter-spacing) or words in a line (word-spacing). Figure

12-21 shows the results of these rule examples applied to the simple para-

graph shown here.

The style sheet

p { letter-spacing: 8px; }

p { word-spacing: 1.5em; }

The markup

<p>Black Goose Bistro Summer Menu</p>

It is worth noting that when you specify em measurements, the calculated

size is passed down to child elements, even if they have a smaller font size

than the parent.

Part III: CSS for Presentation228

Spaced Out

word-spacing: 1.5em;

letter-spacing: 8px;

Figure 12-21. letter-spacing (top) and word-spacing (bottom).

In Exercise 12-3, we’ll make one last trip back to the Black Goose Bistro menu

to add some of these new properties and make a few tweaks.

In the interest of saving space and keeping this an introductory-
level book, these properties were not given the full treatment.
But being the type of author who doesn’t hold anything back,
I’m including them here. Learn more about them at the W3C
site (www.w3.org/TR/CSS21/).

vertical-align
Values: baseline | sub | super | top | text-top | middle | text-
bottom | bottom | percentage | length | inherit

Specifies the vertical alignment of an inline element’s baseline
relative to the baseline of the surrounding text. It is also used to
set the vertical alignment of content in a table cell (td).

white-space
Values: normal | pre | nowrap | pre-wrap | pre-line | inherit

Specifies how white space in the element source is handled
in layout. For example, the pre value preserves the character
spaces and returns found in the source, similar to the pre
(X)HTML element.

visibility
Values: visible | hidden | collapse | inherit

Used to hide the element. When set to hidden, the element is
invisible, but the space it occupies is maintained, leaving a hole
in the content. The element is still there; you just can’t see it.

text-direction
Values: ltr | rtl | inherit

Specifies the direction the text reads, left to right (ltr) or right
to left (rtl).

unicode-bidi
Values: normal | embed | bidi-override | inherit

Related to bi-directional features of Unicode. The
Recommendation states that it allows the author to generate
levels of embedding within the Unicode embedding algorithm.
If you have no idea what this means, don’t worry. Neither do
I. But I guess it’s there should you need it for seriously multi-
lingual sites.

The Other Text Properties

exercise 12-3 | Finishing up the menu

Let’s add a few finishing touches to the online menu, menu_summer.html. It might
be useful to save the file and look at it in the browser after each step to see the effect
of your edits and to make sure you’re on track. The finished style sheet is provided in
Appendix A.

First, I have a few global changes to the body element in mind. I’ve had a change
of heart about the font-family. I think that a serif font such as Georgia would be
more sophisticated and appropriate for a bistro menu. Let’s also use the line-
height property to open up the text lines and make them easier to read. Make
these updates to the body style rule, as shown:

1.

Spaced Out

Chapter 12, Formatting Text 229

body {
 font-family: Georgia, serif;
 font-size: small;
 line-height: 175%;

}

I also want to redesign the header section of the document. First, remove the teal
color setting by deleting that whole rule. Get rid of the font-variant property for
the h1 element as well. Once that is done, make the h1 purple and the paragraph
in the header gray. You can just add color declarations to the existing rules.

#header { color: teal; } /* delete */

h1 {
 font-size: 1.5em;
 font-variant: small-caps; /* delete */
 color: purple; }

#header p {
 font-style: italic;
 color: gray; }

Next, to imitate a fancy print menu, I’m going to center a few key elements on
the page using the text-align property. Write a rule with a grouped selector to
center the whole header div, the h2 elements, and the paragraphs contained
within the “appetizer” and “entrees” divs, like this:

#header, h2, #appetizers p, #entrees p {
 text-align: center; }

I want to make the “Appetizer” and “Main Courses” h2 headings kind of special.
Instead of large, bold type, I’m actually going to reduce the font-size, and use all
uppercase letters, extra letter spacing, and color to call attention to the headings.
Here’s the new rule for h2 elements that includes all of these changes.

h2 {
 font: bold 1em Georgia, serif; /* reduced from 1.2 em */
 text-transform: uppercase;
 letter-spacing: 8px;
 color: purple; }

We’re really close now; just a few more tweaks. Add a rule
using contextual selectors that makes the paragraphs in
the Appetizers and Main Courses sections italic.

#appetizers p, #entrees p {
 font-style: italic; }

Finally, we’ll add a softer color to the menu item names
(in dt elements). Note that the strong elements in those
dt elements stay maroon because the color applied to
the strong elements overrides the color inherited by
their parents.

dt {
 font-weight: bold;
 color: olive;}

And we’re done! Figure 12-22 shows how the menu looks
now...an improvement over the unstyled version, and we
used text properties to do it. Notice that we didn’t touch
a single character of the document markup in the process.
That’s the beauty of keeping style separate from structure.

2.

3.

4.

5.

6.

Adding letter spacing to small type
is one of my favorite heading design
tricks. It is a good alternative to large
type for drawing attention to the
element.

D e S I G n t I P

Adding letter spacing to small type
is one of my favorite heading design
tricks. It is a good alternative to large
type for drawing attention to the
element.

D e S I G n t I P

Figure 12-22. The formatted Black Goose
Bistro menu.

Part III: CSS for Presentation230

Test Yourself

Test Yourself
Here are a few questions to see how well you picked up the fundamentals of

selectors and text formatting.

Here is a chance to get a little practice writing selectors. Using the diagram

shown in Figure 12-23, write style rules that makes each of the elements

described below red (color: red;). Write the selector as efficiently as

possible. I’ve done the first one for you.

html

head body

title style h1 div id="intro" div id="main" p

p class="special" ul h2 p h2 p class="special"

img strong li li li strong

Figure 12-23. Sample document structure.

All text elements in the document body {color: red;}

h2 elements

h1 elements and all paragraphs

Elements belonging to the class “special”

All elements in the “intro” section

strong elements in the “main” section

Extra credit: Just the paragraph that appears after an h2 (hint: this

selector will not work in Internet Explorer 6)

1.

a.

b.

c.

d.

e.

f.

g.

Test Yourself

Chapter 12, Formatting Text 231

Match the style property with the text samples in Figure 12-24.

_______ {font-size: 1.5em;}

_______ {text-transform: capitalize;}

_______ {text-align: right;}

_______ {font-family: Verdana; font-size: 1.5em;}

_______ {letter-spacing: 3px;}

_______ {font: bold italic 1.2em Verdana;}

_______ {text-transform: uppercase;}

_______ {text-indent: 2em;}

_______ {font-variant: small-caps;}

Default font and size

1

2

3

4

5

6

7

8

9

Figure 12-24. Text samples.

2.

a.

b.

c.

d.

e.

f.

g.

h.

i.

Part III: CSS for Presentation232

CSS Review: Font and Text Properties

CSS Review: Font and Text Properties
In this chapter, we covered the properties used to format text elements. Here

is a summary in alphabetical order.

Property Description

font A shorthand property that combines font properties

font-family Specifies a typeface or generic font family

font-size The size of the font

font-style Specifies italic or oblique fonts

font-variant Specifies a small-caps font

font-weight Specifies the boldness of the font

letter-spacing Inserts space between letters

line-height The distance between baselines of neighboring text lines

text-align The horizontal alignment of text

text-decoration Underlines, overlines, and lines through

text-direction Whether the text reads left-to-right or right-to-left

text-indent Amount of indentation of the first line in a block

text-transform Changes the capitalization of text when it displays

unicode-bidi Works with Unicode bidirectional algorithms

vertical-align Adjusts vertical position of inline elements relative to the base-
line

visibility Whether the element is rendered or is invisible

white-space How white space in the source is displayed

word-spacing Inserts space between words

233

IN THIS CHAPTER

Color names in CSS

Specifying RGB color values

Foreground and
background colors

Pseudoclass and
pseudoelement selectors

Adding tiling
background images

Controlling the repeat
and position of

background images

External style sheets

Style sheets for print and
other media

Did you happen to see the Web back in 1993? It was a fairly dreary affair

back then, where every background was gray and all the text was black. Then

came the Netscape browser and, with it, a handful of attributes that allowed

rudimentary (but welcome) control over font colors and backgrounds. For

years, we made do.

But thankfully, now we have style sheet properties that blow those old attri-

butes out of the water. So if you happen to view the source of a web page and

see attributes such as bgcolor, background, link, and vlink floating around,

ignore them. They are relics of the past. Believe me, you’re much better off

without them.

We’re going to cover a lot of ground in this chapter. Of course, I’ll introduce

you to all of the properties for specifying colors and backgrounds. This chap-

ter also rounds out your collection of selector types and shows you how to

create an external style sheet as well as a style sheet just for print. Oh, and

there will be cabbages...lots and lots of cabbages (you’ll see).

Our first order of business is to talk about the options for specifying color in

CSS, including a primer on the nature of color on computer monitors.

Specifying Color Values
There are two main ways to specify colors in style sheets: with a predefined

color name as we have been doing so far:

color: red; color: olive; color: blue;

or, more commonly, with a numeric value that describes a particular RGB

color (the color model on computer monitors). You’ve probably seen color

values that look like these:

color: #FF0000; color: #808000; color: #00F;

We’ll get to all the ins and outs of RGB color in a moment, but first, a short

and sweet section on the standard color names.

COLORS AND
BACKGROUNDS
(Plus Even More Selectors and External Style Sheets)

CHAPTER 13

Part III: CSS for Presentation234

Specifying Color Values

Color names

The most intuitive way to specify a color is to call it by name. Unfortunately,

you can’t make up just any color name and expect it to work. It has to be one

of the color keywords predefined in the CSS Recommendation. CSS1 and

CSS2 adopted the 16 standard color names originally introduced in HTML

4.01. CSS2.1 tossed in orange for a total of 17. Color names are easy to use—

just drop one into place as the value for any color-related property:

color: silver;

background-color: gray;

border-bottom-color: teal;

Figure 13-1 shows printed approximations of the 17 color keywords in CSS2.1

(they will look different on computer screens, of course). I threw in their

numeric values for good measure.

Black
#000000

Gray
#808080

Silver
#C0C0C0

White
#FFFFFF

Maroon
#800000

Red
#FF0000

Purple
#800080

Fuchsia
#FF00FF

Green
#008000

Lime
#00FF00

Olive
#808000

Yellow
#FFFF00

Navy
#000080

Blue
#0000FF

Teal
#008080

Aqua
#0000FF

Orange (CSS 2.1)
#FFA500

Figure 13-1. The 17 standard color names in CSS2.1.

RGB color values

Names are easy, but as you can see, they are limited. By far, the most common

way to specify a color is by its RGB value. It also gives you millions of colors

to choose from.

For those who are not familiar with how computers deal with color, I’ll start

with the basics before jumping into the CSS syntax.

Extended Color
Names
CSS Level 3 has a new color module
that gives you a whopping 140
color names to choose from.
The module uses a set of color
keywords originally introduced by
the X Window System. These colors
have historically been supported
by browsers as (X)HTML attribute
values, but this is the first time
they’ve been standardized for CSS.
Some day, we’ll be able to specify
names like blanchedalmond,
burlywood, and papayawhip. Won’t
that be special?

Unfortunately, they’re not well
supported for use in style sheets
at this time, but if you’re curious,
you can see the full list online at
www.learningwebdesign.com/
colornames.html or in the CSS3
proposal at www.w3.org/TR/css3-
color/#svg-color.

Extended Color
Names
CSS Level 3 has a new color module
that gives you a whopping 140
color names to choose from.
The module uses a set of color
keywords originally introduced by
the X Window System. These colors
have historically been supported
by browsers as (X)HTML attribute
values, but this is the first time
they’ve been standardized for CSS.
Some day, we’ll be able to specify
names like blanchedalmond,
burlywood, and papayawhip. Won’t
that be special?

Unfortunately, they’re not well
supported for use in style sheets
at this time, but if you’re curious,
you can see the full list online at
www.learningwebdesign.com/
colornames.html or in the CSS3
proposal at www.w3.org/TR/css3-
color/#svg-color.

Specifying Color Values

Chapter 13, Colors and Backgrounds 235

The RGB color model

R: 255
(100%)

G: 255
(100%)

B: 255
(100%)

RGB: 255, 255, 255
White

RGB: 128, 128, 128
Gray

RGB: 0, 0, 0
Black

RGB: 200, 178, 130
Pleasant lavender

R: 128
(50%)

G: 128
(50%)

B: 128
(50%)

R: 0
(0%)

G: 0
(0%)

B: 0
(0%)

R: 200
(78%)

R: 178
(70%)

R: 130
(51%)

Why 255?
In true RGB color, 8 bits of information are devoted to each color channel.
8 bits can describe 256 shades (288=256), so colors are measured on a scale from 0 to 255.

A word about RGB color

Computers create the colors you see on a monitor by combining three colors

of light: red, green, and blue. This is known as the RGB color model. You can

provide recipes (of sorts) for colors by telling the computer how much of

each color to mix in. The amount of light in each color “channel” is typically

described on a scale from 0 (none) to 255 (full-blast), although it can also be

provided as a percent. The closer the three values get to 255 (100%), the closer

the resulting color gets to white (Figure 13-2).

Any color you see on your monitor can be described by a series of three

numbers: a red value, a green value, and a blue value. This is one of the ways

that image editors such as Adobe Photoshop keep track of the colors for every

pixel in an image. With the RGB color system, a pleasant lavender can be

described as 200, 178, 230.

Picking a color

The easiest way to pick a color and find its RGB color values is to use

an image editing tool such as Adobe Photoshop, Photoshop Elements or

Corel Paint Shop Pro. Most image tools provide a Color Picker similar to

Photoshop’s shown in Figure 13-3. When you select a color from the spectrum

in the Color Picker, the red (R), green (G), and blue (B) values are listed, as

pointed out in the figure. And look next to the # symbol—those are the same

values, converted so they are ready to go in a style sheet. I’ll explain the 6-digit

hex values in a moment.

Figure 13-2. Colors on computer monitors
are made by mixing different amounts
of red, green, and blue light (thus, RGB).
The color in the middle of each diagram
shows what happens when the three color
channels are combined. The more light in
each channel, the closer the combination
is to white.

Figure 13-2. Colors on computer monitors
are made by mixing different amounts
of red, green, and blue light (thus, RGB).
The color in the middle of each diagram
shows what happens when the three color
channels are combined. The more light in
each channel, the closer the combination
is to white.

Part III: CSS for Presentation236

Specifying Color Values

The same RGB values, ready to
be inserted in a style sheet

RGB is one of four color models
provided in the Color Picker
(the others are HSB, Lab,
and CMYK).

The RGB values listed here

Figure 13-3. The Color Picker in Adobe Photoshop provides the RGB values for a selected
pixel color.

Another cool tool for finding RGB values is Colorzilla, a free extension

to the Firefox browser that gives you the values for any pixel color in the

browser window (among many other features). Download it at www.iosart.

com/firefox/colorzilla/.

If you don’t have these programs, you could pick a color from a chart of

colors, such as the ones provided on the web site for this book (Figure 13-4).

Between the Color Names chart (www.learningwebdesign.com/colornames.

html) and the Web Palette Colors chart (www.learningwebdesign.com/webpal-

ette.html), there are more than 300 color samples. If you see something you

like, copy down the RGB values listed.

Writing RGB values in style sheets

CSS allows RGB color values to be specified in a number of formats. Going

back to that pleasant lavender, we could add it to a style sheet by listing each

value on a scale from 0 to 255.

color: rgb(200, 178, 230);

You can also list them as percentage values, although that is less common.

color: rgb(78%, 70%, 90%);

Or, you can provide the web-ready version that we saw in the Color Picker.

These six digits represent the same three RGB values, except they have been

converted into hexadecimal (or hex, for short) values. I’ll explain the hexa-

decimal system in the next section. Note that hex RGB values are preceded by

the # symbol and do not require the rgb() notation shown above.

color: #C8B2E6;

There is one last shorthand way to specify hex color values. If your value hap-

pens to be made up of three pairs of double-digits, such as:

color: #FFCC00; or color: #993366;

Figure 13-4. If you don’t have an image
editing program, you could pick a color
from the charts provided at www.
learningwebdesign.com.

Figure 13-4. If you don’t have an image
editing program, you could pick a color
from the charts provided at www.
learningwebdesign.com.

Specifying RGB
Values
There are four formats for providing
RGB values in CSS:

rgb (255, 255, 255)

rgb (100%, 100%, 100%)

#FFFFFF

#FFF

All of these examples specify white.

A t A G l A n c e

Specifying RGB
Values
There are four formats for providing
RGB values in CSS:

rgb (255, 255, 255)

rgb (100%, 100%, 100%)

#FFFFFF

#FFF

All of these examples specify white.

A t A G l A n c e

Specifying Color Values

Chapter 13, Colors and Backgrounds 237

you can condense each pair down to one digit. These examples are equivalent

to the ones listed above:

color: #FC0; or color: #936;

About hexadecimal values

It’s time to clarify what’s going on with that six-digit string of characters.

What you’re looking at is actually a series of three, two-digit numbers, one

each for red, green, and blue. But instead of decimal (base-10, the system

we’re used to), these values are written in hexadecimal, or base-16. Figure 13-5

shows the structure of the hex RGB value.

Hexadecimal RGB values must
be preceded by the #

(octophorpe or hash) symbol. #RRGGBB
hex
RED

value

hex
GREEN
value

hex
BLUE
value

Figure 13-5. Hexadecimal RGB values are made up of three two-digit numbers, one for
red, one for green, and one for blue.

The hexadecimal numbering system uses 16 digits: 0–9 and A–F (for repre-

senting the quantities 10–15). Figure 13-6 shows how this works. The hex sys-

tem is used widely in computing because it reduces the space it takes to store

certain information. For example, the RGB values are reduced from three to

two digits once they’re converted to hexadecimal.

Decimal

Hex

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

A

11

B

12

C

13

D

14

E

15

F

20
The decimal number 32

is represented as

2 sixteens and 0 ones

00
sixteens

place
ones
place

2A
The decimal number 42

is represented as

2 sixteens and 10 ones

Figure 13-6. The hexadecimal numbering system is base-16.

Now that most graphics and web development software provides easy access

to hexadecimal color values (as we saw in Figure 13-3), there isn’t much need

to translate RGB values to hex yourself, as we needed to do back in the old

days. But should you find the need, the sidebar Hexadecimal Calculators

should help you out.

Hexadecimal
Calculators
In Windows, the standard calculator
has a hexadecimal converter in
the Scientific view. Mac users can
download the free “Mac Dec Bin
Calculator” for OSX (search for it at
versiontracker.com).

Just enter the decimal number for
each color value and click the HEX
conversion button. Make a note of
the resulting two-digit hex value.

Of course, you could calculate
a hex value yourself by dividing
your number by 16 to get the
first number, and then using the
remainder for the second number.
For example, 200 converts to
C8 because 200=(16 × 12) + 8.
That’s {12,8} in base-16, or C8 in
hexadecimal. Whew! I think I’ll be
sticking with my Color Picker.

Hexadecimal
Calculators
In Windows, the standard calculator
has a hexadecimal converter in
the Scientific view. Mac users can
download the free “Mac Dec Bin
Calculator” for OSX (search for it at
versiontracker.com).

Just enter the decimal number for
each color value and click the HEX
conversion button. Make a note of
the resulting two-digit hex value.

Of course, you could calculate
a hex value yourself by dividing
your number by 16 to get the
first number, and then using the
remainder for the second number.
For example, 200 converts to
C8 because 200=(16 × 12) + 8.
That’s {12,8} in base-16, or C8 in
hexadecimal. Whew! I think I’ll be
sticking with my Color Picker.

Handy Hex Values
White = #FFFFFF or #FFF
(the equivalent of 255,255,255)

Black = #000000 or #000
(the equivalent of 0,0,0)

t I P

Handy Hex Values
White = #FFFFFF or #FFF
(the equivalent of 255,255,255)

Black = #000000 or #000
(the equivalent of 0,0,0)

t I P

Part III: CSS for Presentation238

Foreground Color

Summing up color values

It took us a few pages to get here, but the process for picking and specifying

colors in style sheets is actually easy.

Pick one of the 17 color names,

or

Use a color chart or an image editor like Photoshop to select a color, and

copy down the RGB values (preferably the six-digit hex values). Put those

values in the style rule using one of the four RGB value formats, and

you’re done.

Oh, and don’t worry about web-safe colors or the web palette; that’s another

relic from the past (see the Web Palette sidebar).

Foreground Color
Now that we know how to write color values, let’s get to the color-related

properties. You can specify the foreground and background colors for any

(X)HTML element. There are also border-color properties that take color

values, but we’ll get to those in Chapter 14, Thinking Inside the Box.

The foreground of an element consists of its text and border (if one is speci-

fied). You specify a foreground color with the color property, as we saw in the

last chapter when we rolled it out to make the text pretty. Here are the details

for the color property one more time.

color
Values: color value (name or numeric) | inherit

Default: depends on the browser and user’s preferences

Applies to: all elements

Inherits: yes

In the following example, the foreground of a blockquote element is set to

a nice green with the values R:80, G:140, and B:25 (we’ll use the hex code

#508C19). You can see that by applying the color property to the blockquote

element, the color is inherited by the p and em elements it contains (Figure

13-7). The thick dashed border around the whole blockquote is green as well;

however, if we were to apply a border-color property to this same element,

that color would override the green foreground setting.

The style rule

blockquote {
 border: 4px dashed;
 color: #508C19;
}

The markup

<blockquote>
 <p>I'd recommend Honey Gold cereal to anyone who likes cereal. It's

•

•

The Web Palette
You will certainly come across the
Web Palette or Web Safe Colors
while reading about web design or
using such web production tools as
Dreamweaver or Photoshop. Web-
safe values are easy to spot. They
are made up exclusively of the hex
values 00, 33, 66, 99, CC, and FF.

The web palette is a set of 216 colors
that browsers use to render color on
low-end monitors that are capable
of displaying only 256 colors at a
time. The 216 colors consist of the
cross-section of colors used by both
Windows and Macintosh operating
systems.

Back when most users had low-
end monitors, web designers stuck
with web-safe colors because they
rendered smoothly and predictably.
However, because fewer than 1% of
users have 256-color monitors as of
this writing, browsers rarely need to
remap colors in web pages to the
web palette. That means there is no
longer the need to restrict your color
choices—improved technology has
made the web palette obsolete.

The Web Palette
You will certainly come across the
Web Palette or Web Safe Colors
while reading about web design or
using such web production tools as
Dreamweaver or Photoshop. Web-
safe values are easy to spot. They
are made up exclusively of the hex
values 00, 33, 66, 99, CC, and FF.

The web palette is a set of 216 colors
that browsers use to render color on
low-end monitors that are capable
of displaying only 256 colors at a
time. The 216 colors consist of the
cross-section of colors used by both
Windows and Macintosh operating
systems.

Back when most users had low-
end monitors, web designers stuck
with web-safe colors because they
rendered smoothly and predictably.
However, because fewer than 1% of
users have 256-color monitors as of
this writing, browsers rarely need to
remap colors in web pages to the
web palette. That means there is no
longer the need to restrict your color
choices—improved technology has
made the web palette obsolete.

WA R N I N G

You can change the foreground color
of an entire page by applying the color
property to the body element. Be aware,
however, that on some older browsers,
table elements do not properly inherit
properties from the body, so text within
tables would go back to the default color.
To be on the safe side, make a color dec-
laration for the body and relevant table
elements, like this:

body, table, td, th {
 color: #999;
}

WA R N I N G

You can change the foreground color
of an entire page by applying the color
property to the body element. Be aware,
however, that on some older browsers,
table elements do not properly inherit
properties from the body, so text within
tables would go back to the default color.
To be on the safe side, make a color dec-
laration for the body and relevant table
elements, like this:

body, table, td, th {
 color: #999;
}

Background Color

Chapter 13, Colors and Backgrounds 239

the only way to start the day!.</p>
 <cite>— Jennifer Robbins, happy consumer</cite>
</blockquote>

Figure 13-7. Applying a color to the foreground of an element.

Background Color
Before style sheets, you could apply a background color only to the entire

page. Now, with the background-color property, you can apply background

colors to any element.

background-color
Values: color value (name or numeric) | transparent | inherit

Default: transparent

Applies to: all elements

Inherits: no

A background color fills the canvas behind the element that includes the con-

tent area, and any padding (extra space) added around the content, extending

behind the border out to its outer edge. Let’s see what happens when we use

the background-color property to make the background of the same sample

blockquote light blue (Figure 13-8).

blockquote {
 border: 4px dashed;
 color: #508C19;
 background-color: #B4DBE6;
}

Figure 13-8. Adding a light blue background color to the sample blockquote.

As expected, the background color fills the area behind the text, all the way

to the border. Look closely at the gaps in the border, and you’ll see that the

background color actually goes all the way to its outer edge. But that’s where

Using Color
Here are a few quick tips related to
working with color:

Limit the number of colors you
use on a page. Nothing creates
visual chaos faster than too
many colors. I tend to choose
one dominant color and one
highlight color. I may also use a
couple of shades of each, but I
resist adding too many different
hues.

When specifying a foreground
and background color, make
sure that there is adequate
contrast. People tend to prefer
reading dark text on very light
backgrounds online. My sample
in Figure 13-8, although making
its point, actually fails the
contrast test.

It is a good idea to specify
the foreground color and the
background color (particularly for
whole pages) in tandem. This will
avoid possible color clashes and
contrast problems if the user has
one or the other set with a user
style sheet.







D e S I G n t I P

Using Color
Here are a few quick tips related to
working with color:

Limit the number of colors you
use on a page. Nothing creates
visual chaos faster than too
many colors. I tend to choose
one dominant color and one
highlight color. I may also use a
couple of shades of each, but I
resist adding too many different
hues.

When specifying a foreground
and background color, make
sure that there is adequate
contrast. People tend to prefer
reading dark text on very light
backgrounds online. My sample
in Figure 13-8, although making
its point, actually fails the
contrast test.

It is a good idea to specify
the foreground color and the
background color (particularly for
whole pages) in tandem. This will
avoid possible color clashes and
contrast problems if the user has
one or the other set with a user
style sheet.







D e S I G n t I P

Part III: CSS for Presentation240

Introducing.... Pseudoclass Selectors

the background stops; if we apply a margin to this element, the background

will not extend into the margin. When we talk about the CSS box model,

we’ll revisit all these components of an element. For now, just know that if

your border has gaps, the background will show through.

It’s worth noting that background colors do not inherit, but because the

default background setting for all elements is transparent, the parent’s back-

ground color shows through its descendant elements. For example, you can

change the background color of a whole page by applying the background-

color property to the body element. The color will show through all the ele-

ments on the page.

In addition to setting the color of the whole page, you can change the back-

ground color of any element, both block-level (like the blockquote shown in

the previous example) as well as inline. In this example, I’ve used the color

and background-color properties to highlight a word marked up as a “glos-

sary” term. You can see in Figure 13-9 that the background color fills the little

box created by the inline span element.

The style rule

.glossary {
 color: #7C3306; /* dark brown */
 background-color: #F2F288; /* light yellow */
}

The markup

<p>A <dfn class="glossary">baseline</dfn> is the imaginary line upon
which characters sit.</p>

Figure 13-9. Applying the background-color property to an inline element.

In a moment, we’ll be applying colors and backgrounds to that king of inline

elements, the hypertext link. While it is possible simply to apply styles to the

a element, we’re going to look at a new batch of selectors that let us apply

different styles to links depending on whether they’ve been visited and

whether the user is hovering over the link or clicking on it.

Introducing.... Pseudoclass Selectors
Have you ever noticed that a link is often one color when you click on it and

another color when you go back to that page? That’s because, behind the

scenes, your browser is keeping track of which links have been clicked (or

“visited,” to use the lingo). The browser keeps track of other link states too,

such as whether the user’s cursor is over the link, or whether it’s in the process

of being clicked.

To color the background of
the whole page, apply the
background-color property
to the body element.

To color the background of
the whole page, apply the
background-color property
to the body element.

Here is a quick summary of the
selector types we’ve covered already:

Element type selector
p {property: value;}

Grouped selectors
p, h1, h2 {property: value;}

Descendant (contextual) selector
ol li {property: value;}

ID selector
#sidebar {property: value;}
div#sidebar {property:
value;}

Class selector
p.warning {property: value;}
.warning {property: value;}

Universal selector
* {property: value;}

A t A G l A n c e

Here is a quick summary of the
selector types we’ve covered already:

Element type selector
p {property: value;}

Grouped selectors
p, h1, h2 {property: value;}

Descendant (contextual) selector
ol li {property: value;}

ID selector
#sidebar {property: value;}
div#sidebar {property:
value;}

Class selector
p.warning {property: value;}
.warning {property: value;}

Universal selector
* {property: value;}

A t A G l A n c e

Introducing.... Pseudoclass Selectors

Chapter 13, Colors and Backgrounds 241

In CSS, you can apply styles to links in each of these states using a special kind

of selector called a pseudoclass selector. It’s an odd name, but you can think

of it as though links in a certain state belong to the same class. However, the

class name isn’t in the markup—it’s something the browser keeps track of. So

it’s kinda like a class, a pseudoclass.

In this section, we’ll be looking at the anchor-related pseudoclasses because

they are the most useful and best supported, but there are a few others as

listed in the sidebar, CSS2.1 Pseudoclasses.

Anchor pseudoclasses

There are four main pseudoclasses that can be used as selectors:

a:link Applies a style to unclicked (unvisited) links

a:visited Applies a style to links that have already been clicked

a:hover Applies a style when the mouse pointer is over the link

a:active Applies a style while the mouse button is pressed

Pseudoselectors are indicated by the colon (:) character.

The :link, :visited, and :active pseudoselectors replace the old presenta-

tional link, vlink, and alink attributes, respectively, that were once used to

change link colors. But with CSS, you can change more than just color. Once

you’ve selected the link state, you can apply any of the properties we’ve cov-

ered so far (and more).

Let’s look at an example of each. In these examples, I’ve written some style

rules for links (a:link) and visited links (a:visited). I’ve used the text-deco-

ration property to turn off the underline under both link states. I’ve also

changed the color of links (blue by default) to maroon, and visited links will

now be gray instead of the default purple.

a:link {
 color: maroon;
 text-decoration: none;
}
a:visited {
 color: gray;
 text-decoration: none;
}

The :hover selector is an interesting one (see note). It allows you to do cool

rollover effects on links that were once possible only with JavaScript. If you

add this rule to the ones above, the links will get an underline and a back-

ground color when the mouse is hovered over them, giving the user feedback

that the text is a link.

a:hover {
 color: maroon;
 text-decoration: underline;
 background-color: #C4CEF8;
}

CSS2.1
Pseudoclasses
In addition to the anchor
pseudoclasses, there are three other
pseudoclass selectors defined in
CSS2.1. Unfortunately, because
they are not supported in Internet
Explorer 6 and earlier as well as other
early browsers, they are of limited
usefulness. However, this will change
as IE7 (which does support them)
gains in popularity and the older
versions disappear.

:focus

 Targets elements that have
“focus,” such as a form element
that is highlighted and accepting
user input. Focus styles also apply
to links that come into focus as
the result of keyboard navigation.
It is recommended that :focus
and :hover offer the same style
for links to provide a consistent
experience for keyboard and
mouse users. Example:

input:focus {background-
color: yellow;}

:first-child

 Targets an element that is the
first occurring child of a parent
element, such as the first p
in a div or the first li in a ul.
Example:

li:firstchild {font-weight:
bold;}

:lang()

 Targets elements for which a
language has been specified.
Example:

p:lang(en) {color: green;}

CSS2.1
Pseudoclasses
In addition to the anchor
pseudoclasses, there are three other
pseudoclass selectors defined in
CSS2.1. Unfortunately, because
they are not supported in Internet
Explorer 6 and earlier as well as other
early browsers, they are of limited
usefulness. However, this will change
as IE7 (which does support them)
gains in popularity and the older
versions disappear.

:focus

 Targets elements that have
“focus,” such as a form element
that is highlighted and accepting
user input. Focus styles also apply
to links that come into focus as
the result of keyboard navigation.
It is recommended that :focus
and :hover offer the same style
for links to provide a consistent
experience for keyboard and
mouse users. Example:

input:focus {background-
color: yellow;}

:first-child

 Targets an element that is the
first occurring child of a parent
element, such as the first p
in a div or the first li in a ul.
Example:

li:firstchild {font-weight:
bold;}

:lang()

 Targets elements for which a
language has been specified.
Example:

p:lang(en) {color: green;}

Part III: CSS for Presentation242

Pseudoelement Selectors

Finally, this rule using the :active selector makes links bright red (consistent

with maroon, but more intense) while the link is being clicked. This style

will be displayed only for an instant, but it can give a subtle indication that

something has happened. Figure 13-10 shows the results.

a:active {
 color: red;
 text-decoration: underline;
 background-color: #C4CEF8;
}

a:link
after that page has been visited, the
link is gray

a:link
links are maroon and not underlined

a:hover
while the mouse is over the link, the
underline and pink background
color appear

a:active
as the mouse button is being clicked,
the link turns bright red

Figure 13-10. Changing the colors and backgrounds of links with pseudoclass selectors.

Love, HA!

If you want to use all four anchor pseudoclasses in a single style sheet, they

need to appear in a particular order in order to function properly. The ini-

tials LVHA (or according to a popular mnemonic, love, Ha!) remind us that

the required order is :link, :visited, :hover, :active. This has to do with

rule order and specificity. Putting :link or :visited last would override the

:hover and :active states, preventing those styles from appearing.

Pseudoelement Selectors
Pseudoclasses aren’t the only kind of pseudo selectors. There are also four

pseudoelements that act as though they are inserting fictional elements into

the document structure for styling. Pseudoelements are also indicated with

a colon (:) symbol.

First letter and line

Two of the pseudoelements are based on context and are used to select the

first letter or the first line of text of an element.

:first-line

 This selector applies a style rule to the first line of the specified element.

The only properties you can apply, however, are:

 color font background

 word-spacing letter-spacing text-decoration

 vertical-align text-transform line-height

N OT E

According to CSS2, :hover may be used
with elements other than anchors, but this
use is not supported in Internet Explorer
6 and earlier or Netscape 4. Internet
Explorer 7 does support :hover on all ele-
ments, but unfortunately, it will be a while
before all the old versions of IE go away.

N OT E

According to CSS2, :hover may be used
with elements other than anchors, but this
use is not supported in Internet Explorer
6 and earlier or Netscape 4. Internet
Explorer 7 does support :hover on all ele-
ments, but unfortunately, it will be a while
before all the old versions of IE go away.

N OT E

The :active pseudoselector is not used
much any more. This is due in part to
the fact that links remain “active” in
older versions of Internet Explorer for
Windows. A link clicked to activate a
JavaScript function (such as a pop-up
window) will also remain active until
you click elsewhere on the page.

N OT E

The :active pseudoselector is not used
much any more. This is due in part to
the fact that links remain “active” in
older versions of Internet Explorer for
Windows. A link clicked to activate a
JavaScript function (such as a pop-up
window) will also remain active until
you click elsewhere on the page.

Pseudoelement Selectors

Chapter 13, Colors and Backgrounds 243

:first-letter

 This applies a style rule to the first letter of the specified element. The

properties you can apply are limited to:

 color font text-decoration

 text-transform vertical-align text-transform

 background margin padding

 border float

 letter-spacing (CSS2.1) word-spacing (CSS2.1)

Figure 13-11 shows examples of :first-line and :first-letter pseudoele-

ment selectors.

p:first-letter {font-size: 300%; color: orange;}

p:first-line {letter-spacing: 8px;}

Figure 13-11. Examples of :first-line and :first-letter pseudoelement selectors.

You’ve collected nearly all of the selector types. There are a few more, but

because they are advanced and not well supported, they have been moved

into informative sidebars (see Generated Content with :before and :after and

Attribute Selectors).

But now, I think it’s time to try out foreground and background colors as well

as some of these new selector types in Exercise 13-1.

N OT E

There are a few properties in this list
that you haven’t seen yet. We’ll cover the
box-related properties (margin, padding,
border) in Chapter 14, Thinking Inside
the Box. The float property is introduced
in Chapter 15, Floating and Positioning.

N OT E

There are a few properties in this list
that you haven’t seen yet. We’ll cover the
box-related properties (margin, padding,
border) in Chapter 14, Thinking Inside
the Box. The float property is introduced
in Chapter 15, Floating and Positioning.

N OT E

Appendix B provides a useful overview
of all the selector types.

N OT E

Appendix B provides a useful overview
of all the selector types.

exercise 13-1 | Adding color to a document

In this exercise, we’ll start with a simple black-and-white article and warm it up with
an earthy palette of foreground and background colors (Figure 13-13). You should
have enough experience writing style rules by this point, that I’m not going hold
your hand as much as I have in previous exercises. This time, you write the rules. You
can check your work against the finished style sheet provided in Appendix A.

Open the file cabbage.html (available at www.learningwebdesign.com/materials) in
a text editor. You will find that there is already an embedded style sheet that provides
basic text formatting (there’s even a preview of the margin and padding properties
that we’ll be getting to in the next chapter). With the text all set, all you’ll need to do
is work on the colors. Feel free to save the document at any step along the way and
view your progress in a browser.

exercise 13-1 | Adding color to a document

In this exercise, we’ll start with a simple black-and-white article and warm it up with
an earthy palette of foreground and background colors (Figure 13-13). You should
have enough experience writing style rules by this point, that I’m not going hold
your hand as much as I have in previous exercises. This time, you write the rules. You
can check your work against the finished style sheet provided in Appendix A.

Open the file cabbage.html (available at www.learningwebdesign.com/materials) in
a text editor. You will find that there is already an embedded style sheet that provides
basic text formatting (there’s even a preview of the margin and padding properties
that we’ll be getting to in the next chapter). With the text all set, all you’ll need to do
is work on the colors. Feel free to save the document at any step along the way and
view your progress in a browser.

Part III: CSS for Presentation244

Pseudoelement Selectors

CSS2 introduced the :before and :after pseudoelements
that are used to insert content before or after a specified
element without actually adding the characters to the
source document (this is called generated content in CSS).
Generated content can be used to insert language-appropriate
quotation marks around a quote, insert automatic counters, or
even display URLs next to links when a document is printed.
Unfortunately, the :before and :after pseudoelements are not
supported in Internet Explorer for WIndows (including IE7), but
they are supported by all other modern browsers.

Here’s a simple example that inserts the words “Once upon
a time:” before a paragraph and “The End.” at the end of the
paragraph (Figure 13-12).

The style sheet:
p:before {
 content: "Once upon a time: ";
 font-weight: bold;
 color: purple;
}
p:after {
 content: " The End.";
 font-weight: bold;
 color: purple;
}

The markup:
<p>Snow White was banished for being the most
beautiful, ... and they lived happily ever after.
</p>

Generated content isn’t something you’re likely to take on in
your first web site projects, but if you are interested in learning
more, see these resources (and keep in mind that IE users won’t
see the generated content unless they are using version 7).

The very dry CSS2 Recommendation: www.w3.org/TR/REC-
CSS2/generate.html

A generated content tutorial at WestCiv: www.westciv.com/
style_master/academy/css_tutorial/advanced/generated_
content.html

For instructions on how to show the URLs for links in a
print style sheet, see the A List Apart article, “CSS Design:
Going to Print” by Eric Meyer (www.alistapart.com/articles/
goingtoprint/)

Figure 13-12. Generated content added with the :before and :after pseudoselectors,
shown in the Firefox browser (Macintosh)







Generated Content with :before and :after

CSS2 introduced a system for targeting specific attribute names
or values. Unfortunately, they are not supported in Internet
Explorer 6 and earlier, which still make up a significant share of
web traffic as of this writing. There are four types of attribute
selectors.

Simple attribute selector

Targets elements with a particular attribute regardless of its
value

element[attribute]

Ex. img[title] {border: 3px solid;}

Selects any image with a title attribute.

Exact attribute value

Selects elements with specific value for the attribute

element[attribute="exact value"]

img[title="first grade"] {border: 3px solid;}

Selects images with exactly the title value “first grade”.

Partial attribute value

Allows you to specify one part of an attribute value

element[attribute~="value"]

Ex. img[title~="grade"] border: 3px solid;}

Looks for the word “grade” in the title, so images with
the title values “first grade” and “second grade” would be
selected.

Hyphen-separated attribute value

Targets hyphen-separated values

element[attribute|="value"]

Ex.*[hreflang|="es"]

Selects any element that specifies a variation on the
Spanish language.

Attribute Selectors

Pseudoelement Selectors

Chapter 13, Colors and Backgrounds 245

Make the h1 heading orange (R: 204, G:51, B:0, or #CC3300). Note that because
this value has all double digits, you can (and should) use the condensed version
(#C30) and save a few bytes in the style sheet.

Make the h2 headings brown (R:102, G:51, B:0, or #663300).

Make the background of the entire page a light green (R: 187, G:224, B:159, or
#BBE09F). Note that although there is one double digit in this hex value, you
cannot condense it; all three values must be double-digits to use the abbreviated
version.

Make the background of the “titlepage” div an even lighter green (R:212, G:248,
B:185, or #D4F8B9).

Make links dark green (#003300).

Make visited links a dull green (#336633).

When the mouse is placed over links, remove the underline, keep the text green
(#003300), and add a medium green background color (#87B862).

As the mouse is clicked, make the link turn the same orange as the h1.

When you are done, your page should look like the one in Figure 13-13. We’ll
be adding background images to this page later, so if you’d like to continue
experimenting with different colors on different elements, make a copy of this
document and give it a new name.

N OT E

If you are interested in raising cabbages, the full text of this treatise is available
online from Project Gutenburg at www.gutenberg.org/etext/19006.

Orange
R:204, G:51, B:0
#CC3300 or #C30

Brown
R:102, G:51, B:0
#663300 or #630

Lightest green
R:212, G:248, B:185
#D4F8B9

Light green
R:187, G:224, B:159
#BBE09F

Medium green
R:135, G:184, B:98
#87B862

Dull green
R:51, G:102, B:51
#336633 or #363

Dark green
R:0, G:51, B:0
#003300 or #030

Before After

Figure 13-13. An earthy palette of colors for the Cabbages and Cauliflowers article
(shown before and after).

1.

2.

3.

4.

5.

6.

7.

8.

WA R N I N G

Don’t forget the # character before hex
values. The rule won’t work without it.

WA R N I N G

Don’t forget the # character before hex
values. The rule won’t work without it.

Part III: CSS for Presentation246

Background Images

Background Images
CSS really beats (X)HTML hands-down when it comes to background imag-

es (but then, (X)HTML really shouldn’t have been dealing in background

images in the first place). With CSS, you’re not stuck with a repeating tile pat-

tern, and you can position a background image wherever you like. You can

also apply a background image to any element in the document, not just the

whole page.

In this section, we’ll look at the collection of properties used to place and

push around background images, starting with the basic background-image

property.

Adding a background image

The background-image property is used to add a background image to an ele-

ment. Its primary job is to provide the location of the image file.

background-image
Values: URL (location of image) | none | inherit

Default: none

Applies to: all elements

Inherits: no

The value of background-image is a sort of url-holder that contains the URL

of the image. The URL is relative to the (X)HTML document that the image

is going into, not the style sheet document (see related Tip).

These examples and Figure 13-14 show background images applied behind

a whole page (body) and a single blockquote element with padding and a

border applied.

body {
 background-image: url(star.gif); }

blockquote {
 background-image: url(dot.gif);
 padding: 2em;
 border: 4px dashed;}

Here you can see the default behavior of background-image. The image starts

in the top, left-hand corner and tiles horizontally and vertically until the

entire element is filled (although you’ll learn how to change that in a

moment). Like background colors, tiling background images fill the area

behind the content area, the extra padding space around the content, and

extend to the outer edge of the border (if there is one).

If you provide both a background-color and a background-image to an ele-

ment, the image will be placed on top of the color. In fact, it is recommended

that you do provide a backup color that is similar in hue, in the event the

image fails to download.

The properties related to
background images are:

background-image

background-repeat

background-position

background-attachment

background

A t A G l A n c e

The properties related to
background images are:

background-image

background-repeat

background-position

background-attachment

background

A t A G l A n c e

N OT E

The proper term for that “url-holder”
is a functional notation. It is the same
syntax used to list decimal and percent-
age RGB values.

N OT E

The proper term for that “url-holder”
is a functional notation. It is the same
syntax used to list decimal and percent-
age RGB values.

Providing site root relative URLs for
images ensures that the background
image can be found regardless of
location of the (X)HTML document
it’s going into. The root directory is
indicated by a slash at the beginning
of the URL. For example:

background-image:
url(/images/background.jpg)

t I P

Providing site root relative URLs for
images ensures that the background
image can be found regardless of
location of the (X)HTML document
it’s going into. The root directory is
indicated by a slash at the beginning
of the URL. For example:

background-image:
url(/images/background.jpg)

t I P

Background Images

Chapter 13, Colors and Backgrounds 247

dot.gif (24 x 24 pixels)

star.gif (100 x 96 pixels)

Figure 13-14. Examples of tiling background images added with the background-image
property.

Figure 13-15. The article with a simple
tiling background image.

exercise 13-2 |
Working with background images

In this exercise, we’re going to add and
manipulate tiling background images in
the Cabbages article from the last exercise.
We’ll revisit this document several times
to give you a chance to try out each
background image property. The images
provided for this exercise should be in
the same directory as the cabbage.html
document.

Add a declaration to the body style rule
that makes the image cabbage_A.jpg tile
in the background of the page.

background-image: url(cabbage_
A.jpg)

Easy, isn’t it? When you save and view the
page in the browser, it should look like
Figure 13-15. For extra credit, take the
image out of the page background and
put it in the div at the top of the page.

Background Images
When working with background
images, keep these guidelines and
tips in mind:

Use a simple image that won’t
interfere with the legibility of the
text over it.

Always provide a background-
color value that matches the
primary color of the background
image. If the background image
fails to display, at least the overall
design of the page will be similar.
This is particularly important if
the text color would be illegible
against the browser’s default
white background.

As usual for the Web, keep the
file size of background images as
small as possible.







D e S I G n t I P

Part III: CSS for Presentation248

Background Images

Background Tiling

As we saw in the last figure, images tile up and down, left and right when

left to their own devices. You can change this behavior with the background-

repeat property.

background-repeat
Values: repeat | repeat-x | repeat-y | no-repeat | inherit

Default: repeat

Applies to: all elements

Inherits: no

If you want a background image to appear just once, use the no-repeat key-

word value, like this.

body {
 background-image: url(star.gif);
 background-repeat: no-repeat;
}

You can also restrict the image to tiling only horizontally (repeat-x) or verti-

cally (repeat-y) as shown in these examples.

body {
 background-image: url(star.gif);
 background-repeat: repeat-x;
}

body {
 background-image: url(star.gif);
 background-repeat: repeat-y;
}

Figure 13-16 shows examples of each of the keyword values. Notice that in all

the examples, the tiling begins in the top-left corner of the element (or

browser window when an image is applied to the body element). But the

background image doesn’t necessarily need to start there.

exercise 13-2 | (continued)

Now let’s try some slightly more sophisticated tiling on the sample article page. This
time, we’ll remove that busy tile in the background of the whole page and add a
more subtle pattern just within the “titlepage” div.

Remove the background-image declaration in the body or div style rules.

In the div#titlepage rule, add the image cabbage_B.gif and set it to repeat
horizontally only.

div#titlepage {
 padding: 1em;
 background-color: #D4F8B9;
 background-image: url(cabbage_B.gif);
 background-repeat: repeat-x;
}

Save the file and look at it in the browser. It should look like Figure 13-17. Try
changing it to repeat vertically, then make it not repeat at all.

1.

2.

3.

exercise 13-2 | (continued)

Now let’s try some slightly more sophisticated tiling on the sample article page. This
time, we’ll remove that busy tile in the background of the whole page and add a
more subtle pattern just within the “titlepage” div.

Remove the background-image declaration in the body or div style rules.

In the div#titlepage rule, add the image cabbage_B.gif and set it to repeat
horizontally only.

div#titlepage {
 padding: 1em;
 background-color: #D4F8B9;
 background-image: url(cabbage_B.gif);
 background-repeat: repeat-x;
}

Save the file and look at it in the browser. It should look like Figure 13-17. Try
changing it to repeat vertically, then make it not repeat at all.

1.

2.

3.

Background Images

Chapter 13, Colors and Backgrounds 249

No repeat

Repeat-y

Repeat-x

Figure 13-16. Turning off automatic tiling with no-repeat (top), vertical-axis tiling with
repeat-y (middle), and horizontal-axis tiling with repeat-x (bottom).

Figure 13-17. Adding a horizontal tiling image to the div.

Background Position

The background-position property specifies the position of the origin image

in the background. You can think of the origin image as the first image that

is placed in the background from which tiling images extend. Here is the

property and its various values.

Part III: CSS for Presentation250

Background Images

background-position
Values: length measurement | percentage | left | center | right | top | bottom | inherit

Default: 0% 0% (same as left top)

Applies to: all elements

Inherits: no

In general, you provide both horizontal and vertical values that describe

where to place the origin image, but there are a variety of ways to do it.

Examples of each method are shown in Figure 13-18.

Keyword positioning

 The keyword values (left, center, right, top, bottom, and center) position

the origin image relative to the edges of the element. For example, left posi-

tions the image all the way to the left edge of the background area.

 Keywords are typically used in pairs, as in these examples:

 { background-position: left bottom; }
 { background-position: right center; }

 If you provide only one keyword, the missing keyword is assumed to be

center. Thus, background-position: right has the same effect as the sec-

ond example above.

Length measurements

 You can also specify the position by its distance from the top-left corner

of the element using pixel measurements. When providing length values,

the horizontal measurement always goes first.

 { background-position: 200px 50px; }

Percentages

 Percentage values are provided in horizontal/vertical pairs, with 0% 0%

corresponding to the top-left corner and 100% 100% corresponding to

the bottom-right corner. It is important to note that the percentage value

applies to both the canvas area and the image itself. For example, the 100%

value places the bottom-right corner of the image in the bottom-right cor-

ner of the canvas. As with keywords, if you only provide one percentage,

the other is assumed to be 50% (centered).

 { background-position: 15% 100%; }

Figure 13-18 shows the results of each of the background-position examples

listed above with the background-repeat set to no-repeat for clarity. It is pos-

sible to position the origin image and let it tile from there, in both directions

or just horizontally or vertically. When the image tiles, the position of the

initial image won’t be obvious, but you can use background-position to make

a tile pattern start at a point other than the left edge of the image.

To ensure best performance in
modern browsers, always supply the
horizontal measurement first for all
value types.

c S S t I P

To ensure best performance in
modern browsers, always supply the
horizontal measurement first for all
value types.

c S S t I P

background-position: 15% 100%;

background-position: top left;

background-position: right center;

background-position: 5opx 50px

Figure 13-18. Positioning a non-
repeating background image

background-position: 15% 100%;

background-position: top left;

background-position: right center;

background-position: 5opx 50px

Figure 13-18. Positioning a non-
repeating background image

Background Images

Chapter 13, Colors and Backgrounds 251

Put a non-repeating image in the top, left corner of the
page. Use the image named cabbage_C_topleft.gif. I’ll give
you the rule for this first one. Then try putting cabbage_C_
topright.gif in the top, right corner.

body {
 margin-left: 10%;
 margin-right: 10%;
 background-color: #BBE09F;
 background-image: url(cabbage_C_topleft.gif);
 background-repeat: no-repeat;
 background-position: left top;
 }

Change the above rule to place the
image cabbage_C_rightside.gif on
the right edge of the page and 100
pixels down from the top (this is the
screenshot shown in Figure 13-19).

The CSS Recommendation allows
combined value types (for example,
background-position: right 100px).
Just make sure you always put the
horizontal value first. Older browsers
may have a problem with mixed
values, so be sure to test this on
your target browsers. You can try the
same thing on the left side of the
page using cabbage_C_leftside.gif.
Experiment with different vertical
values.

Change that same rule to place the
image cabbage_C.gif in the center
of the body element. Note that it will
be centered vertically in the height of
the whole body element, not in the
browser window, so you’ll have to
scroll down to see it.

Now let’s get fancy. Change the
position of cabbage_C.gif to center
85px to center it near the top of the
page. Now, add the same image
to the shaded div at the top of the
page, setting its position to center
75px.

1.

2.

3.

4.

div#titlepage {
 padding: 1em;
 background-color: #D4F8B9;
 background-image: url(cabbage_C.gif);
 background-repeat: no-repeat;
 background-position: center 75px; }

The images may not match up exactly, but with this image, it’s
difficult to tell. Try scrolling the page, and pay attention to what
happens to the background images. We’ll play with this concept
more in the next installment of Exercise 13-2.

exercise 13-2 | (continued)

You guessed it... we’re going to have fun with the position of the background image in the cabbage article (are you hungry for
sauerkraut yet?). For this exercise, I’ve prepared several variations on the cabbage illustration that will look nice when tucked along
various edges of the page (see Figure 13-19). All of these GIF images are transparent, so when you use them as background images,
the background color will show through. I’ll give you a few things to try, but feel free to experiment with different placements and
types of position values on your own.

cabbage_C.gif

cabbage_C_topleft.gif

cabbage_C_topright.gif

cabbage_C_leftside.gif

cabbage_C_rightside.gif

background-image: url (cabbage_C_rightside.gif);
background-repeat: no-repeat;
background-position: right 120px;

Figure 13-19. The collection of background images designed to be positioned in various places in the document, as well as an
example of the image cabbage_C_rightside.gif positioned on the right edge of the document.

Part III: CSS for Presentation252

Background Images

N OT E

Notice in Figure 13-18 that when an origin image is placed in the corner of an ele-
ment, it is placed inside the border. Only repeated images extend under the border to
its outer edge.

Background attachment

In the previous exercise, I asked you to scroll the page and watch what hap-

pens to the background image. As expected, it scrolls along with the docu-

ment and off the top of the browser window, which is its default behavior.

However, you can use the background-attachment property to free the back-

ground from the content and allow it to stay fixed in one position while the

rest of the content scrolls.

background-attachment
Values: scroll | fixed | inherit

Default: scroll

Applies to: all elements

Inherits: no

With the background-attachment property, you have the choice of whether the

background image scrolls or is fixed. When an image is fixed, it stays in the

same position relative to the viewing area of the browser (as opposed to being

relative to the element it fills). You’ll see what I mean in a minute.

In the following example, a large, non-tiling image is placed in the background

of the whole document (the body element). By default, when the document

scrolls, the image scrolls too, moving up and off the page, as shown in Figure

13-20. However, if you set the value of background-attachment to fixed, it

stays where it is initially placed, and the text scrolls up over it.

body {
 background-image: url(images/bigstar.gif);
 background-repeat: no-repeat;
 background-position: center 300px;
 background-attachment: fixed; }

You can fix the position of a background image for any element, not just body,

but unfortunately, it won’t work for users with Internet Explorer 6 and earlier

for Windows. Fixed background images in non-body elements is supported

in the latest IE7 release, thankfully.

Background Images

Chapter 13, Colors and Backgrounds 253

background-attachment: fixed;

When background-attachment is set to “fixed,” the image
stays in its position relative to the browser viewing area
and does not scroll with the content

A large non-repeating background image in the body
of the document.

background-attachment: scroll;

By default, the background image is attached to the
body element and scrolls off the page when the page
content scrolls.

Figure 13-20. Preventing the background image from scrolling with the background-
attachment property.

exercise 13-2 | (continued)

When we last left the cabbage article, we had applied the same background
image to the body and div elements. We’ll leave it just like that, but we’ll use the
background-attachment property to fix the image in the background of the page.

body {margin-left: 10%;
 margin-right: 10%;
 background-color: #BBE09F;
 background-image: url(cabbage_C.gif);
 background-repeat: no-repeat;
 background-position: center 85px;
 background-attachment: fixed;
}

Save the document, open it in the browser, and now try scrolling. The background
image stays put in the viewing area of the browser.

Now for the pièce de résistance—make the background image in the div fixed as
well. You can use the cabbage_C.gif image or change it to cabbage_D.gif, which is a
little lighter.

div#titlepage {
 padding: 1em;
 background-color: #D4F8B9;
 background-image: url(cabbage_D.gif);
 background-repeat: no-repeat;
 background-position: center 75px;
 background-attachment: fixed;

}

Save the file and reload it in the browser window. Now look at what happens when
you scroll the page. Windows users, you’re going to need a browser other than
Internet Explorer 6 (or earlier) to see the effect. (I recommend downloading the
Firefox browser at www.mozilla.com/firefox/.)

Eric Meyer provides a more in-depth
discussion of fixed background
images at www.meyerweb.com/
eric/css/edge/complexspiral/glassy.
html.

R e A D m O R e

Eric Meyer provides a more in-depth
discussion of fixed background
images at www.meyerweb.com/
eric/css/edge/complexspiral/glassy.
html.

R e A D m O R e

Part III: CSS for Presentation254

The Shorthand background Property

The Shorthand background Property
You can use the handy background property to specify all of your background

styles in one declaration.

background
Values: background-color background-image background-repeat background-attachment background-

position | inherit

Default: see indiviual properties

Applies to: all elements

Inherits: no

As for the shorthand font property, the value of the background property is a

list of values that would be provided for the individual background proper-

ties listed above. For example, this one background rule:

body { background: black url(arlo.jpg) no-repeat right top fixed; }

replaces this rule with five separate declarations:

body {
 background-color: black;
 background-image: url(arlo.jpg);
 background-repeat: no-repeat;
 background-position: right top;
 background-attachment: fixed;
}

All of the property values for background are optional and may appear in

any order. The only restriction is that when providing the coordinates for the

background-position property, the horizontal value must appear first, imme-

diately followed by the vertical value. Be aware that if a value is omitted, it

will be reset to its default (see Watch Out for Overrides).

Finally, External Style Sheets
Back in Chapter 11, Cascading Style Sheets Orientation, I told you that there

are three ways to connect style sheets to (X)HTML markup: inline with the

style attribute, embedded with the style element, and as an external .css

document linked to or imported into the document. In this section, we finally

get to that third option.

External style sheets are by far the most powerful way to use CSS, because

you can make style changes across an entire site simply by editing a single

style sheet document. That is the advantage to having all the style informa-

tion in one place, and not mixed in with the document source.

First, a little bit about the style sheet document itself. An external style sheet

is a plain-text document with at least one style sheet rule. It may not include

any (X)HTML tags (there’s no reason to, anyway). It may contain comments,

but they must use the CSS comment syntax that you’ve seen already:

/* This is the end of the section */

Watch Out for
Overrides
The background property is efficient,
but use it carefully. Because it is a
shorthand property, when you omit
a value, that property will be reset
with its default. Be careful that you
do not accidentally override style
rules earlier in the style sheet with a
later shorthand rule that reverts your
settings to the defaults.

In this example, the background
image dots.gif will not be applied
to h3 elements because by omitting
the value for background-image, it
essentially set that value to none.

h1, h2, h3 { background: red
url(dots.gif) repeat-x;}

h3 {background: green;}

To override particular properties, use
the specific background property
you intend to change. For example, if
the intent in the above example was
to change just the background color
of h3 elements, the background-
color property would be a better
choice.

When using this or any shorthand
property, pay attention to related
rules earlier in the style sheet, or be
sure that every property is specified.

Watch Out for
Overrides
The background property is efficient,
but use it carefully. Because it is a
shorthand property, when you omit
a value, that property will be reset
with its default. Be careful that you
do not accidentally override style
rules earlier in the style sheet with a
later shorthand rule that reverts your
settings to the defaults.

In this example, the background
image dots.gif will not be applied
to h3 elements because by omitting
the value for background-image, it
essentially set that value to none.

h1, h2, h3 { background: red
url(dots.gif) repeat-x;}

h3 {background: green;}

To override particular properties, use
the specific background property
you intend to change. For example, if
the intent in the above example was
to change just the background color
of h3 elements, the background-
color property would be a better
choice.

When using this or any shorthand
property, pay attention to related
rules earlier in the style sheet, or be
sure that every property is specified.

exercise 13-2 |
(continued)

This one is easy. Replace all of the
background-related declarations
in the body of the cabbage article
with a single background property
declaration.

body {
margin-left: 10%;
margin-right: 10%;
background: #BBE09F
url(cabbage_C.gif) no-repeat
center 85px fixed;
}

Do the same for the div element,
and you’re done.

exercise 13-2 |
(continued)

This one is easy. Replace all of the
background-related declarations
in the body of the cabbage article
with a single background property
declaration.

body {
margin-left: 10%;
margin-right: 10%;
background: #BBE09F
url(cabbage_C.gif) no-repeat
center 85px fixed;
}

Do the same for the div element,
and you’re done.

Finally, External Style Sheets

Chapter 13, Colors and Backgrounds 255

The style sheet should be named with the .css suffix (there are some excep-

tions to this rule, but you’re unlikely to encounter them as a beginner). Figure

13-21 shows how a short style sheet document looks in my text editor.

Figure 13-21. External style sheets contain only CSS rules and comments in a plain text
document.

There are two ways to refer to an external style sheet from within the

(X)HTML document: the link element and an @import rule. Let’s look at

both of these attachment methods.

Using the link Element

The best-supported method is to create a link to the .css document using the

link element in the head of the document, as shown here:

<head>
<link rel="stylesheet" href="/path/stylesheet.css" type="text/css" />
<title>Titles are required.</title>

</head>

You need to include three attributes in the link element:

rel="stylesheet"

 Defines the linked document’s relation to the current document. The

value of the rel attribute is always stylesheet when linking to a style

sheet.

href="url"

 Provides the location of the .css file.

Design with
Embedded Styles;
Finish with an
External Style Sheet
It is common web development
practice to use an embedded style
sheet while you are designing the
page because it keeps everything
in one place, and your changes will
show instantly when you reload the
page in the browser. But once the
design is all set, the style rules are
then cut and pasted into an external
.css document so they can be linked
or imported to multiple documents
on the site.

P R O D U c t I O n t I P

Design with
Embedded Styles;
Finish with an
External Style Sheet
It is common web development
practice to use an embedded style
sheet while you are designing the
page because it keeps everything
in one place, and your changes will
show instantly when you reload the
page in the browser. But once the
design is all set, the style rules are
then cut and pasted into an external
.css document so they can be linked
or imported to multiple documents
on the site.

P R O D U c t I O n t I P

N OT E

The link element is empty, so you need
to terminate it with a trailing slash
in XHTML documents, as shown in
this example. Omit the trailing slash in
HTML documents.

N OT E

The link element is empty, so you need
to terminate it with a trailing slash
in XHTML documents, as shown in
this example. Omit the trailing slash in
HTML documents.

Part III: CSS for Presentation256

Finally, External Style Sheets

type="text/css"

 This identifies the data (MIME) type of the style sheet as “text/css” (cur-

rently the only option).

You can include multiple link elements to different style sheets and they’ll all

apply. If there are conflicts, whichever one is listed last will override previous

settings due to the rule order and the cascade.

Importing with @import

The other method for attaching external style sheets to a document is to

import it with an @import rule in the style element, as shown in this exam-

ple:

<head>
<style type="text/css">
 @import url("http://path/stylesheet.css");
 p { font-face: Verdana;}
</style>
<title>Titles are required.</title>
</head>

In this example, an absolute URL is shown, but it could also be a relative URL

(relative to the current (X)HTML document). The example above shows that

an @import rule can appear in a style element with other rules, but it must

come before any selectors. Again, you can import multiple style sheets and

they all will apply, but style rules from the last file listed takes precedence

over earlier ones.

You can also use the @import function within a .css document to reference

other .css documents. This lets you pull style information in from other style

sheets.

N OT E

You can also supply the URL without the url() notation:

@import "/path/style.css";

Again, absolute pathnames, beginning at the root, will ensure that the .css document
will always be found.

You can try both the link and @import methods in Exercise 13-3.

Modular Style Sheets

Because you can compile information from multiple external style sheets,

modular style sheets have become popular for style management. With this

method, one external style sheet attached to an (X)HTML document accesses

style rules from multiple .css files. You can use this method strategically to

reuse collections of styles that you like to use frequently in a mix-and-match

style with other collections.

exercise 13-3 |
Making an external
style sheet

As noted in an earlier tip, it is common
practice to create an embedded style
sheet while designing a site, then to
move the rules to an external style
sheet once the design is finished.

We’ll do just that for the cabbages
style sheet.

Open the latest version of
cabbages.html. Select and
cut all of the rules within the
style element, but leave the
<style>...</style> tags, because
we’ll be using them in a moment.

Create a new text document and
paste all of the style rules. Make
sure that no element tags got in
there by accident.

Save this document as cabbage.
css in the same directory as the
cabbage.html document.

Now, back in cabbage.html, we’ll
add an @import rule to attach the
external style sheet like this:

<style type="text/css">
 @import url(cabbage.css);
</style>

Save the file and reload it in the
browser. It should look exactly the
same as it did when the style sheet
was embedded. If not, go back and
make sure that everything matches
the examples.

Delete the whole style element
and this time, we’ll add the style
sheet with a link element in the
head of the document.

<link rel="stylesheet"
type="text/css"
href="cabbage.css" />

Again, test your work by saving the
document and viewing it in the
browser. If you want more practice,
try doing the same for the style
sheet for the Black Goose Bistro
online menu from Chapter 12,
Formatting Text.

1.

2.

3.

4.

5.

Style Sheets for Print (and Other Media)

Chapter 13, Colors and Backgrounds 257

For example, frequently used styles related to navigation could be stored in a

navigation style sheet. Basic typography settings could be stored in another,

form styles in another, and so on. These style modules are added to the main

style sheet with individual @import rules. Again, the @import rules need to go

before rules that use selectors.

Content of clientsite.css:

/* basic typography */
@import url("type.css");

/* form inputs */
@import url("forms.css");

/* navigation */
@import url("list-nav.css");

/* site-specific styles */
body { background: orange; }

 ... more style rules...

Style Sheets for Print
(and Other Media)
Colors and fancy backgrounds are nice for web pages, but they are often a

nuisance when the page is printed. There has been a common convention on

the Web to provide a “printer friendly” version for pages that are informa-

tion-rich and likely to be printed. The print version was usually a separate

(X)HTML document that was text-only, or at the very least, stripped of all the

bells and whistles, and reduced to a single column of content.

Now that CSS is widely supported, you can make a version of the document

that is customized for print without having to make a separate (X)HTML

document. It’s all handled with a separate style sheet that gets used only

when the document is sent to a printer.

In fact, CSS2 introduced the ability to target “print” and eight other different

media types (see the CSS for Other Media sidebar). This is done using the

media attribute in the link element or a media keyword in an @import rule in

the style sheet.

In this very simplified example, I’ve created a separate style sheet for the cab-

bage.html document that gets used when the document is printed. This is the

contents of cabbage_print.css:

body {
 margin-left: 10%;
 margin-right: 10%; }

div#titlepage {
 padding: 1em;
 border: thin double black; }

CSS for Other
Media
CSS2 introduced the ability to target
style sheets to nine different media.
Currently, only screen, print, and
all are widely supported; however,
handheld is getting more attention.
The complete list is as follows:

all

 Used for all media.

aural

 Used for screen readers and other
audio versions of the document.

braille

 Used with braille printing devices.

embossed

 Used with braille printing devices.

handheld

 Used for web-enabled cell
phones or PDAs.

print

 Used for printing or print
previews.

projection

 Used for slideshow-type
presentations.

screen

 Used for display on a computer
monitor.

speech

 Introduced in CSS2.1 to
eventually replace aural.

tty

 Used for teletype printers or
similar devices.

tv

 Used for presentation on a
television.

For more information about media-
specific style sheets, see the W3C
pages at www.w3.org/TR/CSS21/
media.html.

Part III: CSS for Presentation258

Style Sheets for Print (and Other Media)

a {
 text-decoration: none;}

div#titlepage p {
 text-align: center;
 font-variant: small-caps; }

p {
 text-align: justify; }

h1,h2,h3,h4,h5,h6 {
 text-transform: uppercase;
 text-align: center; }

This print style sheet differs from the previous version in these ways:

All color and background properties have been removed.

A border has been added to the “titlepage” div to make it stand out.

Links are not underlined.

Once the media-specific style sheets are created, I attach them to the source

document and specify which style sheet is used for which media. Here are

two ways to do it:

Linking to media-dependent style sheets

•

•

•

Style Sheets
for Print
I highly recommend these articles
on print style sheets by Eric Meyer,
published by A List Apart. The
articles document the details of
building a print style sheet for A List
Apart, and then building it again.

“CSS Design: Going to Print”
(www.alistapart.com/articles/
goingtoprint)

“ALA’s New Print Styles” (www.
alistapart.com/articles/
alaprintstyles/)





F U R t H e R R e A D I n G

Style Sheets
for Print
I highly recommend these articles
on print style sheets by Eric Meyer,
published by A List Apart. The
articles document the details of
building a print style sheet for A List
Apart, and then building it again.

“CSS Design: Going to Print”
(www.alistapart.com/articles/
goingtoprint)

“ALA’s New Print Styles” (www.
alistapart.com/articles/
alaprintstyles/)





F U R t H e R R e A D I n G

Figure 13-22. What cabbage.html looks
like when printed. The print-specific style
sheet removes the colors and puts a rule
around the “titlepage” div.

 Use the media attribute in the link element to specify the

target medium. Here, I added a new link element to cabbage.

html that targets print (the previous one is now targeting

screen):

 <head>
 <link rel="stylesheet" type="text/css"
 href="cabbage.css" media="screen" />

 <link rel="stylesheet" type="text/css"
 href="cabbage_print.css" media="print" />
 </head>

Using an @import rule

 Another way to attach target external style sheets is with @

import rules in the style element (or in another external

style sheet):

 <style type="text/css">
 @import url(cabbage.css) screen;
 @import url(cabbage_print.css) print;
 </style>

You should already be pretty familiar with how this document

looks in the browser. Figure 13-22 shows how it looks when it

is printed.

This is a very simplified example of what can be done with print

style sheets. For more information on this rich topic, see the

Style Sheets for Print box.

Test Yourself

Chapter 13, Colors and Backgrounds 259

Test Yourself
This time we’ll test your background prowess entirely with matching and

multiple-choice questions.

Which of these areas gets filled with a background color?

the area behind the content

any padding added around the content

under the border

the margin around the border

all of the above

a and b

a, b, and c

Which of these is not a way to specify the color white in CSS?

a. #FFFFFF b. #FFF c. rgb(255, 255, 255)

d. rgb(FF, FF, FF) e. white f. rgb(100%, 100%, 100%)

Match the pseudoclass with the elements it targets.

a. a:link 1. links that have already been clicked

b. a:visited 2. elements that are highlighted and ready for input

c. a:hover 3. the first child element of a parent element

d. a:active 4. a link with the mouse pointer over it

e. :focus 5. links that have not yet been visited

f. :first-child 6. links that are in the process of being clicked

Match the following rules with their respective samples shown in Figure

13-23 (right). All of the samples in the figure use the same source docu-

ment consisting of one paragraph element to which some padding and a

border have been applied.

body {background-image: url(graphic.gif);}

p {background-image: url(graphic.gif); background-repeat: no-repeat;

background-position: 50% 0%;}

body {background-image: url(graphic.gif); background-repeat:

repeat-x;}

p {background: url(graphic.gif) no-repeat right center;}

body {background-image: url(graphic.gif); background-repeat:

repeat-y;}

body { background: url(graphic.gif) no-repeat right center;}

1.

a.

b.

c.

d.

e.

f.

g.

2.

3.

4.

a.

b.

c.

d.

e.

f.

1

2

3

4

5

6

1

2

3

4

5

6

Part III: CSS for Presentation260

Review: Color and Background Properties

Which rule will not work in Internet Explorer 6 and earlier (Windows)

due to lack of support?

p.highlight:hover {background-color: yellow}

li:first-child {background-color: #CCCCCC;}

div#contents {background: url(daisy.gif) no-repeat fixed;}

blockquote: before {content: "%8220;"; font-size: x-large; color:

purple;}

all of the above

Review: Color and Background
Properties
Here is a summary of the properties covered in this chapter, in alphabetical

order.

Property Description

background A shorthand property that combines background properties

background-attachment Specifies whether the background image scrolls or is fixed

background-color Specifies the background color for an element

background-image Provides the location of an image to use as a background

background-position Specifies the location of the origin background image

background-repeat Whether and how a background image repeats (tiles)

color Specifies the foreground (text and border) color

5.

a.

b.

c.

d.

e.

261

IN THIS CHAPTER

The components of an
element box

Setting box dimensions

Adding padding
around content

Adding borders

Adding margins

Assigning display roles

In Chapter 11, Cascading Style Sheets Orientation, I introduced the box

model as one of the fundamental concepts of CSS. According to the box

model, every element in a document generates a box to which properties

such as width, height, padding, borders, and margins can be applied. You

probably already have a feel for how element boxes work, from adding back-

grounds to elements. This chapter covers all the box-related properties. Once

we’ve covered the basics, we will be ready to move boxes around in Chapter

15, Floating and Positioning.

We’ll begin with an overview of the components of an element box, then

take on the box properties from the inside out: content dimensions, padding,

borders, and margins.

The Element Box
As we’ve seen, every element in a document, both block-level and inline,

generates a rectangular element box. The components of an element box are

diagrammed in Figure 14-1. Pay attention to the new terminology—it will be

helpful in keeping things straight later in the chapter.

Content area

Padding area

Margin area

Outer edge Inner edge

width

height

Border

Figure 14-1. The parts of an element box according to the CSS box model.

THINKING INSIDE
THE BOX
(Padding, Borders, and Margins)

CHAPTER 14

Part III: CSS for Presentation262

Setting the Content Dimensions

content area

 At the core of the element box is the content itself. In Figure 14-1, the con-

tent area is indicated by text in a white box.

inner edges

 The edges of the content area are referred to as the inner edges of the

element box. This is the box that gets sized when you apply width and

height properties. Although the inner edges are made distinct by a color

change in Figure 14-1, in real pages, the edge of the content area would be

invisible.

padding

 The padding is the area held between the content area and an optional

border. In the diagram, the padding area is indicated by a yellow-orange

color. Padding is optional.

border

 The border is a line (or stylized line) that surrounds the element and its

padding. Borders are also optional.

margin

 The margin is an optional amount of space added on the outside of the

border. In the diagram, the margin is indicated with light-blue shading,

but in reality, margins are always transparent, allowing the background of

the parent element to show through.

outer edge

 The outside edges of the margin area make up the outer edges of the ele-

ment box. This is the total area the element takes up on the page, and it

includes the width of the content area plus the total amount of padding,

border, and margins applied to the element. The outer edge in the dia-

gram is indicated with a dotted line, but in real web pages, the edge of the

margin is invisible.

All elements have these box components; however, as you will see, some prop-

erties behave differently based on whether the element is block or inline. In

fact, we’ll see some of those differences right off the bat with box dimensions.

Setting the Content Dimensions
Use the width and height properties to specify the width and height (natu-

rally) of the content area of the element. You can specify the width and height

only of block-level elements and non-text inline elements such as images. The

width and height properties do not apply to inline text (a.k.a. non-replaced)

elements and will be ignored by the browser. In other words, you cannot

specify the width and height of an anchor (a) or strong element (see note).

The total width of an
element includes the width
of the content plus the
total amount of padding,
borders, and margins
applied to the element.

The total width of an
element includes the width
of the content plus the
total amount of padding,
borders, and margins
applied to the element.

Setting the Content Dimensions

Chapter 14, Thinking Inside the Box (Padding, Borders, and Margins) 263

width
Values: length measurement | percentage | auto | inherit

Default: auto

Applies to: Block-level elements and replaced inline elements (such as images)

Inherits: no

height
Values: length measurement | percentage | auto | inherit

Default: auto

Applies to: Block-level elements and replaced inline elements (such as images)

Inherits: no

By default, the width and height of a block element is calculated automati-

cally by the browser (thus the default auto value). It will be as wide as the

browser window or other containing block element, and as high as necessary

to fit the content. However, you can use the width and height properties to

make the content area of an element a specific width. Em, pixel, and percent-

age values are the most common ways to size elements.

The width and height properties are straightforward to use, as shown in these

examples and Figure 14-2. I’ve added a background color to the elements as

well, to make the boundaries of the content area more clear.

p#A {width: 400px; height: 100px; background: #C2F670;}

p#B {width: 150px; height: 300px; background: #C2F670;}

width: 150px; height: 300px;

width: 400px; height: 100px;

Figure 14-2. Specifying the width and height of paragraph elements.

The main thing to keep in mind when specifying the width and height is

that it applies to the content area only. Any padding, border, and margins you

apply to the element will be added to the width value. So, for example, if you

set the width of an element to 200 pixels, and add 10 pixels of padding, a 1-

pixel border, and 20 pixels of margin, the total width of the element box will

be 262 pixels, calculated as follows:

 20px + 1px + 10px + 200px width + 10px + 1px + 20px = 262

N OT E

Actually, there is a way to apply width
and height properties to anchors by
forcing them to behave as block elements
with the display property, covered at the
end of this chapter.

N OT E

Actually, there is a way to apply width
and height properties to anchors by
forcing them to behave as block elements
with the display property, covered at the
end of this chapter.

Maximum
and Minimum
Dimensions
CSS2 introduced properties for
setting minimum and maximum
heights and widths for block
elements. They may be useful if you
want to put limits on the size of an
element.

max-height, max-width,
min-height, min-width
Values: percentage | length| none | inherit

These properties work with block
level and replaced elements (like
images) only. The value applies to
the content area, so if you apply
padding, borders, or margins, it will
make the overall element box larger,
even if a max-width or max-height
property have been specified.

Unfortunately, these properties are
not supported by Internet Explorer
6 and earlier. There there is a
workaround for max-width that uses
a non-standard IE extension, which
you can read about in this article
by Svend Tofte at www.svendtofte.
com/code/max_width_in_ie/. The
css-discuss archive offers links to
several min-width workarounds
here: css-discuss.incutio.com/
?page=MinWidth.

Maximum
and Minimum
Dimensions
CSS2 introduced properties for
setting minimum and maximum
heights and widths for block
elements. They may be useful if you
want to put limits on the size of an
element.

max-height, max-width,
min-height, min-width
Values: percentage | length| none | inherit

These properties work with block
level and replaced elements (like
images) only. The value applies to
the content area, so if you apply
padding, borders, or margins, it will
make the overall element box larger,
even if a max-width or max-height
property have been specified.

Unfortunately, these properties are
not supported by Internet Explorer
6 and earlier. There there is a
workaround for max-width that uses
a non-standard IE extension, which
you can read about in this article
by Svend Tofte at www.svendtofte.
com/code/max_width_in_ie/. The
css-discuss archive offers links to
several min-width workarounds
here: css-discuss.incutio.com/
?page=MinWidth.

Part III: CSS for Presentation264

Setting the Content Dimensions

This is the way it is documented in the CSS2 Recommendation, and the way

it works in all standards-compliant browsers (Firefox, Netscape 6+, Safari,

Opera, and Internet Explorer 6 and 7 in Standards Mode). However, it is

important to know that there is a well-known inconsistency in the way IE 5,

5.5 and 6 (in Quirks Mode) interprets width and height values. See the IE/

Windows Box Model sidebar for details and a workaround.

N OT E

Standards and Quirks Mode are covered
in detail in Chapter 10, Understanding
the Standards.

N OT E

Standards and Quirks Mode are covered
in detail in Chapter 10, Understanding
the Standards.

One of the most notorious browser inconsistencies is that
Internet Explorer for Windows (all versions except 6 and 7
running in Standards Mode) has its own implementation of the
box model.

In these versions, the width property is applied to the outer
edges of the borders, not to the content area as established
in the CSS Recommendations. This causes major discrepancies
between how the element is sized in standards-compliant
browsers and how it will appear in IE/Windows.

Take the div from an earlier example that has its width set
to 200 pixels, with a 20 pixel margin, a 1 pixel border, and 10
pixels of padding. On standards-compliant browsers, the visible
element box would measure 222 pixels (200 + 2 + 20), and the
entire element box including the margin would be 262 pixels.

But IE 5 and 5.5 (Windows only) applies the 200px width value
to the outer edges of the borders (see Figure 14-3). The padding
and border are subtracted, leaving a content area that’s 178
pixels wide. The outer edges of the element box would measure
218 pixels, not 262. You can see how this would present a
problem in page layouts with precisely sized columns or page
widths.

border

Content

Margin

Padding

W3C box model

Border box model (IE, 5.5 and 6 in Quirks mode)

width: 200px;

Figure 14-3. Box model interpretation in WinIE 5 and 5.5.

To deal with these discrepancies, the first thing to do is make
sure you use a proper DOCTYPE declaration to ensure IE 6 and
7 (the vast majority of IE traffic as of this writing) will switch
into Standards Mode and display the element widths as you’d
expect.

If for some reason you must support IE 5 and 5.5, you can use
a conditional comment to direct an IE 5/5.5-specific style sheet
containing adjusted width values to just those browsers. Other
browsers will interpret the contents as a regular comment and
ignore it, but IE versions are programmed to pay attention to
what’s inside.

In this example, the IE5/5.5 style sheet contains a rule that sets
the width of the div to 222 pixels. When IE 5/5.5 subtracts the
border and padding widths, the content area will end up 200
pixels wide, as desired.

div { width: 222px; }

Name the style sheet clearly, such as ie5.css, or similar. In the
real world, chances are this style sheet will have more than one
rule, but we’ll keep this example simple.

Next, link that style sheet to the document, but contain the
link element in a conditional comment that calls on the special
style sheet only “if the IE version is less than 6.”

<!--[if lt IE 6]>
<link rel="stylesheet" type="text/css"
media="screen" href="/css/ie5.css" />
<![endif]-->

Obviously, there’s more to it than I’ve covered here, so I
encourage you to read more at these resources:

The Microsoft tutorial on conditional comments (msdn.
microsoft.com/workshop/author/dhtml/overview/
ccomment_ovw.asp)

Conditional Comments article at Quirksmode.com (www.
quirksmode.org/css/condcom.html)





The IE/Windows Box Model

Setting the Content Dimensions

Chapter 14, Thinking Inside the Box (Padding, Borders, and Margins) 265

Specifying height

In general practice, it is less common to specify the height of elements. It is

more in keeping with the nature of the medium to allow the height to be cal-

culated automatically, based on the size of the text and other contents. This

allows it to change based on the font size, user settings, or other factors. If you

do specify a height for an element containing text, be sure to also consider

what happens should the content not fit. Fortunately, CSS gives you some

options, as we’ll see in the next section.

Handling overflow

When an element is set to a size that is too small for its contents, it is possible

to specify what to do with the content that doesn’t fit, using the overflow

property.

overflow
Values: visible | hidden | scroll | auto | inherit

Default: visible

Applies to: Block-level elements and replaced inline elements (such as images)

Inherits: no

Figure 14-4 demonstrates the predefined values for overflow. In the figure,

the various values are applied to an element that is 150 pixels square. The

background color makes the edges of the content area apparent.

visible hidden scroll auto (short text) auto (long text)

Figure 14-4. Options for handling content overflow.

visible

 The default value is visible, which allows the content to hang out over

the element box so that it all can be seen.

hidden

 When overflow is set to hidden, the content that does not fit gets clipped

off and does not appear beyond the edges of the element’s content area.

The Future of the
Box Model
CSS3 includes a new box-sizing
property that lets authors choose
whether width and height
dimensions are applied to the
content area (as is the current
model) or to the outer edges of the
border (as implemented by IE 5/5.5).
For a good overview of this new
feature, read Peter-Paul Koch’s article
“Box Model Tweaking” at www.
quirksmode.org/css/box.html.

The Future of the
Box Model
CSS3 includes a new box-sizing
property that lets authors choose
whether width and height
dimensions are applied to the
content area (as is the current
model) or to the outer edges of the
border (as implemented by IE 5/5.5).
For a good overview of this new
feature, read Peter-Paul Koch’s article
“Box Model Tweaking” at www.
quirksmode.org/css/box.html.

Part III: CSS for Presentation266

Padding

scroll

 When scroll is specified, scrollbars are added to the element box to let

users scroll through the content. Be aware that when you set the value to

scroll, the scrollbars will always be there, even if the content fits in the

specified height just fine.

auto

 The auto value allows the browser to decide how to handle overflow. In

most cases, scrollbars are added only when the content doesn’t fit and

they are needed.

Padding
Padding is the space between the content area and the border (or the place

the border would be if one isn’t specified). I find it helpful to add a little

padding to elements when using a background color or a border. It gives the

content a little breathing room, and prevents the border or edge of the back-

ground from bumping right up against the text.

You can add padding to the individual sides of any element (block-level or

inline). There is also a shorthand padding property that lets you add padding

on all sides at once.

padding-top, padding-right, padding-bottom, padding-left
Values: length measurement | percentage | auto | inherit

Default: auto

Applies to: all elements

Inherits: no

padding
Values: length measurement | percentage | auto | inherit

Default: auto

Applies to: all elements

Inherits: no

With the padding-top, padding-right, padding-bottom, and padding-left

properties, you can specify an amount of padding for each side of an element

as shown in this example and Figure 14-5 (note that I’ve also added a back-

ground color to make the edges of the padding area apparent).

3em 3em
1em

1em

Figure 14-5. Adding padding around an element.

blockquote {
 padding-top: 1em;
 padding-right: 3em;
 padding-bottom: 1em;
 padding-left: 3em;
 background-color: #D098D4;
}

Padding

Chapter 14, Thinking Inside the Box (Padding, Borders, and Margins) 267

You can specify padding in any of the CSS length units (see the At a Glance

sidebar for a refresher) or as a percentage of the width of the parent element.

Yes, the width is used as the basis even for top and bottom padding, and if the

width of the parent element should change, so will the padding values on all

sides of the child element.

The shorthand padding property

As an alternative to setting padding one side at a time, you can use the short-

hand padding property to add padding all around the element. The syntax is

kind of interesting; you can specify four, three, two, or one value for a single

padding property. Let’s see how that works, starting with four values.

When you supply four padding values, they are applied to each side in

clockwise order, starting at the top. Some people use the mnemonic device

“TRouBLe” for the order Top, Right, Bottom, Left.

{ padding: top right bottom left; }

Using the padding property, we could reproduce the padding specified with

the four individual properties in the previous example like this:

blockquote {
 padding: 1em 3em 1em 3em;
 background-color: #D098D4;
}

If the left and right padding are the same, you can shorten it by supplying

only three values. The value for “right” (the second value in the string) will be

mirrored and used for “left” as well. It is as though the browser assumes “left”

value is missing, so it just uses the “right” value on both sides. The syntax for

three values is as follows:

{ padding: top right/left bottom; }

This rule would be equivalent to the previous example because the padding

on the left and right edges of the element should be set to 3em.

blockquote {
 padding: 1em 3em 1em;
 background-color: #D098D4;
}

Continuing with this pattern, if you provide only two values, the first one is

used for the top and the bottom edges, and the second one is used for the left

and right edges:

{ padding: top/bottom right/left; }

Again, the same effect achieved by the previous two examples could be

accomplished with this rule.

blockquote {
 padding: 1em 3em;
 background-color: #D098D4;
}

The CSS units of measurement are:

Relative units:

em Em = font size
ex Ex = height of “x”
px Pixel

Absolute units:

pt Point
pc Pica
in Inches
mm Millimeters
cm Centimeters

A t A G l A n c e

The CSS units of measurement are:

Relative units:

em Em = font size
ex Ex = height of “x”
px Pixel

Absolute units:

pt Point
pc Pica
in Inches
mm Millimeters
cm Centimeters

A t A G l A n c e

Shorthand Values
1 value
padding: 10px;
Applied to all sides.

2 values
padding: 10px 6px;
First is top and bottom;
Second is left and right.

3 values
padding: 10px 6px 4px;
First is top;
Second is left and right;
Third is bottom.

4 values
padding: 10px 6px 4px 10px;
Applied clockwise to top, right,
bottom, and left edges consecutively
(TRBL).

A t A G l A n c e

Shorthand Values
1 value
padding: 10px;
Applied to all sides.

2 values
padding: 10px 6px;
First is top and bottom;
Second is left and right.

3 values
padding: 10px 6px 4px;
First is top;
Second is left and right;
Third is bottom.

4 values
padding: 10px 6px 4px 10px;
Applied clockwise to top, right,
bottom, and left edges consecutively
(TRBL).

A t A G l A n c e

Part III: CSS for Presentation268

Padding

Note that all of the previous examples have the same visual effect as shown

in Figure 14-5.

Finally, if you provide just one value, it will be applied to all four sides of the

element. This declaration applies 15 pixels of padding on all sides of a div

element.

div#announcement {
 padding: 15px;
 border: 1px solid;
}

Padding doesn’t need to be so conservative or symmetrical. You can use pad-

ding to dramatic effect for pushing content around inside its own border or

colored background. The examples in Figure 14-6 are a little more “out there”

and may give you a different perspective on how padding can be used.

padding: 10px 33%;

padding: 10px 10px 10px 50%;

padding: 100px 10px 10px 100px;

padding: 100px 5px;

Figure 14-6. Extreme padding.

padding: 10px 33%;

padding: 10px 10px 10px 50%;

padding: 100px 10px 10px 100px;

padding: 100px 5px;

Figure 14-6. Extreme padding.

exercise 14-1 | Adding a little padding

In this exercise, we’ll use basic box properties to improve the appearance of a
fictional shopping site, JenWARE.com. I’ve given you a big headstart by marking up
the source document and creating a style sheet that handles text formatting and
backgrounds. The document, jenware.html, is available in the materials directory
(www.learningwebdesign.com/materials).

Figure 14-7 shows before and after shots of the JenWARE home page. It’s going to
take a few steps to get this page into presentable shape, and padding is just the
beginning.

Figure 14-7. Before and after shots of the JenWARE home page.

Borders

Chapter 14, Thinking Inside the Box (Padding, Borders, and Margins) 269

Borders
A border is simply a line drawn around the content area and its (optional)

padding. Thankfully, it doesn’t have to be as boring as that last sentence

makes it sound. You can choose from eight border styles and make them any

width and color you like. You can apply the border all around the element or

just a particular side or sides. You can even apply different border styles to

sides of the same element. We’ll start our border exploration with the various

border styles.

Border style

The style is the most important of the border properties because, according

to the CSS specification, if there is no border style specified, the border does

Start by opening jenware.com in a browser and a text editor to see what you’ve
got to work with. The document has been divided into three div elements
(“intro,” “testimonials,” and “products”). Background colors have been added to the
body, testimonials, and products sections. There is also a horizontally repeating
background image along the top of the body that creates the gradient (color fade)
at the top of the page, and an exclamation point image in the top-left corner of
the testimonials section. The remaining rules are for formatting text.

The first thing we’ll do is add padding to the “products” div. Two ems of padding
all around ought to be fine. Find the #products selector and add the padding
declaration.

#products {
 padding: 2em;
 background-color: #FFF;
 line-height: 2em;
}

Next, we’ll get a little fancier with the “testimonials” section. I want to clear some
space in the left side of the div so that my nifty exclamation point background
image is visible. There are several approaches to applying different padding
amounts to each side, but I’m going to do it in a way that gives you practice at
deliberately overriding earlier declarations.

Use the padding shorthand property to add 1 em of padding on all sides of the
testimonials div. Then write a second declaration that adds 60 pixels of padding
to the left side only. Because the padding-left declaration comes second, it will
override the 1em setting applied with the padding property.

#testimonials {
 padding: 1em;
 padding-left: 60px;
 background: #FFBC53 url(images/ex-circle-corner.gif) no-repeat left
top;
 line-height: 1.2em;
}

Save your work and look at it in the browser. The testimonials and product
descriptions should look a little more comfortable in their boxes. Figure 14-8
highlights the padding additions.

1.

2.

3.

4.

1em

60px

1em

2em

2em

Figure 14-8. The pink area indicates
padding added to the testimonials section.
Blue indicates the products section
padding.

1em

60px

1em

2em

2em

Figure 14-8. The pink area indicates
padding added to the testimonials section.
Blue indicates the products section
padding.

Part III: CSS for Presentation270

Borders

not exist. In other words, you must always declare the style of the border, or

the other border properties will be ignored.

Border styles can be applied one side at a time or by using the shorthand

border-style property.

border-top-style, border-right-style,
border-bottom-style, border-left-style
Values: none | dotted | dashed | solid | double | groove | ridge | inset | outset | inherit

Default: none

Applies to: all elements

Inherits: no

border-style
Values: none | dotted | dashed | solid | double | groove | ridge | inset | outset | inherit

Default: none

Applies to: all elements

Inherits: no

The value of the border-style properties is one of nine keywords describing

the available border styles, as shown in Figure 14-9.

Figure 14-9. The available border styles (shown at the default medium width) .

You can use the side-specific border style properties (border-top-style,

border-right-style, border-bottom-style, and border-left-style) to apply

a style to one side of the element. If you do not specify a width, the default

medium width will be used. If there is no color specified, the border uses the

foreground color of the element (same as the text).

In the following example, I’ve applied a different style to each side of an ele-

ment to show the single-side border properties in action (Figure 14-10).

WA R N I N G

There is a bug in Internet Explorer 6 for
Windows that causes borders specified as
dotted to render as dashed.

WA R N I N G

There is a bug in Internet Explorer 6 for
Windows that causes borders specified as
dotted to render as dashed.

Borders

Chapter 14, Thinking Inside the Box (Padding, Borders, and Margins) 271

div#silly {
 border-top-style: solid;
 border-right-style: dashed;
 border-bottom-style: double;
 border-left-style: dotted;
 width: 300px;
 height: 100px;}

The border-style shorthand property works on the clockwise (TRouBLe)

system described for padding earlier. You can supply four values for all four

sides or fewer values when the left/right and top/bottom borders are the

same. The silly border effect in the previous example could also be specified

using the border-style property as shown here, and the result would be the

same as shown in Figure 14-10.

 border-style: solid dashed double dotted;

Border width (thickness)

Use one of the border width properties to specify the thickness of the border.

Once again, you can target each side of the element with a single-side prop-

erty, or specify several sides at once in clockwise order with the shorthand

border-width property.

border-top-width, border-right-width,
border-bottom-width, border-left-width
Values: length units | thin | medium | thick | inherit

Default: medium

Applies to: all elements

Inherits: no

border-width
Values: length units | thin | medium | thick | inherit

Default: medium

Applies to: all elements

Inherits: no

The most common way to specify the width of borders is using a pixel mea-

surement; however, you can also specify one of the keywords (thin, medium,

or thick) and leave the rendering up to the browser.

I’ve included a mix of values in this example (Figure 14-11). Notice that I’ve

also included the border-style property because if I didn’t, no border would

render at all.

div#help {
 border-top-width: thin;
 border-right-width: medium;
 border-bottom-width: thick;
 border-left-width: 12px;
 border-style: solid;
 width: 300px;
 height: 100px; }

Figure 14-10. Border styles applied to
individual sides of an element.
Figure 14-10. Border styles applied to
individual sides of an element.

Part III: CSS for Presentation272

Borders

or

div#help {
 border-width: thin medium thick 12px;
 border-style: solid;
 width: 300px;
 height: 100px; }

12px

thin

thick

medium

Figure 14-11. Specifying the width of borders.

Border color

Border colors are specified in the same way: using the side-specific properties

or the border-color shorthand property. When you specify a border color, it

overrides the foreground color as set by the color property for the element.

border-top-color, border-right-color,
border-bottom-color, border-left-color
Values: color name or RGB value | transparent | inherit

Default: the value of the color property for the element

Applies to: all elements

Inherits: no

border-color
Values: color name or RGB value | transparent | inherit

Default: the value of the color property for the element

Applies to: all elements

Inherits: no

You know all about specifying color values, and you should be getting used

to the shorthand properties as well, so I’ll keep this example short and sweet

(Figure 14-12). Here, I’ve provided two values for the shorthand border-color

property to make the top and bottom of a div maroon and the left and right

sides aqua.

div#special {
 border-color: maroon aqua;
 border-style: solid;
 border-width: 6px;
 width: 300px;
 height: 100px;
}

N OT E

CSS2 added the transparent keyword
value for border colors that allows
the background of the parent to show
through the border, yet holds the width
of the border as specified. This may be
useful when creating rollover (:hover)
effects with CSS because the space where
the border will appear is maintained
when the mouse is not over the element.

Unfortunately, the transparent value
is not supported by Internet Explorer
for Windows (versions 6 and earlier).
Support in IE7 is not yet documented
as of this writing, so you’ll have to test it
out yourself.

N OT E

CSS2 added the transparent keyword
value for border colors that allows
the background of the parent to show
through the border, yet holds the width
of the border as specified. This may be
useful when creating rollover (:hover)
effects with CSS because the space where
the border will appear is maintained
when the mouse is not over the element.

Unfortunately, the transparent value
is not supported by Internet Explorer
for Windows (versions 6 and earlier).
Support in IE7 is not yet documented
as of this writing, so you’ll have to test it
out yourself.

Borders

Chapter 14, Thinking Inside the Box (Padding, Borders, and Margins) 273

Figure 14-12. Specifying the color of borders.

Combining style, width, and color

The authors of CSS didn’t skimp when it came to border shortcuts. They also

created properties for providing style, width, and color values in one declara-

tion. Again, you can specify the appearance of specific sides, or use the border

property to change all four sides at once.

border-top, border-right, border-bottom, border-left
Values: border-style border-width border-color or inherit

Default: defaults for each property

Applies to: all elements

Inherits: no

border
Values: border-style border-width border-color or inherit

Default: defaults for each property

Applies to: all elements

Inherits: no

The values for border and the side-specific border properties may include

style, width, and color values in any order. You do not need to declare all

three, but keep in mind that if the border style value is omitted, no border

will render.

The border shorthand property works a bit differently than the other short-

hand properties that we covered in that it takes one set of values and always

applies them to all four sides of the element. In other words, it does not use the

clockwise, “TRBL” system that we’ve seen with other shorthand properties.

Here is a smattering of valid border shortcut examples to get an idea for how

they work.

h1 { border-left: red .5em solid; } left border only

h2 { border-bottom: 1px solid; } bottom border only

p.example { border: 2px dotted #663; } all four sides

Now it is time to try your hand at borders. Exercise 14-2 will not only give you

some practice, but it should also give you some ideas on the ways borders can

be used to add graphic interest to CSS-based page designs.

Part III: CSS for Presentation274

Borders

exercise 14-2 | Border tricks

In this exercise, we’ll have some fun with borders on the JenWARE home page. In
addition to putting subtle borders around content sections on the page, we’ll use
borders to beef up the product headlines and as an alternative to underlines under
links.

Open jenware.html in a text editor if it isn’t already. We’ll start simple by using the
shorthand border property to add an orange (#F26521) dashed rule around the
testimonials section. Add the new declaration to the rule for the “testimonials” div.

#testimonials {
 border: 1px dashed #F26521;
 padding: 1em;
 padding-left: 60px;
 background: #FFBC53 url(images/ex-circle-corner.gif) no-repeat left
top;
 line-height: 1.2em;
 }

Next, add a double rule around the “products” area that is an even lighter orange
(#FFBC53) so as not to call too much attention to itself.

#products {
 border: double #FFBC53;
 padding: 2em;
 background-color: #FFF;
 line-height: 2em;
 }

Just for fun (and practice), we’ll add decorative borders on two sides of the
headlines in the products section. I want the borders to be the same color as the
text, so we don’t need to specify the border-color. Find the existing rule for h2
elements in the “products” div, and add a declaration that adds a 1-pixel solid
rule on the top of the headline. Add another declaration that adds a thicker, 3-
pixel solid rule on the left side. Finally, to prevent the text from bumping into that
left border, we can add a little bit of padding (1em) to the left of the headline
content.

#products h2 {
 border-top: 1px solid;
 border-left: 3px solid;
 padding-left: 1em;
 font-size: 1.2em;
 color: #921A66;
}

The last thing we’ll do is replace the standard text underline under links with a
decorative bottom border.

You will find that there are already rules in the style sheet for changing the colors
of the four link states. Start by turning the underline off for all of the link states by
setting the text-decoration to none in each of the rules.

text-decoration: none;

Next, add a 1-pixel dotted border to the bottom edge of each state by adding this
declaration to each link rule:

border-bottom: 1px dotted;

1.

2.

3.

4.

Subtle Outlines
Keeping the color of the rule close
to the background color and
keeping the width of the rule quite
thin, we can achieve a very subtle
effect, creating a texture more than a
strong outline.

D e S I G n t I P

Subtle Outlines
Keeping the color of the rule close
to the background color and
keeping the width of the rule quite
thin, we can achieve a very subtle
effect, creating a texture more than a
strong outline.

D e S I G n t I P

Bottom Borders
Instead of
Underlines
Turning off link underlines and
replacing them with a custom
bottom border is a common design
technique in modern web design.
It lightens the look of links while
still making them stand out from
ordinary text.

D e S I G n t I P

Bottom Borders
Instead of
Underlines
Turning off link underlines and
replacing them with a custom
bottom border is a common design
technique in modern web design.
It lightens the look of links while
still making them stand out from
ordinary text.

D e S I G n t I P

N OT E

Internet Explorer 6 users will see dashed
borders instead of dotted borders under
links due to buggy support for the dotted
keyword.

N OT E

Internet Explorer 6 users will see dashed
borders instead of dotted borders under
links due to buggy support for the dotted
keyword.

Margins

Chapter 14, Thinking Inside the Box (Padding, Borders, and Margins) 275

Margins
The last remaining component of an element is its margin, which is an

optional amount of space that you can add on the outside of the border.

Margins keep elements from bumping into one another or the edge of the

browser window. You can even use margins to make space for another column

of content (we’ll see how that works in Chapter 16, Page Layout with CSS). In

this way, margins are an important tool in CSS-based page layout.

The side-specific and shorthand margin properties work much like the pad-

ding properties we’ve looked at already, however, margins have some special

behaviors to be aware of.

margin-top, margin-right, margin-bottom, margin-left
Values: length measurement | percentage | auto | inherit

Default: auto

Applies to: all elements

Inherits: no

Notice that because we want the border to have the same color as the links, we do
not need to specify a color. However, if you try this on your own pages, you can easily
change the color and style of the bottom border.

As is often the case when you add a border to an element, it is a good idea to also
add a little padding to keep things from bumping together. Add some padding to
the bottom edges only, like so:

padding-bottom: .25em;

I’m noticing that there are a lot of redundant declarations here, and
although it isn’t necessary, let’s take the time to condense our style
sheet by grouping the selectors for these underline effects, then use
separate rules to change only the colors (and background for the :hover
state) . The final links section of the style sheet should look like this:

a:link, a:visited, a:hover, a:active {
 text-decoration: none;
 border-bottom: 1px dotted;
 padding-bottom: .25em;
}

a:link, a:active {
 color: #CC0000;
}

a:visited {
 color: #921A66;
}

a:hover {
 background-color: #FCF191;
 color: #921A66;
}

See Figure 14-3 for what the page looks like.

Figure 14-13. The results of our border
additions.

Part III: CSS for Presentation276

Margins

margin
Values: length measurement | percentage | auto | inherit

Default: auto

Applies to: all elements

Inherits: no

The margin properties are very straightforward to use. You can specify an

amount of margin to appear on each side of the element, or use the margin

property to specify all sides at once.

The shorthand margin property works the same as the padding shorthand.

When you supply four values, they are applied in clockwise order (top, right,

bottom, left) to the sides of the element. If you supply three values, the middle

value applies to both the left and right sides. When two values are provided,

the first is used for the top and bottom, and the second applies to the left and

right edges. Finally, one value will be applied to all four sides of the element.

As for most web measurements, em units are your best bet for providing mar-

gin amounts that scale along with the text. Pixel values are commonly used

as well. You can also provide a percentage value, but it should be noted that,

as for padding, the percentage value is calculated based on the width of the

parent element. If the parent’s width changes, so will the margins on all four

sides of the child element. The auto keyword allows the browser to fill in the

amount of margin necessary to fit or fill the available space.

Figure 14-14 shows the results of the following margin examples. Note that

I’ve added a light dotted rule to indicate the outside edge of the margin for

clarity purposes only, but they would not appear on a real web page.

฀ p#A {
 margin: 4em;
 border: 1px solid red;
 background: #FCF2BE;
 }

B p#B {
 margin-top: 2em;
 margin-right: 250px;
 margin-bottom: 1em;
 margin-left: 4em;
 border: 1px solid red;
 background: #FCF2BE;
 }

C body {
 margin: 0 10%;
 border: 1px solid red;
 background-color: #BBE09F;
 }

Browser Default
Margins
You may have noticed that space
is added automatically around
headings, paragraphs, and other
block elements. That’s the browser’s
default style sheet at work, applying
margin amounts above and below
those elements.

It is good to keep in mind that the
browser is applying its own values
for margins and padding behind the
scenes. These values will be used
unless you specifically override them
with your own style rules.

If you are working on a design and
coming across mysterious amounts
of space that you didn’t add, the
browser’s default styles may be the
culprit.

c S S t I P

Browser Default
Margins
You may have noticed that space
is added automatically around
headings, paragraphs, and other
block elements. That’s the browser’s
default style sheet at work, applying
margin amounts above and below
those elements.

It is good to keep in mind that the
browser is applying its own values
for margins and padding behind the
scenes. These values will be used
unless you specifically override them
with your own style rules.

If you are working on a design and
coming across mysterious amounts
of space that you didn’t add, the
browser’s default styles may be the
culprit.

c S S t I P

Adding a margin to the
body element adds space
between the page content
and the edges of the
browser window.

Adding a margin to the
body element adds space
between the page content
and the edges of the
browser window.

Margins

Chapter 14, Thinking Inside the Box (Padding, Borders, and Margins) 277

body: 0 10%;

Adding margins to the body puts space between the
element and the edges of the viewing area of the browser
window. The red border shows the boundary of the
body element (there is no padding applied).

margin: 4em;

margin-top: 2em;
margin-right: 250px;
margin-bottom: 1em;
margin-left: 4em;

฀

B

C

Figure 14-14. Applying margins to the body and to individual elements.

Margin behavior

While it is easy to write rules that apply margin amounts around (X)HTML

elements, it is important to be familiar with margin behavior.

Collapsing margins

The most significant margin behavior to be aware of is that the top and bottom

margins of neighboring elements collapse. This means that instead of accumu-

lating, adjacent margins overlap, and only the largest value will be used.

Using the two paragraphs from the previous figure as an example, if the top

element has a bottom margin of 4 ems, and the following element has a top

margin of 2 ems, the resulting margin space between elements does not add

up to 6 ems. Rather, the margins collapse and the resulting margin between

the paragraphs will be 4 ems, the largest specified value. This is demonstrated

in Figure 14-15.

Part III: CSS for Presentation278

Margins

Adjacent vertical
margins collapse

4em

Figure 14-15. Vertical margins of neighboring elements collapse so that only the larger
value is used.

The only time top and bottom margins don’t collapse is for floated or abso-

lutely positioned elements (we’ll get to floating and positioning in Chapter

15). Margins on the left and right sides never collapse, so they’re nice and

predictable.

Margins on inline elements

You can apply top and bottom margins to inline text elements (or “non-

replaced inline elements”, to use the proper CSS terminology), but it won’t add

vertical space above and below the element, and the height of the line will

not change. However, when you apply left and right margins to inline text

elements, margin space will be held clear before and after the text in the flow

of the element, even if that element breaks over several lines.

Just to keep things interesting, margins on replaced elements, such as images,

do render on all sides, and therefore do affect the height of the line. See Figure

14-16 for examples of each.

img { margin: 2em;}
Margins are rendered on all sides of replaced elements, such as images.

em { margin: 2em;}
Only horizontal margins are rendered on non-replaced (text) elements.

Figure 14-16. Margins applied to inline text and image elements.

Collapsing Margins
When spacing between and around
elements behave unpredictably,
collapsing margins are often to
blame. Here are a few articles that
dig deep into collapsing margin
behavior. They may help you
understand what is happening
behind the scenes in your layouts.

“No Margin for Error” by Andy
Budd (www.andybudd.com/
archives/2003/11/no_margin_
for_error/)

“Uncollapsing Margins” by Eric
Meyer (www.complexspiral.
com/publications/uncollapsing-
margins/)

“CSS: Auto-height and Margin-
collapsing,” by Minz Meyer
(www.researchkitchen.de/blog/
archives/css-autoheight-and-
margincollapsing.php)







F U R t H e R R e A D I n G

Collapsing Margins
When spacing between and around
elements behave unpredictably,
collapsing margins are often to
blame. Here are a few articles that
dig deep into collapsing margin
behavior. They may help you
understand what is happening
behind the scenes in your layouts.

“No Margin for Error” by Andy
Budd (www.andybudd.com/
archives/2003/11/no_margin_
for_error/)

“Uncollapsing Margins” by Eric
Meyer (www.complexspiral.
com/publications/uncollapsing-
margins/)

“CSS: Auto-height and Margin-
collapsing,” by Minz Meyer
(www.researchkitchen.de/blog/
archives/css-autoheight-and-
margincollapsing.php)







F U R t H e R R e A D I n G

Margins

Chapter 14, Thinking Inside the Box (Padding, Borders, and Margins) 279

Negative margins

It is worth noting that it is possible to specify negative values for margins.

When you apply a negative margin, the content, padding, and border are

moved in the opposite direction that would have resulted from a positive

margin value.

This will be more clear with an example. Figure 14-17 shows two neighboring

paragraphs with different colored borders applied to show their boundaries.

In the top view, I’ve added a 4-em bottom margin to the top paragraph and

it has the effect of pushing the following paragraph down by that amount.

If I specify a negative value (-4em), the following element moves up by that

amount, and overlaps the element with the negative margin.

p.top { margin-bottom: -4em;}

The following element moves back by 4 ems.

p.top { margin-bottom: 4em;}

Pushes the following paragraph element away by 4 ems.

Figure 14-17. Using negative margins.

This may seem like a strange thing to do, and in fact, you probably wouldn’t

make blocks of text overlap as shown. The point here is that you can use

margins with both positive and negative values to move elements around on

the page. This is the basis of many CSS layout techniques.

Now let’s use margins to add some space between parts of the JenWARE

home page in Exercise 14-3. You’ll also see how margins are used to properly

center an element in the width of the browser window.

Part III: CSS for Presentation280

Margins

exercise 14-3 | Adding margin space around
elements

Open jenware.html in your text editor if it isn’t open already, and we’ll get some
margins in there. We’ll be using a variety of properties and values along the way. Feel
free to save the page and look at it in the browser after each step.

First, we’ll add some space between the browser window and the sides of the
content. Making the margins 12% of the browser window should give it plenty of
space, and it will scale proportionally for different browser widths. To add space
around the whole page, you use the body element, of course.

body {
 margin-left: 12%;
 margin-right: 12%;
 font: 76% Verdana, sans-serif;
 background: #FCF191 url(images/top-background.gif) repeat-x;
}

Now let’s add some space above and below the “intro” section of the page. This
time, we’ll use the shorthand margin property to add 3-em margins to the top
and bottom edges only.

#intro {
 margin: 3em 0;
 text-align: center;
 }

So far, we’ve been using measurement values exclusively for the margin property.
Another option is to use the auto keyword and let the browser apply as much
margin as is necessary to fill the available space. If you set the margin to auto on
the left and right sides of an element, it has the effect of keeping the element
centered in the width of the browser window or other containing element. In
fact, that is the proper method for centering elements horizontally.

We’ll use this technique to center the testimonials box on the page. First, set
the width of the element to 500 pixels. Then, apply a 2-em margin to the top
and bottom, and auto margin left and right. You can use the margin property as
shown here. Note that you have to declare a width so the browser knows how to
calculate the auto distances.

#testimonials {
 width: 500px;
 margin: 2em auto;
 border: 1px dashed #F26521;
 padding: 1em;
 padding-left: 60px;
 background: #FFBC53 url(images/ex-circle-corner.gif) no-repeat left
top;
 line-height: 1.2em;
}

This isn’t the most beautiful design, but it’s only temporary. In the next chapter, we’ll
be putting this testimonials box into its own column in a two-column layout.

Finally, I’d like 3 ems of space above the product category h2 elements
(particularly since there may be more in the future). By this point, I bet you could
write this one without my help, but for thoroughness’ sake, here is the new
declaration added to h2s in the “products” section.

1.

2.

3.

4.

N OT E

When the value is 0, you don’t need to
provide a specific unit.

N OT E

When the value is 0, you don’t need to
provide a specific unit.

To center an element in
the browser window, apply
a width to the element
and set its left and right
margins to auto.

To center an element in
the browser window, apply
a width to the element
and set its left and right
margins to auto.

Assigning Display Roles

Chapter 14, Thinking Inside the Box (Padding, Borders, and Margins) 281

A good understanding of padding, borders, and margins is the first step to

mastering CSS layouts. In the next chapter, we’ll learn about the proper-

ties used to float and position elements on the page. We’ll even turn the

JenWARE page into a two-column layout. But before we move on, there is

one more property to get out of the way.

Assigning Display Roles
As long as we’re talking about boxes and the CSS layout model, this is a good

time to introduce the display property. You should already be familiar with

the display behavior of block and inline elements in (X)HTML. However, not

all XML languages assign default display behaviors (or display roles, to use

the proper term from the CSS specification) to the elements they contain. For

this reason, the display property was created to allow authors to specify how

elements should behave in layouts.

display
Values: inline | block | list-item | run-in | inline-block | table | inline-table |

table-row-group | table-header-group | table-footer-group | table-row
| table-column-group | table-column | table-cell | table-caption | none |
inherit

Default: disc

Applies to: ul, ol, and li (or elements whose display value is list-item)

Inherits: yes

#products h2 {
 margin-top: 3em;
 border-left: 3px solid;
 border-top: 1px solid;
 padding-left: 1em;
 font-size: 1.2em;
 color: #921A66;
}

Save and look at it in the browser. There’s more space above
the product category headings now, but I don’t like all that
extra space above the first one. Fortunately, that heading has
been marked up as belonging to the class “first”, so we can
write another rule that applies zero margin above just that
heading.

This somewhat complicated selector targets h2 elements
with the class “first” but only when they appear in the div
with the id “products”.

#products h2.first {
 margin-top: 0;
}

Save the document again and it should look something like the
one in Figure 14-18 (the width of your page may be different
depending on your browser and monitor size). The final style
sheet for this page is available in Appendix A.

5.

Figure 14-18. The JenWARE home page after adding padding,
borders, and margins.

Part III: CSS for Presentation282

The Box Model in Review

The display property defines the type of element box an element generates

in the layout. In addition to the familiar inline and block display roles, you

can also make elements display as list items or the various parts of a table

(list and table display roles are addressed in Chapter 17, CSS Techniques).

In general, the W3C discourages the random reassigning of display roles for

(X)HTML elements. However, in certain scenarios, it is benign and has even

become commonplace. For example, it is common practice to make li ele-

ments (which usually display as block elements) display as inline elements to

turn a list into a horizontal navigation bar. You may also make an otherwise

inline a (anchor) element display as a block in order to give it a specific width

and height. These techniques are demonstrated in Chapter 17.

WA R N I N G

Bear in mind that changing the presentation of an (X)HTML element with the CSS
display property does not change the definition of that element as block-level or inline
in (X)HTML. Putting a block-level element within an inline element will always be
invalid (X)HTML, regardless of its display role.

Another useful value for the display property is none, which removes the

content from the normal flow entirely. Unlike visibility: hidden, which

just makes the element invisible, but holds the space it would have occupied

blank, display: none removes the content, and the space it would have occu-

pied is closed up.

One popular use of display: none is to prevent certain content from appear-

ing when the source document is displayed in specific media. For example,

you could have a paragraph that appears when the document is printed, but

is not part of the page when it is displayed on a computer screen.

The Box Model in Review
At this point you should have a good feel for element boxes and how to

manipulate the space within and around them. These are the raw tools you’ll

need to do real CSS-based layouts. In the next chapter, we’ll start moving the

boxes around on the page, but first, why not get some practice at writing

rules for padding, borders, and margins in the following test.

Test Yourself
In this test, your task is to write the declarations that create the effects shown

in each example. All the paragraphs shown here share a rule that sets the

dimensions and the background color for each paragraph. You need only to

provide the box-related property declarations. Answers, as always, appear in

Appendix A.

Test Yourself

Chapter 14, Thinking Inside the Box (Padding, Borders, and Margins) 283

p { background-color: #C2F670;
 width: 200px;
 height: 200px;}

All of the samples in
this exercise start out
styled as shown here
and share the
properties listed
below.

2 em

2 em

2
em

2
em

2 em

2 em

2
em

2
em

4 pixels 4 pixels

2 em

2 em

2
em

2
em

1 em

1 em

1 em

1 em

6 em 6 em

1
em 6 em

4 pixels

1 em

1 em

50
 p

ix
el

s

50
 p

ix
el

s

2 pixels

Some useful hints: outer margin edges are indicated by dotted blue lines. All

necessary measurements are provided in dark red. Borders use one of the 17

standard color names.

Part III: CSS for Presentation284

Review: Basic Box Properties

Review: Basic Box Properties
The following is a summary of the properties covered in this chapter related

to the basic box model.

Property Description

border A shorthand property that combines border properties

border-top,
border-right,
border-bottom,
border-left

Combine border properties for each side of the element

border-color Shorthand property for specifying the color of borders

border-top-color,
border-right-color,
border-bottom-color,
border-left-color

Specify the color for each side of the element

border-style Shorthand property for specifying the style of borders

border-top-style,
border-right-style,
border-bottom-style,
border-left-style

Specify the style for each side of the element

border-width Shorthand property for specifying the width of borders

border-top-width,
border-right-width,
border-bottom-width,
border-left-width

Specify the width for each side of the element

display Defines the type of element box an element generates

height Specifies the height of the element’s content area

margin Shorthand property for specifying margin space around an
element

margin-top,
margin-right,
margin-bottom,
margin-left

Specify the margin amount for each side of the element

max-height Specifies the maximum height of an element

max-width Specifies the maximum width of an element

min-height Specifies the minimum height of an element

min-width Specifies the minimum width of an element

overflow How to handle content that doesn’t fit in the content area

padding Shorthand property for specifying space between the con-
tent area and the border

padding-top,
padding-right,
padding-bottom,
padding-left

Specify the padding amount for each side of the element

width Specifies the width of an element’s content area

285

IN THIS CHAPTER

Floating elements to the
left and right

Clearing floated elements

Relative positioning

Absolute positioning and
containing blocks

Fixed positioning

At this point, you’ve learned dozens of CSS properties that allow you to

change the appearance of text elements and the boxes they generate. But so

far, we’ve merely been decorating elements as they appear in the flow of the

document.

In this chapter, we’ll look at floating and positioning, the CSS methods for

breaking out of the flow and arranging elements on the page. Floating an

element moves it to the left or right, and allows the following text to wrap

around it. Positioning is a way to specify the location of an element anywhere

on the page with pixel precision.

We’ll start by examining the properties responsible for floating and position-

ing, so you’ll get a good feel for how the CSS layout tools work. In Chapter 16,

Page Layout with CSS, we’ll broaden the scope and see how these properties

are used to create common multicolumn page layouts.

Before we start moving elements around, let’s be sure we are well acquainted

with how they behave in the normal flow.

Normal Flow
We’ve covered the normal flow in previous chapters, but it’s worth a refresher.

In the CSS layout model, text elements are laid out from top to bottom in

the order in which they appear in the source, and from left to right (in left-

to-right reading languages*). Block elements stack up on top of one another

and fill the available width of the browser window or other containing ele-

ment. Inline elements and text characters line up next to one another to fill

the block elements.

When the window or containing element is resized, the block elements

expand or contract to the new width, and the inline content reflows to fit

(Figure 15-1).

�	For right-to-left reading languages such as Arabic and Hebrew, the normal flow is top to bottom

and right to left.

FLOATING AND
POSITIONING

CHAPTER 15

Part III: CSS for Presentation286

Floating

a b c d e f g h i j k l m n o p q r s t u v w x y z

Inline content reflows to fit the width of the block.

a b c d e f g h i j k l
m n o p q r s t u v
w x y z

Blocks fill the available width.

Blocks are layed out in the
order in which they appear in
the source.

Each block starts on a new line.

<p>

<h1>

<p>

<p>

<p>

<h1>

<p>

<p>

Figure 15-1. One more example of the normal flow behavior.

Objects in the normal flow affect the layout of the objects around them. This

is the behavior you’ve come to expect in web pages—elements don’t overlap

or bunch up, they make room for one another.

We’ve seen all of this before, but in this chapter we’ll be paying attention to

whether elements are in the flow or removed from the flow. Floating and

positioning changes the relationship of elements to the normal flow in dif-

ferent ways. Let’s first look at the special behavior of floated elements (or

“floats” for short).

Floating
Simply stated, the float property moves an element as far as possible to the

left or right, allowing the following content to wrap around it. It is not a posi-

tioning scheme per se, but a unique feature built into CSS with some interest-

ing behaviors. Floats are one of the primary tools of modern CSS-based web

design, used to create multicolumn layouts, navigation toolbars from lists,

and table-like alignment without tables. It’s exciting stuff. Let’s start with the

float property itself.

float
Values: left | right | none | inherit

Default: none

Applies to: all elements

Inherits: no

The best way to explain floating is to demonstrate it. In this example, the

float property is applied to an img element to float it to the right. Figure 15-2

shows how the the paragraph and the contained image is rendered by default

(top) and how it looks when the float property is applied (bottom).

Dealing with
Browser Bugs
This is a good time to address the
unfortunate topic of browser bugs.
This book presents the way CSS is
supposed to work, but in reality,
browsers have bugs and uneven
support for the CSS2.1 standard that
make getting a layout to behave
consistently a major headache.

Although no browser is perfect, all
eyes turn to Internet Explorer for
Windows because it makes up the
lion’s share of web traffic (over 80%
as of this writing). It also has a host
of notorious bugs related to page
layout such as the IE5/5.5 Box Model
Problem, the “Guillotine Bug,” the
“Peekaboo Bug,” and the “Double
Float-Margin Bug,” just to name a
few.

Unfortunately, the techniques for
dealing with browser bugs are
beyond the scope of this book (in
fact, they could fill a small book
in themselves). In addition, bug
workaround best practices change
frequently, so information in a book
is likely to get stale.

However, I do encourage you to
become famiilar with the ways your
pages (especially those with floats
and positioned elements) are likely
to misbehave in popular browsers.
In many cases, you can adapt your
design to avoid the bug. There are
also techniques for giving specific
browsers the CSS rules they need (or
make sure they don’t get the ones
they don’t understand).

The following resources are good
starting places to get up to speed
on the browser issues developers
care about most, and what fixes are
available.

Floating

Chapter 15, Floating and Positioning 287

The markup

<p>They went down, down,...</p>

The style sheet

img {
 float: right;
}

p {
 padding: 15px;
 background-color: #FFF799;
 border: 2px solid #6C4788;
}

image moves over and text wraps around it

Inline image in the normal flow

Inline image floated to the right.

space next to the image is held clear

Figure 15-2. The layout of an image in the normal flow (top), and with the float
property applied (bottom).

That’s a nice effect... we’ve gotten rid of a lot of wasted space on the page,

but now the text is bumping right up against the image. How do you think

you would add some space between the image element and the surrounding

text? If you guessed “add a margin,” you’re absolutely right. I’ll add 10 pixels

of space on all sides of the image using the margin property (Figure 15-3). You

can begin to see how all the box properties work together in page layout.

img {
 float: right;
 margin: 10px;
}

. . . continued from previous page

Position Is Everything
www.positioniseverything.net

 This site run by Big John and
Holly Bergevin explains browser
bugs and “interesting browser
behaviors.” Note that some of the
solutions on this site (the well-
known “Holly Hack” in particular)
are being reconsidered now that
the release of Internet Explorer
7 makes them obsolete or
problematic. Be sure to check the
home page for the latest updates
and information.

Quirksmode Bug Reports
www.quirksmode.org/bugreports/

 Peter Paul Koch has created a
repository where anyone can
note browser bugs and discuss
workarounds. The archive of bugs
is searchable by browser version.

CSS-discuss Wiki
css-discuss.incutio.com

 The css-discuss mailing list site
maintains an archive of links
to sites related to CSS “hacks.”
See css-discuss.incutio.com/
?page=CssHack and css-discuss.
incutio.com/?page=BrowserBugs

Web Standards Group
webstandardsgroup.org/resources/

 The Web Standards Group keeps
a list of up-to-date links to CSS
browser bugs. Look for the link
on the Resources page.

IE5/Mac Bugs and Fixes
www.macedition.com/cb/
ie5macbugs/index.html

 A good resource if your traffic
logs indicate you should provide
page layout support for IE5/Mac
(the most CSS-compliant browser
for Mac OS 9 users).

Part III: CSS for Presentation288

Floating

Indicates outer margin edge
(this rule would not appear in the actual web page)

Figure 15-3. Adding a 10-pixel margin around the floated image.

Some key behaviors of floated elements are apparent in the previous two figures:

A floated element is like an island in a stream.

 First and foremost, you can see that the image is both removed from its

position in the normal flow, yet continues to influence the surrounding

content. The subesquent paragraph text reflows to make room for the

floated img element. One popular analogy compares floats to islands in a

stream—they are not in the flow, but the stream has to flow around them.

This behavior is unique to floated elements.

Floats stay in the content area of the containing element.

 It is also important to note that the floated image is placed within the

content area (the inner edges) of the paragraph that contains it. It does

not extend into the padding area of the paragraph.

Margins are maintained.

 In addition, the margin is held on all sides of the floated image, as indi-

cated in Figure 15-3 by the blue, dotted line. In other words, the entire

element box, from outer edge to outer edge, is floated.

More floating examples

Those are the basics...let’s look at more examples and explore some additional

floating behaviors. Before style sheets, the only thing you could float was an

image by using the deprecated align attribute. With CSS, it is possible to

float any (X)HTML element, both inline and block-level, as we’ll see in the

following examples.

Floating an inline text element

In the previous example, we floated an inline image element. This time, let’s look at

what happens when you float an inline text (non-replaced) element (Figure 15-4).

The markup

<p>Disclaimer: The existence of silver, gold,
and diamond trees is not confirmed.They went down, down, down,
till at last they came to a passage... </p>

Floating

Chapter 15, Floating and Positioning 289

The style sheet

span.disclaimer {
 float: right;
 margin: 10px;
 width: 200px;
 color: #FFF;
 background-color: #9D080D;
 padding: 4px;
}

p {
 padding: 15px;
 background-color: #FFF799;
 border: 2px solid #6C4788;
}

Figure 15-4. Floating an inline text (non-replaced) element.

From the looks of things, it is behaving just the same as the floated image,

which is what we’d expect. But there are some subtle things at work here that

bear pointing out.

Always provide a width for floated text elements.

 First, you’ll notice that the style rule that floats the span includes the width

property. In fact, it is necessary to specify a width for floated text elements

because without one, the content area of the box expands to its widest pos-

sible width (or, on some browsers, it may collapse to its narrowest possible

width). Images have an inherent width, so we didn’t need to specify a width

in the previous example (although we certainly could have).

Floated inline elements behave as block elements.

 Notice that the margin is held on all four sides of the floated span text,

even though top and bottom margins are usually not rendered on inline

elements (see Figure 14-16 in the previous chapter). That is because all

floated elements behave like block elements. Once you float an inline ele-

ment, it follows the display rules for block-level elements, and margins are

rendered on all four sides. Margins on floated elements do not collapse,

however.

And speaking of block-level elements...

It is necessary to specify
the width for floated text
elements.

It is necessary to specify
the width for floated text
elements.

Part III: CSS for Presentation290

Floating

Floating block elements

Let’s look at what happens when you float a block within the normal flow. In

this example, a whole paragraph element is floated to the left (Figure 15-5).

The markup:

<p>ONCE upon a time....</p>
<p id="float">As he had a white skin, blue eyes,...</p>
<p>The fact was he thought them very ugly...</p>

The style sheet:

p#float {
 float: left;
 width: 200px;
 margin-top: 0px;
 background: #A5D3DE;
}

p {
 border: 1px solid red;
}

Figure 15-5. Floating a block-level element.

I’ve added a red rule around all p elements to show their boundaries. In addi-

tion, I set the top margin on the float to 0 (zero) to override the browser’s

default margin settings on paragraphs. This allows the floated paragraph to

align with the top of the following paragraph. There are a few other things I

want to point out in this example.

Just as we saw with the image, the paragraph moves off to the side (left this

time) and the following content wraps around it, even though blocks nor-

mally stack on top of one another. There are two things I want to point out

in this example.

You must provide a width for floated block elements.

 If you do not provide a width value, the width of the floated block will be

set to auto, which fills the available width of the browser window or other

containing element. There’s not much sense in having a full-width floated

box since the idea is to wrap text next to the float, not start below it.

Floating

Chapter 15, Floating and Positioning 291

Elements do not float higher than their reference in the source.

 A floated block will float to the left or right relative to where it occurs in

the source allowing the following elements in the flow to wrap around it.

It will stay below any block elements that precede it in the flow (in effect,

it is “blocked” by them). That means you can’t float an element up to the

top corner of a page, even if its nearest ancestor is the body element. If you

want a floated element to start at the top of the page, it must appear first

in the document source.

Floating multiple elements

It’s perfectly fine to float multiple elements on a page or even within a single

element. When you float multiple elements, there is a complex system of

behind-the-scenes rendering rules that ensure floated elements do not over-

lap. You can consult the CSS2.1 specification for the details, but the upshot of

it is that floated elements will be placed as far left or right (as specified) and

as high up as space allows.

Figure 15-6 shows what happens when a series of sequential paragraphs are

floated to the same side. The first three floats start stacking up from the left

edge, but when there isn’t enough room for the fourth, it moves down and to

the left until it bumps into something; in this case, the edge of the browser

window. However, if one of the floats, such as “P2,” had been very long, it

would have bumped up against the edge of the long float instead.

The source

<p>P1</p>
<p class="float">P2</p>
<p class="float">P3</p>
<p class="float">P4</p>
<p class="float">P5</p>
<p>P6</p>
<p>P7</p>
<p>P8</p>
<p>P9</p>
<p>P10</p>

The style sheet:

p#float {
 float: left;
 width: 200px;
 margin: 0px;
 background: #CCC;}

p {border: 1px solid red;}

This lining-up effect is used strategically in CSS-based web design to create

multicolumn layouts and horizontal navigation bars out of floated list items.

We’ll look at these techniques in Chapter 16, Page Layout with CSS and

Chapter 17, CSS Techniques, respectively.

N OT E

Absolute positioning is the CSS method
for placing elements on a page regardless
of how they appear in the source. We’ll
get to absolute positioning in just a few
sections.

N OT E

Absolute positioning is the CSS method
for placing elements on a page regardless
of how they appear in the source. We’ll
get to absolute positioning in just a few
sections.

N OT E

The CSS Recommendation lists a set of
complicated rules dictating the behavior
of multiple floated elements. If you are
experiencing strange floating behaviors,
you may want to go right to the source
and learn how they should behave at
www.w3.org/www.w3.org/TR/CSS21/
visuren.html#floats and www.w3.org/
TR/CSS21/visuren.html#float-position.

N OT E

The CSS Recommendation lists a set of
complicated rules dictating the behavior
of multiple floated elements. If you are
experiencing strange floating behaviors,
you may want to go right to the source
and learn how they should behave at
www.w3.org/www.w3.org/TR/CSS21/
visuren.html#floats and www.w3.org/
TR/CSS21/visuren.html#float-position.

Elements floated to the
same side line up. If
there is not enough
room, subsequent
elements move down.

Figure 15-6. Multiple floated elements
line up and do not overlap.

Elements floated to the
same side line up. If
there is not enough
room, subsequent
elements move down.

Figure 15-6. Multiple floated elements
line up and do not overlap.

Part III: CSS for Presentation292

Floating

Clearing floated elements

The last thing you need to know about floated elements is how to turn the

text wrapping off and get back to layout as usual. This is done by clearing the

element that you want to start below the float. Applying the clear property

to an element prevents it from appearing next to a floated element, and forces

it to start against the next available “clear” space below the float.

clear
Values: left | right | both | none | inherit

Default: none

Applies to: block-level elements ony

Inherits: no

Keep in mind that you apply the clear property to the element you want

to start below the floated element, not the floated element itself. The left

value starts the element below any elements that have been floated to the

left. Similarly, the right value makes the element clear all floats on the right

edge of the containing block. If there are multiple floated elements, and you

want to be sure an element starts below all of them, use the both value to

clear floats on both sides.

In this example, the clear property has been used to make h2 elements start

below left-floated elements. Figure 15-7 shows how the h2 heading starts at

the next available clear edge below the float.

img {
 float: left;
 margin-right: 10px;
}

h2 {
 clear: left;
 margin-top: 2em;
}

Figure 15-7. Clearing a left-floated element

N OT E

The clear property replaces the depre-
cated clear attribute once used in the br
element to clear aligned images.

N OT E

The clear property replaces the depre-
cated clear attribute once used in the br
element to clear aligned images.

Floating

Chapter 15, Floating and Positioning 293

Notice in Figure 15-7 that although there is a 2-em top margin applied to the

h2 element, it is not rendered between the heading and the floated image.

That’s the result of collapsing vertical margins. If you want to make sure space

is held between a float and the following text, apply a bottom margin to the

floated element itself.

It’s time to give floating a try in Exercise 15-1.

In this exercise, we’ll make further improvements to the
JenWARE home page that we worked on in Chapter 14. If you
did not follow along with the exercises in the previous chapter,
there is a fresh copy in its most recent state, called jenware_
2.html, in the Chapter 15 materials (www.learningwebdesign.
com/materials).

Open the JenWARE home page document in a text editor
and browser (it should look like Figure 14-18 in the previous
chapter).

We’ll start by removing wasted vertical space next to the
product images by floating the images to the left. We’ll use
a contextual selector to make sure that we only float the
images in the “products” section of the page. While we’re
at it, let’s add a little margin on the bottom and right sides
using the margin shorthand property.

#products img {
 float: left;
 margin: 0 6px 6px 0;
}

Save the document and take a look at it in the browser. You
should see the product descriptions wrapping to the right
of the images.

Next, I’d like the “Go to the (product) page” links to always
appear below the images so they are clearly visible on the
left side of the products section. This change is going to
require a little extra markup, because we need a way to
target just the paragraphs that contain “go to” links. Scroll
down to the markup section of the document and add the
class name “goto” to each of the paragraphs that contain
links. Here is the first one:

<p class="goto">Go to the GlassWARE
page </p>

Now we can use a class selector to make those paragraphs
clear the floated images.

#products p.goto {
 clear: left;
}

1.

2.

Time to take on that “testimonials” div box. Instead of taking
up valuable space “above the fold,” let’s move it off to the
side and let the products section move up into the spotlight.
Start by removing the margin property and changing the
width from 500 to 150 pixels. Finally, float the div to the
right with the float property. Figure 15-8 shows the results.

#testimonials {
 float: right;
 width: 500px 150px;
 margin: 2em auto;
 border: 1px dashed #F26521;
 padding: 1em;
 padding-left: 60px;
 background: #FFBC53
 url(images/ex-circle-corner. gif) no-repeat
 left top;
 line-height: 1.2em;
}

Figure 15-8. The results of floating the testimonials div.

There are some interesting behaviors to observe here. First,
let’s keep in mind that although it looks a little like the the
“testimonials” div is being floated in the products box, it is
actually floated within the content area of the body element
(the nearest block-level ancestor). This is the same floated block
element behavior we saw in Figure 15-6.

3.

exercise 15-1 | Floating elements

In this exercise, we’ll make further improvements to the
JenWARE home page that we worked on in Chapter 14. If you
did not follow along with the exercises in the previous chapter,
there is a fresh copy in its most recent state, called jenware_
2.html, in the Chapter 15 materials (www.learningwebdesign.
com/materials).

Open the JenWARE home page document in a text editor
and browser (it should look like Figure 14-18 in the previous
chapter).

We’ll start by removing wasted vertical space next to the
product images by floating the images to the left. We’ll use
a contextual selector to make sure that we only float the
images in the “products” section of the page. While we’re
at it, let’s add a little margin on the bottom and right sides
using the margin shorthand property.

#products img {
 float: left;
 margin: 0 6px 6px 0;
}

Save the document and take a look at it in the browser. You
should see the product descriptions wrapping to the right
of the images.

Next, I’d like the “Go to the (product) page” links to always
appear below the images so they are clearly visible on the
left side of the products section. This change is going to
require a little extra markup, because we need a way to
target just the paragraphs that contain “go to” links. Scroll
down to the markup section of the document and add the
class name “goto” to each of the paragraphs that contain
links. Here is the first one:

<p class="goto">Go to the GlassWARE
page </p>

Now we can use a class selector to make those paragraphs
clear the floated images.

#products p.goto {
 clear: left;
}

1.

2.

Time to take on that “testimonials” div box. Instead of taking
up valuable space “above the fold,” let’s move it off to the
side and let the products section move up into the spotlight.
Start by removing the margin property and changing the
width from 500 to 150 pixels. Finally, float the div to the
right with the float property. Figure 15-8 shows the results.

#testimonials {
 float: right;
 width: 500px 150px;
 margin: 2em auto;
 border: 1px dashed #F26521;
 padding: 1em;
 padding-left: 60px;
 background: #FFBC53
 url(images/ex-circle-corner. gif) no-repeat
 left top;
 line-height: 1.2em;
}

Figure 15-8. The results of floating the testimonials div.

There are some interesting behaviors to observe here. First,
let’s keep in mind that although it looks a little like the the
“testimonials” div is being floated in the products box, it is
actually floated within the content area of the body element
(the nearest block-level ancestor). This is the same floated block
element behavior we saw in Figure 15-6.

3.

exercise 15-1 | Floating elements

Part III: CSS for Presentation294

Floating

Look at how the “products” div behaves: its content wraps
around the float, but its element box (indicated by the border
and white background color) is not reshaped around the float.
In fact, the background of the “products” div appears to be
behind or under the floated box. This is the normal behavior
for floats and wrapped content: the content reflows, but the
element box is not changed.

The other behavior of note here is that the “testimonials” div
was floated relative to its position in the source... it can’t float up
higher than the block-level paragraph element that preceded
it. The testimonials box moved off to the right edge of the body
content area, and the following div moved up in its space.

There is one last change to make to this page that’s going
to make a big difference in its appearance. Let’s add some
space between the products and textimonial areas so they
don’t appear to overlap. We’ll do this by adding a margin
on the right of the “products” div that is wide enough to
accommodate the “testimonials” box.

4.

How wide does the margin need to be? We’ll need to
calculate the width of the “testimonials” element box.
150 pixel width + 2 pixels of border + 60 pixels left padding

+ approximately 12 pixels (1 em) right padding = approx.
224 pixels

Setting the right margin on the “products” div to 250 pixels
should do the trick.

#products {
 margin-right: 250px;
 border: double #FFBC53;
 padding: 2em;
 background-color: #FFF;
 line-height: 2em;
 }

The results are shown in Figure 15-9. Hey, look at that!... your first
two-column layout, created with a float and a wide margin. This
is the basic concept behind many CSS-based layout templates
as you’ll see in Chapter 16.

Figure 15-9. A new two-column layout for the JenWARE home
page, created with a float and a wide margin on the following
content.

Positioning Basics

Chapter 15, Floating and Positioning 295

That covers the fundamentals of floating. Let’s move on to the other approach

to moving elements around on the page—positioning.

Positioning Basics
CSS provides several methods for positioning elements on the page. They can

be positioned relative to where they would normally appear in the flow, or

removed from the flow altogether and placed at a particular spot on the page.

You can also position an element relative to the browser window (technically

known as the viewport in the CSS Recommendations) and it will stay put

while the rest of the page scrolls.

Unfortunately, not all positioning methods are well supported, and inconsis-

tent and buggy browser implementation can make it challenging to achieve

the results you’re after. The best thing to do is get acquainted with the way

positioning should work according to the specification, as we’ll do in the fol-

lowing sections, starting with the basic position property.

Types of positioning

position
Values: static | relative | absolute | fixed | inherit

Default: static

Applies to: all elements

Inherits: no

The position property indicates that an element is to be postioned, and

specifies which positioning method should be used. I’ll introduce each key-

word value briefly here, then we’ll take a more detailed look at each method

in the remainder of this chapter.

static

 This is the normal positioning scheme in which elements are positioned

as they occur in the normal document flow.

relative

 Relative positioning moves the box relative to its original position in the

flow. The distinctive behavior of relative positioning is that the space the

element would have occupied in the normal flow is preserved.

absolute

 Absolutely positioned elements are removed from the document flow

entirely and positioned relative to a containing element (we’ll talk more

about this later). Unlike relatively positioned elements, the space they

would have occupied is closed up. In fact, they have no influence at all on

the layout of surrounding elements.

N OT E

Positioning is another CSS feature that
can trigger unexpected browser behavior.
Consult the sites listed in the Browser
Bugs sidebar for known browser bugs
and workarounds.

N OT E

Positioning is another CSS feature that
can trigger unexpected browser behavior.
Consult the sites listed in the Browser
Bugs sidebar for known browser bugs
and workarounds.

Part III: CSS for Presentation296

Relative Positioning

fixed

 The distinguishing characteristic of fixed positioning is that the element

stays in one position in the window even when the document scrolls.

Fixed elements are removed from the document flow and positioned

relative to the browser window (or other viewport). rather than another

element in the document.

Specifying position

Once you’ve established the positioning method, the actual position is speci-

fied with four offset properties.

top, right, bottom, left
Values: length measurement | percentage | auto | inherit

Default: auto

Applies to: Positioned elements (where position value is relative, absolute,
or fixed)

Inherits: no

The values provided for each of the offset properties defines the distance the

element should be moved away from that respective edge. For example, the

value of top defines the distance the top outer edge of the positioned ele-

ment should be offset from the top edge of the browser or other containing

element. A positive value for top results in the element box moving down by

that amount. Similarly, a positive value for left would move the positioned

element to the right (toward the center of the containing block) by that

amount.

Further explanations and examples of the offset properties will be provided

in the discussions of each postioning method. We’ll start our exploration of

positioning with the fairly straightforward relative method.

Relative Positioning
As mentioned previously, relative positioning moves an element relative to its

original spot in the flow. The space it would have occupied is preserved and

continues to influence the layout of surrounding content. This is easier to

understand with a simple example.

Here I’ve positioned an inline em element (a background color makes its

boundaries apparent). First, I used the position property to set the method

to relative, then I used the top offset property to move the element 30 pixels

down from its initial position, and the left property to move it 60 pixels to

the right. Remember, offset property values move the element away from the

specified edge, so if you want something to move to the right, as I did here,

you use the left offset property. The results are shown in Figure 15-10.

N OT E

Negative values are acceptable and move
the element in the opposite directions. For
example, a negative value for top would
have the effect of moving the element up.

N OT E

Negative values are acceptable and move
the element in the opposite directions. For
example, a negative value for top would
have the effect of moving the element up.

Absolute Positioning

Chapter 15, Floating and Positioning 297

em {
 position: relative;
 top: 30px;
 left: 60px;
 background-color: fuchsia;
}

30px
60px

Figure 15-10. When an element is positioned with the relative method, the space it
would have occupied is preserved.

I want to point out a few things that are happening here.

The original space in the document flow is preserved.

 You can see that there is a blank space where the emphasized text would

have been if the element had not been positioned. The surrounding con-

tent is layed out as though the element were still there, therefore we say

that the element still “influences” the surrounding content.

Overlap happens.

 Because this is a positioned element, it can potentially overlap other ele-

ments, as shown in Figure 15-10.

The empty space left behind by relatively positioned objects can be a little awk-

ward, so this method is not used as often as floating and absolute positioning.

However, relative postioning is commonly used to create a positioning context

for an absolutely positioned element, as I’ll explain in the next section.

Absolute Positioning
Absolute positioning works a bit differently and is actually a more flexible meth-

od for achieving page layouts than relative positioning. Now that you’ve seen how

relative positioning works, let’s take the same example as shown in Figure 15-l0,

only this time we’ll change the value of the position property to absolute.

em {
 position: absolute;
 top: 30px;
 left: 60px;
 background-color: fuchsia;
}

Part III: CSS for Presentation298

Absolute Positioning

30px
60px

Figure 15-11. When an element is absolutely positioned, it is removed from the flow and
the space is closed up.

As you can see in Figure 15-11, the space once occupied by the em element

is now closed up, as is the case for all absolutely positioned elements. In its

new position, the element box overlaps the surrounding content. In the end,

absolutely positioned elements have no influence whatsoever on the layout

of surrounding elements.

The most significant difference here, however, is the location of the floated

element. This time, the offset values position the em element 30 pixels down

and 60 pixels from the top-left corner of the browser window.

But, wait. Before you start thinking that absolutely positioned elements are

always placed relative to the browser window, I’m afraid that there’s more to

it than that.

What actually happens in absolute positioning is that the element is posi-

tioned relative to its nearest containing block. It just so happens that the near-

est containing block in Figure 15-11 is the root (html) element (also known

as the initial containing block), so the offset values position the em element

relative to the whole browser window area.

Getting a handle on the containing block concept is the first step to taking

on absolute positioning

Containing blocks

The CSS2.1 Recommendation states, “The position and size of an element’s

box(es) are sometimes calculated relative to a certain rectangle, called the

containing block of the element.” It is critical to have an awareness of the

containing block of the element you want to position.

CSS2.1 lays out a number of intricate rules for determining the containing

block of an element, but it basically boils down to this:

Absolute Positioning

Chapter 15, Floating and Positioning 299

If the positioned element is not contained within another positoned ele-

ment, then it will be placed relative to the initial containing block (created

by the html element).

But if the element has an ancestor (i.e. is contained within an element)

that has its position set to relative, absolute, or fixed, the element will

be positioned relative to the edges of that element instead.

Figure 15-11 is an example of the first case: the p element that contains the

absolutely positioned em element is not positioned itself, and there are no

other positioned elements higher in the hierarchy, therefore the em element is

positioned relative to the initial containing block, which is equivalent to the

browser window area.

Let’s deliberately turn the p element into a containing block and see what

happens. All we have to do is apply the position property to it; we don’t have

to actually move it. The most common way to make an element into a con-

taining block is to set the position to relative, but don’t move it with offset

values. (By the way, this is what I was talking about earlier when I said that

relative positioning is most often used to create a context for an absolutely

positioned element.)

We’ll keep the style rule for the em element the same, but we’ll add a posi-

tion property to the p element, thus making it the containing block for the

positioned em element. Figure 15-12 shows the results.

p {
 position: relative;
 padding: 15px;
 background-color: #DBFDBA;
 border: 2px solid #6C4788;
}

30px
60px

Figure 15-12. The positioned p element acts as a containing block for the em element.

•

•

N OT E

Some browsers base the initial containing
block on the body element. The net result
is the same in that it fills the browser
window.

N OT E

Some browsers base the initial containing
block on the body element. The net result
is the same in that it fills the browser
window.

Or, to put it another
way...
The containing block for an
absolutely positioned element is
the nearest positioned ancestor
element (that is, any element with
a value for position other than
static).

If there is no containing block
present (in other words, if the
positioned element is not contained
within another positioned element),
then the initial containing block
(created by the html element) will be
used instead.

Or, to put it another
way...
The containing block for an
absolutely positioned element is
the nearest positioned ancestor
element (that is, any element with
a value for position other than
static).

If there is no containing block
present (in other words, if the
positioned element is not contained
within another positioned element),
then the initial containing block
(created by the html element) will be
used instead.

Part III: CSS for Presentation300

Absolute Positioning

You can see that the em element is now positioned 30 pixels down and 60

pixels from the top-left corner of the paragraph box, not the browser window.

Notice also that it is positioned relative to the padding edge of the paragraph

(just inside the border), not the content area edge. This is the normal behavior

when block elements are used as containing blocks (see note).

I’m going to poke around at this some more to reveal additional aspects of

absolutely positioned objects. This time, I’ve added width and margin proper-

ties to the positioned em element (Figure 15-13).

em {
 width: 200px;
 margin: 25px;
 position: absolute;
 top: 30px;
 left: 60px;
 background-color: fuchsia;
}

60px 25px

30px

Figure 15-13. Adding a width and margins to the positioned element.

Here we can see that:

The offset values apply to the outer edges of the element box (from mar-

gin edge to margin edge), and

Absolutely positioned elements always behave as block-level elements.

For example, the margins on all sides are maintained even though this is

an inline element. It also permits a width to be set for the element.

•

•

N OT E

When inline elements are used as con-
taining blocks (and they can be), the
positioned element is placed relative to
the content area edge, not the padding
edge.

N OT E

When inline elements are used as con-
taining blocks (and they can be), the
positioned element is placed relative to
the content area edge, not the padding
edge.

Absolute Positioning

Chapter 15, Floating and Positioning 301

It is important to keep in mind that once you’ve positioned an element, it

becomes the new containing block for all the elements it contains. Consider

this example in which a div named “content” is positioned in the top-left

corner of the page. When a positioned list item within that div is given offset

values that place it in the top-right corner, it appears in the top-right corner of

the contents div, not the entire page (Figure 15-14). That is because once the

div is positioned, it acts as the containing block for the li element.

The markup:

<div id="preface">
 <h1>Old-Fashioned Fairy Tales</h1>
 <p>As the title...</p>
 <p>Except for the use...</p>
 <p>They have appeared...</p>
 <p>First,...</p>
</div>

<div id="content">
<h2>Contents</h2>

 The Nix in Mischief
 <li id="special">The Ogre Courting
 Murdoch’s Wrath
 The Little Darner
 The Magic Jar

</div>

The style sheet:

body {
 background-color: #F9FEB0;
}

div#content {
 width: 200px;
 position: absolute;
 top: 0; /* positioned in the top-left corner */
 left: 0;
 background-color: #AFD479;
 padding: 10px;
}

li#special {
 position: absolute;
 top: 0; /* positioned in the top-right corner */
 right: 0;
 background-color: fuchsia;
}

div#preface {
 margin-left: 225px; /* makes room for the contents box */
}

Part III: CSS for Presentation302

Absolute Positioning

The li element is positioned in the top-right corner of the
“contents” div.

The positioned “contents”
div becomes the
containing block for the
positioned li element and
creates a new positioning
context.

Figure 15-14. Positioned elements become the containing block for the elements they
contain. In this example, the list item is positioned relative to the containing div element,
not the whole page.

Specifying Position

Now that you have a better feel for the containing block concept, let’s take

some time to get better acquainted with the offset properties. So far, we’ve

only seen an element moved a few pixels down and to the right, but that’s

not all you can do, of course.

Pixel measurements

As mentioned previously, positive offset values push the positioned element

box away from the specified edge and toward the center of the containing

block. If there is no value provided for an edge, it is set to auto, and the

browser adds enough space to make the layout work. In this example, I’ve

used pixel length for all four offset properties to place the positioned element

at a particular spot in its containing element (Figure 15-15).

div#a {
 position: relative; /* creates the containing block */
 height: 120px;
 width: 300px;
 border: 1px solid;
 background-color: #CCC;
}

div#b {
 position: absolute;
 top: 20px;
 right: 30px;
 bottom: 40px;
 left: 50px;
 border: 1px solid;
 background-color: teal;
}

Absolute Positioning

Chapter 15, Floating and Positioning 303

div.a (width: 300px; height: 120px)

left: 50px
right:
30px

div.b
(calculated at 220 pixels wide x 60 pixels high)

bottom: 40px

top: 20px

Figure 15-15. Setting offset values for all four sides of a positioned element.

Notice that by setting offsets on all four sides, I have indirectly set the dimen-

sions of the positioned div#b (it fills the 220 × 60 pixel space that is left over

within the containing block after the offset values are applied). If I had also

specified a width and other box properties for div#b, there is the potential for

conflicts if the total of the values for the positioned box and its offsets do not

match the available space within the containing block.

The CSS specification provides a daunting set of rules for handling conflicts,

but the upshot is that you should just be careful not to over-specify box

properties and offsets. In general, a width (plus optional padding, border, and

margin) and one or two offset properties are all that are necessary to achieve

the layout you’re looking for. Let the browser take care of the remaining cal-

culations.

Percentage values

You can also specify positions with percentage values. In the first example

in Figure 15-16, the image is positioned half-way down the left edge of the

containing block. In the second example on the right, the img element is

positioned so that it always appears in the bottom right corner of the con-

taining block.

img#A {
 position: absolute;
 top: 50%;
 left: 0%; /* the % symbol could be omitted for a 0 value */
}

img#B {
 position: absolute;
 bottom: 0%; /* the % symbol could be omitted for a 0 value */
 right: 0%; /* the % symbol could be omitted for a 0 value */
}

WA R N I N G

Be careful when positioning elements at
the bottom of the initial containing block
(the html element). Although you may
expect it to be positioned at the bottom
of the whole page, browsers actually
place the element in the bottom corner
of the browser window. Results may be
unpredictable. If you want something
positioned in a bottom corner of your
page, put it in a containing block element
at the end of the document source, and
go from there.

WA R N I N G

Be careful when positioning elements at
the bottom of the initial containing block
(the html element). Although you may
expect it to be positioned at the bottom
of the whole page, browsers actually
place the element in the bottom corner
of the browser window. Results may be
unpredictable. If you want something
positioned in a bottom corner of your
page, put it in a containing block element
at the end of the document source, and
go from there.

Part III: CSS for Presentation304

Absolute Positioning

top: 50%

left: 0%

bottom: 0%; right: 0%

Figure 15-16. Using percentage values to position an element in the bottom corner of
the containing block.

In Exercise 15-2, we’ll have some more fun with the JenWARE home page,

this time using absolute positioning.

N OT E

If you moved the Testimonials column
to the left at the end of Exercise 15-1,
you will also need to change the margin
on the “products” div from the left to
the right side for this exercise to work
properly.

N OT E

If you moved the Testimonials column
to the left at the end of Exercise 15-1,
you will also need to change the margin
on the “products” div from the left to
the right side for this exercise to work
properly.

In this exercise, we’ll use absolute positioning to add an award
graphic to the site and to create a two-column layout. Open
the latest version of jenville.html (or jenville_2.html if you were
using that version in the previous exercise) in a text editor to
get started.

Let’s pretend that JenWARE.com won the “Awesome Site of
the Week” award, and now we have the option of displaying
a little award banner on the home page. Because it is new
content, we’ll need to add it to the markup. Because it is
non-essential information, we’ll add the image in a new
div at the very end of the document, after the copyright
paragraph.

<div id="award"><img src="images/awesomesite.gif"
alt="awesome site of the week" /></div>

1.

Just because it is at the end of the document source doesn’t
mean it needs to display at the bottom of the page. We can
use absolute positioning to place the “award“ div in the top,
left corner of the browser window for all to see by adding a
new rule to the style sheet that positions the div, like so:

#award {
 position: absolute;
 top: 35px;
 left: 25px;
}

Save the document and take a look (Figure 15-17). Resize
the browser window very narrow and you will see that the
positioned award image overlaps the header content. Notice
also that when you scroll the document, the image scrolls
with the rest of the page. Try playing around with other
offset properties and values to get a feel for positioning in
the browser window (or the “initial containing block” to use
the correct term).

Figure 15-17. An absolutely positioned award graphic.

exercise 15-2 | Absolute positioning

Absolute Positioning

Chapter 15, Floating and Positioning 305

The floated testimonials box is working just fine, but for
fun, let’s see if we can do the same thing with absolute
positioning. In this case, positioning within the initial
containing block is not quite feasible because we want
it to always appear under the intro
div (regardless of its size) and to stay
within the margins of the page, which
are also flexible. What we need is a new
positioning context under the intro, so
let’s create a new containing block for the
positioned testimonials box.

This is going to require some changes to
the markup. Wrap the testimonials and
products divs in a new div with an id of
content. The structure of the document
should look like this:

<div id="content">
 <div id="testimonials">... </div>
 <div id="products"> ... </div>
</div>

<p class="copyright">...</p>

Now we can turn the “content” div into a
containing block simply by positioning it
with the “unmoved-relative-position“ trick:

#content {
 position: relative;
}

We know that according to the normal
flow, the “content” div will always appear
below the preceding block-level “intro” div
element, regardless of its size. What we
want to do is position the “testimonials”
div in the top, right corner of the “content”
div containing block, so we add these properties to the
#testimonials rule (delete the float property from the
previous exercise first).

#testimonials {
 position: absolute;
 top: 0;
 right: 0;
 float: right;
 width: 150px;
 border: 1px dashed #F26521;
 padding: 1em;
 padding-left: 60px;
 background: #FFBC53 url(images/ex-circle-corner.
gif) no-repeat left top;
 line-height: 1.2em;
}

2.

3.

4.

Save the document and look at it in the browser (Figure
15-18). It should look just the same as the float exercise, but
you have the satisfaction of knowing you have experience of
creating a column with absolute positioning.

Extra credit: Try switching the position of the columns by
positioning the testimonials box on the left. (Hint: you’ll need to
change the margin setting on the “products” div, too).

Reality Check

Before you get too excited about the ease of creating multi-
column layouts with absolute positioning, let me point out
that this exercise represents a best-case scenario in which
the positioned side-column is pretty much guaranteed to be
shorter than the main content. There is also no significant footer
to worry about. If the sidebar were to grow longer with more
testimonials, it would overlap any full-width footer that might
be on the page, which is not ideal. Consider this a heads-up
that there’s more to the story, as we’ll see in Chapter 16.

Figure 15-18. Two column format created by absolutely positioning the
testimonials box.

Part III: CSS for Presentation306

Absolute Positioning

Stacking order

Before we close the book on absolute positioning, there is one last related

concept that I need to introduce. As we’ve seen, absolutely positioned ele-

ments overlap other elements, so it follows that multiple positioned elements

have the potential to stack up on one another.

By default, elements stack up in the order in which they appear in the

document, but you can change the stacking order with the z-index property.

Picture the z-axis as a line that runs perpendicular to the page, as though

from the tip of your nose, through this page, and out the other side.

z-index
Values: (number) | auto | inherit

Default: auto

Applies to: positioned elements

Inherits: no

The value of the z-index property is a number (positive or negative). The

higher the number, the higher the element will appear in the stack. Lower

numbers and negative values move the element lower in the stack. Let’s look

at an example to make this clear (Figure 15-19).

Here are three paragraph elements, each containing a letter image (A, B, and

C, respectively) that have been positioned in a way that they overlap on the

page. By default, paragraph “C” would appear on top because it appears last

in the source. However, by assigning higher z-index values to paragraphs “A”

and “B,” we can force them to stack in our preferred order.

Note that the values of z-index do not need to be sequential, and they do not

relate to anything in particular. All that matters is that higher number values

position the element higher in the stack.

The markup:

<p id="A"></p>
<p id="B"></p>
<p id="C"></p>

The style sheet:

#A {
 z-index: 10;
 position: absolute;
 top: 200px;
 left: 200px;
}

#B {
 z-index: 5;
 position: absolute;
 top: 225px;
 left: 175px;
}

Fixed Positioning

Chapter 15, Floating and Positioning 307

#C {
 z-index: 1;
 position: absolute;
 top: 250px;
 left: 225px;
}

You can change the stacking order with the
z-index property. Higher values stack on

top of lower values.

By default, elements later in the document
stack on top of preceding elements.

z-index: 10

z-index: 5

z-index: 1

Figure 15-19. Changing the stacking order with the z-index property.

To be honest, the z-index property is not often required for most page lay-

outs, but you should know it’s there if you need it. If you want to guarantee

that a positioned element always ends up on top, just assign it a very high

z-index value, such as:

img#essential {
 z-index: 100;
 position: absolute;
 top: 0px;
 left: 0px;
}

Fixed Positioning
We’ve covered relative and absolute positioning, now it’s time to take on the

remaining method: fixed positioning.

For the most part, fixed positioning works just like absolute positioning. The

significant difference is that the offset values for fixed elements are always

relative to the browser window (or other viewport), which means the posi-

tioned element stays put even when the rest of the page scrolls. By contrast,

you may remember that when you scrolled the JenWARE page in Exercise 15-

2, the award graphic scrolled along with the document—even though it was

positioned relative to the initial containing block (equivalent to the browser

window). Not so with fixed positioning where the position is, well, fixed.

Let’s switch the award graphic on the JenWARE page to fixed positioning to

see the difference.

WA R N I N G

Unfortunately, fixed positioning is not
supported in IE for Windows, versions
6 and earler. It is, however, supported
in IE7 in Standards mode, so it will be
a more reliable positioning method as
older IEWin versions fade away.

WA R N I N G

Unfortunately, fixed positioning is not
supported in IE for Windows, versions
6 and earler. It is, however, supported
in IE7 in Standards mode, so it will be
a more reliable positioning method as
older IEWin versions fade away.

Part III: CSS for Presentation308

Fixed Positioning

Now you’ve been introduced to all the tools of the trade for CSS-based lay-

out: floating and three types of positioning (relative, absolute, and fixed). You

should have a good feel for how they work for when we start putting them to

use in the various design approaches and templates in Chapter 16.

exercise 15-3 | Fixed positioning

This should be simple. Open jenville.html (or jenville_2.html) and edit the style rule
for the award div to make it fixed rather than absolute.

#award {
 position: fixed;
 top: 35px;
 left: 25px;
 }

Save the document and open it in a browser (Windows users, you’ll need to
download Firefox or another non-Internet Explorer 6 browser to play along). At
first look, it should appear the same as in Exercsise 15-2. However, when you scroll
the page, you will see that the award now stays put where we positioned it in the
browser window (Figure 15-20).

Figure 15-20. The award graphic stays in the same place in the top-left corner of
the browser window when the document scrolls.

Test Yourself

Chapter 15, Floating and Positioning 309

Test Yourself
Before we move on, take a moment to see how well you absorbed the prin-

ciples in this chapter.

Which of the following is not true of floated elements?

All floated elements behave as block elements.

Floats are positioned against the padding edge (just inside the bor-

der) of the containing element.

Inline elements flow around a float, but the element box is

unchanged.

You must provide a width property for floated block elements.

Which of these style rules is incorrect? Why?

img { float: left; margin: 20px;}

img { float: right: width: 120px; height: 80px; }

img { float: right; right: 30px; }

img { float: left; margin-bottom: 2em; }

How do you make sure a “footer” div starts below a floated sidebar?

Write the name of the positioning method or methods (static, relative,

absolute, or fixed) that best matches each of the following descriptions.

Positions the element relative to a containing block.

Removes the element from the normal flow.

Positions the element relative to the viewport.

The positioned element may overlap other content.

Positions the element in the normal flow.

1.

a.

b.

c.

d.

2.

a.

b.

c.

d.

3.

4.

a.

b.

c.

d.

e.

Part III: CSS for Presentation310

Review: Basic Layout Properties

The space the element would have occupied in the normal flow is

preserved.

The space the element would have occupied in the normal flow is

closed up.

You can change the stacking order with z-index.

Positions the element relative to its original position in the normal

flow.

Calculate the width of the “sidebar” div element box based on this style

rule.

 div#sidebar { width: 200px;
 margin: 25px;
 padding-left: 30px;
 padding-right: 10px;
 border: 1px solid #FFF;
 }

Extra credit: What width would you have to provide for Internet Explorer

5 and 5.5 (Windows) to compensate for its box model problem?

Review: Basic Layout Properties
Here is a summary of the properties covered in this chapter, in alphabetical

order.

Property Description

float Moves the element to the right or left and allows the following
text to flow around it.

clear Prevents an element from being laid out next to a float.

position Specifies the positioning method to be applied to the element

top, bottom,
right, left

Specifies the offset amount from each respective edge.

z-index Specifies the order of appearance within a stack of overlapping
positioned elements.

f.

g.

h.

i.

5.

311

IN THIS CHAPTER

Fixed, liquid, and elastic
page layouts

Two- and three-column
layout templates using

floats

Two- and three-column
layout templates using

absolute positioning

Centering a
fixed-width page

Now that you understand the principles of moving elements around on the

page using CSS floats and positioning, we can put these tools to use in some

standard page layouts. This chapter looks at the various approaches to CSS-

based web design and provides some simple templates that will get you on

your way to building basic two- and three-column web pages.

Before we get started, it must be said that there are seemingly endless varia-

tions on creating multicolumn layouts with CSS. This chapter is intended to

be a “starter kit.” The templates presented here are simplified and may not

work for every situation (although I’ve tried to point out the relevant short-

comings of each). You may know of better approaches. In fact, because there

is so much to be said about CSS page layout, I’ve provided pointers to addi-

tional samples and tutorials on the Web. New techniques turn up regularly.

Page Layout Strategies
Way back in Chapter 3, The Nature of Web Design, we established the fact

that there is no way of knowing exactly how wide, skinny, tall, or short a

user’s browser window will be. Users may set their browsers to fill the moni-

tor at one of the standard resolutions or have them set to some other com-

fortable dimension. The precise size of any given web page is an unknown.

In addition, there is no way of knowing how large your text will be. You may

prefer small tidy text, but a portion of your users will make their text larger,

possibly much larger, to make it comfortable to read. Changing text size is

likely to have an impact on the layout of your page.

Over time, three general page layout approaches have emerged to deal with

these inescapable facts. Liquid pages resize along with the browser window.

 Fixed pages put the content in a page area that stays a specific pixel width

regardless of the browser’s dimensions. Finally, elastic pages have areas that

get larger or smaller when the text is resized. Let’s look at how each strategy

works as well as the reasons for and against using each of them. I’ll also brief-

ly introduce zoom layouts that address the needs of users with low vision.

PAGE LAYOUT
WITH CSS

CHAPTER 16

Part III: CSS for Presentation312

Page Layout Strategies

Liquid page design

Liquid page layouts (also called fluid layouts) follow the default behavior of

the normal flow. In other words, the page area and/or columns within the

page are allowed to get wider or narrower to fill the available space in the

browser window. There is no attempt to control the width of the content or

line breaks—the text is permitted to reflow as required. Figure 16-1 shows

W3.org, which is a good example of a liquid layout.

Liquid layouts fill the browser window.
Content reflows when the browser window and columns resize.

www.w3.org

Figure 16-1. Example of a liquid layout.

Proponents of liquid web pages feel strongly that this is the best formatting

method because it is consistent with the nature of the medium. Of course, it

has both advantages and disadvantages.

Advantages Disadvantages

You don’t have to design for a specific
monitor resolution.

You avoid potentially awkward empty
space because the text fills the window.

Liquid pages keep with the spirit and
nature of the medium.

On large monitors, line lengths can get
very long and uncomfortable to read.
See the sidebar for more information.

They are less predictable. Elements may
be too spread out or too cramped at
extreme browser dimensions.

How to create liquid layouts

Create a liquid layout by specifying widths in percentage values. You can also

not specify a width at all, in which case the width will be set to the default

auto setting, and the element will fill the available width of the window or

other containing element. Here are a few examples.

In this two-column layout (Figure 16-2), the width of each div has been

specified as a percentage of the available page width. The main column will

always be 70% of the width of the window, and the right column fills 25%

(the remaining 5% is used for the margin between the columns), regardless

of the window size.

Optimal Line
Length
Line length is a measure of the
number of words or characters in
a line of text. The rule of thumb is
that the optimal line length is 10
to 12 words or between 60 and 75
characters.

When line lengths grow too long,
the text becomes more difficult to
read. Not only is it hard to focus long
enough to get to the end of a long
line, it is also requires extra effort to
find the beginning of the next line
again.

Line length is at the heart of the
debate over which layout technique
is superior. In liquid layouts, line
lengths might get too long when
the browser is sized very wide. In
fixed width designs, line lengths
may become awkwardly short if
the text is sized large within narrow
and rigid column widths. The elastic
layout introduced later in this
chapter, however, offers predictable
line lengths even when the text is
sized larger. This makes it a popular
option for balancing design and
accessibility priorities.

Optimal Line
Length
Line length is a measure of the
number of words or characters in
a line of text. The rule of thumb is
that the optimal line length is 10
to 12 words or between 60 and 75
characters.

When line lengths grow too long,
the text becomes more difficult to
read. Not only is it hard to focus long
enough to get to the end of a long
line, it is also requires extra effort to
find the beginning of the next line
again.

Line length is at the heart of the
debate over which layout technique
is superior. In liquid layouts, line
lengths might get too long when
the browser is sized very wide. In
fixed width designs, line lengths
may become awkwardly short if
the text is sized large within narrow
and rigid column widths. The elastic
layout introduced later in this
chapter, however, offers predictable
line lengths even when the text is
sized larger. This makes it a popular
option for balancing design and
accessibility priorities.

Create a liquid layout
by specifying widths in
percentages or not at all.

Create a liquid layout
by specifying widths in
percentages or not at all.

Page Layout Strategies

Chapter 16, Page Layout with CSS 313

div#main {
 width: 70%;
 margin-right: 5%;
 float: left;
 background: yellow;
 }

div#extras {
 width: 25%;
 float: left;
 background: orange;
 }

70% 25%

5% 5%

25%70%

Figure 16-2. Liquid layout using percentage values.

In the example in Figure 16-3, the secondary column on the left is set to a

specific pixel width, and the main content area is set to auto and fills the

remaining space in the window (I could have also left it unspecified for the

same result). Although this layout uses a fixed width for one column, it is still

considered liquid because the width of the page is based on the width of the

browser window.

div#main {
 width: auto;
 position: absolute;
 top: 0;
 left: 225px;
 background: yellow; }

div#extras {
 width: 200px;
 position: absolute;
 top: 0;
 left: 0;
 background: orange; }

200px Resizes to fill browser window

25px

200px Resizes

25px

Figure 16-3. Liquid layout combining fixed-width and auto sized columns.

Dealing with line lengths

Although long line lengths are possible in liquid layouts, it’s certainly a man-

ageable situation and not a reason to reject this layout approach.

In the vast majority of cases, users have their browsers sized reasonably, that

is, somewhere between 800 and 1250 pixels. If your page is two or more

Part III: CSS for Presentation314

Fixed Layouts

columns, you’re in luck, because it will be difficult for the line lengths to get

too out of hand at these “reasonable” browser widths. Sure, line lengths will

change when the browser is resized, and they may not be in the ideal range of

55 to 72 characters per line, but text is unlikely to be unreadable.

If your page consists of only one column, I suggest using left and right mar-

gins (in the 10 to 20% range, depending on preference) to reduce the resulting

line length and also add valuable white space around the text.

Finally, you can use the max-width property to limit the width of the content

containers. Unfortunately, it is not supported by Internet Explorer (Windows)

6 and earlier, but those versions will eventually fall out of significant use.

Fixed Layouts
Fixed-width layouts, as the name implies, stay put at a specified pixel width

as determined by the designer. This approach is based on traditional guiding

principles of graphic design, such as a constant grid, the relationship of page

elements, and comfortable line lengths. When you set your page to a specific

width, you need to decide a couple of things.

First, you need to pick a page width, usually based on common monitor reso-

lutions. Most fixed-width web pages as of this writing are designed to fit in an

800 × 600 pixel browser window, although more and more sites are venturing

into a (roughly) 1000 pixel page width.

You also need to decide where the fixed-width layout should be positioned in

the browser window. By default, it stays on the left edge of the browser, with

the extra space to the right of it. Some designers opt to center the page, split-

ting the extra space over left and right margins, which may make the page

look as though it better fills the browser window. Figure 16-4 shows two fixed

width layouts. Both use fixed-width pages, but position the content differently

in the browser window.

750px

200px

25px

525px

750px

200px

25px

525px

Extra space on right

#wrapper {width: 750px;
 position: absolute;
 margin-left: auto;
 margin-right: auto;
 border: 1px solid black;
 padding: 0px;}

#extras {position: absolute;
 top: 0px;
 left: 0px;
 width: 200px;
 background: orange; }

#main {margin-left: 225px;
 background-color: yellow;}

Extra space split on left and right sides

Figure 16-4. Examples of fixed layouts (left-aligned and centered).

Fixed Layouts

Chapter 16, Page Layout with CSS 315

One of the main concerns with using fixed-width layouts is that if the user’s

browser window is not as wide as the page, the content on the right edge of

the page will not be visible. Although it is possible to scroll horizontally, it may

not always be clear that there is more content there in the first place.

Take a look at O’Reilly Media’s web site (www.oreilly.com) in Figure 16-5. The

page was designed to fill a browser window maximized to a 1024 × 768 moni-

tor. Given the nature of the content and the audience it is intended for, it is a

completely appropriate design decision. However, the figure on the right shows

what a user with an 800 × 600 monitor would see. The entire right column

is hidden. Fortunately, O’Reilly uses the right column for interesting, yet non-

critical information, so even if it is overlooked, there is no serious harm done.

Figure 16-5. Users may miss out on content on the right edge of a fixed layout if the
browser is not as wide as the page area.

Let’s review the pros and cons of using the fixed-width strategy.

Advantages Disadvantages

The layout is predictable.

It offers better control over line length.

Trends come and go; however, it is worth noting that many of
the most well-known web designers use fixed-width designs
as of this writing.

Content on the right edge will be hidden if the browser
window is smaller than the page.

Text elements still reflow if the user resizes the font size, so it
doesn’t guarantee the layout will stay exactly the same.

Line lengths may grow awkwardly short at very large text sizes.

How to create fixed-width layouts

Fixed-width layouts are created by specifying width values in pixel units.

Typically, the content of the entire page is put into a div (often named “con-

tent,” “container,” “wrapper,” or “page”) that can then be set to a specific

pixel width. This div may also be centered in the browser window. Widths of

column elements, and even margins and padding, are also specified in pixels.

We will see examples of this technique later in this chapter.

Fixed-width layouts are
created by specifying
width values in pixel units.

Fixed-width layouts are
created by specifying
width values in pixel units.

Part III: CSS for Presentation316

Elastic Layouts

Elastic Layouts
A third layout approach is growing in popularity because it marries resizable

text with predictable line lengths. Elastic (also called jello) layouts expand or

contract with the size of the text. If the user makes the text larger, the box that

contains it expands proportionally. Likewise, if the user likes her text size very

small, the containing box shrinks to fit. The result is that line lengths (in

terms of words or characters per line) stay the same regardless of the text size.

This is an advantage over liquid layouts where line lengths can get too long,

and fixed layouts where very large text may result in awkwardly few charac-

ters per line.

Figure 16-6 shows the Elastic Lawn design by Patrick Griffiths at CSS Zen

Garden (www.csszengarden.com/?cssfile=/063/063.css), an often-referenced

example of an elastic layout at work. Notice that when the text size gets big-

ger in each sample, so does the content area of the page. However, instead of

rewrapping in the larger layout space, the line breaks are the same.

48 em 48 em

Line length and line breaks stay the same

Figure 16-6. The Elastic Lawn design by Patrick Griffiths at CSS Zen Garden is a classic
example of elastic page layout.

As any layout approach, elastic layouts come with their own pros and cons:

Advantages Disadvantages

Provide a consistent layout experience
while allowing flexibility in text size.

Tighter control over line lengths than
liquid and fixed layouts.

Images don’t lend themselves to
rescaling along with the text and the
rest of the layout.

The width of the layout might exceed
the width of the browser window at
largest text sizes. This can be prevented
with proper planning and/or the
max-width property (unsupported in
IE6 and earlier).

Elastic Layouts
Patrick Griffiths, the creator of
Elastic Lawn, has written some
good tutorials and demos of elastic
layouts, available here:

“Elastic Designs” article at A List
Apart (alistapart.com/articles/
elastic)

Elastic layout demo at HTML Dog
(www.htmldog.com/articles/
elasticdesign/demo/)

t I P

Elastic Layouts
Patrick Griffiths, the creator of
Elastic Lawn, has written some
good tutorials and demos of elastic
layouts, available here:

“Elastic Designs” article at A List
Apart (alistapart.com/articles/
elastic)

Elastic layout demo at HTML Dog
(www.htmldog.com/articles/
elasticdesign/demo/)

t I P

N OT E

AOL.com also uses an elastic layout (as
of this writing), demonstrating that this
approach is a viable option for large sites
with lots of detailed information on the
home page.

N OT E

AOL.com also uses an elastic layout (as
of this writing), demonstrating that this
approach is a viable option for large sites
with lots of detailed information on the
home page.

Elastic Layouts

Chapter 16, Page Layout with CSS 317

How to create elastic layouts

The key to elastic layouts is the em, a unit of measurement that is based on

size of the text. For example, for an element with 12-pixel text, an em is 12

pixels. In Chapter 12, Formatting Text, we learned that it is always preferable

to specify font size in ems because it allows the text to be resized with the

zoom feature in all modern browsers (remember that IE6 and earlier do not

zoom text sized in pixels). In elastic layouts, the dimensions of containing

elements are specified in ems as well. That is how the widths can respond to

the text size.

For example, if the text size is set to 76% (equal to about 12 pixels on most

browsers), and the page is set to 40 em, the resulting page width would be

480 pixels (40 em x 12px/em). If the user resizes the text up to 24 pixels, the

page grows to 960 pixels. Note that this is getting close to the available canvas

space in browsers on 1024-pixel wide monitors. If the page were set much

more than 40 ems wide, there would be the risk of the right edge extending

beyond the browser window at extremely large text sizes.

Elastic layouts are created
by specifying widths in em
units.

Elastic layouts are created
by specifying widths in em
units.

Users who are totally blind may use screen readers to access
web content. However, there are many visually impaired users
who have enough vision to view sites on computer monitors as
long as the type is large and the contrast is good.

A new layout technique, called zoom layouts (Figure 16-7), has
emerged to address the special requirements of these low-
vision users. The hallmarks of zoom layouts include:`

A single column layout

Extremely large type (set in ems for scalability)

High-contrast text and background (both light-on-dark and
dark-on-light versions are often supplied)

Simplified navigation that appears at the beginning of the
document

Some visual elements such as color and simple graphics to
create an experience consistent with that of the site’s normal
presentation.

Zoom layouts are usually provided as an alternative to the site’s
normal design. They're made accessible to those who need it
via a link at the top of the page.

The champion of the zoom layout is accessibility expert,
Joe Clark. For more information, these links to Mr. Clark’s
publications are a good place to start.









The Zoom Layout Page
joeclark.org/access/webaccess/zoom/

Zoom Layout presentation at @media 2005
joeclark.org/atmedia/atmedia-NOTES-2.html

“Big, Stark, and Chunky,” article at A List Apart
alistapart.com/articles/lowvision

Figure 16-7. A zoom layout designed by Doug Bowman at
stopdesign.com.

Zoom Layouts for Low-Vision Users

Part III: CSS for Presentation318

Page Layout Templates

Which one should I use?

As you can see, each layout approach has its own advantages and drawbacks.

Developers tend to have their favorites, and if you read through comments

left on CSS-design-related web sites, you’ll find that there are some passion-

ate opinions for and against each approach (see the sidebar, The Liquid vs.

Fixed Debate).

I’m of the opinion that there is no “right” way to lay out all web pages. I find

that the best solution is usually a function of the nature of content and design

of the site I am working on. You will probably find the same thing to be true.

But now you know the various options and can take them into consideration

when it is time to lay out the page.

Page Layout Templates
Here it is... the section you’ve been waiting for: how to create two- and three-

column layouts using CSS and absolutely no tables. The code examples in

this section should give you a good head start toward formatting your pages,

but they are not universal solutions. Your content may dictate more compli-

cated solutions. You may also prefer one of the more robust templates listed

in the More Layout Templates and Tutorials sidebar.

This section provides templates and techniques for the following:

Multicolumn layouts using floats (two- and three-column)

Multicolumn layouts using positioning (two- and three-column, with and

without footer)

A centered fixed width page

Using the templates

The sample pages in this section aren’t pretty. In fact, I’ve stripped them down

to their bare minimum to help make the structure and strategy as clear as

possible. Here are a few notes regarding the templates and how to use them.

Simplified markup

 The DOCTYPE declaration, and other document structure markup

(html, head, title, and body elements) have been omitted from the tem-

plates to save space. Be sure that your documents have the proper struc-

tural markup.

Headers and footers

 I’ve included a header and footer element on many of these examples, but

either one or both could easily be omitted for a minimal two- or three-

column layout.

•

•

•

The Liquid vs. Fixed
Debate
The “liquid or fixed” question has
sparked impassioned debate among
professionals in the web design
community. There has been an
undeniable trend toward fixed-width
layouts (presumably to control line
lengths), but there are still staunch
proponents of liquid designs as best
for a medium where the canvas
size is unknown. Many designers
from both sides are switching to
elastic layouts as a solid compromise
solution.

To get caught up with both sides of
the debate, start with these articles
and blog entries (they all have links
to additional points of view):

“On Fixed vs. Liquid Design,” by
Doug Bowman (experimenting
with fixed width design at www.
stopdesign.com/log/2003/12/15/
fixedorliquid.html)

“More on fixed widths,” by Richard
Rutter (pro–liquid design article
at clagnut.com/blog/269/)

“Fixed Fashion,” by Jeremy Keith
(pro–liquid designpost at www.
adactio.com/journal/980)







The Liquid vs. Fixed
Debate
The “liquid or fixed” question has
sparked impassioned debate among
professionals in the web design
community. There has been an
undeniable trend toward fixed-width
layouts (presumably to control line
lengths), but there are still staunch
proponents of liquid designs as best
for a medium where the canvas
size is unknown. Many designers
from both sides are switching to
elastic layouts as a solid compromise
solution.

To get caught up with both sides of
the debate, start with these articles
and blog entries (they all have links
to additional points of view):

“On Fixed vs. Liquid Design,” by
Doug Bowman (experimenting
with fixed width design at www.
stopdesign.com/log/2003/12/15/
fixedorliquid.html)

“More on fixed widths,” by Richard
Rutter (pro–liquid design article
at clagnut.com/blog/269/)

“Fixed Fashion,” by Jeremy Keith
(pro–liquid designpost at www.
adactio.com/journal/980)







Page Layout Templates

Chapter 16, Page Layout with CSS 319

Dominant main column

 One thing to be aware of is that all of these examples are based on the

best-case scenario where the main content column is longer than the side

column(s), which of course is not always the case in the real world. If your

side columns are longer, you may need to make adjustments or use a dif-

ferent structure altogether.

Color-coding

 I’ve included two views of each layout. The one on the left is plain and

simple and shows off the potential of the layout. In the right view, I’ve

added a garish background color to help you match the markup and style

sheet code with what is happening in the browser. The background colors

are also helpful for visualizing the boundaries and placement of element

boxes.

Make it yours

 The example style sheets contain the minimum number of rules to create

a flexible and usable page structure. There is obviously a lot more that

could be done with text, backgrounds, margins, padding, and borders to

make these pages more appealing. Once you’ve laid a framework with

these templates, you should feel free to change the measurements and add

your own styles. Values that can be replaced are indicated in italics in the

style sheet examples.

Multicolumn Layouts Using Floats

The most popular way to create a column is to float an element to one side

and let the remaining content wrap around it. A wide margin is used to keep

the area around the floated column clear.

One of the advantages of floats is that it is easier to start page elements such

as a footer below the columned area of the page. The drawback of float-based

layouts is that they are dependent on the order in which the elements appear

in the source. Getting the layout effect you are after may result in the docu-

ment source not being in the optimal order for users of non-visual browsers.

The templates in this section reveal the general strategy for approaching two-

and three-column layouts using floats and should serve as a good head start

toward implementing your own layouts.

More Layout
Templates
and Tutorials
There are many approaches to
creating multicolumn layouts with
CSS. All layouts have benefits and
drawbacks (usually in the form of
browser support). To find a template
that is right for you and to learn
where things are likely to go wrong, I
recommend these resources.

The css-discuss Wiki has a list of
links to two- and three-column
layout tutorials. These pages are
great starting places for more
exploration and solutions to
layout issues:

css-discuss.incutio.com?page=Th
reeColumnLayouts

css-discuss.incutio.com?page=Tw
oColumnLayouts

“Creating Liquid Layouts with
Negative Margins,” by Ryan Brill,
published on A List Apart
(www.alistapart.com/articles/
negativemargins/)

“In Search of the Holy Grail,” by
Matthew Levine, published by A
List Apart
(www.alistapart.com/articles/
holygrail/)

“In Search of the One True
Layout,” by Alex Robinson,
published by Position Is
Everything
(positioniseverything.net/articles/
onetruelayout/)

“3 Column All CSS Layout,” by Ben
Hirsch, published on the Shadow
Fox Network
(www.shadow-fox.net/tutorial/3-
Column-All-CSS-Layout-With-
Fluid-Center-and-Two-Columns)















O n l I n e R e S O U R c e S

More Layout
Templates
and Tutorials
There are many approaches to
creating multicolumn layouts with
CSS. All layouts have benefits and
drawbacks (usually in the form of
browser support). To find a template
that is right for you and to learn
where things are likely to go wrong, I
recommend these resources.

The css-discuss Wiki has a list of
links to two- and three-column
layout tutorials. These pages are
great starting places for more
exploration and solutions to
layout issues:

css-discuss.incutio.com?page=Th
reeColumnLayouts

css-discuss.incutio.com?page=Tw
oColumnLayouts

“Creating Liquid Layouts with
Negative Margins,” by Ryan Brill,
published on A List Apart
(www.alistapart.com/articles/
negativemargins/)

“In Search of the Holy Grail,” by
Matthew Levine, published by A
List Apart
(www.alistapart.com/articles/
holygrail/)

“In Search of the One True
Layout,” by Alex Robinson,
published by Position Is
Everything
(positioniseverything.net/articles/
onetruelayout/)

“3 Column All CSS Layout,” by Ben
Hirsch, published on the Shadow
Fox Network
(www.shadow-fox.net/tutorial/3-
Column-All-CSS-Layout-With-
Fluid-Center-and-Two-Columns)















O n l I n e R e S O U R c e S

Part III: CSS for Presentation320

Page Layout Templates

Two-column with footer
Method: FLOAT
Layout: LIQUID

The markup and styles in this example produce a liquid two-column layout

with a header area, a main column of content, a sidebar, and footer for copy-

right information as shown in Figure 16-8.

Aqua box indicates floated “main” div

Footer appears at the bottom of the content
(not at the botom of the browser window)

Figure 16-8. Two-column layout with footer.

The Markup

<div id="header">
Masthead and headline
</div>

฀ <div id="main">
Main article...
</div>

<div id="extras">
List of links and news
</div>

<div id="footer">
Copyright information
</div>

Markup Notes:

The source document has been divided into four divs, one each for the

header, content, extras, and footer.

Page Layout Templates

Chapter 16, Page Layout with CSS 321

The main content appears before the extras in the source document so

that it is accessed first by users with non-graphical browsers. That means

that we can’t float the “extras” div because it will not float above the pre-

ceding block element to the top of the page. Instead, the main content div

is floated and the following text (the “extras” div) wraps around it.

The Style Sheet

#header {
 background: #CCC;
 padding: 15px; }

B #main {
 background-color: aqua;
 float: left; /* floats the whole main article to the left */
 width: 60%;
 margin-right: 5%; /* adds space between columns */
 margin-left: 5%; }

C #footer {
 clear: left; /* starts the footer below the floated content */
 padding: 15px;
 background: #CCC; }

D #extras {
 margin-right: 5%} /* space on the right of the side column */

E body {
 font-family: verdana, sans-serif;
 margin: 0; /* clears default browser margins */
 padding: 0; }

li {
 list-style: none;
 margin: 10px 0; }

Style Sheet Notes:

The main content div is floated to the left and set to 60% of the page

width. A margin is applied to the left and right sides of the floated “main”

div to add space between columns.

The “footer” div is cleared (with the clear property) so that it starts

below the floated main content column.

A margin is added on the right edge of the “extras” div to add space

between it and the browser window.

The margin and padding on the body element have been set to zero to

clear the default browser settings. This allows the shaded header and

footer areas to go right up to the edge of the browser window without

any white gaps.

฀�

B�

C�

D�

E�

Part III: CSS for Presentation322

Page Layout Templates

Three-column with footer
Method: FLOAT
Layout: FIXED

This example uses floated elements to create a fixed-width three-column lay-

out (a main content column flanked by left and right sidebars) with optional

header and footer (Figure 16-9).

Figure 16-9. Three-column layout using floats.

The Markup Markup Notes

฀ <div id="container">

<div id="header">
Masthead and headline
</div>

B <div id="links">
List of links
</div>

<div id="main">
Main article...
</div>

<div id="news">
News and announcements...
</div>

<div id="footer">
Copyright information
</div>

</div>

All of the content elements in the docu-

ment have been placed in a “container”

div to which the fixed-width measure-

ment will be applied.

Remember that with floating, the order

that the elements appear in the source

document is significant. To get the

narrow sidebars on either side of the

content, I needed to move the “links”

div before the “content” div to keep

the style sheet straightforward. There

are methods that allow the content to

appear in any order, but they tend to

get complicated. The last three resourc-

es listed in the More Layout Templates

and Tutorials sidebar address this

issue.

฀�

B�

Page Layout Templates

Chapter 16, Page Layout with CSS 323

The Style Sheet

#container {
 width: 750px;

C border: solid 1px; }

#header {
 background: #CCC;
 padding: 15px; }

D #links {
 background-color: fuchsia;
 float: left;

E width: 175px; }

D #main {
 background-color: aqua;
 float: left;

E width: 400px; }

D #news {
 background-color: green;
 float: left;

E width: 175px; }

F	#footer {
 clear: both; /* starts the footer below the floated content */
 padding: 15px;
 background: #CCC; }

body {
 font-family: verdana, sans-serif;
 font-size: small;
 margin: 0;
 padding: 0;}

G h2, ul, p {
 padding: 0px 8px; } /* adds space around content */

li {
 list-style: none;
 margin: 10px 0; }

Style Sheet Notes

A border has been added to the container to reveal its edges in this dem-

onstration, but it can easily be removed.

The style sheet floats the “links” “main,” and “news” divs to the left. The

result is that they accumulate against the left edge of the containing

block, thus creating three columns.

Because there are no padding, border, or margin settings for each floated ele-

ment, the sum of their widths is equal to the width of the outer container.

The clear: both property has been added to the footer to make sure it

starts below all of the floated elements.

Space within each content div is added by applying padding on the ele-

ments it contains (h2, ul, p, etc.).

C�

D�

E�

F�

G�

Part III: CSS for Presentation324

Page Layout Templates

Now it’s your turn to give it a try. In Exercise 16-1, you’ll use the same content

to create a hybrid of the previous examples: a two-column, fixed-width layout

using floats.

exercise 16-1 | Float-based Layout

In this exercise, we’ll create the fixed-width layout shown in Figure 16-10. The
source document for this exercise, olympus.html, is available online at www.
learningwebdesign.com/materials/. It contains the basic markup and the start of the
style sheet for all the exercises in this chapter.

Open olympus.html in your text editor and save it as a new file called olympus-
2col.html (that will keep a copy of the starter document fresh for the next
exercise). We’ll start by getting the markup all set. Because this is a fixed-width
layout, wrap all of the content (from the first h1 to the end of the last paragraph)
in a div identified as the “container” (with the id attribute) just as we did in the
three-column template earlier. Be sure to include the closing </div> tag.

Next, add divs that identify the four content sections. Name them “header,” “main,”
“extras,” and “footer.” Note that the “extras” div in this example contains both Links
and News.

1.

2.

Figure 16-10. Two-column, fixed-width
layout.

With the markup in place, you can move on to the style
sheet. The style element and some basic text formatting
rules have been added for you. Apply a width to the
container div. This sets the width of the page area. Also,
apply a border to make the boundaries of the page area
clear (you can always remove it later).

#container {
 width: 750px;
 border: 1px solid; }

Next, let’s make the header and footer stand out. Give
them some padding and a light background color. I’m
using gray, but you can use any color you like.

#header {
 padding: 15px;
 background: #CCC; }

#footer {
 padding: 15px;
 background: #CCC; }

Now give the main content div a width and float it to
the right to make the second column,

#main {
 float: right;
 width: 550px; }

and clear the footer so it appears below the floated
content,

#footer {
 clear: both;
 padding: 15px;
 background: #CCC; }

3.

4.

5.

exercise 16-1 | Float-based Layout

In this exercise, we’ll create the fixed-width layout shown in Figure 16-10. The
source document for this exercise, olympus.html, is available online at www.
learningwebdesign.com/materials/. It contains the basic markup and the start of the
style sheet for all the exercises in this chapter.

Open olympus.html in your text editor and save it as a new file called olympus-
2col.html (that will keep a copy of the starter document fresh for the next
exercise). We’ll start by getting the markup all set. Because this is a fixed-width
layout, wrap all of the content (from the first h1 to the end of the last paragraph)
in a div identified as the “container” (with the id attribute) just as we did in the
three-column template earlier. Be sure to include the closing </div> tag.

Next, add divs that identify the four content sections. Name them “header,” “main,”
“extras,” and “footer.” Note that the “extras” div in this example contains both Links
and News.

1.

2.

Figure 16-10. Two-column, fixed-width
layout.

With the markup in place, you can move on to the style
sheet. The style element and some basic text formatting
rules have been added for you. Apply a width to the
container div. This sets the width of the page area. Also,
apply a border to make the boundaries of the page area
clear (you can always remove it later).

#container {
 width: 750px;
 border: 1px solid; }

Next, let’s make the header and footer stand out. Give
them some padding and a light background color. I’m
using gray, but you can use any color you like.

#header {
 padding: 15px;
 background: #CCC; }

#footer {
 padding: 15px;
 background: #CCC; }

Now give the main content div a width and float it to
the right to make the second column,

#main {
 float: right;
 width: 550px; }

and clear the footer so it appears below the floated
content,

#footer {
 clear: both;
 padding: 15px;
 background: #CCC; }

3.

4.

5.

Page Layout Templates

Chapter 16, Page Layout with CSS 325

Save the document and take a look at it in the browser. It should look almost
like the sample in Figure 16-10. The only problem is that the text is bumping up
against the edges of the columns and the browser. We can fix that. Add margins
on both sides of the floated main column and on the left side of the “extras” div.

#main {
 float: right;
 width: 550px;
 margin: 0 10px; } /* adds 0 pixels top/bottom and 10px left/right */

#extras {
 margin-left: 10px; }

Save the document again, and take a look. You should have a page that matches
the example.

The layout is officially done, but let’s play around with it a bit to get a better feel
for what’s happening. First, make the background of the “main” div yellow by
adding background-color: yellow; to the #main rule. Save the file and look at it
in the browser. You should see that the color goes behind the content area of the
floated box, but does not extend into the margin area, as expected.

Now, make the background of the “sidebar” div red by adding background-color:
red; to the #sidebar rule. Save the file and look at it in your browser. You will see
that the red background color goes all the way across the page area, behind the
floated column (as shown in Figure 16-11). This is because the sidebar text is just
wrapping around the float. The normal behavior for wrapped text is that the
content moves out of the way of the float, but the element box still takes up its
normal width. The background of the wrapped text appears behind the float. You
may remove the background colors once you’ve gotten the point.

The yellow background
stays in the content area
of the floated “main” div.

The element box of the
“extras” div extends the
width of the page area, as
indicated by the red
background.

Figure 16-11. Adding background colors to reveal element structure.

Obviously, there is more you could do to pretty up this page with color, text
formatting, images, and so on. What is important here is that you get a feel for
creating the structure using floats. Later in the chapter, I’ll show you a trick for adding
colors to columns using a background image. We’ll also learn how to center a fixed-
width layout like this one in the browser window.

6.

7.

8.

9.

N OT E

The margin will be added on the outside
of the 550 pixel-wide content block.
That means that the side column will be
reduced by 20 pixels. If you want the left
and right columns to stay 200 and 550
pixels respectively, you need to reduce the
width of the main div to 530px. We’ll talk
about this more in the final 3-column
template example.

N OT E

The margin will be added on the outside
of the 550 pixel-wide content block.
That means that the side column will be
reduced by 20 pixels. If you want the left
and right columns to stay 200 and 550
pixels respectively, you need to reduce the
width of the main div to 530px. We’ll talk
about this more in the final 3-column
template example.

If things aren’t working, make
sure that you didn’t miss a
semicolon (;) at the end of a
property or a curly bracket (}) at
the end of a rule.

Try saving and viewing the
document after each step to see
the effects of each change that
you make.





e x e R c I S e t I P S

If things aren’t working, make
sure that you didn’t miss a
semicolon (;) at the end of a
property or a curly bracket (}) at
the end of a rule.

Try saving and viewing the
document after each step to see
the effects of each change that
you make.





e x e R c I S e t I P S

Part III: CSS for Presentation326

Page Layout Templates

Layouts Using Absolute Positioning

Absolute positioning can also be used to create a multicolumn page. The

advantage is that the order of the source document is not as critical as it is

in the float method, because element boxes can be positioned anywhere. The

disadvantage is that you run the risk of elements overlapping and content

being obscured. This makes it tricky to implement full-width elements below

columns (such as the footer in the previous example), because it will get over-

lapped if a positioned column grows too long.

When working with absolute positioning, remember that every element you

position is removed from the normal flow. If content you expect to be at the

bottom of the page is sitting at the very top, it’s because you positioned (and

thus removed) all the elements above it that were “holding it down.” This is

something to keep in mind while troubleshooting.

Two-column with narrow footer
Method: POSITIONED
Layout: LIQUID

The example in this section creates a right sidebar column using absolute

positioning. The resulting layout is shown in Figure 16-12. Note that the footer

design has been modified for the sake of simplifying the template (full-width

footers are problematic, as mentioned earlier).

Footer appears only under the main content.

Figure 16-12. Two-column layout with absolute positioning.

Page Layout Templates

Chapter 16, Page Layout with CSS 327

The Markup Markup Notes

<div id="header">
Masthead and headline
</div>

<div id="main">
Main article...
</div>

฀ <div id="extras">
List of links and news
</div>

<div id="footer">
Copyright information
</div>

This style sheet absolutely posi-

tions the “extras” div element

against the right side of the page

and 100 pixels down from the top

to leave room for the header ele-

ment. The “main” content div is

given a right margin wide enough

to make a space for the newly posi-

tioned box.

฀�

The Style Sheet

B #header {
 height: 70px;
 padding: 15px; /* height of header = 100 (15+70+15) */
 background: #CCC;}

C #main {
 margin-right: 30%; /* makes room for the positioned sidebar */
 margin-left: 5%; }

D	#extras {
 position: absolute;
 top: 100px; /* places the extras div below the header */
 right: 0px; /* places it against right edge of the window */
 width: 25%;
 background: green;
 padding: 10px;} /* adds space within colored box */

E #footer {
 margin-right: 30%; /* keeps the footer aligned with content */
 margin-left: 5%;
 padding: 15px;
 background: #666; }

body {
 font-family: verdana, sans-serif;
 font-size: small;
 margin: 0;
 padding: 0;}

ul { padding: 0px; }

li {
 list-style: none;
 margin: 10px 0; }

WA R N I N G

Because this template places columns
a specific pixel measurement from the
top, it may not be appropriate for pages
with headers that may expand taller. The
solution is to create another containing
div after the header just for the columns,
so that the sidebar can be placed in its
top-right corner. This will keep the side-
bar below the header regardless of its
size. The trade-off is a bit of unnecessary
markup.

WA R N I N G

Because this template places columns
a specific pixel measurement from the
top, it may not be appropriate for pages
with headers that may expand taller. The
solution is to create another containing
div after the header just for the columns,
so that the sidebar can be placed in its
top-right corner. This will keep the side-
bar below the header regardless of its
size. The trade-off is a bit of unnecessary
markup.

Style Sheet Notes

In this example, we know that

the header is exactly 100 pixels

tall (70 height plus 30 pixels of

padding).

The 30% right margin makes

space for the column that is

25% of the page plus 5% space

between the columns.

The “extras” div is positioned

absolutely 0 pixels from the right

edge of the browser and exactly

100 pixels down from the top.

The margins applied to the main

content were also applied to the

footer div. That is to prevent the

footer from being overlapped by

a long sidebar.

B�

C�

D�

E�

Style Sheet Notes

In this example, we know that

the header is exactly 100 pixels

tall (70 height plus 30 pixels of

padding).

The 30% right margin makes

space for the column that is

25% of the page plus 5% space

between the columns.

The “extras” div is positioned

absolutely 0 pixels from the right

edge of the browser and exactly

100 pixels down from the top.

The margins applied to the main

content were also applied to the

footer div. That is to prevent the

footer from being overlapped by

a long sidebar.

B�

C�

D�

E�

Part III: CSS for Presentation328

Page Layout Templates

Three-column (narrow footer)
Method: POSITIONED
Layout: LIQUID

In this template, both sidebar columns are absolutely positioned, and mar-

gins are applied to both sides of the main content to make way for the side-

bars. The resulting layout is shown in Figure 16-13.

Footer appears only under the main content.

Figure 16-13. Positioning two sidebars in a three-column layout.

The Markup Markup Notes
<div id="header">
Masthead and headline
</div>

฀ <div id="main">
Main article...
</div>

B <div id="links">
List of links
</div>

B <div id="news">
News and announcements...
</div>

<div id="footer">
Copyright information
</div>

Because absolute positioning is

not order-dependent, the main

content div can appear in its pref-

erable position first in the docu-

ment source.

Only the “links” and “news” div

elements are positioned in this

layout.

฀�

B�

Page Layout Templates

Chapter 16, Page Layout with CSS 329

The Style Sheet
#header {
 height: 70px;
 padding: 15px; /* height of header = 100 (15+70+15) */
 background: #CCC;
}

#main {
 margin-left: 25%; /* makes room for the left sidebar */
 margin-right: 25%; /* makes room for the right sidebar */
}

C #links {
 position: absolute;
 top: 100px; /* places the sidebar below the header */
 left: 0px; /* places it against left edge of the window */

D width: 22%; /* less than main margins to add # between cols */
 background: fuchsia;
}

C #news {
 position: absolute;
 top: 100px; /* places the sidebar below the header */
 right: 0px; /* places it against right edge of the window */

D width: 22%;
 background: green;
}

E #footer {
 margin-right: 25%; /* keeps the footer aligned with content */
 margin-left: 25%;
 padding: 15px;
 background: #CCC;
}

Style Sheet Notes

The style sheet is essentially the same as that for the previous example, with

the exception that margins have been applied to both sides of the “main” and

“footer” div elements to make room for columns on both sides. The com-

ments within the style sheet provide information on what key properties are

doing.

The “links” and “news” divs are positioned against the left and right

edges of the browser window (technically, it’s the initial-containing block),

respectively.

The width of the positioned columns is narrower than the margins on the

main content div to allow space between columns.

The footer gets the same margin treatment as the main content column to

make sure the side columns do not overlap it.

C�

D�

E�

Part III: CSS for Presentation330

Page Layout Templates

Three-column with rules and padding between columns
Method: POSITIONED
Layout: FIXED

In this three-column layout, all three columns are absolutely positioned in a

fixed layout. In addition, borders and padding have been added between col-

umns. For reasons of simplicity, the footer has been omitted altogether in this

example because there is no way to keep it at the bottom of the page without

using JavaScript or jumping through some CSS hoops that are beyond the

scope of this chapter. The result is shown in Figure 16-14.

Footer has been removed from this example. Because all three blocks are positioned (and thus removed from the
normal flow), there is no easy way to keep the footer at the bottom of the page.

Rules and padding have been added to this layout.

Figure 16-14. Three positioned columns in a fixed-width layout.

The Markup

฀ <div id="container">

<div id="header">
Masthead and headline
</div>

B <div id="main">
Main article...
</div>

B <div id="links">
List of links
</div>

B <div id="news">
News and announcements...
</div>

</div>

Page Layout Templates

Chapter 16, Page Layout with CSS 331

Markup Notes

Because this is a fixed-width layout, all of the content has been wrapped

in a “container” div.

All three content-containing div elements are absolutely positioned. The

main content div can appear first in the source document.

The Style Sheet

C #container {
 position: relative; /* makes "container" a containing block */
 width: 750px; }

#header {
 height: 70px;
 padding: 15px; /* total height = 100 (15+70+15) */
 background: #CCC; }

#main {
D position: absolute;

 top: 100px;
E left: 150px;
F width: 428px; /* 450 minus 2px of border and 20px of padding */

 border-left: solid 1px black;
 border-right: solid 1px black;
 padding: 0px 10px; /* 10 pixels padding left and right */
 background-color: aqua; }

#links {
D position: absolute;

 top: 100px;
E	 left: 0px;
F width: 134px; /* 150 minus 16 px total padding */

 padding: 0 8px; /* 8 px padding left and right */
 background: fuchsia; }

#news {
D position: absolute;

 top: 100px;
E	 left: 600px; /* makes room for other 2 columns */
F width: 134px; /* 150 minus 16 px total padding */

 padding: 0 8px; /* 8 px padding left and right */
 background: green; }

body {
 font-family: verdana, sans-serif;
 font-size: small;
 margin: 0;
 padding: 0; }

ul { padding: 0px; }

li {
 list-style: none;
 margin: 10px 0; }

฀�

B�

Part III: CSS for Presentation332

Page Layout Templates

Style Sheet Notes

The “container” div has a fixed width (750 pixels) and its position is set

to relative to establish it as a containing block for the positioned column

elements

All three content divs (“links,” “main,” and “news”) are absolutely posi-

tioned below the header.

The values for left (that is, the distance from the left edge of the con-

taining block area) are relative to the left edge of the entire element box

(including margins) for each div, not just the content area.

Whenever you add padding, margins, or borders to a fixed-width layout

structure, you need to do some math to make sure the sum of the element

widths plus all their extras does not exceed the total container width.

In the example, the 750 pixel overall width is divided into two 150 pixel

sidebars and a 450 pixel main column. Although it may be tempting to

set the width of each div to these values, unfortunately, that won’t work.

The width property applies only to the content area.

Figure 16-15 breaks down all the measurements that span the width of the

“container” div. You can easily match the values in the figure to the ones

used in the preceding style sheet.

8 + 134 + 88 + 134 + 8 1+10 + 428 + 10+1

150px 450px 150px

750px

Figure 16-15. Calculating widths, margins, borders, and padding.

WA R N I N G

If you need to support Internet Explorer 5 and 5.5 for Windows, your work isn’t fin-
ished. IE5 incorrectly implements the box model and applies the width property to
the outer edges of the element. A workaround for providing a different set of width
properties just for IE5/5.5(Win) is provided in Chapter 14, Thinking Inside the Box.
With the release of IE7, many developers have chosen to stop supporting IE5, but of
course, whether you choose to support it or not depends on the nature of your site and
your own server statistics.

C�

D�

E�

F�

Page Layout Templates

Chapter 16, Page Layout with CSS 333

Now you should be ready to take on an absolutely positioned
layout. In this exercise, we’ll use the same content to create
a two-column, elastic layout (Figure 16-16) using absolute
positioning.

Open olympus.html and save it as a new document named
elastic-olympus.html.

Delete the copyright information paragraph at the end of
the document. This layout does not include a footer.

Next, add the necessary markup. Once again, add a div
named “container” around everything, and divide the
content into three divs: “header,” “main,” and “extras.”

In the style sheet, set up the page by giving the “container”
div a width and setting its position to relative to establish
a containing block for the positioned columns. Because
this is an elastic layout, the width should be specified in
em units. We’ll use a conservative 40em so that the layout
can be resized larger a few intervals before running off the
typical 1024-pixel wide monitor.

#container {
 width: 40em;
 position: relative;
}

Give the header a height (also in em units), padding, and
a background color as we’ve been doing throughout this
chapter.

#header {
 height: 4em;
 padding: 1em;
 background-color: #CCC;
}

Now we can position the “extras” div. Add this rule to your
style sheet to position the sidebar box below the header
and give it a width of 10em with 1 em of padding on the
left side.

#extras {
 width: 10em;
 position: absolute;
 top: 6em;
 left: 0;
 padding-left: 1em;
}

Finally, make room for the positioned sidebar by adding a
margin on the left edge of the “main” content div. I’ve added
an 12em margin to make room for the 11em-wide sidebar
plus 1em space between columns.

#main {
 margin-left: 12em;
}

1.

2.

3.

4.

5.

6.

7.

Save the file and open it in a browser. It should look like
the layout shown in Figure 16-16. Try using the text zoom
feature on your browser to make the text larger and smaller
and see the elastic layout at work.

The page width expands when text is sized larger.

Figure 16-16. Two-column, elastic layout.

8.

exercise 16-2 | Elastic layout with positioned column

Part III: CSS for Presentation334

Centering a Fixed-Width Page

Centering a Fixed-Width Page
All of the fixed-width examples we’ve seen so far have been aligned on

the left side of the browser window with empty space to the right of it.

Although you see plenty of left-aligned pages, many designers choose

to center their fixed-width pages in the browser window to split up that

potentially awkward left-over space.

This section looks at two methods for centering a fixed-width page: the

official CSS way and an effective creative solution that works in all CSS-

compliant browsers (even Netscape 4). We’ll use these methods to cen-

ter the fixed-width three-column page we made earlier (Figure 16-17).

Figure 16-17 . Centering a fixed-width
page element.
Figure 16-17 . Centering a fixed-width
page element.

Adding color to columns is an effective way to further
emphasize the division of information and bring a little color
to the page. I have added background colors to the column
elements in some of the template demonstrations, but as you
have seen, the color stops at the end of the element box and
does not extend to the bottom of the page. This is not the
effect I am after.

Unfortunately, there is no supported way of setting the height
of an element to 100% of the page height, and while there are
CSS layout templates and JavaScript workarounds that produce
full-height column elements, they are beyond the scope of this
chapter.

But don’t fret. There is a reliable solution known as the “faux
columns” trick that will work with any of the fixed-width
templates in this chapter. In this technique, column colors are
added using a tiling image in the background of the page
or containing element (such as the “container” div in the
examples).The Faux Columns method was first introduced by
Dan Cederholm in his article for A List Apart, and in his book,
Web Standards Solutions.

Here’s how it works. The column shading in Figure 16-17 is the
result of a horizontal image with bands of color that match the
width of the columns. When the image is set to tile vertically
in the background, the result is vertical stripes over which a
multicolumn layout may be positioned. Of course, this only
works when the width of the column or page is set in a specific
pixel measurement.

You may recognize the layout in Figure 16-18. It is the layout
we created in Exercise 16-1. If you’d like to give this a try, I’ve
included the image file, 2col_bkgd.gif, with the materials for
this chapter. Make sure that it is in the same directory as your

document 2col-olympus.html, then open the HTML file and add
the image to the background of the container div like so:

#container {
 width: 750px;
 border: solid 1px;
 background-image: url(2col_bkgd.gif);
 background-repeat: repeat-y;
}

2col_bkgd.gif

Figure 16-18. A tiling background image is used to create
colored columns.

Top-to-Bottom Column Backgrounds

CSS Layouts in Review

Chapter 16, Page Layout with CSS 335

In CSS, the proper way to center a fixed-width element is to specify a width

for the div element that holds all the page’s contents, then set the left and

right margins to auto. According to the CSS visual formatting model, this will

have the net effect of centering the element in the initial containing block.

#container {
 position: relative;
 width: 750px;
 margin-right: auto;
 margin-left: auto;
}

This method works for all current standards-compliant browsers, includ-

ing Internet Explorer 6 when it is in “compliance” mode (see Chapter 10,

Understanding the Standards, about triggering compliance mode). It will not

work in IE 6 in “quirks” mode or any earlier version.

An alternative method uses negative margins to effectively center a contain-

ing block on the page for all browsers that support basic absolute position-

ing (including Netscape 4). First, the “container” (the name of the div in the

examples) is absolutely positioned so its left edge is 50% across the width

of the browser window. Then, a negative left margin is applied that pulls the

page back to the left by half its width, thus aligning the mid-point of the

block with the mid-point of the window. And voila, it’s centered.

#container {
 position: absolute;
 left: 50%;
 width: 750px;
 margin-left: -375px; /* half the width measurement */
}

Exercise 16-3 lets you apply these methods to the pages you created in the

previous two exercises.

CSS Layouts in Review
Using these templates as starting points, you should be able to create a wide

variety of page types: liquid, fixed, or elastic; two- or three-column (or more).

Whether you choose to do a float-based or positioned layout may depend on

the order of your source document and whether you need elements to appear

at the bottom of the page.

Again, there are many more options for creating page layouts as listed in the

More Layout Templates and Tutorials sidebar earlier in the chapter. Be sure to

test your layouts in several browsers, because floats and positioning can cause

some browser hiccups (see the Browser Bugs sidebar in Chapter 15).

exercise 16-3 |
Centering layouts

In this exercise, you can center the
elastic layout you created in Exercise
16-2. We’ll use the proper CSS
method that works in all standards
compliant browsers (the DOCTYPE
at the beginning of the document
will ensure IE6-Win switches into
Standards Mode and plays along).

Open the document elastic-
olympus.html that you just
created.

To center the whole page, simply
set the left and right margins to
auto, and there... you’re done.
Save the file and open it in a
browser to see the centered
page.

#container {
 width: 40em;
 position: relative;
 margin-left: auto;
 margin-right: auto;
}

If you have time and interest, you
can try centering the layout in
Exercise 16-1 (2col-olympus.html)
using the second method listed
above.

1.

2.

exercise 16-3 |
Centering layouts

In this exercise, you can center the
elastic layout you created in Exercise
16-2. We’ll use the proper CSS
method that works in all standards
compliant browsers (the DOCTYPE
at the beginning of the document
will ensure IE6-Win switches into
Standards Mode and plays along).

Open the document elastic-
olympus.html that you just
created.

To center the whole page, simply
set the left and right margins to
auto, and there... you’re done.
Save the file and open it in a
browser to see the centered
page.

#container {
 width: 40em;
 position: relative;
 margin-left: auto;
 margin-right: auto;
}

If you have time and interest, you
can try centering the layout in
Exercise 16-1 (2col-olympus.html)
using the second method listed
above.

1.

2.

N OT E

The negative-margin method is taken
from The Zen of CSS Design by Dave
Shea and Molly Holzschlag (Peachpit
Press). It was originally used by Jon
Hicks in his Zen Garden submission. It
is also useful for centering an element
vertically in the browser window by
applying a top offset and setting a nega-
tive top margin.

N OT E

The negative-margin method is taken
from The Zen of CSS Design by Dave
Shea and Molly Holzschlag (Peachpit
Press). It was originally used by Jon
Hicks in his Zen Garden submission. It
is also useful for centering an element
vertically in the browser window by
applying a top offset and setting a nega-
tive top margin.

Part III: CSS for Presentation336

CSS Layouts in Review

Test Yourself
If you successfully created multiple-column layouts in the exercises, then

you’ve gotten the main point of this chapter. Here are a few questions to make

sure you got the finer details.

Match each layout type with the factor that determines the final size of

the page area.

Fixed-width layouts a. The browser window

Liquid layouts b. Font size

Elastic layouts c. The designer

Match each layout type with the unit of measurement used to create it.

Fixed-width layouts a. Ems

Liquid layouts b. Pixels

Elastic layouts c. Percentages and/or auto

Match each layout type with its potential advantage.

Fixed-width layouts a. Predictable line lengths

Liquid layouts b. No awkward “leftover” space

Elastic layouts c. Predictable layout grid

Match each layout type with its potential disadvantage.

Fixed-width layouts a. Uncomfortably long line lengths

Liquid layouts b. Images don’t resize with the page

Elastic layouts c. Awkwardly short lines at large text sizes

Based on the techniques in this chapter, which CSS layout method would

you choose for each situation (floats or positioning)?

My page has a full-width footer: _____________

I don’t want to change the order of my source code: _____________

I don’t want to have to worry about overlapping elements: __________

1.

2.

3.

4.

5.

337

IN THIS CHAPTER

Style properties for tables

Changing list bullets
and numbers

Turning lists into
navigation bars

Replacing text with images

CSS rollovers

By now you have a solid foundation in writing style sheets. You can style text,

element boxes, and even create page layouts using floats and positioning. But

there are a few more properties and common CSS techniques that I want you

to know about before we move on to creating web graphics in Part IV.

This chapter is a grab bag of sorts. It starts with the CSS properties specifi-

cally related to table and list formatting. It then moves on to common CSS-

based design practices such as using lists as the basis for horizontal naviga-

tion bars, using images in place of text in a way that is accessible to screen

readers, and using the :hover pseudoselector to create rollovers (an effect that

used to require JavaScript).

N OT E

This chapter merely scratches the surface of CSS techniques, so I encourage you to
further your education starting with the CSS resources listed at the end of Chapter 11,
Cascading Style Sheets Orientation.

Style Properties for Tables
We’ve already covered the vast majority of style properties you’ll need to style

content in tables. For example, the appearance and alignment of the content

within the cells can be specified using properties we covered in Chapter 12,

Formatting Text and Chapter 13, Colors and Backgrounds. In addition, you

can treat the table and cells themselves with padding, margins, and borders

as covered in Chapter 14, Thinking Inside the Box.

There are a few CSS properties, however, that were created specifically for

tables. Some of them are fairly esoteric and are briefly introduced in the

sidebar, Advanced Table Properties. This section focuses on properties that

directly affect table display; specifically, the treatment of borders.

CSS TECHNIQUES

CHAPTER 17

Part III: CSS for Presentation338

Style Properties for Tables

Separated and collapsed borders

CSS provides two methods for displaying borders between table cells: sepa-

rated or collapsed. When borders are separated, a border is drawn on all four

sides of each cell and you can specify the space between the borders. In the

collapsing border model, the borders of adjacent borders “collapse” so that

only one of the borders is visible and the space is removed (Figure 17-1).

5px

border-collapse: separate;

border-collapse: collapse;

15px 2px border

2px border

Figure 17-1. Separated borders (top) and collapsed borders (bottom).

The border-collapse property allows authors to choose which of these bor-

der rendering methods to use.

border-collapse
Values: separate | collapse | inherit

Default: separate

Applies to: table and inline-table elements

Inherits: yes

Separated border model

Tables render with separated borders by default, as shown in the top table in

Figure 17-1. You can specify the amount of space you’d like to appear between

cells using the border-spacing property. Unfortunately, Internet Explorer 6

(and earlier) for Windows does not support the border-spacing property, so

the effect will be lost for those users. It is supported in IE7.

border-spacing
Values: length length | inherit

Default: 0

Applies to: table and inline-table elements

Inherits: yes

Advanced Table
Properties
There are a few more properties
related to the CSS table model that
you are not likely to need if you are
just starting out (or perhaps ever).

Table layout

The table-layout property allows
authors to specify one of two
methods of calculating the width
of a table. The fixed value bases
the table width on width values
provided for the table, columns, or
cells. The auto value bases the width
of the table on the minimum width
of the contents of the table. Auto
layout may display nominally more
slowly because the browser must
calculate the default width of every
cell before arriving at the width of
the table.

Table display values

Chapter 14 introduced the display
property used to specify what kind
of box an element generates in the
layout. CSS is designed to work with
all XML languages, not just (X)HTML.
It is likely that other languages will
have the need for tabular layouts,
but will not have elements like
table, tr, or td in their vocabularies.

To this end, there are a variety of
table-related display values that
allow authors of XML languages
to assign table layout behavior
to any element. The table-related
display values are: table, inline-
table, table-row-group, table-
header-group, table-footer-group,
table-row, table-column-group,
table-column, table-cell, and
table-caption. You could assign
these display roles to other (X)HTML
elements, but it is generally
discouraged. Browser support for
table display values is incomplete as
of this writing.

Advanced Table
Properties
There are a few more properties
related to the CSS table model that
you are not likely to need if you are
just starting out (or perhaps ever).

Table layout

The table-layout property allows
authors to specify one of two
methods of calculating the width
of a table. The fixed value bases
the table width on width values
provided for the table, columns, or
cells. The auto value bases the width
of the table on the minimum width
of the contents of the table. Auto
layout may display nominally more
slowly because the browser must
calculate the default width of every
cell before arriving at the width of
the table.

Table display values

Chapter 14 introduced the display
property used to specify what kind
of box an element generates in the
layout. CSS is designed to work with
all XML languages, not just (X)HTML.
It is likely that other languages will
have the need for tabular layouts,
but will not have elements like
table, tr, or td in their vocabularies.

To this end, there are a variety of
table-related display values that
allow authors of XML languages
to assign table layout behavior
to any element. The table-related
display values are: table, inline-
table, table-row-group, table-
header-group, table-footer-group,
table-row, table-column-group,
table-column, table-cell, and
table-caption. You could assign
these display roles to other (X)HTML
elements, but it is generally
discouraged. Browser support for
table display values is incomplete as
of this writing.

Style Properties for Tables

Chapter 17, CSS Techniques 339

The values for border-spacing are two length measurements. The horizontal

value comes first and applies between columns. The second measurement is

applied between rows. If you provide one value, it will be used both horizon-

tally and vertically. The default setting is 0, causing the borders to double up

on the inside grid of the table.

These are the style rules used to create the custom border spacing shown in

the top table in Figure 17-1.

table {
 border-collapse: separate;
 border-spacing: 15px 3px;
 border: none; /* no border around the table itself */
}
td {
 border: 2px solid purple; /* borders around the cells */
}

Collapsed border model

When the collapsed border model is chosen, only one border appears

between table cells. This is the style sheet that created the bottom table in

Figure 17-1.

table {
 border-collapse: collapse;
 border: none; /* no border around the table itself */
}
td {
 border: 2px solid purple; /* borders around the cells */
}

Notice that although each table cell has a 2-pixel border, the borders between

cells measure a total of two pixels, not four. Borders between cells are cen-

tered on the grid between cells, so if cells are given a 4-pixel border, two pixels

will fall in one cell and two pixels in another. For odd numbers of pixels, the

browser decides where the extra pixel falls.

In instances where neighboring cells have different border styles, a compli-

cated pecking order is called in to determine which border will display. If

the border-style is set to hidden for either of the cells, then no border will

display. Next, border width is considered: wider borders take precedence over

narrower ones. Finally, if all else is equal, it comes down to a matter of style.

The creators of CSS rated the border styles from most to least precedence as

follows: double, solid, dashed, dotted, ridge, outset, groove, and (the lowest)

inset.

Empty cells

For tables with separated borders, you can decide whether you want empty cells

to display their backgrounds and borders using the empty-cells property.

N OT E

Although the border-spacing default is
zero, browsers add two pixels of space
for the cellspacing attribute by default.
If you want to see the doubling-up effect,
you need to set the cellspacing attribute
to 0 in the table element.

N OT E

Although the border-spacing default is
zero, browsers add two pixels of space
for the cellspacing attribute by default.
If you want to see the doubling-up effect,
you need to set the cellspacing attribute
to 0 in the table element.

Part III: CSS for Presentation340

Changing List Bullets and Numbers

empty-cells
Values: show | hide | inherit

Default: show

Applies to: table cell elements

Inherits: yes

For a cell to be “empty,” it may not contain any text, images, or nonbreaking

spaces. It may contain carriage returns and space characters.

Figure 17-2 shows the previous separated table border example with its empty

cells (what would be Cell 14 and Cell 15) set to hide.

table {
 border-collapse: separate;
 border-spacing: 15px 3px;
 empty-cells: hide;
 border: none;
}
td {
 border: 1px solid purple;
}

Figure 17-2. Hiding empty cells with the empty-cells property.

Before we move on, take a moment to get acquainted with table formatting,

using these properties and many of the others we’ve covered so far, in Exercise

17-1.

Changing List Bullets and Numbers
As you know, browsers automatically insert bullets before unordered list

items and numbers before items in ordered lists. For the most part, the ren-

dering of these markers is determined by the browser. However, CSS provides

a few properties that allow authors to choose the type and position of the

marker, or replace the bullet with a custom graphic.

Choosing a Marker

Use the list-style-type property to select the type of marker that appears

before each list item. This property replaces the deprecated type attribute in

(X)HTML.

Changing List Bullets and Numbers

Chapter 17, CSS Techniques 341

list-style-type
Values: none | disc | circle | square | decimal | decimal-leading-zero |

lower-alpha | upper-alpha | lower-latin | upper-latin | lower-roman |
upper-roman | lower-greek | inherit

Default: disc

Applies to: ul, ol, and li (or elements whose display value is list-item)

Inherits: yes

This exercise gives you a chance to apply all of your style
sheet knowledge to match the table samples in Figure 17-3.
The starter document, imagetable.html, is available with the
materials for this chapter at www.learningwebdesign.com/
materials/. I recommend you save the document after each
step to see the effects of each change. The final style sheet is in
Appendix A.

The sample table after Step 5

The final table after Step 7

Figure 17-3. Write the style rules to match these examples.

Open the file imagetable.html in a text editor. The document
contains the marked up table and a style rule for the table
that sets its width and the font properties for its content. Note
that the cellpadding and cellspacing attributes have been
set to zero to remove default space added by the browser.
Before you start adding styles, open the document in a
browser to see your starting point. It’s kind of a jumbled mess,
but we’ll fix that one step at a time.

Start by writing a rule that formats the table cells (td
elements) in the following ways:

Apply 6 pixels of padding to the top and bottom of each
cell, but only 3 pixels on the left, and 12 pixels on the
right. Use the shorthand padding property.

Make sure the cell contents stay at the top of each cell
(vertical-align: top;).

1.

2.





Add a 1-pixel solid olive border around each cell with the
border shorthand property.

Next, let’s whip those table headers into shape. Write a rule
that formats th elements as follows:

Make the background “olive” (background-color) and the
text white (color).

Left-align the text in each cell (text-align property).

Apply 3 pixels of padding on the top, left, and bottom
and 12 pixels on the right edge (padding).

Make sure the text falls at the bottom of each cell
(vertical-align).

Now we’ll add alternating background colors to the rows.
Look in the markup and you’ll see that each tr element
has been assigned a class of “odd” or “even.” Using class
identifiers, write style rules to:

Give “odd” rows a background color of #F3F3A6 (yellow-
green).

Give “even” rows a background color of #D4D4A2 (pale
olive green).

Save the document and look at it in a browser. The table is
looking pretty good, but let’s play around with the border
spacing to see what else we can do with it. First, in the rule
for the table element, set the border-collapse property
to separate and add 4 pixels of space between cells with
the border-spacing property. If you use Internet Explorer 6
or earlier, you won’t see the effect of this change, but those
using IE7, Firefox, or another standards-compliant browser
should see a table that looks like the one in the top of Figure
17-3.

Change the border-collapse property to collapse and
remove the border-spacing property entirely. Take another
look at the table in the browser. The border between cells
should be 1 pixel wide.

Finally, let’s get rid of borders on the sides of cells altogether
to give the table the streamlined look of the table at the
bottom of Figure 17-3. Do this by changing the border
property for td elements to border-bottom. Save the file and
see if it matches the sample in the browser.



3.








4.





5.

6.

7.

exercise 17-1 | Styling a table

Part III: CSS for Presentation342

Changing List Bullets and Numbers

Use the none value to turn the marker off for a list item. This is useful when

using a semantically marked up list as the basis for navigation (as we’ll do

later in this chapter) or form field entries.

The disc, circle, and square values generate bullet shapes just as browsers

have been doing since the beginning (Figure 17-4). Bullet size changes with

the font size. Unfortunately, there is no way to change the appearance (size,

color etc.) of generated bullets, so you’re basically stuck with the browser’s

default rendering.

disc circle square

Figure 17-4. The list-style-type values disc, circle, and square

The remaining keywords (Table 17-1) specify various numbering and letter-

ing styles for use with ordered lists. The browser controls the presentation of

generated numbers and letters, but they usually match the font properties of

the associated list item.

Table 17-1. Lettering and numbering system keywords in CSS2.1

Keyword System

decimal 1, 2, 3, 4, 5 ...

decimal-leading-zero 01, 02, 03, 04, 05...

lower-alpha a, b, c, d, e...

upper-alpha A, B, C, D, E...

lower-latin a, b, c, d, e... (same as lower-alpha)

upper-latin A, B, C, D, E... (same as upper-alpha)

lower-roman i, ii, iii, iv, v...

upper-roman I, II, III, IV, V...

lower-greek α, β, γ, δ, ε...

Marker position

By default, the marker hangs outside the content area for the list item, dis-

playing as a hanging indent. The list-style-position allows you to pull the

bullet inside the content area so it runs into the list content.

List Item Display
Role
You may have noticed that the list
style properties apply to “elements
whose display value is list-item.”
The CSS2.1 specification allows any
element to perform like a list item by
setting its display property to list-
item. This property can be applied to
any (X)HTML element or elements in
another XML language. For example,
you could automatically bullet
or number a series of paragraphs
by setting the display property of
paragraph (p) elements to list-item
as shown in this example:

p.bulleted {
 display: list-item;
 list-style-type: upper-
alpha;
 }

List Item Display
Role
You may have noticed that the list
style properties apply to “elements
whose display value is list-item.”
The CSS2.1 specification allows any
element to perform like a list item by
setting its display property to list-
item. This property can be applied to
any (X)HTML element or elements in
another XML language. For example,
you could automatically bullet
or number a series of paragraphs
by setting the display property of
paragraph (p) elements to list-item
as shown in this example:

p.bulleted {
 display: list-item;
 list-style-type: upper-
alpha;
 }

N OT E

CSS2 included additional numbering
systems including hebrew, armenian, geor-
gian, and various Japanese number sets,
but these were dropped in CSS2.1 due to
lack of support.

N OT E

CSS2 included additional numbering
systems including hebrew, armenian, geor-
gian, and various Japanese number sets,
but these were dropped in CSS2.1 due to
lack of support.

Changing List Bullets and Numbers

Chapter 17, CSS Techniques 343

list-style-position
Values: inside | outside | inherit

Default: outside

Applies to: ul, ol, and li (or elements whose display value is list-item)

Inherits: yes

An example should make this more clear. I’ve applied a background color

to the list items in Figure 17-5 to reveal the boundaries of their content area

boxes. You can see that when the position is set to outside (left), the markers

fall outside the content area, and when it is set to inside, the content area box

extends to include the marker.

li {background-color: #F99;}

ul#outside {list-style-position: outside;}

ul#inside {list-style-position: inside;}

Unfortunately, there is no way to set the distance between the marker and the

list item content in CSS2.1, but this functionality may be added in CSS3.

WA R N I N G

Internet Explorer for Windows (6 and earlier) always includes the bullet in the content
area box. This can cause some inconsistent results when positioning list blocks or add-
ing borders, padding, and margins to list items.

Make your own bullets

One nifty feature that CSS provides for lists is the ability to use your own

image as a bullet using the list-style-image property.

list-style-image
Values: <URL> | none | inherit

Default: none

Applies to: ul, ol, and li (or elements whose display value is list-item)

Inherits: yes

The value of the list-style-image property is the URL of the image you

want to use as a marker. The list-style-type is set to disc as a backup

in case the image does not display, or the property isn’t supported by the

browser or other user agent. The result is shown in Figure 17-6.

ul {
 list-style-image: url(/images/happy.gif);
 list-style-type: disc;
 list-style-position: outside;
}

It is important to note that the URL is always interpreted as relative to the

style sheet, whether it is embedded in the document or an external file else-

where on the server. Site root relative URLs, as shown in the example, are the

preferred method because the pathname always starts at the root directory of

the server and is not dependent on the location of the style sheet.

Outside Inside

Figure 17-5. The list-style-position
property.

Outside Inside

Figure 17-5. The list-style-position
property.

Figure 17-6. Using an image as a marker.Figure 17-6. Using an image as a marker.

Part III: CSS for Presentation344

Using Lists for Navigation

The list-style shorthand property

The three list properties (for type, position, and image) can be combined in a

shorthand list-style property.

list-style
Values: <list-style-type> <list-style-position> <list-style-image> | inherit

Default: see individual properties

Applies to: ul, ol, and li (or elements whose display value is list-item)

Inherits: yes

The values for each property may be provided in any order and may be omit-

ted. Keep in mind that omitted properties are reset to their default values in

shorthand properties. Be careful not to override list style properties listed

earlier in the style sheet. Each of these examples duplicates the rules from

the previous example.

ul { list-style: url(/images/happy.gif) disc outside; }

ul { list-style: disc outside; url(/images/happy.gif) }

ul { list-style: url(/images/happy.gif) disc ; }

Using Lists for Navigation
Back in Chapter 5, Marking Up Text, I showed an example of a semantically

marked up unordered list that displays as a navigation toolbar using only

style sheet rules. Twelve chapters later, here I am to tell you how that’s done.

There are two methods for changing a list into a horizontal bar. The first

makes the list items display as inline elements instead of their default block-

level behavior. The second uses floats to line up the list items and the links.

All of the examples in this section use this markup for an unordered list

that contains five list items. Figure 17-7 shows how it looks using default

browser styles. I’ve omitted real URL values in the a elements to simplify the

markup.

 <ul id="nav">
 Serif
 Sans-serif
 Script
 Display
 Dingbats

Inline list items

Let’s begin with the inline list item method. This technique uses the display

property (introduced in Chapter 14) to make the list item elements behave

as inline elements instead of as block elements (their default display role).

As a result, they line up next to one another instead of each starting on a

new line. We’ll start with the minimum style rules for removing the bullets

Figure 17-7. The default rendering of the
example unordered list.
Figure 17-7. The default rendering of the
example unordered list.

Using Lists for Navigation

Chapter 17, CSS Techniques 345

(list-style-type: none) and making the list items appear next to each other

instead of in a list (display: inline). The margins and padding are set to zero

to prepare for styles that will be applied to the anchor (a) element within each

li element. The result of the styles thus far are shown in Figure 17-8.

ul#nav {
 list-style-type: none;
 margin: 0px;
 padding: 0px;
}

ul#nav li {
 display: inline;
}

Figure 17-8. Making unordered list items display inline instead of as block elements.

Now that the items are on one line, we can apply any style to the a (anchor)

elements. In this example, the link underlines have been removed and a bor-

der, background color, and padding have been added. The resulting list is

shown in Figure 17-9.

ul#nav li a { /* selects only links in the "nav" list */
 padding: 5px 20px;
 margin: 0px 2px;
 border: 1px solid #FC6A08;
 background-color: #FCA908;
 text-decoration: none;
 text-align: center;
 color: black;
}

Figure 17-9. Adding styles to the inline list.

Floated list items

The other method for creating horizontal lists uses the float property to line

up the list items next to one another. Remember that when multiple consecu-

tive items are floated to one side, they stack up against that edge. That’s the

behavior we’ll be taking advantage of with this example. When using float,

it is important to set the following element in the source to clear: both to

ensure that no page content wraps around the list.

Part III: CSS for Presentation346

Using Lists for Navigation

The following example is just one of many variations on formatting naviga-

tion with floated list items. The primary steps are:

Turn off the bullets (list-style: none).

Float each list item (float: left).

Make the anchor elements (a) display as block elements so dimensions

may be set (display: block).

Format the links with various styles.

This time, each a element is given a decorative background image that makes

it look like a tab (Figure 17-10).

body {
 font-family: Verdana, Arial, Helvetica, sans-serif;
 font-size: .8em;
 background-color: #FEF6D6; }

ul#nav {
 list-style: none;
 margin: 0;
 padding: 0; }

ul#nav li {
 float: left;
 margin: 0 2px;
 padding: 0; }

ul#nav li a {
 display: block; /* to set width & height of the a element */
 width: 100px;
 height: 28px;
 line-height: 28px;
 background: #E3A7CA url(tab.gif) no-repeat;
 text-transform: uppercase;
 text-decoration: none;
 text-align: center; }

Figure 17-10. Tabbed navigation created with floated list items.

In this example, the list items are still block elements, but because they are all

floated to the left, they line up next to one another.

Notice that the display property for the anchor (a) elements has been set

to block (anchors are usually inline elements). This was done to allow us to

apply width and height attributes to the a elements. The remaining properties

set the size of each “tab,” apply the tab background image, turn off under-

lines, and style and center the text.

1.

2.

3.

4.

There is a bug in Internet Explorer 5
for the Mac that causes this floated
list item example not to work
correctly as shown here.

If you need (or want) to support
IE5(Mac), you need to float the
anchor elements as well as the list
items by adding this declaration to
the beginning of the #nav li a rule:

 float: left;

Then you need to add a “hack” at the
end of the style sheet that overrides
the earlier float value and sets the
float for anchor elements back to
none in all browsers except IE(Mac).
Be sure to copy it exactly, noting
the difference between slashes and
backslashes.

/* Commented backslash hack
hides rule from IE5-Mac */

#nav li a { float: none; }

/* End IE5-Mac hack */

B R O W S e R B U G

There is a bug in Internet Explorer 5
for the Mac that causes this floated
list item example not to work
correctly as shown here.

If you need (or want) to support
IE5(Mac), you need to float the
anchor elements as well as the list
items by adding this declaration to
the beginning of the #nav li a rule:

 float: left;

Then you need to add a “hack” at the
end of the style sheet that overrides
the earlier float value and sets the
float for anchor elements back to
none in all browsers except IE(Mac).
Be sure to copy it exactly, noting
the difference between slashes and
backslashes.

/* Commented backslash hack
hides rule from IE5-Mac */

#nav li a { float: none; }

/* End IE5-Mac hack */

B R O W S e R B U G

Image Replacement Techniques

Chapter 17, CSS Techniques 347

More list and tabbed navigation tutorials

The examples in this section are only the most elementary introduction to

how CSS can be used to create tabbed navigation from semantically logical

list markup. For more sophisticated techniques and in-depth tutorials, these

are just a few of the numerous resources online.

Sliding Doors of CSS (Parts I and II), by Douglas Bowman (www.alistapart.

com/articles/slidingdoors and www.alistapart.com/articles/slidingdoors2)

 A problem with the floated list example above is that if a user makes the

text larger in the browser, it will bust out of the tab graphic. In this article,

Doug Bowman introduces his ingenious technique for graphical tabs that

resize larger with the text.

Accessible Image-Tab Rollovers, by David Shea (www.simplebits.com/note-

book/2003/09/30/accessible_imagetab_rollovers.html)

 This tutorial combines list-based tabbed navigation with image replace-

ment techniques (we’ll get to image replacement in the next section).

Free CSS Navigation Designs, by Christopher Ware (www.exploding-boy.

com/2005/12/15/free-css-navigation-designs/)

 A collection of 11 navigational menus available for your downloading and

customizing pleasure.

CSS Design: Taming Lists by Mark Newhouse (www.alistapart.com/stories/

taminglists)

 This article demonstrates a number of CSS tricks for controlling the pre-

sentation of lists, including various inline list item applications.

Image Replacement Techniques
Web designers frustrated with typography limitations on the Web have been

using inline images for prettier text since the img element first came on the

scene. The problem with swapping out real text, like an h1 element, for an

img is that the text is removed from the source document entirely. Providing

alternative text improves accessibility, but it does not repair the damage to the

semantic structure of the document. Not only that, in terms of site mainte-

nance, it’s preferable to control matters of presentation from the style sheet

and leave the source free of purely decorative elements.

The year 2003 saw the dawn of CSS image replacement (IR) techniques that

replace text with a background image specified in a style sheet. The text ele-

ment itself is still present in the source document, so it is accessible to screen

readers and search engine indexers, but it is prevented from displaying in

graphical browsers via some CSS sleight-of hand. There are many techniques

for hiding the text such as negative margins, covering it up with a graphic,

negative letter-spacing, and so on. We’ll be looking at a popular technique

that hides the text with a large negative text indent.

Part III: CSS for Presentation348

Image Replacement Techniques

N OT E

For an explanation and comparison of image replacement techniques, see David Shea’s
(of Zen Garden fame) list and articles at www.mezzoblue.com/tests/revised-image-
replacement/.

It should be noted that as of this writing, there is no ideal solution for CSS

image replacement, just different approaches and trade-offs. Most techniques

rely on users being able to read the content in images when the text is hidden,

which means users who have CSS turned on but images turned off (or who

are simply waiting for images to load over a slow connection) are not well

served. This problem remains to be solved.

The IR technique with the most widespread use was created by Mike Rundle

for use on his Phark site (it is commonly called the Phark or Rundle/Phark

method). It hides the element text by setting an extremely large negative text-

indent that pushes the text off the screen to the left where it can’t be seen

(Figure 17-11). In this example, the text is set off by -5000 pixels (some authors

prefer -999em because it saves a character and results in a larger distance).

 background: url(cookingwithrockstars.gif) no-repeat;

text-indent: -5000px;

Figure 17-11. The Rundle/Phark image replacement method works by using a large
negative margin to hide the text in a graphical browser. The background image
containing a more attractive version of the text appears in place.

The style sheet

body {
 font-family: Verdana, Arial, Helvetica, sans-serif;
 margin: 50px;
 background-color: #BEC9F1; }

#cwr {
 text-indent: -5000px; /* moves the text out of view */
 background: url(cookingwithrockstars.gif) no-repeat;
 width: 350px; /* sets the dimension of the graphic */
 height: 35px; }

The Future of
Image Replacement
In CSS Level 3, image replacement
may be accomplished using
the expanded capabilities of
automatically generated content. To
replace an h1 element with an image
in CSS3, the rule would look like this;

h1 {
 content: url(headline.gif);
}

Unfortunately, current browsers do
not support this use of generated
content well enough for it to be
a viable option as of this writing.
Hopefully, one day that will change
and the image replacement trickery
in this chapter will be a quaint blip in
web design’s past.

The Future of
Image Replacement
In CSS Level 3, image replacement
may be accomplished using
the expanded capabilities of
automatically generated content. To
replace an h1 element with an image
in CSS3, the rule would look like this;

h1 {
 content: url(headline.gif);
}

Unfortunately, current browsers do
not support this use of generated
content well enough for it to be
a viable option as of this writing.
Hopefully, one day that will change
and the image replacement trickery
in this chapter will be a quaint blip in
web design’s past.

CSS Rollovers

Chapter 17, CSS Techniques 349

The markup

<h1 id="cwr">Cooking with Rockstars</h1>
<p>I’ve been conducting interviews with my favorite bands on the topic
of cooking and eating. Ideally, we cook together; more commonly, we
share cooking secrets in a backstage chat. Videos of our conversations
are posted here. In addition, the artists have generously contributed
their own recipes. Thank them by buying their records. Bon
appetit!</p>

Because the headline text is an ordinary h1 element, it will be read by a screen

reader. The other advantages to this method are that no extra markup (such

as a span element) is required, and it doesn’t require any browser hacks. The

major disadvantage is that users with CSS turned on but images turned off

will see nothing. Likewise, users with graphical browsers will see no headline

at all if the image file simply fails to load.

CSS Rollovers
Chapter 15, Colors and Backgrounds briefly introduced the :hover pseudo-

class selector used to create rollover effects when the mouse is positioned

over a link (see note). In this section, we’ll take an expanded look at how it

can be used.

N OT E

The :hover pseudoclass may be applied to any element according to the CSS2.1
Recommendation, but because Internet Explorer 6 and earlier for Windows only sup-
port it on the anchor (a) element, its practical use has been limited to links. IE7 does
support :hover correctly, so authors will have more options as older versions of IE go
away. For a JavaScript-based workaround for IE6 and earlier, see the “Suckerfish :
hover” article at www.htmldog.com/articles/suckerfish/hover/.

First, for a refresher, here is an example of a simple text link that has been

set to display in dark red text with no underline. When someone places the

mouse over the link, the a:hover rule brightens up the text color and adds

a decorative bottom border (a more subtle effect than a real text underline).

The result is shown in Figure 17-12.

a:link {
 text-decoration: none;
 color: #930;
}

a:hover {
 text-decoration: none;
 color: #F30;
 padding-bottom: 2px;
 border-bottom: dotted 2px #930;
}

sIFR Text
Another interesting image
replacement technique is sIFR, which
stands for Scalable Inman Flash
Replacement. sIFR replaces text with
small Flash movies instead of GIF,
JPEG, or PNG images. The advantage
is that text in Flash movies is vector-
based, so it is smooth, anti-aliased,
and able to resize with the page.

Using a combination of CSS,
JavaScript, and Flash technology,
sIFR allows authors to “insert rich
typography into web pages without
sacrificing accessibility, search
engine friendliness, or markup
semantics.” sIFR (in Version 2.0 as
of this writing) was created by
Mike Davidson, who built upon
the original concept developed by
Shaun Inman (the“I”of sIFR).

sIFR is not perfect, but it is a
promising technique that could
lead to more powerful typography
solutions. To find out more about
sIFR, including how to implement
it on your site, visit www.
mikeindustries.com/sifr.

sIFR Text
Another interesting image
replacement technique is sIFR, which
stands for Scalable Inman Flash
Replacement. sIFR replaces text with
small Flash movies instead of GIF,
JPEG, or PNG images. The advantage
is that text in Flash movies is vector-
based, so it is smooth, anti-aliased,
and able to resize with the page.

Using a combination of CSS,
JavaScript, and Flash technology,
sIFR allows authors to “insert rich
typography into web pages without
sacrificing accessibility, search
engine friendliness, or markup
semantics.” sIFR (in Version 2.0 as
of this writing) was created by
Mike Davidson, who built upon
the original concept developed by
Shaun Inman (the“I”of sIFR).

sIFR is not perfect, but it is a
promising technique that could
lead to more powerful typography
solutions. To find out more about
sIFR, including how to implement
it on your site, visit www.
mikeindustries.com/sifr.

Part III: CSS for Presentation350

CSS Rollovers

Figure 17-12. A simple text link as it appears when the page loads and when the mouse
rolls over it.

Swapping background images

Image rollovers work on the same principle as described for text, except that

the background-image value is changed for the hover state. Again, because

Internet Explorer 6 and earlier only support :hover on the a element, a link

is used in this example.

In this example, a background image (button.gif) is applied to links in a

navigational toolbar. The a element is set to display as a block so that width

and height values (matching the image dimensions) can be applied to it. The

a:hover rule specifies a different background image (button_over.gif) to dis-

play when the mouse is over the link (Figure 17-13). It also changes the text

color for better contrast with the highlighted button color.

#navbar li {
 list-style-type: none;
 float: left; }

#navbar a {
 color: #FFF;
 display: block; /* allows width and height to be specified */
 width: 150px;
 height: 30px;
 background: #606 url(button.gif) no-repeat;
/* the next properties center the text horizontally and vertically*/
 text-align: center;
 text-decoration: none;
 line-height: 30px;
 vertical-align: middle; }

#navbar a:hover {
 color: #000;
 background: #f0f url(button_over.gif) no-repeat; }

button.gif button_over.gif

Figure 17-13. Simple image rollover.

WA R N I N G

Changing the anchor (a) element to
display as a block means that you can’t
apply this method to inline links because
each link will start on a new line. This
method is most useful for links that will
be floated to form a horizontal toolbar,
as we saw previously in this chapter.

To clear vertical space for background
images in inline a elements, try adjust-
ing the line-height for the containing
element.

WA R N I N G

Changing the anchor (a) element to
display as a block means that you can’t
apply this method to inline links because
each link will start on a new line. This
method is most useful for links that will
be floated to form a horizontal toolbar,
as we saw previously in this chapter.

To clear vertical space for background
images in inline a elements, try adjust-
ing the line-height for the containing
element.

CSS Rollovers

Chapter 17, CSS Techniques 351

In some instances, such as graphical navigation bars, it is desirable for each

link to have its own background and rollover images. In this case, it is neces-

sary to give each li (or other containing element) a unique id value.

<li id="info">more info
<li id="contact">contact us

a {display: block; width: 150px; height: 30px; }

#info a {background: #666 url(info.gif) no-repeat; }
#info a:hover {background: #666 url(info_over.gif) no-repeat; }

#contact a {background: #eee url(contact.gif) no-repeat; }
#contact a:hover {background: #eee url(contact_over.gif) no-repeat; }

Shifting the background image

Another popular method for handling image rollovers is to put all the roll-

over states in one image, then change only the background-position for each

link state. This avoids the need to load or preload multiple images for each

rollover and can speed up display.

Figure 17-14 shows the image, bothbuttons.gif, that contains both the default

background image and the hover state. The style rule shifts the position of

the initial background image from bottom to top, revealing the appropriate

portion of the image. Pretty fancy, huh?

a {
 display: block;
 width: 150px;
 height: 30px;
 background: #606 url(bothbuttons.gif) bottom left no-repeat;
 color: #FFF;
 text-align: center;
 text-decoration: none;
 line-height: 30px;
 vertical-align: middle; }

a:hover {
 background: #f0f url(bothbuttons.gif) top left no-repeat;
 color: #000; }

bothbuttons.gif

background-position:
 top left no-repeat;

The image file contains both button
states stacked on top of one another.

background-position:
 bottom left no-repeat;

The visible area of the a element

Figure 17-14. Containing all rollover states in one image.

N OT E

This technique was introduced by Petr
Stanic̆ek [aka "Pixy"] in his article "Fast
Rollovers without Preload" (wellstyled.
com/css-nopreload-rollovers.html).

N OT E

This technique was introduced by Petr
Stanic̆ek [aka "Pixy"] in his article "Fast
Rollovers without Preload" (wellstyled.
com/css-nopreload-rollovers.html).

WA R N I N G

Applying rollovers to background images
can cause a flickering effect in Internet
Explorer 6 on Windows. One solution is
to apply the background image to both
the link (a) and its containing element;
however, increased font size could result
in both images showing. For an in-depth
look at this problem and possible solu-
tions, see the article, Minimize Flickering
CSS Background Images in IE6 by Ryan
Carver at www.fivesevensix.com/stud-
ies/ie6flicker/.

WA R N I N G

Applying rollovers to background images
can cause a flickering effect in Internet
Explorer 6 on Windows. One solution is
to apply the background image to both
the link (a) and its containing element;
however, increased font size could result
in both images showing. For an in-depth
look at this problem and possible solu-
tions, see the article, Minimize Flickering
CSS Background Images in IE6 by Ryan
Carver at www.fivesevensix.com/stud-
ies/ie6flicker/.

Part III: CSS for Presentation352

CSS Rollovers

You’ve seen horizontal lists... you’ve seen CSS rollovers. Now
put them together in this exercise. As a bonus, I’ve thrown in a
chance to do an image replacement, too. The starter document,
designerrific.html, and its respective images directory are
provided with the materials for this chapter, and the resulting
style sheets are in Appendix A.

In this exercise, we’ll create a typical page header that consists
of an h1 and a list. Figure 17-15 shows the unstyled document
and two designs we’ll create entirely with style sheet rules. It
will take us a few steps to get there, but I promise at least one
A-ha! moment along the way.

Open designerrific.html in a text editor. The first thing we’ll
do is write some rules for the body element to set the font
for the whole page to Verdana (or some sans-serif font) and
set the margin to zero. This will allow us to place elements
right against the browser window.

body {
 font-family: Verdana, sans-serif;
 margin: 0; }

Next, use the Phark image replacement technique to replace
the h1 text with an image that contains the company’s
logotype (designerrific-trans.gif, located in the images
directory). Set the dimensions of the element to 360 pixels
wide by 70 pixels high to reveal the whole image.

h1#ds {
 text-indent: -5000px;
 background: url(images/designerrific_trans.gif)
 no-repeat;
 width: 360px;
 height: 70px; }

Unstyled

Design A

Design B

Figure 17-15. The Designerrific Studios header before and
after styling.

1.

2.

Save the document and take a look in the browser. You
should see the logo shown in Figure 17-15 in place of the h1
text. If not, go back and make sure that you aren’t missing
any semicolons or brackets in your style rule and that the
pathname to the image file is correct.

Now we’ll turn the unordered list into navigation using the
inline method outlined earlier. Set the stage by removing
the bullets from the ul and changing the display of the list
items to inline.

ul#nav {
 list-style-type: none; }

ul#nav li {
 display: inline; }

In Design A, each anchor is styled as a dark teal rectangular
box with white type and a white 1-pixel border. The linked
text should be resized to 76% its default size and underlines
removed for a clean look. In addition, text is centered and
transformed to uppercase with 2 pixels of letter spacing
added for interest. Finally, padding is added around the
content (2 pixels top and bottom, and 20 pixels left and
right) and a 2-pixel margin is added to keep the links from
bumping into one another. Take a try at writing these style
rules yourself, then check your work against this code:

ul#nav li a {
 background-color: #0A6D73;
 border: 1px solid #FFF;
 color: white;
 font-size: 76%;
 text-decoration: none;
 text-align: center;
 text-transform: uppercase;
 letter-spacing: 2px;
 padding: 2px 20px;
 margin: 0px 2px;
}

Save the document and open it in a browser. You should see
the links lined up in rectangles as shown in Design A (they’ll
be under the logotype because we haven’t moved them yet).

3.

exercise 17-2 | Putting it together

Design B is a good example of how small background
images can be tucked off into a corner of an element.
That little star changing color offers good feedback that
the link is clickable, but it is more subtle and streamlined
than the big 3-D button shown in the earlier example.

D e S I G n t I P

CSS Rollovers

Chapter 17, CSS Techniques 353

Let’s add a rollover effect to those links too. When the mouse
passes over the “button”, it will turn bright pink (#F8409C)
to match the star in the logo, and the border will turn dark
maroon (#660000, or #600 shorthand) to match the logo
text.

ul#nav li a:hover {
 background-color: #F8409C;
 border: 1px solid #600;
}

When you save the document and refresh it in the browser,
you should see the highlighted pink color when you mouse
over the links. Exciting!

Now that we have the pieces built, we can assemble them in
the header layout as shown in Figure 17-15. There are several
approaches to doing this, but we’ll use absolute positioning
to place the h1 and the ul right where we want them.

First, let’s set up the shaded masthead area by styling the div
(id="header") that holds the headline and navigation list. Give it
a light teal background color (#9CD8CD) and a double bottom
border that matches the logo (#600). Set its height to 100 pixels.
In addition, set its position to relative to establish it as a
containing block for the elements it contains.

#header {
 position: relative;
 background: #9cd8cd;
 border-bottom: 3px double #600;
 height: 100px;}

Save the document and look at it again in the browser. You
will see a shaded masthead area waiting for the elements to
be positioned in it. You’ll also see that it doesn’t go all the way
to the top of the browser window as we had wanted. That
extra space is actually coming from the default margin that
the browser is applying to the h1 element. Therefore, we will
set the margin on the h1 (and the ul for good measure) to
zero to eliminate that problem.

Add this declaration to the rules for h1#ds and ul#nav. Now
when you save and refresh, the extra space is removed and
the shaded header should go all the way to the top of the
window.

margin: 0;

Finally, we’ll absolutely position the h1 and the ul. I’ve done
the finagling for you and arrived at the following posiitions:

h1#ds {
 text-indent: -5000px;
 background: url(images/designerrific_trans.gif)
no-repeat;
 width: 360px;
 height: 70px;
 margin: 0;
 position: absolute;
 top: 25px;
 left: 25px;
 }

4.

5.

6.

ul#nav {
 list-style-type: none;
 margin: 0;
 position: absolute;
 top: 65px;
 right: 25px;
}

This time when you save and refresh, you’ll find that your page
looks just like Design A in Figure 17-1. That wasn’t too bad, was
it?

Design B is essentially the same as Design A, except it uses as
subtle image swap (the white star turns pink) in the rollover.
Save a copy of your document as designerrific-B.html and we’ll
make those changes.

Remove the background and border from the links and
change the text color to dark teal (#1A7E7B). Remove the
background and border from the a:hover rule as well. (The
resulting rules are shown after Step 8.)

Add the non-repeating star-white.gif background image to
the left edge of each anchor, centered in the height of the
element. To the a:hover rule, add the star-pink.gif in the
same position. The resulting rules are as follows:

ul#nav li a {
 color: #1A7E7B;
 font-size: 76%;
 text-decoration: none;
 text-align: center;
 text-transform: uppercase;
 letter-spacing: 2px;
 padding: 2px 20px;
 margin: 0px 2px;
 background: url(images/star-white.gif) left
center no-repeat;
}

ul#nav li a:hover {
 background: url(images/star-pink.gif) left
center no-repeat;
}

Save the document, and voila! You’ve created the style sheet
for Design B.

7.

8.

It is common to set the margin on elements to zero
to override the browser’s default spacing. This makes
positioning and floating elements more predictable.

c S S t I P

Part III: CSS for Presentation354

Wrapping Up Style Sheets

Wrapping Up Style Sheets
We’ve come to the end of our style sheet exploration. By now, you should be

comfortable formatting text and even doing basic page layout using CSS. The

trick to mastering style sheets, of course, is lots of practice and testing. If you

get stuck, you will find that there are many resources online (I’ve listed many

throughout Part III) to help you find the answers you need.

In Part IV, we’ll set the source document and style sheets aside and turn our

attention to the world of web graphics production. But first, a little final exam

to test your CSS techniques chops.

Test Yourself
See how well you picked up the CSS techniques in this chapter with these

questions. As always, the answers are available in Appendix A.

Match the style rules with their respective tables in Figure 17-16.

฀

D

B

E

C

Figure 17-16. Match these tables with the code examples in Question 1.

table { border-collapse: collapse;}
td { border: 2px black solid; }

table { border-collapse: separate; }
td { border: 2px black solid; }

table {
 border-collapse: separate;
 border-spacing: 2px 12px; }
td { border: 2px black solid; }

table {
 border-collapse: separate;
 border-spacing: 5px;
 border: 2px black solid; }
td { background-color: #99f; }

table {
 border-collapse: separate;
 border-spacing: 5px; }
td {
 background-color: #99f;
 border: 2px black solid; }

1.

Test Yourself

Chapter 17, CSS Techniques 355

Match the style rules with the resulting lists in Figure 17-17.

฀

D

B

E

C

Figure 17-17. Match these lists with the code examples in Question 2.

list-style-type: upper-alpha

list-style-type: circle

list-style-type: decimal

list-style-type: disc

list-style-type: upper-roman

What does the display property do?

Name two ways to get unordered list items to line up like a horizontal

navigation bar.

Which of these is responsible for creating CSS rollover effects?

A. the rollover property

B. the :hover property

C. the :hover selector

D. the onmouseover attribute

2.

3.

4.

5.

Part III: CSS for Presentation356

Review: Table and List Properties

Review: Table and List Properties
The following is a summary of the properteies covered in this chapter.

Property Description

border-collapse Whether borders between cells are separate or collapsed

border-spacing The space between cells set to render as separate

empty-cells Whether borders and backgrounds should render

list-style-type The type of marker (bullet or numbering system)

list-style-position Whether the marker is inside or outside the element box

list-style-image Specifies an image to be used as a marker

list-style A shorthand property for defining list-style-type, list-
style-position, and list-style-image

IN THIS PART

Chapter 18
Web Graphics Basics

Chapter 19
Lean and Mean
Web Graphics

CREATING WEB
GRAPHICS PART IV

359

IN THIS CHAPTER

Where to get images

An overview of GIF, JPEG,
and PNG formats

Image size and resolution

Resizing images in
Photoshop

Binary and alpha
transparency

Preventing “halos”

Unless you plan on publishing text-only sites, chances are you’ll need to know

how to create web graphics. For many of you, that might mean getting your

hands on an image-editing program for the first time and acquiring some

basic graphics production skills. If you are a seasoned designer accustomed

to print, you may need to adapt your style and process to make graphics that

are appropriate for web delivery.

This chapter covers the fundamentals of web graphics production, beginning

with some options for finding and creating images. From there, it introduces

the file formats available for web graphics and helps you decide which to use.

You’ll also learn the basics of image resolution, resizing, and transparency.

As always, there are step-by-step exercises along the way. I want to point out,

however, that I write with the assumption that you have some familiarity with

an image-editing program. I use Adobe Photoshop (the industry standard)

in the examples and exercises, but you can follow along with most steps

using other tools listed in this chapter. If you are starting at square one, I

recommend spending time with the manual or third-party books about your

graphics software.

Image Sources
You have to have an image to save an image, so before we jump into the

nitty-gritty of file formats, let’s look at some ways to get images in the first

place. There are many options: from scanning, shooting, or illustrating them

yourself, to using available stock photos and clip art, or just hiring someone

to create images for you.

Creating your own images

In most cases, the most cost-effective way to generate images for your site is

to make your own from scratch. The added bonus is that you know you have

full rights to use the images (we’ll address copyright again in a moment).

Designers may generate imagery with scanners, digital cameras, or using an

illustration or photo editing program.

WEB GRAPHICS
BASICS

CHAPTER 18

Part IV: Creating Web Graphics360

Image Sources

Scanning

 Scanning is a great way to collect source material. You can scan almost

anything, from flat art to 3-D objects. Beware, however, the temptation to

scan and use found images. Keep in mind that most images you find are

probably copyright-protected and may not be used without permission,

even if you modify them considerably. See the Scanning Tips sidebar for

some how-to information.

Digital cameras

 You can capture the world around you and pipe it right into an image-

editing program with a digital camera. Because the Web is a low-reso-

lution environment, there is no need to invest in high-end equipment.

Depending on the type of imagery, you may get the quality you need with

a standard consumer digital camera.

Electronic illustration

 If you have illustration skills, you can make your own graphics in a draw-

ing or photo-editing application. The sidebar, Tools of the Trade, intro-

duces some of the most popular graphics programs available today. Every

designer has her own favorite tools and techniques. I sometimes create my

logos, illustrations, and type effects in Adobe Illustrator, then bring the

image into Photoshop to create the web-ready version. However, for most

image types, Photoshop has all I need, so it is where I spend the majority

of my design time.

Stock photography and illustrations

If you aren’t confident in your design skills, or you just want a head-start

with some fresh imagery, there are plenty of collections of ready-made photos,

illustrations, buttons, animations, and textures available for sale or for free.

Stock photos and illustrations generally fall into two broad categories: rights-

managed and royalty-free.

Rights-managed means that the copyright holder (or a company representing

them) controls who may reproduce the image. In order to use a rights-man-

aged image, you must obtain a license to reproduce it for a particular use and

for a particular period of time. One of the advantages to licensing images is

that you can arrange to have exclusive rights to an image within a particular

medium (such as the Web) or a particular business sector (such as the health

care industry or banking). On the downside, rights-managed images get quite

pricey. Depending on the breadth and length of the license, the price tag may

be many thousands of dollars for a single image. If you don’t want exclusive

rights and you want to use the image only on the Web, the cost is more likely

to be a few hundred dollars, depending on the source.

If that still sounds too steep, consider using royalty-free artwork for which

you don’t need to pay a licensing fee. Royalty-free artwork is available for a

one-time fee that gives you unlimited use of the image, but you have no con-

Scanning Tips
If you are scanning images for use
on the Web, these tips will help you
create images with better quality.

Because it is easier to maintain
image quality when resizing
smaller than resizing larger, it
is usually a good idea to scan
the image a bit larger than you
actually need. This gives you
more flexibility for resizing later.
Don’t go overboard, however,
because if you have to reduce
its size too much, you’ll get a
blurry result. Issues of image size
are discussed in more detail in
the Image Size and Resolution
section later in this chapter.

Scan black and white images in
grayscale (8-bit) mode, not in
black-and-white (1-bit or bitmap)
mode. This enables you to make
adjustments in the midtone
areas once you have sized the
image to its final dimensions and
resolution. If you really want only
black and white pixels, convert
the image as the last step.

If you are scanning an image
that has been printed, you will
need to eliminate the dot pattern
that results from the printing
process. The best way to do
this is to apply a slight blur to
the image (in Photoshop, use
the Gaussian Blur filter), resize
the image slightly smaller, then
apply a sharpening filter. This will
eliminate those pesky dots. Make
sure you have the rights to use
the printed image, too, of course.







Scanning Tips
If you are scanning images for use
on the Web, these tips will help you
create images with better quality.

Because it is easier to maintain
image quality when resizing
smaller than resizing larger, it
is usually a good idea to scan
the image a bit larger than you
actually need. This gives you
more flexibility for resizing later.
Don’t go overboard, however,
because if you have to reduce
its size too much, you’ll get a
blurry result. Issues of image size
are discussed in more detail in
the Image Size and Resolution
section later in this chapter.

Scan black and white images in
grayscale (8-bit) mode, not in
black-and-white (1-bit or bitmap)
mode. This enables you to make
adjustments in the midtone
areas once you have sized the
image to its final dimensions and
resolution. If you really want only
black and white pixels, convert
the image as the last step.

If you are scanning an image
that has been printed, you will
need to eliminate the dot pattern
that results from the printing
process. The best way to do
this is to apply a slight blur to
the image (in Photoshop, use
the Gaussian Blur filter), resize
the image slightly smaller, then
apply a sharpening filter. This will
eliminate those pesky dots. Make
sure you have the rights to use
the printed image, too, of course.







Image Sources

Chapter 18, Web Graphics Basics 361

trol over who else is using the image. Royalty-free images are available from

the top-notch professional stock houses such as Getty Images for as little as

30 bucks an image, and from other sites for less (even free).

Following is a list of a few of my favorite resources for finding high-quality

stock photography and illustrations, but it is by no means exhaustive. A web

search will turn up plenty more sites with images for sale.

IStockPhoto (www.istockphoto.com)

 If you’re on a tight budget (and even if you’re not), there’s no better place

to find images than IStockPhoto. The photo collections are generated by

ordinary people who contribute to the site and all the images are roy-

alty-free. Prices start at just a buck a pop! It’s my personal favorite image

resource.

Getty Images (www.gettyimages.com)

 Getty is the largest stock image house, having acquired most of its com-

petitors over recent years. It offers both rights-managed and royalty-free

photographs and illustrations at a variety of price ranges.

Jupiter Images (www.jupiterimages.com) and PictureQuest (www.picturequest.

com)

 Jupiter Images and its PictureQuest division offer high quality rights-

managed and royalty-free photo collections.

JuicyStock.com (www.juicystock.com)

 This is a great resource for affordable, royalty-free photographs of people

and places from around the globe.

Veer (www.veer.com)

 I like Veer because it tends to be a little more hip and edgy than its

competitors. It offers both rights-managed and royalty-free photographs,

illustrations, fonts, and stock video.

Clip art

Clip art refers to collections of royalty-free illustrations, animations, buttons,

and other doo-dads that you can copy and paste into a wide range of uses.

Nowadays, there are huge clip-art collections available specifically for web

use. A trip to your local software retail store or a browse through the pages of

a software catalog will no doubt turn up royalty-free image collections, some

boasting 100,000 pieces of art. Clip art collections may also come bundled

with your graphics software.

There are a number of resources online, and the good news is that some

of these sites give graphics away for free, although you may have to suffer

through a barrage of pop-up ads. Others charge a membership fee, anywhere

from $10 to $200 a year. The drawback is that a lot of them are poor quality

Tools of the Trade
What follows is a brief introduction
to the most popular graphics
tools among professional graphic
designers. There are many other
tools out there that will crank out a
GIF or a JPEG; if you’ve found one
that works for you, that’s fine.

Adobe Photoshop

 Without a doubt, the industry
standard for creating graphics
is Photoshop, in version CS3
as of this writing. It includes
many features specifically for
creating web graphics. If you are
interested in making web sites
professionally, I recommend
getting up to speed with
Photoshop right away. Download
a trial copy of this and all Adobe
software at adobe.com.

Adobe Macromedia Fireworks

 This is one of the first graphics
programs designed from the
ground up to address the
special requirements of web
graphics. It has tools for creating
both vector (line-based) and
raster (pixel-based) images. It
features side-by-side previews
of output settings, animation,
great file optimization,
and more. After acquiring
Fireworks from Macromedia,
Adobe subsequently retired
ImageReady, Photoshop’s web
graphic sidekick.

Adobe Illustrator

 Illustrator is the standard drawing
program in both the print
and web design industries. It
integrates nicely with Photoshop.

Corel Paint Shop Pro Photo

 If you use Windows and are on
a budget, Paint Shop Pro Photo
offers similar functionality to
Photoshop at a much lower
price. You can download a trial
version at corel.com.

Tools of the Trade
What follows is a brief introduction
to the most popular graphics
tools among professional graphic
designers. There are many other
tools out there that will crank out a
GIF or a JPEG; if you’ve found one
that works for you, that’s fine.

Adobe Photoshop

 Without a doubt, the industry
standard for creating graphics
is Photoshop, in version CS3
as of this writing. It includes
many features specifically for
creating web graphics. If you are
interested in making web sites
professionally, I recommend
getting up to speed with
Photoshop right away. Download
a trial copy of this and all Adobe
software at adobe.com.

Adobe Macromedia Fireworks

 This is one of the first graphics
programs designed from the
ground up to address the
special requirements of web
graphics. It has tools for creating
both vector (line-based) and
raster (pixel-based) images. It
features side-by-side previews
of output settings, animation,
great file optimization,
and more. After acquiring
Fireworks from Macromedia,
Adobe subsequently retired
ImageReady, Photoshop’s web
graphic sidekick.

Adobe Illustrator

 Illustrator is the standard drawing
program in both the print
and web design industries. It
integrates nicely with Photoshop.

Corel Paint Shop Pro Photo

 If you use Windows and are on
a budget, Paint Shop Pro Photo
offers similar functionality to
Photoshop at a much lower
price. You can download a trial
version at corel.com.

Part IV: Creating Web Graphics362

Meet the Formats

or kind of hokey (but then, “hokey” is in the eye of the beholder). The follow-

ing are just a few sites to get you started.

Clipart.com (www.clipart.com)

 This service charges a membership fee, but is well-organized and tends to

provide higher quality artwork than the free sites.

Original Free Clip Art (www.free-clip-art.net)

 As the name says, they’ve got free clip art. This site has been around a

while, unlike many others that come and go.

#1 Free Clip Art (www.1clipart.com)

 Another no-frills free clip art site.

Hire a designer

Finding and creating images takes time and particular talents. If you have

more money than either of those things, consider hiring a graphic designer

to generate the imagery for your site for you. If you start with a good set of

original photos or illustrations, you can still use the skills you learn in this

book to produce web versions of the images as you need them.

Meet the Formats
Once you’ve got your hands on some images, you need to get them into a

format that will work on a web page. There are dozens of graphics file for-

mats out in the world. For example, if you use Windows, you may be familiar

with BMP graphics, or if you are a print designer, you may commonly use

images in TIFF and EPS format. On the Web, you have only three choices:

GIF (pronounced “jif”), JPEG (“jay-peg”), and PNG (“ping”). If this sounds

like alphabet soup to you, don’t worry. By the end of this section, you’ll know

a GIF from a JPEG and when to use each one. Here is a quick rundown:

GIF images are most appropriate for images with flat colors and hard edges

or when transparency or animation is required.

JPEGs work best for photographs or images with smooth color blends.

PNG files can contain any image type and are often a good substitute for the

GIF format. They can also contain images with transparent or partially

transparent areas.

These formats have emerged as the standards because they are platform-

independent (meaning they work on Windows, Macs, and Unix operating

systems) and they condense well to be easily ported over a network. The

remainder of this section tackles terminology and digs deeper into the fea-

tures and functions of each format. Understanding the technical details will

help you make the highest-quality web graphics at the smallest sizes.

Name Files Properly
Be sure to use the proper file
extensions for your image files. GIF
files must be named with the .gif
suffix. JPEG files must have .jpg (or
the less common .jpeg) as a suffix.
PNG files must end in .png. Browsers
look at the suffix to determine how
to handle various media types, so it
is best to stick with the standardized
suffixes for image file formats.

Name Files Properly
Be sure to use the proper file
extensions for your image files. GIF
files must be named with the .gif
suffix. JPEG files must have .jpg (or
the less common .jpeg) as a suffix.
PNG files must end in .png. Browsers
look at the suffix to determine how
to handle various media types, so it
is best to stick with the standardized
suffixes for image file formats.

Meet the Formats

Chapter 18, Web Graphics Basics 363

The ubiquitous GIF

The GIF (Graphic Interchange Format) file is

the habitual favorite for web pages. Although

not designed specifically for the Web, it was

the first format was quickly adopted for its

versatility, small file sizes, and cross-platform

compatibility. GIF also offers transparency

and the ability to contain simple animations.

Because the GIF compression scheme excels

at compressing flat colors, it is the best file

format to use for logos, line art, graphics

containing text, icons, etc. (Figure 18-1). You

can save photographs or textured images as

GIFs, too, but they won’t be saved as effi-

ciently, resulting in larger file sizes. These are

best saved as JPEGs, which I’ll get to next. However, GIF does work well for

images with a combination of small amounts of photographic imagery and

large flat areas of color.

To make really great GIFs, it’s important to be familiar with how they work

under the hood and what they can do.

8-bit, indexed color

In technical terms, GIF files are indexed color images that contain 8-bit color

information (they can also be saved at lower bit depths). Let’s decipher that

statement a term at a time. 8-bit means GIFs can contain up to 256 colors—

the maximum number that 8 bits of information can define (28=256). Lower

bit depths result in fewer colors and also reduce file size.

Indexed color means that the set

of colors in the image, its palette, is

stored in a color table (also called a

color map). Each pixel in the image

contains a numeric reference (or

“index”) to a position in the color

table. This should be made clear

with a simple demonstration. Figure

18-2 shows how a 2-bit (4-color)

indexed color image references its

color table for display. For 8-bit

images, there are 256 slots in the

color table.

Figure 18-1. The GIF format is great for
graphical images comprised mainly of flat
colors and hard edges.

Figure 18-1. The GIF format is great for
graphical images comprised mainly of flat
colors and hard edges.

1 1

1

1

1

1

1

1

1

1

1

1

2 2

222

2 2

1 1

1 11 1

1 1 1 1 1

3 3

3 3

3 3 3 3

3 3

3 3

33 3 3 3

3

3

43

3 3

3 3 3

3 3 3 3 3

1 1

1 1 1 1 1 1 1 1 1

1 2 3 4

The pixels in an indexed color image
contain numerical references to the
color table for the image.

The image displays with the
colors in place.

The color table matches
numbers to RGB color
values. This is the map for a
2-bit image with only
4 colors.

Color table

Figure 18-2. A 2-bit image and its color
table.

1 1

1

1

1

1

1

1

1

1

1

1

2 2

222

2 2

1 1

1 11 1

1 1 1 1 1

3 3

3 3

3 3 3 3

3 3

3 3

33 3 3 3

3

3

43

3 3

3 3 3

3 3 3 3 3

1 1

1 1 1 1 1 1 1 1 1

1 2 3 4

The pixels in an indexed color image
contain numerical references to the
color table for the image.

The image displays with the
colors in place.

The color table matches
numbers to RGB color
values. This is the map for a
2-bit image with only
4 colors.

Color table

Figure 18-2. A 2-bit image and its color
table.

Part IV: Creating Web Graphics364

Meet the Formats

When you open an existing GIF in

Photoshop, you can view (and even

edit) its color table by selecting Image

→ Mode → Color Table (Figure 18-3).

You also get a preview of the color table

for an image when you use Photoshop’s

Save for Web & Devices to export an

image in GIF format, as we’ll be doing

later in this chapter. In Fireworks (and

the discontinued ImageReady, not

shown), the color table is displayed in

the Optimize panel.

Most source images (scans, illustrations, photos, etc.) start out in RGB format,

so they need to be converted to indexed color in order to be saved as a GIF.

When an image goes from RGB to indexed mode, the colors in the image are

reduced to a palette of 256 colors or fewer. In Photoshop, Fireworks, and (now

retired) ImageReady, the conversion takes place when you save or export the

GIF, although you can see a preview of the final image and its color table.

Other image editing programs may require you to convert the image to

indexed color manually first, then export the GIF as a second step.

In either case, you will be asked to select a palette for the indexed color image.

The sidebar, Common Color Palettes, outlines the various palette options

available in the most popular image tools. It is recommended that you use

Selective or Perceptual in Photoshop, Adaptive in Fireworks, and Optimized

Median Cut in Paint Shop Pro for the best results for most image types.

GIF compression

GIF compression is “lossless,” which means that no image information is

sacrificed in order to compress the indexed image (although some image

information may be lost when the RGB image is converted to a limited color

palette). Second, it uses a compression scheme (called “LZW” for Lempel-

Ziv-Welch) that takes advantage of repetition in data. When it encounters a

string of pixels of identical color, it can compress that into one data descrip-

tion. This is why images with large areas of flat color condense better than

images with textures.

To use an extremely simplified example, when the compression scheme

encounters a row of 14 identical blue pixels, it makes up a shorthand nota-

tion that means “14 blue pixels.” The next time it encounters 14 blue pixels, it

uses only the code shorthand (Figure 18-4). By contrast, when it encounters

a row that has a gentle gradation from blue to aqua and green, it needs to

store a description for every pixel along the way, requiring more data. What

actually happens in technical terms is more complicated, of course, but this

example is a good mental model to keep in mind when designing GIF images

for maximum compression.

In an image with gradations of color, it has to store
information for every pixel in the row. The longer
description means a larger file size.

GIF compression stores repetitive pixel colors
as a single description.

“14 blue”

“1 blue, 1 aqua, 2 light aqua...” (and so on)

Figure 18-4. A simplified demonstration
of LZW compression used by GIF images.

In an image with gradations of color, it has to store
information for every pixel in the row. The longer
description means a larger file size.

GIF compression stores repetitive pixel colors
as a single description.

“14 blue”

“1 blue, 1 aqua, 2 light aqua...” (and so on)

Figure 18-4. A simplified demonstration
of LZW compression used by GIF images.

The Color Table displays the 64
pixel colors used in the image.

Photoshop Fireworks

Figure 18-3. A view of the Color Table in
Photoshop and Fireworks.

Meet the Formats

Chapter 18, Web Graphics Basics 365

Transparency

You can make parts of GIF images transparent so that the background image

or color shows through. Although all bitmapped graphics are rectangular by

nature, with transparency, you can create the illusion that your image has a

more interesting shape (Figure 18-5). GIF transparency is discussed in detail

later in this chapter.

Figure 18-5. Transparency allows the
striped background to show through the
image on the bottom.

Figure 18-5. Transparency allows the
striped background to show through the
image on the bottom.

Common Color Palettes
All 8-bit indexed color images use palettes to define the colors in the image, and
there are several standard palettes to choose from. Some are methods for producing
a custom palette based on the colors in the image. Others apply a preexisting palette
to the image.

Exact. Creates a custom palette out of the actual colors in the image if the image
already contains fewer than 256 colors.

Adaptive. Creates a custom palette using the most frequently used pixel colors
in the image. It allows for color-depth reduction while preserving the original
character of the image.

Perceptual (Photoshop/ImageReady only). Creates a custom color table by
giving priority to colors for which the human eye has greater sensitivity. Unlike
Adaptive, it is based on algorithms, not just a pixel count. It generally results in
images with better color integrity than Adaptive palette images.

Selective (Photoshop/ImageReady only). This is similar to Perceptual, but it gives
preference to areas of broad color and the preservation of web-safe colors.

Web, Restrictive, or Web216. Creates a palette of colors exclusively from the web-
safe palette (see Chapter 13, Colors and Backgrounds for more information on
the web palette). It is no longer necessary to use colors from the web palette,
so this is not recommended.

Web Adaptive (Fireworks only). This adaptive palette converts colors to the
nearest web palette color. Because the web palette is obsolete and limited, this
is no longer recommended.

Uniform. Creates a palette that contains an evenly stepped sampling of colors
from the RGB spectrum.

Custom. This allows you to load a palette that was previously saved and apply it to
the current image. Otherwise, it preserves the current colors in the palette.

System (Windows or Macintosh). Uses the colors in the specified system’s default
palette.

Optimized Median Cut (Paint Shop Pro only). This reduces the image to a few
colors using something similar to an Adaptive palette.

Optimized Octree (Paint Shop Pro only). Use this palette if the original image has
just a few colors and you want to keep those exact colors.

Common Color Palettes
All 8-bit indexed color images use palettes to define the colors in the image, and
there are several standard palettes to choose from. Some are methods for producing
a custom palette based on the colors in the image. Others apply a preexisting palette
to the image.

Exact. Creates a custom palette out of the actual colors in the image if the image
already contains fewer than 256 colors.

Adaptive. Creates a custom palette using the most frequently used pixel colors
in the image. It allows for color-depth reduction while preserving the original
character of the image.

Perceptual (Photoshop/ImageReady only). Creates a custom color table by
giving priority to colors for which the human eye has greater sensitivity. Unlike
Adaptive, it is based on algorithms, not just a pixel count. It generally results in
images with better color integrity than Adaptive palette images.

Selective (Photoshop/ImageReady only). This is similar to Perceptual, but it gives
preference to areas of broad color and the preservation of web-safe colors.

Web, Restrictive, or Web216. Creates a palette of colors exclusively from the web-
safe palette (see Chapter 13, Colors and Backgrounds for more information on
the web palette). It is no longer necessary to use colors from the web palette,
so this is not recommended.

Web Adaptive (Fireworks only). This adaptive palette converts colors to the
nearest web palette color. Because the web palette is obsolete and limited, this
is no longer recommended.

Uniform. Creates a palette that contains an evenly stepped sampling of colors
from the RGB spectrum.

Custom. This allows you to load a palette that was previously saved and apply it to
the current image. Otherwise, it preserves the current colors in the palette.

System (Windows or Macintosh). Uses the colors in the specified system’s default
palette.

Optimized Median Cut (Paint Shop Pro only). This reduces the image to a few
colors using something similar to an Adaptive palette.

Optimized Octree (Paint Shop Pro only). Use this palette if the original image has
just a few colors and you want to keep those exact colors.

Part IV: Creating Web Graphics366

Meet the Formats

Interlacing

Interlacing is an effect you can apply to a GIF that makes the image display

in a series of passes. Each pass is clearer than the pass before until the image

is fully rendered in the browser window (Figure 18-6). Without interlacing,

some browsers may wait until the entire image is downloaded before display-

ing the image. Others may display the image a few rows at a time, from top to

bottom, until the entire picture is complete.

Over a fast connection, these effects (interlacing or image delays) may not

even be perceptible. However, over slow modem connections, interlacing large

images may be a way to provide a hint of the image to come while the entire

image downloads.

Whether you interlace or not is your design decision. I never do, but if you

have an especially large image and an audience with a significant percentage

of dial-up connections, interlacing may be worthwhile.

Animation

Another feature built into the GIF file format is the ability to display simple

animations (Figure 18-7). Many of the spinning, blinking, fading, or otherwise

moving ad banners you see are animated GIFs (although Flash movies have

become increasingly popular for web advertising).

Figure 18-7. All the frames of this simple animation are contained within one GIF file.

Animated GIFs contain a number of animation frames, which are separate

images that, when viewed together quickly, give the illusion of motion or

change over time. All of the frame images are stored within a single GIF file,

along with settings that describe how they should be played back in the

browser window. Settings include whether and how many times the sequence

repeats, how long each frame stays visible (frame delay), the manner in which

one frame replaces another (disposal method), whether the image is transpar-

ent, and whether it is interlaced.

Adobe Photoshop CS3, Fireworks, and the discontinued ImageReady have

interfaces for creating animated GIFs. Another highly recommended tool is

GIFmation by BoxTop Software, available at www.boxtopsoft.com.

Figure 18-6. Interlaced GIFs display in a
series of passes, each clearer than the pass
before.

Figure 18-6. Interlaced GIFs display in a
series of passes, each clearer than the pass
before.

Animated GIFs
With so much to say about
Cascading Style Sheets, I ran out of
room in this edition for a chapter
on animated GIFs. The good news
is that you can download a PDF
of the Animated GIFs chapter
from the second edition of
Learning Web Design at www.
learningwebdesign.com. The chapter
includes detailed explanations of
the animation settings and step-by-
step instructions for how to create
animations.

F U R t H e R R e A D I n G

Animated GIFs
With so much to say about
Cascading Style Sheets, I ran out of
room in this edition for a chapter
on animated GIFs. The good news
is that you can download a PDF
of the Animated GIFs chapter
from the second edition of
Learning Web Design at www.
learningwebdesign.com. The chapter
includes detailed explanations of
the animation settings and step-by-
step instructions for how to create
animations.

F U R t H e R R e A D I n G

Meet the Formats

Chapter 18, Web Graphics Basics 367

The photogenic JPEG

The second most popular graph-

ics format on the Web is JPEG,

which stands for Joint Photographic

Experts Group, the standards body

that created it.

Unlike GIFs, JPEGs use a compres-

sion scheme that loves gradient and

blended colors, but doesn’t work

especially well on flat colors or

hard edges. JPEG’s full-color capac-

ity and compression scheme make

it the ideal choice for photographic

images (Figure 18-8).

24-bit Truecolor images

JPEGs don’t use color palettes like GIFs. Instead, they are 24-bit images,

capable of displaying colors from the millions of colors in the RGB color

space (also referred to as the Truecolor space, see note). This is one aspect that

makes them ideal for photographs—they have all the colors you’ll ever need.

With JPEGs, you don’t have to worry about limiting yourself to 256 colors the

way you do with GIFs. JPEGs are much more straightforward.

Lossy compression

The JPEG compression scheme is lossy, which means that some of the image

information is thrown out in the compression process. Fortunately, this loss is

not discernible for most images at most compression levels. When an image

is compressed with high levels of JPEG compression, you begin to see color

blotches and squares (usually referred to as artifacts) that result from the way

the compression scheme samples the image (Figure 18-9).

Original Maximum compression

Figure 18-9. JPEG compression discards image detail to achieve smaller file sizes. At high
compression rates, image quality suffers, as shown in the image on the right.

Figure 18-8. The JPEG format is ideal for
photographs (color or grayscale) or any
image with subtle color gradations.

Figure 18-8. The JPEG format is ideal for
photographs (color or grayscale) or any
image with subtle color gradations.

N OT E

RGB color is explained in Chapter 14,
Colors and Backgrounds.

N OT E

RGB color is explained in Chapter 14,
Colors and Backgrounds.

Part IV: Creating Web Graphics368

Meet the Formats

You can control how aggressively you want the image to be compressed. This

involves a trade-off between file size and image quality. The more you com-

press the image (for a smaller file size), the more the image quality suffers.

Conversely, when you maximize quality, you also end up with larger files. The

best compression level is based on the particular image and your objectives

for the site. Compression strategies are discussed in more detail in Chapter 19,

Lean and Mean Web Graphics.

Progressive JPEGs

Progressive JPEGs display in a series of passes (like interlaced GIFs), start-

ing with a low-resolution version that gets clearer with each pass as shown

in Figure 18-10. In some graphics programs, you can specify the number of

passes it takes to fill in the final image (3, 4, or 5).

Figure 18-10. Progressive JPEGs render in a series of passes.

The advantage to using progressive JPEGs is that viewers can get an idea of

the image before it downloads completely. Also, making a JPEG progressive

usually reduces its file size slightly. The disadvantage is that they take more

processing power and can slow down final display.

Decompression

JPEGs need to be decompressed before they can be displayed; therefore, it

takes a browser longer to decode and assemble a JPEG than a GIF of the

same file size. It’s usually not a perceptible difference, however, so this is not

a reason to avoid the JPEG format. It’s just something to know.

The amazing PNG

The last graphic format to join the web graphics roster is the versatile PNG

(Portable Network Graphic). Despite getting off to a slow start, PNGs are

now supported by all browsers in current use. In addition, image-editing

tools are now capable of generating PNGs that are as small and full-featured

as they ought to be. Thanks to better support across the board, PNGs are

finally enjoying the mainstream popularity they deserve.

Cumulative
Image Loss
Be aware that once image quality
is lost in JPEG compression, you
can never get it back again. For this
reason, you should avoid resaving
a JPEG as a JPEG. You lose image
quality every time.

It is better to hang onto the original
image and make JPEG copies as
needed. That way, if you need to
make a change to the JPEG version,
you can go back to the original
and do a fresh save or export.
Fortunately, Photoshop’s Save for
Web & Devices feature does exactly
that. Fireworks and ImageReady also
preserve the originals and let you
save or export copies.

W A R n I n G

Ph
o

to
 c

o
u

rt
es

y
o

f L
ia

m
 L

yn
ch

Meet the Formats

Chapter 18, Web Graphics Basics 369

PNGs offer an impressive lineup of features:

The ability to contain 8-bit indexed, 24-bit RGB, 16-bit grayscale, and

even 48-bit color images

A lossless compression scheme

Simple on/off transparency (like GIF) or multiple levels of transparency

Progressive display (similar to GIF interlacing)

Gamma adjustment information

Embedded text for attaching information about the author, copyright,

and so on

This section takes a closer look at each of these features and helps you decide

when the PNG format is the best choice for your image.

Multiple image formats

The PNG format was designed to replace GIF for online purposes and TIFF

for image storage and printing. A PNG can be used to save many image types:

8-bit indexed color, 24- and 48-bit RGB color, and 16-bit grayscale.

8-bit indexed color images

 Like GIFs, PNGs can store 8-bit indexed images with a maximum of 256

colors. They may be saved at 1-, 2-, and 4-bit depths as well. Indexed color

PNGs are generally referred to as PNG-8.

RGB/Truecolor (24- and 48-bit)

 In PNGs, each channel (red, green, and blue) can be defined by 8- or

16-bit information, resulting in 24- or 48-bit RGB images, respectively. In

graphics programs, 24-bit RGB PNGs are identified as PNG-24. It should

be noted that 48-bit images are useless for the Web, and even 24-bit imag-

es should be used with care. JPEG offers smaller file sizes with acceptable

image quality for RGB images.

Grayscale

 PNGs can also support 16-bit grayscale images—that’s as many as 65,536

shades of gray (216), enabling black-and-white photographs and illustra-

tions to be stored with enormous subtlety of detail, although they are not

appropriate for the Web.

Transparency

Like GIFs, PNGs can contain transparent areas that let the background image

or color show through. The killer feature that PNG has over GIF, however, is

the ability to contain multiple levels of transparency, commonly referred to as

alpha-channel (or just alpha) transparency.

•

•

•

•

•

•

PNGs in Motion
One of the only features missing in
PNG is the ability to store multiple
images for animation. The first effort
to add motion to PNGs was the MNG
format (Multiple-image Network
Graphic). It gained some browser
support, but its popularity suffered
from the fact that MNGs were not
backward compatible with PNGs.
If a browser didn’t support MNG, it
would display a broken graphic.

More recently, there has been a
proposed extension to PNG called
APNG (Animated Portable Network
Graphic) that addresses the issue
of backward compatibility. If a
browser does not support an APNG,
it displays the first frame as a static
image PNG instead.

Both of these formats are in
development and are not well
supported as of this writing.

PNGs in Motion
One of the only features missing in
PNG is the ability to store multiple
images for animation. The first effort
to add motion to PNGs was the MNG
format (Multiple-image Network
Graphic). It gained some browser
support, but its popularity suffered
from the fact that MNGs were not
backward compatible with PNGs.
If a browser didn’t support MNG, it
would display a broken graphic.

More recently, there has been a
proposed extension to PNG called
APNG (Animated Portable Network
Graphic) that addresses the issue
of backward compatibility. If a
browser does not support an APNG,
it displays the first frame as a static
image PNG instead.

Both of these formats are in
development and are not well
supported as of this writing.

Part IV: Creating Web Graphics370

Meet the Formats

Figure 18-11 shows the same PNG against two different background images.

The orange circle is entirely opaque, but the drop shadow contains multiple

levels of transparency, ranging from nearly opaque to entirely transparent.

The multiple transparency levels stored in the PNG allows the drop shadow

to blend seamlessly with any background. The ins and outs of PNG transpar-

ency will be addressed in the upcoming Transparency section.

Figure 18-11. Alpha-channel transparency allows multiple levels of transparency, as
shown in the drop shadow around the orange circle PNG.

Progressive display (interlacing)

PNGs can also be coded for interlaced display. When this option is selected,

the image displays in a series of seven passes. Unlike interlaced GIFs,

which fill in horizontal rows, PNGs fill in both horizontally and vertically.

Interlacing adds to the file size and is usually not necessary, so to keep files as

small as possible, turn interlacing display off.

Gamma correction

Gamma refers to the brightness setting of a monitor (see note). Because

gamma settings vary by platform, the graphics you create may not look

the way you intend for the end user. PNGs can be tagged with information

regarding the gamma setting of the environment in which they were created.

This can then be interpreted by the software displaying the PNG to make

appropriate gamma compensations. When this is implemented on both the

creator and end user’s side, the PNG retains its intended brightness and color

intensity. Unfortunately, as of this writing, this feature is poorly supported.

Embedded text

PNGs also have the ability to store strings of text. This is useful for per-

manently attaching text to an image, such as copyright information or a

description of what is in the image. The only tools that accommodate text

annotations to PNG graphics are Corel Paint Shop Pro and the GIMP (a

free image editor). Ideally, the meta-information in the PNG would be acces-

sible via right-clicking on the graphic in a browser, but this feature is not yet

implemented in current browsers.

WA R N I N G

Multiple levels of transparency are
not supported by Internet Explorer 6
and earlier for Windows. For details,
see the Internet Explorer and Alpha
Transparency sidebar in the Transparency

WA R N I N G

Multiple levels of transparency are
not supported by Internet Explorer 6
and earlier for Windows. For details,
see the Internet Explorer and Alpha
Transparency sidebar in the Transparency

PNG Color Shifting
Due to incorrect gamma handling,
PNGs will look darker in Internet
Explorer (all versions). The upshot of
it is that it is difficult to get a match
between a PNG and a background
color, even if the RGB values are the
same. Making the edges transparent
is the solution in many situations.

There is a great article written by
Aaron Gustafson (www.easy-reader.
net/archives/2006/02/18/png-
color-oddities-in-ie/) that identifies
the problem and serves as a great
jumping-off point for further
research.

PNG Color Shifting
Due to incorrect gamma handling,
PNGs will look darker in Internet
Explorer (all versions). The upshot of
it is that it is difficult to get a match
between a PNG and a background
color, even if the RGB values are the
same. Making the edges transparent
is the solution in many situations.

There is a great article written by
Aaron Gustafson (www.easy-reader.
net/archives/2006/02/18/png-
color-oddities-in-ie/) that identifies
the problem and serves as a great
jumping-off point for further
research.

N OT E

Gamma is discussed in Chapter 3, The
Nature of Web Design.

N OT E

Gamma is discussed in Chapter 3, The
Nature of Web Design.

Meet the Formats

Chapter 18, Web Graphics Basics 371

When to use PNGs

PNGs pack a lot of powerful options, but competition among web graphic

formats nearly always comes down to file size.

For images that would typically be saved as GIFs, 8-bit PNG is a good option.

You may find that a PNG version of an image has a smaller file size than a GIF

of the same image, but that depends on how efficiently your image program

handles PNG compression. If the PNG is smaller, use it with confidence.

Although PNG does support 24-bit color images, its lossless compression

scheme nearly always results in a dramatically larger file than JPEG com-

pression applied to the same image. For web purposes, JPEG is still the best

choice for photographic and continuous tone images.

The exception to the “smallest file wins” rule is if you want to take advantage

of multiple levels of transparency. In that case, PNG is your only option and

may be worth a slightly heftier file size.

The following section takes a broader look at finding the best graphic format

for the job.

Choosing the best format

Part of the trick to making quality web graphics that maintain quality and

download quickly is choosing the right format. Table 18-1 provides a good

starting point.

Table 18-1. Choosing the best file format

If your image... use... because...

Is graphical, with flat colors GIF or
8-bit PNG

They excel at compressing flat color.

Is a photograph or contains
graduated color

JPEG JPEG compression works best on
images with blended color. Because it
is lossy, it generally results in smaller
file sizes than 24-bit PNG.

Is a combination of flat and
photographic imagery

GIF or
8-bit PNG

Indexed color formats are best at
preserving and compressing flat color
areas. The dithering that appears in
the photographic areas as a result of
reducing to a palette is usually not
problematic.

Requires transparency GIF or PNG Both GIF and PNG allow on/off
transparency in images.

Requires multiple levels of
transparency

PNG PNG is the only format that supports
alpha-channel transparency.

Requires animation GIF GIF is the only format that can
contain animation frames.

Work in RGB Mode
Regardless of the final format of
your file, you should always do your
image-editing work in RGB mode
(grayscale is fine for non-color
images). To check the color mode
of the image in Photoshop, select
Image ➝ Mode and make sure there
is a checkmark next to RGB Color.

JPEG and PNG-24 files compress the
RGB color image directly. If you are
saving the file as a GIF or PNG-8, the
RGB image must be converted to
indexed color mode, either manually
or as part of the Save for Web or
Export process.

If you need to edit an existing GIF
or PNG-8, you should convert the
image to RGB before doing any
edits. This enables the editing tool
to use colors from the full RGB
spectrum when adjusting the image.
If you resize the original indexed
color image, you’ll get lousy results
because the new image is limited
to the colors from the existing color
table.

If you have experience creating
graphics for print, you may be
accustomed to working in CMYK
mode (printed colors are made up
of Cyan, Magenta, Yellow, and blacK
ink). CMYK mode is irrelevant and
inappropriate for web graphics.

Work in RGB Mode
Regardless of the final format of
your file, you should always do your
image-editing work in RGB mode
(grayscale is fine for non-color
images). To check the color mode
of the image in Photoshop, select
Image ➝ Mode and make sure there
is a checkmark next to RGB Color.

JPEG and PNG-24 files compress the
RGB color image directly. If you are
saving the file as a GIF or PNG-8, the
RGB image must be converted to
indexed color mode, either manually
or as part of the Save for Web or
Export process.

If you need to edit an existing GIF
or PNG-8, you should convert the
image to RGB before doing any
edits. This enables the editing tool
to use colors from the full RGB
spectrum when adjusting the image.
If you resize the original indexed
color image, you’ll get lousy results
because the new image is limited
to the colors from the existing color
table.

If you have experience creating
graphics for print, you may be
accustomed to working in CMYK
mode (printed colors are made up
of Cyan, Magenta, Yellow, and blacK
ink). CMYK mode is irrelevant and
inappropriate for web graphics.

Part IV: Creating Web Graphics372

Meet the Formats

Saving an image in your chosen format

Virtually every up-to-date graphics program allows you to save images in

GIF, JPEG, and PNG format, but some give you more options than others. If

you use Photoshop, Fireworks or Corel Paint Shop Pro, be sure to take advan-

tage of special web graphics features instead of doing a simple “Save As..”

Start with an RGB image that is at an appropriate size for a web page (image

size is discussed in the next section). Edit the image as necessary (resizing,

cropping, color correction, etc.), and when you are finished, follow these

instructions for saving it as GIF, JPEG, or PNG.

Photoshop (versions 6 and higher, see note)

 Open Photoshop’s Save for Web & Devices dialog box (File ➝ Save for

Web & Devices) (Figure 18-12) and select the file type from the pop-up

menu. When you choose a format, the panel displays settings appropriate

to that format. The Save for Web window also shows you a preview of the

resulting image and its file size. You can even do side-by-side comparisons

of different settings; for example, a GIF and PNG-8 version of the same

image. Once you have selected the file type and made your settings, click

Save and give the file a name.

We’ll see the Save for Web &

Devices dialog box again later in

this chapter when we resize images

and work with transparency. It also

pops up in Chapter 19 when we

discuss the various settings related

to optimization.

N OT E

This feature was called simply “Save
for Web” in Photoshop versions 6
through CS2.

Photoshop CS3
Select the file type in the Save for Web &
Devices dialog box. You can change the settings
and compare resulting images before you Save.

Figure 18-12. Selecting a file type in Photoshop’s handy Save for Web & Devices dialog box.

Photoshop CS3
Select the file type in the Save for Web &
Devices dialog box. You can change the settings
and compare resulting images before you Save.

Figure 18-12. Selecting a file type in Photoshop’s handy Save for Web & Devices dialog box.

Image Size and Resolution

Chapter 18, Web Graphics Basics 373

Fireworks (all versions)

 With the image open and the Preview tab selected, the file type can be select-

ed from the Optimize panel (Figure 18-13). When you are finished with your

settings, select Export from the File menu and give the graphic file a name.

Fireworks 8
Select a file size in the Optimize
panel prior to Exporting the graphic.

Figure 18-13. Selecting file type in the Fireworks Optimize panel.

Paint Shop Pro

 The GIF Optimizer, JPEG Optimizer, and PNG Optimizer

are accessed from the Export option in the File menu. Each

opens a multipanel dialog box with all the settings for

the respective file type and a preview of a portion of the

compressed image. The Colors panel of the GIF optimizer

is shown in Figure 18-14. When you have made all your

settings, click OK. Note that you need to choose your file

type before accessing the settings, and there is no way to

compare image type previews as is possible in Photoshop

and Fireworks.

Image Size and Resolution
One thing that GIF, JPEG, and PNG images have in common

is that they are all bitmapped (also called raster) images. When

you zoom in on a bitmapped image, you can see that it is like a

mosaic made up of many pixels (tiny, single-colored squares).

These are different from vector graphics that are made up of

smooth lines and filled areas, all based on mathematical for-

mulas. Figure 18-15 illustrates the difference between bitmapped and vector

graphics.

Figure 18-14. Web optimization options
in Corel Paint Shop Pro.
Figure 18-14. Web optimization options
in Corel Paint Shop Pro.

Part IV: Creating Web Graphics374

Image Size and Resolution

Vector images use mathematical
equations to define shapes.

Bitmap images are made up of a grid of
variously colored pixels, like a mosaic.

Figure 18-15. Bitmapped and vector graphics.

Goodbye inches, hello pixels!

If you’ve used bitmapped images for print or the Web, you may be familiar

with the term resolution, the number of pixels per inch. In the print world,

image resolutions of 300 and 600 pixels per inch (ppi) are common.

On the Web, however, images need to be created at much lower resolutions.

72 ppi has become the standard, but in reality, the whole notion of “inches”

and therefore “pixels per inch” becomes irrelevant in the web environment. In

the end, the only meaningful measurement of a web image is its actual pixel

dimensions. This statement deserves a bit more explanation.

When an image is displayed on a web page, the pixels map one-to-one with

the display resolution of the monitor (see note). Because the monitor reso-

lution varies by platform and user, the image will appear larger or smaller

depending on the configuration, as the following example demonstrates.

N OT E

Some modern browsers have a feature that scales large images to fit inside the browser
window. If this feature is turned on, the one-to-one pixel matching no longer applies.

I have created a graphic that is 72 pixels square (Figure 18-16). Although I

may have created that image at 72 pixels per inch, it’s likely that it will never

measure precisely one inch when it is displayed on a monitor (particularly

the higher-resolution monitors that are prevalent today). On the high-resolu-

tion monitor, the pixels are smaller and the “one-inch” square graphic ends

up less than three-quarter-inch square.

Dots Per Inch
Because web graphics exist solely on
the screen, it is correct to measure
their resolutions in pixels per inch
(ppi).

When it comes to print, however,
devices and printed pages are
measured in dots per inch (dpi),
which describes the number of
printed dots in each inch of the
image. The dpi may or may not be
the same as the ppi for an image.

In your travels, you may hear
the terms dpi and ppi used
interchangeably (albeit incorrectly
so). It is important to understand the
difference.

Dots Per Inch
Because web graphics exist solely on
the screen, it is correct to measure
their resolutions in pixels per inch
(ppi).

When it comes to print, however,
devices and printed pages are
measured in dots per inch (dpi),
which describes the number of
printed dots in each inch of the
image. The dpi may or may not be
the same as the ppi for an image.

In your travels, you may hear
the terms dpi and ppi used
interchangeably (albeit incorrectly
so). It is important to understand the
difference.

Image Size and Resolution

Chapter 18, Web Graphics Basics 375

on
e

in
ch

on
e

in
ch

Image appears one inch
by one inch on 72-ppi

monitor.

72 ppi

72
 p

ix
el

s

one inch

one inch

Image appears smaller
on 100-ppi monitor.

100 ppi

72 pixels

Figure 18-16. The size of an image is dependent on the monitor resolution.

For this reason, it is useless to think in terms of “inches” on the Web. It’s all

relative. And without inches, the whole notion of “pixels per inch” is thrown

out the window as well. The only thing we know for sure is that the graphic

is 72 pixels across, and it will be twice as wide as a graphic that is 36 pixels

across.

After this example, it should be clear why images fresh from a digital camera

are not appropriate for web pages. I commonly shoot images at 1600 × 1200

pixels with a resolution of 180 ppi. With browser windows commonly as

small as 800 pixels wide, all those extra pixels are unnecessary and would

cause half the image to hang outside a typical browser window. Users would

have to scroll vertically and horizontally to see it. Even though some modern

browsers scale the image down to fit the browser window, that doesn’t solve

the problem of forcing an unnecessarily large download on users when a

much smaller file will do.

Resizing images

The images you get from a digital camera, scanner, or stock photo company

are generallly too large for web use, so you need to resize them smaller. In

fact, I’d say that resizing images smaller makes up a large portion of the time

I spend doing graphics production, so it’s a good basic skill to have.

In Exercise 18-1, I’ll show you an easy way to resize an image using Photoshop’s

“Save For Web & Devices” feature. With this method, the exported web

graphic is resized, but the original remains unaltered. Adobe Photoshop

Elements has a similar feature, so you can follow along if you have either of

these programs. For other programs, or if you want more control over the

final image quality, see the Using Image Size sidebar following the exercise.

Working in Low
Resolution
Despite the fact that resolution is
irrelevant, creating web graphics at
72 ppi puts you at a good starting
point for images with appropriate
pixel dimensions. The drawback
to working at a low resolution is
that the image quality is lower
because there is not as much image
information in a given space. This
tends to make the image look more
grainy or pixilated and, unfortunately,
that is just the nature of the Web.
On the upside, image edits that
are noticeable in high-resolution
graphics (such as retouching or
cloning) are virtually seamless at low
resolution. In addition, low resolution
means smaller file sizes, which is
always a concern for media shared
over a network.

Working in Low
Resolution
Despite the fact that resolution is
irrelevant, creating web graphics at
72 ppi puts you at a good starting
point for images with appropriate
pixel dimensions. The drawback
to working at a low resolution is
that the image quality is lower
because there is not as much image
information in a given space. This
tends to make the image look more
grainy or pixilated and, unfortunately,
that is just the nature of the Web.
On the upside, image edits that
are noticeable in high-resolution
graphics (such as retouching or
cloning) are virtually seamless at low
resolution. In addition, low resolution
means smaller file sizes, which is
always a concern for media shared
over a network.

N OT E

If you don’t have Photoshop, you can
download a free trial version at www.
adobe.com/downloads.

N OT E

If you don’t have Photoshop, you can
download a free trial version at www.
adobe.com/downloads.

Part IV: Creating Web Graphics376

Image Size and Resolution

exercise 18-1 | Resizing an image smaller in Photoshop

In this exercise, we’ll take a high-
resolution photo and size it to fit on a
web page. The source image, ninja.tif,
is available with the materials for this
chapter at www.learningwebdesign.
com/materials/.

Open the file ninja.tif in Photoshop.
A quick way to find the pixel
dimensions of the image is to open
the Image Size dialog box (Image ➝
Image Size) shown in Figure 18-17
฀. This image is 1600 x 1600 pixels,
which is too big for a web page.
Close the Image Size box for now
(we were only using it to peek at our
starting point). The Info window (not
shown) also shows pixel dimensions
when the whole image is selected.

Now we’ll resize the image and save
it as a JPEG in one fell swoop. Select
Save for Web & Devices from the
File menu. Because this image is a
photograph, select JPEG B from the
Formats pop-up menu. The default
High/60 compression setting is fine
for this example.

With the format chosen, it’s time
to get to the resizing. Click on the
Image Size tab in the bottom half
of the settings column C. Enter
the dimensions that you’d like the
final JPEG to be when it is saved.
I’m going to set the width to 400
pixels. When “constrain proportions”
is checked, the width changes
automatically when you enter the
new height.

Next, select the Quality D. I usually
go for Bicubic or Bicubic Sharper for
the best results then click Apply E.
You will see the resized image in the
Optimized Image view (select the
tab at the top if it isn’t already).

Click Save F, give the file a name,
and select a directory in which to
save it. You can close the original
image without saving, or save it to
preserve the Save for Web settings.

1.

2.

3.

4.

5.

฀

You must click Apply to apply the
new dimensions. The Optimize view
shows the image at its new size.

The Image Size dialog box (Image
Image Size) is one way to view the
starting dimensions of the image. You
can also select the whole image and
look at the Info window (Window
Info, not shown)

Select the Image Size tab in the Save
for Web & Devices dialog box to enter
new dimensions for the exported
graphic.

B

C

D

E

F

Figure 18-17. Using the Save for Web & Devices dialog box to resize an image.

Working with Transparency

Chapter 18, Web Graphics Basics 377

Working with Transparency
Both GIF and PNG formats allow parts of an image to be transparent, allow-

ing the background color or image to show through. In this section, we’ll take

a closer look at transparent graphics, including tips on how to make them.

The first thing to know is that there are two types of transparency. In binary

transparency, pixels are either entirely transparent or entirely opaque, like an

on/off switch. Both GIF and PNG files support binary transparency.

In alpha (or alpha-channel) transparency, a pixel may be totally transparent,

totally opaque, or up to 254 levels of opaqueness in between (a total of 256

opacity levels). Only PNGs support alpha transparency. The advantage of

PNGs with alpha transparency is that they blend seamlessly with any back-

ground color or pattern, as shown back in Figure 18-11.

In this section, you’ll become familiar with how each type of transparency

works, and learn how to make transparent images using Photoshop.

How binary transparency works

Remember that the pixel colors for GIFs and PNG-8s are stored in an indexed

color table. Transparency is simply treated as a separate color, occupying a

position in the color table. Figure 18-18 shows the color table in Photoshop for

a simple transparent GIF. The slot in the color table that is set to transparent

is indicated by a checker pattern. Pixels that correspond to that position will

be completely transparent when the image displays in the browser. Note that

only one slot is transparent—all the other pixel colors are opaque.

Transparent pixels get a slot in
the indexed color table.

Figure 18-18. Transparency is treated as a color in the indexed color table.

Using Image Size
The disadvantage to the method
shown in Exercise 18-1 is that you
lose control over the quality of the
image. If you are an image quality
control freak (like me), you may
prefer resizing the image using the
Image Size dialog box (Figure 18-17
฀). In Fireworks, Modify ➝ Canvas...
➝ Image Size... gives you a similar set
of options.

Although you can set the pixel
dimensions right at the top, it is
better to take care of a few other
settings first.

Be sure that Resample Image and
Constrain Proportions are checked
at the bottom, select Bicubic (or
Bicubic Sharper) as the Quality
setting, then set the Resolution to 72
pixels/inch. Then enter the desired
final pixel dimensions at the top
of the box and click OK. Double-
clicking on the magnifying glass
tool (not shown) displays the resized
image at 100%.

Now you can apply sharpening
filters and other effects and use Save
For Web to output the image in a
web format.

I find that resizing a very large image
in a couple of steps helps preserve
quality. First, I resize it to an in-
between dimension and sharpen it
with a sharpening filter. Then I resize
it to its final dimensions and sharpen
again. You can’t do that with the
Save For Web method.

Remember that the Image Size
settings resize the original image.
Don’t save it, or you’ll lose your high-
quality version! Be sure to “Save As” in
order to keep a copy of your original.

Using Image Size
The disadvantage to the method
shown in Exercise 18-1 is that you
lose control over the quality of the
image. If you are an image quality
control freak (like me), you may
prefer resizing the image using the
Image Size dialog box (Figure 18-17
฀). In Fireworks, Modify ➝ Canvas...
➝ Image Size... gives you a similar set
of options.

Although you can set the pixel
dimensions right at the top, it is
better to take care of a few other
settings first.

Be sure that Resample Image and
Constrain Proportions are checked
at the bottom, select Bicubic (or
Bicubic Sharper) as the Quality
setting, then set the Resolution to 72
pixels/inch. Then enter the desired
final pixel dimensions at the top
of the box and click OK. Double-
clicking on the magnifying glass
tool (not shown) displays the resized
image at 100%.

Now you can apply sharpening
filters and other effects and use Save
For Web to output the image in a
web format.

I find that resizing a very large image
in a couple of steps helps preserve
quality. First, I resize it to an in-
between dimension and sharpen it
with a sharpening filter. Then I resize
it to its final dimensions and sharpen
again. You can’t do that with the
Save For Web method.

Remember that the Image Size
settings resize the original image.
Don’t save it, or you’ll lose your high-
quality version! Be sure to “Save As” in
order to keep a copy of your original.

Part IV: Creating Web Graphics378

Working with Transparency

How alpha transparency works

RGB images, such as JPEGs and PNG-24s, store color in separate channels,

one for red, one for green, and one for blue. PNG-24 files add another chan-

nel, called the alpha channel, to store transparency information. In that chan-

nel, each pixel may display one of 256 values, which correspond to 256 levels

of transparency when the image is displayed. The black areas of the alpha

channel mask are transparent, the white areas are opaque, and the grays are

on a scale in between. I think of it as a blanket laid over the image that tells

each pixel below it how transparent it is (Figure 18-19).

Black areas in the alpha channel
correspond to transparent image areas;
white areas are opaque; and grays are
variable levels of transparency in between.

Original transparent image

Alpha

Red

Green

Blue

Figure 18-19. Transparency information is stored as a separate (alpha) channel in 24-bit
PNGs.

Making transparent GIFs and PNGs

The easiest way to make parts of an image transparent is to design them that

way from the start and preserve the transparent areas when you create the

GIF or PNG version of the image. Once again, Photoshop’s Save for Web &

Devices feature or Firework’s Optimize panel are perfect tools for the job.

It is possible to add transparent areas to a flattened opaque image, but it

may be difficult to get a seamless blend with a background. We’ll look at

the process for making portions of an existing image transparent later in this

section.

But first, follow along with the steps in Exercise 18-2 that demonstrates how

to preserve transparent areas and guarantee a good match with the back-

ground using Photoshop’s Save for Web & Devices dialog box. There are some

new concepts tucked in there, so even if you don’t do the exercise, I recom-

mend giving it a read, particularly steps 5, 6, and 7.

Internet Explorer
and Alpha
Transparency
Alpha transparency is really cool, but
unfortunately, it comes with one
major headache—it is not supported
in Internet Explorer 6 and earlier for
Windows. Users with those browsers
(and there are a lot of them) will see
the PNG as entirely opaque.

There is a workaround using
Microsoft’s proprietary
AlphaImageLoader filter. The details
of the process are beyond the scope
of this chapter, but these resources
are good places to start if you want
to ensure cross-browser support for
your transparent PNGs.

Start with the AlphaImageLoader
filter documentation on the MSDN
(Microsoft Developers Network) site
at msdn.microsoft.com/workshop/
author/filter/reference/filters/
alphaimageloader.asp.

These articles introduce variations
and alternative techniques:

“Cross-browser Variable Opacity
with PNG: A Real Solution,” by
Michael Lovitt at www.alistapart.
com/articles/pngopacity.

“PNG Behavior,” webfx.eae.net/
dhtml/pngbehavior/pngbehavior.
html.





Internet Explorer
and Alpha
Transparency
Alpha transparency is really cool, but
unfortunately, it comes with one
major headache—it is not supported
in Internet Explorer 6 and earlier for
Windows. Users with those browsers
(and there are a lot of them) will see
the PNG as entirely opaque.

There is a workaround using
Microsoft’s proprietary
AlphaImageLoader filter. The details
of the process are beyond the scope
of this chapter, but these resources
are good places to start if you want
to ensure cross-browser support for
your transparent PNGs.

Start with the AlphaImageLoader
filter documentation on the MSDN
(Microsoft Developers Network) site
at msdn.microsoft.com/workshop/
author/filter/reference/filters/
alphaimageloader.asp.

These articles introduce variations
and alternative techniques:

“Cross-browser Variable Opacity
with PNG: A Real Solution,” by
Michael Lovitt at www.alistapart.
com/articles/pngopacity.

“PNG Behavior,” webfx.eae.net/
dhtml/pngbehavior/pngbehavior.
html.





N OT E

The principles and settings outlined in
Exercise 18-2 are nearly identical in
Fireworks, so the same general instruc-
tions apply, although the interface is
slightly different.

N OT E

The principles and settings outlined in
Exercise 18-2 are nearly identical in
Fireworks, so the same general instruc-
tions apply, although the interface is
slightly different.

Working with Transparency

Chapter 18, Web Graphics Basics 379

In this exercise, we’re going to start from scratch, so you’ll get
the experience of creating a layered image with transparent
areas. I’m going to keep it simple, but you can apply these
techniques to fancier designs, of course.

Launch Photoshop and create a new file (File ➝ New...).
There are a few settings in the New dialog box (Figure 18-
20) that will set you off in the right direction for creating
transparent web graphics.

First, make your new graphic 500 pixels wide and 100
pixels high to match the example in this exercise ฀.

Set the resolution to 72 pixels/inch because web
graphics are low-resolution B.

Make sure the color mode is RGB Color, 8-bit C.

Finally, and most importantly for this exercise, select
Transparent from the Background Contents options
D. This option creates a layered Photoshop file with a
transparent background. It is much easier to preserve
transparent areas in an image than to add it later. The
transparent areas (in this case, the whole area, since we
haven’t added any image content yet) is indicated by a
gray checkerboard pattern E.

฀

B

E

D

C

Figure 18-20. Creating a new image with a transparent
background.

1.








Now we’ll add some text and give it a drop shadow (Figure
18-21, following page).

Use the type tool F and type your name. Open the
Character window G (Window ➝ Character) to change
the look of the font. With the text selected, choose a
bold typeface (something chunky) and set the size large
enough to fill the space, as shown in the example. Click
the swatch next to Color, and use the Color Picker to
choose a color for the text that is not too light and not
too dark. I’m using a medium pink.

Next, add a soft drop shadow to the text. Open the
Layers window H (Window ➝ Layers) if it isn’t open
already. You will see the layer containing your text in
the list. Add a drop shadow by clicking the Layer Style
button (it looks like an FX) at the bottom of the Layers
window and select “Drop Shadow...” I. In the Layer Style
dialog box J, you can play around with the settings, but
I recommend setting the Distance and Size to at least 5
to get the most out of the rest of the exercise. When you
are done, click OK.

Save the image as a Photoshop file to preserve the layers for
easier editing later, if necessary. I’m naming mine jennifer.
psd (use the .psd suffix). With a nice source image saved, we
are ready to start making the web versions.

With the new file still open, select Save for Web & Devices
from the File menu. Click on the 4-Up tab at the top to
compare the original image to several other versions (Figure
18-22, following page). Note, your previews may display in a
grid instead of a stack.

Let’s see how the image looks as a GIF with and without
transparency. Click on the second preview to select it, then
set the file type to GIF and set the number of colors to 32.
Now, toggle the checkmark next to Transparency off and on
(Figure 18-23 on page 381).

When Transparency is off (not checked, as shown on the
left), the Matte color is used to fill in the transparent areas
of the original image. Set the Matte color to white to
match my example.

When Transparency is on (checked, as shown on the
right), a checker pattern appears in the transparent areas
of the image, indicating where the background color or
pattern of the web page will show through. If you look
carefully at the drop shadow area, you will see that the
shades of gray are blended with the white Matte color.
Try changing the Matte color and watch what happens
in the drop shadow area.

2.





3.

4.

5.





exercise 18-2 | Creating transparent images

Part IV: Creating Web Graphics380

Working with Transparency

F G

H J

I

Figure 18-21. Adding text with a soft drop shadow.

Figure 18-22. The “4-up” tab in the Save for Web &
Devices dialog box allows you to compare four different
versions of the same image.

Working with Transparency

Chapter 18, Web Graphics Basics 381

Leave the GIF preview alone for a moment and select the next preview. Set the
file type to PNG-8 and try toggling the Transparency checkbox. As expected, it
behaves exactly the same as the GIF because both formats use binary
transparency. The previews should look like those shown in Figure 18-23.

Now select the fourth preview,
make it a PNG-24, and toggle the
Transparency checkbox (Figure 18-
24). When it is unchecked (left), the
Matte color fills in the transparent
areas of the original image. But
when Transparency is checked
(right), the checkerboard pattern
shows through the drop shadow
blend. So, too, will the background
of a web page. When Transparency
is selected, the Matte tool is no
longer available, because there is
no need to specify the background
color of the page...the PNG with
alpha transparency will blend with
anything.

Take a moment to note the file
size of the transparent PNG-24.
Mine is nearly 10.6 KB, while my
transparent GIF version is 5 KB, and
the transparent PNG-8 came in at
just 3.3 KB. The significantly larger
file size is the price you pay for the
versatility of the alpha transparency.

Save the PNG-24 with Transparency
turned on and name the file with
the .png suffix (mine is jennifer.
png). Open the Save for Web dialog
box again and save a GIF version
of the image with Transparency
turned on (make sure that Matte
is set to white). Name the file with
the .gif suffix. We’ll be using these
graphics again in the next section.

6.

7.

8.

The translucent grays in the drop shadow get blended
with the color specified by the Matte setting

Figure 18-23. Previews of transparency
turned off (left) and on (right) in a GIF.

The translucent grays in the drop shadow will stay translucent in the PNG-24.

Figure 18-24. Previews of Transparency
turned off (left) and on (right) in a PNG-24.

The translucent grays in the drop shadow get blended
with the color specified by the Matte setting

Figure 18-23. Previews of transparency
turned off (left) and on (right) in a GIF.

The translucent grays in the drop shadow will stay translucent in the PNG-24.

Figure 18-24. Previews of Transparency
turned off (left) and on (right) in a PNG-24.

The trick to getting a transparent GIF to blend seamlessly with a background is
to use the RGB values from the web page’s background color (or the dominant
color from a background image) for the Matte color. If your page background
is a multi-colored pattern or is otherwise difficult to match, opt for a Matte
color that is slightly darker than the predominant background color.

D e S I G n t I P

N OT E

Fireworks gives you a choice of Index or
Alpha Transparency for PNG-8 graphics.
See the PNG-8 “Alpha” Transparency
sidebar for details.

Part IV: Creating Web Graphics382

Working with Transparency

Avoiding “halos”

Now that I’ve got some transparent graphics, I’m going to try them out on a

minimal web page with a white background. If you want to work along, open

a text editor and create an HTML document like the one shown here (I’ve

omitted the DOCTYPE and character set information to save space):

<html>
<head>
 <title>Transparency test</title>
 <style type="text/css">
 body {
 background-color: white;
 }
 </style>
</head>
<body>
 <p></p>
 <p></p>
</body>
</html>

When I open the file in a browser, the graphics look more or less the same

against the white background (Figure 18-25, left). But, if I change the back-

ground color of the web page to teal (background-color: teal;), the differ-

ence between the alpha and binary transparency becomes very clear (right).

PNG-24
(Alpha)

GIF
(Binary)

Figure 18-25. The difference between binary and alpha transparency becomes very clear
when the background color of the page changes.

Anti-aliasing
Anti-aliasing is a slight blur applied
to rounded edges of bitmapped
graphics to make smoother
transitions between colors. Aliased
edges, by contrast, have stair-
stepped edges. Anti-aliasing text and
graphics can give your graphics a
more professional appearance.

t e R m I n O l O G y

Anti-aliasing
Anti-aliasing is a slight blur applied
to rounded edges of bitmapped
graphics to make smoother
transitions between colors. Aliased
edges, by contrast, have stair-
stepped edges. Anti-aliasing text and
graphics can give your graphics a
more professional appearance.

t e R m I n O l O G y

PNG-8 “Alpha” Transparency
Technically, variable levels of transparency are not limited to 24-bit PNGs. PNG-
8 files can do it too. Instead of using an alpha channel, they store different
transparency levels in multiple slots in the index color table. The resulting file
size is potentially smaller than the same image saved as a PNG-24 with an alpha
channel.

As of this writing, only Fireworks allows you to create PNG-8s with multiple levels
of transparency, and browser support is poor. Most browsers display them as
though they have simple binary transparency. For now, this is another cool PNG
feature that remains virtually untapped due to lagging software support.

Working with Transparency

Chapter 18, Web Graphics Basics 383

When the background color changes, the GIF no longer matches the back-

ground, resulting in an ugly fringe commonly called a halo. Halos are the

result of anti-aliased edges that have been blended with a color other than the

background color of a page. They are a potential hazard of binary transpar-

ency, whether GIF or PNG-8.

Prevention is the name of the game when it comes to dealing with binary

transparency and halos. As you’ve just seen, the Matte color feature in

Photoshop and Fireworks makes it easy to blend the edges of the graphic to a

target background color. If the background color changes, you can re-export

the GIF or PNG-8 with the new Matte color. See the Matte Alternative sidebar

for options if your tool doesn’t have a Matte setting.

Another option is to save your image as a PNG-24 with variable transparency.

That way, you don’t have to worry about the background color or pattern, and

it will be no problem if it changes in the future. The trade-off, of course, is the

larger file size to download. In addition, alpha transparency does not work in

Internet Explorer 6 and earlier without the aid of some proprietary and/or

JavaScript workarounds (see the Internet Explorer and Alpha Transparency

sidebar earlier in this chapter). This will become less of an issue of course as

those versions go away.

Adding transparency to
flattened images

It is possible to add transparent areas to

images that have already been flattened

and saved as a GIF or PNG. The GIF

containing a yellow circle on a purple

background in Figures 18-25 and 18-27

blends in fine against a solid purple

background, but would be an obvious

square if the background were changed

to a pattern. The solution is to make the

purple areas transparent to let the back-

ground show through. Fortunately, most

graphics tools make it easy to do so by

selecting a pixel color in the image, usu-

ally an eyedropper tool, that you’d like to

be transparent.

In Photoshop, the transparency eyedrop-

per is found on the Color Table dialog

box (Image ➝ Mode ➝ Color Table).

Click on the eyedropper, then on a pixel

color in the image, and it magically turns

transparent (Figure 18-26). To save the new transparent graphic, use the Save

For Web & Devices feature as demonstrated earlier.

Matte Alternative
If you are using a graphics tool that
doesn’t have the Matte feature,
create a new layer at the bottom
of the layer “stack” and fill it with
the background color of your page.
When the image is flattened as a
result of changing it to Indexed
Color, the anti-aliased edges blend
with the proper background color.
Just select that background color
to be transparent during export to
GIF or PNG format and your image
should be halo-free.

Matte Alternative
If you are using a graphics tool that
doesn’t have the Matte feature,
create a new layer at the bottom
of the layer “stack” and fill it with
the background color of your page.
When the image is flattened as a
result of changing it to Indexed
Color, the anti-aliased edges blend
with the proper background color.
Just select that background color
to be transparent during export to
GIF or PNG format and your image
should be halo-free.

Photoshop (versions 6 and higher)

Use the transparency eyedropper in
the Color Table dialog box to turn a
pixel color transparent.

Figure 18-26. Making a color transparent
in Photoshop.

Photoshop (versions 6 and higher)

Use the transparency eyedropper in
the Color Table dialog box to turn a
pixel color transparent.

Figure 18-26. Making a color transparent
in Photoshop.

Part IV: Creating Web Graphics384

Working with Transparency

In Fireworks, the transparency eyedropper is located at the bottom of the

Optimize panel (Figure 18-27). The Add to Transparency tool allows you to

select more than one pixel color to make transparent. The Subtract from

Transparency dropper turns transparent areas opaque again. When you are

finished, export the transparent graphic (File ➝ Export).

Fireworks

Transparency eyedropper tools

Figure 18-27. Making colors transparent in Fireworks.

If you look closely, you can see that there is a fringe of pixels still anti-

aliased to purple, which means that this graphic will work well only against

purple backgrounds. On other background colors, there will be a pesky halo.

Unfortunately, the only way to fix a halo in an image that has already been

flattened is to get in there and erase the anti-aliased edges, pixel by pixel. Even

if you get rid of the fringe, you may be left with unattractive stair-stepped

edges. You could also select the image area (the yellow circle in this example)

with a marquee tool that has the “feathering” set to 1 or 2 pixels. Copy the

image area and paste it to a new transparent layered image file, then use Save

for Web & Devices to output a new graphic with the Matte set to match the

background color.

If you are concerned with the professional appearance of your site, I’d say it’s

better to recreate the graphic from scratch, taking care to prevent halos, than

to waste time trying to fix them. This is another reason to always save your

layered files.

Web Graphics 101 Summary

Chapter 18, Web Graphics Basics 385

Web Graphics 101 Summary
If I’ve done my job, you should now have a good foundation in web graphics,

including where to find an image, what file format to save it in, and how to

resize it so it is appropriate for the Web. You also know the difference between

binary and alpha transparency, and how to make graphics that blend well

with the background of a web page.

In Chapter 19, we’ll take graphics production to the next level and explore all

the ways to make images as small as possible for faster downloads. But first,

a little quiz.

Test Yourself
Answer the following questions to see if you got the big picture on web

graphics. The answers appear in Appendix A.

What is the primary advantage to using rights-managed images?

What does ppi stand for?

Which graphic is more appropriate for placement on a web page: a 7-

inch wide graphic at 72 ppi or a 4-inch wide graphic at 300 ppi?

What is “indexed color?” What file formats use it?

How many colors are in the color table for an 8-bit graphic? For a 5-bit

graphic?

Name two things you can do with a GIF that you can’t do with a JPEG.

JPEG’s lossy compression is cumulative. What does that mean? Why is it

important to know?

1.

2.

3.

4.

5.

6.

7.

Part IV: Creating Web Graphics386

Test Yourself

Name three types of image the PNG format can store.

What is the difference between binary and alpha transparency?

Pick the best graphic file format for each of the images in Figure 18-28.

You should be able to make the decision just by looking at the images as

they’re printed here and explain your choice.

8.

9.

10.

฀

B

C

D

E

Figure 18-28. Choose the best file format
for each image.

฀

B

C

D

E

Figure 18-28. Choose the best file format
for each image.

387

IN THIS CHAPTER

Why you should optimize
your graphics

General optimization
strategies

Optimizing GIFs

Optimizing JPEGs

Optimizing PNGs

Optimizing to a
target file size

Because a web page is published over a network, it needs to zip through the

lines as little packets of data in order to reach the end user. It is fairly intuitive,

then, that larger amounts of data will require a longer time to arrive. And

guess which part of a standard web page packs the most bytes—that’s right,

the graphics.

Thus is born the conflicted relationship with graphics on the Web. On the

one hand, images make a web page more interesting than text alone, and the

ability to display graphics is one of the factors contributing to the Web’s suc-

cess. On the other hand, graphics also try the patience of surfers with slow

Internet connections. The user can hang in there and wait, turn graphics off

in their browsers, or simply surf somewhere else.

This chapter covers the strategies and tools available for making web graphic

files as small as possible (a process known as optimizing) while maintaining

acceptable image quality. Maybe you’re thinking, “Why bother? Everyone has

broadband these days, right?!” After you read the next section, I think you’ll

be eager to learn the general and format-specific optimizing techniques that

follow. If you’re going to make web graphics, why not do it like the pros?

Why Optimize?
Despite the popularity of high-bandwidth connections, dial-up modem con-

nections still make up a significant percentage of web traffic (20 to 30% as of

this writing). In addition to dial-up connections, designers need to consider

the performance of their web page designs on mobile devices where connec-

tion and processing speeds tend to lag behind the desktop experience.

What it boils down to is this: it is well worth your while to wring every

unnecessary byte out of your graphics files to keep download times as short

as possible.

In fact, many corporate clients set a kilobyte limit (or K-limit) that the sum

of all the files on the page may not exceed. I know of one corporate site that

set its limit to a scant 15 kilobytes (KB, or commonly just K) per page—that

N OT E

Optimization is not just for graph-
ics. Professional (X)HTML, CSS, and
JavaScript authors take measures to keep
superfluous code and extra characters
out of the text documents that make up
web sites as well.

N OT E

Optimization is not just for graph-
ics. Professional (X)HTML, CSS, and
JavaScript authors take measures to keep
superfluous code and extra characters
out of the text documents that make up
web sites as well.

LEAN AND MEAN
WEB GRAPHICS

CHAPTER 19

Part IV: Creating Web Graphics388

General Optimization Strategies

includes the (X)HTML document and all the graphics combined. Similarly,

many sites put stingy K-limits on the ad banners they’ll accept. Even if keep-

ing graphic files small is not a priority for you, it may be for your clients.

You’ve got to be prepared.

General Optimization Strategies
Regardless of the image or file type, there are a few basic strategies to keep in

mind for limiting file size. In the broadest of terms, they are:

Limit dimensions

 Although fairly obvious, the easiest way to keep file size down is to limit

the dimensions of the image itself. There aren’t any magic numbers; just

don’t make images any larger than they need to be. By simply eliminating

extra space in the graphic in Figure 19-1, I was able to reduce the file size

by 3K (23%).

600 x 200 pixels (13 KB)

500 x 136 pixels (10 KB)

Figure 19-1. You can reduce the size of your files simply by cropping out extra space.

Reuse and recycle

 If you use the same image repeatedly in a site, it is best to create only one

image file and point to it repeatedly wherever it is needed. This allows

the browser to take advantage of the cached image and avoid additional

downloads. Caching is explained in the Taking Advantage of Caching

sidebar in Chapter 7, Adding Images.

Design for compression

 One of the best strategies for making files as small as possible is to design

for efficient compression. For example, because you know that GIF com-

How Long Does It
Take?
It’s impossible to say exactly how
long a graphic will take to download
over the Web. It depends on many
factors, including the speed of the
user’s connection, the speed of the
user’s computer, the amount of
activity on the web server, and the
general amount of traffic on the
Internet itself.

The general rule of thumb is to
figure that a graphic could take
1 second per kilobyte (KB) under
worst-case conditions (say, over a
28.8 Kbps modem connection). That
would mean a 30 KB graphic would
take 30 seconds to download, which
is a long time for a user to be staring
at a computer screen.

Use the 1 sec/KB guideline only to
get a ballpark estimate for the lowest
common denominator. Actual times
are likely to be a lot better, and may
be a lot worse.

How Long Does It
Take?
It’s impossible to say exactly how
long a graphic will take to download
over the Web. It depends on many
factors, including the speed of the
user’s connection, the speed of the
user’s computer, the amount of
activity on the web server, and the
general amount of traffic on the
Internet itself.

The general rule of thumb is to
figure that a graphic could take
1 second per kilobyte (KB) under
worst-case conditions (say, over a
28.8 Kbps modem connection). That
would mean a 30 KB graphic would
take 30 seconds to download, which
is a long time for a user to be staring
at a computer screen.

Use the 1 sec/KB guideline only to
get a ballpark estimate for the lowest
common denominator. Actual times
are likely to be a lot better, and may
be a lot worse.

General Optimization Strategies

Chapter 19, Lean and Mean Web Graphics 389

pression likes flat colors, don’t design GIF images with gradient color

blends when a flat color will suffice. Similarly, because JPEG likes soft

transitions and no hard edges, you can try strategically blurring images

that will be saved in JPEG format. These strategies are discussed in more

detail later in this chapter.

Use web graphics tools

 If you know you will be doing a lot of web production work, it is worth

investing in image editing software such as Adobe Photoshop or Adobe

(Macromedia) Fireworks.

Figure 19-2 shows the Save for Web & Devices dialog box in Photoshop

CS3 and the Optimize and Preview panels in Fireworks 8. We used the

Save for Web function in Chapter 18, Web Graphics Basics to resize an

image and to make transparency settings. In this chapter, we’ll explore the

settings that pertain to keeping file sizes as small as possible.

Save for Web & Devices dialog box in Photoshop CS3

Preview and Optimize
panels in Fireworks 8

Figure 19-2. Web graphics optimizing tools in Photoshop CS3 and Fireworks 8

Both tools allow you to preview the final image and its respective file size

as you make your optimization settings, so you can tweak settings and see

the results instantly. The set of options varies by file type, so I’ll explain

them one format at a time, starting with that old favorite, GIF.

N OT E

Adobe ImageReady, the web graphics tool bundled with Photoshop versions 6 through
CS2, has been discontinued in favor of Fireworks, which Adobe acquired from
Macromedia. For this reason, this book sticks with Photoshop and Fireworks. If you
have a copy of ImageReady, you will find that the optimization options are a close
match to Photoshop’s Save for Web & Devices.

JPEG Optimization
Tools
If you are really concerned with
making the smallest JPEGs possible
while maximizing image quality,
I recommend checking out
specialized compression utilities.
These tools have been programmed
specifically to work with JPEGs, so
they’ve got fancy algorithms that
can compress files much smaller
than Photoshop alone.

ProJPEG by BoxTop Software

 www.boxtopsoft.com

JPEG Cruncher by Spinwave

 www.spinwave.com

JPEG Optimization
Tools
If you are really concerned with
making the smallest JPEGs possible
while maximizing image quality,
I recommend checking out
specialized compression utilities.
These tools have been programmed
specifically to work with JPEGs, so
they’ve got fancy algorithms that
can compress files much smaller
than Photoshop alone.

ProJPEG by BoxTop Software

 www.boxtopsoft.com

JPEG Cruncher by Spinwave

 www.spinwave.com

Part IV: Creating Web Graphics390

Optimizing GIFs

Optimizing GIFs
When optimizing GIF images, it is useful to keep in mind that GIF compres-

sion works by condensing strings of repetitive pixel colors. Many optimiza-

tion strategies work by creating more areas of solid color for the compression

scheme to sink its teeth into.

The general methods for keeping GIF file sizes in check are:

Reducing the number of colors (the bit-depth) of the image

Reducing dithering in the image

Applying a “lossy” filter

Designing with flat colors

This section looks at each of these options using Photoshop’s Save for Web &

Devices and Fireworks’ Optimize panels as springboards (Figure 19-3). When

a feature is specific to these tools, I will note it; otherwise, the approaches

shown here should be achievable with most image editing software.

Reducing the number of colors

The most effective way to reduce the size of a GIF file, and therefore the first

stop in your optimization journey, is to reduce the number of colors in the

image.

Although GIFs can contain up to 256 colors, there’s no rule that says they

have to. In fact, by reducing the number of colors (bit-depth), you can signifi-

cantly reduce the file size of an image. One reason for this is that files with

lower bit depths contain less data. Another byproduct of the color reduction

is that more areas of flat color are created by combining similar, abutting

pixel colors. More flat color areas mean more efficient compression.

Nearly all graphics programs that allow you to save or export to GIF format

will also allow you to specify the number of colors or bit depth. In Photoshop

and Fireworks, the color count and the color table are revealed in the settings

panel. Click on the Colors pop-up menu ฀ to select from a standard list of

numbers of colors. Some tools give you a list of bit-depths instead. See the Bit

Depth sidebar for how bit-depths match up to numbers of colors. When you

select smaller numbers, the resulting file size shrinks as well.

If you reduce the number of colors too far, of course, the image begins to fall

apart or may cease to communicate effectively. For example, in Figure 19-4,

once I reduced the number of colors to eight, I lost the rainbow, which was

the whole point of the image. This “meltdown” point is different from image

to image.

•

•

•

•

Photoshop CS3

Fireworks 8

C
฀
B

฀
BC

Figure 19-3. GIF optimization options in
Photoshop and Fireworks.

Photoshop CS3

Fireworks 8

C
฀
B

฀
BC

Figure 19-3. GIF optimization options in
Photoshop and Fireworks.

Optimizing GIFs

Chapter 19, Lean and Mean Web Graphics 391

256 colors: 21 KB 8 colors: 6 KB64 colors: 13 KB

Figure 19-4. Reducing the number of colors in an image reduces the file size.

You’ll be surprised to find how many images look perfectly fine with only 32

pixel colors (5-bit). That is usually my starting point for color reduction, and I go

higher only if necessary. Some image types fare better than others with reduced

color palettes, but as a general rule, the fewer the colors, the smaller the file.

N OT E

The real size savings kick in when there are large areas of flat color. Keep in mind that
even if your image has 8-pixel colors, if it has a lot of blends, gradients, and detail,
you won’t see the kind of file size savings you might expect with such a severe color
reduction.

Reducing dithering

When the colors in an image are reduced to a specific palette, the colors that are

not in that palette get approximated by dithering. Dithering is a speckle pattern

that results when palette colors are mixed to simulate an unavailable color.

In photographic images, dithering is not a problem and can even be benefi-

cial; however, dithering in flat color areas is usually distracting and undesir-

able. In terms of optimization, dithering is undesirable because the speckles

disrupt otherwise smooth areas of color. Those stray speckles stand in the

way of GIF compression and result in larger files.

One way to shave extra bytes off a GIF is to limit the amount of dithering.

Again, nearly all GIF creation tools allow you to turn dithering on and off.

Photoshop and Fireworks go one step further by allowing you to set the

specific amount of dithering on a sliding scale (Figure 19-3, B). You can even

preview the results of the dither setting, so you can decide at which point the

degradation in image quality is not worth the file size savings (Figure 19-5).

In images with smooth color gradients, turning dithering off results in unac-

ceptable banding and blotches.

Bit Depth
Bit depth is a way to refer to the
maximum number of colors a
graphic can contain. This chart
shows the number of colors each bit
depth can represent:

1-bit 2 colors
2-bit 4 colors
3-bit 8 colors
4-bit 16 colors
5-bit 32 colors
6-bit 64 colors
7-bit 128 colors
8-bit 256 colors

Bit Depth
Bit depth is a way to refer to the
maximum number of colors a
graphic can contain. This chart
shows the number of colors each bit
depth can represent:

1-bit 2 colors
2-bit 4 colors
3-bit 8 colors
4-bit 16 colors
5-bit 32 colors
6-bit 64 colors
7-bit 128 colors
8-bit 256 colors

N OT E

If you’ve been paying attention, you
may be thinking that the photo of the
barn in this section should be saved as a
JPEG, not a GIF. You’re absolutely right.
Normally, I wouldn’t make this photo a
GIF, but I’m using it in the examples for
this section because it reveals the effects
of optimization more dramatically than
an image with flat colors. Thank you for
bearing with me.

N OT E

If you’ve been paying attention, you
may be thinking that the photo of the
barn in this section should be saved as a
JPEG, not a GIF. You’re absolutely right.
Normally, I wouldn’t make this photo a
GIF, but I’m using it in the examples for
this section because it reveals the effects
of optimization more dramatically than
an image with flat colors. Thank you for
bearing with me.

Part IV: Creating Web Graphics392

Optimizing GIFs

Dithering: 9.6 KB No dithering: 7.8 KB

Figure 19-5. Turning off or reducing the amount of dithering reduces the file size. Both
images have 32 pixel colors and use an adaptive palette.

Using the lossy filter

As we discussed in Chapter 18, GIF compression is lossless, which means

every pixel in the indexed color image is preserved during compression. You

can force some pixels to be thrown out prior to compression, however, using

the Lossy setting in Photoshop or Loss in Fireworks (Figure 19-3, C).

Again, throwing out stray pixels is all in the name of maximizing repetition

in strings of pixel colors, allowing GIF compression to do its stuff. Depending

on the image, you can apply a loss value of 5% to 30% without seriously

degrading the image. Figure 19-6 shows the results of applying Photoshop’s

Lossy setting to the barn image.

This technique works best for continuous tone art (but then, images that are

all continuous tone should probably be saved as JPEGs anyway). You might

try playing with lossiness on an image with a combination of flat and pho-

tographic content.

Designing for GIF compression

Now that you’ve seen how high bit-depths and dithering bloat GIF file sizes,

you have a good context for my next tip. Before you even get to the point of

making optimization settings, you can be proactive about optimizing your

graphics by designing them to compress well in the first place.

Finding the “Sweet
Spot”
You will see that finding the best
optimization for a given image
requires adjusting all of these
attributes (bit-depth, dithering,
lossiness) in turn until the best
image quality at the smallest file
size is achieved. It takes time and
practice, but eventually, you will find
the “sweet spot” for each image.

G R A P H I c S t I P

Finding the “Sweet
Spot”
You will see that finding the best
optimization for a given image
requires adjusting all of these
attributes (bit-depth, dithering,
lossiness) in turn until the best
image quality at the smallest file
size is achieved. It takes time and
practice, but eventually, you will find
the “sweet spot” for each image.

G R A P H I c S t I P

Lossy set to 0%: 13.2 KB

Lossy set to 25%: 7.5 KB

Figure 19-6. File size without and with the
Lossy setting applied in Photoshop.

Lossy set to 0%: 13.2 KB

Lossy set to 25%: 7.5 KB

Figure 19-6. File size without and with the
Lossy setting applied in Photoshop.

Optimizing GIFs

Chapter 19, Lean and Mean Web Graphics 393

Keep it flat

I’ve found that as a web designer, I’ve changed my illustration style to match

the medium. In graphics where I might have used a gradient blend, I now opt

for a flat color. In most cases, it works just as well, and it doesn’t introduce

unflattering banding and dithering or drive up the file size (Figure 19-7). You

may also choose to replace areas of photos with subtle blends, such as a blue

sky, with flat colors if you need to save them as GIFs (otherwise, the JPEG

format may be better).

When I create the same image with flat colors,
the size is only 3.2 KB.

This GIF has gradient blends and 256 colors.
Its file size is 19 KB.

Even when I reduce the number of colors to 8,
the file size is 7.6 KB.

Figure 19-7. You can keep file sizes small by designing in a way that takes advantage of
the GIF compression scheme.

Horizontal stripes

Here’s an esoteric little tip. When you are designing your web graphics, keep

in mind that GIF compression works best on horizontal bands of color. If

you want to make something striped, it’s better to make the stripes horizontal

rather than vertical (Figure 19-8). Silly, but true.

Summing up GIF optimization

The GIF format offers many opportunities for optimization. Designing with

flat colors in the first place is a good strategy for creating small GIFs. The next

tactic is to save the GIF with the fewest number of colors possible to keep the

image intact. Adjusting the amount of dithering and applying a loss filter are

additional ways to squeeze out even more bytes.

Exercise 19-1 on the following page gives you a chance to try out some of these

techniques.

280 bytes

585 bytes

Figure 19-8. GIFs designed with
horizontal bands of color will compress
more efficiently than those with vertical
bands.

Part IV: Creating Web Graphics394

Optimizing JPEGs

Optimizing JPEGs
JPEG optimization is slightly more straightforward than GIF. The general

strategies for reducing the file size of JPEGs are:

Be aggressive with compression

Use Weighted (Selective) Optimization if available

Choose Optimized if available

Soften the image (Blur/Smoothing)

This section explains each approach, again using Photoshop’s and Fireworks’

optimization tools, shown in Figure 19-10. Notice that there is no color table

for JPEGs because they do not use palettes.

Photoshop CS3 Fireworks 8

฀
B

C
฀

C

Figure 19-10. JPEG optimization options in Photoshop’s Save for Web & Devices dialog
box (left) and Fireworks’ Optimize panel (right).

Before we get to specific settings, let’s take a look at what JPEG compression

is good at. This will provide some perspective for later techniques in this

section.

Getting to know JPEG compression

The JPEG compression scheme loves images with subtle gradations, few

details, and no hard edges. One way you can keep JPEGs small is to start with

the kind of image it likes.

Avoid detail

JPEGs compress areas of smooth blended colors much more efficiently than

areas with high contrast and sharp detail. In fact, the blurrier your image,

the smaller the resulting JPEG. Figure 19-11 shows two similar graphics with

blended colors. You can see that the image with contrast and detail is more

than four times larger at the same compression/quality setting.

•

•

•

•

exercise 19-1 | Making
lean and mean GIFs

See if you can reduce the file sizes
of the images in Figure 19-9 to
within the target size range without
seriously sacrificing image quality.
The starting images are available
with the materials for this chapter at
www.learningwebdesign.com.

Take advantage of all the techniques
covered in this section if you have
Photoshop (version 6 or later) or
Fireworks (version 4 or later). You can
still play along with other tools such
as Corel Paint Shop Pro, but you may
not have such fine-tuned control
over dithering or a Lossy setting.

There are many ways to achieve the
desired file size, and there are no
“right” answers. It is mostly a matter
of your personal judgment, but the
target file sizes give you a reasonable
number to shoot for.

asian.psd; target: 4 to 5 KB

info.psd; target: <300 bytes

bunny.psd; target: 5 to 6 KB

Figure 19-9. Create GIFs that are
optimized to the target file sizes.

exercise 19-1 | Making
lean and mean GIFs

See if you can reduce the file sizes
of the images in Figure 19-9 to
within the target size range without
seriously sacrificing image quality.
The starting images are available
with the materials for this chapter at
www.learningwebdesign.com.

Take advantage of all the techniques
covered in this section if you have
Photoshop (version 6 or later) or
Fireworks (version 4 or later). You can
still play along with other tools such
as Corel Paint Shop Pro, but you may
not have such fine-tuned control
over dithering or a Lossy setting.

There are many ways to achieve the
desired file size, and there are no
“right” answers. It is mostly a matter
of your personal judgment, but the
target file sizes give you a reasonable
number to shoot for.

asian.psd; target: 4 to 5 KB

info.psd; target: <300 bytes

bunny.psd; target: 5 to 6 KB

Figure 19-9. Create GIFs that are
optimized to the target file sizes.

Optimizing JPEGs

Chapter 19, Lean and Mean Web Graphics 395

gradient.jpg (12 KB) detail.jpg (49 KB)

Figure 19-11. JPEG compression works better on smooth blended colors than hard edges
and detail.

Avoid flat colors

It’s useful to know that totally flat colors don’t fare well in JPEG format

because the colors tend to shift and get mottled as a result of the compres-

sion, particularly at higher rates of compression (Figure 19-12). In general, flat

graphical images should be saved as GIFs because the image quality will be

better and the file size smaller.

In the GIF, the flat colors and
crisp detail are preserved.

In the JPEG, the flat color changes
and gets blotchy. Detail is lost as a

result of JPEG compression.

chair.jpg chair.gif

Figure 19-12. The same flat graphical image saved as both a JPEG and a GIF.

Be aggressive with compression

The primary tool for optimizing JPEGs is the Quality setting (Figure 19-10, ฀).

The Quality setting allows you to set the rate of compression; lower quality

means higher compression and smaller files. Figure 19-13 shows the results of

different quality (compression) rates as applied in Photoshop and Fireworks.

Notice that the image holds up reasonably well, even at very low quality set-

tings. Notice also that the same settings in each program produce different

results. This is because the quality rating scale is not objective—it varies from

program to program. For example, 1% in Photoshop is similar to 30% in

Fireworks and other programs. Furthermore, different images can withstand

different amounts of compression. It is best to go by the way the image looks

rather than a specific number setting.

Unpredictable
Color in JPEGs
In GIF images, you have total control
over the colors that appear in the
image, making it easy to match RGB
colors in adjoining GIFs or in an
inline GIF and a background image
or color.

Unfortunately, flat colors shift around
and get somewhat blotchy with
JPEG compression, so there is no
way to control the colors precisely.
Even pure white can get distorted
in a JPEG.

This means there is no guaranteed
way to create a perfect, seamless
match between a JPEG and another
color, whether in a GIF, PNG, another
JPEG, or even an RGB background
color. If you need a seamless
match between the foreground
and background image, consider
switching formats to GIF or PNG to
take advantage of transparency to
let the background show through.

Unpredictable
Color in JPEGs
In GIF images, you have total control
over the colors that appear in the
image, making it easy to match RGB
colors in adjoining GIFs or in an
inline GIF and a background image
or color.

Unfortunately, flat colors shift around
and get somewhat blotchy with
JPEG compression, so there is no
way to control the colors precisely.
Even pure white can get distorted
in a JPEG.

This means there is no guaranteed
way to create a perfect, seamless
match between a JPEG and another
color, whether in a GIF, PNG, another
JPEG, or even an RGB background
color. If you need a seamless
match between the foreground
and background image, consider
switching formats to GIF or PNG to
take advantage of transparency to
let the background show through.

Part IV: Creating Web Graphics396

Optimizing JPEGs

Fireworks 8

100% (51.5 KB) 80% (12.3 KB)

60% (7.7 KB) 40% (5 KB)

1% (1.2 KB)20% (1.8 KB)

100% (38.8 KB)

Photoshop CS3

80% (20.7 KB)

60% (12.8 KB)

20% (5.9 KB) 1% (3.4 KB)

40% (8 KB)

Figure 19-13. A comparison of various compression levels in Photoshop and Fireworks.

Weighted optimization (selective JPEGs)

Not all image areas are created equal. You may wish to preserve detail in

one area, such as a person’s face, but compress the heck out of the rest of

the image. To this end, Photoshop (versions 6 and higher) gives us Weighted

Optimization. In Fireworks, it’s called Selective Quality. Both methods apply

different amounts of JPEG compression within a single image—one setting

for a selected area and another setting for the rest of the image.

In both programs, the process starts by using a selection tool to select the

area of the image you’d like to preserve. From there, the programs work a

little differently.

Optimizing JPEGs

Chapter 19, Lean and Mean Web Graphics 397

Using weighted optimization (Photoshop)

In Photoshop, once you’ve selected the higher-quality areas of the image, save

the selection to a new channel (Select ➝ Save Selection) (Figure 19-14, ฀) and

give the channel a name B. The white areas of the mask correspond to the

highest image quality, while dark areas describe the lowest (gray areas are on

a linear scale in between) C.

In the JPEG options in the Save for Web & Devices dialog box, there is a

Mask button next to the Quality setting D. Clicking the Mask button gives

you the Modify Quality Setting dialog box E where you can set the quality

levels for the black (low quality) areas and white (high quality) areas of the

masked image. Selecting the Preview option allows you to see the results of

your settings. When you are done, click OK, then Save.

฀ B

D

C

E

Adjust the settings for the white (high
quality) and dark (low quality) areas of the
masked image.

Select the image areas you want to preserve and
save the selection as a channel.

Click the Mask button next to the JPEG Quality
setting to access the Modify Quality Setting
dialog box.

Figure 19-14. Using Weighted Optimization in Photoshop CS3.

Using selective quality (Fireworks)

Fireworks has a set of options for creating what it calls “selective JPEGs”

(Figure 19-15). Select the areas of the image you want to preserve ฀, then

select Modify ➝ Selective JPEG ➝ Save Selection as JPEG Mask B. In the

Optimize panel, you can set the Selective Quality for your selection or click

the adjacent icon C to access the Selective JPEG dialog box with a full set of

options, such as preserving type and button quality and selecting a color for

the masked area. The regular Quality setting will be used for all other areas

of the image.

N OT E

Photoshop offers weighted optimiza-
tion GIFs as well (Fireworks does not).
Look for the Mask button like the one
pictured in Figure 19-14 D next to the
Palette, Lossy, and Dither options to
access the respective settings. Refer to
the Photoshop documentation for more
detailed instructions.

N OT E

Photoshop offers weighted optimiza-
tion GIFs as well (Fireworks does not).
Look for the Mask button like the one
pictured in Figure 19-14 D next to the
Palette, Lossy, and Dither options to
access the respective settings. Refer to
the Photoshop documentation for more
detailed instructions.

Part IV: Creating Web Graphics398

Optimizing JPEGs

In the Optimize panel, the button next to
Selective Quality access the full set of
quality options for the selection.

Select the area you want to preserve and
save it as a Selective JPEG Mask.

฀ B

C

D

Figure 19-15. Using Selective Quality in Fireworks 8.

Choose optimized JPEGs

Optimized JPEGs have slightly smaller file sizes and better color fidelity

(although I’ve never been able to see the difference) than standard JPEGs. For

this reason, you should select the Optimized option if your image software

offers it (Figure 19-10, B). Look for the Optimized option in Photoshop and

third-party JPEG compression utilities. Fireworks does not offer the option

as of this writing.

Blurring or smoothing the image

Because soft images compress smaller than sharp ones, Photoshop and

Fireworks make it easy to blur the image slightly as part of the optimization

process. In Photoshop, the tool is called Blur (Figure 19-10, C); in Fireworks,

it’s Smoothing (Figure 19-10, C). Blurring makes the JPEG compression work

better, resulting in a smaller file (Figure 19-16). If you don’t have these tools,

you can soften the whole image yourself by applying a slight blur to the

image with the Gaussian Blur filter (or similar) manually prior to export.

The downside of Blur and Smoothing filters is that they are applied evenly to

the entire image. If you want to preserve detail in certain areas of the image,

you can apply a blur filter just to the areas you don’t mind being blurry.

When you’re done, export the JPEG as usual. The blurred areas will take full

advantage of the JPEG compression, and your crisp areas will stay crisp. Try

combining this selective blurring technique with Weighted Optimization or

Selective JPEGs for even more file savings.

Quality: 20; Blur: 0 (9.3 KB)

Quality: 20; Blur: .5 (7.2 KB)

With a Blur setting of only .5, the
resulting file size is 22% smaller.
In Fireworks, use Smoothing for

similar results.

This JPEG was saved at low quality (20%
in Photoshop) with no Blur applied.

Figure 19-16. Blurring the image slightly
before exporting as a JPEG results in
smaller file sizes.

Quality: 20; Blur: 0 (9.3 KB)

Quality: 20; Blur: .5 (7.2 KB)

With a Blur setting of only .5, the
resulting file size is 22% smaller.
In Fireworks, use Smoothing for

similar results.

This JPEG was saved at low quality (20%
in Photoshop) with no Blur applied.

Figure 19-16. Blurring the image slightly
before exporting as a JPEG results in
smaller file sizes.

Optimizing JPEGs

Chapter 19, Lean and Mean Web Graphics 399

Summing up JPEG optimization

Your primary tool for optimizing JPEGs is the Quality (compression) setting.

If your tools offer them, making the JPEG Optimized or applying Blur or

Smoothing will make them smaller. Again, if JPEG images are central to your

site and both size and quality are priorities, you may find that specialized

JPEG utilities (listed in the JPEG Optimization Tools sidebar) are worth the

investment. They generally produce smaller file sizes with better image qual-

ity than Photoshop and Fireworks.

Now it’s your turn to play around with JPEGs in Exercise 19-2.

exercise 19-2 | Optimizing JPEGs

Once again, see if you can use the techniques in this section to save the JPEGs in
Figure 19-17 in the target file size range. There are no right answers, so follow your
preferences. What is important is that you get a feel for how file size and image
quality react to various settings.

penny.tif
target: 12–18 KB

This image is a good candidate for some
manual blurring of the background prior

to compression.

falcon.tif
target: 35–40 KB

Imagine that this image is going on a site that
sells poster where it would be important to

preserve the type and painting detail
throughout the image. The result is you can’t

compress it as far as other images.

boats.psd
target: 24–30 KB

Watch for JPEG artifacts around the lines and masts of the
boats. Try to keep those lines clean.

Figure 19-17. Match the file sizes.

exercise 19-2 | Optimizing JPEGs

Once again, see if you can use the techniques in this section to save the JPEGs in
Figure 19-17 in the target file size range. There are no right answers, so follow your
preferences. What is important is that you get a feel for how file size and image
quality react to various settings.

penny.tif
target: 12–18 KB

This image is a good candidate for some
manual blurring of the background prior

to compression.

falcon.tif
target: 35–40 KB

Imagine that this image is going on a site that
sells poster where it would be important to

preserve the type and painting detail
throughout the image. The result is you can’t

compress it as far as other images.

boats.psd
target: 24–30 KB

Watch for JPEG artifacts around the lines and masts of the
boats. Try to keep those lines clean.

Figure 19-17. Match the file sizes.

Part IV: Creating Web Graphics400

Optimizing PNGs

Optimizing PNGs
As discussed in the previous chapter, there are two types of PNG files: 24-bit

PNGs (PNG-24) that contain colors from the millions of colors in the RGB

color space, and 8-bit indexed PNGs (PNG-8) with a palette limited to 256

colors. This section looks at what you can (and can’t) do to affect the file size

both kinds of PNG files.

PNG-24

PNG’s lossless compression makes PNG-24 a wonderful format for preserving

quality in images, but unfortunately, it makes it a poor option for web graph-

ics. A PNG-24 will always be significantly larger than a JPEG of the same

image because no pixels are sacrificed in the compression process. Therefore,

your first “lean and mean” strategy is to avoid PNG-24 for photographic

images and choose JPEG instead.

The big exception to this rule is if you want to use multiple levels of trans-

parency (alpha transparency). In that case, given today’s tools and browsers,

PNG-24 is your only option.

There aren’t any tricks for reducing the file size of a PNG-24, as evidenced by

the lack of options on the PNG-24 export panels (Figure 19-18). You’ll have to

accept the file size that your image editing tool cranks out.

PNG-8

Indexed color PNGs work similarly to GIFs, and in fact, usually result in

smaller file sizes for the same images, making them a good byte-saving

option. The general strategies for optimizing GIFs also apply to PNG-8s:

Reduce the number of colors

Reduce dithering

Design with flat colors

You can see that the list of export options for PNG-8s is more or less the same

as for GIF (Figure 19-18). The notable exception is that there is no “lossy” filter

for PNGs as there is for GIFs. Otherwise, all of the techniques listed in the

Optimizing GIFs section apply to PNGs as well.

It is worth noting that making a PNG interlaced significantly increases its file

size, by as much as 20 or 30 percent. It is best to avoid this option unless you

deem it absolutely necessary to have the image appear in a series of passes.

N OT E

I have not included an exercise specifically for PNGs because there are no new set-
tings or strategies to explore. However, you should feel free to try making PNG-8s and
PNG-24s out of the images in the previous two exercises, and see how they compare
to their GIF and JPEG counterparts.

•

•

•

Photoshop CS3

Fireworks 8

Figure 19-18. PNG-24 and PNG-8 settings
in Photoshop and Fireworks.

Photoshop CS3

Fireworks 8

Figure 19-18. PNG-24 and PNG-8 settings
in Photoshop and Fireworks.

Optimize to File Size

Chapter 19, Lean and Mean Web Graphics 401

Optimize to File Size
One last optimizing technique is good to know about if you use Photoshop

or Fireworks.

In some instances, you may need to optimize a graphic to hit a specific file

size, for example, when designing an ad banner with a strict K-limit. Both

Photoshop and Fireworks offer an Optimize to File Size function. You just set

the desired file size and let the program figure out the best settings to use to

get there, saving you lots of time finagling with settings.

This feature is pretty straightforward to use. In Photoshop, choose “Optimize

to File Size” from the Options pop-up menu in the Save for Web & Devices

dialog box . In Fireworks, choose “Optimize to Size” from the Options pop-up

menu in the Optimize panel (Figure 19-19). All you need to do is type in your

desired target size and click OK. The tool does the rest.

Photoshop also asks if you’d like to start with your own optimization settings

or let Photoshop select GIF or JPEG automatically. Curiously, PNG is not an

option for automatic selection, so start with your own settings if you want

to save as PNG.

Optimize to Size in Fireworks 8
Choose Optimize to Size from the Options pop-up menu and type in
your target size.

Optimize to File Size in Photoshop CS3
Choose Optimize to File Size from the Options
pop-up menu and type in your target size.

Figure 19-19. Optimizing to a specific file size (in Photoshop and Fireworks).

Part IV: Creating Web Graphics402

Optimization in Review

Optimization in Review
If this collection of optimization techniques feels daunting, don’t worry. After

a while, they’ll become part of your standard production process. You’ll find

it’s easy to keep your eye on the file size and make a few setting tweaks to

bring that number down. Now that you have the added advantage of under-

standing what the various settings are doing behind the scenes, you can make

informed and efficient optimization decisions.

Combine your new graphics production skills with your knowledge of

(X)HTML and style sheets, and you’ve got what it takes to put together a

complete web site. But we’re not quite through. In Part III, we’ll take a birds-

eye view at the web site production process as well as how to get your site

on the Web.

Test Yourself
Now that you’re acquainted with the world of graphics optimization, it’s time

to take a little test. I know you’ll ace it.

Why do professional web designers optimize their graphics?

How does dithering affect the file size of a GIF?

How does the number of pixel colors affect the file size of a GIF?

What is the most effective setting for optimizing a JPEG?

How does the Blur or Smoothing setting affect JPEG size?

What is the best way to optimize a PNG-8? A PNG-24?

1.

2.

3.

4.

5.

6.

IN THIS PART

Chapter 20
The Site Development

Process

Chapter 21
Getting Your Pages

on the Web

FROM START TO
FINISH PART V

405

IN THIS CHAPTER

The standard steps in the
web design process:

Conceptualization
and research

Content organization
and creation

Art direction

Prototype building

Testing

Site launch

Maintenance

By now you are familiar with (X)HTML and CSS, but markup and visual

design are only pieces of the whole web design process. In this chapter and

the following, we’ll broaden the scope to consider the big picture of how sites

get built and published to the Web.

Web sites come in all shapes and sizes—from a single page résumé to mega-

sites conducting business for worldwide corporations and everything in

between. Regardless of the scale, the process for developing a site involves the

same basic steps:

 1. Conceptualize and research.

 2. Create and organize content.

 3. Develop the “look and feel.”

 4. Produce a working prototype.

 5. Test it.

 6. Launch the site.

 7. Maintain.

Of course, depending on the nature and scale of the site, these steps will

vary in sequence, proportion, and number of people required, but in essence,

they are the aspects of a typical journey in the creation of a site. This chapter

examines each step of the web design process.

1. Conceptualize and Research
Every web site begins with an idea. It’s the result of someone wanting to get

something online, be it for personal or commercial ends. This early phase is

exciting. You start with the core idea (“photo album for my family,” “shopping

site for skateboarding gear,” “online banking,” etc.) then brainstorm on how

it’s going to manifest itself as a web site. This is a time for lists and sketches,

whiteboards and notebooks. What’s going to make it exciting? What’s going

to be on the first page?

THE SITE
DEVELOPMENT
PROCESS

CHAPTER 20

Part V: From Start to Finish406

1. Conceptualize and Research

Don’t bother launching an HTML editor until you have your ideas and strat-

egy together. This involves asking your client (or yourself) a number of ques-

tions regarding resources, goals, and, most importantly, audience. The Some

Questions Before You Begin sidebar provides just a sampling of the sorts of

questions you might ask before you start a project.

Many large web development and design firms spend more time on research-

ing and identifying clients’ needs than on any other stage of production. For

large sites, this step may include case studies, interviews, and extensive mar-

ket research. There are even firms dedicated to developing web strategies for

emerging and established companies.

You may not need to put that sort of effort (or money) into a web site’s prepara-

tion, but it is still wise to be clear about your expectations and resources early

on in the process, particularly when attempting to work within a budget.

Many web development
and design firms spend
more time on researching
and identifying clients’
needs than on any other
stage of production.

Many web development
and design firms spend
more time on researching
and identifying clients’
needs than on any other
stage of production.

Strategy

Why are you creating this web site? What do you expect to
accomplish?

What are you offering your audience?

What do you want users to do on your web site?
After they’ve left?

What brings your visitors back?

General Site Description

What kind of site is it? (Purely promotional? Info-gathering?
A publication? A point of sale?)

What features will it have?

What are your most important messages?

Who are your competitors? What are they doing right? What
could be improved upon?

Target Audience

Who is your primary audience?

How Internet-savvy are they? How technically savvy?

Can you make assumptions about an average user’s
connection speed? Platform? Monitor size? Browser use?

How often do you expect them to visit your site? How long
will they stay during an average visit?




















Content

Who is responsible for generating original content?

How will content be submitted (process and format)?

How often will the information be updated (daily, weekly,
monthly)?

Resources

What resources have you dedicated to the site (budget, staff,
time)?

Does the site require a full content management system?

Can maintenance be handled by the client's staff?

Do you have a server for your site?

Have you registered a domain name for your site?

Graphic Look and Feel

Are you envisioning a certain look and feel for the site?

Do you have existing standards, such as logos and colors,
that must be incorporated?

Is the site part of a larger site or group of sites with design
standards that need to be matched?

What are some other web sites you like? What do you like
about them? What sites do you not like?



















Some Questions Before You Begin
This is just a small sampling of the questions you should ask yourself or your clients during the research phase of design.

2. Create and Organize Content

Chapter 20, The Site Development Process 407

2. Create and Organize Content
The most important part of a web site is its content. Despite the buzz about

technologies and tools, content is still king on the Internet. There’s got to

be something of value, whether it’s something to read, something to do, or

something to buy that attracts visitors and keeps them coming back. Even if

you are working as a freelancer, it is wise to be sensitive to the need for good

content.

Content creation

When creating a site for a client, you need to immediately establish who

will be responsible for generating the content that goes on the site. Some

clients arrive full of ideas but empty-handed, assuming that you will

create the site and all of the content in it. Ideally, the client is responsible for

generating its own content and will allocate the appropriate resources to do

so. Solid copy writing is an important, yet often overlooked component of a

successful site.

Information design

Once you’ve got content—or at least a very clear idea of what content you

will have—the next step is to organize the content so it will be easily and

intuitively accessible to your audience. For large sites, the information design

may be handled by a specialist in information architecture. It might also be

decided by a team made up of designers and the client. Even personal sites

require attention to the division and organization of information.

Again, this is a time for lists and sketchbooks. Get everything that you want

in the site out there on the table. Organize it by importance, timeliness, cat-

egory, and so on. Decide what goes on the home page and what gets divided

into sections. Think about how your users would expect to find information

on your site and design with their needs and assumptions in mind.

The result of the information design phase may be a diagram (often called

a site map) that reveals the overall “shape” of the site. Pages in diagrams are

usually represented by rectangles; arrows indicate links between pages or sec-

tions of the site. The site map gives designers a sense of the scale of the site

and how sections are related, and aids in the navigation design.

Figure 20-1 is a diagram of a small self-promotional site. It is tiny compared

to the diagrams for sprawling corporate or e-commerce sites, but it demon-

strates how pages and the connections between pages are represented. I once

saw a site diagram for a high-profile commercial site that, despite using

postage stamp–sized boxes to represent pages, filled the length and height of

the hallway.

The most important part
of a web site is its content.
The most important part
of a web site is its content.

Solid copy writing is
an important, yet often
overlooked component of
a successful site.

Solid copy writing is
an important, yet often
overlooked component of
a successful site.

Viva la Pen
and Paper!
There’s still no beating pen and
paper when it comes to firing up
and documenting the creative
process. Before you delve into the
(X)HTML and GIFs, there’s no better
way to hash out your ideas quickly
than in your handy notepad, on a
napkin or whiteboard, or whatever
surface is available. It’s about
creativity.

Make lists. Draw diagrams. Figure out
that home page. Do it fast and loose,
or include every minute detail and
copy it faithfully online. It all comes
down to your personal style.

D e S I G n t I P

Viva la Pen
and Paper!
There’s still no beating pen and
paper when it comes to firing up
and documenting the creative
process. Before you delve into the
(X)HTML and GIFs, there’s no better
way to hash out your ideas quickly
than in your handy notepad, on a
napkin or whiteboard, or whatever
surface is available. It’s about
creativity.

Make lists. Draw diagrams. Figure out
that home page. Do it fast and loose,
or include every minute detail and
copy it faithfully online. It all comes
down to your personal style.

D e S I G n t I P

Part V: From Start to Finish408

3. Develop the “Look and Feel”

The effectiveness of a site’s organization can make or break it. Don’t underes-

timate the importance of this step.

text

Home page

Email
form

FAQ Book Web design
services

Resume

Info
pages

Samples

External links

Figure 20-1. A simple site diagram.

3. Develop the “Look and Feel”
The look and feel of a site refers to its graphic design and overall visual

appearance, including its color scheme, typography, and image style (for

example, photographic versus illustrative). You may also hear the visual

design of a site referred to as the theme or skin. As in the print world, this

phase of design is often referred to as art direction.

Sketch it

This is another chance to get out pads of paper and markers. Or perhaps you

prefer to work out ideas right in Photoshop. Either way, it’s your chance to be

creative and try things. The result is one or more sketches (sometimes called

a look and feel study) that show off your proposed visual style for the site.

A sketch is usually just a flat graphic file in the approximate dimensions of

the browser window. When it is necessary to show interactivity (such as a

“rollover” button effect), some designers use a layer in Photoshop that can be

switched on and off to simulate the effect.

In some cases, it may be necessary to create a prototype home page in HTML

to show off interactive and animated features, particularly if you have a client

with no imagination (but a big budget to cover development costs). Keep in

mind that the art direction phase is for exploring how the site will look, so

flat graphic sketches are usually adequate.

You may be interested in reading
my article, “Building Usable Web
Sites,” that discusses information and
interface design in more detail. It is
available for download in PDF format
from www.learningwebdesign.
com.

O n l I n e R e S O U R c e

You may be interested in reading
my article, “Building Usable Web
Sites,” that discusses information and
interface design in more detail. It is
available for download in PDF format
from www.learningwebdesign.
com.

O n l I n e R e S O U R c e

A popular tool for creating diagrams
and flow charts on Mac OS X is
OmniGraffle, available at www.
omnigroup.com/applications/
omnigraffle.

For Windows users, there’s Visio, part
of Microsoft Office (office.microsoft.
com).

t O O l t I P

A popular tool for creating diagrams
and flow charts on Mac OS X is
OmniGraffle, available at www.
omnigroup.com/applications/
omnigraffle.

For Windows users, there’s Visio, part
of Microsoft Office (office.microsoft.
com).

t O O l t I P

4. Produce a Working Prototype

Chapter 20, The Site Development Process 409

The art direction process

In most professional web development jobs, the client receives two or three

sketches showing its home page in various visual styles. In some cases, a sec-

ond- or third-level design might be included if it is important to show how

the design plays out through several levels. Figure 20-2 shows a set of look-

and-feel studies I created for a women’s site several years ago.

Ideally, the graphic designer is given a list of what must appear on the page,

including required images, navigational elements, and a manuscript for the

text. There may also be a wireframe diagram of the functionality as worked

out by an interface designer. That is the best case scenario; don’t be surprised

if you are asked to make stuff up on occasion.

After reviewing the sketches, the client picks one sketch, often with a list of

changes, requiring another round of design until the final design is agreed

upon. In my experience, clients usually see elements they

like in each style and ask for some sort of hybrid. Some cli-

ents request more and more sketches. See the sidebar, Get It

in Writing, for tips on keeping the process under control.

4. Produce a Working
Prototype
Once the design is approved and the content is ready to

go, the site enters the production phase. For small sites, the

production may be done by one person (see the sidebar,

Solo Production Process). It is more common in com-

mercial web design to have a team of people working on

specialized tasks.

The art department uses its graphics tools to create all

the graphics needed for the site. The production depart-

ment marks up the content with (X)HTML and formats

the text with style sheets. They may create final pages or

simply templates that get filled out with content on the fly.

Programmers write the scripts and server-side applications

necessary to make the site function as intended. There may

also be multimedia elements such as videos or Flash mov-

ies. In short, all of the parts of the site must be built.

At some point, all the pieces are brought together into a working site. This

is not necessarily a distinct step; it is more likely to be an ongoing process.

As in software design, the first prototype is often called the “alpha” release. It

might be made available only to people within the web team for review and

revisions before it is released to the client. After changes, the second release is

called the “beta.” The client should certainly be involved by this phase, if not

sooner. At this point, there is still plenty to do before the site is ready to go live

Get It in Writing
Design comes down to a matter
of taste, and clients don’t always
know what they want. When writing
your contract for the job, it is a
good idea to specify the number
of initial sketches and the number
of revisions that will be included
for the project price. That way, you
have the opportunity to ask for
extra compensation should the art
direction phase get out of control.

B U S I n e S S t I P

Get It in Writing
Design comes down to a matter
of taste, and clients don’t always
know what they want. When writing
your contract for the job, it is a
good idea to specify the number
of initial sketches and the number
of revisions that will be included
for the project price. That way, you
have the opportunity to ask for
extra compensation should the art
direction phase get out of control.

B U S I n e S S t I P

Figure 20-2. As part of the art direction
phase, I created three sketches for this
women’s site, demonstrating how the
same material might look in three
different visual styles.

Figure 20-2. As part of the art direction
phase, I created three sketches for this
women’s site, demonstrating how the
same material might look in three
different visual styles.

Part V: From Start to Finish410

5. Test It

on the Web. There are also sites out there, often web applications and services,

that make their beta versions open to the public or a limited subscriber base

in order to gather valuable feedback.

5. Test It
All web sites need to be tested before they are ready for the public. Professional

web developers build time and resources into the production schedule for rig-

orous testing, but even personal pages need to be taken for a spin around the

block before the official launch. Whether formally or informally, sites should

be tested for basic functionality, performance in different browsing environ-

ments, and how easy they are to use.

The site may be tested locally (on your own hard drive) prior to uploading to

its final home on the web server. It is also useful to set up a hidden testing site

on the server so that the kinks can be worked out in its natural environment

before making it live.

Basic quality check

At minimum, all sites should be tested to make sure they work. In the web

design biz, checking a site for basic functionality is one part of what is often

called the QA (short for quality assurance) phase of production.

The following questions address some of the minimal requirements before

publishing a site to the Web.

Is all the content there� Make sure that none of your content is missing,

whether as the result of a markup glitch or miscommunication.

Are there typos or grammar errors� The importance of proofreading a site

is often overlooked, but errors in copy can seriously damage the perceived

credibility of your site. Make sure all copy is read carefully, preferably by

more than one person.

Do all the links work� It’s very easy to leave links un-linked during the pro-

duction process. It is also possible that some files may have been moved

around but the links were not updated. Before you go live, have someone

click every link on every page to make sure there are no dead ends.

Are all the images showing� Confirm that all the graphic files are in the

proper directory and that the correct pathname is used in the img ele-

ments to avoid missing image icons.

Solo Production
Process
It is perfectly possible to create an
entire web site by yourself; in fact,
that is one of the cool things about
the Web. If you are flying solo, as I
do, your production process might
go something like this:

Sketch out the structure of
the home page and second-
level pages. You might do this
as a simple sketch on paper
or you might develop the
page structure and its look in
Photoshop.

Create the (X)HTML documents
and images. If you are using a
style sheet, you should start it as
well. Same goes for scripts.

Put the pieces together and
look at the page in the browser.
If you are using a WYSIWYG
web authoring tool, you should
still open it in a browser since
the layout view is not always
accurate. There are some styles
and behaviors that can be tested
only in the browser.

Make changes as necessary to
the (X)HTML documents, images,
styles, and scripts.

Save your changes and reload in
the browser (or several browsers).

Repeat steps 4 and 5 until the
pages are finished.

Upload it to the server and test
it again.

1.

2.

3.

4.

5.

6.

7.

Solo Production
Process
It is perfectly possible to create an
entire web site by yourself; in fact,
that is one of the cool things about
the Web. If you are flying solo, as I
do, your production process might
go something like this:

Sketch out the structure of
the home page and second-
level pages. You might do this
as a simple sketch on paper
or you might develop the
page structure and its look in
Photoshop.

Create the (X)HTML documents
and images. If you are using a
style sheet, you should start it as
well. Same goes for scripts.

Put the pieces together and
look at the page in the browser.
If you are using a WYSIWYG
web authoring tool, you should
still open it in a browser since
the layout view is not always
accurate. There are some styles
and behaviors that can be tested
only in the browser.

Make changes as necessary to
the (X)HTML documents, images,
styles, and scripts.

Save your changes and reload in
the browser (or several browsers).

Repeat steps 4 and 5 until the
pages are finished.

Upload it to the server and test
it again.

1.

2.

3.

4.

5.

6.

7.

5. Test It

Chapter 20, The Site Development Process 411

Are all the scripts and applications functioning properly� Run the pages

through a few typical user scenarios (filling out forms, buying a product,

or whatever interaction make sense for your site) to be sure that every-

thing is working as it should.

Browsing environment testing

As discussed in Chapter 3, The Nature of Web Design, your site will be

viewed on a wide range of browsing environments that will impact the way

it looks and functions. Another part of quality assurance is to test your pages

under as many conditions as possible.

Professional developers typically maintain computers running different oper-

ating systems and numerous browser versions for testing purposes. If you are

a solo or hobbyist web designer, you will benefit from just looking at your

site on a friend’s computer that has a different operating system and browser

than you used when you created your site.

A robust site will fare well when tested according to the following criteria.

How does the page look in different browsers� On another platform?

Browsers are notoriously uneven in their support of Cascading Style

Sheets, so if you use CSS for page layout, it is critical that you view your

pages in as many graphical browsers as possible. I often use a service called

Browsercam (browsercam.com) that allows me to view my page in many

browser versions without needing to run them on my own machines.

How does the site work in different browsers� On another platform?

Similarly, there are browser differences in script support, so run your

functionality tests under more than browser/platform configuration.

(Unfortunately, Browsercam won’t test functionality.)

What happens to the pages when the browser window is resized very large�

Very small� What happens if the text is zoomed very large or very small?

Can your site withstand a certain amount window and text resizing?

Does content fall off the screen? Does the page fall apart?

Is the site usable on a text-only browser� What will users see if they access

your page with a mobile phone or PDA? If you’ve written your (X)HTML

documents well, they should be accessible on all manner of browsing

devices. Still, it’s worthwhile to look at your site under minimal condi-

tions to see if you can make any tweaks to improve the experience.

Is the site usable with the graphics turned off� Some users with slower con-

nections may surf the Web with graphics turned off in the browser to

speed up the content display. Some browsers display the alternative text

for each image element, but others don’t. Have you accommodated those

users?

Part V: From Start to Finish412

5. Test It

What happens if the user is not able to view the multimedia elements� It

would be nice if every user was guaranteed to have the plug-ins required

to view media such as Flash movies or Windows Media, but unfortu-

nately, that is not the case. Do you provide help getting the plug-ins they

need? Are there alternative versions of your content for those unable to

view the media?

What is it like to look at your site on a dial-up modem connection� There

is still a significant portion of users accessing the Web over slow con-

nections. Is there anything you can do to make your pages load more

quickly?

User testing

Another type of testing that is important to perform is user testing. This pro-

cess involves sitting people down with your site and seeing how easily they

can find information and complete tasks. Ideally, user testing is conducted as

early in the development process as possible so the site design can be adjust-

ed before the serious production begins. It is not uncommon to do additional

usability testing at regular intervals throughout the production process and

even after the site has launched, so that the site can be tweaked to better serve

the needs of its visitors.

There are companies that you can hire to run controlled tests for you, but the

price is usually steep, making it an option only for commercial web sites with

serious budgets. However, it is possible to run informal user testing on your

family members, friends, coworkers, and anyone you can get to sit in front of

the computer and answer a few questions.

There are two general kinds of user testing: general observed behavior and

task-oriented testing. In the first, you sit the testing subject down with the site

and let them explore it on their own. They provide feedback as they go along,

noting what they like, don’t like, what’s clear, what’s confusing.

In task-oriented testing, users are given a series of tasks of varying difficulty

to perform on the site, such as “Find out if there are any upcoming workshops

on glassblowing,” or, ”Find out who is offering the best price on camcorders.”

An observer takes notes on how efficiently the task is completed, as well as

the links the user followed in the course of completing the task.

Some questions you might want to answer through user testing are:

Can users tell at a glance what the site is about?

Are there any obstacles in the way of accomplishing goals? Can they

quickly find critical information or make a purchase?

Do the test subjects seem to enjoy using the site?

Is there a particular task or site feature that seems to be tripping up mul-

tiple users?

•

•

•

•

User testing is a rich and complex
topic well beyond the scope of
this chapter. For more insight, I
recommend the book Observing
the User Experience by Mike
Kuniavsky (Morgan Kaufmann
Publishers, 2003).

F U R t H e R R e A D I n G

User testing is a rich and complex
topic well beyond the scope of
this chapter. For more insight, I
recommend the book Observing
the User Experience by Mike
Kuniavsky (Morgan Kaufmann
Publishers, 2003).

F U R t H e R R e A D I n G

The Development Process in Review

Chapter 20, The Site Development Process 413

6. Launch the Site
Once you have all the kinks worked out of the site, it’s time to upload it to the

final server and make it available to the world.

It’s a good idea to do one final round of testing to make sure everything was

transferred successfully and the pages function properly under the configura-

tion of the final server. This may seem like extra work, but if the reputation

of your business (or your client’s business) is riding on the success of the web

site, attention to detail is essential.

With the working site online, it’s time to take yourself or your team out for a

a good dinner or a round of drinks (well, that’s what I would do).

7. Maintain the Site
A web site is never truly “done;” in fact, the ability to make updates and

keep content current is one of the advantages of the web medium. It is

important to have a strategy for what will happen with the site after its initial

launch.

Although maintenance is an ongoing process that happens after the site is

initially created, decisions regarding maintenance should be made early in

the development process. For instance, you should be clear up front about

who will be responsible for site upkeep. If you are a freelancer, this should be

included in the contract you sign when you begin the job. You should also

decide what parts of the site will be updated, and how frequently. The refresh

rate will affect the way you organize information and design the site.

You should also consider the lifespan of the site. If it is a site promoting a

specific event, what happens to the site when the event is over? Even sites

that are designed to be around a while will usually require a redesign after a

few years to keep up with changes in content and current publishing

practices.

The Development Process in Review
Hopefully, this chapter gives you a feel for all of the work that goes into a

typical site. Regardless of the role you play in the process, it is important to

be familiar with the other steps along the way. As I mentioned earlier, the

steps may not occur in exactly the same order listed here. You should also

be prepared for any given step to entail a great deal of work, particularly for

larger commercial sites.

Part V: From Start to Finish414

Test Yourself

Test Yourself
How familiar are you with these basic terms in the web design process?

Answers can be found in Appendix A.

What is a site diagram for? At what point in the process would you

make one?

What is a “look and feel” study?

Name three things that should be done or decided before the first

HTML document is created.

What is a beta release? Who is likely to look at it?

Name four things for which every web site should be tested.

1.

2.

3.

4.

5.

415

IN THIS CHAPTER

Registering your own
domain name

Finding a server to host
your web site

The general web publishing
process, step-by-step

Using FTP to upload files

Because your browser can display documents right from your hard drive (in

other words, you can view them locally), you do not need an Internet con-

nection to create web pages. However, eventually, you’ll want to get them out

there for the world to see. That is the point, right?

Putting a page on the Web is easy… just transfer your files to your web server

and ta da—you’re on the Web! But what if you don’t have a web server? This

chapter will tell you where to look for one (you might even have server space

and not know it). You might also want your own domain name. For example,

I have littlechair.com and several others.

This chapter tells you what you need to know about registering a domain

name and getting a server for your web site. We’ll also look at the steps

involved in the typical web publishing process, including how to use FTP

programs to transfer files.

www.“YOU”.com!
Your home page address is your identity on the Web. If you are posting a just-

for-fun page and want to save money, having your own personal corner at

some larger domain (such as www.earthlink.com/members/~littlechair or little-

chair.blogspot.com) might be fine. More likely, you’ll want your own domain

name that better represents your business or content. For a small yearly fee,

anyone can register a domain name.

What’s in a name?

A domain name is a human-readable name associated with a numeric IP

address (the “IP” stands for Internet Protocol) on the Internet. While comput-

ers know that my site is on a server at Internet point 66.226.64.6, you and I

can just call it “littlechair.com.” The IP address is important, though, because

you’ll need one (well, two, usually) to register your domain name.

GETTING
YOUR PAGES
ON THE WEB

CHAPTER 21

Part V: From Start to Finish416

www.“YOU”.com!

Registering a domain

Registering a domain name is easy and fairly inexpensive. There are two ways

to go about it: have your hosting company do it for you or get one directly

from a registrar.

It has become common for companies that provide web hosting to register

domain names as part of the process of setting up an account. They offer this

service for your one-stop-shopping convenience. But be sure to ask specifi-

cally—some still require you to register your domain on your own.

You can also register one yourself directly from a domain name registrar.

Domain name registries are regulated and overseen by ICANN (Internet

Corporation for Assigned Names and Numbers). ICANN also makes sure

that domain names are assigned to a single owner. There used to be just one

domain name registrar, Network Solutions, but now there are hundreds of

ICANN accredited registrars and countless more resellers.

You’ll have to do your own research to find a registrar you like. To see the

complete list of accredited registrars, go to www.internic.net/regist.html. Some

of the most popular are Network Solutions (www.networksolutions.com), the

original domain registrar; Register.com (www.register.com), which has also

been around a long time; and GoDaddy (www.godaddy.com), known for its

rock-bottom prices.

All registrars in the U.S. can register domain names ending in .com, .net, or

.org, while some offer newer and international extensions (see the sidebar,

Dot What?).

A domain registration company will ask you for the following:

An administrative contact for the account (name and address)

A billing contact for the account (name and address)

A technical contact for the account (generally the name and address of

your hosting service)

Two IP addresses

If you don’t have IP addresses, most domain registry services will offer to

“park” the site for you for an additional fee. Parking a site means that you have

reserved the domain name, but you can’t actually do anything with it until

you get a real server for the site. Basically, you’re paying for the privilege of

borrowing some IP addresses. Be sure to shop wisely. In addition to the $35

per year registration fee, do not spend more than $35 to $50 per year to park

a site. As mentioned earlier, some domain registration companies also offer

basic hosting services.

•

•

•

•

How Much Does a
Domain Cost?
While it may seem overwhelming
to choose from all the competing
domain name sellers, the up side is
that it has resulted in lower prices.
The base price for registering a
domain is about $35 per year;
however, there are usually deep
discounts for registering for more
than one year. The longest any
domain can be secured is 10 years.

There are domain registries that offer
rock-bottom rates, but you may pay
the price of being bludgeoned with
advertising for their other services,
such as web hosting.

There are also optional additional
fees to be aware of. For instance,
registrars now offer a service in
which they keep your contact
information private for about $10 a
year (as of this writing). Without that
service, the information you provide
(including your address) is accessible
to the public.

How Much Does a
Domain Cost?
While it may seem overwhelming
to choose from all the competing
domain name sellers, the up side is
that it has resulted in lower prices.
The base price for registering a
domain is about $35 per year;
however, there are usually deep
discounts for registering for more
than one year. The longest any
domain can be secured is 10 years.

There are domain registries that offer
rock-bottom rates, but you may pay
the price of being bludgeoned with
advertising for their other services,
such as web hosting.

There are also optional additional
fees to be aware of. For instance,
registrars now offer a service in
which they keep your contact
information private for about $10 a
year (as of this writing). Without that
service, the information you provide
(including your address) is accessible
to the public.

Because there are so many sources
for domain names, it is easy to end
up with domains registered with
several different companies. While
there is no rule against this, people
who maintain multiple domains find
it more convenient to have all their
names registered at the same place.
This makes it easier to handle billing
and keep up with expirations and
renewals.

t I P

Because there are so many sources
for domain names, it is easy to end
up with domains registered with
several different companies. While
there is no rule against this, people
who maintain multiple domains find
it more convenient to have all their
names registered at the same place.
This makes it easier to handle billing
and keep up with expirations and
renewals.

t I P

Finding Server Space

Chapter 21, Getting Your Pages on the Web 417

Is it available?

You might have already heard that the simple domain names in the coveted

.com top-level domain are heavily picked over. Before you get too attached to

a specific name, you should do a search to see if it is still available. All of the

domain name registration sites feature a domain name search right on the

front page. This is the first step for setting up a new domain.

If “your-domain-name” at “.com” is not available, try one of the other top

level domain suffixes, such as .org, .info, or .us. You may also try variations on

the name itself. For example, if I found that jenrobbins.com wasn’t available,

I might be willing to settle for jenrobbinsonline.com or jenniferrobbins.com.

Some registrar sites will provide a list of available alternatives for you.

If you have your heart set on a domain name and a budget to back it up,

you might offer to purchase the site from its owner. To find out who owns

a domain name, you can do a WhoIs search on that domain. The WhoIs

database lists the name and contact information for every domain (unless

the owner paid extra to keep the contact information private). You can find a

WhoIs search function on most registrars’ sites.

Finding Server Space
For your pages to be on the Web, they must reside on a web server. Although

it is possible to run web server software on your desktop computer (in fact,

every new Mac comes with web server software installed), it’s more likely

that you’ll want to rent some space on a server that is dedicated to the task.

Looking for space on a web server is also called finding a host for your site.

Fortunately, there are many hosting options, ranging in price from free to

many thousands of dollars a year. The one you choose should match your

publishing goals. Will your site be business or personal? Will it get a few

hits a month or thousands? Do you need services such as e-commerce or

streaming media? How much can you (or your client) afford to pay for host-

ing services?

If you are working as a freelancer, your clients will probably assume the

responsibility of setting up server space for their sites. Smaller clients may

ask for your assistance in finding space, so it is good to be familiar with the

available options.

In this section, I’ll introduce you to some of the options available for getting

your web pages online. This should give you a general idea of what type of

service you need. However, you should still count on doing a fair amount of

research to find the one that’s right for you.

N OT E

With hosting services offering to register
domain names, and domain registrars
offering hosting services, the line has
really blurred between these two ser-
vices. But be aware that getting your
domain name and finding a server for
your web site are indeed separate tasks.
It is fine to get hosting from one company
and your domain from someone else.

N OT E

With hosting services offering to register
domain names, and domain registrars
offering hosting services, the line has
really blurred between these two ser-
vices. But be aware that getting your
domain name and finding a server for
your web site are indeed separate tasks.
It is fine to get hosting from one company
and your domain from someone else.

Dot What?
The majority of web sites that you
hear about end with .com, but
there are other suffixes available for
different purposes. These suffixes,
used for indicating the type of site,
are called top-level domains (or
TLDs). The most common top-level
domains in the United States are the
original six generic TLDs established
in the 1980s:

.com commercial/business

.org nonprofit organization

.edu educational institutions

.net network organizations

.mil military

.gov government agencies

Since then, additional TLDs have
been added, including .aero, .biz, .cat,
.coop, .int, .jobs, .mobi, .museum,
.name, .pro, .travel, plus scores of
two-letter country code TLDs.

To view the current complete list of
TDS, see www.icann.org/registries/
top-level-domains.htm.

Dot What?
The majority of web sites that you
hear about end with .com, but
there are other suffixes available for
different purposes. These suffixes,
used for indicating the type of site,
are called top-level domains (or
TLDs). The most common top-level
domains in the United States are the
original six generic TLDs established
in the 1980s:

.com commercial/business

.org nonprofit organization

.edu educational institutions

.net network organizations

.mil military

.gov government agencies

Since then, additional TLDs have
been added, including .aero, .biz, .cat,
.coop, .int, .jobs, .mobi, .museum,
.name, .pro, .travel, plus scores of
two-letter country code TLDs.

To view the current complete list of
TDS, see www.icann.org/registries/
top-level-domains.htm.

Part V: From Start to Finish418

Finding Server Space

In your own backyard

You may not need to shop around for hosting at all. If one of these scenarios

describes you, you may have server space there for the taking.

Student account. If you are a student, you may be given some space to pub-

lish personal pages as part of your school account. Ask the department

that gives you your email account how to take advantage of web space.

Online services and ISPs. If you have an account with an online service such

as America Online (www.aol.com) or CompuServe (www.compuserve.

com), you probably already have some web server space just waiting to

be filled. Apple Computer offers web space for Mac owners with .Mac

accounts. The online services usually provide tools, templates, and other

assistance for making web pages and getting them online. Likewise, ISPs

(Internet Service Providers) such as Earthlink provide as much as 10 MB

of web server space for their members.

Company servers. If you are working as an in-house web designer, it is likely

that there will be a server connected to your company’s network. If this is

the case, you can just copy your files to the specified server machine.

Web design firms usually have servers for testing purposes.

Professional hosting services

If you are working on a serious business site, or if you are just serious about

your personal web presence, you will need to rent server space from a profes-

sional hosting service. What you’re paying for is some space on one of their

servers, an amount of bandwidth per month over their Internet connection,

and technical support. They may also provide such additional services as

mailing lists, shopping carts, and so on. The hosting service is responsible for

making sure your site is online and available around the clock, 24/7.

Hosting companies usually offer a range of server packages, from just a few

megabytes (MB) of space and one email address to full-powered e-commerce

solutions with lots of bells and whistles. Of course, the more server space and

more features, the higher your monthly bill will be, so shop wisely.

Advantages: Disadvantages:

Scalable packages offer solutions for every
size of web site. With some research,
you can find a host that matches your
requirements and budget.

You get your own domain name (for
example, www.littlechair.com).

Finding the right one requires research
(see the Shopping for Hosting Services
sidebar).

Robust server solutions can get expen-
sive, and you need to watch for hidden
charges.

ISPs vs. Hosting
Services
There are two types of Internet
services, and they are easily
confused.

An ISP (Internet Service Provider) is
the company you go to if you want
access to the Internet from your
home or office. You can think of an
ISP as a provider of a pipeline from
your computer to the worldwide
network of the Internet via dial-
up, DSL, cable modem, or ISDN
connections. AOL, CompuServe, and
Earthlink are examples of nationwide
ISPs, but there are also smaller, local
ISPs in nearly every urban area.

In this chapter, we’re talking about
hosting services. Their business
is based on renting out space on
their computers. They take care of
the server software, keeping the
lines working, and so on. They also
provide email accounts and may also
include special features such mailing
lists or e-commerce solutions for
your site. There are thousands of
hosting services out there.

The slightly confusing part is that
many ISPs also give you some space
on a server to host your personal
pages. If you put your pages here,
you will be stuck with the ISP name
in your URL. In other words, they
generally don’t host other domain
names; you need a hosting service
for that.

Professional hosting services,
however, do not tend to offer
Internet access. They expect you to
take care of that yourself. In most
cases, you’ll need both an ISP and a
hosting company.

ISPs vs. Hosting
Services
There are two types of Internet
services, and they are easily
confused.

An ISP (Internet Service Provider) is
the company you go to if you want
access to the Internet from your
home or office. You can think of an
ISP as a provider of a pipeline from
your computer to the worldwide
network of the Internet via dial-
up, DSL, cable modem, or ISDN
connections. AOL, CompuServe, and
Earthlink are examples of nationwide
ISPs, but there are also smaller, local
ISPs in nearly every urban area.

In this chapter, we’re talking about
hosting services. Their business
is based on renting out space on
their computers. They take care of
the server software, keeping the
lines working, and so on. They also
provide email accounts and may also
include special features such mailing
lists or e-commerce solutions for
your site. There are thousands of
hosting services out there.

The slightly confusing part is that
many ISPs also give you some space
on a server to host your personal
pages. If you put your pages here,
you will be stuck with the ISP name
in your URL. In other words, they
generally don’t host other domain
names; you need a hosting service
for that.

Professional hosting services,
however, do not tend to offer
Internet access. They expect you to
take care of that yourself. In most
cases, you’ll need both an ISP and a
hosting company.

Finding Server Space

Chapter 21, Getting Your Pages on the Web 419

When you set out to find a host for your web site, you should
begin by assessing your needs. The following are some of the
first questions you should ask yourself or your client:

Is it a business or personal site� Some hosting services
charge higher rates for business sites than for personal
sites. Make sure you are signing up for the appropriate
hosting package for your site, and don’t try to sneak a
commercial site onto a personal account.

Do you need a domain name� Check to see whether the
hosting company will register a domain name for you as
part of the package price. This saves you a step and the
extra charge for domain registration somewhere else.

How much space do you need� Most small sites will be fine
with 10 MB or 15 MB of server space. You may want to
invest in more if your site has hundreds of pages, a large
number of graphics, or a significant number of audio and
video files that take up more space.

Do you need a dedicated server� Most hosting plans are for
shared servers, which, as it sounds, means that your site
will share space on a computer with many other sites. For
most sites, this is fine, although it is important to be aware
that excessive traffic to another site on the server may
impact your site’s performance. Some larger commercial
sites where performance is critical opt for a dedicated
server so they can take advantage of the full processing
power of that machine. Dedicated server plans tend to be
significantly more expensive than shared plans, but it may
be money well spent for processing-intensive sites.

How much traffic will you get� Be sure to pay attention to
the amount of data transfer you’re allowed per month.
This is a function of the size of your files and the amount
of traffic you’ll get (i.e., the number of downloads to
browsers). Most hosting services offer 5–10 gigabytes (GB)
of throughput a month, which is perfectly fine for low- or
moderate-traffic sites, but after that, they start charging
per megabyte. If you are serving media files such as audio
or video, this can really add up. I once ran a popular site
with a number of movies that turned out to have over 30
GB of data transferred a month. Fortunately, I had a service
with unlimited data transfer (there are a few out there), but
with another hosting company I could have racked up an
extra $500 per month in fees.

How many email accounts do you need� Consider how
many people will want email at that domain when you’re
shopping for the right server package. If you need many
email accounts, you may need to go with a more robust
and higher-priced package.

Do you need extra functionality� Many hosting services
offer special web site features—some come as part
of their standard service and others cost extra money.
They range from libraries of spiffy scripts (for email forms
or guestbooks) all the way up to complete, secure e-
commerce solutions. When shopping for space, consider
whether you need extra features, such as shopping carts,
secure servers (for credit card transactions), a streaming
media server (for streaming audio and video), mailing lists,
and so on.

Do you feel comfortable with their level of technical
support� Take a look at the hosting company’s policies
and record on technical support. Do they provide a phone
number (preferable), live online chat with technicians, or
just an email address for customer service? It is important
to know that your hosting company will be there to
answer your questions promptly.

Will they do regular backups� Ask whether the hosting
company does regular backups of your data in case there
is a problem with the server.

Do you want to be a reseller� If you run a web design
business and anticipate finding server space for multiple
clients, you may want to become a hosting reseller. Many
hosting companies have programs in which they provide
multiple server plans at discount prices. You can pass
the savings along to your clients or mark up the price to
compensate yourself for the administrative overhead.

Once you’ve identified your needs, it’s time to do some
hunting. First, ask your friends and colleagues if they have
hosting services that they can recommend. There’s nothing like
firsthand experience from someone you trust. After that, the
Web is the best place to do research. The following sites provide
reviews and comparisons of various hosting services; they can
be good starting points for your server shopping spree:

CNET Web Hosting Reviews

 www.cnet.com (look for Web Hosting under Reviews)

HostIndex

 www.hostindex.com

TopHosts.com

 www.tophosts.com

Shopping for Hosting Services

Part V: From Start to Finish420

Finding Server Space

Free hosting options

If you just want to publish a personal site and don’t want to sink any money

into it, there are many services out there that offer free space on the Web.

Free hosting services. Believe it or not, some companies give server space

away for free! The downsides are that you can not have your own domain

name, and they may put their advertising on your pages. A good place to

start looking for free web hosting is www.freewebspace.net or do a web

search for “free web hosting.”

Blogging services. If you just want to publish a blog (short for web log, an

online journal), you can take advantage of one of the free blogging servic-

es. They allow you to publish the type of information typically found on

a blog page: entries, comments, blogroll (list of similar blogs), etc. Some

of the most popular are Blogger.com, LiveJournal.com, and Typepad.com

(which charges a small monthly fee), but if you do a web search for “free

blog hosting,” you’ll find many more to explore.

Online community sites. Online community sites such as Yahoo! GeoCities

(geocities.yahoo.com) or Tripod (www.tripod.lycos.com) organize their mem-

bers’ sites into categories, so people with similar interests can find each

other. In exchange for free space, they put ads on the members’ content.

Social network sites. Another arena for publishing your blogs, photos, music,

and so on is to join one of the popular social network sites. These sites

link their members together by friend (and friend-of-a-friend) connec-

tions. Some popular social network sites as of this writing are MySpace.

com, Friendster.com, and Facebook.com; however, this is a rapidly expand-

ing use of the Web, so they may not be the latest and greatest networks by

the time you are reading this book. These services may place limitations

on the type of content you can publish and offer varying levels of custom-

ization, so it’s not the same as publishing your own site on their servers.

The Publishing Process
So, you’ve got your domain and your hosting all lined up... what now? This is

a good time to review the typical steps involved in creating and publishing a

site to the Web. Not every site follows these exact steps, but this will give you

a general idea of the process.

Create a directory (folder) for the site on your computer. This will be

your local root directory. “Local” means it resides on your hard drive, and

“root” is the technical term used to refer to a top-level directory for site.

This is where you save all of the documents that make up the site and

will be transferred to the actual web server. Additional files related to the

site, such as layered Photoshop files, raw content documents, and other

miscellaneous development documents should be kept in a separate

directory. In Figure 21-1, I named my local root directory jenskitchen.

1�

Advantages:

It’s free!

Good for personal and hobbyist web
pages. Also a good option for teens with
limited budgets.

Depending on the service you choose,
you could potentially find people with
similar interests.

Disadvantages:

You may be stuck with annoying ad
banners or pop-up windows.

You may be limited in the type of
content you can publish.

You may have limited control over page
layout and navigation.

You generally don’t get your own domain
name.

Not appropriate for business sites.

Advantages:

It’s free!

Good for personal and hobbyist web
pages. Also a good option for teens with
limited budgets.

Depending on the service you choose,
you could potentially find people with
similar interests.

Disadvantages:

You may be stuck with annoying ad
banners or pop-up windows.

You may be limited in the type of
content you can publish.

You may have limited control over page
layout and navigation.

You generally don’t get your own domain
name.

Not appropriate for business sites.

N OT E

On the Web, it is more appropriate to use
the terms “directory” and “subdirectory”
rather than “folder” and “subfolder.” This
is due to the fact that servers have come
to be discussed using UNIX terminology,
whereas folders are a convention of oper-
ating systems with graphical interfaces,
such as Windows or MacOS.

N OT E

On the Web, it is more appropriate to use
the terms “directory” and “subdirectory”
rather than “folder” and “subfolder.” This
is due to the fact that servers have come
to be discussed using UNIX terminology,
whereas folders are a convention of oper-
ating systems with graphical interfaces,
such as Windows or MacOS.

The Publishing Process

Chapter 21, Getting Your Pages on the Web 421

Create the web page(s). This is the step that takes all the hard work, as

you know from reading the rest of this book. It’s important to note that

all the HTML and image files for this simple site have been saved in the

local root directory, jenskitchen.

Check the page locally. Before making the page live, it is a good idea to

check the page in a browser while it’s still on your own machine. Just

launch your favorite browser and open the (X)HTML file for the page

from your hard drive, as shown in Figure 21-1. If it needs some adjust-

ments, go back and edit the (X)HTML and/or CSS files and save them.

You must save the files in order to see changes in the browser (be sure to

save it in the same directory so it overwrites the old version). Now click

Refresh or Reload in the browser to see how it looks.

1 Create a new directory (folder) the web site, and

Save all the files for the site in it.2

Open the file in a browser locally to check your work.
If you need to make changes, edit the files locally and
refresh or reload the page in the browser.

3

On most browsers, local files are preceded by
“file://” in the browser’s URL field.

On Internet Explorer (Windows),
local files in the address field
simply begin with drive name
(ex., C:)

In Windows, choose Open
and click Browse to open a
local file.

Figure 21-1. Create and test your web page on your own computer.

Upload the files. When everything looks fine in the browser, you’re ready

to upload the page to the remote server that is hosting your site (Figure

21-2). Use a file transfer (FTP) program to upload your files (we’ll go over

the ins and outs of FTP in the next section). Just be sure to put all the files

2�

3�

4�

Part V: From Start to Finish422

The Publishing Process

in your site’s root directory on the server. The hosting company or server

administrator will tell you the name of your site’s root directory when you

set up the account.

N OT E

If you have organized your local files into subdirectories, the same subdirectory
structure will need to be set up on the remote root directory as well (see the sidebar
Organizing and Uploading a Whole Site).

Check it out live on the Web. Once all the files have been transferred to

the server, you (and anyone else) can see it by typing your URL in the

browser. Tell your friends!

Once the files are on the web server, you can open
the web page using its URL.

When the page is ready, you can upload it to the
proper directory on the server using FTP.

FTP client software

jenskitchensite.com

4

5

Figure 21-2. Uploading and viewing a page from the remote server.

5�

In the example in this chapter, the web page was tested locally
and became “live” as soon as it was moved to the server. As
another option, web developers may create a special test site
(also called a development or staging site) on the server. The
advantage is that the site can be tested on the actual server and
tweaked before it is made live to the public. Staging sites are
also useful when the site is being created and tested by a group

of developers, because the whole team has access to it.

The staging site might be in a separate directory or in a
subdomain (for example, dev.jenskitchen.com). When the site is
ready to go, all the files can be moved to the root directory on
the server.

Testing on the Server

Transferring Files with FTP

Chapter 21, Getting Your Pages on the Web 423

Transferring Files with FTP
Most likely, your server will be in a remote location, accessible via the Internet.

Files are transferred between computers on the Internet via a protocol called

FTP (File Transfer Protocol). You may also hear “FTP” used casually as a verb,

as in “I’ll FTP those files by this afternoon.”

N OT E

If you are in an office or at a school that has a web server as part of its network, you
may be able to move the files directly over the network without using FTP.

You’ll need some information handy to transfer files with FTP:

The name of your web server (host). For example, www.jenware.com.

Your login name or user ID. You’ll get a login name from the server admin-

istrator when you set up your server account, often via an email. If you’re

a freelancer, you’ll need access to your client’s login.

Your password. This will also be provided by the server administrator or

client.

The directory where your web pages reside. Your server administrator may

also tell you which directory to use for your web pages, in other words, the

name of the root directory for your site. Often, it’s www or html. It is also

possible that your server is set up to send you to the correct directory

automatically when you log in, in which case, you won’t need to enter a

directory name. Again, get directions from the administrator.

The type of data transfer. In most cases, you will use FTP for uploading, but

some hosting services require SFTP (see sidebar). This information will be

provided to you with the login and FTP instructions for your account.

FTP software

Because FTP is an Internet protocol, you need to use special FTP software

(called an FTP client) designed specifically for the job of transfering files.

The better WYSIWYG web-authoring tools such as Dreamweaver from Adobe,

Microsoft Expression Web, and the open source Nvu (pronounced N-view)

have FTP clients built in. This is a great feature, because you can build your

pages and upload them all in one program.

If you haven’t yet invested in one of these tools, there are a number of stand-

alone FTP client utilities with simple interfaces that make file transfer as

easy as moving files around on your own computer. For the Mac, Transmit,

Fetch and Interarchie allow “drag and drop” transfers. On Windows, WS_FTP,

CuteFTP, and Filezilla are quite popular. You can download these programs

at CNET’s www.download.com.

Two-way Street
Although this section focuses on
uploading files to a server, FTP can
be used to download files from
the server to your local computer
as well. FTP clients use the terms
“download” or “get,” or may provide
down-arrow icons for downloading.

Two-way Street
Although this section focuses on
uploading files to a server, FTP can
be used to download files from
the server to your local computer
as well. FTP clients use the terms
“download” or “get,” or may provide
down-arrow icons for downloading.

SFTP
SFTP, or SSH File Transfer Protocol, is
a network protocol that offers more
secure file transfer than ordinary
FTP. It uses the SSH, Secure Shell,
protocol that establishes a secure
line between a local and remote
computer. SFTP also allows basic
server management such as deleting
remote files and creating and
naming remote directories.

t e R m I n O l O G y

SFTP
SFTP, or SSH File Transfer Protocol, is
a network protocol that offers more
secure file transfer than ordinary
FTP. It uses the SSH, Secure Shell,
protocol that establishes a secure
line between a local and remote
computer. SFTP also allows basic
server management such as deleting
remote files and creating and
naming remote directories.

t e R m I n O l O G y

FTP Clients
For a comprehensive list of
FTP clients sorted by platform
and protocol support, see the
“Comparison of FTP Clients” page at
Wikipedia (en.wikipedia.org/wiki/
List_of_SFTP_clients).

O n l I n e R e S O U R c e

FTP Clients
For a comprehensive list of
FTP clients sorted by platform
and protocol support, see the
“Comparison of FTP Clients” page at
Wikipedia (en.wikipedia.org/wiki/
List_of_SFTP_clients).

O n l I n e R e S O U R c e

Part V: From Start to Finish424

Transferring Files with FTP

Using FTP, step by step

FTP clients have slightly different interfaces and use different terminology,

but they essentially work the same. Again, these steps should give you the

general picture.

Step 1: Make sure you are online. You may have a network or cable connec-

tion that is always online, but you may need to dial in over a modem. You

can launch your FTP program before or after getting online.

Step 2: Open a connection to the server and enter your information. This

is usually the point at which you are asked to enter the server name,

login, password, and the optional settings mentioned earlier. Some FTP

programs allow you to save the settings and give the connection a name

to make it easy to connect later. Your tool may call this process setting up

a new “site” or “connection.” The window at the top of Figure 21-3 shows

the server settings in Transmit, but your tool may use a multiscreen “wiz-

ard” process for collecting and saving site settings.

Step 3: Navigate to your local and remote root servers. Many FTP clients

feature two windows: one gives you a view of the files on your local hard

drive, the other is a view of the files on the remote server (Figure 21-3).

The windows typically also provide methods for navigating through the

directories. Some clients, such as Fetch, show a view only of the remote

server. Whatever tool you use, make sure that the root directory on your

server (or the appropriate directory within the root) is selected.

Step 4: Select the file on your local hard drive and upload it. FTP programs

vary on how the upload option is presented once your file is selected, but

it’s usually fairly intuitive. Some ask you to select Upload, Send, or Put

from a menu or push-button; others use an up arrow or right arrow to

indicate the transfer direction from your computer to the remote server.

You may also be able to drag and drop the file from the local window to

the server window to start the upload.

N OT E

Some FTP clients, such as Fetch, may also ask you to indicate the format or type of
file being transferred. HTML documents should be sent as Text or ASCII. For images
and other media, choose Binary or Raw Data. Many FTP clients choose the format
for you automatically.

Step 5: Watch it upload. Once you click the Upload button or arrow, your

file starts whizzing over the lines and onto the server. Your FTP client

will probably provide some sort of feedback that shows the progress of

the upload. When the file shows up in the file list in the remote server

window, and the file size matches that shown on your local computer, you

know that it has arrived.

Organizing and
Uploading a Whole
Site
We uploaded only one document
in this example, but chances are
your site will consist of more than
one page. If your site contains more
than a dozen or so documents and
graphics files, you should organize
your files into directories and
subdirectories. This requires some
work and careful planning, but it
makes site management much
easier in the long run.

One common convention is to keep
all of the graphic files in a directory
called images or graphics. In most
cases, the overall directory structure
is based on the structure of the site
itself. For instance, if you have a
“News” category on your site, there
would be a corresponding news
directory for those files.

The good news is that you can
upload an entire site in one go.
When you select a directory to be
FTP’d, it will upload everything
within that directory—leaving
the subdirectory structure intact.
Follow the FTP instructions in this
section, but select the directory
name instead of a single filename for
upload.

The FTP program checks the format
of each file and selects text or raw
data/binary as appropriate during
the upload.

It is a good idea to set up your site
directory structure as you want it
on your local hard drive first, then
upload everything to the final server
once it is ready.

Organizing and
Uploading a Whole
Site
We uploaded only one document
in this example, but chances are
your site will consist of more than
one page. If your site contains more
than a dozen or so documents and
graphics files, you should organize
your files into directories and
subdirectories. This requires some
work and careful planning, but it
makes site management much
easier in the long run.

One common convention is to keep
all of the graphic files in a directory
called images or graphics. In most
cases, the overall directory structure
is based on the structure of the site
itself. For instance, if you have a
“News” category on your site, there
would be a corresponding news
directory for those files.

The good news is that you can
upload an entire site in one go.
When you select a directory to be
FTP’d, it will upload everything
within that directory—leaving
the subdirectory structure intact.
Follow the FTP instructions in this
section, but select the directory
name instead of a single filename for
upload.

The FTP program checks the format
of each file and selects text or raw
data/binary as appropriate during
the upload.

It is a good idea to set up your site
directory structure as you want it
on your local hard drive first, then
upload everything to the final server
once it is ready.

Transferring Files with FTP

Chapter 21, Getting Your Pages on the Web 425

When you open a new connection, you will be
asked for your server settings (shown here in
the Transmit FTP client for the Mac).

When you are connected, you can see the
contents of your local hard drive and the
remote server. Use the navigation tools to
make sure the proper directories are selected.

To upload in Transmit, select File > Upload or
drag the file from the local window to the
remote window. Other tools may provide
arrow buttons for moving files between
computers.

WS_FTP (left) and Dreamweaver site manager (right) also provide side-by-side windows.

Figure 21-3. Three popular FTP client interfaces.

Step 6: Check it in a browser. Now the document is officially on the Web.

Just to be sure, check it with a browser. Open a browser and enter your

URL, and there it is! If you need to make changes, do so on the local

document, save it, then upload it again.

Part V: From Start to Finish426

Test Yourself

Test Yourself
Before we move on, let’s see if the important parts of this chapter have been

uploaded to your brain. Answers appear in Appendix A.

There are basic services that you need if you want to get yourself and your

own site online. Match the following services with the companies that

provide them. Note that some services may have more than one answer.

A. Hosting company B. ISP C. Domain registrar

Get connected to the Internet __________

Find out if yourname.com is available __________

Get yourname.com for 3 years __________

Get space on a web server __________

Name two ways in which servers are identified on the Internet.

What does it mean to look at a page locally?

What three pieces of information are required to FTP files to a server?

What else may you need to know?

What format should you select to upload a graphic file? An audio file?

An HTML file?

How do you upload a whole directory of files at once?

We know the saying “no free lunches.” Name at least three potential sac-

rifices you might need to make in exchange for free hosting.

1.

2.

3.

4.

5.

6.

7.

427

Chapter 1: Where Do I Start?

B, D, A, C

The W3C guides the development of Web-related technologies.

C, D, A, E, B

Frontend design is concerned with aspects of a site that appear in or are related to the browser. Backend develop-

ment involves the programming required on the server for site functionality.

A web authoring tool provides a visual interface for creating entire web pages, including the necessary (X)HTML,

CSS, and scripts. HTML editors provide only shortcuts to writing (X)HTML documents manually.

Chapter 2: How the Web Works

 1. c, 2. i, 3. g, 4. h, 5. f, 6. b, 7. a, 8. d, 9. e

Chapter 3: The Nature of Web Design

You need to be aware that your page may look and work differently from browser to browser. Sticking to the stan-

dards will ensure a similar (although not identical) experience on modern standards-compliant browsers. For the

rest, be sure that your content is available and accessible.

The platform on which your page is viewed can affect how certain page and form elements are rendered, the

size of the text, availability of fonts and plug-ins, and the brightness of colors. Some technologies developed for

Windows may not be as well supported on Mac or Unix platforms.

Users’ browser settings will override the settings you make in your style sheets by default. It is easy for users to

change the fonts, background colors, and size of the text. Users can also choose to turn off functionality such as

Java, JavaScript, and image display.

Because browser windows can be resized, you never know how large your web page’s screen area will be.

As many as 30% of Internet users are still using dial-up connections, so you should always take time to optimize

your images, audio/video, even your (X)HTML documents for the quickest download possible.

1.

2.

3.

4.

5.

1.

2.

3.

4.

5.

ANSWERS

APPENDIX A

Appendix A428

Be sure that your content is accessible to all users, regardles of the devices they may be using to read, navigate,

and input information. The best way to ensure accessibility is to stick with the standards, make sure your source

document is logical, and follow the guidelines set out by the WAI.

Chapter 4: Creating a Simple Page (HTML Overview)

A tag is part of the markup used to delimit an element. An element consists of the content and its markup.

The minimal markup of an (X)HTML document is as follows:

<html>
<head>
 <title>Title</title>
</head>
<body>
</body>
</html>

a. Sunflower.html—Yes

index.doc—No, it must end in .html or .htm

cooking home page.html—No, there may be no character spaces

Song_Lyrics.html—Yes

games/rubix.html—No, there may be no slashes in the name

%whatever.html—No, there may be no percent symbols

All of the following markup examples are incorrect. Describe what is wrong with each one, then write it cor-

rectly.

It is missing the src attribute:

The slash in the end tag is missing: <i>Congratulations!</i>

There should be no attribute in the end-tag: linked text

The slash should be a forward-slash: <p>This is a new paragraph</p>

Make it a comment: <!-- product list begins here -->

Exercises 4-1 through 4-5

<html>

<head>
<title>Black Goose Bistro</title>

<style	type="text/css">
body { background-color: #C2A7F2;
 font-family: sans-serif;}
h1 { color: #2A1959;
 border-bottom: 2px solid #2A1959;}
h2 { color: #474B94;
 font-size: 1.2em;}
h2, p { margin-left: 120px;}
</style>

</head>

6.

1.

2.

3.

b.

c.

d.

e.

f.

4.

a.

b.

c.

d.

5.

Answers 429

<body>
<h1>Black Goose Bistro</h1>

<h2>The Restaurant</h2>
<p>The Black Goose Bistro offers casual lunch and dinner fare in a hip atmosphere. The menu changes regularly to
highlight the freshest ingredients.</p>

<h2>Catering</h2>
<p>You have fun... we'll handle the cooking. Black Goose Catering can handle events from snacks for bridge
club to elegant corporate fundraisers.</p>

<h2>Location and Hours</h2>
<p>Seekonk, Massachusetts;
Monday through Thursday 11am to 9pm, Friday and Saturday, 11am to midnight</p>
</body>

</html>

Chapter 5: Marking Up Text
<p>People who know me know that I love to cook.</p>
<hr />
<p>I’ve created this site to share some of my favorite
 recipes.</p>

Deprecated means that an element or attribute is being phased out and is discouraged from use.

A blockquote is a block-level element used for long quotations or quoted material that may consist of other block

elements. The q (quote) element is for short quotations that go in the flow of text and do not cause line breaks.

pre

The ul element is an unordered list for lists that don’t need to appear in a particular order. They display with

bullets by default. The ol element is an ordered list in which sequence matters. The browser automatically inserts

numbers for ordered lists.

Use a style sheet to remove bullets from an unordered list.

<acronym title="World Wide Web Consortium">W3C</acronym>

A dl is the element used to identify an entire definition list. The dt element is used to identify just one term

within that list.

The id attribute is used to identify a unique element in a document, and the name in its value may appear only

once in a document. class is used to classify multiple elements into conceptual groups.

— em dash —

& ampersand &

 non-breaking space

© copyright ©

• bullet •

™ trademark symbol ™

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Appendix A430

Exercise 5-1
<html>
<head><title>Tapenade Recipe</title></head>
<body>

<h1>Tapenade (Olive Spread)</h1>

<p>This is a really simple dish to prepare and it's always a big hit at parties. My father recommends:</p>

<blockquote><p>"Make this the night before so that the flavors have time to blend. Just bring it up to room
temperature before you serve it. In the winter, try serving it warm."</p></blockquote>

<h2>Ingredients</h2>

 1 8oz. jar sundried tomatoes
 2 large garlic cloves
 2/3 c. kalamata olives
 1 t. capers

<h2>Instructions</h2>

 Combine tomatoes and garlic in a food processor. Blend until as smooth as possible.

 Add capers and olives. Pulse the motor a few times until they are incorporated, but still retain some
texture.

 Serve on thin toast rounds with goat cheese and fresh basil garnish (optional).

</body>
</html>

Exercise 5-2

The seven changes were:

The h1 is missing an end tag.

The closing p tag is missing a slash.

The strong element would be better than the b element.

Add the abbr element for Mass.

The book title would be better as a cite element than in italic text

The prize code example would be better as a kbd or samp element.

The text marked as italic in the last line should be emphasized (em).

<h1>You Won!</h1>
<p>Congratulations! You have just won dinner for two at the highly acclaimed Blue Ginger
restaurant in Wellesley, <abbr title="Massachusetts">Mass.</abbr> In addition to dinner, you will receive
an autographed copy of Ming Tsai's book, <cite>Blue Ginger</cite>. To redeem your prize, go to our site and
enter your prize code (Example: <kbd>RPZ108-BG</kbd>). We're sure you're going to love it!</p>

1.

2.

3.

4.

5.

6.

7.

Answers 431

Exercise 5-3
<html>
<head>
<title>Black Goose Bistro Summer Menu</title>
</head>
<body>

<div id="header">
<h1>Black Goose Bistro • Summer Menu</h1>

<p>Baker’s Corner Seekonk, Massachusetts
Hours: M-T: 11 to 9, F-S; 11 to midnight</p>
</div>

<div id="appetizers">
<h2>Appetizers</h2>

<dl>
<dt class="newitem">Black bean purses</dt>
<dd>Spicy black bean and a blend of mexican cheeses wrapped in sheets of phyllo and baked until golden. <span
class="price">$3.95</dd>

<dt>Southwestern napoleons with lump crab — new item!</dt>
<dd>Layers of light lump crab meat, bean and corn salsa, and our handmade flour tortillas. <span
class="price">$7.95</dd>
</dl>

</div>

<div id="main">

<h2>Main courses</h2>

<dl>
<dt>Shrimp sate kebabs with peanut sauce</dt>
<dd>Skewers of shrimp marinated in lemongrass, garlic, and fish sauce then grilled to perfection. Served with
spicy peanut sauce and jasmine rice. $12.95</dd>

<dt>Grilled skirt steak with mushroom fricasee</dt>
<dd>Flavorful skirt steak marinated in asian flavors grilled as you like it[*]. Served over a blend
of sauteed wild mushrooms with a side of blue cheese mashed potatoes. $16.95</dd>

<dt class="newitem">Jerk rotisserie chicken with fried plantains — new item!</dt>
<dd>Tender chicken slow-roasted on the rotisserie, flavored with spicy and fragrant jerk sauce and served with
fried plantains and fresh mango. $12.95</dd>
</dl>

</div>

<div id="warnings">
<p class="footnote">[*] We are required to warn you that undercooked food is a health risk.</p>
</div>

</body>
</html>

Appendix A432

Chapter 6: Adding Links

...

...

...

...

...

...

...

...

Exercise 6-1
Epicurious

Exercise 6-2
<p>Back to the home page</p>

Exercise 6-3
Tapenade (Olive Spread)

Exercise 6-4
Linguine with Clam Sauce

Exercise 6-5
<p>[Back to the home page]</p>

Exercise 6-6
<p>[Back to the home page]</p>

Exercise 6-7

<p>Go to the Tapenade recipe</p>

<p>Go to the Salmon recipe</p>

<p>Go to the Linguine recipe</p>

<p>Go to the About page</p>

<p>Go to the All Recipes web site</p>

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

1.

2.

3.

4.

5.

Answers 433

Chapter 7: Adding Images

The src and alt attributes are required for the document to be valid. If the src attribute is omitted, the browser

won’t know which image to use. You may leave the value of the alt attribute empty if alternative text would be

meaningless or clumsy when read in context.

1) It improves accessibility by providing a description of the image if it is not available or not viewable, and 2)

because HTML documents are not valid if the alt attribute is omitted.

It allows the browser to render the rest of the content while the image is being retrieved from the server, which

can speed up the display of the page.

The three likely causes for a missing image are: 1) the URL is incorrect, so the browser is looking in the wrong

place or for the wrong file name (names are case-sensitive); 2) the image file is not in an acceptable format; and

3) the image file is not named with the proper suffix (.gif, .jpg, or .png, as appropriate).

It indicates that the image is used as an imagemap and provides the name of the applicable map.

Exercise 7-1
In index.html:

<h2>Pozzarello</h2>
<p><img src="thumbnails/window_100.jpg" alt="view from the bedroom window" width="75"
height="100"></p>
<p>The house we stayed in was called Pozzarello and it was built around the year 1200 as the home of the
gardner who tended the grounds of the adjacent castle. The thick walls kept us nice and cool inside, despite
the blistering mid-day heat. This is the view from our bedroom window.</p>

<h2>On the Road</h2>
<p><img src="thumbnails/countryside_100.jpg" alt="photo of countryside"
width="100" height="75"></p>
<p>This is the scene on the way to Montalcino (all roads lead to Montalcino!). It looks a lot like the
scene on the way to Sienna, and the scene on the way to the grocery store. We were surrounded by beautiful
countryside for most of our travels.</p>

<h2>Sienna</h2>
<p><img src="thumbnails/sienna_100.jpg" alt="photo of Sienna" width="75"
height="100"> <img src="thumbnails/duomo_100.jpg" alt="the Duomo cathedral
in Sienna" width="75" height="100"></p>
<p>The closest city to our villa was Sienna, about 30 minutes away. We spent many days exploring the steep
and crooked streets, sampling the local cuisine at outdoor restaurants, and stopping in the dark and echoey
Duomo to escape the sun.</p>

In countryside.html:

<h1>The Tuscan Countryside</h1>
<p><img src="photos/countryside.jpg" alt="photo of the countryside on the way to Montalcino"
width="500" height="375"></p>

In sienna.html:

<h1>The Streets of Sienna</h1>
<p><img src="photos/sienna.jpg" alt="view of the narrow winding streets of Sienna" width="375"
height="500"></p>

1.

2.

3.

4.

5.

6.

Appendix A434

In duomo.html:

<h1>A View of the Duomo</h1>
<p><img src="photos/duomo.jpg" alt="view of the Duomo cathedral in Sienna" width="375"
height="500"></p>

Chapter 8: Basic Table Markup

The table itself (table), rows (tr), header cells (th), data cells (td), and an optional caption (caption).

Professional designers no longer use tables for layout because they are not semantically correct, they can get overly

complicated and be a barrier to accessibility, and style sheets are now supported well enough that they offer a

superior alternative.

Captions are for short titles and they display in the browser. Summaries are for longer descriptions and they do

not display but may be read aloud by a screen reader.

If you want to add additional information about the structure of a table, to specify widths to speed up display, or

to add certain style properties to a column of cells.

1) The caption should be the first element inside the table element; 2) There can’t be text directly in the table

element. It must go in a th or td; 3) The th elements must go inside the tr element; 4) There is no colspan ele-

ment. This should be a td with a colspan attribute; 5) The second tr element is missing a closing tag.

Exercise 8-1
<table>
 <tr>
 <th>Album</th>
 <th>Year</th>
 </tr>
 <tr>
 <td>Rubber Soul</td>
 <td>1965</td>
 </tr>
 <tr>
 <td>Revolver</td>
 <td>1966</td>
 </tr>
 <tr>
 <td>Sgt. Pepper's</td>
 <td>1967</td>
 </tr>
 <tr>
 <td>The White Album</td>
 <td>1968</td>
 </tr>
 <tr>
 <td>Abbey Road</td>
 <td>1969</td>
 </tr>
</table>

1.

2.

3.

4.

5.

Answers 435

Exercise 8-2
<table>
 <tr>
 <td	colspan="3">The Sunday Night Movie</td>
 </tr>
 <tr>
 <td>Perry Mason</td>
 <td>Candid Camera</td>
 <td>What’s My Line?</td>
 </tr>
 <tr>
 <td>Bonanza</td>
 <td	colspan="2">The Wackiest Ship in the Army</td>
 </tr>
</table>

Exercise 8-3
<table>
 <tr>
 <td>apples</td>
 <td	rowspan="3">oranges</td>
 <td>pears</td>
 </tr>

 <tr>
 <td>bananas</td>
 <td	rowspan="2">pineapple<td>
 </tr>

 <td>lychees</td>
 </tr>
</table>

Exercise 8-4
<html>
<head>
 <title>Table Challenge</title>
 <style	type="text/css">
 td, th { border: 1px solid #CCC }
 table {border: 1px solid black }
 </style>
</head>

<body>
<table	border="0"	cellspacing="6">
 <caption>Your Content Here</caption>
 <tr>
 <th	rowspan="2"> </th>
 <th	colspan="2">A common header for two subheads</th>
 <th	rowspan="2">Header 3</th>
 </tr>
 <tr>
 <th>Header 1</th>
 <th>Header 2</th>
 </tr>
 <tr>

Appendix A436

 <th	scope="row">Thing A</th>
 <td>data A1</td>
 <td>data A2</td>
 <td>data A3</td>
 </tr>
 <tr>
 <th	scope="row">Thing B </th>
 <td>data B1</td>
 <td>data B2</td>
 <td>data B3</td>
 </tr>
 <tr>
 <th	scope="row">Thing C</th>
 <td>data C1</td>
 <td>data C2</td>
 <td>data C3</td>
 </tr>
</table>
</body>
</html>

Chapter 9: Forms

A form for accessing your bank account online: POST (because of security issues)

A form for sending t-shirt artwork to the printer: POST (because it uses the file selection input type)

A form for searching archived articles: GET (because you may want to bookmark search results)

A form for collecting essay entries: POST (because it is likely to have a length text entry)

Which form control element is best suited for the following tasks?

Choose your astrological sign from 12 signs: Pull-down menu (<select>)

Indicate whether you have a history of heart disease (yes or no): Radio buttons (<input type="radio">)

Write up a book review: <textarea>

Select your favorite ice cream flavors from a list of eight flavors. Eight checkboxes or a pull-down menu

Select your favorite ice cream flavors from a list of 25 flavors. Scrolling menu (<select multiple="multiple">)

Each of these markup examples contains an error. Can you spot what it is?

<input	name="gender"	value="Male"	/>

 The type attribute is missing.

<checkbox	name="color"	value="teal"	/>

 Checkbox is not an element name; it is a value of the type attribute in the input element.

<select	name="popsicle">
 <option	value="orange"	/>
 <option	value="grape:	/>
 <option	value="cherry"	/>
</select>

 The option element is not empty. It should contain the value for each option (for example,

 <option>Orange</option>).

1.

2.

3.

Answers 437

<input	type="password"	/>

 The required name attribute is missing.

<textarea	name="essay"	height="6"	width="100">Your story.</textarea>

 The width and height of a text area are specified with the cols and rows attributes, respectively.

Exercises 9-1 through 9-3: Final source document
<!DOCTYPE	html	PUBLIC	"-//W3C//DTD	XHTML	1.0	Strict//EN"
			"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html	xmlns="http://www.w3.org/1999/xhtml"	lang="en"	xml:lang="en">
<head>
<meta	http-equiv="content-type"	content="text/html;charset=utf-8"	/>
 <title>Contest Entry Form</title>
<style	type="text/css">
 ol, ul { list-style-type: none;}
</style>
</head>
<body>

<h1>"Pimp My Shoes" Contest Entry Form</h1>

<p>Want to trade in your old sneakers for a custom pair of Forcefields? Make a case for why your shoes have
got to go and you may be one of ten lucky winners.</p>

<form	action="http://www.learningwebdesign.com/contest.php"	method="post">

<fieldset>
<legend>Contest Entry Information</legend>

<label	for="name">Name:</label> <input	type="text"	name="name"	id="name"	/>
<label	for="city">City:</label> <input	type="text"	name="city"	id="city"	/>
<label	for="state">State:</label> <input	type="text"	name="state"	id="state"	/>
<label	for="story">My shoes are SO old...</label>

<textarea	name="story"	rows="4"	cols="60"	maxlength="300"	id="story">(Your entry must be no more than 300
characters long.)</textarea>

</fieldset>

<h2>Design your custom Forcefields:</h2>

<fieldset>
<legend>Custom shoe design</legend>
<fieldset>
<legend>Color</legend>

 <label><input	type="radio"	name="color"	value="red"	/> Red</label>
 <label><input	type="radio"	name="color"	value="blue"	/> Blue</label>
 <label><input	type="radio"	name="color"	value="black"	/> Black</label>
 <label><input	type="radio"	name="color"	value="silver"	/> Silver</label>

</fieldset>

<fieldset>
<legend>Features (Choose as many as you want)</legend>

Appendix A438

 <label><input	type="checkbox"	name="features"	value="laces"	/> Sparkley laces</label>
 <label><input	type="checkbox"	name="features"	value="logo"	/> Metallic logo</label>
 <label><input	type="checkbox"	name="features"	value="heels"	/> Light-up heels</label>
 <label><input	type="checkbox"	name="features"	value="mp3"	/> MP3-enabled</label>

</fieldset>

<fieldset>
<legend>Size</legend>
<label	for="size">(sizes reflect standard men's sizes):</label>
 <select	name="size"	id="size">
 <option>5</option>
 <option>6</option>
 <option>7</option>
 <option>8</option>
 <option>9</option>
 <option>10</option>
 <option>11</option>
 <option>12</option>
 <option>13</option>
 </select>
</fieldset>

</fieldset>
<p><input	type="submit"	value="Pimp	my	shoes!"	/> <input	type="reset"	/></p>
</form>
</body>
</html>

Chapter 10: Understanding the Standards

Netscape Navigator and Microsoft Internet Explorer were the major players in the Browser Wars.

HTML 4.01 Transitional includes the deprecated presentational elements and attributes that have been removed

from the Strict version.

HTML 4.01 Strict and XHTML 1.0 Strict the same in that they have the same elements and attributes listed in three

DTD versions. They are different in that XHTML is an XML language that has more stringent syntax require-

ments.

The major syntax requirements in XHTML are:

Element and attribute names must be lowercase.

All elements must be closed (terminated), including empty elements.

Attribute values must be in quotation marks.

All attributes must have explicit attribute values.

Elements must be nested properly.

Always use character entities for special characters.

Use id instead of name as an identifier.

Scripts must be contained in a CDATA section.

1.

2.

3.

4.

•

•

•

•

•

•

•

•

Answers 439

Look at these valid markup examples and determine whether each is HTML or XHTML:

 HTML

 HTML

 XHTML

The html element must include the xmlns, lang, and xml:lang attributes in XHTML documents.

Include a correct DOCTYPE declaration at the beginning of a document to trigger a browser to use Standards

Mode.

XHTML offers the benefits of XML, including the ability to be combined with other XML languages, be parsed

and used by any XML parsing software, and transform information from XML applications to a web page. It is

also consistent with future web technologies, requires better coding practices, and is better for accessibility and

use on handheld devices.

ISO 8859-1 is the character encoding of the 256 characters commonly used in Western languages.

Exercise 10-1
The following changes must be made to the markup:

Convert all elements and attributes to lowercase.

Add XHTML attributes to the html element.

Convert the & in the title to its character entity, &

In the img element, put the width and height values in quotation marks

Terminate the img element by adding a space and trailing slash before the closing bracket.

Close the li elements in the unordered list and the final p element.

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">

<head>
<title>Popcorn & Butter</title>
</head>

<body>
<h1>Hot Buttered Popcorn</h1>

<p></p>

<h2>Ingredients</h2>

 popcorn
 butter
 salt

<h2>Instructions</h2>

<p>Pop the popcorn. Meanwhile, melt the butter. Transfer the popped popcorn into a bowl, drizzle with melted
butter, and sprinkle salt to taste.</p>

</body>
</html>

5.

6.

7.

8.

9.

1.

2.

3.

4.

5.

6.

Appendix A440

Chapter 11: CSS Orientation

selector: blockquote, property: line-height, value: 1.5, declaration: line-height: 1.5

The paragraph text will be red because when there are conflicting rules of identical weight, the last one listed in

the style sheet will be used.

a. Use one rule with multiple declarations applied to the p element.

 p {font-face: sans-serif;
 font-size: 1em;
 line-height: 1.2em;}

The semicolons are missing.

 blockquote {
 font-size: 1em;
 line-height: 150%;
 color: gray;

 }

There should not be curly braces around every declaration, only around the entire declaration block.

 body {background-color: black;
 color: #666;
 margin-left: 12em;
 margin-right: 12em;}

This could be handled with a single rule with a grouped element type selector.

 p, blockquote, li {color: white;}

This inline style is missing the property name.

 <strong style="color: red">Act now!

 div#intro { color: red; }

1.

2.

3.

b.

c.

d.

e.

4.
html

head body

title style h1 div id="intro" p

h2

div id="main"

p ul p h2 p

lililistrongimg

html

head body

title style h1 div id="intro" p

h2

div id="main"

p ul p h2 p

lililistrongimg

Answers 441

Chapter 12: Formatting Text

a. All text elements in the document: body {color: red;}

h2 elements: h2 {color: red;}

h1 elements and all paragraphs: h1, p {color: red;}

Elements belonging to the class “special”: .special {color: red;}

All elements in the “intro” section: #intro {color: red;}

Strong elements in the “main” section: #main strong {color: red;}

Extra credit: Just the paragraph that appears after the “main” section (hint: this selector will not work in

Internet Explorer 6): h2 + p {color: red;}

a. 4 {font-size: 1.5em;}

1	{text-transform: capitalize;}

7 {text-align: right;}

3 {font-family: Verdana; font-size: 1.5em;}

2 {letter-spacing: 3px;}

9 {font: bold italic 1.2em Verdana;}

8 {text-transform: uppercase;}

5 {text-indent: 2em;}

6 {font-variant: small-caps;}

Exercises 12-1 through 12-3:
<style type="text/css">

body { font-family: Georgia, serif;
 font-size: small;
 line-height: 175%; }

h1 { font-size: 1.5em;
 color: purple;}

dt { font-weight: bold; }

strong { font-style: italic; }

h2 { font: bold 1em Georgia, serif;
 text-transform: uppercase;
 letter-spacing: 8px;
 color: purple;}

dt strong { color: maroon; }

#header p {
 font-style: italic;
 color: gray;}

1.

b.

c.

d.

e.

f.

g.

1.

b.

c.

d.

e.

f.

g.

h.

i.

Appendix A442

#header, h2, #appetizers p, #appetizers p { text-align: center; }

#appetizers p, #appetizers p { font-style: italic; }

.price {
 font-style: italic;
 font-family: Georgia, serif; }

.label {
 font-weight: bold;
 font-variant: small-caps;
 font-style: normal; }

p.warning, sup {
 font-size: x-small;
 color: red;}

</style>

Chapter 13: Colors and Backgrounds

g. a, b, and c

d. rgb(FF, FF, FF)

a.–5, b.–1, c.–4, d.–6, e.–2, f.–3

a. –1, b.–3, c.–2, d.–6, e.–5, f.–4

e. all of the above

Exercise 13-1
<style type="text/css">

 body {margin-left: 10%; margin-right: 10%; background-color: #BBE09F;}

 div#titlepage { padding: 1em; background-color: #D4F8B9;}

 div#titlepage p {text-align: center; font-variant: small-caps;}

 p {text-align: justify;}

 h1,h2,h3,h4,h5,h6 {text-transform: uppercase; text-align: center;}

 h1 { color:#C30;}
 h2 { color:#630;}

 a:link {color:#030;}
 a:visited {color:#363;}
 a:hover {color:#030; background-color:#87B862; text-decoration:none;}
 a:active {color:#C30;}

</style>

1.

2.

3.

4.

5.

Answers 443

Chapter 14: Thinking Inside the Box

border: double black medium;

overflow: scroll;

padding: 2em;

padding: 2em; border: 4px solid red;

margin: 2em; border: 4px solid red;

padding: 1em 1em 1em 6em; border: 4px dashed; margin: 1em 6em;

or

padding: 1em; padding-left: 6em; border: 4px dashed; margin: 1em 6em;

padding: 1em 50px; border: 2px solid teal; margin: 0 auto;

Exercise 14-3

<style type="text/css">

body {
 margin-left: 12%;
 margin-right: 12%;
 font: 76% Verdana, sans-serif;
 background: #FCF191 url(images/top-background.gif) repeat-x; }

/* styles for the intro section */
#intro {
 margin: 3em 0;
 text-align: center; }

#intro h1 {
 font-size: 1.5em;
 color: #F26521; }

#intro img {
 vertical-align: middle; }

#intro p {
 font-size: 1.2em; }

/* styles for the testimonials box */

#testimonials {
 width: 500px;
 margin: 2em auto;
 border: 1px dashed #F26521;
 padding: 1em;
 padding-left: 60px;
 background: #FFBC53 url(images/ex-circle-corner.gif) no-repeat left top;
 line-height: 1.2em; }

#testimonials h2 {
 font-size: 1em;
 text-transform: uppercase;
 color: #F26521;

1.

2.

3.

4.

5.

6.

7.

Appendix A444

 letter-spacing: 3px; }

/* styles for the products section */
#products {
 border: double #FFBC53;
 padding: 2em;
 background-color: #FFF;
 line-height: 2em;}

#products h2 {
 margin-top: 3em;
 border-left: 3px solid;
 border-top: 1px solid;
 padding-left: 1em;
 font-size: 1.2em;
 color: #921A66;}

#products h2.first { margin-top: 0; }

/* link styles */

a:link, a:visited, a:hover, a:active {
 text-decoration: none;
 border-bottom: 1px dotted;
 padding-bottom: .25em;}

a:link, a:active {
 color: #CC0000;}

a:visited {
 color: #921A66; }

a:hover {
 background-color: #FCF191;
 color: #921A66; }

/* miscellaneous styles */

em { color: #F26521; }

p#copyright {
 color:#663333;
 font-size: 10px;
 text-align: center; }

</style>

Chapter 15: Floating and Positioning

B., floats are positioned against the content area of the containing element (not the padding edge)

C., floats do not use offset properties, so there is no reason to include right.

Clear the footer div to make it start below a floated sidebar: div#footer { clear: both; }

A. absolute, B. absolute, fixed, C. fixed, D. relative, absolute, fixed, E. static, F. relative, G. absolute, fixed, H.

relative, absolute, fixed, I. relative

1.

2.

3.

4.

Answers 445

The sidebar div would be 292 pixels from outer edge to outer edge. (Extra credit: For IE-Win 5 and 5.5, you would

set the width to 242px.)

Chapter 16: Page Layout with CSS

Fixed, c.; Liquid, a.; Elastic, b.

Fixed, b.; Liquid, c.; Elastic, a.

Fixed, c.; Liquid, b.; Elastic, a.

Fixed, c.; Liquid, a.; Elastic, b.

Full-width footer: floats; Not change source order: positioning; No worries about overlapping: floats.

Chapter 17: CSS Techniques

B, E, A, D, C

E, D, B, A, C

The display property is used to specify how the element box should be handled in the layout; for example, as a

block element starting on a new line or as an inline element staying in the text flow.

Elements set to display: none are completely removed from the normal flow and the space they would have

occupied is closed up. An element with visibility set to hidden is invisible, but the empty space it would have

occupied in the normal flow is still there.

List items can be turned into inline elements using the display property, or floated to one edge so they stack up

next to one another.

C, the :hover selector.

Exercise 17-1, Design A
<style type="text/css">
body {margin: 100px;}

table {
 font-family: verdana, sans-serif;
 font-size: 76%;
 border-collapse: separate;
 border-spacing: 4px;
 width: 550px;}

th { text-align: left;
 color: white;
 background: olive;
 vertical-align: bottom;
 padding: 3px 12px 3px 3px; }

td { padding: 6px 12px 6px 3px;
 vertical-align: top;
 border: 1px olive solid; }

.filename { font-style: italic; }
tr.odd { background-color: #F3F3A6;}

5.

1.

2.

3.

4.

5.

1.

2.

3.

4.

5.

6.

Appendix A446

tr.even { background-color: #D4D4A2;}
</style>

Exercise 17-1, Design B
<style type="text/css">
body {margin: 100px;}

table {
 font-family: verdana, sans-serif;
 font-size: 76%;
 width: 550px;
 border-collapse: collapse; }

td { padding: 6px 12px 6px 3px;
 vertical-align: top;
 border-bottom: 1px olive solid; }

th { text-align: left;
 color: white;
 background: olive;
 vertical-align: bottom;
 padding: 3px 12px 3px 3px;}

tr.odd { background-color: #F3F3A6;}

tr.even { background-color: #D4D4A2;}
</style>

Exercise 17-2, Design A
<style type="text/css">

body {font-family: Verdana, sans-serif;
 margin: 0;}

h1#ds {
 text-indent: -5000px;
 background: url(images/designerrific_trans.gif) no-repeat;
 width: 360px;
 height: 70px;
 margin: 0;
 position: absolute;
 top: 25px;
 left: 25px;}

ul#nav {
 list-style-type: none;
 margin: 0;
 position: absolute;
 top: 65px;
 right: 25px;}

ul#nav li { display: inline;}

ul#nav li a {
 background-color: #0A6D73;
 border: 1px solid #FFF;
 color: white;
 font-size: 76%;

Answers 447

 text-decoration: none;
 text-align: center;
 text-transform: uppercase;
 letter-spacing: 2px;
 padding: 2px 20px;
 margin: 0px 2px;}

ul#nav li a:hover {
 background-color: #F8409C;
 border: 1px solid #600; }

#header {
 position: relative;
 background: #9cd8cd;
 border-bottom: 3px double #600;
 height: 100px;}

</style>

Exercise 17-2, Design B
<style type="text/css">

body {font-family: Verdana, sans-serif;
 margin: 0;}

h1#ds {
 text-indent: -5000px;
 background: url(images/designerrific_trans.gif) no-repeat;
 width: 360px;
 height: 70px;
 margin: 0;
 position: absolute;
 top: 25px;
 left: 25px; }

ul#nav {
 list-style-type: none;
 margin: 0;
 position: absolute;
 top: 65px;
 right: 25px; }

ul#nav li {
 display: inline; }

ul#nav li a {
 color: #1A7E7B;
 font-size: 76%;
 text-decoration: none;
 text-align: center;
 text-transform: uppercase;
 letter-spacing: 2px;
 padding: 2px 20px;
 margin: 0px 2px;
 background: url(images/star-white.gif) left center no-repeat; }

ul#nav li a:hover {
 background: url(images/star-pink.gif) left center no-repeat; }

Appendix A448

#header {
 position: relative;
 background: #9cd8cd;
 border-bottom: 3px double #600;
 height: 100px; }

</style>

Chapter 18: Web Graphics Basics

You can license to have exclusive rights to an image, so that your competitor doesn’t use the same photo on their

site.

ppi stands for “pixels per inch” and is a measure of resolution.

The 7-inch, 72ppi image is only 504 pixels across and would fit fine on a web page. The 4-inch, 300 ppi image is

1200 pixels across, which is too wide for most pages.

Indexed color is a mode for storing color information in an image that stores each pixel color in a color table. GIF

and 8-bit PNG formats are indexed color images.

There are 256 colors in an 8-bit graphic, and 32 colors in a 5-bit graphic.

GIF can contain animation and transparency. JPEG cannot.

Lossy compression is cumulative, which means you lose image data every time you save an image as a JPEG. If

you open a JPEG and save it as a JPEG again, even more image information is thrown out than the first time you

saved it. Be sure to keep your full-quality original and save JPEG copies as needed.

PNGs can store 8-bit indexed color, RGB color (both 24- and 48-bit) and 16-bit grayscale images.

In binary transparency, a pixel is either entirely transparent or entirely opaque. Alpha transparency allows up to

256 levels of transparency.

฀ GIF or PNG-8 because it is text, flat colors, and hard edges. B JPEG because it is a photograph. C GIF or

PNG-8 because although it has some photographic areas, most of the image is flat colors with hard edges. D GIF

or PNG-8 because it is a flat graphical image. E JPEG because it is a photograph.

Chapter 19: Lean and Mean Web Graphics

Smaller graphic files means shorter download and display times. Every second counts toward creating a favorable

user experience of your site.

Dithering introduces a speckle pattern that interrupts strings of identical pixels, therefore the GIF compression

scheme can’t compress areas with dithering as efficiently as flat colors.

The fewer pixel colors in the image, the smaller the resulting GIF, both because the image can be stored at a lower

bit depth and because there are more areas of similar color for the GIF to compress.

The compression setting is the most effective tool for controlling the size of a JPEG.

JPEG compression works effectively on smooth or blurred areas, so introducing a slight blur allows the JPEG

compression to work more efficiently, resulting in smaller files.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

1.

2.

3.

4.

5.

Answers 449

Just as you would do for an indexed GIF, optimize a PNG-8 by designing with flat colors, reducing the number

of colors, and avoiding dithering. There are no strategies for optimizing a PNG-24 because they are designed to

store images with lossless compression.

Chapter 20: The Web Development Process

A site diagram is useful for planning and visualizing how information is organized on the site. It should be done

very early in the design process, as soon as the content and functionality of the site have been determined. The

site diagram becomes a valuable reference for the whole production team.

A look and feel study is a sketch or series of sketches that propose graphic styles for the site. It focuses on how

the site looks rather than how it works.

There are many things that should be determined before production begins, including answers to questions like

those in the Some Questions Before You Begin sidebar, but some other general tasks include: determining the site

idea and strategy, getting information about your target audience, generate content, organize site content, create

a site diagram that reflects the organization, create wireframe diagrams to show page layout and functionality,

and develop the graphic look and feel.

The beta release incorporates changes from the initial alpha prototype and is close to a working version of the

site. At the very least, the client is invited to review it, but some sites choose to make beta releases available to a

broader audience.

At minimum, sites should be checked to make sure that all the content is there and accessible, that there are no

typos or errors, that all the links work, that images are visible, and that scripts and applications are functioning

properly. Beyond that, it is also important to test the site’s look and performance on a wide variety of browsing

environments and conditions.

Chapter 21: Getting Your Pages on the Web

Get connected to the Internet B

Find out if yourname.com is available C

Get yourname.com for three years C (and sometimes A)

Get space on a web server A (and sometimes B or C)

By numeric IP address and by domain name.

To open a file that is stored on your own hard drive. Pages that are on an external computer or server are said to

be remote.

You must know the name of the server, your login, and password. You may also need to know the name of the

root directory and the type of FTP transfer.

Upload graphics and audio files as “binary” or “raw data,” depending on what your FTP client calls it. HTML

files should be uploaded as “text” or “ASCII.”

Select the directory name in the FTP client.

In order to publish content on the Web for free, you may need to accept their advertising on your pages, you may

be limited as to what type of content you can publish, you may have limited control over the page layout and

navigation, and you usually do not get your own domain name.

6.

1.

2.

3.

4.

5.

1.

2.

3.

4.

5.

6.

7.

451

Selector Type of Selector Description

 * Universal selector Matches any element
* {font-family: serif;}

A Element type selector Matches the name of an element.
div {font-style: italic;}

A, B Grouped selectors Matches elements A and B
h1, h2, h3 {color: blue;}

A B Descendant selector Matches element B only if it is a descendant of element A.
blockquote em {color: red;}

A>B Child selector Matches any element B that is a child of element A.
div.main>p {line-height: 1.5;}

A+B Adjacent sibling selector Matches any element B that immediately follows any element A.
p+ul {margin-top: 0;}

.classname
A.classname

 Class selector Matches the value of the class attribute in all elements or in a
specified element.

p.credits {font-size: 80%;}

#idname
A#idname

 ID selector Matches the value of the id attribute in an element.
#intro {font-weight: bold;}

A[att] Simple attribute selector Matches any element A that has the given attribute defined,
whatever its value.

table[border] {background: white;}

A[att="val"] Exact attribute value selector Matches any element A that has the specified attribute set to the
specified value.

table[border="3"] {background: yellow;}

A[att~="val"] Partial attribute value selector Matches any element A that has the specified value as one of the
values in a list given to the specified attribute.

table[class~="example"] {background: yellow;}

A[att|="val"] Hyphenated prefix attribute
selector

Matches any element A that has the specified attribute with a
value that is equal to or begins with the provided value. It is
most often used to select languages, as shown here.

a[lang|="en"] {background-image: url(en_icon.png);}

 a:link Pseudoclass selector Specifies a style for links that have not yet been visited.
a:link {color: maroon;}

CSS2.1
SELECTORS

APPENDIX B

Appendix B452

Selector Type of Selector Description

a:visited Pseudoclass selector Specifies a style for links that have already been visited.
a:visited {color: gray;}

:active Pseudoclass selctor Specifies to any element that has been activated by the user, such
as a link as it is being clicked.

a:active {color: red;}

:focus Pseudoclass selector Specifies any element that currently has the input focus, such as
a selected form input.

input[type="text"]:focus {background: yellow;}

:hover Pseudoclass selector Specifies a style for elements (typically links) that appears when
the mouse is placed over them.

a:hover {text-decoration: underline;}

:lang(xx) Pseudoclass selector Selects an element that matches the two-character language
code.

a:lang(de) {color: green;}

:first-child Pseudoclass selector Selects an element that is the first child of its parent element in
the flow of the document source.

p:first-child {line-height: 2em;}

:first-letter Pseudoelement selector Selects the first letter of the specified element.
p:first-letter {font-size: 4em;}

:first-line Pseudoelement selector Selects the first letter of the specified element.
blockquote: first-line {letter-spacing: 4px;}

:before Pseudoelement selector Inserts generated text at the beginning of the specified element
and applies a style to it.

p.intro:before {content: "start here"; color: gray;}

:after Pseudoelement selector Inserts generated content at the end of the specified element and
applies a style to it.

p.intro:after {content: "fini"; color: gray;}

INDEX

Symbols
#1 Free Clip Art 362

& (ampersand) 90

' (apostrophe) 90

* (CSS2.1 selector) 451

../ notation 102

< (less-than symbol) 90

> (greater-than symbol) 90

@import rule 255,	256,	258

24-bit images 367

8-bit images 363,	369

A
abbreviations 83

above the fold 43

absolute positioning

page layouts 326–336

absolute units 208

accessibility 34

forms 148–149

images 120

tables 133,	139

versus availability 32

zoom layouts for low-vision users

317

acronyms 83

ActionScript 8

:active (pseudoclass selector) 241,	
242

address element 76

adjacent sibling selectors 219,	451

Adobe After Effects 16

Adobe Flash 8,	15

Adobe HomeSite 15

Adobe Illustrator 15,	361

Adobe Macromedia Dreamweaver

14

Adobe Macromedia Fireworks 8 361

Adobe Photoshop 15,	238,	361

saving images 372

Adobe Photoshop Elements 15

:after (pseudoelement selector) 244

Ajax 11

align attribute (img element) 118

A List Apart 124,	162,	201,	211,	
244,	258,	316,	317,	319,	334,

347, 378

alpha transparency 377,	378

alt attribute 117–119

alternate text 118

anchors 95–101,	107–113

named 107

syntax 95

Apache web server 20

Apple Final Cut Pro 16

Apple iMovie 16

Apple QuickTime 16

ASCII files 52

ASCII text 24

attributes 64

attribute selectors 244

exact 244

hyphen-separated 244

partial 244

Audacity 16

audience, know your 47

auditory impairment 33

authoring 7

automating production 10

B
backend design 6

background-attachment property

253

background-color property 240

background-image 246–254

background-position property 249,	
254

background-repeat 248,	250

background colors 36

background images 246–252

adding 246–247

attachment 252

position 249

keyword positioning 250

length measurements 250

shorthand background property

254

tiling 248–249

working with 247

backslash 57,	98

BBEdit 15

:before (pseudoelement selector)

244, 451

Behavior Layer 10

b element 85

Berners-Lee, Tim 9,	20

Big, Stark, and Chunky article 317

big element 85

Index454

big picture, keeping the 48

binary transparency 377

bit depth 391

bitmapped images 373

block-level elements 61,	80

forms and 145

blockquote element 74

blogging services 420

BMP 116

body element 58

border-bottom property 273

border-collapse property 338,	341,	
356

border-color property 218,	238,	
272

border-left property 273

border-right property 273

border-spacing property 338,	341,	
356

border-top property 273

border-width property 271

border attribute (img element) 118

borders 269–274

border-width property 271–272

border style property 269

bottom borders instead of under-

lines 274

color 272

transparent keyword 272

combining style, width, and color

273–274

Boutell, Tom 125

Bowman, Doug 317,	318,	347

box model 261,	264

future of 265

IE/Windows 264

br element 63

Briggs, Owen 211

Brill, Ryan 319

Browsercam.com 32

browsers 16,	21

alternative environments 32–35

disabilities, users with 32

mobile web 33

bugs 286

displaying web pages 26

familiarity with 30

pixel dimensions of images 120

reloaded pages look same 68

statistics 30

versions 29–32

coping with 31

what browsers ignore 56

window size 40–44

coping with 42

Budd, Andy 278

bullet character 90

button element 153

C
Cailliau, Robert 20

cameras, digital 360

capitalization 226

caption (system font value) 216

carriage returns 56

Cascading Style Sheets (see CSS)

CDATA 172

cell phone browser 21

center element 85

CERN 20,	165

CGI (Common Gateway Interface)

145

character encoding 180–181

specifying 180

Unicode (ISO/IEC 10646) 180

child selectors 219,	451

citations 83

cite element 83

Clark, Joe 317

class attribute 87,	88

value 88

class selectors 220,	451

clear property 292

client-side versus server-side 21

client software 20

clip art 361

Clipart.com 362

closing tag 57

CNET Web Hosting Reviews 419

code element 83

cognitive impairment 33

col element 131

colgroup element 131

collapsed border model 339

color

map 363

table 363

color control 46

Color Names chart 236

Color Picker 235,	236

colors

background 239–240

extended color names 234

foreground 238

keywords in CSS2.1 234

values 233–238

RGB 234–237

Web Palette 238

Web Safe Colors 238

working with 239

Colorzilla 236

comments 56,	60

.com suffix 417

connection speed 39–40

containing block 263,	292,	296–

309,	323,	329–335

content attribute 181

contextual selectors 218,	220

copyright symbol 89,	90

Corel Paint Shop Pro 15

Corel Paint Shop Pro Photo 361

CSS (Cascading Style Sheets) 10,	
30–32,	38,	44,	48,	187–356

assigning importance 198

benefits of 187–188

box model 199

comments in style sheets 193

conflicting styles 197–199

rule order 198

specificity 197

CSS2.1 standards 191

CSS Level 1 Recommendation 188

CSS Level 2 (CSS2) 188

CSS Level 3 (CSS3) 188

declaration 190–191

embedded style sheets 193

external style sheet 193

Index 455

grouped selectors 200

how they work 188–194

imagemaps 124

images and 116

inheritance 194–197

document structure 194

parents and children 195

power of 188

presentation layer 190

properties 190

reader style sheets 197

rules 190

selector 190–191

standards 188

structural layer 190

stylesheet hierarchy 198

stylesheets,	attaching to docu-

ment 193

values 190

css-discuss Wiki 287,	319

CSS2

other media 257

units of measurement 208

CSS2.1

color keywords 234

letting and numbering keywords

342

pseudoclass selectors 241

selectors 451–452

CSS techniques 337–356

image replacement (IR) techniques

347–349

list bullets and numbers 340–344

lists, using for navigation 344–347

rollovers (see rollovers)

table style properties 337–340

CSS Zen Garden 316

examples 189

site 116

CuteFTP 423

Cygwin 17

D
Davidson, Mike 349

debugging HTML 67–68

decimal-leading-zero keyword 342

decimal keyword 342

declaration 191

declaration block 191

default 204

del element 83

deprecated elements 81

descendent selector 218,	451

dfn element 83

DHTML 10

digital cameras 13,	360

disabilities, users with 32

display property 281

display roles 281–282

dithering 45

div element 86–89

DNS server 20

DOCTYPE

declarations 175

switching 174

Document Object Model (DOM) 10

document production 7

document structure 57–60

domain

availability 417

cost 416

name 415–417

registries 416

suffixes 417

Domain Name System (DNS) 20

DOM scripting 10

dots per inch (dpi) 374

Download.com 12

Dreamweaver 4,	52,	238

DTD (Document Type Definition)

168,	174–182

HTML

frameset 175

strict 175

transitional 175

which one to use 176–177

HTML or XHTML 176

transitional or strict 176

XHTML

frameset 175

strict 175

transitional 175

E
ECMAScript 10

.edu suffix 417

Elastic Lawn 316

elastic layouts 311,	316–318

creating 317

element box 261–262

content dimensions 262–266

handling overflow 265–266

height 262–265

width 262–264

overflow 265–266

auto 266

hidden 265

scroll 266

visible 265

element identifiers 86

elements

closing 58

element type selector 191,	451

ellipses 90

em-dash 90

email accounts 419

embedded style sheets 193

em element 85

emphasis, adding to text 82

empty-cells property 339,	340,	356

empty elements 63

em tag 60

en-dash 90

end tag 57

Enkoder from Automatic Labs 111

EPS 116,	362

equipment 13

escaping special characters 89

Index456

exact attribute value selector

244,	451

exercises

1-1 Taking Stock 16

2-1 View Source 24

3-1 Playing with Preferences 38

3-2 Get a feel for the normal flow

41

4-1 Entering Content 55

4-2 Adding basic structure 59

4-3 Defining Text Elements 61

4-4 Adding an Image 65

4-5 Adding a style sheet 66

5-1 Fun with block elements 80

5-2 Fix it 84

5-3 Text Markup Practice 91

6-1 Make an external link 97

6-2 Link in the same directory 99

6-3 Link one directory down 100

6-4 Link two directories down 101

6-5 Link to a higher directory 102

6-6 Link up two directory levels

103

6-8 Linking to a Fragment 108

7-1 Adding and linking images

122

7-2 Making an Imagemap 126

8-1 Making a Simple Table 134

8-2 Column Spans 135

8-3 Row Spans 136

8-4 The Table Challenge 141

9-1 Starting the Contest Form 154

9-2 Adding radio buttons and

checkboxes 158

9-3 Adding a menu 160

10-1 Defining Text Elements 173

10-2 Validating a Document 178

10-3 Adding the character encod-

ing 181

11-1 Your first style sheet 190

11-2 Applying an inline style 194

12-1 Formatting a Menu 207

12-2 Using Selectors 221

12-3 Finishing Up the Menu 228

13-1 Adding Color to a Document

243

13-2 Working with Background

Images 247

13-3 Making an External Style

Sheet 256

14-1 Adding a Little Padding 268

14-2 Border tricks 274

14-3 Adding Margin Space Around

Elements 280

15-1 Floating elements 293

15-2 Absolute Positioning 304

15-3 Fixed Positioning 308

16-1 Float-based Layout 324

16-2 Elastic layout with positioned

column 333

16-3 Centering Layouts 335

17-1 Styling a Table 341

17-2 Putting It Together 352

18-1 Resizing an Image Smaller in

Photoshop 376

18-2 Creating Transparent Images

379

19-1 Making Lean and Mean GIFs

394

19-2 Optimizing JPEGs 399

eXtensible HTML 9

external style sheet 193

extranets 21

F
Fahrner, Todd 211

fantasy font 205

Featherstone, Derek 32

Fetch 423

file:// protocol 98

files,	naming conventions 55

Firebug 177

Firefox browser 21

firewalls 21

Fireworks

saving images 373

:first-child (pseudoclass selector)

241,	452

:first-letter (pseudoelement selector)

243,	452

:first-line (pseudoelement selector)

242,	452

fixed layouts 44,	311,	314–315

creating 315

three-column with footer 322

three-column with rules and pad-

ding between columns 330

versus liquid layouts 318

floating elements 286–295

blocks 290–291

clearing floated elements 292–295

defined 285

examples 288–291

inline text 288–289

key behaviors 288

multiple elements 291

float property 286,	293,	305,	345

flow, normal 285–286

fluid layouts 312

:focus (pseudoclass selector) 241,	
452

font-family 204

as alternative to font element 85

font-size property 208

as alternative to font element 85

font-style property 214

as alternative to i element 85

font-variant property 215

as alternative to font element 85

font-weight property 213

as alternative to b element 85

font element 84,	85

font face and size 36

font properties 204–217

absolute units 208

font-weight 213

generic font families 205

limitations 204

name 204–208

relative units 208

size 208–211

em 210

keywords 209

percentages 210

techniques 211

specifying 206

Index 457

style

italics 214

system fonts 216

variant

small caps 215

fonts, core web from Microsoft 207

form element 145–147

action attribute 146

block elements 145

method attribute 146,	147

forms 143–164

accessibility 148–149

button element 153

checkbox buttons 156,	157

controls 150–162

hidden 161

input element 150–162

multi-line text entry field 152

password text entry field 152

single-line text entry field 151

custom input buttons 153

disabled attribute 152

encoding 144

fieldset element 149

GET method 147

hosting plans 146

how they work 143–145

IDs 149

image button 153

input element 150–162

interactivity options 146

labels 148

explicit association 149

implicit association 149

layout and design 162

legend element 149

menus 158

grouping options 160

pull-down 159

scrolling 159

multiple attribute 159

name attribute 147,	148,	151,	152,	
153,	156

naming variables 148

optgroup element 160

POST method (see POST method)

programmers 146

radio buttons 156

readonly attribute 152

reset button 153

rows attribute 152

select element 159

size attribute 151

submit button 153

textarea element 152

type attribute 150,	151,	156

value attribute 151

variables and content 147–148

forward slash (/) 104

fragment identifier 106

frames

targeting 109

free hosting services 420

Frontend design 6

FrontPage 52

FTP (File Transfer Protocol) 423–

425

needed information 423

software 423–425

step-by-step 424–425

uploading whole site 424

FTP programs 16

FutureSplash 8

G
gamma settings 46

Garrett, Jesse James 7

GET method 147

Getty Images 361

GIF (Graphic Interchange Format)

68,	115,	363–366,	371

Adaptive color palette 365

animated 366

common color palettes 365

compression 364

Custom color palette 365

Exact color palette 365

indexed color 363

interlacing 366

Optimized Median Cut (Paint

Shop Pro only) color palette

365

Optimized Octree (Paint Shop Pro

only) color palette 365

optimizing 390–393

optimizing images

designing for compression 392

horizontal stripes 393

lossy filter 392

reducing dithering 391

reducing number of colors 390

Perceptual (Photoshop/Image

Ready only) color palette 365

Selective (Photoshop/ImageReady

only) color palette 365

System (Windows or Macintosh)

color palette 365

transparency (see transparency)

Uniform color palette 365

Web, Restrictive, or Web216 365

Web Adaptive (Fireworks only)

color palette 365

GoDaddy 416

Government Accessibility Guide-

lines 34–35

.gov suffix 417

graphic design 5

graphic file 26

graphics software 15

grayscale images 369

Griffiths, Patrick 316

grouped selectors 451

Gustafson, Aaron 153

H
h1 56,	61,	63–65

h2 60,	66,	68

headers attribute 133

headings 73

(see also h1;h2)

hexadecimal 236

calculators 237

Hirsch, Ben 319

horizontal rule (see hr element)

Index458

HostIndex 419

hosting plans 146

hosting services

free hosting options 420

professional 418

shopping for 419

versus ISPs (Internet Service Pro-

viders) 418

:hover (pseudoclass selector) 241,	
242

href attribute 96

hr element 63,	75

hspace attribute (img element) 118

HTML 9

browser’s point of view 174

documents 24

editors 14

element 57,	58

Frameset version 168

history 165–169

rewriting 169

Transitional version 167

version 5 168

HTML 4.01 Recommendation 167

HTML 4.01 Strict documents 182

HTML overview 51–70

attributes 64

block-level elements 61

body 58

capitalization 58

closing tag 57

comments 60

debugging 67–68

document structure 57–60

html element 57

elements, closing 58

end tag 57

header 58

images 63–65

img element 57

opening tag 57

quotation marks 58

start tag 57

style sheets 66–67

tables 58

text editor 52–54

creating in Notepad 53

creating in TextEdit 54

text elements 60–63

default styles 62

title element 59

web page, step-by-step 51–52

HTML Tidy 177

http-equiv attribute 181

http:// protocol 22,	97

HTTP servers 20

hypertext links 19

HyperText Transfer Protocol (HTTP)

19

hyphenated prefix attribute

selector 451

I
ICANN 416

icon (system font value) 216

ID and NAME tokens 172

id attribute 87

value 88

ID selectors 219,	220,	451

IE 5 (Mac) 30

IE5/Mac Bugs and Fixes 287

i element 85

image file 26

imagemaps 123–126

components 124

creating 124

CSS 124

interpreting 125

tools 125

image replacement (IR) techniques

347–349

future of 348

images 115–128

accessibility 120

adding 63–65

adding and linking 122

background (see background im-

ages)

bitmapped 373

broken graphic icon 68

caching 119

choosing best format 371

clip art 361

creating 359–360

CSS and 116

digital cameras 360

dots per inch (dpi) 374

electronic illustration 360

formats 115–116,	362–373

imagemaps (see imagemaps)

inline 115

naming properly 362

optimizing (see optimizing im-

ages)

organizing 118

pixel dimensions of 120

raster 373

resizing 375

resolution 374

low 375

rollovers (see rollovers)

saving in chosen format 372

scanning 360

size and resolution 373–375

sources 359–362

stock photography 360–361

tools of the trade 361

transparency (see transparency)

turning off 36

web basics 359–386

(see also img element)

img element 57,	63,	116–121

alt attribute (see alt attribute)

deprecated attributes 118

height attribute 120–121

longdesc attribute 119

src attribute 105

width attribute 120–121

indexed color 363

index file 23

information architects 6

information design 6

inherit (CSS keyword value) 213

inherits (properties) 204

inline elements 81–85

abbreviations 83

acronyms 83

Index 459

citations 83

code 83

del 83

dfn element 83

emphasis 82

font 84

ins 83

kbd 83

presentational 84

samp 83

semantic 81,	82

strong 81

var 83

Inman, Shaun 349

ins element 83

Interarchie 423

interface design 6

interlacing 370

Internet

definition 19

Internet Explorer 5.5 and 5 30

Internet Explorer 6 30

flickering during rollovers 351

monitor resolutions 42

Standards Mode 335

unsupported features

:after 78

:before 78

:hover on all elements 349

generated text 78

max-width property 316

min-width property 316

PNG alpha-transparency

370, 378

zoom text sized in pixels 317

Internet Explorer 7 30

Internet tools 16

intranets 21

IP addresses 20,	416

ISPs (Internet Service Providers)

versus hosting services 418

IStockPhoto 361

J
Java 8,	12

Java and JavaScript

turning off 36

Javascript,	opening window with

109

JavaScript/DOM scripting 9,	10

jello layouts 316

JPEG (Joint Photographic Experts

Group) 68,	115,	367–368,	
371

24-bit images 367

compression 367

optimizing images 394–399

blurring or smoothing 398

compression 394–395

compression, aggressive 395

Selective Quality 396–397

unpredictable color 395

Weighted Optimization 396–397

progressive 368

JPEG Cruncher by Spinwave 389

JuicyStock.com 361

Jupiter Images 361

K
kbd element 83

Koch, Peter-Paul 265,	287

Koechley, Nate 30

Krug, Steve 7

Kuniavsky, Mike 412

L
Landa, Robin 6

:lang() (pseudoclass selector) 241,	
452

lang attribute 173

large (font size keyword) 209

larger (font size keyword) 210

Lauer, David 6

layers 10

layout

using layout tables 131

less-than symbol (<) 89

letter-spacing property 227

Levine, Matthew 319

line breaks 56,	63

adding 79–80

line lengths

dealing with 313

optimal 312

:link (pseudoclass selector) 241,	451

link element 255

linking

images 105

mail 111

pages on web 97

specific point in web page 106,	
108

within your site 98–108

root relative path 104

to a higher directory 102–103

to a lower directory 100–101

within a directory 99

links 95–114

Linux emulaters 17

liquid layouts 43,	311,	312

three-column (narrow footer) 328

two-column with footer 320

two-column with narrow footer

326

versus fixed layouts 318

list-style-image property 343,	344,	
356

list-style-position property 342–

344,	356

list-style-type property 78,	340–

345,	350–356

disc, circle, and square values 342

list-style property 344,	356

lists 76–79

bullets and numbers 340–344

changing bullets and numbering

78

definition 78

dictionary 78

item display role 342

making bullets 343–344

marker

choosing 340–342

position 342

Index460

lists (continued)

nesting 77

ordered 77

unordered 76

using for navigation 344–347

floated list items 345

inline list item method 344–345

tutorials 347

longdesc attribute 119

long quotation 74

lower-alpha keyword 342

lower-greek keyword 342

lower-latin keyword 342

lower-roman keyword 342

LVHA 242

M
Mac Dec Bin Calculator 237

Macintosh, running Windows on 13

Macromedia Fireworks 15

mailto link 111

MapEdit 125

margin-bottom property 275

margin-left property 275

margin-right property 275

margin-top property 275

margins 275–281

behavior 277–281

browser default 276

collapsing 277,	278

inline elements 278

negative 279

markup, unrecognized 56

markup language 9,	24

MathML (Mathematical Markup

Language) 169

Matt’s Script Archive 146

max-height property 263

max-width property 263,	314,	316

maxlength attribute 151

media types 257

medium (font size keyword) 209

menu (system font value) 216

message-box (system font value) 216

meta element 63,	181

Meyer, Eric 191,	278

Meyer, Minz 278

Microsoft Expression Web 14

Microsoft IIS web server 20

Microsoft Windows Movie Maker

16

.mil suffix 417

min-height property 263

min-width property 263

mobile web 33

mobility impairment 32

monitor color 44–47

brightness 45

coping with variations 46

number of colors 45

monitor resolutions 40–44

common 42

monitors 13

monospace font 204,	205

Morville, Peter 6

Mosaic browser 20

Mosaic Communications 166

Mozilla Firefox 1.0 30

multimedia 8

multimedia tools 15

N
name attribute 107

naming conventions (files) 55

NCSA 20

Netscape 4 30

Netscape 7 & 8 30

Netscape browser 21,	166

.net suffix 417

Network Solutions 416

Newhouse, Mark 347

Notepad 52

creating new document 53

NUMBER data type 172

Nvu 14

O
O’Reilly Media’s web site 315

online community sites 420

opening tag 57

Open source software 20

Opera 8+ 30

Opera browser 21

optgroup element 160

optimizing images 387–402

compression 388

file size 401

general strategies 388–389

GIFs 390–393

designing for compression 392

horizontal stripes 393

lossy filter 392

reducing dithering 391

reducing number of colors 390

JPEGs 394–399

blurring or smoothing 398

compression 394–395

compression, aggressive 395

Selective Quality 396–397

unpredictable color 395

Weighted Optimization 396–397

limiting dimensions 388

PNGs 400

PNG-24 400

PNG-8 400

reusing and recycling 388

web graphics tools 389

why optimize 387–388

Organisation for Economic Co-op-

eration and Development 40

.org suffix 417

Original Free Clip Art 362

P
padding 266–268

padding property 266,	269

shorthand 267–268

page layouts 311–336

absolute positioning 326–336

Index 461

centering fixed width page 334

elastic (see elastic layouts)

fixed (see fixed layouts)

liquid (see liquid layouts)

strategies 311–314

templates 318–332

color-coding 319

dominant main column 319

headers and footers 318

multi-column layouts using

floats 319–325

simplified markup 318

three-column (narrow footer) 328

three-column with footer 322

three-column with rules and pad-

ding between columns 330

top-to-bottom column back-

grounds 334

two-column with footer 320

two-column with narrow footer

326

Paint Shop Pro

saving images 373

paragraphs 72

partial attribute value selector 244,	
451

pathnames

things not to do 98

PCDATA 172

PDA browser 21

p element 72

Pentak, Stephen 6

Photoshop (see Adobe Photoshop)

PHP Builder 146

PHP Classes 146

The PHP Resource Index 146

PictureQuest 361

pixels 42,	373

plain text 52

platforms, different 38–39

PNG (Portable Network Graphic)

68,	115,	368–371

8-bit indexed color images 369

animation 369

gamma correction 370

grayscale images 369

optimizing images 400

PNG-24 400

PNG-8 400

progressive display (interlacing)

370

RGB/Truecolor (24- and 48-bit)

369

when to use 371

PNG-8 files 382

positioning elements 285,	295–296

absolute positioning 297–307

specifying position in percent-

ages 303

specifying position in pixels 302

stacking order 306–307

fixed positioning 307–308

relative positioning 296–297

specifying position 296

types

absolute 295

relative 295

static 295

Position Is Everything 287

position property 295–299

POST method 146–148,	161,	162

pound 90

Powers, Shelley 11

pre element 74

preformatted text 74

Presentation Layer 10

print (media type) 257

problems, common

broken graphic icon 68

half page missing 68

reloaded pages look same 68

programmers 146

progressive display (interlacing) 370

ProJPEG by BoxTop Software 389

property listings 204

pseudoclass selectors 240–242,	
451–452

:active 241,	452

:hover 241,	452

:link 241,	451

:visited 241,	452

anchors 241,	452

LVHA 242,	452

pseudoelement selectors 242–243,	
452

:after 244,	452

:before 244,	452

:first-letter 243,	452

:first-line 242,	452

p tag 60

publishing sites 420–422

PuTTY 17

Q
Quirksmode Bug Reports 287

quotation

long 74

short 82

quotation marks 58

quotes 90

R
Raggett, Dave 177

RAM 13

raster images 373

Register.com 416

registered trademark 90

relative units 208

rgb() notation 236

RGB color 233–236

model 235

picking a color 235

specifying values 236

style sheets 236

RGB mode 371

Robinson, Alex 319

rollovers 349–351

shifting background images 351

swapping background images 350

root directory 104

Rosenfeld, Lou 6

RSS 12

RSS (Really Simple Syndication or

RDF Site Summary) 169

Rundle, Mike 348

Rundle/Phark method 348

Rutter, Richard 211

Index462

S
Safari 1.0 and 2.0 30

Safari browser 21

samp element 83

sans-serif 205

Scalable Vector Graphics (SVG) 12

scanners 13

scanning images 360

scripting and programming 8

select element 159

selectors 190–191,	218–221

adjacent sibling selectors 219,	451

attribute (see attribute selectors)

child selectors 219,	451

class selectors 220,	451

contextual selectors 218,	220

descendent selector 218,	451

element 191,	220,	451

grouped 200,	451

ID selectors 219,	220,	451

pseudoclass (see pseudoclass

selectors)

specificity 220,	221

universal 220,	451

s element 85

semantic inline elements 81,	82

semantic markup 60

separated border model 338

serif 205

server-side scripting 9,	11

server space 417–420

how much is needed 419

server testing 422

server traffic 419

SFTP (SSH File Transfer Protocol)

423

SGML 166,	169,	171,	172

Shea, David 347,	348

shorthand property

overrides 254

sIFR (Scalable Inman Flash Replace-

ment) 349

simple attribute selector 451

site development process 405–414

conceptualizing and researching

405–406

content 406

creating and organizing 407–408

information design 407

launching site 413

look and feel 408–409

art direction 409

sketching it 408

maintaining site 413

prototype 409–410

questions to ask before beginning

406

resources 406

site description 406

strategy 406

target audience 406

testing it 410–412

browsing environment 411–412

quality check 410–411

user testing 412

site publishing 420–422

slash versus backslash characters 57

small (font size keyword) 209

small-caption (system font value)

216

small element 85

smaller (font size keyword) 210

SMIL (Synchronized Multimedia

Integration Language) 169

social network sites 420

software recommendations 13

Sony Sound Forge 16

source document 24

source file 24

space (character) 90

spaces 56

spacing 227

spam-bots 111

span element 86–89

special characters 89–90

& (ampersand) 90

' (apostrophe) 90

< (less-than symbol) 90

> (greater-than symbol) 90

bullet 90

common 90

copyright symbol 89,	90

ellipses 90

em-dash 90

en-dash 90

euro 90

less-than symbol (<) 89

pound 90

quotes 90

registered trademark 90

space (character) 90

trademark 90

yen 90

special characters in file names 55

specificity 220,	221

src attribute 117,	118

SSH Secure Shell 423

standards 165–184

Stanic̆ek, Petr 351

starting web design, how to 4

start tag 57

status-bar (system font value) 216

stock photography 360–361

strike element 85

strong element 82

Structure Layer 10

style element 193

style sheets 9,	66–67

@import rule 258

external 254–257

@import rule 256

modular style sheets 256

ignoring 36

media types 257

print 257–258

RGB color 236

(see also CSS)

sub element 85

sup element 85

SVG (Scalable Vector Graphics) 169

system fonts 216

Index 463

T
table-layout property 338

tables 58,	129–142

abbr attribute 140

accessibility 133,	139

advanced elements 133

align attribute 138

bgcolor attribute 138

border-collapse property 138

border-spacing property 138

border attribute 138

borders

separated and collaped 338–339

caption element 138,	141

captions 133

cellpadding attribute 136,	137,	
142

cells 131

empty 339–340

padding and spacing 136–138

spanning 134–136

cellspacing attribute 136–138,	141,	
142

collapsed border model 339

colspan attribute 134

column group elements 133

columns 131

column spans 134

empty-cells property 339

headers 131,	134

headers attribute 140

how they are used 129–130

minimal structure 130–133

presentational attributes 138

row group elements 133

rows 131

rowspan attribute 135

row spans 135

rules attribute 138

scope attribute 133,	140

separated border model 338

style 132

style properties 337–340

advanced 338

summaries 133

summary attribute 139

td element (see td element)

th element (see th element)

using layout tables 131

valign attribute 138

width attribute 138

tabs 56

target attribute 109

targeting new browser window

108–111

new window with markup 109

tbody element 133

td element 131

colspan attribute 134

terminal applications 17

text-align property 85,	224

text-decoration property 85,	225

text-direction property 228

text-indent property 224

text-transform property 226

textarea element 152

text color 217–218

background 218

color names 217

foreground 218

text colors 36

TextEdit 52

creating new document 54

text editor 52–54

text elements 60–63

default styles 62

text line adjustments 222–225

horizontal alignment 224

text-align property 224

text-indent property 224

TextMate 15

TextPad 14

text properties 228

text spacing 227

tfoot element 133

thead element 133

th element 131

colspan attribute 134

TIFF 116,	362,	369

title element 58,	59

Tofte, Svend 263

tokens 172

top-level domains (TLDs) 417

TopHosts.com 419

trademark 90

transferring files (see FTP)

Transmit 423

transparency 377–384

adding to flattened images 383

alpha 377,	378

anti-aliasing 382

binary 377

GIF 365

halos 382

making GIFs and PNGs 378–384

PNG-8 files 382

transparent background 240

transparent images 47

tr element 131

tt element 85

U
u element 85

underlines and other text decora-

tions 225–226

Unicode (ISO/IEC 10646) 180

unicode-bidi property 228

universal selector 220,	451

untagged text 72

uploading files 422

upper-alpha keyword 342

upper-latin keyword 342

upper-roman keyword 342

URI (Uniform Resource Identifier),

versus URL 21

URLs 21

absolute 96

default files 23

domain name 22

parts of 22

relative 96

user preferences 35–38

coping with 38

Index464

V
valid 58

validating documents 177–178

validation tools 177

W3C Markup Validation Service

178

validator 177

values 204

var element 83

variables, naming 148

Veer 361

vertical-align property 85,	228

visibility property 228

vision impairment 32

:visited (pseudoclass selector) 241,	
452

visual design 5

vspace attribute (img element) 118

W
W3C Markup Validation Service

178

Ware, Christopher 347

Web

history 20

versus Internet 19

web authoring 7

web design,	defined 5

web page, parts of 23

web page addresses (URLs) 21

web page authoring tools 14

web page dimensions 41

Web Palette 45,	238

Web Palette Colors chart 236

web programming 8

Web Safe Colors 238

web scripting 8

web servers 20

web sites, large-scale 5

Web Standards Group 287

white-space property 228

widgets 147

Wodtke, Christina 6

word-spacing property 227

World Wide Web, definition 19

World Wide Web Consortium

(W3C) 9,	20

WS_FTP 423

WYSIWYG 14

X
x-large (font size keyword) 209

x-small (font size keyword) 209

XHTML 9,	52,	169–173

Basic version 170

modularization 170

syntax 170–173

(see also HTML overview)

XHTML 1.0 166,	170,	173,	175,	177,	
179,	181–183

XHTML 1.0 Strict documents 182

XHTML 1.1 170,	181

XHTML 2.0 170

XML 11

declaration 180

namespace 173

on the web 169

xml:lang attribute 173

xmlns attribute 173

xx-large (font size keyword) 209

xx-small (font size keyword) 209

Y
Yahoo!’s Developer Network 30

yen 90

Z
z-index property 306

Zoom Layout Page 317

Zoom Layout presentation at @

media 2005 317

zoom layouts 311

low-vision users 317

About the Author

Jennifer Niederst Robbins was one of the first designers for the Web. As the

designer of O’Reilly’s Global Network Navigator (GNN), the first commercial

web site, she has been designing for the Web since 1993. She is the author

of the bestselling Web Design in a Nutshell (O’Reilly), and has taught web

design at the Massachusetts College of Art in Boston and Johnson and Wales

University in Providence. She has spoken at major design and Internet events

including SXSW Interactive, Seybold Seminars, the GRAFILL conference

(Geilo, Norway), and one of the first W3C International Expos.

Colophon

Our look is the result of reader comments, our own experimentation, and

feedback from distribution channels. Distinctive covers complement our

distinctive approach to technical topics, breathing personality and life into

potentially dry subjects. The photo cover of a leaf is from Photos.com. The

text font is Linotype Birka; the heading font is Adobe Myriad Pro.

	Learning Web Design
	Preface
	Part I Getting Started
	Chapter 1
	Where Do I Start?
	Am I Too Late?
	Where Do I Start?
	What Do I Need to Learn?
	Do I Need to Learn Java?
	What Do I Need to Buy?
	What You’ve Learned
	Test Yourself

	Chapter 2
	How the Web Works
	Serving Up Your Information
	A Word About Browsers
	Web Page Addresses (URLs)
	The Anatomy of a Web Page
	Putting It All Together
	Test Yourself
	Browser Versions

	Chapter 3
	The Nature of Web Design
	Alternative Browsing Environments
	User Preferences
	Different Platforms
	Connection Speed
	Browser Window Size and Monitor Resolution
	Monitor Color
	Know Your Audience
	Keeping the Big Picture in Mind
	Test Yourself

	Part II HTML Markup for Structure
	Chapter 4
	Creating a Simple Page
	(HTML Overview)
	A Web Page, Step by Step
	Before We Begin, Launch a Text Editor
	Step 1: Start with Content
	Step 2: Give the Document Structure
	Step 3: Identify Text Elements
	Step 4: Add an Image
	Step 5: Change the Look with a Style Sheet
	When Good Pages Go Bad
	Test Yourself
	(X)HTML Review: Document Structure Elements

	Chapter 5
	Marking up Text
	Building Blocks
	Lists
	Adding Line Breaks
	The Inline Text Element Round-up
	Generic Elements (div and span)
	Some Special Characters
	Putting It All Together
	Test Yourself
	(X)HTML Review: Text Elements

	Chapter 6
	Adding Links
	The href Attribute
	Linking to Pages on the Web
	Linking Within Your Own Site
	Targeting a New Browser Window
	Mail Links
	Test Yourself
	(X)HTML Review: The Anchor Element

	Chapter 7
	Adding Images
	First, a Word on Image Formats
	The img Element
	Imagemaps
	Test Yourself
	(X)HTML Review: Image and Imagemap Elements

	Chapter 8
	Basic Table Markup
	How Tables Are Used
	￼Minimal Table Structure
	Table Headers
	Spanning Cells
	Cell Padding and Spacing
	Captions and Summaries
	Table Accessibility
	Wrapping Up Tables
	Test Yourself
	(X)HTML Review: Table Elements

	Chapter 9
	Forms
	How Forms Work
	￼The form Element
	Variables and Content
	Form Accessibility Features
	The Great Form Control Round-up
	￼Form Layout and Design
	Test Yourself
	(X)HTML Review: Forms￼

	Chapter 10
	Understanding the Standards
	Everything You’ve Wanted to Know About HTML But Were Afraid to Ask
	￼Enter XHTML
	From the Browser’s Point of View
	￼Declaring the Document Type
	Which One Should You Use?
	Validating Your Documents
	Character Encoding
	Putting It All Together
	Test Yourself

	HTML Markup for Structure

	Part III CSS For Presentation
	Chapter 11
	Cascading Style Sheets
	The Benefits of CSS
	How Style Sheets Work
	The Big Concepts
	Moving Forward with CSS
	Test Yourself

	Chapter 12
	Formatting Text (Plus More Selectors)
	The Font Properties
	Changing Text Color
	A Few More Selector Types
	Text Line Adjustments
	Underlines and Other “Decorations”
	Changing Capitalization
	Spaced Out
	Test Yourself
	CSS Review: Font and Text Properties

	Chapter 13
	Colors and Backgrounds (Plus Even More Selectors and External Style Sheets)
	Specifying Color Values
	Foreground Color
	Background Color￼
	Introducing.... Pseudoclass Selectors
	Pseudoelement Selectors
	Background Images
	The Shorthand background Property
	Finally, External Style Sheets
	Style Sheets for Print (and Other Media)
	Test Yourself
	Review: Color and Background Properties

	Chapter 14
	Thinking Inside the Box (Padding, Borders, and Margins)
	The Element Box
	Setting the Content Dimensions
	Padding
	Borders
	Margins
	Assigning Display Roles
	The Box Model in Review
	Test Yourself
	Review: Basic Box Properties

	Chapter 15
	Floating and Positioning
	Normal Flow
	Floating
	Positioning Basics
	Relative Positioning
	Absolute Positioning
	Fixed Positioning
	Test Yourself
	Review: Basic Layout Properties

	Chapter 16
	Page Layout with CSS
	Page Layout Strategies
	Fixed Layouts
	Elastic Layouts
	Page Layout Templates
	￼Centering a Fixed Width Page
	CSS Layouts in Review
	Test Yourself

	Chapter 17
	CSS Techniques
	Style Properties for Tables
	Changing List Bullets and Numbers
	Using Lists for Navigation
	Image Replacement Techniques
	CSS Rollovers
	Wrapping Up Style Sheets
	Test Yourself
	Review: Table and List Properties

	Part IV Creating Web Graphics
	Chapter 18
	Web Graphics Basics
	Image Sources
	Meet the Formats
	Image Size and Resolution
	Working with Transparency
	Web Graphics 101 Summary
	Test Yourself

	Chapter 19
	Lean and Mean Web Graphics
	Why Optimize?
	￼General Optimization Strategies
	Optimizing GIFs
	￼Optimizing JPEGs
	Optimizing PNGs
	Optimize to File Size
	Optimization in Review
	Test Yourself

	Part V From Start to Finish
	Chapter 20
	The Site Development Process
	1. Conceptualize and Research
	2. Create and Organize Content
	￼3. Develop the “Look and Feel”
	4. Produce a Working Prototype
	5. Test It
	6. Launch the Site
	7. Maintain the Site
	The Development Process in Review
	Test Yourself

	Chapter 21
	Getting Your Pages on the Web
	www.“YOU”.com!
	Finding Server Space
	The Publishing Process
	Transferring Files with FTP
	Test Yourself

	Appendix B
	CSS 2.1 Selectors

	Appendix A
	Answers

	Index

