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Foreword

Big data is getting bigger and bigger day by day. And I don't mean tera, peta, 
exa, zetta, and yotta bytes of data collected all over the world every day. I refer to 
complexity and number of components utilized in any decent and respectable big 
data ecosystem. Never mind the technical nitties gritties—just keeping up with 
terminologies, new buzzwords, and hypes popping up all the time can be a real 
challenge in itself. By the time you have mastered them all, and put your hard-
earned knowledge to practice, you will discover that half of them are old and 
inefficient, and nobody uses them anymore. Spark is not one of those "here today, 
gone tomorrow" fads. Spark is here to stay with us for the foreseeable future, and 
it is well worth to get your teeth into it in order to get some value out of your data 
NOW, rather than in some, errr, unforeseeable future. Spark and the technologies 
built on top of it are the next crucial step in the big data evolution. They offer 
100x faster  in-memory, and 10x on disk processing speeds in comparison to the 
traditional Hadoop jobs.

There's no better way of getting to know Spark than by reading this book, written 
by Mike Frampton, a colleague of mine, whom I first met many, many years ago and 
have kept in touch ever since. Mike's main professional interest has always been data 
and in pre-big data days, he worked on data warehousing, processing, and analyzing 
projects for major corporations. He experienced the inefficiencies, poor value, and 
frustrations that the traditional methodologies of crunching the data offer first hand. 
So understanding big data, what it offers, where it is coming from, and where it is 
heading, and is intrinsically intuitive to him. Mike wholeheartedly embraced big 
data the moment it arrived, and has been devoted to it ever since. He practices what 
he preaches, and is not in it for money. He is very active in the big data community, 
writes books, produces presentations on SlideShare and YouTube, and is always first 
to test-drive the new, emerging products.
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Mike's passion for big data, as you will find out, is highly infectious, and he  
is always one step ahead, exploring the new and innovative ways big data is  
used for. No wonder that in this book, he will teach you how to use Spark in 
conjunction with the very latest technologies; some of them are still in development 
stage, such as machine learning and Neural Network. But fear not, Mike will 
carefully guide you step by step, ensuring that you will have a direct, personal 
experience of the power and usefulness of these technologies, and are able to put 
them in practice immediately.

Andrew Szymanski
Cloudera Certified Hadoop Administrator/Big Data Specialist

www.allitebooks.com

http://www.allitebooks.org


[ FM-7 ]

About the Author

Mike Frampton is an IT contractor, blogger, and IT author with a keen interest 
in new technology and big data. He has worked in the IT industry since 1990 in a 
range of roles (tester, developer, support, and author). He has also worked in many 
other sectors (energy, banking, telecoms, and insurance). He now lives by the beach 
in Paraparaumu, New Zealand, with his wife and teenage son. Being married to 
a Thai national, he divides his time between Paraparaumu and their house in Roi 
Et, Thailand, between writing and IT consulting. He is always keen to hear about 
new ideas and technologies in the areas of big data, AI, IT and hardware, so look 
him up on LinkedIn (http://linkedin.com/profile/view?id=73219349) or his 
website (http://www.semtech-solutions.co.nz/#!/pageHome) to ask questions 
or just to say hi.

I would like to acknowledge the efforts of the open source 
development community who offer their time, expertise and services 
in order to help develop projects like Apache Spark. I have been 
continuously impressed by the speed with which this development 
takes place, which seems to exceed commercial projects. I would 
also like to mention the communities that grow around open source 
products, and people who answer technical questions and make 
books like this possible.

There are too many people that have helped me technically with 
this book and I would like to mention a few. I would like to thank 
Michal Malohlava at http://h2o.ai/ for helping me with H2O, 
and Arsalan Tavakoli-Shiraji at https://databricks.com/ for 
answering my many questions. I would also like to thank Kenny 
Bastani for allowing me to use his Mazerunner product.

Riddhi Tuljapurkar, at Packt, and the book reviewers have put in a 
sterling effort to help push this book along. Finally, I would like to 
thank my family who have allowed me the time develop this book 
through the months of 2015.

www.allitebooks.com

http://linkedin.com/profile/view?id=73219349
http://www.semtech-solutions.co.nz/#!/pageHome
http://h2o.ai/
https://databricks.com/
http://www.allitebooks.org


[ FM-8 ]

About the Reviewers

Andrea Mostosi is a technology enthusiast. Innovation lover since when he 
was a child, he started his professional job in the early 2000s, and has worked on 
several projects playing almost every role in the computer science environment. 
He is currently the CTO at The Fool, a company that tries to make sense of data. 
During his free time, he likes travelling, running, cooking, biking, reading, 
observing the sky, and coding.

I would like to thank my wonderful girlfriend Khadija, who lovingly 
supports me in everything I do. I would also thank my geek friends: 
Simone M, Daniele V, Luca T, Luigi P, Michele N, Luca O, Luca B, 
Diego C, and Fabio B. They are the smartest people I know, and 
comparing myself with them has always pushed me to be better.

www.allitebooks.com

http://www.allitebooks.org


[ FM-9 ]

Toni Verbeiren received his PhD in theoretical physics in 2003. He has 
worked on models of artificial neural networks, entailing mathematics, statistics, 
simulations, (lots of) data, and numerical computations. Since then, he has been 
active in this industry in a range of domains and roles: infrastructure management 
and deployment, service and IT management, and ICT/business alignment and 
enterprise architecture. Around 2010, he started picking up his earlier passion,  
which is now called Data Science. The combination of data and common sense  
can be a very powerful basis for making decisions and analyzing risk.

Toni is active as owner and consultant at Data Intuitive (http://www.data-
intuitive.com/) in all the things related to (big) data science, and its applications to 
decision and risk management. He is currently involved in ExaScience Life (http://
www.exascience.com/), and the Visual Data Analysis Lab (http://vda-lab.be/), 
concerning scaling up visual analysis of biological and chemical data.

I'd like to thank various employers, clients, and colleagues for the 
various pieces of insight and wisdom that they shared with me. I'm 
grateful to the Belgian and Flemish government (FWO, IWT) for 
financial support of the academic projects mentioned previously.

Lijie Xu is now a PhD student at Institute of Software, Chinese Academy of 
Sciences. His research interests focus on distributed systems and large-scale data 
analysis. He has both academic and industrial experience in Microsoft Research 
Asia, Alibaba Taobao, and Tencent. As an open source software enthusiast; he has 
contributed to Apache Spark, and has written a popular technical report named 
Spark Internals at https://github.com/JerryLead/SparkInternals. He believes 
that all things are difficult before they are easy.

www.allitebooks.com

http://www.data-intuitive.com/
http://www.data-intuitive.com/
http://www.exascience.com/
http://www.exascience.com/
http://vda-lab.be/
https://github.com/JerryLead/SparkInternals
http://www.allitebooks.org


[ FM-10 ]

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF 
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy. 
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,  
sign up for a range of free newsletters and receive exclusive discounts and offers  
on Packt books and eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital 
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access 
PacktLib today and view 9 entirely free books. Simply use your login credentials for 
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com


[ i ]

Table of Contents
Preface vii
Chapter 1: Apache Spark 1

Overview 2
Spark Machine Learning 3
Spark Streaming 3
Spark SQL 4
Spark graph processing 4
Extended ecosystem 4
The future of Spark 5

Cluster design 5
Cluster management 8

Local 8
Standalone 8
Apache YARN 9
Apache Mesos 9
Amazon EC2 10

Performance 13
The cluster structure 13
The Hadoop file system 14
Data locality 14
Memory 14
Coding 15

Cloud 15
Summary 15



Table of Contents

[ ii ]

Chapter 2: Apache Spark MLlib 17
The environment configuration 17

Architecture 18
The development environment 19
Installing Spark 21

Classification with Naïve Bayes 25
Theory 25
Naïve Bayes in practice 26

Clustering with K-Means 36
Theory 36
K-Means in practice 36

ANN – Artificial Neural Networks 41
Theory 41
Building the Spark server 44
ANN in practice 48

Summary 59
Chapter 3: Apache Spark Streaming 61

Overview 62
Errors and recovery 63

Checkpointing 64
Streaming sources 66

TCP stream 67
File streams 69
Flume 70
Kafka 82

Summary 94
Chapter 4: Apache Spark SQL 95

The SQL context 96
Importing and saving data 97

Processing the Text files 97
Processing the JSON files 97
Processing the Parquet files 100

DataFrames 101
Using SQL 104
User-defined functions 110
Using Hive 115

Local Hive Metastore server 115
A Hive-based Metastore server 121

Summary 128



Table of Contents

[ iii ]

Chapter 5: Apache Spark GraphX 131
Overview 131
GraphX coding 134

Environment 134
Creating a graph 137
Example 1 – counting 138
Example 2 – filtering 139
Example 3 – PageRank 140
Example 4 – triangle counting 141
Example 5 – connected components 141

Mazerunner for Neo4j 143
Installing Docker 144
The Neo4j browser 147
The Mazerunner algorithms 149

The PageRank algorithm 150
The closeness centrality algorithm 150
The triangle count algorithm 151
The connected components algorithm 152
The strongly connected components algorithm 152

Summary 153
Chapter 6: Graph-based Storage 155

Titan 156
TinkerPop 157
Installing Titan 158
Titan with HBase 159

The HBase cluster 159
The Gremlin HBase script 160
Spark on HBase 164
Accessing HBase with Spark 165

Titan with Cassandra 169
Installing Cassandra 169
The Gremlin Cassandra script 172
The Spark Cassandra connector 173
Accessing Cassandra with Spark 174

Accessing Titan with Spark 177
Gremlin and Groovy 179
TinkerPop's Hadoop Gremlin 181
Alternative Groovy configuration 183
Using Cassandra 184
Using HBase 185



Table of Contents

[ iv ]

Using the file system 185
Summary 187

Chapter 7: Extending Spark with H2O 189
Overview 190
The processing environment 190
Installing H2O 191
The build environment 192
Architecture 195
Sourcing the data 198
Data quality 199
Performance tuning 200
Deep learning 200

The example code – income 202
The example code – MNIST 207

H2O Flow 208
Summary 220

Chapter 8: Spark Databricks 221
Overview 222
Installing Databricks 222
AWS billing 224
Databricks menus 225
Account management 226
Cluster management 228
Notebooks and folders 231
Jobs and libraries 235
Development environments 240
Databricks tables 240

Data import 241
External tables 244

The DbUtils package 248
Databricks file system 250
Dbutils fsutils 250
The DbUtils cache 252
The DbUtils mount 252

Summary 253
Chapter 9: Databricks Visualization 255

Data visualization 255
Dashboards 261
An RDD-based report 263
A stream-based report 264



Table of Contents

[ v ]

REST interface 275
Configuration 276
Cluster management 276
The execution context 277
Command execution 277
Libraries 278

Moving data 279
The table data 279
Folder import 281
Library import 282

Further reading 282
Summary 283

Index 285





Preface

[ vii ]

Preface
Having already written an introductory book on the Hadoop ecosystem, I was 
pleased to be asked by Packt to write a book on Apache Spark. Being a practical 
person with a support and maintenance background, I am drawn to system builds 
and integration. So, I always ask the questions "how can the systems be used?",  
"how do they fit together?" and "what do they integrate with?" In this book, I will 
describe each module of Spark, and explain how they can be used with practical 
examples. I will also show how the functionality of Spark can be extended with  
extra libraries like H2O from http://h2o.ai/.

I will show how Apache Spark's Graph processing module can be used in conjunction 
with the Titan graph database from Aurelius (now DataStax). This provides a coupling 
of graph-based processing and storage by grouping together Spark GraphX and Titan. 
The streaming chapter will show how data can be passed to Spark streams using tools 
like Apache Flume and Kafka.

Given that in the last few years there has been a large-scale migration to cloud-based 
services, I will examine the Spark cloud service available at https://databricks.
com/. I will do so from a practical viewpoint, this book does not attempt to answer 
the question "server or cloud", as I believe it to be a subject of a separate book; it just 
examines the service that is available.

What this book covers
Chapter 1, Apache Spark, will give a complete overview of Spark, functionalities of its 
modules, and the tools available for processing and storage. This chapter will briefly 
give the details of SQL, Streaming, GraphX, MLlib, Databricks, and Hive on Spark.

http://h2o.ai/
https://databricks.com/
https://databricks.com/
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Chapter 2, Apache Spark MLlib, covers the MLlib module, where MLlib stands for 
Machine Learning Library. This describes the Apache Hadoop and Spark cluster that 
I will be using during this book, as well as the operating system that is involved—
CentOS. It also describes the development environment that is being used: Scala 
and SBT. It provides examples of both installing and building Apache Spark. A 
worked example of classification using the Naïve Bayes algorithm is explained, 
as is clustering with KMeans. Finally, an example build is used to extend Spark to 
include some Artificial Neural Network (ANN) work by Bert Greevenbosch (www.
bertgreevenbosch.nl). I have always been interested in neural nets, and being able 
to use Bert's work (with his permission) in this chapter was enjoyable. So, the final 
topic in this chapter classifies some small images including distorted images using a 
simple ANN. The results and the resulting score are quite good!

Chapter 3, Apache Spark Streaming, covers the comparison of Apache Spark to Storm 
and especially Spark Streaming, but I think that Spark offers much more functionality. 
For instance, the data used in one Spark module can be passed to and used in another. 
Also, as shown in this chapter, Spark streaming integrates easily with big data 
movement technologies like Flume and Kafka.

So, the streaming chapter starts by giving an overview of checkpointing, and 
explains when you might want to use it. It gives Scala code examples of how it  
can be used, and shows the data can be stored on HDFS. It then moves on to give 
practical examples in Scala, as well as execution examples of TCP, File, Flume, and 
the Kafka streaming. The last two options are shown by processing an RSS data 
stream and finally storing it on HDFS.

Chapter 4, Apache Spark SQL, explains the Spark SQL context in Scala code terms. 
It explains File I/O as text, Parquet, and JSON formats. Using Apache Spark 1.3 it 
explains the use of data frames by example, and shows the methods that they make 
available for data analytics. It also introduces Spark SQL by Scala-based example, 
showing how temporary tables can be created, and how the SQL-based operations 
can be used against them.

Next, the Hive context is introduced. Initially, a local context is created and the Hive 
QL operations are then executed against it. Then, a method is introduced to integrate 
an existing distributed CDH 5.3 Hive installation to a Spark Hive context. Operations 
against this context are then shown to update a Hive database on the cluster. In this 
way, the Spark applications can be created and scheduled so that the Hive operations 
are driven by the real-time Spark engine.

Finally, the ability to create user-defined functions (UDFs) is introduced, and the 
UDFs that are created are then used in the SQL calls against the temporary tables.

www.bertgreevenbosch.nl
www.bertgreevenbosch.nl
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Chapter 5, Apache Spark GraphX, introduces the Apache Spark GraphX module 
and the graph processing module. It works through a series of graph functions 
by example from based counting to triangle processing. It then introduces Kenny 
Bastani's Mazerunner work which integrates the Neo4j NoSQL database with 
Apache Spark. This work has been introduced with Kenny's permission; take a  
look at www.kennybastani.com.

This chapter works through the introduction of Docker, then Neo4j, and then it 
gives an introduction to the Neo4j interface. Finally, it works through some of the 
Mazerunner supplied functionality via the supplied REST interface.

Chapter 6, Graph-based Storage, examines graph-based storage as Apache Spark Graph 
processing was introduced in this book. I looked for a product that could integrate 
with Hadoop, was open sourced, could scale to a very high degree, and could 
integrate with Apache Spark.

Although it is still a relatively young product both in terms of community support 
and development, I think that Titan from Aurelius (now DataStax) fits the bill. The 
0.9.x releases that are available, as I write now, use Apache TinkerPop for graph 
processing.

This chapter provides worked examples of graph creation and storage using Gremlin 
shell and Titan. It shows how both HBase and Cassandra can be used for backend 
Titan storage.

Chapter 7, Extending Spark with H2O, talks about the H2O library set developed at 
http://h2o.ai/, which is a machine learning library system that can be used to 
extend the functionality of Apache Spark. In this chapter, I examine the sourcing and 
installation of H2O, as well as the Flow interface for data analytics. The architecture of 
Sparkling Water is examined, as is data quality and performance tuning.

Finally, a worked example of deep learning is created and executed. Chapter 2, 
Spark MLlib, used a simple ANN for neural classification. This chapter uses a highly 
configurable and tunable H2O deep learning neural network for classification. The 
result is a fast and accurate trained neural model, as you will see.

Chapter 8, Spark Databricks, introduces the https://databricks.com/ AWS  
cloud-based Apache Spark cluster system. It offers a step-by-step process of  
setting up both an AWS account and the Databricks account. It then steps through 
the https://databricks.com/ account functionality in terms of Notebooks,  
Folders, Jobs, Libraries, development environments, and more.

It examines the table-based storage and processing in Databricks, and also introduces 
the DBUtils package for Databricks utilities functionality. This is all done by example 
to give you a good understanding of how this cloud-based system can be used.

www.allitebooks.com
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Chapter 9, Databricks Visualization, extends the Databricks coverage by concentrating 
on data visualization and dashboards. It then examines the Databricks REST interface, 
showing how clusters can be managed remotely using various example REST API 
calls. Finally, it looks at data movement in terms of table's folders and libraries.

The cluster management section of this chapter shows that it is possible to launch 
Apache Spark on AWS EC2 using scripts supplied with the Spark release. The 
https://databricks.com/ service takes this functionality a step further by providing 
a method to easily create and resize multiple EC2-based Spark clusters. It provides 
extra functionality for cluster management and usage, as well as user access and 
security as these two chapters show. Given that the people who brought us Apache 
Spark have created this service, it must be worth considering and examining.

What you need for this book
The practical examples in this book use Scala and SBT for Apache Spark-based code 
development and compilation. A Cloudera CDH 5.3 Hadoop cluster on CentOS 6.5 
Linux servers is also used. Linux Bash shell and Perl scripts are used both, to assist 
in Spark applications and provide data feeds. Hadoop administration commands are 
used to move and examine data during Spark applications tests.

Given the skill overview previously, it would be useful for the reader to have a basic 
understanding of Linux, Apache Hadoop, and Spark. Having said that, and given 
that there is an abundant amount of information available on the internet today, I 
would not want to stop an intrepid reader from just having a go. I believe that it is 
possible to learn more from mistakes than successes.

Who this book is for
This book is for anyone interested in Apache Hadoop and Spark who would like 
to learn more about Spark. It is for the user who would like to learn how the usage 
of Spark can be extended with systems like H2O. It is for the user who is interested 
in graph processing but would like to learn more about graph storage. If the reader 
wants to know about Apache Spark in the cloud then he/she can learn about 
https://databricks.com/, the cloud-based system developed by the people who 
brought them Spark. If you are a developer with some experience with Spark and 
want to strengthen your knowledge of how to get around in the world of Spark,  
then this book is ideal for you. Basic knowledge of Linux, Hadoop, and Spark is 
required to understand this book; reasonable knowledge of Scala is also expected.

https://databricks.com/
https://databricks.com/
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Conventions
In this book, you will find a number of text styles that distinguish between different 
kinds of information. Here are some examples of these styles and an explanation of 
their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: 
"The first step is to ensure that a Cloudera repository file exists under the  
/etc/yum.repos.d directory, on the server hc2nn and all of the other Hadoop 
cluster servers."

A block of code is set as follows:

export AWS_ACCESS_KEY_ID="QQpl8Exxx"
export AWS_SECRET_ACCESS_KEY="0HFzqt4xxx"

./spark-ec2  \
    --key-pair=pairname \
    --identity-file=awskey.pem \
    --region=us-west-1 \
    --zone=us-west-1a  \
    launch cluster1

Any command-line input or output is written as follows:

[hadoop@hc2nn ec2]$ pwd

/usr/local/spark/ec2

[hadoop@hc2nn ec2]$ ls

deploy.generic  README  spark-ec2  spark_ec2.py

New terms and important words are shown in bold. Words that you see on  
the screen, for example, in menus or dialog boxes, appear in the text like this:  
"Select the User Actions option, and then select Manage Access Keys."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.
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Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or disliked. Reader feedback is important for us as it helps 
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention 
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you 
purchased this book elsewhere, you can visit http://www.packtpub.com/support 
and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you could report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form 
link, and entering the details of your errata. Once your errata are verified, your 
submission will be accepted and the errata will be uploaded to our website or added 
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required 
information will appear under the Errata section.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
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Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all 
media. At Packt, we take the protection of our copyright and licenses very seriously. 
If you come across any illegal copies of our works in any form on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors and our ability to bring you 
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at 
questions@packtpub.com, and we will do our best to address the problem.
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Apache Spark
Apache Spark is a distributed and highly scalable in-memory data analytics system, 
providing the ability to develop applications in Java, Scala, Python, as well as 
languages like R. It has one of the highest contribution/involvement rates among 
the Apache top level projects at this time. Apache systems, such as Mahout, now use 
it as a processing engine instead of MapReduce. Also, as will be shown in Chapter 4, 
Apache Spark SQL, it is possible to use a Hive context to have the Spark applications 
process data directly to and from Apache Hive.

Apache Spark provides four main submodules, which are SQL, MLlib, GraphX, and 
Streaming. They will all be explained in their own chapters, but a simple overview 
would be useful here. The modules are interoperable, so data can be passed between 
them. For instance, streamed data can be passed to SQL, and a temporary table can 
be created.

The following figure explains how this book will address Apache Spark and its 
modules. The top two rows show Apache Spark, and its four submodules described 
earlier. However, wherever possible, I always try to show by giving an example how 
the functionality may be extended using the extra tools:

Spark

Streaming SQL GraphX

Kafka TitanHiveH2OFlume

HDFS

HBase Cassandra

MLlib
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For instance, the data streaming module explained in Chapter 3, Apache Spark 
Streaming, will have worked examples, showing how data movement is performed 
using Apache Kafka and Flume. The MLlib or the machine learning module will 
have its functionality examined in terms of the data processing functions that are 
available, but it will also be extended using the H2O system and deep learning.

The previous figure is, of course, simplified. It represents the system relationships 
presented in this book. For instance, there are many more routes between Apache 
Spark modules and HDFS than the ones shown in the preceding diagram.

The Spark SQL chapter will also show how Spark can use a Hive Context. So,  
a Spark application can be developed to create Hive-based objects, and run  
Hive QL against Hive tables, stored in HDFS.

Chapter 5, Apache Spark GraphX, and Chapter 6, Graph-based Storage, will show how 
the Spark GraphX module can be used to process big data scale graphs, and how 
they can be stored using the Titan graph database. It will be shown that Titan will 
allow big data scale graphs to be stored, and queried as graphs. It will show, by an 
example, that Titan can use both, HBase and Cassandra as a storage mechanism. 
When using HBase, it will be shown that implicitly, Titan uses HDFS as a cheap  
and reliable distributed storage mechanism.

So, I think that this section has explained that Spark is an in-memory processing 
system. When used at scale, it cannot exist alone—the data must reside somewhere. 
It will probably be used along with the Hadoop tool set, and the associated eco-
system. Luckily, Hadoop stack providers, such as Cloudera, provide the CDH 
Hadoop stack and cluster manager, which integrates with Apache Spark, Hadoop, 
and most of the current stable tool set. During this book, I will use a small CDH 
5.3 cluster installed on CentOS 6.5 64 bit servers. You can use an alternative 
configuration, but I find that CDH provides most of the tools that I need, and 
automates the configuration, leaving me more time for development.

Having mentioned the Spark modules and the software that will be introduced in 
this book, the next section will describe the possible design of a big data cluster.

Overview
In this section, I wish to provide an overview of the functionality that will be 
introduced in this book in terms of Apache Spark, and the systems that will be  
used to extend it. I will also try to examine the future of Apache Spark, as it 
integrates with cloud storage.
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When you examine the documentation on the Apache Spark website (http://
spark.apache.org/), you will see that there are topics that cover SparkR and Bagel. 
Although I will cover the four main Spark modules in this book, I will not cover these 
two topics. I have limited time and scope in this book so I will leave these topics for 
reader investigation or for a future date.

Spark Machine Learning
The Spark MLlib module offers machine learning functionality over a number of 
domains. The documentation available at the Spark website introduces the data 
types used (for example, vectors and the LabeledPoint structure). This module  
offers functionality that includes:

• Statistics
• Classification
• Regression
• Collaborative Filtering
• Clustering
• Dimensionality Reduction
• Feature Extraction
• Frequent Pattern Mining
• Optimization

The Scala-based practical examples of KMeans, Naïve Bayes, and Artificial Neural 
Networks have been introduced and discussed in Chapter 2, Apache Spark MLlib of 
this book.

Spark Streaming
Stream processing is another big and popular topic for Apache Spark. It involves  
the processing of data in Spark as streams, and covers topics such as input and 
output operations, transformations, persistence, and check pointing among others.

Chapter 3, Apache Spark Streaming, covers this area of processing, and provides practical 
examples of different types of stream processing. It discusses batch and window 
stream configuration, and provides a practical example of checkpointing. It also  
covers different examples of stream processing, including Kafka and Flume.

http://spark.apache.org/
http://spark.apache.org/
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There are many more ways in which stream data can be used. Other Spark module 
functionality (for example, SQL, MLlib, and GraphX) can be used to process the 
stream. You can use Spark streaming with systems such as Kinesis or ZeroMQ.  
You can even create custom receivers for your own user-defined data sources.

Spark SQL
From Spark version 1.3 data frames have been introduced into Apache Spark so 
that Spark data can be processed in a tabular form and tabular functions (like select, 
filter, groupBy) can be used to process data. The Spark SQL module integrates with 
Parquet and JSON formats to allow data to be stored in formats that better represent 
data. This also offers more options to integrate with external systems.

The idea of integrating Apache Spark into the Hadoop Hive big data database  
can also be introduced. Hive context-based Spark applications can be used to 
manipulate Hive-based table data. This brings Spark's fast in-memory distributed 
processing to Hive's big data storage capabilities. It effectively lets Hive use Spark  
as a processing engine.

Spark graph processing
The Apache Spark GraphX module allows Spark to offer fast, big data in memory 
graph processing. A graph is represented by a list of vertices and edges (the lines 
that connect the vertices). GraphX is able to create and manipulate graphs using  
the property, structural, join, aggregation, cache, and uncache operators.

It introduces two new data types to support graph processing in Spark: VertexRDD 
and EdgeRDD to represent graph vertexes and edges. It also introduces graph 
processing example functions, such as PageRank and triangle processing. Many  
of these functions will be examined in Chapter 5, Apache Spark GraphX.

Extended ecosystem
When examining big data processing systems, I think it is important to look at not 
just the system itself, but also how it can be extended, and how it integrates with 
external systems, so that greater levels of functionality can be offered. In a book of 
this size, I cannot cover every option, but hopefully by introducing a topic, I can 
stimulate the reader's interest, so that they can investigate further.
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I have used the H2O machine learning library system to extend Apache Spark's 
machine learning module. By using an H2O deep learning Scala-based example, 
I have shown how neural processing can be introduced to Apache Spark. I am, 
however, aware that I have just scratched the surface of H2O's functionality. I have 
only used a small neural cluster and a single type of classification functionality. Also, 
there is a lot more to H2O than deep learning.

As graph processing becomes more accepted and used in the coming years, so will 
graph based storage. I have investigated the use of Spark with the NoSQL database 
Neo4J, using the Mazerunner prototype application. I have also investigated the 
use of the Aurelius (Datastax) Titan database for graph-based storage. Again, Titan 
is a database in its infancy, which needs both community support and further 
development. But I wanted to examine the future options for Apache Spark integration.

The future of Spark
The next section will show that the Apache Spark release contains scripts to allow 
a Spark cluster to be created on AWS EC2 storage. There are a range of options 
available that allow the cluster creator to define attributes such as cluster size and 
storage type. But this type of cluster is difficult to resize, which makes it difficult to 
manage changing requirements. If the data volume changes or grows over time a 
larger cluster maybe required with more memory.

Luckily, the people that developed Apache Spark have created a new start-up 
called Databricks https://databricks.com/, which offers web console-based 
Spark cluster management, plus a lot of other functionality. It offers the idea of 
work organized by notebooks, user access control, security, and a mass of other 
functionality. It is described at the end of this book.

It is a service in its infancy, currently only offering cloud-based storage on Amazon 
AWS, but it will probably extend to Google and Microsoft Azure in the future.  
The other cloud-based providers, that is, Google and Microsoft Azure, are also 
extending their services, so that they can offer Apache Spark processing in the cloud.

Cluster design
As I already mentioned, Apache Spark is a distributed, in-memory, parallel 
processing system, which needs an associated storage mechanism. So, when you 
build a big data cluster, you will probably use a distributed storage system such  
as Hadoop, as well as tools to move data like Sqoop, Flume, and Kafka.

www.allitebooks.com

https://databricks.com/
http://www.allitebooks.org
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I wanted to introduce the idea of edge nodes in a big data cluster. Those nodes in 
the cluster will be client facing, on which reside the client facing components like 
the Hadoop NameNode or perhaps the Spark master. The majority of the big data 
cluster might be behind a firewall. The edge nodes would then reduce the complexity 
caused by the firewall, as they would be the only nodes that would be accessible. The 
following figure shows a simplified big data cluster:

Edge Node

Cluster

It shows four simplified cluster racks with switches and edge node computers, facing 
the client across the firewall. This is, of course, stylized and simplified, but you get the 
idea. The general processing nodes are hidden behind a firewall (the dotted line), and 
are available for general processing, in terms of Hadoop, Apache Spark, Zookeeper, 
Flume, and/or Kafka. The following figure represents a couple of big data cluster edge 
nodes, and attempts to show what applications might reside on them.

The edge node applications will be the master applications similar to the Hadoop 
NameNode, or the Apache Spark master server. It will be the components that are 
bringing the data into and out of the cluster such as Flume, Sqoop, and Kafka. It can 
be any component that makes a user interface available to the client user similar to 
Hive:
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NameNode

Secondary NameNode

Spark Master

Hive

HBase

Edge Server 1 Edge Server 2

Sqoop

Kalfa

Flume

Titan

Other Client ?

Generally, firewalls, while adding security to the cluster, also increase the complexity. 
Ports between system components need to be opened up, so that they can talk to each 
other. For instance, Zookeeper is used by many components for configuration. Apache 
Kafka, the publish subscribe messaging system, uses Zookeeper for configuring its 
topics, groups, consumers, and producers. So client ports to Zookeeper, potentially 
across the firewall, need to be open.

Finally, the allocation of systems to cluster nodes needs to be considered. For 
instance, if Apache Spark uses Flume or Kafka, then in-memory channels will be 
used. The size of these channels, and the memory used, caused by the data flow, 
need to be considered. Apache Spark should not be competing with other Apache 
components for memory usage. Depending upon your data flows and memory 
usage, it might be necessary to have the Spark, Hadoop, Zookeeper, Flume, and 
other tools on distinct cluster nodes.

Generally, the edge nodes that act as cluster NameNode servers, or Spark master 
servers, will need greater resources than the cluster processing nodes within the 
firewall. For instance, a CDH cluster node manager server will need extra memory, 
as will the Spark master server. You should monitor edge nodes for resource usage, 
and adjust in terms of resources and/or application location as necessary.

This section has briefly set the scene for the big data cluster in terms of Apache 
Spark, Hadoop, and other tools. However, how might the Apache Spark cluster 
itself, within the big data cluster, be configured? For instance, it is possible to have 
many types of Spark cluster manager. The next section will examine this, and 
describe each type of Apache Spark cluster manager.
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Cluster management
The following diagram, borrowed from the spark.apache.org website, demonstrates 
the role of the Apache Spark cluster manager in terms of the master, slave (worker), 
executor, and Spark client applications:

Cluster Manager

Driver  Program

SparkContent

Worker Node

Executor

Task Task

Cache

Worker Node

Executor

Task Task

Cache

The Spark context, as you will see from many of the examples in this book, can 
be defined via a Spark configuration object, and a Spark URL. The Spark context 
connects to the Spark cluster manager, which then allocates resources across the 
worker nodes for the application. The cluster manager allocates executors across  
the cluster worker nodes. It copies the application jar file to the workers, and finally 
it allocates tasks.

The following subsections describe the possible Apache Spark cluster manager 
options available at this time.

Local
By specifying a Spark configuration local URL, it is possible to have the application 
run locally. By specifying local[n], it is possible to have Spark use <n> threads to run 
the application locally. This is a useful development and test option.

Standalone
Standalone mode uses a basic cluster manager that is supplied with Apache Spark. 
The spark master URL will be as follows:

Spark://<hostname>:7077
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Here, <hostname> is the name of the host on which the Spark master is running. I 
have specified 7077 as the port, which is the default value, but it is configurable. This 
simple cluster manager, currently, only supports FIFO (first in first out) scheduling. 
You can contrive to allow concurrent application scheduling by setting the resource 
configuration options for each application. For instance, using spark.core.max to 
share cores between applications.

Apache YARN
At a larger scale when integrating with Hadoop YARN, the Apache Spark cluster 
manager can be YARN, and the application can run in one of two modes. If the  
Spark master value is set as yarn-cluster, then the application can be submitted to  
the cluster, and then terminated. The cluster will take care of allocating resources  
and running tasks. However, if the application master is submitted as yarn-client, 
then the application stays alive during the life cycle of processing, and requests 
resources from YARN.

Apache Mesos
Apache Mesos is an open source system for resource sharing across a cluster. 
It allows multiple frameworks to share a cluster by managing and scheduling 
resources. It is a cluster manager, which provides isolation using Linux containers, 
allowing multiple systems, like Hadoop, Spark, Kafka, Storm, and more to share a 
cluster safely. It is highly scalable to thousands of nodes. It is a master slave-based 
system, and is fault tolerant, using Zookeeper for configuration management.

For a single master node Mesos cluster, the Spark master URL will be in this form:

Mesos://<hostname>:5050

Where <hostname> is the host name of the Mesos master server, the port is defined 
as 5050, which is the default Mesos master port (this is configurable). If there are 
multiple Mesos master servers in a large scale high availability Mesos cluster, then 
the Spark master URL would look like this:

Mesos://zk://<hostname>:2181

So, the election of the Mesos master server will be controlled by Zookeeper. The 
<hostname> will be the name of a host in the Zookeeper quorum. Also, the port 
number 2181 is the default master port for Zookeeper.
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Amazon EC2
The Apache Spark release contains scripts for running Spark in the cloud against 
Amazon AWS EC2-based servers. The following listing, as an example, shows Spark 
1.3.1 installed on a Linux CentOS server, under the directory called /usr/local/
spark/. The EC2 resources are available in the Spark release EC2 subdirectory:

[hadoop@hc2nn ec2]$ pwd

/usr/local/spark/ec2

[hadoop@hc2nn ec2]$ ls

deploy.generic  README  spark-ec2  spark_ec2.py

In order to use Apache Spark on EC2, you will need to set up an Amazon AWS 
account. You can set up an initial free account to try it out here: http://aws.
amazon.com/free/.

If you take a look at Chapter 8, Spark Databricks you will see that such an account 
has been set up, and is used to access https://databricks.com/. The next thing 
that you will need to do is access your AWS IAM Console, and select the Users 
option. You either create or select a user. Select the User Actions option, and then 
select Manage Access Keys. Then, select Create Access Key, and then Download 
Credentials. Make sure that your downloaded key file is secure, assuming that  
you are on Linux chmod the file with permissions = 600 for user-only access.

You will now have your Access Key ID, Secret Access Key, key file, and key  
pair name. You can now create a Spark EC2 cluster using the spark-ec2 script  
as follows:

export AWS_ACCESS_KEY_ID="QQpl8Exxx"

export AWS_SECRET_ACCESS_KEY="0HFzqt4xxx"

./spark-ec2  \

    --key-pair=pairname \

    --identity-file=awskey.pem \

    --region=us-west-1 \

    --zone=us-west-1a  \

    launch cluster1

http://aws.amazon.com/free/
http://aws.amazon.com/free/
https://databricks.com/
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Here, <pairname> is the key pair name that you gave when your access details were 
created; <awskey.pem> is the file that you downloaded. The name of the cluster that 
you are going to create is called <cluster1>. The region chosen here is in the western 
USA, us-west-1. If you live in the Pacific, as I do, it might be wiser to choose a nearer 
region like ap-southeast-2. However, if you encounter allowance access issues, 
then you will need to try another zone. Remember also that using cloud-based Spark 
clustering like this will have higher latency and poorer I/O in general. You share your 
cluster hosts with multiple users, and your cluster maybe in a remote region.

You can use a series of options to this basic command to configure the cloud-based 
Spark cluster that you create. The –s option can be used:

-s <slaves>

This allows you to define how many worker nodes to create in your Spark EC2 
cluster, that is, –s 5 for a six node cluster, one master, and five slave workers. You 
can define the version of Spark that your cluster runs, rather than the default latest 
version. The following option starts a cluster with Spark version 1.3.1:

--spark-version=1.3.1

The instance type used to create the cluster will define how much memory is used, 
and how many cores are available. For instance, the following option will set the 
instance type to be m3.large:

--instance-type=m3.large

The current instance types for Amazon AWS can be found at: http://aws.amazon.
com/ec2/instance-types/.

The following figure shows the current (as of July 2015) AWS M3 instance types, 
model details, cores, memory, and storage. There are many instance types available 
at this time; for instance, T2, M4, M3, C4, C3, R3, and more. Examine the current 
availability and choose appropriately:

http://aws.amazon.com/ec2/instance-types/
http://aws.amazon.com/ec2/instance-types/
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Pricing is also very important. The current AWS storage type prices can be found at: 
http://aws.amazon.com/ec2/pricing/.

The prices are shown by region with a drop-down menu, and a price by hour. 
Remember that each storage type is defined by cores, memory, and physical storage. 
The prices are also defined by operating system type, that is, Linux, RHEL, and 
Windows. Just select the OS via a top-level menu.

The following figure shows an example of pricing at the time of writing (July 2015); it 
is just provided to give an idea. Prices will differ over time, and by service provider. 
They will differ by the size of storage that you need, and the length of time that you 
are willing to commit to.

Be aware also of the costs of moving your data off of any storage platform. Try to 
think long term. Check whether you will need to move all, or some of your cloud-
based data to the next system in, say, five years. Check the process to move data,  
and include that cost in your planning.

As described, the preceding figure shows the costs of AWS storage types by 
operating system, region, storage type, and hour. The costs are measured per 
unit hour, so systems such as https://databricks.com/ do not terminate EC2 
instances, until a full hour has elapsed. These costs will change with time and need 
to be monitored via (for AWS) the AWS billing console.

http://aws.amazon.com/ec2/pricing/
https://databricks.com/
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You may also have problems when wanting to resize your Spark EC2 cluster, so you 
will need to be sure of the master slave configuration before you start. Be sure how 
many workers you are going to require, and how much memory you need. If you 
feel that your requirements are going to change over time, then you might consider 
using https://databricks.com/, if you definitely wish to work with Spark in 
the cloud. Go to Chapter 8, Spark Databricks and see how you can set up, and use 
https://databricks.com/.

In the next section, I will examine Apache Spark cluster performance, and the issues 
that might impact it.

Performance
Before moving on to the rest of the chapters covering functional areas of Apache 
Spark and extensions to it, I wanted to examine the area of performance. What issues 
and areas need to be considered? What might impact Spark application performance 
starting at the cluster level, and finishing with actual Scala code? I don't want to just 
repeat what the Spark website says, so have a look at the following URL: http://
spark.apache.org/docs/<version>/tuning.html.

Here, <version> relates to the version of Spark that you are using, that is, latest, 
or 1.3.1 for a specific version. So, having looked at that page, I will briefly mention 
some of the topic areas. I am going to list some general points in this section without 
implying an order of importance.

The cluster structure
The size and structure of your big data cluster is going to affect performance. If 
you have a cloud-based cluster, your IO and latency will suffer in comparison to 
an unshared hardware cluster. You will be sharing the underlying hardware with 
multiple customers, and that the cluster hardware maybe remote.

Also, the positioning of cluster components on servers may cause resource contention. 
For instance, if possible, think carefully about locating Hadoop NameNodes, Spark 
servers, Zookeeper, Flume, and Kafka servers in large clusters. With high workloads, 
you might consider segregating servers to individual systems. You might also consider 
using an Apache system such as Mesos in order to share resources.

Also, consider potential parallelism. The greater the number of workers in your 
Spark cluster for large data sets, the greater the opportunity for parallelism.

https://databricks.com/
https://databricks.com/
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The Hadoop file system
You might consider using an alternative to HDFS, depending upon your cluster 
requirements. For instance, MapR has the MapR-FS NFS-based read write file system 
for improved performance. This file system has a full read write capability, whereas 
HDFS is designed as a write once, read many file system. It offers an improvement in 
performance over HDFS. It also integrates with Hadoop and the Spark cluster tools. 
Bruce Penn, an architect at MapR, has written an interesting article describing its 
features at: https://www.mapr.com/blog/author/bruce-penn.

Just look for the blog post entitled Comparing MapR-FS and HDFS NFS and 
Snapshots. The links in the article describe the MapR architecture, and possible 
performance gains.

Data locality
Data locality or the location of the data being processed is going to affect latency  
and Spark processing. Is the data sourced from AWS S3, HDFS, the local file  
system/network, or a remote source?

As the previous tuning link mentions, if the data is remote, then functionality and 
data must be brought together for processing. Spark will try to use the best data 
locality level possible for task processing.

Memory
In order to avoid OOM (Out of Memory) messages for the tasks, on your Apache 
Spark cluster, you can consider a number of areas:

• Consider the level of physical memory available on your Spark worker 
nodes. Can it be increased?

• Consider data partitioning. Can you increase the number of partitions  
in the data used by your Spark application code?

• Can you increase the storage fraction, the memory used by the JVM for 
storage and caching of RDD's?

• Consider tuning data structures used to reduce memory.
• Consider serializing your RDD storage to reduce the memory usage.

https://www.mapr.com/blog/author/bruce-penn
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Coding
Try to tune your code to improve Spark application performance. For instance, filter 
your application-based data early in your ETL cycle. Tune your degree of parallelism, 
try to find the resource-expensive parts of your code, and find alternatives.

Cloud
Although, most of this book will concentrate on examples of Apache Spark installed 
on physically server-based clusters (with the exception of https://databricks.
com/), I wanted to make the point that there are multiple cloud-based options 
out there. There are cloud-based systems that use Apache Spark as an integrated 
component, and cloud-based systems that offer Spark as a service. Even though this 
book cannot cover all of them in depth, I thought that it would be useful to mention 
some of them:

• Databricks is covered in two chapters in this book. It offers a Spark  
cloud-based service, currently using AWS EC2. There are plans to  
extend the service to other cloud suppliers (https://databricks.com/).

• At the time of writing (July 2015) this book, Microsoft Azure has  
been extended to offer Spark support.

• Apache Spark and Hadoop can be installed on Google Cloud.
• The Oryx system has been built at the top of Spark and Kafka for  

real-time, large-scale machine learning (http://oryx.io/).
• The velox system for serving machine learning prediction is based upon Spark 

and KeystoneML (https://github.com/amplab/velox-modelserver).
• PredictionIO is an open source machine learning service built on Spark, 

HBase, and Spray (https://prediction.io/).
• SeldonIO is an open source predictive analytics platform, based upon  

Spark, Kafka, and Hadoop (http://www.seldon.io/).

Summary
In closing this chapter, I would invite you to work your way through each of the 
Scala code-based examples in the following chapters. I have been impressed by the 
rate at which Apache Spark has evolved, and I am also impressed at the frequency 
of the releases. So, even though at the time of writing, Spark has reached 1.4, I 
am sure that you will be using a later version. If you encounter problems, tackle 
them logically. Try approaching the Spark user group for assistance (user@spark.
apache.org), or check the Spark website at http://spark.apache.org/.

www.allitebooks.com

https://databricks.com/
https://databricks.com/
https://databricks.com/
http://oryx.io/
https://github.com/amplab/velox-modelserver
https://prediction.io/
http://www.seldon.io/
http://spark.apache.org/
http://www.allitebooks.org
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I am always interested to hear from people, and connect with people on sites such as 
LinkedIn. I am keen to hear about the projects that people are involved with and new 
opportunities. I am interested to hear about Apache Spark, the ways that you use it 
and the systems that you build being used at scale. I can be contacted on LinkedIn  
at: linkedin.com/profile/view?id=73219349.

Or, I can be contacted via my website at http://semtech-solutions.co.nz/, or 
finally, by email at: info@semtech-solutions.co.nz.

linkedin.com/profile/view?id=73219349
http://semtech-solutions.co.nz/
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Apache Spark MLlib
MLlib is the machine learning library that is provided with Apache Spark, the in 
memory cluster based open source data processing system. In this chapter, I will 
examine the functionality, provided within the MLlib library in terms of areas such 
as regression, classification, and neural processing. I will examine the theory behind 
each algorithm before providing working examples that tackle real problems. The 
example code and documentation on the web can be sparse and confusing. I will take 
a step-by-step approach in describing how the following algorithms can be used, and 
what they are capable of doing:

• Classification with Naïve Bayes
• Clustering with K-Means
• Neural processing with ANN

Having decided to learn about Apache Spark, I am assuming that you are familiar 
with Hadoop. Before I proceed, I will explain a little about my environment. My 
Hadoop cluster is installed on a set of Centos 6.5 Linux 64 bit servers. The following 
section will describe the architecture in detail.

The environment configuration
Before delving into the Apache Spark modules, I wanted to explain the structure and 
version of Hadoop and Spark clusters that I will use in this book. I will be using the 
Cloudera CDH 5.1.3 version of Hadoop for storage and I will be using two versions 
of Spark: 1.0 and 1.3 in this chapter.
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The earlier version is compatible with Cloudera software, and has been tested and 
packaged by them. It is installed as a set of Linux services from the Cloudera repository 
using the yum command. Because I want to examine the Neural Net technology that 
has not been released yet, I will also download and run the development version of 
Spark 1.3 from GitHub. This will be explained later in the chapter.

Architecture
The following diagram explains the structure of the small Hadoop cluster that I will 
use in this chapter:

Apache Spark

master slave1

hc2r1m1

Apache Hadoop CDH5 Cluster

slave2

hc2r1m2

slave3

hc2r1m3

slave4

hc2r1m4hc2nn

The previous diagram shows a five-node Hadoop cluster with a NameNode called 
hc2nn, and DataNodes hc2r1m1 to hc2r1m4. It also shows an Apache Spark cluster 
with a master node and four slave nodes. The Hadoop cluster provides the physical 
Centos 6 Linux machines while the Spark cluster runs on the same hosts. For instance, 
the Spark master server runs on the Hadoop Name Node machine hc2nn, whereas the 
Spark slave1 worker runs on the host hc2r1m1.

The Linux server naming standard used higher up should be explained. For instance 
the Hadoop NameNode server is called hc2nn. The h in this server name means 
Hadoop, the c means cluster, and the nn means NameNode. So, hc2nn means 
Hadoop cluster 2 NameNode. Similarly, for the server hc2r1m1, the h means Hadoop 
the c means cluster the r means rack and the m means machine. So, the name stands 
for Hadoop cluster 2 rack 1 machine 1. In a large Hadoop cluster, the machines will 
be organized into racks, so this naming standard means that the servers will be easy 
to locate.

You can arrange your Spark and Hadoop clusters as you see fit, they don't need to 
be on the same hosts. For the purpose of writing this book, I have limited machines 
available so it makes sense to co-locate the Hadoop and Spark clusters. You can use 
entirely separate machines for each cluster, as long as Spark is able to access Hadoop 
(if you want to use it for distributed storage).
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Remember that although Spark is used for the speed of its in-memory distributed 
processing, it doesn't provide storage. You can use the Host file system to read and 
write your data, but if your data volumes are big enough to be described as big data, 
then it makes sense to use a distributed storage system like Hadoop.

Remember also that Apache Spark may only be the processing step in your ETL 
(Extract, Transform, Load) chain. It doesn't provide the rich tool set that the Hadoop 
ecosystem contains. You may still need Nutch/Gora/Solr for data acquisition; Sqoop 
and Flume for moving data; Oozie for scheduling; and HBase, or Hive for storage. 
The point that I am making is that although Apache Spark is a very powerful 
processing system, it should be considered a part of the wider Hadoop ecosystem.

Having described the environment that will be used in this chapter, I will move on to 
describe the functionality of the Apache Spark MLlib (Machine Learning library).

The development environment
The Scala language will be used for coding samples in this book. This is because as a 
scripting language, it produces less code than Java. It can also be used for the Spark 
shell, as well as compiled with Apache Spark applications. I will be using the sbt tool 
to compile the Scala code, which I have installed as follows:

[hadoop@hc2nn ~]# su -

[root@hc2nn ~]# cd /tmp

[root@hc2nn ~]#wget http://repo.scala-sbt.org/scalasbt/sbt-native-
packages/org/scala-sbt/sbt/0.13.1/sbt.rpm

[root@hc2nn ~]# rpm -ivh sbt.rpm

For convenience while writing this book, I have used the generic Linux account 
called hadoop on the Hadoop NameNode server hc2nn. As the previous commands 
show that I need to install sbt as the root account, which I have accessed via su 
(switch user). I have then downloaded the sbt.rpm file, to the /tmp directory, 
from the web-based server called repo.scala-sbt.org using wget. Finally, I have 
installed the rpm file using the rpm command with the options i for install, v for 
verify, and h to print the hash marks while the package is being installed.

Downloading the example code
You can download the example code files from your account at 
http://www.packtpub.com for all the Packt Publishing books 
you have purchased. If you purchased this book elsewhere, you 
can visit http://www.packtpub.com/support and register 
to have the files e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support
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I have developed all of the Scala code for Apache Spark, in this chapter, on the Linux 
server hc2nn, using the Linux hadoop account. I have placed each set of code within 
a sub directory under /home/hadoop/spark. For instance, the following sbt structure 
diagram shows that the MLlib Naïve Bayes code is stored within a subdirectory 
called nbayes, under the spark directory. What the diagram also shows is that the 
Scala code is developed within a subdirectory structure named src/main/scala, 
under the nbayes directory. The files called bayes1.scala and convert.scala 
contain the Naïve Bayes code that will be used in the next section:

/home/hadoop/spark/nbayes

bayes.sbt

bayes1.scala

convert.scala

classes

naive-bayes_2.10-1.0.jar

src

main

scala

scala-2.10

target

The bayes.sbt file is a configuration file used by the sbt tool, which describes how 
to compile the Scala files within the Scala directory (also note that if you were 
developing in Java, you would use a path of the form nbayes/src/main/java). The 
contents of the bayes.sbt file are shown next. The pwd and cat Linux commands 
remind you of the file location, and they also remind you to dump the file contents.

The name, version, and scalaVersion options set the details of the project, and the 
version of Scala to be used. The libraryDependencies options define where the 
Hadoop and Spark libraries can be located. In this case, CDH5 has been installed 
using the Cloudera parcels, and the packages libraries can be located in the standard 
locations, that is, /usr/lib/hadoop for Hadoop and /usr/lib/spark for Spark. 
The resolver's option specifies the location for the Cloudera repository for other 
dependencies:

[hadoop@hc2nn nbayes]$ pwd

/home/hadoop/spark/nbayes

[hadoop@hc2nn nbayes]$ cat bayes.sbt

name := "Naive Bayes"

version := "1.0"
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scalaVersion := "2.10.4"

libraryDependencies += "org.apache.hadoop" % "hadoop-client" % "2.3.0"

libraryDependencies += "org.apache.spark" %% "spark-core"  % "1.0.0"

libraryDependencies += "org.apache.spark" %% "spark-mllib" % "1.0.0"

// If using CDH, also add Cloudera repo

resolvers += "Cloudera Repository" at  
https://repository.cloudera.com/artifactory/cloudera-repos/

The Scala nbayes project code can be compiled from the nbayes sub directory using 
this command:

[hadoop@hc2nn nbayes]$ sbt compile

The sbt compile command is used to compile the code into classes. The classes are 
then placed in the nbayes/target/scala-2.10/classes directory. The compiled 
classes can be packaged into a JAR file with this command:

[hadoop@hc2nn nbayes]$ sbt package

The sbt package command will create a JAR file under the directory nbayes/
target/scala-2.10. As the example in the sbt structure diagram shows the JAR file 
named naive-bayes_2.10-1.0.jar has been created after a successful compile  
and package. This JAR file, and the classes that it contains, can then be used in a 
spark-submit command. This will be described later as the functionality in the 
Apache Spark MLlib module is explored.

Installing Spark
Finally, when describing the environment used for this book, I wanted to touch 
on the approach to installing and running Apache Spark. I won't elaborate on the 
Hadoop CDH5 install, except to say that I installed it using the Cloudera parcels. 
However, I manually installed version 1.0 of Apache Spark from the Cloudera 
repository, using the Linux yum commands. I installed the service-based packages, 
because I wanted the flexibility that would enable me to install multiple versions  
of Spark as services from Cloudera, as I needed.
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When preparing a CDH Hadoop release, Cloudera takes the code that has been 
developed by the Apache Spark team, and the code released by the Apache Bigtop 
project. They perform an integration test so that it is guaranteed to work as a code 
stack. They also reorganize the code and binaries into services and parcels. This 
means that libraries, logs, and binaries can be located in defined locations under 
Linux, that is, /var/log/spark, /usr/lib/spark. It also means that, in the case 
of services, the components can be installed using the Linux yum command, and 
managed via the Linux service command.

Although, in the case of the Neural Network code described later in this chapter, 
a different approach was used. This is how Apache Spark 1.0 was installed for use 
with Hadoop CDH5:

[root@hc2nn ~]# cd /etc/yum.repos.d

[root@hc2nn yum.repos.d]# cat  cloudera-cdh5.repo

[cloudera-cdh5]

# Packages for Cloudera's Distribution for Hadoop, Version 5, on RedHat 
or CentOS 6 x86_64

name=Cloudera's Distribution for Hadoop, Version 5

baseurl=http://archive.cloudera.com/cdh5/redhat/6/x86_64/cdh/5/

gpgkey = http://archive.cloudera.com/cdh5/redhat/6/x86_64/cdh/RPM-GPG-
KEY-cloudera

gpgcheck = 1

The first step is to ensure that a Cloudera repository file exists under the /etc/yum.
repos.d directory, on the server hc2nn and all of the other Hadoop cluster servers. 
The file is called cloudera-cdh5.repo, and specifies where the yum command can 
locate software for the Hadoop CDH5 cluster. On all the Hadoop cluster nodes, I 
use the Linux yum command, as root, to install the Apache Spark components core, 
master, worker, history-server, and python:

[root@hc2nn ~]# yum install spark-core spark-master spark-worker  
spark-history-server spark-python

This gives me the flexibility to configure Spark in any way that I want in the future. 
Note that I have installed the master component on all the nodes, even though I only 
plan to use it from the Name Node at this time. Now, the Spark install needs to be 
configured on all the nodes. The configuration files are stored under /etc/spark/
conf. The first thing to do, will be to set up a slaves file, which specifies on which 
hosts Spark will run it's worker components:

[root@hc2nn ~]# cd /etc/spark/conf

[root@hc2nn conf]# cat slaves
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# A Spark Worker will be started on each of the machines listed  
below.

hc2r1m1

hc2r1m2

hc2r1m3

hc2r1m4

As you can see from the contents of the slaves file above Spark, it will run four 
workers on the Hadoop CDH5 cluster, Data Nodes, from hc2r1m1 to hc2r1m4. Next, 
it will alter the contents of the spark-env.sh file to specify the Spark environment 
options. The SPARK_MASTER_IP values are defined as the full server name:

export STANDALONE_SPARK_MASTER_HOST=hc2nn.semtech-solutions.co.nz

export SPARK_MASTER_IP=$STANDALONE_SPARK_MASTER_HOST

export SPARK_MASTER_WEBUI_PORT=18080

export SPARK_MASTER_PORT=7077

export SPARK_WORKER_PORT=7078

export SPARK_WORKER_WEBUI_PORT=18081

The web user interface port numbers are specified for the master and worker 
processes, as well as the operational port numbers. The Spark service can then be 
started as root from the Name Node server. I use the following script:

echo "hc2r1m1 - start worker"

ssh   hc2r1m1 'service spark-worker start'

echo "hc2r1m2 - start worker"

ssh   hc2r1m2 'service spark-worker start'

echo "hc2r1m3 - start worker"

ssh   hc2r1m3 'service spark-worker start'

echo "hc2r1m4 - start worker"

ssh   hc2r1m4 'service spark-worker start'

echo "hc2nn - start master server"

service spark-master         start

service spark-history-server start



Apache Spark MLlib

[ 24 ]

This starts the Spark worker service on all of the slaves, and the master and history 
server on the Name Node hc2nn. So now, the Spark user interface can be accessed 
using the http://hc2nn:18080 URL.

The following figure shows an example of the Spark 1.0 master web user interface. 
It shows details about the Spark install, the workers, and the applications that are 
running or completed. The statuses of the master and workers are given. In this case, 
all are alive. Memory used and availability is given in total and by worker. Although, 
there are no applications running at the moment, each worker link can be selected to 
view the executor processes' running on each worker node, as the work volume for 
each application run is spread across the spark cluster.

Note also the Spark URL, spark://hc2nn.semtech-solutions.co.nz:7077, will 
be used when running the Spark applications like spark-shell and spark-submit. 
Using this URL, it is possible to ensure that the shell or application is run against this 
Spark cluster.

This gives a quick overview of the Apache Spark installation using services, its 
configuration, how to start it, and how to monitor it. Now, it is time to tackle the 
first of the MLlib functional areas, which is classification using the Naïve Bayes 
algorithm. The use of Spark will become clearer as Scala scripts are developed,  
and the resulting applications are monitored.
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Classification with Naïve Bayes
This section will provide a working example of the Apache Spark MLlib Naïve Bayes 
algorithm. It will describe the theory behind the algorithm, and will provide a step-
by-step example in Scala to show how the algorithm may be used.

Theory
In order to use the Naïve Bayes algorithm to classify a data set, the data must be 
linearly divisible, that is, the classes within the data must be linearly divisible by 
class boundaries. The following figure visually explains this with three data sets,  
and two class boundaries shown via the dotted lines:

Naïve Bayes assumes that the features (or dimensions) within a data set are 
independent of one another, that is, they have no effect on each other. An example 
for Naïve Bayes is supplied with the help of Hernan Amiune at http://hernan.
amiune.com/. The following example considers the classification of emails as spam. 
If you have 100 e-mails then perform the following:

60% of emails are spam

  80% of spam emails contain the word buy

  20% of spam emails don't contain the word buy

40% of emails are not spam

  10% of non spam emails contain the word buy

  90% of non spam emails don't contain the word buy

www.allitebooks.com

http://hernan.amiune.com/
http://hernan.amiune.com/
http://www.allitebooks.org
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Thus, convert this example into probabilities, so that a Naïve Bayes equation can  
be created.

P(Spam) = the probability that an email is spam = 0.6

P(Not Spam) = the probability that an email is not spam = 0.4

P(Buy|Spam) = the probability that an email that is spam has the word buy 
= 0.8

P(Buy|Not Spam) = the probability that an email that is not spam has  
the word buy = 0.1

So, what is the probability that an e-mail that contains the word buy is spam? Well, 
this would be written as P (Spam|Buy). Naïve Bayes says that it is described by the 
equation in the following figure:

P(Spam|Buy)= P(Buy|Spam)* P(Spam)

P(Buy|Spam)* P(Spam)  +  P(Buy|Not Spam)* P(Not Spam)

So, using the previous percentage figures, we get the following:

P(Spam|Buy) = ( 0.8 * 0.6 ) / (( 0.8 * 0.6 )  + ( 0.1 * 0.4 )  )  = (  
.48 ) / ( .48 + .04 )

= .48 / .52 = .923

This means that it is 92 percent more likely that an e-mail that contains the word 
buy is spam. That was a look at the theory; now, it's time to try a real world example 
using the Apache Spark MLlib Naïve Bayes algorithm.

Naïve Bayes in practice
The first step is to choose some data that will be used for classification. I have chosen 
some data from the UK government data web site, available at: http://data.gov.
uk/dataset/road-accidents-safety-data.

The data set is called "Road Safety - Digital Breath Test Data 2013," which downloads 
a zipped text file called DigitalBreathTestData2013.txt. This file contains around 
half a million rows. The data looks like this:

Reason,Month,Year,WeekType,TimeBand,BreathAlcohol,AgeBand,Gender

Suspicion of Alcohol,Jan,2013,Weekday,12am-4am,75,30-39,Male

Moving Traffic Violation,Jan,2013,Weekday,12am-4am,0,20-24,Male

Road Traffic Collision,Jan,2013,Weekend,12pm-4pm,0,20-24,Female

http://data.gov.uk/dataset/road-accidents-safety-data
http://data.gov.uk/dataset/road-accidents-safety-data
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In order to classify the data, I have modified both the column layout, and the 
number of columns. I have simply used Excel to give the data volume. However, 
if my data size had been in the big data range, I would have had to use Scala, or 
perhaps a tool like Apache Pig. As the following commands show, the data now 
resides on HDFS, in the directory named /data/spark/nbayes. The file name 
is called DigitalBreathTestData2013- MALE2.csv. Also, the line count from 
the Linux wc command shows that there are 467,000 rows. Finally, the following 
data sample shows that I have selected the columns: Gender, Reason, WeekType, 
TimeBand, BreathAlcohol, and AgeBand to classify. I will try and classify on the 
Gender column using the other columns as features:

[hadoop@hc2nn ~]$ hdfs dfs -cat /data/spark/nbayes/
DigitalBreathTestData2013-MALE2.csv | wc -l

467054

[hadoop@hc2nn ~]$ hdfs dfs -cat /data/spark/nbayes/
DigitalBreathTestData2013-MALE2.csv | head -5

Male,Suspicion of Alcohol,Weekday,12am-4am,75,30-39

Male,Moving Traffic Violation,Weekday,12am-4am,0,20-24

Male,Suspicion of Alcohol,Weekend,4am-8am,12,40-49

Male,Suspicion of Alcohol,Weekday,12am-4am,0,50-59

Female,Road Traffic Collision,Weekend,12pm-4pm,0,20-24

The Apache Spark MLlib classification functions use a data structure called 
LabeledPoint, which is a general purpose data representation defined at:  
http://spark.apache.org/docs/1.0.0/api/scala/index.html#org.apache.
spark.mllib.regression.LabeledPoint.

This structure only accepts Double values, which means the text values in the 
previous data need to be classified numerically. Luckily, all of the columns in the 
data will convert to numeric categories, and I have provided two programs in the 
software package with this book, under the directory chapter2\naive bayes to 
do just that. The first is called convTestData.pl, and is a Perl script to convert the 
previous text file into Linux. The second file, which will be examined here is called 
convert.scala. It takes the contents of the DigitalBreathTestData2013- MALE2.
csv file and converts each record into a Double vector.

http://spark.apache.org/docs/1.0.0/api/scala/index.html#org.apache.spark.mllib.regression.LabeledPoint
http://spark.apache.org/docs/1.0.0/api/scala/index.html#org.apache.spark.mllib.regression.LabeledPoint
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The directory structure and files for an sbt Scala-based development environment 
have already been described earlier. I am developing my Scala code on the 
Linux server hc2nn using the Linux account hadoop. Next, the Linux pwd and ls 
commands show my top level nbayes development directory with the bayes.sbt 
configuration file, whose contents have already been examined:

[hadoop@hc2nn nbayes]$ pwd

/home/hadoop/spark/nbayes

[hadoop@hc2nn nbayes]$ ls

bayes.sbt     target   project   src

The Scala code to run the Naïve Bayes example is shown next, in the src/main/
scala subdirectory, under the nbayes directory:

[hadoop@hc2nn scala]$ pwd

/home/hadoop/spark/nbayes/src/main/scala

[hadoop@hc2nn scala]$ ls

bayes1.scala  convert.scala

We will examine the bayes1.scala file later, but first, the text-based data on HDFS 
must be converted into the numeric Double values. This is where the convert.scala 
file is used. The code looks like this:

import org.apache.spark.SparkContext

import org.apache.spark.SparkContext._

import org.apache.spark.SparkConf

These lines import classes for Spark context, the connection to the Apache Spark 
cluster, and the Spark configuration. The object that is being created is called 
convert1. It is an application, as it extends the class App:

object convert1 extends App

{

The next line creates a function called enumerateCsvRecord. It has a parameter 
called colData, which is an array of strings, and returns a string:

def enumerateCsvRecord( colData:Array[String]): String =

{

The function then enumerates the text values in each column, so for an instance, 
Male becomes 0. These numeric values are stored in values like colVal1:

    val colVal1 =

      colData(0) match
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      {

        case "Male"                          => 0

        case "Female"                        => 1

        case "Unknown"                       => 2

        case _                               => 99

      }

    val colVal2 =

      colData(1) match

      {

        case "Moving Traffic Violation"      => 0

        case "Other"                         => 1

        case "Road Traffic Collision"        => 2

        case "Suspicion of Alcohol"          => 3

        case _                               => 99

      }

    val colVal3 =

      colData(2) match

      {

        case "Weekday"                       => 0

        case "Weekend"                       => 0

        case _                               => 99

      }

    val colVal4 =

      colData(3) match

      {

        case "12am-4am"                      => 0

        case "4am-8am"                       => 1

        case "8am-12pm"                      => 2

        case "12pm-4pm"                      => 3

        case "4pm-8pm"                       => 4

        case "8pm-12pm"                      => 5

        case _                               => 99
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      }

    val colVal5 = colData(4)

    val colVal6 =

      colData(5) match

      {

        case "16-19"                         => 0

        case "20-24"                         => 1

        case "25-29"                         => 2

        case "30-39"                         => 3

        case "40-49"                         => 4

        case "50-59"                         => 5

        case "60-69"                         => 6

        case "70-98"                         => 7

        case "Other"                         => 8

        case _                               => 99

      }

A comma separated string called lineString is created from the numeric column 
values, and is then returned. The function closes with the final brace character}. Note 
that the data line created next starts with a label value at column one, and is followed 
by a vector, which represents the data. The vector is space separated while the label 
is separated from the vector by a comma. Using these two separator types allows me 
to process both: the label and the vector in two simple steps later:

    val lineString = colVal1+","+colVal2+" "+colVal3+" "+colVal4+" 
"+colVal5+" "+colVal6

    return lineString

}

The main script defines the HDFS server name and path. It defines the input file, and 
the output path in terms of these values. It uses the Spark URL and application name 
to create a new configuration. It then creates a new context or connection to Spark 
using these details:

val hdfsServer = "hdfs://hc2nn.semtech-solutions.co.nz:8020"

val hdfsPath   = "/data/spark/nbayes/"
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val inDataFile  = hdfsServer + hdfsPath + "DigitalBreathTestData2013-
MALE2.csv"

val outDataFile = hdfsServer + hdfsPath + "result"

val sparkMaster = "spark://hc2nn.semtech-solutions.co.nz:7077"

val appName = "Convert 1"

val sparkConf = new SparkConf()

sparkConf.setMaster(sparkMaster)

sparkConf.setAppName(appName)

val sparkCxt = new SparkContext(sparkConf)

The CSV-based raw data file is loaded from HDFS using the Spark context textFile 
method. Then, a data row count is printed:

val csvData = sparkCxt.textFile(inDataFile)

println("Records in  : "+ csvData.count() )

The CSV raw data is passed line by line to the enumerateCsvRecord function. The 
returned string-based numeric data is stored in the enumRddData variable:

  val enumRddData = csvData.map

  {

    csvLine =>

      val colData = csvLine.split(',')

      enumerateCsvRecord(colData)

  }

Finally, the number of records in the enumRddData variable is printed, and the 
enumerated data is saved to HDFS:

  println("Records out : "+ enumRddData.count() )

  enumRddData.saveAsTextFile(outDataFile)

} // end object
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In order to run this script as an application against Spark, it must be compiled. This 
is carried out with the sbt package command, which also compiles the code. The 
following command was run from the nbayes directory:

[hadoop@hc2nn nbayes]$ sbt package

Loading /usr/share/sbt/bin/sbt-launch-lib.bash

....

[info] Done packaging.

[success] Total time: 37 s, completed Feb 19, 2015 1:23:55 PM

This causes the compiled classes that are created to be packaged into a JAR library, 
as shown here:

[hadoop@hc2nn nbayes]$ pwd

/home/hadoop/spark/nbayes

[hadoop@hc2nn nbayes]$ ls -l target/scala-2.10

total 24

drwxrwxr-x 2 hadoop hadoop  4096 Feb 19 13:23 classes

-rw-rw-r-- 1 hadoop hadoop 17609 Feb 19 13:23 naive-bayes_2.10-1.0.jar

The application convert1 can now be run against Spark using the application 
name, the Spark URL, and the full path to the JAR file that was created. Some extra 
parameters specify memory and maximum cores that are supposed to be used:

spark-submit \

  --class convert1 \

  --master spark://hc2nn.semtech-solutions.co.nz:7077  \

  --executor-memory 700M \

  --total-executor-cores 100 \

  /home/hadoop/spark/nbayes/target/scala-2.10/naive-bayes_2.10-1.0.jar

This creates a data directory on HDFS called the /data/spark/nbayes/ followed by 
the result, which contains part files, containing the processed data:

[hadoop@hc2nn nbayes]$  hdfs dfs -ls /data/spark/nbayes

Found 2 items

-rw-r--r--   3 hadoop supergroup   24645166 2015-01-29 21:27 /data/spark/
nbayes/DigitalBreathTestData2013-MALE2.csv
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drwxr-xr-x   - hadoop supergroup          0 2015-02-19 13:36 /data/spark/
nbayes/result

[hadoop@hc2nn nbayes]$ hdfs dfs -ls /data/spark/nbayes/result

Found 3 items

-rw-r--r--   3 hadoop supergroup          0 2015-02-19 13:36 /data/spark/
nbayes/result/_SUCCESS

-rw-r--r--   3 hadoop supergroup    2828727 2015-02-19 13:36 /data/spark/
nbayes/result/part-00000

-rw-r--r--   3 hadoop supergroup    2865499 2015-02-19 13:36 /data/spark/
nbayes/result/part-00001

In the following HDFS cat command, I have concatenated the part file data into a 
file called DigitalBreathTestData2013-MALE2a.csv. I have then examined the top 
five lines of the file using the head command to show that it is numeric. Finally, I 
have loaded it into HDFS with the put command:

[hadoop@hc2nn nbayes]$ hdfs dfs -cat /data/spark/nbayes/result/part* > ./
DigitalBreathTestData2013-MALE2a.csv

[hadoop@hc2nn nbayes]$ head -5 DigitalBreathTestData2013-MALE2a.csv

0,3 0 0 75 3

0,0 0 0 0 1

0,3 0 1 12 4

0,3 0 0 0 5

1,2 0 3 0 1

[hadoop@hc2nn nbayes]$ hdfs dfs -put ./DigitalBreathTestData2013-MALE2a.
csv /data/spark/nbayes

The following HDFS ls command now shows the numeric data file stored on HDFS, 
in the nbayes directory:

[hadoop@hc2nn nbayes]$ hdfs dfs -ls /data/spark/nbayes

Found 3 items

-rw-r--r--   3 hadoop supergroup   24645166 2015-01-29 21:27 /data/spark/
nbayes/DigitalBreathTestData2013-MALE2.csv

-rw-r--r--   3 hadoop supergroup    5694226 2015-02-19 13:39 /data/spark/
nbayes/DigitalBreathTestData2013-MALE2a.csv

drwxr-xr-x   - hadoop supergroup          0 2015-02-19 13:36 /data/spark/
nbayes/result
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Now that the data has been converted into a numeric form, it can be processed 
with the MLlib Naïve Bayes algorithm; this is what the Scala file bayes1.scala 
does. This file imports the same configuration and context classes as before. It also 
imports MLlib classes for Naïve Bayes, vectors, and the LabeledPoint structure. The 
application class that is created this time is called bayes1:

import org.apache.spark.SparkContext

import org.apache.spark.SparkContext._

import org.apache.spark.SparkConf

import org.apache.spark.mllib.classification.NaiveBayes

import org.apache.spark.mllib.linalg.Vectors

import org.apache.spark.mllib.regression.LabeledPoint

object bayes1 extends App

{

Again, the HDFS data file is defined, and a Spark context is created as before:

  val hdfsServer = "hdfs://hc2nn.semtech-solutions.co.nz:8020"

  val hdfsPath   = "/data/spark/nbayes/"

  val dataFile = hdfsServer+hdfsPath+"DigitalBreathTestData2013-MALE2a.
csv"

  val sparkMaster = "spark://hc2nn.semtech-solutions.co.nz:7077"

  val appName = "Naive Bayes 1"

  val conf = new SparkConf()

  conf.setMaster(sparkMaster)

  conf.setAppName(appName)

  val sparkCxt = new SparkContext(conf)

The raw CSV data is loaded and split by the separator characters. The first column 
becomes the label (Male/Female) that the data will be classified upon. The final 
columns separated by spaces become the classification features:

  val csvData = sparkCxt.textFile(dataFile)

  val ArrayData = csvData.map
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  {

    csvLine =>

      val colData = csvLine.split(',')

      LabeledPoint(colData(0).toDouble, Vectors.dense(colData(1).split(' 
').map(_.toDouble)))

  }

The data is then randomly divided into training (70%) and testing (30%) data sets:

  val divData = ArrayData.randomSplit(Array(0.7, 0.3), seed = 13L)

  val trainDataSet = divData(0)

  val testDataSet  = divData(1)

The Naïve Bayes MLlib function can now be trained using the previous training set. 
The trained Naïve Bayes model, held in the variable nbTrained, can then be used to 
predict the Male/Female result labels against the testing data:

  val nbTrained = NaiveBayes.train(trainDataSet)

  val nbPredict = nbTrained.predict(testDataSet.map(_.features))

Given that all of the data already contained labels, the original and predicted labels 
for the test data can be compared. An accuracy figure can then be computed to 
determine how accurate the predictions were, by comparing the original labels with 
the prediction values:

  val predictionAndLabel = nbPredict.zip(testDataSet.map(_.label))

  val accuracy = 100.0 * predictionAndLabel.filter(x => x._1 == x._2).
count() / testDataSet.count()

  println( "Accuracy : " + accuracy );

}

So this explains the Scala Naïve Bayes code example. It's now time to run the 
compiled bayes1 application using spark-submit, and to determine the classification 
accuracy. The parameters are the same. It's just the class name that has changed:

spark-submit \

  --class bayes1 \

  --master spark://hc2nn.semtech-solutions.co.nz:7077  \

  --executor-memory 700M \

  --total-executor-cores 100 \

  /home/hadoop/spark/nbayes/target/scala-2.10/naive-bayes_2.10-1.0.jar

www.allitebooks.com

http://www.allitebooks.org
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The resulting accuracy given by the Spark cluster is just 43 percent, which seems to 
imply that this data is not suitable for Naïve Bayes:

Accuracy: 43.30

In the next example, I will use K-Means to try and determine what clusters exist 
within the data. Remember, Naïve Bayes needs the data classes to be linearly 
divisible along the class boundaries. With K-Means, it will be possible to determine 
both: the membership and centroid location of the clusters within the data.

Clustering with K-Means
This example will use the same test data from the previous example, but will attempt 
to find clusters in the data using the MLlib K-Means algorithm.

Theory
The K-Means algorithm iteratively attempts to determine clusters within the test data 
by minimizing the distance between the mean value of cluster center vectors, and 
the new candidate cluster member vectors. The following equation assumes data set 
members that range from X1 to Xn; it also assumes K cluster sets that range from S1 
to Sk where K <= n.

where is the mean of members ofB Si i

arg min
s

�
K

i=1

�
x i�s

x-Bi

2

K-Means in practice
Again, the K-Means MLlib functionality uses the LabeledPoint structure to process 
its data and so, it needs numeric input data. As the same data from the last section is 
being reused, I will not re-explain the data conversion. The only change that has been 
made in data terms, in this section, is that processing under HDFS will now take 
place under the /data/spark/kmeans/ directory. Also, the conversion Scala script 
for the K-Means example produces a record that is all comma separated.

The development and processing for the K-Means example has taken place under 
the /home/hadoop/spark/kmeans directory, to separate the work from other 
development. The sbt configuration file is now called kmeans.sbt, and is identical  
to the last example, except for the project name:

name := "K-Means"
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The code for this section can be found in the software package under chapter2\K-
Means. So, looking at the code for kmeans1.scala, which is stored under kmeans/
src/main/scala, some similar actions occur. The import statements refer to Spark 
context and configuration. This time, however, the K-Means functionality is also 
being imported from MLlib. Also, the application class name has been changed for 
this example to kmeans1:

import org.apache.spark.SparkContext

import org.apache.spark.SparkContext._

import org.apache.spark.SparkConf

import org.apache.spark.mllib.linalg.Vectors

import org.apache.spark.mllib.clustering.{KMeans,KMeansModel}

object kmeans1 extends App

{

The same actions are being taken as the last example to define the data file—define 
the Spark configuration and create a Spark context:

  val hdfsServer = "hdfs://hc2nn.semtech-solutions.co.nz:8020"

  val hdfsPath   = "/data/spark/kmeans/"

  val dataFile   = hdfsServer + hdfsPath + "DigitalBreathTestData2013-
MALE2a.csv"

  val sparkMaster = "spark://hc2nn.semtech-solutions.co.nz:7077"

  val appName = "K-Means 1"

  val conf = new SparkConf()

  conf.setMaster(sparkMaster)

  conf.setAppName(appName)

  val sparkCxt = new SparkContext(conf)

Next, the CSV data is loaded from the data file, and is split by comma characters into 
the variable VectorData:

  val csvData = sparkCxt.textFile(dataFile)

  val VectorData = csvData.map
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  {

    csvLine =>

      Vectors.dense( csvLine.split(',').map(_.toDouble))

  }

A K-Means object is initialized, and the parameters are set to define the number of 
clusters, and the maximum number of iterations to determine them:

  val kMeans = new KMeans

  val numClusters         = 3

  val maxIterations       = 50

Some default values are defined for initialization mode, the number of runs, and 
Epsilon, which I needed for the K-Means call, but did not vary for processing. 
Finally, these parameters were set against the K-Means object:

  val initializationMode  = KMeans.K_MEANS_PARALLEL

  val numRuns             = 1

  val numEpsilon          = 1e-4

  kMeans.setK( numClusters )

  kMeans.setMaxIterations( maxIterations )

  kMeans.setInitializationMode( initializationMode )

  kMeans.setRuns( numRuns )

  kMeans.setEpsilon( numEpsilon )

I cached the training vector data to improve the performance, and trained the 
K-Means object using the Vector Data to create a trained K-Means model:

  VectorData.cache

  val kMeansModel = kMeans.run( VectorData )

I have computed the K-Means cost, the number of input data rows, and output the 
results via print line statements. The cost value indicates how tightly the clusters are 
packed, and how separated clusters are:

  val kMeansCost = kMeansModel.computeCost( VectorData )

  println( "Input data rows : " + VectorData.count() )

  println( "K-Means Cost    : " + kMeansCost )
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Next, I have used the K-Means Model to print the cluster centers as vectors for each 
of the three clusters that were computed:

  kMeansModel.clusterCenters.foreach{ println }

Finally, I have used the K-Means Model predict function to create a list of cluster 
membership predictions. I have then counted these predictions by value to give a 
count of the data points in each cluster. This shows which clusters are bigger, and if 
there really are three clusters:

  val clusterRddInt = kMeansModel.predict( VectorData )

  val clusterCount = clusterRddInt.countByValue

  clusterCount.toList.foreach{ println }

} // end object kmeans1

So, in order to run this application, it must be compiled and packaged from the 
kmeans subdirectory as the Linux pwd command shows here:

[hadoop@hc2nn kmeans]$ pwd

/home/hadoop/spark/kmeans

[hadoop@hc2nn kmeans]$ sbt package

Loading /usr/share/sbt/bin/sbt-launch-lib.bash

[info] Set current project to K-Means (in build file:/home/hadoop/spark/
kmeans/)

[info] Compiling 2 Scala sources to /home/hadoop/spark/kmeans/target/
scala-2.10/classes...

[info] Packaging /home/hadoop/spark/kmeans/target/scala-2.10/k-
means_2.10-1.0.jar ...

[info] Done packaging.

[success] Total time: 20 s, completed Feb 19, 2015 5:02:07 PM

Once this packaging is successful, I check HDFS to ensure that the test data is 
ready. As in the last example, I converted my data to numeric form using the 
convert.scala file, provided in the software package. I will process the data file 
DigitalBreathTestData2013-MALE2a.csv in the HDFS directory /data/spark/
kmeans shown here:

[hadoop@hc2nn nbayes]$ hdfs dfs -ls /data/spark/kmeans

Found 3 items
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-rw-r--r--   3 hadoop supergroup   24645166 2015-02-05 21:11 /data/spark/
kmeans/DigitalBreathTestData2013-MALE2.csv

-rw-r--r--   3 hadoop supergroup    5694226 2015-02-05 21:48 /data/spark/
kmeans/DigitalBreathTestData2013-MALE2a.csv

drwxr-xr-x   - hadoop supergroup          0 2015-02-05 21:46 /data/spark/
kmeans/result

The spark-submit tool is used to run the K-Means application. The only change in 
this command, as shown here, is that the class is now kmeans1:

spark-submit \

  --class kmeans1 \

  --master spark://hc2nn.semtech-solutions.co.nz:7077  \

  --executor-memory 700M \

  --total-executor-cores 100 \

  /home/hadoop/spark/kmeans/target/scala-2.10/k-means_2.10-1.0.jar

The output from the Spark cluster run is shown to be as follows:

Input data rows : 467054

K-Means Cost    : 5.40312223450789E7

The previous output shows the input data volume, which looks correct, plus it also 
shows the K-Means cost value. Next comes the three vectors, which describe the data 
cluster centers with the correct number of dimensions. Remember that these cluster 
centroid vectors will have the same number of columns as the original vector data:

[0.24698249738061878,1.3015883142472253,0.005830116872250263,2.9173747788
555207,1.156645130895448,3.4400290524342454]

[0.3321793984152627,1.784137241326256,0.007615970459266097,2.583198707592
8917,119.58366028156011,3.8379106085083468]

[0.25247226760684494,1.702510963969387,0.006384899819416975,2.23140424800
0688,52.202897927594805,3.551509158139135]

Finally, cluster membership is given for clusters 1 to 3 with cluster 1 (index 0) having 
the largest membership at 407,539 member vectors.

(0,407539)

(1,12999)

(2,46516)
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So, these two examples show how data can be classified and clustered using Naïve 
Bayes and K-Means. But what if I want to classify images or more complex patterns, 
and use a black box approach to classification? The next section examines Spark-based 
classification using ANN's, or Artificial Neural Network's. In order to do this, I need 
to download the latest Spark code, and build a server for Spark 1.3, as it has not yet 
been formally released (at the time of writing).

ANN – Artificial Neural Networks
In order to examine the ANN (Artificial Neural Network) functionality in Apache 
Spark, I will need to obtain the latest source code from the GitHub website. The 
ANN functionality has been developed by Bert Greevenbosch (http://www.
bertgreevenbosch.nl/), and is set to be released in Apache Spark 1.3. At the time 
of writing the current Spark release is 1.2.1, and CDH 5.x ships with Spark 1.0. So, in 
order to examine this unreleased ANN functionality, the source code will need to be 
sourced and built into a Spark server. This is what I will do after explaining a little 
on the theory behind ANN.

Theory
The following figure shows a simple biological neuron to the left. The neuron has 
dendrites that receive signals from other neurons. A cell body controls activation, 
and an axon carries an electrical impulse to the dendrites of other neurons. The 
artificial neuron to the right has a series of weighted inputs: a summing function 
that groups the inputs, and a firing mechanism (F(Net)), which decides whether the 
inputs have reached a threshold, and if so, the neuron will fire:

Dendrites
Dendrites

Cell
Body Axon

Dendrites

Dendrite Connections

W1

Net

F(Net)

Neuron
Output

W2 W3 Wn

http://www.bertgreevenbosch.nl/
http://www.bertgreevenbosch.nl/
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Neural networks are tolerant of noisy images and distortion, and so are useful when 
a black box classification method is needed for potentially degraded images. The 
next area to consider is the summation function for the neuron inputs. The following 
diagram shows the summation function called Net for neuron i. The connections 
between the neurons that have the weighting values, contain the stored knowledge 
of the network. Generally, a network will have an input layer, an output layer, and a 
number of hidden layers. A neuron will fire if the sum of its inputs exceeds  
a threshold.

�
n

j=1

W *  F(Netp )  + Aji j iNet =i

Wji = Weighting value between neurons i and j

Netpj = Summed inputs to Neuron j

Ai = Optional threshold or bias for neuron i

F(Netp )  = Activation for neuron j using F(Net)j

Neti = Summed inputs to neuron i

Pattern p

Neuron j
Neuron iWjij=1

j=2

j=3

j=n

In the previous equation, the diagram and the key show that the input values from a 
pattern P are passed to neurons in the input layer of a network. These values become 
the input layer neuron activation values; they are a special case. The inputs to neuron 
i are the sum of the weighting value for neuron connection i-j, multiplied by the 
activation from neuron j. The activation at neuron j (if it is not an input layer neuron) 
is given by F(Net), the squashing function, which will be described next.

A simulated neuron needs a firing mechanism, which decides whether the inputs to 
the neuron have reached a threshold. And then, it fires to create the activation value 
for that neuron. This firing or squashing function can be described by the generalized 
sigmoid function shown in the following figure:
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This function has two constants: A and B; B affects the shape of the activation 
curve as shown in the previous graph. The bigger the value, the more similar a 
function becomes to an on/off step. The value of A sets a minimum for the returned 
activation. In the previous graph it is zero.

So, this provides a mechanism for simulating a neuron, creating weighting matrices 
as the neuron connections, and managing the neuron activation. But how are the 
networks organized? The next diagram shows a suggested neuron architecture—the 
neural network has an input layer of neurons, an output layer, and one or more hidden 
layers. All neurons in each layer are connected to each neuron in the adjacent layers.
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During the training, activation passes from the input layer through the network to 
the output layer. Then, the error or difference between the expected or actual output 
causes error deltas to be passed back through the network, altering the weighting 
matrix values. Once the desired output layer vector is achieved, then the knowledge 
is stored in the weighting matrices, and the network can be further trained or used 
for classification.

So, the theory behind neural networks has been described in terms of back 
propagation. Now is the time to obtain the development version of the Apache  
Spark code, and build the Spark server, so that the ANN Scala code can be run.

Building the Spark server
I would not normally advise that Apache Spark code be downloaded and used before 
it has been released by Spark, or packaged by Cloudera (for use with CDH), but the 
desire to examine ANN functionality, along with the time scale allowed for this book, 
mean that I need to do so. I extracted the full Spark code tree from this path:

https://github.com/apache/spark/pull/1290.

I stored this code on the Linux server hc2nn, under the directory /home/hadoop/
spark/spark. I then obtained the ANN code from Bert Greevenbosch's GitHub 
development area:

https://github.com/bgreeven/spark/blob/master/mllib/src/main/scala/org/
apache/spark/mllib/ann/ArtificialNeuralNetwork.scala

https://github.com/bgreeven/spark/blob/master/mllib/src/main/scala/org/
apache/spark/mllib/classification/ANNClassifier.scala

The ANNClassifier.scala file contains the public functions that will be called. The 
ArtificialNeuralNetwork.scala file contains the private MLlib ANN functions 
that ANNClassifier.scala calls. I already have Java open JDK installed on my 
server, so the next step is to set up the spark-env.sh environment configuration file 
under /home/hadoop/spark/spark/conf. My file looks like this:

export STANDALONE_SPARK_MASTER_HOST=hc2nn.semtech-solutions.co.nz

export SPARK_MASTER_IP=$STANDALONE_SPARK_MASTER_HOST

export SPARK_HOME=/home/hadoop/spark/spark

export SPARK_LAUNCH_WITH_SCALA=0

export SPARK_MASTER_WEBUI_PORT=19080

export SPARK_MASTER_PORT=8077

export SPARK_WORKER_PORT=8078
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export SPARK_WORKER_WEBUI_PORT=19081

export SPARK_WORKER_DIR=/var/run/spark/work

export SPARK_LOG_DIR=/var/log/spark

export SPARK_HISTORY_SERVER_LOG_DIR=/var/log/spark

export SPARK_PID_DIR=/var/run/spark/

export HADOOP_CONF_DIR=/etc/hadoop/conf

export SPARK_JAR_PATH=${SPARK_HOME}/assembly/target/scala-2.10/

export SPARK_JAR=${SPARK_JAR_PATH}/spark-assembly-1.3.0-SNAPSHOT-
hadoop2.3.0-cdh5.1.2.jar

export JAVA_HOME=/usr/lib/jvm/java-1.7.0

export SPARK_LOCAL_IP=192.168.1.103

The SPARK_MASTER_IP variable tells the cluster which server is the master. The port 
variables define the master, the worker web, and the operating port values. There 
are some log and JAR file paths defined, as well as JAVA_HOME and the local server IP 
address. Details for building Spark with Apache Maven can be found at:

http://spark.apache.org/docs/latest/building-spark.html

The slaves file in the same directory will be set up as before with the names of the 
four workers servers from hc2r1m1 to hc2r1m4.

In order to build using Apache Maven, I had to install mvn on to my Linux server 
hc2nn, where I will run the Spark build. I did this as the root user, obtaining a Maven 
repository file by first using wget:

wget http://repos.fedorapeople.org/repos/dchen/apache-maven/epel-apache-
maven.repo -O /etc/yum.repos.d/epel-apache-maven.repo

Then, checking that the new repository file is in place with ls long listing.

[root@hc2nn ~]# ls -l /etc/yum.repos.d/epel-apache-maven.repo

-rw-r--r-- 1 root root 445 Mar  4  2014 /etc/yum.repos.d/epel-apache-
maven.repo

Then Maven can be installed using the Linux yum command, the examples below 
show the install command and a check via ls that the mvn command exists.

[root@hc2nn ~]# yum install apache-maven

[root@hc2nn ~]# ls -l /usr/share/apache-maven/bin/mvn

-rwxr-xr-x 1 root root 6185 Dec 15 06:30 /usr/share/apache-maven/bin/mvn

www.allitebooks.com
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The commands that I have used to build the Spark source tree are shown here along 
with the successful output. First, the environment is set up, and then the build is 
started with the mvn command. Options are added to build for Hadoop 2.3/yarn, 
and the tests are skipped. The build uses the clean and package options to remove 
the old build files each time, and then create JAR files. Finally, the build output is 
copied via the tee command to a file named build.log:

cd /home/hadoop/spark/spark/conf ; . ./spark-env.sh ; cd ..

mvn  -Pyarn -Phadoop-2.3  -Dhadoop.version=2.3.0-cdh5.1.2 -DskipTests 
clean package | tee build.log 2>&1

[INFO] ----------------------------------------------------------

[INFO] BUILD SUCCESS

[INFO] ----------------------------------------------------------

[INFO] Total time: 44:20 min

[INFO] Finished at: 2015-02-16T12:20:28+13:00

[INFO] Final Memory: 76M/925M

[INFO] ----------------------------------------------------------

The actual build command that you use will depend upon whether you have 
Hadoop, and the version of it. Check the previous building spark for details,  
the build takes around 40 minutes on my servers.

Given that this build will be packaged and copied to the other servers in the Spark 
cluster, it is important that all the servers use the same version of Java, else errors 
such as these will occur:

15/02/15 12:41:41 ERROR executor.Executor: Exception in task 0.1 in stage 
0.0 (TID 2)

java.lang.VerifyError: class org.apache.hadoop.hdfs.protocol.proto.Cli
entNamenodeProtocolProtos$GetBlockLocationsRequestProto overrides final 
method getUnknownFields.()Lcom/google/protobuf/UnknownFieldSet;

        at java.lang.ClassLoader.defineClass1(Native Method)

Given that the source tree has been built, it now needs to be bundled up and released 
to each of the servers in the Spark cluster. Given that these servers are also the 
members of the CDH cluster, and have password-less SSH access set up, I can use 
the scp command to release the built software. The following commands show the 
spark directory under the /home/hadoop/spark path being packaged into a tar file 
called spark_bld.tar. The Linux scp command is then used to copy the tar file to 
each slave server; the following example shows hc2r1m1:

[hadoop@hc2nn spark]$ cd /home/hadoop/spark
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[hadoop@hc2nn spark]$ tar cvf spark_bld.tar spark

[hadoop@hc2nn spark]$ scp ./spark_bld.tar hadoop@hc2r1m1:/home/hadoop/
spark/spark_bld.tar

Now that the tarred Spark build is on the slave node, it needs to be unpacked. The 
following command shows the process for the server hc2r1m1. The tar file is unpacked 
to the same directory as the build server hc2nn, that is, /home/hadoop/spark:

[hadoop@hc2r1m1 ~]$ mkdir spark ; mv spark_bld.tar spark

[hadoop@hc2r1m1 ~]$ cd spark ; ls

spark_bld.tar

[hadoop@hc2r1m1 spark]$ tar xvf spark_bld.tar

Once the build has been run successfully, and the built code has been released to the 
slave servers, the built version of Spark can be started from the master server hc2nn. 
Note that I have chosen different port numbers from the Spark version 1.0, installed 
on these servers. Also note that I will start Spark as root, because the Spark 1.0 install 
is managed as Linux services under the root account. As the two installs will share 
facilities like logging and .pid file locations, root user will ensure access. This is the 
script that I have used to start Apache Spark 1.3:

cd /home/hadoop/spark/spark/conf ;  . ./spark-env.sh ; cd ../sbin

echo "hc2nn - start master server"

./start-master.sh

echo "sleep 5000 ms"

sleep 5

echo "hc2nn - start history server"

./start-history-server.sh

echo "Start Spark slaves workers"

./start-slaves.sh

It executes the spark-env.sh file to set up the environment, and then uses the scripts 
in the Spark sbin directory to start the services. It starts the master and the history 
server first on hc2nn, and then it starts the slaves. I added a delay before starting the 
slaves, as I found that they were trying to connect to the master before it was ready. 
The Spark 1.3 web user interface can now be accessed via this URL:

http://hc2nn.semtech-solutions.co.nz:19080/

The Spark URL, which allows applications to connect to Spark is this:

Spark Master at spark://hc2nn.semtech-solutions.co.nz:8077



Apache Spark MLlib

[ 48 ]

As defined by the port numbers in the spark environment configuration file, Spark is 
now available to be used with ANN functionality. The next section will present the 
ANN Scala scripts and data to show how this Spark-based functionality can be used.

ANN in practice
In order to begin ANN training, test data is needed. Given that this type of 
classification method is supposed to be good at classifying distorted or noisy  
images, I have decided to attempt to classify the images here:

They are hand-crafted text files that contain shaped blocks, created from the 
characters 1 and 0. When they are stored on HDFS, the carriage return characters 
are removed, so that the image is presented as a single line vector. So, the ANN will 
be classifying a series of shape images, and then it will be tested against the same 
images with noise added to determine whether the classification will still work. 
There are six training images, and they will each be given an arbitrary training label 
from 0.1 to 0.6. So, if the ANN is presented with a closed square, it should return a 
label of 0.1. The following image shows an example of a testing image with noise 
added. The noise, created by adding extra zero (0) characters within the image, has 
been highlighted:
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Because the Apache Spark server has changed from the previous examples, and 
the Spark library locations have also changed, the sbt configuration file used for 
compiling the example ANN Scala code must also be changed. As before, the ANN 
code is being developed using the Linux hadoop account in a subdirectory called  
spark/ann. The ann.sbt file exists within the ann directory:

 [hadoop@hc2nn ann]$ pwd

/home/hadoop/spark/ann

 [hadoop@hc2nn ann]$ ls

ann.sbt    project  src  target

The contents of the ann.sbt file have been changed to use full paths of JAR library 
files for the Spark dependencies. This is because the new Apache Spark code for 
build 1.3 now resides under /home/hadoop/spark/spark. Also, the project name 
has been changed to A N N:

name := "A N N"

version := "1.0"

scalaVersion := "2.10.4"
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libraryDependencies += "org.apache.hadoop" % "hadoop-client" % "2.3.0"

libraryDependencies += "org.apache.spark" % "spark-core"  % "1.3.0" from 
"file:///home/hadoop/spark/spark/core/target/spark-core_2.10-1.3.0-
SNAPSHOT.jar"

libraryDependencies += "org.apache.spark" % "spark-mllib" % "1.3.0" from 
"file:///home/hadoop/spark/spark/mllib/target/spark-mllib_2.10-1.3.0-
SNAPSHOT.jar"

libraryDependencies += "org.apache.spark" % "akka" % "1.3.0" from 
"file:///home/hadoop/spark/spark/assembly/target/scala-2.10/spark-
assembly-1.3.0-SNAPSHOT-hadoop2.3.0-cdh5.1.2.jar"

As in the previous examples, the actual Scala code to be compiled exists in a 
subdirectory named src/main/scala as shown next. I have created two Scala 
programs. The first trains using the input data, and then tests the ANN model with 
the same input data. The second tests the trained model with noisy data, to the test 
distorted data classification:

[hadoop@hc2nn scala]$ pwd

/home/hadoop/spark/ann/src/main/scala

[hadoop@hc2nn scala]$ ls

test_ann1.scala  test_ann2.scala

I will examine the first Scala file entirely, and then I will just show the extra features 
of the second file, as the two examples are very similar up to the point of training 
the ANN. The code examples shown here can be found in the software package 
provided with this book, under the path chapter2\ANN. So, to examine the first Scala 
example, the import statements are similar to the previous examples. The Spark 
context, configuration, vectors, and LabeledPoint are being imported. The RDD 
class for RDD processing is being imported this time, along with the new ANN class 
ANNClassifier. Note that the MLlib/classification routines widely use the 
LabeledPoint structure for input data, which will contain the features and labels 
that are supposed to be trained against:

import org.apache.spark.SparkContext

import org.apache.spark.SparkContext._

import org.apache.spark.SparkConf

import org.apache.spark.mllib.classification.ANNClassifier

import org.apache.spark.mllib.regression.LabeledPoint

import org.apache.spark.mllib.linalg.Vectors
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import org.apache.spark.mllib.linalg._

import org.apache.spark.rdd.RDD

object testann1 extends App

{

The application class in this example has been called testann1. The HDFS files to be 
processed have been defined in terms of the HDFS server, path, and file name:

  val server = "hdfs://hc2nn.semtech-solutions.co.nz:8020"

  val path   = "/data/spark/ann/"

  val data1 = server + path + "close_square.img"

  val data2 = server + path + "close_triangle.img"

  val data3 = server + path + "lines.img"

  val data4 = server + path + "open_square.img"

  val data5 = server + path + "open_triangle.img"

  val data6 = server + path + "plus.img"

The Spark context has been created with the URL for the Spark instance, which now 
has a different port number—8077. The application name is ANN 1. This will appear 
on the Spark web UI when the application is run:

  val sparkMaster = "spark://hc2nn.semtech-solutions.co.nz:8077"

  val appName = "ANN 1"

  val conf = new SparkConf()

  conf.setMaster(sparkMaster)

  conf.setAppName(appName)

  val sparkCxt = new SparkContext(conf)

The HDFS-based input training and test data files are loaded. The values on each 
line are split by space characters, and the numeric values have been converted 
into Doubles. The variables that contain this data are then stored in an array called 
inputs. At the same time, an array called outputs is created, containing the labels 
from 0.1 to 0.6. These values will be used to classify the input patterns:

  val rData1 = sparkCxt.textFile(data1).map(_.split(" ").map(_.
toDouble)).collect
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  val rData2 = sparkCxt.textFile(data2).map(_.split(" ").map(_.
toDouble)).collect

  val rData3 = sparkCxt.textFile(data3).map(_.split(" ").map(_.
toDouble)).collect

  val rData4 = sparkCxt.textFile(data4).map(_.split(" ").map(_.
toDouble)).collect

  val rData5 = sparkCxt.textFile(data5).map(_.split(" ").map(_.
toDouble)).collect

  val rData6 = sparkCxt.textFile(data6).map(_.split(" ").map(_.
toDouble)).collect

  val inputs = Array[Array[Double]] (

     rData1(0), rData2(0), rData3(0), rData4(0), rData5(0), rData6(0) )

  val outputs = Array[Double]( 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 )

The input and output data, representing the input data features and labels, are 
then combined and converted into a LabeledPoint structure. Finally, the data is 
parallelized in order to partition it for the optimal parallel processing:

  val ioData = inputs.zip( outputs )

  val lpData = ioData.map{ case(features,label) =>

    LabeledPoint( label, Vectors.dense(features) )

  }

  val rddData = sparkCxt.parallelize( lpData )

Variables are created to define the hidden layer topology of the ANN. In this case, 
I have chosen to have two hidden layers, each with 100 neurons. The maximum 
numbers of iterations are defined, as well as a batch size (six patterns) and 
convergence tolerance. The tolerance refers to how big the training error can get 
before we can consider training to have worked. Then, an ANN model is created 
using these configuration parameters and the input data:

  val hiddenTopology : Array[Int] = Array( 100, 100 )

  val maxNumIterations = 1000

  val convTolerance    = 1e-4

  val batchSize        = 6

  val annModel = ANNClassifier.train(rddData,

                                     batchSize,
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                                     hiddenTopology,

                                     maxNumIterations,

                                     convTolerance)

In order to test the trained ANN model, the same input training data is used as 
testing data used to obtain prediction labels. First, an input data variable is created 
called rPredictData. Then, the data is partitioned and finally, the predictions are 
obtained using the trained ANN model. For this model to work, it must output the 
labels 0.1 to 0.6:

  val rPredictData = inputs.map{ case(features) =>

    ( Vectors.dense(features) )

  }

  val rddPredictData = sparkCxt.parallelize( rPredictData )

  val predictions = annModel.predict( rddPredictData )

The label predictions are printed, and the script closes with a closing bracket:

  predictions.toArray().foreach( value => println( "prediction > " + 
value ) )

} // end ann1

So, in order to run this code sample, it must first be compiled and packaged. By now, 
you must be familiar with the sbt command, executed from the ann sub directory:

[hadoop@hc2nn ann]$ pwd

/home/hadoop/spark/ann

[hadoop@hc2nn ann]$ sbt package

The spark-submit command is then used from within the new spark/spark path 
using the new Spark-based URL at port 8077 to run the application testann1:

/home/hadoop/spark/spark/bin/spark-submit \

  --class testann1 \

  --master spark://hc2nn.semtech-solutions.co.nz:8077  \

  --executor-memory 700M \

  --total-executor-cores 100 \

  /home/hadoop/spark/ann/target/scala-2.10/a-n-n_2.10-1.0.jar
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By checking the Apache Spark web URL at http://hc2nn.semtech-solutions.
co.nz:19080/, it is now possible to see the application running. The following figure 
shows the application ANN 1 running, as well as the previous completed executions:
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By selecting one of the cluster host worker instances, it is possible to see a list of 
executors that actually carry out cluster processing for that worker:
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Finally, by selecting one of the executors, it is possible to see its history and 
configuration, as well as the links to the log file, and error information. At this level, 
with the log information provided, debugging is possible. These log files can be 
checked for processing error messages.

The ANN 1 application provides the following output to show that it has reclassified 
the same input data correctly. The reclassification has been successful, as each of the 
input patterns has been given the same label as it was trained with:

prediction > 0.1

prediction > 0.2

prediction > 0.3

prediction > 0.4

prediction > 0.5

prediction > 0.6
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So, this shows that ANN training and test prediction will work with the same data. 
Now, I will train with the same data, but test with distorted or noisy data, an example 
of which I already demonstrated. This example can be found in the file called test_
ann2.scala, in your software package. It is very similar to the first example, so I will 
just demonstrate the changed code. The application is now called testann2:

object testann2 extends App

An extra set of testing data is created, after the ANN model has been created using 
the training data. This testing data contains noise:

  val tData1 = server + path + "close_square_test.img"

  val tData2 = server + path + "close_triangle_test.img"

  val tData3 = server + path + "lines_test.img"

  val tData4 = server + path + "open_square_test.img"

  val tData5 = server + path + "open_triangle_test.img"

  val tData6 = server + path + "plus_test.img"

This data is processed into input arrays, and is partitioned for cluster processing:

  val rtData1 = sparkCxt.textFile(tData1).map(_.split(" ").map(_.
toDouble)).collect

  val rtData2 = sparkCxt.textFile(tData2).map(_.split(" ").map(_.
toDouble)).collect

  val rtData3 = sparkCxt.textFile(tData3).map(_.split(" ").map(_.
toDouble)).collect

  val rtData4 = sparkCxt.textFile(tData4).map(_.split(" ").map(_.
toDouble)).collect

  val rtData5 = sparkCxt.textFile(tData5).map(_.split(" ").map(_.
toDouble)).collect

  val rtData6 = sparkCxt.textFile(tData6).map(_.split(" ").map(_.
toDouble)).collect

  val tInputs = Array[Array[Double]] (

     rtData1(0), rtData2(0), rtData3(0), rtData4(0), rtData5(0), 
rtData6(0) )

  val rTestPredictData = tInputs.map{ case(features) => ( Vectors.
dense(features) ) }

  val rddTestPredictData = sparkCxt.parallelize( rTestPredictData )
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It is then used to generate label predictions in the same way as the first example. If 
the model classifies the data correctly, then the same label values should be printed 
from 0.1 to 0.6:

  val testPredictions = annModel.predict( rddTestPredictData )

  testPredictions.toArray().foreach( value => println( "test  
prediction > " + value ) )

The code has already been compiled, so it can be run using the spark-submit 
command:

/home/hadoop/spark/spark/bin/spark-submit \

  --class testann2 \

  --master spark://hc2nn.semtech-solutions.co.nz:8077  \

  --executor-memory 700M \

  --total-executor-cores 100 \

  /home/hadoop/spark/ann/target/scala-2.10/a-n-n_2.10-1.0.jar

Here is the cluster output from this script, which shows a successful classification 
using a trained ANN model, and some noisy test data. The noisy data has been 
classified correctly. For instance, if the trained model had become confused, it might 
have given a value of 0.15 for the noisy close_square_test.img test image in 
position one, instead of returning 0.1 as it did:

test prediction > 0.1

test prediction > 0.2

test prediction > 0.3

test prediction > 0.4

test prediction > 0.5

test prediction > 0.6
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Summary
This chapter has attempted to provide you with an overview of some of the 
functionality available within the Apache Spark MLlib module. It has also shown 
the functionality that will soon be available in terms of ANN, or artificial neural 
networks, which is intended for release in Spark 1.3. It has not been possible to  
cover all the areas of MLlib, due to the time and space allowed for this chapter.

You have been shown how to develop Scala-based examples for Naïve Bayes 
classification, K-Means clustering, and ANN or artificial neural networks. You have 
been shown how to prepare test data for these Spark MLlib routines. You have also 
been shown that they all accept the LabeledPoint structure, which contains features 
and labels. Also, each approach takes a training and prediction approach to training 
and testing a model using different data sets. Using the approach shown in this 
chapter, you can now investigate the remaining functionality in the MLlib library. 
You should refer to the http://spark.apache.org/ website, and ensure that when 
checking documentation that you refer to the correct version, that is, http://spark.
apache.org/docs/1.0.0/ for version 1.0.0.

Having examined the Apache Spark MLlib machine learning library, in this chapter, it 
is now time to consider Apache Spark's stream processing capability. The next chapter 
will examine stream processing using the Spark and Scala-based example code.

http://spark.apache.org/
http://spark.apache.org/docs/1.0.0/
http://spark.apache.org/docs/1.0.0/
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Apache Spark Streaming
The Apache Streaming module is a stream processing-based module within Apache 
Spark. It uses the Spark cluster to offer the ability to scale to a high degree. Being 
based on Spark, it is also highly fault tolerant, having the ability to rerun failed 
tasks by checkpointing the data stream that is being processed. The following areas 
will be covered in this chapter after an initial section, which will provide a practical 
overview of how Apache Spark processes stream-based data:

• Error recovery and checkpointing
• TCP-based Stream Processing
• File Streams
• Flume Stream source
• Kafka Stream source

For each topic, I will provide a worked example in Scala, and will show how the 
stream-based architecture can be set up and tested.
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Overview
When giving an overview of the Apache Spark streaming module, I would advise 
you to check the http://spark.apache.org/ website for up-to-date information, 
as well as the Spark-based user groups such as user@spark.apache.org. My reason 
for saying this is because these are the primary places where Spark information is 
available. Also the extremely fast (and increasing) pace of change means that by the 
time you read this new Spark functionality and versions, will be available. So, in the 
light of this, when giving an overview, I will try to generalize.

Kafka

Flume

HDFS/S3

Kinesis

Twitter

Metric System

Dashboards

HDFS

Databases

Lucidworks banana

MLlib    SQL
GraphX

Graphite / Grafana

The previous figure shows potential data sources for Apache Streaming, such as 
Kafka, Flume, and HDFS. These feed into the Spark Streaming module, and are 
processed as discrete streams. The diagram also shows that other Spark module 
functionality, such as machine learning, can be used to process the stream-based 
data. The fully processed data can then be an output for HDFS, databases, or 
dashboards. This diagram is based on the one at the Spark streaming website, but 
I wanted to extend it for both—expressing the Spark module functionality, and for 
dashboarding options. The previous diagram shows a MetricSystems feed being fed 
from Spark to Graphite. Also, it is possible to feed Solr-based data to Lucidworks 
banana (a port of kabana). It is also worth mentioning here that Databricks (see 
Chapter 8, Spark Databricks and Chapter 9, Databricks Visualization) can also present  
the Spark stream data as a dashboard.

original
DStream

time 1

windowed
DStream

window
at time 1

window-based
operation

time 2 time 3 time 4 time 5

window
at time 3

window
at time 5

http://spark.apache.org/
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When discussing Spark discrete streams, the previous figure, again taken from the 
Spark website at http://spark.apache.org/, is the diagram I like to use. The 
green boxes in the previous figure show the continuous data stream sent to Spark, 
being broken down into a discrete stream (DStream). The size of each element in 
the stream is then based on a batch time, which might be two seconds. It is also 
possible to create a window, expressed as the previous red box, over the DStream. 
For instance, when carrying out trend analysis in real time, it might be necessary to 
determine the top ten Twitter-based Hashtags over a ten minute window.

So, given that Spark can be used for Stream processing, how is a Stream created? The 
following Scala-based code shows how a Twitter stream can be created. This example 
is simplified because Twitter authorization has not been included, but you get the 
idea (the full example code is in the Checkpointing section). The Spark stream context, 
called ssc, is created using the spark context sc. A batch time is specified when it is 
created; in this case, five seconds. A Twitter-based DStream, called stream, is then 
created from the Streamingcontext using a window of 60 seconds:

    val ssc    = new StreamingContext(sc, Seconds(5) )

    val stream = TwitterUtils.createStream(ssc,None).window( Seconds(60) )

The stream processing can be started with the stream context start method (shown 
next), and the awaitTermination method indicates that it should process until 
stopped. So, if this code is embedded in a library-based application, it will run until 
the session is terminated, perhaps with a Crtl + C:

    ssc.start()

    ssc.awaitTermination()

This explains what Spark streaming is, and what it does, but it does not explain error 
handling, or what to do if your stream-based application fails. The next section will 
examine Spark streaming error management and recovery.

Errors and recovery
Generally, the question that needs to be asked for your application is; is it critical that 
you receive and process all the data? If not, then on failure you might just be able to 
restart the application and discard the missing or lost data. If this is not the case, then 
you will need to use checkpointing, which will be described in the next section.

It is also worth noting that your application's error management should be robust and 
self-sufficient. What I mean by this is that; if an exception is non-critical, then manage 
the exception, perhaps log it, and continue processing. For instance, when a task 
reaches the maximum number of failures (specified by spark.task.maxFailures),  
it will terminate processing.

http://spark.apache.org/
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Checkpointing
It is possible to set up an HDFS-based checkpoint directory to store Apache Spark-
based streaming information. In this Scala example, data will be stored in HDFS, 
under /data/spark/checkpoint. The following HDFS file system ls command 
shows that before starting, the directory does not exist:

[hadoop@hc2nn stream]$ hdfs dfs -ls /data/spark/checkpoint

ls: `/data/spark/checkpoint': No such file or directory

The Twitter-based Scala code sample given next, starts by defining a package name 
for the application, and by importing Spark, streaming, context, and Twitter-based 
functionality. It then defines an application object named stream1:

package nz.co.semtechsolutions

import org.apache.spark._

import org.apache.spark.SparkContext._

import org.apache.spark.streaming._

import org.apache.spark.streaming.twitter._

import org.apache.spark.streaming.StreamingContext._

object stream1 {

Next, a method is defined called createContext, which will be used to create  
both the spark, and streaming contexts. It will also checkpoint the stream to the 
HDFS-based directory using the streaming context checkpoint method, which  
takes a directory path as a parameter. The directory path being the value (cpDir)  
that was passed into the createContext method:

  def createContext( cpDir : String ) : StreamingContext = {

    val appName = "Stream example 1"

    val conf    = new SparkConf()

    conf.setAppName(appName)

    val sc = new SparkContext(conf)

    val ssc    = new StreamingContext(sc, Seconds(5) )

    ssc.checkpoint( cpDir )
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               ssc

  }

Now, the main method is defined, as is the HDFS directory, as well as Twitter access 
authority and parameters. The Spark streaming context ssc is either retrieved or 
created using the HDFS checkpoint directory via the StreamingContext method—
getOrCreate. If the directory doesn't exist, then the previous method called 
createContext is called, which will create the context and checkpoint. Obviously, I 
have truncated my own Twitter auth. keys in this example for security reasons:

  def main(args: Array[String]) {

    val hdfsDir = "/data/spark/checkpoint"

    val consumerKey       = "QQpxx"

    val consumerSecret    = "0HFzxx"

    val accessToken       = "323xx"

    val accessTokenSecret = "IlQxx"

    System.setProperty("twitter4j.oauth.consumerKey", consumerKey)

    System.setProperty("twitter4j.oauth.consumerSecret", consumerSecret)

    System.setProperty("twitter4j.oauth.accessToken", accessToken)

    System.setProperty("twitter4j.oauth.accessTokenSecret", 
accessTokenSecret)

    val ssc = StreamingContext.getOrCreate(hdfsDir,

      () => { createContext( hdfsDir ) })

    val stream = TwitterUtils.createStream(ssc,None).window(  
Seconds(60) )

    // do some processing

    ssc.start()

    ssc.awaitTermination()

  } // end main
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Having run this code, which has no actual processing, the HDFS checkpoint 
directory can be checked again. This time it is apparent that the checkpoint 
directory has been created, and the data has been stored:

[hadoop@hc2nn stream]$ hdfs dfs -ls /data/spark/checkpoint

Found 1 items

drwxr-xr-x   - hadoop supergroup          0 2015-07-02 13:41  
/data/spark/checkpoint/0fc3d94e-6f53-40fb-910d-1eef044b12e9

This example, taken from the Apache Spark website, shows how checkpoint storage 
can be set up and used. But how often is checkpointing carried out? The Meta data is 
stored during each stream batch. The actual data is stored with a period, which is the 
maximum of the batch interval, or ten seconds. This might not be ideal for you, so 
you can reset the value using the method:

DStream.checkpoint( newRequiredInterval )

Where newRequiredInterval is the new checkpoint interval value that you require, 
generally you should aim for a value which is five to ten times your batch interval.

Checkpointing saves both the stream batch and metadata (data about the data). 
If the application fails, then when it restarts, the checkpointed data is used when 
processing is started. The batch data that was being processed at the time of failure  
is reprocessed, along with the batched data since the failure.

Remember to monitor the HDFS disk space being used for check pointing. In the 
next section, I will begin to examine the streaming sources, and will provide some 
examples of each type.

Streaming sources
I will not be able to cover all the stream types with practical examples in this 
section, but where this chapter is too small to include code, I will at least provide 
a description. In this chapter, I will cover the TCP and file streams, and the Flume, 
Kafka, and Twitter streams. I will start with a practical TCP-based example.

This chapter examines stream processing architecture. For instance, what happens  
in cases where the stream data delivery rate exceeds the potential data processing 
rate? Systems like Kafka provide the possibility of solving this issue by providing  
the ability to use multiple data topics and consumers.
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TCP stream
There is a possibility of using the Spark streaming context method called 
socketTextStream to stream data via TCP/IP, by specifying a hostname and a  
port number. The Scala-based code example in this section will receive data on  
port 10777 that was supplied using the netcat Linux command. The code sample 
starts by defining the package name, and importing Spark, the context, and the 
streaming classes. The object class named stream2 is defined, as it is the main 
method with arguments:

package nz.co.semtechsolutions

import org.apache.spark._

import org.apache.spark.SparkContext._

import org.apache.spark.streaming._

import org.apache.spark.streaming.StreamingContext._

object stream2 {

  def main(args: Array[String]) {

The number of arguments passed to the class is checked to ensure that it is the 
hostname and the port number. A Spark configuration object is created with an 
application name defined. The Spark and streaming contexts are then created.  
Then, a streaming batch time of 10 seconds is set:

    if ( args.length < 2 )

    {

      System.err.println("Usage: stream2 <host> <port>")

      System.exit(1)

    }

    val hostname = args(0).trim

    val portnum  = args(1).toInt

    val appName = "Stream example 2"

    val conf    = new SparkConf()

    conf.setAppName(appName)

    val sc  = new SparkContext(conf)

    val ssc = new StreamingContext(sc, Seconds(10) )
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A DStream called rawDstream is created by calling the socketTextStream method 
of the streaming context using the host and port name parameters.

    val rawDstream = ssc.socketTextStream( hostname, portnum )

A top-ten word count is created from the raw stream data by splitting words by 
spacing. Then a (key,value) pair is created as (word,1), which is reduced by the 
key value, this being the word. So now, there is a list of words and their associated 
counts. Now, the key and value are swapped, so the list becomes (count and word). 
Then, a sort is done on the key, which is now the count. Finally, the top 10 items in 
the rdd, within the DStream, are taken and printed out:

    val wordCount = rawDstream

                     .flatMap(line => line.split(" "))

                     .map(word => (word,1))

                     .reduceByKey(_+_)

                     .map(item => item.swap)

                     .transform(rdd => rdd.sortByKey(false))

                     .foreachRDD( rdd =>

                       { rdd.take(10).foreach(x=>println("List : " + x)) 
})

The code closes with the Spark Streaming start, and awaitTermination methods 
being called to start the stream processing and await process termination:

    ssc.start()

    ssc.awaitTermination()

  } // end main

} // end stream2

The data for this application is provided, as I stated previously, by the Linux netcat 
(nc) command. The Linux cat command dumps the contents of a log file, which 
is piped to nc. The lk options force netcat to listen for connections, and keep on 
listening if the connection is lost. This example shows that the port being used is 
10777:

[root@hc2nn log]# pwd

/var/log

[root@hc2nn log]# cat ./anaconda.storage.log | nc -lk 10777
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The output from this TCP-based stream processing is shown here. The actual 
output is not as important as the method demonstrated. However, the data shows, 
as expected, a list of 10 log file words in descending count order. Note that the top 
word is empty because the stream was not filtered for empty words:

List : (17104,)

List : (2333,=)

List : (1656,:)

List : (1603,;)

List : (1557,DEBUG)

List : (564,True)

List : (495,False)

List : (411,None)

List : (356,at)

List : (335,object)

This is interesting if you want to stream data using Apache Spark streaming, based 
upon TCP/IP from a host and port. But what about more exotic methods? What if 
you wish to stream data from a messaging system, or via memory-based channels? 
What if you want to use some of the big data tools available today like Flume and 
Kafka? The next sections will examine these options, but first I will demonstrate how 
streams can be based upon files.

File streams
I have modified the Scala-based code example in the last section, to monitor an 
HDFS-based directory, by calling the Spark streaming context method called 
textFileStream. I will not display all of the code, given this small change. The 
application class is now called stream3, which takes a single parameter—the HDFS 
directory. The directory path could be on NFS or AWS S3 (all the code samples will 
be available with this book):

    val rawDstream = ssc.textFileStream( directory )

The stream processing is the same as before. The stream is split into words, and the 
top-ten word list is printed. The only difference this time is that the data must be put 
into the HDFS directory while the application is running. This is achieved with the 
HDFS file system put command here:

[root@hc2nn log]# hdfs dfs -put ./anaconda.storage.log /data/spark/stream
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As you can see, the HDFS directory used is /data/spark/stream/, and the text-based 
source log file is anaconda.storage.log (under /var/log/). As expected, the same 
word list and count is printed:

List : (17104,)

List : (2333,=)

……..

List : (564,True)

List : (495,False)

List : (411,None)

List : (356,at)

List : (335,object)

These are simple streaming methods based on TCP, and file system data. But what 
if I want to use some of the built-in streaming functionality within Spark streaming? 
This will be examined next. The Spark streaming Flume library will be used as  
an example.

Flume
Flume is an Apache open source project and product, which is designed to move 
large amounts of data at a big data scale. It is highly scalable, distributed, and 
reliable, working on the basis of data source, data sink, and data channels, as the 
diagram here, taken from the http://flume.apache.org/ website, shows:

Agent

Source Sink

Channel

HDFS

Web
Server

Flume uses agents to process data streams. As can be seen in the previous figure, an 
agent has a data source, a data processing channel, and a data sink. A clearer way to 
describe this is via the following figure. The channel acts as a queue for the sourced 
data and the sink passes the data to the next link in the chain.

http://flume.apache.org/
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Flume Agent

Source

Incoming
Events

Channel

Event
Queue

Sink

Outgoing
Events

Flume agents can form Flume architectures; the output of one agent's sink can be 
the input to a second agent. Apache Spark allows two approaches to using Apache 
Flume. The first is an Avro push-based in-memory approach, whereas the second 
one, still based on Avro, is a pull-based system, using a custom Spark sink library.

I installed Flume via the Cloudera CDH 5.3 cluster manager, which installs a  
single agent. Checking the Linux command line, I can see that Flume version 1.5 is 
now available:

[root@hc2nn ~]# flume-ng version

Flume 1.5.0-cdh5.3.3

Source code repository: https://git-wip-us.apache.org/repos/asf/flume.git

Revision: b88ce1fd016bc873d817343779dfff6aeea07706

Compiled by jenkins on Wed Apr  8 14:57:43 PDT 2015

From source with checksum 389d91c718e03341a2367bf4ef12428e

The Flume-based Spark example that I will initially implement here, is the  
Flume-based push approach, where Spark acts as a receiver, and Flume pushes the 
data to Spark. The following figure represents the structure that I will implement on 
a single node:
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The message data will be sent to port 10777 on a host called hc2r1m1 using the 
Linux netcat (nc) command. This will act as a source (source1) for the Flume agent 
(agent1), which will have an in-memory channel called channel1. The sink used by 
agent1 will be Apache Avro based, again on a host called hc2r1m1, but this time, the 
port number will be 11777. The Apache Spark Flume application stream4 (which I 
will describe shortly) will listen for Flume stream data on this port.

I start the streaming process by executing the netcat (nc) command next, against 
the 10777 port. Now, when I type text into this window, it will be used as a Flume 
source, and the data will be sent to the Spark application:

[hadoop@hc2nn ~]$ nc  hc2r1m1.semtech-solutions.co.nz  10777

In order to run my Flume agent, agent1, I have created a Flume configuration file 
called agent1.flume.cfg, which describes the agent's source, channel, and sink. 
The contents of the file are as follows. The first section defines the agent1 source, 
channel, and sink names.

agent1.sources  = source1

agent1.channels = channel1

agent1.sinks    = sink1

The next section defines source1 to be netcat based, running on the host called 
hc2r1m1, and 10777 port:

agent1.sources.source1.channels=channel1

agent1.sources.source1.type=netcat

agent1.sources.source1.bind=hc2r1m1.semtech-solutions.co.nz

agent1.sources.source1.port=10777

The agent1 channel, channel1, is defined as a memory-based channel with a 
maximum event capacity of 1000 events:

agent1.channels.channel1.type=memory

agent1.channels.channel1.capacity=1000

Finally, the agent1 sink, sink1, is defined as an Apache Avro sink on the host called 
hc2r1m1, and 11777 port:

agent1.sinks.sink1.type=avro

agent1.sinks.sink1.hostname=hc2r1m1.semtech-solutions.co.nz

agent1.sinks.sink1.port=11777

agent1.sinks.sink1.channel=channel1
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I have created a Bash script called flume.bash to run the Flume agent, agent1. It 
looks like this:

[hadoop@hc2r1m1 stream]$ more flume.bash

#!/bin/bash

# run the bash agent

flume-ng agent \

  --conf /etc/flume-ng/conf \

  --conf-file ./agent1.flume.cfg \

  -Dflume.root.logger=DEBUG,INFO,console  \

  -name agent1

The script calls the Flume executable flume-ng, passing the agent1 configuration 
file. The call specifies the agent named agent1. It also specifies the Flume 
configuration directory to be /etc/flume-ng/conf/, the default value. Initially, I 
will use a netcat Flume source with a Scala-based example to show how data can be 
sent to an Apache Spark application. Then, I will show how an RSS-based data feed 
can be processed in a similar way. So initially, the Scala code that will receive the 
netcat data looks like this. The class package name and the application class name 
are defined. The necessary classes for Spark and Flume are imported. Finally, the 
main method is defined:

package nz.co.semtechsolutions

import org.apache.spark._

import org.apache.spark.SparkContext._

import org.apache.spark.streaming._

import org.apache.spark.streaming.StreamingContext._

import org.apache.spark.streaming.flume._

object stream4 {

  def main(args: Array[String]) {
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The host and port name arguments for the data stream are checked and extracted:

    if ( args.length < 2 )

    {

      System.err.println("Usage: stream4 <host> <port>")

      System.exit(1)

    }

    val hostname = args(0).trim

    val portnum  = args(1).toInt

    println("hostname : " + hostname)

    println("portnum  : " + portnum)

The Spark and streaming contexts are created. Then, the Flume-based data stream 
is created using the stream context host and port number. The Flume-based class 
FlumeUtils has been used to do this by calling it's createStream method:

    val appName = "Stream example 4"

    val conf    = new SparkConf()

    conf.setAppName(appName)

    val sc  = new SparkContext(conf)

    val ssc = new StreamingContext(sc, Seconds(10) )

    val rawDstream = FlumeUtils.createStream(ssc,hostname,portnum)

Finally, a stream event count is printed, and (for debug purposes while we test the 
stream) the stream content is dumped. After this, the stream context is started and 
configured to run until terminated via the application:

    rawDstream.count()

         .map(cnt => ">>>> Received events : " + cnt )

         .print()

    rawDstream.map(e => new String(e.event.getBody.array() ))

              .print

    ssc.start()
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    ssc.awaitTermination()

  } // end main

} // end stream4

Having compiled it, I will run this application using spark-submit. In the other 
chapters of this book, I will use a Bash-based script called run_stream.bash to 
execute the job. The script looks like this:

[hadoop@hc2r1m1 stream]$ more run_stream.bash

#!/bin/bash

SPARK_HOME=/usr/local/spark

SPARK_BIN=$SPARK_HOME/bin

SPARK_SBIN=$SPARK_HOME/sbin

JAR_PATH=/home/hadoop/spark/stream/target/scala-2.10/streaming_2.10-
1.0.jar

CLASS_VAL=$1

CLASS_PARAMS="${*:2}"

STREAM_JAR=/usr/local/spark/lib/spark-examples-1.3.1-hadoop2.3.0.jar

cd $SPARK_BIN

./spark-submit \

  --class $CLASS_VAL \

  --master spark://hc2nn.semtech-solutions.co.nz:7077  \

  --executor-memory 100M \

  --total-executor-cores 50 \

  --jars $STREAM_JAR \

  $JAR_PATH \

  $CLASS_PARAMS
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So, this script sets some Spark-based variables, and a JAR library path for this job. It 
takes which Spark class to run, as its first parameter. It passes all the other variables, 
as parameters, to the Spark application class job. So, the execution of the application 
looks like this:

[hadoop@hc2r1m1 stream]$ ./run_stream.bash  \

                     nz.co.semtechsolutions.stream4 \

                     hc2r1m1.semtech-solutions.co.nz  \

                     11777

This means that the Spark application is ready, and is running as a Flume sink on 
port 11777. The Flume input is ready, running as a netcat task on port 10777. Now, 
the Flume agent, agent1, can be started using the Flume script called flume.bash to 
send the netcat source-based data to the Apache Spark Flume-based sink:

[hadoop@hc2r1m1 stream]$ ./flume.bash

Now, when the text is passed to the netcat session, it should flow through Flume, 
and be processed as a stream by Spark. Let's try it:

[hadoop@hc2nn ~]$ nc  hc2r1m1.semtech-solutions.co.nz 10777

I hope that Apache Spark will print this

OK

I hope that Apache Spark will print this

OK

I hope that Apache Spark will print this

OK

Three simple pieces of text have been added to the netcat session, and have been 
acknowledged with an OK, so that they can be passed to Flume. The debug output  
in the Flume session shows that the events (one per line ) have been received  
and processed:

2015-07-06 18:13:18,699 (netcat-handler-0) [DEBUG - org.apache.flume.
source.NetcatSource$NetcatSocketHandler.run(NetcatSource.java:318)] Chars 
read = 41

2015-07-06 18:13:18,700 (netcat-handler-0) [DEBUG - org.apache.flume.
source.NetcatSource$NetcatSocketHandler.run(NetcatSource.java:322)] 
Events processed = 1

2015-07-06 18:13:18,990 (netcat-handler-0) [DEBUG - org.apache.flume.
source.NetcatSource$NetcatSocketHandler.run(NetcatSource.java:318)] Chars 
read = 41
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2015-07-06 18:13:18,991 (netcat-handler-0) [DEBUG - org.apache.flume.
source.NetcatSource$NetcatSocketHandler.run(NetcatSource.java:322)] 
Events processed = 1

2015-07-06 18:13:19,270 (netcat-handler-0) [DEBUG - org.apache.flume.
source.NetcatSource$NetcatSocketHandler.run(NetcatSource.java:318)] Chars 
read = 41

2015-07-06 18:13:19,271 (netcat-handler-0) [DEBUG - org.apache.flume.
source.NetcatSource$NetcatSocketHandler.run(NetcatSource.java:322)] 
Events processed = 1

Finally, in the Spark stream4 application session, three events have been received 
and processed. In this case, dumped to the session to prove the point that the data 
arrived. Of course, this is not what you would normally do, but I wanted to prove 
data transit through this configuration:

-------------------------------------------

Time: 1436163210000 ms

-------------------------------------------

>>> Received events : 3

-------------------------------------------

Time: 1436163210000 ms

-------------------------------------------

I hope that Apache Spark will print this

I hope that Apache Spark will print this

I hope that Apache Spark will print this

This is interesting, but it is not really a production-worthy example of Spark Flume 
data processing. So, in order to demonstrate a potentially real data processing 
approach, I will change the Flume configuration file source details so that it uses a 
Perl script, which is executable as follows:

agent1.sources.source1.type=exec

agent1.sources.source.command=./rss.perl

The Perl script, which is referenced previously, rss.perl, just acts as a source of 
Reuters science news. It receives the news as XML, and converts it into JSON format. 
It also cleans the data of unwanted noise. First, it imports packages like LWP and 
XML::XPath to enable XML processing. Then, it specifies a science-based Reuters 
news data source, and creates a new LWP agent to process the data, similar to this:

#!/usr/bin/perl

use strict;
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use LWP::UserAgent;

use XML::XPath;

my $urlsource="http://feeds.reuters.com/reuters/scienceNews" ;

my  $agent = LWP::UserAgent->new;

Then an infinite while loop is opened, and an HTTP GET request is carried out 
against the URL. The request is configured, and the agent makes the request via  
a call to the request method:

while()

{

  my  $req = HTTP::Request->new(GET => ($urlsource));

  $req->header('content-type' => 'application/json');

  $req->header('Accept'       => 'application/json');

  my $resp = $agent->request($req);

If the request is successful, then the XML data returned, is defined as the decoded 
content of the request. Title information is extracted from the XML, via an XPath  
call using the path called /rss/channel/item/title:

  if ( $resp->is_success )

  {

    my $xmlpage = $resp -> decoded_content;

    my $xp = XML::XPath->new( xml => $xmlpage );

    my $nodeset = $xp->find( '/rss/channel/item/title' );

    my @titles = () ;

    my $index = 0 ;

For each node in the extracted title data title XML string, data is extracted. It is 
cleaned of unwanted XML tags, and added to a Perl-based array called titles:

    foreach my $node ($nodeset->get_nodelist)

    {

      my $xmlstring = XML::XPath::XMLParser::as_string($node) ;

       $xmlstring =~ s/<title>//g;
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       $xmlstring =~ s/<\/title>//g;

       $xmlstring =~ s/"//g;

       $xmlstring =~ s/,//g;

       $titles[$index] = $xmlstring ;

       $index = $index + 1 ;

    } # foreach find node

The same process is carried out for description-based data in the request response 
XML. The XPath value used this time is /rss/channel/item/description/. There 
are many more tags to be cleaned from the description data, so there are many more 
Perl searches, and line replacements that act on this data (s///g):

    my $nodeset = $xp->find( '/rss/channel/item/description' );

    my @desc = () ;

    $index = 0 ;

    foreach my $node ($nodeset->get_nodelist)

    {

       my $xmlstring = XML::XPath::XMLParser::as_string($node) ;

       $xmlstring =~ s/<img.+\/img>//g;

       $xmlstring =~ s/href=".+"//g;

       $xmlstring =~ s/src=".+"//g;

       $xmlstring =~ s/src='.+'//g;

       $xmlstring =~ s/<br.+\/>//g;

       $xmlstring =~ s/<\/div>//g;

       $xmlstring =~ s/<\/a>//g;

       $xmlstring =~ s/<a >\n//g;

       $xmlstring =~ s/<img >//g;

       $xmlstring =~ s/<img \/>//g;

       $xmlstring =~ s/<div.+>//g;

       $xmlstring =~ s/<title>//g;

       $xmlstring =~ s/<\/title>//g;

       $xmlstring =~ s/<description>//g;

       $xmlstring =~ s/<\/description>//g;
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       $xmlstring =~ s/&lt;.+>//g;

       $xmlstring =~ s/"//g;

       $xmlstring =~ s/,//g;

       $xmlstring =~ s/\r|\n//g;

       $desc[$index] = $xmlstring ;

       $index = $index + 1 ;

    } # foreach find node

Finally, the XML-based title and description data is output in the RSS JSON format 
using a print command. The script then sleeps for 30 seconds, and requests more 
RSS news information to process:

    my $newsitems = $index ;

    $index = 0 ;

    for ($index=0; $index < $newsitems; $index++) {

      print "{\"category\": \"science\","

            . " \"title\": \"" .  $titles[$index] . "\","

            . " \"summary\": \"" .  $desc[$index] . "\""

             . "}\n";

    } # for rss items

  } # success ?

  sleep(30) ;

} # while

I have created a second Scala-based stream processing code example called stream5. 
It is similar to the stream4 example, but it now processes the rss item data from the 
stream. A case class is defined next to process the category, title, and summary from 
the XML rss information. An HTML location is defined to store the resulting data 
that comes from the Flume channel:

    case class RSSItem(category : String, title : String, summary : 
String)
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    val now: Long = System.currentTimeMillis

    val hdfsdir = "hdfs://hc2nn:8020/data/spark/flume/rss/"

The rss stream data from the Flume-based event is converted into a string. It is then 
formatted using the case class called RSSItem. If there is event data, it is then written 
to an HDFS directory using the previous hdfsdir path:

        rawDstream.map(record => {

        implicit val formats = DefaultFormats

        read[RSSItem](new String(record.event.getBody().array()))

    })

         .foreachRDD(rdd => {

            if (rdd.count() > 0) {

              rdd.map(item => {

                implicit val formats = DefaultFormats

                write(item)

                  }).saveAsTextFile(hdfsdir+"file_"+now.toString())

            }

    })

Running this code sample, it is possible to see that the Perl rss script is producing 
data, because the Flume script output indicates that 80 events have been accepted 
and received:

2015-07-07 14:14:24,017 (agent-shutdown-hook) [DEBUG - org.apache.
flume.source.ExecSource.stop(ExecSource.java:219)] Exec source with 
command:./news_rss_collector.py stopped. Metrics:SOURCE:source1{src.
events.accepted=80, src.events.received=80, src.append.accepted=0, src.
append-batch.accepted=0, src.open-connection.count=0, src.append-batch.
received=0, src.append.received=0}

The Scala Spark application stream5 has processed 80 events in two batches:

>>>> Received events : 73

>>>> Received events : 7

And the events have been stored on HDFS, under the expected directory, as the 
Hadoop file system ls command shows here:

[hadoop@hc2r1m1 stream]$ hdfs dfs -ls /data/spark/flume/rss/

Found 2 items
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drwxr-xr-x   - hadoop supergroup          0 2015-07-07 14:09 /data/spark/
flume/rss/file_1436234439794

drwxr-xr-x   - hadoop supergroup          0 2015-07-07 14:14 /data/spark/
flume/rss/file_1436235208370

Also, using the Hadoop file system cat command, it is possible to prove that the files 
on HDFS contain RSS feed news-based data as shown here:

[hadoop@hc2r1m1 stream]$  hdfs dfs -cat /data/spark/flume/rss/
file_1436235208370/part-00000 | head -1

{"category":"healthcare","title":"BRIEF-Aetna CEO says has not had 
specific conversations with DOJ on Humana - CNBC","summary":"* Aetna CEO 
Says Has Not Had Specific Conversations With Doj About Humana Acquisition 
- CNBC"}

This Spark stream-based example has used Apache Flume to transmit data from an 
RSS source, through Flume, to HDFS via a Spark consumer. This is a good example, 
but what if you want to publish data to a group of consumers? In the next section, I 
will examine Apache Kafka—a publish subscribe messaging system, and determine 
how it can be used with Spark.

Kafka
Apache Kafka (http://kafka.apache.org/) is a top level open-source project 
in Apache. It is a big data publish/subscribe messaging system that is fast and 
highly scalable. It uses message brokers for data management, and ZooKeeper for 
configuration, so that data can be organized into consumer groups and topics. Data 
in Kafka is split into partitions. In this example, I will demonstrate a receiver-less 
Spark-based Kafka consumer, so that I don't need to worry about configuring Spark 
data partitions when compared to my Kafka data.

In order to demonstrate Kafka-based message production and consumption, I will 
use the Perl RSS script from the last section as a data source. The data passing into 
Kafka and onto Spark will be Reuters RSS news data in the JSON format.

As topic messages are created by message producers, they are then placed in 
partitions in message order sequence. The messages in the partitions are retained for a 
configurable time period. Kafka then stores the offset value for each consumer, which 
is that consumer's position (in terms of message consumption) in that partition.

I am currently using Cloudera's CDH 5.3 Hadoop cluster. In order to install Kafka, I 
need to download a Kafka JAR library file from: http://archive.cloudera.com/
csds/kafka/.

http://kafka.apache.org/
http://archive.cloudera.com/csds/kafka/
http://archive.cloudera.com/csds/kafka/
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Having downloaded the file, and given that I am using CDH cluster manager,  
I then need to copy the file to the /opt/cloudera/csd/ directory on my NameNode 
CentOS server, so that it will be visible to install:

[root@hc2nn csd]# pwd

/opt/cloudera/csd

[root@hc2nn csd]# ls -l KAFKA-1.2.0.jar

-rw-r--r-- 1 hadoop hadoop 5670 Jul 11 14:56 KAFKA-1.2.0.jar

I then need to restart the Cloudera cluster manager server on my NameNode, or 
master server, so that the change will be recognized. This was done as root using the 
service command, which is as follows:

[root@hc2nn hadoop]# service cloudera-scm-server restart

Stopping cloudera-scm-server:                              [  OK  ]

Starting cloudera-scm-server:                              [  OK  ]

Now, the Kafka parcel should be visible within the CDH manager under Hosts 
| Parcels, as shown in the following figure. You can follow the usual download, 
distribution, and activate cycle for the CDH parcel installation:

I have installed Kafka message brokers on each Data Node, or Spark Slave machine 
in my cluster. I then set the Kafka broker ID values for each Kafka broker server, 
giving them a broker.id number of 1 through 4. As Kafka uses ZooKeeper for 
cluster data configuration, I wanted to keep all the Kafka data in a top level node 
called kafka in ZooKeeper. In order to do this, I set the Kafka ZooKeeper root value, 
called zookeeper.chroot, to /kafka. After making these changes, I restarted the 
CDH Kafka servers for the changes to take effect.



Apache Spark Streaming

[ 84 ]

With Kafka installed, I can check the scripts available for testing. The following 
listing shows Kafka-based scripts for message producers and consumers, as well as 
scripts for managing topics, and checking consumer offsets. These scripts will be 
used in this section in order to demonstrate Kafka functionality:

[hadoop@hc2nn ~]$ ls /usr/bin/kafka*

/usr/bin/kafka-console-consumer         /usr/bin/kafka-run-class

/usr/bin/kafka-console-producer         /usr/bin/kafka-topics

/usr/bin/kafka-consumer-offset-checker

In order to run the installed Kafka servers, I need to have the broker server ID's 
(broker.id) values set, else an error will occur. Once Kafka is installed and running, 
I will need to prepare a message producer script. The simple Bash script given next, 
called kafka.bash, defines a comma-separated broker list of hosts and ports. It  
also defines a topic called rss. It then calls the Perl script rss.perl to generate  
the RSS-based data. This data is then piped into the Kafka producer script called 
kafka-console-producer to be sent to Kafka.

[hadoop@hc2r1m1 stream]$ more kafka.bash

#!/bin/bash

BROKER_LIST="hc2r1m1:9092,hc2r1m2:9092,hc2r1m3:9092,hc2r1m4:9092"

TOPIC="rss"

./rss.perl | /usr/bin/kafka-console-producer --broker-list $BROKER_LIST 
--topic $TOPIC

Notice that I have not mentioned Kafka topics at this point. When a topic is created 
in Kafka, the number of partitions can be specified. In the following example, 
the kafka-topics script has been called with the create option. The number of 
partitions have been set to 5, and the data replication factor has been set to 3. The 
ZooKeeper server string has been defined as hc2r1m2-4 with a port number of 2181. 
Also note that the top level ZooKeeper Kafka node has been defined as /kafka in the 
ZooKeeper string:

/usr/bin/kafka-topics \

  --create  \

  --zookeeper hc2r1m2:2181,hc2r1m3:2181,hc2r1m4:2181/kafka \

  --replication-factor 3  \

  --partitions 5  \

  --topic rss
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I have also created a Bash script called kafka_list.bash for use during testing, 
which checks all the Kafka topics that have been created, and also the Kafka 
consumer offsets. It calls the kafka-topics commands with a list option, and a 
ZooKeeper string to get a list of created topics. It then calls the Kafka script called 
kafka-consumer-offset-checker with a ZooKeeper string—the topic name and  
a group name to get a list of consumer offset values. Using this script, I can check 
that my topics are created, and the topic data is being consumed correctly:

[hadoop@hc2r1m1 stream]$ cat kafka_list.bash

#!/bin/bash

ZOOKEEPER="hc2r1m2:2181,hc2r1m3:2181,hc2r1m4:2181/kafka"

TOPIC="rss"

GROUP="group1"

echo ""

echo "================================"

echo " Kafka Topics "

echo "================================"

/usr/bin/kafka-topics --list --zookeeper $ZOOKEEPER

echo ""

echo "================================"

echo " Kafka Offsets "

echo "================================"

/usr/bin/kafka-consumer-offset-checker \

  --group $GROUP \

  --topic $TOPIC \

  --zookeeper $ZOOKEEPER
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Next, I need to create the Apache Spark Scala-based Kafka consumer code. As I said, 
I will create a receiver-less example, so that the Kafka data partitions match in both, 
Kafka and Spark. The example is called stream6. First, the package is defined, and 
the classes are imported for Kafka, spark, context, and streaming. Then, the object 
class called stream6, and the main method are defined. The code looks like this:

package nz.co.semtechsolutions

import kafka.serializer.StringDecoder

import org.apache.spark._

import org.apache.spark.SparkContext._

import org.apache.spark.streaming._

import org.apache.spark.streaming.StreamingContext._

import org.apache.spark.streaming.kafka._

object stream6 {

  def main(args: Array[String]) {

Next, the class parameters (broker's string, group ID, and topic) are checked 
and processed. If the class parameters are incorrect, then an error is printed, and 
execution stops, else the parameter variables are defined:

    if ( args.length < 3 )

    {

      System.err.println("Usage: stream6 <brokers> <groupid> <topics>\n")

      System.err.println("<brokers> = host1:port1,host2:port2\n")

      System.err.println("<groupid> = group1\n")

      System.err.println("<topics>  = topic1,topic2\n")

      System.exit(1)

    }

    val brokers = args(0).trim

    val groupid = args(1).trim

    val topics  = args(2).trim

    println("brokers : " + brokers)

    println("groupid : " + groupid)

    println("topics  : " + topics)
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The Spark context is defined in terms of an application name. Again the Spark URL 
has been left as the default. The streaming context has been created using the Spark 
context. I have left the stream batch interval at 10 seconds, which is the same as the 
last example. However, you can set it using a parameter of your choice:

    val appName = "Stream example 6"

    val conf    = new SparkConf()

    conf.setAppName(appName)

    val sc  = new SparkContext(conf)

    val ssc = new StreamingContext(sc, Seconds(10) )

Next, the broker list and group ID are set up as parameters. These values are then 
used to create a Kafka-based Spark stream called rawDStream:

    val topicsSet = topics.split(",").toSet

    val kafkaParams : Map[String, String] =

        Map("metadata.broker.list" -> brokers,

            "group.id" -> groupid )

    val rawDstream = KafkaUtils.createDirectStream[String, String, 
StringDecoder, StringDecoder](ssc, kafkaParams, topicsSet)

I have again printed the stream event count for debug purposes, so that I know when 
the application is receiving and processing the data:

    rawDstream.count().map(cnt => ">>>>>>>>>>>>>>> Received events : " + 
cnt ).print()

The HDSF location for the Kafka data has been defined as /data/spark/kafka/rss/.  
It has been mapped from the DStream into the variable lines. Using the foreachRDD 
method, a check on the data count is carried out on the lines variable, before saving 
the data into HDFS using the saveAsTextFile method:

    val now: Long = System.currentTimeMillis

    val hdfsdir = "hdfs://hc2nn:8020/data/spark/kafka/rss/"

    val lines = rawDstream.map(record => record._2)

    lines.foreachRDD(rdd => {
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            if (rdd.count() > 0) {

              rdd.saveAsTextFile(hdfsdir+"file_"+now.toString())

            }

    })

Finally, the Scala script closes by starting the stream processing, and setting the 
application class to run until terminated with awaitTermination:

    ssc.start()

    ssc.awaitTermination()

  } // end main

} // end stream6

With all of the scripts explained and the Kafka CDH brokers running, it is time to 
examine the Kafka configuration, which if you remember is maintained by Apache 
ZooKeeper (all of the code samples that have been described so far will be released 
with the book). I will use the zookeeper-client tool, and connect to the zookeeper 
server on the host called hc2r1m2 on the 2181 port. As you can see here, I have 
received a connected message from the client session:

[hadoop@hc2r1m1 stream]$ /usr/bin/zookeeper-client -server hc2r1m2:2181

[zk: hc2r1m2:2181(CONNECTED) 0]

If you remember, I specified the top level ZooKeeper directory for Kafka to be  
/kafka. If I examine this now via a client session, I can see the Kafka ZooKeeper 
structure. I will be interested in brokers (the CDH Kafka broker servers), and 
consumers (the previous Spark Scala code). The ZooKeeper ls commands show  
that the four Kafka servers have registered with ZooKeeper, and are listed by  
their broker.id configuration values one to four:

[zk: hc2r1m2:2181(CONNECTED) 2] ls /kafka

[consumers, config, controller, admin, brokers, controller_epoch]

[zk: hc2r1m2:2181(CONNECTED) 3] ls /kafka/brokers

[topics, ids]

[zk: hc2r1m2:2181(CONNECTED) 4] ls /kafka/brokers/ids

[3, 2, 1, 4]
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I will create the topic that I want to use for this test using the Kafka script kafka-
topics with a create flag. I do this manually, because I can demonstrate the 
definition of the data partitions while I do it. Note that I have set the partitions in 
the Kafka topic rss to five as shown in the following piece of code. Note also that 
the ZooKeeper connection string for the command has a comma-separated list of 
ZooKeeper servers, terminated by the top level ZooKeeper Kafka directory called /
kafka. This means that the command puts the new topic in the proper place:

[hadoop@hc2nn ~]$ /usr/bin/kafka-topics \

>   --create  \

>   --zookeeper hc2r1m2:2181,hc2r1m3:2181,hc2r1m4:2181/kafka \

>   --replication-factor 3  \

>   --partitions 5  \

>   --topic rss

Created topic "rss".

Now, when I use the ZooKeeper client to check the Kafka topic configuration, I can 
see the correct topic name, and the expected number of the partitions:

[zk: hc2r1m2:2181(CONNECTED) 5] ls /kafka/brokers/topics

[rss]

[zk: hc2r1m2:2181(CONNECTED) 6] ls /kafka/brokers/topics/rss

[partitions]

[zk: hc2r1m2:2181(CONNECTED) 7] ls /kafka/brokers/topics/rss/partitions

[3, 2, 1, 0, 4]

This describes the configuration for the Kafka broker servers in ZooKeeper, but what 
about the data consumers? Well, the following listing shows where the data will 
be held. Remember though, at this time, there is no consumer running, so it is not 
represented in ZooKeeper:

[zk: hc2r1m2:2181(CONNECTED) 9]  ls /kafka/consumers

[]

[zk: hc2r1m2:2181(CONNECTED) 10] quit
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In order to start this test, I will run my Kafka data producer, and consumer scripts. 
I will also check the output of the Spark application class and need to check the 
Kafka partition offsets and HDFS to make sure that the data has arrived. This is quite 
complicated, so I will add a diagram here in the following figure to explain the test 
architecture.

The Perl script called rss.perl will be used to provide a data source for a Kafka 
data producer, which will feed data into the CDH Kafka broker servers. The data 
will be stored in ZooKeeper, in the structure that has just been examined, under the 
top level node called /kafka. The Apache Spark Scala-based application will then  
act as a Kafka consumer, and read the data that it will store under HDFS.

rss.perl kafka.bash

(Producer)

brokers 1 - 4

zookeeper

/kafka

brokers consumers

ids topics

Spark stream6

(Receiverless consumer)

HDFS

/data/spark/kafka/rss/

rss

partitions

In order to try and explain the complexity here, I will also examine my method of 
running the Apache Spark class. It will be started via the spark-submit command. 
Remember again that all of these scripts will be released with this book, so that you 
can examine them in your own time. I always use scripts for server test management, 
so that I encapsulate complexity, and command execution is quickly repeatable. The 
script, run_stream.bash, is like many example scripts that have already been used 
in this chapter, and this book. It accepts a class name and the class parameters, and 
runs the class via spark-submit:

[hadoop@hc2r1m1 stream]$ more run_stream.bash

#!/bin/bash

SPARK_HOME=/usr/local/spark

SPARK_BIN=$SPARK_HOME/bin
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SPARK_SBIN=$SPARK_HOME/sbin

JAR_PATH=/home/hadoop/spark/stream/target/scala-2.10/streaming_2.10-
1.0.jar

CLASS_VAL=$1

CLASS_PARAMS="${*:2}"

STREAM_JAR=/usr/local/spark/lib/spark-examples-1.3.1-hadoop2.3.0.jar

cd $SPARK_BIN

./spark-submit \

  --class $CLASS_VAL \

  --master spark://hc2nn.semtech-solutions.co.nz:7077  \

  --executor-memory 100M \

  --total-executor-cores 50 \

  --jars $STREAM_JAR \

  $JAR_PATH \

  $CLASS_PARAMS

I then used a second script, which calls the run_kafka_example.bash script to 
execute the Kafka consumer code in the previous stream6 application class. Note 
that this script sets up the full application class name—the broker server list. It also 
sets up the topic name, called rss, to use for data consumption. Finally, it defines 
a consumer group called group1. Remember that Kafka is a publish/subscribe 
message brokering system. There may be many producers and consumers organized 
by topic, group, and partition:

[hadoop@hc2r1m1 stream]$ more run_kafka_example.bash

#!/bin/bash

RUN_CLASS=nz.co.semtechsolutions.stream6

BROKERS="hc2r1m1:9092,hc2r1m2:9092,hc2r1m3:9092,hc2r1m4:9092"

GROUPID=group1

TOPICS=rss

# run the Apache Spark Kafka example

./run_stream.bash $RUN_CLASS \
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                  $BROKERS \

                  $GROUPID \

                  $TOPICS

So, I will start the Kafka consumer by running the run_kafka_example.bash script, 
which in turn will run the previous stream6 Scala code using spark-submit. While 
monitoring Kafka data consumption using the script called kafka_list.bash, I 
was able to get the kafka-consumer-offset-checker script to list the Kafka-based 
topics, but for some reason, it will not check the correct path (under /kafka in 
ZooKeeper) when checking the offsets as shown here:

[hadoop@hc2r1m1 stream]$ ./kafka_list.bash

================================

 Kafka Topics

================================

__consumer_offsets

rss

================================

 Kafka Offsets

================================

Exiting due to: org.apache.zookeeper.KeeperException$NoNodeException: 
KeeperErrorCode = NoNode for /consumers/group1/offsets/rss/4.

By starting the Kafka producer RSS feed using the script kafka.bash, I can now 
start feeding the rss-based data through Kafka into Spark, and then into HDFS. 
Periodically checking the spark-submit session output it can be seen that events  
are passing through the Spark-based Kafka DStream. The following output comes 
from the stream count in the Scala code, and shows that at that point, 28 events  
were processed:

-------------------------------------------

Time: 1436834440000 ms

-------------------------------------------

>>>>>>>>>>>>>>> Received events : 28

By checking HDFS under the /data/spark/kafka/rss/ directory, via the Hadoop 
file system ls command, it can be seen that there is now data stored on HDFS:

[hadoop@hc2r1m1 stream]$ hdfs dfs -ls /data/spark/kafka/rss

Found 1 items
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drwxr-xr-x   - hadoop supergroup          0 2015-07-14 12:40 /data/spark/
kafka/rss/file_1436833769907

By checking the contents of this directory, it can be seen that an HDFS part data file 
exists, which should contain the RSS-based data from Reuters:

[hadoop@hc2r1m1 stream]$ hdfs dfs -ls /data/spark/kafka/rss/
file_1436833769907

Found 2 items

-rw-r--r--   3 hadoop supergroup          0 2015-07-14 12:40 /data/spark/
kafka/rss/file_1436833769907/_SUCCESS

-rw-r--r--   3 hadoop supergroup       8205 2015-07-14 12:40 /data/spark/
kafka/rss/file_1436833769907/part-00001

Using the Hadoop file system cat command below, I can dump the contents of this 
HDFS-based file to check its contents. I have used the Linux head command to limit 
the data to save space. Clearly this is RSS Reuters science based information that the 
Perl script rss.perl has converted from XML to RSS JSON format.

[hadoop@hc2r1m1 stream]$ hdfs dfs -cat /data/spark/kafka/rss/
file_1436833769907/part-00001 | head -2

{"category": "science", "title": "Bear necessities: low metabolism lets 
pandas survive on bamboo", "summary": "WASHINGTON (Reuters) - Giant 
pandas eat vegetables even though their bodies are better equipped to 
eat meat. So how do these black-and-white bears from the remote misty 
mountains of central China survive on a diet almost exclusively of a low-
nutrient food like bamboo?"}

{"category": "science", "title": "PlanetiQ tests sensor for commercial 
weather satellites", "summary": "CAPE CANAVERAL (Reuters) - PlanetiQ a 
privately owned company is beginning a key test intended to pave the way 
for the first commercial weather satellites."}

This ends this Kafka example. It can be seen that Kafka brokers have been installed 
and configured. It shows that an RSS data-based Kafka producer has fed data 
into the brokers. It has been proved, using the ZooKeeper client, that the Kafka 
architecture, matching the brokers, topics, and partitions has been set up in 
ZooKeeper. Finally, it has been shown using the Apache Spark-based Scala code, in 
the stream6 application, that the Kafka data has been consumed and saved to HDFS.
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Summary
I could have provided streaming examples for systems like Kinesis, as well as 
queuing systems, but there was not room in this chapter. Twitter streaming has  
been examined by example in the checkpointing section.

This chapter has provided practical examples of data recovery via checkpointing in 
Spark streaming. It has also touched on the performance limitations of checkpointing 
and shown that that the checkpointing interval should be set at five to ten times 
the Spark stream batch interval. Checkpointing provides a stream-based recovery 
mechanism in the case of Spark application failure.

This chapter has provided some stream-based worked examples for TCP, File, 
Flume, and Kafka-based Spark stream coding. All the examples here are based on 
Scala, and are compiled with sbt. All of the code will be released with this book. 
Where the example architecture has become over-complicated, I have provided an 
architecture diagram (I'm thinking of the Kafka example here).

It is clear to me that the Apache Spark streaming module contains a rich source of 
functionality that should meet most of your needs, and will grow as future releases 
of Spark are delivered. Remember to check the Apache Spark website (http://
spark.apache.org/), and join the Spark user list via user@spark.apache.org. 
Don't be afraid to ask questions, or make mistakes, as it seems to me that mistakes 
teach more than success.

The next chapter will examine the Spark SQL module, and will provide worked 
examples of SQL, data frames, and accessing Hive among other topics.

http://spark.apache.org/
http://spark.apache.org/
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Apache Spark SQL
In this chapter, I would like to examine Apache Spark SQL, the use of Apache Hive 
with Spark, and DataFrames. DataFrames have been introduced in Spark 1.3, and 
are columnar data storage structures, roughly equivalent to relational database 
tables. The chapters in this book have not been developed in sequence, so the earlier 
chapters might use older versions of Spark than the later ones. I also want to examine 
user-defined functions for Spark SQL. A good place to find information about the 
Spark class API is: spark.apache.org/docs/<version>/api/scala/index.html.

I prefer to use Scala, but the API information is also available in Java and Python 
formats. The <version> value refers to the release of Spark that you will be 
using—1.3.1. This chapter will cover the following topics:

• SQL context
• Importing and saving data
• DataFrames
• Using SQL
• User-defined functions
• Using Hive

Before moving straight into SQL and DataFrames, I will give an overview of the  
SQL context.
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The SQL context
The SQL context is the starting point for working with columnar data in Apache 
Spark. It is created from the Spark context, and provides the means for loading and 
saving data files of different types, using DataFrames, and manipulating columnar 
data with SQL, among other things. It can be used for the following:

• Executing SQL via the SQL method
• Registering user-defined functions via the UDF method
• Caching
• Configuration
• DataFrames
• Data source access
• DDL operations

I am sure that there are other areas, but you get the idea. The examples in this 
chapter are written in Scala, just because I prefer the language, but you can develop 
in Python and Java as well. As shown previously, the SQL context is created from the 
Spark context. Importing the SQL context implicitly allows you to implicitly convert 
RDDs into DataFrames:

val sqlContext = new org.apache.spark.sql.SQLContext(sc)

import sqlContext.implicits._

For instance, using the previous implicits call, allows you to import a CSV file and 
split it by separator characters. It can then convert the RDD that contains the data 
into a data frame using the toDF method.

It is also possible to define a Hive context for the access and manipulation of Apache 
Hive database table data (Hive is the Apache data warehouse that is part of the 
Hadoop eco-system, and it uses HDFS for storage). The Hive context allows a 
superset of SQL functionality when compared to the Spark context. The use of Hive 
with Spark will be covered in a later section in this chapter.

Next, I will examine some of the supported file formats available for importing and 
saving data.
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Importing and saving data
I wanted to add this section about importing and saving data here, even though it 
is not purely about Spark SQL, so I could introduce concepts such as Parquet and 
JSON file formats. This section also allows me to cover how to access and save  
data in loose text; as well as the CSV, Parquet and JSON formats, conveniently,  
in one place.

Processing the Text files
Using the Spark context, it is possible to load a text file into an RDD using the 
textFile method. Also, the wholeTextFile method can read the contents of a 
directory into an RDD. The following examples show how a file, based on the 
local file system (file://), or HDFS (hdfs://) can be read into a Spark RDD. 
These examples show that the data will be partitioned into six parts for increased 
performance. The first two examples are the same, as they both manipulate a file  
on the Linux file system:

sc.textFile("/data/spark/tweets.txt",6)

sc.textFile("file:///data/spark/tweets.txt",6)

sc.textFile("hdfs://server1:4014/data/spark/tweets.txt",6)

Processing the JSON files
JSON is a data interchange format, developed from Javascript. JSON actually stands 
for JavaScript Object Notation. It is a text-based format, and can be expressed, 
for instance, as XML. The following example uses the SQL context method called 
jsonFile to load the HDFS-based JSON data file named device.json. The resulting 
data is created as a data frame:

val dframe = sqlContext.jsonFile("hdfs:///data/spark/device.json")

Data can be saved in JSON format using the data frame toJSON method, as shown by 
the following example. First, the Apache Spark and Spark SQL classes are imported:

import org.apache.spark._

import org.apache.spark.SparkContext._

import org.apache.spark.sql.Row;

import org.apache.spark.sql.types.{StructType,StructField,StringType};
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Next, the object class called sql1 is defined as is a main method with parameters. 
A configuration object is defined that is used to create a spark context. The master 
Spark URL is left as the default value, so Spark expects local mode, the local host, 
and the 7077 port:

object sql1 {

  def main(args: Array[String]) {

    val appName = "sql example 1"

    val conf    = new SparkConf()

    conf.setAppName(appName)

    val sc = new SparkContext(conf)

An SQL context is created from the Spark context, and a raw text file is loaded in 
CSV format called adult.test.data_1x, using the textFile method. A schema 
string is then created, which contains the data column names and the schema  
created from it by splitting the string by its spacing, and using the StructType  
and StructField methods to define each schema column as a string value:

    val sqlContext = new org.apache.spark.sql.SQLContext(sc)

    val rawRdd = sc.textFile("hdfs:///data/spark/sql/adult.test.data_1x")

    val schemaString = "age workclass fnlwgt education " +   
"educational-num  marital-status occupation relationship " +

"race gender capital-gain capital-loss hours-per-week " +

"native-country income"

    val schema =

      StructType(

    schemaString.split(" ").map(fieldName => StructField(fieldName, 
StringType, true)))
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Each data row is then created from the raw CSV data by splitting it with the help of 
a comma as a line divider, and then the elements are added to a Row() structure. A 
data frame is created from the schema, and the row data which is then converted into 
JSON format using the toJSON method. Finally, the data is saved to HDFS using the 
saveAsTextFile method:

    val rowRDD = rawRdd.map(_.split(","))

      .map(p => Row( p(0),p(1),p(2),p(3),p(4),p(5),p(6),p(7),p(8),

                      p(9),p(10),p(11),p(12),p(13),p(14) ))

    val adultDataFrame = sqlContext.createDataFrame(rowRDD, schema)

    val jsonData = adultDataFrame.toJSON

    jsonData.saveAsTextFile("hdfs:///data/spark/sql/adult.json")

  } // end main

} // end sql1

So the resulting data can be seen on HDFS, the Hadoop file system ls command below 
shows that the data resides in the target directory as a success file and two part files.

[hadoop@hc2nn sql]$ hdfs dfs -ls /data/spark/sql/adult.json

Found 3 items

-rw-r--r--   3 hadoop supergroup          0 2015-06-20 17:17 /data/spark/
sql/adult.json/_SUCCESS

-rw-r--r--   3 hadoop supergroup       1731 2015-06-20 17:17 /data/spark/
sql/adult.json/part-00000

-rw-r--r--   3 hadoop supergroup       1724 2015-06-20 17:17 /data/spark/
sql/adult.json/part-00001

Using the Hadoop file system's cat command, it is possible to display the contents of 
the JSON data. I will just show a sample to save space:

[hadoop@hc2nn sql]$ hdfs dfs -cat /data/spark/sql/adult.json/part-00000 | 
more

{"age":"25","workclass":" Private","fnlwgt":" 226802","education":" 
11th","educational-num":"
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 7","marital-status":" Never-married","occupation":" Machine-op-
inspct","relationship":" Own-

child","race":" Black","gender":" Male","capital-gain":" 0","capital-
loss":" 0","hours-per-we

ek":" 40","native-country":" United-States","income":" <=50K"}

Processing the Parquet data is very similar, as I will show next.

Processing the Parquet files
Apache Parquet is another columnar-based data format used by many tools in the 
Hadoop tool set for file I/O, such as Hive, Pig, and Impala. It increases performance 
by using efficient compression and encoding routines.

The Parquet processing example is very similar to the JSON Scala code. The 
DataFrame is created, and then saved in a Parquet format using the save method 
with a type of Parquet:

    val adultDataFrame = sqlContext.createDataFrame(rowRDD, schema)

    adultDataFrame.save("hdfs:///data/spark/sql/adult.parquet","parquet")

  } // end main

} // end sql2

This results in an HDFS-based directory, which contains three Parquet-based files: a 
common Metadata file, a Metadata file, and a temporary file:

[hadoop@hc2nn sql]$ hdfs dfs -ls /data/spark/sql/adult.parquet

Found 3 items

-rw-r--r--   3 hadoop supergroup       1412 2015-06-21 13:17 /data/spark/
sql/adult.parquet/_common_metadata

-rw-r--r--   3 hadoop supergroup       1412 2015-06-21 13:17 /data/spark/
sql/adult.parquet/_metadata

drwxr-xr-x   - hadoop supergroup          0 2015-06-21 13:17 /data/spark/
sql/adult.parquet/_temporary

Listing the contents of the metadata file, using the Hadoop file system's cat 
command, gives an idea of the data format. However the Parquet header is binary, 
and so, it does not display with more and cat:

[hadoop@hc2nn sql]$ hdfs dfs -cat /data/spark/sql/adult.parquet/_metadata 
| more

s%
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ct","fields":[{"name":"age","type":"string","nullable":true,"metadata":{}
},{"name":"workclass

","type":"string","nullable":true,"metadata":{}},{"name":"fnlwgt","type":
"string","nullable":

true,"metadata":{}},

For more information about possible Spark and SQL context methods, check the 
contents of the classes called org.apache.spark.SparkContext, and org.apache.
spark.sql.SQLContext, using the Apache Spark API path here for the specific 
<version> of Spark that you are interested in:

spark.apache.org/docs/<version>/api/scala/index.html

In the next section, I will examine Apache Spark DataFrames, introduced in Spark 1.3.

DataFrames
I have already mentioned that a DataFrame is based on a columnar format. 
Temporary tables can be created from it, but I will expand on this in the next section. 
There are many methods available to the data frame that allow data manipulation, 
and processing. I have based the Scala code used here, on the code in the last section, 
so I will just show you the working lines and the output. It is possible to display a 
data frame schema as shown here:

adultDataFrame.printSchema()

root

 |-- age: string (nullable = true)

 |-- workclass: string (nullable = true)

 |-- fnlwgt: string (nullable = true)

 |-- education: string (nullable = true)

 |-- educational-num: string (nullable = true)

 |-- marital-status: string (nullable = true)

 |-- occupation: string (nullable = true)

 |-- relationship: string (nullable = true)

 |-- race: string (nullable = true)

 |-- gender: string (nullable = true)

 |-- capital-gain: string (nullable = true)

 |-- capital-loss: string (nullable = true)

 |-- hours-per-week: string (nullable = true)

 |-- native-country: string (nullable = true)

 |-- income: string (nullable = true)
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It is possible to use the select method to filter columns from the data. I have limited 
the output here, in terms of rows, but you get the idea:

adultDataFrame.select("workclass","age","education","income").show()

workclass         age education     income

 Private          25   11th          <=50K

 Private          38   HS-grad       <=50K

 Local-gov        28   Assoc-acdm    >50K

 Private          44   Some-college  >50K

 none             18   Some-college  <=50K

 Private          34   10th          <=50K

 none             29   HS-grad       <=50K

 Self-emp-not-inc 63   Prof-school   >50K

 Private          24   Some-college  <=50K

 Private          55   7th-8th       <=50K

It is possible to filter the data returned from the DataFrame using the filter 
method. Here, I have added the occupation column to the output, and filtered on  
the worker age:

    adultDataFrame

      .select("workclass","age","education","occupation","income")

      .filter( adultDataFrame("age") > 30 )

      .show()

workclass         age education     occupation         income

 Private          38   HS-grad       Farming-fishing    <=50K

 Private          44   Some-college  Machine-op-inspct  >50K

 Private          34   10th          Other-service      <=50K

 Self-emp-not-inc 63   Prof-school   Prof-specialty     >50K

 Private          55   7th-8th       Craft-repair       <=50K

There is also a group by method for determining volume counts within a data set. As 
this is an income-based dataset, I think that volumes within the wage brackets would 
be interesting. I have also used a bigger dataset to give more meaningful results:

    adultDataFrame

      .groupBy("income")

      .count()
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      .show()

income count

 <=50K 24720

 >50K  7841

This is interesting, but what if I want to compare income brackets with occupation, 
and sort the results for a better understanding? The following example shows how 
this can be done, and gives the example data volumes. It shows that there is a high 
volume of managerial roles compared to other occupations. This example also sorts 
the output by the occupation column:

    adultDataFrame

      .groupBy("income","occupation")

      .count()

      .sort("occupation")

      .show()

income occupation         count

 >50K   Adm-clerical      507

 <=50K  Adm-clerical      3263

 <=50K  Armed-Forces      8

 >50K   Armed-Forces      1

 <=50K  Craft-repair      3170

 >50K   Craft-repair      929

 <=50K  Exec-managerial   2098

 >50K   Exec-managerial   1968

 <=50K  Farming-fishing   879

 >50K   Farming-fishing   115

 <=50K  Handlers-cleaners 1284

 >50K   Handlers-cleaners 86

 >50K   Machine-op-inspct 250

 <=50K  Machine-op-inspct 1752

 >50K   Other-service     137

 <=50K  Other-service     3158

 >50K   Priv-house-serv   1

 <=50K  Priv-house-serv   148

 >50K   Prof-specialty    1859

 <=50K  Prof-specialty    2281
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So, SQL-like actions can be carried out against DataFrames, including select, 
filter, sort group by, and print. The next section shows how tables can be created 
from the DataFrames, and how the SQL-based actions are carried out against them.

Using SQL
After using the previous Scala example to create a data frame, from a CSV based-data 
input file on HDFS, I can now define a temporary table, based on the data frame, and 
run SQL against it. The following example shows the temporary table called adult 
being defined, and a row count being created using COUNT(*):

    adultDataFrame.registerTempTable("adult")

    val resRDD = sqlContext.sql("SELECT COUNT(*) FROM adult")

    resRDD.map(t => "Count - " + t(0)).collect().foreach(println)

This gives a row count of over 32,000 rows:

Count – 32561

It is also possible to limit the volume of the data selected from the table using the 
LIMIT SQL option, which is shown in the following example. The first 10 rows have 
been selected from the data, this is useful if I just want to check data types and quality:

    val resRDD = sqlContext.sql("SELECT * FROM adult LIMIT 10")

    resRDD.map(t => t(0)  + " " + t(1)  + " " + t(2)  + " " + t(3)  + " " 
+

                    t(4)  + " " + t(5)  + " " + t(6)  + " " + t(7)  + " " 
+

                    t(8)  + " " + t(9)  + " " + t(10) + " " + t(11) + " " 
+

                    t(12) + " " + t(13) + " " + t(14)

              )

      .collect().foreach(println)

A sample of the data looks like the following:

50  Private  283676  Some-college  10  Married-civ-spouse  Craft-repair  
Husband  White  Male  0  0  40  United-States  >50K
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When the schema for this data was created in the Scala-based data frame example in 
the last section, all the columns were created as strings. However, if I want to filter 
the data in SQL using WHERE clauses, it would be useful to have proper data types. 
For instance, if an age column stores integer values, it should be stored as an integer 
so that I can execute numeric comparisons against it. I have changed my Scala code 
to include all the possible types:

import org.apache.spark.sql.types._

I have also now defined my schema using different types, to better match the data, 
and I have defined the row data in terms of the actual data types, converting raw 
data string values into integer values, where necessary:

    val schema =

      StructType(

        StructField("age",                IntegerType, false) ::

        StructField("workclass",          StringType,  false) ::

        StructField("fnlwgt",             IntegerType, false) ::

        StructField("education",          StringType,  false) ::

        StructField("educational-num",    IntegerType, false) ::

        StructField("marital-status",     StringType,  false) ::

        StructField("occupation",         StringType,  false) ::

        StructField("relationship",       StringType,  false) ::

        StructField("race",               StringType,  false) ::

        StructField("gender",             StringType,  false) ::

        StructField("capital-gain",       IntegerType, false) ::

        StructField("capital-loss",       IntegerType, false) ::

        StructField("hours-per-week",     IntegerType, false) ::

        StructField("native-country",     StringType,  false) ::

        StructField("income",             StringType,  false) ::

        Nil)

    val rowRDD = rawRdd.map(_.split(","))

      .map(p => Row( p(0).trim.toInt,p(1),p(2).trim.toInt,p(3),

                     p(4).trim.toInt,p(5),p(6),p(7),p(8),

                     p(9),p(10).trim.toInt,p(11).trim.toInt,

                     p(12).trim.toInt,p(13),p(14) ))



Apache Spark SQL

[ 106 ]

The SQL can now use numeric filters in the WHERE clause correctly. If the age column 
were a string, this would not work. You can now see that the data has been filtered to 
give age values below 60 years:

    val resRDD = sqlContext.sql("SELECT COUNT(*) FROM adult WHERE age < 
60")

    resRDD.map(t => "Count - " + t(0)).collect().foreach(println)

This gives a row count of around 30,000 rows:

Count – 29917

It is possible to use Boolean logic in the WHERE-based filter clauses. The following 
example specifies an age range for the data. Note that I have used variables to 
describe the select and filter components of the SQL statement. This allows me  
to break down the statement into different parts as they become larger:

    val selectClause = "SELECT COUNT(*) FROM adult "

    val filterClause = "WHERE age > 25 AND age < 60"

    val resRDD = sqlContext.sql( selectClause + filterClause )

    resRDD.map(t => "Count - " + t(0)).collect().foreach(println)

Giving a data count of around 23,000 rows:

Count – 23506

I can create compound filter clauses using the Boolean terms, such as AND, OR, as well 
as parentheses:

    val selectClause = "SELECT COUNT(*) FROM adult "

    val filterClause =

   "WHERE ( age > 15 AND age < 25 ) OR ( age > 30 AND age < 45 ) "

    val resRDD = sqlContext.sql( selectClause + filterClause )

    resRDD.map(t => "Count - " + t(0)).collect().foreach(println)

This gives me a row count of 17,000 rows, and represents a count of two age ranges 
in the data:

Count – 17198



Chapter 4

[ 107 ]

It is also possible to use subqueries in Apache Spark SQL. You can see in the 
following example that I have created a subquery called t1 by selecting three 
columns; age, education, and occupation from the table adult. I have then used 
the table called t1 to create a row count. I have also added a filter clause acting on 
the age column from the table t1. Notice also that I have added group by and order 
by clauses, even though they are empty currently, to my SQL:

    val selectClause = "SELECT COUNT(*) FROM "

    val tableClause = " ( SELECT age,education,occupation from adult) t1 
"

    val filterClause = "WHERE ( t1.age > 25 ) "

    val groupClause = ""

    val orderClause = ""

    val resRDD = sqlContext.sql( selectClause + tableClause +

                                 filterClause +

                                 groupClause + orderClause

                               )

    resRDD.map(t => "Count - " + t(0)).collect().foreach(println)

In order to examine the table joins, I have created a version of the adult CSV data 
file called adult.train.data2, which only differs from the original by the fact that 
it has an added first column called idx, which is a unique index. The Hadoop file 
system's cat command here shows a sample of the data. The output from the file has 
been limited using the Linux head command:

[hadoop@hc2nn sql]$ hdfs dfs -cat /data/spark/sql/adult.train.data2 | 
head -2

1,39, State-gov, 77516, Bachelors, 13, Never-married, Adm-clerical, Not-
in-family, White, Male, 2174, 0, 40, United-States, <=50K

2,50, Self-emp-not-inc, 83311, Bachelors, 13, Married-civ-spouse, Exec-
managerial, Husband, White, Male, 0, 0, 13, United-States, <=50K

The schema has now been redefined to have an integer-based first column called idx 
for an index, as shown here:

    val schema =

      StructType(

        StructField("idx",                IntegerType, false) ::

        StructField("age",                IntegerType, false) ::
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        StructField("workclass",          StringType,  false) ::

        StructField("fnlwgt",             IntegerType, false) ::

        StructField("education",          StringType,  false) ::

        StructField("educational-num",    IntegerType, false) ::

        StructField("marital-status",     StringType,  false) ::

        StructField("occupation",         StringType,  false) ::

        StructField("relationship",       StringType,  false) ::

        StructField("race",               StringType,  false) ::

        StructField("gender",             StringType,  false) ::

        StructField("capital-gain",       IntegerType, false) ::

        StructField("capital-loss",       IntegerType, false) ::

        StructField("hours-per-week",     IntegerType, false) ::

        StructField("native-country",     StringType,  false) ::

        StructField("income",             StringType,  false) ::

        Nil)

And the raw row RDD in the Scala example now processes the new initial column, 
and converts the string value into an integer:

    val rowRDD = rawRdd.map(_.split(","))

      .map(p => Row( p(0).trim.toInt,

                     p(1).trim.toInt,

                     p(2),

                     p(3).trim.toInt,

                     p(4),

                     p(5).trim.toInt,

                     p(6),

                     p(7),

                     p(8),

                     p(9),

                     p(10),

                     p(11).trim.toInt,

                     p(12).trim.toInt,

                     p(13).trim.toInt,

                     p(14),

                     p(15)

                   ))

    val adultDataFrame = sqlContext.createDataFrame(rowRDD, schema)
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We have looked at subqueries. Now, I would like to consider table joins. The next 
example will use the index that was just created. It uses it to join two derived tables. 
The example is somewhat contrived, given that it joins two data sets from the same 
underlying table, but you get the idea. Two derived tables are created as subqueries, 
and are joined at a common index column.

The SQL for a table join now looks like this. Two derived tables have been created 
from the temporary table adult called t1 and t2 as subqueries. The new row index 
column called idx has been used to join the data in tables t1 and t2. The major 
SELECT statement outputs all seven columns from the compound data set. I have 
added a LIMIT clause to minimize the data output:

 val selectClause = "SELECT t1.idx,age,education,occupation,workclass,rac
e,gender FROM "

 val tableClause1 = " ( SELECT idx,age,education,occupation FROM adult) 
t1 JOIN "

 val tableClause2 = " ( SELECT idx,workclass,race,gender FROM adult) t2 "

 val joinClause = " ON (t1.idx=t2.idx) "

 val limitClause = " LIMIT 10"

 val resRDD = sqlContext.sql( selectClause +

                              tableClause1 + tableClause2 +

                              joinClause   + limitClause

                            )

    resRDD.map(t => t(0) + " " + t(1) + " " + t(2) + " " +

                    t(3) + " " + t(4) + " " + t(5) + " " + t(6)

              )

              .collect().foreach(println)

Note that in the major SELECT statement, I have to define where the index column 
comes from, so I use t1.idx. All the other columns are unique to the t1 and t2 
datasets, so I don't need to use an alias to refer to them (that is, t1.age). So, the data 
that is output now looks like the following:

33 45  Bachelors  Exec-managerial  Private  White  Male

233 25  Some-college  Adm-clerical  Private  White  Male

433 40  Bachelors  Prof-specialty  Self-emp-not-inc  White  Female

633 43  Some-college  Craft-repair  Private  White  Male

833 26  Some-college  Handlers-cleaners  Private  White  Male

1033 27  Some-college  Sales  Private  White  Male
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1233 27  Bachelors  Adm-clerical  Private  White  Female

1433 32  Assoc-voc  Sales  Private  White  Male

1633 40  Assoc-acdm  Adm-clerical  State-gov  White  Male

1833 46  Some-college  Prof-specialty  Local-gov  White  Male

This gives some idea of the SQL-based functionality within Apache Spark, but what 
if I find that the method that I need is not available? Perhaps, I need a new function. 
This is where the user-defined functions (UDFs) are useful. I will cover them in the 
next section.

User-defined functions
In order to create some user-defined functions in Scala, I need to examine my data in 
the previous adult dataset. I plan to create a UDF that will enumerate the education 
column, so that I can convert the column into an integer value. This will be useful 
if I need to use the data for machine learning, and so create a LabelPoint structure. 
The vector used, which represents each record, will need to be numeric. I will first 
determine what kind of unique education values exist, then I will create a function to 
enumerate them, and finally use it in SQL.

I have created some Scala code to display a sorted list of the education values. The 
DISTINCT keyword ensures that there is only one instance of each value. I have 
selected the data as a subtable, using an alias called edu_dist for the data column  
to ensure that the ORDER BY clause works:

    val selectClause = "SELECT t1.edu_dist FROM "

    val tableClause  = " ( SELECT DISTINCT education AS edu_dist FROM 
adult ) t1 "

    val orderClause  = " ORDER BY t1.edu_dist "

    val resRDD = sqlContext.sql( selectClause + tableClause  + 
orderClause )

    resRDD.map(t => t(0)).collect().foreach(println)

The data looks like the following. I have removed some values to save space, but you 
get the idea:

 10th

 11th

 12th
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 1st-4th

 ………..

 Preschool

 Prof-school

 Some-college

I have defined a method in Scala to accept the string-based education value, and 
return an enumerated integer value that represents it. If no value is recognized, then 
a special value called 9999 is returned:

  def enumEdu( education:String ) : Int =

  {

    var enumval = 9999

         if ( education == "10th" )         { enumval = 0 }

    else if ( education == "11th" )         { enumval = 1 }

    else if ( education == "12th" )         { enumval = 2 }

    else if ( education == "1st-4th" )      { enumval = 3 }

    else if ( education == "5th-6th" )      { enumval = 4 }

    else if ( education == "7th-8th" )      { enumval = 5 }

    else if ( education == "9th" )          { enumval = 6 }

    else if ( education == "Assoc-acdm" )   { enumval = 7 }

    else if ( education == "Assoc-voc" )    { enumval = 8 }

    else if ( education == "Bachelors" )    { enumval = 9 }

    else if ( education == "Doctorate" )    { enumval = 10 }

    else if ( education == "HS-grad" )      { enumval = 11 }

    else if ( education == "Masters" )      { enumval = 12 }

    else if ( education == "Preschool" )    { enumval = 13 }

    else if ( education == "Prof-school" )  { enumval = 14 }

    else if ( education == "Some-college" ) { enumval = 15 }

    return enumval

  }

I can now register this function using the SQL context in Scala, so that it can be used 
in an SQL statement:

    sqlContext.udf.register( "enumEdu", enumEdu _ )



Apache Spark SQL

[ 112 ]

The SQL, and the Scala code to enumerate the data then look like this. The newly 
registered function called enumEdu is used in the SELECT statement. It takes the 
education type as a parameter, and returns the integer enumeration. The column  
that this value forms is aliased to the name idx:

    val selectClause = "SELECT enumEdu(t1.edu_dist) as idx,t1.edu_dist 
FROM "

    val tableClause  = " ( SELECT DISTINCT education AS edu_dist FROM 
adult ) t1 "

    val orderClause  = " ORDER BY t1.edu_dist "

    val resRDD = sqlContext.sql( selectClause + tableClause  + 
orderClause )

    resRDD.map(t => t(0) + " " + t(1) ).collect().foreach(println)

The resulting data output, as a list of education values and their enumerations,  
looks like the following:

0  10th

1  11th

2  12th

3  1st-4th

4  5th-6th

5  7th-8th

6  9th

7  Assoc-acdm

8  Assoc-voc

9  Bachelors

10  Doctorate

11  HS-grad

12  Masters

13  Preschool

14  Prof-school

15  Some-college

Another example function called ageBracket takes the adult integer age value, and 
returns an enumerated age bracket:

  def ageBracket( age:Int ) : Int =

  {
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    var bracket = 9999

         if ( age >= 0  && age < 20  ) { bracket = 0 }

    else if ( age >= 20 && age < 40  ) { bracket = 1 }

    else if ( age >= 40 && age < 60  ) { bracket = 2 }

    else if ( age >= 60 && age < 80  ) { bracket = 3 }

    else if ( age >= 80 && age < 100 ) { bracket = 4 }

    else if ( age > 100 )              { bracket = 5 }

    return bracket

  }

Again, the function is registered using the SQL context so that it can be used in an 
SQL statement:

    sqlContext.udf.register( "ageBracket", ageBracket _ )

Then, the Scala-based SQL uses it to select the age, age bracket, and education value 
from the adult dataset:

    val selectClause = "SELECT age, ageBracket(age) as bracket,education 
FROM "

    val tableClause  = " adult "

    val limitClause  = " LIMIT 10 "

    val resRDD = sqlContext.sql( selectClause + tableClause  +

                                 limitClause )

    resRDD.map(t => t(0) + " " + t(1) + " " + t(2) ).collect().
foreach(println)

The resulting data then looks like this, given that I have used the LIMIT clause to 
limit the output to 10 rows:

39 1  Bachelors

50 2  Bachelors

38 1  HS-grad

53 2  11th

28 1  Bachelors

37 1  Masters

49 2  9th
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52 2  HS-grad

31 1  Masters

42 2  Bachelors

It is also possible to define functions for use in SQL, inline, during the UDF 
registration using the SQL context. The following example defines a function called 
dblAge, which just multiplies the adult's age by two. The registration looks like this. 
It takes integer parameters (age), and returns twice its value:

    sqlContext.udf.register( "dblAge", (a:Int) => 2*a )

And the SQL that uses it, now selects the age, and the double of the age value called 
dblAge(age):

    val selectClause = "SELECT age,dblAge(age) FROM "

    val tableClause  = " adult "

    val limitClause  = " LIMIT 10 "

    val resRDD = sqlContext.sql( selectClause + tableClause  + 
limitClause )

    resRDD.map(t => t(0) + " " + t(1) ).collect().foreach(println)

The two columns of the output data, which now contain the age and its doubled 
value, now look like this:

39 78

50 100

38 76

53 106

28 56

37 74

49 98

52 104

31 62

42 84

So far, DataFrames, SQL, and user-defined functions have been examined, but what if, 
as in my case, you are using a Hadoop stack cluster, and have Apache Hive available? 
The adult table that I have defined so far is a temporary table, but if I access Hive 
using Apache Spark SQL, I can access the static database tables. The next section will 
examine the steps needed to do this.
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Using Hive
If you have a business intelligence-type workload with low latency requirements 
and multiple users, then you might consider using Impala for your database access. 
Apache Spark on Hive is for batch processing and ETL chains. This section will be 
used to show how to connect Spark to Hive, and how to use this configuration. First, 
I will develop an application that uses a local Hive Metastore, and show that it does 
not store and persist table data in Hive itself. I will then set up Apache Spark to 
connect to the Hive Metastore server, and store tables and data within Hive. I will 
start with the local Metastore server.

Local Hive Metastore server
The following example Scala code shows how to create a Hive context, and create a 
Hive-based table using Apache Spark. First, the Spark configuration, context, SQL, 
and Hive classes are imported. Then, an object class called hive_ex1, and the main 
method are defined. The application name is defined, and a Spark configuration 
object is created. The Spark context is then created from the configuration object:

import org.apache.spark.{SparkConf, SparkContext}

import org.apache.spark.sql._

import org.apache.spark.sql.hive.HiveContext

object hive_ex1 {

  def main(args: Array[String]) {

    val appName = "Hive Spark Ex 1"

    val conf    = new SparkConf()

    conf.setAppName(appName)

    val sc = new SparkContext(conf)

Next, I create a new Hive context from the Spark context, and import the Hive 
implicits, and the Hive context SQL. The implicits allow for implicit conversions, 
and the SQL include allows me to run Hive context-based SQL:

    val hiveContext = new HiveContext(sc)

    import hiveContext.implicits._

    import hiveContext.sql
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The next statement creates an empty table called adult2 in Hive. You will recognize 
the schema from the adult data that has already been used in this chapter:

     hiveContext.sql( "    

         CREATE TABLE IF NOT EXISTS adult2

            (

              idx             INT,

              age             INT,

              workclass       STRING,

              fnlwgt          INT,

              education       STRING,

              educationnum    INT,

              maritalstatus   STRING,

              occupation      STRING,

              relationship    STRING,

              race            STRING,

              gender          STRING,

              capitalgain     INT,

              capitalloss     INT,

              nativecountry   STRING,

              income          STRING

            )

    

                     ")

Next, a row count is taken from the table called adult2 via a COUNT(*), and the 
output value is printed:

   val resRDD = hiveContext.sql("SELECT COUNT(*) FROM adult2")

   resRDD.map(t => "Count : " + t(0) ).collect().foreach(println)

As expected, there are no rows in the table.

Count : 0

It is also possible to create Hive-based external tables in Apache Spark Hive. The 
following HDFS file listing shows that the CSV file called adult.train.data2 exists 
in the HDFS directory called /data/spark/hive, and it contains data:

[hadoop@hc2nn hive]$ hdfs dfs -ls /data/spark/hive
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Found 1 items

-rw-r--r--   3 hadoop supergroup    4171350 2015-06-24 15:18 /data/spark/
hive/adult.train.data2

Now, I adjust my Scala-based Hive SQL to create an external table called adult3 (if 
it does not exist), which has the same structure as the previous table. The row format 
in this table-create statement specifies a comma as a row column delimiter, as would 
be expected for CSV data. The location option in this statement specifies the /data/
spark/hive directory on HDFS for data. So, there can be multiple files on HDFS, 
in this location, to populate this table. Each file would need to have the same data 
structure matching this table structure:

    hiveContext.sql("

        CREATE EXTERNAL TABLE IF NOT EXISTS adult3

           (

             idx             INT,

             age             INT,

             workclass       STRING,

             fnlwgt          INT,

             education       STRING,

             educationnum    INT,

             maritalstatus   STRING,

             occupation      STRING,

             relationship    STRING,

             race            STRING,

             gender          STRING,

             capitalgain     INT,

             capitalloss     INT,

             nativecountry   STRING,

             income          STRING

           )

           ROW FORMAT DELIMITED FIELDS TERMINATED BY ','

           LOCATION '/data/spark/hive'

                   ")
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A row count is then taken against the adult3 table, and the count is printed:

    val resRDD = hiveContext.sql("SELECT COUNT(*) FROM adult3")

    resRDD.map(t => "Count : " + t(0) ).collect().foreach(println)

As you can see, the table now contains around 32,000 rows. Since this is an external 
table, the HDFS-based data has not been moved, and the row calculation has been 
derived from the underlying CSV-based data.

Count : 32561

It occurs to me that I want to start stripping dimension data out of the raw CSV-
based data in the external adult3 table. After all, Hive is a data warehouse, so a part 
of a general ETL chain using the raw CSV-based data would strip dimensions and 
objects from the data, and create new tables. If I consider the education dimension, 
and try to determine what unique values exist, then for instance, the SQL would be 
as follows:

    val resRDD = hiveContext.sql("

       SELECT DISTINCT education AS edu FROM adult3

         ORDER BY edu

                   ")

    resRDD.map(t => t(0) ).collect().foreach(println)

And the ordered data matches the values that were derived earlier in this chapter 
using Spark SQL:

 10th

 11th

 12th

 1st-4th

 5th-6th

 7th-8th

 9th

 Assoc-acdm

 Assoc-voc

 Bachelors

 Doctorate
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 HS-grad

 Masters

 Preschool

 Prof-school

 Some-college

This is useful, but what if I want to create dimension values, and then assign integer 
index values to each of the previous education dimension values. For instance, 
10th would be 0, and 11th would be 1. I have set up a dimension CSV file for the 
education dimension on HDFS, as shown here. The contents just contain the list of 
unique values, and an index:

[hadoop@hc2nn hive]$ hdfs dfs -ls /data/spark/dim1/

Found 1 items

-rw-r--r--   3 hadoop supergroup        174 2015-06-25 14:08 /data/spark/
dim1/education.csv

[hadoop@hc2nn hive]$ hdfs dfs -cat /data/spark/dim1/education.csv

1,10th

2,11th

3,12th

Now, I can run some Hive QL in my Apache application to create an education 
dimension table. First, I drop the education table if it already exists, then I create the 
table by parsing the HDFS CSV file:

    hiveContext.sql("  DROP TABLE IF EXISTS education ")

    hiveContext.sql("

      CREATE TABLE IF NOT EXISTS  education

        (

          idx        INT,

          name       STRING

        )

        ROW FORMAT DELIMITED FIELDS TERMINATED BY ','

        LOCATION '/data/spark/dim1/'

                   ")

I can then select the contents of the new education table to ensure that it looks correct.

val resRDD = hiveContext.sql(" SELECT * FROM education ")

resRDD.map( t => t(0)+" "+t(1) ).collect().foreach(println)
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This gives the expected list of indexes and the education dimension values:

1 10th

2 11th

3 12th

………

16 Some-college

So, I have the beginnings of an ETL pipeline. The raw CSV data is being used as 
external tables, and the dimension tables are being created, which could then be 
used to convert the dimensions in the raw data to numeric indexes. I have now 
successfully created a Spark application, which uses a Hive context to connect to a 
Hive Metastore server, which allows me to create and populate tables.

I have the Hadoop stack Cloudera CDH 5.3 installed on my Linux servers. I am 
using it for HDFS access while writing this book, and I also have Hive and Hue 
installed and running (CDH install information can be found at the Cloudera website 
at http://cloudera.com/content/cloudera/en/documentation.html). When 
I check HDFS for the adult3 table, which should have been created under /user/
hive/warehouse, I see the following:

[hadoop@hc2nn hive]$ hdfs dfs -ls /user/hive/warehouse/adult3

ls: `/user/hive/warehouse/adult3': No such file or directory

The Hive-based table does not exist in the expected place for Hive. I can confirm 
this by checking the Hue Metastore manager to see what tables exist in the default 
database. The following figure shows that my default database is currently empty. I 
have added red lines to show that I am currently looking at the default database, and 
that there is no data. Clearly, when I run an Apache Spark-based application, with 
a Hive context, I am connecting to a Hive Metastore server. I know this because the 
log indicates that this is the case and also, my tables created in this way persist when 
Apache Spark is restarted.

http://cloudera.com/content/cloudera/en/documentation.html
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The Hive context within the application that was just run has used a local Hive 
Metastore server, and has stored data to a local location; actually in this case under /
tmp on HDFS. I now want to use the Hive-based Metastore server, so that I can create 
tables and data in Hive directly. The next section will show how this can be done.

A Hive-based Metastore server
I already mentioned that I am using Cloudera's CDH 5.3 Hadoop stack. I have Hive, 
HDFS, Hue, and Zookeeper running. I am using Apache Spark 1.3.1 installed under 
/usr/local/spark, in order to create and run applications (I know that CDH 5.3 is 
released with Spark 1.2, but I wanted to use DataFrames in this instance, which were 
available in Spark 1.3.x.).

The first thing that I need to do to configure Apache Spark to connect to Hive, is to 
drop the Hive configuration file called hive-site.xml into the Spark configuration 
directory on all servers where Spark is installed:

[hadoop@hc2nn bin]# cp /var/run/cloudera-scm-agent/process/1237-hive-
HIVEMETASTORE/hive-site.xml /usr/local/spark/conf

Then, given that I have installed Apache Hive via the CDH Manager to be able to 
use PostgreSQL, I need to install a PostgreSQL connector JAR for Spark, else it won't 
know how to connect to Hive, and errors like this will occur:

15/06/25 16:32:24 WARN DataNucleus.Connection: BoneCP specified but not 
present in CLASSPATH (s)

Caused by: java.lang.RuntimeException: Unable to instantiate org.apache.
hadoop.hive.metastore.

Caused by: java.lang.reflect.InvocationTargetException
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Caused by: javax.jdo.JDOFatalInternalException: Error creating 
transactional connection factor

Caused by: org.datanucleus.exceptions.NucleusException: Attempt to invoke 
the "dbcp-builtin" pnectionPool gave an 

error : The specified datastore driver ("org.postgresql.Driver") was not 
f. Please check your CLASSPATH

specification, and the name of the driver.

Caused by: org.datanucleus.store.rdbms.connectionpool.
DatastoreDriverNotFoundException: The spver

("org.postgresql.Driver") was not found in the CLASSPATH. Please check 
your CLASSPATH specme of the driver.

I have stripped that error message down to just the pertinent parts, otherwise it 
would have been many pages long. I have determined the version of PostgreSQL 
that I have installed, as follows. It appears to be of version 9.0, determined from  
the Cloudera parcel-based jar file:

[root@hc2nn jars]# pwd ; ls postgresql*

/opt/cloudera/parcels/CDH/jars

postgresql-9.0-801.jdbc4.jar

Next, I have used the https://jdbc.postgresql.org/ website to download the 
necessary PostgreSQL connector library. I have determined my Java version to be 1.7, 
as shown here, which affects which version of library to use:

[hadoop@hc2nn spark]$ java -version

java version "1.7.0_75"

OpenJDK Runtime Environment (rhel-2.5.4.0.el6_6-x86_64 u75-b13)

OpenJDK 64-Bit Server VM (build 24.75-b04, mixed mode)

The site says that if you are using Java 1.7 or 1.8, then you should use the JDBC41 
version of the library. So, I have sourced the postgresql-9.4-1201.jdbc41.jar 
file. The next step is to copy this file to the Apache Spark install lib directory, as 
shown here:

[hadoop@hc2nn lib]$ pwd ; ls -l postgresql*

/usr/local/spark/lib

-rw-r--r-- 1 hadoop hadoop 648487 Jun 26 13:20 postgresql-9.4-1201.
jdbc41.jar

https://jdbc.postgresql.org/
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Now, the PostgreSQL library must be added to the Spark CLASSPATH, by adding  
an entry to the file called compute-classpath.sh, in the Spark bin directory,  
as shown here:

[hadoop@hc2nn bin]$ pwd ; tail compute-classpath.sh

/usr/local/spark/bin

# add postgresql connector to classpath

appendToClasspath "${assembly_folder}"/postgresql-9.4-1201.jdbc41.jar

echo "$CLASSPATH"

In my case, I encountered an error regarding Hive versions between CDH 5.3 Hive 
and Apache Spark as shown here. I thought that the versions were so close that I 
should be able to ignore this error:

Caused by: MetaException(message:Hive Schema version 0.13.1aa does not 
match metastore's schema version 0.13.0

Metastore is not upgraded or corrupt)

I decided, in this case, to switch off schema verification in my Spark version of the 
hive-site.xml file. This had to be done in all the Spark-based instances of this file, 
and then Spark restarted. The change is shown here; the value is set to false:

  <property>

    <name>hive.metastore.schema.verification</name>

    <value>false</value>

  </property>

Now, when I run the same set of application-based SQL as the last section, I can 
create objects in the Apache Hive default database. First, I will create the empty table 
called adult2 using the Spark-based Hive context:

    hiveContext.sql( "

        CREATE TABLE IF NOT EXISTS adult2

           (

             idx             INT,

             age             INT,

             workclass       STRING,

             fnlwgt          INT,
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             education       STRING,

             educationnum    INT,

             maritalstatus   STRING,

             occupation      STRING,

             relationship    STRING,

             race            STRING,

             gender          STRING,

             capitalgain     INT,

             capitalloss     INT,

             nativecountry   STRING,

             income          STRING

           )

                    ")

As you can see, when I run the application and check the Hue Metastore browser, 
the table adult2 now exists:

I have shown the table entry previously, and it's structure is obtained by selecting the 
table entry called adult2, in the Hue default database browser:
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Now the external table adult3  Spark based Hive QL can be executed and data access 
confirmed from Hue. In the last section, the necessary Hive QL was as follows:

    hiveContext.sql("

        CREATE EXTERNAL TABLE IF NOT EXISTS adult3

           (

             idx             INT,

             age             INT,

             workclass       STRING,

             fnlwgt          INT,

             education       STRING,

             educationnum    INT,

             maritalstatus   STRING,
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             occupation      STRING,

             relationship    STRING,

             race            STRING,

             gender          STRING,

             capitalgain     INT,

             capitalloss     INT,

             nativecountry   STRING,

             income          STRING

           )

           ROW FORMAT DELIMITED FIELDS TERMINATED BY ','

           LOCATION '/data/spark/hive'

                   ")

As you can now see, the Hive-based table called adult3 has been created in the 
default database by Spark. The following figure is again generated from the Hue 
Metastore browser:

The following Hive QL has been executed from the Hue Hive query editor. It shows 
that the adult3 table is accessible from Hive. I have limited the rows to make the 
image presentable. I am not worried about the data, only the fact that I can access it:
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The last thing that I will mention in this section which will be useful when using 
Hive QL from Spark against Hive, will be user-defined functions or UDF's. As an 
example, I will consider the row_sequence function, which is used in the following 
Scala-based code:

hiveContext.sql("

ADD JAR /opt/cloudera/parcels/CDH-5.3.3-1.cdh5.3.3.p0.5/jars/hive-
contrib-0.13.1-cdh5.3.3.jar

  ")

hiveContext.sql("

CREATE TEMPORARY FUNCTION row_sequence as 'org.apache.hadoop.hive.
contrib.udf.UDFRowSequence';

  ")

     val resRDD = hiveContext.sql("

          SELECT row_sequence(),t1.edu FROM
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            ( SELECT DISTINCT education AS edu FROM adult3 ) t1

          ORDER BY t1.edu

                    ")

Either existing, or your own, JAR-based libraries can be made available to your Spark 
Hive session via the ADD JAR command. Then, the functionality within that library can 
be registered as a temporary function with CREATE TEMPORARY FUNCTION using the 
package-based class name. Then, the new function name can be incorporated in Hive 
QL statements.

This chapter has managed to connect an Apache Spark-based application to Hive, 
and run Hive QL against Hive, so that table and data changes persist in Hive. But 
why is this important? Well, Spark is an in-memory parallel processing system. It is 
an order faster than Hadoop-based Map Reduce in processing speed. Apache Spark 
can now be used as a processing engine, whereas the Hive data warehouse can be 
used for storage. Fast in-memory Spark-based processing speed coupled with big 
data scale structured data warehouse storage available in Hive.

Summary
This chapter started by explaining the Spark SQL context, and file I/O methods.  
It then showed that Spark and HDFS-based data could be manipulated, as both 
DataFrames with SQL-like methods and with Spark SQL by registering temporary 
tables. Next, user-defined functions were introduced to show that the functionality  
of Spark SQL could be extended by creating new functions to suit your needs, 
registering them as UDF's, and then calling them in SQL to process data.

Finally, the Hive context was introduced for use in Apache Spark. Remember that 
the Hive context in Spark offers a super set of the functionality of the SQL context.  
I understand that over time, the SQL context is going to be extended to match the 
Hive Context functionality. Hive QL data processing in Spark using a Hive context 
was shown using both, a local Hive, and a Hive-based Metastore server. I believe 
that the latter configuration is better, as the tables are created, and data changes 
persist in your Hive instance.

In my case, I used Cloudera CDH 5.3, which used Hive 0.13, PostgreSQL, ZooKeeper, 
and Hue. I also used Apache Spark version 1.3.1. The configuration setup that I have 
shown you is purely for this configuration. If you wanted to use MySQL, for instance, 
you would need to research the necessary changes. A good place to start would be the 
user@spark.apache.org mailing list.
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Finally, I would say that Apache Spark Hive context configuration, with Hive-based 
storage, is very useful. It allows you to use Hive as a big data scale data warehouse, 
with Apache Spark for fast in-memory processing. It offers you the ability to 
manipulate your data with not only the Spark-based modules (MLlib, SQL, GraphX, 
and Stream), but also other Hadoop-based tools, making it easier to create ETL chains.

The next chapter will examine the Spark graph processing module, GraphX, it will 
also investigate the Neo4J graph database, and the MazeRunner application.
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Apache Spark GraphX
In this chapter, I want to examine the Apache Spark GraphX module, and graph 
processing in general. I also want to briefly examine graph-based storage by looking 
at the graph database called Neo4j. So, this chapter will cover the following topics:

• GraphX coding
• Mazerunner for Neo4j

The GraphX coding section, written in Scala, will provide a series of graph coding 
examples. The work carried out on the experimental Mazerunner product by Kenny 
Bastani, which I will also examine, ties the two topics together in one practical 
example. It provides an example prototype-based on Docker to replicate data 
between Apache Spark GraphX, and Neo4j storage.

Before writing code in Scala to use the Spark GraphX module, I think it would 
be useful to provide an overview of what a graph actually is in terms of graph 
processing. The following section provides a brief introduction using a couple of 
simple graphs as examples.

Overview
A graph can be considered to be a data structure, which consists of a group of vertices, 
and edges that connect them. The vertices or nodes in the graph can be objects or 
perhaps, people, and the edges are the relationships between them. The edges can 
be directional, meaning that the relationship operates from one node to the next. For 
instance, node A is the father of node B.

In the following diagram, the circles represent the vertices or nodes (A to D), whereas 
the thick lines represent the edges, or relationships between them (E1 to E6). Each 
node, or edge may have properties, and these values are represented by the associated 
grey squares (P1 to P7).



Apache Spark GraphX

[ 132 ]

So, if a graph represented a physical route map for route finding, then the edges 
might represent minor roads or motorways. The nodes would be motorway 
junctions, or road intersections. The node and edge properties might be the road 
type, speed limit, distance, and the cost and grid locations.

There are many types of graph implementation, but some examples are fraud 
modeling, financial currency transaction modeling, social modeling (as in  
friend-to-friend connections on Facebook), map processing, web processing,  
and page ranking.

P4

P3

P2
P1

P7

P6

P5

A

B

C

D

E1
E2

E3

E4

E5

E6

E2 = B      C

The previous diagram shows a generic example of a graph with associated properties. 
It also shows that the edge relationships can be directional, that is, the E2 edge acts 
from node B to node C. However, the following example uses family members, and 
the relationships between them to create a graph. Note that there can be multiple 
edges between two nodes or vertices. For instance, the husband-and-wife relationships 
between Mike and Sarah. Also, it is possible that there could be multiple properties on 
a node or edge.
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Daughter

Sister

Husband

Wife

Son

Mother

Friend

Mother

1
Mike

2
Sarah

3
John

4
Jim

5
Kate

6
Flo

So, in the previous example, the Sister property acts from node 6 Flo, to node 
1, Mike. These are simple graphs to explain the structure of a graph, and the 
element nature. Real graph applications can reach extreme sizes, and require both, 
distributed processing, and storage to enable them to be manipulated. Facebook is 
able to process graphs, containing over 1 trillion edges using Apache Giraph (source: 
Avery Ching-Facebook). Giraph is an Apache Hadoop eco-system tool for graph 
processing, which has historically based its processing on Map Reduce, but now uses 
TinkerPop, which will be introduced in Chapter 6, Graph-based Storage. Although this 
book concentrates on Apache Spark, the number of edges provides a very impressive 
indicator of the size that a graph can reach.

In the next section, I will examine the use of the Apache Spark GraphX module  
using Scala.
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GraphX coding
This section will examine Apache Spark GraphX programming in Scala, using the 
family relationship graph data sample, which was shown in the last section. This data 
will be stored on HDFS, and will be accessed as a list of vertices and edges. Although 
this data set is small, the graphs that you build in this way could be very large. I have 
used HDFS for storage, because if your graph scales to the big data scale, then you will 
need some type of distributed and redundant storage. As this chapter shows by way of 
example, that could be HDFS. Using the Apache Spark SQL module, the storage could 
also be Apache Hive; see Chapter 4, Apache Spark SQL, for details.

Environment
I have used the hadoop Linux account on the server hc2nn to develop the  
Scala-based GraphX code. The structure for SBT compilation follows the same 
pattern as the previous examples, with the code tree existing in a subdirectory 
named graphx, where an sbt configuration file called graph.sbt resides:

[hadoop@hc2nn graphx]$ pwd

/home/hadoop/spark/graphx

[hadoop@hc2nn graphx]$ ls

   src   graph.sbt          project     target

The source code lives, as expected, under a subtree of this level called src/main/
scala, and contains five code samples:

[hadoop@hc2nn scala]$ pwd

/home/hadoop/spark/graphx/src/main/scala

[hadoop@hc2nn scala]$ ls

graph1.scala  graph2.scala  graph3.scala  graph4.scala  graph5.scala

In each graph-based example, the Scala file uses the same code to load data  
from HDFS, and to create a graph; but then, each file provides a different facet of 
GraphX-based graph processing. As a different Spark module is being used in this 
chapter, the sbt configuration file graph.sbt has been changed to support this work:

[hadoop@hc2nn graphx]$ more graph.sbt

name := "Graph X"
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version := "1.0"

scalaVersion := "2.10.4"

libraryDependencies += "org.apache.hadoop" % "hadoop-client" % "2.3.0"

libraryDependencies += "org.apache.spark" %% "spark-core"  % "1.0.0"

libraryDependencies += "org.apache.spark" %% "spark-graphx" % "1.0.0"

// If using CDH, also add Cloudera repo

resolvers += "Cloudera Repository" at https://repository.cloudera.com/
artifactory/cloudera-repos/

The contents of the graph.sbt file are shown previously, via the Linux more 
command. There are only two changes here to note from previous examples—the 
value of name has changed to represent the content. Also, more importantly, the 
Spark GraphX 1.0.0 library has been added as a library dependency.

Two data files have been placed on HDFS, under the /data/spark/graphx/ 
directory. They contain the data that will be used for this section in terms of the 
vertices, and edges that make up a graph. As the Hadoop file system ls command 
shows next, the files are called graph1_edges.cvs and graph1_vertex.csv:

[hadoop@hc2nn scala]$ hdfs dfs -ls /data/spark/graphx

Found 2 items

-rw-r--r--   3 hadoop supergroup        129 2015-03-01 13:52 /data/spark/
graphx/graph1_edges.csv

-rw-r--r--   3 hadoop supergroup         59 2015-03-01 13:52 /data/spark/
graphx/graph1_vertex.csv

The vertex file, shown next, via a Hadoop file system cat command, contains just 
six lines, representing the graph used in the last section. Each vertex represents a 
person, and has a vertex ID number, a name and an age value:

[hadoop@hc2nn scala]$ hdfs dfs -cat /data/spark/graphx/graph1_vertex.csv

1,Mike,48

2,Sarah,45

3,John,25

4,Jim,53

5,Kate,22

6,Flo,52
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The edge file contains a set of directed edge values in the form of source vertex ID, 
destination vertex ID, and relationship. So, record one forms a Sister relationship 
between Flo and Mike:

[hadoop@hc2nn scala]$  hdfs dfs -cat /data/spark/graphx/graph1_edges.csv

6,1,Sister

1,2,Husband

2,1,Wife

5,1,Daughter

5,2,Daughter

3,1,Son

3,2,Son

4,1,Friend

1,5,Father

1,3,Father

2,5,Mother

2,3,Mother

Having explained the sbt environment, and the HDFS-based data, we are now ready 
to examine some of the GraphX code samples. As in the previous examples, the code 
can be compiled, and packaged as follows from the graphx subdirectory. This creates 
a JAR called graph-x_2.10-1.0.jar from which the example applications can  
be run:

[hadoop@hc2nn graphx]$ pwd

/home/hadoop/spark/graphx

[hadoop@hc2nn graphx]$  sbt package

Loading /usr/share/sbt/bin/sbt-launch-lib.bash

[info] Set current project to Graph X (in build file:/home/hadoop/spark/
graphx/)

[info] Compiling 5 Scala sources to /home/hadoop/spark/graphx/target/
scala-2.10/classes...

[info] Packaging /home/hadoop/spark/graphx/target/scala-2.10/graph-
x_2.10-1.0.jar ...

[info] Done packaging.

[success] Total time: 30 s, completed Mar 3, 2015 5:27:10 PM
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Creating a graph
This section will explain the generic Scala code, up to the point of creating a GraphX 
graph, from the HDFS-based data. This will save time, as the same code is reused in 
each example. Once this is explained, I will concentrate on the actual graph-based 
manipulation in each code example:

The generic code starts by importing the Spark context, graphx, and RDD 
functionality for use in the Scala code:

import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.SparkConf

import org.apache.spark.graphx._
import org.apache.spark.rdd.RDD

Then, an application is defined, which extends the App class, and the application 
name changes, for each example, from graph1 to graph5. This application name will 
be used when running the application using spark-submit:

object graph1 extends App
{

The data files are defined in terms of the HDFS server and port, the path that they 
reside under in HDFS and their file names. As already mentioned, there are two data 
files that contain the vertex and edge information:

  val hdfsServer = "hdfs://hc2nn.semtech-solutions.co.nz:8020"
  val hdfsPath   = "/data/spark/graphx/"
  val vertexFile = hdfsServer + hdfsPath + "graph1_vertex.csv"
  val edgeFile   = hdfsServer + hdfsPath + "graph1_edges.csv"

The Spark Master URL is defined, as is the application name, which will appear in 
the Spark user interface when the application runs. A new Spark configuration object 
is created, and the URL and name are assigned to it:

  val sparkMaster = "spark://hc2nn.semtech-solutions.co.nz:7077"
  val appName = "Graph 1"
  val conf = new SparkConf()
  conf.setMaster(sparkMaster)
  conf.setAppName(appName)

A new Spark context is created using the configuration that was just defined:

  val sparkCxt = new SparkContext(conf)
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The vertex information from the HDFS-based file is then loaded into an RDD-based 
structure called vertices using the sparkCxt.textFile method. The data is stored 
as a long VertexId, and strings to represent the person's name and age. The data 
lines are split by commas as this is CSV based-data:

  val vertices: RDD[(VertexId, (String, String))] =
      sparkCxt.textFile(vertexFile).map { line =>
        val fields = line.split(",")
        ( fields(0).toLong, ( fields(1), fields(2) ) )
  }

Similary, the HDFS-based edge data is loaded into an RDD-based data structure 
called edges. The CSV-based data is again split by comma values. The first two data 
values are converted into Long values, as they represent the source and destination 
vertex ID's. The final value, representing the relationship of the edge, is left as a string. 
Note that each record in the RDD structure edges is actually now an Edge record:

  val edges: RDD[Edge[String]] =
      sparkCxt.textFile(edgeFile).map { line =>
        val fields = line.split(",")
        Edge(fields(0).toLong, fields(1).toLong, fields(2))
  }

A default value is defined in case a connection, or a vertex is missing, then the  
graph is constructed from the RDD-based structures—vertices, edges, and the 
default record:

  val default = ("Unknown", "Missing")
  val graph = Graph(vertices, edges, default)

This creates a GraphX-based structure called graph, which can now be used for 
each of the examples. Remember that although these data samples are small, you 
can create extremely large graphs using this approach. Many of these algorithms are 
iterative applications, for instance, PageRank and Triangle Count, and as a result, the 
programs will generate many iterative Spark jobs.

Example 1 – counting
The graph has been loaded, and we know the data volumes in the data files, but 
what about the data content in terms of vertices, and edges in the actual graph itself? 
It is very simple to extract this information by using the vertices, and the edges count 
function as shown here:

  println( "vertices : " + graph.vertices.count )
  println( "edges    : " + graph.edges.count )
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Running the graph1 example, using the example name and the JAR file created 
previously, will provide the count information. The master URL is supplied to 
connect to the Spark cluster, and some default parameters are supplied for the 
executor memory, and the total executor cores:

spark-submit \
  --class graph1 \
  --master spark://hc2nn.semtech-solutions.co.nz:7077  \
  --executor-memory 700M \
  --total-executor-cores 100 \
 /home/hadoop/spark/graphx/target/scala-2.10/graph-x_2.10-1.0.jar

The Spark cluster job called graph1 provides the following output, which is as 
expected and also, it matches the data files:

vertices : 6

edges    : 12

Example 2 – filtering
What happens if we need to create a subgraph from the main graph, and filter by the 
person's age or relationships? The example code from the second example Scala file, 
graph2, shows how this can be done:

  val c1 = graph.vertices.filter { case (id, (name, age)) => age.
toLong > 40 }.count

  val c2 = graph.edges.filter { case Edge(from, to, property)
    => property == "Father" | property == "Mother" }.count

  println( "Vertices count : " + c1 )
  println( "Edges    count : " + c2 )

The two example counts have been created from the main graph. The first filters the 
person-based vertices on the age, only taking those people who are greater than 40 
years old. Notice that the age value, which was stored as a string, has been converted 
into a long for comparison. The previous second example filters the edges on the 
relationship property of Mother or Father. The two count values: c1 and c2 are 
created, and printed as the Spark output shows here:

Vertices count : 4

Edges    count : 4
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Example 3 – PageRank
The PageRank algorithm provides a ranking value for each of the vertices in a graph. 
It makes the assumption that the vertices that are connected to the most edges are the 
most important ones. Search engines use PageRank to provide ordering for the page 
display during a web search:

  val tolerance = 0.0001
  val ranking = graph.pageRank(tolerance).vertices
  val rankByPerson = vertices.join(ranking).map {
    case (id, ( (person,age) , rank )) => (rank, id, person)
  }

The previous example code creates a tolerance value, and calls the graph pageRank 
method using it. The vertices are then ranked into a new value ranking. In order to 
make the ranking more meaningful the ranking values are joined with the original 
vertices RDD. The rankByPerson value then contains the rank, vertex ID, and 
person's name.

The PageRank result, held in rankByPerson, is then printed record by record, using 
a case statement to identify the record contents, and a format statement to print the 
contents. I did this, because I wanted to define the format of the rank value which  
can vary:

  rankByPerson.collect().foreach {
    case (rank, id, person) =>
      println ( f"Rank $rank%1.2f id $id person $person")
  }

The output from the application is then shown here. As expected, Mike and Sarah 
have the highest rank, as they have the most relationships:

Rank 0.15 id 4 person Jim

Rank 0.15 id 6 person Flo

Rank 1.62 id 2 person Sarah

Rank 1.82 id 1 person Mike

Rank 1.13 id 3 person John

Rank 1.13 id 5 person Kate
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Example 4 – triangle counting
The triangle count algorithm provides a vertex-based count of the number of 
triangles, associated with this vertex. For instance, vertex Mike (1) is connected  
to Kate (5), who is connected to Sarah (2); Sarah is connected to Mike (1) and  
so, a triangle is formed. This can be useful for route finding, where minimum, 
triangle-free, spanning tree graphs need to be generated for route planning.

The code to execute a triangle count, and print it, is simple, as shown next.  
The graph triangleCount method is executed for the graph vertices. The result  
is saved in the value tCount, and then printed:

  val tCount = graph.triangleCount().vertices
  println( tCount.collect().mkString("\n") )

The results of the application job show that the vertices called, Flo (4) and Jim (6), 
have no triangles, whereas Mike (1) and Sarah (2) have the most, as expected,  
as they have the most relationships:

(4,0)

(6,0)

(2,4)

(1,4)

(3,2)

(5,2)

Example 5 – connected components
When a large graph is created from the data, it might contain unconnected 
subgraphs, that is, subgraphs that are isolated from each other, and contain no 
bridging or connecting edges between them. This algorithm provides a measure  
of this connectivity. It might be important, depending upon your processing, to 
know that all the vertices are connected.

The Scala code, for this example, calls two graph methods: connectedComponents, and 
stronglyConnectedComponents. The strong method required a maximum iteration 
count, which has been set to 1000. These counts are acting on the graph vertices:

  val iterations = 1000
  val connected  = graph.connectedComponents().vertices
  val connectedS =  
graph.stronglyConnectedComponents(iterations).vertices
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The vertex counts are then joined with the original vertex records, so that the 
connection counts can be associated with the vertex information, such as the  
person's name:

  val connByPerson = vertices.join(connected).map {
    case (id, ( (person,age) , conn )) => (conn, id, person)
  }

  val connByPersonS = vertices.join(connectedS).map {
    case (id, ( (person,age) , conn )) => (conn, id, person)
  }
The results are then output using a case statement, and formatted 
printing:
  connByPerson.collect().foreach {
    case (conn, id, person) =>
      println ( f"Weak $conn  $id $person" )
  }

As expected for the connectedComponents algorithm, the results show that for each 
vertex, there is only one component. This means that all the vertices are the members 
of a single graph, as the graph diagram earlier in the chapter showed:

Weak 1  4 Jim

Weak 1  6 Flo

Weak 1  2 Sarah

Weak 1  1 Mike

Weak 1  3 John

Weak 1  5 Kate

The stronglyConnectedComponents method gives a measure of the connectivity 
in a graph, taking into account the direction of the relationships between them. The 
results for the stronglyConnectedComponents algorithm output is as follows:

  connByPersonS.collect().foreach {
    case (conn, id, person) =>
      println ( f"Strong $conn  $id $person" )
  }

You might notice from the graph that the relationships, Sister and Friend, act from 
vertices Flo (6) and Jim (4), to Mike (1) as the edge and vertex data shows here:

6,1,Sister

4,1,Friend
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1,Mike,48

4,Jim,53

6,Flo,52

So, the strong method output shows that for most vertices, there is only one graph 
component signified by the 1 in the second column. However, vertices 4 and 6 are 
not reachable due to the direction of their relationship, and so they have a vertex ID 
instead of a component ID:

Strong 4  4 Jim

Strong 6  6 Flo

Strong 1  2 Sarah

Strong 1  1 Mike

Strong 1  3 John

Strong 1  5 Kate

Mazerunner for Neo4j
In the previous sections, you have been shown how to write Apache Spark graphx 
code in Scala to process the HDFS-based graph data. You have been able to execute 
the graph-based algorithms, such as PageRank, and triangle counting. However, this 
approach has a limitation. Spark does not have storage, and storing graph-based data 
in the flat files on HDFS does not allow you to manipulate it in its place of storage. 
For instance, if you had data stored in a relational database, you could use SQL to 
interrogate it in place. Databases such as Neo4j are graph databases. This means that 
their storage mechanisms and data access language act on graphs. In this section, 
I want to take a look at the work done on Mazerunner, created as a GraphX Neo4j 
processing prototype by Kenny Bastani.

The following figure describes the Mazerunner architecture. It shows that data in 
Neo4j is exported to HDFS, and processed by GraphX via a notification process. The 
GraphX data updates are then saved back to HDFS as a list of key value updates. 
These changes are then propagated to Neo4j to be stored. The algorithms in this 
prototype architecture are accessed via a Rest based HTTP URL, which will be 
shown later. The point here though, is that algorithms can be run via processing 
in graphx, but the data changes can be checked via Neo4j database cypher 
language queries. Kenny's work and further details can be found at: http://www.
kennybastani.com/2014/11/using-apache-spark-and-neo4j-for-big.html.

http://www.kennybastani.com/2014/11/using-apache-spark-and-neo4j-for-big.html
http://www.kennybastani.com/2014/11/using-apache-spark-and-neo4j-for-big.html
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This section will be dedicated to explaining the Mazerunner architecture, and will 
show, with the help of an example, how it can be used. This architecture provides a 
unique example of GraphX-based processing, coupled with graph-based storage.

2) Notification plus
exported data

Mazerunner Svc
( Scala )

Neo4J

GraphX

Spark

HDFS

3) Graph processing

4) Key Value updates
list

1) Neo4J exports subgraph

5) Neo4J updates

Installing Docker
The process for installing the Mazerunner example code is described via  
https://github.com/kbastani/neo4j-mazerunner.

I have used the 64 bit Linux Centos 6.5 machine hc1r1m1 for the install. The 
Mazerunner example uses the Docker tool, which creates virtual containers with a 
small foot print for running HDFS, Neo4j, and Mazerunner in this example. First,  
I must install Docker. I have done this, as follows, using the Linux root user via yum 
commands. The first command installs the docker-io module (the docker name was 
already used for CentOS 6.5 by another application):

[root@hc1r1m1 bin]# yum -y install docker-io

I needed to enable the public_ol6_latest repository, and install the device-
mapper-event-libs package, as I found that my current lib-device-mapper, which 
I had installed, wasn't exporting the symbol Base that Docker needed. I executed the 
following commands as root:

[root@hc1r1m1 ~]# yum-config-manager --enable public_ol6_latest

[root@hc1r1m1 ~]# yum install device-mapper-event-libs

https://github.com/kbastani/neo4j-mazerunner
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The actual error that I encountered was as follows:

/usr/bin/docker: relocation error: /usr/bin/docker: symbol dm_task_get_
info_with_deferred_remove, version Base not defined in file libdevmapper.
so.1.02 with link time reference

I can then check that Docker will run by checking the Docker version number with 
the following call:

[root@hc1r1m1 ~]# docker version

Client version: 1.4.1

Client API version: 1.16

Go version (client): go1.3.3

Git commit (client): 5bc2ff8/1.4.1

OS/Arch (client): linux/amd64

Server version: 1.4.1

Server API version: 1.16

Go version (server): go1.3.3

Git commit (server): 5bc2ff8/1.4.1

I can start the Linux docker service using the following service command. I can 
also force Docker to start on Linux server startup using the following chkconfig 
command:

[root@hc1r1m1 bin]# service docker start

[root@hc1r1m1 bin]# chkconfig docker on

The three Docker images (HDFS, Mazerunner, and Neo4j) can then be downloaded. 
They are large, so this may take some time:

[root@hc1r1m1 ~]# docker pull sequenceiq/hadoop-docker:2.4.1

Status: Downloaded newer image for sequenceiq/hadoop-docker:2.4.1

[root@hc1r1m1 ~]# docker pull kbastani/docker-neo4j:latest

Status: Downloaded newer image for kbastani/docker-neo4j:latest

[root@hc1r1m1 ~]# docker pull kbastani/neo4j-graph-analytics:latest

Status: Downloaded newer image for kbastani/neo4j-graph-analytics:latest
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Once downloaded, the Docker containers can be started in the order; HDFS, 
Mazerunner, and then Neo4j. The default Neo4j movie database will be loaded  
and the Mazerunner algorithms run using this data. The HDFS container starts  
as follows:

[root@hc1r1m1 ~]# docker run -i -t --name hdfs sequenceiq/hadoop-
docker:2.4.1 /etc/bootstrap.sh –bash

Starting sshd:                                [  OK  ]

Starting namenodes on [26d939395e84]

26d939395e84: starting namenode, logging to /usr/local/hadoop/logs/
hadoop-root-namenode-26d939395e84.out

localhost: starting datanode, logging to /usr/local/hadoop/logs/hadoop-
root-datanode-26d939395e84.out

Starting secondary namenodes [0.0.0.0]

0.0.0.0: starting secondarynamenode, logging to /usr/local/hadoop/logs/
hadoop-root-secondarynamenode-26d939395e84.out

starting yarn daemons

starting resourcemanager, logging to /usr/local/hadoop/logs/yarn--
resourcemanager-26d939395e84.out

localhost: starting nodemanager, logging to /usr/local/hadoop/logs/yarn-
root-nodemanager-26d939395e84.out

The Mazerunner service container starts as follows:

[root@hc1r1m1 ~]# docker run -i -t --name mazerunner --link hdfs:hdfs 
kbastani/neo4j-graph-analytics

The output is long, so I will not include it all here, but you will see no errors. There 
also comes a line, which states that the install is waiting for messages:

[*] Waiting for messages. To exit press CTRL+C

In order to start the Neo4j container, I need the install to create a new Neo4j database 
for me, as this is a first time install. Otherwise on restart, I would just supply the path 
of the database directory. Using the link command, the Neo4j container is linked to 
the HDFS and Mazerunner containers:

[root@hc1r1m1 ~]# docker run -d -P -v /home/hadoop/neo4j/data:/opt/data 
--name graphdb --link mazerunner:mazerunner --link hdfs:hdfs kbastani/
docker-neo4j
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By checking the neo4j/data path, I can now see that a database directory, named 
graph.db has been created:

[root@hc1r1m1 data]# pwd

/home/hadoop/neo4j/data

[root@hc1r1m1 data]# ls

graph.db

I can then use the following docker inspect command, which the container-based 
IP address and the Docker-based Neo4j container is making available. The inspect 
command supplies me with the local IP address that I will need to access the Neo4j 
container. The curl command, along with the port number, which I know from 
Kenny's website, will default to 7474, shows me that the Rest interface is running:

[root@hc1r1m1 data]# docker inspect --format="{{.NetworkSettings.
IPAddress}}" graphdb

172.17.0.5

[root@hc1r1m1 data]# curl  172.17.0.5:7474

{

  "management" : "http://172.17.0.5:7474/db/manage/",

  "data" : "http://172.17.0.5:7474/db/data/"

}

The Neo4j browser
The rest of the work in this section will now be carried out using the Neo4j browser 
URL, which is as follows:

http://172.17.0.5:7474/browser.

This is a local, Docker-based IP address that will be accessible from the hc1r1m1 
server. It will not be visible on the rest of the local intranet without further network 
configuration.



Apache Spark GraphX

[ 148 ]

This will show the default Neo4j browser page. The Movie graph can be installed by 
following the movie link here, selecting the Cypher query, and executing it.

The data can then be interrogated using Cypher queries, which will be examined 
in more depth in the next chapter. The following figures are supplied along with 
their associated Cypher queries, in order to show that the data can be accessed as 
graphs that are displayed visually. The first graph shows a simple Person to Movie 
relationship, with the relationship details displayed on the connecting edges.

The second graph, provided as a visual example of the power of Neo4j, shows a far 
more complex cypher query, and resulting graph. This graph states that it contains 
135 nodes and 180 relationships. These are relatively small numbers in processing 
terms, but it is clear that the graph is becoming complex.
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The following figures show the Mazerunner example algorithms being called via an 
HTTP Rest URL. The call is defined by the algorithm to be called, and the attribute 
that it is going to act upon within the graph:

http://localhost:7474/service/mazerunner/analysis/{algorithm}/
{attribute}.

So for instance, as the next section will show, this generic URL can be used to run  
the PageRank algorithm by setting algorithm=pagerank. The algorithm will operate 
on the follows relationship by setting attribute=FOLLOWS. The next section will 
show how each Mazerunner algorithm can be run along with an example of the 
Cypher output.

The Mazerunner algorithms
This section shows how the Mazerunner example algorithms may be run using 
the Rest based HTTP URL, which was shown in the last section. Many of these 
algorithms have already been examined, and coded in this chapter. Remember 
that the interesting thing occurring in this section is that data starts in Neo4j, it is 
processed on Spark with GraphX, and then is updated back into Neo4j. It looks 
simple, but there are underlying processes doing all of the work. In each example, 
the attribute that the algorithm has added to the graph is interrogated via a Cypher 
query. So, each example isn't so much about the query, but that the data update to 
Neo4j has occurred.
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The PageRank algorithm
The first call shows the PageRank algorithm, and the PageRank attribute being 
added to the movie graph. As before, the PageRank algorithm gives a rank to each 
vertex, depending on how many edge connections it has. In this case, it is using the 
FOLLOWS relationship for processing.

The following image shows a screenshot of the PageRank algorithm result. The text 
at the top of the image (starting with MATCH) shows the cypher query, which proves 
that the PageRank property has been added to the graph.

The closeness centrality algorithm
The closeness algorithm attempts to determine the most important vertices in the 
graph. In this case, the closeness attribute has been added to the graph.
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The following image shows a screenshot of the closeness algorithm result. The text 
at the top of the image (starting with MATCH) shows the Cypher query, which proves 
that the closeness_centrality property has been added to the graph. Note that 
an alias called closeness has been used in this Cypher query, to represent the 
closeness_centrality property, and so the output is more presentable.

The triangle count algorithm
The triangle_count algorithm has been used to count triangles associated with 
vertices. The FOLLOWS relationship has been used, and the triangle_count attribute 
has been added to the graph.

The following image shows a screenshot of the triangle algorithm result. The text 
at the top of the image (starting with MATCH) shows the cypher query, which proves 
that the triangle_count property has been added to the graph. Note that an alias 
called tcount has been used in this cypher query, to represent the triangle_count 
property, and so the output is more presentable.
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The connected components algorithm
The connected components algorithm is a measure of how many actual components 
exist in the graph data. For instance, the data might contain two subgraphs with no 
routes between them. In this case, the connected_components attribute has been 
added to the graph.

The following image shows a screenshot of the connected component algorithm 
result. The text at the top of the image (starting with MATCH) shows the cypher query, 
which proves that the connected_components property has been added to the graph. 
Note that an alias called ccomp has been used in this cypher query, to represent the 
connected_components property, and so the output is more presentable.

The strongly connected components algorithm
The strongly connected components algorithm is very similar to the connected 
components algorithm. Subgraphs are created from the graph data using the 
directional FOLLOWS relationship. Multiple subgraphs are created until all the graph 
components are used. These subgraphs form the strongly connected components.  
As seen here, a strongly_connected_components attribute has been added to  
the graph:
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The following image shows a screenshot of the strongly connected component 
algorithm result. The text at the top of the image (starting with MATCH) shows the 
cypher query, which proves that the strongly_connected_components connected 
component property has been added to the graph. Note that an alias called sccomp has 
been used in this cypher query, to represent the strongly_connected_components 
property, and so the output is more presentable.

Summary
This chapter has shown, with the help of examples, how the Scala-based code can 
be used to call GraphX algorithms in Apache Spark. Scala has been used, because it 
requires less code to develop the examples, which saves time. A Scala-based shell 
can be used, and the code can be compiled into Spark applications. Examples of the 
application compilation and configuration have been supplied using the SBT tool. 
The configuration and the code examples from this chapter will also be available for 
download with the book.

Finally, the Mazerunner example architecture (developed by Kenny Bastani while 
at Neo) for Neo4j and Apache Spark has been introduced. Why is Mazerunner 
important? It provides an example of how a graph-based database can be used for 
graph storage, while Apache Spark is used for graph processing. I am not suggesting 
that Mazerunner be used in a production scenario at this time. Clearly, more work 
needs to be done to make this architecture ready for release. However, graph-based 
storage, when associated with the graph-based processing within a distributed 
environment, offers the option to interrogate the data using a query language such  
as Cypher from Neo4j.

I hope that you have found this chapter useful. The next chapter will delve into 
graph-based storage in more depth. You can now delve into further GraphX coding, 
try to run the examples provided, and try modifying the code, so that you become 
familiar with the development process.
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Graph-based Storage
Processing with Apache Spark and especially GraphX provides the ability to use 
in memory cluster-based, real-time processing for graphs. However, Apache Spark 
does not provide storage; the graph-based data must come from somewhere and 
after processing, probably there will be a need for storage. In this chapter, I will 
examine graph-based storage using the Titan graph database as an example.  
This chapter will cover the following topics:

• An overview of Titan
• An overview of TinkerPop
• Installing Titan
• Using Titan with HBase
• Using Titan with Cassandra
• Using Titan with Spark

The young age of this field of processing means that the storage integration between 
Apache Spark, and the graph-based storage system Titan is not yet mature.

In the previous chapter, the Neo4j Mazerunner architecture was examined, which 
showed how the Spark-based transactions could be replicated to Neo4j. This chapter 
deals with Titan not because of the functionality that it shows today, but due to the 
future promise that it offers for the field of the graph-based storage when used with  
Apache Spark.
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Titan
Titan is a graph database that was developed by Aurelius (http://thinkaurelius.
com/). The application source and binaries can be downloaded from GitHub 
(http://thinkaurelius.github.io/titan/), and this location also contains the 
Titan documentation. Titan has been released as an open source application under  
an Apache 2 license. At the time of writing this book, Aurelius has been acquired  
by DataStax, although Titan releases should go ahead.

Titan offers a number of storage options, but I will concentrate only on two,  
HBase—the Hadoop NoSQL database, and Cassandra—the non-Hadoop NoSQL 
database. Using these underlying storage mechanisms, Titan is able to provide a 
graph-based storage in the big data range.

The TinkerPop3-based Titan release 0.9.0-M2 was released in June 2015, which 
will enable greater integration with Apache Spark (TinkerPop will be explained 
in the next section). It is this release that I will use in this chapter. It is TinkerPop 
that the Titan database now uses for graph manipulation. This Titan release is an 
experimental development release but hopefully, future releases should consolidate 
Titan functionality.

This chapter concentrates on the Titan database rather than an alternative graph 
database, such as Neo4j, because Titan can use Hadoop-based storage. Also, Titan 
offers the future promise of integration with Apache Spark for a big data scale, in 
memory graph-based processing. The following diagram shows the architecture 
being discussed in this chapter. The dotted line shows direct Spark database access, 
whereas the solid lines represent Spark access to the data through Titan classes.

Oracle Berkeley DBHBase

ZooKeeper

HDFS

Apache Spark

Titan

Cassandra

Direct DB Access

http://thinkaurelius.com/
http://thinkaurelius.com/
http://thinkaurelius.github.io/titan/
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The Spark interface doesn't officially exist yet (it is only available in the M2 
development release), but it is just added for reference. Although Titan offers the 
option of using Oracle for storage, it will not be covered in this chapter. I will initially 
examine the Titan to the HBase and Cassandra architectures, and consider the Apache 
Spark integration later. When considering (distributed) HBase, ZooKeeper is required 
as well for integration. Given that I am using an existing CDH5 cluster, HBase and 
ZooKeeper are already installed.

TinkerPop
TinkerPop, currently at version 3 as of July 2015, is an Apache incubator project, and 
can be found at http://tinkerpop.incubator.apache.org/. It enables both graph 
databases ( like Titan ) and graph analytic systems ( like Giraph ) to use it as a sub 
system for graph processing rather than creating their own graph processing modules.

The previous figure (borrowed from the TinkerPop website) shows the TinkerPop 
architecture. The blue layer shows the Core TinkerPop API, which offers the graph 
processing API for graph, vertex, and edge processing. The Vendor API boxes show 
the APIs that the vendors will implement to integrate their systems. The diagram 
shows that there are two possible APIs: one for the OLTP database systems, and 
another for the OLAP analytics systems.

The diagram also shows that the Gremlin language is used to create and manage 
graphs for TinkerPop, and so for Titan. Finally, the Gremlin server sits at the top  
of the architecture, and allows integration to monitoring systems like Ganglia.

http://tinkerpop.incubator.apache.org/
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Installing Titan
As Titan is required throughout this chapter, I will install it now, and show how it 
can be acquired, installed, and configured. I have downloaded the latest prebuilt 
version (0.9.0-M2) of Titan at: s3.thinkaurelius.com/downloads/titan/titan-
0.9.0-M2-hadoop1.zip.

I have downloaded the zipped release to a temporary directory, as shown next. 
Carry out the following steps to ensure that Titan is installed on each node in  
the cluster:

[[hadoop@hc2nn tmp]$ ls -lh titan-0.9.0-M2-hadoop1.zip

-rw-r--r-- 1 hadoop hadoop 153M Jul 22 15:13 titan-0.9.0-M2-hadoop1.zip

Using the Linux unzip command, unpack the zipped Titan release file:

[hadoop@hc2nn tmp]$ unzip titan-0.9.0-M2-hadoop1.zip

[hadoop@hc2nn tmp]$ ls -l

total 155752

drwxr-xr-x 10 hadoop hadoop      4096 Jun  9 00:56 titan-0.9.0-M2-hadoop1

-rw-r--r--  1 hadoop hadoop 159482381 Jul 22 15:13 titan-0.9.0-M2-
hadoop1.zip

Now, use the Linux su (switch user) command to change to the root account,  
and move the install to the /usr/local/ location. Change the file and group 
membership of the install to the hadoop user, and create a symbolic link called  
titan so that the current Titan release can be referred to as the simplified path  
called /usr/local/titan:

[hadoop@hc2nn ~]$ su –

[root@hc2nn ~]# cd /home/hadoop/tmp

[root@hc2nn titan]# mv titan-0.9.0-M2-hadoop1 /usr/local

[root@hc2nn titan]# cd /usr/local

[root@hc2nn local]# chown -R hadoop:hadoop titan-0.9.0-M2-hadoop1

[root@hc2nn local]# ln -s titan-0.9.0-M2-hadoop1 titan

[root@hc2nn local]# ls -ld *titan*

lrwxrwxrwx  1 root   root     19 Mar 13 14:10 titan -> titan-0.9.0-M2-
hadoop1

drwxr-xr-x 10 hadoop hadoop 4096 Feb 14 13:30 titan-0.9.0-M2-hadoop1

Using a Titan Gremlin shell that will be demonstrated later, Titan is now available 
for use. This version of Titan needs Java 8; make sure that you have it installed.

s3.thinkaurelius.com/downloads/titan/titan-0.9.0-M2-hadoop1.zip
s3.thinkaurelius.com/downloads/titan/titan-0.9.0-M2-hadoop1.zip


Chapter 6

[ 159 ]

Titan with HBase
As the previous diagram shows, HBase depends upon ZooKeeper. Given that I 
have a working ZooKeeper quorum on my CDH5 cluster (running on the hc2r1m2, 
hc2r1m3, and hc2r1m4 nodes), I only need to ensure that HBase is installed and 
working on my Hadoop cluster.

The HBase cluster
I will install a distributed version of HBase using the Cloudera CDH cluster 
manager. Using the manager console, it is a simple task to install HBase. The only 
decision required is where to locate the HBase servers on the cluster. The following 
figure shows the View By Host form from the CDH HBase installation. The HBase 
components are shown to the right as Added Roles.

I have chosen to add the HBase region servers (RS) to the hc2r1m2, hc2r1m3, and 
hc2r1m4 nodes. I have installed the HBase master (M), the HBase REST server 
(HBREST), and HBase Thrift server (HBTS) on the hc2r1m1 host.

I have manually installed and configured many Hadoop-based components in the 
past, and I find that this simple manager-based installation and configuration of 
components is both quick and reliable. It saves me time so that I can concentrate  
on other systems, such as Titan.
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Once HBase is installed, and has been started from the CDH manager console, it 
needs to be checked to ensure that it is working. I will do this using the HBase shell 
command shown here:

[hadoop@hc2r1m2 ~]$ hbase shell

Version 0.98.6-cdh5.3.2, rUnknown, Tue Feb 24 12:56:59 PST 2015

hbase(main):001:0>

As you can see from the previous commands, I run the HBase shell as the Linux 
user hadoop. The HBase version 0.98.6 has been installed; this version number will 
become important later when we start using Titan:

hbase(main):001:0> create 'table2', 'cf1'

hbase(main):002:0> put 'table2', 'row1', 'cf1:1', 'value1'

hbase(main):003:0> put 'table2', 'row2', 'cf1:1', 'value2'

I have created a simple table called table2 with a column family of cf1. I have then 
added two rows with two different values. This table has been created from the 
hc2r1m2 node, and will now be checked from an alternate node called hc2r1m4 in 
the HBase cluster:

[hadoop@hc2r1m4 ~]$ hbase shell

hbase(main):001:0> scan 'table2'

ROW                     COLUMN+CELL

 row1                   column=cf1:1, timestamp=1437968514021, 
value=value1

 row2                   column=cf1:1, timestamp=1437968520664, 
value=value2

2 row(s) in 0.3870 seconds

As you can see, the two data rows are visible in table2 from a different host, so 
HBase is installed and working. It is now time to try and create a graph in Titan 
using HBase and the Titan Gremlin shell.

The Gremlin HBase script
I have checked my Java version to make sure that I am on version 8, otherwise  
Titan 0.9.0-M2 will not work:

[hadoop@hc2r1m2 ~]$ java -version

openjdk version "1.8.0_51"



Chapter 6

[ 161 ]

If you do not set your Java version correctly, you will get errors like this, which don't 
seem to be meaningful until you Google them:

Exception in thread "main" java.lang.UnsupportedClassVersionError: org/
apache/tinkerpop/gremlin/groovy/plugin/RemoteAcceptor :

Unsupported major.minor version 52.0

The interactive Titan Gremlin shell can be found within the bin directory of the Titan 
install, as shown here. Once started, it offers a Gremlin prompt:

[hadoop@hc2r1m2 bin]$ pwd

/usr/local/titan/

[hadoop@hc2r1m2 titan]$ bin/gremlin.sh

gremlin>

The following script will be entered using the Gremlin shell. The first section of the 
script defines the configuration in terms of the storage (HBase), the ZooKeeper servers 
used, the ZooKeeper port number, and the HBase table name that is to be used:

hBaseConf = new BaseConfiguration();

hBaseConf.setProperty("storage.backend","hbase");

hBaseConf.setProperty("storage.hostname","hc2r1m2,hc2r1m3,hc2r1m4");

hBaseConf.setProperty("storage.hbase.ext.hbase.zookeeper.property.
clientPort","2181")

hBaseConf.setProperty("storage.hbase.table","titan")

titanGraph = TitanFactory.open(hBaseConf);

The next section defines the generic vertex properties' name and age for the graph  
to be created using the Management System. It then commits the management 
system changes:

manageSys = titanGraph.openManagement();

nameProp = manageSys.makePropertyKey('name').dataType(String.class).
make();

ageProp  = manageSys.makePropertyKey('age').dataType(String.class).
make();

manageSys.buildIndex('nameIdx',Vertex.class).addKey(nameProp).
buildCompositeIndex();

manageSys.buildIndex('ageIdx',Vertex.class).addKey(ageProp).
buildCompositeIndex();

manageSys.commit();
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Now, six vertices are added to the graph. Each one is given a numeric label to 
represent its identity. Each vertex is given an age and name value:

v1=titanGraph.addVertex(label, '1');

v1.property('name', 'Mike');

v1.property('age', '48');

v2=titanGraph.addVertex(label, '2');

v2.property('name', 'Sarah');

v2.property('age', '45');

v3=titanGraph.addVertex(label, '3');

v3.property('name', 'John');

v3.property('age', '25');

v4=titanGraph.addVertex(label, '4');

v4.property('name', 'Jim');

v4.property('age', '53');

v5=titanGraph.addVertex(label, '5');

v5.property('name', 'Kate');

v5.property('age', '22');

v6=titanGraph.addVertex(label, '6');

v6.property('name', 'Flo');

v6.property('age', '52');

Finally, the graph edges are added to join the vertices together. Each edge has a 
relationship value. Once created, the changes are committed to store them to Titan, 
and therefore HBase:

v6.addEdge("Sister", v1)

v1.addEdge("Husband", v2)

v2.addEdge("Wife", v1)

v5.addEdge("Daughter", v1)

v5.addEdge("Daughter", v2)

v3.addEdge("Son", v1)

v3.addEdge("Son", v2)
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v4.addEdge("Friend", v1)

v1.addEdge("Father", v5)

v1.addEdge("Father", v3)

v2.addEdge("Mother", v5)

v2.addEdge("Mother", v3)

titanGraph.tx().commit();

This results in a simple person-based graph, shown in the following figure, which 
was also used in the previous chapter:

Daughter

Sister

Husband

Wife

Son

Mother

Friend

Mother

1
Mike

2
Sarah

3
John

4
Jim

5
Kate

6
Flo

This graph can then be tested in Titan via the Gremlin shell using a similar script 
to the previous one. Just enter the following script at the gremlin> prompt, as 
was shown previously. It uses the same initial six lines to create the titanGraph 
configuration, but it then creates a graph traversal variable g:

hBaseConf = new BaseConfiguration();

hBaseConf.setProperty("storage.backend","hbase");

hBaseConf.setProperty("storage.hostname","hc2r1m2,hc2r1m3,hc2r1m4");
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hBaseConf.setProperty("storage.hbase.ext.hbase.zookeeper.property.
clientPort","2181")

hBaseConf.setProperty("storage.hbase.table","titan")

titanGraph = TitanFactory.open(hBaseConf);

gremlin> g = titanGraph.traversal()

Now, the graph traversal variable can be used to check the graph contents. Using the 
ValueMap option, it is possible to search for the graph nodes called Mike and Flo. 
They have been successfully found here:

gremlin> g.V().has('name','Mike').valueMap();

==>[name:[Mike], age:[48]]

gremlin> g.V().has('name','Flo').valueMap();

==>[name:[Flo], age:[52]]

So, the graph has been created and checked in Titan using the Gremlin shell, but we 
can also check the storage in HBase using the HBase shell, and check the contents of 
the Titan table. The following scan shows that the table exists, and contains 72 rows 
of the data for this small graph:

[hadoop@hc2r1m2 ~]$ hbase shell

hbase(main):002:0> scan 'titan'

72 row(s) in 0.8310 seconds

Now that the graph has been created, and I am confident that it has been stored in 
HBase, I will attempt to access the data using apache Spark. I have already started 
Apache Spark on all the nodes as shown in the previous chapter. This will be a 
direct access from Apache Spark 1.3 to the HBase storage. I won't at this stage be 
attempting to use Titan to interpret the HBase stored graph.

Spark on HBase
In order to access HBase from Spark, I will be using Cloudera's SparkOnHBase 
module, which can be downloaded from https://github.com/cloudera-labs/
SparkOnHBase.

The downloaded file is in a zipped format, and needs to be unzipped. I have done 
this using the Linux unzip command in a temporary directory:

[hadoop@hc2r1m2 tmp]$ ls -l SparkOnHBase-cdh5-0.0.2.zip

https://github.com/cloudera-labs/SparkOnHBase
https://github.com/cloudera-labs/SparkOnHBase
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-rw-r--r-- 1 hadoop hadoop 370439 Jul 27 13:39 SparkOnHBase-cdh5-
0.0.2.zip

[hadoop@hc2r1m2 tmp]$ unzip SparkOnHBase-cdh5-0.0.2.zip

[hadoop@hc2r1m2 tmp]$ ls

SparkOnHBase-cdh5-0.0.2  SparkOnHBase-cdh5-0.0.2.zip

I have then moved into the unpacked module, and used the Maven command mvn to 
build the JAR file:

[hadoop@hc2r1m2 tmp]$ cd SparkOnHBase-cdh5-0.0.2

[hadoop@hc2r1m2 SparkOnHBase-cdh5-0.0.2]$ mvn clean package

[INFO] -----------------------------------------------------------

[INFO] BUILD SUCCESS

[INFO] -----------------------------------------------------------

[INFO] Total time: 13:17 min

[INFO] Finished at: 2015-07-27T14:05:55+12:00

[INFO] Final Memory: 50M/191M

[INFO] -----------------------------------------------------------

Finally, I moved the built component to my development area to keep things tidy, so 
that I could use this module in my Spark HBase code:

[hadoop@hc2r1m2 SparkOnHBase-cdh5-0.0.2]$ cd ..

[hadoop@hc2r1m2 tmp]$ mv SparkOnHBase-cdh5-0.0.2 /home/hadoop/spark

Accessing HBase with Spark
As in previous chapters, I will be using SBT and Scala to compile my Spark-based 
scripts into applications. Then, I will use spark-submit to run these applications on 
the Spark cluster. My SBT configuration file looks like this. It contains the Hadoop, 
Spark, and HBase libraries:

[hadoop@hc2r1m2 titan_hbase]$ pwd

/home/hadoop/spark/titan_hbase

[hadoop@hc2r1m2 titan_hbase]$ more titan.sbt

name := "T i t a n"

version := "1.0"
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scalaVersion := "2.10.4"

libraryDependencies += "org.apache.hadoop" % "hadoop-client" % "2.3.0"

libraryDependencies += "org.apache.spark" %% "spark-core"  % "1.3.1"

libraryDependencies += "com.cloudera.spark" % "hbase"   % "5-0.0.2" from 
"file:///home/hadoop/spark/SparkOnHBase-cdh5-0.0.2/target/SparkHBase.jar"

libraryDependencies += "org.apache.hadoop.hbase" % "client"   % "5-
0.0.2" from "file:///home/hadoop/spark/SparkOnHBase-cdh5-0.0.2/target/
SparkHBase.jar"

resolvers += "Cloudera Repository" at "https://repository.cloudera.com/
artifactory/clouder

a-repos/"

Notice that I am running this application on the hc2r1m2 server, using the Linux 
hadoop account, under the directory /home/hadoop/spark/titan_hbase. I have 
created a Bash shell script called run_titan.bash.hbase, which allows me to run any 
application that is created and compiled under the src/main/scala subdirectory:

[hadoop@hc2r1m2 titan_hbase]$ pwd ; more run_titan.bash.hbase

/home/hadoop/spark/titan_hbase

#!/bin/bash

SPARK_HOME=/usr/local/spark

SPARK_BIN=$SPARK_HOME/bin

SPARK_SBIN=$SPARK_HOME/sbin

JAR_PATH=/home/hadoop/spark/titan_hbase/target/scala-2.10/t-i-t-a-n_2.10-
1.0.jar

CLASS_VAL=$1

CDH_JAR_HOME=/opt/cloudera/parcels/CDH/lib/hbase/

CONN_HOME=/home/hadoop/spark/SparkOnHBase-cdh5-0.0.2/target/

HBASE_JAR1=$CDH_JAR_HOME/hbase-common-0.98.6-cdh5.3.3.jar

HBASE_JAR2=$CONN_HOME/SparkHBase.jar

cd $SPARK_BIN

./spark-submit \

  --jars $HBASE_JAR1 \
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  --jars $HBASE_JAR2 \

  --class $CLASS_VAL \

  --master spark://hc2nn.semtech-solutions.co.nz:7077  \

  --executor-memory 100M \

  --total-executor-cores 50 \

  $JAR_PATH

The Bash script is held within the same titan_hbase directory, and takes a single 
parameter of the application class name. The parameters to the spark-submit call 
are the same as the previous examples. In this case, there is only a single script under 
src/main/scala, called spark3_hbase2.scala:

[hadoop@hc2r1m2 scala]$ pwd

/home/hadoop/spark/titan_hbase/src/main/scala

[hadoop@hc2r1m2 scala]$ ls

spark3_hbase2.scala

The Scala script starts by defining the package name to which the application class 
will belong. It then imports the Spark, Hadoop, and HBase classes:

package nz.co.semtechsolutions

import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.SparkConf

import org.apache.hadoop.hbase._
import org.apache.hadoop.fs.Path
import com.cloudera.spark.hbase.HBaseContext
import org.apache.hadoop.hbase.client.Scan

The application class name is defined as well as the main method. A configuration 
object is then created in terms of the application name, and the Spark URL. Finally, a 
Spark context is created from the configuration:

object spark3_hbase2
{

  def main(args: Array[String]) {

    val sparkMaster = "spark://hc2nn.semtech-solutions.co.nz:7077"
    val appName = "Spark HBase 2"
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    val conf = new SparkConf()

    conf.setMaster(sparkMaster)
    conf.setAppName(appName)

    val sparkCxt = new SparkContext(conf)

Next, an HBase configuration object is created, and a Cloudera CDH hbase-site.
xml file-based resource is added:

    val jobConf = HBaseConfiguration.create()

    val hbasePath="/opt/cloudera/parcels/CDH/etc/hbase/conf.dist/"

    jobConf.addResource(new Path(hbasePath+"hbase-site.xml"))

An HBase context object is created using the Spark context and the HBase 
configuration object. The scan and cache configurations are also defined:

    val hbaseContext = new HBaseContext(sparkCxt, jobConf)

    var scan = new Scan()
    scan.setCaching(100)

Finally, the data from the HBase Titan table is retrieved using the hbaseRDD  
HBase context method, and the scan object. The RDD count is printed, and then  
the script closes:

    var hbaseRdd = hbaseContext.hbaseRDD("titan", scan)

    println( "Rows in Titan hbase table : " + hbaseRdd.count() )

    println( " >>>>> Script Finished <<<<< " )

  } // end main

} // end spark3_hbase2

I am only printing the count of the data retrieved because Titan compresses the data 
in GZ format. So, it would make little sense in trying to manipulate it directly.



Chapter 6

[ 169 ]

Using the run_titan.bash.hbase script, the Spark application called spark3_hbase2 
is run. It outputs an RDD row count of 72, matching the Titan table row count that was 
previously found. This proves that Apache Spark has been able to access the raw Titan 
HBase stored graph data, but Spark has not yet used the Titan libraries to access the 
Titan data as a graph. This will be discussed later. And here is the code:

[hadoop@hc2r1m2 titan_hbase]$ ./run_titan.bash.hbase nz.co.
semtechsolutions.spark3_hbase2

Rows in Titan hbase table : 72

 >>>>> Script Finished <<<<<

Titan with Cassandra
In this section, the Cassandra NoSQL database will be used as a storage mechanism 
for Titan. Although it does not use Hadoop, it is a large-scale, cluster-based database 
in its own right, and can scale to very large cluster sizes. This section will follow the 
same process. As for HBase, a graph will be created, and stored in Cassandra using 
the Titan Gremlin shell. It will then be checked using Gremlin, and the stored data 
will be checked in Cassandra. The raw Titan Cassandra graph-based data will then 
be accessed from Spark. The first step then will be to install Cassandra on each node 
in the cluster.

Installing Cassandra
Create a repo file that will allow the community version of DataStax Cassandra to be 
installed using the Linux yum command. Root access will be required for this, so the 
su command has been used to switch the user to the root. Install Cassandra on all  
the nodes:

[hadoop@hc2nn lib]$ su -

[root@hc2nn ~]# vi /etc/yum.repos.d/datastax.repo

[datastax]

name= DataStax Repo for Apache Cassandra

baseurl=http://rpm.datastax.com/community

enabled=1

gpgcheck=0
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Now, install Cassandra on each node in the cluster using the Linux yum command:

[root@hc2nn ~]# yum -y install dsc20-2.0.13-1 cassandra20-2.0.13-1

Set up the Cassandra configuration under /etc/cassandra/conf by altering the 
cassandra.yaml file:

[root@hc2nn ~]# cd /etc/cassandra/conf   ; vi cassandra.yaml

I have made the following changes to specify my cluster name, the server seed IP 
addresses, the RPC address, and the snitch value. Seed nodes are the nodes that  
the other nodes will try to connect to first. In this case, the NameNode (103), and 
node2 (108) have been used as seeds. The snitch method manages network topology 
and routing:

cluster_name: 'Cluster1'

seeds: "192.168.1.103,192.168.1.108"

listen_address:

rpc_address: 0.0.0.0

endpoint_snitch: GossipingPropertyFileSnitch

Cassandra can now be started on each node as root using the service command:

[root@hc2nn ~]# service cassandra start

Log files can be found under /var/log/cassandra, and the data is stored under /
var/lib/cassandra. The nodetool command can be used on any Cassandra node 
to check the status of the Cassandra cluster:

[root@hc2nn cassandra]# nodetool status

Datacenter: DC1

===============

Status=Up/Down

|/ State=Normal/Leaving/Joining/Moving

--  Address        Load       Tokens  Owns (effective)  Host ID  
                              Rack

UN  192.168.1.105  63.96 KB   256     37.2%             f230c5d7-ff6f-
43e7-821d-c7ae2b5141d3  RAC1

UN  192.168.1.110  45.86 KB   256     39.9%             fc1d80fe-6c2d-
467d-9034-96a1f203c20d  RAC1

UN  192.168.1.109  45.9 KB    256     40.9%             daadf2ee-f8c2-
4177-ae72-683e39fd1ea0  RAC1
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UN  192.168.1.108  50.44 KB   256     40.5%             b9d796c0-5893-
46bc-8e3c-187a524b1f5a  RAC1

UN  192.168.1.103  70.68 KB   256     41.5%             53c2eebd-

a66c-4a65-b026-96e232846243  RAC1

The Cassandra CQL shell command called cqlsh can be used to access the cluster, 
and create objects. The shell is invoked next, and it shows that Cassandra version 
2.0.13 is installed:

[hadoop@hc2nn ~]$ cqlsh

Connected to Cluster1 at localhost:9160.

[cqlsh 4.1.1 | Cassandra 2.0.13 | CQL spec 3.1.1 | Thrift protocol 
19.39.0]

Use HELP for help.

cqlsh>

The Cassandra query language next shows a key space called keyspace1 that is 
being created and used via the CQL shell:

cqlsh> CREATE KEYSPACE keyspace1 WITH REPLICATION = { 'class' : 
'SimpleStrategy', 'replication_factor' : 1 };

cqlsh> USE keyspace1;

cqlsh:keyspace1> SELECT * FROM system.schema_keyspaces;

 keyspace_name | durable_writes | strategy_class                              
| strategy_options

--------------+------+---------------------------------------------+-----
-----------------------

   keyspace1  | True | org.apache.cassandra.locator.SimpleStrategy | 
{"replication_factor":"1"}

      system  | True |  org.apache.cassandra.locator.LocalStrategy |                         
{}

system_traces | True | org.apache.cassandra.locator.SimpleStrategy | 
{"replication_factor":"2"}

Since Cassandra is installed and working, it is now time to create a Titan graph 
using Cassandra for storage. This will be tackled in the next section using the Titan 
Gremlin shell. It will follow the same format as the HBase section previously.
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The Gremlin Cassandra script
As with the previous Gremlin script, this Cassandra version creates the same simple 
graph. The difference with this script is in the configuration. The backend storage 
type is defined as Cassandra, and the hostnames are defined to be the Cassandra 
seed nodes. The key space and the port number are specified and finally, the graph  
is created:

cassConf = new BaseConfiguration();
cassConf.setProperty("storage.backend","cassandra");
cassConf.setProperty("storage.hostname","hc2nn,hc2r1m2");
cassConf.setProperty("storage.port","9160")
cassConf.setProperty("storage.keyspace","titan")
titanGraph = TitanFactory.open(cassConf);

From this point, the script is the same as the previous HBase example, so I will 
not repeat it. This script will be available in the download package as cassandra_
create.bash. The same checks, using the previous configuration, can be carried out 
in the Gremlin shell to check the data. This returns the same results as the previous 
checks, and so proves that the graph has been stored:

gremlin> g = titanGraph.traversal()

gremlin> g.V().has('name','Mike').valueMap();

==>[name:[Mike], age:[48]]

gremlin> g.V().has('name','Flo').valueMap();

==>[name:[Flo], age:[52]]

Using the Cassandra CQL shell, and the Titan keyspace, it can be seen that a number 
of Titan tables have been created in Cassandra:

[hadoop@hc2nn ~]$ cqlsh

cqlsh> use titan;

cqlsh:titan> describe tables;

edgestore        graphindex        system_properties  
       systemlog  txlog

edgestore_lock_  graphindex_lock_  system_properties_lock_  titan_ids
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It can also be seen that the data exists in the edgestore table within Cassandra:

cqlsh:titan> select * from edgestore;

 key                | column1            | value

--------------------+--------------------+-------------------------------
-----------------

 0x0000000000004815 |               0x02 |                                     
0x00011ee0

 0x0000000000004815 |             0x10c0 |                           
0xa0727425536fee1ec0

.......

 0x0000000000001005 |             0x10c8 |                       
0x00800512644c1b149004a0

 0x0000000000001005 | 0x30c9801009800c20 |   0x000101143c01023b0101696e64
65782d706ff30200

This assures me that a Titan graph has been created in the Gremlin shell, and is 
stored in Cassandra. Now, I will try to access the data from Spark.

The Spark Cassandra connector
In order to access Cassandra from Spark, I will download the DataStax Spark 
Cassandra connector and driver libraries. Information and version matching on this 
can be found at http://mvnrepository.com/artifact/com.datastax.spark/.

The version compatibility section of this URL shows the Cassandra connector version 
that should be used with each Cassandra and Spark version. The version table 
shows that the connector version should match the Spark version that is being used. 
The next URL allows the libraries to be sourced at http://mvnrepository.com/
artifact/com.datastax.spark/spark-cassandra-connector_2.10.

By following the previous URL, and selecting a library version, you will see a compile 
dependencies table associated with the library, which indicates all of the other 
dependent libraries, and their versions that you will need. The following libraries are 
those that are needed for use with Spark 1.3.1. If you use the previous URLs, you will 
see which version of the Cassandra connector library to use with each version of Spark. 
You will also see the libraries that the Cassandra connector depends upon. Be careful 
to choose just (and all of) those library versions that are required:

[hadoop@hc2r1m2 titan_cass]$ pwd ; ls *.jar

/home/hadoop/spark/titan_cass

spark-cassandra-connector_2.10-1.3.0-M1.jar

cassandra-driver-core-2.1.5.jar

http://mvnrepository.com/artifact/com.datastax.spark/
http://mvnrepository.com/artifact/com.datastax.spark/spark-cassandra-connector_2.10
http://mvnrepository.com/artifact/com.datastax.spark/spark-cassandra-connector_2.10
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cassandra-thrift-2.1.3.jar

libthrift-0.9.2.jar

cassandra-clientutil-2.1.3.jar

guava-14.0.1.jar

joda-time-2.3.jar

joda-convert-1.2.jar

Accessing Cassandra with Spark
Now that I have the Cassandra connector library and all of it's dependencies in place, 
I can begin to think about the Scala code, required to connect to Cassandra. The first 
thing to do, given that I am using SBT as a development tool, is to set up the SBT 
build configuration file. Mine looks like this:

[hadoop@hc2r1m2 titan_cass]$ pwd ; more titan.sbt

/home/hadoop/spark/titan_cass

name := "Spark Cass"

version := "1.0"

scalaVersion := "2.10.4"

libraryDependencies += "org.apache.hadoop" % "hadoop-client" % "2.3.0"

libraryDependencies += "org.apache.spark" %% "spark-core"  % "1.3.1"

libraryDependencies += "com.datastax.spark" % "spark-cassandra-connector"  
% "1.3.0-M1" fr

om "file:///home/hadoop/spark/titan_cass/spark-cassandra-connector_2.10-
1.3.0-M1.jar"

libraryDependencies += "com.datastax.cassandra" % "cassandra-driver-core"  
% "2.1.5" from

"file:///home/hadoop/spark/titan_cass/cassandra-driver-core-2.1.5.jar"

libraryDependencies += "org.joda"  % "time" % "2.3" from "file:///home/
hadoop/spark/titan_

cass/joda-time-2.3.jar"

libraryDependencies += "org.apache.cassandra" % "thrift" % "2.1.3" from 
"file:///home/hado

op/spark/titan_cass/cassandra-thrift-2.1.3.jar"

libraryDependencies += "com.google.common" % "collect" % "14.0.1" from 
"file:///home/hadoo
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p/spark/titan_cass/guava-14.0.1.jar

resolvers += "Cloudera Repository" at "https://repository.cloudera.com/
artifactory/clouder

a-repos/"

The Scala script for the Cassandra connector example, called spark3_cass.scala, 
now looks like the following code. First, the package name is defined. Then, the 
classes are imported for Spark, and the Cassandra connector. Next, the object 
application class spark3_cass ID is defined, and so is the main method:

package nz.co.semtechsolutions

import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.SparkConf

import com.datastax.spark.connector._

object spark3_cass
{

  def main(args: Array[String]) {

A Spark configuration object is created using a Spark URL and application name. 
The Cassandra connection host is added to the configuration. Then, the Spark context 
is created using the configuration object:

    val sparkMaster = "spark://hc2nn.semtech-solutions.co.nz:7077"
    val appName = "Spark Cass 1"
    val conf = new SparkConf()

    conf.setMaster(sparkMaster)
    conf.setAppName(appName)

    conf.set("spark.cassandra.connection.host", "hc2r1m2")

    val sparkCxt = new SparkContext(conf)

The Cassandra keyspace, and table names that are to be checked are defined. Then, 
the Spark context method called cassandraTable is used to connect to Cassandra, 
and obtain the contents of the edgestore table as an RDD. The size of this RDD is 
then printed, and the script exits. We won't look at this data at this time, because all 
that was needed was to prove that a connection to Cassandra could be made:

    val keySpace =  "titan"
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    val tableName = "edgestore"

    val cassRDD = sparkCxt.cassandraTable( keySpace, tableName )

    println( "Cassandra Table Rows : " + cassRDD.count )

    println( " >>>>> Script Finished <<<<< " )

  } // end main

} // end spark3_cass

As in the previous examples, the Spark submit command has been placed in a Bash 
script called run_titan.bash.cass. This script, shown next, looks similar to many 
others used already. The point to note here is that there is a JARs option, which lists 
all of the JAR files used so that they are available at run time. The order of JAR files 
in this option has been determined to avoid the class exception errors:

[hadoop@hc2r1m2 titan_cass]$ more run_titan.bash

#!/bin/bash

SPARK_HOME=/usr/local/spark

SPARK_BIN=$SPARK_HOME/bin

SPARK_SBIN=$SPARK_HOME/sbin

JAR_PATH=/home/hadoop/spark/titan_cass/target/scala-2.10/spark-cass_2.10-
1.0.jar

CLASS_VAL=$1

CASS_HOME=/home/hadoop/spark/titan_cass/

CASS_JAR1=$CASS_HOME/spark-cassandra-connector_2.10-1.3.0-M1.jar

CASS_JAR2=$CASS_HOME/cassandra-driver-core-2.1.5.jar

CASS_JAR3=$CASS_HOME/cassandra-thrift-2.1.3.jar

CASS_JAR4=$CASS_HOME/libthrift-0.9.2.jar

CASS_JAR5=$CASS_HOME/cassandra-clientutil-2.1.3.jar

CASS_JAR6=$CASS_HOME/guava-14.0.1.jar

CASS_JAR7=$CASS_HOME/joda-time-2.3.jar
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CASS_JAR8=$CASS_HOME/joda-convert-1.2.jar

cd $SPARK_BIN

./spark-submit \

  --jars $CASS_JAR8,$CASS_JAR7,$CASS_JAR5,$CASS_JAR4,$CASS_JAR3,$CASS_
JAR6,$CASS_JAR2,$CASS_JAR1 \

  --class $CLASS_VAL \

  --master spark://hc2nn.semtech-solutions.co.nz:7077  \

  --executor-memory 100M \

  --total-executor-cores 50 \

  $JAR_PATH

This application is invoked using the previous Bash script. It connects to Cassandra, 
selects the data, and returns a Cassandra table data-based count of 218 rows.

[hadoop@hc2r1m2 titan_cass]$ ./run_titan.bash.cass nz.co.
semtechsolutions.spark3_cass

Cassandra Table Rows : 218

 >>>>> Script Finished <<<<<

This proves that the raw Cassandra-based Titan table data can be accessed from 
Apache Spark. However, as in the HBase example, this is raw table-based Titan data, 
and not the data in Titan graph form. The next step will be to use Apache Spark as a 
processing engine for the Titan database. This will be examined in the next section.

Accessing Titan with Spark
So far in this chapter, Titan 0.9.0-M2 has been installed, and the graphs have 
successfully been created using both HBase and Cassandra as backend storage 
options. These graphs have been created using Gremlin-based scripts. In this section, 
a properties file will be used via a Gremlin script to process a Titan-based graph 
using Apache Spark. The same two backend storage options, HBase and Cassandra, 
will be used with Titan.
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The following figure, based on the TinkerPop3 diagram earlier in this chapter, shows 
the architecture used in this section. I have simplified the diagram, but it is basically 
the same as the previous TinkerPop version. I have just added the link to Apache 
Spark via the Graph Computer API. I have also added both HBase and Cassandra 
storage via the Titan vendor API. Of course, a distributed installation of HBase uses 
both Zookeeper for configuration, and HDFS for storage.

Titan uses TinkerPop's Hadoop-Gremlin package for graph processing OLAP 
processes. The link to the documentation section can be found at: http://
s3.thinkaurelius.com/docs/titan/0.9.0-M2/titan-hadoop-tp3.html.

This section will show how the Bash shell, Groovy, and properties files can be used 
to configure, and run a Titan Spark-based job. It will show different methods for 
configuring the job, and it will also show methods for managing logging to enable 
error tracking. Also, different configurations of the property file will be described  
to give access to HBase, Cassandra, and the Linux file system.

Remember that the Titan release 0.9.0-M2, that this chapter is based on, is a 
development release. It is a prototype release, and is not yet ready for production.  
I assume that as the future Titan releases become available, the link between Titan  
and Spark will be more developed and stable. Currently, the work in this section is  
for demonstration purposes only, given the nature of the Titan release.

Gremlin Traversal Language

Gremlin script Properties File

ZooKeeper HDFS

HBase Cassandra

Titan Vendor API

Core API
Graph Computer

In the next section, I will explain the use of Gremlin, and Groovy scripts before moving 
onto connecting Titan to Spark using Cassandra and HBase as storage options.

http://s3.thinkaurelius.com/docs/titan/0.9.0-M2/titan-hadoop-tp3.html
http://s3.thinkaurelius.com/docs/titan/0.9.0-M2/titan-hadoop-tp3.html
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Gremlin and Groovy
The Gremlin shell, which is used to execute Groovy commands against Titan, can be 
used in a number of ways. The first method of use just involves starting a Gremlin 
shell for use as an interactive session. Just execute the following:

cd $TITAN_HOME/bin ; ./ gremlin.sh

This starts the session, and automatically sets up required plug-ins such as 
TinkerPop and Titan (see next). Obviously, the previous TITAN_HOME variable  
is used to indicate that the bin directory in question is located within your Titan  
install (TITAN_HOME) directory:

plugin activated: tinkerpop.server

plugin activated: tinkerpop.utilities

plugin activated: tinkerpop.hadoop

plugin activated: tinkerpop.tinkergraph

plugin activated: aurelius.titan

It then provides you with a Gremlin shell prompt where you can interactively 
execute your shell commands against your Titan database. This shell is useful for 
testing scripts and running ad hoc commands against your Titan database.

gremlin>

A second method is to embed your Groovy commands inline in a script when you 
call the gremlin.sh command. In this example, the Groovy commands between the 
EOF markers are piped into the Gremlin shell. When the last Groovy command has 
executed, the Gremlin shell will terminate. This is useful when you still want to use 
the automated environment setup of the Gremlin shell, but you still want to be able 
to quickly re-execute a script. This code snippet has been executed from a Bash shell 
script, as can be seen in the next example. The following script uses the titan.sh 
script to manage the Gremlin server:

#!/bin/bash

TITAN_HOME=/usr/local/titan/

cd $TITAN_HOME

bin/titan.sh start

bin/gremlin.sh   <<  EOF

  t = TitanFactory.open('cassandra.properties')
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  GraphOfTheGodsFactory.load(t)

  t.close()

EOF

bin/titan.sh stop

A third method involves moving the Groovy commands into a separate Groovy file, 
and using the –e option with the Gremlin shell to execute the file. This method offers 
extra logging options for error tracking, but means that extra steps need to be taken 
when setting up the Gremlin environment for a Groovy script:

#!/bin/bash

TITAN_HOME=/usr/local/titan/

SCRIPTS_HOME=/home/hadoop/spark/gremlin

GREMLIN_LOG_FILE=$TITAN_HOME/log/gremlin_console.log

GROOVY_SCRIPT=$1

export GREMLIN_LOG_LEVEL="DEBUG"

cd $TITAN_HOME

bin/titan.sh start

bin/gremlin.sh -e  $SCRIPTS_HOME/$GROOVY_SCRIPT  > $GREMLIN_LOG_FILE 2>&1

bin/titan.sh stop

So, this script defines a Gremlin log level, which can be set to different logging levels 
to obtain extra information about a problem, that is, INFO, WARN, and DEBUG. 
It also redirects the script output to a log file (GREMLIN_LOG_FILE), and redirects 
errors to the same log file (2>&1). This has the benefit of allowing the log file to 
be continuously monitored, and provides a permanent record of the session. The 
Groovy script name that is to be executed is then passed to the encasing Bash shell 
script as a parameter ($1).
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As I already mentioned, the Groovy scripts invoked in this way need extra 
environment configuration to set up the Gremlin session when compared to 
the previous Gremlin session options. For instance, it is necessary to import the 
necessary TinkerPop and Aurelius classes that will be used:

import com.thinkaurelius.titan.core.*
import com.thinkaurelius.titan.core.titan.*
import org.apache.tinkerpop.gremlin.*

Having described the script and configuration options necessary to start a Gremlin 
shell session, and run a Groovy script, from this point onwards I will concentrate on 
Groovy scripts, and the property files necessary to configure the Gremlin session.

TinkerPop's Hadoop Gremlin
As already mentioned previously in this section, it is the TinkerPop Hadoop  
Gremlin package within Titan that will be used to call Apache Spark as a processing 
engine (Hadoop Giraph can be used for processing as well). The link available at 
http://s3.thinkaurelius.com/docs/titan/0.9.0-M2/titan-hadoop-tp3.html  
provides documentation for Hadoop Gremlin; remember that this TinkerPop 
package is still being developed and is subject to change.

At this point, I will examine a properties file that can be used to connect to Cassandra 
as a storage backend for Titan. It contains sections for Cassandra, Apache Spark, 
and the Hadoop Gremlin configuration. My Cassandra properties file is called 
cassandra.properties, and it looks like this (lines beginning with a hash character 
(#) are comments):

####################################

# Storage details

####################################

storage.backend=cassandra

storage.hostname=hc2r1m2

storage.port=9160

storage.cassandra.keyspace=dead

cassandra.input.partitioner.class=org.apache.cassandra.dht.
Murmur3Partitioner

http://s3.thinkaurelius.com/docs/titan/0.9.0-M2/titan-hadoop-tp3.html
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The previous Cassandra-based properties describe the Cassandra host and port. 
This is why the storage backend type is Cassandra, the Cassandra keyspace that is 
to be used is called dead (short for grateful dead—the data that will be used in this 
example). Remember that the Cassandra tables are grouped within keyspaces. The 
previous partitioner class defines the Cassandra class that will be used to partition 
the Cassandra data. The Apache Spark configuration section contains the master 
URL, executor memory, and the data serializer class that is to be used:

####################################

# Spark

####################################

spark.master=spark://hc2nn.semtech-solutions.co.nz:6077

spark.executor.memory=400M

spark.serializer=org.apache.spark.serializer.KryoSerializer

Finally, the Hadoop Gremlin section of the properties file, which defines the classes 
to be used for graph and non-graph input and output is shown here. It also defines 
the data input and output locations, as well as the flags for caching JAR files, and 
deriving memory:

####################################

# Hadoop Gremlin

####################################

gremlin.graph=org.apache.tinkerpop.gremlin.hadoop.structure.HadoopGraph

gremlin.hadoop.graphInputFormat=com.thinkaurelius.titan.hadoop.formats.
cassandra.CassandraInputFormat

gremlin.hadoop.graphOutputFormat=org.apache.tinkerpop.gremlin.hadoop.
structure.io.gryo.GryoOutputFormat

gremlin.hadoop.memoryOutputFormat=org.apache.hadoop.mapreduce.lib.output.
SequenceFileOutputFormat

gremlin.hadoop.deriveMemory=false

gremlin.hadoop.jarsInDistributedCache=true

gremlin.hadoop.inputLocation=none

gremlin.hadoop.outputLocation=output

Blueprints is the TinkerPop property graph model interface. Titan releases it's 
own implementation of blueprints, so instead of seeing blueprints.graph in the 
preceding properties, you see gremlin.graph. This defines the class, used to define 
the graph that is supposed to be used. If this option were omitted, then the graph 
type would default to the following:

com.thinkaurelius.titan.core.TitanFactory
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The CassandraInputFormat class defines that the data is being retrieved from 
the Cassandra database. The graph output serialization class is defined to be 
GryoOutputFormat. The memory output format class is defined to use the  
Hadoop Map Reduce class SequenceFileOutputFormat.

The jarsInDistributedCache value has been defined to be true so that the JAR files 
are copied to the memory, enabling Apache Spark to source them. Given more time, 
I would investigate ways to make the Titan classes visible to Spark, on the class path, 
to avoid excessive memory usage.

Given that the TinkerPop Hadoop Gremlin module is only available as a 
development prototype release, currently the documentation is minimal. There 
are very limited coding examples, and there does not seem to be documentation 
available describing each of the previous properties.

Before I delve into the examples of Groovy scripts, I thought that I would show you 
an alternative method for configuring your Groovy jobs using a configuration object.

Alternative Groovy configuration
A configuration object can be created using the BaseConfiguration method. In this 
example, I have created a Cassandra configuration called cassConf:

cassConf = new BaseConfiguration();

cassConf.setProperty("storage.backend","cassandra");
cassConf.setProperty("storage.hostname","hc2r1m2");
cassConf.setProperty("storage.port","9160")
cassConf.setProperty("storage.cassandra.keyspace","titan")

titanGraph = TitanFactory.open(cassConf);

The setProperty method is then used to define Cassandra connection properties, 
such as backend type, host, port, and keyspace. Finally, a Titan graph is created 
called titanGraph using the open method. As will be shown later, a Titan graph  
can be created using a configuration object or a path to a properties file. The 
properties that have been set match those that were defined in the Cassandra 
properties file described previously.

The next few sections will show how graphs can be created, and traversed. They will 
show how Cassandra, HBase, and the file system can be used for storage. Given that 
I have gone to such lengths to describe the Bash scripts, and the properties files, I will 
just describe those properties that need to be changed in each instance. I will also 
provide simple Groovy script snippets in each instance.
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Using Cassandra
The Cassandra-based properties file called cassandra.properties has already been 
described, so I will not repeat the details here. This example Groovy script creates a 
sample graph, and stores it in Cassandra. It has been executed using the end of file 
markers (EOF) to pipe the script to the Gremlin shell:

t1 = TitanFactory.open('/home/hadoop/spark/gremlin/cassandra.properties')

GraphOfTheGodsFactory.load(t1)

t1.traversal().V().count()

t1.traversal().V().valueMap()

t1.close()

A Titan graph has been created using the TitanFactory.open method and the 
Cassandra properties file. It is called t1. The graph of the Gods, an example 
graph provided with Titan, has been loaded into the graph t1 using the method 
GraphOfTheGodsFactory.load. A count of vertices (V()) has then been generated 
along with a ValueMap to display the contents of the graph. The output looks  
like this:

==>12

==>[name:[jupiter], age:[5000]]

==>[name:[hydra]]

==>[name:[nemean]]

==>[name:[tartarus]]

==>[name:[saturn], age:[10000]]

==>[name:[sky]]

==>[name:[pluto], age:[4000]]

==>[name:[alcmene], age:[45]]

==>[name:[hercules], age:[30]]

==>[name:[sea]]

==>[name:[cerberus]]

==>[name:[neptune], age:[4500]]
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So, there are 12 vertices in the graph, each has a name and age element shown in the 
previous data. Having successfully created a graph, it is now possible to configure 
the previous graph traversal Gremlin command to use Apache Spark for processing. 
This is simply achieved by specifying the SparkGraphComputer in the traversal 
command. See the full TinkerPop diagram at the top of this chapter for architectural 
details. When this command is executed, you will see the task appear on the Spark 
cluster user interface:

t1.traversal(computer(SparkGraphComputer)).V().count()

Using HBase
When using HBase, the properties file needs to change. The following values have 
been taken from my hbase.properties file:

gremlin.hadoop.graphInputFormat=com.thinkaurelius.titan.hadoop.formats.
hbase.HBaseInputFormat

input.conf.storage.backend=hbase

input.conf.storage.hostname=hc2r1m2

input.conf.storage.port=2181

input.conf.storage.hbase.table=titan

input.conf.storage.hbase.ext.zookeeper.znode.parent=/hbase

Remember that HBase uses Zookeeper for configuration purposes. So, the port 
number, and server for connection now becomes a zookeeper server, and zookeeper 
master port 2181. The znode parent value in Zookeeper is also defined as the top 
level node /hbase. Of course, the backend type is now defined to be hbase.

Also, the GraphInputFormat class has been changed to HBaseInputFormat to 
describe HBase as an input source. A Titan graph can now be created using this 
properties file, as shown in the last section. I won't repeat the graph creation here, as 
it will be the same as the last section. Next, I will move on to filesystem storage.

Using the filesystem
In order to run this example, I used a basic Gremlin shell (bin/gremlin.sh). Within 
the data directory of the Titan release, there are many example data file formats that 
can be loaded to create graphs. In this example, I will use the file called grateful-
dead.kryo. So this time, the data will be loaded straight from the file to a graph 
without specifying a storage backend, such as Cassandra. The properties file that I 
will use only contains the following entries:

gremlin.graph=org.apache.tinkerpop.gremlin.hadoop.structure.HadoopGraph
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gremlin.hadoop.graphInputFormat=org.apache.tinkerpop.gremlin.hadoop.
structure.io.gryo.GryoInputFormat

gremlin.hadoop.graphOutputFormat=org.apache.tinkerpop.gremlin.hadoop.
structure.io.gryo.GryoOutputFormat

gremlin.hadoop.jarsInDistributedCache=true

gremlin.hadoop.deriveMemory=true

gremlin.hadoop.inputLocation=/usr/local/titan/data/grateful-dead.kryo

gremlin.hadoop.outputLocation=output

Again, it uses the Hadoop Gremlin package but this time the graph input and  
output formats are defined as GryoInputFormat and GryoOutputFormat. The  
input location is specified to be the actual kyro-based file. So, the source for input 
and output is the file. So now, the Groovy script looks like this. First, the graph is 
created using the properties file. Then, a graph traversal is created, so that we can 
count vertices and see the structure:

graph = GraphFactory.open('/home/hadoop/spark/gremlin/hadoop-gryo.
properties')

g1 = graph.traversal()

Next, a vertex count is executed, which shows that there are over 800 vertices; and 
finally, a value map shows the structure of the data, which I have obviously clipped 
to save the space. But you can see the song name, type, and the performance details:

g1.V().count()

==>808

g1.V().valueMap()

==>[name:[MIGHT AS WELL], songType:[original], performances:[111]]

==>[name:[BROWN EYED WOMEN], songType:[original], performances:[347]]

This gives you a basic idea of the available functionality. I am sure that if you  
search the web, you will find more complex ways of using Spark with Titan.  
Take this for example:

r = graph.compute(SparkGraphComputer.class).
program(PageRankVertexProgram.build().create()).submit().get()

The previous example specifies the use of the SparkGraphComputer class using the 
compute method. It also shows how the page rank vertex program, supplied with 
Titan, can be executed using the program method. This would modify your graph  
by adding page ranks to each vertex. I provide this as an example, as I am not 
convinced that it will work with Spark at this time.
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Summary
This chapter has introduced the Titan graph database from Aurelius. It has 
shown how it can be installed and configured on a Linux cluster. Using a Titan 
Gremlin shell example, the graphs have been created, and stored in both HBase 
and Cassandra NoSQL databases. The choice of Titan storage option required will 
depend upon your project requirements; HBase HDFS based storage or Cassandra 
non HDFS based  storage. This chapter has also shown that you can use the Gremlin 
shell both interactively to develop the graph scripts, and with Bash shell scripts so 
that you can run scheduled jobs with associated logging.

Simple Spark Scala code has been provided, which shows that Apache Spark can 
access the underlying tables that Titan creates on both HBase and Cassandra. This 
has been achieved by using the database connector modules provided by Cloudera 
(for HBase), and DataStax (for Cassandra). All example code and build scripts have 
been described along with the example output. I have included this Scala-based 
section to show you that the graph-based data can be accessed in Scala. The previous 
section processed data from the Gremlin shell, and used Spark as a processing 
backend. This section uses Spark as the main processing engine, and accesses Titan 
data from Spark. If the Gremlin shell was not suitable for your requirements, you 
might consider this approach. As Titan matures, so will the ways in which you  
can integrate Titan with Spark via Scala.

Finally, Titan's Gremlin shell has been used along with Apache Spark to demonstrate 
simple methods for creating, and accessing Titan-based graphs. Data has been stored 
on the file system, Cassandra, and HBase to do this.

Google groups are available for Aurelius and Gremlin users via the URLs  
at https://groups.google.com/forum/#!forum/aureliusgraphs and  
https://groups.google.com/forum/#!forum/gremlin-users.

Although the community seems smaller than other Apache projects, posting  
volume can be somewhat light, and it can be difficult to get a response to posts.

DataStax, the people who created Cassandra, acquired Aurelius, the creators of  
Titan this year. The creators of Titan are now involved in the development of 
DataStax's DSE graph database, which may have a knock-on effect on Titan's 
development. Having said that, the 0.9.x Titan release has been created, and a  
1.0 release is expected.

https://groups.google.com/forum/#!forum/aureliusgraphs
https://groups.google.com/forum/#!forum/gremlin-users
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So, having shown some of the Titan functionality with the help of an example with 
both Scala and Gremlin, I will close the chapter here. I wanted to show the pairing 
of Spark-based graph processing, and a graph storage system. I like open source 
systems for their speed of development and accessibility. I am not saying that Titan 
is the database for you, but it is a good example. If its future can be assured, and its 
community grows, then as it matures, it could offer a valuable resource.

Note that two versions of Spark have been used in this chapter: 1.3 and 1.2.1. The 
earlier version was required, because it was apparently the only version that would 
work with Titan's SparkGraphComputer, and so avoids Kyro serialization errors.

In the next chapter, extensions to the Apache Spark MLlib machine learning library 
will be examined in terms of the http://h2o.ai/ H2O product. A neural-based deep 
learning example will be developed in Scala to demonstrate its potential functionality.

http://h2o.ai/
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Extending Spark with H2O
H2O is an open source system, developed in Java by http://h2o.ai/ for machine 
learning. It offers a rich set of machine learning algorithms, and a web-based data 
processing user interface. It offers the ability to develop in a range of languages: Java, 
Scala, Python, and R. It also has the ability to interface to Spark, HDFS, Amazon S3, 
SQL, and NoSQL databases. This chapter will concentrate on H2O's integration with 
Apache Spark using the Sparkling Water component of H2O. A simple example, 
developed in Scala, will be used, based on real data to create a deep-learning model. 
This chapter will:

• Examine the H2O functionality
• Consider the necessary Spark H2O environment
• Examine the Sparkling Water architecture
• Introduce and use the H2O Flow interface
• Introduce deep learning with an example
• Consider performance tuning
• Examine data quality

The next step will be to provide an overview of the H2O functionality, and the 
Sparkling Water architecture that will be used in this chapter.

http://h2o.ai/
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Overview
Since it is only possible to examine, and use, a small amount of H2O's functionality 
in this chapter, I thought that it would be useful to provide a list of all of the 
functional areas that it covers. This list is taken from http://h2o.ai/ website at 
http://h2o.ai/product/algorithms/ and is based upon munging/wrangling 
data, modeling using the data, and scoring the resulting models:

Process Model The score tool
Data profiling Generalized Linear Models (GLM) Predict
Summary statistics Decision trees Confusion Matrix
Aggregate, filter, bin, 
and derive columns

Gradient Boosting (GBM) AUC

Slice, log transform,  
and anonymize

K-Means Hit Ratio

Variable creation Anomaly detection PCA Score
PCA Deep learning Multi Model Scoring
Training and validation 
sampling plan

Naïve Bayes

Grid search

The following section will explain the environment used for the Spark and H2O 
examples in this chapter and it will also explain some of the problems encountered.

The processing environment
If any of you have examined my web-based blogs, or read my first book, Big Data 
Made Easy, you will see that I am interested in Big Data integration, and how the 
big data tools connect. None of these systems exist in isolation. The data will start 
upstream, be processed in Spark plus H2O, and then the result will be stored, or 
moved to the next step in the ETL chain. Given this idea in this example, I will use 
Cloudera CDH HDFS for storage, and source my data from there. I could just as 
easily use S3, an SQL or NoSQL database.

At the point of starting the development work for this chapter, I had a Cloudera 
CDH 4.1.3 cluster installed and working. I also had various Spark versions installed, 
and available for use. They are as follows:

• Spark 1.0 installed as CentOS services
• Spark 1.2 binary downloaded and installed
• Spark 1.3 built from a source snapshot

http://h2o.ai/
http://h2o.ai/product/algorithms/
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I thought that I would experiment to see which combinations of Spark, and Hadoop  
I could get to work together. I downloaded Sparkling water at http://h2o-release.
s3.amazonaws.com/sparkling-water/master/98/index.html and used the  
0.2.12-95 version. I found that the 1.0 Spark version worked with H2O, but the  
Spark libraries were missing. Some of the functionality that was used in many of  
the Sparkling Water-based examples was available. Spark versions 1.2 and 1.3  
caused the following error to occur:

15/04/25 17:43:06 ERROR netty.NettyTransport: failed to bind to 
/192.168.1.103:0, shutting down Netty transport

15/04/25 17:43:06 WARN util.Utils: Service 'sparkDriver' could not bind 
on port 0. Attempting port 1.

The Spark master port number, although correctly configured in Spark, was not 
being picked up, and so the H2O-based application could not connect to Spark. After 
discussing the issue with the guys at H2O, I decided to upgrade to an H2O certified 
version of both Hadoop and Spark. The recommended system versions that should be 
used are available at http://h2o.ai/product/recommended-systems-for-h2o/.

I upgraded my CDH cluster from version 5.1.3 to version 5.3 using the Cloudera 
Manager interface parcels page. This automatically provided Spark 1.2—the version 
that has been integrated into the CDH cluster. This solved all the H2O-related issues, 
and provided me with an H2O-certified Hadoop and Spark environment.

Installing H2O
For completeness, I will show you how I downloaded, installed, and used H2O. 
Although, I finally settled on version 0.2.12-95, I first downloaded and used 0.2.12-
92. This section is based on the earlier install, but the approach used to source the 
software is the same. The download link changes over time so follow the Sparkling 
Water download option at http://h2o.ai/download/.

This will source the zipped Sparkling water release, as shown by the CentOS Linux 
long file listing here:

[hadoop@hc2r1m2 h2o]$ pwd ; ls -l

/home/hadoop/h2o

total 15892

-rw-r--r-- 1 hadoop hadoop 16272364 Apr 11 12:37 sparkling-
water-0.2.12-92.zip

http://h2o-release.s3.amazonaws.com/sparkling-water/master/98/index.html
http://h2o-release.s3.amazonaws.com/sparkling-water/master/98/index.html
http://h2o.ai/product/recommended-systems-for-h2o/
http://h2o.ai/download/
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This zipped release file is unpacked using the Linux unzip command, and it results 
in a sparkling water release file tree:

[hadoop@hc2r1m2 h2o]$ unzip sparkling-water-0.2.12-92.zip

[hadoop@hc2r1m2 h2o]$ ls -d sparkling-water*

sparkling-water-0.2.12-92  sparkling-water-0.2.12-92.zip

I have moved the release tree to the /usr/local/ area using the root account, and 
created a simple symbolic link to the release called h2o. This means that my H2O-
based build can refer to this link, and it doesn't need to change as new versions 
of sparkling water are sourced. I have also made sure, using the Linux chmod 
command, that my development account, hadoop, has access to the release:

[hadoop@hc2r1m2 h2o]$ su -

[root@hc2r1m2 ~]# cd /home/hadoop/h2o

[root@hc2r1m2 h2o]# mv sparkling-water-0.2.12-92 /usr/local

[root@hc2r1m2 h2o]# cd /usr/local

[root@hc2r1m2 local]# chown -R hadoop:hadoop sparkling-water-0.2.12-92

[root@hc2r1m2 local]#  ln –s sparkling-water-0.2.12-92 h2o

[root@hc2r1m2 local]# ls –lrt  | grep sparkling

total 52

drwxr-xr-x   6 hadoop hadoop 4096 Mar 28 02:27 sparkling-water-0.2.12-92

lrwxrwxrwx   1 root   root     25 Apr 11 12:43 h2o -> sparkling-
water-0.2.12-92

The release has been installed on all the nodes of my Hadoop CDH clusters.

The build environment
From past examples, you will know that I favor SBT as a build tool for developing 
Scala source examples. I have created a development environment on the Linux 
CentOS 6.5 server called hc2r1m2 using the hadoop development account. The 
development directory is called h2o_spark_1_2:

[hadoop@hc2r1m2 h2o_spark_1_2]$ pwd

/home/hadoop/spark/h2o_spark_1_2



Chapter 7

[ 193 ]

My SBT build configuration file named h2o.sbt is located here; it contains  
the following:

[hadoop@hc2r1m2 h2o_spark_1_2]$ more h2o.sbt

name := "H 2 O"

version := "1.0"

scalaVersion := "2.10.4"

libraryDependencies += "org.apache.hadoop" % "hadoop-client" % "2.3.0"

libraryDependencies += "org.apache.spark" % "spark-core"  % "1.2.0" from 
"file:///opt/cloudera/parcels/CDH-5.3.3-1.cdh5.3.3.p0.5/jars/spark-
assembly-1.2.0-cdh5.3.3-hadoop2.5.0-cdh5.3.3.jar"

libraryDependencies += "org.apache.spark" % "mllib"  % "1.2.0" from 
"file:///opt/cloudera/parcels/CDH-5.3-1.cdh5.3.3.p0.5/jars/spark-
assembly-1.2.0-cdh5.3.3-hadoop2.5.0-cdh5.3.3.jar"

libraryDependencies += "org.apache.spark" % "sql"  % "1.2.0" from 
"file:///opt/cloudera/parcels/CDH-5.3.3-1.cdh5.3.3.p0.5/jars/spark-
assembly-1.2.0-cdh5.3.3-hadoop2.5.0-cdh5.3.3.jar"

libraryDependencies += "org.apache.spark" % "h2o"  % "0.2.12-95" from 
"file:///usr/local/h2o/assembly/build/libs/sparkling-water-assembly-
0.2.12-95-all.jar"

libraryDependencies += "hex.deeplearning" % "DeepLearningModel"  % 
"0.2.12-95" from "file:///usr/local/h2o/assembly/build/libs/sparkling-
water-assembly-0.2.12-95-all.jar"

libraryDependencies += "hex" % "ModelMetricsBinomial"  % "0.2.12-95" 
from "file:///usr/local/h2o/assembly/build/libs/sparkling-water-assembly-
0.2.12-95-all.jar"

libraryDependencies += "water" % "Key"  % "0.2.12-95" from "file:///usr/
local/h2o/assembly/build/libs/sparkling-water-assembly-0.2.12-95-all.jar"

libraryDependencies += "water" % "fvec"  % "0.2.12-95" from "file:///usr/
local/h2o/assembly/build/libs/sparkling-water-assembly-0.2.12-95-all.jar"
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I have provided SBT configuration examples in the previous chapters, so I won't go 
into the line-by line-detail here. I have used the file-based URLs to define the library 
dependencies, and have sourced the Hadoop JAR files from the Cloudera parcel path 
for the CDH install. The Sparkling Water JAR path is defined as /usr/local/h2o/ 
that was just created.

I use a Bash script called run_h2o.bash within this development directory to execute 
my H2O-based example code. It takes the application class name as a parameter, and 
is shown below:

[hadoop@hc2r1m2 h2o_spark_1_2]$ more run_h2o.bash

#!/bin/bash

SPARK_HOME=/opt/cloudera/parcels/CDH

SPARK_LIB=$SPARK_HOME/lib

SPARK_BIN=$SPARK_HOME/bin

SPARK_SBIN=$SPARK_HOME/sbin

SPARK_JAR=$SPARK_LIB/spark-assembly-1.2.0-cdh5.3.3-hadoop2.5.0-
cdh5.3.3.jar

H2O_PATH=/usr/local/h2o/assembly/build/libs

H2O_JAR=$H2O_PATH/sparkling-water-assembly-0.2.12-95-all.jar

PATH=$SPARK_BIN:$PATH

PATH=$SPARK_SBIN:$PATH

export PATH

cd $SPARK_BIN

./spark-submit \

  --class $1 \

  --master spark://hc2nn.semtech-solutions.co.nz:7077  \

  --executor-memory 85m \

  --total-executor-cores 50 \

  --jars $H2O_JAR \

  /home/hadoop/spark/h2o_spark_1_2/target/scala-2.10/h-2-o_2.10-1.0.jar
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This example of Spark application submission has already been covered, so again, I 
won't get into the detail. Setting the executor memory at a correct value was critical 
to avoiding out-of-memory issues and performance problems. This will be examined 
in the Performance Tuning section.

As in the previous examples, the application Scala code is located in the src/main/
scala subdirectory, under the development directory level. The next section will 
examine the Apache Spark, and the H2O architecture.

Architecture
The diagrams in this section have been sourced from the http://h2o.ai/ web site  
at http://h2o.ai/blog/2014/09/how-sparkling-water-brings-h2o-to-spark/ 
to provide a clear method of describing the way in which H2O Sparkling Water can 
be used to extend the functionality of Apache Spark. Both, H2O and  
Spark are open source systems. Spark MLlib contains a great deal of functionality, 
while H2O extends this with a wide range of extra functionality, including deep 
learning. It offers tools to munge (transform), model, and score the data. It also  
offers a web-based user interface to interact with.

The next diagram, borrowed from http://h2o.ai/, shows how H2O integrates  
with Spark. As we already know, Spark has master and worker servers; the workers 
create executors to do the actual work. The following steps occur to run a Sparkling 
water-based application:

1. Spark's submit command sends the sparkling water JAR to the Spark master.
2. The Spark master starts the workers, and distributes the JAR file.
3. The Spark workers start the executor JVMs to carry out the work.
4. The Spark executor starts an H2O instance.

http://h2o.ai/
http://h2o.ai/blog/2014/09/how-sparkling-water-brings-h2o-to-spark/
http://h2o.ai/
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The H2O instance is embedded with the Executor JVM, and so it shares the JVM 
heap space with Spark. When all of the H2O instances have started, H2O forms a 
cluster, and then the H2O flow web interface is made available.

Spark
Executor

JVM
H O2

Spark
Executor

JVM
H O2

Spark
Executor

JVM
H O2

(4)

Sparkling
App

jar file

Spark
Master
JVM

Spark
Worker
JVM

Spark
Worker
JVM

Spark
Worker
JVM

spark-submit

(1)

(2)

(3)

Sparkling Water Cluster

The preceding diagram explains how H2O fits into the Apache Spark architecture, 
and how it starts, but what about data sharing? How does data pass between Spark 
and H2O? The following diagram explains this:
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A new H2O RDD data structure has been created for H2O and Sparkling Water. It 
is a layer, based at the top of an H2O frame, each column of which represents a data 
item, and is independently compressed to provide the best compression ratio.

In the deep learning example, Scala code presented later in this chapter you will 
see that a data frame has been created implicitly from a Spark schema RDD and a 
columnar data item, income has been enumerated. I won't dwell on this now as it 
will be explained later but this is a practical example of the above architecture:

  val testFrame:DataFrame = schemaRddTest
  testFrame.replace( testFrame.find("income"), testFrame.
vec("income").toEnum)

In the Scala-based example that will be tackled in this chapter, the following actions 
will take place:

1. Data is being sourced from HDFS, and is being stored in a Spark RDD.
2. Spark SQL is used to filter data.
3. The Spark schema RDD is converted into an H2O RDD.
4. The H2O-based processing and modeling occurs.
5. The results are passed back to Spark for accuracy checking.
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To this point, the general architecture of H2O has been examined, and the product 
has been sourced for use. The development environment has been explained, and the 
process by which H2O and Spark integrate has been considered. Now, it is time to 
delve into a practical example of the use of H2O. First though, some real-world data 
must be sourced for modeling purposes.

Sourcing the data
Since I have already used the Artificial Neural Net (ANN) functionality in Chapter 
2, Apache Spark MLlib, to classify images, it seems only fitting that I use H2O deep 
learning to classify data in this chapter. In order to do this, I need to source data sets 
that are suitable for classification. I need either image data with associated image 
labels, or the data containing vectors and a label that I can enumerate, so that I can 
force H2O to use its classification algorithm.

The MNIST test and training image data was sourced from ann.lecun.com/exdb/
mnist/. It contains 50,000 training rows, and 10,000 rows for testing. It contains 
digital images of numbers 0 to 9 and associated labels.

I was not able to use this data as, at the time of writing, there was a bug in H2O 
Sparkling water that limited the record size to 128 elements. The MNIST data  
has a record size of 28 x 28 + 1 elements for the image plus the label:

15/05/14 14:05:27 WARN TaskSetManager: Lost task 0.0 in stage 
9.0 (TID 256, hc2r1m4.semtech-solutions.co.nz): java.lang.
ArrayIndexOutOfBoundsException: -128

This issue should have been fixed and released by the time you read this, but in the 
short term I sourced another data set called income from http://www.cs.toronto.
edu/~delve/data/datasets.html, which contains Canadian employee income 
data. The following information shows the attributes and the data volume. It also 
shows the list of columns in the data, and a sample row of the data:

Number of attributes: 16

Number of cases: 45,225

age workclass fnlwgt education educational-num marital-status occupation 
relationship race gender capital-gain capital-loss hours-per-week native-
country income

39, State-gov, 77516, Bachelors, 13, Never-married, Adm-clerical, Not-in-
family, White, Male, 2174, 0, 40, United-States, <=50K

ann.lecun.com/exdb/mnist/
ann.lecun.com/exdb/mnist/
http://www.cs.toronto.edu/~delve/data/datasets.html
http://www.cs.toronto.edu/~delve/data/datasets.html
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I will enumerate the last column in the data—the income bracket, so <=50k will 
enumerate to 0. This will allow me to force the H2O deep learning algorithm to carry 
out classification rather than regression. I will also use Spark SQL to limit the data 
columns, and filter the data.

Data quality is absolutely critical when creating an H2O-based example like that 
described in this chapter. The next section examines the steps that can be taken to 
improve the data quality, and so save time.

Data Quality
When I import CSV data files from HDFS to my Spark Scala H2O example code,  
I can filter the incoming data. The following example code contains two filter lines; 
the first checks that a data line is not empty, while the second checks that the final 
column in each data row (income), which will be enumerated, is not empty:

val testRDD  = rawTestData
  .filter(!_.isEmpty)
  .map(_.split(","))
  .filter( rawRow => ! rawRow(14).trim.isEmpty )

I also needed to clean my raw data. There are two data sets, one for training and one 
for testing. It is important that the training and testing data have the following:

• The same number of columns
• The same data types
• The null values must be allowed for in the code
• The enumerated type values must match—especially for the labels

I encountered an error related to the enumerated label column income and the values 
that it contained. I found that my test data set rows were terminated with a full stop 
character "." When processed, this caused the training and the test data values to 
mismatch when enumerated.

So, I think that time and effort should be spent safeguarding the data quality, as a 
pre-step to training, and testing machine learning functionality so that time is  
not lost, and extra cost incurred.
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Performance tuning
It is important to monitor the Spark application error and the standard output logs in 
the Spark web user interface if you see errors like the following:

05-15 13:55:38.176 192.168.1.105:54321   6375   Thread-10 ERRR: Out 
of Memory and no swap space left from hc2r1m1.semtech-solutions.
co.nz/192.168.1.105:54321

If you encounter instances where application executors seem to hang without 
response, you may need to tune your executor memory. You need to do so if you see 
an error like the following in your executor log:

05-19 13:46:57.300 192.168.1.105:54321   10044  Thread-11 WARN: Unblock 
allocations; cache emptied but memory is low:  OOM but cache is emptied:  
MEM_MAX = 89.5 MB, DESIRED_CACHE = 96.4 MB, CACHE = N/A, POJO = N/A, this 
request bytes = 36.4 MB

This can cause a loop, as the application requests more memory than is available, 
and so waits until the next iteration retries. The application can seem to hang until 
the executors are killed, and the tasks re-executed on alternate nodes. A short task's 
run time can extend considerably due to such problems.

Monitor the Spark logs for these types of error. In the previous example, changing 
the executor memory setting in the spark-submit command removes the error, and 
reduces the runtime substantially. The memory value requested has been reduced to 
a figure below that which is available.

  --executor-memory 85m

Deep learning
Neural networks were introduced in Chapter 2, Apache Spark MLlib. This chapter 
builds upon this understanding by introducing deep learning, which uses deep 
neural networks. These are neural networks that are feature-rich, and contain 
extra hidden layers, so that their ability to extract data features is increased. These 
networks are generally feed-forward networks, where the feature characteristics are 
inputs to the input layer neurons. These neurons then fire and spread the activation 
through the hidden layer neurons to an output layer, which should present the 
feature label values. Errors in the output are then propagated back through the 
network (at least in back propagation), adjusting the neuron connection weight 
matrices so that classification errors are reduced during training.



Chapter 7

[ 201 ]

The previous example image, described in the H2O booklet at https://leanpub.
com/deeplearning/read ,shows a deep learning network with four input neurons 
to the left, two hidden layers in the middle, and two output neurons. The arrows 
show both the connections between neurons and the direction that activation takes 
through the network.

These networks are feature-rich because they provide the following options:

• Multiple training algorithms
• Automated network configuration
• The ability to configure many options

 ° Structure

Hidden layer structure
 ° Training

Learning rate, annealing, and momentum

So, after giving this brief introduction to deep learning, it is now time to look at  
some of the sample Scala-based code. H2O provides a great deal of functionality;  
the classes that are needed to build and run the network have been developed for 
you. You just need to do the following:

• Prepare the data and parameters
• Create and train the model

https://leanpub.com/deeplearning/read
https://leanpub.com/deeplearning/read
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• Validate the model with a second data set
• Score the validation data set output

When scoring your model, you must hope for a high value in percentage terms.  
Your model must be able to accurately predict and classify your data.

Example code – income
This section examines the Scala-based H2O Sparkling Water deep learning example 
using the previous Canadian income data source. First, the Spark (Context, Conf, 
mllib, and RDD), and H2O (h2o, deeplearning, and water) classes are imported:

import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.SparkConf

import hex.deeplearning.{DeepLearningModel, DeepLearning}
import hex.deeplearning.DeepLearningModel.DeepLearningParameters
import org.apache.spark.h2o._
import org.apache.spark.mllib
import org.apache.spark.mllib.feature.{IDFModel, IDF, HashingTF}
import org.apache.spark.rdd.RDD
import water.Key

Next an application class called h2o_spark_dl2 is defined, the master URL is 
created, and then a configuration object is created, based on this URL, and the 
application name. The Spark context is then created using the configuration object:

object h2o_spark_dl2  extends App
{
  val sparkMaster = "spark://hc2nn.semtech-solutions.co.nz:7077"
  val appName = "Spark h2o ex1"
  val conf = new SparkConf()

  conf.setMaster(sparkMaster)
  conf.setAppName(appName)

  val sparkCxt = new SparkContext(conf)
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An H2O context is created from the Spark context, and also an SQL context:

  import org.apache.spark.h2o._
  implicit val h2oContext = new org.apache.spark.h2o.
H2OContext(sparkCxt).start()

  import h2oContext._
  import org.apache.spark.sql._

  implicit val sqlContext = new SQLContext(sparkCxt)

The H2O Flow user interface is started with the openFlow command:

  import sqlContext._
  openFlow

The training and testing of the data files are now defined (on HDFS) using the server 
URL, path, and the file names:

  val server    = "hdfs://hc2nn.semtech-solutions.co.nz:8020"
  val path      = "/data/spark/h2o/"

  val train_csv =  server + path + "adult.train.data" // 32,562 rows
  val test_csv  =  server + path + "adult.test.data"  // 16,283 rows

The CSV based training and testing data is loaded using the Spark context's 
textFile method:

  val rawTrainData = sparkCxt.textFile(train_csv)
  val rawTestData  = sparkCxt.textFile(test_csv)

Now, the schema is defined in terms of a string of attributes. Then, a schema  
variable is created by splitting the string using a series of StructField, based  
on each column. The data types are left as String, and the true value allows for  
the Null values in the data:

  val schemaString = "age workclass fnlwgt education “ + 
“educationalnum maritalstatus " + "occupation relationship race 
gender “ + “capitalgain capitalloss " + hoursperweek nativecountry 
income"

  val schema = StructType( schemaString.split(" ")
      .map(fieldName => StructField(fieldName, StringType, true)))
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The raw CSV line training and testing data is now split by commas into columns. 
The data is filtered on empty lines to ensure that the last column (income) is not 
empty. The actual data rows are created from the fifteen (0-14) trimmed elements  
in the raw CSV data. Both, the training and the test data sets are processed:

  val trainRDD  = rawTrainData
         .filter(!_.isEmpty)
         .map(_.split(","))
         .filter( rawRow => ! rawRow(14).trim.isEmpty )
         .map(rawRow => Row(
               rawRow(0).toString.trim,  rawRow(1).toString.trim,
               rawRow(2).toString.trim,  rawRow(3).toString.trim,
               rawRow(4).toString.trim,  rawRow(5).toString.trim,
               rawRow(6).toString.trim,  rawRow(7).toString.trim,
               rawRow(8).toString.trim,  rawRow(9).toString.trim,
               rawRow(10).toString.trim, rawRow(11).toString.trim,
               rawRow(12).toString.trim, rawRow(13).toString.trim,
               rawRow(14).toString.trim
                           )
             )

  val testRDD  = rawTestData
         .filter(!_.isEmpty)
         .map(_.split(","))
         .filter( rawRow => ! rawRow(14).trim.isEmpty )
         .map(rawRow => Row(
               rawRow(0).toString.trim,  rawRow(1).toString.trim,
               rawRow(2).toString.trim,  rawRow(3).toString.trim,
               rawRow(4).toString.trim,  rawRow(5).toString.trim,
               rawRow(6).toString.trim,  rawRow(7).toString.trim,
               rawRow(8).toString.trim,  rawRow(9).toString.trim,
               rawRow(10).toString.trim, rawRow(11).toString.trim,
               rawRow(12).toString.trim, rawRow(13).toString.trim,
               rawRow(14).toString.trim
                           )
             )

Spark Schema RDD variables are now created for the training and test data sets 
by applying the schema variable, created previously for the data using the Spark 
context's applySchema method:

  val trainSchemaRDD = sqlContext.applySchema(trainRDD, schema)
  val testSchemaRDD  = sqlContext.applySchema(testRDD,  schema)
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Temporary tables are created for the training and testing data:

  trainSchemaRDD.registerTempTable("trainingTable")
  testSchemaRDD.registerTempTable("testingTable")

Now, SQL is run against these temporary tables, both to filter the number of 
columns, and to potentially limit the data. I could have added a WHERE or LIMIT 
clause. This is a useful approach that enables me to manipulate both the  
column and row-based data:

  val schemaRddTrain = sqlContext.sql(
    """SELECT
         |age,workclass,education,maritalstatus,
         |occupation,relationship,race,
         |gender,hoursperweek,nativecountry,income
         |FROM trainingTable """.stripMargin)

  val schemaRddTest = sqlContext.sql(
    """SELECT
         |age,workclass,education,maritalstatus,
         |occupation,relationship,race,
         |gender,hoursperweek,nativecountry,income
         |FROM testingTable """.stripMargin)

The H2O data frames are now created from the data. The final column in each 
data set (income) is enumerated, because this is the column that will form the deep 
learning label for the data. Also, enumerating this column forces the deep learning 
model to carry out classification rather than regression:

  val trainFrame:DataFrame = schemaRddTrain
  trainFrame.replace( trainFrame.find("income"),        trainFrame.
vec("income").toEnum)
  trainFrame.update(null)

  val testFrame:DataFrame = schemaRddTest
  testFrame.replace( testFrame.find("income"),        testFrame.
vec("income").toEnum)
  testFrame.update(null)

The enumerated results data income column is now saved so that the values in this 
column can be used to score the tested model prediction values:

  val testResArray = schemaRddTest.collect()
  val sizeResults  = testResArray.length
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  var resArray     = new Array[Double](sizeResults)

  for ( i <- 0 to ( resArray.length - 1)) {
     resArray(i) = testFrame.vec("income").at(i)
  }

The deep learning model parameters are now set up in terms of the number of 
epochs, or iterations—the data sets for training and validation and the label column 
income, which will be used to classify the data. Also, we chose to use variable 
importance to determine which data columns are most important in the data.  
The deep learning model is then created:

  val dlParams = new DeepLearningParameters()

  dlParams._epochs               = 100
  dlParams._train                = trainFrame
  dlParams._valid                = testFrame
  dlParams._response_column      = 'income
  dlParams._variable_importances = true
  val dl = new DeepLearning(dlParams)
  val dlModel = dl.trainModel.get

The model is then scored against the test data set for predictions, and these income 
predictions are compared to the previously stored enumerated test data income 
values. Finally, an accuracy percentage is output from the test data:

  val testH2oPredict  = dlModel.score(schemaRddTest )('predict)
  val testPredictions  = toRDD[DoubleHolder](testH2oPredict)
          .collect.map(_.result.getOrElse(Double.NaN))
  var resAccuracy = 0
  for ( i <- 0 to ( resArray.length - 1)) {
    if (  resArray(i) == testPredictions(i) )
      resAccuracy = resAccuracy + 1
  }

  println()
  println( ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>" )
  println( ">>>>>> Model Test Accuracy = "
       + 100*resAccuracy / resArray.length  + " % " )
  println( ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>" )
  println()
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In the last step, the application is stopped, the H2O functionality is terminated via a 
shutdown call, and then the Spark context is stopped:

  water.H2O.shutdown()
  sparkCxt.stop()

  println( " >>>>> Script Finished <<<<< " )

} // end application

Based upon a training data set of 32,000, and a test data set of 16,000 income records, 
this deep learning model is quite accurate. It reaches an accuracy level of 83 percent, 
which is impressive for a few lines of code, small data sets, and just 100 epochs, as 
the run output shows:

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

>>>>>> Model Test Accuracy = 83 %

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

In the next section, I will examine some of the coding needed to process the MNIST 
data, even though that example could not be completed due to an H2O limitation at 
the time of coding.

The example code – MNIST
Since the MNIST image data record is so big, it presents problems while creating a 
Spark SQL schema, and processing a data record. The records in this data are in CSV 
format, and are formed from a 28 x 28 digit image. Each line is then terminated by a 
label value for the image. I have created my schema by defining a function to create 
the schema string to represent the record, and then calling it:

  def getSchema(): String = {

    var schema = ""
    val limit = 28*28

    for (i <- 1 to limit){
      schema += "P" + i.toString + " "
    }
    schema += "Label"

    schema // return value
  }

  val schemaString = getSchema()
  val schema = StructType( schemaString.split(" ")
      .map(fieldName => StructField(fieldName, IntegerType, false)))
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The same general approach to deep learning can be taken to data processing as the 
previous example, apart from the actual processing of the raw CSV data. There are 
too many columns to process individually, and they all need to be converted into 
integers to represent their data type. This can be done in one of two ways. In the  
first example, var args can be used to process all the elements in the row:

val trainRDD  = rawTrainData.map( rawRow => Row( rawRow.split(",").
map(_.toInt): _* ))

The second example uses the fromSeq method to process the row elements:

  val trainRDD  = rawTrainData.map(rawRow => Row.fromSeq(rawRow.
split(",") .map(_.toInt)))

In the next section, the H2O Flow user interface will be examined to see how it  
can be used to both monitor H2O and process the data.

H2O Flow
H2O Flow is a web-based open source user interface for H2O, and given that it is 
being used with Spark, Sparkling Water. It is a fully functional H2O web interface 
for monitoring the H2O Sparkling Water cluster plus jobs, and also for manipulating 
data and training models. I have created some simple example code to start the H2O 
interface. As in the previous Scala-based code samples, all I need to do is create a 
Spark, an H2O context, and then call the openFlow command, which will start the 
Flow interface.

The following Scala code example just imports classes for Spark context, configuration, 
and H2O. It then defines the configuration in terms of the application name and the 
Spark cluster URL. A Spark context is then created using the configuration object:

import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.SparkConf
import org.apache.spark.h2o._

object h2o_spark_ex2  extends App
{
  val sparkMaster = "spark://hc2nn.semtech-solutions.co.nz:7077"
  val appName = "Spark h2o ex2"
  val conf = new SparkConf()

  conf.setMaster(sparkMaster)
  conf.setAppName(appName)

  val sparkCxt = new SparkContext(conf)
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An H2O context is then created, and started using the Spark context. The H2O 
context classes are imported, and the Flow user interface is started with the 
openFlow command:

  implicit val h2oContext = new org.apache.spark.h2o.
H2OContext(sparkCxt).start()

  import h2oContext._

  // Open H2O UI

  openFlow

Note, for the purposes of this example and to enable me to use the Flow application, 
I have commented out the H2O shutdown and the Spark context stop options. I 
would not normally do this, but I wanted to make this application long-running  
so that it gives me plenty of time to use the interface:

  // shutdown h20

//  water.H2O.shutdown()
//  sparkCxt.stop()

  println( " >>>>> Script Finished <<<<< " )

} // end application

I use my Bash script run_h2o.bash with the application class name called  
h2o_spark_ex2 as a parameter. This script contains a call to the spark-submit 
command, which will execute the compiled application:

[hadoop@hc2r1m2 h2o_spark_1_2]$ ./run_h2o.bash h2o_spark_ex2

When the application runs, it lists the state of the H2O cluster and provides a URL  
by which the H2O Flow browser can be accessed:

15/05/20 13:00:21 INFO H2OContext: Sparkling Water started, status of 
context:

Sparkling Water Context:

 * number of executors: 4

 * list of used executors:

  (executorId, host, port)

  ------------------------

  (1,hc2r1m4.semtech-solutions.co.nz,54321)
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  (3,hc2r1m2.semtech-solutions.co.nz,54321)

  (0,hc2r1m3.semtech-solutions.co.nz,54321)

  (2,hc2r1m1.semtech-solutions.co.nz,54321)

  ------------------------

  Open H2O Flow in browser: http://192.168.1.108:54323 (CMD + click in 
Mac OSX)

The previous example shows that I can access the H2O interface using the port 
number 54323 on the host IP address 192.168.1.108. I can simply check my  
host's file to confirm that the host name is hc2r1m2:

[hadoop@hc2nn ~]$ cat /etc/hosts | grep hc2

192.168.1.103 hc2nn.semtech-solutions.co.nz   hc2nn

192.168.1.105 hc2r1m1.semtech-solutions.co.nz   hc2r1m1

192.168.1.108 hc2r1m2.semtech-solutions.co.nz   hc2r1m2

192.168.1.109 hc2r1m3.semtech-solutions.co.nz   hc2r1m3

192.168.1.110 hc2r1m4.semtech-solutions.co.nz   hc2r1m4

So, I can access the interface using the hc2r1m2:54323 URL. The following 
screenshot shows the Flow interface with no data loaded. There are data processing 
and administration menu options and buttons at the top of the page. To the right, 
there are help options to enable you to learn more about H2O:
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The following screenshot shows the menu options and buttons in greater detail. In 
the following sections, I will use a practical example to explain some of these options, 
but there will not be enough space in this chapter to cover all the functionality. 
Check the http://h2o.ai/ website to learn about the Flow application in detail, 
available at http://h2o.ai/product/flow/:

http://h2o.ai/
http://h2o.ai/product/flow/
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In greater definition, you can see that the previous menu options and buttons allow 
you to both administer your H2O Spark cluster, and also manipulate the data that 
you wish to process. The following screenshot shows a reformatted list of the help 
options available, so that, if you get stuck, you can investigate solving your problem 
from the same interface:

If I use the menu option, Admin | Cluster Status, I will obtain the following 
screenshot, which shows me the status of each cluster server in terms of memory, 
disk, load, and cores. It's a useful snapshot that provides me with a color-coded 
indication of the status:
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The menu option, Admin | Jobs, provides details of the current cluster jobs in terms 
of the start, end, and run times, as well as status. Clicking on the job name provides 
further details, as shown next, including data processing details, and an estimated 
run time, which is useful. Also, if you select the Refresh button, the display will 
continuously refresh until it is deselected:

The Admin | Water Meter option provides a visual display of the CPU usage on 
each node in the cluster. As you can see in the following screenshot, my meter  
shows that my cluster was idle:
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Using the menu option, Flow | Upload File, I have uploaded some of the training data 
used in the previous deep learning Scala-based example. The data has been loaded 
into a data preview pane; I can see a sample of the data that has been organized into 
cells. Also, an accurate guess has been made of the data types so that I can see which 
columns can be enumerated. This is useful if I want to consider classification:

Having loaded the data, I am now presented with a Frame display, which offers me 
the ability to view, inspect, build a model, create a prediction, or download the data. 
The data display shows information like min, max, and mean. It shows data types, 
labels, and a zero data count, as shown in the following screenshot:
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I thought that it would be useful to create a deep learning classification model,  
based on this data, to compare the Scala-based approach to this H2O user interface. 
Using the view and inspect options, it is possible to visually, and interactively check 
the data, as well as create plots relating to the data. For instance, using the previous 
inspect option followed by the plot columns option, I was able to create a plot of  
data labels versus zero counts in the column data. The following screenshot shows 
the result:
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By selecting the build model option, a menu option is offered that lets me choose a 
model type. I will select deep learning, as I already know that this data is suited to 
this classification approach. The previous Scala-based model resulted in an accuracy 
level of 83 percent:

I have selected the deep learning option. Having chosen this option, I am then able to 
set model parameters, such as training and validation data sets, as well as choosing 
the data columns that my model should use (obviously, the two data sets should 
contain the same columns). The following screenshot displays the data sets, and the 
model columns being selected:

There are a large range of basic and advanced model options available. A selection  
of them are shown in the following screenshot. I have set the response column to  
15 as the income column. I have also set the VARIABLE_IMPORTANCES option. 
Note that I don't need to enumerate the response column, as it has been  
done automatically:
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Note also that the epochs or iterations option is set to 100 as before. Also, the figure 
200,200 for the hidden layers indicates that the network has two hidden layers,  
each with 200 neurons. Selecting the build model option causes the model to be 
created from these parameters. The following screenshot shows the model being 
trained, including an estimation of training time and an indication of the data 
processed so far.
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Viewing the model, once trained, shows training and validation metrics, as well as a 
list of the important training parameters:

Selecting the Predict option allows an alternative validation data set to be specified. 
Choosing the Predict option using the new data set causes the already trained model 
to be validated against a new test dataset:

Selecting the Predict option causes the prediction details for the deep learning 
model, and dataset to be displayed as shown in the following screenshot:
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The preceding screenshot shows the test data frame and the model category, as well 
as the validation statistics in terms of AUC, GINI, and MSE.

The AUC value, or area under the curve, relates to the ROC, or the receiver operator 
characteristics curve, which is also shown in the following screenshot. TPR means 
True Positive Rate, and FPR means False Positive Rate. AUC is a measure of 
accuracy with a value of one being perfect. So, the blue line shows greater accuracy 
than that of the red line:
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There is a great deal of functionality available within this interface that I have not 
explained, but I hope that I have given you a feel for its power and potential. You 
can use this interface to inspect your data, and create reports before attempting to 
develop code, or as an application in its own right to delve into your data.

Summary
My continuing theme, when examining both Apache Hadoop and Spark, is that 
none of these systems stand alone. They need to be integrated to form ETL-based 
processing systems. Data needs to be sourced and processed in Spark, and then 
passed to the next link in the ETL chain, or stored. I hope that this chapter has  
shown you that Spark functionality can be extended with extra libraries, and  
systems such as H2O.

Although Apache Spark MLlib (machine learning library) has a lot of functionality, 
the combination of H2O Sparkling Water and the Flow web interface provides an 
extra wealth of data analysis modeling options. Using Flow, you can also visually, 
and interactively process your data. I hope that this chapter shows you, even though 
it cannot cover all that H2O offers, that the combination of Spark and H2O widens 
your data processing possibilities.

I hope that you have found this chapter useful. As a next step, you might consider 
checking the http://h2o.ai/ website or the H2O Google group, which is available 
at https://groups.google.com/forum/#!forum/h2ostream.

The next chapter will examine the Spark-based service https://databricks.com/, 
which will use Amazon AWS storage for Spark cluster creation in the cloud.

http://h2o.ai/
https://groups.google.com/forum/#!forum/h2ostream
https://databricks.com/
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Spark Databricks
Creating a big data analytics cluster, importing data, and creating ETL streams 
to cleanse and process the data are hard to do, and also expensive. The aim of 
Databricks is to decrease the complexity and make the process of cluster creation, 
and data processing easier. They have created a cloud-based platform, based on 
Apache Spark that automates cluster creation, and simplifies data import, processing, 
and visualization. Currently, the storage is based upon AWS but, in the future, they 
plan to expand to other cloud providers.

The same people who designed Apache Spark are involved in the Databricks system. 
At the time of writing this book, the service was only accessible via registration. I 
have been offered a 30-day trial period. Over the next two chapters, I will examine 
the service, and its components, and offer some sample code to show how it works. 
This chapter will cover the following topics:

• Installing Databricks
• AWS configuration
• Account management
• The menu system
• Notebooks and folders
• Importing jobs via libraries
• Development environments
• Databricks tables
• The Databricks DbUtils package

Given that this book is provided in a static format, it will be difficult to fully examine 
functionality such as streaming.
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Overview
The Databricks service, available at the https://databricks.com/ website, is 
based upon the idea of a cluster. This is similar to a Spark cluster, which has already 
been examined and used in previous chapters. It contains a master, workers, and 
executors. However, the configuration and the size of the cluster are automated, 
depending upon the amount of memory that you specify. Features such as security, 
isolation, process monitoring, and resource management are all automatically 
managed for you. If you have an immediate requirement for a Spark-based cluster 
using 200 GB of memory, for a short period of time, this service can be used to 
dynamically create it, and process your data. You can terminate the cluster to  
reduce your costs when the processing is finished.

Within a cluster, the idea of a Notebook is introduced, along with a location for 
you to create scripts and run programs. Folders can be created within Notebooks, 
which can be based upon Scala, Python, or SQL. Jobs can be created to execute the 
functionality, and can be called from the Notebook code or the imported libraries. 
Notebooks can call Notebook functionality. Also, the functionality is provided to 
schedule jobs, based on time or event.

This provides you with a feel of what the Databricks service provides. The following 
sections will explain each major item that has been introduced. Please keep in mind 
that what is presented here is new and evolving. Also, I used the AWS US East 
(North Virginia) region for this demonstration, as the Asia Sydney region currently 
has limitations that caused the Databricks install to fail.

Installing Databricks
In order to create this demonstration, I used the AWS offer of a year's free access, 
which was available at http://aws.amazon.com/free/. This has limitations such 
as 5 GB of S3 storage, and 750 hours of Amazon Elastic Compute Cloud (EC2), but 
it allowed me low-cost access and reduced my overall EC2 costs. The AWS account 
provides the following:

• An account ID
• An access Key ID
• A secret access Key

https://databricks.com/
http://aws.amazon.com/free/
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These items of information are used by Databricks to access your AWS storage, 
install the Databricks systems, and create the cluster components that you specify. 
From the moment of the install, you begin to incur AWS EC2 costs, as the Databricks 
system uses at least two running instances without any clusters. Once you have 
successfully entered your AWS and billing information, you will be prompted to 
launch the Databricks cloud.

Having done this, you will be provided with a URL to access your cloud, an admin 
account, and password. This will allow you to access the Databricks web-based user 
interface, as shown in the following screenshot:

This is the welcome screen. It shows the menu bar at the top of the image, which, 
from left to right, contains the menu, search, help, and account icons. While using  
the system, there may also be a clock-faced icon that shows the recent activity.  
From this single interface, you may search through help screens, and usage  
examples before creating your own clusters and code.
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AWS billing
Please note that, once you have the Databricks system installed, you will start 
incurring the AWS EC2 storage costs. Databricks attempts to minimize your costs by 
keeping EC2 resources active for a full charging period. For instance if you terminate 
a Databricks cluster the cluster-based EC2 instances will still exist for the hour in 
which AWS bills for them. In this way, Databricks can reuse them if you create a 
new cluster. The following screenshot shows that, although I am using a free AWS 
account, and though I have carefully reduced my resource usage, I have incurred 
AWS EC2 costs in a short period of time:

You need to be aware of the Databricks clusters that you create, and understand that, 
while they exist and are used, AWS costs are being incurred. Only keep the clusters 
that you really require, and terminate any others.

In order to examine the Databricks data import functionality, I also created an AWS 
S3 bucket, and uploaded data files to it. This will be explained later in this chapter.
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Databricks menus
By selecting the top-left menu icon on the Databricks web interface, it is possible 
to expand the menu system. The following screenshot shows the top-level menu 
options, as well as the Workspace option, expanded to a folder hierarchy of  
/folder1/folder2/. Finally, it shows the actions that can be carried out on 
folder2, that is, creating a notebook, creating a dashboard, and more.

All of these actions will be expanded in future sections. The next section will examine 
account management, before moving on to clusters.
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Account management
Account management is quite simplified within Databricks. There is a default 
Administrator account and subsequent accounts can be created, but you need to 
know the Administrator password to do so. Passwords need to be more than eight 
characters long; they should contain at least one digit, one upper case character,  
and one non-alphanumeric character. Account options can be accessed from the  
top-right menu option, shown in the following screenshot:

This also allows the user to logout. By selecting the account setting, you can 
change your password. By selecting the Accounts menu option, an Accounts list is 
generated. There, you will find an option to Add Account, and each account can be 
deleted via an X option on each account line, as shown in the following screenshot:
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It is also possible to reset the account passwords from the accounts list. Selecting the 
Add Account option creates a new account window that requires an email address, 
a full name, the administrator password, and the user's password. So, if you want 
to create a new user, you need to know your Databricks instance Administrator 
password. You must also follow the rules for new passwords, which are as follows:

• Minimum of eight characters
• Must contain at least one digit in the range: 0-9
• Must contain at least one upper case character in the range: A-Z
• Must contain at least one non-alphanumeric character: !@#$%

The next section will examine the Clusters menu option, and will enable you to 
manage your own Databricks Spark clusters.
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Cluster management
Selecting the Clusters menu option provides a list of your current Databricks  
clusters and their status. Of course, currently you have none. Selecting the Add 
Cluster option allows you to create one. Note that the amount of memory you 
specify determines the size of your cluster. There is a minimum of 54 GB required  
to create a cluster with a single master and worker. For each additional 54 GB 
specified, another worker is added.

The following screenshot is a concatenated image, showing a new cluster called 
semclust1 being created and in a Pending state. While Pending, the cluster has  
no dashboard, and the cluster nodes are not accessible.
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Once created the cluster memory is listed and it's status changes from Pending 
to Running. A default dashboard has automatically been attached, and the Spark 
master and worker user interfaces can be accessed. It is important to note here that 
Databricks automatically starts and manages the cluster processes. There is also 
an Option column to the right of this display that offers the ability to Configure, 
Restart, or Terminate a cluster as shown in the following screenshot:

By reconfiguring a cluster, you can change its size. By adding more memory, you can 
add more workers. The following screenshot shows a cluster, created at the default 
size of 54 GB, having its memory extended to 108 GB.

Terminating a cluster removes it, and it cannot be recovered. So, you need to be sure 
that deletion is the correct course of action. Databricks prompts you to confirm your 
action before the termination actually takes place.
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It takes time for a cluster to be both, created and terminated. During termination, the 
cluster is marked with an orange banner, and a state of Terminating, as shown in the 
following screenshot:

Note that the cluster type in the previous screenshot is shown to be On-demand. 
When creating a cluster, it is possible to select a check box called Use spot instances 
to create a spot cluster. These clusters are cheaper than the on-demand clusters, as 
they bid for a cheaper AWS spot price. However, they can be slower to start than  
the on-demand clusters.

The Spark user interfaces are the same as those you would expect on a non-
Databricks Spark cluster. You can examine workers, executors, configuration, 
and log files. As you create clusters, they will be added to your cluster list. One of 
the clusters will be used as the cluster where the dashboards are run. This can be 
changed by using the Make Dashboard Cluster option. As you add libraries and 
Notebooks to your cluster, the cluster details entry will be updated with a count of 
the numbers added.

The only thing that I would say about the Databricks Spark user interface option at 
this time, because it is familiar, is that it displays the Spark version that is used. The 
following screenshot, extracted from the master user interface, shows that the Spark 
version being used (1.3.0) is very up-to-date. At the time of writing, the latest Apache 
Spark release was 1.3.1, dated 17 April, 2015.
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The next section will examine Databricks Notebooks and folders—how to create them, 
and how they can be used.

Notebooks and folders
A Notebook is a special type of Databricks folder that can be used to create Spark 
scripts. Notebooks can call the Notebook scripts to create a hierarchy of functionality. 
When created, the type of Notebook must be specified (Python, Scala, or SQL), and 
a cluster can then specify that the Notebook functionality can be run against it. The 
following screenshot shows the Notebook creation.
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Note that a menu option, to the right of a Notebook session, allows the type of 
Notebook that is to be changed. The following example shows that a Python 
notebook can be changed to Scala, SQL, or Markdown:

Note that a Scala Notebook cannot be changed to Python, and a Python Notebook 
cannot be changed to Scala. The terms Python, Scala, and SQL are well understood 
as the development languages, however, Markdown is new. Markdown allows 
formatted documentation to be created from formatted commands in text. A simple 
reference can be found at https://forums.databricks.com/static/markdown/
help.html.

This means that formatted comments can be added to the Notebook session as 
scripts are created. Notebooks are further subdivided into cells, which contain the 
commands to be executed. Cells can be moved within a Notebook by hovering over 
the top-left corner, and dragging them into position. New cells can be inserted into  
a cell list within a Notebook.

Also, using the %sql command, within a Scala or Python Notebook cell, allows SQL 
syntax to be used. Typically, the key combination of Shift + Enter causes text blocks 
in a Notebook or folder to be executed. Using the %md command allows Markdown 
comments to be added within a cell. Also, comments can be added to a Notebook 
cell. The menu options available at the top-right section of a Notebook cell, shown 
in the following screenshot, shows comment, as well as the minimize and maximize 
options:

Multiple web-based sessions may share a Notebook. The actions that occur 
within the Notebook will be populated to each web interface viewing it. Also, the 
Markdown and comment options can be used to enable communication between 
users to aid the interactive data investigation between a distributed group.

https://forums.databricks.com/static/markdown/help.html
https://forums.databricks.com/static/markdown/help.html
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The previous screenshot shows the header of a Notebook session for notebook1. 
It shows the Notebook name and type (Scala). It also shows the option to lock the 
Notebook to make it read only, as well as the option to detach it from its cluster. The 
following screenshot shows the creation of a folder within a Notebook workspace:

A drop-down menu, from the Workspace main menu option, allows for the creation of 
a folder—in this case, named folder1. The later sections will describe other options in 
this menu. Once created and selected, a drop-down menu from the new folder called 
folder1 shows the actions associated with it in the following screenshot:
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So, a folder can be exported to a DBC archive. It can be locked, or cloned to create a 
copy. It can also be renamed, or deleted. Items can be imported into it; for instance, 
files, which will be explained by example later. Also, new notebooks, dashboards, 
libraries, and folders can be created within it.

In the same way as actions can be carried out against a folder, a Notebook has a set 
of possible actions. The following screenshot shows the actions available via a drop-
down menu for the Notebook called notebook1, which is currently attached to the 
running cluster called semclust1. It is possible to rename, delete, lock, or clone a 
Notebook. It is also possible to detach it from its current cluster, or attach it if it is 
detached. It is also possible to export the Notebook to a file, or a DBC archive.

From the folder Import option, files can be imported to a folder. The following 
screenshot shows the file drop-option window that is invoked if this option is 
selected. It is possible to either drop a file onto the upload pane from the local  
server, or click on this pane to open a navigation browser to search the local  
server for files to upload.
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Note that the files that are uploaded need to be of a specific type. The following 
screenshot shows the supported file types. This is a screenshot taken from the file 
browser when browsing for a file to upload. It also makes sense. The supported file 
types are Scala, SQL, and Python; as well as DBC archives and JAR file libraries.

Before leaving this section, it should also be noted that Notebooks and folders can 
be dragged and dropped to change their position. The next section will examine 
Databricks jobs and libraries via simple worked examples.

Jobs and libraries
Within Databricks, it is possible to import JAR libraries and run the classes in them 
on your clusters. I will create a very simple piece of Scala code to print out the first 
100 elements of the Fibonacci series as BigInt values, locally on my Centos Linux 
server. I will compile my class into a JAR file using SBT, run it locally to check the 
result, and then run it on my Databricks cluster to compare the results. The code 
looks as following:

import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.SparkConf

object db_ex1  extends App
{
  val appName = "Databricks example 1"
  val conf = new SparkConf()

  conf.setAppName(appName)

  val sparkCxt = new SparkContext(conf)

  var seed1:BigInt = 1
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  var seed2:BigInt = 1
  val limit = 100
  var resultStr = seed1 + " " + seed2 + " "

  for( i <- 1 to limit ){

    val fib:BigInt = seed1 + seed2
    resultStr += fib.toString + " "

    seed1 = seed2
    seed2 = fib
  }

  println()
  println( "Result : " + resultStr )
  println()

  sparkCxt.stop()

} // end application

Not that the most elegant piece of code, or the best way to create Fibonacci, but I just 
want a sample JAR and class to use with Databricks. When run locally, I get the first 
100 terms, which look as follows (I've clipped this data to save space):

Result : 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 
6765 10946 17711 28657 46368 75025 121393 196418 317811 514229 832040 
1346269 2178309 3524578 5702887 9227465 14930352 24157817 39088169 
63245986 102334155 165580141 267914296 433494437 701408733 1134903170 
1836311903 2971215073 4807526976 7778742049 12586269025 20365011074 
32951280099 53316291173

4660046610375530309 7540113804746346429 12200160415121876738 
19740274219868223167 31940434634990099905 51680708854858323072 
83621143489848422977 135301852344706746049 218922995834555169026 
354224848179261915075 573147844013817084101 927372692193078999176

The library that has been created is called data-bricks_2.10-1.0.jar. From my 
folder menu, I can create a new Library using the menu drop-down option. This 
allows me to specify the library source as a JAR file, name the new library, and load 
the library JAR file from my local server. The following screenshot shows an example 
of this process:
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When the library has been created, it can be attached to the cluster called semclust1, 
my Databricks cluster, using the Attach option. The following screenshot shows the 
new library in the process of attaching:
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In the following example, a job called job2 has been created by selecting the jar 
option on the Task item. For the job, the same JAR file has been loaded and the  
class db_ex1 has been assigned to run in the library. The cluster has been specified  
as on-demand, meaning that a cluster will be created automatically to run the job. 
The Active runs section shows the job running in the following screenshot:

Once run, the job is moved to the Completed runs section of the display. The 
following screenshot, for the same job, shows that it took 47 seconds to run, that it 
was launched manually, and that it succeeded.
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By selecting the run named Run 1 in the previous screenshot, it is possible to see 
the run output. The following screenshot shows the same result as the local run, 
displayed from my local server execution. I have clipped the output text to make  
it presentable and readable on this page, but you can see that the output is  
the same.

So, even from this very simple example, it is obvious that it is possible to develop 
applications remotely, and load them onto a Databricks cluster as JAR files in order 
to execute. However, each time a Databricks cluster is created on AWS EC2 storage, 
the Spark URL changes, so the application must not hard-code details such as the 
Spark master URL. Databricks will automatically set the Spark URL.

When running the JAR file classes in this way, it is also possible to define class 
parameters. The jobs may be scheduled to run at a given time, or periodically.  
The job timeouts, and alert email addresses may also be specified.
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Development environments
It has been shown that scripts can be created in Notebooks in Scala, Python, or SQL, 
but it is also possible to use an IDE such as IntelliJ or Eclipse to develop code. By 
installing an SBT plugin into this development environment, it is possible to develop 
code for your Databricks environment. The current release of Databricks, as I write 
this book, is 1.3.2d. The Release Notes link, under New Features on the start page, 
contains a link to the IDE integration, which is https://dbc-xxxxxxx-xxxx.cloud.
databricks.com/#shell/1547.

The URL will be of this form, with the section starting with dbc changed to match 
the URL for the Databricks cloud that you will create. I won't expand on this here, 
but leave it to you to investigate. In the next section, I will investigate the Databricks 
table data processing functionality.

Databricks tables
The Databricks Tables menu option allows you store your data in a tabular form 
with an associated schema. The Tables menu option allows you to both create a 
table, and refresh your tables list, as the following screenshot shows:
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Data import
You can create tables via data import, and specify the table structure, at the same 
time, in terms of column names and types. If the data that is being imported has a 
header, then the column names can be taken from that, although all the column types 
are assumed to be strings. The following screenshot shows a concatenated view of 
the data import options and form, available when creating a table. The import file 
location options are S3, DBFS, JDBC, and File.

The previous screenshot shows S3 selected. In order to browse my S3 bucket for a 
file to import to a table, I will need to enter the AWS Key ID, the Secret Access Key, 
and the AWS S3 Bucket Name. Then, I could browse, select the file, and create a 
table via preview. In the following screenshot, I have selected the File option:
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I can either drop my file to import into the upload frame in the following screenshot, 
or click on the frame to browse the local server to select a file to upload. Once a file 
is selected, it is then possible to define the data column delimiter, and whether the 
data contains a header row. It is possible to preview the data, and change the column 
names and data types. It is also possible to specify the new table name, and the file 
type. The following screenshot shows a sample file data load to create the table  
called shuttle:

Once created, the menu table list can be refreshed and the table schema viewed  
to confirm the column names and types. In this way, a sample of the table data can 
also be previewed. The table can now be viewed and accessed from an SQL session. 
The following screenshot shows that the shuttle table is visible using the show 
tables command:
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Once imported, the data in this table can also be accessed via an SQL session. 
The following screenshot shows a simple SQL session statement to show the data 
extracted from the new shuttle table:

So, this provides the means to import multiple tables from a variety of data sources, 
and create a complex schema in order to filter and join the data by columns and 
rows, just as you would in a traditional, relational database. It provides a familiar 
approach to big data processing.

This section has described the process by which tables can be created via data 
import, but what about creating tables programmatically, or creating tables as 
external objects? The following sections will provide examples of this approach  
to table management.
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External tables
Databricks allows you to create tables against external resources, such as AWS S3 
files, or local file system files. In this section, I will create an external table against 
an S3-based bucket, path, and a set of files. I will also examine both the permissions 
required in AWS and the access policy used. The following screenshot shows an 
AWS S3 bucket called dbawss3test2 being created. Permissions have been granted  
to everyone to access the list. I am not suggesting that you do this, but ensure that 
your group can access your bucket.

Also, a policy has been added to aid access. In this case, anonymous users have 
been granted read-only access to the bucket and sub contents. You can create a more 
complex policy to limit the access to your group and assorted files. The following 
screenshot shows the new policy:
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With an access policy, and a bucket created with the correct access policy, I can 
now create folders and upload files for use with a Databricks external table. As the 
following screenshot shows, I have done just that. The uploaded file has ten columns 
in CSV file format:
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Now that the AWS S3 resources have been set up, they need to be mounted to 
Databricks, as the Scala-based example shows next. I have removed my AWS and 
secret keys from the script for security purposes. Your mounted directory will need 
to start with /mnt and any of the / characters, and your secret key value will need to 
be replaced with %2F. The dbutils.fs class is being used to create the mount and 
the code executes within a second, as the following result shows:

Now, an external table can be created against this mounted path and the files 
that it contains using a Notebook-based SQL session, as the following screenshot 
shows. The table called s3test1 has been created against the files that the mounted 
directory contains, and a delimiter is specified as a comma, in order to parse the 
CSV-based content.
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The Tables menu option now shows that the s3test1 table exists, as shown in the 
following screenshot. So, it should be possible to run some SQL against this table:

I have run a SELECT statement in an SQL-based Notebook session to get a row count 
from the external table, using the COUNT(*) function, as shown in the following 
screenshot. It can be see that the table contains 14500 rows.
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I will now add another file to the S3-based folder. In this case, it is just a copy of the 
first file in CSV format, so the row count in the external table should double. The 
following screenshot shows the file that is added:

Running the same SELECT statement against the external table does indeed provide 
a doubled row count of 29000 rows. The following screenshot shows the SQL 
statement, and the output:

So, it is easily possible to create external tables within Databricks, and run SQL 
against content that is dynamically changed. The file structure will need to be 
uniform, and the S3 bucket access must be defined if using AWS. The next section 
will examine the DbUtils package provided with Databricks.

The DbUtils package
The previous Scala-based script, which uses the DbUtils package, and creates the 
mount in the last section, only uses a small portion of the functionality of this 
package. In this section, I would like to introduce some more features of the DbUtils 
package, and the Databricks File System (DBFS). The help option within the 
DbUtils package can be called within a Notebook connected to a Databricks cluster, 
to learn more about its structure and functionality. As the following screenshot 
shows, executing dbutils.fs.help() in a Scala Notebook provides help on fsutils, 
cache, and the mount-based functionality:
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It is also possible to obtain help on individual functions, as the text in the previous 
screenshot shows. The example in the following screenshot explains the cacheTable 
function, providing descriptive text and a sample function call with the parameter 
and return types:

The next section will briefly examine the DBFS before moving on to examining more 
of the dbutils functionality.
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Databricks file system
The DBFS can be accessed using URL's of the dbfs:/* form, and using the functions 
available within dbutils.fs.

The previous screenshot shows the /mnt file system being examined using the ls 
function, and then showing mount directories—s3data and s3data1. These were  
the directories created during the previous Scala S3 mount example.

Dbutils fsutils
The fsutils group of functions, within the dbutils package, covers functions such 
as cp, head, mkdirs, mv, put, and rm. The help calls, shown previously, can provide 
more information about them. You can create a directory on DBFS using the mkdirs 
call, as shown next. Note that I have created a number of directories under dbfs:/, 
named as data* in this session. The following example has created the directory 
called data2:

The previous screenshot shows by executing an ls that there are many default 
directories that already exist on DBFS. For instance, see the following:

• /tmp is a temporary area
• /mnt is a mount point for remote directories—that is, S3
• /user is a user storage area that currently contains Hive
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• /mount is an empty directory
• /FileStore is a storage area for tables, JARs, and job JARs
• /databricks-datasets is datasets provided by Databricks

The dbutils copy command, shown next, allows a file to be copied to a DBFS 
location. In this instance, the external1.txt file had been copied to the /data2 
directory, as shown in the following screenshot:

The head function can be used to return the first maxBytes characters from the head 
of a file on DBFS. The following example shows the format of the external1.txt  
file. This is useful, as it tells me that this is a CSV file, and so shows me how to 
process it.

It is also possible to move files within DBFS. The following screenshot shows the mv 
command being used to move the external1.txt file from the directory data2 to 
the directory called data1. The ls command is then used to confirm the move.
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Finally, the remove function (rm) is used to remove the file called external1.txt,  
which was just moved. The following ls function call shows that the file no longer 
exists within the data1 directory, because there is no FileInfo record in the 
function output:

The DbUtils cache
The cache functionality, within DbUtils, provides the means to cache (and uncache) 
both tables and files to DBFS. Actually, the tables are saved as files also to the 
DBFS directory called /FileStore. The following screenshot shows that the cache 
functions are available:

The DbUtils mount
The mount functionality allows you to mount remote file systems, refresh mounts, 
display mount details, and unmount specific mounted directories. An example of 
an S3 mount was already given in the previous sections, so I won't repeat it here. 
The following screenshot shows the output from the mounts function. The s3data 
and s3data1 mounts have been created by me. The other two mounts for root and 
datasets already existed. The mounts are listed in a sequence of the MountInfo 
objects. I have rearranged the text to be more meaningful, and to be better presented 
on the page.
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Summary
This chapter has introduced Databricks. It shows how the service can be accessed, 
and also shows how it uses AWS resources. Remember that, in the future, the people 
who invented Databricks plan to support other cloud-based platforms, such as 
Microsoft Azure. I thought that it was important to introduce Databricks, because the 
same people who were involved in the development of Apache Spark are involved 
in this system. The natural progression seems to be Hadoop, Spark, then Databricks.

I will continue the Databricks investigation in the next chapter, because important 
features, such as visualization, have not yet been examined. Also, the major 
Spark functionality modules called GraphX, streaming, MLlib, and SQL have not 
been introduced in Databricks terms. How easy is it to use these modules within 
Databricks to process real data? Read on to find out.
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Databricks Visualization
This chapter builds on the work done in Chapter 8, Spark Databricks, and continues 
to investigate the functionality of the Apache Spark-based service at https://
databricks.com/. Although I will use Scala-based code examples in this chapter,  
I wish to concentrate on the Databricks functionality rather than the traditional  
Spark processing modules: MLlib, GraphX, Streaming, and SQL. This chapter will 
explain the following Databricks areas:

• Data visualization using Dashboards
• An RDD-based report
• A Data stream-based report
• The Databricks Rest interface
• Moving data with Databricks

So, this chapter will examine the functionality in Databricks to analytically visualize 
data via reports, and dashboards. It will also examine the REST interface, as I believe 
it to be a useful tool for both, remote access, and integration purposes. Finally, it will 
examine the options for moving data, and libraries, into a Databricks cloud instance.

Data visualization
Databricks provides tools to access S3, and the local file system-based files. It offers 
the ability to import data into tables, as already shown. In the last chapter, raw data 
was imported into the shuttle table to provide the table-based data that SQL could  
be run against, to filter against rows and columns, allow data to be sorted, and then 
aggregated. This is very useful, but we are still left looking at raw data output when 
images, and reports, present information that can be more readily, and visually, 
interpreted.

https://databricks.com/
https://databricks.com/
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Databricks provides a visualization interface, based on the tabular result data that 
your SQL session produces. The following screenshot shows some SQL that has been 
run. The resulting data, and the visualization drop-down menu under the data, show 
the possible options.

There is a range of visualization options here, starting with the more familiar Bar 
graphs, and Pie charts through to Quantiles, and Box plots. I'm going to change  
my SQL so that I get more options to plot a graph, which is as follows:

Then, having selected the visualization option; Bar graph, I will select the Plot 
options which will allow me to choose the data for the graph vertices. It will also 
allow me to select a data column to pivot on. The following screenshot shows the 
values that I have chosen.
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The All fields section, from the Plot options display, shows all of the fields available 
for the graph display from the SQL statement result data. The Keys and Values 
sections define the data fields that will form the graph axes. The Series grouping 
field allows me to define a value, education, to pivot on. By selecting Apply, I can 
now create a graph of total balance against a job type, grouped by the education 
type, as the following screenshot shows:
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If I were an accountant trying to determine the factors affecting wage costs, and 
groups of employees within the company that cost the most, I would then see 
the green spike in the previous graph. It seems to indicate that the management 
employees with a tertiary education are the most costly group within the data.  
This can be confirmed by changing the SQL to filter on a tertiary education,  
ordering the result by balance descending, and creating a new bar graph.

Clearly, the management grouping is approximately 14 million. Changing the display 
option to Pie represents the data as a pie graph, with clearly sized segments and colors, 
which visually and clearly present the data, and the most important items.
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I cannot examine all of the display options in this small chapter, but what I did want 
to show is the world map graph that can be created using geographic information. I 
have downloaded the Countries.zip file from http://download.geonames.org/
export/dump/.

This will offer a sizeable data set of around 281 MB compressed, which can be used 
to create a new table. It is displayed as a world map graph. I have also sourced an 
ISO2 to ISO3 set of mapping data, and stored it in a Databricks table called cmap. 
This allows me to convert ISO2 country codes in the data above i.e “AU” to ISO3 
country codes i.e “AUS” (needed by the map graph I am about to use). The first 
column in the data that we will use for the map graph, must contain the geo location 
data. In this instance, the country codes in the ISO 3 format. So from the countries 
data, I will create a count of records for each country by ISO3 code. It is also 
important to ensure that the plot options are set up correctly in terms of keys, and 
values. I have stored the downloaded country-based data in a table called geo1.  
The SQL used is shown in the following screenshot:

http://download.geonames.org/export/dump/
http://download.geonames.org/export/dump/
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As shown previously, this gives two columns of data an ISO3-based value called 
country, and a numeric count called value. Setting the display option to Map creates 
a color-coded world map, shown in the following screenshot:

These graphs show how data can be visually represented in various forms, but what 
can be done if a report is needed for external clients or a dashboard is required?  
All this will be covered in the next section.
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Dashboards
In this section, I will use the data in the table called geo1, which was created in the 
last section for a map display. It was made to create a simple dashboard, and publish 
the dashboard to an external client. From the Workspace menu, I have created a 
new dashboard called dash1. If I edit the controls tab of this dashboard, I can start 
to enter SQL, and create graphs, as shown in the following screenshot. Each graph is 
represented as a view and can be defined via SQL. It can be resized, and configured 
using the plot options as per the individual graphs. Use the Add drop-down menu 
to add a view. The following screenshot shows that view1 is already created, and 
added to dash1. view2 is being defined.
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Once all the views have been added, positioned, and resized, the edit tab can be 
selected to present the finalized dashboard. The following screenshot now shows the 
finalized dashboard called dash1 with three different graphs in different forms, and 
segments of the data:

This is very useful for giving a view of the data, but this dashboard is within the 
Databricks cloud environment. What if I want a customer to see this? There is a 
publish menu option in the top-right part of the dashboard screen, which allows 
you to publish the dashboard. This displays the dashboard under a new publicly 
published URL, as shown in the following screenshot. Note the new URL at the top 
of the following screenshot. You can now share this URL with your customers to 
present results. There are also options to periodically update the display to represent 
updates in the underlying data.
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This gives you an idea of the available display options. All of the reports, and 
dashboards created so far have been based upon SQL, and the data returned.  
In the next section, I will show that reports can be created programmatically  
using a Scala-based Spark RDD, and streamed data.

An RDD-based report
The following Scala-based example uses a user-defined class type called birdType, 
based on the bird name, and the volume encountered. An RDD is created of the bird 
type records, and then converted into a data frame. The data frame is then displayed. 
Databricks allows the displayed data to be presented as a table or using plot options 
as a graph. The following image shows the Scala that is used:
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The bar graph, which this Scala example allows to be created, is shown in the 
following screenshot. The previous Scala code and the following screenshot are less 
important than the fact that this graph has been created programmatically using a 
data frame:

This opens up the possibility of programmatically creating data frames, and 
temporary tables from calculation-based data sources. It also allows for streamed 
data to be processed, and the refresh functionality of dashboards to be used, to 
constantly present a window of streamed data. The next section will examine a 
stream-based example of report generation.

A stream-based report
In this section, I will use Databricks capability to upload a JAR-based library, so that 
we can run a Twitter-based streaming Apache Spark example. In order to do this, 
I must first create a Twitter account, and a sample application at: https://apps.
twitter.com/.

https://apps.twitter.com/
https://apps.twitter.com/
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The following screenshot shows that I have created an application called My example 
app. This is necessary, because I need to create the necessary access keys, and tokens 
to create a Scala-based twitter feed.

If I now select the application name, I can see the application details. This provides 
a menu option, which provides access to the application details, settings, access 
tokens, and permissions. There is also a button which says Test OAuth, this enables 
the access and token keys that will be created to be tested. The following screenshot 
shows the application menu options:
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By selecting the Keys and Access Tokens menu option, the access keys, and the 
access tokens can be generated for the application. Each of the application settings and 
tokens, in this section, have an API key, and a secret key. The top of the form, in the 
following screenshot, shows the consumer key, and consumer secret (of course, the key 
and account details have been removed from these images for security reasons).

There are also options in the previous screenshot to regenerate the keys, and set 
permissions. The next screenshot shows the application access token details. There is 
an access token, and an access token secret. It also has the options to regenerate the 
values, and revoke access:
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Using these four alpha numeric value strings, it is possible to write a Scala example 
to access a Twitter stream. The values that will be needed are as follows:

• Consumer Key
• Consumer Secret
• Access Token
• Access Token Secret

In the following code sample, I will remove my own key values for security reasons. 
You just need to add your own values to get the code to work. I have developed 
my library, and run the code locally to check whether it will work. I did this before 
loading it to Databricks, in order to reduce time, and costs due to debugging.  
My Scala code sample looks like the following code. First, I define a package,  
import Spark streaming, and twitter resources. Then, I define an object class  
called twitter1, and create a main function:

package nz.co.semtechsolutions

import org.apache.spark._
import org.apache.spark.SparkContext._
import org.apache.spark.streaming._
import org.apache.spark.streaming.twitter._
import org.apache.spark.streaming.StreamingContext._
import org.apache.spark.sql._
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import org.apache.spark.sql.types.{StructType,StructField,StringType}

object twitter1 {

  def main(args: Array[String]) {

Next, I create a Spark configuration object using an application name. I have not 
used a Spark master URL, as I will let both, spark-submit, and Databricks assign 
the default URL. From this, I will create a Spark context, and define the Twitter 
consumer, and access values:

    val appName = "Twitter example 1"
    val conf    = new SparkConf()

    conf.setAppName(appName)
    val sc = new SparkContext(conf)

    val consumerKey       = "QQpl8xx"
    val consumerSecret    = "0HFzxx"
    val accessToken       = "323xx"
    val accessTokenSecret = "Ilxx"

I set the Twitter access properties using the System.setProperty call, and use it to 
set the four twitter4j oauth access properties using the access keys, which were 
generated previously:

    System.setProperty("twitter4j.oauth.consumerKey", consumerKey)
    System.setProperty("twitter4j.oauth.consumerSecret",
       consumerSecret)
    System.setProperty("twitter4j.oauth.accessToken", accessToken)
    System.setProperty("twitter4j.oauth.accessTokenSecret",
       accessTokenSecret)

A streaming context is created from the Spark context, which is used to create a 
Twitter-based Spark DStream. The stream is split by spaces to create words, and it 
gets filtered by the words starting with #, to select hash tags:

    val ssc    = new StreamingContext(sc, Seconds(5) )
    val stream = TwitterUtils.createStream(ssc,None)
       .window( Seconds(60) )

    // split out the hash tags from the stream

    val hashTags = stream.flatMap( status => status.getText.split(" 
").filter(_.startsWith("#")))
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The function used below to get a singleton SQL Context is defined at the end of this 
example. So, for each RDD in the stream of hash tags, a single SQL context is created. 
This is used to import implicits which allows an RDD to be implicitly converted to 
a data frame using toDF. A data frame is created from each rdd called dfHashTags, 
and this is then used to register a temporary table. I have then run some SQL against 
the table to get a count of rows. The count of rows is then printed. The horizontal 
banners in the code are just used to enable easier viewing of the output of results 
when using spark-submit:

hashTags.foreachRDD{ rdd =>

val sqlContext = SQLContextSingleton.getInstance(rdd.sparkContext)
import sqlContext.implicits._

val dfHashTags = rdd.map(hashT => hashRow(hashT) ).toDF()

dfHashTags.registerTempTable("tweets")

val tweetcount = sqlContext.sql("select count(*) from tweets")

println("\n============================================")
println(  "============================================\n")

println("Count of hash tags in stream table : "
   + tweetcount.toString )

tweetcount.map(c => "Count of hash tags in stream table : "
   + c(0).toString ).collect().foreach(println)

println("\n============================================")
println(  "============================================\n")

} // for each hash tags rdd

I have also output a list of the top five tweets by volume in my current tweet stream 
data window. You might recognize the following code sample. It is from the Spark 
examples on GitHub. Again, I have used the banner to help with the results that will 
be seen in the output:

val topCounts60 = hashTags.map((_, 1))
   .reduceByKeyAndWindow(_ + _, Seconds(60))
.map{case (topic, count) => (count, topic)}
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.transform(_.sortByKey(false))

topCounts60.foreachRDD(rdd => {

  val topList = rdd.take(5)

  println("\n===========================================")
  println(  "===========================================\n")
  println("\nPopular topics in last 60 seconds (%s total):"
     .format(rdd.count()))
  topList.foreach{case (count, tag) => println("%s (%s tweets)"
     .format(tag, count))}
  println("\n===========================================")
  println(  "==========================================\n")
})

Then, I have used start and awaitTermination, via the Spark stream context ssc, 
to start the application, and keep it running until stopped:

    ssc.start()
    ssc.awaitTermination()

  } // end main
} // end twitter1

Finally, I have defined the singleton SQL context function, and the dataframe case 
class for each row in the hash tag data stream rdd:

object SQLContextSingleton {
  @transient private var instance: SQLContext = null

  def getInstance(sparkContext: SparkContext):
    SQLContext = synchronized {
    if (instance == null) {
      instance = new SQLContext(sparkContext)
    }
    instance
  }
}
case class hashRow( hashTag: String)

I compiled this Scala application code using SBT into a JAR file called data-
bricks_2.10-1.0.jar. My SBT file looks as follows:

[hadoop@hc2nn twitter1]$  cat twitter.sbt

name := "Databricks"
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version := "1.0"

scalaVersion := "2.10.4"

libraryDependencies += "org.apache.spark" % "streaming" % "1.3.1" from 
"file:///usr/local/spark/lib/spark-assembly-1.3.1-hadoop2.3.0.jar"

libraryDependencies += "org.apache.spark" % "sql" % "1.3.1" from 
"file:///usr/local/spark/lib/spark-assembly-1.3.1-hadoop2.3.0.jar"

libraryDependencies += "org.apache.spark.streaming" % "twitter" % "1.3.1" 
from file:///usr/local/spark/lib/spark-examples-1.3.1-hadoop2.3.0.jar

I downloaded the correct version of Apache Spark onto my cluster to match the 
current version used by Databricks at this time (1.3.1). I then installed it under /usr/
local/ on each node in my cluster, and ran it in local mode with spark as the cluster 
manager. My spark-submit script looks as follows:

[hadoop@hc2nn twitter1]$ more run_twitter.bash

#!/bin/bash

SPARK_HOME=/usr/local/spark

SPARK_BIN=$SPARK_HOME/bin

SPARK_SBIN=$SPARK_HOME/sbin

JAR_PATH=/home/hadoop/spark/twitter1/target/scala-2.10/data-bricks_2.10-
1.0.jar

CLASS_VAL=nz.co.semtechsolutions.twitter1

TWITTER_JAR=/usr/local/spark/lib/spark-examples-1.3.1-hadoop2.3.0.jar

cd $SPARK_BIN

./spark-submit \

  --class $CLASS_VAL \

  --master spark://hc2nn.semtech-solutions.co.nz:7077  \

  --executor-memory 100M \

  --total-executor-cores 50 \

  --jars $TWITTER_JAR \

  $JAR_PATH
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I won't go through the details, as it has been covered quite a few times, except to note 
that the class value is now nz.co.semtechsolutions.twitter1. This is the package 
class name, plus the application object class name. So, when I run it locally, I get an 
output as follows:

======================================

Count of hash tags in stream table : 707

======================================

Popular topics in last 60 seconds (704 total):

#KCAMÉXICO (139 tweets)

#BE3 (115 tweets)

#Fallout4 (98 tweets)

#OrianaSabatini (69 tweets)

#MartinaStoessel (61 tweets)

======================================

This tells me that the application library works. It connects to Twitter, creates a data 
stream, is able to filter the data into hash tags, and creates a temporary table using 
the data. So, having created a JAR library for Twitter data streaming, and proving 
that it works, I'm now able to load it onto the Databricks cloud. The following 
screenshot shows that a job has been created from the Databricks cloud jobs menu 
called joblib1. The Set Jar option has been used to upload the JAR library that was 
just created. The full package-based name to the twitter1 application object class 
has been specified.
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The following screenshot shows the joblib1 job, which is ready to run. A  
Spark-based cluster will be created on demand, as soon as the job is executed using 
the Run Now option, under the Active runs section. No scheduling options have 
been specified, although the job can be defined to run at a given date and time.

I selected the Run Now option to start the job run, as shown in the following 
screenshot. This shows that there is now an active run called Run 1 for this job.  
It has been running for six seconds. It was launched manually, and is pending  
while a on-demand cluster is created. By selecting the run name Run 1, I can see 
details about the job, especially the logged output.
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The following screenshot shows an example of the output for Run 1 of joblib1. It 
shows the time started and duration, it also shows the running status and job details 
in terms of class and JAR file. It would have shown class parameters, but there were 
none in this case. It also shows the details of the 54 GB on-demand cluster. More 
importantly, it shows the list of the top five tweet hash tag values.

The following screenshot shows the same job run output window in the Databricks 
cloud instance. But this shows the output from the SQL count(*), showing the 
number of tweet hash tags in the current data stream tweet window from the 
temporary table.
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So, this proves that I can create an application library locally, using Twitter-based 
Apache Spark streaming, and convert the data stream into data frames, and a 
temporary table. It shows that I can reduce costs by developing locally, and then 
port my library to my Databricks cloud. I am aware that I have neither visualized 
the temporary table, nor the DataFrame in this example, into a Databricks graph, 
but time scales did not allow me to do this. Also, another thing that I would have 
done, if I had time, would be to checkpoint, or periodically save the stream to file, 
in case of application failure. However, this topic is covered in Chapter 3, Apache 
Spark Streaming with an example, so you can take a look there if you are interested. 
In the next section, I will examine the Databricks REST API, which will allow better 
integration between your external applications, and your Databricks cloud instance.

REST interface
Databricks provides a REST interface for Spark cluster-based manipulation. It 
allows for cluster management, library management, command execution, and the 
execution of contexts. To be able to access the REST API, the port 34563 must be 
accessible for your instance in the AWS EC2-based Databricks cloud. The following 
Telnet command shows an attempt to access the port 34563 of my Databricks cloud 
instance. Note that the Telnet attempt has been successful:

[hadoop@hc2nn ~]$ telnet dbc-bff687af-08b7.cloud.databricks.com 34563

Trying 52.6.229.109...

Connected to dbc-bff687af-08b7.cloud.databricks.com.

Escape character is '^]'.

If you do not receive a Telnet session, then contact Databricks via help@databricks.
com. The next sections provide examples of REST interface access to your instance on 
the Databricks cloud.
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Configuration
In order to use the interface, I needed to whitelist the IP address that I use to access 
my Databricks cluster instance. This is the IP address of the machine from which I will 
be running the REST API commands. By whitelisting the IP addresses, Databricks can 
ensure that a secure list of users access each Databricks cloud instance.

I contacted Databricks support via the previous help email address, but there is also 
a Whitelist IP Guide, found in the Workspace menu in your cloud instance:

Workspace | databricks_guide | DevOps Utilities | Whitelist IP.

REST API calls can now be submitted to my Databricks cloud instance, from the 
Linux command line, using the Linux curl command. The example general form 
of the curl command is shown next using my Databricks cloud instance username, 
password, cloud instance URL, REST API path, and parameters.

The Databricks forum, and the previous help email address can be used to gain further 
information. The following sections will provide some REST API worked examples:

curl –u  '<user>:<paswd>' <dbc url> -d "<parameters>"

Cluster management
You will still need to create Databricks Spark clusters from your cloud instance user 
interface. The list REST API command is as follows:

/api/1.0/clusters/list

It needs no parameters. This command will provide a list of your clusters, their 
status, IP addresses, names, and the port numbers that they run on. The following 
output shows that the cluster semclust1 is in a pending state in the process of  
being created:

curl -u 'xxxx:yyyyy' 'https://dbc-bff687af-08b7.cloud.databricks.
com:34563/api/1.0/clusters/list'

 [{"id":"0611-014057-waist9","name":"semclust1","status":"Pending","drive
rIp":"","jdbcPort":10000,"numWorkers":0}]

The same REST API command run when the cluster is available, shows that the 
cluster called semcust1 is running, and has one worker:

[{"id":"0611-014057-waist9","name":"semclust1","status":"Running","driver
Ip":"10.0.196.161","jdbcPort":10000,"numWorkers":1}]
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Terminating this cluster, and creating a new one called semclust changes the results 
of the REST API call as shown:

curl -u 'xxxx:yyyy' 'https://dbc-bff687af-08b7.cloud.databricks.
com:34563/api/1.0/clusters/list'

[{"id":"0611-023105-moms10","name":"semclust", "status":"Pending","driver
Ip":"","jdbcPort":10000,"numWorkers":0},

 {"id":"0611-014057-waist9","name":"semclust1","status":"Terminated","dri
verIp":"10.0.196.161","jdbcPort":10000,"numWorkers":1}]

The execution context
With these API calls, you can create, show the status of, or delete an execution 
context. The REST API calls are as follows:

• /api/1.0/contexts/create

• /api/1.0/contexts/status

• /api/1.0/contexts/destroy

In the following REST API call example, submitted via curl, a Scala context has been 
created for the cluster semclust identified by it's cluster ID.

curl -u 'xxxx:yyyy' https://dbc-bff687af-08b7.cloud.databricks.com:34563/
api/1.0/contexts/create -d "language=scala&clusterId=0611-023105-moms10"

The result returned is either an error, or a context ID. The following three example 
return values show an error caused by an invalid URL, and two successful calls 
returning context IDs:

{"error":"ClusterNotFoundException: Cluster not found: semclust1"}

{"id":"8689178710930730361"}

{"id":"2876384417314129043"}

Command execution
These commands allow you to run a command, list a command status, cancel a 
command, or show the results of a command. The REST API calls are as follows:

• /api/1.0/commands/execute
• /api/1.0/commands/cancel
• /api/1.0/commands/status
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The following example shows an SQL statement being run against an existing table 
called cmap. The context must exist, and must be of the SQL type. The parameters 
have been passed on to the HTTP GET call via a –d option. The parameters are 
language, the cluster ID, the context ID, and the SQL command. The command ID is 
returned as follows:

curl -u 'admin:FirmWare1$34' https://dbc-bff687af-08b7.cloud.databricks.
com:34563/api/1.0/commands/execute -d

"language=sql&clusterId=0611-023105-moms10&contextId=7690632266172649068&
command=select count(*) from cmap"

{"id":"d8ec4989557d4a4ea271d991a603a3af"}

Libraries
The REST API also allows for libraries to be uploaded to a cluster and their statuses 
checked. The REST API call paths are as follows:

• /api/1.0/libraries/upload

• /api/1.0/libraries/list

An example is given next of a library upload to the cluster instance called semclust. 
The parameters passed on to the HTTP GET API call via a –d option are the language, 
cluster ID, the library name and URI. A successful call results in the name and URI of 
the library, which is as follows:

curl -u 'xxxx:yyyy' https://dbc-bff687af-08b7.cloud.databricks.com:34563/
api/1.0/libraries/upload

 -d "language=scala&clusterId=0611-023105-moms10&name=lib1&uri=file:///
home/hadoop/spark/ann/target/scala-2.10/a-n-n_2.10-1.0.jar"

{"name":"lib1","uri":"file:///home/hadoop/spark/ann/target/scala-2.10/a-
n-n_2.10-1.0.jar"}

Note that this REST API can change by content and version overtime, so check in the 
Databricks forum, and use the previous help email address to check the API details 
with Databricks support. I do think though that, with these simple example calls, 
it is clear that this REST API can be used to integrate Databricks with the external 
systems, and ETL chains. In the next section, I will provide an overview of data 
movement within the Databricks cloud.
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Moving data
Some of the methods of moving data in and out of Databricks have already been 
explained in Chapter 8, Spark Databricks and Chapter 9, Databricks Visualization.  
What I would like to do in this section is provide an overview of all of the methods 
available for moving data. I will examine the options for tables, workspaces, jobs, 
and Spark code.

The table data
The table import functionality for Databricks cloud allows data to be imported from 
an AWS S3 bucket, from the Databricks file system (DBFS), via JDBC and finally 
from a local file. This section gives an overview of each type of import, starting with 
S3. Importing the table data from AWS S3 requires the AWS Key, the AWS secret 
key, and the S3 bucket name. The following screenshot shows an example. I have 
already provided an example of S3 bucket creation, including adding an access 
policy, so I will not cover it again.
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Once the form details are added, you will be able to browse your S3 bucket for a data 
source. Selecting DBFS as a table data source enables your DBFS folders, and files to 
be browsed. Once a data source is selected, it can display a preview as the following 
screenshot shows:

Selecting JDBC as a table data source allows you to specify a remote SQL database 
as a data source. Just add an access URL, Username, and Password. Also, add some 
SQL to define the table, and columns to source. There is also an option of adding extra 
properties to the call via the Add Property button, as the following screenshot shows:
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Selecting the File option to populate a Databricks cloud instance table, from a file, 
creates a drop down or browse. This upload method was used previously to upload 
CSV-based data into a table. Once the data source is specified, it is possible to specify 
a data separator string or header row, define column names or column types and 
preview the data before creating the table.

Folder import
From either a workspace, or a folder drop-down menu, it is possible to import an 
item. The following screenshot shows a compound image from the Import Item 
menu option:
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This creates a file drop or browse window, which when clicked, allows you to 
browse the local server for the items to import. Selecting the All Supported Types 
option shows that the items to import can be JAR files, dbc archives, Scala, Python,  
or SQL files.

Library import
The following screenshot shows the New Library functionality, from the Workspace 
and folder menu options. This allows an externally created and tested library to be 
loaded to your Databricks cloud instance. The library can be in the form of a Java 
or Scala JAR file, a Python Egg or a Maven coordinate for repository access. In the 
following screenshot, a JAR file is being selected from the local server via a browse 
window. This functionality has been used in this chapter to test stream-based Scala 
programming:

Further reading
Before summing up this chapter, and the last for cloud-based Apache Spark usage  
in Databricks, I wanted to mention some resources for gaining extra information  
on both, Apache Spark, and Databricks. First, there is the Databricks forum  
available at: forums.databricks.com/ for questions, and answers related to  
the use of https://databricks.com/. Also, within your Databricks instance,  
under the Workspace menu option, there will be a Databricks guide that contains  
a lot of useful information. The Apache Spark website at http://spark.apache.
org/ also contains a lot of useful information, as well as module-based API 
documentation. Finally, there is the Spark mailing list, user@spark.apache.org, 
which provides a great deal of Spark usage information, and problem solving.

forums.databricks.com/
https://databricks.com/
http://spark.apache.org/
http://spark.apache.org/
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Summary
Chapter 8, Spark Databricks and Chapter 9, Databricks Visualization, have provided an 
introduction to Databricks in terms of cloud installation, and the use of Notebooks 
and folders. Account and cluster management have been examined. Also, job 
creation, the idea of remote library creation, and importing have been examined.  
The functionality of the Databricks dbutils package, and the Databricks file system 
was explained in Chapter 8, Spark Databricks. Tables, and an example of data import 
was also shown so that SQL can be run against a dataset.

The idea of data visualization has been examined, and a variety of graphs have also 
been created. Dashboards have been made to show how easy it is to both, create, and 
share this kind of data presentation. The Databricks REST interface has been shown 
via worked examples, as an aid to using a Databricks cloud instance remotely, and 
integrating it with external systems. Finally, the data and library movement options 
have been examined in terms of workspace, folders, and tables.

You might ask why I have committed two chapters to a cloud-based service such 
as Databricks. The reason is that Databricks seems to be a logical, cloud-based 
progression, from Apache Spark. It is supported by the people who originally 
developed Apache Spark and although in it's infancy as a service and subject to 
change still capable of providing a Spark cloud based production service. This 
means that a company wishing to use a Spark could use Databricks and grow  
their cloud as demand grows and have access to dynamic Spark-based machine 
learning, graph processing, SQL, streaming and visualization functionality.

As ever, these Databricks chapters have just scratched the surface of the functionality 
available. The next step will be to create an AWS and Databricks account yourself, 
and use the information provided here to gain practical experience.

As this is the last chapter, I will provide my contact details again. I would be 
interested in the ways that people are using Apache Spark. I would be interested in 
the size of clusters you are creating, and the data that you are processing. Are you 
using Spark as a processing engine? Or are you building systems on top of it? You 
can connect with me at LinkedIn at: linkedin.com/profile/view?id=73219349.

You can contact me via my website at semtech-solutions.co.nz or finally, by 
email at: info@semtech-solutions.co.nz.

Finally, I maintain a list of open-source-software-related presentations when I 
have the time. Anyone is free to use, and download them. They are available on 
SlideShare at: http://www.slideshare.net/mikejf12/presentations.

If you have any challenging opportunities or problems, please feel free to contact  
me using the previous details.

linkedin.com/profile/view?id=73219349
http://www.slideshare.net/mikejf12/presentations
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