

Mastering	Machine	Learning	with	R

Table	of	Contents

Mastering	Machine	Learning	with	R

Credits

About	the	Author

About	the	Reviewers

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	subscribe?

Free	access	for	Packt	account	holders

Preface

Machine	learning	defined

Machine	learning	caveats

Failure	to	engineer	features

Overfitting	and	underfitting

Causality

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Downloading	the	color	images	of	this	book

Errata

Piracy

eBooks,	discount	offers,	and	more

Questions

1.	A	Process	for	Success

The	process

Business	understanding

Identify	the	business	objective

Assess	the	situation

Determine	the	analytical	goals

Produce	a	project	plan

Data	understanding

Data	preparation

Modeling

Evaluation

Deployment

Algorithm	flowchart

Summary

2.	Linear	Regression	–	The	Blocking	and	Tackling	of	Machine	Learning

Univariate	linear	regression

Business	understanding

Multivariate	linear	regression

Business	understanding

Data	understanding	and	preparation

Modeling	and	evaluation

Other	linear	model	considerations

Qualitative	feature

Interaction	term

Summary

3.	Logistic	Regression	and	Discriminant	Analysis

Classification	methods	and	linear	regression

Logistic	regression

Business	understanding

Data	understanding	and	preparation

Modeling	and	evaluation

The	logistic	regression	model

Logistic	regression	with	cross-validation

Discriminant	analysis	overview

Discriminant	analysis	application

Model	selection

Summary

4.	Advanced	Feature	Selection	in	Linear	Models

Regularization	in	a	nutshell

Ridge	regression

LASSO

Elastic	net

Business	case

Business	understanding

Data	understanding	and	preparation

Modeling	and	evaluation

Best	subsets

Ridge	regression

LASSO

Elastic	net

Cross-validation	with	glmnet

Model	selection

Summary

5.	More	Classification	Techniques	–	K-Nearest	Neighbors	and	Support	Vector	Machines

K-Nearest	Neighbors

Support	Vector	Machines

Business	case

Business	understanding

Data	understanding	and	preparation

Modeling	and	evaluation

KNN	modeling

SVM	modeling

Model	selection

Feature	selection	for	SVMs

Summary

6.	Classification	and	Regression	Trees

Introduction

An	overview	of	the	techniques

Regression	trees

Classification	trees

Random	forest

Gradient	boosting

Business	case

Modeling	and	evaluation

Regression	tree

Classification	tree

Random	forest	regression

Random	forest	classification

Gradient	boosting	regression

Gradient	boosting	classification

Model	selection

Summary

7.	Neural	Networks

Neural	network

Deep	learning,	a	not-so-deep	overview

Business	understanding

Data	understanding	and	preparation

Modeling	and	evaluation

An	example	of	deep	learning

H2O	background

Data	preparation	and	uploading	it	to	H2O

Create	train	and	test	datasets

Modeling

Summary

8.	Cluster	Analysis

Hierarchical	clustering

Distance	calculations

K-means	clustering

Gower	and	partitioning	around	medoids

Gower

PAM

Business	understanding

Data	understanding	and	preparation

Modeling	and	evaluation

Hierarchical	clustering

K-means	clustering

Clustering	with	mixed	data

Summary

9.	Principal	Components	Analysis

An	overview	of	the	principal	components

Rotation

Business	understanding

Data	understanding	and	preparation

Modeling	and	evaluation

Component	extraction

Orthogonal	rotation	and	interpretation

Creating	factor	scores	from	the	components

Regression	analysis

Summary

10.	Market	Basket	Analysis	and	Recommendation	Engines

An	overview	of	a	market	basket	analysis

Business	understanding

Data	understanding	and	preparation

Modeling	and	evaluation

An	overview	of	a	recommendation	engine

User-based	collaborative	filtering

Item-based	collaborative	filtering

Singular	value	decomposition	and	principal	components	analysis

Business	understanding	and	recommendations

Data	understanding,	preparation,	and	recommendations

Modeling,	evaluation,	and	recommendations

Summary

11.	Time	Series	and	Causality

Univariate	time	series	analysis

Bivariate	regression

Granger	causality

Business	understanding

Data	understanding	and	preparation

Modeling	and	evaluation

Univariate	time	series	forecasting

Time	series	regression

Examining	the	causality

Summary

12.	Text	Mining

Text	mining	framework	and	methods

Topic	models

Other	quantitative	analyses

Business	understanding

Data	understanding	and	preparation

Modeling	and	evaluation

Word	frequency	and	topic	models

Additional	quantitative	analysis

Summary

A.	R	Fundamentals

Introduction

Getting	R	up	and	running

Using	R

Data	frames	and	matrices

Summary	stats

Installing	and	loading	the	R	packages

Summary

Index

Mastering	Machine	Learning	with	R

Mastering	Machine	Learning	with	R
Copyright	©	2015	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	October	2015

Production	reference:	1231015

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78398-452-7

www.packtpub.com

http://www.packtpub.com

Credits
Author

Cory	Lesmeister

Reviewers

Vikram	Dhillon

Miro	Kopecky

Pavan	Narayanan

Doug	Ortiz

Shivani	Rao,	PhD

Commissioning	Editor

Kartikey	Pandey

Acquisition	Editor

Nadeem	N.	Bagban

Content	Development	Editor

Siddhesh	Salvi

Technical	Editor

Suwarna	Rajput

Copy	Editor

Tasneem	Fatehi

Project	Coordinator

Nidhi	Joshi

Proofreader

Safis	Editing

Indexer

Mariammal	Chettiyar

Graphics

Disha	Haria

Production	Coordinator

Nilesh	Mohite

Cover	Work

Nilesh	Mohite

About	the	Author
Cory	Lesmeister	currently	works	as	an	advanced	analytics	consultant	for	Clarity	Solution
Group,	where	he	applies	the	methods	in	this	book	to	solve	complex	problems	and	provide
actionable	insights.	Cory	spent	16	years	at	Eli	Lilly	and	Company	in	sales,	market
research,	Lean	Six	Sigma,	marketing	analytics,	and	new	product	forecasting.	A	former
U.S.	Army	Reservist,	Cory	was	in	Baghdad,	Iraq,	in	2009	as	a	strategic	advisor	to	the
29,000-person	Iraqi	oil	police,	where	he	supplied	equipment	to	help	the	country	secure
and	protect	its	oil	infrastructure.	An	aviation	aficionado,	Cory	has	a	BBA	in	aviation
administration	from	the	University	of	North	Dakota	and	a	commercial	helicopter	license.
Cory	lives	in	Carmel,	IN,	with	his	wife	and	their	two	teenage	daughters.

About	the	Reviewers
Vikram	Dhillon	is	a	software	developer,	bioinformatics	researcher,	and	software	coach	at
the	Blackstone	LaunchPad	in	the	University	of	Central	Florida.	He	has	been	working	on
his	own	start-up	involving	healthcare	data	security.	He	lives	in	Orlando	and	regularly
attends	developer	meetups	and	hackathons.	He	enjoys	spending	his	spare	time	reading
about	new	technologies	such	as	the	blockchain	and	developing	tutorials	for	machine
learning	in	game	design.	He	has	been	involved	in	open	source	projects	for	over	5	years
and	writes	about	technology	and	start-ups	at	opsbug.com.

Miro	Kopecky	is	a	passionate	JVM	enthusiast	from	the	first	moment	he	joined	Sun
Microsystems	in	2002.	Miro	truly	believes	in	a	distributed	system	design,	concurrency,
and	parallel	computing,	which	means	pushing	the	system’s	performance	to	its	limits
without	losing	reliability	and	stability.	He	has	been	working	on	research	of	new	data
mining	techniques	in	neurological	signal	analysis	during	his	PhD	studies.	Miro’s	hobbies
include	autonomic	system	development	and	robotics.

I	would	like	to	thank	my	family	and	my	girlfriend,	Tanja,	for	their	support	during	the
reviewing	of	this	book.

Pavan	Narayanan	is	an	applied	mathematician	and	is	experienced	in	mathematical
programming,	analytics,	and	web	development.	He	has	published	and	presented	papers	in
algorithmic	research	to	the	Transportation	Research	Board,	Washington	DC	and	SUNY
Research	Conference,	Albany,	NY.	An	avid	blogger	at
https://datasciencehacks.wordpress.com,	his	interests	are	exploring	problem	solving
techniques—from	industrial	mathematics	to	machine	learning.	Pavan	can	be	contacted	at
<pavan.narayanan@gmail.com>.

He	has	worked	on	books	such	as	Apache	mahout	essentials,	Learning	apache	mahout,	and
Real-time	applications	development	with	Storm	and	Petrel.

I	would	like	to	thank	my	family	and	God	Almighty	for	giving	me	strength	and	endurance
and	the	folks	at	Packt	Publishing	for	the	opportunity	to	work	on	this	book.

Doug	Ortiz	is	an	independent	consultant	who	has	been	architecting,	developing,	and
integrating	enterprise	solutions	throughout	his	whole	career.	Organizations	that	leverage
his	skillset	have	been	able	to	rediscover	and	reuse	their	underutilized	data	via	existing	and
emerging	technologies	such	as	Microsoft	BI	Stack,	Hadoop,	NOSQL	Databases,
SharePoint,	Hadoop,	and	related	toolsets	and	technologies.

Doug	has	experience	in	integrating	multiple	platforms	and	products.	He	has	helped
organizations	gain	a	deeper	understanding	and	value	of	their	current	investments	in	data
and	existing	resources	turning	them	into	useful	sources	of	information.	He	has	improved,
salvaged,	and	architected	projects	by	utilizing	unique	and	innovative	techniques.

His	hobbies	include	yoga	and	scuba	diving.	He	is	the	founder	of	Illustris,	LLC,	and	can	be
contacted	at	<dougortiz@illustris.org>.

Shivani	Rao,	PhD,	is	a	machine	learning	engineer	based	in	San	Francisco	and	Bay	Area

http://opsbug.com
https://datasciencehacks.wordpress.com
mailto:pavan.narayanan@gmail.com
mailto:dougortiz@illustris.org

working	in	areas	of	search,	analytics,	and	machine	learning.	Her	background	and	areas	of
interest	are	in	the	field	of	computer	vision,	image	processing,	applied	machine	learning,
data	mining,	and	information	retrieval.	She	has	also	accrued	industry	experience	in
companies	such	as	Nvidia	,	Google,	and	Box.	Shivani	holds	a	PhD	from	the	Computer
Engineering	Department	of	Purdue	University	spanning	areas	of	machine	learning,
information	retrieval,	and	software	engineering.	Prior	to	that,	she	obtained	a	masters	from
the	Computer	Science	and	Engineering	Department	of	the	Indian	Institute	of	Technology
(IIT),	Madras,	majoring	in	Computer	Vision	and	Image	Processing.

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and
more
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Free	access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	9	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

http://www.PacktPub.com

Preface
	 “He	who	defends	everything,	defends	nothing.” 	

	 —Frederick	the	Great

Machine	learning	is	a	very	broad	topic.	The	following	quote	sums	it	up	nicely:	The	first
problem	facing	you	is	the	bewildering	variety	of	learning	algorithms	available.	Which	one
to	use?	There	are	literally	thousands	available,	and	hundreds	more	are	published	each
year.	(Domingo,	P.,	2012.)	It	would	therefore	be	irresponsible	to	try	and	cover	everything
in	the	chapters	that	follow	because,	to	paraphrase	Frederick	the	Great,	we	would	achieve
nothing.

With	this	constraint	in	mind,	I	hope	to	provide	a	solid	foundation	of	algorithms	and
business	considerations	that	will	allow	the	reader	to	walk	away	and,	first	of	all,	take	on
any	machine	learning	tasks	with	complete	confidence,	and	secondly,	be	able	to	help
themselves	in	figuring	out	other	algorithms	and	topics.	Essentially,	if	this	book
significantly	helps	you	to	help	yourself,	then	I	would	consider	this	a	victory.	Don’t	think
of	this	book	as	a	destination	but	rather,	as	a	path	to	self-discovery.

The	world	of	R	can	be	as	bewildering	as	the	world	of	machine	learning!	There	is
seemingly	an	endless	number	of	R	packages	with	a	plethora	of	blogs,	websites,
discussions,	and	papers	of	various	quality	and	complexity	from	the	community	that
supports	R.	This	is	a	great	reservoir	of	information	and	probably	R’s	greatest	strength,	but
I’ve	always	believed	that	an	entity’s	greatest	strength	can	also	be	its	greatest	weakness.
R’s	vast	community	of	knowledge	can	quickly	overwhelm	and/or	sidetrack	you	and	your
efforts.	Show	me	a	problem	and	give	me	ten	different	R	programmers	and	I’ll	show	you
ten	different	ways	the	code	is	written	to	solve	the	problem.	As	I’ve	written	each	chapter,
I’ve	endeavored	to	capture	the	critical	elements	that	can	assist	you	in	using	R	to
understand,	prepare,	and	model	the	data.	I	am	no	R	programming	expert	by	any	stretch	of
the	imagination,	but	again,	I	like	to	think	that	I	can	provide	a	solid	foundation	herein.

Another	thing	that	lit	a	fire	under	me	to	write	this	book	was	an	incident	that	happened	in
the	hallways	of	a	former	employer	a	couple	of	years	ago.	My	team	had	an	IT	contractor	to
support	the	management	of	our	databases.	As	we	were	walking	and	chatting	about	big	data
and	the	like,	he	mentioned	that	he	had	bought	a	book	about	machine	learning	with	R	and
another	about	machine	learning	with	Python.	He	stated	that	he	could	do	all	the
programming,	but	all	of	the	statistics	made	absolutely	no	sense	to	him.	I	have	always	kept
this	conversation	at	the	back	of	my	mind	throughout	the	writing	process.	It	has	been	a	very
challenging	task	to	balance	the	technical	and	theoretical	with	the	practical.	One	could,	and
probably	someone	has,	turned	the	theory	of	each	chapter	to	its	own	book.	I	used	a
heuristic	of	sorts	to	aid	me	in	deciding	whether	a	formula	or	technical	aspect	was	in	the
scope,	which	was	would	this	help	me	or	the	readers	in	the	discussions	with	team	members
and	business	leaders?	If	I	felt	it	might	help,	I	would	strive	to	provide	the	necessary	details.

I	also	made	a	conscious	effort	to	keep	the	datasets	used	in	the	practical	exercises	large
enough	to	be	interesting	but	small	enough	to	allow	you	to	gain	insight	without	becoming

overwhelmed.	This	book	is	not	about	big	data,	but	make	no	mistake	about	it,	the	methods
and	concepts	that	we	will	discuss	can	be	scaled	to	big	data.

In	short,	this	book	will	appeal	to	a	broad	group	of	individuals,	from	IT	experts	seeking	to
understand	and	interpret	machine	learning	algorithms	to	statistical	gurus	desiring	to
incorporate	the	power	of	R	into	their	analysis.	However,	even	those	that	are	well-versed	in
both	IT	and	statistics—experts	if	you	will—should	be	able	to	pick	up	quite	a	few	tips	and
tricks	to	assist	them	in	their	efforts.

Machine	learning	defined
Machine	learning	is	everywhere!	It	is	used	in	web	search,	spam	filters,	recommendation
engines,	medical	diagnostics,	ad	placement,	fraud	detection,	credit	scoring,	and	I	fear	in
these	autonomous	cars	that	I	hear	so	much	about.	The	roads	are	dangerous	enough	now;
the	idea	of	cars	with	artificial	intelligence,	requiring	CTRL	+	ALT	+	DEL	every	100	miles,
aimlessly	roaming	the	highways	and	byways	is	just	too	terrifying	to	contemplate.	But,	I
digress.

It	is	always	important	to	properly	define	what	one	is	talking	about	and	machine	learning	is
no	different.	The	website,	machinelearningmastery.com,	has	a	full	page	dedicated	to	this
question,	which	provides	some	excellent	background	material.	It	also	offers	a	succinct
one-liner	that	is	worth	adopting	as	an	operational	definition:	machine	learning	is	the
training	of	a	model	from	data	that	generalizes	a	decision	against	a	performance	measure.

With	this	definition	in	mind,	we	will	require	a	few	things	in	order	to	perform	machine
learning.	The	first	is	that	we	have	the	data.	The	second	is	that	a	pattern	actually	exists,
which	is	to	say	that	with	known	input	values	from	our	training	data,	we	can	make	a
prediction	or	decision	based	on	data	that	we	did	not	use	to	train	the	model.	This	is	the
generalization	in	machine	learning.	Third,	we	need	some	sort	of	performance	measure	to
see	how	well	we	are	learning/generalizing,	for	example,	the	mean	squared	error,	accuracy,
and	others.	We	will	look	at	a	number	of	performance	measures	throughout	the	book.

One	of	the	things	that	I	find	interesting	in	the	world	of	machine	learning	are	the	changes	in
the	language	to	describe	the	data	and	process.	As	such,	I	can’t	help	but	include	this	snippet
from	the	philosopher,	George	Carlin:

	

“I	wasn’t	notified	of	this.	No	one	asked	me	if	I	agreed	with	it.	It	just	happened.	Toilet	paper	became	bathroom	tissue.
Sneakers	became	running	shoes.	False	teeth	became	dental	appliances.	Medicine	became	medication.	Information
became	directory	assistance.	The	dump	became	the	landfill.	Car	crashes	became	automobile	accidents.	Partly
cloudy	became	partly	sunny.	Motels	became	motor	lodges.	House	trailers	became	mobile	homes.	Used	cars	became
previously	owned	transportation.	Room	service	became	guest-room	dining,	and	constipation	became	occasional
irregularity.

	

	 —Philosopher	and	Comedian,	George	Carlin

I	cut	my	teeth	on	datasets	that	had	dependent	and	independent	variables.	I	would	build	a
model	with	the	goal	of	trying	to	find	the	best	fit.	Now,	I	have	labeled	the	instances	and
input	features	that	require	engineering,	which	will	become	the	feature	space	that	I	use	to
learn	a	model.	When	all	was	said	and	done,	I	used	to	look	at	my	model	parameters;	now,	I
look	at	weights.

The	bottom	line	is	that	I	still	use	these	terms	interchangeably	and	probably	always	will.
Machine	learning	purists	may	curse	me,	but	I	don’t	believe	I	have	caused	any	harm	to	life
or	limb.

http://machinelearningmastery.com

Machine	learning	caveats
Before	we	pop	the	cork	on	the	champagne	bottle	and	rest	easy	that	machine	learning	will
cure	all	of	our	societal	ills,	we	need	to	look	at	a	few	important	considerations—caveats	if
you	will—about	machine	learning.	As	you	practice	your	craft,	always	keep	these	at	the
back	of	your	mind.	It	will	help	you	steer	clear	of	some	painful	traps.

Failure	to	engineer	features
Just	throwing	data	at	the	problem	is	not	enough;	no	matter	how	much	of	it	exists.	This
may	seem	obvious,	but	I	have	personally	experienced,	and	I	know	of	others	who	have	run
into	this	problem,	where	business	leaders	assumed	that	providing	vast	amounts	of	raw	data
combined	with	the	supposed	magic	of	machine	learning	would	solve	all	the	problems.
This	is	one	of	the	reasons	the	first	chapter	is	focused	on	a	process	that	properly	frames	the
business	problem	and	leader’s	expectations.

Unless	you	have	data	from	a	designed	experiment	or	it	has	been	already	preprocessed,
raw,	observational	data	will	probably	never	be	in	a	form	that	you	can	begin	modeling.	In
any	project,	very	little	time	is	actually	spent	on	building	models.	The	most	time-
consuming	activities	will	be	on	the	engineering	features:	gathering,	integrating,	cleaning,
and	understanding	the	data.	In	the	practical	exercises	in	this	book,	I	would	estimate	that	90
percent	of	my	time	was	spent	on	coding	these	activities	versus	modeling.	This,	in	an
environment	where	most	of	the	datasets	are	small	and	easily	accessed.	In	my	current	role,
99	percent	of	the	time	in	SAS	is	spent	using	PROC	SQL	and	only	1	percent	with	things
such	as	PROC	GENMOD,	PROC	LOGISTIC,	or	Enterprise	Miner.

When	it	comes	to	feature	engineering,	I	fall	in	the	camp	of	those	that	say	there	is	no
substitute	for	domain	expertise.	There	seems	to	be	another	camp	that	believes	machine
learning	algorithms	can	indeed	automate	most	of	the	feature	selection/engineering	tasks
and	several	start-ups	are	out	to	prove	this	very	thing.	(I	have	had	discussions	with	a	couple
of	individuals	that	purport	their	methodology	does	exactly	that	but	they	were	closely
guarded	secrets.)	Let’s	say	that	you	have	several	hundred	candidate	features	(independent
variables).	A	way	to	perform	automated	feature	selection	is	to	compute	the	univariate
information	value.	However,	a	feature	that	appears	totally	irrelevant	in	isolation	can
become	important	in	combination	with	another	feature.	So,	to	get	around	this,	you	create
numerous	combinations	of	the	features.	This	has	potential	problems	of	its	own	as	you	may
have	a	dramatically	increased	computational	time	and	cost	and/or	overfit	your	model.
Speaking	of	overfitting,	let’s	pursue	it	as	the	next	caveat.

Overfitting	and	underfitting
Overfitting	manifests	itself	when	you	have	a	model	that	does	not	generalize	well.	Say	that
you	achieve	a	classification	accuracy	rate	on	your	training	data	of	95	percent,	but	when
you	test	its	accuracy	on	another	set	of	data,	the	accuracy	falls	to	50	percent.	This	would	be
considered	a	high	variance.	If	we	had	a	case	of	60	percent	accuracy	on	the	train	data	and
59	percent	accuracy	on	the	test	data,	we	now	have	a	low	variance	but	a	high	bias.	This
bias-variance	trade-off	is	fundamental	to	machine	learning	and	model	complexity.

Let’s	nail	down	the	definitions.	A	bias	error	is	the	difference	between	the	value	or	class
that	we	predict	and	the	actual	value	or	class	in	our	training	data.	A	variance	error	is	the
amount	by	which	the	predicted	value	or	class	in	our	training	set	differs	from	the	predicted
value	or	class	versus	the	other	datasets.	Of	course,	our	goal	is	to	minimize	the	total	error
(bias	+	variance),	but	how	does	that	relate	to	model	complexity?

For	the	sake	of	argument,	let’s	say	that	we	are	trying	to	predict	a	value	and	we	build	a
simple	linear	model	with	our	train	data.	As	this	is	a	simple	model,	we	could	expect	a
high	bias,	while	on	the	other	hand,	it	would	have	a	low	variance	between	the	train	and
test	data.	Now,	let’s	try	including	polynomial	terms	in	the	linear	model	or	build	decision
trees.	The	models	are	more	complex	and	should	reduce	the	bias.	However,	as	the	bias
decreases,	the	variance,	at	some	point,	begins	to	expand	and	generalizability	is
diminished.	You	can	see	this	phenomena	in	the	following	illustration.	Any	machine
learning	effort	should	strive	to	achieve	the	optimal	trade-off	between	the	bias	and
variance,	which	is	easier	said	than	done.

We	will	look	at	methods	to	combat	this	problem	and	optimize	the	model	complexity,
including	cross-validation	(Chapter	2,	Linear	Regression	-	The	Blocking	and	Tackling	of

Machine	Learning.	through	Chapter	7,	Neural	Networks)	and	regularization	(Chapter	4,
Advanced	Feature	Selection	in	Linear	Models).

Causality
It	seems	a	safe	assumption	that	the	proverbial	correlation	does	not	equal	causation—a
dead	horse	has	been	sufficiently	beaten.	Or	has	it?	It	is	quite	apparent	that	correlation-to-
causation	leaps	of	faith	are	still	an	issue	in	the	real	world.	As	a	result,	we	must	remember
and	convey	with	conviction	that	these	algorithms	are	based	on	observational	and	not
experimental	data.	Regardless	of	what	correlations	we	find	via	machine	learning,	nothing
can	trump	a	proper	experimental	design.	As	Professor	Domingos	states:

	 If	we	find	that	beer	and	diapers	are	often	bought	together	at	the	supermarket,	then	perhaps	putting	beer	next	to	the
diaper	section	will	increase	sales.	But	short	of	actually	doing	the	experiment	it’s	difficult	to	tell.”

	

	 —Domingos,	P.,	2012)

In	Chapter	11,	Time	Series	and	Causality,	we	will	touch	on	a	technique	borrowed	from
econometrics	to	explore	causality	in	time	series,	tackling	an	emotionally	and	politically
sensitive	issue.

Enough	of	my	waxing	philosophically;	let’s	get	started	with	using	R	to	master	machine
learning!	If	you	are	a	complete	novice	to	the	R	programming	language,	then	I	would
recommend	that	you	skip	ahead	and	read	the	appendix	on	using	R.	Regardless	of	where
you	start	reading,	remember	that	this	book	is	about	the	journey	to	master	machine	learning
and	not	a	destination	in	and	of	itself.	As	long	as	we	are	working	in	this	field,	there	will
always	be	something	new	and	exciting	to	explore.	As	such,	I	look	forward	to	receiving
your	comments,	thoughts,	suggestions,	complaints,	and	grievances.	As	per	the	words	of
the	Sioux	warriors:	Hoka-hey!	(Loosely	translated	it	means	forward	together)

What	this	book	covers
Chapter	1,	A	Process	for	Success	-	shows	that	machine	learning	is	more	than	just	writing
code.	In	order	for	your	efforts	to	achieve	a	lasting	change	in	the	industry,	a	proven	process
will	be	presented	that	will	set	you	up	for	success.

Chapter	2,	Linear	Regression	-	The	Blocking	and	Tackling	of	Machine	Learning,	provides
you	with	a	solid	foundation	before	learning	advanced	methods	such	as	Support	Vector
Machines	and	Gradient	Boosting.	No	more	solid	foundation	exists	than	the	least	squares
linear	regression.

Chapter	3,	Logistic	Regression	and	Discriminant	Analysis,	presents	a	discussion	on	how
logistic	regression	and	discriminant	analysis	is	used	in	order	to	predict	a	categorical
outcome.

Chapter	4,	Advanced	Feature	Selection	in	Linear	Models,	shows	regularization	techniques
to	help	improve	the	predictive	ability	and	interpretability	as	feature	selection	is	a	critical
and	often	extremely	challenging	component	of	machine	learning.

Chapter	5,	More	Classification	Techniques	–	K-Nearest	Neighbors	and	Support	Vector
Machines,	begins	the	exploration	of	the	more	advanced	and	nonlinear	techniques.	The	real
power	of	machine	learning	will	be	unveiled.

Chapter	6,	Classification	and	Regression	Trees,	offers	some	of	the	most	powerful
predictive	abilities	of	all	the	machine	learning	techniques,	especially	for	classification
problems.	Single	decision	trees	will	be	discussed	along	with	the	more	advanced	random
forests	and	boosted	trees.

Chapter	7,	Neural	Networks,	shows	some	of	the	most	exciting	machine	learning	methods
currently	used.	Inspired	by	how	the	brain	works,	neural	networks	and	their	more	recent
and	advanced	offshoot,	Deep	Learning,	will	be	put	to	the	test.

Chapter	8,	Cluster	Analysis,	covers	unsupervised	learning.	Instead	of	trying	to	make	a
prediction,	the	goal	will	focus	on	uncovering	the	latent	structure	of	observations.	Three
clustering	methods	will	be	discussed:	hierarchical,	k-means,	and	partitioning	around
medoids.

Chapter	9,	Principal	Components	Analysis,	continues	the	examination	of	unsupervised
learning	with	principal	components	analysis,	which	is	used	to	uncover	the	latent	structure
of	the	features.	Once	this	is	done,	the	new	features	will	be	used	in	a	supervised	learning
exercise.

Chapter	10,	Market	Basket	Analysis	and	Recommendation	Engines,	presents	the
techniques	that	are	used	to	increase	sales,	detect	fraud,	and	improve	health.	You	will	learn
about	market	basket	analysis	of	purchasing	habits	at	a	grocery	store	and	then	dig	into
building	a	recommendation	engine	on	website	reviews.

Chapter	11,	Time	Series	and	Causality,	discusses	univariate	forecast	models,	bivariate
regression,	and	Granger	causality	models,	including	an	analysis	of	carbon	emissions	and
climate	change.

Chapter	12,	Text	Mining,	demonstrates	a	framework	for	quantitative	text	mining	and	the
building	of	topic	models.	Along	with	time	series,	the	world	of	data	contains	vast	volumes
of	data	in	a	textual	format.	With	so	much	data	as	text,	it	is	critically	important	to
understand	how	to	manipulate,	code,	and	analyze	the	data	in	order	to	provide	meaningful
insights.

R	Fundamentals,	shows	the	syntax	functions	and	capabilities	of	R.	R	can	have	a	steep
learning	curve,	but	once	you	learn	it,	you	will	realize	just	how	powerful	it	is	for	data
preparation	and	machine	learning.

What	you	need	for	this	book
As	R	is	a	free	and	open	source	software,	you	will	only	need	to	download	and	install	it
from	https://www.r-project.org/.	Although	it	is	not	mandatory,	it	is	highly	recommended
that	you	download	IDE	and	RStudio	from	https://www.rstudio.com/products/RStudio/.

https://www.r-project.org/
https://www.rstudio.com/products/RStudio/

Who	this	book	is	for
If	you	want	to	learn	how	to	use	R’s	machine	learning	capabilities	in	order	to	solve
complex	business	problems,	then	this	book	is	for	you.	An	experience	with	R	and	a
working	knowledge	of	basic	statistical	or	machine	learning	will	prove	helpful.

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds
of	information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows.	Any
command-line	input	or	output	is	written	as	follows:

cor(x1,	y1)	#correlation	of	x1	and	y1

[1]	0.8164205

>	cor(x2,	y1)	#correlation	of	x2	and	y2

[1]	0.8164205

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,
for	example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	Clicking	the	Next
button	moves	you	to	the	next	screen.

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us
develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the
book’s	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

http://www.packtpub.com
http://www.packtpub.com/support

Downloading	the	color	images	of	this	book
We	also	provide	you	with	a	PDF	file	that	has	color	images	of	the	screenshots/diagrams
used	in	this	book.	The	color	images	will	help	you	better	understand	the	changes	in	the
output.	You	can	download	this	file	from
https://www.packtpub.com/sites/default/files/downloads/4527OS_ColouredImages.pdf.

https://www.packtpub.com/sites/default/files/downloads/4527OS_ColouredImages.pdf

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

eBooks,	discount	offers,	and	more
Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<customercare@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters,	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

http://www.PacktPub.com
mailto:customercare@packtpub.com
http://www.PacktPub.com

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

mailto:questions@packtpub.com

Chapter	1.	A	Process	for	Success
	 “If	you	don’t	know	where	you	are	going,	any	road	will	get	you	there.” 	

	 —Robert	Carrol

	 “If	you	can’t	describe	what	you	are	doing	as	a	process,	you	don’t	know	what	you’re	doing.” 	

	 —W.	Edwards	Deming

At	first	glance,	this	chapter	may	seem	to	have	nothing	to	do	with	machine	learning,	but	it
has	everything	to	do	with	machine	learning	and	specifically,	its	implementation	and
making	the	changes	happen.	The	smartest	people,	best	software,	and	best	algorithm	do	not
guarantee	success,	no	matter	how	it	is	defined.

In	most—if	not	all—projects,	the	key	to	successfully	solving	problems	or	improving
decision-making	is	not	the	algorithm,	but	the	soft,	more	qualitative	skills	of
communication	and	influence.	The	problem	many	of	us	have	with	this	is	that	it	is	hard	to
quantify	how	effective	one	is	around	these	skillsets.	It	is	probably	safe	to	say	that	many	of
us	ended	up	in	this	position	because	of	a	desire	to	avoid	it.	After	all,	the	highly	successful
TV	comedy	The	Big	Bang	Theory	was	built	on	this	premise.	Therefore,	this	chapter	is	to
set	you	up	for	success.	The	intent	is	to	provide	a	process,	a	flexible	process	no	less,	where
you	can	become	a	Change	Agent:	a	person	who	can	influence	and	turn	their	insights	into
action	without	positional	power.	We	will	focus	on	Cross-Industry	Standard	Process	for
Data	Mining	(CRISP-DM).	It	is	probably	the	most	well-known	and	respected	of	any
processes	for	analytical	projects.	Even	if	you	use	another	industry	process	or	something
proprietary,	there	should	still	be	a	few	gems	in	this	chapter	that	you	can	take	away.

I	will	not	hesitate	to	say	that	this	all	is	easier	said	than	done,	and	without	question,	I’m
guilty	of	every	sin	by	both	commission	and	omission	that	will	be	discussed	in	this	chapter.
With	skill	and	some	luck,	you	can	avoid	the	many	physical	and	emotional	scars	I’ve
picked	up	over	the	last	10	and	a	half	years.

Finally,	we	will	also	have	a	look	at	a	flow	chart	(a	cheat	sheet)	that	you	can	use	to	help
you	identify	what	methodology	to	apply	to	the	problem	at	hand.

The	process
The	CRISP-DM	process	was	designed	specifically	for	the	data	mining.	However,	it	is
flexible	and	thorough	enough	that	it	can	be	applied	to	any	analytical	project,	whether	it	is
predictive	analytics,	data	science,	or	machine	learning.	Don’t	be	intimidated	by	the
numerous	list	of	tasks	as	you	can	apply	your	judgment	to	the	process	and	adapt	it	for	any
real-world	situation.	The	following	figure	provides	a	visual	representation	of	the	process
and	shows	the	feedback	loops,	which	facilitate	its	flexibility:

Figure	from	CRISP-DM	1.0,	Step-by-step	data	mining	guide

The	process	has	the	following	six	phases:

Business	Understanding
Data	Understanding
Data	Preparation
Modeling
Evaluation
Deployment

For	an	in-depth	review	of	the	entire	process	with	all	of	its	tasks	and	subtasks,	you	can
examine	the	paper	by	SPSS,	CRISP-DM	1.0,	step-by-step	data	mining	guide,	available	at
https://the-modeling-agency.com/crisp-dm.pdf.

https://the-modeling-agency.com/crisp-dm.pdf

I	will	discuss	each	of	the	steps	in	the	process,	covering	the	important	tasks.	However,	it
will	not	be	in	the	detailed	level	of	the	guide,	but	more	high	level.	We	will	not	skip	any	of
the	critical	details	but	focus	more	on	the	techniques	that	one	can	apply	to	the	tasks.	Keep
in	mind	that	the	process	steps	will	be	used	in	the	later	chapters	as	a	framework	in	the
actual	application	of	the	machine	learning	methods	in	general	and	the	R	code	specifically.

Business	understanding
One	cannot	underestimate	how	important	this	first	step	of	the	process	is	in	achieving
success.	It	is	the	foundational	step	and	failure	or	success	here	will	likely	determine	failure
or	success	for	the	rest	of	the	project.	The	purpose	of	this	step	is	to	identify	the
requirements	of	the	business	so	that	you	can	translate	them	into	analytical	objectives.	It
has	the	following	four	tasks:

1.	 Identify	the	business	objective
2.	 Assess	the	situation
3.	 Determine	the	analytical	goals
4.	 Produce	a	project	plan

Identify	the	business	objective
The	key	to	this	task	is	to	identify	the	goals	of	the	organization	and	frame	the	problem.	An
effective	question	to	ask	is,	what	are	we	going	to	do	different?	This	may	seem	like	a
benign	question,	but	it	can	really	challenge	people	to	ponder	what	they	need	from	an
analytical	perspective	and	it	can	get	to	the	root	of	the	decision	that	needs	to	be	made.	It
can	also	prevent	you	from	going	out	and	doing	a	lot	of	unnecessary	work	on	some	fishing
expedition.	As	such,	the	key	for	you	is	to	identify	the	decision.	A	working	definition	of	a
decision	can	be	put	forward	to	the	team	as	the	irrevocable	choice	to	commit	or	not	commit
the	resources.	Additionally,	remember	that	the	choice	to	do	nothing	different	is	indeed	a
decision.

This	does	not	mean	that	a	project	should	not	be	launched	if	the	choices	are	not	absolutely
clear.	There	will	be	times	when	the	problem	is	not	or	cannot	be	well-defined;	to
paraphrase	former	Defense	Secretary	Donald	Rumsfeld,	there	are	known	–	unknowns.
Indeed,	there	will	probably	be	many	times	when	the	problem	is	ill-defined	and	the
project’s	main	goal	is	to	further	the	understanding	of	the	problem	and	generate
hypotheses;	again	calling	on	Secretary	Rumsfeld,	unknown	–	unknowns,	which	means	that
you	don’t	know	what	you	don’t	know.	However,	in	ill-defined	problems,	one	should	go
forward	with	an	understanding	of	what	will	happen	next	in	terms	of	resource	commitment
based	on	the	various	outcomes	of	hypothesis	exploration.

Another	thing	to	consider	in	this	task	is	to	manage	expectations.	There	is	no	such	thing	as
a	perfect	data,	no	matter	what	its	depth	and	breadth	is.	This	is	not	the	time	to	make
guarantees	but	to	communicate	what	is	possible,	given	your	expertise.

I	recommend	a	couple	of	outputs	from	this	task.	The	first	is	a	mission	statement.	This	is
not	the	touchy-feely	mission	statement	of	an	organization,	but	it	is	your	mission	statement
or,	more	importantly,	the	mission	statement	approved	by	the	project	sponsor.	I	stole	this
idea	from	my	years	of	military	experience	and	I	could	write	volumes	on	why	it	is
effective,	but	that	is	for	another	day.	Let’s	just	say	that	in	the	absence	of	clear	direction	or
guidance,	the	mission	statement	or	whatever	you	want	to	call	it	becomes	the	unifying
statement	and	can	help	prevent	scope	creep.	It	consists	of	the	following	points:

Who:	This	is	yourself	or	the	team	or	project	name;	everyone	likes	a	cool	project
name,	for	example,	Project	Viper,	Project	Fusion,	and	so	on
What:	This	is	the	task	that	you	will	perform,	for	example,	conduct	machine	learning
When:	This	is	the	deadline
Where:	This	could	be	geographical;	by	function,	department,	initiative,	and	so	on
Why:	This	is	the	purpose	of	doing	the	project,	that	is,	the	business	goal

The	second	task	is	to	have	as	clear	a	definition	of	success	as	possible.	Literally,	ask	what
does	success	look	like?	Help	the	team/sponsor	paint	a	picture	of	success	that	you	can
understand.	Your	job	then	is	to	translate	this	into	modeling	requirements.

Assess	the	situation
This	task	helps	you	in	project	planning	by	gathering	information	on	the	resources
available,	constraints,	and	assumptions,	identifying	the	risks,	and	building	contingency
plans.	I	would	further	add	that	this	is	also	the	time	to	identify	the	key	stakeholders	that
will	be	impacted	by	the	decisions	to	be	made.

A	couple	of	points	here.	When	examining	the	resources	that	are	available,	do	not	neglect
to	scour	the	records	of	the	past	and	current	projects.	Odds	are	someone	in	the	organization
has	or	is	working	on	the	same	problem	and	it	may	be	essential	to	synchronize	your	work
with	theirs.	Don’t	forget	to	enumerate	the	risks	considering	time,	people,	and	money.	Do
everything	in	your	power	to	create	a	list	of	the	stakeholders,	both	those	that	impact	your
project	and	those	that	could	be	impacted	by	your	project.	Identify	who	these	people	are
and	how	they	can	influence/be	impacted	by	the	decision.	Once	this	is	done,	work	with	the
project	sponsor	to	formulate	a	communication	plan	with	these	stakeholders.

Determine	the	analytical	goals
Here,	you	are	looking	to	translate	the	business	goal	into	technical	requirements.	This
includes	turning	the	success	criterion	from	the	task	of	creating	a	business	objective	to
technical	success.	This	might	be	things	such	as	RMSE	or	a	level	of	predictive	accuracy.

Produce	a	project	plan
The	task	here	is	to	build	an	effective	project	plan	with	all	the	information	gathered	up	to
this	point.	Regardless	of	what	technique	you	use,	whether	it	be	a	Gantt	chart	or	some	other
graphic,	produce	it	and	make	it	a	part	of	your	communication	plan.	Make	this	plan	widely
available	to	the	stakeholders	and	update	it	on	a	regular	basis	and	as	circumstances	dictate.

Data	understanding
After	enduring	the	all-important	pain	of	the	first	step,	you	can	now	get	your	hands	on	the
data.	The	tasks	in	this	process	consist	of	the	following:

1.	 Collect	the	data
2.	 Describe	the	data
3.	 Explore	the	data
4.	 Verify	the	data	quality

This	step	is	the	classic	case	of	ETL	is	Extract,	Transform,	Load.	There	are	some
considerations	here.	You	need	to	make	an	initial	determination	that	the	data	available	is
adequate	to	meet	your	analytical	needs.	As	you	explore	the	data,	visually	and	otherwise,
determine	if	the	variables	are	sparse	and	identify	the	extent	to	which	the	data	may	be
missing.	This	may	drive	the	learning	method	that	you	use	and/or	whether	the	imputation
of	the	missing	data	is	necessary	and	feasible.

Verifying	the	data	quality	is	critical.	Take	the	time	to	understand	who	collects	the	data,
how	it	is	collected,	and	even	why	it	is	collected.	It	is	likely	that	you	may	stumble	upon	an
incomplete	data	collection,	cases	where	unintended	IT	issues	led	to	errors	in	the	data,	or
there	were	planned	changes	in	the	business	rules.	This	is	critical	in	the	time	series	where
often	business	rules	change	over	time	on	how	the	data	is	classified.	Finally,	it	is	a	good
idea	to	begin	documenting	any	code	at	this	step.	As	a	part	of	the	documentation	process,	if
a	data	dictionary	is	not	available,	save	yourself	the	heartache	later	on	and	make	one.

Data	preparation
Almost	there!	This	step	has	the	following	five	tasks:

1.	 Select	the	data
2.	 Clean	the	data
3.	 Construct	the	data
4.	 Integrate	the	data
5.	 Format	the	data

These	tasks	are	relatively	self-explanatory.	The	goal	is	to	get	the	data	ready	to	input	in	the
algorithms.	This	includes	merging,	feature	engineering,	and	transformations.	If	imputation
is	needed,	then	it	happens	here	as	well.	Additionally,	with	R,	pay	attention	to	how	the
outcome	needs	to	be	labeled.	If	your	outcome/response	variable	is	Yes/No,	it	may	not
work	in	some	packages	and	will	require	a	transformed	or	no	variable	with	1/0.	At	this
point,	you	should	also	break	your	data	into	the	various	test	sets	if	applicable:	train,	test,	or
validate.	This	step	can	be	an	unforgivable	burden,	but	most	experienced	people	will	tell
you	that	it	is	where	you	can	separate	yourself	from	your	peers.	With	this,	let’s	move	on	to
the	money	step.

Modeling
This	is	where	all	the	work	that	you’ve	done	up	to	this	point	can	lead	to	fist-pumping
exuberance	or	fist-pounding	exasperation.	But	hey,	if	it	was	that	easy,	everyone	would	be
doing	it.	The	tasks	are	as	follows:

1.	 Select	a	modeling	technique
2.	 Generate	a	test	design
3.	 Build	a	model
4.	 Assess	a	model

Oddly,	this	process	step	includes	the	considerations	that	you	have	already	thought	of	and
prepared	for.	In	the	first	step,	one	will	need	at	least	a	modicum	of	an	idea	about	how	they
will	be	modeling.	Remember,	that	this	is	a	flexible,	iterative	process	and	not	some	strict
linear	flowchart	such	as	an	aircrew	checklist.

The	cheat	sheet	included	in	this	chapter	should	help	guide	you	in	the	right	direction	for	the
modeling	techniques.	A	test	design	refers	to	the	creation	of	your	test	and	train	datasets
and/or	the	use	of	cross-validation	and	this	should	have	been	thought	of	and	accounted	for
in	the	data	preparation.

Model	assessment	involves	comparing	the	models	with	the	criteria/criterion	that	you
developed	in	the	business	understanding,	for	example,	RMSE,	Lift,	ROC,	and	so	on.

Evaluation
With	the	evaluation	process,	the	main	goal	is	to	confirm	that	the	work	that	has	been	done
and	the	model	selected	at	this	point	meets	the	business	objective.	Ask	yourself	and	others,
have	we	achieved	the	definition	of	success?	Let	the	Netflix	prize	serve	as	a	cautionary	tale
here.	I’m	sure	you	are	aware	that	Netflix	awarded	a	$1	million	prize	to	the	team	that	could
produce	the	best	recommendation	algorithm	as	defined	by	the	lowest	RMSE.	However,
Netflix	did	not	implement	it	because	the	incremental	accuracy	gained	was	not	worth	the
engineering	effort!	Always	apply	Occam’s	razor.	At	any	rate,	here	are	the	tasks:

1.	 Evaluate	the	results
2.	 Review	the	process
3.	 Determine	the	next	steps

In	reviewing	the	process,	it	may	be	necessary—as	you	no	doubt	determined	earlier	in	the
process—to	take	the	results	through	governance	and	communicate	with	the	other
stakeholders	in	order	to	gain	their	buy-in.	As	for	the	next	steps,	if	you	want	to	be	a	change
agent,	make	sure	that	you	answer	the	what,	so	what,	and	now	what	in	the	stakeholders’
minds.	If	you	can	tie	their	now	what	into	the	decision	that	you	made	earlier,	you	are
money.

Deployment
If	everything	is	done	according	to	the	plan	up	to	this	point,	it	might	just	come	down	to
flipping	a	switch	and	your	model	goes	live.	Assuming	that	this	is	not	the	case,	here	are	the
tasks	of	this	step:

1.	 Deploying	the	plan
2.	 Monitoring	and	maintenance	of	the	plan
3.	 Producing	the	final	report
4.	 Reviewing	the	project

After	the	deployment	and	monitoring/maintenance	is	underway,	it	is	crucial	for	yourself
and	those	that	will	walk	in	your	steps	to	produce	a	well-written	final	report.	This	report
should	include	a	white	paper	and	briefing	slide.	I	have	to	say	that	I	resisted	the	drive	to	put
my	findings	in	a	white	paper	as	I	was	an	indentured	servant	to	the	military’s	passion	for
PowerPoint	slides.	However,	slides	can	and	will	be	used	against	you,	cherry-picked	or
misrepresented	by	various	parties	for	their	benefit.	Trust	me,	that	just	doesn’t	happen	with
a	white	paper	as	it	becomes	an	extension	of	your	findings	and	beliefs.

Now	for	the	all-important	process	review.	You	may	have	your	own	proprietary	way	of
conducting	it,	but	here	is	what	it	should	cover,	whether	you	conduct	it	in	a	formal	or
informal	way:

What	was	the	plan?
What	actually	happened?
Why	did	it	happen	or	did	not	happen?
What	should	be	sustained	in	future	projects?
What	should	be	improved	upon	in	future	projects?
Create	an	action	plan	to	ensure	sustainment	and	improvement	happens

That	concludes	the	review	of	the	CRISP-DM	process,	which	provides	a	comprehensive
and	flexible	framework	to	guarantee	the	success	of	your	project	and	make	you	an	agent	of
change.

Algorithm	flowchart
The	purpose	of	this	section	is	to	create	a	tool	that	will	help	you	not	just	select	the	possible
modeling	techniques	but	also	to	think	deeper	about	the	problem.	The	residual	benefit	is
that	it	may	help	you	frame	the	problem	with	the	project	sponsor/team.	The	techniques	in
the	flowchart	are	certainly	not	comprehensive	but	are	exhaustive	enough	to	get	you
started.	It	also	includes	techniques	not	discussed	in	this	book.

The	following	figure	starts	the	flow	of	selecting	the	potential	modeling	techniques.	As	you
answer	the	question(s),	it	will	take	you	to	one	of	the	four	additional	charts:

Figure	1

If	the	data	is	a	text	or	in	the	time	series	format,	then	you	will	follow	the	flow	in	the

following	figure:

Figure	2

In	this	branch	of	the	algorithm,	you	do	not	have	a	text	or	the	time	series	data.	Additionally,
you	are	not	trying	to	predict	what	category	the	observations	belong	to.

Figure	3

To	get	to	this	section,	you	would	have	data	that	is	not	text	or	time	series.	You	want	to
categorize	the	data,	but	it	does	not	have	an	outcome	label,	which	brings	us	to	clustering
methods,	as	follows:

Figure	4

This	brings	us	to	a	situation	where	we	want	to	categorize	the	data	and	it	is	labeled,	that	is,
classification:

Figure	5

Summary
This	chapter	was	about	how	to	set	yourself	and	your	team	up	for	success	in	any	project
that	you	tackle.	The	CRISP-DM	process	is	put	forward	as	a	flexible	and	comprehensive
framework	in	order	to	facilitate	the	softer	skills	of	communication	and	influence.	Each
process	step	and	the	tasks	in	each	step	were	enumerated.	More	than	that,	the	commentary
provides	some	techniques	and	considerations	to	help	in	the	process	execution.	By	taking
heed	of	the	process,	you	can	indeed	become	an	agent	of	positive	change	to	any
organization.

The	other	item	put	forth	in	this	chapter	was	an	algorithm	flowchart;	a	cheat	sheet	to	help
in	identifying	the	proper	techniques	to	apply	in	order	to	solve	the	business	problem.	With
this	foundation	in	place,	we	can	now	move	on	to	applying	these	techniques	to	real-world
problems.

Chapter	2.	Linear	Regression	–	The
Blocking	and	Tackling	of	Machine
Learning
	 “Some	people	try	to	find	things	in	this	game	that	don’t	exist,	but	football	is	only	two	things	–	blocking	and	tackling.” 	

	 —Vince	Lombardi,	Hall	of	Fame	Football	Coach

It	is	important	that	we	get	started	with	a	simple,	yet	extremely	effective,	technique	that	has
been	used	for	a	long	time:	linear	regression.	Albert	Einstein	is	believed	to	have	remarked
at	one	time	or	another	that	things	should	be	made	as	simple	as	possible,	but	no	simpler.
This	is	sage	advice	and	a	good	rule	of	thumb	in	the	development	of	algorithms	for
machine	learning.	Considering	the	other	techniques	that	we	will	discuss	later,	there	is	no
simpler	model	than	the	tried	and	tested	linear	regression,	which	uses	the	least	squares
approach	to	predict	a	quantitative	outcome.	In	fact,	one	could	consider	it	to	be	the
foundation	of	all	the	methods	that	we	will	discuss	later,	many	of	which	are	mere
extensions.	If	you	can	master	the	linear	regression	method,	well,	then	quite	frankly,	I
believe	you	can	master	the	rest	of	this	book.	Therefore,	let	us	consider	this	a	good	point
for	starting	start	our	journey	towards	becoming	a	machine-learning	guru.

This	chapter	covers	introductory	material,	and	an	expert	in	this	subject	can	skip	ahead	to
the	next	topic.	Otherwise,	ensure	that	you	thoroughly	understand	this	topic	before
venturing	on	to	other,	more	complex	learning	methods.	I	believe	you	will	discover	that
many	of	your	projects	can	be	addressed	by	just	applying	what	is	discussed	in	the	following
section.	Linear	regression	is	probably	the	easiest	model	to	explain	to	your	customers,	most
of	whom	will	have	at	least	a	cursory	understanding	of	R-squared.	Many	of	them	will	have
been	exposed	to	it	at	great	depth	and	thus,	be	comfortable	with	variable	contribution,
collinearity,	and	the	like.

Univariate	linear	regression
We	begin	by	looking	at	a	simple	way	to	predict	a	quantitative	response,	Y,	with	one
predictor	variable,	x,	assuming	that	Y	has	a	linear	relationship	with	x.	The	model	for	this
can	be	written	as,	Y	=	B0	+	B1x	+	e.	We	can	state	it	as	the	expected	value	of	Y	being	a
function	of	the	parameters	B0	(the	intercept)	plus	B1	(the	slope)	times	x,	plus	an	error
term.	The	least	squares	approach	chooses	the	model	parameters	that	minimize	the
Residual	Sum	of	Squares	(RSS)	of	the	predicted	y	values	versus	the	actual	Y	values.	For
a	simple	example,	let’s	say	we	have	the	actual	values	of	Y1	and	Y2	equal	to	10	and	20
respectively,	along	with	the	predictions	of	y1	and	y2	as	12	and	18.	To	calculate	RSS,	we
add	the	squared	differences	RSS	=	(Y1	–	y1)2	+	(Y2	–	y2)2,	which,	with	simple
substitution,	yields	(10	–	12)2	+	(20	–	18)2	=	8.

I	once	remarked	to	a	peer	during	our	Lean	Six	Sigma	Black	Belt	training	that	it’s	all	about
the	sum	of	squares;	understand	the	sum	of	squares	and	the	rest	will	flow	naturally.	Perhaps
that	is	true,	at	least	to	some	extent.

Before	we	begin	with	an	application,	I	want	to	point	out	that	if	you	read	the	headlines	of
various	research	breakthroughs,	do	so	with	a	jaded	eye	and	a	skeptical	mind	as	the
conclusion	put	forth	by	the	media	may	not	be	valid.	As	we	shall	see,	R,	and	any	other
software	for	that	matter,	will	give	us	a	solution	regardless	of	the	inputs.	However,	just
because	the	math	makes	sense	and	a	high	correlation	or	R-squared	statistic	is	reported,
doesn’t	mean	that	the	conclusion	is	valid.

To	drive	this	point	home,	a	look	at	the	famous	Anscombe	dataset	available	in	R	is	in	order.
The	statistician	Francis	Anscombe	produced	this	set	to	highlight	the	importance	of	data
visualization	and	outliers	when	analyzing	data.	It	consists	of	four	pairs	of	X	and	Y
variables	that	have	the	same	statistical	properties,	but	when	plotted,	show	something	very
different.	I	have	used	the	data	to	train	colleagues	and	to	educate	business	partners	on	the
hazards	of	fixating	on	statistics	without	exploring	the	data	and	checking	assumptions.	I
think	this	is	a	good	place	to	start	with	the	following	R	code	should	you	have	a	similar
need.	It	is	a	brief	tangent	before	moving	on	to	serious	modeling.

>	#call	up	and	explore	the	data

>	data(anscombe)

>	attach(anscombe)

>	anscombe

			x1	x2	x3	x4				y1			y2				y3				y4

1		10	10	10		8		8.04	9.14		7.46		6.58

2			8		8		8		8		6.95	8.14		6.77		5.76

3		13	13	13		8		7.58	8.74	12.74		7.71

4			9		9		9		8		8.81	8.77		7.11		8.84

5		11	11	11		8		8.33	9.26		7.81		8.47

6		14	14	14		8		9.96	8.10		8.84		7.04

7			6		6		6		8		7.24	6.13		6.08		5.25

8			4		4		4	19		4.26	3.10		5.39	12.50

9		12	12	12		8	10.84	9.13		8.15		5.56

10		7		7		7		8		4.82	7.26		6.42		7.91

11		5		5		5		8		5.68	4.74		5.73		6.89

As	we	shall	see,	each	of	the	pairs	has	the	same	correlation	coefficient	of	0.816.	The	first
two	are	as	follows:

>	cor(x1,	y1)	#correlation	of	x1	and	y1

[1]	0.8164205

>	cor(x2,	y1)	#correlation	of	x2	and	y2

[1]	0.8164205

The	real	insight	here,	as	Anscombe	intended,	is	when	we	plot	all	the	four	pairs	together,	as
follows:

>	par(mfrow=c(2,2))	#create	a	2x2	grid	for	plotting

>	plot(x1,	y1,	main="Plot	1")

>	plot(x2,	y2,	main="Plot	2")

>	plot(x3,	y3,	main="Plot	3")

>	plot(x4,	y4,	main="Plot	4")

Tip
Downloading	the	example	code

You	can	download	the	example	code	files	for	all	Packt	books	you	have	purchased	from
your	account	at	http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can
visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to
you.

The	output	of	the	preceding	code	is	as	follows:

http://www.packtpub.com
http://www.packtpub.com/support

As	we	can	see,	Plot	1	appears	to	have	a	true	linear	relationship,	Plot	2	is	curvilinear,	Plot
3	has	a	dangerous	outlier,	and	Plot	4	is	driven	by	the	one	outlier.	There	you	have	it,	a
cautionary	tale	of	sorts.

Business	understanding
The	data	collected	measures	two	variables.	The	goal	is	to	model	the	water	yield	(in	inches)
of	the	Snake	River	Watershed	in	Wyoming	as	a	function	of	the	water	content	of	the	year’s
snowfall.	This	forecast	will	be	useful	in	managing	the	water	flow	and	reservoir	levels	as
the	Snake	River	provides	the	much	needed	irrigation	water	for	the	farms	and	ranches	of
several	western	states.	The	dataset	snake	is	available	in	the	alr3	package	(note	that	alr
stands	for	applied	linear	regression):

>	install.packages("alr3")

>	library(alr3)

>	data(snake)

>	attach(snake)

>	dim(snake)

[1]	17		2

>	head(snake)

					X				Y

1	23.1	10.5

2	32.8	16.7

3	31.8	18.2

4	32.0	17.0

5	30.4	16.3

6	24.0	10.5

Now	that	we	have	17	observations,	data	exploration	can	begin.	But	first,	let’s	change	X	and
Y	into	meaningful	variable	names,	as	follows:

>	names(snake)	=	c("content",	"yield")

>	attach(snake)	#reattach	data	with	new	names

>	head(snake)

		content	yield

1				23.1		10.5

2				32.8		16.7

3				31.8		18.2

4				32.0		17.0

5				30.4		16.3

6				24.0		10.5

>	plot(content,	yield,	xlab="water	content	of	snow",	ylab="water	yield")

The	output	of	the	preceding	code	is	as	follows:

This	is	an	interesting	plot	as	the	data	is	linear,	and	has	a	slight	curvilinear	shape	driven	by
two	potential	outliers	at	both	ends	of	the	extreme.	As	a	result,	a	transformation	of	the	data
or	deletion	of	an	outlying	observation	may	be	warranted.

To	perform	a	linear	regression	in	R,	one	uses	the	lm()	function	to	create	a	model	in	the
standard	form	of	fit	=	lm(Y~X).	You	can	then	test	your	assumptions	using	various
functions	on	your	fitted	model	by	using	the	following	code:

>	yield.fit	=	lm(yield~content)

>	summary(yield.fit)

Call:

lm(formula	=	yield	~	content)

Residuals:

								Min						1Q		Median						3Q					Max

-2.1793	-1.5149	-0.3624		1.6276		3.1973

Coefficients:

																		Estimate	Std.	Error	t	value	Pr(>|t|)				

(Intercept)		0.72538				1.54882			0.468				0.646				

content						0.49808				0.04952		10.058	4.63e-08	***

Signif.	codes:		0	'***'	0.001	'**'	0.01	'*'	0.05	'.'	0.1	'	'	1

Residual	standard	error:	1.743	on	15	degrees	of	freedom

Multiple	R-squared:		0.8709,				Adjusted	R-squared:		0.8623

F-statistic:	101.2	on	1	and	15	DF,		p-value:	4.632e-08

With	the	summary()	function,	we	can	examine	a	number	of	items	including	the	model
specification,	descriptive	statistics	about	the	residuals,	the	coefficients,	codes	to	model
significance,	and	a	summary	on	model	error	and	fit.	Right	now,	let’s	focus	on	the
parameter	coefficient	estimates,	see	if	our	predictor	variable	has	a	significant	p-value,	and
if	the	overall	model	F-test	has	a	significant	p-value.	Looking	at	the	parameter	estimates,
the	model	tells	us	that	the	yield	is	equal	to	0.72538	plus	0.49808	times	the	content.	It
can	be	stated	that	for	every	one	unit	change	in	the	content,	the	yield	will	increase	by
0.49808	units.	F-statistic	is	used	to	test	the	null	hypothesis	that	the	model	coefficients
are	all	0.

Since	the	p-value	is	highly	significant,	we	can	reject	the	null	and	move	on	to	the	t-test	for
content,	which	tests	the	null	hypothesis	that	it	is	0.	Again,	we	can	reject	the	null.
Additionally,	we	can	see	Multiple	R-squared	and	Adjusted	R-squared	values.	The
Adjusted	R-squared	will	be	covered	under	the	multivariate	regression	topic,	so	let’s	zero
in	on	Multiple	R-squared;	here	we	see	that	it	is	0.8709.	In	theory,	it	can	range	from	0	to
1	and	is	a	measure	of	the	strength	of	the	association	between	X	and	Y.	The	interpretation	in
this	case	is	that	87	percent	of	the	variation	in	the	water	yield	can	be	explained	by	the
water	content	of	snow.	On	a	side	note,	R-squared	is	nothing	more	than	the	correlation
coefficient	of	[X,	Y]	squared.

We	can	recall	our	scatterplot,	and	now	add	the	best	fit	line	produced	by	our	model	using
the	following	code:

>	plot(content,	yield)

>	abline(yield.fit,	lwd=3,	col="red")

The	output	of	the	preceding	code	is	as	follows:

A	linear	regression	model	is	only	as	good	as	the	validity	of	its	assumptions,	which	can	be
summarized	as	follows:

Linearity:	This	is	a	linear	relationship	between	the	predictor	and	the	response
variables.	If	this	relationship	is	not	clearly	present,	transformations	(log,	polynomial,
exponent	and	so	on)	of	the	X	or	Y	may	solve	the	problem.
Non-correlation	of	errors:	A	common	problem	in	the	time	series	and	panel	data
where	en	=	betan-1;	if	the	errors	are	correlated,	you	run	the	risk	of	creating	a	poorly
specified	model.
Homoscedasticity:	Normally	the	distributed	and	constant	variance	of	errors,	which
means	that	the	variance	of	the	errors	is	constant	across	the	different	values	of	inputs.
Violations	of	this	assumption	can	create	biased	coefficient	estimates,	leading	to
statistical	tests	for	significance	that	can	be	either	too	high	or	too	low.	This,	in	turn,
leads	to	the	wrong	conclusion.	This	violation	is	referred	to	as	heteroscedasticity.
No	collinearity:	No	linear	relationship	between	two	predictor	variables,	which	is	to
say	that	there	should	be	no	correlation	between	the	features.	This,	again,	can	lead	to
biased	estimates.
Presence	of	outliers:	Outliers	can	severely	skew	the	estimation	and,	ideally,	must	be
removed	prior	to	fitting	a	model	using	linear	regression;	this	again	can	lead	to	a
biased	estimate.

As	we	are	building	a	univariate	model	not	dependent	on	time,	we	will	concern	ourselves
only	with	linearity	and	heteroscedasticity.	The	other	assumptions	will	become	important	in
the	next	section.	The	best	way	to	initially	check	the	assumptions	is	by	producing	plots.
The	plot()	function,	when	combined	with	a	linear	model	fit,	will	automatically	produce
four	plots	allowing	you	to	examine	the	assumptions.	R	produces	the	plots	one	at	a	time
and	you	advance	through	them	by	hitting	the	Enter	key.	It	is	best	to	examine	all	four
simultaneously	and	we	do	it	in	the	following	manner:

>	par(mfrow=c(2,2))

>	plot(yield.fit)

The	output	of	the	preceding	code	is	as	follows:

The	two	plots	on	the	left	allow	us	to	examine	the	homoscedasticity	of	errors	and
nonlinearity.	What	we	are	looking	for	is	some	type	of	pattern	or,	more	importantly,	that	no
pattern	exists.	Given	the	sample	size	of	only	17	observations,	nothing	obvious	can	be	seen.
Common	heteroscedastic	errors	will	appear	to	be	u-shaped,	inverted	u-shaped,	or	will
cluster	close	together	on	the	left	side	of	the	plot	and	become	wider	as	the	fitted	values
increase	(a	funnel	shape).	It	is	safe	to	conclude	that	no	violation	of	homoscedasticity	is
apparent	in	our	model.

The	Normal	Q-Q	plot	in	the	upper-right	corner	helps	us	to	determine	if	the	residuals	are
normally	distributed.	The	Quantile-Quantile	(Q-Q),	represent	the	quantile	values	of	one
variable	plotted	against	the	quantile	values	of	another.	It	appears	that	the	outliers
(observations	7,	9,	and	10),	may	be	causing	a	violation	of	the	assumption.	The	Residuals
vs	Leverage	plot	can	tell	us	what	observations,	if	any,	are	unduly	influencing	the	model;
in	other	words,	if	there	are	any	outliers	we	should	be	concerned	about.	The	statistic	is
Cook’s	distance	or	Cook’s	D,	and	it	is	generally	accepted	that	a	value	greater	than	one
should	be	worthy	of	further	inspection.

What	exactly	is	further	inspection?	This	is	where	art	meets	science.	The	easy	way	out
would	be	to	simply	delete	the	observation,	in	this	case	number	9,	and	redo	the	model.
However,	a	better	option	may	be	to	transform	the	predictor	and/or	the	response	variables.
If	we	just	delete	observation	9,	then	maybe	observations	10	and	13	would	fall	outside	the
band	of	greater	than	1.	I	believe	that	this	is	where	domain	expertise	can	be	critical.	More
times	than	I	can	count,	I	have	found	that	exploring	and	understanding	the	outliers	can
yield	valuable	insights.	When	we	first	examined	the	previous	scatterplot	I	pointed	out	the
potential	outliers	and	these	happen	to	be	observations	number	9	and	number	13.	As	an

analyst,	it	would	be	critical	to	discuss	with	the	appropriate	subject	matter	experts	to
understand	why	this	would	be	the	case.	Is	it	a	measurement	error?	Is	there	a	logical
explanation	for	these	observations?	I	certainly	don’t	know,	but	this	is	an	opportunity	to
increase	the	value	that	you	bring	to	an	organization.

Having	said	that,	we	can	drill	down	on	the	current	model	by	examining,	in	more	detail,	the
Normal	Q-Q	plot.	R	does	not	provide	confidence	intervals	to	the	default	Q-Q	plot,	and
given	our	concerns	in	looking	at	the	base	plot,	we	should	check	the	confidence	intervals.
The	qqPlot()	function	of	the	car	package	automatically	provides	these	confidence
intervals.	Since	the	car	package	is	loaded	along	with	the	alr3	package,	I	can	produce	the
plot	with	one	line	of	code	as	follows:

>	qqPlot(yield.fit)

The	output	of	the	preceding	code	is	as	follows:

According	to	the	plot,	the	residuals	are	normally	distributed.	I	think	this	can	give	us	some
confidence	to	select	the	model	with	all	the	observations.	Clear	rationale	and	judgment
would	be	needed	to	attempt	other	models.	If	we	could	clearly	reject	the	assumption	of
normally	distributed	errors,	then	we	would	probably	have	to	examine	the	variable
transformations	and/or	observation	deletion.

Multivariate	linear	regression
You	may	be	asking	yourself	the	question	if	in	the	real	world	you	would	ever	have	just	one
predictor	variable;	that	is,	indeed,	fair.	Most	likely,	several,	if	not	many,	predictor
variables	or	features,	as	they	are	affectionately	termed	in	machine	learning,	will	have	to	be
included	in	your	model.	And	with	that,	let’s	move	on	to	multivariate	linear	regression	and
a	new	business	case.

Business	understanding
In	keeping	with	the	water	conservation/prediction	theme,	let’s	look	at	another	dataset	in
the	alr3	package,	appropriately	named	water.	Lately,	the	severe	drought	in	Southern
California	has	caused	much	alarm.	Even	the	Governor,	Jerry	Brown,	has	begun	to	take
action	with	a	call	to	citizens	to	reduce	water	usage	by	20	percent.	For	this	exercise,	let’s
say	we	have	been	commissioned	by	the	state	of	California	to	predict	water	availability.
The	data	provided	to	us	contains	43	years	of	snow	precipitation,	measured	at	six	different
sites	in	the	Owens	Valley.	It	also	contains	a	response	variable	for	water	availability	as	the
stream	runoff	volume	near	Bishop,	California,	which	feeds	into	the	Owens	Valley
aqueduct,	and	eventually,	the	Los	Angeles	Aqueduct.	Accurate	predictions	of	the	stream
runoff	will	allow	engineers,	planners,	and	policy	makers	to	plan	conservation	measures
more	effectively.	The	model	we	are	looking	to	create	will	consist	of	the	form	Y	=	B0	+
B1x1	+…Bnxn	+	e,	where	the	predictor	variables	(features)	can	be	from	1	to	n.

Data	understanding	and	preparation
To	begin,	we	will	load	the	dataset	named	water	and	define	the	structure	of	the	str()
function	as	follows:

>	data(water)

>	str(water)

'data.frame':			43	obs.	of		8	variables:

$	Year			:	int		1948	1949	1950	1951	1952	1953	1954	1955	1956	1957…

$	APMAM		:	num		9.13	5.28	4.2	4.6	7.15	9.7	5.02	6.7	10.5	9.1…

$	APSAB		:	num		3.58	4.82	3.77	4.46	4.99	5.65	1.45	7.44	5.85	6.13…

$	APSLAKE:	num		3.91	5.2	3.67	3.93	4.88	4.91	1.77	6.51	3.38	4.08…

$	OPBPC		:	num		4.1	7.55	9.52	11.14	16.34…

$	OPRC			:	num		7.43	11.11	12.2	15.15	20.05…

$	OPSLAKE:	num		6.47	10.26	11.35	11.13	22.81…

$	BSAAM		:	int		54235	67567	66161	68094	107080	67594	65356	67909	92715	

70024…

Here	we	have	eight	features	and	one	response	variable,	BSAAM.	The	observations	start	in
1943	and	run	for	43	consecutive	years.	Since	we	are	not	concerned	with	what	year	the
observations	occurred,	it	makes	sense	to	create	a	new	data	frame,	excluding	the	year
vector.	This	is	quite	easy	to	do.	With	one	line	of	code,	we	can	create	the	new	data	frame,
and	then	verify	that	it	worked	with	the	head()	function	as	follows:

>	socal.water	=	water[,-1]	#new	dataframe	with	the	deletion	of	column	1

>	head(socal.water)

		APMAM	APSAB	APSLAKE	OPBPC		OPRC	OPSLAKE		BSAAM

1		9.13		3.58				3.91		4.10		7.43				6.47		54235

2		5.28		4.82				5.20		7.55	11.11			10.26		67567

3		4.20		3.77				3.67		9.52	12.20			11.35		66161

4		4.60		4.46				3.93	11.14	15.15			11.13		68094

5		7.15		4.99				4.88	16.34	20.05			22.81	107080

6		9.70		5.65				4.91		8.88		8.15				7.41		67594

With	all	the	features	being	quantitative,	it	makes	sense	to	look	at	the	correlation	statistics
and	then	produce	a	matrix	of	scatterplots.	The	correlation	coefficient	or	Pearson’s	r,	is	a
measure	of	both	the	strength	and	direction	of	the	linear	relationship	between	two
variables.	The	statistic	will	be	a	number	between	-1	and	1	where	-1	is	the	total	negative
correlation	and	+1	is	the	total	positive	correlation.	The	calculation	of	the	coefficient	is	the
covariance	of	the	two	variables,	divided	by	the	product	of	their	standard	deviations.	As
previously	discussed,	if	you	square	the	correlation	coefficient,	you	will	end	up	with	R-
squared.

There	are	a	number	of	ways	to	produce	a	matrix	of	correlation	plots.	Some	prefer	to
produce	heatmaps,	but	I	am	a	big	fan	of	what	is	produced	with	the	corrplot	package.	It
can	produce	a	number	of	different	variations	including	ellipse,	circle,	square,	number,
shade,	color,	and	pie.	I	prefer	the	ellipse	method,	but	feel	free	to	experiment	with	the
various	methods.	Let’s	load	the	corrplot	package,	create	a	correlation	object	using	the
base	cor()	function,	and	examine	the	following	results:

>	library(corrplot)

>	water.cor	=	cor(socal.water)

>	water.cor

																		APMAM						APSAB				APSLAKE						OPBPC						

APMAM			1.0000000	0.82768637	0.81607595	0.12238567	

APSAB			0.8276864	1.00000000	0.90030474	0.03954211	

APSLAKE	0.8160760	0.90030474	1.00000000	0.09344773	

OPBPC			0.1223857	0.03954211	0.09344773	1.00000000	

OPRC				0.1544155	0.10563959	0.10638359	0.86470733	

OPSLAKE	0.1075421	0.02961175	0.10058669	0.94334741	

BSAAM			0.2385695	0.18329499	0.24934094	0.88574778	

																			OPRC				OPSLAKE					BSAAM

APMAM			0.1544155	0.10754212	0.2385695

APSAB			0.1056396	0.02961175	0.1832950

APSLAKE	0.1063836	0.10058669	0.2493409

OPBPC			0.8647073	0.94334741	0.8857478

OPRC				1.0000000	0.91914467	0.9196270

OPSLAKE	0.9191447	1.00000000	0.9384360

BSAAM			0.9196270	0.93843604	1.0000000

So,	what	does	this	tell	us?	First	of	all,	the	response	variable	is	highly	and	positively
correlated	with	the	OP	features	with	OPBPC	as	0.8857,	OPRC	as	0.9196,	and	OPSLAKE	as
0.9384.	Also	note	that	the	AP	features	are	highly	correlated	with	each	other	and	the	OP
features	as	well.	The	implication	is	that	we	may	run	into	the	issue	of	multicollinearity.	The
correlation	plot	matrix	provides	a	nice	visual	of	the	correlations	as	follows:

>	corrplot(water.cor,	method="ellipse")

The	output	of	the	preceding	code	snippet	is	as	follows:

Modeling	and	evaluation
One	of	the	key	elements	that	we	will	cover	here	is	the	very	important	task	of	feature
selection.	In	this	chapter,	we	will	discuss	the	best	subsets	regression	methods	stepwise,
using	the	leaps	package.	The	later	chapters	will	cover	more	advanced	techniques.

Forward	stepwise	selection	starts	with	a	model	that	has	zero	features;	it	then	adds	the
features	one	at	a	time	until	all	the	features	are	added.	A	selected	feature	is	added	in	the
process	that	creates	a	model	with	the	lowest	RSS.	So	in	theory,	the	first	feature	selected
should	be	the	one	that	explains	the	response	variable	better	than	any	of	the	others,	and	so
on.

Note
It	is	important	to	note	that	adding	a	feature	will	always	decrease	RSS	and	increase	R-
squared,	but	will	not	necessarily	improve	the	model	fit	and	interpretability.

Backward	stepwise	regression	begins	with	all	the	features	in	the	model	and	removes	the
least	useful	one	at	a	time.	A	hybrid	approach	is	available	where	the	features	are	added
through	forward	stepwise	regression,	but	the	algorithm	then	examines	if	any	features	that
no	longer	improve	the	model	fit	can	be	removed.	Once	the	model	is	built,	the	analyst	can
examine	the	output	and	use	various	statistics	to	select	the	features	they	believe	provide	the
best	fit.

It	is	important	to	add	here	that	stepwise	techniques	can	suffer	from	serious	issues.	You	can
perform	a	forward	stepwise	on	a	dataset,	then	a	backward	stepwise,	and	end	up	with	two
completely	conflicting	models.	The	bottom	line	is	that	stepwise	can	produce	biased
regression	coefficients;	in	other	words,	they	are	too	large	and	the	confidence	intervals	are
too	narrow	(Tibrishani,	1996).

Best	subsets	regression	can	be	a	satisfactory	alternative	to	the	stepwise	methods	for
feature	selection.	In	best	subsets	regression,	the	algorithm	fits	a	model	for	all	the	possible
feature	combinations;	so	if	you	have	3	features,	23	models	will	be	created.	As	with
stepwise	regression,	the	analyst	will	need	to	apply	judgment	or	statistical	analysis	to	select
the	optimal	model.	Model	selection	will	be	the	key	topic	in	the	discussion	that	follows.	As
you	might	have	guessed,	if	your	dataset	has	many	features,	this	can	be	quite	a	task,	and	the
method	does	not	perform	well	when	you	have	more	features	than	observations	(p	is	greater
than	n).

Certainly,	these	limitations	for	best	subsets	do	not	apply	to	our	task	at	hand.	Given	its
limitations,	we	will	forgo	stepwise,	but	please	feel	free	to	give	it	a	try.	We	will	begin	by
loading	the	leaps	package.	In	order	that	we	may	see	how	feature	selection	works,	we	will
first	build	and	examine	a	model	with	all	the	features,	then	drill	down	with	best	subsets	to
select	the	best	fit.

To	build	a	linear	model	with	all	the	features,	we	can	again	use	the	lm()	function.	It	will
follow	the	form:	fit	=	lm(y	~	x1	+	x2	+	x3…xn).	A	neat	shortcut,	if	you	want	to	include	all
the	features,	is	to	use	a	period	after	the	tilde	symbol	instead	of	having	to	type	them	all	in.
For	starters,	let’s	load	the	leaps	package	and	build	a	model	with	all	the	features	for

examination	as	follows:

>	library(leaps)

>	fit=lm(BSAAM~.,	data=socal.water)

>	summary(fit)

Call:

lm(formula	=	BSAAM	~	.,	data	=	socal.water)

Residuals:

			Min					1Q	Median					3Q				Max

-12690		-4936		-1424			4173		18542

Coefficients:

												Estimate	Std.	Error	t	value	Pr(>|t|)				

(Intercept)	15944.67				4099.80			3.889	0.000416	***

APMAM									-12.77					708.89		-0.018	0.985725				

APSAB								-664.41				1522.89		-0.436	0.665237				

APSLAKE						2270.68				1341.29			1.693	0.099112	.		

OPBPC										69.70					461.69			0.151	0.880839				

OPRC									1916.45					641.36			2.988	0.005031	**

OPSLAKE						2211.58					752.69			2.938	0.005729	**

Signif.	codes:		0	'***'	0.001	'**'	0.01	'*'	0.05	'.'	0.1	''	1

Residual	standard	error:	7557	on	36	degrees	of	freedom

Multiple	R-squared:		0.9248,				Adjusted	R-squared:		0.9123

F-statistic:	73.82	on	6	and	36	DF,		p-value:	<	2.2e-16

Just	like	with	univariate	regression,	we	examine	the	p-value	on	the	F-statistic	to	see	if
at	least	one	of	the	coefficients	is	not	zero	and,	indeed,	the	p-value	is	highly	significant.
We	should	also	have	significant	p-values	for	the	OPRC	and	OPSLAKE	parameters.
Interestingly,	OPBPC	is	not	significant	despite	being	highly	correlated	with	the	response
variable.	In	short,	when	we	control	for	the	other	OP	features,	OPBPC	no	longer	explains	any
meaningful	variation	of	the	predictor,	which	is	to	say	that	the	feature	OPBPC	adds	nothing
from	a	statistical	standpoint	with	OPRC	and	OPSLAKE	in	the	model.

With	the	first	model	built,	let’s	move	on	to	best	subsets.	We	create	the	sub.fit	object
using	the	regsubsets()	function	of	the	leaps	package	as	follows:

>	sub.fit	=	regsubsets(BSAAM~.,	data=socal.water)

Then	we	create	the	best.summary	object	to	examine	the	models	further.	As	with	all	R
objects,	you	can	use	the	names()	function	to	list	what	outputs	are	available,	as	follows:

>	best.summary	=	summary(sub.fit)

>	names(best.summary)

[1]	"which"		"rsq"				"rss"				"adjr2"		"cp"					"bic"				"outmat"	"obj"

Other	valuable	functions	in	model	selection	include	which.min()	and	which.max().	These
functions	will	provide	the	model	that	has	the	minimum	or	maximum	value	respectively,	as

shown	in	following	code	snippet:

>	which.min(best.summary$rss)

[1]	6

The	code	tells	us	that	the	model	with	six	features	has	the	smallest	RSS,	which	it	should
have,	as	that	is	the	maximum	number	of	inputs	and	more	inputs	mean	a	lower	RSS.	An
important	point	here	is	that	adding	features	will	always	decrease	RSS!	Furthermore,	it	will
always	increase	R-squared.	We	could	add	a	completely	irrelevant	feature	like	the	number
of	wins	for	the	Los	Angeles	Lakers	and	RSS	would	decrease	and	R-squared	would
increase.	The	amount	would	likely	be	miniscule,	but	present	nonetheless.	As	such,	we
need	an	effective	method	to	properly	select	the	relevant	features.

For	feature	selection,	there	are	four	statistical	methods	that	we	will	talk	about	in	this
chapter:	Aikake’s	Information	Criterion	(AIC),	Mallow’s	Cp	(Cp),	Bayesian
Information	Criterion	(BIC),	and	the	adjusted	R-squared.	With	the	first	three,	the	goal	is
to	minimize	the	value	of	the	statistic;	with	adjusted	R-squared,	the	goal	is	to	maximize	the
statistics	value.	The	purpose	of	these	statistics	is	to	create	as	parsimonious	a	model	as
possible,	in	other	words,	penalize	model	complexity.

The	formulation	of	these	four	statistics	is	as	follows:

	,	where	p	is	the	number	of	features	in	the	model	that	we	are
testing

	,	where	p	is	the	number	of	features	in	the	model	we	are	testing	and
MSEf	is	the	mean	of	the	squared	error	of	the	model,	with	all	features	included	and	n	is
the	sample	size

	,	where	p	is	the	number	of	features	in	the	model	we	are
testing	and	n	is	the	sample	size

	,	where	p	is	the	number	of	features	in	the	model	we
are	testing	and	n	is	the	sample	size

In	a	linear	model,	AIC	and	Cp	are	proportional	to	each	other,	so	we	will	only	concern
ourselves	with	Cp,	which	follows	the	output	available	in	the	leaps	package.	BIC	tends	to
select	the	models	with	fewer	variables	than	Cp,	so	we	will	compare	both.	To	do	so,	we	can
create	and	analyze	two	plots	side	by	side.	Let’s	do	this	for	Cp	followed	by	BIC	with	the
help	of	following	code	snippet:

>	par(mfrow=c(1,2))

>	plot(best.summary$cp,	xlab="number	of	features",	ylab="cp")

>	plot(sub.fit,	scale="Cp")

The	output	of	preceding	code	snippet	is	as	follows:

In	the	plot	on	the	left-hand	side,	the	model	with	three	features	has	the	lowest	cp.	The	plot
on	the	right-hand	side	displays	those	features	that	provide	the	lowest	Cp.	The	way	to	read
this	plot	is	to	select	the	lowest	Cp	value	at	the	top	of	the	y	axis,	which	is	1.2.	Then,	move
to	the	right	and	look	at	the	colored	blocks	corresponding	to	the	x	axis.	Doing	this,	we	see
that	APSLAKE,	OPRC,	and	OPSLAKE	are	the	features	included	in	this	specific	model.
By	using	the	which.min()	and	which.max()	functions,	we	can	identify	how	cp	compares
to	BIC	and	the	adjusted	R-squared.

>	which.min(best.summary$bic)

[1]	3

>	which.max(best.summary$adjr2)

[1]	3

In	this	example,	BIC	and	adjusted	R-squared	match	the	Cp	for	the	optimal	model.	Now,
just	like	with	univariate	regression,	we	need	to	examine	the	model	and	test	the
assumptions.	We’ll	do	this	by	creating	a	linear	model	object	and	examining	the	plots	in	a
similar	fashion	to	what	we	did	earlier,	as	follows:

>	best.fit	=	lm(BSAAM~APSLAKE+OPRC+OPSLAKE,	data=socal.water)

>	summary(best.fit)

Call:

lm(formula	=	BSAAM	~	APSLAKE	+	OPRC	+	OPSLAKE)

Residuals:

			Min					1Q	Median					3Q				Max

-12964		-5140		-1252			4446		18649

Coefficients:

												Estimate	Std.	Error	t	value	Pr(>|t|)				

(Intercept)		15424.6					3638.4			4.239	0.000133	***

APSLAKE							1712.5						500.5			3.421	0.001475	**

OPRC										1797.5						567.8			3.166	0.002998	**

OPSLAKE							2389.8						447.1			5.346	4.19e-06	***

Signif.	codes:		0	'***'	0.001	'**'	0.01	'*'	0.05	'.'	0.1	'	'	1

Residual	standard	error:	7284	on	39	degrees	of	freedom

Multiple	R-squared:		0.9244,				Adjusted	R-squared:		0.9185

F-statistic:	158.9	on	3	and	39	DF,		p-value:	<	2.2e-16

With	the	three-feature	model,	F-statistic	and	all	the	t-tests	have	significant	p-values.
Having	passed	the	first	test,	we	can	produce	our	diagnostic	plots:

>	par(mfrow=c(2,2))

>	plot(best.fit)

The	output	of	the	preceding	code	snippet	is	as	follows:

Looking	at	the	plots,	it	seems	safe	to	assume	that	the	residuals	have	a	constant	variance
and	are	normally	distributed.	There	is	nothing	in	the	leverage	plot	that	would	indicate	a
requirement	for	further	investigation.

To	investigate	the	issue	of	collinearity,	one	can	call	up	the	Variance	Inflation	Factor
(VIF)	statistic.	VIF	is	the	ratio	of	the	variance	of	a	feature’s	coefficient,	when	fitting	the
full	model,	divided	by	the	feature’s	coefficient	variance	when	fit	by	itself.	The	formula	is

1	/	(1-R2i),	where	R2i	is	the	R-squared	for	our	feature	of	interest,	i	being	regressed	by	all
the	other	features.	The	minimum	value	that	the	VIF	can	take	is	one,	which	means	no
collinearity	at	all.	There	are	no	hard	and	fast	rules,	but	in	general,	a	VIF	value	that	exceeds
5	or	10	indicates	a	problematic	amount	of	collinearity	(James,	2013).	A	precise	value	is
difficult	to	select,	because	there	is	no	hard	statistical	cut-off	point	for	when
multicollinearity	makes	your	model	unacceptable.

The	vif()	function	in	the	car	package	is	all	that	is	needed	to	produce	the	values,	as	can	be
seen	in	the	following	code	snippet:

>	vif(best.fit)

APSLAKE					OPRC		OPSLAKE

1.011499	6.452569	6.444748

It	shouldn’t	be	surprising	that	we	have	a	potential	collinearity	problem	with	OPRC	and
OPSLAKE	(values	greater	than	five)	based	upon	the	correlation	analysis.	A	plot	of	the
two	variables	drives	the	point	home,	as	seen	in	the	following	image:

>	plot(socal.water$OPRC,	socal.water$OPSLAKE,	xlab="OPRC",	ylab="OPSLAKE")

The	output	of	preceding	command	is	as	follows:

The	simple	solution	to	address	collinearity	is	to	drop	the	variables	to	remove	the	problem,
without	compromising	the	predictive	ability.	If	we	look	at	the	adjusted	R-squared	from	the
best	subsets,	we	can	see	that	the	two-variable	model	of	APSLAKE	and	OPSLAKE
produced	a	value	of	0.90,	while	adding	OPRC	only	marginally	increased	it	to	0.92:

>	best.summary$adjr2	#adjusted	r-squared	values

[1]	0.8777515	0.9001619	0.9185369	0.9168706	0.9146772	0.9123079

Let’s	have	a	look	at	the	two-variable	model	and	test	its	assumptions,	as	follows:

>	fit.2	=	lm(BSAAM~APSLAKE+OPSLAKE,	data=socal.water)

>	summary(fit.2)

Call:

lm(formula	=	BSAAM	~	APSLAKE	+	OPSLAKE)

Residuals:

										Min							1Q			Median							3Q						Max

-13335.8		-5893.2			-171.8			4219.5		19500.2

Coefficients:

																		Estimate	Std.	Error	t	value	Pr(>|t|)				

(Intercept)		19144.9					3812.0			5.022		1.1e-05	***

APSLAKE							1768.8						553.7			3.194		0.00273	**

OPSLAKE							3689.5						196.0		18.829		<	2e-16	***

Signif.	codes:		0	'***'	0.001	'**'	0.01	'*'	0.05	'.'	0.1	'	'	1

Residual	standard	error:	8063	on	40	degrees	of	freedom

Multiple	R-squared:		0.9049,				Adjusted	R-squared:		0.9002

F-statistic:	190.3	on	2	and	40	DF,		p-value:	<	2.2e-16

>	par(mfrow=c(2,2))

>	plot(fit.2)

The	output	of	the	preceding	code	snippet	is	as	follows:

The	model	is	significant,	and	the	diagnostics	do	not	seem	to	be	a	cause	for	concern.	This
should	take	care	of	our	collinearity	problem	as	well	and	we	can	check	that	using	the	vif()
function	again	as	follows:

>	vif(fit.2)

	APSLAKE		OPSLAKE

1.010221	1.010221

As	I	stated	previously,	I	don’t	believe	the	plot	of	fits	versus	residuals	is	of	concern,	but	if
you	have	questions,	you	can	formally	test	the	assumption	of	the	constant	variance	of	errors
in	R.	This	test	is	known	as	the	Breusch-Pagan	(BP)	test.	For	this,	we	need	to	load	the
lmtest	package,	and	run	one	line	of	code.	The	BP	test	has	the	null	hypotheses	that	the
error	variances	are	zero	versus	the	alternative	of	not	zero.

>	library(lmtest)

>	bptest(fit.2)

								studentized	Breusch-Pagan	test

data:		fit.2

BP	=	0.0046,	df	=	2,	p-value	=	0.9977

We	do	not	have	evidence	to	reject	the	null	that	implies	the	error	variances	are	zero	because
p-value	=	0.9977.	The	BP	=	0.0046	value	in	the	summary	of	the	test	is	the	chi-squared
value.

All	things	considered,	it	appears	that	the	best	predictive	model	is	with	the	two	features
APSLAKE	and	OPSLAKE.	The	model	can	explain	90	percent	of	the	variation	in	the
stream	runoff	volume.	To	forecast	the	runoff,	it	would	be	equal	to	19145	(the	intercept)
plus	1769	times	the	measurement	at	APSLAKE	plus	3690	times	the	measurement	at
OPSLAKE.	A	scatterplot	of	the	Predicted	vs.	Actual	values	can	be	done	in	base	R	using
the	fitted	values	from	the	model	and	the	response	variable	values	as	follows:

>	plot(fit.2$fitted.values,	socal.water$BSAAM,xlab="predicted",	

ylab="actual",	main="Predicted	vs.Actual")

The	output	of	the	preceding	code	snippet	is	as	follows:

Although	informative,	the	base	graphics	of	R	are	not	necessarily	ready	for	a	presentation
to	be	made	to	business	partners.	However,	we	can	easily	spruce	up	this	plot	in	R.	Several
packages	to	improve	graphics	are	available,	and	for	this	example	I	will	use	ggplot2.
Before	producing	the	plot,	we	must	put	the	predicted	values	into	our	data	frame
socal.water.	I	also	want	to	rename	BSAAM	as	Actual,	and	put	in	a	new	vector	within	the
data	frame	as	in	the	following	code	snippet:

>	socal.water["Actual"]	=	water$BSAAM	#create	the	vector	Actual

>	socal.water["Forecast"]	=	NA	#create	a	vector	for	the	predictions	named	

Forecast,	first	using	NA	to	create	empty	observations

>	socal.water$Forecast	=	predict(fit.2)	#populate	Forecast	with	the	

predicted	values

Next	we	will	load	the	ggplot2	package	and	with	one	line	of	code	produce	a	nicer	graphic:

>	library(ggplot2)

>	ggplot(socal.water,	aes(x=Forecast,	y=Actual))	+geom_point()	+	

geom_smooth(method=lm)	+	labs(title	=	"Forecast	versus	Actuals")

The	output	of	the	preceding	code	snippet	is	as	follows:

Let’s	examine	one	final	model	selection	technique	before	moving	on.	In	the	upcoming
chapters,	we	will	be	discussing	cross-validation	at	some	length.	Cross-validation	is	a
widely-used	and	effective	method	of	model	selection	and	testing.	Why	would	this	be
necessary	at	all?	It	comes	down	to	the	bias-variance	tradeoff.	Professor	Tarpey	of	Wright
State	University	has	a	nice	quote	on	the	subject:

“Often	we	use	regression	models	to	predict	future	observations.	We	can	use	our	data
to	fit	the	model.	However,	it	is	cheating	to	then	access	how	well	the	model	predicts
responses	using	the	same	data	that	was	used	to	estimate	the	model	–	this	will	tend	to
give	overly	optimistic	results	in	terms	of	how	well	a	model	is	able	to	predict	future
observations.	If	we	leave	out	an	observation,	fit	the	model	and	then	predict	the	left
out	response,	then	this	will	give	a	less	biased	idea	of	how	well	the	model	predicts”.

The	cross-validation	technique	discussed	by	Professor	Tarpey	in	the	preceding	quote	is
known	as	the	Leave-One-Out-Cross-Validation	(LOOCV).	In	linear	models,	you	can
easily	perform	an	LOOCV	by	examining	the	Prediction	Error	Sum	of	Squares	(PRESS)
statistic,	and	selecting	the	model	that	has	the	lowest	value.	The	R	library	MPV	will	calculate

the	statistic	for	you,	as	shown	in	the	following	code:

>	library(MPV)		

>	PRESS(best.fit)	

	[1]	2426757258		

>	PRESS(fit.2)	

	[1]	2992801411		

By	this	statistic	alone,	we	could	select	our	best.fit	model.	However,	as	described
previously,	I	still	believe	that	the	more	parsimonious	model	is	better	in	this	case.	You	can
build	a	simple	function	to	calculate	the	statistic	on	your	own,	taking	advantage	of	some
elegant	matrix	algebra	as	shown	in	the	following	code:

>	PRESS.best	=	sum((resid(best.fit)/(1-hatvalues(best.fit)))^2)		

>	PRESS.fit.2	=	sum((resid(fit.2)/(1-hatvalues(fit.2)))^2)

>	PRESS.best	

[1]	2426757258		

>	PRESS.fit.2	

[1]	2992801411		

What	are	hatvalues,	you	say?	Well,	if	you	take	our	linear	model	Y	=	B0	+	B1x	+	e,	we
can	turn	this	into	a	matrix	notation:	Y	=	XB	+	E.	In	this	notation,	Y	remains	unchanged,	the
X	is	the	matrix	of	the	input	values,	B	is	the	coefficient,	and	E	represents	the	errors.	This
linear	model	solves	for	the	value	of	B.	Without	going	into	the	painful	details	of	matrix
multiplication,	the	regression	process	yields	what	is	known	as	a	Hat	Matrix.	This	matrix
maps,	or	as	some	say	projects,	the	calculated	values	of	your	model	to	the	actual	values;	as
a	result,	it	captures	how	influential	a	specific	observation	is	in	your	model.	So,	the	sum	of
the	squared	residuals	divided	by	one	minus	hatvalues	is	the	same	as	LOOCV.

Other	linear	model	considerations
Before	moving	on,	there	are	two	additional	linear	model	topics	that	we	need	to	discuss.
The	first	is	the	inclusion	of	a	qualitative	feature,	and	the	second	is	an	interaction	term;
both	are	explained	in	the	following	sections.

Qualitative	feature
A	qualitative	feature,	also	referred	to	as	a	factor,	can	take	on	two	or	more	levels	such	as
Male/Female	or	Bad/Neutral/Good.	If	we	have	a	feature	with	two	levels,	say	gender,	then
we	can	create	what	is	known	as	an	indicator	or	dummy	feature,	arbitrarily	assigning	one
level	as	0	and	the	other	as	1.	If	we	create	a	model	with	just	the	indicator,	our	linear	model
would	still	follow	the	same	formulation	as	before,	that	is,	Y	=	B0	+	B1x	+	e.	If	we	code
the	feature	as	male	is	equal	to	zero	and	female	is	equal	to	one,	then	the	expectation	for
male	would	just	be	the	intercept,	B0,	while	for	female	it	would	be	B0	+	B1x.	In	the
situation	where	you	have	more	than	two	levels	of	the	feature,	you	can	create	n-1
indicators;	so,	for	three	levels	you	would	have	two	indicators.	If	you	created	as	many
indicators	as	the	levels,	you	would	fall	into	the	dummy	variable	trap,	which	results	in
perfect	multicollinearity.

We	can	examine	a	simple	example	to	learn	how	to	interpret	the	output.	Let’s	load	the	ISLR
package	and	build	a	model	with	the	Carseats	dataset	by	using	the	following	code	snippet:

>	library(ISLR)

>	data(Carseats)

>	str(Carseats)

'data.frame':			400	obs.	of		11	variables:

$	Sales						:	num		9.5	11.22	10.06	7.4	4.15…

$	CompPrice		:	num		138	111	113	117	141	124	115	136	132	132…

$	Income					:	num		73	48	35	100	64	113	105	81	110	113…

$	Advertising:	num		11	16	10	4	3	13	0	15	0	0…

$	Population	:	num		276	260	269	466	340	501	45	425	108	131…

$	Price						:	num		120	83	80	97	128	72	108	120	124	124…

$	ShelveLoc		:	Factor	w/	3	levels	"Bad","Good","Medium":	1	2	3	3	1	1	3	2	3	

3…

$	Age								:	num		42	65	59	55	38	78	71	67	76	76…

$	Education		:	num		17	10	12	14	13	16	15	10	10	17…

$	Urban						:	Factor	w/	2	levels	"No","Yes":	2	2	2	2	2	1	2	2	1	1…

$	US									:	Factor	w/	2	levels	"No","Yes":	2	2	2	2	1	2	1	2	1	2	..

For	this	example,	we	will	predict	the	sales	of	Carseats	using	just	Advertising,	a
quantitative	feature	and	the	qualitative	feature	ShelveLoc,	which	is	a	factor	of	three	levels:
Bad,	Good,	and	Medium.	With	factors,	R	will	automatically	code	the	indicators	for	the
analysis.	We	build	and	analyze	the	model	as	follows:

>	sales.fit	=	lm(Sales~Advertising+ShelveLoc,	data=Carseats)

>	summary(sales.fit)

Call:

lm(formula	=	Sales	~	Advertising	+	ShelveLoc,	data	=	

Carseats)

Residuals:

				Min						1Q		Median						3Q					Max

-6.6480	-1.6198	-0.0476		1.5308		6.4098

Coefficients:

																						Estimate	Std.	Error	t	value	Pr(>|t|)				

(Intercept)						4.89662				0.25207		19.426		<	2e-16	***

Advertising						0.10071				0.01692			5.951	5.88e-09	***

ShelveLocGood				4.57686				0.33479		13.671		<	2e-16	***

ShelveLocMedium		1.75142				0.27475			6.375	5.11e-10	***

Signif.	codes:		0	'***'	0.001	'**'	0.01	'*'	0.05	'.'	0.1	'	'	1

Residual	standard	error:	2.244	on	396	degrees	of	freedom

Multiple	R-squared:		0.3733,				Adjusted	R-squared:		0.3685

F-statistic:	78.62	on	3	and	396	DF,		p-value:	<	2.2e-16

If	the	shelving	location	is	good,	the	estimate	of	sales	is	almost	double	than	when	the
location	is	bad,	given	the	intercept	of	4.89662.	To	see	how	R	codes	the	indicator	features,
you	can	use	the	contrasts()	function	as	follows:

>	contrasts(Carseats$ShelveLoc)

								Good	Medium

Bad							0						0

Good						1						0

Medium				0						1

Interaction	term
Interaction	terms	are	similarly	easy	to	code	in	R.	Two	features	interact	if	the	effect	on	the
prediction	of	one	feature	depends	on	the	value	of	the	other	feature.	This	would	follow	the
formulation,	Y	=	B0	+	B1x	+	B2x	+	B1B2x	+	e.	An	example	is	available	in	the	MASS
package	with	the	Boston	dataset.	The	response	is	median	home	value,	which	is	medv	in	the
output;	we	will	use	two	features,	the	percentage	of	homes	with	a	low	socioeconomic
status,	which	is	termed	as	lstat,	and	the	age	of	the	home	in	years,	which	is	termed	as	age
in	the	following	output:

>	library(MASS)

>	data(Boston)

>	str(Boston)

'data.frame':			506	obs.	of		14	variables:

$	crim			:	num		0.00632	0.02731	0.02729	0.03237	0.06905…

$	zn					:	num		18	0	0	0	0	0	12.5	12.5	12.5	12.5…

$	indus		:	num		2.31	7.07	7.07	2.18	2.18	2.18	7.87	7.87	7.87	7.87…

$	chas			:	int		0	0	0	0	0	0	0	0	0	0…

$	nox				:	num		0.538	0.469	0.469	0.458	0.458	0.458	0.524	0.524	0.524	

0.524…

$	rm					:	num		6.58	6.42	7.18	7	7.15…

$	age				:	num		65.2	78.9	61.1	45.8	54.2	58.7	66.6	96.1	100	85.9…

$	dis				:	num		4.09	4.97	4.97	6.06	6.06…

$	rad				:	int		1	2	2	3	3	3	5	5	5	5…

$	tax				:	num		296	242	242	222	222	222	311	311	311	311…

$	ptratio:	num		15.3	17.8	17.8	18.7	18.7	18.7	15.2	15.2	15.2	15.2…

$	black		:	num		397	397	393	395	397…

$	lstat		:	num		4.98	9.14	4.03	2.94	5.33…

$	medv			:	num		24	21.6	34.7	33.4	36.2	28.7	22.9	27.1	16.5	18.9…

Using	feature1*feature2	with	the	lm()	function	in	the	code,	puts	both	the	features	as	well
as	their	interaction	term	in	the	model,	as	follows:

>	value.fit	=	lm(medv~lstat*age,	data=Boston)

>	summary(value.fit)

Call:

lm(formula	=	medv	~	lstat	*	age,	data	=	Boston)

Residuals:

				Min						1Q		Median						3Q					Max

-15.806		-4.045		-1.333			2.085		27.552

Coefficients:

																Estimate	Std.	Error	t	value	Pr(>|t|)				

(Intercept)	36.0885359		1.4698355		24.553		<	2e-16	***

lstat							-1.3921168		0.1674555		-8.313	8.78e-16	***

age									-0.0007209		0.0198792		-0.036			0.9711				

lstat:age				0.0041560		0.0018518			2.244			0.0252	*		

Signif.	codes:		0	'***'	0.001	'**'	0.01	'*'	0.05	'.'	0.1	'	'	1

Residual	standard	error:	6.149	on	502	degrees	of	freedom

Multiple	R-squared:		0.5557,				Adjusted	R-squared:		0.5531

F-statistic:	209.3	on	3	and	502	DF,		p-value:	<	2.2e-16

Examining	the	output,	we	can	see	that	while	the	socioeconomic	status	is	a	highly
predictive	feature,	the	age	of	the	home	is	not.	However,	the	two	features	have	a	significant
interaction	to	positively	explain	the	home	value.

Summary
In	the	context	of	machine	learning,	we	train	a	model	and	test	it	to	predict	or	forecast	an
outcome.	In	this	chapter,	we	have	had	an	in-depth	look	at	the	simple	yet	extremely
effective	method	of	linear	regression	to	predict	a	quantitative	response.	The	later	chapters
will	cover	more	advanced	techniques,	but	many	of	them	are	mere	extensions	of	what	we
have	learned	in	this	chapter.	We’ve	discussed	the	problem	of	not	visually	inspecting	the
dataset	and	simply	relying	on	the	statistics	to	guide	you	in	model	selection.

With	just	a	few	lines	of	code,	you	can	make	powerful	and	insightful	predictions	to	support
decision-making.	Not	only	is	it	simple	and	effective,	you	can	also	include	quantitative
variables	and	interaction	terms	among	the	features.	Indeed,	it	is	a	method	that	anyone
delving	into	the	world	of	machine	learning	must	master.

Chapter	3.	Logistic	Regression	and
Discriminant	Analysis
	 “The	true	logic	of	this	world	is	the	calculus	of	probabilities.” 	

	 —James	Clerk	Maxwell,	Scottish	physicist

In	the	previous	chapter,	we	took	a	look	at	using	Ordinary	Least	Squares	(OLS)	to
predict	a	quantitative	outcome,	in	other	words,	linear	regression.	It	is	now	time	to	shift
gears	somewhat	and	examine	how	we	can	develop	algorithms	to	predict	qualitative
outcomes.	Such	outcome	variables	could	be	binary	(male	versus	female,	purchases	versus
does	not	purchase,	tumor	is	benign	versus	malignant)	or	multinomial	categories	(education
level	or	eye	color).	Regardless	of	whether	or	not	the	outcome	of	interest	is	binary	or
multinomial,	the	task	of	the	analyst	is	to	predict	the	probability	that	an	observation	would
belong	to	which	category	of	the	outcome	variable.	In	other	words,	we	develop	an
algorithm	in	order	to	classify	the	observations.

To	begin	exploring	the	classification	problems,	we	will	discuss	why	applying	the	OLS
linear	regression	is	not	the	correct	technique	and	how	the	algorithms	introduced	in	this
chapter	can	solve	these	issues.	We	will	then	look	at	a	problem	about	predicting	whether	or
not	a	biopsied	tumor	mass	is	classified	as	benign	or	malignant.	The	dataset	is	the	well-
known	and	widely	available	Wisconsin	Breast	Cancer	Data.	To	tackle	this	problem,	we
will	begin	by	building	and	interpreting	the	logistic	regression	models.	We	will	also	begin
examining	methods	so	as	to	select	features	and	the	most	appropriate	model.	Next,	we	will
discuss	about	both	linear	and	quadratic	discriminant	analyses	and	comparing	and
contrasting	these	with	logistic	regression.	Then,	building	predictive	models	on	the	breast
cancer	data	will	follow.	Finally,	we	will	wrap	it	all	up	by	looking	at	ways	to	select	the	best
overall	algorithm	in	order	to	address	the	question	at	hand.	These	methods	(creating
test/train	datasets	and	cross-validation)	will	set	the	stage	for	more	advanced	machine
learning	methods	in	the	subsequent	chapters.

Classification	methods	and	linear
regression
So,	why	can’t	we	just	use	the	least	squares	regression	method	that	we	learned	in	the
previous	chapter	for	a	qualitative	outcome?	Well,	as	it	turns	out,	you	can	but	at	your	own
risk.	Let’s	assume	for	a	second	that	you	have	an	outcome	that	you	are	trying	to	predict	and
it	has	three	different	classes:	mild,	moderate,	and	severe.	You	and	your	colleagues	also
assume	that	the	difference	between	mild	and	moderate	and	moderate	and	severe	is	an
equivalent	measure	and	a	linear	relationship.	You	can	create	a	dummy	variable	where	zero
is	equal	to	mild,	one	is	equal	to	moderate,	and	two	is	equal	to	severe.	If	you	have	reason	to
believe	this,	then	linear	regression	might	be	an	acceptable	solution.	However,	qualitative
assessments	such	as	the	previous	ones	might	lend	themselves	to	a	high	level	of
measurement	error	that	can	bias	the	OLS.	In	most	business	problems,	there	is	no
scientifically	acceptable	way	to	convert	a	qualitative	response	to	one	that	is	quantitative.
What	if	you	have	a	response	with	two	outcomes,	say,	fail	and	pass?	Again,	using	the
dummy	variable	approach,	we	could	code	the	fail	outcome	as	0	and	pass	outcome	as	1.
Using	linear	regression,	we	could	build	a	model	where	the	predicted	value	is	the
probability	of	an	observation	of	pass	or	fail.	However,	the	estimates	of	Y	in	the	model	will
most	likely	exceed	the	probability	constraints	of	[0,1]	and	thus,	be	a	bit	difficult	to
interpret.

Logistic	regression
As	previously	discussed,	our	classification	problem	is	best	modeled	with	the	probabilities
that	are	bound	by	0	and	1.	We	can	do	this	for	all	of	our	observations	with	a	number	of
different	functions,	but	here	we	will	focus	on	the	logistic	function.	The	logistic	function
used	in	logistic	regression	is	as	follows:

If	you	have	ever	placed	a	friendly	wager	on	horse	races	or	the	World	Cup,	you	may
understand	the	concept	better	as	odds.	The	logistic	function	can	be	turned	to	odds	with	the
formulation	of	Probability	(Y)	/	1	–	Probability	(Y).	For	instance,	if	the	probability	of
Brazil	winning	the	World	Cup	is	20	percent,	then	the	odds	are	0.2	/	1	-	0.2,	which	is	equal
to	0.25,	translating	to	the	odds	of	one	in	four.

To	translate	the	odds	back	to	probability,	take	the	odds	and	divide	by	one	plus	the	odds.
The	World	Cup	example	is	thus,	0.25	/	1	+	0.25,	which	is	equal	to	20	percent.
Additionally,	let’s	consider	the	odds	ratio.	Assume	that	the	odds	of	Germany	winning	the
Cup	are	0.18.	We	can	compare	the	odds	of	Brazil	and	Germany	with	the	odds	ratio.	In	this
example,	the	odds	ratio	would	be	the	odds	of	Brazil	divided	by	the	odds	of	Germany.	We
will	end	up	with	an	odds	ratio	equal	to	0.25/0.18,	which	is	equal	to	1.39.	Here,	we	will	say
that	Brazil	is	1.39	times	more	likely	than	Germany	to	win	the	World	Cup.

One	way	to	look	at	the	relationship	of	logistic	regression	with	linear	regression	is	to	show
logistic	regression	as	the	log	odds	or	log	(P(Y)/1	–	P(Y))	is	equal	to	Bo	+	B1x.	The
coefficients	are	estimated	using	a	maximum	likelihood	instead	of	the	OLS.	The	intuition
behind	the	maximum	likelihood	is	that	we	are	finding	the	estimates	for	Bo	and	B1	that	will
create	a	predicted	probability	for	an	observation	that	is	as	close	as	possible	to	the	actual
observed	outcome	of	Y,	a	so-called	likelihood.	The	R	language	does	what	other	software
packages	do	for	the	maximum	likelihood,	which	is	to	find	the	optimal	combination	of	beta
values	that	maximize	the	likelihood.

With	these	facts	in	mind,	logistic	regression	is	a	very	powerful	technique	to	predict	the
problems	involving	classification	and	is	often	the	starting	point	for	model	creation	in	such
problems.	Therefore,	in	this	chapter,	we	will	attack	the	upcoming	business	problem	with
logistic	regression	first	and	foremost.

Business	understanding
Dr.	William	H.	Wolberg	from	the	University	of	Wisconsin	commissioned	the	Wisconsin
Breast	Cancer	Data	in	1990.	His	goal	of	collecting	the	data	was	to	identify	whether	a
tumor	biopsy	was	malignant	or	benign.	His	team	collected	the	samples	using	Fine	Needle
Aspiration	(FNA).	If	a	physician	identifies	the	tumor	through	examination	or	imaging	an
area	of	abnormal	tissue,	then	the	next	step	is	to	collect	a	biopsy.	FNA	is	a	relatively	safe
method	of	collecting	the	tissue	and	complications	are	rare.	Pathologists	examine	the
biopsy	and	attempt	to	determine	the	diagnosis	(malignant	or	benign).	As	you	can	imagine,
this	is	not	a	trivial	conclusion.	Benign	breast	tumors	are	not	dangerous	as	there	is	no	risk
of	the	abnormal	growth	spreading	to	the	other	body	parts.	If	a	benign	tumor	is	large
enough,	surgery	might	be	needed	to	remove	it.	On	the	other	hand,	a	malignant	tumor
requires	medical	intervention.	The	level	of	treatment	depends	on	a	number	of	factors	but
most	likely	will	require	surgery,	which	can	be	followed	by	radiation	and/or	chemotherapy.
Therefore,	the	implications	of	a	misdiagnosis	can	be	extensive.	A	false	positive	for
malignancy	can	lead	to	costly	and	unnecessary	treatment,	subjecting	the	patient	to	a
tremendous	emotional	and	physical	burden.	On	the	other	hand,	a	false	negative	can	deny	a
patient	the	treatment	that	they	need,	causing	the	cancer	to	spread	and	leading	to	premature
death.	Early	treatment	intervention	in	breast	cancer	patients	can	greatly	improve	their
survival.

Our	task	then	is	to	develop	the	best	possible	diagnostic	machine	learning	algorithm	in
order	to	assist	the	patient’s	medical	team	in	determining	whether	the	tumor	is	malignant	or
not.

Data	understanding	and	preparation
This	dataset	consists	of	tissue	samples	from	699	patients.	It	is	in	a	data	frame	with	11
variables,	as	follows:

ID:	This	is	the	sample	code	number
V1:	This	is	the	thickness
V2:	This	is	the	uniformity	of	the	cell	size
V3:	This	is	the	uniformity	of	the	cell	shape
V4:	This	is	the	marginal	adhesion
V5:	This	is	the	single	epithelial	cell	size
V6:	This	is	the	bare	nucleus	(16	observations	are	missing)
V7:	This	is	the	bland	chromatin
V8:	This	is	the	normal	nucleolus
V9:	This	is	the	mitosis
class:	This	is	the	tumor	diagnosis	benign	or	malignant;	this	will	be	the	outcome
that	we	are	trying	to	predict

The	medical	team	has	scored	and	coded	each	of	the	nine	features	on	a	scale	of	1	to	10.

The	data	frame	is	available	in	the	R	MASS	package	under	the	biopsy	name.	To	prepare	this
data,	we	will	load	the	data	frame,	confirm	the	structure,	rename	the	variables	to	something
meaningful,	and	delete	the	missing	observations.	At	this	point,	we	can	begin	to	explore	the
data	visually.	Here	is	the	code	that	will	get	us	started	when	we	will	first	load	the	library
and	then	the	dataset,	and	using	the	str()	function,	will	examine	the	underlying	structure
of	the	data,	as	follows:

>	library(MASS)

>	data(biopsy)

>	str(biopsy)

'data.frame':			699	obs.	of		11	variables:

	$	ID			:	chr		"1000025"	"1002945"	"1015425"	"1016277"	…

	$	V1			:	int		5	5	3	6	4	8	1	2	2	4	…

	$	V2			:	int		1	4	1	8	1	10	1	1	1	2	…

	$	V3			:	int		1	4	1	8	1	10	1	2	1	1	…

	$	V4			:	int		1	5	1	1	3	8	1	1	1	1	…

	$	V5			:	int		2	7	2	3	2	7	2	2	2	2	…

	$	V6			:	int		1	10	2	4	1	10	10	1	1	1	…

	$	V7			:	int		3	3	3	3	3	9	3	3	1	2	…

	$	V8			:	int		1	2	1	7	1	7	1	1	1	1	…

	$	V9			:	int		1	1	1	1	1	1	1	1	5	1	…

	$	class:	Factor	w/	2	levels	"benign","malignant":	1	1	1	1	1	2	1	1	1	1…

An	examination	of	the	data	structure	shows	that	our	features	are	integers	and	the	outcome
is	a	factor.	No	transformation	of	the	data	to	a	different	structure	is	needed.	Depending	on
the	package	in	R	that	you	are	using	to	analyze	the	data,	the	outcome	needs	to	be	numeric,
which	is	0	or	1.	We	can	now	get	rid	of	the	ID	column,	as	follows:

>	biopsy$ID	=	NULL

Next,	we	will	rename	the	variables	and	confirm	that	the	code	has	worked	as	intended:

>	names(biopsy)	=	c("thick",	"u.size",	"u.shape",	"adhsn",	"s.size",	

"nucl",	"chrom",	"n.nuc",	"mit",	"class")

>	names(biopsy)

	[1]	"thick"			"u.size"		"u.shape"	"adhsn"			"s.size"		"nucl"

			"chrom"			"n.nuc"

	[9]	"mit"					"class"

Now,	we	will	delete	the	missing	observations.	As	there	are	only	16	observations	with	the
missing	data,	it	is	safe	to	get	rid	of	them	as	they	account	for	only	two	percent	of	all	the
observations.	A	thorough	discussion	of	how	to	handle	the	missing	data	is	outside	the	scope
of	this	chapter.	In	deleting	these	observations,	a	new	working	data	frame	is	created.	One
line	of	code	does	this	trick	with	the	na.omit	function,	which	deletes	all	the	missing
observations:

>	biopsy.v2	=	na.omit(biopsy)

There	are	a	number	of	ways	in	which	we	can	understand	the	data	visually	in	a
classification	problem,	and	I	think	a	lot	of	it	comes	down	to	personal	preference.	One	of
the	things	that	I	like	to	do	in	these	situations	is	examine	the	boxplots	of	the	features	that
are	split	by	the	classification	outcome.	This	is	an	excellent	way	to	begin	understanding
which	features	may	be	important	to	the	algorithm.	Boxplots	are	a	simple	way	to
understand	the	distribution	of	the	data	at	a	glance.	In	my	experience,	it	also	provides	you
with	an	effective	way	to	build	the	presentation	story	that	you	will	deliver	to	your
customers.	There	are	a	number	of	ways	to	do	this	quickly	and	the	lattice	and	ggplot2
packages	are	quite	good	at	this	task.	I	will	use	ggplot2	in	this	case	with	the	additional
package,	reshape2.	After	loading	the	packages,	you	will	need	to	create	a	data	frame	using
the	melt()	function.	The	reason	to	do	this	is	that	melting	the	features	will	allow	the
creation	of	a	matrix	of	boxplots,	allowing	us	to	easily	conduct	the	following	visual
inspection:

>	library(reshape2)

>	library(ggplot2)

The	following	code	melts	the	data	by	their	values	into	one	overall	feature	and	groups	them
by	class:

>	biop.m	=	melt(biopsy.v2,	id.var="class")

Through	the	magic	of	ggplot2,	we	can	create	a	3x3	boxplot	matrix,	as	follows:

>	ggplot(data=biop.m,	aes(x=class,	y=value))	+	geom_boxplot()	

+facet_wrap(~variable,ncol	=	3)

The	following	is	the	output	of	the	preceding	code:

How	do	we	interpret	a	boxplot?	First	of	all,	in	the	preceding	image,	the	thick	white	boxes
constitute	the	upper	and	lower	quartiles	of	the	data;	in	other	words,	half	of	all	the
observations	fall	in	the	thick	white	box	area.	The	dark	line	cutting	across	the	box	is	the
median	value.	The	lines	extending	from	the	boxes	are	also	quartiles,	terminating	at	the
maximum	and	minimum	values,	outliers	notwithstanding.	The	black	dots	constitute	the
outliers.

By	inspecting	the	plots	and	applying	some	judgment,	it	is	difficult	to	determine	which
features	will	be	important	in	our	classification	algorithm.	However,	I	think	it	is	safe	to
assume	that	the	nuclei	feature	will	be	important	given	the	separation	of	the	median	values
and	corresponding	distributions.	Conversely,	there	appears	to	be	little	separation	of	the
mitosis	feature	by	class	and	it	will	likely	be	an	irrelevant	feature.	We	shall	see!

With	all	of	our	features	quantitative,	we	can	also	do	a	correlation	analysis	as	we	did	with
linear	regression.	Collinearity	with	logistic	regression	can	bias	our	estimates	just	as	we
discussed	with	linear	regression.	Let’s	load	the	corrplot	package	and	examine	the
correlations	as	we	did	in	the	previous	chapter,	this	time	using	a	different	type	of
correlation	matrix,	which	has	both	shaded	ovals	and	the	correlation	coefficients	in	the
same	plot,	as	follows:

>	library(corrplot)

>	bc	=	cor(biopsy.v2[,1:9])	#create	an	object	of	the	features

>	corrplot.mixed(bc)

The	following	is	the	output	of	the	preceding	code:

The	correlation	coefficients	are	indicating	that	we	may	have	a	problem	with	collinearity,	in
particular,	the	features	of	uniform	shape	and	uniform	size	that	are	present.	As	a	part	of	the
logistic	regression	modeling	process,	it	will	be	necessary	to	incorporate	the	VIF	analysis
as	we	did	with	linear	regression.	The	final	task	in	the	data	preparation	will	be	the	creation
of	our	train	and	test	datasets.	The	purpose	of	creating	two	different	datasets	from	the
original	one	is	to	improve	our	ability	so	as	to	accurately	predict	the	previously	unused	or
unseen	data.	In	essence,	in	machine	learning,	we	should	not	be	so	concerned	with	how
well	we	can	predict	the	current	observations,	but	more	focused	on	how	well	we	can
predict	the	observations	that	were	not	used	in	order	to	create	the	algorithm.	So,	we	can
create	and	select	the	best	algorithm	using	the	training	data	that	maximizes	our	predictions
on	the	test	set.	The	models	that	we	will	build	in	this	chapter	will	be	evaluated	by	this
criterion.

There	are	a	number	of	ways	to	proportionally	split	our	data	into	train	and	test	sets:
50/50,	60/40,	70/30,	80/20,	and	so	forth.	The	data	split	that	you	select	should	be	based	on
your	experience	and	judgment.	For	this	exercise,	I	will	use	a	70/30	split,	as	follows:

>	set.seed(123)	#random	number	generator

>	ind	=	sample(2,	nrow(biopsy.v2),	replace=TRUE,	prob=c(0.7,	0.3))

>	train	=	biopsy.v2[ind==1,]	#the	training	data	set

>	test	=	biopsy.v2[ind==2,]	#the	test	data	set

>	str(test)	#confirm	it	worked

'data.frame':			209	obs.	of		10	variables:

	$	thick		:	int		5	6	4	2	1	7	6	7	1	3…

	$	u.size	:	int		4	8	1	1	1	4	1	3	1	2…

	$	u.shape:	int		4	8	1	2	1	6	1	2	1	1…

	$	adhsn		:	int		5	1	3	1	1	4	1	10	1	1…

	$	s.size	:	int		7	3	2	2	1	6	2	5	2	1…

	$	nucl			:	int		10	4	1	1	1	1	1	10	1	1…

	$	chrom		:	int		3	3	3	3	3	4	3	5	3	2…

	$	n.nuc		:	int		2	7	1	1	1	3	1	4	1	1…

	$	mit				:	int		1	1	1	1	1	1	1	4	1	1…

	$	class		:	Factor	w/	2	levels	"benign","malignant":	1	1	1	1	1	2	1	2	1	1…

To	ensure	that	we	have	a	well-balanced	outcome	variable	between	the	two	datasets,	we
will	perform	the	following	check:

>	table(train$class)

			benign	malignant

						302							172

>	table(test$class)

			benign	malignant

						142								67

This	is	an	acceptable	ratio	of	our	outcomes	in	the	two	datasets,	and	with	this,	we	can	begin
the	modeling	and	evaluation.

Modeling	and	evaluation
For	this	part	of	the	process,	we	will	start	with	a	logistic	regression	model	of	all	the	input
variables	and	then	narrow	down	the	features	with	the	best	subsets.	After	this,	we	will	try
our	hand	at	both	linear	and	quadratic	discriminant	analyses.

The	logistic	regression	model
We’ve	already	discussed	the	theory	behind	logistic	regression	so	we	can	begin	fitting	our
models.	An	R	installation	comes	with	the	glm()	function	that	fits	the	generalized	linear
models,	which	are	a	class	of	models	that	includes	logistic	regression.	The	code	syntax	is
similar	to	the	lm()	function	that	we	used	in	the	previous	chapter.	The	one	big	difference	is
that	we	must	use	the	family	=	binomial	argument	in	the	function,	which	tells	R	to	run	a
logistic	regression	method	instead	of	the	other	versions	of	the	generalized	linear	models.
We	will	start	by	creating	a	model	that	includes	all	of	the	features	on	the	train	set	and	see
how	it	performs	on	the	test	set,	as	follows:

>	full.fit	=	glm(class~.,	family=binomial,	data=train)

>	summary(full.fit)

Call:

glm(formula	=	class	~	.,	family	=	binomial,	data	=	train)

Deviance	Residuals:

				Min							1Q			Median							3Q						Max		

-3.3397		-0.1387		-0.0716			0.0321			2.3559		

Coefficients:

												Estimate	Std.	Error	z	value	Pr(>|z|)				

(Intercept)		-9.4293					1.2273		-7.683	1.55e-14	***

thick									0.5252					0.1601			3.280	0.001039	**

u.size							-0.1045					0.2446		-0.427	0.669165				

u.shape							0.2798					0.2526			1.108	0.268044				

adhsn									0.3086					0.1738			1.776	0.075722	.		

s.size								0.2866					0.2074			1.382	0.167021				

nucl										0.4057					0.1213			3.344	0.000826	***

chrom									0.2737					0.2174			1.259	0.208006				

n.nuc									0.2244					0.1373			1.635	0.102126				

mit											0.4296					0.3393			1.266	0.205402				

Signif.	codes:		0	'***'	0.001	'**'	0.01	'*'	0.05	'.'	0.1	'	'	1

(Dispersion	parameter	for	binomial	family	taken	to	be	1)

				Null	deviance:	620.989		on	473		degrees	of	freedom

Residual	deviance:		78.373		on	464		degrees	of	freedom

AIC:	98.373

Number	of	Fisher	Scoring	iterations:	8

The	summary()	function	allows	us	to	inspect	the	coefficients	and	their	p-values.	We	can
see	that	only	two	features	have	p-values	less	than	0.05	(thickness	and	nuclei).	An

examination	of	the	95	percent	confidence	intervals	can	be	called	on	with	the	confint()
function,	as	follows:

>	confint(full.fit)

																			2.5	%					97.5	%

(Intercept)	-12.23786660	-7.3421509

thick									0.23250518		0.8712407

u.size							-0.56108960		0.4212527

u.shape						-0.24551513		0.7725505

adhsn								-0.02257952		0.6760586

s.size							-0.11769714		0.7024139

nucl										0.17687420		0.6582354

chrom								-0.13992177		0.7232904

n.nuc								-0.03813490		0.5110293

mit										-0.14099177		1.0142786

Note	that	the	two	significant	features	have	confidence	intervals	that	do	not	cross	zero.	You
cannot	translate	the	coefficients	in	logistic	regression	as	the	change	in	Y	is	based	on	a	one-
unit	change	in	X.	This	is	where	the	odds	ratio	can	be	quite	helpful.	The	beta	coefficients
from	the	log	function	can	be	converted	to	the	odds	ratios	with	an	exponent	(beta).

In	order	to	produce	the	odds	ratios	in	R,	we	will	use	the	following	exp(coef())	syntax:

>	exp(coef(full.fit))

	(Intercept)								thick							u.size						u.shape								adhsn

8.033466e-05	1.690879e+00	9.007478e-01	1.322844e+00	1.361533e+00

						s.size									nucl								chrom								n.nuc										mit

1.331940e+00	1.500309e+00	1.314783e+00	1.251551e+00	1.536709e+00

The	interpretation	of	an	odds	ratio	is	the	change	in	the	outcome	odds	resulting	from	a	unit
change	in	the	feature.	If	the	value	is	greater	than	one,	it	indicates	that	as	the	feature
increases,	the	odds	of	the	outcome	increase.	Conversely,	a	value	less	than	one	would	mean
that	as	the	feature	increases,	the	odds	of	the	outcome	decrease.	In	this	example,	all	the
features	except	u.size	will	increase	the	log	odds.

One	of	the	issues	pointed	out	during	the	data	exploration	was	the	potential	issue	of
multicollinearity.	It	is	possible	to	produce	the	VIF	statistics	that	we	did	in	linear	regression
with	a	logistic	model	in	the	following	way:

>	library(car)

>	vif(full.fit)

			thick		u.size		u.shape		adhsn			s.size			nucl			chrom			n.nuc

	1.2352	3.2488		2.8303			1.3021		1.6356			1.3729	1.5234		1.3431

					mit

1.059707

None	of	the	values	are	greater	than	the	VIF	rule	of	thumb	statistic	of	five,	so	collinearity
does	not	seem	to	be	a	problem.	Feature	selection	will	be	the	next	task;	but	for	now,	let’s
produce	some	code	to	look	at	how	well	this	model	does	on	both	the	train	and	test	sets.

You	will	first	have	to	create	a	vector	of	the	predicted	probabilities,	as	follows:

>	train$probs	=	predict(full.fit,	type="response")

>	train$probs[1:5]	#inspect	the	first	5	predicted	probabilities

[1]	0.02052820	0.01087838	0.99992668	0.08987453	0.01379266

The	contrasts()	function	allows	us	to	confirm	that	the	model	was	created	with	benign	as
0	and	malignant	as	1:

>	contrasts(train$class)

										malignant

benign												0

malignant									1

Next,	in	order	to	create	a	meaningful	table	of	the	fit	model	that	is	referred	to	as	a
confusion	matrix,	we	will	need	to	produce	a	vector	that	codes	the	predicted	probabilities
as	either	benign	or	malignant.	We	will	see	that	in	the	other	packages	this	is	not	necessary,
but	for	the	glm()	function	it	is	necessary	as	it	defaults	to	a	predicted	probability	and	not	a
class	prediction.	There	are	a	number	of	ways	to	do	this.	Using	the	rep()	function,	a
vector	is	created	with	all	the	values	called	benign	and	a	total	of	474	observations,	which
match	the	number	in	the	training	set.	Then,	we	will	code	all	the	values	as	malignant
where	the	predicted	probability	was	greater	than	50	percent,	as	follows:

>	train$predict	=	rep("benign",	474)

>	train$predict[train$probs>0.5]="malignant"

The	table()	function	produces	our	confusion	matrix:

>	table(train$predict,	train$class)

												benign	malignant

		benign							294									7

		malignant						8							165

The	rows	signify	the	predictions	and	columns	signify	the	actual	values.	The	diagonal
elements	are	the	correct	classifications.	The	top	right	value,	7,	is	the	number	of	false
negatives	and	the	bottom	left	value,	8,	is	the	number	of	false	positives.	The	mean()
function	shows	us	what	percentage	of	the	observations	were	predicted	correctly,	as
follows:

>	mean(train$predict==train$class)

[1]	0.9683544

It	seems	we	have	done	a	fairly	good	job	with	our	almost	97	percent	prediction	rate	on	the
training	set.	As	we	previously	discussed,	we	must	be	able	to	accurately	predict	the	unseen
data,	in	other	words,	our	test	set.

The	method	to	create	a	confusion	matrix	for	the	test	set	is	similar	to	how	we	did	it	for	the
training	data:

>	test$prob	=	predict(full.fit,	newdata=test,	type="response")

In	the	preceding	code,	we	just	specified	that	we	want	to	predict	the	test	set	with
newdata=test.

As	we	did	with	the	training	data,	we	need	to	create	our	predictions	for	the	test	data:

>	test$predict	=	rep("benign",	209)

>	test$predict[test$prob>0.5]="malignant"

>	table(test$predict,	test$class)

											

												benign	malignant

		benign							139									2

		malignant						3								65

>	mean(test$predict==test$class)

[1]	0.9760766

It	appears	that	we	have	done	pretty	well	in	creating	a	model	with	all	the	features.	The
roughly	98	percent	prediction	rate	is	quite	impressive.	However,	we	must	still	see	if	there
is	room	for	improvement.	Imagine	that	you	or	your	loved	one	is	a	patient	that	has	been
diagnosed	incorrectly.	As	previously	mentioned,	the	implications	can	be	quite	dramatic.
With	this	in	mind,	is	there	perhaps	a	better	way	to	create	a	classification	algorithm?

Logistic	regression	with	cross-validation
The	purpose	of	cross-validation	is	to	improve	our	prediction	of	the	test	set	and	minimize
the	chance	of	over	fitting.	With	the	K-fold	cross-validation,	the	dataset	is	split	into	K
equal-sized	parts.	The	algorithm	learns	by	alternatively	holding	out	one	of	the	K-sets	and
fits	a	model	to	the	other	K-1	parts	and	obtains	predictions	for	the	left	out	K-set.	The
results	are	then	averaged	so	as	to	minimize	the	errors	and	appropriate	features	selected.
You	can	also	do	the	Leave-One-Out-Cross-Validation	(LOOCV),	where	K	is	equal	to
one.	Simulations	have	shown	that	the	LOOCV	method	can	have	averaged	estimates	that
have	a	high	variance.	As	a	result,	most	machine	learning	experts	will	recommend	that	the
number	of	K-folds	should	be	5	or	10.

An	R	package	that	will	automatically	do	CV	for	logistic	regression	is	the	bestglm	package.
This	package	is	dependent	on	the	leaps	package	that	we	used	for	linear	regression.	The
syntax	and	formatting	of	the	data	requires	some	care,	so	let’s	walk	through	this	in	detail:

>	library(bestglm)

Loading	required	package:	leaps

After	loading	the	package,	we	will	need	our	outcome	coded	to	0	or	1.	If	left	as	a	factor,	it
will	not	work.	All	you	have	to	do	is	add	a	vector	to	the	train	set,	code	it	all	with	zeroes,
and	then	code	it	to	one	where	the	class	vector	is	equal	to	malignant,	as	follows:

>	train$y=rep(0,474)

>	train$y[train$class=="malignant"]=1

A	quick	double	check	is	required	in	order	to	confirm	that	it	worked:

>	head(train[,13])

[1]	0	0	1	0	0	0

The	other	requirement	to	utilize	the	package	is	that	your	outcome,	or	y,	is	the	last	column
and	all	the	extraneous	columns	have	been	removed.	A	new	data	frame	will	do	the	trick	for

us	by	simply	deleting	any	unwanted	columns.	The	outcome	is	column	10,	and	if	in	the
process	of	doing	other	analyses	we	added	columns	11	and	12,	they	must	be	removed	as
well:

>	biopsy.cv	=	train[,-10:-12]

>	head(biopsy.cv)

			thick	u.size	u.shape	adhsn	s.size	nucl	chrom	n.nuc	mit	y

1						5						1							1					1						2				1					3					1			1	0

3						3						1							1					1						2				2					3					1			1	0

6						8					10						10					8						7			10					9					7			1	1

7						1						1							1					1						2			10					3					1			1	0

9						2						1							1					1						2				1					1					1			5	0

10					4						2							1					1						2				1					2					1			1	0

Here	is	the	code	to	run	in	order	to	use	the	CV	technique	with	our	data:

>	bestglm(Xy	=	biopsy.cv,	IC="CV",	CVArgs=list(Method="HTF",	K=10,	REP=1),	

family=binomial)

The	syntax,	Xy	=	biopsy.cv,	points	to	our	properly	formatted	data	frame.	IC="CV"	tells
the	package	that	the	information	criterion	to	use	is	cross-validation.	CVArgs	are	the	CV
arguments	that	we	want	to	use.	The	HTF	method	is	K-fold,	which	is	followed	by	the
number	of	folds	of	K=10,	and	we	are	asking	it	to	do	only	one	iteration	of	the	random	folds
with	REP=1.	Just	as	with	glm(),	we	will	need	to	use	family=binomial.	On	a	side	note,	you
can	use	bestglm	for	linear	regression	as	well	by	specifying	family=gaussian.	So,	after
running	the	analysis,	we	will	end	up	with	the	following	output,	giving	us	three	features	for
Best	Model	such	as	thick,	u.size,	and	nucl.	The	statement	on	Morgan-Tatar	search
simply	means	that	a	simple	exhaustive	search	was	done	for	all	the	possible	subsets,	as
follows:

Morgan-Tatar	search	since	family	is	non-gaussian.

CV(K	=	10,	REP	=	1)

BICq	equivalent	for	q	in	(7.16797006619085e-05,	0.273173435514231)

Best	Model:

														Estimate	Std.	Error			z	value					Pr(>|z|)

(Intercept)	-7.8147191	0.90996494	-8.587934	8.854687e-18

thick								0.6188466	0.14713075		4.206100	2.598159e-05

u.size							0.6582015	0.15295415		4.303260	1.683031e-05

nucl									0.5725902	0.09922549		5.770596	7.899178e-09

We	can	put	these	features	in	glm()	and	then	see	how	well	the	model	did	on	the	train	and
test	sets.	The	predict()	function	will	not	work	with	bestglm,	so	this	is	a	required	step:

>	reduce.fit	=	glm(class~thick+u.size+nucl,	family=binomial,	data=train)

Using	the	same	style	of	code	as	we	did	in	the	last	section,	we	will	save	the	probabilities
and	create	the	confusion	matrices,	as	follows:

>	train$cv.probs	=	predict(reduce.fit,	type="response")

>	train$cv.predict	=	rep("benign",	474)

>	train$cv.predict[train$cv.probs>0.5]="malignant"

>	table(train$cv.predict,	train$class)

											

												benign	malignant

		benign							294									9

		malignant						8							163

Interestingly,	the	reduced	feature	model	had	two	more	false	negatives	than	the	full	model.

As	before,	the	following	code	allows	us	to	compare	the	predicted	labels	versus	the	actual
ones:

>	test$cv.probs	=	predict(reduce.fit,	newdata=test,	type="response")

>	test$predict	=	rep("benign",	209)

>	test$predict[test$cv.probs>0.5]="malignant"

>	table(test$predict,	test$class)

											

												benign	malignant

		benign							139									5

		malignant						3								62

The	reduced	feature	model	again	produced	more	false	negatives	than	when	all	the	features
were	included.	This	is	quite	disappointing,	but	all	is	not	lost.	We	can	utilize	the	bestglm
package	again,	this	time	using	the	best	subsets	with	the	information	criterion	set	to	BIC:

>	bestglm(Xy=	biopsy.cv,	IC="BIC",	family=binomial)

Morgan-Tatar	search	since	family	is	non-gaussian.

BIC

BICq	equivalent	for	q	in	(0.273173435514231,	0.577036596263757)

Best	Model:

														Estimate	Std.	Error			z	value					Pr(>|z|)

(Intercept)	-8.6169613	1.03155250	-8.353391	6.633065e-17

thick								0.7113613	0.14751510		4.822295	1.419160e-06

adhsn								0.4537948	0.15034294		3.018398	2.541153e-03

nucl									0.5579922	0.09848156		5.665956	1.462068e-08

n.nuc								0.4290854	0.11845720		3.622282	2.920152e-04

These	four	features	provide	the	minimum	BIC	score	for	all	possible	subsets.	Let’s	try	this
and	see	how	it	predicts	the	test	set,	as	follows:

>	bic.fit=glm(class~thick+adhsn+nucl+n.nuc,	family=binomial,	data=train)

>	test$bic.probs	=	predict(bic.fit,	newdata=test,	type="response")

>	test$bic.predict	=	rep("benign",	209)

>	test$bic.predict[test$bic.probs>0.5]="malignant"

>	table(test$bic.predict,	test$class)

											

												benign	malignant

		benign							138									1

		malignant						4								66

Here	we	have	five	errors	just	like	the	full	model.	The	obvious	question	then	is	which	one
is	better?	In	any	normal	situation,	the	rule	of	thumb	is	to	default	to	the	simplest	or	most
interpretable	model	given	the	equality	of	generalization.	We	could	run	a	completely	new
analysis	with	a	new	randomization	and	different	ratios	of	the	train	and	test	sets	among
others.	However,	let’s	assume	for	a	moment	that	we’ve	exhausted	the	limits	of	what
logistic	regression	can	do	for	us.	We	will	come	back	to	the	full	model	and	the	model	that
we	developed	on	a	BIC	minimum	at	the	end	and	discuss	the	methods	of	model	selection.
Now,	let’s	move	on	to	our	discriminant	analysis	methods,	which	we	will	also	include	as
possibilities	in	the	final	recommendation.

Discriminant	analysis	overview
Discriminant	Analysis	(DA),	also	known	as	Fisher	Discriminant	Analysis	(FDA),	is
another	popular	classification	technique.	It	can	be	an	effective	alternative	to	logistic
regression	when	the	classes	are	well-separated.	If	you	have	a	classification	problem	where
the	outcome	classes	are	well-separated,	logistic	regression	can	have	unstable	estimates,
which	is	to	say	that	the	confidence	intervals	are	wide	and	the	estimates	themselves	would
likely	vary	wildly	from	one	sample	to	another	(James,	2013).	DA	does	not	suffer	from	this
problem,	and	as	a	result,	may	outperform	and	be	more	generalizable	than	logistic
regression.	Conversely,	if	there	are	complex	relationships	between	the	features	and
outcome	variables,	it	may	perform	poorly	on	a	classification	task.	For	our	breast	cancer
example,	logistic	regression	performed	well	on	the	testing	and	training	sets	and	the	classes
were	not	well-separated.	For	the	purpose	of	comparison	to	logistic	regression,	we	will
explore	DA,	both	Linear	Discriminant	Analysis	(LDA)	and	Quadratic	Discriminant
Analysis	(QDA).

DA	utilizes	Bayes’	theorem	in	order	to	determine	the	probability	of	the	class	membership
for	each	observation.	If	you	have	two	classes,	for	example,	benign	and	malignant,	then	DA
will	calculate	an	observation’s	probability	for	both	the	classes	and	select	the	highest
probability	as	the	proper	class.

Bayes’	theorem	states	that	the	probability	of	Y	occurring—given	that	X	has	occurred—is
equal	to	the	probability	of	both	Y	and	X	occurring	divided	by	the	probability	of	X
occurring,	which	can	be	written	as:

The	numerator	in	this	expression	is	the	likelihood	that	an	observation	is	from	that	class
level	and	has	these	feature	values.	The	denominator	is	the	likelihood	of	an	observation	that
has	these	feature	values	across	all	the	levels.	Again,	the	classification	rule	says	that	if	you
have	the	joint	distribution	of	X	and	Y	and	if	X	is	given,	the	optimal	decision	of	which	class
to	assign	an	observation	is	by	choosing	the	class	with	the	larger	probability	(the	posterior
probability).

The	process	of	attaining	the	posterior	probabilities	goes	through	the	following	steps:

1.	 Collect	data	with	a	known	class	membership.
2.	 Calculate	the	prior	probabilities—this	represents	the	proportion	of	the	sample	that

belongs	to	each	class.
3.	 Calculate	the	mean	for	each	feature	by	their	class.
4.	 Calculate	the	variance-covariance	matrix	for	each	feature;	if	it	is	an	LDA,	then	this

would	be	a	pooled	matrix	of	all	the	classes,	giving	us	a	linear	classifier,	and	if	it	is	a
QDA,	then	a	variance-covariance	matrix	is	created	for	each	class.

5.	 Estimate	the	normal	distribution	(Gaussian	densities)	for	each	class.

6.	 Compute	the	discriminant	function	that	is	the	rule	for	the	classification	of	a	new
object.

7.	 Assign	an	observation	to	a	class	based	on	the	discriminant	function.

This	will	provide	an	expanded	notation	on	the	determination	of	the	posterior	probabilities,
as	follows:

	is	the	prior	probability	of	a	randomly
chosen	observation	in	the	kth	class.

	is	the	density	function	of	an	observation	that	comes	from
the	kth	class.	We	will	assume	that	this	comes	from	a	normal	(Gaussian)	distribution;
with	multiple	features,	the	assumption	is	that	it	comes	from	a	multivariate	Gaussian
distribution.

Using	 	given	X,	we	can	adjust	Bayes’	theorem
accordingly.

	is	the	posterior	probability	that	an	observation
comes	from	the	k	class	when	the	feature	values	for	this	observation	are	given.

Assuming	that	k=2	and	the	prior	probabilities	are	the	same,	 ,	then	an

observation	is	assigned	to	the	one	class	if	 ,	otherwise	it	is
assigned	to	the	two	class.	This	is	known	as	the	decision	boundary.	DA	creates	the	k-1
decision	boundaries,	that	is,	with	three	classes	(k=3),	there	will	be	two	decision
boundaries.

Even	though	LDA	is	elegantly	simple,	it	has	the	limitation	of	the	assumption	that	the
observations	of	each	class	are	said	to	have	a	multivariate	normal	distribution	and	there	is	a
common	covariance	across	the	classes.	QDA	still	assumes	that	the	observations	come
from	a	normal	distribution,	but	also	assumes	that	each	class	has	its	own	covariance.

Why	does	this	matter?	When	you	relax	the	common	covariance	assumption,	you	now
allow	quadratic	terms	into	the	discriminant	score	calculations,	which	was	not	possible
with	LDA.	The	mathematics	behind	this	can	be	a	bit	intimidating	and	is	outside	the	scope
of	this	book.	The	important	part	to	remember	is	that	QDA	is	a	more	flexible	technique
than	logistic	regression,	but	we	must	keep	in	mind	our	bias-variance	trade-off.	With	a
more	flexible	technique,	you	are	likely	to	have	a	lower	bias	but	potentially	a	higher
variance.	Like	a	lot	of	flexible	techniques,	a	robust	set	of	training	data	is	needed	to
mitigate	a	high	classifier	variance.

Discriminant	analysis	application
LDA	is	performed	in	the	MASS	package,	which	we	have	already	loaded	so	that	we	can
access	the	biopsy	data.	The	syntax	is	very	similar	to	the	lm()	and	glm()	functions.	To
facilitate	the	simplicity	of	this	code,	we	will	create	new	data	frames	for	the	LDA	by
deleting	the	columns	that	we	had	added	to	the	training	and	test	sets,	as	follows:

>	lda.train	=	train[,-11:-15]

>	lda.train[1:3,]

		thick	u.size	u.shape	adhsn	s.size	nucl	chrom	n.nuc	mit		class

1					5						1							1					1						2				1					3					1			1		benign

3					3						1							1					1						2				2					3					1			1		benign

6					8					10						10					8						7			10					9					7			1	malignant

>	lda.test	=	test[,-11:-15]

>	lda.test[1:3,]

		thick	u.size	u.shape	adhsn	s.size	nucl	chrom	n.nuc	mit		class

2					5						4							4					5						7			10					3					2			1	benign

4					6						8							8					1						3				4					3					7			1	benign

5					4						1							1					3						2				1					3					1			1	benign

We	can	now	begin	fitting	our	LDA	model,	which	is	as	follows:

>	lda.fit	=	lda(class~.,	data=lda.train)

>	lda.fit

Call:

lda(class	~	.,	data	=	lda.train)

Prior	probabilities	of	groups:

			benign	malignant

0.6371308	0.3628692

Group	means:

											thick		u.size	u.shape			adhsn		s.size				nucl			chrom

benign				2.9205	1.30463	1.41390	1.32450	2.11589	1.39735	2.08278

malignant	7.1918	6.69767	6.68604	5.66860	5.50000	7.67441	5.95930

												n.nuc					mit

benign				1.22516	1.09271

malignant	5.90697	2.63953

Coefficients	of	linear	discriminants:

																LD1

thick				0.19557291

u.size			0.10555201

u.shape		0.06327200

adhsn				0.04752757

s.size			0.10678521

nucl					0.26196145

chrom				0.08102965

n.nuc				0.11691054

mit					-0.01665454

This	output	shows	us	that	Prior	probabilities	of	groups	are	approximately	64	percent

for	benign	and	36	percent	for	malignancy.	Next	is	Group	means.	This	is	the	average	of
each	feature	by	their	class.	Coefficients	of	linear	discriminants	are	the
standardized	linear	combination	of	the	features	that	are	used	to	determine	an	observation’s
discriminant	score.	The	higher	the	score,	the	more	likely	that	the	classification	is
malignant.

The	plot()	function	in	LDA	will	provide	us	with	a	histogram	and/or	the	densities	of	the
discriminant	scores,	as	follows:

>	plot(lda.fit,	type="both")

The	following	is	the	output	of	the	preceding	command:

We	can	see	that	there	is	some	overlap	in	the	groups,	indicating	that	there	will	be	some
incorrectly	classified	observations.

The	predict()	function	available	with	LDA	provides	a	list	of	three	elements	(class,
posterior,	and	x).	The	class	element	is	the	prediction	of	benign	or	malignant,	the	posterior
is	the	probability	score	of	x	being	in	each	class,	and	x	is	the	linear	discriminant	score.	It	is
easier	to	produce	the	confusion	matrix	with	the	help	of	the	following	function	than	with
logistic	regression:

>	lda.predict	=	predict(lda.fit)

>	train$lda	=	lda.predict$class

>	table(train$lda,	train$class)

											

												benign	malignant

		benign							296								13

		malignant						6							159

Well,	unfortunately,	it	appears	that	our	LDA	model	has	performed	much	worse	than	the
logistic	regression	models.	The	primary	question	is	to	see	how	this	will	perform	on	the
test	data:

>	lda.test	=	predict(lda.fit,	newdata	=	test)

>	test$lda	=	lda.test$class

>	table(test$lda,	test$class)

											

												benign	malignant

		benign							140									6

		malignant						2								61

That’s	actually	not	as	bad	as	I	thought,	given	the	poor	performance	on	the	training	data.
From	a	correctly	classified	perspective,	it	still	did	not	perform	as	well	as	logistic
regression	(96	percent	versus	almost	98	percent	with	logistic	regression):

>	mean(test$lda==test$class)

[1]	0.9617225

We	will	now	move	on	to	fit	a	QDA	model	to	data.

In	R,	QDA	is	also	part	of	the	MASS	package	and	the	function	is	qda().	We	will	use	the
train	and	test	sets	that	we	used	for	LDA.	Building	the	model	is	rather	straightforward
and	we	will	store	it	in	an	object	called	qda.fit,	as	follows:

>	qda.fit	=	qda(class~.,	data=lda.train)

>	qda.fit

Call:

qda(class	~	.,	data	=	lda.train)

Prior	probabilities	of	groups:

			benign	malignant

0.6371308	0.3628692

Group	means:

											Thick	u.size	u.shape		adhsn	s.size			nucl		chrom		n.nuc

benign				2.9205	1.3046		1.4139	1.3245	2.1158	1.3973	2.0827	1.2251

malignant	7.1918	6.6976		6.6860	5.6686	5.5000	7.6744	5.9593	5.9069

															mit

benign				1.092715

malignant	2.639535

As	with	LDA,	the	output	has	Group	means	but	does	not	have	the	coefficients	as	it	is	a
quadratic	function	as	discussed	previously.

The	predictions	for	the	train	and	test	data	follow	the	same	flow	of	code	as	with	LDA:

>	qda.predict	=	predict(qda.fit)

>	train$qda	=	qda.predict$class

>	table(train$qda,	train$class)

											

												benign	malignant

		benign							287									5

		malignant					15							167

We	can	quickly	tell	that	QDA	has	performed	the	worst	on	the	training	data	with	the
confusion	matrix.

We	will	see	how	it	works	on	a	test	set:

>	qda.test	=	predict(qda.fit,	newdata=test)

>	test$qda	=	qda.test$class

>	table(test$qda,	test$class)

											

												benign	malignant

		benign							132									1

		malignant					10								66

QDA	classified	the	test	set	poorly	with	11	incorrect	predictions.	In	particular,	it	has	a
high	rate	of	false	positives.

Model	selection
What	are	we	to	make	of	all	this?	We	have	the	confusion	matrices	from	our	models	to
guide	us,	but	we	can	get	a	little	more	sophisticated	when	it	comes	to	selecting	the
classification	models.	An	effective	tool	for	a	classification	model	comparison	is	the
Receiver	Operating	Characteristic	(ROC)	chart.	Very	simply,	ROC	is	a	technique	for
visualizing,	organizing,	and	selecting	the	classifiers	based	on	their	performance	(Fawcett,
2006).	On	the	ROC	chart,	the	y-axis	is	the	True	Positive	Rate	(TPR)	and	the	x-axis	is	the
False	Positive	Rate	(FPR).	The	following	are	the	calculations,	which	are	quite	simple:

TPR	=	Positives	correctly	classified	/	total	positives
FPR	=	Negatives	incorrectly	classified	/	total	negatives

Plotting	the	ROC	results	will	generate	a	curve,	and	thus,	you	are	able	to	produce	the	Area
Under	the	Curve	(AUC).	The	AUC	provides	you	with	an	effective	indicator	of
performance	and	it	can	be	shown	that	the	AUC	is	equal	to	the	probability	that	the	observer
will	correctly	identify	the	positive	case	when	presented	with	a	randomly	chosen	pair	of
cases	in	which	one	case	is	positive	and	one	case	is	negative	(Hanley	JA	&	McNeil	BJ,
1982).	In	our	case,	we	will	just	switch	the	observer	with	our	algorithms	and	evaluate
accordingly.

To	create	an	ROC	chart	in	R,	you	can	use	the	ROCR	package.	I	think	it	is	a	great	package
that	allows	you	to	build	a	chart	in	just	three	lines	of	code.	The	package	also	has	an
excellent	companion	website	with	examples	and	a	presentation	that	can	be	found	at
http://rocr.bioinf.mpi-sb.mpg.de/.

What	I	want	to	show	is	three	different	plots	on	our	ROC	chart:	the	full	model,	the	reduced
model	using	BIC	to	select	the	features,	and	a	bad	model.	This	so-called	bad	model	will
include	just	one	predictive	feature	and	will	provide	an	effective	contrast	to	our	other	two
models.	Therefore,	let’s	load	the	ROCR	package	and	build	this	poorly	performing	model
and	call	it	bad.fit	on	the	test	data	for	simplicity,	using	the	thick	feature	as	follows:

>	library(ROCR)

>	bad.fit	=	glm(class~thick,	family=binomial,	data=test)

>	test$bad.probs	=	predict(bad.fit,	type="response")	#save	probabilities

It	is	now	possible	to	build	the	ROC	chart	with	three	lines	of	code	per	model	using	the	test
dataset.	We	will	first	create	an	object	that	saves	the	predicted	probabilities	with	the	actual
classification.	Next,	we	will	use	this	object	to	create	another	object	with	the	calculated
TPR	and	FPR.	Then,	we	will	build	the	chart	with	the	plot()	function.	Let’s	get	started
with	the	model	using	all	of	the	features	or—as	I	call	it—the	full	model.	This	was	the
initial	one	that	we	built	back	in	the	Logistic	regression	model	section	of	this	chapter:

>	pred.full	=	prediction(test$prob,	test$class)

The	following	is	the	performance	object	with	the	TPR	and	FPR:

>	perf.full	=	performance(pred.full,	"tpr",	"fpr")

http://rocr.bioinf.mpi-sb.mpg.de/

The	following	plot	command	with	the	title	of	ROC	and	col=1	will	color	the	line	black:

>	plot(perf.full,	main="ROC",	col=1)

The	output	of	the	preceding	command	is	as	follows:

As	stated	previously,	the	curve	represents	TPR	on	the	y-axis	and	FPR	on	the	x-axis.	If	you
have	the	perfect	classifier	with	no	false	positives,	then	the	line	will	run	vertical	at	0.0	on
the	x-axis.	If	a	model	is	no	better	than	chance,	then	the	line	will	run	diagonally	from	the
lower	left	corner	to	the	upper	right	one.	As	a	reminder,	the	full	model	missed	out	on	five
labels:	three	false	positives	and	two	false	negatives.	We	can	now	add	the	other	models	for
comparison	using	a	similar	code,	starting	with	the	model	built	using	BIC	(refer	to	the
Logistic	regression	with	cross-validation	section	of	this	chapter),	as	follows:

>	pred.bic	=	prediction(test$bic.probs,	test$class)

>	perf.bic	=	performance(pred.bic,	"tpr",	"fpr")

>	plot(perf.bic,	col=2,	add=TRUE)

The	add=TRUE	parameter	in	the	plot	command	added	the	line	to	the	existing	chart.	Finally,
we	will	add	the	poor	performing	model	and	include	a	legend	chart,	as	follows:

>	pred.bad	=	prediction(test$bad,	test$class)

>	perf.bad	=	performance(pred.bad,	"tpr",	"fpr")

>	plot(perf.bad,	col=3,	add=TRUE)

>	legend(0.6,	0.6,	c("FULL",	"BIC",	"BAD"),1:3)

We	can	see	that	the	FULL	model	and	BIC	model	are	nearly	superimposed.	As	you	may
recall,	previously	the	only	difference	in	the	confusion	matrices	was	the	fact	that	the	BIC
model	had	one	false	positive	more	and	one	false	negative	less.	It	is	also	quite	clear	that	the
BAD	model	performed	as	poorly	as	was	expected,	which	can	be	seen	in	the	following
image:

The	final	thing	that	we	can	do	here	is	compute	the	AUC.	This	is	again	done	in	the	ROCR
package	with	the	creation	of	a	performance	object,	except	that	you	have	to	substitute	auc
for	tpr	and	fpr.	The	code	and	output	is	as	follows:

>	auc.full	=	performance(pred.full,	"auc")

>	auc.full

An	object	of	class	"performance"

Slot	"x.name":

[1]	"None"

Slot	"y.name":

[1]	"Area	under	the	ROC	curve"

Slot	"alpha.name":

[1]	"none"

Slot	"x.values":

list()

Slot	"y.values":

[[1]]

[1]	0.9972672

Slot	"alpha.values":

list()

The	values	that	we	are	looking	for	are	under	the	Slot	"y.values"	section	of	the	output.
The	AUC	for	the	full	model	is	0.997.	I’ve	abbreviated	the	output	for	the	other	two	models
of	interest,	as	follows:

>	auc.bic	=	performance(pred.bic,	"auc")

>	auc.bic

Slot	"y.values":

[[1]]

[1]	0.9944293

>	auc.bad	=	performance(pred.bad,	"auc")

>	auc.bad

Slot	"y.values":

[[1]]

[1]	0.8962056

The	AUCs	were	99.7	percent	for	the	full	model,	99.4	percent	for	the	BIC	model,	and	89.6
percent	for	the	bad	model.	So,	for	all	intents	and	purposes,	the	full	model	and	the	BIC
model	have	no	difference	in	predictive	powers	between	them.	What	are	we	to	do?	A
simple	solution	would	be	to	rerandomize	the	train	and	test	sets	and	try	this	analysis
again,	perhaps	using	a	60/40	split	and	different	randomization	seed.	However,	if	we	end
up	with	a	similar	result,	then	what?	I	think	a	statistical	purist	would	recommend	selecting
the	most	parsimonious	model,	while	others	may	be	more	inclined	to	include	all	the
variables.	It	comes	down	to	trade-offs,	that	is,	model	accuracy	versus	interpretability,
simplicity,	and	scalability.	In	this	instance,	it	seems	safe	to	default	to	the	simpler	model,
which	has	the	same	accuracy.	Maybe	there	is	another	option?	Let	me	propose	that	we	can
tackle	this	problem	in	the	upcoming	chapters	with	more	complex	techniques	and	improve
our	predictive	ability.	The	beauty	of	machine	learning	is	that	there	are	several	ways	to	skin
the	proverbial	cat.

Summary
In	this	chapter,	we	looked	at	using	probabilistic	linear	models	to	predict	a	qualitative
response	with	the	two	most	common	methods:	logistic	regression	and	discriminant
analysis.	Additionally,	we	began	the	process	of	using	the	ROC	charts	in	order	to	explore
the	model	selection	visually	and	statistically.	We	also	briefly	discussed	the	model	selection
and	trade-offs	that	you	need	to	consider.	In	the	future	chapters,	we	will	revisit	the	breast
cancer	dataset	to	see	if	we	can	improve	our	predictive	ability	with	more	complex
techniques.

Chapter	4.	Advanced	Feature	Selection	in
Linear	Models
“I	found	that	math	got	to	be	too	abstract	for	my	liking	and	computer	science	seemed
concerned	with	little	details	—	trying	to	save	a	microsecond	or	a	kilobyte	in	a
computation.	In	statistics	I	found	a	subject	that	combined	the	beauty	of	both	math
and	computer	science,	using	them	to	solve	real-world	problems.”

This	was	quoted	by	Rob	Tibshirani,	Professor,	Stanford	University	at
http://statweb.stanford.edu/~tibs/research_page.html.

So	far,	we	examined	the	usage	of	linear	models	for	both	quantitative	and	qualitative
outcomes	with	an	emphasis	on	the	techniques	of	feature	selection,	that	is,	the	methods	and
techniques	to	exclude	useless	or	unwanted	predictor	variables.	We	saw	that	the	linear
models	can	be	quite	effective	in	the	machine	learning	problems.	However,	newer
techniques	that	have	been	developed	and	refined	in	the	last	couple	of	decades	or	so	can
improve	the	predictive	ability	and	interpretability	above	and	beyond	the	linear	models	that
we’ve	discussed	in	the	preceding	chapters.	In	this	day	and	age,	many	datasets	have
numerous	features	in	relation	to	the	number	of	observations	or,	as	it	is	called,	high-
dimensionality.	If	you	ever	have	to	work	on	a	genomics	problem,	this	will	quickly	become
self-evident.	Additionally,	with	the	size	of	the	data	that	we	are	being	asked	to	work	with,	a
technique	like	best	subsets	or	stepwise	feature	selection	can	take	inordinate	amounts	of
time	to	converge	even	on	high-speed	computers.	I’m	not	talking	about	minutes;	but	in
many	cases,	hours	of	system	time	are	required	to	get	a	best	subsets	solution.

There	is	a	better	way	in	these	cases.	In	this	chapter,	we	will	look	at	the	concept	of
regularization	where	the	coefficients	are	constrained	or	shrunk	towards	zero.	There	are	a
number	of	methods	and	permutations	to	these	methods	of	regularization	but	we	will	focus
on	Ridge	regression,	Least	Absolute	Shrinkage	and	Selection	Operator	(LASSO),	and
finally,	Elastic	net,	which	combines	the	benefit	of	both	the	techniques	to	one.

http://statweb.stanford.edu/~tibs/research_page.html

Regularization	in	a	nutshell
You	may	recall	that	our	linear	model	follows	the	form,	Y	=	B0	+	B1x1	+…Bnxn	+	e,	and
also	that	the	best	fit	tries	to	minimize	the	RSS,	which	is	the	sum	of	the	squared	errors	of
the	actual	minus	the	estimate	or	e12	+	e22	+	…	en2.

With	regularization,	we	will	apply	what	is	known	as	a	shrinkage	penalty	in	conjunction
with	the	minimization	RSS.	This	penalty	consists	of	a	lambda	(symbol	λ)	along	with	the
normalization	of	the	beta	coefficients	and	weights.	How	these	weights	are	normalized
differs	in	the	techniques	and	we	will	discuss	them	accordingly.	Quite	simply,	in	our	model,
we	are	minimizing	(RSS	+	λ(normalized	coefficients)).	We	will	select	the	λ,	which	is
known	as	the	tuning	parameter	in	our	model	building	process.	Please	note	that	if	lambda	is
equal	to	zero,	then	our	model	is	equivalent	to	OLS	as	it	cancels	out	the	normalization
term.

So	what	does	this	do	for	us	and	why	does	it	work?	First	of	all,	regularization	methods	are
very	computationally	efficient.	In	best	subsets,	we	are	searching	2p	models	and	in	large
datasets,	it	may	just	not	be	feasible	to	attempt.	In	R,	we	are	only	fitting	one	model	to	each
value	of	lambda	and	this	is	therefore	far	and	away	more	efficient.	Another	reason	goes
back	to	our	bias-variance	trade-off	that	is	discussed	in	the	preface.	In	the	linear	model,
where	the	relationship	between	the	response	and	the	predictors	is	close	to	linear,	the	least
squares	estimates	will	have	low	bias	but	may	have	high	variance.	This	means	that	a	small
change	in	the	training	data	can	cause	a	large	change	in	the	least	squares	coefficient
estimates	(James,	2013).	Regularization	through	the	proper	selection	of	lambda	and
normalization	may	help	you	improve	the	model	fit	by	optimizing	the	bias-variance	trade-
off.	Finally,	regularization	of	the	coefficients	works	to	solve	the	multicollinearity
problems.

Ridge	regression
Let’s	begin	by	exploring	what	ridge	regression	is	and	what	it	can	and	cannot	do	for	you.
With	ridge	regression,	the	normalization	term	is	the	sum	of	the	squared	weights,	referred
to	as	an	L2-norm.	Our	model	is	trying	to	minimize	RSS	+	λ(sum	Bj2).	As	lambda
increases,	the	coefficients	shrink	toward	zero	but	do	not	ever	become	zero.	The	benefit
may	be	an	improved	predictive	accuracy	but	as	it	does	not	zero	out	the	weights	for	any	of
your	features,	it	could	lead	to	issues	in	the	model’s	interpretation	and	communication.	To
help	with	this	problem,	we	will	turn	to	LASSO.

LASSO
LASSO	applies	the	L1-norm	instead	of	the	L2-norm	as	in	ridge	regression,	which	is	the
sum	of	the	absolute	value	of	the	feature	weights	and	thus	minimizes	RSS	+	λ(sum	|Bj|).
This	shrinkage	penalty	will	indeed	force	a	feature	weight	to	zero.	This	is	a	clear	advantage
over	ridge	regression	as	it	may	greatly	improve	the	model	interpretability.

The	mathematics	behind	the	reason	that	the	L1-norm	allows	the	weights/coefficients	to
become	zero	is	out	of	the	scope	of	this	book	(refer	to	Tibsharini,	1996	for	further	details).

If	LASSO	is	so	great,	then	ridge	regression	must	be	clearly	obsolete.	Not	so	fast!	In	a
situation	of	high	collinearity	or	high	pairwise	correlations,	LASSO	may	force	a	predictive
feature	to	zero	and	thus	you	can	lose	the	predictive	ability,	that	is,	say	if	both	feature	A
and	B	should	be	in	your	model,	LASSO	may	shrink	one	of	their	coefficients	to	zero.	The
following	quote	sums	up	this	issue	nicely:

	

“One	might	expect	the	lasso	to	perform	better	in	a	setting	where	a	relatively	small	number	of	predictors	have
substantial	coefficients,	and	the	remaining	predictors	have	coefficients	that	are	very	small	or	that	equal	zero.	Ridge
regression	will	perform	better	when	the	response	is	a	function	of	many	predictors,	all	with	coefficients	of	roughly
equal	size.”

	

	 —(James,	2013)

There	is	the	possibility	of	achieving	the	best	of	both	the	worlds	and	that	leads	us	to	the
next	topic,	elastic	net.

Elastic	net
The	power	of	elastic	net	is	that	it	performs	the	feature	extraction	that	ridge	regression	does
not	and	it	will	group	the	features	that	LASSO	fails	to	do.	Again,	LASSO	will	tend	to
select	one	feature	from	a	group	of	correlated	ones	and	ignore	the	rest.	Elastic	net	does	this
by	including	a	mixing	parameter,	alpha,	in	conjunction	with	lambda.	Alpha	will	be
between	0	and	1	and	as	before,	lambda	will	regulate	the	size	of	the	penalty.	Please	note
that	an	alpha	of	zero	is	equal	to	ridge	regression	and	an	alpha	of	one	is	equivalent	to
LASSO.	Essentially,	we	are	blending	the	L1	and	L2	penalties	by	including	a	second
tuning	parameter	to	a	quadratic	(squared)	term	of	the	beta	coefficients.	We	will	end	up
with	the	goal	of	minimizing	(RSS	+	λ[(1-alpha)	(sum|Bj|2)/2	+	alpha	(sum	|Bj|)])/N).

Let’s	put	these	techniques	to	the	test.	We	will	primarily	utilize	the	leaps,	glmnet,	and
caret	packages	to	select	the	appropriate	features	and	thus	the	appropriate	model	in	our
business	case.

Business	case
For	this	chapter,	we	will	stick	with	cancer—prostate	cancer	in	this	case.	It	is	a	small
dataset	of	97	observations	and	nine	variables	but	allows	you	to	fully	grasp	what	is	going
on	with	regularization	techniques	by	allowing	a	comparison	with	the	traditional
techniques.	We	will	start	by	performing	best	subsets	regression	to	identify	the	features	and
use	this	as	a	baseline	for	the	comparison.

Business	understanding
The	Stanford	University	Medical	Center	has	provided	the	preoperative	Prostate	Specific
Antigen	(PSA)	data	on	97	patients	who	are	about	to	undergo	radical	prostatectomy
(complete	prostate	removal)	for	the	treatment	of	prostate	cancer.	The	American	Cancer
Society	(ACS)	estimates	that	nearly	30,000	American	men	died	of	prostate	cancer	in	2014
(http://www.cancer.org/).	PSA	is	a	protein	that	is	produced	by	the	prostate	gland	and	is
found	in	the	bloodstream.	The	goal	is	to	develop	a	predictive	model	of	PSA	among	the
provided	set	of	clinical	measures.	PSA	can	be	an	effective	prognostic	indicator,	among
others,	of	how	well	a	patient	can	and	should	do	after	surgery.	The	patient’s	PSA	levels	are
measured	at	various	intervals	after	the	surgery	and	used	in	various	formulas	to	determine
if	a	patient	is	cancer-free.	A	preoperative	predictive	model	in	conjunction	with	the
postoperative	data	(not	provided	here)	can	possibly	improve	cancer	care	for	thousands	of
men	each	year.

http://www.cancer.org/

Data	understanding	and	preparation
The	data	set	for	the	97	men	is	in	a	data	frame	with	10	variables	as	follows:

lcavol:	This	is	the	log	of	the	cancer	volume
lweight:	This	is	the	log	of	the	prostate	weight
age:	This	is	the	age	of	the	patient	in	years
lbph:	This	is	the	log	of	the	amount	of	Benign	Prostatic	Hyperplasia	(BPH),	which
is	the	noncancerous	enlargement	of	the	prostate
svi:	This	is	the	seminal	vesicle	invasion	and	an	indicator	variable	of	whether	or	not
the	cancer	cells	have	invaded	the	seminal	vesicles	outside	the	prostate	wall	(1	=	yes,
0	=	no)
lcp:	This	is	the	log	of	capsular	penetration	and	a	measure	of	how	much	the	cancer
cells	have	extended	in	the	covering	of	the	prostate
gleason:	This	is	the	patient’s	Gleason	score;	a	score	(2-10)	provided	by	a	pathologist
after	a	biopsy	about	how	abnormal	the	cancer	cells	appear—the	higher	the	score,	the
more	aggressive	the	cancer	is	assumed	to	be
pgg4:	This	is	the	percent	of	Gleason	patterns—four	or	five	(high-grade	cancer)
lpsa:	This	is	the	log	of	the	PSA;	this	is	the	response/outcome
train:	This	is	a	logical	vector	(true	or	false)	that	signifies	the	training	or	test	set

The	dataset	is	contained	in	the	R	package,	ElemStatLearn.	After	loading	the	required
packages	and	data	frame,	we	can	then	begin	to	explore	the	variables	and	any	possible
relationships,	as	follows:

>	library(ElemStatLearn)	#contains	the	data

>	library(car)	#package	to	calculate	Variance	Inflation	Factor

>	library(corrplot)	#correlation	plots

>	library(leaps)	#best	subsets	regression

>	library(glmnet)	#allows	ridge	regression,	LASSO	and	elastic	net

>	library(caret)	#parameter	tuning

With	the	packages	loaded,	bring	up	the	prostate	dataset	and	explore	its	structure,	as
follows:

>	data(prostate)

>	str(prostate)

'data.frame':97	obs.	of		10	variables:

	$	lcavol	:	num		-0.58	-0.994	-0.511	-1.204	0.751…

	$	lweight:	num		2.77	3.32	2.69	3.28	3.43…

	$	age				:	int		50	58	74	58	62	50	64	58	47	63…

	$	lbph			:	num		-1.39	-1.39	-1.39	-1.39	-1.39…

	$	svi				:	int		0	0	0	0	0	0	0	0	0	0…

	$	lcp				:	num		-1.39	-1.39	-1.39	-1.39	-1.39…

	$	gleason:	int		6	6	7	6	6	6	6	6	6	6…

	$	pgg45		:	int		0	0	20	0	0	0	0	0	0	0…

	$	lpsa			:	num		-0.431	-0.163	-0.163	-0.163	0.372…

	$	train		:	logi		TRUE	TRUE	TRUE	TRUE	TRUE	TRUE…

The	examination	of	the	structure	should	raise	a	couple	of	issues	that	we	will	need	to
double-check.	If	you	look	at	the	features,	svi,	lcp,	gleason,	and	pgg45	have	the	same
number	in	the	first	ten	observations	with	the	exception	of	one—the	seventh	observation	in
gleason.	In	order	to	make	sure	that	these	are	viable	as	input	features,	we	can	use	plots	and
tables	so	as	to	understand	them.	To	begin	with,	use	the	following	plot()	command	and
input	the	entire	data	frame,	which	will	create	a	scatterplot	matrix:

>	plot(prostate)

The	output	of	the	preceding	command	is	as	follows:

With	these	many	variables	on	one	plot,	it	can	get	a	bit	difficult	to	understand	what	is	going
on	so	we	will	drill	down	further.	It	does	look	like	there	is	a	clear	linear	relationship
between	our	outcomes,	lpsa,	and	lcavol.	It	also	appears	that	the	features	mentioned
previously	have	an	adequate	dispersion	and	are	well-balanced	across	what	will	become
our	train	and	test	sets	with	the	possible	exception	of	the	gleason	score.	Note	that	the
gleason	scores	captured	in	this	dataset	are	of	four	values	only.	If	you	look	at	the	plot
where	train	and	gleason	intersect,	one	of	these	values	is	not	in	either	test	or	train.	This
could	lead	to	potential	problems	in	our	analysis	and	may	require	transformation.	So,	let’s

create	a	plot	specifically	for	that	feature,	as	follows:

>	plot(prostate$gleason)

The	following	is	the	output	of	the	preceding	command:

We	have	a	problem	here.	Each	dot	represents	an	observation	and	the	x	axis	is	the
observation	number	in	the	data	frame.	There	is	only	one	Gleason	score	of	8.0	and	only
five	of	score	9.0.	You	can	look	at	the	exact	counts	by	producing	a	table	of	the	features,	as
follows:

>	table(prostate$gleason)

	6		7		8		9	

35	56		1		5	

What	are	our	options?	We	could	do	any	of	the	following:

Exclude	the	feature	altogether
Remove	only	the	scores	of	8.0	and	9.0
Recode	this	feature,	creating	an	indicator	variable

I	think	it	may	help	if	we	create	a	boxplot	of	Gleason	Score	versus	Log	of	PSA.	We	used
the	ggplot2	package	to	create	boxplots	in	a	prior	chapter	but	one	can	also	create	it	with
base	R,	as	follows:

>	boxplot(prostate$lpsa~prostate$gleason,	xlab="Gleason	Score",	ylab="Log	

of	PSA")

The	output	of	the	preceding	command	is	as	follows:

Looking	at	the	preceding	plot,	I	think	the	best	option	will	be	to	turn	this	into	an	indicator
variable	with	0	being	a	6	score	and	1	being	a	7	or	a	higher	score.	Removing	the	feature
may	cause	a	loss	of	predictive	ability.	The	missing	values	will	also	not	work	with	the
glmnet	package	that	we	will	use.

You	can	code	an	indicator	variable	with	one	simple	line	of	code	using	the	ifelse()
command	by	specifying	the	column	in	the	data	frame	that	you	want	to	change,	then
following	the	logic	that	if	the	observation	is	number	x,	then	code	it	y,	or	else	code	it	z:

>	prostate$gleason	=	ifelse(prostate$gleason	==	6,	0,	1)

As	always,	let’s	verify	that	the	transformation	worked	as	intended	by	creating	a	table	in
the	following	way:

>	table(prostate$gleason)

	0		1	

35	62

That	worked	to	perfection!	As	the	scatterplot	matrix	was	hard	to	read,	let’s	move	on	to	a
correlation	plot,	which	indicates	if	a	relationship/dependency	exists	between	the	features.

We	will	create	a	correlation	object	using	the	cor()	function	and	then	take	advantage	of	the
corrplot	library	with	corrplot.mixed(),	as	follows:

>	p.cor	=	cor(prostate)

>	corrplot.mixed(p.cor)

The	output	of	the	preceding	command	is	as	follows:

A	couple	of	things	jump	out	here.	First,	PSA	is	highly	correlated	with	the	log	of	cancer
volume	(lcavol);	you	may	recall	that	in	the	scatterplot	matrix,	it	appeared	to	have	a
highly	linear	relationship.	Second,	multicollinearity	may	become	an	issue;	for	example,
cancer	volume	is	also	correlated	with	capsular	penetration	and	this	is	correlated	with	the
seminal	vesicle	invasion.	This	should	be	an	interesting	learning	exercise!

Before	the	learning	can	begin,	the	training	and	testing	sets	must	be	created.	As	the
observations	are	already	coded	as	being	in	the	train	set	or	not,	we	can	use	the	subset()
command	and	set	the	observations	where	train	is	coded	to	TRUE	as	our	training	set	and
FALSE	for	our	testing	set.	It	is	also	important	to	drop	train	as	we	do	not	want	that	as	a
feature,	as	follows:

>	train	=	subset(prostate,	train==TRUE)[,1:9]

>	str(train)

'data.frame':67	obs.	of		9	variables:

	$	lcavol	:	num		-0.58	-0.994	-0.511	-1.204	0.751…

	$	lweight:	num		2.77	3.32	2.69	3.28	3.43…

	$	age				:	int		50	58	74	58	62	50	58	65	63	63…

	$	lbph			:	num		-1.39	-1.39	-1.39	-1.39	-1.39…

	$	svi				:	int		0	0	0	0	0	0	0	0	0	0…

	$	lcp				:	num		-1.39	-1.39	-1.39	-1.39	-1.39…

	$	gleason:	num		0	0	1	0	0	0	0	0	0	1…

	$	pgg45		:	int		0	0	20	0	0	0	0	0	0	30…

	$	lpsa			:	num		-0.431	-0.163	-0.163	-0.163	0.372…

>	test	=	subset(prostate,	train==FALSE)[,1:9]

>	str(test)

'data.frame':30	obs.	of		9	variables:

	$	lcavol	:	num		0.737	-0.777	0.223	1.206	2.059…

	$	lweight:	num		3.47	3.54	3.24	3.44	3.5…

	$	age				:	int		64	47	63	57	60	69	68	67	65	54…

	$	lbph			:	num		0.615	-1.386	-1.386	-1.386	1.475…

	$	svi				:	int		0	0	0	0	0	0	0	0	0	0…

	$	lcp				:	num		-1.386	-1.386	-1.386	-0.431	1.348…

	$	gleason:	num		0	0	0	1	1	0	0	1	0	0…

	$	pgg45		:	int		0	0	0	5	20	0	0	20	0	0…

	$	lpsa			:	num		0.765	1.047	1.047	1.399	1.658…

Modeling	and	evaluation
With	the	data	prepared,	we	will	begin	the	modeling	process.	For	comparison	purposes,	we
will	create	a	model	using	best	subsets	regression	like	the	previous	two	chapters	and	then
utilize	the	regularization	techniques.

Best	subsets
The	following	code	is,	for	the	most	part,	a	rehash	of	what	we	developed	in	Chapter	2,
Linear	Regression	–	The	Blocking	and	Tackling	of	Machine	Learning.	We	will	create	the
best	subset	object	using	the	regsubsets()	command	and	specify	the	train	portion	of
data.	The	variables	that	are	selected	will	then	be	used	in	a	model	on	the	test	set,	which
we	will	evaluate	with	a	mean	squared	error	calculation.

The	model	that	we	are	building	is	written	out	as	lpsa~.	with	the	tilda	and	period	stating
that	we	want	to	use	all	the	remaining	variables	in	our	data	frame	with	the	exception	of	the
response,	as	follows:

>	subfit	=	regsubsets(lpsa~.,	data=train)

With	the	model	built,	you	can	produce	the	best	subset	with	two	lines	of	code.	The	first	one
turns	the	summary	model	into	an	object	where	we	can	extract	the	various	subsets	and
determine	the	best	one	with	the	which.min()	command.	In	this	instance,	I	will	use	BIC,
which	was	discussed	in	Chapter	2,	Linear	Regression	–	The	Blocking	and	Tackling	of
Machine	Learning,	which	is	as	follows:

>	b.sum	=	summary(subfit)

>	which.min(b.sum$bic)

		[1]	3

The	output	is	telling	us	that	the	model	with	the	3	features	has	the	lowest	bic	value.	A	plot
can	be	produced	to	examine	the	performance	across	the	subset	combinations,	as	follows:

>	plot(b.sum$bic,	type="l",	xlab="#	of	Features",	ylab="BIC",		main="BIC	

score	by	Feature	Inclusion")

The	following	is	the	output	of	the	preceding	command:

A	more	detailed	examination	is	possible	by	plotting	the	actual	model	object,	as	follows:

>	plot(subfit,	scale="bic",	main="Best	Subset	Features")

The	output	of	the	preceding	command	is	as	follows:

So,	the	previous	plot	shows	us	that	the	three	features	included	in	the	lowest	BIC	are
lcavol,	lweight,	and	gleason.	It	is	noteworthy	that	lcavol	is	included	in	every
combination	of	the	models.	This	is	consistent	with	our	earlier	exploration	of	the	data.	We
are	now	ready	to	try	this	model	on	the	test	portion	of	the	data,	but	first,	we	will	produce	a
plot	of	the	fitted	values	versus	the	actual	values	looking	for	linearity	in	the	solution	and	as
a	check	on	the	constancy	of	the	variance.	A	linear	model	will	need	to	be	created	with	just
the	three	features	of	interest.	Let’s	put	this	in	an	object	called	ols	for	the	OLS.	Then	the
fits	from	ols	will	be	compared	to	the	actuals	in	the	training	set,	as	follows:

>	ols	=	lm(lpsa~lcavol+lweight+gleason,	data=train)

>	plot(ols$fitted.values,	train$lpsa,	xlab="Predicted",		ylab="Actual",	

main="Predicted	vs	Actual")

The	following	is	the	output	of	the	preceding	command:

An	inspection	of	the	plot	shows	that	a	linear	fit	should	perform	well	on	this	data	and	that
the	nonconstant	variance	is	not	a	problem.	With	that,	we	can	see	how	this	performs	on	the
test	set	data	by	utilizing	the	predict()	function	and	specifying	newdata=test,	as	follows:

>	pred.subfit	=	predict(ols,	newdata=test)

>	plot(pred.subfit,	test$lpsa	,	xlab="Predicted",	ylab="Actual",	

main="Predicted	vs	Actual")

The	values	in	the	object	can	then	be	used	to	create	a	plot	of	the	Predicted	vs	Actual
values,	as	shown	in	the	following	image:

The	plot	doesn’t	seem	to	be	too	terrible.	For	the	most	part,	it	is	a	linear	fit	with	the
exception	of	what	looks	to	be	two	outliers	on	the	high	end	of	the	PSA	score.	Before
concluding	this	section,	we	will	need	to	calculate	mean	squared	error	(MSE)	to	facilitate
comparison	across	the	various	modeling	techniques.	This	is	easy	enough	where	we	will
just	create	the	residuals	and	then	take	the	mean	of	their	squared	values,	as	follows:

>	resid.subfit	=	test$lpsa	-	pred.subfit

>	mean(resid.subfit^2)

[1]	0.5084126

So,	MSE	of	0.508	is	our	benchmark	for	going	forward.

Ridge	regression
With	ridge	regression,	we	will	have	all	the	eight	features	in	the	model	so	this	will	be	an
intriguing	comparison	with	the	best	subsets	model.	The	package	that	we	will	use	and	is	in
fact	already	loaded,	is	glmnet.	The	package	requires	that	the	input	features	are	in	a	matrix
instead	of	a	data	frame	and	for	ridge	regression,	we	can	follow	the	command	sequence	of
glmnet(x	=	our	input	matrix,	y	=	our	response,	family	=	the	distribution,

alpha=0).	The	syntax	for	alpha	relates	to	0	for	ridge	regression	and	1	for	doing	LASSO.

To	get	the	train	set	ready	for	use	in	glmnet	is	actually	quite	easy	using	as.matrix()	for
the	inputs	and	creating	a	vector	for	the	response,	as	follows:

>	x	=	as.matrix(train[,1:8])

>	y	=	train[,9]

Now,	run	the	ridge	regression	by	placing	it	in	an	object	called,	appropriately	I	might	add,
ridge.	It	is	important	to	note	here	that	the	glmnet	package	will	first	standardize	the	inputs
before	computing	the	lambda	values	and	then	will	unstandardize	the	coefficients.	You	will
need	to	specify	the	distribution	of	the	response	variable	as	gaussian	as	it	is	continuous
and	alpha=0	for	ridge	regression,	as	follows:

>	ridge	=	glmnet(x,	y,	family="gaussian",	alpha=0)

The	object	has	all	the	information	that	we	need	in	order	to	evaluate	the	technique.	The	first
thing	to	try	is	the	print()	command,	which	will	show	us	the	number	of	nonzero
coefficients,	percent	deviance	explained,	and	correspondent	value	of	Lambda.	The	default
number	in	the	package	of	steps	in	the	algorithm	is	100.	However,	the	algorithm	will	stop
prior	to	100	steps	if	the	percent	deviation	does	not	dramatically	improve	from	one	lambda
to	another,	that	is,	the	algorithm	converges	to	an	optimal	solution.	For	the	purpose	of
saving	space,	I	will	present	only	the	following	first	five	and	last	ten	lambda	results:

>	print(ridge)

Call:		glmnet(x	=	x,	y	=	y,	family	=	"gaussian",	alpha	=	0)	

							Df						%Dev				Lambda

		[1,]		8	3.801e-36	878.90000

		[2,]		8	5.591e-03	800.80000

		[3,]		8	6.132e-03	729.70000

		[4,]		8	6.725e-03	664.80000

		[5,]		8	7.374e-03	605.80000

	

	[91,]		8	6.859e-01			0.20300

	[92,]		8	6.877e-01			0.18500

	[93,]		8	6.894e-01			0.16860

	[94,]		8	6.909e-01			0.15360

	[95,]		8	6.923e-01			0.13990

	[96,]		8	6.935e-01			0.12750

	[97,]		8	6.946e-01			0.11620

	[98,]		8	6.955e-01			0.10590

	[99,]		8	6.964e-01			0.09646

[100,]		8	6.971e-01			0.08789

Look	at	row	100	for	an	example.	It	shows	us	that	the	number	of	nonzero	coefficients	or—
said	another	way—the	number	of	features	included	is	eight;	please	recall	that	it	will
always	be	the	same	for	ridge	regression.	We	also	see	that	the	percent	of	deviance
explained	is	.6971	and	the	Lambda	tuning	parameter	for	this	row	is	0.08789.	Here	is	where
we	can	decide	on	which	lambda	to	select	for	the	test	set.	The	lambda	of	0.08789	can	be
used,	but	let’s	make	it	a	little	simpler,	and	for	the	test	set,	try	0.10.	A	couple	of	plots
might	help	here	so	let’s	start	with	the	package’s	default,	adding	annotations	to	the	curve	by
adding	label=TRUE	in	the	following	syntax:

>	plot(ridge,	label=TRUE)

The	following	is	the	output	of	the	preceding	command:

In	the	default	plot,	the	y	axis	is	the	value	of	Coefficients	and	the	x	axis	is	L1	Norm.	The
plot	tells	us	the	coefficient	values	versus	the	L1	Norm.	The	top	of	the	plot	contains	a
second	x	axis,	which	equates	to	the	number	of	features	in	the	model.	Perhaps	a	better	way
to	view	this	is	by	looking	at	the	coefficient	values	changing	as	lambda	changes.	We	just
need	to	tweak	the	code	in	the	following	plot()	command	by	adding	xvar="lambda".	The
other	option	is	the	percent	of	deviance	explained	by	substituting	lambda	with	dev.

>	plot(ridge,	xvar="lambda",	label=TRUE)

The	output	of	the	preceding	command	is	as	follows:

This	is	a	worthwhile	plot	as	it	shows	that	as	lambda	decreases,	the	shrinkage	parameter
decreases	and	the	absolute	values	of	the	coefficients	increase.	To	see	the	coefficients	at	a
specific	lambda	value,	use	the	coef()	command.	Here,	we	will	specify	the	lambda	value
that	we	want	to	use	by	specifying	s=0.1.	We	will	also	state	that	we	want	exact=TRUE,
which	tells	glmnet	to	fit	a	model	with	that	specific	lambda	value	versus	interpolating	from
the	values	on	either	side	of	our	lambda,	as	follows:

>	ridge.coef	=	coef(ridge,	s=0.1,	exact=TRUE)

>	ridge.coef

9	x	1	sparse	Matrix	of	class	"dgCMatrix"

																						1

(Intercept)		0.13062197

lcavol							0.45721270

lweight						0.64579061

age									-0.01735672

lbph									0.12249920

svi										0.63664815

lcp									-0.10463486

gleason						0.34612690

pgg45								0.00428580

It	is	important	to	note	that	age,	lcp,	and	pgg45	are	close	to,	but	not	quite,	zero.	Let’s	not
forget	to	plot	deviance	versus	coefficients	as	well:

>	plot(ridge,	xvar="dev",	label=TRUE)

The	output	of	the	preceding	command	is	as	follows:

Comparing	the	two	previous	plots,	we	can	see	that	as	lambda	decreases,	the	coefficients
increase	and	the	percent/fraction	of	the	deviance	explained	increases.	If	we	would	set
lambda	equal	to	zero,	we	would	have	no	shrinkage	penalty	and	our	model	would	equate
the	OLS.

To	prove	this	on	the	test	set,	you	will	have	to	transform	the	features	as	we	did	for	the
training	data:

>	newx	=	as.matrix(test[,1:8])

Then,	use	the	predict	function	to	create	an	object	that	we	will	call	ridge.y	with	type	=
"response"	and	our	lambda	equal	to	0.10	and	plot	the	Predicted	values	versus	the	Actual
values,	as	follows:

>	ridge.y	=	predict(ridge,	newx=newx,	type="response",	s=0.1)

>	plot(ridge.y,	test$lpsa,	xlab="Predicted",	ylab="Actual",main="Ridge	

Regression")

The	output	of	the	following	command	is	as	follows:

The	plot	of	Predicted	versus	Actual	of	Ridge	Regression	seems	to	be	quite	similar	to
best	subsets,	complete	with	two	interesting	outliers	at	the	high	end	of	the	PSA
measurements.	In	the	real	world,	it	would	be	advisable	to	explore	these	outliers	further	so
as	to	understand	if	they	are	truly	unusual	or	if	we	are	missing	something.	This	is	where
domain	expertise	would	be	invaluable.	The	MSE	comparison	to	the	benchmark	may	tell	a
different	story.	We	first	calculate	the	residuals	then	take	the	mean	of	those	residuals
squared:

>	ridge.resid	=	ridge.y	-	test$lpsa

>	mean(ridge.resid^2)

[1]	0.4789913

Ridge	regression	has	given	us	a	slightly	better	MSE.	It	is	now	time	to	put	LASSO	to	the
test	to	see	if	we	can	decrease	our	errors	even	further.

LASSO
To	run	LASSO	next	is	quite	simple	and	we	only	have	to	change	one	number	from	our
ridge	regression	model,	that	is,	change	alpha=0	to	alpha=1	in	the	glmnet()	syntax.	Let’s
run	this	code	and	also	see	the	output	of	the	model,	looking	at	the	first	five	and	last	ten
results:

>	lasso	=	glmnet(x,	y,	family="gaussian",	alpha=1)

>	print(lasso)

Call:	glmnet(x	=	x,	y	=	y,	family	=	"gaussian",	alpha	=	1)	

Df	%Dev	Lambda

[1,]	0	0.00000	0.878900

[2,]	1	0.09126	0.800800

[3,]	1	0.16700	0.729700

[4,]	1	0.22990	0.664800

[5,]	1	0.28220	0.605800

........................

[60,]	8	0.70170	0.003632

[61,]	8	0.70170	0.003309

[62,]	8	0.70170	0.003015

[63,]	8	0.70170	0.002747

[64,]	8	0.70180	0.002503

[65,]	8	0.70180	0.002281

[66,]	8	0.70180	0.002078

[67,]	8	0.70180	0.001893

[68,]	8	0.70180	0.001725

[69,]	8	0.70180	0.001572

Note	that	the	model	building	process	stopped	at	step	69	as	the	deviance	explained	no
longer	improved	as	lambda	decreased.	Also,	note	that	the	Df	column	now	changes	along
with	lambda.	At	first	glance,	here	it	seems	that	all	the	eight	features	should	be	in	the
model	with	a	lambda	of	0.001572.	However,	let’s	try	and	find	and	test	a	model	with	fewer
features,	around	seven,	for	argument’s	sake.	Looking	at	the	rows,	we	see	that	around	a
lambda	of	0.045,	we	end	up	with	7	features	versus	8.	Thus,	we	will	plug	this	lambda	in	for
our	test	set	evaluation,	as	follows:

[31,]	7	0.67240	0.053930

[32,]	7	0.67460	0.049140

[33,]	7	0.67650	0.044770

[34,]	8	0.67970	0.040790

[35,]	8	0.68340	0.037170

Just	as	with	ridge	regression,	we	can	plot	the	results	as	follows:

>	plot(lasso,	xvar="lambda",	label=TRUE)

The	following	is	the	output	of	the	preceding	command:

This	is	an	interesting	plot	and	really	shows	how	LASSO	works.	Notice	how	the	lines
labeled	8,	3,	and	6	behave,	which	corresponds	to	the	pgg45,	age,	and	lcp	features
respectively.	It	looks	as	if	lcp	is	at	or	near	zero	until	it	is	the	last	feature	that	is	added.	We
can	see	the	coefficient	values	of	the	seven	feature	model	just	as	we	did	with	ridge
regression	by	plugging	it	into	coef(),	as	follows:

>	lasso.coef	=	coef(lasso,	s=0.045,	exact=TRUE)

>	lasso.coef

9	x	1	sparse	Matrix	of	class	"dgCMatrix"

																								1

(Intercept)	-0.1305852115

lcavol							0.4479676523

lweight						0.5910362316

age									-0.0073156274

lbph									0.0974129976

svi										0.4746795823

lcp										.											

gleason						0.2968395802

pgg45								0.0009790322

The	LASSO	algorithm	zeroed	out	the	coefficient	for	lcp	at	a	lambda	of	0.045.	Here	is
how	it	performs	on	the	test	data:

>	lasso.y	=	predict(lasso,	newx=newx,	type="response",	s=0.045)

>	plot(lasso.y,	test$lpsa,	xlab="Predicted",	ylab="Actual",	main="LASSO")

The	output	of	the	preceding	command	is	as	follows:

We	calculate	MSE	as	we	did	before:

>	lasso.resid	=	lasso.y	-	test$lpsa

>	mean(lasso.resid^2)

[1]	0.4437209

It	looks	like	we	have	similar	plots	as	before	with	only	the	slightest	improvement	in	MSE.
Our	last	best	hope	for	dramatic	improvement	is	with	elastic	net.	To	this	end,	we	will	still
use	the	glmnet	package.	The	twist	will	be	that	we	will	solve	for	lambda	and	for	the	elastic
net	parameter	known	as	alpha.	Recall	that	alpha	=	0	is	the	ridge	regression	penalty	and
alpha	=	1	is	the	LASSO	penalty.	The	elastic	net	parameter	will	be	0	≤	alpha	≤	1.	Solving
for	two	different	parameters	simultaneously	can	be	complicated	and	frustrating	but	we	can
use	our	friend	in	R,	the	caret	package,	for	assistance.

Elastic	net
The	caret	package	stands	for	classification	and	regression	training.	It	has	an	excellent
companion	website	to	help	in	understanding	all	of	its	capabilities:
http://topepo.github.io/caret/index.html.	The	package	has	many	different	functions	that
you	can	use	and	we	will	revisit	some	of	them	in	the	later	chapters.	For	our	purpose	here,
we	want	to	focus	on	finding	the	optimal	mix	of	lambda	and	our	elastic	net	mixing
parameter,	alpha.	This	is	done	using	the	following	simple	three-step	process:

1.	 Use	the	expand.grid()	function	in	base	R	to	create	a	vector	of	all	the	possible
combinations	of	alpha	and	lambda	that	we	want	to	investigate.

2.	 Use	the	trainControl()	function	from	the	caret	package	to	determine	the
resampling	method;	we	will	use	LOOCV	as	we	did	in	Chapter	2,	Linear	Regression	–
The	Blocking	and	Tackling	of	Machine	Learning.

3.	 Train	a	model	to	select	our	alpha	and	lambda	parameters	using	glmnet()	in	caret’s
train()	function.

Once	we’ve	selected	our	parameters,	we	will	apply	them	to	the	test	data	in	the	same	way
as	we	did	with	ridge	regression	and	LASSO.	Our	grid	of	combinations	should	be	large
enough	to	capture	the	best	model	but	not	too	large	that	it	becomes	computationally
unfeasible.	That	won’t	be	a	problem	with	this	size	dataset,	but	keep	this	in	mind	for	future
references.	I	think	we	can	do	the	following:

alpha	from	0	to	1	by	0.2	increments;	remember	that	this	is	bound	by	0	and	1
lambda	from	0.00	to	0.2	in	steps	of	0.02;	the	0.2	lambda	should	provide	a	cushion
from	what	we	found	in	ridge	regression	(lambda=0.1)	and	LASSO	(lambda=0.045)

You	can	create	this	vector	using	the	expand.grid()	function	and	building	a	sequence	of
numbers	for	what	the	caret	package	will	automatically	use.	The	caret	package	will	take
the	values	for	alpha	and	lambda	with	the	following	code:

>	grid	=	expand.grid(.alpha=seq(0,1,	by=.2),	.lambda=seq(0.00,0.2,	

by=0.02))

The	table()	function	will	show	us	the	complete	set	of	66	combinations:

>	table(grid)

						.lambda

.alpha	0	0.02	0.04	0.06	0.08	0.1	0.12	0.14	0.16	0.18	0.2

			0			1				1				1				1				1			1				1				1				1				1			1

			0.2	1				1				1				1				1			1				1				1				1				1			1

			0.4	1				1				1				1				1			1				1				1				1				1			1

			0.6	1				1				1				1				1			1				1				1				1				1			1

			0.8	1				1				1				1				1			1				1				1				1				1			1

			1			1				1				1				1				1			1				1				1				1				1			1

We	can	confirm	that	this	is	what	we	wanted—alpha	from	0	to	1	and	lambda	from	0	to	0.2.
For	the	resampling	method,	we	will	put	in	the	code	for	LOOCV	for	the	method.	There	are
other	resampling	alternatives	such	as	bootstrapping	or	k-fold	cross-validation	and
numerous	options	that	you	can	use	with	trainControl(),	but	we	will	explore	this	options

http://topepo.github.io/caret/index.html

in	future	chapters.	You	can	tell	the	model	selection	criteria	with	selectionFunction()	in
trainControl().	For	quantitative	responses,	the	algorithm	will	select	based	on	its	default
of	Root	Mean	Square	Error	(RMSE),	which	is	perfect	for	our	purposes:

>	control	=	trainControl(method="LOOCV")

It	is	now	time	to	use	train()	to	determine	the	optimal	elastic	net	parameters.	The	function
is	similar	to	lm().	We	will	just	add	the	syntax:	method="glmnet",	trControl=control	and
tuneGrid=grid.	Let’s	put	this	in	an	object	called	enet.train:

>	enet.train	=	train(lpsa~.,	data=train,	method="glmnet",	

trControl=control,	tuneGrid=grid)

Calling	the	object	will	tell	us	the	parameters	that	lead	to	the	lowest	RMSE,	as	follows:

>	enet.train

glmnet	

67	samples

	8	predictor

No	pre-processing

Resampling:	

Summary	of	sample	sizes:	66,	66,	66,	66,	66,	66,	...	

Resampling	results	across	tuning	parameters:

		alpha		lambda		RMSE			Rsquared

		0.0				0.00				0.750		0.609			

		0.0				0.02				0.750		0.609			

		0.0				0.04				0.750		0.609			

		0.0				0.06				0.750		0.609			

		0.0				0.08				0.750		0.609			

		0.0				0.10				0.751		0.608			

		

		1.0				0.14				0.800		0.564			

		1.0				0.16				0.809		0.558			

		1.0				0.18				0.819		0.552			

		1.0				0.20				0.826		0.549			

RMSE	was	used	to	select	the	optimal	model	using	the	smallest	value.	The	final	values
used	for	the	model	were	alpha	=	0	and	lambda	=	0.08.

This	experimental	design	has	led	to	the	optimal	tuning	parameters	of	alpha	=	0	and
lambda	=	0.08,	which	is	a	ridge	regression	with	s=0.08	in	glmnet,	recall	that	we	used
0.10.	The	R-squared	is	61	percent,	which	is	nothing	to	write	home	about.

The	process	for	the	test	set	validation	is	just	as	before:

>	enet	=	glmnet(x,	y,family="gaussian",	alpha=0,	lambda=.08)

>	enet.coef	=	coef(enet,	s=.08,	exact=TRUE)

>	enet.coef

9	x	1	sparse	Matrix	of	class	"dgCMatrix"

																							1

(Intercept)		0.137811097

lcavol							0.470960525

lweight						0.652088157

age									-0.018257308

lbph									0.123608113

svi										0.648209192

lcp									-0.118214386

gleason						0.345480799

pgg45								0.004478267

>	enet.y	=	predict(enet,	newx=newx,	type="response",	s=.08)

>	plot(enet.y,	test$lpsa,	xlab="Predicted",	ylab="Actual",	main="Elastic	

Net")

The	output	of	the	preceding	command	is	as	follows:

Calculate	MSE	as	we	did	before:

>	enet.resid	=	enet.y	–	test$lpsa

>	mean(enet.resid^2)

[1]	0.4795019

This	model	error	is	similar	to	the	ridge	penalty.	On	the	test	set,	our	LASSO	model	did	the
best	in	terms	of	errors.	We	may	be	over-fitting!	Our	best	subset	model	with	three	features
is	the	easiest	to	explain,	and	in	terms	of	errors,	is	acceptable	to	the	other	techniques.	We
can	use	a	10-fold	cross-validation	in	the	glmnet	package	to	possibly	identify	a	better
solution.

Cross-validation	with	glmnet
We	have	used	LOOCV	with	the	caret	package;	now	we	will	try	k-fold	cross-validation.
The	glmnet	package	defaults	to	ten	folds	when	estimating	lambda	in	cv.glmnet().	In	k-
fold	CV,	the	data	is	partitioned	into	an	equal	number	of	subsets	(folds)	and	a	separate
model	is	built	on	each	k-1	set	and	then	tested	on	the	corresponding	holdout	set	with	the
results	combined	(averaged)	to	determine	the	final	parameters.	In	this	method,	each	fold	is
used	as	a	test	set	only	once.	The	glmnet	package	makes	it	very	easy	to	try	this	and	will
provide	you	with	an	output	of	the	lambda	values	and	the	corresponding	MSE.	It	defaults
to	alpha	=	1,	so	if	you	want	to	try	ridge	regression	or	an	elastic	net	mix,	you	will	need	to
specify	it.	As	we	will	be	trying	for	as	few	input	features	as	possible,	we	will	stick	to	the
default:

>	set.seed(317)

>	lasso.cv	=	cv.glmnet(x,	y)

>	plot(lasso.cv)

The	output	of	the	preceding	code	is	as	follows:

The	plot	for	CV	is	quite	different	than	the	other	glmnet	plots,	showing	log(Lambda)
versus	Mean-Squared	Error	along	with	the	number	of	features.	The	two	dotted	vertical
lines	signify	the	minimum	of	MSE	(left	line)	and	one	standard	error	from	the	minimum
(right	line).	One	standard	error	away	from	the	minimum	is	a	good	place	to	start	if	you

have	an	over-fitting	problem.	You	can	also	call	the	exact	values	of	these	two	lambdas,	as
follows:

>	lasso.cv$lambda.min	#minimum

[1]	0.003985616

>	lasso.cv$lambda.1se	#one	standard	error	away

[1]	0.1646861

Using	lambda.1se,	we	can	go	through	the	following	process	of	viewing	the	coefficients
and	validating	the	model	on	the	training	data:

>	coef(lasso.cv,	s	="lambda.1se")

9	x	1	sparse	Matrix	of	class	"dgCMatrix"

																					1

(Intercept)	0.04370343

lcavol						0.43556907

lweight					0.45966476

age									.									

lbph								0.01967627

svi									0.27563832

lcp									.									

gleason					0.17007740

pgg45							.									

>	lasso.y.cv	=	predict(lasso.cv,	newx=newx,	type="response",	

s="lambda.1se")

>	lasso.cv.resid	=	lasso.y.cv	-	test$lpsa

>	mean(lasso.cv.resid^2)

[1]	0.4559446

This	model	achieves	an	error	of	0.46	with	just	five	features,	zeroing	out	age,	lcp,	and
pgg45.

Model	selection
We	looked	at	five	different	models	in	examining	this	dataset.	The	following	points	were
the	test	set	error	of	these	models:

Best	subsets	is	0.51
Ridge	regression	is	0.48
LASSO	is	0.44
Elastic	net	is	0.48
LASSO	with	CV	is	0.46

On	a	pure	error,	LASSO	with	seven	features	performed	the	best.	However,	does	this	best
address	the	question	that	we	are	trying	to	answer?	Perhaps	the	more	parsimonious	model
that	we	found	using	CV	with	a	lambda	of	~0.165	is	more	appropriate.	My	inclination	is	to
put	forth	the	latter	as	it	is	more	interpretable.

Having	said	all	this,	there	is	clearly	a	need	for	domain-specific	knowledge	from
oncologists,	urologists,	and	pathologists	in	order	to	understand	what	would	make	the	most
sense.	There	is	that,	but	there	is	also	the	need	for	more	data.	With	this	sample	size,	the
results	can	vary	greatly	just	by	changing	the	randomization	seeds	or	creating	different
train	and	test	sets.	(Try	it	and	see	for	yourself.)	At	the	end	of	the	day,	these	results	may
likely	raise	more	questions	than	provide	you	with	answers.	However,	is	this	bad?	I	would
say	no,	unless	you	made	the	critical	mistake	of	over-promising	at	the	start	of	the	project
about	what	you	will	be	able	to	provide.	This	is	a	fair	warning	to	prudently	apply	the	tools
put	forth	in	Chapter	1,	Business	Understanding	—	The	Road	to	Actionable	Insights.

Summary
In	this	chapter,	the	goal	was	to	use	a	small	dataset	to	provide	an	introduction	to	practically
apply	an	advanced	feature	selection	for	linear	models.	The	outcome	for	our	data	was
quantitative	but	the	glmnet	package	that	we	used	will	also	support	qualitative	outcomes
(binomial	and	multinomial	classifications).	An	introduction	to	regularization	and	the	three
techniques	that	incorporate	it	were	provided	and	utilized	to	build	and	compare	models.
Regularization	is	a	powerful	technique	to	improve	computational	efficiency	and	to
possibly	extract	more	meaningful	features	versus	the	other	modeling	techniques.
Additionally,	we	started	to	use	the	caret	package	to	optimize	multiple	parameters	when
training	a	model.	Up	to	this	point,	we’ve	been	purely	talking	about	linear	models.	In	the
next	couple	of	chapters,	we	will	begin	to	use	nonlinear	models	for	both	classification	and
regression	problems.

Chapter	5.	More	Classification
Techniques	–	K-Nearest	Neighbors	and
Support	Vector	Machines
	 “Statistical	thinking	will	one	day	be	as	necessary	for	efficient	citizenship	as	the	ability	to	read	and	write.” 	

	 —H.G.	Wells

In	Chapter	3,	Logistic	Regression	and	Discriminant	Analysis	we	discussed	using	logistic
regression	to	determine	the	probability	that	a	predicted	observation	belongs	to	a
categorical	response—what	we	refer	to	as	a	classification	problem.	Logistic	regression
was	just	the	beginning	of	classification	methods,	with	a	number	of	techniques	that	we	can
use	to	improve	our	predictions.

In	this	chapter,	we	will	delve	into	two	nonlinear	techniques:	K-Nearest	Neighbors	(KNN)
and	Support	Vector	Machines	(SVM).	These	techniques	are	more	sophisticated	than
what	we’ve	discussed	earlier	because	the	assumptions	on	linearity	can	be	relaxed,	which
means	a	linear	combination	of	the	features	in	order	to	define	the	decision	boundary	is	not
needed.	Be	forewarned	though,	this	does	not	always	equal	superior	predictive	ability.
Additionally,	these	models	can	be	a	bit	problematic	to	interpret	for	business	partners	and
they	can	be	computationally	inefficient.	When	used	wisely,	they	provide	a	powerful
complement	to	the	other	tools	and	techniques	discussed	in	this	book.	They	can	be	used	for
continuous	outcomes	in	addition	to	classification	problems;	however,	for	the	purposes	of
this	chapter,	we	will	focus	only	on	the	latter.

After	a	high-level	background	on	the	techniques,	we	will	lay	out	the	business	case	and
then	put	both	of	them	to	the	test	in	order	to	determine	the	best	method	of	the	two,	starting
with	KNN.

K-Nearest	Neighbors
In	our	previous	efforts,	we	built	models	that	had	coefficients	or,	said	another	way,
parameter	estimates	for	each	of	our	included	features.	With	KNN,	we	have	no	parameters
as	the	learning	method	is	the	so-called	instance-based	learning.	In	short,	The	labeled
examples	(inputs	and	corresponding	output	labels)	are	stored	and	no	action	is	taken	until
a	new	input	pattern	demands	an	output	value.	(Battiti	and	Brunato,	2014,	p.	11).	This
method	is	commonly	called	lazy	learning	as	no	specific	model	parameters	are	produced.
The	train	instances	themselves	represent	the	knowledge.	For	the	prediction	of	any	new
instance	(a	new	data	point),	the	train	data	is	searched	for	an	instance	that	most	resembles
the	new	instance	in	question.	KNN	does	this	for	a	classification	problem	by	looking	at	the
closest	points—the	nearest	neighbors	to	determine	the	proper	class.	The	k	comes	into	play
by	determining	how	many	neighbors	should	be	examined	by	the	algorithm,	so	if	k=5,	it
will	examine	the	five	nearest	points.	A	weakness	of	this	method	is	that	all	five	points	are
given	equal	weight	in	the	algorithm	even	if	they	are	less	relevant	in	learning.	We	will	look
at	the	methods	using	R	and	try	to	alleviate	this	issue.

The	best	way	to	understand	how	this	works	is	with	a	simple	visual	example	on	a	binary
classification	learning	problem.	In	the	following	figure,	we	have	a	plot	of	whether	a	tumor
is	benign	or	malignant	based	on	two	predictive	features.	The	X	in	the	plot	indicates	a
new	observation	that	we	would	like	to	predict.	If	our	algorithm	considers	K=3,	the	circle
encompasses	the	three	observations	that	are	nearest	to	the	one	that	we	want	to	score.	As
the	most	commonly	occurring	classifications	are	malignant,	the	X	data	point	is	classified
as	malignant,	as	shown	in	the	following	figure:

Even	from	this	simple	example,	it	is	clear	that	the	selection	of	k	for	the	Nearest
Neighbors	is	critical.	If	k	is	too	small,	then	you	may	have	a	high	variance	on	the	test	set
observations	even	though	you	have	a	low	bias.	On	the	other	hand,	as	k	grows	you	may
decrease	your	variance	but	the	bias	may	be	unacceptable.	Cross-validation	is	necessary	to
determine	the	proper	k.

It	is	also	important	to	point	out	the	calculation	of	the	distance	or	the	nearness	of	the	data
points	in	our	feature	space.	The	default	distance	is	Euclidian	Distance.	This	is	simply	the
straight-line	distance	from	point	A	to	point	B—as	the	crow	flies—or	you	can	utilize	the
formula	that	it	is	equivalent	to	the	square	root	of	the	sum	of	the	squared	differences
between	the	corresponding	points.	The	formula	for	Euclidian	Distance,	given	point	A
and	B	with	coordinates	p1,	p2,	…	pn	and	q1,	q2,…	qn	respectively,	would	be	as	follows:

This	distance	is	highly	dependent	on	the	scale	that	the	features	were	measured	on	and	so	it
is	critical	to	standardize	them.	Other	distance	calculations	can	be	used	as	well	as	weights
depending	on	the	distance.	We	will	explore	this	in	the	upcoming	example.

Support	Vector	Machines
The	first	time	I	heard	of	support	vector	machines,	I	have	to	admit	that	I	was	scratching	my
head,	thinking	that	this	was	some	form	of	an	academic	obfuscation	or	inside	joke.
However,	my	open-minded	review	of	SVM	has	replaced	this	natural	skepticism	with	a
healthy	respect	for	the	technique.

SVMs	have	been	shown	to	perform	well	in	a	variety	of	settings,	and	are	often	considered
one	of	the	best	“out	of	the	box”	classifiers.(James,	G.,	2013).To	get	a	practical	grasp	of
the	subject,	let’s	look	at	another	simple	visual	example.	In	the	following	figure,	you	will
see	that	the	classification	task	is	linearly	separable.	However,	the	dotted	line	and	solid	line
are	just	two	among	an	infinite	number	of	possible	linear	solutions.	You	would	have
separating	hyperplanes	in	a	problem	that	has	more	than	two	dimensions.

So	many	solutions	can	be	problematic	for	generalization	because	whatever	solution	you
choose,	any	new	observation	to	the	right	of	the	line	will	be	classified	as	benign,	and	to	the
left	of	the	line,	it	will	be	classified	as	malignant.	Therefore,	either	line	has	no	bias	on	the
train	data	but	may	have	a	widely	divergent	error	on	any	data	to	test.	This	is	where	the
support	vectors	come	into	play.	The	probability	that	a	point	falls	on	the	wrong	side	of	the
linear	separator	is	higher	for	the	dotted	line	than	the	solid	line,	which	means	that	the	solid
line	has	a	higher	margin	of	safety	for	classification.	Therefore,	as	Battiti	and	Brunato	say,
SVMs	are	linear	separators	with	the	largest	possible	margin	and	the	support	vectors	the
ones	touching	the	safety	margin	region	on	both	sides.

The	following	figure	illustrates	this	idea.	The	thin	solid	line	is	the	optimal	linear	separator
to	create	the	aforementioned	largest	possible	margin,	thus	increasing	the	probability	that	a
new	observation	will	fall	on	the	correct	side	of	the	separator.	The	thicker	black	lines

correspond	to	the	safety	margin	and	the	shaded	data	points	constitute	the	support	vectors.
If	the	support	vectors	were	to	move,	then	the	margin	and,	subsequently,	the	decision
boundary	would	change.	The	distance	between	the	separators	is	known	as	the	margin.

This	is	all	fine	and	dandy,	but	the	real-world	problems	are	not	so	clear	cut.	In	data	that	is
not	linearly	separable,	many	observations	will	fall	on	the	wrong	side	of	the	margin	(the	so-
called	slack	variables),	which	is	a	misclassification.	The	key	to	building	an	SVM
algorithm	is	to	solve	the	optimal	number	of	support	vectors	via	cross-validation.	Any
observation	that	lies	directly	on	the	wrong	side	of	the	margin	for	its	class	is	known	as	a
support	vector.	If	the	tuning	parameter	for	the	number	of	errors	is	too	large,	which	means
that	you	have	many	support	vectors,	you	will	suffer	from	a	high	bias	and	low	variance.	On
the	other	hand,	if	the	tuning	parameter	is	too	small,	then	the	opposite	might	occur.
According	to	James	et	al.	who	refers	to	the	tuning	parameter	as	C,	As	C	decreases,	the
tolerance	for	observations	being	on	the	wrong	side	of	the	margin	decreases,	and	the
margin	narrows.	This	C,	or	rather,	cost	function,	simply	allows	for	observations	to	be	on
the	wrong	side	of	the	margin.	If	C	were	set	to	zero,	then	we	would	prohibit	a	solution
where	any	observations	violate	the	margin.

Another	important	aspect	of	SVM	is	the	ability	to	model	nonlinearity	with	quadratic	or
higher	order	polynomials	of	the	input	features.	In	SVMs,	this	is	known	as	the	kernel
trick.	These	can	be	estimated	and	selected	with	cross-validation.	In	the	example,	we	will
look	at	the	alternatives.

As	with	any	model,	you	can	expand	the	number	of	features	using	polynomials	to	various
degrees,	interaction	terms,	or	other	derivations.	In	large	datasets,	the	possibilities	can
quickly	get	out	of	control.	The	kernel	trick	with	SVMs	allows	us	to	efficiently	expand	the
feature	space	with	the	goal	that	you	achieve	an	approximate	linear	separation.

To	check	out	how	this	is	done,	first	look	at	the	SVM	optimization	problem	and	its
constraints.	We	are	trying	to	achieve	the	following:

Create	weights	that	maximize	the	margin
Subject	to	the	constraints,	no	(or	as	few	as	possible)	data	points	should	lie	within	that
margin

Now,	unlike	linear	regression	where	each	observation	is	multiplied	by	a	weight,	in	SVM,
the	weights	are	applied	to	the	inner	products	of	just	the	support	vector	observations.

What	does	this	mean?	Well,	an	inner	product	for	two	vectors	is	just	the	sum	of	the	paired
observations’	product.	For	example,	if	vector	one	is	3,	4,	and	2	and	vector	two	is	1,	2,	and
3,	then	you	end	up	with	(3x1)	+	(4x2)	+	(2x3)	or	17.	With	SVMs,	if	we	take	a	possibility
that	an	inner	product	of	each	observation	has	an	inner	product	of	every	other	observation,
this	amounts	to	the	formula	that	there	would	be	n(n-1)/2	combinations	where	n	is	the
number	of	observations.	With	just	10	observations,	we	end	up	with	45	inner	products.
However,	SVM	only	concerns	itself	with	the	support	vectors’	observations	and	their
corresponding	weights.	For	a	linear	SVM	classifier,	the	formula	is	the	following:

Where	(x,	xi)	are	the	inner	products	of	the	support	vectors	as	α	is	non-zero	only	when	an
observation	is	a	support	vector.

This	leads	to	far	fewer	terms	in	the	classification	algorithm	and	allows	the	use	of	the
kernel	function,	commonly	referred	to	as	the	kernel	trick.

The	trick	in	this	is	that	the	kernel	function	mathematically	summarizes	the	transformation
of	the	features	in	higher	dimensions	instead	of	creating	them	explicitly.	This	has	the
benefit	of	creating	the	higher	dimensional,	nonlinear	space	and	decision	boundary	while
keeping	the	optimization	problem	computationally	efficient.	The	kernel	functions
compute	the	inner	product	in	a	higher	dimensional	space	without	transforming	them	into
the	higher	dimensional	space.

The	notation	for	popular	kernels	is	expressed	as	the	inner	(dot)	product	of	the	features,
with	xi	and	xj	representing	vectors,	gamma,	and	c	parameters,	as	follows:

linear	with	no	transformation:	

polynomial	where	d	is	equal	to	the	degree	of	the	polynomial:	

radial	basis	function:	

sigmoid	function:	

As	for	the	selection	of	the	nonlinear	techniques,	they	require	some	trial	and	error,	but	we
will	walk-through	the	various	selection	techniques.

Business	case
In	the	upcoming	case	study,	we	will	apply	KNN	and	SVM	to	the	same	dataset.	This	will
allow	us	to	compare	the	R	code	and	learning	methods	on	the	same	problem,	starting	with
KNN.	We	will	also	spend	some	time	drilling	down	into	the	confusion	matrix,	comparing	a
number	of	statistics	to	evaluate	model	accuracy.

Business	understanding
The	data	that	we	will	examine	was	originally	collected	by	the	National	Institute	of
Diabetes	and	Digestive	and	Kidney	Diseases	(NIDDK).	It	consists	of	532	observations
and	eight	input	features	along	with	a	binary	outcome	(Yes/No).	The	patients	in	this	study
were	of	Pima	Indian	descent	from	South	Central	Arizona.	The	NIDDK	data	shows	that
since	the	past	30	years,	research	has	helped	scientists	to	prove	that	obesity	is	a	major	risk
factor	in	the	development	of	diabetes.	The	Pima	Indians	were	selected	for	the	study	as
one-half	of	the	adult	Pima	Indians	have	diabetes	and	95	percent	of	those	with	diabetes	are
overweight.	The	analysis	will	focus	on	adult	women	only.	Diabetes	was	diagnosed
according	to	the	WHO	criteria	and	was	of	the	type	of	diabetes	that	is	known	as	type	2.	In
this	type	of	diabetes,	the	pancreas	is	still	able	to	function	and	produce	insulin	and	it	used
to	be	referred	to	as	non-insulin-dependent	diabetes.

Our	task	is	to	examine	and	predict	those	individuals	that	have	diabetes	or	the	risk	factors
that	could	lead	to	diabetes	in	this	population.	Diabetes	has	become	an	epidemic	in	the
USA,	given	the	relatively	sedentary	lifestyle	and	high-caloric	diet.	According	to	the
American	Diabetes	Association	(ADA),	the	disease	was	the	seventh	leading	cause	of
death	in	the	USA	in	2010,	despite	being	underdiagnosed.	Diabetes	is	also	associated	with
a	dramatic	increase	in	comorbidities,	such	as	hypertension,	dyslipidemia,	stroke,	eye
disease,	and	kidney	disease.	The	costs	of	diabetes	and	its	complications	are	enormous.	The
ADA	estimates	that	the	total	cost	of	the	disease	in	2012	was	approximately	$490	billion.
For	further	background	information	on	the	problem,	refer	to	ADA’s	website	at
http://www.diabetes.org/diabetes-basics/statistics/.

http://www.diabetes.org/diabetes-basics/statistics/

Data	understanding	and	preparation
The	dataset	for	the	532	women	is	in	two	separate	data	frames.	The	variables	of	interest	are
as	follows:

npreg:	This	is	the	number	of	pregnancies
glu:	This	is	the	plasma	glucose	concentration	in	an	oral	glucose	tolerance	test
bp:	This	is	the	diastolic	blood	pressure	(mm	Hg)
skin:	This	is	triceps	skin-fold	thickness	measured	in	mm
bmi:	This	is	the	body	mass	index
ped:	This	is	the	diabetes	pedigree	function
age:	This	is	the	age	in	years
type:	This	is	diabetic,	Yes	or	No

The	datasets	are	contained	in	the	R	package,	MASS.	One	data	frame	is	named	Pima.tr	and
the	other	is	named	Pima.te.	Instead	of	using	these	as	separate	train	and	test	sets,	we
will	combine	them	and	create	our	own	in	order	to	discover	how	to	do	such	a	task	in	R.

To	begin,	let’s	load	the	following	packages	that	we	will	need	for	the	exercise:

>	library(class)	#k-nearest	neighbors

>	library(kknn)	#weighted	k-nearest	neighbors

>	library(e1071)	#SVM

>	library(caret)	#select	tuning	parameters

>	library(MASS)	#	contains	the	data

>	library(reshape2)	#assist	in	creating	boxplots

>	library(ggplot2)	#create	boxplots

>	library(kernlab)	#assist	with	SVM	feature	selection

>	library(pROC)

We	will	now	load	the	datasets	and	check	their	structure,	ensuring	that	they	are	the	same,
starting	with	Pima.tr,	as	follows:

>	data(Pima.tr)

>	str(Pima.tr)

'data.frame':200	obs.	of		8	variables:

	$	npreg:	int		5	7	5	0	0	5	3	1	3	2…

	$	glu		:	int		86	195	77	165	107	97	83	193	142	128…

	$	bp			:	int		68	70	82	76	60	76	58	50	80	78…

	$	skin	:	int		28	33	41	43	25	27	31	16	15	37…

	$	bmi		:	num		30.2	25.1	35.8	47.9	26.4	35.6	34.3	25.9	32.4	43.3…

	$	ped		:	num		0.364	0.163	0.156	0.259	0.133…

	$	age		:	int		24	55	35	26	23	52	25	24	63	31…

	$	type	:	Factor	w/	2	levels	"No","Yes":	1	2	1	1	1	2	1	1	1	2…

>	data(Pima.te)

>	str(Pima.te)

'data.frame':332	obs.	of		8	variables:

	$	npreg:	int		6	1	1	3	2	5	0	1	3	9…

	$	glu		:	int		148	85	89	78	197	166	118	103	126	119…

	$	bp			:	int		72	66	66	50	70	72	84	30	88	80…

	$	skin	:	int		35	29	23	32	45	19	47	38	41	35…

	$	bmi		:	num		33.6	26.6	28.1	31	30.5	25.8	45.8	43.3	39.3	29…

	$	ped		:	num		0.627	0.351	0.167	0.248	0.158	0.587	0.551	0.183	0.704	0.263…

	$	age		:	int		50	31	21	26	53	51	31	33	27	29…

	$	type	:	Factor	w/	2	levels	"No","Yes":	2	1	1	2	2	2	2	1	1	2…

Looking	at	the	structures,	we	can	be	confident	that	we	can	combine	the	data	frames	to	one.
This	is	very	easy	to	do	using	the	rbind()	function,	which	stands	for	row	binding	and
appends	the	data.	If	you	had	the	same	observations	in	each	frame	and	wanted	to	append
the	features,	you	would	bind	them	by	columns	using	the	cbind()	function.	You	will
simply	name	your	new	data	frame	and	use	this	syntax:	new	data	=	rbind(data	frame1,
data	frame2).	Our	code	thus	becomes	as	follows:

>	pima	=	rbind(Pima.tr,	Pima.te)

As	always,	double-check	the	structure.	We	can	see	that	there	are	no	issues,	as	follows:

>	str(pima)

'data.frame':532	obs.	of		8	variables:

	$	npreg:	int		5	7	5	0	0	5	3	1	3	2…

	$	glu		:	int		86	195	77	165	107	97	83	193	142	128…

	$	bp			:	int		68	70	82	76	60	76	58	50	80	78…

	$	skin	:	int		28	33	41	43	25	27	31	16	15	37…

	$	bmi		:	num		30.2	25.1	35.8	47.9	26.4	35.6	34.3	25.9	32.4	43.3…

	$	ped		:	num		0.364	0.163	0.156	0.259	0.133…

	$	age		:	int		24	55	35	26	23	52	25	24	63	31…

	$	type	:	Factor	w/	2	levels	"No","Yes":	1	2	1	1	1	2	1	1	1	2…

Let’s	do	some	exploratory	analysis	by	putting	this	in	boxplots.	For	this,	we	want	to	use	the
outcome	variable,	"type",	as	our	ID	variable.	As	we	did	with	logistic	regression,	the
melt()	function	will	do	this	and	prepare	a	data	frame	that	we	can	use	for	the	boxplots.	We
will	call	the	new	data	frame	pima.melt,	as	follows:

>	pima.melt	=	melt(pima,	id.var="type")

The	boxplot	layout	using	the	ggplot2	package	is	quite	effective,	so	we	will	use	it.	In	the
ggplot()	function,	we	will	specify	the	data	to	use,	the	x	and	y	variables,	and	what	type	of
plot	and	create	a	series	of	plots	with	two	columns.	In	the	following	code,	we	will	put	the
response	variable	as	x	and	its	value	as	y	in	aes().	Then,	geom_boxplot()	creates	the
boxplots.	Finally,	we	will	build	the	boxplots	in	two	columns	with	facet_wrap():

>	ggplot(data=pima.melt,	aes(x=type,	y=value))	+	geom_boxplot()	+	

facet_wrap(~variable,	ncol=2)

The	following	is	the	output	of	the	preceding	command:

This	is	an	interesting	plot	because	it	is	difficult	to	discern	any	dramatic	differences	in	the
plots,	probably	with	the	exception	of	glucose	(glu).	As	you	may	have	suspected,	the
fasting	glucose	appears	to	be	significantly	higher	in	the	patients	currently	diagnosed	with
diabetes.	The	main	problem	here	is	that	the	plots	are	all	on	the	same	y	axis	scale.	We	can
fix	this	and	produce	a	more	meaningful	plot	by	standardizing	the	values	and	then	re-
plotting.	R	has	a	built-in	function,	scale(),	which	will	convert	the	values	to	a	mean	of
zero	and	a	standard	deviation	of	one.	Let’s	put	this	in	a	new	data	frame	called	pima.scale,
converting	all	of	the	features	and	leaving	out	the	type	response.	Additionally,	while	doing
KNN,	it	is	important	to	have	the	features	on	the	same	scale	with	a	mean	of	zero	and	a
standard	deviation	of	one.	If	not,	then	the	distance	calculations	in	the	nearest	neighbor
calculation	are	flawed.	If	something	is	measured	on	a	scale	of	1	to	100,	it	will	have	a
larger	effect	versus	another	feature	that	is	measured	on	a	scale	of	1	to	10.	Note	that	when
you	scale	a	data	frame,	it	automatically	becomes	a	matrix.	Using	the	as.data.frame()
function,	convert	it	back	to	a	data	frame,	as	follows:

>	pima.scale	=	as.data.frame(scale(pima[,-8]))

>	str(pima.scale)

'data.frame':532	obs.	of		7	variables:

	$	npreg:	num		0.448	1.052	0.448	-1.062	-1.062…

	$	glu		:	num		-1.13	2.386	-1.42	1.418	-0.453…

	$	bp			:	num		-0.285	-0.122	0.852	0.365	-0.935…

	$	skin	:	num		-0.112	0.363	1.123	1.313	-0.397…

	$	bmi		:	num		-0.391	-1.132	0.423	2.181	-0.943…

	$	ped		:	num		-0.403	-0.987	-1.007	-0.708	-1.074…

	$	age		:	num		-0.708	2.173	0.315	-0.522	-0.801…

Now,	we	will	need	to	include	the	response	in	the	data	frame,	as	follows:

>	pima.scale$type	=	pima$type

Let’s	just	repeat	the	boxplotting	process	again	with	melt()	and	ggplot():

>	pima.scale.melt	=	melt(pima.scale,	id.var="type")

>	ggplot(data=pima.scale.melt,	aes(x=type,	y=value))	

+geom_boxplot()+facet_wrap(~variable,	ncol=2)

The	following	is	the	output	of	the	preceding	command:

With	the	features	scaled,	the	plot	is	easier	to	read.	In	addition	to	glucose,	it	appears	that
the	other	features	may	differ	by	type,	in	particular,	age.

Before	splitting	this	into	train	and	test	sets,	let’s	have	a	look	at	the	correlation	with	the
R	function,	cor().	This	will	produce	a	matrix	instead	of	a	plot	of	the	Pearson	correlations:

>	cor(pima.scale[-8])

												npreg							glu										bp							skin

npreg	1.000000000	0.1253296	0.204663421	0.09508511

glu			0.125329647	1.0000000	0.219177950	0.22659042

bp				0.204663421	0.2191779	1.000000000	0.22607244

skin		0.095085114	0.2265904	0.226072440	1.00000000

bmi			0.008576282	0.2470793	0.307356904	0.64742239

ped			0.007435104	0.1658174	0.008047249	0.11863557

age			0.640746866	0.2789071	0.346938723	0.16133614

														bmi									ped								age

npreg	0.008576282	0.007435104	0.64074687

glu			0.247079294	0.165817411	0.27890711

bp				0.307356904	0.008047249	0.34693872

skin		0.647422386	0.118635569	0.16133614

bmi			1.000000000	0.151107136	0.07343826

ped			0.151107136	1.000000000	0.07165413

age			0.073438257	0.071654133	1.00000000

There	are	a	couple	of	correlations	to	point	out,	npreg/age	and	skin/bmi.	Multi-collinearity
is	generally	not	a	problem	with	these	methods,	assuming	that	they	are	properly	trained	and
the	hyperparameters	are	tuned.

I	think	we	are	now	ready	to	create	the	train	and	test	sets,	but	before	we	do	so,	I
recommend	that	you	always	check	the	ratio	of	Yes	and	No	in	our	response.	It	is	important
to	make	sure	that	you	will	have	a	balanced	split	in	the	data,	which	may	be	a	problem	if
one	of	the	outcomes	is	sparse.	This	can	cause	a	bias	in	a	classifier	between	the	majority
and	minority	classes.	There	are	no	hard	and	fast	rules	on	what	is	an	improper	balance.	A
good	rule	of	thumb	is	that	you	strive	for—at	least—a	2:1	ratio	in	the	possible	outcomes
(He	and	Wa,	2013).

>	table(pima.scale$type)

	No	Yes

355	177

The	ratio	is	2:1	so	we	can	create	the	train	and	test	sets	with	our	usual	syntax	using	a
70/30	split	in	the	following	way:

>	set.seed(502)

>	ind	=	sample(2,	nrow(pima.scale),	replace=TRUE,	prob=c(0.7,0.3))

>	train	=	pima.scale[ind==1,]

>	test	=	pima.scale[ind==2,]

>	str(train)

'data.frame':385	obs.	of		8	variables:

	$	npreg:	num		0.448	0.448	-0.156	-0.76	-0.156…

	$	glu		:	num		-1.42	-0.775	-1.227	2.322	0.676…

	$	bp			:	num		0.852	0.365	-1.097	-1.747	0.69…

	$	skin	:	num		1.123	-0.207	0.173	-1.253	-1.348…

	$	bmi		:	num		0.4229	0.3938	0.2049	-1.0159	-0.0712…

	$	ped		:	num		-1.007	-0.363	-0.485	0.441	-0.879…

	$	age		:	num		0.315	1.894	-0.615	-0.708	2.916…

	$	type	:	Factor	w/	2	levels	"No","Yes":	1	2	1	1	1	2	2	1	1	1	…

>	str(test)

'data.frame':147	obs.	of		8	variables:

	$	npreg:	num		0.448	1.052	-1.062	-1.062	-0.458…

	$	glu		:	num		-1.13	2.386	1.418	-0.453	0.225…

	$	bp			:	num		-0.285	-0.122	0.365	-0.935	0.528…

	$	skin	:	num		-0.112	0.363	1.313	-0.397	0.743…

	$	bmi		:	num		-0.391	-1.132	2.181	-0.943	1.513…

	$	ped		:	num		-0.403	-0.987	-0.708	-1.074	2.093…

	$	age		:	num		-0.7076	2.173	-0.5217	-0.8005	-0.0571…

	$	type	:	Factor	w/	2	levels	"No","Yes":	1	2	1	1	2	1	2	1	1	1…

All	seems	to	be	in	order,	so	we	can	move	on	to	the	building	of	our	predictive	models	and
evaluate	them,	starting	with	KNN.

Modeling	and	evaluation
Now,	we	will	see	discuss	various	aspects	pertaining	to	modeling	and	evaluation.

KNN	modeling
As	previously	mentioned,	it	is	critical	to	select	the	most	appropriate	parameter	(k	or	K)
when	using	this	technique.	Let’s	put	the	caret	package	to	good	use	again	in	order	to
identify	k.	We	will	create	a	grid	of	inputs	for	the	experiment,	with	k	ranging	from	2	to	20
by	an	increment	of	1.	This	is	easily	done	with	the	expand.grid()	and	seq()	functions.
The	caret	package	parameter	that	works	with	the	KNN	function	is	simply	.k:

>	grid1	=	expand.grid(.k=seq(2,20,	by=1))

We	will	also	incorporate	cross-validation	in	the	selection	of	the	parameter,	creating	an
object	called	control	and	utilizing	the	trainControl()	function	from	the	caret	package,
as	follows:

>	control	=	trainControl(method="cv")

Now,	we	can	create	the	object	that	will	show	us	how	to	compute	the	optimal	k	value	with
the	train()	function,	which	is	also	part	of	the	caret	package.	Remember	that	while
conducting	any	sort	of	random	sampling,	you	will	need	to	set	the	seed	value	as	follows:

>	set.seed(502)

The	object	created	by	the	train()	function	requires	the	model	formula,	train	data	name,
and	an	appropriate	method.	The	model	formula	is	the	same	as	we’ve	used	before—y~x.
The	method	designation	is	simply	knn.	With	this	in	mind,	this	code	will	create	the	object
that	will	show	us	the	optimal	k	value,	as	follows:

>	knn.train	=	train(type~.,	data=train,	method="knn",	trControl=control,	

tuneGrid=grid1)

Calling	the	object	provides	us	with	the	k	parameter	that	we	are	seeking,	which	is	k=17:

>	knn.train

k-Nearest	Neighbors

385	samples

		7	predictor

		2	classes:	'No',	'Yes'

No	pre-processing

Resampling:	Cross-Validated	(10	fold)

Summary	of	sample	sizes:	347,	347,	345,	347,	347,	346,	...

Resampling	results	across	tuning	parameters:

		k			Accuracy		Kappa		Accuracy	SD		Kappa	SD

			2		0.736					0.359		0.0506							0.1273		

			3		0.762					0.416		0.0526							0.1313		

			4		0.761					0.418		0.0521							0.1276		

			5		0.759					0.411		0.0566							0.1295		

			6		0.772					0.442		0.0559							0.1474		

			7		0.767					0.417		0.0455							0.1227		

			8		0.767					0.425		0.0436							0.1122		

			9		0.772					0.435		0.0496							0.1316		

		10		0.780					0.458		0.0485							0.1170		

		11		0.777					0.446		0.0437							0.1120		

		12		0.775					0.440		0.0547							0.1443		

		13		0.782					0.456		0.0397							0.1084		

		14		0.780					0.449		0.0557							0.1349		

		15		0.772					0.427		0.0449							0.1061		

		16		0.782					0.453		0.0403							0.0954		

		17		0.795					0.485		0.0382							0.0978		

		18		0.782					0.451		0.0461							0.1205		

		19		0.785					0.455		0.0452							0.1197		

		20		0.782					0.446		0.0451							0.1124		

Accuracy	was	used	to	select	the	optimal	model	using	the	largest	value.

The	final	value	used	for	the	model	was	k	=	17.		

In	addition	to	the	results	that	yield	k=17,	we	get	the	information	in	the	form	of	a	table	on
the	Accuracy	and	Kappa	statistics	and	their	standard	deviations	from	the	cross-validation.
Accuracy	tells	us	the	percentage	of	observations	that	the	model	classified	correctly.	Kappa
refers	to	what	is	known	as	Cohen’s	Kappa	statistic.	The	Kappa	statistic	is	commonly
used	to	provide	a	measure	of	how	well	can	two	evaluators	classify	an	observation
correctly.	It	provides	an	insight	into	this	problem	by	adjusting	the	accuracy	scores,	which
is	done	by	accounting	for	the	evaluators	being	totally	correct	by	mere	chance.	The	formula
for	the	statistic	is	Kappa	=	(Percent	of	agreement	–	Percent	of	chance	agreement)	/	(1	–
Percent	of	chance	agreement).

The	Percent	of	agreement	is	the	rate	that	the	evaluators	agreed	on	the	class	(accuracy)	and
Percent	of	chance	agreement	is	the	rate	that	the	evaluators	randomly	agreed	on.	The
higher	the	statistic,	the	better	they	performed	with	the	maximum	agreement	being	one.	We
will	work	through	an	example	when	we	will	apply	our	model	on	the	test	data.

To	do	this,	we	will	utilize	the	knn()	function	from	the	class	package.	With	this	function,
we	will	need	to	specify	at	least	four	items.	These	would	be	the	train	inputs,	the	test
inputs,	correct	labels	from	the	train	set,	and	k.	We	will	do	this	by	creating	the	knn.test
object	and	see	how	it	performs:

>	knn.test	=	knn(train[,-8],	test[,-8],	train[,8],	k=17)

With	the	object	created,	let’s	examine	the	confusion	matrix	and	calculate	the	accuracy	and
kappa:

>	table(knn.test,	test$type)

								

knn.test	No	Yes

					No		77		26

					Yes	16		28

The	accuracy	is	done	by	simply	dividing	the	correctly	classified	observations	by	the	total
observations:

>	(77+28)/147

[1]	0.7142857

This	is	slightly	less	than	our	accuracy	of	71	percent	that	we	achieved	on	the	train	data
alone	of	almost	eight	percent.	We	can	now	discuss	the	code	of	finding	the	kappa	statistic.
We	have	our	accuracy	and	the	chance	calculation	is	simply	the	first	row	counts	divided	by
the	total	rows	multiplied	by	the	first	column	counts	divided	by	the	total	rows,	as	follows:

>	#calculate	Kappa

>	prob.agree	=	(77+28)/147	#accuracy

>	prob.chance	=	((77+26)/147)	*	((77+16)/147)

>	prob.chance

[1]	0.4432875

>	kappa	=	(prob.agree	-	prob.chance)	/	(1	-	prob.chance)

>	kappa

[1]	0.486783

The	kappa	statistic	at	0.49	is	what	we	achieved	with	the	train	set.	Altman(1991)	provides
a	heuristic	to	assist	us	in	the	interpretation	of	the	statistic,	which	is	shown	in	the	following
table:

Value	of	K Strength	of	Agreement

<0.20 Poor

0.21-0.40 Fair

0.41-0.60 Moderate

0.61-0.80 Good

0.81-1.00 Very	good

With	our	kappa	only	moderate	and	with	an	accuracy	just	over	70	percent	on	the	test	set,
we	should	see	if	we	can	perform	better	by	utilizing	weighted	neighbors.	A	weighting
schema	increases	the	influence	of	neighbors	that	are	closest	to	an	observation	versus	those
that	are	further	away.	The	further	away	the	observation	is	from	a	point	in	space,	the	more
its	influence	is	penalized.	For	this	technique,	we	will	use	the	kknn	package	and	its
train.kknn()	function	to	select	the	optimal	weighting	scheme.

The	train.kknn()	function	uses	LOOCV	that	we	examined	in	the	prior	chapters	in	order
to	select	the	best	parameters	for	the	optimal	k	neighbors,	one	of	the	two	distance
measures,	and	a	kernel	function.

The	unweighted	k	neighbors	algorithm	that	we	created	uses	the	Euclidian	distance	as	we
discussed	previously.	With	the	kknn	package,	there	are	options	available	to	compare	the
sum	of	the	absolute	differences	versus	the	Euclidian	distance.	The	package	refers	to	the

distance	calculation	used	as	the	Minkowski	parameter.

As	for	the	weighting	of	the	distances,	many	different	methods	are	available.	For	our
purpose,	the	package	that	we	will	use	has	ten	different	weighting	schemas,	which	includes
the	unweighted	ones.	They	are	rectangular	(unweighted),	triangular,	epanechnikov,
biweight,	triweight,	cosine,	inversion,	gaussian,	rank,	and	optimal.	A	full	discussion	of
these	weighting	techniques	is	available	in	Hechenbichler	K.	and	Schliep	K.P.	(2004).

For	simplicity,	let’s	focus	on	just	two:	triangular	and	epanechnikov.	Prior	to	having	the
weights	assigned,	the	algorithm	standardizes	all	the	distances	so	that	they	are	between
zero	and	one.	The	triangular	weighting	method	multiplies	the	observation	distance	by	one
minus	the	distance.	With	epanechnikov,	the	distance	is	multiplied	by	¾	times	(one	minus
the	distance	two).	For	our	problem,	we	will	incorporate	these	weighting	methods	along
with	the	standard	unweighted	version	for	comparison	purposes.

After	specifying	a	random	seed,	we	will	create	the	train	set	object	with	kknn().	This
function	asks	for	the	maximum	number	of	k	values	(kmax),	distance	(one	is	equal	to
Euclidian	and	two	is	equal	to	absolute),	and	kernel.	For	this	model,	kmax	will	be	set	to	25
and	distance	will	be	2:

>	set.seed(123)

>	kknn.train	=	train.kknn(type~.,	data=train,	kmax=25,	distance=2,	

kernel=c("rectangular",	"triangular",	"epanechnikov"))

A	nice	feature	of	the	package	is	the	ability	to	plot	and	compare	the	results,	as	follows:

>	plot(kknn.train)

The	following	is	the	output	of	the	preceding	command:

This	plot	shows	k	on	the	x	axis	and	the	percentage	of	misclassified	observations	by
kernel.	To	my	surprise,	the	unweighted	(rectangular)	version	at	k:	19	performs	the	best.
You	can	also	call	the	object	to	see	what	is	the	classification	error	and	the	best	parameter	in
the	following	way:

>	kknn.train

Call:

train.kknn(formula	=	type	~	.,	data	=	train,	kmax	=	25,	distance	=	2,					

kernel	=	c("rectangular",	"triangular",	"epanechnikov",	"gaussian"))

Type	of	response	variable:	nominal

Minimal	misclassification:	0.212987

Best	kernel:	rectangular

Best	k:	19

So,	with	this	data,	weighting	the	distance	does	not	improve	the	model	accuracy.	There	are
other	weights	that	we	could	try,	but	as	I	tried	these	other	weights,	the	results	that	I
achieved	were	not	more	accurate	than	these.	We	don’t	need	to	pursue	KNN	any	further.	I
would	encourage	you	to	experiment	with	various	parameters	on	your	own	to	see	how	they
perform.

SVM	modeling
We	will	use	the	e1071	package	to	build	our	SVM	models.	We	will	start	with	a	linear
support	vector	classifier	and	then	move	on	to	the	nonlinear	versions.	The	e1071	package
has	a	nice	function	for	SVM	called	tune.svm(),	which	assists	in	the	selection	of	the
tuning	parameters/kernel	functions.	The	tune.svm()	function	from	the	package	uses
cross-validation	to	optimize	the	tuning	parameters.	Let’s	create	an	object	called
linear.tune	and	call	it	using	the	summary()	function,	as	follows:

>	linear.tune	=	tune.svm(type~.,	data=train,	kernel="linear",	cost=c(0.001,	

0.01,	0.1,	1,5,10))

>	summary(linear.tune)

Parameter	tuning	of	'svm':

-	sampling	method:	10-fold	cross	validation

-	best	parameters:

	cost

				1

-	best	performance:	0.2051957

-	Detailed	performance	results:

			cost					error	dispersion

1	1e-03	0.3197031	0.06367203

2	1e-02	0.2080297	0.07964313

3	1e-01	0.2077598	0.07084088

4	1e+00	0.2051957	0.06933229

5	5e+00	0.2078273	0.07221619

6	1e+01	0.2078273	0.07221619

The	optimal	cost	function	is	one	for	this	data	and	leads	to	a	misclassification	error	of
roughly	21	percent.	We	can	make	predictions	on	the	test	data	and	examine	that	as	well
using	the	predict()	function	and	applying	newdata=test:

>	best.linear	=	linear.tune$best.model

>	tune.test	=	predict(best.linear,	newdata=test)

>	table(tune.test,	test$type)

									

tune.test	No	Yes

						No		80		22

						Yes	13		32

>	(80+32)/147

[1]	0.7619048

The	linear	support	vector	classifier	has	slightly	outperformed	KNN	on	both	the	train	and
test	sets.	The	e1071	package	has	a	nice	function	for	SVM	called	tune.svm()	that	assists
in	the	selection	of	the	tuning	parameters/kernel	functions.	We	will	now	see	if	non-linear
methods	will	improve	our	performance	and	also	use	cross-validation	to	select	tuning
parameters.

The	first	kernel	function	that	we	will	try	is	polynomial,	and	we	will	be	tuning	two
parameters:	a	degree	of	polynomial	(degree)	and	kernel	coefficient	(coef0).	The
polynomial	order	will	be	3,	4,	and	5	and	the	coefficient	will	be	in	increments	from	0.1	to
4,	as	follows:

>	set.seed(123)

>	poly.tune	=	tune.svm(type~.,	data=train,	kernel="polynomial",	

degree=c(3,4,5),	coef0=c(0.1,0.5,1,2,3,4))

>	summary(poly.tune)

Parameter	tuning	of	'svm':

-	sampling	method:	10-fold	cross	validation

-	best	parameters:

	degree	coef0

						3			0.1

-	best	performance:	0.2310391

The	model	has	selected	degree	of	3	for	the	polynomial	and	coefficient	of	0.1.	Just	as	the
linear	SVM,	we	can	create	predictions	on	the	test	set	with	these	parameters,	as	follows:

>	best.poly	=	poly.tune$best.model

>	poly.test	=	predict(best.poly,	newdata=test)

>	table(poly.test,	test$type)

									

poly.test	No	Yes

						No		81		28

						Yes	12		26

>	(81+26)/147

[1]	0.7278912

This	did	not	perform	quite	as	well	as	the	linear	model.	We	will	now	run	the	radial	basis
function.	In	this	instance,	the	one	parameter	that	we	will	solve	for	is	gamma,	which	we	will
examine	in	increments	of	0.1	to	4.	If	gamma	is	too	small,	the	model	will	not	capture	the
complexity	of	the	decision	boundary;	if	it	is	too	large,	the	model	will	severely	overfit:

>	set.seed(123)

>	rbf.tune	=	tune.svm(type~.,	data=train,	kernel="radial",	

gamma=c(0.1,0.5,1,2,3,4))

>	summary(rbf.tune)

Parameter	tuning	of	'svm':

-	sampling	method:	10-fold	cross	validation

-	best	parameters:

	gamma

			0.5

-	best	performance:	0.2284076

The	best	gamma	value	is	0.5	and	the	performance	at	this	setting	does	not	seem	to	improve
much	over	the	other	SVM	models.	We	will	check	for	the	test	set	as	well	in	the	following
way:

>	best.rbf	=	rbf.tune$best.model

>	rbf.test	=	predict(best.rbf,	newdata=test)

>	table(rbf.test,	test$type)

								

rbf.test	No	Yes

					No		73		33

					Yes	20		21

>	(73+21)/147

[1]	0.6394558

The	performance	is	downright	abysmal.	One	last	shot	to	improve	here	would	be	with
kernel="sigmoid".	We	will	be	solving	for	two	parameters	that	are	gamma	and	the	kernel
coefficient	(coef0):

>	set.seed(123)

>	sigmoid.tune	=	tune.svm(type~.,	data=train,	kernel="sigmoid",	

gamma=c(0.1,0.5,1,2,3,4),	coef0=c(0.1,0.5,1,2,3,4))

>	summary(sigmoid.tune)

Parameter	tuning	of	'svm':

-	sampling	method:	10-fold	cross	validation

-	best	parameters:

	gamma	coef0

			0.1					2

-	best	performance:	0.2080972

This	error	rate	is	in	line	with	the	linear	model.	It	is	now	just	a	matter	of	whether	it
performs	better	on	the	test	set	or	not:

>	best.sigmoid	=	sigmoid.tune$best.model

>	sigmoid.test	=	predict(best.sigmoid,	newdata=test)

>	table(sigmoid.test,	test$type)

												

sigmoid.test	No	Yes

									No		82		19

									Yes	11		35

>	(82+35)/147

[1]	0.7959184

Lo	and	behold!	We	finally	have	a	test	performance	that	is	in	line	with	the	performance	on
the	train	data.	It	appears	that	we	can	choose	the	sigmoid	kernel	as	the	best	predictor.

So	far	we	played	around	with	different	models.	Now,	let’s	evaluate	their	performance
along	with	the	linear	model	using	metrics	other	than	just	the	accuracy.

Model	selection
We’ve	looked	at	two	different	types	of	modeling	techniques	here,	and	for	all	intents	and
purposes,	KNN	has	fallen	short.	The	best	accuracy	on	the	test	set	for	KNN	was	only
around	71	percent.	Conversely,	with	SVM,	we	could	obtain	an	accuracy	close	to	80
percent.	Before	just	simply	selecting	the	most	accurate	model—in	this	case,	the	SVM	with
the	sigmoid	kernel—let’s	look	at	how	we	can	compare	them	with	a	deep	examination	of
the	confusion	matrices.

For	this	exercise,	we	can	turn	to	our	old	friend,	the	caret	package,	and	utilize	the
confusionMatrix()	function.	This	will	produce	all	of	the	statistics	that	we	need	in	order
to	evaluate	and	select	the	best	model.	Let’s	start	with	the	last	model	that	we	built	first,
using	the	same	syntax	that	we	used	in	the	base	table()	function	with	the	exception	of
specifying	the	positive	class,	as	follows:

>	confusionMatrix(sigmoid.test,	test$type,	positive="Yes")

Confusion	Matrix	and	Statistics

										Reference

Prediction	No	Yes

							No		82		19

							Yes	11		35

																																										

																Accuracy	:	0.7959										

																	95%	CI	:	(0.7217,	0.8579)

				No	Information	Rate	:	0.6327										

				P-Value	[Acc	>	NIR]	:	1.393e-05							

																																										

																		Kappa	:	0.5469										

	Mcnemar's	Test	P-Value	:	0.2012										

																																										

												Sensitivity	:	0.6481										

												Specificity	:	0.8817										

									Pos	Pred	Value	:	0.7609										

									Neg	Pred	Value	:	0.8119										

													Prevalence	:	0.3673										

									Detection	Rate	:	0.2381										

			Detection	Prevalence	:	0.3129										

						Balanced	Accuracy	:	0.7649										

																																										

							'Positive'	Class	:	Yes				

The	function	produces	some	items	that	we	already	covered	such	as	Accuracy	and	Kappa.
Here	are	the	other	stats	that	it	produces:

No	Information	Rate	is	the	proportion	of	the	largest	class—63	percent	did	not	have
diabetes.
P-Value	is	used	to	test	the	hypothesis	that	the	accuracy	is	actually	better	than	No
Information	Rate.
We	will	not	concern	ourselves	with	Mcnemar's	Test,	which	is	used	for	the	analysis
of	the	matched	pairs,	primarily	in	epidemiology	studies

Sensitivity	is	the	true	positive	rate;	in	this	case,	the	rate	of	those	not	having
diabetes	has	been	correctly	identified	as	such.
Specificity	is	the	true	negative	rate	or,	for	our	purposes,	the	rate	of	a	diabetic	that
has	been	correctly	identified.
The	positive	predictive	value	(Pos	Pred	Value)	is	the	probability	of	someone	in	the
population	classified	as	being	diabetic	and	truly	has	the	disease.	The	following
formula	is	used:

The	negative	predictive	value	(Neg	Pred	Value)	is	the	probability	of	someone	in	the
population	classified	as	not	being	diabetic	and	truly	does	not	have	the	disease.	The
formula	for	this	is	as	follows:

Prevalence	is	the	estimated	population	prevalence	of	the	disease,	calculated	here	as
the	total	of	the	second	column	(the	Yes	column)	divided	by	the	total	observations.
Detection	Rate	is	the	rate	of	the	true	positives	that	have	been	identified—in	our
case,	35—divided	by	the	total	observations.
Detection	Prevalence	is	the	predicted	prevalence	rate,	or	in	our	case,	the	bottom
row	divided	by	the	total	observations.
Balanced	Accuracy	is	the	average	accuracy	obtained	from	either	class.	This	measure
accounts	for	a	potential	bias	in	the	classifier	algorithm,	thus	potentially
overpredicting	the	most	frequent	class.	This	is	simply	Sensitivity	+	Specificity	divided
by	2.

The	sensitivity	of	our	model	is	not	as	powerful	as	we	would	like	and	tells	us	that	we	are
missing	some	features	from	our	dataset	that	would	improve	the	rate	of	finding	the	true
diabetic	patients.	We	will	now	compare	these	results	with	the	linear	SVM,	as	follows:

>	confusionMatrix(tune.test,	test$type,	positive="Yes")

									Reference

Prediction	No	Yes

							No		82		24

							Yes	11		30

																																										

															Accuracy	:	0.7619										

																	95%	CI	:	(0.6847,	0.8282)

				No	Information	Rate	:	0.6327										

				P-Value	[Acc	>	NIR]	:	0.0005615							

																																										

																		Kappa	:	0.4605										

	Mcnemar's	Test	P-Value	:	0.0425225							

																																										

												Sensitivity	:	0.5556										

												Specificity	:	0.8817										

									Pos	Pred	Value	:	0.7317										

									Neg	Pred	Value	:	0.7736										

													Prevalence	:	0.3673										

									Detection	Rate	:	0.2041										

			Detection	Prevalence	:	0.2789										

						Balanced	Accuracy	:	0.7186																																											

							'Positive'	Class	:	Yes													

As	we	can	see	by	comparing	the	two	models,	the	linear	SVM	is	inferior	across	the	board.
Our	clear	winner	is	the	sigmoid	kernel	SVM.	However,	there	is	one	thing	that	we	are
missing	here	and	that	is	any	sort	of	feature	selection.	What	we	have	done	is	just	thrown	all
the	variables	together	as	the	feature	input	space	and	let	the	blackbox	SVM	calculations
give	us	a	predicted	classification.	One	of	the	issues	with	SVMs	is	that	the	findings	are
very	difficult	to	interpret.	There	are	a	number	of	ways	to	go	about	this	process	that	I	feel
are	beyond	the	scope	of	this	chapter	and	this	is	something	that	you	should	begin	to	explore
and	learn	on	your	own	as	you	become	comfortable	with	the	basics	that	have	been	outlined
previously.

Feature	selection	for	SVMs
However,	all	is	not	lost	on	feature	selection	and	I	want	to	take	some	space	to	show	you	a
quick	way	in	how	to	begin	exploring	this	matter.	It	will	require	some	trial	and	error	on
your	part.	Again,	the	caret	package	helps	out	in	this	matter	as	it	will	run	a	cross-
validation	on	a	linear	SVM	based	on	the	kernlab	package.

To	do	this,	we	will	need	to	set	the	random	seed,	specify	the	cross-validation	method	in	the
caret’s	rfeControl()	function,	perform	a	recursive	feature	selection	with	the	rfe()
function,	and	then	test	how	the	model	performs	on	the	test	set.	In	rfeControl(),	you	will
need	to	specify	the	function	based	on	the	model	being	used.	There	are	several	different
functions	that	you	can	use.	Here	we	will	need	lrFuncs.	To	see	a	list	of	the	available
functions,	your	best	bet	is	to	explore	the	documentation	with	?rfeControl	and	?
caretFuncs.	The	code	for	this	example	is	as	follows:

>	set.seed(123)

>	rfeCNTL	=	rfeControl(functions=lrFuncs,	method="cv",	number=10)

>	svm.features	=	rfe(train[,1:7],	train[,8],sizes	=	c(7,	6,	5,	4),	

rfeControl	=	rfeCNTL,	method	=	"svmLinear")

To	create	the	svm.features	object,	it	was	important	to	specify	the	inputs	and	response
factor,	number	of	input	features	via	sizes,	and	linear	method	from	kernlab,	which	is	the
svmLinear	syntax.	Other	options	are	available	using	this	method,	such	as	svmPoly.	No
method	for	a	sigmoid	kernel	is	available.	Calling	the	object	allows	us	to	see	how	the
various	feature	sizes	perform,	as	follows:

>	svm.features

Recursive	feature	selection

Outer	resampling	method:	Cross-Validated	(10	fold)	

Resampling	performance	over	subset	size:

	Variables	Accuracy		Kappa	AccuracySD	KappaSD	Selected

									4			0.7797	0.4700				0.04969		0.1203									

									5			0.7875	0.4865				0.04267		0.1096								*

									6			0.7847	0.4820				0.04760		0.1141									

									7			0.7822	0.4768				0.05065		0.1232									

The	top	5	variables	(out	of	5):

Counter-intuitive	as	it	is,	the	five	variables	perform	quite	well	by	themselves	as	well	as
when	skin	and	bp	are	included.	Let’s	try	this	out	on	the	test	set,	remembering	that	the
accuracy	in	the	full	model	was	76.2	percent:

>	svm.5	<-	svm(type~glu+ped+npreg+bmi+age,	data=train,	kernel="linear")

>	svm.5.predict	<-	predict(svm.5,	newdata=test[c(1,2,5,6,7)])

>	table(svm.5.predict,	test$type)

													

svm.5.predict	No	Yes

										No		79		21

										Yes	14		33

This	did	not	perform	as	well	and	we	can	stick	with	the	full	model.	You	can	see	through
trial	and	error	how	this	technique	can	play	in	order	to	determine	some	simple
identification	of	feature	importance.	If	you	want	to	explore	the	other	techniques	and
methods	that	you	can	apply	here—and	for	blackbox	techniques	in	particular—I
recommend	that	you	start	by	reading	the	work	by	Guyon	and	Elisseeff	(2003)	on	this
subject.

Summary
In	this	chapter,	we	reviewed	two	new	classification	techniques:	KNN	and	SVM.	The	goal
was	to	discover	how	these	techniques	work	and	the	differences	between	them	by	building
and	comparing	models	on	a	common	dataset	in	order	to	predict	if	an	individual	had
diabetes.	KNN	involved	both	the	unweighted	and	weighted	nearest	neighbor	algorithms.
These	did	not	perform	as	well	as	the	SVMs	in	predicting	whether	an	individual	had
diabetes	or	not.

We	examined	how	to	build	and	tune	both	the	linear	and	nonlinear	support	vector	machines
using	the	e1071	package.	We	used	the	extremely	versatile	caret	package	to	compare	the
predictive	ability	of	a	linear	and	nonlinear	support	vector	machine	and	saw	that	the
nonlinear	support	vector	machine	with	a	sigmoid	kernel	performed	the	best.

Finally,	we	touched	on	how	you	can	use	the	caret	package	to	perform	a	crude	feature
selection	as	this	is	a	difficult	challenge	with	a	blackbox	technique	such	as	SVM.	This	is	a
major	challenge	when	using	these	techniques	and	you	will	need	to	consider	how	viable
they	are	in	order	to	address	the	business	question.

Chapter	6.	Classification	and	Regression
Trees
	
“The	classifiers	most	likely	to	be	the	best	are	the	random	forest	(RF)	versions,	the	best	of	which	(implemented	in	R
and	accessed	via	caret),	achieves	94.1	percent	of	the	maximum	accuracy	overcoming	90	percent	in	the	84.3	percent
of	the	data	sets.”

	

	 —Fernández-Delgado	et	al.	(2014)

Introduction
This	quote	from	Fernández-Delgado	et	al.	in	the	Journal	of	Machine	Learning	Research	is
meant	to	set	the	stage	that	the	techniques	in	this	chapter	are	quite	powerful,	particularly
when	used	for	classification	problems.	Certainly,	they	are	not	always	the	best	solution	but
they	do	provide	a	good	starting	point.

In	the	previous	chapters,	we	examined	the	techniques	to	predict	either	a	quantity	or	a	label
classification.	Here	we	will	apply	them	on	both	types	of	problems.	We	will	also	approach
the	business	problem	differently	than	in	the	previous	chapters.	Instead	of	defining	a	new
problem,	we	will	apply	the	techniques	to	some	of	the	issues	that	we	already	tackled,	with
an	eye	to	see	if	we	can	improve	our	predictive	power.	For	all	intents	and	purposes,	the
business	case	in	this	chapter	is	to	see	if	we	can	improve	on	the	models	that	we	selected
before.

The	first	item	of	discussion	is	the	basic	decision	tree,	which	is	both	simple	to	build	and	to
understand.	However,	the	single	decision	tree	method	does	not	perform	as	well	as	the
other	methods	that	you	learned,	for	example,	the	support	vector	machines,	or	will	learn,
such	as	the	neural	networks.	Therefore,	we	will	discuss	the	creation	of	multiple,
sometimes	hundreds,	of	different	trees	with	their	individual	results	combined,	leading	to	a
single	overall	prediction.	These	methods,	as	the	paper	referenced	at	the	beginning	of	this
chapter	states,	perform	as	well	or	better	than	any	technique	in	this	book.	These	methods
are	known	as	random	forests	and	gradient	boosted	trees.

An	overview	of	the	techniques
We	will	now	get	to	an	overview	of	the	techniques,	covering	the	regression	and
classification	trees,	random	forests,	and	gradient	boosting.	This	will	set	the	stage	for	the
practical	business	cases.

Regression	trees
To	establish	an	understanding	of	tree-based	methods,	it	is	probably	easier	to	start	with	a
quantitative	outcome	and	then	move	on	to	how	it	works	in	a	classification	problem.	The
essence	of	a	tree	is	that	the	features	are	partitioned,	starting	with	the	first	split	that
improves	the	RSS	the	most.	These	binary	splits	continue	until	the	termination	of	the	tree.
Each	subsequent	split/partition	is	not	done	on	the	entire	dataset	but	only	on	the	portion	of
the	prior	split	that	it	falls	under.	This	top-down	process	is	referred	to	as	recursive
partitioning.	It	is	also	a	process	that	is	greedy,	a	term	you	may	stumble	upon	in	reading
about	the	machine	learning	methods.	Greedy	means	that	during	each	split	in	the	process,
the	algorithm	looks	for	the	greatest	reduction	in	the	RSS	without	a	regard	as	to	how	well	it
will	perform	on	the	later	partitions.	The	result	is	that	you	may	end	up	with	a	full	tree	of
unnecessary	branches	leading	to	a	low	bias	but	a	high	variance.	To	control	this	effect,	you
need	to	appropriately	prune	the	tree	to	an	optimal	size	after	building	a	full	tree.

Figure	6.1	provides	a	visual	of	this	technique	in	action.	The	data	is	hypothetical	with	30
observations,	a	response	ranging	from	1	to	10,	and	two	predictor	features,	both	ranging	in
value	from	0	to	10	named	X1	and	X2.	The	tree	has	three	splits	leading	to	four	terminal
nodes.	Each	split	is	basically	an	if-then	statement	or	uses	an	R	syntax	ifelse().	The	first
split	is	if	X1	is	less	than	3.5,	then	the	response	is	split	into	four	observations	with	an
average	value	of	2.4	and	the	remaining	26	observations.	This	left	branch	of	four
observations	is	a	terminal	node	as	any	further	splits	would	not	substantially	improve	the
RSS.	The	predicted	value	for	these	four	observations	in	that	partition	of	the	tree	becomes
the	average.	The	next	split	is	at	X2	<	4	and	finally,	X1	<	7.5.

An	advantage	of	this	method	is	that	it	can	handle	highly	nonlinear	relationships;	however,
can	you	see	a	couple	of	potential	problems?	The	first	issue	is	that	an	observation	is	given
the	average	of	the	terminal	node	under	which	it	falls.	This	can	hurt	the	overall	predictive
performance	(high	bias).	Conversely,	if	you	keep	partitioning	the	data	further	and	further
so	as	to	achieve	a	low	bias,	high	variance	can	become	an	issue.	As	with	the	other	methods,
you	can	use	cross-validation	to	select	the	appropriate	tree	depth	size.

Figure	6.1:	Regression	Tree	with	3	splits	and	4	terminal	nodes	and	the	corresponding
node	average	and	number	of	observations

Classification	trees
Classification	trees	operate	under	the	same	principal	as	regression	trees	except	that	the
splits	are	not	determined	by	the	RSS	but	an	error	rate.	The	error	rate	used	is	not	what	you
would	expect	where	the	calculation	is	simply	the	misclassified	observations	divided	by	the
total	observations.	As	it	turns	out,	when	it	comes	to	tree-splitting,	a	misclassification	rate
by	itself	may	lead	to	a	situation	where	you	can	gain	information	with	a	further	split	but	not
improve	the	misclassification	rate.	Let’s	look	at	an	example.

Suppose	we	have	a	node,	let’s	call	it	N0	where	you	have	seven	observations	labeled	No
and	three	observations	labeled	Yes	and	we	can	say	that	the	misclassified	rate	is	30	percent.
With	this	in	mind,	let’s	calculate	a	common	alternative	error	measure	called	the	Gini
index.	The	formula	for	a	single	node	Gini	index	is	as	follows:

Then,	for	N0,	the	Gini	is	1	-	(.7)2	-	(.3)2,	which	is	equal	to	0.42,	versus	the
misclassification	rate	of	30	percent.

Taking	this	example	further,	we	will	now	create	node	N1	with	3	observations	from	Class
1	and	none	from	Class	2,	along	with	N2,	which	has	4	observations	from	Class	1	and
three	from	Class	2.	Now,	the	overall	misclassification	rate	for	this	branch	of	the	tree	is
still	30	percent,	but	look	at	how	the	overall	Gini	index	has	improved:

Gini(N1)	=	1	–	(3/3)2	–	(0/3)2	=	0
Gini(N2)	=	1	–	(4/7)2	–	(3/7)2	=	0.49
New	Gini	index	=	(proportion	of	N1	x	Gini(N1))	+	(proportion	of	N2	x	Gini(N2)),
which	is	equal	to	(.3	x	0)	+	(.7	x	0.49)	or	0.343

By	doing	a	split	on	a	surrogate	error	rate,	we	actually	improved	our	model	impurity,
reducing	it	from	0.42	to	0.343,	whereas	the	misclassification	rate	did	not	change.	This	is
the	methodology	that	is	used	by	the	rpart()	package,	which	we	will	be	using	in	this
chapter.

Random	forest
To	greatly	improve	our	model’s	predictive	ability,	we	can	produce	numerous	trees	and
combine	the	results.	The	random	forest	technique	does	this	by	applying	two	different
tricks	in	model	development.	The	first	is	the	use	of	bootstrap	aggregation	or	bagging,	as
it	is	called.

In	bagging,	an	individual	tree	is	built	on	a	random	sample	of	the	dataset,	roughly	two-
thirds	of	the	total	observations	(note	that	the	remaining	one-third	are	referred	to	as	out-of-
bag	(oob)).	This	is	repeated	dozens	or	hundreds	of	times	and	the	results	are	averaged.
Each	of	these	trees	is	grown	and	not	pruned	based	on	any	error	measure,	and	this	means
that	the	variance	of	each	of	these	individual	trees	is	high.	However,	by	averaging	the
results,	you	can	reduce	the	variance	without	increasing	the	bias.

The	next	thing	that	random	forest	brings	to	the	table	is	that	concurrently	with	the	random
sample	of	the	data,	that	is,	bagging,	it	also	takes	a	random	sample	of	the	input	features	at
each	split.	In	the	randomForest	package,	we	will	use	the	default	random	number	of	the
predictors	that	are	sampled,	which,	for	classification	problems,	is	the	square	root	of	the
total	predictors	and	for	regression,	it	is	the	total	number	of	the	predictors	divided	by	three.
The	number	of	predictors	the	algorithm	randomly	chooses	at	each	split	can	be	changed	via
the	model	tuning	process.

By	doing	this	random	sample	of	the	features	at	each	split	and	incorporating	it	into	the
methodology,	you	can	mitigate	the	effect	of	a	highly	correlated	predictor	becoming	the
main	driver	in	all	of	your	bootstrapped	trees,	preventing	you	from	reducing	the	variance
that	you	hoped	to	achieve	with	bagging.	The	subsequent	averaging	of	the	trees	that	are
less	correlated	to	each	other	is	more	generalizable	and	robust	to	outliers	than	if	you	only
performed	bagging.

Gradient	boosting
Boosting	methods	can	become	extremely	complicated	to	learn	and	understand,	but	you
should	keep	in	mind	what	is	fundamentally	happening	behind	the	curtain.	The	main	idea	is
to	build	an	initial	model	of	some	kind	(linear,	spline,	tree,	and	so	on)	called	the	base
learner,	examine	the	residuals,	and	fit	a	model	based	on	these	residuals	around	the	so-
called	loss	function.	A	loss	function	is	merely	the	function	that	measures	the	discrepancy
between	the	model	and	desired	prediction,	for	example,	a	squared	error	for	regression	or
the	logistic	function	for	classification.	The	process	continues	until	it	reaches	some
specified	stopping	criterion.	This	is	sort	of	like	the	student	who	takes	a	practice	exam	and
gets	30	out	of	100	questions	wrong	and	as	a	result,	studies	only	these	30	questions	that
were	missed.	In	the	next	practice	exam,	they	get	10	out	of	those	30	wrong	and	so	only
focus	on	those	10	questions,	and	so	on.	If	you	would	like	to	explore	the	theory	behind	this
further,	a	great	resource	for	you	is	available	in	Frontiers	in	Neurorobotics,	Gradient
boosting	machines,	a	tutorial,	Natekin	A.,	Knoll	A.	(2013),	at
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3885826/.

As	just	mentioned,	boosting	can	be	applied	to	many	different	base	learners,	but	here	we
will	only	focus	on	the	specifics	of	tree-based	learning.	Each	tree	iteration	is	small	and	we
will	determine	how	small	with	one	of	the	tuning	parameters	referred	to	as	interaction
depth.	In	fact,	it	may	be	as	small	as	one	split,	which	is	referred	to	as	a	stump.

Trees	are	sequentially	fit	to	the	residuals,	according	to	the	loss	function,	up	to	the	number
of	trees	that	we	specified	(our	stopping	criterion).

There	is	another	tuning	parameter	that	we	will	need	to	identify	and	this	is	shrinkage.	You
can	think	of	shrinkage	as	the	rate	at	which	your	model	is	learning	generally	and	as	the
contribution	of	each	tree	or	stump	to	the	model	specifically.	This	learning	rate	acts	as	a
regularization	parameter,	similar	to	what	we	discussed	in	Chapter	4,	Advanced	Feature
Selection	in	Linear	Models.

The	other	thing	about	our	boosting	algorithm	is	that	it	is	stochastic,	meaning	that	it	adds
randomness	by	taking	a	random	sample	of	data	at	each	iteration	of	the	algorithm	used	in
each	iteration	of	the	tree.	Introducing	some	randomness	to	a	boosted	model	usually
improves	the	accuracy	and	speed	and	reduces	the	overfitting	(Friedman,	2002).

As	you	may	have	guessed,	tuning	these	parameters	can	be	quite	a	challenge.	These
parameters	can	interact	with	each	other,	and	if	you	just	tinker	with	one	without
considering	the	other,	your	model	may	actually	perform	worse.	The	caret	package	will
help	us	in	this	endeavor.

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3885826/

Business	case
The	overall	business	objective	in	this	situation	is	to	see	if	we	can	improve	the	predictive
ability	for	some	of	the	cases	that	we	already	worked	on	in	the	previous	chapters.	For
regression,	we	will	revisit	the	prostate	cancer	dataset	from	Chapter	4,	Advanced	Feature
Selection	in	Linear	Models.	The	baseline	mean	squared	error	to	improve	on	is	0.444.

For	classification	purposes,	we	will	utilize	both	the	breast	cancer	biopsy	data	from
Chapter	3,	Logistic	Regression	and	Discriminant	Analysis	and	the	Pima	Indian	Diabetes
data	from	Chapter	5,	More	Classification	Techniques	—	K-Nearest	Neighbors	and	Support
Vector	Machines.	In	the	breast	cancer	data,	we	achieved	97.6	percent	predictive	accuracy.
For	the	diabetes	data,	we	are	seeking	to	improve	on	the	79.6	percent	accuracy	rate.

Both	random	forests	and	boosting	will	be	applied	to	all	three	datasets.	The	simple	tree
method	will	only	be	used	on	the	breast	and	prostate	cancer	sets	from	Chapter	4,	Advanced
Feature	Selection	in	Linear	Models.

Modeling	and	evaluation
To	perform	the	modeling	process,	we	will	need	to	load	seven	different	R	packages.	Then,
we	will	go	through	each	of	the	techniques	and	compare	how	well	they	perform	on	the	data
analyzed	with	the	prior	methods	in	the	previous	chapters.

Regression	tree
We	will	jump	right	in	to	the	prostate	dataset,	but	let’s	first	load	the	necessary	R
packages.	As	always,	please	ensure	that	you	have	the	libraries	installed	prior	to	loading
the	packages:

>	library(rpart)	#classification	and	regression	trees

>	library(partykit)	#treeplots

>	library(MASS)	#breast	and	pima	indian	data

>	library(ElemStatLearn)	#prostate	data

>	library(randomForest)	#random	forests

>	library(gbm)	#gradient	boosting

>	library(caret)	#tune	hyper-parameters

We	will	first	do	regression	with	the	prostate	data	and	prepare	it	as	we	did	in	Chapter	4,
Advanced	Feature	Selection	in	Linear	Models.	This	involves	calling	the	dataset,	coding
the	gleason	score	as	an	indicator	variable	using	the	ifelse()	function,	and	creating	the
test	and	train	sets.	The	train	set	will	be	pros.train	and	the	test	set	will	be
pros.test,	as	follows:

>	data(prostate)

>	prostate$gleason	=	ifelse(prostate$gleason	==	6,	0,	1)

>	pros.train	=	subset(prostate,	train==TRUE)[,1:9]

>	pros.test	=	subset(prostate,	train==FALSE)[,1:9]

To	build	a	regression	tree	on	the	train	data,	we	will	use	the	rpart()	function	from	R’s
party	package.	The	syntax	is	quite	similar	to	what	we	used	in	the	other	modeling
techniques:

>	tree.pros	=	rpart(lpsa~.,	data=pros.train)

We	can	call	this	object	using	the	print()	function	and	cptable	and	then	examine	the
error	per	split	in	order	to	determine	the	optimal	number	of	splits	in	the	tree:

>	print(tree.pros$cptable)

										CP	nsplit	rel	error				xerror						xstd

1	0.35852251						0	1.0000000	1.0364016	0.1822698

2	0.12295687						1	0.6414775	0.8395071	0.1214181

3	0.11639953						2	0.5185206	0.7255295	0.1015424

4	0.05350873						3	0.4021211	0.7608289	0.1109777

5	0.01032838						4	0.3486124	0.6911426	0.1061507

6	0.01000000						5	0.3382840	0.7102030	0.1093327

This	is	a	very	important	table	to	analyze.	The	first	column	labeled	CP	is	the	cost
complexity	parameter.	The	second	column,	nsplit,	is	the	number	of	splits	in	the	tree.	The
rel	error	column	stands	for	relative	error	and	is	the	RSS	for	the	number	of	splits	divided
by	the	RSS	for	no	splits	RSS(k)/RSS(0).	Both	xerror	and	xstd	are	based	on	the	ten-fold

cross-validation	with	xerror	being	the	average	error	and	xstd	the	standard	deviation	of
the	cross-validation	process.	We	can	see	that	while	five	splits	produced	the	lowest	error	on
the	full	dataset,	four	splits	produced	a	slightly	less	error	using	cross-validation.	You	can
examine	this	using	plotcp():

>	plotcp(tree.pros)

The	output	of	the	preceding	command	is	as	follows:

The	plot	shows	us	the	relative	error	by	the	tree	size	with	the	corresponding	error	bars.	The
horizontal	line	on	the	plot	is	the	upper	limit	of	the	lowest	standard	error.	Selecting	a	tree
size,	5,	which	is	four	splits,	we	can	build	a	new	tree	object	where	xerror	is	minimized	by
pruning	our	tree	accordingly	by	first	creating	an	object	for	cp	associated	with	the	pruned
tree	from	the	table.	Then	the	prune()	function	handles	the	rest:

>	cp	=	min(tree.pros$cptable[5,])

>	prune.tree.pros	=	prune(tree.pros,	cp	=	cp)

With	this	done,	you	can	plot	and	compare	the	full	and	pruned	trees.	The	tree	plots
produced	by	the	partykit	package	are	much	better	than	those	produced	by	the	party
package.	You	can	simply	use	the	as.party()	function	as	a	wrapper	in	plot():

>	plot(as.party(tree.pros))

The	output	of	the	preceding	command	is	as	follows:

Now	we	will	use	the	as.party()	function	for	the	pruned	tree:

>	plot(as.party(prune.tree.pros))

The	output	of	the	preceding	command	is	as	follows:

Note	that	the	splits	are	exactly	the	same	in	the	two	trees	with	the	exception	of	the	last	split,
which	includes	the	variable	age	for	the	full	tree.	Interestingly,	both	the	first	and	second
splits	in	the	tree	are	related	to	the	log	of	cancer	volume	(lcavol).	These	plots	are	quite
informative	as	they	show	the	splits,	nodes,	observations	per	node,	and	boxplots	of	the
outcome	that	we	are	trying	to	predict.

Let’s	see	how	well	the	pruned	tree	performs	on	the	test	data.	What	we	will	do	is	create	an
object	of	the	predicted	values	using	the	predict()	function	and	incorporate	the	test	data.
Then,	calculate	the	errors	(the	predicted	values	minus	the	actual	values)	and	finally,	the
mean	of	the	squared	errors:

>	party.pros.test	=	predict(prune.tree.pros,	newdata=pros.test)

>	rpart.resid	=	party.pros.test	-	pros.test$lpsa	#calculate	residuals

>	mean(rpart.resid^2)	#caluclate	MSE

[1]	0.5267748

We	have	not	improved	on	the	predictive	value	from	our	work	in	Chapter	4,	Advanced
Feature	Selection	in	Linear	Models	where	the	baseline	MSE	was	0.44.	However,	the
technique	is	not	without	value.	One	can	look	at	the	tree	plots	that	we	produced	and	easily
explain	what	the	primary	drivers	behind	the	response	are.	As	mentioned	in	the
introduction,	the	trees	are	easy	to	interpret	and	explain,	which	may	be	more	important	than
accuracy	in	many	cases.

Classification	tree
For	the	classification	problem,	we	will	prepare	the	breast	cancer	data	in	the	same	fashion
as	we	did	in	Chapter	3,	Logistic	Regression	and	Discriminant	Analysis.	After	loading	the
data,	you	will	delete	the	patient	ID,	rename	the	features,	eliminate	the	few	missing	values,
and	then	create	the	train/test	datasets	in	the	following	way:

>	data(biopsy)

>	biopsy	=	biopsy[,-1]	#delete	ID

>	names(biopsy)	=	c("thick",	"u.size",	"u.shape",	"adhsn",	"s.size",	

"nucl",	"chrom",	"n.nuc",	"mit",	"class")	#change	the	feature	names

>	biopsy.v2	=	na.omit(biopsy)	#delete	the	observations	with	missing	values

>	set.seed(123)	#random	number	generator

>	ind	=	sample(2,	nrow(biopsy.v2),	replace=TRUE,	prob=c(0.7,	0.3))

>	biop.train	=	biopsy.v2[ind==1,]	#the	training	data	set

>	biop.test	=	biopsy.v2[ind==2,]	#the	test	data	set

With	the	dataset	up	appropriately,	we	will	use	the	same	syntax	style	for	a	classification
problem	as	we	did	previously	for	a	regression	problem,	but	before	creating	a	classification
tree,	we	will	need	to	ensure	that	the	outcome	is	Factor,	which	can	be	done	using	the

str()	function:

>	str(biop.test[,10])

	Factor	w/	2	levels	"benign","malignant":	1	1	1	1	1	2	1	2	1	1	…

First,	create	the	tree	and	then	examine	the	table	for	the	optimal	number	of	splits:

>	set.seed(123)

>	tree.biop	=	rpart(class~.,	data=biop.train)

>	print(tree.biop$cptable)

										CP	nsplit	rel	error				xerror							xstd

1	0.79651163						0	1.0000000	1.0000000	0.06086254

2	0.07558140						1	0.2034884	0.2674419	0.03746996

3	0.01162791						2	0.1279070	0.1453488	0.02829278

4	0.01000000						3	0.1162791	0.1744186	0.03082013

The	cross-validation	error	is	at	a	minimum	with	only	two	splits	(row	3).	We	can	now
prune	the	tree,	plot	the	full	and	pruned	trees,	and	see	how	it	performs	on	the	test	set:

>	cp	=	min(tree.biop$cptable[3,])

>	prune.tree.biop	=	prune(tree.biop,	cp	=	cp)

>	plot(as.party(tree.biop))

>	plot(as.party(prune.tree.biop))

The	output	of	the	preceding	command	is	as	follows:

Now	we	will	plot	the	pruned	trees	using	the	following	command:

>	plot(as.party(prune.tree.biop))

The	output	of	the	preceding	command	is	as	follows:

An	examination	of	the	tree	plots	shows	that	the	uniformity	of	the	cell	size	is	the	first	split,
then	nuclei.	The	full	tree	had	an	additional	split	at	the	cell	thickness.	We	can	predict	the
test	observations	using	type="class"	in	the	predict()	function,	as	follows:

>	rparty.test	=	predict(prune.tree.biop,	newdata=biop.test,	type="class")

>	table(rparty.test,	biop.test$class)

											

rparty.test	benign	malignant

		benign							136									3

		malignant						6								64

>	(136+64)/209

[1]	0.9569378

The	basic	tree	with	just	two	splits	gets	us	almost	96	percent	accuracy.	This	still	falls	short
of	97.6	percent	with	logistic	regression	but	should	encourage	us	to	believe	that	we	can
improve	on	this	with	the	upcoming	methods,	starting	with	random	forests.

Random	forest	regression
In	this	section,	we	will	start	by	focusing	again	on	the	prostate	data	before	moving	on	to
the	breast	cancer	and	Pima	Indian	sets.	We	will	use	the	randomForest	package.	The
general	syntax	to	create	a	random	forest	object	is	to	use	the	randomForest()	function	and
specify	the	formula	and	dataset	as	the	two	primary	arguments.	Recall	that,	for	regression,

the	default	variable	sample	per	tree	iteration	is	p/3,	and	for	classification,	it	is	the	square
root	of	p,	where	p	is	equal	to	the	number	of	predictor	variables	in	the	data	frame.	For
larger	datasets,	in	terms	of	p,	you	can	tune	the	mtry	parameter,	which	will	determine	the
number	of	p	sampled	at	each	iteration.	If	p	is	less	than	10	in	these	examples,	we	will	forgo
this	procedure.	When	you	want	to	optimize	mtry	for	larger	p	datasets,	you	can	utilize	the
caret	package	or	use	the	tuneRF()	function	in	randomForest.	With	this,	let’s	build	our
forest	and	examine	the	results,	as	follows:

>	set.seed(123)

>	rf.pros	=	randomForest(lpsa~.,	data=pros.train)

>	print(rf.pros)

Call:

	randomForest(formula	=	lpsa	~	.,	data	=	pros.train)

															Type	of	random	forest:	regression

																					Number	of	trees:	500

No.	of	variables	tried	at	each	split:	2

										Mean	of	squared	residuals:	0.6813944

																				%	Var	explained:	52.58

The	call	of	the	rf.pros	object	shows	us	that	the	random	forest	generated	500	different
trees	(the	default)	and	sampled	two	variables	at	each	split.	The	result	is	an	MSE	of	0.68
and	nearly	53	percent	of	the	variance	explained.	Let’s	see	if	we	can	improve	on	the	default
number	of	trees.	Too	many	trees	can	lead	to	overfitting;	naturally,	how	much	is	too	many
depends	on	the	data.	Two	things	can	help	out,	the	first	one	is	a	plot	of	rf.pros	and	the
other	is	to	ask	for	the	minimum	MSE:

>	plot(rf.pros)

This	plot	shows	the	MSE	by	the	number	of	trees	in	the	model.	You	can	see	that	as	the	trees
are	added,	significant	improvement	in	MSE	occurs	early	on	and	then	flatlines	just	before
100	trees	are	built	in	the	forest.

We	can	identify	the	specific	and	optimal	tree	with	the	which.min()	function,	as	follows:

>	which.min(rf.pros$mse)

[1]	70

We	can	try	70	trees	in	the	random	forest	by	just	specifying	ntree=70	in	the	model	syntax:

>	set.seed(123)

>	rf.pros.2	=	randomForest(lpsa~.,	data=pros.train,	ntree=70)

>	print(rf.pros.2)

Call:

	randomForest(formula	=	lpsa	~	.,	data	=	pros.train,	ntree	=	70)

															Type	of	random	forest:	regression

																					Number	of	trees:	70

No.	of	variables	tried	at	each	split:	2

										Mean	of	squared	residuals:	0.6617529

																				%	Var	explained:	53.95

You	can	see	that	the	MSE	and	variance	explained	have	both	improved	slightly.	Let’s	see
one	other	plot	before	testing	the	model.	If	we	are	combining	the	results	of	70	different
trees	that	are	built	using	bootstrapped	samples	and	only	two	random	predictors,	we	will
need	a	way	to	determine	the	drivers	of	the	outcome.	Only	one	tree	alone	cannot	be	used	to
paint	this	picture	but	you	can	produce	a	variable	importance	plot	and	corresponding	list.
The	y	axis	is	a	list	of	variables	in	descending	order	of	importance	and	the	x	axis	is	the
percentage	of	improvement	in	MSE.	Note	that	for	the	classification	problems,	this	will	be

an	improvement	in	the	Gini	index.	The	function	is	varImpPlot():

>	varImpPlot(rf.pros.2,	main="Variable	Importance	Plot	-	PSA	Score")

The	output	of	the	preceding	command	is	as	follows:

Consistent	with	the	single	tree,	lcavol	is	the	most	important	variable	and	lweight	is	the
second-most	important	variable.	If	you	want	to	examine	the	raw	numbers,	use	the
importance()	function,	as	follows:

>	importance(rf.pros.2)

								IncNodePurity

lcavol						25.446395

lweight					16.758646

age										7.191313

lbph									6.161000

svi										8.114879

lcp										7.580892

gleason						4.218471

pgg45								8.166068

Now,	it	is	time	to	see	how	it	did	on	the	test	data:

>	rf.pros.test	=	predict(rf.pros.2,	newdata=pros.test)

>	rf.resid	=	rf.pros.test	-	pros.test$lpsa	#calculate	residual

>	mean(rf.resid^2)

[1]	0.5420387

The	MSE	is	still	higher	than	our	0.44	that	we	achieved	in	Chapter	4,	Advanced	Feature

Selection	in	Linear	Models	with	LASSO	and	no	better	than	just	a	single	tree.

Random	forest	classification
Perhaps	you	are	disappointed	with	the	performance	of	the	random	forest	regression	model
but	the	true	power	of	the	technique	is	in	the	classification	problems.	Let’s	get	started	with
the	breast	cancer	diagnosis	data.	The	procedure	is	nearly	the	same	as	we	did	with	the
regression	problem:

>	set.seed(123)

>	rf.biop	=	randomForest(class~.,	data=biop.train)

>	print(rf.biop)

Call:

	randomForest(formula	=	class	~	.,	data	=	biop.train)

															Type	of	random	forest:	classification

																					Number	of	trees:	500

No.	of	variables	tried	at	each	split:	3

								OOB	estimate	of		error	rate:	3.16%

Confusion	matrix:

										benign	malignant	class.error

benign							294									8		0.02649007

malignant						7							165		0.04069767

The	OOB	error	rate	is	3.16%.	Again,	this	is	with	all	the	500	trees	factored	into	the	analysis.
Let’s	plot	the	Error	by	trees:

>	plot(rf.biop)

The	output	of	the	preceding	command	is	as	follows:

The	plot	shows	that	the	minimum	error	and	standard	error	is	the	lowest	with	quite	a	few
trees.	Let’s	now	pull	the	exact	number	using	which.min()	again.	The	one	difference	from
before	is	that	we	need	to	specify	column	1	to	get	the	error	rate.	This	is	the	overall	error
rate	and	there	will	be	additional	columns	for	each	error	rate	by	the	class	label.	We	will	not
need	them	in	this	example.	Also,	mse	is	no	longer	available	but	rather	err.rate	is	used
instead,	as	follows:

>	which.min(rf.biop$err.rate[,1])

[1]	19

Only	19	trees	are	needed	to	optimize	the	model	accuracy.	Let’s	try	this	and	see	how	it
performs:

>	rf.biop.2	=	randomForest(class~.,	data=biop.train,	ntree=19)

>	print(rf.biop.2)

Call:

	randomForest(formula	=	class	~	.,	data	=	biop.train,	ntree	=	19)

															Type	of	random	forest:	classification

																					Number	of	trees:	19

No.	of	variables	tried	at	each	split:	3

								OOB	estimate	of		error	rate:	2.95%

Confusion	matrix:

										benign	malignant	class.error

benign							294									8		0.02649007

malignant						6							166		0.03488372

>	rf.biop.test	=	predict(rf.biop.2,	newdata=biop.test,	type="response")

>	table(rf.biop.test,	biop.test$class)

												

rf.biop.test	benign	malignant

			benign							139									0

			malignant						3								67

>	(139+67)/209

[1]	0.9856459

Well,	how	about	that?	The	train	set	error	is	below	3	percent	and	the	model	even	performs
better	on	the	test	set	where	we	had	only	three	observations	misclassified	out	of	209	and
none	were	false	positives.	Recall	that	the	best	so	far	was	with	logistic	regression	with	97.6
percent	accuracy.	So	this	seems	to	be	our	best	performer	yet	on	the	breast	cancer	data.
Before	moving	on,	let’s	have	a	look	at	the	variable	importance	plot:

>	varImpPlot(rf.biop.2)

The	output	of	the	preceding	command	is	as	follows:

The	importance	in	the	preceding	plot	is	each	variable’s	contribution	to	the	mean	decrease
in	the	Gini	index.	This	is	rather	different	from	the	splits	of	the	single	tree.	Recall	that	the
full	tree	had	splits	at	the	size	(consistent	with	random	forest),	then	nuclei,	and	then
thickness.	This	shows	how	potentially	powerful	a	technique	building	random	forests	can
be,	not	only	in	the	predictive	ability,	but	also	in	feature	selection.

Moving	on	to	the	tougher	challenge	of	the	Pima	Indian	diabetes	model,	we	will	first	need
to	prepare	the	data	in	the	following	way:

>	data(Pima.tr)

>	data(Pima.te)

>	pima	=	rbind(Pima.tr,	Pima.te)

>	set.seed(502)

>	ind	=	sample(2,	nrow(pima),	replace=TRUE,	prob=c(0.7,0.3))

>	pima.train	=	pima[ind==1,]

>	pima.test	=	pima[ind==2,]

Now,	we	will	move	on	to	the	building	of	the	model,	as	follows:

>	set.seed(321)

>	rf.pima	=	randomForest(type~.,	data=pima.train)

>	print(rf.pima)

Call:

	randomForest(formula	=	type	~	.,	data	=	pima.train)

															Type	of	random	forest:	classification

																					Number	of	trees:	500

No.	of	variables	tried	at	each	split:	2

								OOB	estimate	of		error	rate:	20%

Confusion	matrix:

					No	Yes	class.error

No		233		29			0.1106870

Yes		48		75			0.3902439

We	get	a	20	percent	misclassification	rate	error,	which	is	no	better	than	what	we’ve	done
before	on	the	train	set.	Let’s	see	if	optimizing	the	tree	size	can	improve	things
dramatically:

>	which.min(rf.pima$err.rate[,1])

[1]	80

>	set.seed(321)

>	rf.pima.2	=	randomForest(type~.,	data=pima.train,	ntree=80)

>	print(rf.pima.2)

Call:

	randomForest(formula	=	type	~	.,	data	=	pima.train,	ntree	=	80)

															Type	of	random	forest:	classification

																					Number	of	trees:	80

No.	of	variables	tried	at	each	split:	2

								OOB	estimate	of		error	rate:	19.48%

Confusion	matrix:

					No	Yes	class.error

No		230		32			0.1221374

Yes		43		80			0.3495935

At	80	trees	in	the	forest,	there	is	minimal	improvement	in	the	OOB	error.	Can	random	forest
live	up	to	the	hype	on	the	test	data?	We	will	see	in	the	following	way:

>	rf.pima.test	=	predict(rf.pima.2,	newdata=pima.test,	type="response")

>	table(rf.pima.test,	pima.test$type)

												

rf.pima.test	No	Yes

									No		75		21

									Yes	18		33

>	(75+33)/147

[1]	0.7346939

Well,	we	get	only	73	percent	accuracy	on	the	test	data,	which	is	inferior	to	what	we
achieved	using	the	SVM.

While	random	forest	disappointed	on	the	diabetes	data,	it	proved	to	be	the	best	classifier
so	far	for	the	breast	cancer	diagnosis.	Finally,	we	will	move	on	to	gradient	boosting.

Gradient	boosting	regression
The	R	package	that	we	will	use	in	this	section	is	called	gbm,	which	we	have	already
loaded.	As	stated	in	the	boosting	overview,	we	will	be	tuning	three	boosting	parameters:
the	number	of	trees,	interaction	depth,	and	shrinkage.	As	we	did	in	the	prior	chapters,	it
will	be	helpful	to	call	on	the	caret	package	to	help	in	the	tuning	process.	The	default
parameter	in	the	package	is	100	trees,	interaction	depth	is	1,	and	shrinkage	is	0.001.

Using	the	expand.grid()	function,	we	will	build	our	experimental	grid	to	run	through	the
training	process	of	the	caret	package.	Let’s	do	the	trees	from	100	to	500	by	=	200,
interaction	depth	1	to	4	by	=	1,	and	shrinkage	as	0.001,	0.01,	and	0.1:

>	grid	=	expand.grid(.n.trees=seq(100,500,	by=200),	

.interaction.depth=seq(1,4,	by=1),	.shrinkage=c(.001,.01,.1),

	.n.minobsinnode=10)

This	creates	a	grid	of	36	different	models	that	the	caret	package	will	run	so	as	to
determine	the	best	tuning	parameters.	A	note	of	caution	is	in	order.	On	a	dataset	of	the	size
that	we	will	be	working	with,	this	process	takes	only	a	few	seconds.	However,	in	large
datasets,	this	can	take	hours.	As	such,	you	must	apply	your	judgment	and	experiment	with
smaller	samples	of	the	data	in	order	to	identify	the	tuning	parameters	in	case	time	is	of	the
essence	or	you	are	constrained	by	the	size	of	your	hard	drive.

Before	using	the	train()	function	from	the	caret	package,	I	would	like	to	specify	the
trainControl	argument	by	creating	an	object	called	control.	This	object	will	store	the
method	that	we	want	so	as	to	train	the	tuning	parameters.	For	the	prostate	data,	we	will
use	LOOCV,	which	is	LOOCV,	as	follows:

>	control	=	trainControl(method="LOOCV")

To	utilize	the	train()	function,	just	specify	the	formula	as	we	did	with	the	other	models:

the	train	dataset,	method,	train	control,	and	experimental	grid.	Remember	to	set	the
random	seed!

>	gbm.pros.train	=	train(lpsa~.,	data=pros.train,	method="gbm",	

trControl=control,	tuneGrid=grid)

Calling	the	object	gives	us	the	optimal	parameters	and	the	results	of	each	of	the	parameter
settings,	as	follows;

>	gbm.pros.train

Stochastic	Gradient	Boosting

67	samples

	8	predictor

No	pre-processing

Resampling:

Summary	of	sample	sizes:	66,	66,	66,	66,	66,	66,..

Resampling	results	across	tuning	parameters:

		n.trees		interaction.depth		shrinkage		RMSE			Rsquared

		100						1																		0.001						1.184		0.132			

		100						1																		0.010						0.989		0.441			

		100						1																		0.100						0.914		0.431			

		…..

		500						4																		0.010						0.857		0.490			

		500						4																		0.100						1.022		0.357			

RMSE	was	used	to	select	the	optimal	model	using		the	smallest	value.

The	final	values	used	for	the	model	were	n.trees	=	300,	interaction.depth	=	

3	and	shrinkage	=	0.01.

Having	identified	the	tuning	parameters,	just	place	this	in	the	gbm()	function	to	build	the
model	in	the	train	set.	Additionally,	we	will	specify	the	distribution	=	"gaussian"	for
a	squared	error	as	this	is	a	continuous	outcome:

>	gbm.pros	=	gbm(lpsa~.,	data=pros.train,	n.trees=300,	interaction.depth=3,	

shrinkage=0.01,	distribution="gaussian")

With	an	object	created	from	the	train	data,	we	can	see	how	it	performs	on	the	test	data
using	the	predict()	function	as	we	did	with	the	other	methods.	Then	calculate	the
residuals	and	MSE:

>	gbm.pros.test	=	predict(gbm.pros,	newdata=pros.test,	n.trees=300)

>	gbm.resid	=	gbm.pros.test	-	pros.test$lpsa

>	mean(gbm.resid^2)

[1]	0.6208321

An	MSE	of	0.62	on	the	test	set	does	not	improve	our	predictive	ability	at	all.	Let’s	take	a
look	at	the	plot	of	the	Predicted	versus	Actuals	values.	As	it	turns	out,	gradient	boosting
can	be	very	susceptible	to	a	high	variance	in	the	presence	of	outliers.	The	plot	shows	that

the	model	performed	very	well	except	for	two	observations.	The	key	takeaway	for	this
dataset	is	that	it	is	probably	too	small	to	provide	any	benefit	of	using	the	boosting	methods
in	terms	of	the	number	of	observations.	Boosting	may	become	beneficial	in	a	dataset	of
this	n-size	in	a	situation	of	high	dimensionality:

>	plot(gbm.pros.test,	pros.test$lpsa,	main="Predicted	versus	Actuals")

The	output	of	the	preceding	command	is	as	follows:

Gradient	boosting	classification
For	the	breast	cancer	problem,	we	will	again	use	the	train()	function	from	the	caret
package.	The	only	change	to	the	syntax	is	that	we	will	use	10-fold	cross-validation	as
trainControl:

>	control	=	trainControl(method="CV",	number=10)

>	set.seed(123)

>	gbm.biop.train	=	train(class~.,	data=biop.train,	method="gbm",	

trControl=control,	tuneGrid=grid)

>	gbm.biop.train

Stochastic	Gradient	Boosting

474	samples

		9	predictor

		2	classes:	'benign',	'malignant'

No	pre-processing

Resampling:	Cross-Validated	(10	fold)

…....................................

Accuracy	was	used	to	select	the	optimal	model	using		the	largest	value.		

The	final	values	used	for	the	model	were	n.trees	=	100,	interaction.depth	=	

1	and	shrinkage	=	0.1.

We	will	again	put	these	tuning	parameters	into	the	gbm()	function.	However,	we	will	have
to	modify	our	dataset	slightly.	The	function	will	not	accept	a	factor	for	a	0/1	classification
problem.	This	is	a	quick	fix	as	we	will	use	the	ifelse()	function	to	code	benign	as	0	and
malignant	as	1:

>	biop.train$class	=	ifelse(biop.train$class=="benign",0,1)

This	gives	us	the	0/1	class	labels	that	we	will	need	in	our	response	variable	for	gbm().
Remember	that	for	regression,	we	used	the	gaussian	distribution.	For	a	0/1	label	problem
that	we	have	here,	let’s	use	bernoulli,	which	is	a	logistic	loss	function.	The	Bernoulli
distribution	where	the	random	variable	takes	a	value	of	one	for	success	with	a	probability
p	and	a	failure	value	of	zero	with	a	probability	q	=	1	–	p.	Other	distributions	are	available,
but	I’ll	refer	you	to	the	package’s	documentation	for	other	alternatives.

>	gbm.biop	=	gbm(class~.,	distribution="bernoulli",	data=biop.train,	

n.trees=100,	interaction.depth=1,	shrinkage=0.1)

For	the	prediction	of	the	test	set	values,	you	will	again	need	to	change	how	you	analyze
the	results	versus	regression.	The	predict()	function	in	the	package	will	provide	the
probabilities	of	the	class	membership,	just	as	logistic	regression	did	in	Chapter	3,	Logistic
Regression	and	Discriminant	Analysis.	In	other	words,	anything	less	than	50	percent
predicted	probability	is	benign,	otherwise	it	is	malignant.	We	will	again	use	the	ifelse()
function	to	handle	this	properly:

>	gbm.biop.test	=	predict(gbm.biop,	newdata=biop.test,	type="response",	

n.trees=100)

>	gbm.class	=	ifelse(gbm.biop.test	<0.5,"benign",	"malignant")

>	table(gbm.class,	biop.test$class)

											

gbm.class			benign	malignant

		benign							140									2

		malignant						2								65

>	(140+65)/209

[1]	0.9808612

This	model	performed	quite	well,	only	misclassifying	four	of	the	209	observations,	only
one	more	than	the	random	forest	model.

We	will	now	move	on	to	the	the	final	challenge	of	the	chapter,	the	diabetes	data,	which	has
proved	such	a	challenge	to	the	improvement	of	predictive	power.	The	process	for	this
problem	is	no	different	than	what	we	just	produced	with	the	breast	cancer	diagnosis	data,
as	follows:

>	set.seed(123)

>	gbm.pima.train	=	train(type~.,	data=pima.train,	method="gbm",	

trControl=control,	tuneGrid=grid)

>	gbm.pima.train

Stochastic	Gradient	Boosting

385	samples

		7	predictor

		2	classes:	'No',	'Yes'

No	pre-processing

Resampling:	Cross-Validated	(10	fold)

…....................................

Accuracy	was	used	to	select	the	optimal	model	using	the	largest	value.		The	

final	values	used	for	the	model	were	n.trees	=	500,	interaction.depth	=	3	

and	shrinkage	=	0.01.

>	pima.train$type	=	ifelse(pima.train$type=="No",0,1)

>	gbm.pima	=	gbm(type~.,	distribution="bernoulli",	data=pima.train,	

n.trees=500,interaction.depth=3,shrinkage=0.01)

>	gbm.pima.test	=	predict(gbm.pima,	newdata=pima.test,	type="response",	

n.trees=500)

>	gbm.type	=	ifelse(gbm.pima.test	<0.5,"No",	"Yes")

>	table(gbm.type,	pima.test$type)

gbm.type	No	Yes

					No		77		22

					Yes	16		32

>	(77+32)/147

[1]	0.7414966

The	accuracy	at	74	percent	does	not	beat	the	benchmark	that	we	attained	with	the	SVM,
meaning	that	none	of	the	tree-based	methods	improved	the	predictive	ability	on	the	Pima
Indian	data.	Before	closing	this	section,	I	would	like	to	point	out	that	you	can	also	produce
the	variable	importance	with	boosted	trees,	similar	to	what	we	did	with	random	forests.
The	summary()	function	in	the	gbm	package	produces	a	table	of	the	relative	influence
values	and	a	barplot	as	well:

>	summary(gbm.pima)

								var			rel.inf

glu					glu	44.152295

age					age	16.019096

bmi					bmi	13.849614

ped					ped	10.545554

npreg	npreg		6.144122

skin			skin		4.908916

bp							bp		4.380403

The	output	of	the	preceding	command	is	as	follows:

As	the	influence	is	relative,	we	can	conclude	that	the	glu	variable	(glucose	levels)	account
for	44	percent	of	the	variance	in	the	predicted	outcome.	These	influence/importance	plots
provide	an	effective	tool	in	feature	selection	and	in	presenting	the	results	to	the	business
partners.

Model	selection
Recall	that	our	primary	objective	in	this	chapter	was	to	use	the	tree-based	methods	to
improve	the	predictive	ability	of	the	work	done	in	the	prior	chapters.	What	did	we	learn?
First,	on	the	prostate	data	with	a	quantitative	response,	we	were	not	able	to	improve	on
the	linear	models	that	we	produced	in	Chapter	4,	Advanced	Feature	Selection	in	Linear
Models.	Second,	the	random	forest	and	boosted	trees	both	outperformed	logistic
regression	on	the	Wisconsin	Breast	Cancer	data	of	Chapter	3,	Logistic	Regression	and
Discriminant	Analysis.	Finally,	and	I	must	say	disappointingly,	we	were	not	able	to
improve	on	the	SVM	model	on	the	Pima	Indian	diabetes	data.

As	a	result,	we	can	feel	comfortable	that	we	have	good	models	for	the	prostate	and	breast
cancer	problems.	We	will	try	one	more	time	to	improve	the	model	for	diabetes	in	Chapter
7,	Neural	Networks	by	introducing	the	Deep	learning	section.

Summary
In	this	chapter,	you	learned	both	the	power	and	limitations	of	tree-based	learning	methods
for	both	the	classification	and	regression	problems.	Single	trees,	while	easy	to	build	and
interpret,	may	not	have	the	necessary	predictive	power	for	many	of	the	problems	that	we
are	trying	to	solve.	To	improve	on	the	predictive	ability,	we	have	the	tools	of	random
forest	and	gradient	boosted	trees	at	our	disposal.	With	random	forest,	dozens	or	hundreds
of	trees	are	built	and	the	results	aggregated	for	an	overall	prediction.	Each	tree	of	the
random	forest	is	built	using	a	sample	of	the	data	called	bootstrapping	as	well	as	a	sample
of	the	predictive	variables.	As	for	gradient	boosting,	an	initial,	and	a	relatively	small,	tree
is	produced.	After	this	initial	tree	is	built,	subsequent	trees	are	produced	based	on	the
residuals.	The	intended	result	of	such	a	technique	is	to	build	a	series	of	trees	that	can
improve	on	the	weakness	of	the	prior	tree	in	the	process,	resulting	in	decreased	bias	and
variance.

While	these	methods	are	indeed	extremely	powerful,	they	are	not	some	sort	of	nostrum	in
the	world	of	machine	learning.	Different	datasets	require	judgment	on	the	part	of	the
analyst	as	to	which	techniques	are	applicable.	The	techniques	to	be	applied	to	the	analysis
and	the	selection	of	the	tuning	parameters	are	equally	important.	This	fine	tuning	can
make	all	the	difference	between	a	good	predictive	model	and	a	great	predictive	model.

Chapter	7.	Neural	Networks
	 “Forget	artificial	intelligence	–	in	the	brave	new	world	of	big	data,	it’s	artificial	idiocy	we	should	be	looking	out
for.”

	

	 —Tom	Chatfiel

I	recall	that	at	some	meeting	circa	mid-2012,	I	was	part	of	a	group	discussing	the	results	of
some	analysis	or	other,	when	one	of	the	people	around	the	table	sounded	off	with	a	hint	of
exasperation	mixed	with	a	tinge	of	fright:	this	isn’t	one	of	those	neural	networks,	is	it?	I
knew	of	his	past	run-ins	and	deep-seated	anxiety	for	neural	networks,	so	I	assuaged	his
fears	making	some	sarcastic	comment	that	neural	networks	have	basically	gone	the	way	of
the	dinosaur.	No	one	disagreed!	Several	months	later,	I	was	gobsmacked	when	I	attended	a
local	meeting	where	the	discussion	focused	on,	of	all	things,	neural	networks	and	this
mysterious	deep	learning.	Machine	learning	pioneers	such	as	Ng,	Hinton,	Salakhutdinov,
and	Bengio	have	revived	neural	networks	and	improved	their	performance.

Much	media	hype	revolves	around	these	methods	with	high-tech	companies	such	as
Facebook,	Google,	and	Netflix	investing	tens,	if	not	hundreds,	of	millions	of	dollars.	The
methods	have	yielded	promising	results	in	voice	recognition,	image	recognition,	machine,
and	automation.	If	self-driving	cars	ever	stop	running	off	the	road	and	into	each	other,	it
will	likely	be	from	the	methods	discussed	here.

In	this	chapter,	we	will	discuss	how	the	methods	work,	their	benefits,	and	inherent
drawbacks	so	that	you	can	become	conversationally	competent	about	them.	We	will	work
through	a	practical	business	application	of	a	neural	network.	Finally,	we	will	apply	the
deep	learning	methodology	in	a	cloud-based	application.

Neural	network
Neural	network	is	a	fairly	broad	term	that	covers	a	number	of	related	methods,	but	in	our
case,	we	will	focus	on	a	Feed	Forward	network	that	trains	with	Back	Propagation.	I’m
not	going	to	waste	our	time	discussing	how	the	machine	learning	methodology	is	similar
or	dissimilar	to	how	a	biological	brain	works.	We	only	need	to	start	with	a	working
definition	of	what	a	neural	network	is.	I	think	the	Wikipedia	entry	is	a	good	start.

In	machine	learning	and	cognitive	science,	Artificial	Neural	Networks	(ANNs)	are	a
family	of	statistical	learning	models	inspired	by	biological	neural	networks	(the	central
nervous	systems	of	animals,	in	particular,	the	brain)	and	are	used	to	estimate	or
approximate	functions	that	can	depend	on	a	large	number	of	inputs	and	are	generally
unknown.	https://en.wikipedia.org/wiki/Artificial_neural_network.

The	motivation	or	benefit	of	ANNs	is	that	they	allow	the	modeling	of	highly	complex
relationships	between	inputs/features	and	response	variable(s),	especially	if	the
relationships	are	highly	nonlinear.	No	underlying	assumptions	are	required	to	create	and
evaluate	the	model	and	it	can	be	used	with	qualitative	and	quantitative	responses.	If	this	is
the	yin,	then	the	yang	is	the	common	criticism	that	the	results	are	black	box,	which	means
that	there	is	no	equation	with	the	coefficients	to	examine	and	share	with	the	business
partners.	In	fact,	the	results	are	almost	not	interpretable.	The	other	criticisms	revolve
around	how	results	can	differ	by	just	changing	the	initial	random	inputs	and	that	training
ANNs	is	computationally	expensive	and	time-consuming.

The	mathematics	behind	ANNs	is	not	trivial	by	any	measure.	However,	it	is	crucial	to	at
least	get	a	working	understanding	of	what	is	happening.	A	good	way	to	intuitively	develop
this	understanding	is	to	start	a	diagram	of	a	simplistic	neural	network.

In	this	simple	network,	the	inputs	or	covariates	consist	of	two	nodes	or	neurons.	The
neuron	labeled	1	represents	a	constant	or	more	appropriately,	the	intercept.	X1	represents	a
quantitative	variable.	The	Ws	represent	the	weights	that	are	multiplied	by	the	input	node
values.	These	values	become	Input	Nodes	to	Hidden	Node.	You	can	have	multiple
hidden	nodes,	but	the	principal	of	what	happens	in	just	this	one	is	the	same.	In	the	hidden
node,	H1,	the	weight	*	value	computations	are	summed.	As	the	intercept	is	notated	as	1,
then	that	input	value	is	simply	the	weight,	W1.	Now	the	magic	happens.	The	summed
value	is	then	transformed	with	the	Activation	function,	turning	the	input	signal	to	an
output	signal.	In	this	example,	as	it	is	the	only	Hidden	Node,	it	is	multiplied	by	W3	and
becomes	the	estimate	of	Y,	our	response.	This	is	the	feed-forward	portion	of	the
algorithm.

https://en.wikipedia.org/wiki/Artificial_neural_network

But	wait,	there’s	more!	To	complete	the	cycle	or	epoch	as	it	is	known,	backpropagation
happens	and	trains	the	model	based	on	what	was	learned.	To	initiate	the	backpropagation,
an	error	is	determined	based	on	a	loss	function	such	as	Sum	of	Squared	Error	or	Cross-
Entropy,	among	others.	As	the	weights,	W1	and	W2,	were	set	to	some	initial	random
values	between	[-1,	1],	the	initial	error	may	be	high.	Working	backward,	the	weights	are
changed	to	minimize	the	error	in	the	loss	function.	The	following	diagram	portrays	the
backpropagation	portion:

This	completes	one	epoch.	This	process	continues,	using	gradient	descent	(discussed	in
Chapter	5,	More	Classification	Techniques	—	K-Nearest	Neighbors	and	Support	Vector
Machines)	until	the	algorithm	converges	to	the	minimum	error	or	prespecified	number	of
epochs.	If	we	assume	that	our	activation	function	is	simply	linear,	in	this	example,	we

would	end	up	with	Y	=	W3(W1(1)	+	W2(X1)).

The	networks	can	get	complicated	if	you	add	numerous	input	neurons,	multiple	neurons	in
a	hidden	node,	and	even	multiple	hidden	nodes.	It	is	important	to	note	that	the	output	from
a	neuron	is	connected	to	all	the	subsequent	neurons	and	has	weights	assigned	to	all	these
connections.	This	greatly	increases	the	model	complexity.	Adding	hidden	nodes	and
increasing	the	number	of	neurons	in	the	hidden	nodes	has	not	improved	the	performance
of	ANNs	as	we	hoped.	Thus,	the	development	of	deep	learning	occurs,	which	in	part
relaxes	the	requirement	of	all	these	neuron	connections.

There	are	a	number	of	activation	functions	that	one	can	use/try,	including	a	simple	linear
function,	or	for	a	classification	problem,	the	logistic	function.	(Chapter	3,	Logistic
Regression	and	Discriminant	Analysis)	A	threshold	function	can	be	used	where	the	output
is	binary	(0	or	1)	based	on	some	threshold	value.	Other	common	activation	functions	are
sigmoid	and	hyperbolic	tangent	(tanh).

The	sigmoid	function	is	similar	to	the	logistic	function	but	is	not	bound	between	zero	and
one.	(Note	that	the	logistic	function	is	the	inverse	of	the	sigmoid.)	We	can	plot	a	sigmoid
function	in	R.	We	will	first	create	an	R	function	in	order	to	calculate	the	sigmoid	function
values:

>	sigmoid	=	function(x)	{

+	1	/	(1	+	exp(-x))

+	}

Then,	it	is	a	simple	matter	to	plot	the	function	over	a	range	of	values,	say	-5	to	5:

>	plot(sigmoid,-5,5)

The	output	of	the	preceding	command	is	as	follows:

You	can	also	plot	code	font	using	base	R.	Again,	let’s	examine	it	between	-5	and	5:

>	x	=	seq(-5,	5,	by=0.1)

>	t	=	tanh(x)

>	plot(x,t,	type="l",	ylab="tanh")

The	output	of	the	preceding	command	is	as	follows:

This	all	sounds	fascinating,	but	the	ANN	almost	went	the	way	of	disco	as	it	just	did	not
perform	well,	especially	when	trying	to	use	deep	networks	with	many	hidden	layers	and
neurons.	It	seems	that	a	slow,	yet	gradual	revival	came	about	with	the	seminal	paper	by
Hinton	and	Salakhutdinov	(2006)	in	the	reformulated,	and	dare	I	say,	rebranded	neural
network,	deep	learning.

Deep	learning,	a	not-so-deep	overview
So,	what	is	this	deep	learning	that	is	grabbing	our	attention	and	headlines?	Let’s	turn	to
Wikipedia	again	for	a	working	definition:	Deep	learning	is	a	branch	of	machine	learning
based	on	a	set	of	algorithms	that	attempt	to	model	high-level	abstractions	in	data	by	using
model	architectures,	with	complex	structures	or	otherwise,	composed	of	multiple	non-
linear	transformations.	That	sounds	as	if	a	lawyer	wrote	it.	The	characteristics	of	deep
learning	are	that	it	is	based	on	ANNs	where	the	machine	learning	techniques,	primarily
unsupervised	learning,	are	used	to	create	new	features	from	the	input	variables.	We	will
dig	into	some	unsupervised	learning	techniques	in	the	next	couple	of	chapters,	but	one	can
think	of	it	as	finding	structure	in	data	where	no	response	variable	is	available.	A	simple
way	to	think	of	it	is	the	Periodic	Table	of	Elements,	which	is	a	classic	case	of	finding
structure	where	no	response	is	specified.	Pull	up	this	table	online	and	you	will	see	that	it	is
organized	based	on	the	atomic	structure	with	metals	on	one	side	and	non-metals	on	the
other.	It	was	created	based	on	latent	classification/structure.	This	identification	of	latent
structure/hierarchy	is	what	separates	deep	learning	from	your	run-of-the-mill	ANN.	Deep
learning	sort	of	addresses	the	question	if	there	is	an	algorithm	that	better	represents	the
outcome	than	just	the	raw	inputs.	In	other	words,	can	our	model	learn	to	classify	pictures
other	than	with	just	the	raw	pixels	as	the	only	input?	This	can	be	of	great	help	in	a
situation	where	you	have	a	small	set	of	labeled	responses	but	vast	amounts	of	unlabeled
input	data.	You	could	train	your	deep	learning	model	using	unsupervised	learning	and	then
apply	this	in	a	supervised	fashion	to	the	labeled	data,	iterating	back	and	forth.

Identification	of	these	latent	structures	is	not	trivial	mathematically,	but	one	example	is	the
concept	of	regularization	that	we	looked	at	in	Chapter	4,	Advanced	Feature	Selection	in
Linear	Models.	In	deep	learning,	one	can	penalize	weights	with	regularization	methods
such	as	L1	(penalize	non-zero	weights),	L2	(penalize	large	weights),	and	dropout
(randomly	ignore	certain	inputs	and	zero	their	weight	out).	In	standard	ANNs,	none	of
these	regularization	methods	take	place.

Another	way	is	to	reduce	the	dimensionality	of	the	data.	One	such	method	is	the
autoencoder.	This	is	a	neural	network	where	the	inputs	are	transformed	into	a	set	of
reduced	dimension	weights.	In	the	following	diagram,	notice	that	Feature	A	is	not
connected	to	one	of	the	hidden	nodes:

This	can	be	applied	recursively	and	learning	can	take	place	over	many	hidden	layers.
What	you	have	happening	in	this	case	is	the	network	is	developing	features	of	features	as
they	are	stacked	on	each	other.	Deep	learning	will	learn	the	weights	between	two	layers	in
sequence	first	and	then	only	use	backpropagation	in	order	to	fine-tune	these	weights.
Other	feature	selection	methods	include	Restricted	Boltzmann	Machine	and	Sparse
Coding	Model.

The	details	are	beyond	our	scope,	and	many	resources	are	available	to	learn	about	the
specifics.	Here	are	a	couple	of	starting	points:

http://www.cs.toronto.edu/~hinton/
http://deeplearning.net/

Deep	learning	has	performed	well	on	many	classification	problems	including	winning	a
Kaggle	contest	or	two.	It	still	suffers	from	the	problems	of	ANNs,	especially	the	black	box
problem.	However,	it	is	appropriate	for	problems	where	an	explanation	of	How	is	not	a
problem	and	the	important	question	is	What.	Additionally,	the	Python	community	has	a	bit
of	a	head	start	on	the	R	community	in	deep	learning	usage	and	packages.	As	we	will	see	in
the	practical	exercise,	this	gap	has	closed,	if	not	been	eliminated	altogether.

While	deep	learning	is	an	exciting	undertaking,	be	aware	that	to	achieve	the	full	benefit	of
its	capabilities,	you	will	need	a	high	degree	of	computational	power	along	with	taking	the
time	to	train	the	best	model	by	fine-tuning	the	hyperparameters.	Here	is	a	list	of	some	that
you	will	need	to	consider:

An	activation	function
Size	of	the	hidden	layers
Dimensionality	reduction,	that	is,	Restricted	Boltzmann	versus.	Autoencoder	versus
…

http://www.cs.toronto.edu/~hinton/
http://deeplearning.net/

The	number	of	epochs
The	gradient	descent	learning	rate
The	loss	function
Regularization

You	can	imagine	that	this	can	be	no	small	feat,	but	enough	of	the	overview;	let’s	move	on
to	some	practical	applications.

Business	understanding
It	was	a	calm,	clear	night	of	20th	April,	1998,	I	was	a	student	pilot	in	a	Hughes	500D
helicopter	on	a	cross-country	flight	from	the	St.	Paul,	MN	downtown	airport	back	home	to
good	old	Grand	Forks,	ND.	The	flight	was	my	final	requirement	prior	to	taking	the	test	to
achieve	a	helicopter	instrument	rating.	My	log	book	shows	that	we	were	35	DME
(Distance	Measuring	Equipment)	or	35	nautical	miles	from	the	VOR	on	Airway	Victor	2.
This	put	us	somewhere	south/southeast	of	St.	Cloud,	MN,	cruising	along	at	what	I	recall
was	4,500	feet	above	sea	level	at	approximately	120	knots.	Then,	it	happened…
BOOOOM!	It	is	not	hyperbole	to	say	that	it	was	a	thunderous	explosion,	followed	by	a
hurricane	blast	of	wind	to	the	face.

It	all	started	when	my	flight	instructor	asked	a	mundane	question	about	our	planned
instrument	approach	into	Alexandria,	MN.	We	swapped	control	of	the	aircraft	and	I	bent
over	to	consult	the	instrument	approach	plate	on	my	kneeboard.	As	I	snapped	on	the	red
lens	flashlight,	the	explosion	happened.	Given	my	face-down	orientation,	the	sound,	and
ensuing	blast	of	wind,	several	thoughts	crossed	my	mind:	the	helicopter	is	falling	apart,
I’m	plunging	to	my	death,	and	the	Space	Shuttle	Challenger	explosion	as	an	HD	quality
movie	going	off	in	my	head.	In	the	1.359	seconds	that	it	took	us	to	stop	screaming,	we
realized	that	the	Plexiglas	windscreen	in	front	of	me	was	essentially	gone,	but	everything
else	was	good	to	go.	After	slowing	the	craft,	a	cursory	inspection	revealed	that	the	cockpit
was	covered	in	blood,	guts,	and	feathers.	We	had	done	the	improbable	by	hitting	a	Mallard
duck	over	Central	Minnesota	and	in	the	process,	destroying	the	windscreen.	Had	I	not
been	looking	at	my	kneeboard,	I	would	have	been	covered	in	pate.	We	simply	declared	an
emergency	and	canceled	our	flight	plan	with	Minneapolis	Center	and,	like	the	Memphis
Belle,	limped	our	way	into	Alexandria	to	await	rescue	from	our	compatriots	at	the
University	of	North	Dakota	(home	of	the	Fighting	Sioux).

So	what?	Well,	I	wanted	to	point	out	how	much	of	a	NASA	fan	and	astronut	I	am.	In	a
terrifying	moment,	where	for	a	split	second	I	thought	that	I	was	checking	out,	my	mind
drifted	to	the	Space	Shuttle.	Most	males	my	age	wanted	to	shake	the	hands	of	George
Brett	or	Wayne	Gretzky.	I	wanted	to,	and	in	fact	did,	shake	the	hands	of	Buzz	Aldrin.	(He
was	after	all	on	the	North	Dakota	faculty	at	the	time.)	Thus,	when	I	found	the	shuttle
dataset	in	the	MASS	package,	I	had	to	include	it	in	this	tome.	By	the	way,	if	you	ever	get	the
chance	to	see	the	Space	Shuttle	Atlantis	display	at	Kennedy	Space	Center,	do	not	miss	it.

For	this	problem,	we	will	try	and	develop	a	neural	network	to	answer	the	question	of
whether	or	not	the	shuttle	should	use	the	autolanding	system.	The	default	decision	is	to	let
the	crew	land	the	craft.	However,	the	autoland	capability	may	be	required	for	situations	of
crew	incapacitation	or	adverse	effects	of	gravity	upon	re-entry	after	extended	orbital
operations.	This	data	is	based	on	computer	simulations,	not	actual	flights.	In	reality,	the
autoland	system	went	through	some	trials	and	tribulations	and,	for	the	most	part,	the
shuttle	astronauts	were	in	charge	during	the	landing	process.	Here	are	a	couple	of	links	for
further	background	information:

http://www.spaceref.com/news/viewsr.html?pid=10518

http://www.spaceref.com/news/viewsr.html?pid=10518

https://waynehale.wordpress.com/2011/03/11/breaking-through/

https://waynehale.wordpress.com/2011/03/11/breaking-through/

Data	understanding	and	preparation
To	start,	we	will	load	these	three	packages.	The	data	is	in	the	MASS	package,	but	this	is	a
required	dependent	package	loaded	with	neuralnet:

>	library(caret)

>	library(neuralnet)

Loading	required	package:	grid

Loading	required	package:	MASS

>	library(vcd)

The	neuralnet	package	will	be	used	for	the	building	of	the	model	and	caret	for	the	data
preparation.	The	vcd	package	will	assist	us	in	data	visualization.	Let’s	load	the	data	and
examine	its	structure:

>	data(shuttle)

>	str(shuttle)

'data.frame':256	obs.	of		7	variables:

	$	stability:	Factor	w/	2	levepicels	"stab","xstab":	2	2	2	2	2	2	2	2	2	2…

	$	error				:	Factor	w/	4	levels	"LX","MM","SS",..:	1	1	1	1	1	1	1	1	1	1…

	$	sign					:	Factor	w/	2	levels	"nn","pp":	2	2	2	2	2	2	1	1	1	1…

	$	wind					:	Factor	w/	2	levels	"head","tail":	1	1	1	2	2	2	1	1	1	2…

	$	magn					:	Factor	w/	4	levels	"Light","Medium",..:	1	2	4	1	2	4	1	2	4	1…

	$	vis						:	Factor	w/	2	levels	"no","yes":	1	1	1	1	1	1	1	1	1	1…

	$	use						:	Factor	w/	2	levels	"auto","noauto":	1	1	1	1	1	1	1	1	1	1…

The	data	consists	of	256	observations	and	7	variables.	Notice	that	all	of	the	variables	are
categorical	and	the	response	is	use	with	two	levels,	auto	and	noauto.	The	covariates	are
as	follows:

stability:	This	is	stable	positioning	or	not	(stab/xstab)
error:	This	is	the	size	of	the	error	(MM	/	SS	/	LX)
sign:	This	is	the	sign	of	the	error,	positive	or	negative	(pp/nn)
wind:	This	is	the	wind	sign	(head	/	tail)
magn:	This	is	the	wind	strength	(Light	/	Medium	/	Strong	/	Out	of	Range)
vis:	This	is	the	visibility	(yes	/	no)

We	will	build	a	number	of	tables	to	explore	the	data,	starting	with	the	response/outcome:

>	table(shuttle$use)

		auto	noauto	

			145				111

Almost	57	percent	of	the	time,	the	decision	is	to	use	the	autolander.	There	are	a	number	of
possibilities	to	build	tables	for	categorical	data.	The	table()	function	is	perfectly
adequate	to	compare	one	versus	another,	but	if	you	add	a	third,	it	can	turn	into	a	mess	to
look	at.	The	vcd	package	offers	a	number	of	table	and	plotting	functions.	One	is
structable().	This	function	will	take	a	formula	(column1	+	column2	~	column3),	where

column3	becomes	the	rows	in	the	table:

>	table1=structable(wind+magn~use,	shuttle)

>	table1

							wind		head																				tail																		

							magn	Light	Medium	Out	Strong	Light	Medium	Out	Strong

use																																																								

auto											19					19		16					18				19					19		16					19

noauto									13					13		16					14				13					13		16					13

Here,	we	can	see	that	in	the	cases	of	a	headwind	that	was	Light	in	magnitude,	auto
occurred	19	times	and	noauto,	13	times.	The	vcd	package	offers	the	mosaic()	function	to
plot	the	table	created	by	structable()	and	provide	the	p-value	for	a	chi-squared	test:

>	mosaic(table1,	gp=shading_hcl)

The	output	of	the	preceding	command	is	as	follows:

The	plot	tiles	correspond	to	the	proportional	size	of	their	respective	cells	in	the	table,
created	by	recursive	splits.	You	can	also	see	that	the	p-value	is	not	significant,	so	the
variables	are	independent,	which	means	that	knowing	the	levels	of	wind	and/or	magn
does	not	help	us	predict	the	use	of	the	autolander.	You	do	not	need	to	include	a
structable()	object	in	order	to	create	the	plot	as	it	will	accept	a	formula	just	as	well.	We
will	also	drop	the	shading	syntax,	which	drops	the	colored	shading	and	residuals	bar	on
the	right.	This	can	make	for	a	cleaner	plot:

>	mosaic(use~error+vis,	shuttle)

The	output	of	the	preceding	command	is	as	follows:

Note	that	the	shading	of	the	table	has	changed,	reflecting	the	rejection	of	the	null
hypothesis	and	dependence	in	the	variables.	The	plot	first	takes	and	splits	the	visibility.
The	result	is	that	if	the	visibility	is	no,	then	the	autolander	is	used.	The	next	split	is
horizontal	by	error.	If	error	is	SS	or	MM	when	vis	is	no,	then	the	autolander	is
recommended,	otherwise	it	is	not.	A	p-value	is	not	necessary	as	the	gray	shading	indicates
significance.

One	can	also	examine	proportional	tables	with	the	prop.table()	function	as	a	wrapper
around	table():

>	table(shuttle$use,	shuttle$stability)

								

									stab	xstab

		auto					81				64

		noauto			47				64

>	prop.table(table(shuttle$use,	shuttle$stability))

								

														stab					xstab

		auto			0.3164062	0.2500000

		noauto	0.1835938	0.2500000

In	case	we	forget,	the	chi-squared	tests	are	quite	simple:

>	chisq.test(shuttle$use,	shuttle$stability)

Pearson's	Chi-squared	test	with	Yates'	continuity

correction

data:		shuttle$use	and	shuttle$stability

X-squared	=	4.0718,	df	=	1,	p-value	=	0.0436

Preparing	the	data	for	a	neural	network	is	very	important	as	all	the	covariates	and
responses	need	to	be	numeric.	In	our	case,	we	have	all	of	them	categorical.	The	caret
package	allows	us	to	quickly	create	dummy	variables	as	our	input	features:

>	dummies	=	dummyVars(use~.,shuttle,	fullRank=TRUE)

>	dummies

Dummy	Variable	Object

Formula:	use	~	.

7	variables,	7	factors

Variables	and	levels	will	be	separated	by	'.'

A	full	rank	encoding	is	used

To	put	this	into	a	data	frame,	we	need	to	predict	the	dummies	object	to	an	existing	data,
either	the	same	or	different,	in	as.data.frame().	Of	course,	the	same	data	is	needed	here:

>	shuttle.2	=	as.data.frame(predict(dummies,	newdata=shuttle))

>	names(shuttle.2)

	[1]	"stability.xstab"	"error.MM"								"error.SS"							

	[4]	"error.XL"								"sign.pp"									"wind.tail"						

	[7]	"magn.Medium"					"magn.Out"								"magn.Strong"				

[10]	"vis.yes"								

>	head(shuttle.2)

		stability.xstab	error.MM	error.SS	error.XL	sign.pp	wind.tail

1															1								0								0								0							1									0

2															1								0								0								0							1									0

3															1								0								0								0							1									0

4															1								0								0								0							1									1

5															1								0								0								0							1									1

6															1								0								0								0							1									1

		magn.Medium	magn.Out	magn.Strong	vis.yes

1											0								0											0							0

2											1								0											0							0

3											0								0											1							0

4											0								0											0							0

5											1								0											0							0

6											0								0											1							0

We	now	have	an	input	feature	space	of	ten	variables.	Stability	is	now	either	0	for	stab	or	1
for	xstab.	Base	error	is	LX	and	three	variables	represent	the	other	categories.

The	response	can	be	created	using	the	ifelse()	function:

>	shuttle.2$use	=	ifelse(shuttle$use=="auto",1,0)

>	table(shuttle.2$use)

		0			1	

111	145

The	caret	package	also	provides	us	with	a	functionality	to	create	the	train	and	test	sets.
The	idea	is	to	index	each	observation	as	train	or	test	and	then	split	the	data	accordingly.
Let’s	do	this	with	a	70/30	train	to	test	split,	as	follows:

>	set.seed(123)

>	trainIndex	=	createDataPartition(shuttle.2$use,	p	=	.7,	list	=	FALSE,	

times	=	1)

>	head(trainIndex)

					Resample1

[1,]									1

[2,]									2

[3,]									6

[4,]									9

[5,]								10

[6,]								11

The	values	in	trainIndex	provide	us	with	a	row	number;	in	our	case,	70	percent	of	the
total	row	numbers	in	shuttle.2.	It	is	now	a	simple	case	of	creating	the	train/test
datasets	and	to	make	sure	that	the	response	variable	is	balanced	between	them.

>	shuttleTrain	=	shuttle.2[trainIndex,]

>	shuttleTest		=	shuttle.2[-trainIndex,]

>	table(shuttleTrain$use)

	0		1	

81	99	

>	table(shuttleTest$use)

	0		1	

30	46

Nicely	done!	We	are	now	ready	to	begin	building	the	neural	networks.

Modeling	and	evaluation
The	package	that	we	will	use	is	neuralnet.	The	function	in	neuralnet	will	call	for	the	use
of	a	formula	as	we	used	elsewhere,	such	as	y~x1+x2+x3+x4,	data	=	df.	In	the	past,	we
used	y~.	to	specify	all	the	other	variables	in	the	data	as	inputs.	However,	neuralnet	does
not	accommodate	this	at	the	time	of	writing	this.	The	way	around	this	limitation	is	to	use
the	as.formula()	function.	After	first	creating	an	object	of	the	variable	names,	we	will
use	this	as	an	input	in	order	to	paste	the	variables	properly	on	the	right	side	of	the
equation:

>	n	=	names(shuttleTrain)

>	n

	[1]	"stability.xstab"	"error.MM"								"error.SS"							

	[4]	"error.XL"								"sign.pp"									"wind.tail"						

	[7]	"magn.Medium"					"magn.Out"								"magn.Strong"				

[10]	"vis.yes"									"use"												

>	form	<-	as.formula(paste("use	~",	paste(n[!n	%in%	"use"],	collapse	=	"	+	

")))

>	form

use	~	stability.xstab	+	error.MM	+	error.SS	+	error.XL	+	sign.pp	+	

wind.tail	+	magn.Medium	+	magn.Out	+	magn.Strong	+	vis.yes

Keep	this	function	in	mind	for	your	own	use	as	it	may	come	in	quite	handy.	In	the
neuralnet	package,	the	function	that	we	will	use	is	appropriately	named	neuralnet().
Other	than	the	formula,	there	are	four	other	critical	arguments	that	we	will	need	to
examine:

hidden:	This	is	the	number	of	hidden	neurons	in	each	layer,	which	can	be	up	to	three
layers;	the	default	is	1
act.fct:	This	is	the	activation	function	with	the	default	logistic	and	tanh	available
err.fct:	This	is	the	function	used	to	calculate	the	error	with	the	default	“sse”;	as	we
are	dealing	with	binary	outcomes,	we	will	use	“ce”	for	cross-entropy
linear.output:	This	is	a	logical	argument	on	whether	or	not	to	ignore	act.fct	with
the	default	TRUE,	so	for	our	data,	this	will	need	to	be	FALSE

You	can	also	specify	the	algorithm.	The	default	is	resilient	with	backpropagation	and	we
will	use	it	along	with	the	default	of	one	hidden	neuron:

>	fit	=	neuralnet(form,	data=shuttleTrain,	err.fct="ce",	

linear.output=FALSE)

Here	are	the	overall	results:

>	fit$result.matrix

																																											1

error																									0.008356573154

reached.threshold													0.008074195519

steps																							689.000000000000

Intercept.to.1layhid1								-4.285590085839

stability.xstab.to.1layhid1			1.929309791976

error.MM.to.1layhid1									-1.724487179503

error.SS.to.1layhid1									-2.634918418999

error.XL.to.1layhid1									-0.438426863298

sign.pp.to.1layhid1										-0.857597732824

wind.tail.to.1layhid1									0.095087222283

magn.Medium.to.1layhid1						-0.016988896781

magn.Out.to.1layhid1										1.861116820668

magn.Strong.to.1layhid1							0.121644784735

vis.yes.to.1layhid1											6.272628328980

Intercept.to.use													32.409085601639

1layhid.1.to.use												-67.336820525475

We	can	see	that	the	error	is	extremely	low	at	0.0081.	The	number	of	steps	required	for	the
algorithm	to	reach	the	threshold,	which	is	when	the	absolute	partial	derivatives	of	the	error
function	become	smaller	than	this	threshold	(default	=	0.1).	The	highest	weight	of	the	first
neuron	is	vis.yes.to.1layhid1	at	6.27.

You	can	also	look	at	what	are	known	as	generalized	weights.	According	to	the	neuralnet
package	authors,	the	generalized	weight	is	defined	as	the	contribution	of	the	ith	covariate
to	the	log-odds:

The	generalized	weight	expresses	the	effect	of	each	covariate	xi	and	thus	has	an
analogous	interpretation	as	the	ith	regression	parameter	in	regression	models.	However,
the	generalized	weight	depends	on	all	other	covariates.	(Gunther	and	Fritsch,	2010).	The
weights	can	be	called	and	examined.	I’ve	abbreviated	the	output	to	the	first	four	variables
and	six	observations	only.	Note	that	if	you	sum	each	row,	you	will	get	the	same	number,
which	means	that	the	weights	are	equal	for	each	covariate	combination:

>	head(fit$generalized.weights[[1]])

												[,1]									[,2]									[,3]								[,4]				

1			-4.826708143		4.314287082		6.591985508	1.096847443

2			-4.751585064		4.247139344		6.489387581	1.079776065

6			-5.884240759		5.259548151		8.036290710	1.337166913

9		-11.346058891	10.141519613	15.495665693	2.578340208

10	-11.104906734		9.925969054	15.166316688	2.523539479

11	-10.952642060		9.789869358	14.958364085	2.488938025

To	visualize	the	neural	network,	simply	use	the	plot()	function:

>	plot(fit)

The	following	is	the	output	of	the	preceding	command:

This	plot	shows	the	weights	of	the	variables	and	intercepts.	You	can	also	examine	the
generalized	weights	in	a	plot.	Let’s	look	at	vis.yes	versus	wind.tail,	which	has	a	low
overall	synaptic	weight.	Notice	how	vis.yes	is	skewed	and	wind.tail	has	an	even
distribution	of	weights,	implying	little	predictive	power:

>	par(mfrow=c(1,2))

>	gwplot(fit,	selected.covariate	=	"vis.yes")

>	gwplot(fit,	selected.covariate	=	"wind.tail")

We	now	want	to	see	how	well	the	model	performs.	This	is	done	with	the	compute()
function	and	specifying	the	fit	model	and	covariates.	This	syntax	will	be	the	same	for	the
predictions	on	the	test	and	train	sets.	Once	computed,	a	list	of	the	predictions	is	created
with	$net.result:

>	res	=	compute(fit,	shuttleTrain[,1:10])

>	predTrain	=	res$net.result

These	results	are	in	probabilities,	so	let’s	turn	them	into	0	or	1	and	follow	this	up	with	a
confusion	matrix:

>	predTrain	=	ifelse(predTrain>=0.5,1,0)

>	table(predTrain,	shuttleTrain$use)

									

predTrain		0		1

								0	81		0

								1		0	99

Lo	and	behold,	the	neural	network	model	has	achieved	100	percent	accuracy.	We	will	now
hold	our	breath	and	see	how	it	does	on	the	test	set:

>	res2	=	compute(fit,	shuttleTest[,1:10])

>	predTest	=	res2$net.result

>	predTest	=	ifelse(predTest>=0.5,1,0)

>	table(predTest,	shuttleTest$use)

								

predTest		0		1

							0	29		0

							1		1	46

Only	one	false	positive	in	the	test	set.	If	you	wanted	to	identify	which	one	this	was,	use
the	which()	function	to	single	it	out,	as	follows:

>	which(predTest==1	&	shuttleTest$use==0)

[1]	62

>	shuttleTest[62,]

				stability.xstab	error.MM	error.SS	error.XL	sign.pp

203															0								1								0								0							1

				wind.tail	magn.Medium	magn.Out	magn.Strong	vis.yes

203									0											0								0											1							1

				use

203			0

It	is	row	62	in	the	test	set	and	observation	203	in	the	full	dataset.	Can	we	improve	on	this
result	and	achieve	100	percent	accuracy	in	the	test	set?	To	do	this,	we	will	increase	the
complexity	by	specifying	three	neurons	in	the	first	layer	and	two	neurons	in	the	second
layer:

>	fit2	=	neuralnet(form,	data=shuttleTrain,	hidden=c(3,2),	err.fct="ce",	

linear.output=FALSE)

The	plot	results	now	get	quite	busy	and	extremely	hard	to	interpret:

>	plot(fit2)

It’s	now	time	to	see	how	this	performs	on	both	the	datasets:

>	res	=	compute(fit2,	shuttleTrain[,1:10])

>	predTrain	=	res$net.result

>	predTrain	=	ifelse(predTrain>=0.5,1,0)

>	table(predTrain,	shuttleTrain$use)

									

predTrain		0		1

								0	81		0

								1		0	99

Perform	this	on	the	train	data	as	well:

>	res2	=	compute(fit2,	shuttleTest[,1:10])

>	predTest	=	res2$net.result

>	predTest	=	ifelse(predTest>=0.5,1,0)

>	table(predTest,	shuttleTest$use)

								

predTest		0		1

							0	29		1

							1		1	45

However,	we’ve	now	added	a	false	negative	to	the	mix.	We	added	complexity	but
increased	the	out-of-sample	variance,	as	follows:

>	which(predTest==1	&	shuttleTest$use==0)

[1]	62

>	which(predTest==0	&	shuttleTest$use==1)

[1]	63

The	false	positive	observation	has	not	changed	from	the	prior	fit	and	row	63	marks	the
false	negative.	In	this	case,	adding	complexity	did	not	improve	the	test	set’s
performance;	in	fact,	it	is	less	generalized	than	the	simpler	model.

An	example	of	deep	learning
Shifting	gears	away	from	the	Space	Shuttle,	let’s	work	through	a	practical	example	of
deep	learning,	using	the	h2o	package.	We	will	do	this	on	the	data	that	we	used	for	some	of
the	chapters:	the	Pima	Indian	diabetes	data.	In	Chapter	5,	More	Classification	Techniques
—	K-Nearest	Neighbors	and	Support	Vector	Machines,	the	best	classifier	was	the	sigmoid
kernel,	Support	Vector	Machine.	We’ve	already	gone	through	the	business	and	data
understanding	work	in	that	chapter,	so	in	this	section,	we	will	focus	on	how	to	load	the
data	in	the	H20	platform	and	run	the	deep	learning	code.

H2O	background
H2O	is	an	open	source	predictive	analytics	platform	with	prebuilt	algorithms,	such	as	k-
nearest	neighbor,	gradient	boosted	machines,	and	deep	learning.	You	can	upload	data	to
the	platform	via	Hadoop,	AWS,	Spark,	SQL,	noSQL,	or	your	hard	drive.	The	great	thing
about	it	is	that	you	can	utilize	the	machine	learning	algorithms	in	R	and,	at	a	much	greater
scale,	on	your	local	machine.	If	you	are	interested	in	learning	more,	you	can	visit	the	site,
http://h2o.ai/product/.

http://h2o.ai/product/

Data	preparation	and	uploading	it	to	H2O
What	we	will	do	here	is	prepare	the	data,	save	it	to	the	drive,	and	load	it	in	H2O.	The	data
is	in	two	different	datasets	and	we	will	first	combine	them.	We	will	also	need	to	scale	the
inputs.	For	labeled	outcomes,	the	deep	learning	algorithm	in	H2O	does	not	require
numbered	responses	but	factors,	which	means	that	we	will	not	need	to	transform	it.	This
code	gets	us	to	where	we	need	to	be.	The	rbind()	function	concatenates	the	datasets,	as
follows:

>	data(Pima.tr)

>	data(Pima.te)

>	pima	=	rbind(Pima.tr,	Pima.te)

>	pima.scale	=	as.data.frame(scale(pima[,-8]))

>	pima.scale$type	=	pima$type

>	str(pima.scale)

'data.frame':532	obs.	of		8	variables:

	$	npreg:	num		0.448	1.052	0.448	-1.062	-1.062…

	$	glu		:	num		-1.13	2.386	-1.42	1.418	-0.453…

	$	bp			:	num		-0.285	-0.122	0.852	0.365	-0.935…

	$	skin	:	num		-0.112	0.363	1.123	1.313	-0.397…

	$	bmi		:	num		-0.391	-1.132	0.423	2.181	-0.943…

	$	ped		:	num		-0.403	-0.987	-1.007	-0.708	-1.074…

	$	age		:	num		-0.708	2.173	0.315	-0.522	-0.801…

	$	type	:	Factor	w/	2	levels	"No","Yes":	1	2	1	1	1	2	1	1	1	2…

I	will	save	this	to	the	hard	drive,	but	you	can	save	it	anywhere	that	is	accepted	by	H2O.
Let’s	make	a	note	of	the	working	directory	as	well:

>	getwd()

[1]	"C:/Users/clesmeister/chap7	NN"

>	write.csv(pima.scale,	file="pimaScale.csv",	row.names=FALSE)

We	can	now	connect	to	H2O	and	start	an	instance.	Please	note	that	your	output	will	differ
than	what	is	displayed	below:

>	library(h2o)

>	localH2O	=	h2o.init()

Successfully	connected	to	http://127.0.0.1:54321/

>	h2o.getConnection()

IP	Address:	127.0.0.1	

Port						:	54321	

Session	ID:	_sid_8102ec2ab4585cc63b8186735b594e00	

Key	Count	:	39

The	H2O	function,	h2o.uploadFile(),	allows	you	to	upload/import	your	file	to	the	H2O
cloud.	The	following	functions	are	also	available	for	uploads:

h2o.importFolder

h2o.importURL

h2o.importHDFS

There	are	a	number	of	arguments	that	you	can	use	to	upload	data,	but	the	two	that	we	need
are	the	path	of	the	file	and	a	key	specification.	I	like	to	specify	the	path	outside	of	the
function,	as	follows:

>	path	=	"C:/Users/clesmeister/chap7	NN/pimaScale.csv"

We	will	specify	the	key	with	destination_frame="	"	in	the	function.	It	is	quite	simple	to
upload	the	file	and	a	percent	indicator	tracks	the	status:

>	pima.hex	=	h2o.uploadFile(path=path,	destination_frame="pima.hex")

		|===|	100%

The	data	is	now	in	H2OFrame,	which	you	can	verify	with	class(),	as	follows:

>	class(pima.hex)

[1]	"H2OFrame"

attr(,"package")

[1]	"h2o"

Many	of	the	R	commands	in	H2O	may	produce	a	different	output	than	what	you	are	used
to	seeing.	For	instance,	look	at	the	structure	of	our	data:

>	str(pima.hex)

Formal	class	'H2OFrame'	[package	"h2o"]	with	4	slots

		..@	conn						:Formal	class	'H2OConnection'	[package	"h2o"]	with	3	slots

	@	ip					:	chr	"127.0.0.1"

	@	port			:	num	54321

	@	mutable:Reference	class	'H2OConnectionMutableState'	[package	

"h2o"]	with	2	fields

	$	session_id:	chr	"_sid_8102ec2ab4585cc63b8186735b594e00"

	$	key_count	:	int	43

	and	13	methods,	of	which	1	is		possibly	relevant:

			initialize

		..@	frame_id		:	chr	"pima.hex"

		..@	finalizers:	list()

		..@	mutable			:Reference	class	'H2OFrameMutableState'	[package	"h2o"]	

with	4	fields

	$	ast						:	NULL

	$	nrows				:	num	532

	$	ncols				:	int	8

	$	col_names:	chr		"npreg"	"glu"	"bp"	"skin"	...

	and	13	methods,	of	which	1	is		possibly	relevant:

			initialize

The	head()	and	summary()	functions	work	exactly	the	same.	Here	are	the	first	six	rows	of
our	data	in	H2O	along	with	a	summary:

>	head(pima.hex)

							npreg								glu									bp							skin								bmi

1		0.4477858	-1.1300306	-0.2847739	-0.1123474	-0.3909581

2		1.0516440		2.3861862	-0.1223077		0.3627626	-1.1321178

3		0.4477858	-1.4203605		0.8524894		1.1229387		0.4228642

4	-1.0618597		1.4184201		0.3650908		1.3129827		2.1813017

5	-1.0618597	-0.4525944	-0.9346387	-0.3974135	-0.9431947

6		0.4477858	-0.7751831		0.3650908	-0.2073695		0.3937991

									ped								age	type

1	-0.4033309	-0.7075782			No

2	-0.9867069		2.1730387		Yes

3	-1.0070235		0.3145762			No

4	-0.7080796	-0.5217319			No

5	-1.0737779	-0.8005013			No

6	-0.3626978		1.8942693		Yes

>	summary(pima.hex)

	npreg																glu																		bp																		

	Min.			:-1.062e+00			Min.			:-2.098e+00			Min.			:-3.859e+00		

	1st	Qu.:-7.642e-01			1st	Qu.:-7.220e-01			1st	Qu.:-6.105e-01		

	Median	:-4.613e-01			Median	:-1.972e-01			Median	:	3.918e-02		

	Mean			:-1.252e-15			Mean			:-1.557e-16			Mean			:-1.004e-17		

	3rd	Qu.:	4.472e-01			3rd	Qu.:	6.504e-01			3rd	Qu.:	6.889e-01		

	Max.			:	4.071e+00			Max.			:	2.515e+00			Max.			:	3.127e+00		

	skin																	bmi																		ped																	

	Min.			:-2.108e+00			Min.			:-2.135e+00			Min.			:-1.213e+00		

	1st	Qu.:-6.829e-01			1st	Qu.:-7.313e-01			1st	Qu.:-7.116e-01		

	Median	:-1.847e-02			Median	:-1.715e-02			Median	:-2.541e-01		

	Mean			:	5.828e-17			Mean			:	3.085e-16			Mean			:	6.115e-17		

	3rd	Qu.:	6.459e-01			3rd	Qu.:	5.798e-01			3rd	Qu.:	4.490e-01		

	Max.			:	6.634e+00			Max.			:	4.972e+00			Max.			:	5.564e+00		

	age																		type				

	Min.			:-9.863e-01			No	:355	

	1st	Qu.:-8.024e-01			Yes:177	

	Median	:-3.396e-01											

	Mean			:-1.876e-16											

	3rd	Qu.:	5.915e-01											

	Max.			:	4.589e+00

Create	train	and	test	datasets
You	can	upload	your	own	train	and	test	partitioned	datasets	to	H2O	or	you	can	use	the
built-in	functionality.	I	will	demonstrate	the	latter	with	a	70/30	split.	The	first	thing	to	do
is	create	a	vector	of	random	and	uniform	numbers	for	our	data:

>	rand	=	h2o.runif(pima.hex,	seed	=	123)

You	can	then	build	your	partitioned	data	and	assign	it	with	your	desired	key	name,	as
follows:

>	train	=	pima.hex[rand	<=	0.7,]

>	train	=	h2o.assign(train,	key	=	"train")

>	test	=	pima.hex[rand		>	0.7,]

>	test	<-	h2o.assign(test,	key	=	"test")

With	these	created,	it	is	probably	a	good	idea	that	we	have	a	balanced	response	variable
between	the	train	and	test	sets.	To	do	this,	you	can	use	the	h2o.table()	function	and,	in
our	case,	it	would	be	column	8:

>	h2o.table(train[,8])

H2OFrame	with	2	rows	and	2	columns

		type	Count

1			No			253

2		Yes			124

>	h2o.table(test[,8])

H2OFrame	with	2	rows	and	2	columns

		type	Count

1			No			102

2		Yes				53

This	appears	well	and	good	and	with	that,	we	can	begin	the	modeling	process:

Modeling
As	we	will	see,	the	deep	learning	function	has	quite	a	few	arguments	and	parameters	that
you	can	tune.	The	thing	that	I	like	about	the	package	is	the	ability	to	keep	it	as	simple	as
possible	and	let	the	defaults	do	their	thing.	If	you	want	to	see	all	the	possibilities	along
with	the	defaults,	see	help	or	run	the	following	command:

>	args(h2o.deeplearning)

Documentation	on	all	the	arguments	and	tuning	parameters	is	available	online	at:
http://h2o.ai/docs/master/model/deep-learning/.

On	a	side	note,	you	can	run	a	demo	for	the	various	machine	learning	methods	by	just
running	demo("method").	For	instance,	you	can	go	through	the	deep	learning	demo	with
demo(h2o.deeplearning).

The	critical	items	to	specify	in	this	example	will	be	as	follows:

The	input	variable
The	response	variable
The	training	data	with	training_frame	=	train
The	testing	data	with	validation_frame	=	test
An	initial	seed	for	the	sampling
The	variable	importance	with	variable_importances	=	TRUE

When	combined,	this	code	will	create	the	deep	learning	object,	as	follows:

>	dlmodel	<-	h2o.deeplearning(x=1:7,	y=8,	training_frame	=	train,	

validation_frame	=	test,	seed	=	123,	variable_importances	=	TRUE)

		|===|	100%

An	indicator	bar	tracks	the	progress	and	with	this	relatively	small	dataset,	it	only	takes	a
couple	of	seconds.

Calling	the	dlmodel	object	produces	quite	a	bit	of	information.	The	two	things	that	I	will
show	here	are	the	confusion	matrices	for	the	train	and	test	sets:

>	dlmodel

Model	Details:

==============

								No	Yes				Error					Rate

No					204		49	0.193676		=49/253

Yes					29		95	0.233871		=29/124

Totals	233	144	0.206897		=78/377

								No	Yes				Error					Rate

No						86		16	0.156863		=16/102

Yes					18		35	0.339623			=18/53

Totals	104		51	0.219355		=34/155

The	first	matrix	shows	the	performance	on	the	test	set	with	the	columns	as	the
predictions	and	rows	as	the	actuals	and	the	model	achieved	79.3	percent	accuracy.	The
false	positive	and	false	negative	rates	are	roughly	equivalent.	The	accuracy	on	the	test

http://h2o.ai/docs/master/model/deep-learning/

data	was	78	percent,	but	with	a	higher	false	negative	rate.

A	further	exploration	of	the	model	parameters	can	also	be	called,	which	produces	a
lengthy	output:

>	dlmodel@allparameters

Let’s	have	a	look	at	the	variable	importance:

>	dlmodel@model$variable_importances

Variable	Importances:

		variable	relative_importance	scaled_importance	percentage

1						glu												1.000000										1.000000			0.156574

2							bp												0.942461										0.942461			0.147565

3				npreg												0.910888										0.910888			0.142622

4						age												0.902482										0.902482			0.141305

5					skin												0.894196										0.894196			0.140008

6						ped												0.882988										0.882988			0.138253

7						bmi												0.853734										0.853734			0.133673

The	variable	importance	is	calculated	based	on	the	so-called	Gedeon	Method.	Keep	in
mind	that	these	results	can	be	misleading.	In	the	table,	we	can	see	the	order	of	the	variable
importance,	but	they	are	all	relatively	similar	in	their	contribution	and	probably	the	table	is
not	of	much	value,	which	is	a	common	criticism	of	the	neural	network	techniques.	The
importance	is	also	subject	to	the	sampling	variation,	and	if	you	change	the	seed	value,	the
order	of	the	variable	importance	can	change	quite	a	bit.

You	are	also	able	to	see	the	predicted	values	and	put	them	in	a	data	frame,	if	you	want.	We
will	first	create	the	predicted	values:

>	dlPredict	=	h2o.predict(dlmodel,newdata=test)

>	dlPredict

H2OFrame	with	155	rows	and	3	columns

First	10	rows:

			predict								No									Yes

1							No	0.9973673	0.002632645

2						Yes	0.2167641	0.783235848

3						Yes	0.1707465	0.829253495

4						Yes	0.1609832	0.839016795

5							No	0.9740857	0.025914235

6							No	0.9957688	0.004231210

7							No	0.9989172	0.001082811

8							No	0.9342141	0.065785915

9							No	0.7045852	0.295414835

10						No	0.9003637	0.099636205

As	it	defaults	to	the	first	ten	observations,	putting	it	in	a	data	frame	will	give	us	all	of	the
predicted	values,	as	follows:

>	dlPred	=	as.data.frame(dlPredict)

>	head(dlPred)

		predict								No									Yes

1						No	0.9973673	0.002632645

2					Yes	0.2167641	0.783235848

3					Yes	0.1707465	0.829253495

4					Yes	0.1609832	0.839016795

5						No	0.9740857	0.025914235

6						No	0.9957688	0.004231210

With	this,	we	have	completed	the	introduction	to	deep	learning	in	R	using	the	capabilities
of	the	H2O	package.	It	is	simple	to	use	while	offering	plenty	of	flexibility	to	tune	the
hyperparameters	in	order	to	optimize	the	model	fit.	Enjoy!

Summary
In	this	chapter,	the	goal	was	to	get	you	up	and	running	in	the	exciting	world	of	neural
networks	and	deep	learning.	We	examined	how	the	methods	work,	their	benefits,	and
inherent	drawbacks	with	applications	to	two	different	datasets.	These	techniques	work
well	where	complex,	nonlinear	relationships	exist	in	the	data.	However,	they	are	highly
complex,	potentially	require	a	ton	of	hyperparameter	tuning,	are	the	quintessential
blackboxes,	and	mostly	not	interpretable.	We	don’t	know	why	the	self-driving	car	made	a
right	on	red,	we	just	know	that	it	did	so	properly.	I	hope	you	will	apply	these	methods	by
themselves	or	supplement	other	methods	in	an	ensemble	modeling	fashion.	Good	luck	and
good	hunting!	We	will	now	shift	gears	to	unsupervised	learning,	starting	with	clustering.

Chapter	8.	Cluster	Analysis
	 “Quickly	bring	me	a	beaker	of	wine,	so	that	I	may	wet	my	mind	and	say	something	clever.” 	

	 —Aristophanes,	Athenian	Playwright

In	the	prior	chapters,	we	focused	on	trying	to	learn	the	best	algorithm	in	order	to	solve	an
outcome	or	response,	for	example,	a	breast	cancer	diagnosis	or	level	of	Prostate	Specific
Antigen.	In	all	these	cases,	we	had	Y	and	that	Y	is	a	function	of	X	or	y	=	f(x).	In	our	data,
we	had	the	actual	Y	values	and	we	could	train	the	Xs	accordingly.	This	is	referred	to	as
supervised	learning.	However,	there	are	many	situations	where	we	try	to	learn	something
from	our	data	and	either	we	do	not	have	the	Y	or	we	actually	choose	to	ignore	it.	If	so,	we
enter	the	world	of	unsupervised	learning.	In	this	world,	we	build	and	select	our
algorithm	based	on	how	well	it	addresses	our	business	needs	versus	how	accurate	it	is.

Why	would	we	try	and	learn	without	supervision?	First	of	all,	unsupervised	learning	can
help	you	understand	and	identify	patterns	in	your	data,	which	may	be	valuable.	Second,
you	can	use	it	to	transform	your	data	in	order	to	improve	your	supervised	learning
techniques.	This	chapter	will	focus	on	the	former	and	the	next	chapter,	on	the	latter.

So,	let’s	begin	by	tackling	a	popular	and	powerful	technique	known	as	cluster	analysis.
With	cluster	analysis,	the	goal	is	to	group	the	observations	into	a	number	of	groups	(k-
groups),	where	the	members	in	a	group	are	as	similar	as	possible	while	the	members
between	groups	are	as	different	as	possible.	There	are	many	examples	of	how	this	can	help
an	organization;	here	are	just	a	few:

The	creation	of	customer	types	or	segments
The	detection	of	high-crime	areas	in	a	geography
Image	and	facial	recognition
Genetic	sequencing	and	transcription
Petroleum	and	geological	exploration

There	are	many	uses	of	cluster	analysis	but	there	are	also	many	techniques.	We	will	focus
on	the	two	most	common:	hierarchical	and	k-means.	They	are	both	effective	clustering
methods,	but	may	not	always	be	appropriate	for	the	large	and	varied	datasets	that	you	may
be	called	upon	to	analyze.	Therefore,	we	will	also	examine	Partitioning	Around
Medoids	(PAM)	using	a	Gower-based	metric	dissimilarity	matrix	as	the	input.

A	final	comment	before	moving	on.	You	may	be	asked	if	these	techniques	are	more	art
than	science	as	the	learning	is	unsupervised.	I	think	the	clear	answer	is,	“it	depends”.	This
quote	sums	it	up	nicely:

	

“The	major	obstacle	is	the	difficulty	in	evaluating	a	clustering	algorithm	without	taking	into	account	the	context:
why	does	the	user	cluster	his	data	in	the	first	place,	and	what	does	he	want	to	do	with	the	clustering	afterwards?	We
argue	that	clustering	should	not	be	treated	as	an	application-independent	mathematical	problem,	but	should	always
be	studied	in	the	context	of	its	end-use.”

	

	 —Luxburg	et	al.	(2012)

Hierarchical	clustering
The	hierarchical	clustering	algorithm	is	based	on	a	dissimilarity	measure	between
observations.	A	common	measure,	and	what	we	will	use,	is	Euclidean	distance,	but	other
distance	measures	are	available.

Hierarchical	clustering	is	an	agglomerative	or	bottom-up	technique.	By	this,	we	mean	that
all	observations	are	their	own	cluster.	From	there,	the	algorithm	proceeds	iteratively	by
searching	all	the	pairwise	points	and	finding	the	two	clusters	that	are	the	most	similar.	So,
after	the	first	iteration,	there	are	n-1	clusters	and	after	the	second	iteration,	there	are	n-2
clusters,	and	so	forth.

As	the	iterations	continue,	it	is	important	to	understand	that	in	addition	to	the	distance
measure,	we	need	to	specify	the	linkage	between	the	groups	of	observations.	Different
types	of	datasets	will	demand	that	you	use	different	cluster	linkages.	As	you	experiment
with	the	linkages,	you	may	find	that	some	may	create	highly	unbalanced	numbers	of
observations	in	one	or	more	clusters.	For	example,	if	you	have	30	observations,	one
technique	may	create	a	cluster	of	just	one	observation,	regardless	of	how	many	total
clusters	that	you	specify.	In	this	situation,	your	judgment	will	likely	be	needed	to	select	the
most	appropriate	linkage	as	it	relates	to	the	data	and	business	case.

The	following	table	lists	the	types	of	common	linkages	but	note	that	there	are	others:

Linkage Description

Ward This	minimizes	the	total	within-cluster	variance	as	measured	by	the	sum	of	squared	errors	from	the	cluster
points	to	its	centroid

Complete Distance	between	two	clusters	is	the	maximum	distance	between	an	observation	in	one	cluster	and	an
observation	in	the	other	cluster

Single Distance	between	two	clusters	is	the	minimum	distance	between	an	observation	in	one	cluster	and	an
observation	in	the	other	cluster

Average Distance	between	two	clusters	is	the	mean	distance	between	an	observation	in	one	cluster	and	an
observation	in	the	other	cluster

Centroid Distance	between	two	clusters	is	the	distance	between	the	cluster	centroids

The	output	of	hierarchical	clustering	will	be	a	dendrogram,	which	is	a	tree-like	diagram
that	shows	the	arrangement	of	the	various	clusters.

As	we	will	see,	it	can	often	be	difficult	to	identify	a	clear-cut	breakpoint	in	the	selection	of
the	number	of	clusters.	Your	decision	should	be	iterative	in	nature	and	focused	on	the
context	of	the	business	decision.

Distance	calculations
As	mentioned	previously,	Euclidean	distance	is	commonly	used	to	build	the	input	for
hierarchical	clustering.	Let’s	look	at	a	simple	example	of	how	to	calculate	it	with	two
observations	and	two	variables/features.

Let’s	say	that	observation	A	costs	$5.00	and	weighs	3	pounds.	Further,	observation	B	costs
$3.00	and	weighs	5	pounds.	We	can	place	these	values	in	the	distance	formula:	distance
between	A	and	B	is	equal	to	the	square	root	of	the	sum	of	the	squared	differences,	which	in
our	example	would	be	as	follows:

The	value	of	2.83	is	not	a	meaningful	value	in	and	of	itself,	but	is	important	in	the	context
of	the	other	pairwise	distances.	This	calculation	is	the	default	in	R	for	the	dist()	function.
You	can	specify	other	distance	calculations	(maximum,	manhattan,	canberra,	binary,	and
minkowski)	in	the	function.	We	will	avoid	going	in	detail	in	why	or	where	you	would
choose	these	over	Euclidean	distance.	This	can	get	rather	domain-specific,	for	example,	a
situation	where	Euclidean	distance	may	be	inadequate	is	where	your	data	suffers	from
high-dimensionality,	such	as	in	a	genomic	study.	It	will	take	domain	knowledge	and/or
trial	and	error	on	your	part	to	determine	the	proper	distance	measure.	One	final	note	is	to
scale	your	data	with	a	mean	of	zero	and	standard	deviation	of	one	so	that	the	distance
calculations	are	comparable.	Any	variable	with	a	larger	scale	will	have	a	larger	effect	on
distances.

K-means	clustering
With	k-means,	we	will	need	to	specify	the	exact	number	of	clusters	that	we	want.	The
algorithm	will	then	iterate	until	each	observation	belongs	to	just	one	of	the	k-clusters.	The
algorithm’s	goal	is	to	minimize	the	within-cluster	variation	as	defined	by	the	squared
Euclidean	distances.	So,	the	kth-cluster	variation	is	the	sum	of	the	squared	Euclidean
distances	for	all	the	pairwise	observations	divided	by	the	number	of	observations	in	the
cluster.

Due	to	the	iteration	process	that	is	involved,	one	k-means	result	can	differ	greatly	from
another	result	even	if	you	specify	the	same	number	of	clusters.	Let’s	see	how	this	plays
out	for	a	situation	where	we	will	specify	three	clusters:

1.	 Each	observation	is	randomly	assigned	by	the	algorithm	to	one	of	the	three	clusters.
2.	 Each	cluster	has	a	centroid	calculated	by	the	algorithm,	which	is	a	vector	of	the

variable	means	for	the	observations.	For	example,	if	you	have	five	input	variables,
your	centroid	would	be	a	vector	of	five	values.

3.	 Reshuffle	the	observations	to	the	cluster	with	the	centroid;	this	minimizes	the
Euclidean	distance.

4.	 Iterate	through	steps	2	and	3	until	the	within-cluster	variation	improves.

As	you	can	see,	the	final	result	will	vary	because	of	the	initial	assignment	in	step	1.
Therefore,	it	is	important	to	run	multiple	initial	starts	and	let	the	software	identify	the	best
solution.	In	R,	this	can	be	a	simple	process	as	we	will	see.

Gower	and	partitioning	around	medoids
As	you	conduct	clustering	analysis	in	real	life,	one	of	the	things	that	can	quickly	become
apparent	is	the	fact	that	neither	hierarchical	nor	k-means	are	specifically	designed	to
handle	mixed	datasets.	By	mixed	data,	I	mean	both	quantitative	and	qualitative	or,	more
specifically,	nominal,	ordinal,	and	interval/ratio	data.	The	reality	of	most	datasets	that	you
will	use	is	that	they	will	probably	contain	mixed	data.	There	are	a	number	of	ways	to
handle	this,	such	as	doing	Principal	Components	Analysis	(PCA)	first	in	order	to	create
latent	variables,	then	using	them	as	input	in	clustering	or	using	different	dissimilarity
calculations.	We	will	discuss	PCA	in	the	next	chapter.

With	the	power	and	simplicity	of	R,	I	prefer	to	use	the	Gower	dissimilarity	coefficient	to
turn	mixed	data	to	the	proper	feature	space.	In	R,	you	can	even	include	factors	as	input
variables	to	cluster.	Additionally,	instead	of	k-means,	I	recommend	using	the	PAM
clustering	algorithm.	PAM	is	very	similar	to	k-means	but	offers	a	couple	of	advantages.
First,	PAM	accepts	a	dissimilarity	matrix,	which	allows	the	inclusion	of	mixed	data.
Second,	it	is	more	robust	to	outliers	and	skewed	data	because	it	minimizes	a	sum	of
dissimilarities	instead	of	a	sum	of	squared	Euclidean	distances	(Reynolds,	1992).	This	is
not	to	say	that	you	must	use	Gower	and	PAM	together.	If	you	choose,	you	can	use	the
Gower	coefficients	with	hierarchical	and	I’ve	seen	arguments	for	and	against	using	it	in
the	context	of	k-means.	Additionally,	PAM	can	accept	other	linkages.	However,	they	make
an	effective	method	together	to	handle	the	mixed	data.	Let’s	take	a	quick	look	at	both	of
these	concepts	before	moving	on.

Gower
The	Gower	coefficient	compares	cases	pairwise	and	calculates	a	dissimilarity	between
them,	which	is	essentially	the	weighted	mean	of	the	contributions	of	each	variable.	It	is
defined	for	two	cases	called	i	and	j	as	follows:

Here,	Sijk	is	the	contribution	provided	by	the	kth	variable	and	Wijk	is	1	if	the	kth	variable
is	valid,	or	else	0.

For	ordinal	and	continuous	variables,	Sijk	=	1	–	(absolute	value	of	xij	–	xik)	/	rk’,	where	rk
is	the	range	of	values	for	the	kth	variable.

For	nominal	variables,	Sijk	=	1	if	xij	=	xjk’,	or	else	0.

For	binary	variables,	Sijk	is	calculated	based	on	whether	an	attribute	is	present	(+)	or	not
present	(-),	as	shown	in	the	following	table:

Variables Value	of	attribute	k

Case	i + + - -

Case	j + - + -

Sijk 1 0 0 0

Wijk 1 1 1 0

PAM
For	Partitioning	Around	Medoids,	let’s	first	define	a	medoid.	A	medoid	is	an	observation
of	a	cluster	that	minimizes	the	dissimilarity	(in	our	case,	calculated	using	the	Gower
metric)	between	the	other	observations	in	that	cluster.	So,	similar	to	k-means,	if	you
specify	five	clusters,	you	will	have	five	partitions	of	the	data.

With	the	objective	of	minimizing	the	dissimilarity	of	all	the	observations	to	the	nearest
medoid,	the	PAM	algorithm	iterates	over	the	following	steps:

1.	 Randomly	select	k	observations	as	the	initial	medoid.
2.	 Assign	each	observation	to	the	closest	medoid.
3.	 Swap	each	medoid	and	non-medoid	observation,	computing	the	dissimilarity	cost.
4.	 Select	the	configuration	that	minimizes	the	total	dissimilarity.
5.	 Repeat	steps	2	through	4	until	there	is	no	change	in	the	medoids.

Both	Gower	and	PAM	can	be	called	using	the	cluster	package	in	R.	For	Gower,	we	will
use	the	daisy()	function	in	order	to	calculate	the	dissimilarity	matrix	and	the	pam()
function	for	the	actual	partitioning.	With	this,	let’s	get	started	with	putting	these	methods
to	the	test.

Business	understanding
Until	a	couple	of	weeks	ago,	I	was	unaware	that	there	were	less	than	300	certified	Master
Sommeliers	in	the	entire	world.	The	exam,	administered	by	the	Court	of	Master
Sommeliers,	is	notorious	for	its	demands	and	high	failure	rate.	The	trials,	tribulations,	and
rewards	of	several	individuals	pursuing	the	certification	are	detailed	in	the	critically-
acclaimed	documentary,	Somm.	So,	for	this	exercise,	we	will	try	and	help	a	hypothetical
individual	struggling	to	become	a	Master	Sommelier	find	a	latent	structure	in	Italian
wines.

Data	understanding	and	preparation
Let’s	start	with	loading	the	R	packages	that	we	will	need	for	this	chapter.	As	always,	make
sure	that	you	have	installed	them	first:

>	library(cluster)	#conduct	cluster	analysis

>	library(compareGroups)	#build	descriptive	statistic	tables

>	library(HDclassif)	#contains	the	dataset

>	library(NbClust)	#cluster	validity	measures

>	library(sparcl)	#colored	dendrogram

The	dataset	is	in	the	HDclassif	package,	which	we	installed.	So,	we	can	load	the	data	and
examine	the	structure	with	the	str()	function:

>	data(wine)

>	str(wine)

'data.frame':178	obs.	of		14	variables:

	$	class:	int		1	1	1	1	1	1	1	1	1	1…

	$	V1			:	num		14.2	13.2	13.2	14.4	13.2…

	$	V2			:	num		1.71	1.78	2.36	1.95	2.59	1.76	1.87	2.15	1.64	1.35…

	$	V3			:	num		2.43	2.14	2.67	2.5	2.87	2.45	2.45	2.61	2.17	2.27…

	$	V4			:	num		15.6	11.2	18.6	16.8	21	15.2	14.6	17.6	14	16…

	$	V5			:	int		127	100	101	113	118	112	96	121	97	98…

	$	V6			:	num		2.8	2.65	2.8	3.85	2.8	3.27	2.5	2.6	2.8	2.98…

	$	V7			:	num		3.06	2.76	3.24	3.49	2.69	3.39	2.52	2.51	2.98	3.15…

	$	V8			:	num		0.28	0.26	0.3	0.24	0.39	0.34	0.3	0.31	0.29	0.22…

	$	V9			:	num		2.29	1.28	2.81	2.18	1.82	1.97	1.98	1.25	1.98	1.85…

	$	V10		:	num		5.64	4.38	5.68	7.8	4.32	6.75	5.25	5.05	5.2	7.22…

	$	V11		:	num		1.04	1.05	1.03	0.86	1.04	1.05	1.02	1.06	1.08	1.01…

	$	V12		:	num		3.92	3.4	3.17	3.45	2.93	2.85	3.58	3.58	2.85	3.55…

	$	V13		:	int		1065	1050	1185	1480	735	1450	1290	1295	1045	1045…

The	data	consists	of	178	wines	with	13	variables	of	the	chemical	composition	and	one
variable	Class,	the	label,	for	the	cultivar	or	plant	variety.	We	won’t	use	this	in	the
clustering	but	as	a	test	of	model	performance.	The	variables,	V1	through	V13,	are	the
measures	of	the	chemical	composition	as	follows:

V1:	alcohol
V2:	malic	acid
V3:	ash
V4:	alkalinity	of	ash
V5:	magnesium
V6:	total	phenols
V7:	flavonoids
V8:	non-flavonoid	phenols
V9:	proanthocyanins
V10:	color	intensity
V11:	hue
V12:	OD280/OD315
V13:	proline

The	variables	are	all	quantitative.	We	should	rename	them	to	something	meaningful	for
our	analysis.	This	is	easily	done	with	the	names()	function:

>	names(wine)	=	c("Class",	"Alcohol",	"MalicAcid",	"Ash",	"Alk_ash",	

"magnesium",	"T_phenols",	"Flavanoids",	"Non_flav",	"Proantho",	

"C_Intensity",	"Hue",	"OD280_315",	"Proline")

>	names(wine)

	[1]	"Class"							"Alcohol"					"MalicAcid"			"Ash"								

	[5]	"Alk_ash"					"magnesium"			"T_phenols"			"Flavanoids"	

	[9]	"Non_flav"				"Proantho"				"C_Intensity"	"Hue"								

[13]	"OD280_315"			"Proline"				

As	the	variables	are	not	scaled,	we	will	need	to	do	this	using	the	scale()	function.	This
will	first	center	the	data	where	the	column	mean	is	subtracted	from	each	individual	in	the
column.	Then	the	centered	values	will	be	divided	by	the	corresponding	column’s	standard
deviation.	We	can	also	use	this	transformation	to	make	sure	that	we	only	include	columns
2	through	14,	dropping	class	and	putting	it	in	a	data	frame.	This	can	all	be	done	with	one
line	of	code:

>	df	=	as.data.frame(scale(wine[,-1]))

Now,	check	the	structure	to	make	sure	that	it	all	worked	according	to	plan:

>	str(df)

'data.frame':178	obs.	of		13	variables:

	$	Alcohol				:	num		1.514	0.246	0.196	1.687	0.295…

	$	MalicAcid		:	num		-0.5607	-0.498	0.0212	-0.3458	0.2271…

	$	Ash								:	num		0.231	-0.826	1.106	0.487	1.835…

	$	Alk_ash				:	num		-1.166	-2.484	-0.268	-0.807	0.451…

	$	magnesium		:	num		1.9085	0.0181	0.0881	0.9283	1.2784…

	$	T_phenols		:	num		0.807	0.567	0.807	2.484	0.807…

	$	Flavanoids	:	num		1.032	0.732	1.212	1.462	0.661…

	$	Non_flav			:	num		-0.658	-0.818	-0.497	-0.979	0.226…

	$	Proantho			:	num		1.221	-0.543	2.13	1.029	0.4…

	$	C_Intensity:	num		0.251	-0.292	0.268	1.183	-0.318…

	$	Hue								:	num		0.361	0.405	0.317	-0.426	0.361…

	$	OD280_315		:	num		1.843	1.11	0.786	1.181	0.448…

	$	Proline				:	num		1.0102	0.9625	1.3912	2.328	-0.0378…

Before	moving	on,	let’s	do	a	quick	table	to	see	the	distribution	of	the	cultivars	or	Class:

>	table(wine$Class)

	1		2		3	

59	71	48

We	can	now	move	on	to	the	modeling	step	of	the	process.

Modeling	and	evaluation
Having	created	our	data	frame,	df,	we	can	begin	to	develop	the	clustering	algorithms.	We
will	start	with	hierarchical	and	then	try	our	hand	at	k-means.	After	this,	we	will	need	to
manipulate	our	data	a	little	bit	to	demonstrate	how	to	incorporate	mixed	data	and	conduct
PAM.

Hierarchical	clustering
To	build	a	hierarchical	cluster	model	in	R,	you	can	utilize	the	hclust()	function	in	the
base	stats	package.	The	two	primary	inputs	needed	for	the	function	are	a	distance	matrix
and	the	clustering	method.	The	distance	matrix	is	easily	done	with	the	dist()	function.
For	the	distance,	we	will	use	Euclidean	distance.	A	number	of	clustering	methods	are
available	and	the	default	for	hclust()	is	the	complete	linkage.	We	will	try	this,	but	I	also
recommend	Ward’s	linkage	method.	Ward’s	method	tends	to	produce	clusters	with	a
similar	number	of	observations.

The	complete	linkage	method	results	in	the	distance	between	any	two	clusters	that	is	the
maximum	distance	between	any	one	observation	in	a	cluster	and	any	one	observation	in
the	other	cluster.	Ward’s	linkage	method	seeks	to	cluster	the	observations	in	order	to
minimize	the	within-cluster	sum	of	squares.

It	is	noteworthy	that	the	R	method,	ward.D2,	uses	the	squared	Euclidean	distance,	which	is
indeed	Ward’s	linkage	method.	In	R,	ward.D	is	available	but	requires	your	distance	matrix
to	be	squared	values.	As	we	will	be	building	a	distance	matrix	of	non-squared	values,	we
will	require	ward.D2.

Now,	the	big	question	is	how	many	clusters	should	we	create?	The	short,	and	probably	not
very	satisfying,	answer	is	that	it	depends.	Even	though	there	are	cluster	validity	measures
to	help	with	this	dilemma—which	we	will	look	at—it	really	requires	an	intimate
knowledge	of	the	business	context,	underlying	data,	and,	quite	frankly,	trial	and	error.	As
our	sommelier	partner	is	fictional,	we	will	have	to	rely	on	the	validity	measures.	However,
that	is	no	panacea	to	selecting	the	numbers	of	clusters	as	there	are	several	dozens	of	them.

As	exploring	the	positives	and	negatives	of	the	vast	array	of	cluster	validity	measures	is
way	outside	the	scope	of	this	chapter,	we	can	turn	to	a	couple	of	papers	and	even	R	itself
to	simplify	this	problem	for	us.	A	paper	by	Miligan	and	Cooper,	1985,	explored	the
performance	of	30	different	measures/indices	on	simulated	data.	The	top	five	performers
were	CH	index,	Duda	Index,	Cindex,	Gamma,	and	Beale	Index.	Another	well-known
method	to	determine	the	number	of	clusters	is	the	gap	statistic	(Tibshirani,	Walther,	and
Hastie,	2001).	These	are	two	good	papers	for	you	to	explore	if	your	cluster	validity
curiosity	gets	the	better	of	you.

With	R,	one	can	use	the	NbClust()	function	in	the	NbClust	package	to	pull	results	on	23
indices,	including	the	top	five	from	Miligan	and	Cooper	and	the	gap	statistic.	You	can	see
a	list	of	all	the	available	indices	in	the	help	file	for	the	package.	There	are	two	ways	to
approach	this	process.	One	is	to	pick	your	favorite	index	or	indices	and	call	them.	The
other	way	is	to	include	all	of	them	in	the	analysis	and	go	with	the	majority	rules	method,
which	the	function	summarizes	for	you	nicely.	The	function	will	also	produce	a	couple	of
plots	as	well.

With	this	stage	set,	let’s	walk	through	an	example	using	the	complete	linkage	method.
When	using	the	function,	you	will	need	to	specify	the	minimum	and	maximum	number	of
clusters,	distance	measures,	and	indices	in	addition	to	the	linkage.	As	you	can	see	in	the
following	code,	we	will	create	an	object	called	numComplete.	The	function	specifications

are	for	Euclidean	distance,	minimum	number	of	clusters	two,	maximum	number	of
clusters	six,	complete	linkage,	and	all	indices.	When	you	run	the	command,	the	function
will	automatically	produce	an	output	similar	to	what	you	can	see	here—a	discussion	on
both	the	graphical	methods	and	majority	rules	conclusion:

>	numComplete	=	NbClust(df,	distance="euclidean",	min.nc=2,	max.nc=6,	

method="complete",	index="all")

***	:	The	Hubert	index	is	a	graphical	method	of	determining	the	number	of	

clusters.

In	the	plot	of	Hubert	index,	we	seek	a	significant	knee	that	corresponds	to	

a	

significant	increase	of	the	value	of	the	measure	i.e	the	significant	peak	

in	Hubert	index	second	differences	plot.	

	

***	:	The	D	index	is	a	graphical	method	of	determining	the	number	of	

clusters.	

In	the	plot	of	D	index,	we	seek	a	significant	knee	(the	significant	peak	in	

Dindex	second	differences	plot)	that	corresponds	to	a	significant	increase	

of	the	value	of	the	measure.	

*	Among	all	indices:																																																

*	1	proposed	2	as	the	best	number	of	clusters	

*	11	proposed	3	as	the	best	number	of	clusters	

*	6	proposed	5	as	the	best	number	of	clusters	

*	5	proposed	6	as	the	best	number	of	clusters	

																			*****	Conclusion	*****																												

	

*	According	to	the	majority	rule,	the	best	number	of	clusters	is	3

Going	with	the	majority	rules	method,	we	would	select	three	clusters	as	the	optimal
solution,	at	least	for	hierarchical	clustering.	The	two	plots	that	are	produced	contain	two
graphs	each.	As	the	preceding	output	states	that	you	are	looking	for	a	significant	knee	in
the	plot	(the	graph	on	the	left-hand	side)	and	the	peak	of	the	graph	on	the	right-hand	side.
This	is	the	Hubert	Index	plot:

You	can	see	that	the	bend	or	knee	is	at	three	clusters	in	the	graph	on	the	left-hand	side.
Additionally,	the	graph	on	the	right-hand	side	has	its	peak	at	three	clusters.	The	following
Dindex	plot	provides	the	same	information:

There	are	a	number	of	values	that	you	can	call	with	the	function	and	there	is	one	that	I
would	like	to	show.	This	output	is	the	best	number	of	clusters	for	each	index	and	the	index

value	for	that	corresponding	number	of	clusters.	This	is	done	with	$Best.nc.	I’ve
abbreviated	the	output	to	the	first	nine	indices:

>	numComplete$Best.nc

																					KL						CH	Hartigan			CCC				Scott

Number_clusters		5.0000		3.0000			3.0000	5.000			3.0000

Value_Index					14.2227	48.9898		27.8971	1.148	340.9634

																					Marriot			TrCovW			TraceW	Friedman

Number_clusters	3.000000e+00					3.00			3.0000			3.0000

Value_Index					6.872632e+25	22389.83	256.4861		10.6941

You	can	see	that	the	first	index,	(KL),	has	the	optimal	number	of	clusters	as	five	and	the
next	index,	(CH),	has	it	at	three.

With	three	clusters	as	the	recommended	selection,	we	will	now	compute	the	distance
matrix	and	build	our	hierarchical	cluster	object.	This	code	will	build	the	distance	matrix:

>	dis	=	dist(df,	method="euclidean")

Then,	we	will	use	this	matrix	as	the	input	for	the	actual	clustering	with	hclust():

>	hc	=	hclust(dis,	method="complete")

The	common	way	to	visualize	hierarchical	clustering	is	to	plot	a	dendrogram.	We	will	do
this	with	the	plot	function.	Note	that	hang=-1	puts	the	observations	across	the	bottom	of
the	diagram:

>	plot(hc,	hang=-1,labels=FALSE,	main="Complete-Linkage")

The	dendrogram	is	a	tree	diagram	that	shows	you	how	the	individual	observations	are
clustered	together.	The	arrangement	of	the	connections	(branches,	if	you	will)	tell	us
which	observations	are	similar.	The	height	of	the	branches	indicates	how	much	the

observations	are	similar	or	dissimilar	to	each	other	from	the	distance	matrix.	Note	that	I
specified	labels=FALSE.	This	was	done	to	aid	in	the	interpretation	because	of	the	number
of	observations.	In	a	smaller	dataset	of,	say,	no	more	than	40	observations,	the	row	names
can	be	displayed.

To	aid	in	visualizing	the	clusters,	you	can	produce	a	colored	dendrogram	using	the	sparcl
package.	To	color	the	appropriate	number	of	clusters,	you	need	to	cut	the	dendrogram	tree
to	the	proper	number	of	clusters	using	the	cutree()	function.	This	will	also	create	the
cluster	label	for	each	of	the	observations:

>	comp3	=	cutree(hc,	3)

Now,	the	comp3	object	is	used	in	the	function	to	build	the	colored	dendrogram:

>	ColorDendrogram(hc,	y	=	comp3,	main	=	"Complete",	branchlength	=	50)

Note	that	I	used	branchlength	=	50.	This	value	will	vary	based	on	your	own	data.	As	we
have	the	cluster	labels,	let’s	build	a	table	that	shows	the	count	per	cluster:

>	table(comp3)

comp3

		1			2			3		

69	58	51

Out	of	curiosity,	let’s	go	ahead	and	compare	how	this	clustering	algorithm	compared	to	the
cultivar	labels:

>	table(comp3,wine$Class)

					

comp3		1		2		3

				1	51	18		0

				2		8	50		0

				3		0		3	48

In	this	table,	the	rows	are	the	clusters	and	columns	are	the	cultivars.	This	method	matched
the	cultivar	labels	at	an	84	percent	rate.	Note	that	we	are	not	trying	to	use	the	clusters	to
predict	a	cultivar,	and	in	this	example,	we	have	no	apriori	reason	to	match	clusters	to	the
cultivars.

We	will	now	try	Ward’s	linkage.	This	is	the	same	code	as	before;	it	first	starts	with	trying
to	identify	the	number	of	clusters,	which	means	that	we	will	need	to	change	the	method	to
Ward.D2:

>	NbClust(df,	diss=NULL,	distance="euclidean",	min.nc=2,	max.nc=6,	

method="ward.D2",	index="all")

***	:	The	Hubert	index	is	a	graphical	method	of	determining	the	number	of	

clusters.

In	the	plot	of	Hubert	index,	we	seek	a	significant	knee	that	corresponds	to	

a	significant	increase	of	the	value	of	the	measure	i.e	the	significant	peak	

in	Hubert	index	second	differences	plot.	

	

***	:	The	D	index	is	a	graphical	method	of	determining	the	number	of	

clusters.	

In	the	plot	of	D	index,	we	seek	a	significant	knee	(the	significant	peak	in	

Dindex	second	differences	plot)	that	corresponds	to	a	significant	increase	

of	the	value	of	the	measure.	

*	Among	all	indices:																																																

*	2	proposed	2	as	the	best	number	of	clusters	

*	18	proposed	3	as	the	best	number	of	clusters	

*	2	proposed	6	as	the	best	number	of	clusters	

																			*****	Conclusion	*****																												

	

*	According	to	the	majority	rule,	the	best	number	of	clusters	is	3

This	time	around	also,	the	majority	rules	was	for	a	three	cluster	solution.	Looking	at	the
Hubert	Index,	the	best	solution	is	a	three	cluster	as	well:

The	Dindex	adds	further	support	to	the	three	cluster	solution:

Let’s	move	on	to	the	actual	clustering	and	production	of	the	dendrogram	for	Ward’s
linkage:

>	hcWard	=	hclust(dis,	method="ward.D2")

>	plot(hcWard,	labels=FALSE,	main="Ward's-Linkage")

The	plot	shows	three	pretty	distinct	clusters	that	are	roughly	equal	in	size.	Let’s	get	a
count	of	the	cluster	size	and	show	it	in	relation	with	the	cultivar	labels:

>	ward3	=	cutree(hcWard,	3)

>	table(ward3,wine$Class)

					

ward3		1		2		3

				1	59		5		0

				2		0	58		0

				3		0		8	48

So,	cluster	one	has	64	observations,	cluster	two	has	58,	and	cluster	three	has	56.	This
method	matches	the	cultivar	categories	closer	than	using	complete	linkage.

With	another	table,	we	can	compare	how	the	two	methods	match	observations:

>	table(comp3,	ward3)

					ward3

comp3		1		2		3

				1	53	11		5

				2	11	47		0

				3		0		0	51

While	cluster	three	for	each	method	is	pretty	close,	the	other	two	are	not.	The	question
now	is	how	do	we	identify	what	the	differences	are	for	the	interpretation?	In	many
examples,	the	datasets	are	very	small	and	you	can	look	at	the	labels	for	each	cluster.	In	the
real	world,	this	is	often	impossible.	A	good	way	to	compare	is	to	use	the	aggregate()
function,	summarizing	on	a	statistic	such	as	the	mean	or	median.	Additionally,	instead	of
doing	it	on	the	scaled	data,	let’s	try	it	on	the	original	data.	In	the	function,	you	will	need	to
specify	the	dataset,	what	you	are	aggregating	it	by,	and	the	summary	statistic:

>	aggregate(wine[,-1],list(comp3),mean)

		Group.1		Alcohol	MalicAcid						Ash		Alk_ash	magnesium	T_phenols

1							1	13.40609		1.898986	2.305797	16.77246	105.00000		2.643913

2							2	12.41517		1.989828	2.381379	21.11724		93.84483		2.424828

3							3	13.11784		3.322157	2.431765	21.33333		99.33333		1.675686

		Flavanoids		Non_flav	Proantho	C_Intensity							Hue	OD280_315		Proline

1		2.6689855	0.2966667	1.832899				4.990725	1.0696522		2.970000	984.6957

2		2.3398276	0.3668966	1.678103				3.280345	1.0579310		2.978448	573.3793

3		0.8105882	0.4443137	1.164314				7.170980	0.6913725		1.709804	622.4902

This	gave	us	the	mean	by	the	cluster	for	each	of	the	13	variables	in	the	data.	With	complete
linkage	done,	let’s	give	Ward	a	try:

>	aggregate(wine[,-1],list(ward3),mean)

		Group.1		Alcohol	MalicAcid						Ash		Alk_ash	magnesium	T_phenols

1							1	13.66922		1.970000	2.463125	17.52812	106.15625		2.850000

2							2	12.20397		1.938966	2.215172	20.20862		92.55172		2.262931

3							3	13.06161		3.166607	2.412857	21.00357		99.85714		1.694286

		Flavanoids		Non_flav	Proantho	C_Intensity						Hue	OD280_315			Proline

1		3.0096875	0.2910937	1.908125				5.450000	1.071406		3.158437	1076.0469

2		2.0881034	0.3553448	1.686552				2.895345	1.060000		2.862241		501.4310

3		0.8478571	0.4494643	1.129286				6.850179	0.721000		1.727321		624.9464

The	numbers	are	very	close.	The	cluster	one	for	Ward’s	method	does	have	slightly	higher
values	for	all	the	variables.	For	cluster	two	of	Ward’s	method,	the	mean	values	are	smaller
except	for	Hue.	This	would	be	something	to	share	with	someone	who	has	the	domain
expertise	to	assist	in	the	interpretation.	We	can	help	this	effort	by	plotting	the	values	for
the	variables	by	the	cluster	for	the	two	methods.	A	nice	plot	to	compare	distributions	is	the
boxplot.	The	boxplot	will	show	us	the	minimum,	first	quartile,	median,	third	quartile,
maximum,	and	potential	outliers.	Let’s	build	a	comparison	plot	with	two	boxplot	graphs
with	the	assumption	that	we	are	curious	about	the	Proline	values	for	each	clustering
method.	The	first	thing	to	do	is	prepare	our	plot	area	in	order	to	display	the	graphs	side	by
side.	This	is	done	with	the	par()	function:

>	par(mfrow=c(1,2))

Here,	we	specified	that	we	wanted	one	row	and	two	columns	with	mfrow=c(1,2)).	If	you
want	it	as	two	rows	and	one	column,	then	it	would	have	been	mfrow=c(2,1)).

With	the	boxplot()	function	in	R,	your	variables	for	the	x	and	y	axis	need	to	be	in	the
same	dataset	and	so	we	will	need	to	turn	the	clusters	from	both	the	methods	to	variables	in
the	wine	dataset	as	follows:

>	wine$comp_cluster	=	comp3

>	wine$ward_cluster	=	ward3

In	the	boxplot()	function,	we	will	need	to	specify	that	the	y	axis	values	are	a	function	of
the	x	axis	values	with	the	tilde	~	symbol:

>	boxplot(Proline~comp_cluster,	data=wine,	main="Proline	by	Complete	

Linkage")

>	boxplot(Proline~ward_cluster,	data=wine,	main="Proline	by	Ward's	

Linkage")

Looking	at	the	boxplot,	the	thick	boxes	represent	the	first	quartile,	median	(the	thick
horizontal	line	in	the	box),	and	the	third	quartile,	which	is	the	interquartile	range.	The
ends	of	the	dotted	lines,	commonly	referred	to	as	whiskers	represent	the	minimum	and
maximum	values.	You	can	see	that	cluster	two	in	complete	linkage	has	five	small	circles
above	the	maximum.	These	are	known	as	suspected	outliers	and	are	calculated	as	greater
than	plus	or	minus	1.5	times	the	interquartile	range.	Any	value	that	is	greater	than	plus	or
minus	three	times	the	interquartile	range	are	deemed	outliers	and	would	be	represented	as
solid	black	circles.	For	what	it’s	worth,	clusters	one	and	two	of	Ward’s	linkage	have
tighter	interquartile	ranges	with	no	suspected	outliers.	Looking	at	the	boxplots	for	each	of
the	variables	could	help	you	and	a	domain	expert	can	determine	the	best	hierarchical
clustering	method	to	accept.	With	this	in	mind,	let’s	move	on	to	k-means	clustering.

K-means	clustering
As	we	did	with	hierarchical	clustering,	we	can	also	use	NbClust()	to	determine	the
optimum	number	of	clusters	for	k-means.	All	you	need	to	do	is	specify	kmeans	as	the
method	in	the	function.	Let’s	also	loosen	up	the	maximum	number	of	clusters	to	15.	I’ve
abbreviated	the	following	output	to	just	the	majority	rules	portion:

>	NbClust(df,	min.nc=2,	max.nc=15,	method="kmeans")

*	Among	all	indices:																																																

*	4	proposed	2	as	the	best	number	of	clusters	

*	15	proposed	3	as	the	best	number	of	clusters	

*	1	proposed	10	as	the	best	number	of	clusters	

*	1	proposed	12	as	the	best	number	of	clusters	

*	1	proposed	14	as	the	best	number	of	clusters	

*	1	proposed	15	as	the	best	number	of	clusters	

																			*****	Conclusion	*****																												

	

*	According	to	the	majority	rule,	the	best	number	of	clusters	is	3

Once	again,	three	clusters	appear	to	be	the	optimum	solution.	Here	is	the	Hubert	plot,
which	confirms	this:

In	R,	we	can	use	the	kmeans()	function	to	do	this	analysis.	In	addition	to	the	input	data,
we	have	to	specify	the	number	of	clusters	we	are	solving	for	and	a	value	for	random
assignments,	the	nstart	argument.	We	will	also	need	to	specify	a	random	seed:

>	set.seed(1234)

>	km=kmeans(df,3,nstart=25)

Creating	a	table	of	the	clusters	gives	us	a	sense	of	the	distribution	of	the	observations	in

them:

>	table(km$cluster)

	1		2		3	

62	65	51

The	number	of	observations	per	cluster	is	well-balanced.	I	have	seen	on	a	number	of
occasions	with	larger	datasets	and	many	more	variables	that	no	number	of	k-means	yields
a	promising	and	compelling	result.	Another	way	to	analyze	the	clustering	is	to	look	at	a
matrix	of	the	cluster	centers	for	each	variable	in	each	cluster:

>	km$centers

					Alcohol		MalicAcid								Ash				Alk_ash			magnesium			T_phenols

1		0.8328826	-0.3029551		0.3636801	-0.6084749		0.57596208		0.88274724

2	-0.9234669	-0.3929331	-0.4931257		0.1701220	-0.49032869	-0.07576891

3		0.1644436		0.8690954		0.1863726		0.5228924	-0.07526047	-0.97657548

			Flavanoids				Non_flav				Proantho	C_Intensity								Hue		OD280_315

1		0.97506900	-0.56050853		0.57865427			0.1705823		0.4726504		0.7770551

2		0.02075402	-0.03343924		0.05810161		-0.8993770		0.4605046		0.2700025

3	-1.21182921		0.72402116	-0.77751312			0.9388902	-1.1615122	-1.2887761

					Proline

1		1.1220202

2	-0.7517257

3	-0.4059428

Note	that	cluster	one	has,	on	an	average,	a	higher	alcohol	content.	Let’s	produce	a	boxplot
to	look	at	the	distribution	of	alcohol	content	in	the	same	manner	as	we	did	before	and	also
compare	it	to	Ward’s:

>	wine$km_cluster	=	km$cluster

>	boxplot(Alcohol~km_cluster,	data=wine,	main="Alcohol	Content,	K-Means")

>	boxplot(Alcohol~ward_cluster,	data=wine,	main="Alcohol	Content,	Ward's")

The	alcohol	content	for	each	cluster	is	almost	exactly	the	same.	On	the	surface,	this	tells
me	that	three	clusters	is	the	proper	latent	structure	for	the	wines	and	there	is	little
difference	between	using	k-means	or	hierarchical	clustering.	Finally,	let’s	do	the
comparison	of	the	k-means	clusters	versus	the	cultivars:

>	table(km$cluster,	wine$Class)

			

					1		2		3

		1	59		3		0

		2		0	65		0

		3		0		3	48

This	is	very	similar	to	the	distribution	produced	by	Ward’s	method	and	either	one	would
probably	be	acceptable	to	our	hypothetical	sommelier.	However,	to	demonstrate	how	you
can	cluster	on	data	with	both	numeric	and	non-numeric	values,	let’s	work	through	a	final
example.

Clustering	with	mixed	data
To	begin	this	step,	we	will	need	to	wrangle	our	data	a	little	bit.	As	this	method	can	take
variables	that	are	factors,	we	will	convert	alcohol	to	either	high	or	low	content	as	well	as
incorporate	the	cultivar	class	as	a	factor.	The	easiest	step	is	to	incorporate	the	cultivars:

>	df$class	=	as.factor(wine$Class)

To	change	alcohol,	it	also	takes	only	one	line	of	code	but	we	will	need	to	utilize	the
ifelse()	function	and	change	the	variable	to	a	factor.	What	this	will	accomplish	is	if
alcohol	is	greater	than	zero,	it	will	be	High,	otherwise,	it	will	be	Low:

>	df$Alcohol	=	as.factor(ifelse(df$Alcohol>0,"High","Low"))

Check	the	structure	to	verify	that	it	all	worked:

>	str(df)

'data.frame':178	obs.	of		17	variables:

	$	Alcohol					:	Factor	w/	2	levels	"High","Low":	1	1	1	1	1	1	1	1	1	1…

	$	MalicAcid			:	num		-0.5607	-0.498	0.0212	-0.3458	0.2271…

	$	Ash									:	num		0.231	-0.826	1.106	0.487	1.835…

	$	Alk_ash					:	num		-1.166	-2.484	-0.268	-0.807	0.451…

	$	magnesium			:	num		1.9085	0.0181	0.0881	0.9283	1.2784…

	$	T_phenols			:	num		0.807	0.567	0.807	2.484	0.807…

	$	Flavanoids		:	num		1.032	0.732	1.212	1.462	0.661…

	$	Non_flav				:	num		-0.658	-0.818	-0.497	-0.979	0.226…

	$	Proantho				:	num		1.221	-0.543	2.13	1.029	0.4…

	$	C_Intensity	:	num		0.251	-0.292	0.268	1.183	-0.318…

	$	Hue									:	num		0.361	0.405	0.317	-0.426	0.361…

	$	OD280_315			:	num		1.843	1.11	0.786	1.181	0.448…

	$	Proline					:	num		1.0102	0.9625	1.3912	2.328	-0.0378…

	$	comp_cluster:	num		-1.1	-1.1	-1.1	-1.1	0.124…

	$	ward_cluster:	num		-1.16	-1.16	-1.16	-1.16	-1.16…

	$	km_cluster		:	num		-1.18	-1.18	-1.18	-1.18	-1.18…

	$	class							:	Factor	w/	3	levels	"1","2","3":	1	1	1	1	1	1	1	1	1	1…

We	are	now	ready	to	create	the	dissimilarity	matrix	using	the	daisy()	function	from	the
cluster	package	and	specifying	the	method	as	gower:

>	disMat	=	daisy(df,	metric="gower")

The	creation	of	the	cluster	object—let’s	call	it	pamFit—is	done	with	the	pam()	function,
which	is	a	part	of	the	cluster	package.	We	will	create	three	clusters	in	this	example	and
create	a	table	of	the	cluster	size:

>	set.seed(123)

>	pamFit	=	pam(disMat,	k=3)

>	table(pamFit$clustering)

	1		2		3	

60	69	49

Now,	let’s	see	how	it	does	compared	to	the	cultivar	labels:

>	table(pamFit$clustering,	wine$Class)

			

					1		2		3

		1	59		1		0

		2		0	69		0

		3		0		1	48

Well,	no	surprise	that	by	actually	including	the	cultivar	class,	the	clusters	almost	achieved
a	perfect	match.	So,	let’s	take	this	solution	and	build	a	descriptive	statistics	table	using	the
power	of	the	compareGroups	package.	In	base	R,	creating	presentation-worthy	tables	can
be	quite	difficult	and	this	package	offers	an	excellent	solution.	The	first	step	is	to	create	an
object	of	the	descriptive	statistics	by	the	cluster	with	the	compareGroups()	function	of	the
package.	Then,	using	createTable(),	we	will	turn	the	statistics	to	an	easy-to-export	table,
so	we	will	do	this	as	a	.csv.	If	you	want,	you	can	also	export	the	table	as	a	.pdf,	HTML,	or
the	LaTeX	format:

>	df$cluster	=	pamFit$clustering

>	group	=	compareGroups(cluster~.,	data=df)

>	clustab	=	createTable(group)

>	clustab

--------Summary	descriptives	table	by	'cluster'---------

																		1												2												3							p.overall	

																	N=60									N=69									N=49															

¯¯¯	

Alcohol:																																													<0.001			

				High						58	(96.7%)			6	(8.70%)				28	(57.1%)												

				Low								2	(3.33%)		63	(91.3%)				21	(42.9%)												

MalicAcid				-0.31	(0.62)	-0.37	(0.89)	0.90	(0.97)			<0.001			

Ash										0.28	(0.89)		-0.42	(1.14)	0.25	(0.67)			<0.001			

Alk_ash						-0.75	(0.76)	0.24	(1.00)		0.58	(0.67)			<0.001			

magnesium				0.43	(0.77)		-0.34	(1.18)	-0.05	(0.77)		<0.001			

T_phenols				0.87	(0.54)		-0.06	(0.86)	-0.99	(0.56)		<0.001			

Flavanoids			0.96	(0.40)		0.04	(0.70)		-1.23	(0.31)		<0.001			

Non_flav					-0.58	(0.56)	0.00	(0.98)		0.71	(1.00)			<0.001			

Proantho					0.55	(0.72)		0.05	(1.06)		-0.75	(0.72)		<0.001			

C_Intensity		0.20	(0.53)		-0.87	(0.38)	0.99	(1.00)			<0.001			

Hue										0.46	(0.51)		0.44	(0.89)		-1.19	(0.51)		<0.001			

OD280_315				0.77	(0.50)		0.25	(0.69)		-1.30	(0.38)		<0.001			

Proline						1.14	(0.74)		-0.72	(0.51)	-0.38	(0.37)		<0.001			

comp_cluster	-0.94	(0.42)	-0.14	(0.59)	1.35	(0.00)			<0.001			

ward_cluster	-1.16	(0.00)	0.11	(0.49)		1.27	(0.00)			<0.001			

km_cluster			-1.16	(0.16)	0.06	(0.34)		1.33	(0.00)			<0.001			

class:																																															<0.001			

				1									59	(98.3%)			0	(0.00%)				0	(0.00%)													

				2									1	(1.67%)				69	(100%)				1	(2.04%)													

				3									0	(0.00%)				0	(0.00%)				48	(98.0%)												

¯¯¯

This	table	shows	the	proportion	of	the	factor	levels	by	the	cluster,	and	for	the	numeric

variables,	the	mean	and	standard	deviation	are	displayed	in	parentheses.	To	export	the
table	to	a	.csv	file,	just	use	the	export2csv()	function:

>	export2csv(clustab,file="wine_clusters.csv")

If	you	open	this	file,	you	will	get	this	table,	which	is	conducive	to	further	analysis	and	can
be	easily	manipulated	for	the	presentation	purposes:

Summary
In	this	chapter,	we	started	to	explore	unsupervised	learning	techniques.	We	focused	on
cluster	analysis	to	both	provide	data	reduction	and	data	understanding	of	the	observations.
Three	methods	were	introduced:	the	traditional	hierarchical	and	k-means	clustering
algorithms	along	with	the	Gower	metric	and	PAM	for	mixed	data.	We	applied	these	three
methods	to	find	a	structure	in	Italian	wines	coming	from	three	different	cultivars	and
examined	the	results.	In	the	next	chapter,	we	will	continue	exploring	unsupervised
learning,	but	instead	of	finding	structure	among	the	observations,	we	will	focus	on	finding
structure	among	the	variables	in	order	to	create	new	features	that	can	be	used	in	a
supervised	learning	problem.

Chapter	9.	Principal	Components
Analysis
	 “Some	people	skate	to	the	puck.	I	skate	to	where	the	puck	is	going	to	be.” 	

	 —Wayne	Gretzky

This	chapter	is	the	second	one	where	we	will	focus	on	the	unsupervised	learning
techniques.	In	the	prior	chapter,	we	covered	cluster	analysis,	which	provides	us	with	the
groupings	of	similar	observations.	In	this	chapter,	we	will	see	how	to	reduce	the
dimensionality	and	improve	the	understanding	of	our	data	by	grouping	the	correlated
variables	with	Principal	Components	Analysis	(PCA).	Then,	we	will	use	the	principal
components	in	supervised	learning.

In	many	datasets,	particularly	in	the	social	sciences,	you	will	see	many	variables	highly
correlated	with	each	other.	It	may	additionally	suffer	from	high	dimensionality	or,	as	it	is
known,	the	curse	of	dimensionality.	This	is	a	problem	because	the	number	of	samples
needed	to	estimate	a	function	grows	exponentially	with	the	number	of	input	features.	In
such	datasets,	there	may	be	the	case	that	some	variables	are	redundant	as	they	end	up
measuring	the	same	constructs,	for	example,	income	and	poverty	or	depression	and
anxiety.	The	goal	then	is	to	use	PCA	in	order	to	create	a	smaller	set	of	variables	that
capture	most	of	the	information	from	the	original	set	of	variables,	thus	simplifying	the
dataset	and	often	leading	to	hidden	insights.	These	new	variables	(principal	components)
are	highly	uncorrelated	with	each	other.	In	addition	to	supervised	learning,	it	is	also	very
common	to	use	these	components	to	perform	data	visualization.

From	over	a	decade	of	either	doing	or	supporting	analytics	using	PCA,	it	has	been	my
experience	that	it	is	widely	used	but	poorly	understood,	especially	among	people	who
don’t	do	the	analysis	but	consume	the	results.	It	is	intuitive	to	understand	that	you	are
creating	a	new	variable	from	the	other	correlated	variables.	However,	the	technique	itself
is	shrouded	in	potentially	misunderstood	terminology	and	mathematical	concepts	that
often	bewilder	the	layperson.	The	intention	here	is	to	provide	a	good	foundation	on	what	it
is	and	how	to	use	it.

An	overview	of	the	principal	components
PCA	is	the	process	of	finding	the	principal	components.	What	exactly	are	these?	We	can
consider	that	a	component	is	a	normalized	linear	combination	of	the	features.	(James,
2012)	The	first	principal	component	in	a	dataset	is	the	linear	combination	that	captures	the
maximum	variance	in	the	data.	A	second	component	is	created	by	selecting	another	linear
combination	that	maximizes	the	variance	with	the	constraint	that	its	direction	is
perpendicular	to	the	first	component.	The	subsequent	components	(equal	to	the	number	of
variables)	would	follow	this	same	rule.

A	couple	of	things	here.	This	definition	describes	the	linear	combination,	which	is	one	of
the	key	assumptions	in	PCA.	If	you	ever	try	and	apply	PCA	to	a	dataset	of	variables
having	a	low	correlation,	you	will	likely	end	up	with	a	meaningless	analysis.	Another	key
assumption	is	that	the	mean	and	variance	for	a	variable	are	sufficient	statistics.	What	this
tells	us	is	that	the	data	should	fit	a	normal	distribution	so	that	the	covariance	matrix	fully
describes	our	dataset,	that	is,	multivariate	normality.	PCA	is	fairly	robust	to	non-normally
distributed	data	and	is	even	used	in	conjunction	with	binary	variables,	so	the	results	are
still	interpretable.

Now,	what	is	this	direction	described	here	and	how	is	the	linear	combination	determined?
The	best	way	to	grasp	this	subject	is	with	a	visualization.	Let’s	take	a	small	dataset	with
two	variables	and	plot	it.	PCA	is	sensitive	to	scale,	so	the	data	has	been	scaled	with	a
mean	of	zero	and	standard	deviation	of	one.	You	can	see	in	the	following	figure	that	this
data	happens	to	form	the	shape	of	an	oval	with	the	diamonds	representing	each
observation:

Looking	at	the	plot,	the	data	has	the	most	variance	along	the	x	axis,	so	we	can	draw	a
dashed	horizontal	line	to	represent	our	first	principal	component	as	shown	in	the
following	image.	This	component	is	the	linear	combination	of	our	two	variables	or	PC1	=
α11X1	+	α12X2’,	where	the	coefficient	weights	are	the	variable	loadings	on	the	principal
component.	They	form	the	basis	of	the	direction	along	which	the	data	varies	the	most.

This	equation	is	constrained	by	1	in	order	to	prevent	the	selection	of	arbitrarily	high
values.	Another	way	to	look	at	this	is	that	the	dashed	line	minimizes	the	distance	between
itself	and	the	data	points.	This	distance	is	shown	for	a	couple	of	points	as	arrows,	as
follows:

The	second	principal	component	is	then	calculated	in	the	same	way,	but	it	is
uncorrelated	with	the	first,	that	is,	its	direction	is	at	a	right	angle	or	orthogonal	to	the	first
principal	component.	The	following	plot	shows	the	second	principal	component	added	as
a	dotted	line:

With	the	principal	component	loadings	calculated	for	each	variable,	the	algorithm	will
then	provide	us	with	the	principal	component	scores.	The	scores	are	calculated	for	each
principal	component	for	each	observation.	For	PC1	and	the	first	observation,	this	would
equate	to	the	formula:	Z11	=	α11	*	(X11	–	average	of	X1)	+	α12	*	(X12	–	average	of	X2).
For	PC2	and	the	first	observation,	the	equation	would	be	Z12	=	α21	*	(X11	–	average	of
X2)	+	α22	*	(X12	–	average	of	X2).	These	principal	component	scores	are	now	the	new

feature	space	to	be	used	in	whatever	analysis	you	will	undertake.

Recall	that	the	algorithm	will	create	as	many	principal	components	as	there	are	variables,
accounting	for	100	percent	of	the	possible	variance.	So,	how	do	we	narrow	down	the
components	to	achieve	the	original	objective	in	the	first	place?	There	are	some	heuristics
that	one	can	use,	and	in	the	upcoming	modeling	process,	we	will	look	at	the	specifics	but	a
common	method	to	select	a	principal	component	is	if	its	eigenvalue	is	greater	than	one.
While	the	algebra	behind	the	estimation	of	eigenvalues	and	eigenvectors	is	outside	the
scope	of	this	book,	it	is	important	to	discuss	what	they	are	and	how	they	are	used	in	PCA.

Recall	that	the	equation	for	the	first	principal	component	is	PC1	=	α11X1	+	α12X2.	The
optimized	linear	weights	are	determined	using	linear	algebra	in	order	to	create	what	is
referred	to	as	an	eigenvector.	They	are	optimal	because	no	other	possible	combination	of
weights	could	explain	variation	better	than	they	do.	The	eigenvalue	for	a	principal
component	then	is	the	total	amount	of	variation	that	it	explains	in	the	entire	dataset.	As	the
first	principal	component	accounts	for	the	largest	amount	of	variation,	it	will	have	the
largest	eigenvalue.	The	second	component	will	have	the	second	highest	eigenvalue	and	so
forth.	So,	an	eigenvalue	greater	than	one	indicates	that	the	principal	component	accounts
for	more	variance	than	any	of	the	original	variables	does	by	itself.	If	you	standardize	the
sum	of	all	the	eigenvalues	to	one,	you	will	have	the	percentage	of	the	total	variance	that
each	component	explains.	This	will	also	aid	you	in	determining	a	proper	cut-off	point.

The	eigenvalue	criterion	is	certainly	not	a	hard-and-fast	rule	and	must	be	balanced	with
your	knowledge	of	the	data	and	business	problem	at	hand.	Once	you	have	selected	the
number	of	principal	components,	you	can	rotate	them	in	order	to	simplify	their
interpretation.

Rotation
Should	you	rotate	or	not?	As	stated	previously,	rotation	helps	in	the	interpretation	of	the
principal	components	by	modifying	the	loadings	of	each	variable.	The	overall	variation
explained	by	the	rotated	number	of	components	will	not	change,	but	the	contributions	to
the	total	variance	explained	by	each	component	will	change.	What	you	will	find	by
rotation	is	that	the	loading	values	will	either	move	farther	or	closer	to	zero,	theoretically
aiding	in	identifying	those	variables	that	are	important	to	each	principal	component.	This
is	an	attempt	to	associate	a	variable	to	only	one	principal	component.	Remember	that	this
is	unsupervised	learning,	so	you	are	trying	to	understand	your	data,	not	test	some
hypothesis.	In	short,	rotation	aids	you	in	this	endeavor.

The	most	common	form	of	principal	component	rotation	is	known	as	varimax.	There	are
other	forms	such	as	quartimax	and	equimax,	but	we	will	focus	on	varimax	rotation.	In
my	experience,	I’ve	never	seen	the	other	methods	provide	better	solutions.	Trial	and	error
on	your	part	may	be	the	best	way	to	decide	the	issue.

With	varimax,	we	are	maximizing	the	sum	of	the	variances	of	the	squared	loadings.	The
varimax	procedure	rotates	the	axis	of	the	feature	space	and	their	coordinates	without
changing	the	locations	of	the	data	points.	Perhaps,	the	best	way	to	demonstrate	this	is	via
another	simple	illustration.	Let’s	assume	that	we	have	a	dataset	of	variables	A	through	G
and	we	have	two	principal	components.	Plotting	this	data,	we	will	end	up	with	the
following	illustration:

For	the	sake	of	argument,	let’s	say	that	variable	A‘s	loadings	are	-0.4	on	PC1	and	0.1	on
PC2.	Now,	let’s	say	that	variable	D‘s	loadings	are	0.4	on	PC1	and	-0.3	on	PC2.	For	point
E,	the	loadings	are	-0.05	and	-0.7,	respectively.	Note	that	the	loadings	will	follow	the
direction	of	the	principal	component.	After	running	a	varimax	procedure,	the	rotated
components	will	look	as	follows:

The	following	are	the	new	loadings	on	PC1	and	PC2	after	rotation:

Variable	A:	-0.5	and	0.02
Variable	D:	0.5	and	-0.3
Variable	E:	0.15	and	-0.75

The	loadings	have	changed	but	the	data	points	have	not.	With	this	simple	illustration,	we
can’t	say	that	we	have	simplified	the	interpretation,	but	this	should	help	you	understand
what	is	happening	during	the	rotation	of	the	principal	components.

Business	understanding
For	this	example,	we	will	delve	into	the	world	of	sports;	in	particular,	the	National
Hockey	League	(NHL).	Much	work	has	been	done	on	baseball	(think	of	the	book	and
movie,	Moneyball)	and	football;	both	are	American	and	games	that	people	around	the
world	play	with	their	feet.	For	my	money,	there	is	no	better	spectator	sport	than	hockey.
Perhaps,	that	is	an	artifact	of	growing	up	on	the	frozen	prairie	of	North	Dakota.
Nonetheless,	we	can	consider	this	analysis	as	our	effort	to	start	a	Moneypuck	movement.

In	this	analysis,	we	will	look	at	the	statistics	for	30	NHL	teams	and	download	the	data
from	a	table	at	www.nhl.com.	The	goal	is	to	build	a	model	that	predicts	the	total	points	for
a	team	from	an	input	feature	space	developed	using	PCA	in	order	to	provide	us	with	some
insight	on	what	it	takes	to	be	a	top	professional	team.	There	will	be	14	variables	included
in	the	PCA	and	we	can	reasonably	expect	to	end	up	with	less	than	half	a	dozen	principal
components.

It	is	important	to	understand	how	the	NHL	awards	points	to	the	teams.	Unlike	football	or
baseball,	where	only	wins	and	losses	count,	professional	hockey	uses	the	following	point
system	for	each	game:

The	winner	gets	two	points	whether	that	is	in	regulation,	overtime,	or	as	a	result	of
the	post-overtime	shootout
A	regulation	loser	receives	no	points
An	overtime	or	shootout	loser	receives	one	point;	the	so-called	loser	point

The	NHL	started	this	point	system	in	2005	and	it	is	not	without	controversy,	but	it	hasn’t
detracted	from	the	game’s	elegant	and	graceful	violence.

http://www.nhl.com/

Data	understanding	and	preparation
To	begin	with,	we	will	load	the	necessary	packages	in	order	to	download	the	data	and
conduct	the	analysis.	Please	ensure	that	you	have	these	packages	installed	prior	to	loading:

>	library(corrplot)	#correlation	plot

>	library(FactoMineR)	#additional	PCA	analysis

>	library(ggplot2)	#support	scatterplot

>	library(GPArotation)	#supports	rotation

>	library(psych)	#PCA	package

The	data	is	available	online	as	a	comma	delimited	file.	My	original	intention	was	to	show
how	to	use	R	to	scrape	a	table,	in	this	case,	on	the	website	nhl.com.	However,	with	the
number	of	periodic	changes	to	websites,	the	code	to	do	this	may	become	useless.
Therefore,	I’ve	compiled	the	data	and	stored	it	on	textloader.com.	The	first	thing	to	do	is
create	an	object	containing	the	URL	as	follows:

>	url="http://textuploader.com/ae6t4/raw"

Now,	just	create	the	dataset,	calling	it	nhl	using	the	read.csv()	function	with
as.data.frame()	as	a	wrapper.	Also,	as	no	headings	exist	in	the	data,	specify	header	=
FALSE:

>	nhl	=	as.data.frame(read.csv(url,	header=FALSE))

nhl

To	verify	that	we	have	the	correct	data,	let’s	use	the	data	structure	function,	str().	For
brevity,	I’ve	included	only	the	first	few	lines	of	the	output	of	the	command:

>	str(nhl)

'data.frame':	30	obs.	of		25	variables:

	$	V1	:	int		1	2	3	4	5	6	7	8	9	10…

	$	V2	:	Factor	w/	30	levels	"ANAHEIM","ARIZONA",..:	20	25	1	16	26	7	28	17	

19	15…

	$	V3	:	int		82	82	82	82	82	82	82	82	82	82…

	$	V4	:	int		53	51	51	50	50	48	48	47	47	46…

The	next	thing	that	we	will	need	to	do	is	look	at	the	variable	names.	When	downloading
an	HTML	table,	this	can	produce	the	following	nonsensical	names	and	we	will	need	to
specify	our	own:

>	names(nhl)

[1]	"V1"		"V2"		"V3"		"V4"		"V5"		"V6"		"V7"		"V8"		"V9"		"V10"	"V11"	"V12"

[13]	"V13"	"V14"	"V15"	"V16"	"V17"	"V18"	"V19"	"V20"	"V21"	"V22"	"V23"	

"V24"

[25]	"V25"

To	change	all	the	variable	names,	we	will	use	the	following	names()	function,	putting	the
new	names	in	the	c()	function,	which	stands	for	combine:

http://www.nhl.com/
http://textuploader.com/

>	names(nhl)	=	

c("rank","team","played","wins","losses","OTL","pts","ROW","HROW","RROW","p

pc","gg","gag","five","PPP","PKP","shots","sag","sc1","tr1","lead1","lead2"

,"wop","wosp","face")

With	the	variables	renamed,	let’s	go	over	what	they	mean:

rank:	This	is	the	rank	of	a	team’s	total	points
team:	This	is	the	team’s	city
played:	This	is	the	games	that	are	played
wins:	This	is	the	number	of	total	wins
losses:	This	is	the	number	of	total	losses	in	regulation
OTL:	This	is	the	number	of	total	losses	in	overtime
pts:	This	is	the	number	of	total	points
ROW:	This	is	the	number	of	regulation	plus	overtime	wins
HROW:	This	is	the	number	of	home	regulation	plus	overtime	wins
RROW:	This	is	the	number	of	road	regulation	plus	overtime	wins
ppc:	This	is	the	percentage	of	the	points	per	games	played
gg:	This	is	the	number	of	goals	per	game
gag:	This	is	the	number	of	goals	allowed	per	game
five:	This	is	the	5-on-5	goals	against/for	ratio	that	is	both	the	teams’	full	strength
PPP:	This	is	the	percentage	of	the	time	goals	scored	on	the	power	play
PKP:	This	is	the	percentage	of	the	time	goals	allowed	on	the	power	play
shots:	This	is	the	number	of	shots	on	the	goal	per	game
sag:	This	is	the	number	of	shots	on	the	goal	allowed	per	game
sc1:	This	is	the	winning	percentage	when	scoring	first
tr1:	This	is	the	winning	percentage	when	trailing	first
lead1:	This	is	the	winning	percentage	when	leading	after	the	first	period
lead2:	This	is	the	winning	percentage	when	leading	after	the	second	period
wop:	This	is	the	winning	percentage	when	outshooting	an	opponent
wosp:	This	is	the	winning	percentage	when	outshot	by	an	opponent
face:	This	is	the	percentage	of	the	faceoffs	won

One	of	the	things	that	you	can	do	with	the	data	in	R	is	sort	it	by	one	or	more	variables.
Here	is	an	example	to	identify	the	team	with	the	fewest	goals	per	game	and	also	the	team
with	the	most	goals	per	game.	If	the	data	was	numeric,	you	could	use	the	max()	and	min()
functions.	As	the	variables	are	characters,	we	will	use	the	order()	function	to	perform	a
sorting	on	our	variable	of	interest	and	then	call	the	appropriate	row	and	column	in	order	to
identify	the	teams.	This	function	defaults	to	an	ascending	order,	but	if	your	data	is
numeric,	you	can	also	sort	the	data	in	a	descending	order	using	the	minus	sign	in	front	of
your	variable.	Here	is	the	code	to	sort	and	identify	our	teams	of	interest:

>	nhl=nhl[order(nhl$gg),]

>	nhl[1,2]

[1]	BUFFALO

>	nhl[30,2]

[1]	TAMPA	BAY

Note	that	once	we	sorted	it,	the	process	to	identify	a	team	was	as	simple	as	specifying	the
appropriate	row	(1	for	the	worst	and	30	for	the	best)	and	the	column	two	for	the	team
name.	As	you	can	see,	BUFFALO	is	the	worst	and	TAMPA	BAY	is	the	best	for	average	goals
per	game.

As	we	are	concerned	about	creating	the	principal	components	in	order	to	predict	a	team’s
points,	we	do	not	need	to	include	a	few	of	the	variables	in	the	data.	In	fact,	let’s	only	focus
on	variables	12	through	25	and	create	a	new	data	frame	call	pca.df	and	drop	columns	1
through	11,	as	follows:

>	pca.df	=	nhl[,c(-1:-11)]

The	next	order	of	business	is	to	convert	the	data	frame’s	values	to	numeric;	recall	that	all
the	variables	are	currently	characters.	For	this	task,	we	will	break	out	the	lapply()
function,	which	applies	another	function	over	a	list	or	vectors.	So,	what	we	want	to	apply
over	the	data	frame	in	order	to	convert	the	values	to	numeric	is	as.numeric().
Additionally,	when	we	are	done	applying	this	function,	we	want	pca.df	to	still	be	a	data
frame.	Therefore,	we	will	put	lapply()	and	as.numeric()	inside	as.data.frame().

This	is	all	easy	for	me	to	say,	but	it	is	actually	rather	elegant	and	powerful	to	transform	the
values	in	a	data	frame:

>	pca.df	=	as.data.frame(lapply(pca.df	,	as.numeric))

Anytime	that	you	create	a	subset	and/or	make	a	major	transformation,	it	is	probably	a
good	idea	to	check	the	structure	after	this	transformation.	In	our	case,	we	want	to	make
sure	that	the	values	are	indeed	numeric,	as	follows:

>	str(pca.df)

'data.frame':30	obs.	of		14	variables:

$	gg			:	num		1.87	2.01	2.15	2.23	2.35	2.42	2.51	2.55	2.55	

2.58…

	$	gag		:	num		3.28	3.26	2.55	2.67	3.37	2.6	3.13	2.45	2.72	

2.72…

	$	five	:	num		0.61	0.62	0.93	0.76	0.68	1.03	0.8	1.04	0.99	

1.01…

	$	PPP		:	num		13.4	20	19.3	18.8	17.7	16.3	15.9	17.8	15	

23.4…

	$	PKP		:	num		75.1	76.7	80.6	84.7	76.7	80	80.4	82	84.6	

77.1…

	$	shots:	num		24.2	29.2	24.5	30.8	28.4	30.7	29.2	31	27.9	

29.4…

	$	sag		:	num		35.6	33.2	30.7	27.3	30	29.6	33.5	29.9	33.2	

30.3…

	$	sc1		:	num		0.528	0.424	0.533	0.611	0.471	0.697	0.677	

0.674	0.676	0.688…

	$	tr1		:	num		0.087	0.204	0.216	0.174	0.167	0.306	0.176	

0.308	0.311	0.22…

	$	lead1:	num		0.563	0.522	0.593	0.708	0.435	0.789	0.762	

0.742	0.696	0.731…

	$	lead2:	num		0.647	0.824	0.781	0.759	0.63	0.75	0.826	

0.871	0.852	0.864…

	$	wop		:	num		0.5	0.385	0.235	0.423	0.333	0.386	0.375	

0.512	0.6	0.475…

	$	wosp	:	num		0.246	0.259	0.438	0.25	0.273	0.541	

0.382	0.471	0.418	0.341…

	$	face	:	num		44.9	51.8	47.3	53	48.2	48.6	49	53.6	50.8	

51.1…

There	you	have	it!	Now,	let’s	do	what	we	did	in	the	prior	chapters	and	build	a	correlation
matrix	and	plot	it	using	a	function	from	the	corrplot	package.	First,	create	an	object
using	the	cor()	function,	which	builds	the	correlation	matrix,	as	follows:

>	nhl.cor	=	cor(pca.df)

You	can	call	nhl.cor	if	you	want,	but	I	am	very	partial	to	plotting	this	data.	We	will	do	a
matrix	plot	of	the	correlation	values.	In	the	syntax	of	the	corrplot()	function	we	will
specify	the	method	as	ellipse:

>	corrplot(nhl.cor,	method="ellipse")

The	following	is	the	output	of	the	preceding	command:

The	first	thing	that	jumps	out	and	actually	takes	me	by	surprise	is	that	the	faceoff
percentage	and	power	play	percentage	don’t	show	a	strong	correlation	with	anything.
They	do	show	a	small	correlation	with	each	other.	Another	thing	of	interest	is	how
strongly	and	negatively	correlated	are	the	5-on-5	ratio	and	goals	allowed	per	game,	but	it
is	not	quite	as	strong	as	the	correlation	between	playing	full	strength	and	the	goals	scored
per	game.	If	you	follow	hockey,	you	may	find	other	interesting	correlations	here,	but	one
thing	is	clear	and	that	is	the	fact	that	many	of	the	variables	are	highly	correlated.	As	such,
this	should	be	a	good	dataset	to	extract	several	principal	components.	If	we	had	a	few,	if
any,	correlations	in	this	or	any	other	dataset,	then	mostly	any	effort	to	extract	the
components	would	be	futile.

Modeling	and	evaluation
For	the	modeling	process,	we	will	follow	the	following	steps:

1.	 Extract	the	components	and	determine	the	number	to	retain
2.	 Rotate	the	retained	components
3.	 Interpret	the	rotated	solution
4.	 Create	the	factor	scores
5.	 Use	the	scores	as	input	variables	for	regression	analysis

There	are	many	different	ways	and	packages	to	conduct	PCA	in	R,	including	what	seems
to	be	the	most	commonly	used	prcomp()	and	princomp()	functions	in	base	R.	However,
for	my	money,	it	seems	that	the	psych	package	is	the	most	flexible	with	the	best	options.
For	rotation	with	this	package,	you	will	also	need	to	load	GPArotation.

Component	extraction
To	extract	the	components	with	the	psych	package,	you	will	use	the	principal()
function.	The	syntax	will	include	the	data	(pca.df)	and	number	of	the	components	to
extract.	We	will	try	5,	and	we	will	state	that	we	do	not	want	to	rotate	the	components	at
this	time.	You	can	choose	not	to	specify	nfactors,	but	the	output	would	be	rather	lengthy
as	it	would	produce	k-1	components:

>	pca	=	principal(pca.df,	nfactors=5,	rotate="none")

We	will	examine	the	components	by	calling	the	pca	object	that	we	created,	as	follows:

>	pca

Principal	Components	Analysis

Call:	principal(r	=	pca.df,	nfactors	=	5,	rotate	=	"none")

Standardized	loadings	(pattern	matrix)	based	upon	

correlation	matrix

								PC1			PC2			PC3			PC4			PC5			h2			u2

gg					0.83		0.05	-0.10		0.45		0.04	0.90	0.10

gag			-0.82		0.04	-0.01		0.35		0.31	0.89	0.11

five			0.90	-0.11	-0.15	-0.02	-0.20	0.89	0.11

PPP				0.16		0.76		0.30		0.34	-0.20	0.86	0.14

PKP				0.70	-0.20		0.12	-0.44	-0.08	0.75	0.25

shots		0.61		0.35	-0.43	-0.04		0.38	0.81	0.19

sag			-0.63	-0.42		0.33		0.12		0.45	0.90	0.10

sc1				0.82	-0.11		0.36	-0.06		0.02	0.81	0.19

tr1				0.74	-0.14	-0.40		0.31		0.08	0.83	0.17

lead1		0.82		0.04		0.40		0.15		0.06	0.86	0.14

lead2		0.75	-0.10		0.42	-0.04		0.25	0.81	0.19

wop				0.71	-0.20	-0.24	-0.16		0.24	0.68	0.32

wosp			0.84	-0.24		0.07		0.27	-0.03	0.84	0.16

face			0.28		0.74		0.06	-0.36		0.31	0.86	0.14

																							PC1		PC2		PC3		PC4		PC5

SS	loadings											7.19	1.63	1.13	1.00	0.75

Proportion	Var								0.51	0.12	0.08	0.07	0.05

Cumulative	Var								0.51	0.63	0.71	0.78	0.84

Proportion	Explained		0.61	0.14	0.10	0.09	0.06

Cumulative	Proportion	0.61	0.75	0.85	0.94	1.00

At	first	glance,	this	looks	quite	a	bit	to	digest.	First	of	all,	let’s	disregard	the	h2	and	u2
columns.	We	will	come	back	to	h2	after	the	rotation.	There	are	two	important	things	to
digest	here	in	the	output.	The	first	is	the	variable	loadings	for	each	of	the	five	components
that	are	labeled	PC1	through	PC5.	We	see	with	component	one	that	almost	all	the	variables
have	high	loadings	except	for	the	power	play	percentage,	PPP,	and	the	faceoff	win
percentage,	face.	These	two	variables	have	high	loading	values	on	component	two.
Component	three	is	quite	a	hodgepodge	of	the	mid-value	loadings.	The	highest	two
variables	are	tr1	and	PKP.	Component	four	seems	rather	odd	and	difficult	for	us	to	pull	out
a	meaningful	construct.	So,	we	will	move	on	to	the	second	part	to	examine:	the	table
starting	with	the	sum	of	square,	SS	loadings.	Here,	the	numbers	are	the	eigenvalues	for
each	component.	When	they	are	normalized,	you	will	end	up	with	the	Proportion

Explained	row,	which	as	you	may	have	guessed,	stands	for	the	proportion	of	the	variance
explained	by	each	component.	You	can	see	that	component	one	explains	just	over	half	(61
percentage)	of	all	the	variance	explained	by	the	five	components.

There	are	a	number	of	ways	in	which	we	can	select	our	final	set	of	components.	We	could
simply	select	all	the	components	with	an	eigenvalue	greater	than	one.	In	this	case,	we
would	keep	the	first	four.	We	could	use	the	proportion	of	total	variance	accounted	for,
which	in	the	preceding	table	is	the	cumulative	var	row.	A	good	rule	of	thumb	is	to	select
the	components	that	account	for	at	least	70	percent	of	the	total	variance,	which	means	that
the	variance	explained	by	each	of	the	selected	components	accounts	for	70	percent	of	the
variance	explained	by	all	the	components.	In	this	case,	three	or	four	components	would
work.	Perhaps,	the	best	thing	to	do	is	apply	judgment	in	conjunction	with	the	other
criteria.	With	this	in	mind,	I	would	recommend	going	with	just	three	components.	It
captures	71	percent	of	the	total	variance	in	the	data	and	from	my	hockey	fanatic	point	of
view,	is	easier	to	interpret.

Another	visual	technique	is	to	do	a	scree	plot.	A	scree	plot	can	aid	you	in	assessing	the
components	that	explain	the	most	variance	in	the	data.	It	shows	the	Component	number
on	the	x	axis	and	their	associated	Eigenvalues	on	the	y	axis.	Therefore,	I	will	present	to
you	the	much	used	scree	plot	as	follows.	We	want	to	plot	the	associated	eigenvalues	from
the	pca	object.

>	plot(pca$values,	type="b",	ylab="Eigenvalues",	xlab="Component")

The	following	is	the	output	of	the	preceding	command:

What	you	are	looking	in	a	scree	plot	is	similar	to	what	I	described	previously	about	the
eigenvalues	that	are	greater	than	one	and	the	point	where	the	additional	variance	explained
by	a	component	does	not	differ	greatly	from	one	component	to	the	next.	In	other	words,	it
is	the	break	point	where	the	plot	flattens	out.	In	this,	three	components	look	pretty
compelling.

Orthogonal	rotation	and	interpretation
As	we	discussed	previously,	the	point	behind	rotation	is	to	maximize	the	loadings	of	the
variables	on	a	specific	component,	which	helps	in	simplifying	the	interpretation	by
reducing/eliminating	the	correlation	among	these	components.	The	method	to	conduct
orthogonal	rotation	is	known	as	"varimax".	There	are	other	non-orthogonal	rotation
methods	that	allow	correlation	across	factors/components.	The	choice	of	the	rotation
methodology	that	you	will	use	in	your	profession	should	be	based	on	the	pertinent
literature,	which	exceeds	the	scope	of	this	chapter.	Feel	free	to	experiment	with	this
dataset.	I	think	that	when	in	doubt,	the	starting	point	for	any	PCA	should	be	orthogonal
rotation.

For	this	process,	we	will	simply	turn	back	to	the	principal()	function,	slightly	changing
the	syntax	to	account	for	just	3	components	and	orthogonal	rotation,	as	follows:

>	pca.rotate	=	principal(pca.df,	nfactors=3,	rotate	=	"varimax")

>	pca.rotate

Principal	Components	Analysis

Call:	principal(r	=	pca.df,	nfactors	=	3,	rotate	=	"varimax")

Standardized	loadings	(pattern	matrix)	based	upon	correlation	matrix

								PC1			PC3			PC2			h2			u2	com

gg					0.57		0.59		0.15	0.69	0.31	2.1

gag			-0.65	-0.49	-0.09	0.67	0.33	1.9

five			0.64		0.66	-0.01	0.85	0.15	2.0

PPP				0.09	-0.05		0.83	0.70	0.30	1.0

PKP				0.66		0.32	-0.06	0.55	0.45	1.5

shots		0.13		0.75		0.31	0.67	0.33	1.4

sag			-0.18	-0.70	-0.41	0.68	0.32	1.8

sc1				0.87		0.21		0.11	0.81	0.19	1.2

tr1				0.38		0.75	-0.12	0.73	0.27	1.5

lead1		0.85		0.19		0.26	0.83	0.17	1.3

lead2		0.84		0.13		0.13	0.75	0.25	1.1

wop				0.46		0.60	-0.15	0.60	0.40	2.0

wosp			0.76		0.44	-0.08	0.77	0.23	1.6

face			0.05		0.21		0.77	0.63	0.37	1.2

																							PC1		PC3		PC2

SS	loadings											4.78	3.44	1.72

Proportion	Var								0.34	0.25	0.12

Cumulative	Var								0.34	0.59	0.71

Proportion	Explained		0.48	0.35	0.17

Cumulative	Proportion	0.48	0.83	1.00

Mean	item	complexity	=		1.5

Test	of	the	hypothesis	that	3	components	are	sufficient.

The	root	mean	square	of	the	residuals	(RMSR)	is		0.08	

	with	the	empirical	chi	square		34.83		with	prob	<		0.97	

Fit	based	upon	off	diagonal	values	=	0.97

You	can	see	that	the	rotation	has	changed	the	loadings,	but	the	cumulative	variance	has	not

changed.	We	can	now	really	construct	some	meaning	around	the	components.

If	you	examine	PC1,	you	will	see	the	high	negative	correlation	with	the	goals	allowed	per
game	in	conjunction	with	a	high	rate	of	killing	penalties	and	a	high	win	rate	if	scoring
first.	Additionally,	this	component	captures	the	high	loadings	with	winning	after	having	a
lead	at	the	end	of	the	first	or	second	period.	The	5-on-5	ratio	and	winning	when	outshot
are	the	frosting	on	the	cake	here.	What	I	think	we	have	in	this	component	is	the	essence	of
defensive	hockey	including	the	killing	penalties.	The	teams	with	high	factor	scores	on	this
component	would	appear	to	be	able	to	get	a	lead	on	an	opponent	and	then	shut	them	down
to	gain	a	win.

PC3	appears	to	simply	be	a	good	offense.	We	will	see	a	high	loading	for	the	goals	scored
per	game,	5-on-5	scoring	ratio,	and	shots	per	game.	Additionally,	look	at	how	high	the
loading	is	for	the	winning	after	trailing	at	the	end	of	the	first	period	variable.

I	think	that	PC2	is	the	easiest	to	identify.	It	is	the	high	loading	value	for	the	power	play
success	and	winning	faceoffs.	When	we	did	the	correlation	analysis	during	the	data
exploration,	we	saw	that	these	two	variables	were	moderately	correlated	with	each	other.
Any	hockey	fan	can	tell	you	how	important	it	is	for	a	team	on	the	power	play	to	win	the
faceoff,	control	the	puck,	and	run	their	set	plays.	This	analysis	seems	to	show	that	these
two	variables	do	indeed	go	hand	in	hand.

Creating	factor	scores	from	the	components
We	will	now	need	to	capture	the	rotated	component	loadings	as	the	factor	scores	for	each
individual	team.	These	scores	indicate	how	each	observation	(in	our	case,	the	NHL	team)
relates	to	a	rotated	component.	Let’s	do	this	and	capture	the	scores	in	a	data	frame	as	we
will	need	to	use	it	for	our	regression	analysis:

>	pca.scores	=	pca.rotate$scores

>	pca.scores	=	as.data.frame(pca.scores)

>	pca.scores

		PC1									PC3									PC2

1		-1.33961165	-2.07275625	-2.38781073

2		-1.83244527	-1.12058364		0.77749711

3		-0.31094630	-1.62938873	-0.44133187

4		-1.02855311	-0.15704421		1.37199872

5		-2.68517373	-0.13231693	-0.27385509

6		-0.20853619		0.01524553	-0.46863716

7			0.10587046	-1.62940123	-0.42949901

8		-0.01324802		0.14959828		0.68875225

9			0.38541531	-0.59307204	-1.08937869

10	-0.15009774	-0.86256283		1.53513596

11		0.84099339		0.25043743	-0.52846404

12		0.24423775		0.36681320	-0.08995115

13	-0.68188634		1.09817128		0.53636881

14		1.18243869		0.34770042		0.35777454

15	-0.34720957		0.73064512	-0.53796910

16	-0.27227305	-0.09055833		1.34309546

17	-0.46350916		1.76830702	-0.94260357

18		1.06460458		0.24810967	-0.42634091

19		0.68720947	-1.39593941		0.35981827

20		0.72661065		0.31415750	-0.32705332

21		0.05533420		0.33660090		1.34849134

22	-0.23245895		0.77728066	-1.22841259

23		0.80098114		0.20634248	-0.93200321

24		1.22510788	-1.05511121		1.96984298

25		1.07648218	-0.54999695	-0.47064277

26		0.40911681		0.97327087		1.29704632

27	-1.53540552		2.44287010	-0.29119483

28		1.65378121		0.40998320	-1.20495883

29	-0.47171243		0.26403013		0.67952937

30		1.11488330		0.58916795	-0.19524429

We	now	have	the	scores	for	each	factor	for	each	team.	These	are	simply	the	variables	for
each	observation	multiplied	by	the	loadings	and	summed.	Remember	that	we	ordered	the
observations	by	total	points	from	the	worst	to	the	best.	As	such,	you	can	see	that	a	team
such	as	BUFFALO	in	the	first	row	has	negative	factor	scores	across	the	board.

Before	we	begin	the	regression	analysis,	let’s	prepare	the	NHL	data	frame.	The	two	major
tasks	are	to	convert	the	total	points	to	numeric	and	attach	the	factor	scores	as	new
variables.	We	can	accomplish	this	with	the	following	code:

nhl$pts	=	as.numeric(nhl$pts)

nhl$Def	=	pca.scores$PC1

nhl$Off	=	pca.scores$PC3

nhl$PPlay	=	pca.scores$PC2

With	this	done,	we	will	now	move	on	to	the	predictive	model.

Regression	analysis
To	do	this	part	of	the	process,	we	will	repeat	the	steps	and	code	from	Chapter	2,	Linear
Regression	–	The	Blocking	and	Tackling	of	Machine	Learning.	If	you	haven’t	done	so,
please	look	at	Chapter	2,	Linear	Regression	–	The	Blocking	and	Tackling	of	Machine
Learning	for	some	insight	on	how	to	interpret	the	following	output.

We	will	use	the	following	lm()	function	to	create	our	linear	model	with	all	the	3	factors	as
inputs	and	then	summarize	the	results:

>	nhl.lm	=	lm(pts~Def+Off+PPlay,	data=nhl)

>	summary(nhl.lm)

Call:

lm(formula	=	pts	~	Def	+	Off	+	PPlay,	data	=	nhl)

Residuals:

				Min						1Q		Median						3Q					Max	

-8.7891	-1.3948		0.5619		2.0406		6.6021	

Coefficients:

												Estimate	Std.	Error	t	value	Pr(>|t|)				

(Intercept)		92.2000					0.7699	119.754		<	2e-16	***

Def										11.2957					0.7831		14.425	6.41e-14	***

Off										10.4439					0.7831		13.337	3.90e-13	***

PPlay									0.6177					0.7831			0.789				0.437				

Signif.	codes:		0	'***'	0.001	'**'	0.01	'*'	0.05	'.'	0.1	'	'	1

Residual	standard	error:	4.217	on	26	degrees	of	freedom

Multiple	R-squared:		0.937,Adjusted	R-squared:		0.9297	

F-statistic:	128.9	on	3	and	26	DF,		p-value:	1.004e-15

The	good	news	is	that	our	overall	model	is	highly	significant	statistically,	with	p-value	of
1.004e-15	and	Adjusted	R-squared	is	over	92	percent.	The	bad	news	is	the	power	play
factor	is	not	with	p-value	of	0.437.	We	could	simply	choose	to	keep	it	in	our	model,	but
let’s	see	what	happens	if	we	exclude	it:

>	nhl.lm2	=	lm(pts~Def+Off,	data=nhl)

>	summary(nhl.lm2)

Call:

lm(formula	=	pts	~	Def	+	Off,	data	=	nhl)

Residuals:

				Min						1Q		Median						3Q					Max	

-8.3786	-2.0258		0.7259		2.4748		6.3295	

Coefficients:

												Estimate	Std.	Error	t	value	Pr(>|t|)				

(Intercept)		92.2000					0.7645		120.60		<	2e-16	***

Def										11.2957					0.7776			14.53	2.79e-14	***

Off										10.4439					0.7776			13.43	1.81e-13	***

Signif.	codes:		0	'***'	0.001	'**'	0.01	'*'	0.05	'.'	0.1	'	'	1

Residual	standard	error:	4.187	on	27	degrees	of	freedom

Multiple	R-squared:		0.9355,Adjusted	R-squared:		0.9307	

F-statistic:	195.7	on	2	and	27	DF,		p-value:	<	2.2e-16

This	model	still	achieves	a	high	Adjusted	R-squared	value	(93.07	percent)	with
statistically	significant	factor	coefficients.	I	will	spare	you	the	details	of	running	the
diagnostic	tests.	Instead,	let’s	look	at	some	plots	in	order	to	examine	our	analysis	better.
We	can	do	a	scatterplot	of	the	predicted	and	actual	values	(the	total	team	points)	with	the
base	R	graphics,	as	follows:

>	plot(nhl.lm2$fitted.values,	nhl$pts,	main="Predicted	versus	

Actual",xlab="Predicted",ylab="Actual")

The	following	is	the	output	of	the	preceding	command:

This	confirms	that	our	model	does	a	good	job	of	using	two	factors	to	predict	the	team’s
success	and	also	highlights	the	strong	linear	relationship	between	the	principal
components	and	team	points.	Let’s	kick	it	up	a	notch	by	doing	a	scatterplot	using	the
ggplot2	package	and	include	the	team	names	in	it.	We	will	also	focus	only	on	the	upper
half	of	the	team’s	point	performance.	We	will	first	create	a	data	frame	of	the	15	best	teams
in	terms	of	points	and	call	it	nhl.best.	Let’s	also	include	the	predictions	in	the	nhl	data
frame	and	sort	it	with	the	points	in	a	descending	order:

>	nhl$pred	=	nhl.lm2$fitted.values

>	nhl=nhl[order(-nhl$pts),]

>	nhl.best	=	nhl[1:15,]

The	next	endeavor	is	to	build	our	scatterplot	using	the	ggplot()	function.	The	only

problem	is	that	it	is	a	very	powerful	function	with	many	options.	There	are	numerous
online	resources	to	help	you	navigate	the	ggplot()	maze,	but	this	code	should	help	you	on
your	way.	Let’s	first	create	our	baseline	plot	and	assign	it	to	an	object	called	p,	as	follows:

>	p	=	ggplot(nhl.best,	aes(x=pred,	y=

pts,	label=team))

The	syntax	to	create	p	is	very	simple.	We	just	specified	the	data	frame	and	put	in	aes()
what	we	want	our	x	and	y	to	be	along	with	the	variable	that	we	want	to	use	as	labels.	We
now	just	add	layers	of	neat	stuff	such	as	data	points.	Add	whatever	you	want	to	the	plot	by
including	+	in	the	syntax,	as	follows:

>	p	+	geom_point()	+

Then,	we	will	specify	how	we	want	our	team	labels	to	appear.	This	takes	quite	a	bit	of	trial
and	error	to	get	the	font	size	and	position	in	order:

geom_text(size=3.5,	hjust=.2,	vjust=-0.5,	angle=15)	+

Now,	specify	the	x	and	y	axis	limits,	otherwise	the	plot	will	cut	out	any	observations	that
fall	outside	them,	as	follows:

xlim(90,120)	+	ylim(90,	120)	+

Finally,	add	a	best	fit	line	with	no	standard	error	shading	and	you	get	the	following	plot:

stat_smooth(method="lm",	se=FALSE)

The	following	is	the	output	of	the	preceding	command:

I	guess	one	way	to	think	about	this	plot	is	that	the	teams	below	the	line	underachieved,
while	those	above	it,	overachieved.	For	instance,	the	MINNESOTA	Wild	had	a	predicted
point	total	of	102	but	only	achieved	95.	At	any	rate,	this	is	overly	simplistic	but	is	fun	to

ponder	nonetheless.

The	final	bit	of	analysis	will	be	to	plot	the	teams	in	relationship	to	their	factor	scores.
Once	again,	ggplot()	facilitates	this	analysis.	Using	the	preceding	code	as	our	guide,	let’s
update	it	and	see	what	the	result	is:

>	p2	=	ggplot(nhl,	aes(x=Def,	y=Off,	label=team))

>	p2	+	geom_point()	+

geom_text(size=3,	hjust=.2,	vjust=-0.5,	angle=0)	+

xlim(-3,3)	+	ylim(-3,3)

The	output	of	the	preceding	command	is	as	follows:

As	you	can	see,	the	x	axis	is	the	defensive	factor	scores	and	the	y	axis	is	the	offensive
factor	scores.	Look	at	the	NY	ISLANDERS	with	the	highest	offensive	factor	scores	but
one	of	the	worst	defensive	scores.	I	predict	an	early	exit	in	the	upcoming	playoffs	for
them,	considering	the	old	adage	that	offense	puts	people	in	the	seats	but	defense	wins
championships.	Indeed,	here	is	a	link	to	an	excellent	article	discussing	the	Islander’s
struggles	and	their	poor	ratio	of	winning	when	leading	after	the	second	period	at
http://www.cbssports.com/nhl/eye-on-hockey/25134251/how-concerned-should-the-
islanders-be-heading-into-the-playoffs.	Do	the	most	balanced	teams	such	as	the	NY
RANGERS,	TAMPA	BAY,	and	others	have	the	best	chance	to	win	a	title?	We	shall	see!

When	I	first	wrote	this	chapter,	the	NHL	playoffs	were	just	starting.	It	was	probably	the
best	race	for	Lord	Stanley’s	Cup	that	I	have	seen.	Many	of	my	fellow	fans	agree	with	this
assertion.	As	predicted,	the	Islanders	were	out	after	the	first	round	after	a	brutal	series	with
the	Washington	Capitals	as	their	defense	lived	up	to	its	reputation,	or	lack	thereof.	The	big

http://www.cbssports.com/nhl/eye-on-hockey/25134251/how-concerned-should-the-islanders-be-heading-into-the-playoffs

surprise	was	how	the	Blackhawks	refused	to	lose	and	ended	up	winning	it	all.	Like	a	boxer
with	a	puncher’s	chance,	they	got	off	the	canvas	and	threw	some	well-timed	haymakers.
Note	that	I	am	a	longtime	Blackhawks	fan	going	back	to	the	days	of	Troy	Murry	and
Eddie	Belfour	(all	former	Fighting	Sioux).	It	was	good	for	Jonathan	Toews	to	win	another
title,	especially	after	being	robbed	by	the	refs	in	the	2007	NCAA	Frozen	Four	semifinal
with	T.J.	Oshie	as	his	linemate.	However,	I	digress.

Summary
In	this	chapter,	we	took	a	second	stab	at	the	unsupervised	learning	techniques	by	exploring
PCA,	examining	what	it	is,	and	applying	it	in	a	practical	fashion.	We	explored	how	it	can
be	used	to	reduce	the	dimensionality	and	improve	the	understanding	of	the	dataset,
especially	when	confronted	with	numerous	highly	correlated	variables.	Then,	we	applied	it
to	a	real	and	current	dataset	from	the	National	Hockey	League,	using	the	resulting
principal	components	in	a	regression	analysis	and	exploring	ways	to	visualize	the	data.	As
an	unsupervised	learning	technique,	it	requires	some	judgment	along	with	trial	and	error	to
arrive	at	an	optimal	solution.	We	will	next	look	at	using	unsupervised	learning	to	develop
market	basket	analyses	and	recommendation	engines	in	which	PCA	can	play	an	important
role.

Chapter	10.	Market	Basket	Analysis	and
Recommendation	Engines
	 “It’s	much	easier	to	double	your	business	by	doubling	your	conversion	rate	than	by	doubling	your	traffic.” 	

	 —Jeff	Eisenberg,	CEO	of	BuyerLegends.com

	 “I	don’t	see	smiles	on	the	faces	of	people	at	Whole	Foods.” 	

	 —Warren	Buffett

One	would	have	to	live	on	the	dark	side	of	the	moon	in	order	to	not	observe—each	and
every	day—the	results	of	the	techniques	that	we	are	about	to	discuss	in	this	chapter.	If	you
visit	www.amazon.in,	watch	movies	on	www.netflix.com,	or	visit	any	retail	website,	you
will	be	exposed	to	terms	such	as	related	products,	because	you	watched…,	customers	who
bought	x	also	bought	y,	or	recommended	for	you,	at	every	twist	and	turn.	With	large
volumes	of	historical	real-time	or	near	real-time	information,	retailers	utilize	the
algorithms	discussed	here	to	attempt	to	increase	both	your	volume	and	the	amount	of
purchases.

The	techniques	to	do	this	can	be	broken	down	into	two	categories:	association	rules	and
recommendation	engines.	Association	rule	analysis	is	commonly	referred	to	as	market
basket	analysis	as	one	is	trying	to	understand	what	items	are	purchased	together.	With
recommendation	engines,	the	goal	is	to	provide	a	customer	with	other	items	that	they	will
enjoy	based	on	how	they	have	rated	previously	viewed	or	purchased	items.

In	the	examples	coming	up,	we	will	endeavor	to	explore	how	R	can	be	used	to	develop
such	algorithms.	We	will	not	cover	their	implementation	as	that	is	outside	the	scope	of	this
book.	We	will	begin	with	a	market	basket	analysis	of	purchasing	habits	at	a	grocery	store
and	then	dig	into	building	a	recommendation	engine	on	website	reviews.

http://www.amazon.in
http://www.netflix.com

An	overview	of	a	market	basket	analysis
Market	basket	analysis	is	a	data	mining	technique	that	has	the	purpose	of	finding	the
optimal	combination	of	products	or	services	and	allows	marketers	to	exploit	this
knowledge	to	provide	recommendations,	optimize	the	product	placement,	or	develop
marketing	programs	that	take	advantage	of	cross-selling.	In	short,	the	idea	is	to	identify
what	items	go	well	together,	and	profit	from	this.

You	can	think	of	the	results	of	the	analysis	as	an	IF-THEN	statement.	IF	a	customer	buys
an	airplane	ticket,	THEN	there	is	a	46	percent	probability	that	they	will	buy	a	hotel	room,
and	IF	they	go	on	to	buy	a	hotel	room,	THEN	there	is	a	33	percent	probability	that	they
will	rent	a	car.	(With	all	the	travelling	in	my	business,	this	is	a	never-ending	annoyance	for
me.)

However,	it	is	not	just	for	sales	and	marketing.	It	is	also	being	used	in	fraud	detection	and
healthcare;	for	example,	if	a	patient	undergoes	treatment	A,	then	there	is	a	26	percent
probability	that	they	might	exhibit	symptom	X.	Before	going	into	the	details,	we	should
have	a	look	at	some	terminology	as	it	will	be	used	in	the	example:

Itemset:	This	ia	a	collection	of	one	or	more	items	in	the	dataset.
Support:	This	is	the	proportion	of	the	transactions	in	the	data	that	contain	an	itemset
of	interest.
Confidence:	This	is	the	conditional	probability	that	if	a	person	purchases	or	does	x,
they	will	purchase	or	do	y;	the	act	of	doing	x	is	referred	to	as	the	antecedent	of	Left-
Hand	Side	(LHS)	and	y	is	the	consequence	of	Right-Hand	Side	(RHS).
Lift:	This	is	the	ratio	of	the	support	of	x	occurring	together	with	y	divided	by	the
probability	that	x	and	y	occur	if	they	are	independent.	It	is	the	Confidence	divided	by
the	probability	of	x	times	the	probability	of	y;	for	example,	say	that	we	have	the
probability	of	x	and	y	occurring	together	is	10	percent	and	the	probability	of	x	is	20
percent	and	y	30	percent,	then	the	Lift	would	be	10	percent	(20	percent	times	30
percent)	or	16.67	percent.

The	package	in	R	that	you	can	use	to	perform	a	market	basket	analysis	is	arules:	Mining
Association	Rules	and	Frequent	Itemsets.	The	package	offers	two	different	methods	of
finding	rules.	Why	would	one	have	different	methods?	Quite	simply,	if	you	have	massive
datasets,	it	can	become	computationally	expensive	to	examine	all	the	possible
combinations	of	the	products.	The	algorithms	that	the	package	supports	are	apriori	and
ECLAT.	There	are	other	algorithms	to	conduct	a	market	basket	analysis,	but	apriori	is
used	most	frequently	and	so	we	will	focus	on	it.

With	apriori,	the	principle	is	that	if	an	itemset	is	frequent,	then	all	of	its	subsets	must	also
be	frequent.	A	minimum	frequency	(support)	is	determined	by	the	analyst	prior	to
executing	the	algorithm	and	once	established,	the	algorithm	will	run	as	follows:

Let	k=1	(the	number	of	items)
Generate	itemsets	of	a	length	that	are	equal	to	or	greater	than	the	specified	support
Iterate	k	+	(1…n),	pruning	those	that	are	infrequent	(less	than	the	support)

Stop	the	iteration	when	no	new	frequent	itemsets	are	identified

Once	you	have	an	ordered	summary	of	the	most	frequent	itemsets,	you	can	continue	the
analysis	process	by	examining	the	confidence	and	lift	in	order	to	identify	the	associations
of	interest.

Business	understanding
For	our	business	case,	we	will	focus	on	identifying	the	association	rules	for	a	grocery
store.	The	dataset	will	be	from	the	arules	package	and	it	will	be	called	Groceries.	This
dataset	consists	of	actual	transactions	over	a	30-day	period	from	a	real-world	grocery	store
and	consists	of	9,835	different	purchases.	All	the	items	purchased	are	put	into	one	of	169
categories,	for	example,	bread,	wine,	meat,	and	so	on.

Let’s	say	that	we	are	a	start-up	microbrewery	trying	to	make	a	headway	in	this	grocery
outlet	and	want	to	develop	an	understanding	of	what	the	potential	customers	will	purchase
along	with	beer.

Data	understanding	and	preparation
For	this	analysis,	we	will	only	need	to	load	two	packages	as	well	as	the	Groceries	dataset:

>	library(arules)

>	library(arulesViz)

>	data(Groceries)

>	head(Groceries)

>	str(Groceries)

>	Groceries

transactions	in	sparse	format	with

	9835	transactions	(rows)	and

	169	items	(columns)

This	dataset	is	structured	as	a	sparse	matrix	object	known	as	the	class	of	transaction.

So,	once	the	structure	is	that	of	the	class	transaction,	our	standard	exploration	techniques
will	not	work,	but	the	arules	package	offers	us	other	techniques	to	explore	the	data.	On	a
side	note,	if	you	have	a	data	frame	or	matrix	and	want	to	convert	it	to	the	transaction	class,
you	can	do	this	with	a	simple	syntax	using	the	as()	function.	The	following	code	is	for
illustrative	purposes	only,	so	do	not	run	it:

>	transaction.class.name	=	as(current.data.frame,"transactions")

The	best	way	to	explore	this	data	is	with	an	item	frequency	plot	using	the
itemFrequencyPlot()	function	in	the	arules	package.	You	will	need	to	specify	the
transaction	dataset,	the	number	of	items	with	the	highest	frequency	to	plot,	and	whether	or
not	you	want	the	relative	or	absolute	frequency	of	the	items.	Let’s	first	look	at	the	absolute
frequency	and	the	top	10	items	only:

>	itemFrequencyPlot(Groceries,topN=10,type="absolute")

The	output	of	the	preceding	command	is	as	follows:

The	top	item	purchased	was	whole	milk	with	roughly	2,500	of	the	9,836	transactions	in
the	basket.	For	a	relative	distribution	of	the	top	15	items,	let’s	run	the	following	code:

>	itemFrequencyPlot(Groceries,topN=15)

The	following	is	the	output	of	the	preceding	command:

Alas,	here	we	see	that	beer	shows	up	as	the	13th	and	15th	most	purchased	item	at	this
store.	Just	under	10	percent	of	the	transactions	had	purchases	of	bottled	beer	and/or
canned	beer.

For	the	purposes	of	this	exercise,	this	is	all	we	really	need	to	do,	and	therefore,	we	can
move	right	on	to	the	modeling	and	evaluation.

Modeling	and	evaluation
We	will	start	by	mining	the	data	for	the	overall	association	rules	before	moving	on	to	our
rules	for	beer,	specifically.	Throughout	the	modeling	process,	we	will	use	the	apriori
algorithm,	which	is	the	appropriately	named	apriori()	function	in	the	arules	package.
The	two	main	things	that	we	will	need	to	specify	in	the	function	is	the	dataset	and
parameters.	As	for	the	parameters,	you	will	need	to	apply	judgment	at	specifying	the
minimum	support	and	confidence	and	the	minimum	and/or	maximum	length	of	basket
items	in	an	itemset.	Using	the	item	frequency	plots	along	with	trial	and	error,	let’s	set	the
minimum	support	at	1	in	1,000	transactions	and	minimum	confidence	at	90	percent.
Additionally,	let’s	establish	the	maximum	number	of	items	to	be	associated	as	four.	The
following	is	the	code	to	create	the	object	that	we	will	call	rules:

>	rules	=	apriori(Groceries,	parameter	=	list(supp	=	0.001,	conf	=	0.9,	

maxlen=4))

Calling	the	object	shows	up	how	many	rules	the	algorithm	produced:

>	rules

set	of	67	rules

There	are	a	number	of	ways	to	examine	the	rules.	The	first	thing	that	I	recommend	is	to	set
the	number	of	displayed	digits	to	only	two	with	the	options()	function	in	base	R.	Then,
sort	and	inspect	the	top	five	rules	based	on	the	lift	that	they	provide,	as	follows:

>	options(digits=2)

>	rules	=	sort(rules,	by="lift",	decreasing=TRUE)

>	inspect(rules[1:5])

		lhs																					rhs																support	confidence	lift

1	{liquor,																																																										

			red/blush	wine}					=>	{bottled	beer}						0.0019							0.90	11.2

2	{root	vegetables,																																																	

			butter,																																																										

			cream	cheese	}						=>	{yogurt}												0.0010							0.91		6.5

3	{citrus	fruit,																																																				

			root	vegetables,																																																	

			soft	cheese}								=>	{other	vegetables}		0.0010							1.00		5.2

4	{pip	fruit,																																																							

			whipped/sour	cream,																																														

			brown	bread}								=>	{other	vegetables}		0.0011							1.00		5.2

5	{butter,																																																										

			whipped/sour	cream,																																														

			soda}															=>	{other	vegetables}		0.0013							0.93		4.8

Lo	and	behold,	the	rule	that	provides	the	best	overall	lift	is	the	purchase	of	liquor	and	red
wine	on	the	probability	of	purchasing	bottled	beer.	I	have	to	admit	that	this	is	pure
chance	and	not	intended	on	my	part.	As	I	always	say,	it	is	better	to	be	lucky	than	good.
Not	a	very	common	transaction	with	a	support	of	only	1.9	per	1,000.

You	can	also	sort	by	the	support	and	confidence,	so	let’s	have	a	look	at	the	first	5	rules

by="confidence"	in	descending	order,	as	follows:

>	rules	=	sort(rules,	by="confidence",	decreasing=TRUE)

>	inspect(rules[1:5])

		lhs																					rhs																support	confidence	lift

1	{citrus	fruit,																																																				

			root	vegetables,																																																	

			soft	cheese}								=>	{other	vegetables}		0.0010										1		5.2

2	{pip	fruit,																																																							

			whipped/sour	cream,																																														

			brown	bread}								=>	{other	vegetables}		0.0011										1		5.2

3	{rice,																																																												

			sugar}														=>	{whole	milk}								0.0012										1		3.9

4	{canned	fish,																																																					

			hygiene	articles}			=>	{whole	milk}								0.0011										1		3.9

5	{root	vegetables,																																																	

			butter,																																																										

			rice}															=>	{whole	milk}								0.0010										1		3.9

You	can	see	in	the	table	that	confidence	for	these	transactions	is	100	percent.	Moving	on
to	our	specific	study	of	beer,	we	can	utilize	a	function	in	arules	to	develop	cross
tabulations—the	crossTable()	function—and	then	examine	whatever	suits	our	needs.
The	first	step	is	to	create	table	with	our	dataset:

>	table	=	crossTable(Groceries)

With	table	created,	we	can	now	examine	the	joint	occurrences	between	the	items.	Here,
we	will	look	at	just	the	first	three	rows	and	columns:

>	table[1:3,	1:3]

												frankfurter	sausage	liver	loaf

frankfurter									580						99										7

sausage														99					924									10

liver	loaf												7						10									50

As	you	might	imagine,	shoppers	only	selected	liver	loaf	50	times	out	of	the	9,835
transactions.	Additionally,	of	the	924	times,	people	gravitated	toward	sausage	and	10
times,	they	felt	compelled	to	grab	liver	loaf.	(Desperate	times	call	for	desperate
measures!)	If	we	want	to	look	at	a	specific	example,	you	can	either	specify	the	row	and
column	number	or	just	spell	that	item	out:

>	table["bottled	beer","bottled	beer"]

[1]	792

This	tells	us	that	there	were	792	transactions	of	bottled	beer.	Let’s	see	what	the	joint
occurrence	is	between	bottled	beer	and	canned	beer:

>	table["bottled	beer","canned	beer"]

[1]	26

I	would	expect	this	to	be	low	as	it	supports	my	idea	that	people	lean	toward	drinking	beer
from	either	a	bottle	or	a	can;	I	know	I	do.

We	can	now	move	on	and	derive	specific	rules	for	bottled	beer.	We	will	again	use	the
apriori()	function,	but	this	time,	we	will	add	a	syntax	around	appearance.	This	means

that	we	will	specify	in	the	syntax	that	we	want	the	left-hand	side	to	be	items	that	increase
the	probability	of	a	purchase	of	bottled	beer,	which	will	be	on	the	right-hand	side.	In	the
following	code,	notice	that	I’ve	adjusted	the	support	and	confidence	numbers.	Feel	free
to	experiment	with	your	own	settings.

>	beer.rules	=	

apriori(data=Groceries,parameter=list(support=0.0015,confidence=0.3),	

appearance	=list(default="lhs",rhs="bottled	beer"))

>	beer.rules

set	of	4	rules

So,	we	find	ourselves	with	only	4	association	rules.	We	saw	one	of	them	already;	now	let’s
have	a	look	at	the	other	three	rules	in	descending	order	by	lift:

>	beer.rules	=	sort(beer.rules,	decreasing=TRUE,by="lift")

>	inspect(beer.rules)

		lhs																			rhs												support	confidence	lift

1	{liquor,																																																				

			red/blush	wine}			=>	{bottled	beer}		0.0019							0.90	11.2

2	{liquor}											=>	{bottled	beer}		0.0047							0.42		5.2

3	{soda,																																																						

			red/blush	wine}			=>	{bottled	beer}		0.0016							0.36		4.4

4	{other	vegetables,																																										

			red/blush	wine}			=>	{bottled	beer}		0.0015							0.31		3.8

In	all	of	the	instances,	the	purchase	of	bottled	beer	is	associated	with	booze,	either
liquor	and/or	red	wine	probably,	which	is	no	surprise	to	anyone.	What	is	interesting	is
that	white	wine	is	not	in	the	mix	here.	Let’s	take	a	closer	look	at	this	and	compare	the
joint	occurrences	of	bottled	beer	and	types	of	wine:

>	table["bottled	beer",	"red/blush	wine"]

[1]	48

>	table["red/blush	wine",	"red/blush	wine"]

[1]	189

>	48/189

[1]	0.25

>	table["white	wine",	"white	wine"]

[1]	187

>	table["bottled	beer",	"white	wine"]

[1]	22

>	22/187

[1]	0.12

It’s	interesting	that	25	percent	of	the	time	when	someone	purchased	red	wine,	they	also
purchased	bottled	beer,	but	with	white	wine,	a	joint	purchase	only	happened	in	12
percent	of	the	instances.	We	certainly	don’t	know	the	why	in	this	analysis,	but	this	could
help	us	to	potentially	determine	how	we	should	position	our	product	in	this	grocery	store.

One	other	thing	before	we	move	on	is	to	look	at	a	plot	of	the	rules.	This	is	done	with	the
plot()	function	in	the	arulesViz	package.	There	are	many	graphic	options	available.	For
this	example,	let’s	specify	that	we	want	graph,	showing	lift	the	rules	provided	and
shaded	by	confidence.	The	following	syntax	will	provide	this	accordingly:

>	plot(beer.rules,	method="graph",	measure="lift",shading="confidence")

The	following	is	the	output	of	the	preceding	command:

This	graph	shows	that	liquor/red	wine	provides	the	best	lift	and	the	highest	level	of
confidence	with	both	the	size	of	the	circle	and	its	shading.

What	we’ve	just	done	in	this	simple	analysis	is	shown	how	easy	it	is	with	R	to	conduct	a
market	basket	analysis.	It	doesn’t	take	much	imagination	to	figure	out	the	analytical
possibilities	that	one	can	include	with	this	technique,	for	example,	incorporate	customer
segmentation,	longitudinal	purchase	history,	and	so	on	as	well	as	how	to	use	it	in	ad
displays,	copromotions,	and	on	and	on.	Now,	let’s	move	on	to	a	situation	where	the
customers	are	rating	the	items.

An	overview	of	a	recommendation	engine
We	will	now	focus	on	situations	where	users	have	provided	rankings	or	ratings	on
previously	viewed	or	purchased	items.	There	are	two	primary	categories	of	designing
recommendation	systems:	collaborative	filtering	and	content-based	(Ansari,	Essegaier,
and	Kohli,	2000).	The	former	category	is	what	we	will	concentrate	on	as	this	is	the	focus
of	the	recommenderlab	R	package	that	we	will	be	using.

For	content-based	approaches,	the	concept	is	to	link	user	preferences	with	item	attributes.
These	attributes	may	be	things	such	as	the	genre,	cast,	and	storyline	for	a	movie	or	TV
show	recommendation.	As	such,	recommendations	are	based	entirely	on	what	the	user
provides	as	ratings;	there	is	no	linkage	to	what	anyone	else	recommends.	This	has	the
advantage	over	content-based	approaches:	when	a	new	item	is	added,	it	can	be
recommended	to	a	user	if	it	matches	their	profile	instead	of	relying	on	other	users	to	rate	it
first	(the	so-called	first	rater	problem).	However,	content-based	methods	can	suffer	when
limited	content	is	available,	either	because	of	the	domain	or	when	a	new	user	enters	the
system.	This	can	result	in	non-unique	recommendations,	that	is,	poor	recommendations.
(Lops,	Gemmis,	and	Semeraro,	2011)

In	collaborative	filtering,	the	recommendations	are	based	on	the	many	ratings	provided	by
some	or	all	of	the	individuals	in	the	database.	Essentially,	it	tries	to	capture	the	wisdom	of
the	crowd.

For	collaborative	filtering,	we	will	focus	on	the	following	four	methods:

User-based	Collaborative	Filtering	(UBCF)
Item-based	Collaborative	Filtering	(IBCF)
Singular	Value	Decomposition	(SVD)
Principal	Components	Analysis	(PCA)

We	will	look	at	these	methods	briefly	before	moving	on	to	the	business	case.	It	is	also
important	to	understand	that	recommenderlab	was	not	designed	to	be	used	as	a	real-world
implementation	tool,	but	rather	as	a	laboratory	tool	in	order	to	research	algorithms
provided	in	the	package	as	well	as	algorithms	that	you	wish	to	experiment	with	on	your
own.

User-based	collaborative	filtering
In	UBCF,	the	algorithm	finds	missing	ratings	for	a	user	can	be	predicted	by	first	finding	a
neighborhood	of	similar	users	and	then	aggregate	the	ratings	of	these	users	to	form	a
prediction.	(Hahsler,	2011).	The	neighborhood	is	determined	by	selecting	either	the	KNN
that	is	the	most	similar	to	the	user	we	are	making	predictions	for	or	by	some	similarity
measure	with	a	minimum	threshold.	The	two	similarity	measures	available	in
recommenderlab	are	Pearson	Correlation	Coefficient	and	Cosine	Similarity.	I	will	skip
the	formulas	for	these	measures	as	they	are	readily	available	in	the	package
documentation.

Once	the	neighborhood	method	is	decided	on,	the	algorithm	identifies	the	neighbors	by
calculating	the	similarity	measure	between	the	individual	of	interest	and	their	neighbors
on	only	those	items	that	were	rated	by	both.	Through	some	scoring	scheme,	say,	a	simple
average,	the	ratings	are	aggregated	in	order	to	make	a	predicted	score	for	the	individual
and	item	of	interest.

Let’s	look	at	a	simple	example.	In	the	following	matrix,	there	are	six	individuals	with
ratings	on	four	movies,	with	the	exception	of	my	rating	for	Mad	Max.	Using	k=1,	the
nearest	neighbor	is	Homer,	with	Bart	a	close	second;	even	though	Flanders	hated	the
Avengers	as	much	as	I	did.	So,	using	Homer’s	rating	for	Mad	Max,	which	is	4,	the
predicted	rating	for	me	would	also	be	a	4:

There	are	a	number	of	ways	to	weigh	the	data	and/or	control	the	bias.	For	instance,
Flanders	is	quite	likely	to	have	lower	ratings	than	the	other	users,	so	normalizing	the	data
where	the	new	rating	score	is	equal	to	the	user	rating	for	an	item	minus	the	average	for
that	user	for	all	the	items.

The	weakness	of	UBCF	is	that	to	calculate	the	similarity	measure	for	all	the	possible
users,	the	entire	database	must	be	kept	in	memory,	which	can	be	quite	computationally
expensive	and	time-consuming.

Item-based	collaborative	filtering
As	you	might	have	guessed,	IBCF	uses	the	similarity	between	the	items	and	not	users	to
make	a	recommendation.	The	assumption	behind	this	approach	is	that	users	will	prefer
items	that	are	similar	to	other	items	they	like.	(Hahsler,	2011).	The	model	is	built	by
calculating	a	pairwise	similarity	matrix	of	all	the	items.	The	popular	similarity	measures
are	Pearson	correlation	and	cosine	similarity.	To	reduce	the	size	of	the	similarity	matrix,
one	can	specify	to	retain	only	the	k-most	similar	items.	However,	limiting	the	size	of	the
neighborhood	may	significantly	reduce	the	accuracy,	leading	to	poorer	performance	versus
UCBF.

Continuing	with	our	simplified	example,	if	we	examine	the	following	matrix,	with	k=1	the
item	most	similar	to	Mad	Max	is	American	Sniper	and	we	can	thus	take	that	rating	as
the	prediction	for	Mad	Max	is	as	follows:

Singular	value	decomposition	and	principal
components	analysis
It	is	quite	common	to	have	a	dataset	where	the	number	of	users	and	items	could	number	in
the	millions.	Even	if	the	rating	matrix	is	not	that	large,	it	may	be	beneficial	to	reduce	the
dimensionality	by	creating	a	smaller	(lower	rank)	matrix	that	captures	most	of	the
information	in	the	higher	dimension	matrix.	This	may	potentially	allow	you	to	capture
important	latent	factors	and	their	corresponding	weights	in	the	data.	Such	factors	could
lead	to	important	insights	such	as	the	movie	genre	or	book	topics	in	the	rating	matrix.
Even	if	you	are	unable	to	discern	the	meaningful	factors,	the	techniques	may	filter	out	the
noise	in	the	data.

One	issue	with	large	datasets	is	that	you	will	likely	end	up	with	a	sparse	matrix	with	many
ratings	missing.	One	weakness	of	these	methods	is	that	they	will	not	work	on	a	matrix
with	missing	values,	which	must	be	imputed.	As	with	any	data	imputation	task,	there	are	a
number	of	techniques	that	one	can	try	and	experiment	with,	such	as	using	the	mean,
median,	or	code	as	zeroes.	The	default	for	recommenderlab	is	to	use	the	median.	You
should	also	be	aware	of	the	R	package,	bcv,	Cross-Validation	for	the	SVD.	This
package	has	the	impute.svd()	function,	which	will	impute	the	missing	values	in	a	matrix.

So	what	is	SVD?	It	is	simply	a	method	for	matrix	factorization.	Say	that	you	have	a	matrix
called	A.	This	matrix	will	factor	into	three	matrices:	U,	D,	and	VT.	U	is	an	orthogonal
matrix,	D	is	a	non-negative,	diagonal	matrix,	and	VT	is	a	transpose	of	an	orthogonal
matrix.	Furthermore,	U	is	the	eigenvector	of	AAT	and	V	is	the	eigenvector	of	ATA.	Now,
let’s	look	at	our	rating	matrix	and	walk	through	an	example	using	R.

The	first	thing	that	we	will	do	is	recreate	the	rating	matrix,	as	shown	in	the	following
code:

>	ratings	=	c(3,5,5,5,1,1,5,2,5,1,1,5,3,5,1,5,4,2,4,3,4,2,1,4)

>	ratingMat	=	matrix(ratings,	nrow=6)

>	rownames(ratingMat)	=	c("Homer","Marge","Bart","Lisa","Flanders","Me")

>	colnames(ratingMat)	=	c("Avengers","American	Sniper","Les	Miserable","Mad	

Max")

>	ratingMat

									Avengers	American	Sniper	Les	Miserable	Mad	Max

Homer								3															5													3							4

Marge								5															2													5							3

Bart									5															5													1							4

Lisa									5															1													5							2

Flanders					1															1													4							1

Me											1															5													2							4

Now,	we	will	use	the	svd()	function	in	base	R	to	create	the	three	matrices,	which	R	calls
$d,	$u,	and	$v.	You	can	think	of	the	$u	values	as	an	individual’s	loadings	on	that	factor
and	$v	as	a	movie’s	loadings	on	that	dimension,	for	example,	Mad	Max	loads	on	dimension

one	at	-0.116:

>	svd=svd(ratingMat)

>	svd

$d

[1]	16.1204848		6.1300650		3.3664409		0.4683445

$u

											[,1]							[,2]							[,3]								[,4]

[1,]	-0.4630576		0.2731330		0.2010738	-0.27437700

[2,]	-0.4678975	-0.3986762	-0.0789907		0.53908884

[3,]	-0.4697552		0.3760415	-0.6172940	-0.31895450

[4,]	-0.4075589	-0.5547074	-0.1547602	-0.04159102

[5,]	-0.2142482	-0.3017006		0.5619506	-0.57340176

[6,]	-0.3660235		0.4757362		0.4822227		0.44927622

$v

											[,1]							[,2]								[,3]							[,4]

[1,]	-0.5394070	-0.3088509	-0.77465479	-0.1164526

[2,]	-0.4994752		0.6477571		0.17205756	-0.5489367

[3,]	-0.4854227	-0.6242687		0.60283871	-0.1060138

[4,]	-0.4732118		0.3087241		0.08301592		0.8208949

It	is	easy	to	explore	how	much	variation	is	explained	by	reducing	the	dimensionality.	Let’s
sum	the	diagonal	numbers	of	$d,	then	look	at	how	much	of	the	variation	we	can	explain
with	just	two	factors,	as	follows:

>	sum(svd$d)

[1]	26.08534

>	var	=	sum(svd$d[1:2])

>	var

[1]	22.25055

>	var/sum(svd$d)

[1]	0.8529908

With	two	of	the	four	factors,	we	are	able	to	capture	just	over	85	percent	of	the	total
variation	in	the	full	matrix.	You	can	see	the	scores	that	the	reduced	dimensions	would
produce.	To	do	this,	we	will	create	a	function.	(Many	thanks	to	the
www.stackoverflow.com	respondents	who	helped	me	put	this	function	together.)	This
function	will	allow	us	to	specify	the	number	of	factors	that	are	to	be	included	for	a
prediction.	It	calculates	a	rating	value	by	multiplying	the	$u	matrix	times	the	$v	matrix
times	the	$d	matrix:

>	f1	=	function(x)	{

score	=	0

for(i	in	1:n)

score	=	score	+	svd$u[,i]	%*%	t(svd$v[,i])	*	svd$d[i]

return(score)}

By	specifying	n=4	and	calling	the	function,	we	can	recreate	the	original	rating	matrix:

http://www.stackoverflow.com

>	n=4

>	f1(svd)

					[,1]	[,2]	[,3]	[,4]

[1,]				3				5				3				4

[2,]				5				2				5				3

[3,]				5				5				1				4

[4,]				5				1				5				2

[5,]				1				1				4				1

[6,]				1				5				2				4

Alternatively,	we	can	specify	n=2	and	examine	the	resulting	matrix:

>	n=2

>	f1(svd)

												[,1]						[,2]					[,3]					[,4]

[1,]	3.509402	4.8129937	2.578313	4.049294

[2,]	4.823408	2.1843483	5.187072	2.814816

[3,]	3.372807	5.2755495	2.236913	4.295140

[4,]	4.594143	1.0789477	5.312009	2.059241

[5,]	2.434198	0.5270894	2.831096	1.063404

[6,]	2.282058	4.8361913	1.043674	3.692505

So,	with	SVD,	you	can	reduce	the	dimensionality	and	possibly	identify	the	meaningful
latent	factors.

If	you	went	through	the	prior	chapter,	you	can	see	the	similarities	with	PCA.	In	fact,	the
two	are	closely	related	and	often	used	interchangeably	as	they	both	utilize	the	matrix
factorization.	However,	what	is	the	difference?	In	short,	PCA	is	based	on	the	covariance
matrix,	which	is	symmetric.	This	means	that	you	start	with	the	data,	compute	the
covariance	matrix	on	the	centered	data,	diagonalize	it,	and	create	the	components.	Now,
one	can	derive	the	principal	components	using	SVD.	Let’s	apply	a	portion	of	the	PCA
code	from	the	prior	chapter	to	our	data	in	order	to	see	how	the	difference	manifests	itself:

>	library(psych)

>	pca	=	principal(ratingMat,	nfactors=2,	rotate="none")

>	pca

Principal	Components	Analysis

Call:	principal(r	=	ratingMat,	nfactors	=	2,	rotate	=

"none")

Standardized	loadings	(pattern	matrix)	based	upon	correlation	matrix

																		PC1			PC2			h2				u2

Avengers								-0.09		0.98	0.98	0.022

American	Sniper		0.99	-0.01	0.99	0.015

Les	Miserable			-0.90		0.18	0.85	0.150

Mad	Max										0.92		0.29	0.93	0.071

																												PC1		PC2

SS	loadings											2.65	1.09

Proportion	Var								0.66	0.27

Cumulative	Var								0.66	0.94

Proportion	Explained		0.71	0.29

Cumulative	Proportion	0.71	1.00

You	can	see	that	PCA	is	easier	to	interpret.	Notice	how	American	Sniper	and	Mad	Max
have	high	loadings	on	the	first	component	and	only	Avengers	has	a	high	loading	on	the
second	component.	Additionally,	these	two	components	account	for	94	percent	of	the	total
variance	in	the	data.

Having	applied	a	simplistic	rating	matrix	to	the	techniques	of	collaborative	filtering,	let’s
move	on	to	a	more	complex	example	using	real-world	data.

Business	understanding	and
recommendations
This	business	case	is	a	joke,	literally.	Maybe	it	is	more	appropriate	to	say	a	bunch	of	jokes
as	we	will	use	the	Jester5k	data	from	the	recommenderlab	package.	This	data	consists	of
5,000	ratings	on	100	jokes	sampled	from	the	Jester	Online	Joke	Recommender	System.	It
was	collected	between	April	1999	and	May	2003,	and	all	the	users	have	rated	at	least	36
jokes	(Goldberg,	Roeder,	Gupta,	and	Perkins,	2001).	Our	goal	is	to	compare	the
recommendation	algorithms	and	select	the	best	one.

As	such,	I	believe	it	is	important	to	lead	off	with	a	statistical	joke	to	put	one	in	the	proper
frame	of	mind.	I’m	not	sure	of	how	to	properly	provide	attribution	for	this	one,	but	it	is
popular	all	over	the	Internet.

A	statistician’s	wife	had	twins.	He	was	delighted.	He	rang	the	minister	who	was	also
delighted.	“Bring	them	to	church	on	Sunday	and	we’ll	baptize	them”,	said	the	minister.
“No”,	replied	the	statistician.	“Baptize	one.	We’ll	keep	the	other	as	a	control.”

Data	understanding,	preparation,	and
recommendations
The	one	library	that	we	will	need	for	this	exercise	is	recommenderlab.	The	package	was
developed	by	the	Southern	Methodist	University’s	Lyle	Engineering	Lab	and	they	have	an
excellent	website	with	supporting	documentation	at
https://lyle.smu.edu/IDA/recommenderlab/:

>	library(recommenderlab)

>	data(Jester5k)

>	Jester5k

5000	x	100	rating	matrix	of	class	'realRatingMatrix'	with

362106	ratings.

The	rating	matrix	contains	362106	total	ratings.	It	is	quite	easy	to	get	a	list	of	a	user’s
ratings.	Let’s	look	at	user	number	10.	The	following	output	is	abbreviated	for	the	first	five
jokes:

>	as(Jester5k[10,],	"list")

$u12843

			j1				j2				j3				j4				j5	…

-1.99	-6.89		2.09	-4.42	-4.90	…

You	can	also	look	at	the	mean	rating	for	a	user	(user	10)	and/or	the	mean	rating	for	a
specific	joke	(joke	1),	as	follows:

>	rowMeans(Jester5k[10,])

u12843	

		-1.6

>	colMeans(Jester5k[,1])

		j1	

0.92

One	method	to	get	a	better	understanding	of	the	data	is	to	plot	the	ratings	as	a	histogram,
both	the	raw	data	and	after	normalization.	We	will	do	this	with	the	getRating()	function
from	recommenderlab:

>	hist(getRatings(Jester5k),	breaks=100)

The	output	of	the	preceding	command	is	as	follows:

https://lyle.smu.edu/IDA/recommenderlab/

The	normalize()	function	in	the	package	centers	the	data	by	subtracting	the	mean	of	the
ratings	of	the	joke	from	that	joke’s	rating.	As	the	preceding	distribution	is	slightly	biased
towards	the	positive	ratings,	normalizing	the	data	can	account	for	this;	thus	yielding	a
more	normal	distribution	but	still	showing	a	slight	skew	towards	the	positive	ratings,	as
follows:

>	hist(getRatings(normalize(Jester5k)),	breaks=100)

The	following	is	the	output	of	the	preceding	command:

Before	modeling	and	evaluation,	it	is	quite	easy	to	create	the	train	and	test	datasets	with
the	recommenderlab	package	with	the	evaluationScheme()	function.	Let’s	do	an	80/20
split	of	the	data	for	the	train	and	test	sets.	You	can	also	choose	k-fold	cross-validation
and	bootstrap	resampling	if	you	want.	We	will	also	specify	that	for	the	test	set,	the
algorithm	will	be	given	15	ratings.	This	means	that	the	other	rating	items	will	be	used	to
compute	the	error.	Additionally,	we	will	specify	what	the	threshold	is	for	good	rating;	in
our	case,	greater	than	or	equal	to	5:

>	set.seed(123)

>	e	=	evaluationScheme(Jester5k,	method="split",	

train=0.8,	given=15,	goodRating=5)

>		e

Evaluation	scheme	with	15	items	given

Method:	'split'	with	1	run(s).

Training	set	proportion:	0.800

Good	ratings:	>=5.000000

Data	set:	5000	x	100	rating	matrix	of	class

'realRatingMatrix'	with	362106

	ratings.

With	the	train	and	test	data	established,	we	will	now	begin	to	model	and	evaluate	the
different	recommenders:	user-based,	item-based,	popular,	SVD,	PCA,	and	random.

Modeling,	evaluation,	and
recommendations
In	order	to	build	and	test	our	recommendation	engines,	we	can	use	the	same	function,
Recommender(),	merely	changing	the	specification	for	each	technique.	In	order	to	see	what
the	package	can	do	and	explore	the	parameters	available	for	all	six	techniques,	you	can
examine	the	registry.	Looking	at	the	following	IBCF,	we	can	see	that	the	default	is	to	find
30	neighbors	using	the	cosine	method	with	the	centered	data	while	the	missing	data	is	not
coded	as	a	zero:

>	recommenderRegistry$get_entries(dataType	=

"realRatingMatrix")

$IBCF_realRatingMatrix

Recommender	method:	IBCF

Description:	Recommender	based	on	item-based	collaborative	filtering	(real	

data).

Parameters:

k	method	normalize	normalize_sim_matrix	alpha	na_as_zero	minRating

1	30	Cosine				center													FALSE			0.5						FALSE								NA

$PCA_realRatingMatrix

Recommender	method:	PCA

Description:	Recommender	based	on	PCA	approximation	(real

data).

Parameters:

categories	method	normalize	normalize_sim_matrix	alpha	na_as_zero

1									20	Cosine				center														FALSE			0.5						FALSE

	minRating

1								NA

$POPULAR_realRatingMatrix

Recommender	method:	POPULAR

Description:	Recommender	based	on	item	popularity	(real

data).

Parameters:	None

$RANDOM_realRatingMatrix

Recommender	method:	RANDOM

Description:	Produce	random	recommendations	(real	ratings).

Parameters:	None

$SVD_realRatingMatrix

Recommender	method:	SVD

Description:	Recommender	based	on	SVD	approximation	(real

data).

Parameters:

		categories	method	normalize	normalize_sim_matrix	alpha

treat_na

1									50	Cosine				center														FALSE			0.5			median

		minRating

1								NA

$UBCF_realRatingMatrix

Recommender	method:	UBCF

Description:	Recommender	based	on	user-based	collaborative	filtering	(real	

data).

Parameters:

		method	nn	sample	normalize	minRating

1	cosine	25	FALSE			center								NA

Here	is	how	you	can	put	together	the	algorithms	based	on	the	train	data.	For	simplicity,
let’s	use	the	default	algorithm	settings.	You	can	adjust	the	parameter	settings	by	simply
including	your	changes	in	the	function	as	a	list.	For	instance,	SVD	treats	the	missing
values	as	the	column	median.	If	you	wanted	to	have	the	missing	values	coded	as	zero,	you
would	need	to	include	param=list(treat_na="0"):

>	ubcf	=	Recommender(getData(e,"train"),	"UBCF")

>	ibcf	=	Recommender(getData(e,"train"),	"IBCF")

>	svd	=	Recommender(getData(e,	"train"),	"SVD")

>	popular	=	Recommender(getData(e,	"train"),	"POPULAR")

>	pca	=	Recommender(getData(e,	"train"),	"PCA")

>	random	=	Recommender(getData(e,	"train"),	"RANDOM")

Now,	using	the	predict()	and	getData()	functions,	we	will	get	the	predicted	ratings	for
the	15	items	of	the	test	data	for	each	of	the	algorithms,	as	follows:

>	user_pred	=	predict(ubcf,	getData(e,"known"),type="ratings")

>		item_pred	=	predict(ibcf,	getData(e,	"known"),type="ratings")

>	svd_pred	=	predict(svd,	getData(e,	"known"),type="ratings")

>	pop_pred	=	predict(popular,	getData(e,	"known"),type="ratings")

>	pca_pred	=	predict(pca,	getData(e,	"known"),type="ratings")

>	rand_pred	=	predict(random,	getData(e,	"known"),	type="ratings")

We	will	examine	the	error	between	the	predictions	and	unknown	portion	of	the	test	data
using	the	calcPredictionAccuracy()	function.	The	output	will	consist	of	RMSE,	MSE,	and
MAE	for	all	the	methods.	We’ll	examine	UBCF	by	itself.	After	creating	the	objects	for	all	six
methods,	we	can	build	a	table	by	creating	an	object	with	the	rbind()	function	and	giving
names	to	the	rows	with	the	rownames()	function:

>	P1	=	calcPredictionAccuracy(user_pred,	getData(e,

"unknown"))

>	P1

RMSE		MSE		MAE	

4.5	19.9		3.5

>	P2	=	calcPredictionAccuracy(item_pred,	getData(e,"unknown"))

>	P3	=	calcPredictionAccuracy(svd_pred,	getData(e,	"unknown"))

>	P4	=	calcPredictionAccuracy(pop_pred,	getData(e,"unknown"))

>	P5	=	calcPredictionAccuracy(pca_pred,	getData(e,"unknown"))

>	P6	=	calcPredictionAccuracy(rand_pred,	getData(e,"unknown"))

>	error	=	rbind(P1,P2,P3,P4,P5,P6)

>	rownames(error)	=	c("UBCF",	"IBCF",	"SVD",	"Popular",	"PCA",	"Random")

>	error

												RMSE						MSE						MAE

UBCF				4.467276	19.95655	3.496973

IBCF				4.651552	21.63693	3.517007

SVD					5.275496	27.83086	4.454406

Popular	5.064004	25.64414	4.233115

PCA					4.711496	22.19819	3.725162

Random		7.830454	61.31601	6.403661

We	can	see	in	the	output	that	the	user-based	algorithm	slightly	outperforms	IBCF	and
PCA.	It	is	also	noteworthy	that	a	simple	algorithm	such	as	the	popular-based
recommendation	does	fairly	well.

There	is	another	way	to	compare	methods	using	the	evaluate()	function.	Making
comparisons	with	evaluate()	allows	one	to	examine	additional	performance	metrics	as
well	as	performance	graphs.	As	the	UBCF	and	IBCF	algorithms	performed	the	best,	we
will	look	at	them	along	with	the	popular-based	one.

The	first	task	in	this	process	is	to	create	a	list	of	the	algorithms	that	we	want	to	compare,
as	follows:

>	algorithms	=	list(POPULAR	=	list(name	=	"POPULAR"),UBCF	=list(name	=	

"UBCF"),IBCF	=	list(name	=	"IBCF"))

>	algorithms

$POPULAR

$POPULAR$name

[1]	"POPULAR"

$UBCF

$UBCF$name

[1]	"UBCF"

$IBCF

$IBCF$name

[1]	"IBCF"

You	can	adjust	the	parameters	with	param=…	in	the	list()	function	just	as	the	preceding
example.	In	the	next	step,	you	can	create	the	results	using	evaluate()	and	also	set	up	a
comparison	on	a	specified	number	of	recommendations.	For	this	example,	let’s	compare
the	top	5,	10,	and	15	joke	recommendations:

>	evlist	=	evaluate(e,	algorithms,n=c(5,10,15))

POPULAR	run	

	1		[0.05sec/1.02sec]	

UBCF	run	

	1		[0.03sec/68.26sec]	

IBCF	run	

	1		[2.03sec/0.86sec]3

Note	that	by	executing	the	command,	you	will	receive	an	output	on	how	long	it	took	to
run	the	algorithm.	We	can	now	examine	the	performance	using	the	avg()	function:

>	avg(evlist)

$POPULAR

						TP				FP					FN					TN	precision				recall							TPR

5		2.092	2.908	14.193	70.807				0.4184	0.1686951	0.1686951

10	3.985	6.015	12.300	67.700				0.3985	0.2996328	0.2996328

15	5.637	9.363	10.648	64.352				0.3758	0.4111718	0.4111718

										FPR

5		0.03759113

10	0.07769088

15	0.12116708

$UBCF

						TP				FP					FN					TN	precision				recall							TPR

5		2.074	2.926	14.211	70.789				0.4148	0.1604751	0.1604751

10	3.901	6.099	12.384	67.616				0.3901	0.2945067	0.2945067

15	5.472	9.528	10.813	64.187				0.3648	0.3961279	0.3961279

										FPR

5		0.03762910

10	0.07891524

15	0.12362834

$IBCF

						TP					FP					FN					TN	precision					recall

5		1.010		3.990	15.275	69.725				0.2020	0.06047142

10	2.287		7.713	13.998	66.002				0.2287	0.15021068

15	3.666	11.334	12.619	62.381				0.2444	0.23966150

										TPR							FPR

5		0.06047142	0.0534247

10	0.15021068	0.1027532

15	0.23966150	0.1504704

Note	that	the	performance	metrics	for	POPULAR	and	UBCF	are	nearly	the	same.	One	could
say	that	the	simpler-to-implement	popular-based	algorithm	is	probably	the	better	choice
for	a	model	selection.	Indeed,	what	is	disappointing	about	this	whole	exercise	is	the
anemic	TPR,	for	example,	for	UBCF	of	15	recommendations,	only	an	average	of	5.5	were
truly	accurate.	As	mentioned,	we	can	plot	and	compare	the	results	as	Receiver	Operating
Characteristic	Curves	(ROC),	where	you	can	compare	TPR	and	FPR	or	as	precision/recall
curves,	as	follows:

>	plot(evlist,	legend="topleft",	annotate=TRUE)

The	following	is	the	output	of	the	preceding	command:

To	get	the	precision/recall	curve	plot	you	only	need	to	specify	“prec”	in	the	plot	function:

>	plot(evlist,	"prec",	legend="bottomright",	annotate=TRUE)

The	output	of	the	preceding	command	is	as	follows:

You	can	clearly	see	in	the	plots	that	the	popular-based	and	user-based	algorithms	are
almost	identical	and	outperform	the	item-based	one.	The	annotate=TRUE	parameter

provides	numbers	next	to	the	point	that	corresponds	to	the	number	of	recommendations
that	we	called	for	in	our	evaluation.

This	was	simple,	but	what	are	the	actual	recommendations	from	a	model	for	a	specific
individual?	This	is	quite	easy	to	code	as	well.	First,	let’s	build	a	user-based
recommendation	engine	on	the	full	dataset.	Then,	we	will	find	the	top	five
recommendations	for	the	first	two	raters.	We	will	use	the	Recommend()	function	and	apply
it	to	the	whole	dataset,	as	follows:

>	R1	=	Recommender(Jester5k,	method="UBCF")

>	R1

Recommender	of	type	'UBCF'	for	'realRatingMatrix'	

learned	using	5000	users.

Now,	we	just	need	to	get	the	top	five	recommendations—in	order—for	the	first	two	raters
and	produce	them	as	a	list:

>	recommend	=	predict(R1,	Jester5k[1:2],	n=5)

>	as(recommend,	"list")

[[1]]

[1]	"j81"	"j78"	"j83"	"j80"	"j73"

[[2]]

[1]	"j96"	"j87"	"j89"	"j76"	"j93"

It	is	also	possible	to	see	a	rater’s	specific	rating	score	for	each	of	the	jokes	by	specifying
this	in	the	predict()	syntax	and	then	putting	it	in	a	matrix	for	review.	Let’s	do	this	for	ten
individuals	(raters	300	through	309)	and	three	jokes	(71	through	73):

>	rating	=	predict(R1,	Jester5k[300:309],	type="ratings")

>	rating

10	x	100	rating	matrix	of	class	'realRatingMatrix'	with	322

ratings.

>	as(rating,	"matrix")[,71:73]

													j71									j72								j73

	[1,]	-0.8055227	-0.05159179	-0.3244485

	[2,]									NA										NA									NA

	[3,]	-1.2472200										NA	-1.5193913

	[4,]		4.0659217		4.45316186		4.0651614

	[5,]									NA										NA									NA

	[6,]		1.1233854		1.37527380									NA

	[7,]		0.4938482		0.18357168	-0.1378054

	[8,]		0.2004399		0.58525761		0.2910901

	[9,]	-0.5184774		0.03067017		0.2209107

[10,]		0.1480202		0.35858842									NA

The	numbers	in	the	matrix	indicate	the	predicted	ratings	for	the	jokes	that	the	individual
rated,	while	the	NAs	indicate	those	that	the	user	did	not	rate.

Our	final	effort	on	this	data	will	show	how	to	build	recommendations	for	those	situations
where	the	ratings	are	binary,	that	is,	good	or	bad	or	1	or	0.	We	will	need	to	turn	the	ratings

into	this	binary	format	with	5	or	greater	as	a	1	and	less	than	5	as	0.	This	is	quite	easy	to	do
with	Recommenderlab	using	the	binarize()	function	and	specifying	minRating=5:

>	Jester.bin	=	binarize(Jester5k,	minRating=5)

Now,	we	will	need	to	have	our	data	reflect	the	number	of	ratings—equal	to	one—in	order
to	match	what	we	need	the	algorithm	to	use	for	the	training.	For	argument’s	sake,	let’s	go
with	given=10.	The	code	to	create	the	subset	of	the	necessary	data	is	shown	in	the
following	lines:

>	Jester.bin	=	Jester.bin[rowCounts(Jester.bin)>10]

>	Jester.bin

3054	x	100	rating	matrix	of	class	'binaryRatingMatrix'	with	84722	ratings.

You	will	need	to	create	evaluationScheme.	In	this	instance,	we	will	go	with	cross-
validation.	The	default	k-fold	in	the	function	is	10,	but	we	can	also	safely	go	with	k=5,
which	will	reduce	our	computation	time:

>	set.seed(456)

>	e.bin	=	evaluationScheme(Jester.bin,	method="cross-validation",	k=5,	

given=10)

For	comparison	purposes,	the	algorithms	under	evaluation	will	include	random,	popular
and	UBCF:

>	algorithms.bin	=	list("random"	=	list(name="RANDOM",	

param=NULL),"popular"	=	list(name="POPULAR",	param=NULL),"UBCF"	=	

list(name="UBCF"))

It	is	now	time	to	build	our	model,	as	follows:

>	results.bin	=	evaluate(e.bin,	algorithms.bin,	n=c(5,10,15))

RANDOM	run	

	1		[0sec/0.41sec]	

	2		[0.01sec/0.39sec]	

	3		[0sec/0.39sec]	

	4		[0sec/0.41sec]	

	5		[0sec/0.4sec]	

POPULAR	run	

	1		[0.01sec/3.79sec]	

	2		[0sec/3.81sec]	

	3		[0sec/3.82sec]	

	4		[0sec/3.92sec]	

	5		[0.02sec/3.78sec]	

UBCF	run	

	1		[0sec/5.94sec]	

	2		[0sec/5.92sec]	

	3		[0sec/6.05sec]	

	4		[0sec/5.86sec]	

	5		[0sec/6.09sec]

Forgoing	the	table	of	performance	metrics,	let’s	take	a	look	at	the	plots:

>	plot(results.bin,	legend="topleft")

The	output	of	the	preceding	command	is	as	follows:

>	plot(results.bin,	"prec",	legend="bottomright")

The	output	of	the	preceding	command	is	as	follows:

The	user-based	algorithm	slightly	outperforms	the	popular-based	one,	but	you	can	clearly
see	that	they	are	both	superior	to	any	random	recommendation.	In	our	business	case,	it

will	come	down	to	the	judgment	of	the	decision-making	team	as	to	which	algorithm	to
implement.

Summary
In	this	chapter,	the	goal	was	to	provide	an	introduction	to	how	to	use	R	in	order	to	build
and	test	association	rule	mining	(market	basket	analysis)	and	recommendation	engines.
Market	basket	analysis	is	trying	to	understand	what	items	are	purchased	together.	With
recommendation	engines,	the	goal	is	to	provide	a	customer	with	other	items	that	they	will
enjoy	based	on	how	they	have	rated	previously	viewed	or	purchased	items.	It	is	important
to	understand	the	R	package	that	we	used	(recommenderlab)	for	recommendation	is	not
designed	for	implementation	but	rather	to	develop	and	test	algorithms.

Chapter	11.	Time	Series	and	Causality
	 “An	economist	is	an	expert	who	will	know	tomorrow	why	the	things	he	predicted	yesterday	didn’t	happen	today.” 	

	 —Laurence	J.	Peter

A	univariate	time	series	is	where	the	measurements	are	collected	over	a	standard	measure
of	time,	which	could	be	by	the	minute,	hour,	day,	week,	or	month.	What	makes	the	time
series	problematic	over	the	other	data	collected	is	that	the	order	of	the	observations
probably	matters.	This	dependency	of	order	can	cause	the	standard	analysis	methods	to
produce	an	unnecessarily	high	bias	or	variance.

It	seems	that	there	is	a	paucity	of	literature	on	machine	learning	and	time	series	data.	This
is	unfortunate	as	so	much	of	the	real-world	data	involves	a	time	component.	Furthermore,
time	series	analysis	can	be	quite	complicated	and	tricky.	I	would	say	that	if	you	haven’t
seen	a	time	series	analysis	done	incorrectly,	you	haven’t	been	looking	close	enough.

Another	aspect	involving	time	series	that	is	often	neglected	is	causality.	Yes,	we	don’t
want	to	confuse	correlation	with	causation,	but	in	time	series	analysis,	one	can	apply	the
technique	of	Granger	causality	in	order	to	determine	if	causality	indeed	exists.

In	this	chapter,	we	will	apply	time	series/econometric	techniques	to	identify	univariate
forecast	models,	bivariate	regression	models,	and	finally,	Granger	causality.	After
completing	the	chapter,	you	may	not	be	a	complete	master	of	the	time	series	analysis,	but
you	will	know	enough	to	perform	an	effective	analysis	and	understand	the	fundamental
issues	to	consider	when	building	time	series	models	and	creating	predictive	models
(forecasts).

Univariate	time	series	analysis
We	will	focus	on	two	methods	to	analyze	and	forecast	a	single	time	series:	exponential
smoothing	and	Autoregressive	Integrated	Moving	Average	(ARIMA)	models.	We	will
start	by	looking	at	exponential	smoothing	models.

Exponential	smoothing	models	use	weights	for	past	observations,	such	as	a	moving
average	model,	but	unlike	moving	average	models,	the	more	recent	the	observation,	the
more	weight	it	is	given,	relative	to	the	later	ones.	There	are	three	possible	smoothing
parameters	to	estimate:	the	overall	smoothing	parameter,	a	trend	parameter,	and	smoothing
parameter.	If	no	trend	or	seasonality	is	present,	then	these	parameters	become	null.

The	smoothing	parameter	produces	a	forecast	with	the	following	equation:

In	this	equation,	Yt	is	the	value	at	the	time,	T,	and	alpha	(α)	is	the	smoothing	parameter.
Algorithms	optimize	the	alpha	(and	other	parameters)	by	minimizing	the	errors,	for
example,	sum	of	squared	error	(SSE)	or	mean	squared	error	(MSE).

The	forecast	equation	along	with	trend	and	seasonality	equations,	if	applicable,	will	be	as
follows:

The	forecast,	where	A	is	the	preceding	smoothing	equation	and	h	is	the	number	of
forecast	periods,	

The	trend,	where	
The	seasonality,	where	m	is	the	number	of	seasonal	periods,	

)St-m

This	equation	is	referred	to	as	the	Holt-Winter’s	Method.	The	forecast	equation	is
additive	in	nature	with	the	trend	as	linear.	The	method	also	allows	the	inclusion	of	a
dampened	trend	and	multiplicative	seasonality,	where	the	seasonality	proportionally
increases	or	decreases	over	time.	It	has	been	my	experience	that	the	Holt-Winter’s	Method
provides	the	best	forecasts,	even	better	than	the	ARIMA	models.	I	have	come	to	this
conclusion	on	having	to	update	long-term	forecasts	for	hundreds	of	time	series	based	on
monthly	data,	and	in	roughly	90	percent	of	the	cases,	Holt-Winters	produced	the	minimal
forecast	error.	Additionally,	you	don’t	have	to	worry	about	the	assumption	of	stationarity
as	in	an	ARIMA	model.	Stationarity	is	where	the	time	series	has	a	constant	mean,
variance,	and	correlation	between	all	the	time	periods.	Having	said	this,	it	is	still	important
to	understand	the	ARIMA	models	as	there	will	be	situations	where	they	have	the	best
performance.

Starting	with	the	autoregressive	model,	the	value	of	Y	at	time	T	is	a	linear	function	of	the
prior	values	of	Y.	The	formula	for	an	autoregressive	lag-1	model,	AR(1),	is	Yt	=	constant

+	ΦYt-1	+	Et.	The	critical	assumptions	for	the	model	are	as	follows:

Et	is	the	errors	that	are	identically	and	independently	distributed	with	a	mean	zero
and	constant	variance
The	errors	are	independent	of	Yt
Yt,	Yt-1,	Yt-n…	is	stationary,	which	means	that	the	absolute	value	of	Φ	is	less	than
one

With	a	stationary	time	series,	you	can	examine	Autocorrelation	Function	(ACF).	The
ACF	of	a	stationary	series	gives	correlations	between	Yt	and	Yt-h	for	h	=	1,	2…n.	Let’s	use
R	to	create	an	AR(1)	series	and	plot	it:

>	set.seed(123)

>	ar1	=	arima.sim(list(order=c(1,0,0),	ar=0.5),	n=200)

>	plot(ar1)

The	following	is	the	output	of	the	preceding	command:

Now,	lets	examine	ACF:

>	acf(ar1)

The	output	of	the	preceding	command	is	as	follows:

The	ACF	plot	shows	the	correlations	exponentially	decreasing	as	the	Lag	increases.	The
dotted	blue	lines	indicate	a	significant	correlation.	In	addition	to	ACF,	one	should	also
examine	Partial	Autocorrelation	Function	(PACF).	PACF	is	a	conditional	correlation,
which	means	that	the	correlation	between	Yt	and	Yt-h	is	conditional	on	the	observations
that	come	between	the	two.	One	way	to	intuitively	understand	this	is	to	think	of	a	linear
regression	model	and	its	coefficients.	Let’s	assume	that	you	have	Y	=	B0	+	B1X1	versus	Y
=	B0	+	B1X1	+	B2X2.	The	relationship	of	X	to	Y	in	the	first	model	is	linear	with	a
coefficient,	but	in	the	second	model,	the	coefficient	will	be	different	because	of	the
relationship	between	Y	and	X2	now	being	accounted	for	as	well.	Note	that	in	the	following
PACF	plot,	the	partial	autocorrelation	value	at	lag-1	is	identical	to	the	autocorrelation
value	at	lag-1,	as	this	is	not	a	conditional	correlation.

>	pacf(ar1)

The	following	is	the	output	of	the	preceding	command:

We	will	assume	that	the	series	is	stationary	and	the	preceding	time	series	plot	confirms
this.	We’ll	look	at	a	couple	of	statistical	tests	in	the	practical	exercise	to	ensure	that	the
data	is	stationary,	but	most	of	the	times,	the	eyeball	test	is	sufficient.	If	the	data	is	not
stationary,	then	it	is	possible	to	de-trend	the	data	by	taking	its	differences.	This	is	the
Integrated	(I)	in	ARIMA.	After	differencing,	the	new	series	becomes	ΔYt	=	Yt	–	Yt-1.	One
should	expect	a	first-order	difference	to	achieve	stationarity,	but	on	some	occasions,	a
second-order	difference	may	be	necessary.	An	ARIMA	model	with	AR(1)	and	I(1)	would
be	annotated	as	(1,1,0).

The	MA	stands	for	moving	average.	This	is	not	the	simple	moving	average	as	the	50-day
moving	average	of	a	stock	price	but	rather,	a	coefficient	that	is	applied	to	the	errors.	The
errors	are,	of	course,	identically	and	independently	distributed	with	a	mean	zero	and
constant	variance.	The	formula	for	an	MA(1)	model	is	Yt	=	constant	+	Et	+	ΘEt-1.	As	we
did	with	the	AR(1)	model,	we	can	build	an	MA(1)	in	R,	as	follows:

>	set.seed(123)

>	ma.sim	=	arima.sim(list(order=c(0,0,1),	ma=-0.5),	n=200)

>	plot(ma.sim)

The	following	is	the	output	of	the	preceding	command:

The	ACF	and	PACF	plots	are	a	bit	different	from	the	AR(1)	model.	Note	that	there	are
some	rules	of	thumb	in	looking	at	the	plots	in	order	to	determine	if	the	model	has	AR
and/or	MA	terms.	They	can	be	a	bit	subjective;	so	I	will	leave	it	to	you	to	learn	these
heuristics,	but	trust	R	to	identify	the	proper	model.	In	the	following	plots,	we	will	see	a
significant	correlation	at	lag-1	and	two	significant	partial	correlations	at	lag-1	and	lag-2:

>	acf(ma.sim)

The	output	of	the	preceding	command	is	as	follows:

The	preceding	figure	is	the	ACF	plot,	and	now,	we	will	see	the	PACF	plot:

>	pacf(ma.sim)

With	ARIMA	models,	it	is	possible	to	incorporate	seasonality,	including	the

autoregressive,	integrated,	and	moving	average	terms.	The	nonseasonal	ARIMA	model
notation	is	commonly	(p,d,q).	With	seasonal	ARIMA,	assume	that	the	data	is	monthly,
then	the	notation	would	be	(p,d,q)	x	(P,D,Q)12.	In	the	packages	that	we	will	use,	R	will
automatically	identify	if	the	seasonality	should	be	included	and	if	so,	then	the	optimal
terms	will	be	included	as	well.

Bivariate	regression
Having	covered	regression	way	back	in	Chapter	2,	Linear	Regression	–	The	Blocking	and
Tackling	of	Machine	Learning,	we	can	skip	many	of	the	basics.	However,	when	doing
regression	with	time	series,	it	is	important	to	understand	how	the	regression	may	be
spurious	and/or	missing	vital	information.	With	time	series	regression,	it	is	necessary	to
understand	how	the	lagged	variables	can	contribute	to	the	model.	Let’s	take	advertising
expenditure	and	product	sales	with	the	data	available	on	a	weekly	basis.	In	many	cases,
you	will	need	to	model	the	lagged	values	of	an	advertising	campaign	in	the	prediction	of
sales,	as	it	may	take	time	for	the	campaign	to	be	effective	and	the	impact	can	last	beyond
its	termination.

In	R,	you	can	manually	code	the	lagged	values,	trends,	and	seasonality;	however,	the
dynlm	package	for	dynamic	linear	regression	offers	tremendous	flexibility	and	ease	in
doing	this	type	of	analysis.	In	the	practical	exercise,	we	will	put	the	package	through	its
paces.	To	examine	the	problem	of	spurious	regression,	we	will	need	to	test	the	assumption
of	no	serial	correlation,	which	is	the	autocorrelation	of	the	residuals.	Examining	the	ACF
plot	and	statistical	tests	will	address	the	question.	If	autocorrelation	exists,	then	you	might
run	into	the	problem	of	spurious	regression.	Here,	the	beta	coefficients	are	not	the	best
estimates	as	important	information	is	being	ignored	and	the	statistical	tests	on	these
coefficients	are	no	longer	valid,	which	means	that	you	may	overfit	your	model	as	some
predictor	variables	will	appear	important	when	actually	they	are	not	important.

One	method	to	deal	with	serial	correlation	is	to	include	the	ARIMA	errors	with	regression

models.	A	simplified	notation	for	this	type	of	model	is	 ,	where	Nt	is
an	ARIMA	model	for	the	errors	and	Et	is	the	remaining	errors	of	the	ARIMA	model	that
are	not	correlated	and	are	referred	to	as	white	noise.

This	type	of	regression	can	be	implemented	in	R	using	functions	in	the	forecast	or
orcutt	packages.	The	interpretation	of	these	methods	can	get	quite	complicated	and
challenging	to	explain	to	business	partners.	Not	to	fear;	because	in	general,	if	you	find	the
right	lag	structure,	you	can	forgo	incorporating	the	ARIMA	errors	in	your	regression
model.	We	will	explore	this	in	detail	in	the	practical	exercise.

Granger	causality
With	two	sets	of	time	series	data,	x	and	y,	Granger	causality	is	a	method	that	attempts	to
determine	whether	one	series	is	likely	to	influence	a	change	in	the	other.	This	is	done	by
taking	different	lags	of	one	series	and	using	this	to	model	the	change	in	the	second	series.
To	accomplish	this,	we	will	create	two	models	that	will	predict	y,	one	with	only	the	past
values	of	y	(Ω)	and	the	other	with	the	past	values	of	y	and	x	(π).	The	models	are	as	follows,
where	k	is	the	number	of	lags	in	the	time	series:

The	RSS	are	then	compared	and	F-test	is	used	to	determine	whether	the	nested	model	(Ω)
is	adequate	enough	to	explain	the	future	values	of	y	or	if	the	full	model	(π)	is	better.	F-
test	is	used	to	test	the	following	null	and	alternate	hypotheses:

H0:	αi	=	0	for	each	i	∊[1,k],	no	Granger	causality
H1:	αi	≠	0	for	at	least	one	i	∊[1,k],	Granger	causality

Essentially,	we	are	trying	to	determine	whether	we	can	say	that	statistically,	x	provides
more	information	about	the	future	values	of	y	than	the	past	values	of	y	alone.	In	this
definition,	it	is	clear	that	we	are	not	trying	to	prove	actual	causation;	only	that	the	two
values	are	related	by	some	phenomenon.	Along	these	lines,	we	must	also	run	this	model	in
reverse	in	order	to	verify	that	y	does	not	provide	information	about	the	future	values	of	x.
If	we	find	that	this	is	the	case,	it	is	likely	that	there	is	some	exogenous	variable,	say	Z,	that
needs	to	be	controlled	or	would	possibly	be	a	better	candidate	for	Granger	causation.	To
avoid	spurious	results,	the	method	should	be	applied	to	a	stationary	time	series.	Note	that
research	papers	are	available	that	discuss	the	techniques	for	non-stationary	series	and	also
nonlinear	models,	but	this	is	outside	of	the	scope	for	this	book.	There	is	an	excellent
introductory	paper	that	revolves	around	the	age-old	conundrum	of	the	chicken	and	the
egg.	(Thurman,	1988)

There	are	a	couple	of	different	ways	to	identify	the	proper	lag	structure.	Naturally,	one	can
use	brute	force	and	ignorance	to	test	all	the	reasonable	lags	one	at	a	time.	One	may	have	a
rational	intuition	based	on	domain	expertise	or	perhaps	prior	research	that	exists	to	guide
the	lag	selection.	If	not,	then	Vector	Autoregression	(VAR)	can	be	applied	to	identify	the
lag	structure	with	the	lowest	information	criterion,	such	as	Aikake’s	Information
Criterion	(AIC)	or	Final	Prediction	Error	(FPE).	For	simplicity,	here	is	the	notation	for
the	VAR	models	with	two	variables	and	this	incorporates	only	one	lag	for	each	variable.
This	notation	can	be	extended	for	as	many	variables	and	lags	as	are	appropriate.

In	R,	this	process	is	quite	simple	to	implement	as	we	will	see	in	the	following	practical
problem.

Business	understanding
	 “The	planet	isn’t	going	anywhere.	We	are!	We’re	goin’	away.” 	

	 —Philosopher	and	comedian,	George	Carlin

Climate	change	is	happening.	It	always	has	and	always	will,	but	the	big	question—at	least
from	a	political	and	economic	standpoint—is	that	is	the	climate	change	man-made?	Even
Pope	Francis	and	the	Vatican	have	weighed	in	on	the	controversy,	casting	aspersions	on
man-made	climate	change	deniers.	Not	one	to	shy	away	from	a	political	donnybrook,	I
will	use	this	chapter	to	put	econometric	time	series	modeling	to	the	test	to	try	and
determine	if	man-made	carbon	emissions	cause—statistically	speaking—climate	change,
in	particular,	rising	temperatures.	Personally,	I	would	like	to	take	a	neutral	stance	on	the
issue;	always	keeping	in	mind	the	tenets	that	Mr.	Carlin	left	for	us	in	his	teachings	on	the
subject.

The	first	order	of	business	is	to	find	and	gather	the	data.	For	temperature,	we	should
choose	the	HadCRUT4	annual	time	series.	This	data	is	compiled	by	a	cooperative	effort
of	the	Climate	Research	Unit	of	the	University	of	East	Anglia	and	the	Hadley	Centre	at
the	UK’s	Meteorological	Office.	A	full	discussion	of	how	the	data	is	compiled	and
modeled	is	available	at	http://www.metoffice.gov.uk/hadobs/index.html.

The	data	that	we	will	use	is	provided	as	an	annual	anomaly,	which	is	calculated	as	the
difference	of	the	median	annual	surface	temperature	for	a	given	year	versus	the	average	of
the	reference	years	(1961-1990).	The	annual	surface	temperature	is	an	ensemble	of	the
temperatures	collected	globally	and	blended	from	the	CRUTEM4	surface	air	temperature
and	HadSST3	sea-surface	datasets.	Recently,	this	data	has	come	under	attack	as	biased
and	unreliable:	http://www.telegraph.co.uk/comment/11561629/Top-scientists-start-to-
examine-fiddled-global-warming-figures.html.	This	is	way	outside	of	our	scope	of	effort
here,	so	we	must	utilize	this	data	as	it	is.

To	read	this	data	in	R,	which	is	in	a	fixed-width	format,	we	will	use	the	read.fwf()
function.	The	first	thing	to	do	that	helps	in	the	web-scraping	process	is	to	specify	an	object
with	the	appropriate	URL	as	follows:

>	url1	=	

"http://www.metoffice.gov.uk/hadobs/hadcrut4/data/current/time_series/HadCR

UT.4.4.0.0.annual_ns_avg.txt"

From	this	URL,	we	only	want	the	year	and	first	column,	which	is	the	annual	anomaly.	To
do	this,	we	will	specify	in	the	function	the	width	of	the	items	that	we	want.	The	simplest
way	to	know	these	widths	is	to	take	a	few	rows	of	the	data,	paste	it	in	a	text	editor,	and	do
some	counting.	Having	done	this,	we	will	put	in	widths	as	4	for	the	year,	3	for	the	space,
and	6	for	the	anomaly:

>	temp	=	read.fwf(url1,	widths=c(4,3,6),sep="")

>	head(temp)

								V1					V2

1	1850	-0.376

http://www.metoffice.gov.uk/hadobs/index.html
http://www.telegraph.co.uk/comment/11561629/Top-scientists-start-to-examine-fiddled-global-warming-figures.html

2	1851	-0.222

3	1852	-0.225

4	1853	-0.270

5	1854	-0.247

6	1855	-0.270

>	tail(temp)

					V1				V2

161	2010	0.555

162	2011	0.421

163	2012	0.467

164	2013	0.492

165	2014	0.564

166	2015	0.670

With	this	data	frame	created,	we	can	name	the	columns	properly:

>	names(temp)=c("Year","Temperature")

Furthermore,	this	data	needs	to	be	converted	to	a	time	series	object	with	the	ts()	function.
We	will	also	need	to	specify	the	frequency	of	the	data,	for	example,	1	is	annual,	4	is
quarterly,	12	is	monthly,	and	the	start	and	end	year:

>	T	=	ts(temp$Temperature,	frequency=1,	start=c(1850),	end=c(2015))

Global	CO	emission	estimates	can	be	found	at	the	Carbon	Dioxide	Information
Analysis	Center	(CDIAC)	of	the	US	Department	of	Energy	at	http://cdiac.ornl.gov/.	We
will	download	the	data	of	total	emissions	of	fossil	fuel	combustion	and	cement
manufacture.	We	could	use	the	read.fwf()	function	for	this	data	as	well,	but	let’s	look	at
a	different	method,	where	we	will	put	the	URL	in	a	read.csv()	function:

>	url2	=	"http://cdiac.ornl.gov/ftp/ndp030/CSV-FILES/global.1751_2011.csv"

>	co2	=	read.csv(file=url2,skip=2,header=FALSE,	

col.names=c("Year","Total","3","4","5","6","7","8"))

What	we	did	here	was	specify	that	we	wanted	to	skip	the	first	two	rows	of	the
commentary.	By	stating	header=FALSE,	we	will	prevent	the	first	row	of	data	from
becoming	our	column	names,	which	we	will	create	with	col.names().

Looking	at	the	structure,	we	want	to	keep	only	the	first	two	columns	(the	Year	and	co2
emissions).	Putting	this	together,	we	can	then	look	at	the	first	six	and	last	six	observations
as	a	double	check:

>	str(co2)

'data.frame':261	obs.	of		8	variables:

$	Year	:	int		1751	1752	1753	1754	1755	1756	1757	1758	1759	1760…

	$	Total:	int		3	3	3	3	3	3	3	3	3	3…

	$	X3			:	int		0	0	0	0	0	0	0	0	0	0…

	$	X4			:	int		0	0	0	0	0	0	0	0	0	0…

	$	X5			:	int		3	3	3	3	3	3	3	3	3	3…

	$	X6			:	int		0	0	0	0	0	0	0	0	0	0…

	$	X7			:	int		0	0	0	0	0	0	0	0	0	0…

	$	X8			:	num		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA…

>	co2	=	co2[,1:2]

http://cdiac.ornl.gov/

>	head(co2)

				Year	Total

1	1751					3

2	1752					3

3	1753					3

4	1754					3

5	1755					3

6	1756					3

>	tail(co2)

								Year	Total

256	2006		8363

257	2007		8532

258	2008		8740

259	2009		8700

260	2010		9140

261	2011		9449

Finally,	we	will	put	this	in	a	time	series:

>	E	=	ts(co2$Total,	frequency=1,	start=c(1751),end=c(2011))

With	our	data	downloaded	and	put	in	time	series	structures,	we	can	now	begin	to
understand	and	further	prepare	it,	prior	to	analysis.

Data	understanding	and	preparation
Only	three	packages	are	required	for	this	effort,	so	ensure	that	they	are	installed	on	your
system.	Now,	let’s	get	them	loaded:

>	library(dynlm)

>	library(forecast)

>	library(tseries)

>	library(vars)

As	always,	we	will	want	to	produce	plots	of	the	data	and	will	do	so	in	a	reasonable
timeframe.	Let’s	look	at	the	data	starting	shortly	after	the	end	of	World	War	I.	The	Co2
emissions	data	ends	in	2011,	so	we	will	truncate	the	temperature	data	to	match:

>	SurfaceTemp	=	window(T,	start=c(1920),	end=c(2011))

>	Emissions	=	window(E,	start=c(1920),	end=c(2011))

Now,	combine	both	the	time	series	to	one	object	and	plot	it:

>	climate	=	cbind(SurfaceTemp,	Emissions)

>	plot(climate,	main="Temp	Anomalies	and	CO2	Emissions")

The	output	of	the	preceding	command	is	as	follows:

This	plot	shows	that	the	temperature	anomalies	started	to	increase	from	the	norm	roughly
around	1970.	Emissions	seem	to	begin	a	slow	uptick	in	the	mid-40s	and	a	possible	trend

increase	in	2000.	There	does	not	appear	to	be	any	cyclical	patterns	or	obvious	outliers.
Variation	over	time	appears	constant.	Using	the	standard	procedure,	we	can	see	that	the
two	series	are	highly	correlated,	as	follows:

>	cor(climate)

																SurfaceTemp	Emissions

SurfaceTemp			1.0000000	0.8264994

Emissions					0.8264994	1.0000000

As	discussed	earlier,	this	is	nothing	to	jump	for	joy	as	it	proves	absolutely	nothing.	We
will	look	for	the	structure	by	plotting	ACF	and	PACF	for	both	the	series	on	the	same	plot.
You	can	partition	your	plot	using	the	par()	function	and	specifying	the	rows	and	columns;
in	our	case,	a	2	x	2,	as	follows:

>	par(mfrow=c(2,2))

Calling	ACF	and	PACF	for	each	series	will	automatically	populate	the	plot	area:

>	acf(climate[,1],	main="Temp")

>	pacf(climate[,1],	main="Temp")

>	acf(climate[,2],	main="CO2")

>	pacf(climate[,2],	main="CO2")

The	output	of	the	preceding	code	snippet	is	as	follows:

With	the	decaying	ACF	patterns	and	rapidly	decaying	PACF	patterns,	we	can	assume	that
these	series	are	both	autoregressive.	For	temperature,	there	is	a	slight	spike	at	lag-4	and
lag-5,	so	there	may	be	an	MA	term	as	well.	Next,	let’s	have	a	look	at	Cross	Correlation
Function	(CCF).	Note	that	we	put	our	x	before	our	y	in	the	function:

>	ccf(climate[,1],climate[,2],	main="CCF")

CCF	shows	us	the	correlation	between	the	temperature	and	lags	of	CO2.	For	instance,	the
correlation	between	the	temperature	and	CO2	at	lag-5	is	just	over	0.6.	If	the	negative	lags
of	the	x	variable	have	a	high	correlation,	we	can	say	that	x	leads	y.	If	the	positive	lags	of	x
have	a	high	correlation,	we	say	that	x	lags	y.	Here,	we	can	see	that	CO2	is	both	a	leading
and	lagging	variable.	For	our	analysis,	it	is	encouraging	that	we	see	the	former,	but	odd	for
the	latter.	We	will	see	during	the	VAR	and	Granger	causality	analysis	if	this	will	matter	or
not.

Additionally,	to	a	calibrated	eye,	the	data	is	not	stationary.	We	can	prove	this	with	the
Augmented	Dickey-Fuller	(ADF)	test	available	in	the	tseries	package,	using	the
adf.test()	function,	as	follows:

>	adf.test(climate[,1])

Augmented	Dickey-Fuller	Test

data:		climate[,	1]

Dickey-Fuller	=	-1.8429,	Lag	order	=	4,	p-value	=	0.641

alternative	hypothesis:	stationary

>	adf.test(climate[,2])

Augmented	Dickey-Fuller	Test

data:		climate[,	2]

Dickey-Fuller	=	-1.0424,	Lag	order	=	4,	p-value	=	0.9269

alternative	hypothesis:	stationary

You	can	see	that,	in	both	the	cases,	the	p-values	are	not	significant,	so	we	fail	to	reject	the

null	hypothesis	of	the	test	that	the	data	is	not	stationary.

Having	explored	the	data,	let’s	begin	the	modeling	process	by	applying	univariate
techniques	to	the	temperature	anomalies.

Modeling	and	evaluation
For	the	modeling	and	evaluation	step,	we	will	focus	on	three	tasks.	The	first	is	to	produce
a	univariate	forecast	model	applied	to	just	the	surface	temperature.	The	second	is
developing	a	regression	model	of	the	surface	temperature	based	on	itself	and	carbon
emissions.	Finally,	we	will	try	and	discover	if	emissions	Granger-cause	the	surface
temperature	anomalies.

Univariate	time	series	forecasting
With	this	task,	the	objective	is	to	produce	a	univariate	forecast	for	the	surface	temperature,
focusing	on	choosing	either	a	Holt	linear	trend	model	or	an	ARIMA	model.	As	discussed
previously,	the	temperature	anomalies	start	to	increase	around	1970.	Therefore,	I
recommend	looking	at	it	from	this	point	to	the	present.	The	following	code	creates	the
subset	and	plots	the	series:

>	T2	=	window(T,	start=1970)

>	plot(T2)

Our	train	and	test	sets	will	be	through	2007,	giving	us	eight	years	of	data	to	evaluate	for
the	selection.	Once	again,	the	window()	function	allows	us	to	do	this	in	a	simple	fashion,
as	follows:

>	train	=	window(T2,end=2007)

>	test	=	window(T2,start=2008)

To	build	our	smoothing	model,	we	will	use	the	holt()	function	found	in	the	forecast
package.	We	will	build	two	models,	one	with	and	one	without	a	damped	trend.	In	this
function,	we	will	need	to	specify	the	time	series,	number	of	forecast	periods	as	h=…,	and
method	to	select	the	initial	state	values,	either	"optimal"	or	"simple",	and	if	we	want	a
damped	trend,	then	damped=TRUE.	Optimal	finds	the	values	along	with	the	smoothing
parameters,	while	simple	uses	the	first	few	observations.	Now,	in	the	forecast	package,
you	can	use	the	ets()	function,	which	will	find	all	the	optimal	parameters.	However,	in

our	case,	let’s	stick	with	holt()	so	that	we	can	compare	methods.	Now,	moving	on	to	the
holt	model	without	a	damped	trend,	as	follows:

>	fit.holt=holt(train,	h=8,	initial="optimal")

>	summary(fit.holt)

Forecast	method:	Holt's	method

Model	Information:

ETS(A,A,N)	

Call:

	holt(x	=	train,	h	=	8,	initial	=	"optimal")	

		Smoothing	parameters:

						alpha	=	0.0271	

						beta		=	0.0271	

		Initial	states:

		l	=	-0.1464	

		b	=	0.0109	

		sigma:		0.0958

						AIC						AICc							BIC	

-32.03529	-30.82317	-25.48495	

Error	measures:

MAPE

87.56256

																		

Forecasts:

										Point	Forecast		

2008						0.5701693	

2009						0.5951016	

2010						0.6200340	

2011						0.6449664	

2012						0.6698988	

2013						0.6948311	

2014						0.7197635	

2015						0.7446959	

This	is	quite	a	bit	of	output,	and	for	brevity,	I’ve	even	eliminated	all	the	error	measures
other	than	MAPE	and	deleted	the	80	and	95	percent	confidence	intervals.	You	can	see	these
along	with	the	parameters	and	Initial	states.	We	can	also	plot	forecast	and	see	how
well	it	did,	out-of-sample:

>	plot(forecast(fit.holt))

>	lines(test,	type="o")

Looking	at	the	plot,	it	seems	that	this	forecast	overshot	the	mark	a	little	bit.	Let’s	have	a
go	by	including	the	damped	trend,	as	follows:

>	fit.holtd=holt(train,	h=8,	initial="optimal",	damped=TRUE)

>	summary(fit.holtd)

Forecast	method:	Damped	Holt's	method

Model	Information:

ETS(A,Ad,N)	

Call:

	holt(x	=	train,	h	=	8,	damped	=	TRUE,	initial	=	"optimal")	

		Smoothing	parameters:

						alpha	=	1e-04	

						beta		=	1e-04	

						phi			=	0.98	

		Initial	states:

								l	=	-0.2277	

						b	=	0.0266	

		sigma:		0.0986

						AIC						AICc							BIC	

-27.86479	-25.98979	-19.67686	

																						MAPE					

Training	set	120.6198	

Forecasts:

										Point	Forecast		

2008						0.4812987	

2009						0.4931311	

2010						0.5047266	

2011						0.5160901	

2012						0.5272261	

2013						0.5381393	

2014						0.5488340	

2015						0.5593147	

Notice	in	the	output	that	it	now	includes	the	phi	parameter	for	the	trend	dampening.
Additionally,	you	can	see	that	the	point	forecasts	are	lower	in	the	dampened	method	but
MAPE	is	higher.	Let’s	examine	again	how	it	performs	out-of-sample,	as	follows:

>	plot(forecast(fit.holtd),	"Holt	Damped")

>	lines(test,	type="o")

The	following	is	the	output	of	the	preceding	command:

Looking	at	the	plot,	you	can	see	that	the	damped	method	performed	better	on	the	test	set.
Finally,	for	the	ARIMA	models,	you	can	use	auto.arima()	again	from	the	forecast
package.	There	are	many	options	that	you	can	specify	in	the	function	or	you	can	just
include	your	time	series	data	and	it	will	find	the	best	ARIMA	fit:

>	fit.arima	=	auto.arima(train)

>	summary(fit.arima)

Series:	train	

ARIMA(2,1,0)																				

Coefficients:

														ar1						ar2

						-0.5004		-0.2947

s.e.			0.1570			0.1556

sigma^2	estimated	as	0.01301:		log	likelihood=27.65

AIC=-49.3			AICc=-48.58			BIC=-44.47

Training	set	error	measures:

																						MAPE

Training	set	115.9148

The	output	shows	that	the	model	selected	is	an	AR-2,	I-1,	or	ARIMA(2,1,0).	The	AR
coefficients	are	produced,	and	again,	I’ve	abbreviated	the	output	including	only	the	error
measure	of	MAPE,	which	is	slightly	better	than	the	damped	trend	in	the	Holt	model.	We	can
examine	the	test	data	in	the	same	fashion;	just	remember	to	include	the	number	of	the
forecast	periods,	as	follows:

>	plot(forecast(fit.arima,	h=8))

>	lines(test,	type="o")

Interestingly,	the	forecast	shows	a	relatively	flat	trend.	To	examine	MAPE	on	the	test	set,
run	the	following	code:

>	mape1	=	sum(abs((test-fit.holtd$mean)/test))/8

>	mape1

[1]	0.1218026

>	mape2	=	sum(abs((test-forecast(fit.arima)$mean)/test))/8

>	mape2

[1]	0.1312118

The	forecast	error	is	indeed	slightly	less	for	the	Holt	Damped	trend	model	versus
ARIMA(2,1,0).	Notice	that	the	code	to	pull	in	the	forecast	values	is	slightly	different	for
the	ARIMA	models	produced	with	auto.arima().

With	the	statistical	and	visual	evidence,	it	seems	that	the	best	choice	for	a	univariate
forecast	model	is	the	Holt’s	method	with	a	damped	trend.	The	final	thing	that	we	can	do	is
examine	a	plot	with	all	the	three	forecasts	side-by-side.	To	help	with	the	visualization,	we
will	start	the	actual	data	from	1990	onwards.	The	actual	data	will	form	the	basis	of	the
plots	and	the	forecast	will	be	added	as	lines	with	different	line	types	(lty)	and	different
plot	symbols	(pch).	On	the	base	plot,	notice	that	the	y	axis	limits	(ylim)	have	to	be	set,
otherwise	the	Holt	forecast	will	be	off	the	chart:

>	T3=window(T2,	start=1990)

>	plot(T3,	ylim=c(0.1,0.8))

>	lines(forecast(fit.holt)$mean,	type="o",pch=2,lty="dotted")

>	lines(forecast(fit.holtd)$mean,	type="o",pch=5,lty=6)

>	lines(forecast(fit.arima,h=8)$mean,	type="o",pch=7,lty="dashed")

>	legend("topleft",	lty=c("solid","dotted","dashed"),	pch=c(1,2,5,7),	

c("Data","Holt","HoltDamped","ARIMA"))

The	output	of	the	preceding	code	snippet	is	as	follows:

With	this,	we	completed	the	building	of	a	univariate	forecast	model	for	the	surface
temperature	anomalies	and	now	we	will	move	on	to	the	next	task.

Time	series	regression
In	this	second	task	of	the	modeling	effort,	we	will	apply	the	techniques	to	the	climate
change	data.	We	will	seek	to	predict	the	surface	temperature	anomalies	using	lags	of	itself
and	lags	of	emissions.

For	starters,	we	will	just	build	a	linear	model	without	using	the	lags	in	order	to	examine
the	serial	correlation	of	the	residuals	with	the	lm()	function.	The	other	thing	to	do	is	to
create	an	appropriate	timeframe	to	examine.	Recall	that	we	saw	the	CO2	emissions
gradually	increase	around	the	end	of	World	War	II.	Therefore,	let’s	start	the	data	in	1945,
once	again	using	the	window()	function	and	applying	it	to	the	climate	data:

>	y	=	window(climate[,1],start=1945)

>	x	=	window(climate[,2],start=1945)

With	this	done,	we	can	build	the	linear	model	and	examine	it:

>	fit.lm	=	lm(y~x)

>	summary(fit.lm)

Call:

lm(formula	=	y	~	x)

Residuals:

										Min							1Q			Median							3Q						Max	

-0.35257	-0.08782		0.00224		0.09732		0.27931	

Coefficients:

																Estimate	Std.	Error	t	value	Pr(>|t|)				

(Intercept)	-2.786e-01		3.890e-02		-7.161	9.02e-10	***

x												8.082e-05		7.374e-06		10.960		<	2e-16	***

Signif.	codes:		0	'***'	0.001	'**'	0.01	'*'	0.05	'.'	0.1	'	'	1

Residual	standard	error:	0.1357	on	65	degrees	of	freedom

Multiple	R-squared:		0.6489	Adjusted	R-squared:		0.6435	

F-statistic:	120.1	on	1	and	65	DF,		p-value:	<	2.2e-16

You	can	see	that	F-statistic	for	the	overall	model	is	highly	statistically	significant
(<2.2e-16)	and	that	the	x	variable	(CO2)	is	also	highly	significant.	Adjusted	R-squared
is	0.6435.	Our	work	here	is	not	done	as	we	still	need	to	check	the	assumption	of	no
correlation	in	the	residuals.	Two	plots	can	provide	the	necessary	insight;	the	first	being
plot.ts(),	which	will	provide	a	time	series	plot	of	the	residuals	and	also	the
autocorrelation	plot	that	we	used	previously:

>	plot.ts(fit.lm$residuals)

The	output	of	the	preceding	command	is	as	follows:

Note	that	there	is	a	possible	cyclical	pattern	in	the	residuals	over	time.	To	show
conclusively	that	the	model	violates	the	assumption	of	no	serial	correlation,	let’s	have	a
look	at	the	following	autocorrelation	plot:

>	acf(fit.lm$residuals)

You	can	clearly	see	that	the	first	eight	lags	have	significant	spikes	(correlation)	and	we	can
dismiss	the	assumption	that	the	residuals	do	not	have	serial	correlation.	This	is	a	classic
example	of	the	problem	of	looking	solely	at	linear	relationships	of	two	time	series	without
considering	the	lagged	values.

Another	thing	available	is	Durbin-Watson	test.	This	tests	the	null	hypothesis	that	the
residuals	have	zero	autocorrelation.	The	test	is	available	in	the	lmtest	package,	which
automatically	gets	loaded	with	the	forecast	package.	You	can	either	specify	your	own
linear	model	in	the	function	or	the	object	that	contains	a	model;	in	our	case,	fit.lm,	which
you	can	see	leads	us	to	reject	the	null	hypothesis	and	conclude	that	true
autocorrelation	is	greater	than	0,	as	follows:

>	dwtest(fit.lm)

		Durbin-Watson	test

data:		fit.lm

DW	=	0.8198,	p-value	=	1.73e-08

alternative	hypothesis:	true	autocorrelation	is	greater	than	0

Having	done	this,	where	do	we	start	in	constructing	a	meaningful	lag	structure	for	the
building	of	the	model?	Probably	our	best	bet	is	to	look	at	the	cross	correlation	structure
again,	which	is	as	follows:

>	ccf(x,y)

The	following	is	the	output	of	the	preceding	command:

We	have	significant	correlations	of	the	lags	of	x	through	lag	15.	Applying	some	judgment

here	(along	with	much	trial	and	error	on	my	part),	let’s	start	by	looking	at	six	lags	of	x	and
lag-1	and	lag-4	of	y	in	the	regression	model.	A	convenient	way	to	do	this	is	to	use	the
dynamic	linear	regression	package	called	dynlm.	The	only	function	available	in	the
package	is	dynlm();	however,	it	offers	quite	a	bit	of	flexibility	in	building	models.	The
syntax	of	dynlm()	follows	the	same	procedure	of	lm(),	but	allows	the	inclusion	of	lag
terms,	seasonal	terms,	trends,	and	even	harmonic	patterns.	To	incorporate	the	lag	terms	as
we	want	in	our	model,	it	will	be	necessary	to	specify	the	lags	using	L()	in	the	function.
For	instance,	if	we	wanted	to	regress	the	temperature	by	emissions	and	lag-1	emissions,
the	syntax	would	be	y~x+L(x,1:6).	Note	that	in	L(),	the	variable	and	its	lag	is	all	that	you
need	to	specify.	Here	is	how	to	build	and	examine	the	model	with	the	first	six	lags	of	x	and
the	first	and	fourth	lag	of	y:

>	fit.dyn	=	dynlm(y~x+L(x,1:6)+L(y,c(1,4)))

>	summary(fit.dyn)

Time	series	regression	with	"ts"	data:

Start	=	1951,	End	=	2011

Call:

dynlm(formula	=	y	~	x	+	L(x,	1:6)	+	L(y,	c(1,	4)))

Residuals:

						Min								1Q				Median								3Q							Max	

-0.241333	-0.049877	-0.000018		0.065519		0.155488	

Coefficients:

																	Estimate	Std.	Error	t	value	Pr(>|t|)				

(Intercept)				-5.604e-02		5.417e-02		-1.034	0.305785				

x														-4.944e-05		1.235e-04		-0.400	0.690621				

L(x,	1:6)1					-2.556e-05		2.056e-04		-0.124	0.901545				

L(x,	1:6)2						3.110e-04		2.112e-04			1.472	0.147074				

L(x,	1:6)3					-2.798e-04		2.296e-04		-1.218	0.228667				

L(x,	1:6)4						2.086e-04		2.447e-04			0.852	0.398061				

L(x,	1:6)5					-5.687e-04		2.393e-04		-2.377	0.021262	*		

L(x,	1:6)6						4.319e-04		1.382e-04			3.125	0.002928	**	

L(y,	c(1,	4))1		3.859e-01		1.079e-01			3.578	0.000769	***

L(y,	c(1,	4))4		3.957e-01		1.085e-01			3.649	0.000619	***

Signif.	codes:		0	'***'	0.001	'**'	0.01	'*'	0.05	'.'	0.1	'	'	1

Residual	standard	error:	0.1009	on	51	degrees	of	freedom

Multiple	R-squared:		0.8377,Adjusted	R-squared:		0.8091	

F-statistic:	29.26	on	9	and	51	DF,		p-value:	<	2.2e-16

So,	we	have	a	highly	significant	p-value	for	the	overall	model	and	Adjusted	R-squared
of	0.8091.	Looking	at	the	p-values	for	the	coefficients,	we	have	p-values	less	than	0.05
with	both	the	lags	of	y	(temperature)	and	lag	five	and	six	of	x	(emissions).	We	can	adjust
the	model	by	dropping	the	insignificant	x	lags	and	then	test	the	assumption	of	no	serial
correlation,	as	follows:

>	fit.dyn2	=	dynlm(y~L(x,c(5,6))+L(y,c(1,4)))

>	summary(fit.dyn2)

Time	series	regression	with	"ts"	data:

Start	=	1951,	End	=	2011

Call:

dynlm(formula	=	y	~	L(x,	c(5,	6))	+	L(y,	c(1,	4)))

Residuals:

						Min								1Q				Median								3Q							Max	

-0.220798	-0.054835		0.005527		0.079318		0.172035	

Coefficients:

																						Estimate	Std.	Error	t	value	Pr(>|t|)				

(Intercept)				-0.0367531		0.0480225		-0.765	0.447288				

L(x,	c(5,	6))5	-0.0002963		0.0001217		-2.434	0.018157	*		

L(x,	c(5,	6))6		0.0003224		0.0001222			2.638	0.010765	*		

L(y,	c(1,	4))1		0.4238987		0.1043383			4.063	0.000153	***

L(y,	c(1,	4))4		0.3735944		0.1047414			3.567	0.000749	***

Signif.	codes:		0	'***'	0.001	'**'	0.01	'*'	0.05	'.'	0.1	'	'	1

Residual	standard	error:	0.1006	on	56	degrees	of	freedom

Multiple	R-squared:		0.823,Adjusted	R-squared:		0.8104	

F-statistic:		65.1	on	4	and	56	DF,		p-value:	<	2.2e-16

Our	overall	model	is	again	significant	and	Adjusted	R-squared	has	improved	slightly	as
we	dropped	the	irrelevant	terms.	The	lagged	coefficients	are	all	positive	with	the	exception
of	lag-5	of	x.	Examining	the	residual	plots,	we	end	up	with	the	following	plots:

>	plot(fit.dyn2$residuals)

And,	then	the	ACF	plot	of	the	residuals:

>	acf(fit.dyn2$residuals)

The	ouput	of	the	preceding	command	is	as	follows:

The	first	plot	does	not	show	any	obvious	pattern	in	the	residuals.	The	acf	plot	does	show
the	slightest	significant	correlation	at	a	couple	of	lags,	but	they	are	so	minor	that	we	can
choose	to	ignore	them.	Now,	if	you	exclude	lag-4	of	y,	the	acf	plot	will	show	a	rather
significant	spike	at	lag-4.	I’ll	let	you	try	this	out	for	yourself.	Let’s	wrap	this	up	with
Durbin-Watson	test,	which	does	not	lead	to	a	rejection	of	the	null	hypothesis:

>	dwtest(fit.dyn2)

		Durbin-Watson	test

data:		fit.dyn2

DW	=	1.9525,	p-value	=	0.3018

alternative	hypothesis:	true	autocorrelation	is	greater	than	0

With	this	model,	we	can	say	that	the	linear	model	to	predict	the	surface	temperature
anomalies	is	the	following:

y	=	-0.37		-	0.000296*lag5(x)	+	0.000322*lag6(x)	+	0.424*lag1(y)	+	

0.374*lag4(y)

Interestingly,	lag6	of	x	has	a	slight	positive	effect	on	y	but	is	nearly	cancelled	out	by	lag5
of	x.	Let’s	plot	the	Actual	versus	Predicted	values	to	get	a	visual	sense	of	how	well	the
model	performs:

>	plot(y,	ylab="Surface	Temperature")

>	lines(fitted(fit.dyn2),	pch=2,	lty="dashed")

>	legend("topleft",	lty=c("solid","dashed"),	c("Actual","Predicted"))

The	output	of	the	preceding	command	is	as	follows:

I	would	like	to	point	out	one	thing	here.	If	we	had	started	in	1970	as	we	did	with	the
univariate	forecast	and	incorporated	a	linear	trend	in	the	model,	the	emissions’	lags	would
not	have	been	significant.	So,	by	starting	earlier,	we	did	capture	significant	lags	of	the
emissions.	But	what	does	it	all	mean?	For	our	purpose	in	trying	to	find	a	link	between
human	CO2	emissions	and	global	warming,	it	doesn’t	seem	to	amount	to	much	of
anything.	Now,	let’s	turn	our	attention	to	trying	to	prove	the	statistical	causality	between
the	two.

Examining	the	causality
For	this	chapter,	this	is	where	I	think	the	rubber	meets	the	road	and	we	will	separate
causality	from	mere	correlation.	Well,	statistically	speaking	anyway.	This	is	not	the	first
time	that	this	technique	has	been	applied	to	the	problem.	Triacca	(2005)	found	no
evidence	to	suggest	that	atmospheric	CO2	Granger-caused	the	surface	temperature
anomalies.	On	the	other	hand,	Kodra	(2010)	concluded	that	there	is	a	causal	relationship
but	put	forth	the	caveat	that	their	data	was	not	stationary	even	after	a	second-order
differencing.	While	this	effort	will	not	settle	the	debate,	it	will	hopefully	inspire	you	to
apply	the	methodology	in	your	personal	endeavors.	The	topic	at	hand	certainly	provides
an	effective	training	ground	to	demonstrate	Granger	causality.

The	plan	here	is	to	go	with	the	data	starting	in	1945	as	we	did	with	the	bivariate
regression.	To	explore	the	issues	that	Kodra	(2010)	had,	we	will	need	to	see	if	and	how	we
can	make	the	data	stationary.	To	do	this,	the	forecast	package	provides	the	ndiffs()
function,	which	provides	you	with	an	output	that	spells	out	the	minimum	number	of
differences	needed	to	make	the	data	stationary.	In	the	function,	you	can	specify	which	test
out	of	the	three	available	ones	you	would	like	to	use:	Kwiatkowski,	Philips,	Schmidt	&
Shin	(KPSS),	ADF,	or	Philips-Peron	(PP).	I	will	use	KPSS	in	the	following	code,	which
has	a	null	hypothesis	that	the	data	is	stationary.	If	the	null	hypothesis	is	rejected,	the
function	will	return	the	number	of	differences	in	order	to	achieve	stationarity.	Note	that
adf	and	pp	have	the	null	hypothesis	that	the	data	is	not	stationary.

>	ndiffs(x,	test="kpss")

[1]	1

>	ndiffs(y,	test="kpss")

[1]	1

In	both	the	cases,	the	first-order	differencing	will	achieve	stationarity,	allowing	us	to
perform	Granger	causality	with	a	high	degree	of	confidence.	To	get	started,	we	will	put
both	the	time	series	into	one	dataset	and	then	create	the	first-order	differenced	series,	as
follows:

>	Granger	=	cbind(y,x)

>	dGranger	=	diff(Granger)

It	is	now	a	matter	of	determining	the	optimal	lag	structure	based	on	the	information
criteria	using	vector	autoregression.	This	is	done	with	the	VARselect	function	in	the	vars
package.	You	only	need	to	specify	the	data	and	number	of	lags	in	the	model	using
lag.max=x	in	the	function.	Let’s	use	a	maximum	of	10	lags:

>	lag=VARselect(dGranger,	lag.max=10)

The	information	criteria	can	be	called	using	lag$selection.	Four	different	criteria	are
provided	including	AIC,	Hannan-Quinn	Criterion	(HQ),	Schwarz-Bayes	Criterion
(SC),	and	FPE.	Note	that	AIC	and	SC	are	covered	in	Chapter	2,	Linear	Regression	–	The
Blocking	and	Tackling	of	Machine	Learning,	so	I	will	not	go	over	the	criterion	formulas	or

differences	here.	If	you	want	to	see	the	actual	results,	you	can	use	lag$criteria:

>	lag$selection

AIC(n)		HQ(n)		SC(n)	FPE(n)	

					5						1						1						5

We	can	see	that	AIC	and	FPE	have	selected	lag	5	as	the	optimal	structure	to	a	VAR	model.
We	can	forgo	lag-1	as	it	doesn’t	seem	to	make	sense	in	the	world	of	climate	change	while
a	lag	of	5	years	does.	Therefore,	we	will	examine	a	lag	of	5	using	the	var()	function	and
the	results:

>	lag5	=	VAR(dGranger,	p=5)

>	summary(lag5)

VAR	Estimation	Results:

=========================	

Endogenous	variables:	y,	x	

Deterministic	variables:	const	

Sample	size:	61	

Log	Likelihood:	-310.683	

Roots	of	the	characteristic	polynomial:

0.8497	0.8183	0.8183	0.8108	0.8108	0.7677	0.7499	0.7499	0.7076	0.7076

Call:

VAR(y	=	dGranger,	p	=	5)

Estimation	results	for	equation	y:	

==================================	

y	=	y.l1	+	x.l1	+	y.l2	+	x.l2	+	y.l3	+	x.l3	+	y.l4	+	x.l4	+	y.l5	+	x.l5	+	

const	

								Estimate	Std.	Error	t	value	Pr(>|t|)				

y.l1		-4.992e-01		1.272e-01		-3.925	0.000266	***

x.l1		-1.268e-04		1.245e-04		-1.019	0.313027				

y.l2		-5.057e-01		1.409e-01		-3.589	0.000754	***

x.l2			2.570e-04		1.367e-04			1.879	0.066018	.		

y.l3		-4.174e-01		1.455e-01		-2.868	0.006030	**	

x.l3		-7.257e-05		1.448e-04		-0.501	0.618358				

y.l4			3.467e-02		1.417e-01			0.245	0.807735				

x.l4			1.511e-04		1.489e-04			1.014	0.315328				

y.l5		-2.015e-01		1.285e-01		-1.568	0.123245				

x.l5		-4.041e-04		1.383e-04		-2.922	0.005208	**	

const		4.762e-02		2.768e-02			1.720	0.091542	.		

Signif.	codes:		0	'***'	0.001	'**'	0.01	'*'	0.05	'.'	0.1	'	'	1

Residual	standard	error:	0.1022	on	50	degrees	of	freedom

Multiple	R-Squared:	0.4481,Adjusted	R-squared:	0.3378	

F-statistic:		4.06	on	10	and	50	DF,		p-value:	0.00041	

Estimation	results	for	equation	x:	

==================================	

x	=	y.l1	+	x.l1	+	y.l2	+	x.l2	+	y.l3	+	x.l3	+	y.l4	+	x.l4	+	y.l5	+	x.l5	+	

const	

								Estimate	Std.	Error	t	value	Pr(>|t|)			

y.l1			-73.67538		141.97873		-0.519		0.60611			

x.l1					0.35225				0.13896			2.535		0.01442	*	

y.l2		-221.78216		157.29843		-1.410		0.16475			

x.l2				-0.06238				0.15267		-0.409		0.68457			

y.l3		-121.46591		162.47887		-0.748		0.45822			

x.l3					0.24408				0.16161			1.510		0.13725			

y.l4		-251.22176		158.22613		-1.588		0.11865			

x.l4				-0.21250				0.16627		-1.278		0.20714			

y.l5		-170.93505		143.49020		-1.191		0.23917			

x.l5					0.05856				0.15438			0.379		0.70604			

const			87.31476			30.89869			2.826		0.00676	**

Signif.	codes:		0	'***'	0.001	'**'	0.01	'*'	0.05	'.'	0.1	'	'	1

Residual	standard	error:	114.1	on	50	degrees	of	freedom

Multiple	R-Squared:	0.2281,Adjusted	R-squared:	0.07366	

F-statistic:	1.477	on	10	and	50	DF,		p-value:	0.1759

The	results	shown	are	for	both	the	models.	You	can	see	that	the	overall	model	to	predict	y
is	significant	with	the	lags	2	and	5	of	x	having	p-values	less	than	0.1.	The	model	to	predict
x	is	not	significant.	As	we	did	in	the	previous	section,	we	should	check	for	the	serial
correlation.	Here,	the	VAR	package	provides	the	serial.test()	function	for	multivariate
autocorrelation.	It	offers	several	different	tests,	but	let’s	focus	on	Portmanteau	Test,
which	is	the	default.	The	null	hypothesis	is	that	autocorrelations	are	zero	and	the	alternate
is	that	they	are	not	zero:

>	serial.test(lag5,type="PT.asymptotic")

Portmanteau	Test	(asymptotic)

data:		Residuals	of	VAR	object	lag5

Chi-squared	=	36.4377,	df	=	44,	p-value	=	0.7839

With	p-value	at	0.7839,	we	do	not	have	evidence	to	reject	the	null	and	can	say	that	the
residuals	are	not	autocorrelated.

To	do	the	Granger	causality	tests	in	R,	you	can	use	either	the	lmtest	package	and	the
Grangertest()	function	or	the	causality()	function	in	the	vars	package.	I’ll
demonstrate	the	technique	using	causality().	It	is	very	easy	as	you	just	need	to	create
two	objects,	one	for	x	causing	y	and	one	for	y	causing	x;	utilizing	the	lag5	object
previously	created:

>	x2y	=	causality(lag5,cause="x")

>	y2x	=	causality(lag5,cause="y")

It	is	now	just	a	simple	matter	to	call	the	Granger	test	results:

>	x2y$Granger

Granger	causality	H0:	x	do	not	Granger-cause	y

data:		VAR	object	lag5

F-Test	=	2.0883,	df1	=	5,	df2	=	100,	p-value	=	0.07304

>	y2x$Granger

Granger	causality	H0:	y	do	not	Granger-cause	x

data:		VAR	object	lag5

F-Test	=	0.731,	df1	=	5,	df2	=	100,	p-value	=	0.6019

The	p-value	value	for	x	Granger-causing	y	is	0.07304	and	for	y	causing	x	is	0.6019.	So
what	does	all	this	mean?	The	first	thing	that	we	can	say	is	y	does	not	cause	x.	As	for	x
causing	y,	we	cannot	reject	the	null	at	the	0.05	significance	level	and	therefore,	conclude
that	x	does	not	Granger-cause	y.	However,	is	this	the	relevant	conclusion	here?	Remember
that	p-value	evaluates	how	likely	the	effect	is	if	the	null	hypothesis	is	true.	Also
remember	that	the	test	was	never	designed	to	be	some	binary	Yay	or	Nay.	If	this	were	a
controlled	experiment,	then	likely	we	wouldn’t	hesitate	to	say	that	we	had	insufficient
evidence	to	reject	the	null,	for	example,	a	phase-3	clinical	trial.	As	this	study	is	based	on
observational	data,	I	believe	we	can	say	that	it	is	highly	probable	that	CO2	emissions
Granger-cause	the	surface	temperature	anomalies.	However,	there	is	a	lot	of	room	for
criticism	in	this	conclusion.	I	mentioned	upfront	the	controversy	around	the	quality	of	the
data.	The	thing	that	still	concerns	me	is	what	year	to	start	the	analysis	from.	I	chose	1945
because	it	looked	about	right;	you	could	say	that	I	applied	proc	eyeball,	in	SAS
terminology.	What	year	is	chosen	has	a	dramatic	impact	on	the	analysis:	changing	the	lag
structure	and	also	leading	to	insignificant	p-values.	The	other	thing	that	I	want	to	point	out
is	the	lag	of	five	years	and	the	coefficient,	which	is	negative.

Now,	the	Granger	causality	test	is	not	designed	to	use	the	coefficients	from	a	vector
autoregression	in	a	forecast,	so	it	is	not	safe	to	say	that	an	increase	in	the	CO2	emissions
would	lead	to	lower	temperatures	five	years	later.	We	are	merely	looking	for	a	causal
relationship,	which	seems	to	be	based	on	a	five-year	lag.	Assume	that	the	real-world
relationship	was	20	or	30	years,	then	this	technique	would	be	irrelevant	to	the	problem
given	the	timeframe	in	question.	It	would	also	be	interesting	to	include	a	third	variable
such	as	a	measure	of	annual	solar	radiation,	but	this	was	beyond	the	scope	of	this	chapter.

The	last	thing	to	show	here	is	how	to	use	vector	autoregression	in	order	to	produce	a
forecast.	With	the	following	predict()	function,	we	can	produce	a	point	estimate	and
confidence	intervals	for	a	timeframe	that	we	specify:

>	predict(lag5,	n.ahead=10,	ci=0.95)

$y

														fcst						lower						upper								CI

	[1,]		0.081703785	-0.1186856	0.28209313	0.2003893

	[2,]		0.017119634	-0.2076806	0.24191986	0.2248002

	[3,]		0.096799604	-0.1424826	0.33608184	0.2392822

	[4,]	-0.149113923	-0.3888954	0.09066751	0.2397814

	[5,]	-0.011618877	-0.2611685	0.23793073	0.2495496

	[6,]		0.054878791	-0.2137249	0.32348244	0.2686036

	[7,]		0.021115281	-0.2479521	0.29018265	0.2690674

	[8,]	-0.035593173	-0.3056111	0.23442472	0.2700179

	[9,]		0.045634059	-0.2251345	0.31640259	0.2707685

[10,]		0.003465538	-0.2687530	0.27568406	0.2722185

$x

										fcst						lower				upper							CI

	[1,]	136.7695		-86.94633	360.4853	223.7158

	[2,]	251.0853			13.06491	489.1057	238.0204

	[3,]	112.0863	-130.39147	354.5642	242.4778

	[4,]	108.7158	-140.90916	358.3408	249.6250

	[5,]	158.7534		-93.41522	410.9221	252.1686

	[6,]	122.3686	-131.04145	375.7787	253.4101

	[7,]	127.3391	-126.76240	381.4405	254.1015

	[8,]	155.3462		-99.09757	409.7899	254.4437

	[9,]	156.2730		-98.52536	411.0713	254.7983

[10,]	137.2128	-118.36867	392.7943	255.5815

Finally,	a	plot	is	available	to	view	the	forecasts:

>	plot(forecast(lag5))

When	all	is	said	and	done,	it	clearly	seems	that	more	work	needs	to	be	done,	but	I	believe
that	Granger	causality	has	pointed	us	in	the	right	direction.	If	nothing	else,	I	hope	it	has
stimulated	your	thinking	on	how	to	apply	the	technique	to	your	own	real-world	problems
or	maybe	even	examine	the	climate	change	data	in	more	detail.	There	should	be	a	high	bar
when	it	comes	to	demonstrating	the	causality,	and	Granger	causality	is	a	great	tool	for
assisting	in	this	endeavor.

Summary
In	this	chapter,	the	goal	was	to	discuss	how	important	the	element	of	time	is	in	the	field	of
machine	learning	and	analytics,	identify	the	common	traps	when	analyzing	the	time	series,
and	demonstrate	the	techniques	and	methods	to	work	around	these	traps.	We	explored	both
the	univariate	and	bivariate	time	series	analyses	for	global	temperature	anomalies	and
human	carbon	dioxide	emissions.	Additionally,	we	looked	at	Granger	causality	to
determine	if	we	can	say,	statistically	speaking,	that	human	CO2	emissions	cause	surface
temperature	anomalies.	While	the	results—that	the	temperature	change	is	caused	by	CO2
emissions—were	compelling,	they	do	not	seem	definitive.	However,	it	does	show	that
Granger	causality	is	an	effective	tool	in	investigating	causality	in	machine	learning
problems.	In	the	next	chapter,	we	will	shift	gears	and	take	a	look	at	how	to	apply	learning
methods	to	textual	data.

Additionally,	keep	in	mind	that	in	time	series	analysis,	we	just	skimmed	the	surface.	I
encourage	you	to	explore	other	techniques	around	changepoint	detection,	decomposition
of	time	series,	nonlinear	forecasting,	and	many	others.	Although	not	usually	considered
part	of	the	machine	learning	toolbox,	I	believe	you	will	find	it	an	invaluable	addition	to
yours	toolbox.

Chapter	12.	Text	Mining
	 “I	think	it’s	much	more	interesting	to	live	not	knowing	than	to	have	answers	which	might	be	wrong.” 	

	 —Richard	Feynman

The	world	is	awash	in	textual	data.	If	you	Google,	Bing,	or	Yahoo	how	much	of	the	data	is
unstructured,	that	is,	in	a	textual	format,	estimates	would	range	from	80	to	90	percent.	The
real	number	doesn’t	matter.	What	does	matter	is	that	a	large	proportion	of	the	data	is	in	a
text	format.	The	implication	is	that	anyone	seeking	to	find	insights	in	the	data	must
develop	the	capability	to	process	and	analyze	text.

When	I	first	started	out	as	a	market	researcher,	I	used	to	manually	pore	through	page	after
page	of	moderator-led	focus	groups	and	interviews	with	the	hope	of	capturing	some
qualitative	insight—an	Aha!	moment	if	you	will—and	then	haggle	with	fellow	team
members	over	whether	they	had	the	same	insight	or	not.	Then,	you	would	always	have
that	one	individual	in	a	project	who	would	swoop	in	and	listen	to	two	interviews—out	of
the	30	or	40	on	the	schedule—and	alas,	they	had	their	mind	made	up	on	what	was	really
happening	in	the	world.	Contrast	that	with	the	techniques	being	used	now,	where	an
analyst	can	quickly	distil	the	data	into	meaningful	quantitative	results,	support	the
qualitative	understanding,	and	maybe	even	sway	the	swooper.

Over	the	last	several	years,	I’ve	applied	the	techniques	discussed	here	to	mine	physician-
patient	interactions,	understand	FDA	fears	on	prescription	drug	advertising,	and	capture
patient	concerns	in	a	rare	cancer,	to	name	just	a	few.	Using	R	and	the	methods	in	this
chapter,	you	too	can	extract	the	powerful	information	in	the	textual	data.

Text	mining	framework	and	methods
There	are	many	different	methods	to	use	in	text	mining.	The	goal	here	is	to	provide	a	basic
framework	to	apply	to	such	an	endeavor.	This	framework	is	not	all-inclusive	of	the
possible	methods	but	will	cover	those	that	are	probably	the	most	important	for	the	vast
majority	of	projects	that	you	will	work	on.	Additionally,	I	will	discuss	the	modeling
methods	in	as	succinct	and	clear	a	manner	as	possible	because	they	can	get	quite	a	bit
complicated.	Gathering	and	compiling	the	text	data	is	a	topic	that	could	take	up	several
chapters.	Therefore,	let’s	begin	with	the	assumption	that	the	data	is	available	from	Twitter,
a	customer	call	center,	scraped	off	the	web,	or	whatever	and	is	contained	in	some	sort	of
text	file	or	files.

The	first	task	is	to	put	the	text	files	in	one	structured	file	referred	to	as	a	Corpus.	The
number	of	documents	could	be	just	one,	dozens,	hundreds,	or	even	thousands.	R	can
handle	a	number	of	raw	text	files	including	RSS	feeds,	pdf	files,	and	MS	Word	documents.
With	the	corpus	created,	the	data	preparation	can	begin	with	the	text	transformation.

The	following	list	comprises	of	probably	some	of	the	most	common	and	useful
transformations	for	text	files:

Change	capital	letters	to	lowercase
Remove	numbers
Remove	punctuation
Remove	stop	words
Remove	excess	whitespace
Word	stemming
Word	replacement

In	transforming	the	corpus,	you	are	creating	not	only	a	more	compact	dataset,	but	also
simplifying	the	structure	in	order	to	facilitate	relationships	among	the	words,	thereby
leading	to	an	increased	understanding.	However,	keep	in	mind	that	not	all	of	these
transformations	are	necessary	all	the	time	and	judgment	must	be	applied,	or	you	can
iterate	to	find	the	transformations	that	make	the	most	sense.

By	changing	words	to	the	lowercase,	you	can	prevent	the	improper	counting	of	words.	Say
that	you	have	a	count	for	hockey	three	times	and	Hockey	once	where	it	is	the	first	word	in
a	sentence.	R	will	not	give	you	a	count	of	hockey=4,	but	hockey=3	and	Hockey=1.

Removing	punctuation	also	achieves	the	same	purpose,	but	as	we	will	see	in	the	business
case,	punctuation	is	important	if	you	want	to	split	your	documents	by	sentences.

In	removing	stop	words,	you	are	getting	rid	of	the	common	words	that	have	no	value;	in
fact,	they	are	detrimental	to	the	analysis	as	their	frequency	masks	the	important	words.
Examples	of	stop	words	are	and,	is,	the,	not,	and	to.	Removing	whitespace	makes	a	more
compact	corpus	by	getting	rid	of	things	such	as	tabs,	paragraph	breaks,	double-spacing,
and	so	on.

The	stemming	of	the	words	can	get	a	bit	tricky	and	might	add	to	your	confusion	because	it

deletes	the	word	suffixes,	creating	the	base	word	or	what	is	known	as	the	radical.	We	will
use	the	stemming	algorithm	included	in	the	R	package,	tm,	where	the	function	calls	the
Porter	stemming	algorithm.	An	example	of	stemming	would	be	where	your	corpus	has
family	and	families.	Recall	that	R	would	count	this	as	two	separate	words.	By	running	the
stemming	algorithm,	the	stemmed	word	for	the	two	instances	would	become	famili.	This
would	prevent	the	incorrect	count,	but	in	some	cases,	it	can	be	odd	to	interpret	and	is	not
very	visually	appealing	in	a	wordcloud	for	presentation	purposes.	In	some	cases,	it	may
make	sense	to	run	your	analysis	with	both	stemmed	and	unstemmed	words	in	order	to	see
which	one	makes	sense.

Probably	the	most	optional	of	the	transformations	is	to	replace	the	words.	The	goal	of
replacement	is	to	combine	the	words	with	a	similar	meaning,	for	example,	management
and	leadership.	You	can	also	use	it	in	lieu	of	stemming.	I	once	examined	the	outcome	of
stemmed	and	unstemmed	words	and	concluded	that	I	could	achieve	a	more	meaningful
result	by	replacing	about	a	dozen	words	instead	of	stemming.	We	will	see	in	the	business
case	that	you	can	use	replacement	to	delete	unnecessary	text	and	characters.

With	the	transformation	of	the	corpus	completed,	the	next	step	is	to	create	either	a
Document-Term	Matrix	(DTM)	or	Term-Document	Matrix	(TDM).	What	either	of
these	matrices	do	is	create	a	matrix	of	word	counts	for	each	individual	document	in	the
matrix.	A	DTM	would	have	the	documents	as	rows	and	the	words	as	columns,	while	in	a
TDM,	the	reverse	is	true.	The	text	mining	can	be	performed	on	either	matrix.

With	a	matrix,	you	can	begin	to	analyze	the	text	by	examining	the	word	counts	and
producing	visualizations	such	as	wordclouds.	One	can	also	find	word	associations	by
producing	correlation	lists	for	specific	words.	It	also	serves	as	a	necessary	data	structure	in
order	to	build	topic	models.

Topic	models
Topic	models	are	a	powerful	method	to	group	documents	by	their	main	topics.	Topic
models	allow	the	probabilistic	modeling	of	term	frequency	occurrences	in	documents.	The
fitted	model	can	be	used	to	estimate	the	similarity	between	documents	as	well	as	between
a	set	of	specified	keywords	using	an	additional	layer	of	latent	variables	which	are	referred
to	as	topics.	(Grun	and	Hornik,	2011)	In	essence,	a	document	is	assigned	to	a	topic	based
on	the	distribution	of	the	words	in	that	document,	and	the	other	documents	in	that	topic
will	have	roughly	the	same	frequency	of	words.

The	algorithm	that	we	will	focus	on	is	Latent	Dirichlet	Allocation	(LDA)	with	Gibbs
sampling,	which	is	probably	the	most	commonly	used	sampling	algorithm.	In	building
topic	models,	the	number	of	topics	must	be	determined	before	running	the	algorithm	(k-
dimensions).	If	no	apriori	reason	for	the	number	of	topics	exists,	then	you	can	build
several	and	apply	judgment	and	knowledge	to	the	final	selection.	LDA	with	Gibbs
sampling	is	quite	complicated	mathematically,	but	my	intent	is	to	provide	an	introduction
so	that	you	are	at	least	able	to	describe	how	the	algorithm	learns	to	assign	a	document	to	a
topic	in	layman	terms.	If	you	are	interested	in	mastering	the	math,	block	out	a	couple	of
hours	on	your	calendar	and	have	a	go	at	it.	Excellent	background	material	is	available	at
https://www.cs.princeton.edu/~blei/papers/Blei2012.pdf.

LDA	is	a	generative	process	and	so	the	following	will	iterate	to	a	steady	state:

1.	 For	each	document	(j),	there	are	1	to	j	documents.	We	will	randomly	assign	it	a
multinomial	distribution	(dirichlet	distribution)	to	the	topics	(k)	with	1	to	k	topics,
for	example,	document	A	is	25	percent	topic	one,	25	percent	topic	two,	and	50
percent	topic	three.

2.	 Probabilistically,	for	each	word	(i),	there	are	1	to	i	words	to	a	topic	(k),	for	example,
the	word	mean	has	a	probability	of	0.25	for	the	topic	statistics.

3.	 For	each	word(i)	in	document(j)	and	topic(k),	calculate	the	proportion	of	words	in
that	document	assigned	to	that	topic;	note	it	as	the	probability	of	topic(k)	with
document(j),	p(k│j),	and	the	proportion	of	word(i)	in	topic(k)	from	all	the	documents
containing	the	word.	Note	it	as	the	probability	of	word(i)	with	topic(k),	p(i│k).

4.	 Resample,	that	is,	assign	w	a	new	t	based	on	the	probability	that	t	contains	w,	which
is	based	on	p(k│j)	times	p(i│k).

5.	 Rinse	and	repeat;	over	numerous	iterations,	the	algorithm	finally	converges	and	a
document	is	assigned	a	topic	based	on	the	proportion	of	words	assigned	to	a	topic	in
that	document.

The	LDA	that	we	will	be	doing	assumes	that	the	order	of	words	and	documents	do	not
matter.	There	has	been	work	done	to	relax	these	assumptions	in	order	to	build	models	of
language	generation	and	sequence	models	over	time	(known	as	dynamic	topic
modelling).

https://www.cs.princeton.edu/~blei/papers/Blei2012.pdf

Other	quantitative	analyses
We	will	now	shift	gears	to	analyze	text	semantically	based	on	sentences	and	the	tagging	of
words	based	on	the	parts	of	speech,	such	as	noun,	verb,	pronoun,	adjective,	adverb,
preposition,	singular,	plural,	and	so	on.	Often,	just	examining	the	frequency	and	latent
topics	in	the	text	will	suffice	for	your	analysis.	However,	you	may	find	occasions	where	a
deeper	understanding	of	the	style	is	required	in	order	to	compare	the	speakers	or	writers.

There	are	many	methods	to	accomplish	this	task,	but	we	will	focus	on	the	following	five:

Polarity	(sentiment	analysis)
Automated	readability	index	(complexity)
Formality
Diversity
Dispersion

Polarity	is	often	referred	to	as	sentiment	analysis,	which	tells	you	how	positive	or
negative	is	the	text.	By	analyzing	polarity	in	R	with	the	qdap	package,	a	score	will	be
assigned	to	each	sentence	and	you	can	analyze	the	average	and	standard	deviation	of
polarity	by	groups	such	as	different	authors,	text,	or	topics.	Different	polarity	dictionaries
are	available	and	qdap	defaults	to	one	created	by	Hu	and	Liu,	2004.	You	can	alter	or
change	this	dictionary	according	to	your	requirements.

The	algorithm	works	by	first	tagging	the	words	with	a	positive,	negative,	or	neutral
sentiment	based	on	the	dictionary.	The	tagged	words	are	then	clustered	based	on	the	four
words	prior	and	two	words	after	a	tagged	word	and	these	clusters	are	tagged	with	what	are
known	as	valence	shifters	(neutral,	negator,	amplifier,	and	de-amplifier).	A	series	of
weights	based	on	their	number	and	position	are	applied	to	both	the	words	and	clusters.
This	is	then	summed	and	divided	by	the	square	root	of	the	numbers	of	words	in	that
sentence.

Automated	readability	index	is	a	measure	of	the	text	complexity	and	a	reader’s	ability	to
understand.	A	specific	formula	is	used	to	calculate	this	index:	4.71(#	of	characters	/	#of
words)	+	0.5(#	of	words	/	#	of	sentences)	–	21.43.

The	index	produces	a	number,	which	is	a	rough	estimate	of	a	student’s	grade	level	to	fully
comprehend.	If	the	number	is	9,	then	a	high	school	freshman,	aged	13	to	15,	should	be
able	to	grasp	the	meaning	of	the	text.

The	formality	measure	provides	an	understanding	of	how	a	text	relates	to	the	reader	or
speech	relates	to	a	listener.	I	like	to	think	of	it	as	a	way	to	understand	how	comfortable	the
person	producing	the	text	is	with	the	audience	or	an	understanding	of	the	setting	where
this	communication	takes	place.	If	you	want	to	experience	formal	text,	attend	a	medical
conference	or	read	a	legal	document.	Informal	text	is	said	to	be	contextual	in	nature.

The	formality	measure	is	called	F-Measure.	This	measure	is	calculated	as	follows:

Formal	words	(f)	are	nouns,	adjectives,	prepositions,	and	articles
Contextual	words	(c)	are	pronouns,	verbs,	adverbs,	and	interjections

N	=	sum	of	(f	+	c	+	conjunctions)
Formality	Index	=	50((sum	of	f	–	sum	of	c	/	N)	+	1)

This	is	totally	irrelevant,	but	when	I	was	in	Iraq,	one	of	the	Army	Generals—who	shall
remain	nameless—I	had	to	brief	and	write	situation	reports	for	was	absolutely	adamant
that	adverbs	were	not	to	be	used,	ever,	or	there	would	be	wrath.	The	idea	was	that	you
can’t	quantify	words	such	as	highly	or	mostly	because	they	mean	different	things	to
different	people.	Five	years	later,	I	still	scour	my	business	e-mails	and	PowerPoint
presentations	for	unnecessary	adverbs.	Formality	writ	large!

Diversity,	as	it	relates	to	text	mining,	refers	to	the	number	of	different	words	used	in
relation	to	the	total	number	of	words	used.	This	can	also	mean	the	expanse	of	the	text
producer’s	vocabulary	or	lexicon	richness.	The	qdap	package	provides	five—that’s	right,
five—different	measures	of	diversity:	Simpson,	Shannon,	Collision,	Bergen	Parker,	and
Brillouin.	I	won’t	cover	these	five	in	detail	but	will	only	say	that	the	algorithms	are	used
not	only	for	communication	and	information	science	retrieval,	but	also	for	biodiversity	in
nature.

Finally,	dispersion,	or	lexical	dispersion,	is	a	useful	tool	in	order	to	understand	how	words
are	spread	throughout	a	document	and	serves	as	an	excellent	way	to	explore	the	text	and
identify	patterns.	The	analysis	is	conducted	by	calling	the	specific	word	or	words	of
interest,	which	are	then	produced	in	a	plot	showing	when	the	word	or	words	occurred	in
the	text	over	time.	As	we	will	see,	the	qdap	package	has	a	built-in	plotting	function	to
analyze	the	text	dispersion.

We	covered	a	framework	on	text	mining	about	how	to	prepare	the	text,	count	words,	and
create	topic	models	and	finally,	dived	deep	into	other	lexical	measures.	Now,	let’s	apply
all	this	and	do	some	real-world	text	mining.

Business	understanding
For	this	case	study,	we	will	take	a	look	at	President	Obama’s	State	of	the	Union	speeches.
I	have	no	agenda	here;	just	curious	as	to	what	can	be	uncovered	in	particular	and	if	and
how	his	message	has	changed	over	time.	Perhaps	this	will	serve	as	a	blueprint	to	analyze
any	politician’s	speech	in	order	to	prepare	an	opposing	candidate	in	a	debate	or	speech	of
their	own.	If	not,	so	be	it.

The	two	main	analytical	goals	are	to	build	topic	models	on	the	six	State	of	the	Union
speeches	and	then	compare	the	first	speech	in	2010	with	the	most	recent	speech	in
January,	2015	for	sentence-based	textual	measures,	such	as	sentiment	and	dispersion.

Data	understanding	and	preparation
The	primary	package	that	we	will	use	is	tm,	the	text	mining	package.	We	will	also	need
SnowballC	for	the	stemming	of	the	words,	RColorBrewer	for	the	color	palettes	in
wordclouds,	and	the	wordcloud	package.	Please	ensure	that	you	have	these	packages
installed	before	attempting	to	load	them:

>	library(tm)

>	library(SnowballC)

>	library(wordcloud)

>	library(RColorBrewer)

To	bring	the	data	in	R,	we	could	scrape	the	www.whitehouse.gov	website.	I	dismissed	this
idea	as	this	chapter	would	turn	into	a	web	scraping	exposition	and	not	one	on	text	mining.
So,	I’ve	pasted	and	stored	the	necessary	data	in	the	free	website,	www.textuploader.com.
Each	year’s	speech	has	a	separate	URL	and	we	will	only	need	to	reference	them	to	acquire
the	data.	Two	functions	will	accomplish	this	for	us;	the	first	being	scan(),	which	reads	the
data	and	paste()	to	concatenate	it	properly:

>	sou2010	=	paste(scan(url("http://textuploader.com/a5vq4/raw"),	

what="character"),collapse="	")

Read	7415	items

This	is	the	2010	speech.	Now,	one	issue	that	you	need	to	deal	with	when	using	text	data	in
R	is	that	it	should	be	in	the	ASCII	format.	If	not	(the	2010	speech	is	not),	then	you	must
convert	it	to	ASCII.	The	text	that	we	pulled	in	previously	is	filled	with	numerous	non-
ASCII	characters	that	would	take	many	lines	of	code	to	try	and	delete/replace	with	the
gsub()	function.	However,	let’s	deal	with	this	problem	in	one	line	of	code,	putting	the
iconv()	function	to	good	use.	Remember	that	if	you	pull	in	text	to	R	and	see	a	number	of
funky	characters,	check	if	you	need	to	convert	it:

>	sou2010=iconv(sou2010,	"latin1",	"ASCII",	"")

We	can	pull	up	the	entire	speech	by	making	a	call	to	sou2010,	but	I’ll	just	present	the	first
few	and	last	few	sentences:

>	sou2010

[1]	"THE	PRESIDENT:	Madam	Speaker,	Vice	President	Biden,		members	of	

Congress,	distinguished	guests,	and	fellow	Americans:	Our	Constitution	

declares	that	from	time	to	time,	the	President	shall	give	to	Congress	

information	about	the	state	of	our	union.	For	220	years,	our	leaders	have	

fulfilled	this	duty.	They've	done	so	during	periods	of	prosperity	and	

tranquility.	And	they've	done	so	in	the	midst	of	war	and	depression;	at	

moments	of	great	strife	and	great	struggle.

……

Let's	seize	this	moment—to	start	anew,	to	carry	the	dream	forward,	and	to	

strengthen	our	union	once	more.	(Applause.)	Thank	you.	God	bless	you.	And	

God	bless	the	United	States	of	America.	(Applause.)

Let’s	bring	in	the	other	five	speeches:

http://www.whitehouse.gov
http://www.textuploader.com

>	sou2011	=	paste(scan(url("http://textuploader.com/a5vm0/raw"),	

what="character"),collapse="	")

Read	7017	items

>	sou2011=iconv(sou2011,	"latin1",	"ASCII",	"")

>	sou2012	=	paste(scan(url("http://textuploader.com/a5vmp/raw"),	

what="character"),collapse="	")

Read	7132	items

>	sou2012=iconv(sou2012,	"latin1",	"ASCII",	"")

>	sou2013	=	paste(scan(url("http://textuploader.com/a5vh0/raw"),	

what="character"),collapse="	")

Read	6908	items

>	sou2013=iconv(sou2013,	"latin1",	"ASCII",	"")

>	sou2014	=	paste(scan(url("http://textuploader.com/a5vhp/raw"),	

what="character"),collapse="	")

Read	6829	items

>	sou2014=iconv(sou2014,	"latin1",	"ASCII",	"")

>	sou2015	=	paste(scan(url("http://textuploader.com/a5vhb/raw"),	

what="character"),collapse="	")

Read	6849	items

>	sou2015=iconv(sou2015,	"latin1",	"ASCII",	"")

We	should	put	this	in	a	file	to	hold	the	documents	that	will	form	the	corpus.	If	you	don’t
know	the	current	working	directory,	you	can	pull	it	up	with	getwd()	and	change	it	with
setwd().	Do	not	put	your	text	files	with	any	other	file;	create	a	new	file	folder	for	the
speeches,	otherwise	your	corpus	will	contain	the	R	code,	some	other	file,	or	blow	up	when
you	try	to	create	it:

>	getwd()

[1]	"C:/Users/clesmeister/chap12/textmine"

>	write.table(sou2010,	"c:/Users/clesmeister/chap12/text/sou2010.txt")

>	write.table(sou2011,	"c:/Users/clesmeister/chap12/text/sou2011.txt")

>	write.table(sou2012,	"c:/Users/clesmeister/chap12/text/sou2012.txt")

>	write.table(sou2013,	"c:/Users/clesmeister/chap12/text/sou2013.txt")

>	write.table(sou2014,	"c:/Users/clesmeister/chap12/text/sou2014.txt")

>	write.table(sou2015,	"c:/Users/clesmeister/chap12/text/sou2015.txt")

We	can	now	begin	to	create	the	corpus	by	first	creating	an	object	with	the	path	to	the
speeches	and	then	seeing	how	many	files	are	in	this	directory	and	what	they	are	named:

>	name	=	file.path("C:/Users/clesmeister/chap12/text")

>	length(dir(name))

[1]	6

>	dir(name)

[1]	"sou2010.txt"	"sou2011.txt"	"sou2012.txt"	"sou2013.txt"

[5]	"sou2014.txt"	"sou2015.txt"

We	will	call	the	corpus	docs	and	it	is	created	with	the	Corpus()	function,	wrapped	around
the	DirSource()	function,	which	is	also	part	of	the	tm	package:

>	docs	=	Corpus(DirSource(name))

>	docs

<<VCorpus>>

Metadata:		corpus	specific:	0,	document	level	(indexed):	0

Content:		documents:	6

Note	that	there	is	no	corpus	or	document	level	Metadata	in	this	data.	There	are
functions	in	the	tm	package	to	apply	things	such	as	authors’	names	and	timestamp
information	among	others	at	both	document	level	and	corpus.	We	will	not	utilize	this	for
our	purposes.

We	can	now	begin	the	text	transformations	using	the	tm_map()	function	from	the	tm
package.	These	will	be	the	transformations	that	we	discussed	previously—lowercase
letters,	remove	numbers,	remove	punctuation,	remove	stop	words,	strip	out	the
whitespace,	and	stem	the	words:

>	docs	=	tm_map(docs,	tolower)

>	docs	=	tm_map(docs,	removeNumbers)

>	docs	=	tm_map(docs,	removePunctuation)

>	docs	=	tm_map(docs,	removeWords,	stopwords("english"))

>	docs	=	tm_map(docs,	stripWhitespace)

>	docs	=	tm_map(docs,	stemDocument)

At	this	point,	it	is	a	good	idea	to	eliminate	the	unnecessary	words.	For	example,	during	the
speeches,	when	Congress	applauds	a	statement,	you	will	find	(Applause)	in	the	text.	This
must	go	away.	Keep	in	mind	that	we	stemmed	the	documents	and	so	we	need	to	get	rid	of
applaus:

>	docs	=	tm_map(docs,	

removeWords,c(""applaus"",""can"",""cant"",""will"",""that"",""weve"",	

""dont"",""wont""))

After	completing	the	transformations	and	removal	of	other	words,	make	sure	that	your
documents	are	plain	text,	put	it	in	a	document-term	matrix,	and	check	the	dimensions:

>	docs	=	tm_map(docs,	PlainTextDocument)

>	dtm	=	DocumentTermMatrix(docs)

>	dim(dtm)

[1]				6	3080

The	six	speeches	contain	3080	words.	It	is	optional,	but	one	can	remove	the	sparse	terms
with	the	removeSparseTerms()	function.	You	will	need	to	specify	a	number	between	zero
and	one	where	the	higher	the	number,	the	higher	the	percentage	of	sparsity	in	the	matrix.
So,	with	six	documents,	by	specifying	0.51	as	the	sparsity	number,	the	resulting	matrix
would	have	words	that	occurred	in	at	least	three	documents,	as	follows:

>	dtm	=	removeSparseTerms(dtm,	0.51)

>	dim(dtm)

[1]				6	1132

As	we	don’t	have	the	metadata	on	the	documents,	it	is	important	to	name	the	rows	of	the
matrix	so	that	we	know	which	document	is	which:

>	rownames(dtm)	=	c("2010","2011","2012","2013","2014","2015")

Using	the	inspect()	function,	you	can	examine	the	matrix.	Here,	we	will	look	at	all	the
six	rows	and	the	first	five	columns:

>	inspect(dtm[1:6,	1:5])

						Terms

Docs			abl	abroad	absolut	abus	accept

		2010				1										2										2							1									1

		2011				4										3										0							0									0

		2012				3										1										1							1									0

		2013				3										2										1							0									1

		2014				1										4										0							0									0

		2015				1										1										0							2									1

It	appears	that	our	data	is	ready	for	analysis,	starting	with	looking	at	the	word	frequency
counts.

Modeling	and	evaluation
Modeling	will	be	broken	in	two	distinct	parts.	The	first	will	focus	on	word	frequency	and
correlation	and	culminate	in	the	building	of	a	topic	model.	In	the	next	portion,	we	will
examine	many	different	quantitative	techniques	by	utilizing	the	power	of	the	qdap	package
in	order	to	compare	two	different	speeches.

Word	frequency	and	topic	models
As	we	have	everything	set	up	in	the	document-term	matrix,	we	can	move	on	to	exploring
word	frequencies	by	creating	an	object	with	the	column	sums,	sorted	in	descending	order.
It	is	necessary	to	use	as.matrix()	in	the	code	to	sum	the	columns.	The	default	order	is
ascending,	so	putting	-	in	front	of	freq	will	change	it	to	descending:

>	freq	=	colSums(as.matrix(dtm))

>	ord	=	order(-freq)

We	will	examine	head	and	tail	of	the	object	with	the	following	code:

>	freq[head(ord)]

american					year						job					work		america						new	

					243						241						212						195						187						177	

>	freq[tail(ord)]

						voic					welcom	worldclass				yearold						yemen	

									3										3										3										3										3	

					youll	

									3

The	most	frequent	word	is	american—as	you	might	expect	from	the	President—	but
notice	how	important	its	employment	is	with	job	and	work.	You	can	see	how	stemming
changed	voice	to	voic	and	welcome/welcoming/welcomed	to	welcom.

To	look	at	the	frequency	of	the	word	frequency,	you	can	create	tables,	as	follows:

>	head(table(freq))

freq

		3			4			5			6			7			8	

127	118	112		75		65		50	

>	tail(table(freq))

freq

177	187	195	212	241	243	

		1			1			1			1			1			1

What	these	tables	show	is	the	number	of	words	with	that	specific	frequency,	so	127	words
occurred	three	times	and	one	word,	american	in	our	case,	occurred	243	times.

Using	findFreqTerms(),	we	can	see	what	words	occurred	at	least	100	times.	Looks	like
he	talked	quite	a	bit	about	business	and	it	is	clear	that	the	government,	including	the	IRS,
is	here	to	"help",	perhaps	even	help	"now".	That	is	a	relief!

>	findFreqTerms(dtm,	100)

	[1]	"america"		"american"	"busi"					"countri"		"everi"			

	[6]	"get"						"help"					"job"						"let"						"like"				

[11]	"make"					"need"					"new"						"now"						"one"					

[16]	"peopl"				"right"				"time"					"work"					"year"

You	can	find	associations	with	words	by	correlation	with	the	findAssocs()	function.	Let’s
look	at	business	and	also	job	as	two	examples	using	0.9	as	the	correlation	cutoff:

>	findAssocs(dtm,	"busi",	corlimit=0.9)

$busi

	drop	eager		hear		fund			add		main	track	

	0.98			0.98		0.92		0.91		0.90			0.90		0.90	

>	findAssocs(dtm,	"job",	corlimit=0.9)

$job

				hightech										lay						announc								natur	

									0.94									0.94													0.93									0.93	

									aid			alloftheabov								burma						cleaner	

								0.92														0.92													0.92									0.92	

								ford							gather							involv									poor	

								0.92									0.92											0.92									0.92	

				redesign								skill								yemen								sourc	

								0.92											0.92											0.92										0.91

Business	needs	further	exploration,	but	jobs	is	interesting	in	the	focus	on	high-tech	jobs.	It
is	curious	that	burma	and	yemen	show	up;	I	guess	we	still	have	a	job	to	do	on	these
countries,	certainly	in	yemen.

For	visual	portrayal,	we	can	produce	wordclouds	and	a	bar	chart.	We	will	do	two
wordclouds	to	show	the	different	ways	to	produce	them:	one	with	a	minimum	frequency
and	the	other	by	specifying	the	maximum	number	of	words	to	include.	The	first	one	with
minimum	frequency	also	includes	code	to	specify	the	color.	The	scale	syntax	determines
the	minimum	and	maximum	word	size	by	frequency;	in	this	case,	the	minimum	frequency
is	50:

>	wordcloud(names(freq),	freq,	min.freq=50,	scale=c(3,	.5),	

colors=brewer.pal(6,	"Dark2"))

The	output	of	the	preceding	command	is	as	follows:

One	can	forgo	all	the	fancy	graphics	as	we	will	in	the	following	image,	capturing	30	most
frequent	words:

>	wordcloud(names(freq),	freq,	max.words=30)

The	output	of	the	preceding	command	is	as	follows:

To	produce	a	bar	chart,	the	code	can	get	a	bit	complicated,	whether	you	use	base	R,

ggplot2,	or	lattice.	The	following	code	will	show	you	how	to	produce	a	bar	chart	for
the	10	most	frequent	words	in	base	R:

>	freq	=	sort(colSums(as.matrix(dtm)),	decreasing=TRUE)

>	wf	=	data.frame(word=names(freq),	freq=freq)

>	wf	=	wf[1:10,]

>	barplot(wf$freq,	names=wf$word,	main="Word	Frequency",	xlab="Words",	

ylab="Counts",	ylim=c(0,250))

The	output	of	the	preceding	command	is	as	follows:

We	will	now	move	on	to	the	building	of	topic	models	using	the	topicmodels	package,
which	offers	the	LDA()	function.	The	question	now	is	how	many	topics	to	create.	It	seems
logical	to	solve	for	three	or	four,	so	we	will	try	both,	starting	with	three	topics	(k=3):

>	library(topicmodels)

>	set.seed(123)

>	lda3	=	LDA(dtm,	k=3,	method="Gibbs")

>	topics(lda3)

2010	2011	2012	2013	2014	2015	

			3				3				1				1				2				2

We	can	see	that	topics	are	grouped	every	two	years.

Now	we	will	try	for	topics	(k=4):

>	set.seed(456)

>	lda4	=	LDA(dtm,	k=4,	method="Gibbs")

>	topics(lda4)

2010	2011	2012	2013	2014	2015	

			4				4				3				2				1				1

Here,	the	topic	groupings	are	similar	to	the	preceding	ones,	except	that	the	2012	and	2013
speeches	have	their	own	topics.	For	simplicity,	let’s	have	a	look	at	three	topics	for	the
speeches.	Using	the	terms()	function	produces	a	list	of	an	ordered	word	frequency	for
each	topic.	The	list	of	words	is	specified	in	the	function,	so	let’s	look	at	the	top	20	per
topic:

>	terms(lda3,20)

						Topic	1				Topic	2				Topic	3		

	[1,]	"american"	"new"						"year"			

	[2,]	"job"						"america"		"peopl"		

	[3,]	"now"						"work"					"know"			

	[4,]	"right"				"help"					"nation"	

	[5,]	"get"						"one"						"last"			

	[6,]	"tax"						"everi"				"take"			

	[7,]	"busi"					"need"					"invest"	

	[8,]	"energi"			"make"					"govern"	

	[9,]	"home"					"world"				"school"	

[10,]	"time"					"countri"		"also"			

[11,]	"like"					"let"						"cut"				

[12,]	"million"		"congress"	"two"				

[13,]	"give"					"state"				"next"			

[14,]	"well"					"want"					"come"			

[15,]	"compani"		"tonight"		"deficit"

[16,]	"reform"			"first"				"chang"		

[17,]	"back"					"futur"				"famili"	

[18,]	"educ"					"keep"					"care"			

[19,]	"put"						"today"				"economi"

[20,]	"unit"					"worker"			"work"

Topic	3	covers	the	first	two	speeches.	Some	key	words	stand	out,	such	as	"invest",
"school",	"economi",	and	"deficit".	During	this	time,	Congress	passed	and
implemented	the	$787	billion	American	Recovery	and	Reinvestment	Act	with	the	goal
of	stimulating	the	economy.

Topic	1	covers	the	next	two	speeches.	Here,	the	message	transitions	to	"job",	"tax",
"busi",	and	what	appears	to	be	some	comments	on	the	"energi"	policy.	A	supposed
comprehensive	policy	put	forward	under	the	rhetorical	All	of	the	above	in	the	2012
speech.	Note	the	association	with	the	rhetorical	comment	and	jobs	when	we	examined	it
with	findAssocs().

Topic	2	brings	us	to	the	last	two	speeches.	There	doesn’t	appear	to	be	a	clear	topic	that
rises	to	the	surface	like	the	others.	It	appears	that	these	speeches	were	less	about	specific
calls	to	action	and	more	about	what	was	done	and	the	future	vision	of	the	country	and	the
world.	In	the	next	section,	we	can	dig	into	the	exact	speech	content	further,	along	with
comparing	and	contrasting	his	first	State	of	the	Union	speech	with	the	most	recent	one.

Additional	quantitative	analysis
This	portion	of	the	analysis	will	focus	on	the	power	of	the	qdap	package.	It	allows	you	to
compare	multiple	documents	over	a	wide	array	of	measures.	Our	effort	will	be	on
comparing	the	2010	and	2015	speeches.	For	starters,	we	will	need	to	turn	the	text	into	data
frames,	perform	sentence	splitting,	and	then	combine	them	to	one	data	frame	with	a
variable	created	that	specifies	the	year	of	the	speech.	We	will	use	this	as	our	grouping
variable	in	the	analyses.	You	can	include	multiple	variables	in	your	groups.	We	will	not
need	to	do	any	of	the	other	transformations	such	as	stemming	or	lowering	the	case.

Before	creating	a	data	frame,	we	will	need	to	get	rid	of	that	pesky	(Applause.)	text	with
the	gsub	function.	We	will	also	need	to	load	the	library:

>	library(qdap)

>	state15	=	gsub("(Applause.)",	"",	sou2015)

Now,	put	this	in	df	and	split	it	into	sentences,	which	will	put	one	sentence	per	row.	As
proper	punctuation	is	in	the	text,	you	can	use	the	sentSplit	function.	If	punctuation	was
not	there,	other	functions	are	available	to	detect	the	sentences:

>	speech15	=	data.frame(speech=state15)

>	sent15	=	sentSplit(speech15,	"speech")

The	last	thing	is	to	create	the	year	variable:

>	sent15$year	=	"2015"

Repeat	the	steps	for	the	2010	speech:

>	state10	=	gsub("(Applause.)",	"",	sou2010)

>	speech10	=	data.frame(speech=state10)

>	sent10	=	sentSplit(speech10,	"speech")

>	sent10$year	=	"2010"

Now,	concatenate	the	two	datasets:

>	sentences	=	rbind(sent10,	sent15)

To	compare	the	polarity	(sentiment	scores),	use	the	polarity()	function,	specifying	the
text	and	grouping	variables:

>	pol	=	polarity(sentences$speech,	sentences$year)

>	pol

		year	total.sentences	total.words	ave.polarity	sd.polarity	

stan.mean.polarity

1	2010													443								7233								0.040							0.319														

0.124

2	2015													378								6712								0.098							0.274														

0.356

The	stan.mean.polarity	value	represents	the	standardized	mean	polarity,	which	is	the
average	polarity	divided	by	the	standard	deviation.	We	see	that	2015	was	slightly	higher
(0.356)	than	2010	(0.124).	This	is	in	line	with	what	we	expect.	You	can	also	plot	the	data.
The	plot	produces	two	charts.	The	first	shows	the	polarity	by	sentences	over	time	and	the
second	shows	the	distribution	of	the	polarity:

>	plot(pol)

The	output	of	the	preceding	command	is	as	follows:

This	plot	may	be	a	challenge	to	read	in	this	text,	but	let	me	do	my	best	to	interpret	it.	The
2010	speech	starts	out	with	a	strong	negative	sentiment	and	is	more	negative	than	2015.
We	can	identify	this	sentence	by	creating	a	data	frame	of	the	pol	object,	find	the	sentence
number,	and	call	this	sentence:

>	pol.df	=	pol$all

>	which.min(pol.df$polarity)

[1]	12

>	pol.df$text.var[12]

[1]	"One	year	ago,	I	took	office	amid	two	wars,	an	economy	rocked	by	a	

severe	recession,	a	financial	system	on	the	verge	of	collapse,	and	a	

government	deeply	in	debt.

Now	that	is	negative	sentiment!	We	will	look	at	the	readability	index	next:

>	ari	=	automated_readability_index(sentences$speech,	sentences$year)	

>	ari$Readability

		year	word.count	sentence.count	character.count

1	2010							7207												443											33623

2	2015							6671												378											30469

		Automated_Readability_Index

1																				8.677994

2																				8.906440

I	think	it	is	no	surprise	that	they	are	basically	the	same.	Formality	analysis	is	next.	This
takes	a	couple	of	minutes	to	run	in	R:

>	form	=	formality(sentences$speech,	sentences$year)

>	form

		year	word.count	formality

1	2015							6676					62.49

2	2010							7412					58.88

This	looks	to	be	very	similar.	We	can	examine	the	proportion	of	the	parts	of	the	speech
and	also	produce	a	plot	that	confirms	this,	as	follows:

>	form$form.prop.by

		year	word.count		noun			adj		prep	articles	pronoun

1	2010							7412	24.22	11.39	14.64					6.46			10.75

2	2015							6676	24.94	12.46	16.37					6.34			10.23

			verb	adverb	interj	other

1	21.57			6.58			0.03		4.36

2	19.19			5.69			0.01		4.76

>	plot(form)

The	following	is	the	output	of	the	preceding	command:

Now,	the	diversity	measures	have	been	produced.	Again,	they	are	nearly	identical.	A	plot

is	also	available,	(plot(div)),	but	being	so	similar,	it	adds	no	value.	It	is	important	to	note
that	Obama’s	speech	writer	for	2010	was	Jon	Favreau,	and	in	2015,	it	was	Cody	Keenan:

>	div	=	diversity(sentences$speech,	sentences$year)

>	div

		year			wc	simpson	shannon	collision	berger_parker	brillouin

1	2010	7207			0.992			6.163					4.799									0.047					5.860

2	2015	6671			0.992			6.159					4.791									0.039					5.841

One	of	my	favorite	plots	is	the	dispersion	plot.	This	shows	the	dispersion	of	a	word
throughout	the	text.	Let’s	examine	the	dispersion	of	"jobs",	"families",	and	"economy":

>	dispersion_plot(sentences$speech,	grouping.var=sentences$year,	

c("economy","jobs","families"),	color="black",	bg.color="white")

This	is	quite	interesting	as	these	topics	were	discussed	early	on	in	the	2010	speech	but	at
the	end	in	the	2015	speech.

Many	of	the	tasks	that	we	performed	earlier	with	the	tm	package	can	also	be	done	in	qdap.
So,	the	last	thing	that	I	want	to	do	is	show	you	how	to	execute	the	word	frequency	with
qdap	and	count	the	top	ten	words	for	each	speech.	This	is	easy	with	the	freq_terms()
function.	In	addition	to	specifying	the	top	ten	words,	we	will	also	specify	one	of	the
stopwords	defaults	available	in	qdap.	In	this	case,	200	versus	the	other	option	of	100:

>	freq2010	=	freq_terms(sent10$speech,	top=10,	stopwords=Top200Words)

>	freq2010

			WORD							FREQ

1		americans				28

2		that's							26

3		jobs									23

4		it's									20

5		years								19

6		american					18

7		businesses			18

8		those								18

9		families					17

10	last									16

>	freq2015	=	freq_terms(sent15$speech,	top=10,	stopwords=Top200Words)

>	freq2015

			WORD						FREQ

1		that's						28

2		years							25

3		every							24

4		american				19

5		country					19

6		economy					18

7		jobs								18

8		americans			17

9		lets								17

10	families				16

This	completes	our	analysis	of	the	two	speeches.	I	must	confess	that	I	did	not	listen	to	any
of	these	speeches.	In	fact,	I	haven’t	watched	a	State	of	the	Union	address	since	Reagan
was	President	with	the	exception	of	the	2002	address.	This	provided	some	insight	for	me
on	how	the	topics	and	speech	formats	have	changed	over	time	to	accommodate	political
necessity,	while	the	overall	style	of	formality	and	sentence	structure	has	remained
consistent.	Keep	in	mind	that	this	code	can	be	adapted	to	text	for	dozens,	if	not	hundreds,
of	documents	and	with	multiple	speakers,	for	example,	screenplays,	legal	proceedings,
interviews,	social	media,	and	on	and	on.	Indeed,	text	mining	can	bring	quantitative	order
to	what	has	been	qualitative	chaos.

Summary
In	this	chapter,	we	looked	at	how	to	address	the	massive	volume	of	textual	data	that	exists
through	text	mining	methods.	We	looked	at	a	useful	framework	for	text	mining,	including
preparation,	word	frequency	counts	and	visualization,	and	topic	models	using	LDA	with
the	tm	package.	Included	in	this	framework	were	other	quantitative	techniques	such	as
polarity	and	formality	in	order	to	provide	a	deeper	lexical	understanding,	or	what	one
could	call	style,	with	the	qdap	package.	The	framework	was	then	applied	to	President
Obama’s	six	State	of	the	Union	addresses,	which	showed	that	although	the	speeches	had	a
similar	style,	the	core	messages	changed	over	time	as	the	political	landscape	changed.
Despite	it	not	being	practical	to	cover	every	possible	text	mining	technique,	those
discussed	in	this	chapter	should	be	adequate	for	most	problems	that	one	might	face.

Appendix	A.	R	Fundamentals
	 “One	of	my	most	productive	days	was	throwing	away	1000	lines	of	code.” 	

	 —Ken	Thompson

Introduction
This	chapter	covers	the	basic	programming	syntax	functions	and	capabilities	of	R.	It	has
been	put	forward	to	introduce	you	to	R	and	accelerate	your	learning.	The	objectives	are	as
follows:

Install	R	and	RStudio
Create	and	explore	vectors
Create	data	frames	and	matrices
Explore	mathematical	and	statistical	functions
Build	simple	plots
Install	and	load	packages

All	of	the	examples	in	this	appendix	are	covered	in	one	way	or	another	in	the	preceding
chapters.	However,	if	you	are	completely	new	to	R,	this	is	a	great	starting	point.	It	may
accelerate	your	understanding	of	the	content	in	the	chapters.

Getting	R	up	and	running
We	want	to	accomplish	two	things	here:	first,	install	the	latest	version	of	R	and	second,
install	RStudio,	which	is	an	Integrated	Development	Environment	(IDE)	for	R.

Let’s	start	by	going	to	R’s	homepage	at	https://www.r-project.org/.	This	page	will	look
similar	to	the	following	screenshot:

You	can	see	that	there	is	a	link,	download	R,	and	in	the	News	section,	the	latest	R	version
is	3.2.2	(Fire	Safety),	which	was	released	on	2015-08-14.	Now,	click	one	of	the	links,
either	CRAN	under	Download	or	download	R	under	Getting	Started,	and	you	will	come
to	the	following	screen,	which	has	CRAN	Mirrors:

These	are	the	links	by	country	and	sorted	alphabetically	that	will	take	you	to	the	download
page.	Being	in	Indiana,	USA,	I	will	scroll	down	and	find	that	Indiana	University	has	a

https://www.r-project.org/

link:

Once	you	find	a	similar	link	that	is	close	to	your	location,	click	on	it	and	you	will	see	this
as	part	of	the	page	that	will	be	loaded:

Now,	click	on	your	appropriate	operating	system:

What	we	want	now	is	to	install	base	R	for	the	first	time,	so	click	install	R	for	the	first
time	and	we	will	come	to	the	following	page	that	will	initiate	the	download:

Now,	you	can	just	download	and	install	R	as	any	other	program.	After	the	installation,	run
R	and	you	will	see	the	base	Graphical	User	Interface	(GUI):

This	is	all	you	need	to	run	all	of	the	code	in	this	book.	However,	it	is	extremely	helpful	if
you	utilize	R	in	the	context	of	RStudio’s	IDE,	which	is	available	for	free.	This	link	will
direct	you	to	the	page	where	you	can	download	the	free	version:

https://www.rstudio.com/products/RStudio/.

On	this	page,	you	will	find	the	download	for	the	free	and	commercial	versions.	Needless
to	say,	let’s	stick	with	the	free	version,	so	download	and	install	it:

https://www.rstudio.com/products/RStudio/

After	this	is	installed	and	opened	for	the	first	time,	you	will	see	something	as	the
following.	Keep	in	mind	that	it	will	be	different	from	what	you	see	here	based	on	the
packages	that	I	have	loaded	and	the	operating	system:

Note	that	on	the	left	is	the	same	console	with	the	command	prompt	that	you	can	see	in	the
preceding	figure.	The	IDE	improves	the	experience	such	that	you	can	manage
Environment	and	History	(to	the	upper	right)	and	Files,	Plots,	Packages,	and	Help	(to
the	lower	right).

Let’s	not	get	distracted	here	with	a	full	tutorial	on	what	RStudio	can	do	but	focus	on	a
couple	of	important	items.	One	of	the	great	benefits	of	R	is	the	vast	number	of	high
quality	packages	to	various	analyses.	Let’s	look	at	how	the	IDE	ties	it	all	together	by
loading	a	package	called	abc,	which	stands	for	approximate	Bayesian	computation.	Go	to
the	command	prompt	and	type	the	following:

>	install.packages("abc")

After	this	runs,	notice	that	in	the	lower	right	panel	(ensure	that	the	Packages	tab	is	clicked
on)	that	the	abc	package	is	now	installed	as	well	as	the	dependent	abc.data	package:

Now,	go	to	the	upper	right	and	click	on	the	History	tab.	You	should	see	the	command	that
you	executed	in	order	to	load	the	package:

Now,	if	you	click	on	the	To	Console	button,	it	will	be	placed	in	front	of	the	command
prompt.	If	you	click	To	Source,	you	will	see	a	new	area	open	that	will	allow	you	to	put
your	project	script	together.	If	you	click	both	the	buttons,	you	will	end	up	with	something
similar	to	this	output:

The	install.packages()	command	has	now	gone	from	the	history	to	a	source	file.	As
you	experiment	with	your	code	and	get	it	to	where	it	works	as	you	want	it,	put	it	into	a
source	file.	You	can	save	it,	e-mail	it,	and	so	on.	All	the	code	for	each	of	the	chapters	in
this	book	are	saved	in	a	source	file.

Using	R
With	all	the	systems	ready	to	launch,	let’s	start	our	first	commands.	R	will	take	both	the
strings	in	the	quotes	or	simple	numbers.	Here,	we	will	put	one	command	as	a	string	and
one	command	as	a	number.	The	output	is	the	same	as	the	input:

>	"Let's	Go	Sioux!"

[1]	"Let's	Go	Sioux!"

>	15

[1]	15

R	can	also	act	as	a	calculator:

>	((22+5)/9)*2

[1]	6

Where	R	starts	to	shine	is	in	the	creation	of	vectors.	Here,	we	will	put	the	first	ten
numbers	of	the	Fibonacci	sequence	in	a	vector	using	the	c()	function,	which	stands	for
combining	the	values	to	a	vector	or	list	(concatenate):

>	c(0,1,1,2,3,5,8,13,21,34)	#Fibonacci	sequence

	[1]		0		1		1		2		3		5		8	13	21	34

Note	that	in	this	syntax,	I	included	a	comment,	Fibonacci	sequence.	In	R,	anything	after
the	#	key	on	the	command	line	is	not	executed.

Now,	let’s	create	an	object	that	contains	these	numbers	of	the	sequence.	You	can	assign
any	vector	or	list	to	an	object.	In	most	of	the	R	code,	you	will	see	the	assign	symbol	as	<-,
which	is	read	as	gets.	Instead,	I	will	use	the	=	(equals)	symbol.	This	may	be	computer
science	heresy,	but	I	have	not	heard	a	convincing	argument	to	dissuade	me	from	my	use	of
=.	Here,	we	will	create	an	object,	x,	of	the	Fibonacci	sequence:

>	x	=	c(0,1,1,2,3,5,8,13,21,34)

To	see	the	contents	of	the	x	object,	just	type	it	in	the	command	prompt:

>	x

	[1]		0		1		1		2		3		5		8	13	21	34

You	can	select	subsets	of	a	vector	using	brackets	after	an	object.	This	will	get	you	the	first
three	observations	of	the	sequence:

>	x[1:3]

[1]	0	1	1

One	can	use	a	negative	sign	in	the	bracketed	numbers	in	order	to	exclude	the	observations:

>	x[-5:-6]

[1]		0		1		1		2		8	13	21	34

To	visualize	this	sequence,	we	will	utilize	the	plot()	function:

>	plot(x)

The	output	of	the	preceding	command	is	as	follows:

Adding	a	title	and	axis	labels	to	the	plot	is	easy	using	main=…,	xlab=…,	and	ylab=…:

>	plot(x,	main="Fibonacci	Sequence",	xlab="Order",	ylab="Value")

The	output	of	the	preceding	command	is	as	follows:

We	can	transform	a	vector	in	R	with	a	plethora	of	functions.	Here,	we	will	create	a	new
object,	y,	that	is	the	square	root	of	x:

>	y	=	sqrt(x)

>	y

[1]	0.000000	1.000000	1.000000	1.414214	1.732051	2.236068		2.828427

[8]	3.605551	4.582576	5.830952

It	is	important	here	to	point	out	that	if	you	are	unsure	of	what	syntax	can	be	used	in	a
function,	then	using	?	in	front	of	it	will	pull	up	help	on	the	topic.	Try	this!

>	?sqrt

This	opens	up	help	for	a	function.	With	the	creation	of	x	and	y,	one	can	produce	a	scatter
plot:

>	plot(x,y)

The	following	is	the	output	of	the	preceding	command:

Let’s	now	look	at	creating	another	object	that	is	a	constant.	Then,	we	will	use	this	object
as	a	scalar	and	multiply	it	by	the	x	vector,	creating	a	new	vector	called	x2:

>	z=3

>	x2	=	x*z

>	x2

	[1]			0			3			3			6			9		15		24		39		63	102

R	allows	you	to	perform	logical	tests.	For	example,	let’s	test	if	one	value	is	less	than
another:

>	5	<	6

[1]	TRUE

>	6	<	5

[1]	FALSE

In	the	first	instance,	R	returned	TRUE	and	in	the	latter,	FALSE.	If	you	want	to	find	out	if	a
value	is	equal	to	another	value,	then	you	would	use	two	equal	symbols.	Remember,	the
equal	symbol	assigns	a	value.	Here	is	an	example	where	we	want	to	see	if	any	of	the
values	in	the	Fibonacci	sequence	that	we	created	are	equal	to	zero:

>	x	==	0

	[1]		TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE

The	output	provides	a	list	and	we	can	clearly	see	that	the	first	value	of	the	x	vector	is
indeed	zero.	In	short,	R’s	relational	operators,	<=,	<,	==,	>,	>=,	and	!,	stand	for	less	than
or	equal,	less	than,	equal,	greater	than,	greater	than	or	equal,	and	not	equal.

A	couple	of	functions	that	we	should	address	are	rep()	and	seq(),	which	are	useful	in
creating	your	own	vectors.	For	example,	rep(5,3)	would	replicate	the	value	5	three	times.
It	also	works	with	strings:

>	rep("North	Dakota	Hockey",	times=3)

[1]	"North	Dakota	Hockey"	"North	Dakota	Hockey"

[3]	"North	Dakota	Hockey"

For	a	demonstration	of	seq(),	let’s	say	that	we	want	to	create	a	sequence	of	numbers	from
0	to	10	by=2.	Then	the	code	would	be	as	follows:

>	seq(0,10,	by=2)

[1]		0		2		4		6		8	10

Data	frames	and	matrices
We	will	now	create	a	data	frame,	which	is	a	collection	of	variables	(vectors).	We	will
create	a	vector	of	1,	2,	and	3	and	another	vector	of	1,	1.5,	and	2.0.	Once	this	is	done,	the
rbind()	function	will	allow	us	to	combine	the	rows:

>	p	=	seq(1:3)

>	p

[1]	1	2	3

>	q	=	seq(1,2,	by=0.5)

>	q

[1]	1.0	1.5	2.0

>	r	=	rbind(p,q)

>	r

		[,1]	[,2]	[,3]

p				1		2.0				3

q				1		1.5				2

The	result	is	a	list	of	two	rows	with	three	values	each.	You	can	always	determine	the
structure	of	your	data	using	the	str()	function,	which	in	this	case,	shows	us	that	we	have
two	lists,	one	named	p	and	the	other,	q:

>	str(r)

	num	[1:2,	1:3]	1	1	2	1.5	3	2

	-	attr(*,	"dimnames")=List	of	2

		..$:	chr	[1:2]	"p"	"q"

		..$:	NULL

Now,	let’s	put	them	together	as	columns	using	cbind():

>	s	=	cbind(p,q)

>	s

					p			q

[1,]	1	1.0

[2,]	2	1.5

[3,]	3	2.0

To	put	this	in	a	data	frame,	use	the	as.data.frame()	function.	After	that,	examine	the
structure:

>	s	=	as.data.frame(s)

>	str(s)

'data.frame':3	obs.	of		2	variables:

	$	p:	num		1	2	3

	$	q:	num		1	1.5	2

We	now	have	a	data	frame,	(s),	that	has	two	variables	of	three	observations	each.	We	can

change	the	names	of	the	variables	using	names():

>	names(s)	=	c("column	1",	"column	2")

>	s

		column	1	column	2

1								1						1.0

2								2						1.5

3								3						2.0

Let’s	have	a	go	at	putting	this	into	a	matrix	format	with	as.matrix().	In	some	packages,
R	will	require	the	analysis	to	be	done	on	a	data	frame,	but	in	others,	it	will	require	a
matrix.	You	can	switch	back	and	forth	between	a	data	frame	and	matrix	as	you	require:

>	t=	as.matrix(s)

>	t

					column	1	column	2

[1,]								1						1.0

[2,]								2						1.5

[3,]								3						2.0

One	of	the	things	that	you	can	do	is	check	whether	a	specific	value	is	in	a	matrix	or	data
frame.	For	instance,	we	want	to	know	the	value	of	the	first	observation	and	first	variable.
In	this	case,	we	will	need	to	specify	the	first	row	and	first	column	in	brackets	as	follows:

>	t[1,1]

column	1	

							1

Let’s	assume	that	you	want	to	see	all	the	values	in	the	second	variable	(column).	Then,
just	leave	the	row	blank	but	remember	to	use	a	comma	before	the	column(s)	that	you	want
to	see:

>	t[,2]

[1]	1.0	1.5	2.0

Conversely,	let’s	say	we	want	to	look	at	the	first	two	rows	only.	In	this	case,	just	use	a
colon	symbol:

>	t[1:2,]

					column	1	column	2

[1,]								1						1.0

[2,]								2						1.5

Assume	that	you	have	a	data	frame	or	matrix	with	100	observations	and	ten	variables	and
you	want	to	create	a	subset	of	the	first	70	observations	and	variables	1,	3,	7,	8,	9,	and	10.
What	would	this	look	like?

Well,	using	the	colon,	comma,	concatenate	function,	and	brackets	you	could	simply	do	the
following:

>	new	=	old[1:70,	c(1,3,7:10)]

Notice	how	you	can	easily	manipulate	what	observations	and	variables	you	want	to

include.	You	can	also	easily	exclude	variables.	Say	that	we	just	want	to	exclude	the	first
variable;	then	you	could	do	the	following	using	a	negative	sign	for	the	first	variable:

>	new	=	old[,-1]

This	syntax	is	very	powerful	in	R	for	the	fundamental	manipulation	of	data.	In	the	main
chapters,	we	will	also	bring	in	more	advanced	data	manipulation	techniques.

Summary	stats
We	will	now	cover	some	basic	measures	of	central	tendency,	dispersion,	and	simple	plots.
The	first	question	that	we	will	address	is	how	R	handles	the	missing	values	in
calculations?	To	see	what	happens,	create	a	vector	with	a	missing	value	(NA	in	the	R
language),	then	sum	the	values	of	the	vector	with	sum():

>	a	=	c(1,2,3,NA)

>	sum(a)

[1]	NA

Unlike	SAS,	which	would	sum	the	non-missing	values,	R	does	not	sum	the	non-missing
values	but	simply	returns	that	at	least	one	value	is	missing.	Now,	we	could	create	a	new
vector	with	the	missing	value	deleted	but	you	can	also	include	the	syntax	to	exclude	any
missing	values	with	na.rm=TRUE:

>	sum(a,	na.rm=TRUE)

[1]	6

Functions	exist	to	identify	the	measures	of	central	tendency	and	dispersion	of	a	vector:

>	data	=	c(4,3,2,5.5,7.8,9,14,20)

>	mean(data)

[1]	8.1625

>	median(data)

[1]	6.65

>	sd(data)

[1]	6.142112

>	max(data)

[1]	20

>	min(data)

[1]	2

>	range(data)

[1]		2	20

>	quantile(data)

			0%			25%			50%			75%		100%	

	2.00		3.75		6.65	10.25	20.00	

A	summary()	function	is	available	that	includes	the	mean,	median,	and	quartile	values:

>	summary(data)

			Min.	1st	Qu.		Median				Mean	3rd	Qu.				Max.	

		2.000			3.750			6.650			8.162		10.250		20.000

We	can	use	plots	to	visualize	the	data.	The	base	plot	here	will	be	barplot,	then	we	will
use	abline()	to	include	the	mean	and	median.	As	the	default	line	is	solid,	we	will	create	a

dotted	line	for	median	with	lty=2	to	distinguish	it	from	mean:

>	barplot(data)

>	abline(h=mean(data))

>	abline(h=median(data),	lty=2)

The	output	of	the	preceding	command	is	as	follows:

A	number	of	functions	are	available	to	generate	different	data	distributions.	Here,	we	can
look	at	one	such	function	for	a	normal	distribution	with	a	mean	of	zero	and	standard
deviation	of	one	using	rnorm()	to	create	100	data	points.	We	will	then	plot	the	values	and
also	plot	a	histogram.	Additionally,	to	duplicate	the	results,	ensure	that	you	use	the	same
random	seed	with	set.seed():

>	set.seed(1)

>	norm	=	rnorm(100)

This	is	the	plot	of	the	100	data	points:

>	plot(norm)

The	output	of	the	preceding	command	is	as	follows:

Finally,	produce	a	histogram	with	hist(norm):

>	hist(norm)

The	following	is	the	output	of	the	preceding	command:

Installing	and	loading	the	R	packages
We	discussed	earlier	how	to	install	an	R	package	using	the	install()	function.	To	use	an
installed	package,	you	also	need	to	load	it	to	be	able	to	use	it.	Let’s	go	through	this	again,
first	with	the	installation	in	RStudio	and	then	loading	the	package.	Look	for	and	click	the
Packages	tab.	You	should	see	something	similar	to	this:

Now,	let’s	install	the	R	package,	xgboost.	Click	on	the	Install	icon	and	type	the	package
name	in	the	Packages	section	of	the	popup:

Click	the	Install	button.	Once	the	package	has	been	fully	installed,	the	command	prompt
will	return.	To	load	the	package	in	order	to	be	able	to	use	it,	only	the	library()	function
is	required:

>	library(xgboost)

With	this,	you	are	now	able	to	use	the	functions	built	in	the	package.

Summary
The	purpose	of	this	appendix	was	to	allow	the	R	novice	to	learn	the	basics	of	the
programming	language	and	prepare	them	for	the	code	in	the	book.	This	consisted	of
learning	how	to	install	R	and	RStudio	and	creating	objects,	vectors,	and	matrices.	Then,
we	explored	some	of	the	mathematical	and	statistical	functions.	Finally,	we	covered	how
to	install	and	load	a	package	in	R	using	RStudio.	Throughout	the	appendix,	the	plot	syntax
for	the	base	and	examples	are	included.	While	this	appendix	will	not	make	you	an	expert
in	R,	it	will	get	you	up	to	speed	to	follow	along	with	the	examples	in	the	book.

Index
A

Aikake’s	Information	Criterion	(AIC)	/	Modeling	and	evaluation
about	/	Granger	causality

algorithm	flowchart
about	/	Algorithm	flowchart

American	Diabetes	Association	(ADA)
URL	/	Business	understanding

apriori	algorithms
about	/	An	overview	of	a	market	basket	analysis

Area	Under	the	Curve	(AUC)
about	/	Model	selection

Artificial	Neural	Networks	(ANNs)
about	/	Neural	network
reference	link	/	Neural	network

arules*	Mining	Association	Rules	and	Frequent	Itemsets
about	/	An	overview	of	a	market	basket	analysis

Augmented	Dickey-Fuller	(ADF)	test
about	/	Data	understanding	and	preparation

Autocorrelation	Function	(ACF)
about	/	Univariate	time	series	analysis

Autoregressive	Integrated	Moving	Average	(ARIMA)	models
about	/	Univariate	time	series	analysis

B
Back	Propagation

about	/	Neural	network
backward	stepwise	regression	/	Modeling	and	evaluation
bagging

about	/	Random	forest
Bayesian	Information	Criterion	(BIC)	/	Modeling	and	evaluation
bias-variance	trade-off

about	/	Discriminant	analysis	overview
bivariate	regression

for	univariate	time	series	/	Bivariate	regression
bootstrap	aggregation

about	/	Random	forest
Breusch-Pagan	(BP)	/	Modeling	and	evaluation
business	case,	regularization

about	/	Business	case
business	understanding	/	Business	understanding
data,	understanding	/	Data	understanding	and	preparation
data,	preparing	/	Data	understanding	and	preparation

business	understanding,	CRISP-DM	process
about	/	Business	understanding
business	objective,	identifying	/	Identify	the	business	objective
situation,	assessing	/	Assess	the	situation
analytical	goals,	determining	/	Determine	the	analytical	goals
project	plan,	producing	/	Produce	a	project	plan

C
Carbon	Dioxide	Information	Analysis	Center	(CDIAC)

URL	/	Business	understanding
caret	package

about	/	Elastic	net
URL	/	Elastic	net

classification	methods
about	/	Classification	methods	and	linear	regression

classification	models
selecting	/	Model	selection

classification	trees
overview	/	Classification	trees
business	case	/	Business	case
evaluation	/	Classification	tree
modeling	/	Classification	tree

cluster	analysis
business	understanding	/	Business	understanding
data,	understanding	/	Data	understanding	and	preparation
data,	preparing	/	Data	understanding	and	preparation
with	mixed	data	/	Clustering	with	mixed	data

Cohen’s	Kappa	statistic
about	/	KNN	modeling

collaborative	filtering
about	/	An	overview	of	a	recommendation	engine
user-based	collaborative	filtering	(UBCF)	/	User-based	collaborative	filtering
item-based	collaborative	filtering	(IBCF)	/	Item-based	collaborative	filtering
singular	value	decomposition	(SVD)	/	Singular	value	decomposition	and
principal	components	analysis
principal	components	analysis	(PCA)	/	Singular	value	decomposition	and
principal	components	analysis

Cook’s	distance	/	Business	understanding
Corpus

about	/	Text	mining	framework	and	methods
Cosine	Similarity

about	/	User-based	collaborative	filtering
CRISP-DM	process

about	/	The	process
URL	/	The	process
business	understanding	/	Business	understanding
data,	understanding	/	Data	understanding
data	preparation	/	Data	preparation
modeling	/	Modeling
evaluation	/	Evaluation

deployment	/	Deployment
algorithm	flowchart	/	Algorithm	flowchart

Cross-Entropy
about	/	Neural	network

cross-validation
for	logistic	regression	/	Logistic	regression	with	cross-validation

Cross	Correlation	Function	(CCF)
about	/	Data	understanding	and	preparation

CRUTEM4	surface	air	temperature
URL	/	Business	understanding

D
data	frame

creating	/	Data	frames	and	matrices
data	preparation	process

about	/	Data	preparation
data	understanding	process

about	/	Data	understanding
deep	learning

overview	/	Deep	learning,	a	not-so-deep	overview
reference	link	/	Deep	learning,	a	not-so-deep	overview,	Modeling
example	/	An	example	of	deep	learning
H2O	/	H2O	background

deployment	process	/	Deployment
dirichlet	distribution

about	/	Topic	models
Discriminant	Analysis	(DA)

overview	/	Discriminant	analysis	overview
Linear	Discriminant	Analysis	(LDA)	/	Discriminant	analysis	overview
Quadratic	Discriminant	Analysis	(QDA)	/	Discriminant	analysis	overview
application	/	Discriminant	analysis	application

Document-Term	Matrix	(DTM)
about	/	Text	mining	framework	and	methods

dynamic	topic	modelling
about	/	Topic	models

E
ECLAT	algorithms

about	/	An	overview	of	a	market	basket	analysis
eigenvalues

about	/	An	overview	of	the	principal	components
eigenvectors

about	/	An	overview	of	the	principal	components
elastic	net

about	/	Elastic	net
using	/	Elastic	net

equimax
about	/	Rotation

Euclidian	Distance
about	/	K-Nearest	Neighbors

evaluation	process
about	/	Evaluation

exponential	smoothing	models
about	/	Univariate	time	series	analysis

Extract,	Transport,	and	Load	(ETL)
about	/	Data	understanding

F
F-Measure

about	/	Other	quantitative	analyses
False	Positive	Rate	(FPR)

about	/	Model	selection
Feed	Forward	network

about	/	Neural	network
Final	Prediction	Error	(FPE)

about	/	Granger	causality
Fine	Needle	Aspiration	(FNA)

about	/	Business	understanding
first	principal	component

about	/	An	overview	of	the	principal	components
forward	stepwise	selection	/	Modeling	and	evaluation

G
Gedeon	Method

about	/	Modeling
glmnet	package

used,	for	performing	cross-validation	for	regularization	/	Cross-validation	with
glmnet

Gower
about	/	Gower	and	partitioning	around	medoids

gradient	boosted	trees
about	/	Introduction

gradient	boosting
overview	/	Gradient	boosting
reference	link	/	Gradient	boosting
business	case	/	Business	case
model	selection	/	Model	selection

gradient	boosting	classification
modeling	/	Gradient	boosting	classification
evaluation	/	Gradient	boosting	classification

gradient	boosting	regression
evaluation	/	Gradient	boosting	regression
modeling	/	Gradient	boosting	regression

Granger	causality
about	/	Granger	causality

Graphical	User	Interface	(GUI)
about	/	Getting	R	up	and	running

H
H2O

about	/	H2O	background
URL	/	H2O	background
data,	preparing	/	Data	preparation	and	uploading	it	to	H2O
data,	uploading	/	Data	preparation	and	uploading	it	to	H2O
train	dataset,	creating	/	Create	train	and	test	datasets
test	dataset,	creating	/	Create	train	and	test	datasets
modeling	/	Modeling

HadCRUT4	annual	time	series
URL	/	Business	understanding

HadSST3	sea-surface	datasets
URL	/	Business	understanding

Hannan-Quinn	Criterion	(HQ)
about	/	Examining	the	causality

Hat	Matrix	/	Modeling	and	evaluation
heatmaps	/	Data	understanding	and	preparation
heteroscedasticity	/	Business	understanding
hierarchical	clustering

about	/	Hierarchical	clustering
distance	calculations	/	Distance	calculations
modeling	/	Hierarchical	clustering
evaluation	/	Hierarchical	clustering

Holt-Winter’s	Method
about	/	Univariate	time	series	analysis

I
Integrated	Development	Environment	(IDE)

about	/	Getting	R	up	and	running
interquartile	range

about	/	Hierarchical	clustering
item-based	collaborative	filtering	(IBCF)

about	/	Item-based	collaborative	filtering

K
K-fold	cross-validation

about	/	Logistic	regression	with	cross-validation
k-means	clustering

about	/	K-means	clustering
modeling	/	K-means	clustering
evaluation	/	K-means	clustering

K-Nearest	Neighbors	(KNN)
about	/	K-Nearest	Neighbors
case	study	/	Business	case
business	understanding	/	Business	understanding
data,	understanding	/	Data	understanding	and	preparation
data,	preparing	/	Data	understanding	and	preparation
modeling	/	KNN	modeling

K-sets
about	/	Logistic	regression	with	cross-validation

kernel	trick
about	/	Support	Vector	Machines

KNN	modeling
versus	SVM	modeling	/	Model	selection

L
L1-norm

about	/	LASSO
L2-norm

about	/	Ridge	regression
LASSO

about	/	LASSO
executing	/	LASSO

Latent	Dirichlet	Allocation	(LDA)
about	/	Topic	models

lazy	learning
about	/	K-Nearest	Neighbors

Leave-One-Out-Cross-Validation	(LOOCV)
about	/	Logistic	regression	with	cross-validation

Leave-One-Out	Cross-Validation	(LOOCV)	/	Modeling	and	evaluation
Linear	Discriminant	Analysis	(QDA)

about	/	Discriminant	analysis	overview
linear	model	considerations

about	/	Other	linear	model	considerations
qualitative	feature	/	Qualitative	feature
interaction	term	/	Interaction	term

linear	regression
about	/	Classification	methods	and	linear	regression

linear	regression	model
linearity	/	Business	understanding
non-correlation	of	errors	/	Business	understanding
homoscedasticity	/	Business	understanding
no	collinearity	/	Business	understanding
presence	of	outliers	/	Business	understanding

logistic	regression
about	/	Logistic	regression
business	understanding	/	Business	understanding
data,	understanding	/	Data	understanding	and	preparation
data,	preparing	/	Data	understanding	and	preparation
modeling	/	Modeling	and	evaluation
evaluation	/	Modeling	and	evaluation
with	cross-validation	/	Logistic	regression	with	cross-validation
Discriminant	Analysis	(DA)	/	Discriminant	analysis	overview

logistic	regression	model
about	/	The	logistic	regression	model

loss	function
about	/	Gradient	boosting

M
Mallow’s	Cp	(Cp)	/	Modeling	and	evaluation
margin

about	/	Support	Vector	Machines
market	basket	analysis

about	/	An	overview	of	a	market	basket	analysis
business	understanding	/	Business	understanding
data,	understanding	/	Data	understanding	and	preparation
data,	preparing	/	Data	understanding	and	preparation
modeling	/	Modeling	and	evaluation
evaluation	/	Modeling	and	evaluation

matrices
creating	/	Data	frames	and	matrices

mean	squared	error	(MSE)
about	/	Best	subsets,	Univariate	time	series	analysis

medoid
about	/	PAM

modeling	process
about	/	Modeling

multivariate	linear	regression
about	/	Multivariate	linear	regression
business	understanding	/	Business	understanding
data,	understanding	/	Data	understanding	and	preparation
data,	preparing	/	Data	understanding	and	preparation
modeling	/	Modeling	and	evaluation
evaluation	/	Modeling	and	evaluation

N
neural	network

about	/	Neural	network
business	understanding	/	Business	understanding
reference	link	/	Business	understanding
data,	understanding	/	Data	understanding	and	preparation
data,	preparing	/	Data	understanding	and	preparation
modeling	/	Modeling	and	evaluation
evaluation	/	Modeling	and	evaluation

Normal	Q-Q	plot	/	Business	understanding

O
OPRC	/	Modeling	and	evaluation
OPSLAKE	/	Modeling	and	evaluation
out-of-bag	(oob)

about	/	Random	forest

P
2p	models

about	/	Regularization	in	a	nutshell
Partial	Autocorrelation	Function	(PACF)

about	/	Univariate	time	series	analysis
Partitioning	Around	Medoids	(PAM)

about	/	Gower	and	partitioning	around	medoids,	PAM
Pearson	Correlation	Coefficient

about	/	User-based	collaborative	filtering
Polarity

about	/	Other	quantitative	analyses
Porter	stemming	algorithm

about	/	Text	mining	framework	and	methods
Prediction	Error	Sum	of	Squares	(PRESS)	/	Modeling	and	evaluation
principal	components

overview	/	An	overview	of	the	principal	components
rotation	/	Rotation

principal	components	analysis	(PCA)
about	/	Singular	value	decomposition	and	principal	components	analysis

Principal	Components	Analysis	(PCA)
about	/	Gower	and	partitioning	around	medoids
business	understanding	/	Business	understanding
data,	understanding	/	Data	understanding	and	preparation
data,	preparing	/	Data	understanding	and	preparation
modeling	/	Modeling	and	evaluation
evaluation	/	Modeling	and	evaluation
component,	extraction	/	Component	extraction
orthogonal	rotation	/	Orthogonal	rotation	and	interpretation
interpretation	/	Orthogonal	rotation	and	interpretation
factor	scores,	creating	from	components	/	Creating	factor	scores	from	the
components
regression	analysis	/	Regression	analysis

Q
Quadratic	Discriminant	Analysis	(QDA)

about	/	Discriminant	analysis	overview
Quantile-Quantile	(Q-Q)	/	Business	understanding
quartimax

about	/	Rotation

R
R

installing	/	Getting	R	up	and	running
running	/	Getting	R	up	and	running
URL	/	Getting	R	up	and	running
using	/	Using	R

radical
about	/	Text	mining	framework	and	methods

random	forest
about	/	Introduction
overview	/	Random	forest
business	case	/	Business	case
model	selection	/	Model	selection

random	forest	classification
modeling	/	Random	forest	classification
evaluation	/	Random	forest	classification

random	forest	regression
evaluation	/	Random	forest	regression
modeling	/	Random	forest	regression

Receiver	Operating	Characteristic	(ROC)
about	/	Model	selection
reference	link	/	Model	selection

Receiver	Operating	Characteristic	Curves	(ROC)
about	/	Modeling,	evaluation,	and	recommendations

recommendation	engine
overview	/	An	overview	of	a	recommendation	engine
collaborative	filtering	/	An	overview	of	a	recommendation	engine
business	understanding	/	Business	understanding	and	recommendations
data,	understanding	/	Data	understanding,	preparation,	and	recommendations
data,	preparing	/	Data	understanding,	preparation,	and	recommendations
modeling	/	Modeling,	evaluation,	and	recommendations
evaluation	/	Modeling,	evaluation,	and	recommendations
recommendations	/	Modeling,	evaluation,	and	recommendations

recommenderlab	library
URL	/	Data	understanding,	preparation,	and	recommendations

regression	trees
overview	/	Regression	trees
business	case	/	Business	case
modeling	/	Regression	tree
evaluation	/	Regression	tree

regularization
about	/	Regularization	in	a	nutshell
ridge	regression	/	Ridge	regression

LASSO	/	LASSO
elastic	net	/	Elastic	net
business	case	/	Business	case
modeling	/	Modeling	and	evaluation
evaluation	/	Modeling	and	evaluation
cross-validation,	performing	with	glmnet	package	/	Cross-validation	with
glmnet
model	selection	/	Model	selection

regularization,	modeling
best	subsets,	creating	/	Best	subsets
ridge	regression	/	Ridge	regression
LASSO,	running	/	LASSO
elastic	net,	using	/	Elastic	net

Residual	Sum	of	Squares	(RSS)	/	Univariate	linear	regression
Residuals	vs	Leverage	plot	/	Business	understanding
Restricted	Boltzmann	Machine

about	/	Deep	learning,	a	not-so-deep	overview
ridge	regression

about	/	Ridge	regression
executing	/	Ridge	regression

Root	Mean	Square	Error	(RMSE)
about	/	Elastic	net

R	packages
installing	/	Installing	and	loading	the	R	packages
loading	/	Installing	and	loading	the	R	packages

RStudio
URL	/	Getting	R	up	and	running

S
Schwarz-Bayes	Criterion	(SC)

about	/	Examining	the	causality
second	principal	component

about	/	An	overview	of	the	principal	components
shrinkage	penalty

about	/	Regularization	in	a	nutshell
singular	value	decomposition	(SVD)

about	/	Singular	value	decomposition	and	principal	components	analysis
slack	variables

about	/	Support	Vector	Machines
Sparse	Coding	Model

about	/	Deep	learning,	a	not-so-deep	overview
summary	stats

displaying	/	Summary	stats
Sum	of	Squared	Error

about	/	Neural	network
sum	of	squared	error	(SSE)

about	/	Univariate	time	series	analysis
Support	Vector	Machines	(SVM)

about	/	Support	Vector	Machines
case	study	/	Business	case
business	understanding	/	Business	understanding
data,	understanding	/	Data	understanding	and	preparation
data,	preparing	/	Data	understanding	and	preparation
modeling	/	SVM	modeling
feature	selection	/	Feature	selection	for	SVMs

suspected	outliers
about	/	Hierarchical	clustering

SVM	modeling
versus	KNN	modeling	/	Model	selection

T
Term-Document	Matrix	(TDM)

about	/	Text	mining	framework	and	methods
text	mining

methods	/	Text	mining	framework	and	methods
topic	models	/	Topic	models
other	quantitative	analyses	/	Other	quantitative	analyses
business	understanding	/	Business	understanding
data,	understanding	/	Data	understanding	and	preparation
data,	preparing	/	Data	understanding	and	preparation
modeling	/	Modeling	and	evaluation
evaluation	/	Modeling	and	evaluation
word	frequency,	exploring	/	Word	frequency	and	topic	models
topic	models,	building	/	Word	frequency	and	topic	models
quantitative	analysis,	with	qdap	package	/	Additional	quantitative	analysis

topic	models
about	/	Topic	models

tree-based	learning
about	/	Gradient	boosting

True	Positive	Rate	(TPR)
about	/	Model	selection

U
univariate	linear	regression

about	/	Univariate	linear	regression
business	understanding	/	Business	understanding

univariate	time	series
analyzing	/	Univariate	time	series	analysis
with	bivariate	regression	/	Bivariate	regression
analyzing,	with	Granger	causality	/	Granger	causality
business	understanding	/	Business	understanding
data,	understanding	/	Data	understanding	and	preparation
data,	preparing	/	Data	understanding	and	preparation
modeling	/	Modeling	and	evaluation
evaluation	/	Modeling	and	evaluation
forecasting	/	Univariate	time	series	forecasting
examining,	with	regression	/	Time	series	regression
Granger	causality,	examining	/	Examining	the	causality

user-based	collaborative	filtering	(UBCF)
about	/	User-based	collaborative	filtering

V
valence	shifters

about	/	Other	quantitative	analyses
Variance	Inflation	Factor	(VIF)	/	Modeling	and	evaluation
varimax

about	/	Rotation
Vector	Autoregression	(VAR)

about	/	Granger	causality

W
whiskers

about	/	Hierarchical	clustering

	Mastering Machine Learning with R
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	Machine learning defined
	Machine learning caveats
	Failure to engineer features
	Overfitting and underfitting
	Causality
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Downloading the color images of this book
	Errata
	Piracy
	eBooks, discount offers, and more
	Questions
	1. A Process for Success
	The process
	Business understanding
	Identify the business objective
	Assess the situation
	Determine the analytical goals
	Produce a project plan
	Data understanding
	Data preparation
	Modeling
	Evaluation
	Deployment
	Algorithm flowchart
	Summary
	2. Linear Regression – The Blocking and Tackling of Machine Learning
	Univariate linear regression
	Business understanding
	Multivariate linear regression
	Business understanding
	Data understanding and preparation
	Modeling and evaluation
	Other linear model considerations
	Qualitative feature
	Interaction term
	Summary
	3. Logistic Regression and Discriminant Analysis
	Classification methods and linear regression
	Logistic regression
	Business understanding
	Data understanding and preparation
	Modeling and evaluation
	The logistic regression model
	Logistic regression with cross-validation
	Discriminant analysis overview
	Discriminant analysis application
	Model selection
	Summary
	4. Advanced Feature Selection in Linear Models
	Regularization in a nutshell
	Ridge regression
	LASSO
	Elastic net
	Business case
	Business understanding
	Data understanding and preparation
	Modeling and evaluation
	Best subsets
	Ridge regression
	LASSO
	Elastic net
	Cross-validation with glmnet
	Model selection
	Summary
	5. More Classification Techniques – K-Nearest Neighbors and Support Vector Machines
	K-Nearest Neighbors
	Support Vector Machines
	Business case
	Business understanding
	Data understanding and preparation
	Modeling and evaluation
	KNN modeling
	SVM modeling
	Model selection
	Feature selection for SVMs
	Summary
	6. Classification and Regression Trees
	Introduction
	An overview of the techniques
	Regression trees
	Classification trees
	Random forest
	Gradient boosting
	Business case
	Modeling and evaluation
	Regression tree
	Classification tree
	Random forest regression
	Random forest classification
	Gradient boosting regression
	Gradient boosting classification
	Model selection
	Summary
	7. Neural Networks
	Neural network
	Deep learning, a not-so-deep overview
	Business understanding
	Data understanding and preparation
	Modeling and evaluation
	An example of deep learning
	H2O background
	Data preparation and uploading it to H2O
	Create train and test datasets
	Modeling
	Summary
	8. Cluster Analysis
	Hierarchical clustering
	Distance calculations
	K-means clustering
	Gower and partitioning around medoids
	Gower
	PAM
	Business understanding
	Data understanding and preparation
	Modeling and evaluation
	Hierarchical clustering
	K-means clustering
	Clustering with mixed data
	Summary
	9. Principal Components Analysis
	An overview of the principal components
	Rotation
	Business understanding
	Data understanding and preparation
	Modeling and evaluation
	Component extraction
	Orthogonal rotation and interpretation
	Creating factor scores from the components
	Regression analysis
	Summary
	10. Market Basket Analysis and Recommendation Engines
	An overview of a market basket analysis
	Business understanding
	Data understanding and preparation
	Modeling and evaluation
	An overview of a recommendation engine
	User-based collaborative filtering
	Item-based collaborative filtering
	Singular value decomposition and principal components analysis
	Business understanding and recommendations
	Data understanding, preparation, and recommendations
	Modeling, evaluation, and recommendations
	Summary
	11. Time Series and Causality
	Univariate time series analysis
	Bivariate regression
	Granger causality
	Business understanding
	Data understanding and preparation
	Modeling and evaluation
	Univariate time series forecasting
	Time series regression
	Examining the causality
	Summary
	12. Text Mining
	Text mining framework and methods
	Topic models
	Other quantitative analyses
	Business understanding
	Data understanding and preparation
	Modeling and evaluation
	Word frequency and topic models
	Additional quantitative analysis
	Summary
	A. R Fundamentals
	Introduction
	Getting R up and running
	Using R
	Data frames and matrices
	Summary stats
	Installing and loading the R packages
	Summary
	Index

