
www.allitebooks.com

http://www.allitebooks.org

Mastering SQL Queries for SAP
Business One

Utilize the power of SQL queries to bring Business
Intelligence to your small to medium-sized business

Gordon Du

P U B L I S H I N G

professional expert ise dist i l led

BIRMINGHAM - MUMBAI

D
o

www.allitebooks.com

http://www.allitebooks.org

Mastering SQL Queries for SAP Business One

Copyright © 2011 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2011

Production Reference: 2190511

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-849682-36-7

www.packtpub.com

Cover Image by David Guettirrez (bilbaorocker@yahoo.co.uk)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author

Gordon Du

Reviewers

Zal Parchem

Muddassar Imran

Wolfgang Niefert

Acquisition Editor

Stephanie Moss

Development Editor

Susmita Panda

Technical Editor

Pallavi Kachare

Copy Editor

Laxmi Subramanian

Project Coordinator

Vishal Bodwani

Proofreader

Aaron Nash

Indexer

Monica Ajmera

Graphics

Geetanjali Sawant

Production Coordinator

Arvindkumar Gupta

Cover Work

Arvindkumar Gupta

www.allitebooks.com

http://www.allitebooks.org

About the Author

Gordon Du studied System Engineering and Computer Science at the Nankai
University in Tianjin, China. He has over 28 years of experience in diversiied
information technology ields. His experience with SQL goes back to 1987.

Gordon was the irst person in China to successfully implement an international
software package for a Chinese investment-only company in 1995.

Gordon has been the top contributor on the SAP Business One forum since August
2008. He has been awarded 45,000 points as of January 16, 2011. This is the highest
lifetime points recorded by SAP Community Network for a non-SAP employee
since 2004. Over 25 percent of Gordon's points are related to solving SQL query
questions and problems posted by other forum members. Here are some links
demonstrating this.

His SCN proile link for reference:

http://forums.sdn.sap.com/profile.jspa?userID=4130357

His irst blog on SCN:

http://www.sdn.sap.com/irj/scn/weblogs?blog=/pub/wlg/17099

The congratulations and thanks thread to his 35,000 points from forum users:

http://forums.sdn.sap.com/thread.jspa?threadID=1718298&tstart=0

Gordon has worked and trained extensively in China, Singapore, USA, and Canada.
He also holds the following certiicates: a Microsoft Certiied System Administrator,
Microsoft Certiied System Engineer, and a Microsoft Certiied Database
Administrator.

Gordon is planning to write a series of books related to SAP Business One in
response to the demand from many SAP Business One users and consultants.

www.allitebooks.com

http://www.allitebooks.org

Acknowledgement

Special thanks goes to my wife, Lisa, whose love and encouragement helped me
to complete this book. Thank you, my son Mason and his iancée, Ava, for your
support and reviews. Thank you to Zal Parchem, who not only inspired me from the
beginning, but also provided a professional technical review. Thanks to the staff at
Packt Publishing and all my friends who supported me in writing this book. Among
all my friends, MS Christine Malone has given me the greatest support by her
excellent inal proof reading and editing.

Last but not least, thank you to everyone who posted on the SAP Business One
forum providing me the opportunity to solve so many SQL query problems.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Zal Parchem has been in the business world working in the Information Systems
area for over 31 years. For the past 10 years, he has been working as an Independent
Consultant, concentrating on helping small to midsize companies install and
customize their ERP (Enterprise Resource Planning) systems. He has restricted his
work efforts to the SAP Business One (SAP B1) ERP system and is actively involved
in many SAP Forums, SAP Blogging areas, and the Wiki sections for SAP B1. He
works with SAP, SAP B1 Partners, and Customers around the world. For the past
three years, Zal Parchem has been using SQL extensively in SAP B1 for reporting and
customization purposes in SAP B1.

He has been employed in a variety of industries, with company sizes ranging from
six personnel to over 250,000 employees. Having retired from The Home Depot in
2001, he started his career as an Independent Consultant.

He has also written a "guerrilla handbook" titled Project Methodology and
Documentation for SAP Business One Implementations. He actively reviews all SAP B1
books available in print; his reviews can be seen online at Amazon.

I would like to thank Gordon Du for this opportunity to do the
technical aspect of his work in SQL. Gordon is the most active
participant in the SAP B1 forums where he helps dozens of people
daily. I am honored to know Gordon as a Fellow Forum Friend (FFF)
and to have been asked to work with PacktPub on this publication,
which is certainly going to extend Gordon's ability to help even more
individuals to be productive and effective in the use of SQL inside
SAP Business One.

www.allitebooks.com

http://www.allitebooks.org

Muddassar Imran is a passionate Web Developer. He is the Web Developer at
Page and Moy, UK. He is a First Class Graduate from DMU (De Montfort University,
Leicester UK) and was awarded the best inal year project award from BCS (British
Computer Society). Moreover, he is a Professional Member of BCS. He is enthusiastic
about modern expert system and database administration. He has aesthetic skills in
writing complex SQL Queries, ASP.NET, VB.NET and AJAX.

Imran was born in Gujranwala, a small city famous for its peaceful atmosphere.
He attended Suffa Secondary School at 10th Grade and achieved the highest scores
in his city. He got admission at the Government College University, Lahore for
further education in Computer Science. He went to Malaysia for higher education
and inished a Higher Diploma in Computing Studies from KDU College Malaysia.
Then he went back to Pakistan and worked with Wateen Telecom Pvt. Ltd. and
Telenor for two years, primarily developing web-based applications and working on
automation projects.

Muddassar then traveled to the United Kingdom to attend the De Montfort
University. In 2010, he received his Bachelors in Computer Science. While studying
at DMU, he was working with Venus Packaging Solutions Ltd. As a VB.NET
Developer until March 2011 and then joined Page & Moy in April 2011.

Further, Imran writes on his blog (www.blog.mudasar.co.uk) and his personal
website is www.mudasar.com. For relaxation, he likes to workout at the gym and travel.

After passing B-Tech in Computer Science and Engineering Wolfgang Niefert
joined ITSL Technologies as a .Net developer in June 2007. He worked on ERSys
(ERP Systems) and internal CRM product of ITSL Technologies. He then moved to
SAP as TechnoFunctional consultant, and also provided training on TB1000, TB1100,
TB1200 books. After that he joined Sapphire systems in June 2010 as SAP SDK
Support consultant.

He is an active contributor to the SAP sdn community. He got gold contribution
status in the year 2010 in sdn community.

I would like to thank my family and my team for helping and
supporting me.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support iles, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support iles and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
iles available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt

•	 Copy and paste, print and bookmark content

•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Instant Updates on New Packt Books
Get notiied! Find out when new books are published by following
@PacktEnterprise on Twitter, or the Packt Enterprise Facebook page.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

Preface 1

Section 1 – SQL Query Basic

Chapter 1: SAP Business One Query Users and Query Basics 9
Who can beneit from using SQL Queries in SAP Business One? 9

Consultant 10
Developer 10
SAP Business One end user 10
Non-SAP Business One users 11

SQL query and related terms 11
RDBMS 11
Table 11
Field 12
SQL 12
T-SQL 13
Subsets of SQL 13
Query 13

Data dictionary 14
SAP Business One—Database tables reference 14
Naming convention of tables for SAP Business One 15

Three letter words 15
"O" tables 16
"A" tables 16
Document header tables 16
Document line tables 16
Important table examples 17

Table links—the key for the right query 17
Primary key 17
Foreign key 18

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Example of table links within SAP Business One 18
Base tables versus target tables 18
Keeping it simple—The key to build a good query 21
Summary 22

Chapter 2: Query Generator and Query Wizard 23
Query Generator 24

Query Generator overview 24
Left part of Query Generator form 25
Middle and right parts of Query Generator form 26
Executing a query from Query Generator form 27

Query Wizard 28
Query Wizard overview 28
Step 1—Splash screen 29
Step 2—Select tables for the report 29
Step 3—Select ields and sort orders 30
Step 4—Conditions and relations 32
Step 5—Query Wizard completion 34

What is the difference between Query Generator and Query Wizard? 35
Beneitting from built-in system queries 36
Summary 40

Chapter 3: Query Manager and Query Statements 41
Query Manager user interface 42

Display all existing queries 43
Creating and saving user queries 45
Deleting user queries 47
Managing query categories 47

Commonly used statements 52
SELECT—irst statement to retrieve data 53

The scope of the value that can be retrieved 53
The numbers of columns to be included 56
Column name descriptions 56
Clauses can follow this statement 57

DISTINCT—duplicated records can be removed 57
TOP—number of lines returned by ranking 58
FROM—data resource can be assigned 58

A single table 59
A group of linked tables 61
Multiple tables separated by commas 62

JOIN—addition table or tables can be linked 62
Inner Join 63
Outer Join 65

WHERE—query conditions to be deined 68

Table of Contents

[iii]

BETWEEN—ranges to be deined from lower to higher end 70
IN/EXISTS—the value list that may satisfy the condition 71
LIKE—similar records can be found 71
GROUP BY—summarizing the data according to the list 72
HAVING—conditions to be deined in summary report 73
ORDER BY—report result can be by your preferred order 74
UNION/UNION ALL—to put two or more queries together 74

Some important functions to return values 75
ISNULL() predicate 75
SUM() function 76
MAX() function 76
MIN() function 77
COUNT() function 77
DATEDIFF() function 78
DATEADD() function 80
DATEPART() function 80
CAST()/CONVERT() function 81
CASE expressions 81
IF expressions 83

Summary 84

Section 2 – SQL Query in Action

Chapter 4: Query Examples 87
Why three categories have been chosen 88
Deining variables for queries 89

Case 4-R1: Four variables in one query 89
Case 4-R2: Variables irst or last 90

Date function—where the most problems emerge 91
Case 4-D1: Balance of production for a month 92
Case 4-D2: How to input a ixed date range 93

Orange arrow—an excellent tool for drill down 94
Case 4-O1: Make it simple 95
Case 4-O2: Sales order updating alert with drill down 96

Getting a subtotal from the query 97
Case 4-T1: By Union ALL 98
Case 2: By running total 99

Query for marketing documents 100
Case 4-M1: Overview of BP with selection of realized balance 100
Case 4-M2: Top ive items sold 100
Case 4-M3: A ilter by notes from OCRD 103
Case 4-M4: Adding sales employees' names to a query 104

Table of Contents

[iv]

Case 4-M5: A case for solution just from deduction 105
Case 4-M6: Goods Receipt PO within 10 days 106
Case 4-M7: Quantity purchased, received, and returned 107
Case 4-M8: Customized sales analysis report 108
Case 4-M9: Average sales per month 109
Case 4-M10: Credit Memo user check 110
Case 4-M11: Delivery date on sales order 111
Case 4-M12: Reducing from two to one line for the sales summary 112
Case 4-M13: Tax code summary 114
Case 4-M14: Sales by states 115
Case 4-M15: Many linked tables in one query 117
Case 4-M16: Sales Order with PO 118

Query for inventory transactions 120
Case 4-I1: Adding stock total to the query 120
Case 4-I2: Adding a total to the query bottom 121
Case 4-I3: Items not delivered within 15 days 122
Case 4-I4: Active item list 122
Case 4-I5: How to ind stock taking details 123
Case 4-I6: Query on price updates 124
Case 4-I7: Planned quantity versus in stock 125
Case 4-I8: Adding to the production orders list from a sales order 126
Case 4-I9: Complete item list with or without transactions 126

Query for inancial transactions 130
Case 4-F1: Top ive customers 131
Case 4-F2: Incoming payment 131
Case 4-F3: Linking an incoming payment with an invoice 132
Case 4-F4: Listing both types of payment transactions 133
Case 4-F5: Incoming payment iltering 134

User query for alert 135
Case 4-A1: Creating a right alert without duplicated lines 136
Case 4-A2: Alert for invoice without base document 137
Case 4-A3: A/R Invoice past due alert 137
Case 4-A4: Special ship to alert for Sales Order 138
Case 4-A5: Open Sales Opportunity alert 139
User query alert guide 140

Miscellaneous query examples 145
Case 4-X1: Query related to service call 146
Case 4-X2: Concatenating two text columns 146

Summary 147

Table of Contents

[v]

Chapter 5: Securities and Approvals 149
How to handle securities for query usage 149

Giving only a few users the capability to build a query report 150
Creating queries under different categories 152
Query Groups: a tool to assign user permissions 153

How to use query for approval procedures 159
Creating approval stages 161
Creating approval templates 162

Originator 162
Documents 163
Stages 164
Terms 165

Examples of user queries for approval 169
Case 1—Approval for adding delivery document 169
Case 2—"On Account" outgoing payment approval 170
Case 3—Approval for invoice to special customer groups 170
Case 4—Approval for over booking sales order 171
Case 5—None cash outgoing payment approval 172

Summary 173
Chapter 6: SQL Query for Formatted Search (FMS) 175

Formatted Search and User-Deined Values 176
How to work with User-Deined Values 177

Search in existing User-Deined Values according to the saved queries 181
Where do the $ values come from? 190
How to get the value you need from, and for, the FMS query 193
Can you run FMS queries directly? 194
What is the negative sign's function in FMS query? 194

Search in existing User-Deined Values only 195
A typical FMS query application: auto code creation 203

BP code auto generation 203
Item code auto generation 204
Special code auto generation 205

General FMS query examples 205
Case 1—Double quotes should be avoided 205
Case 2—Price value validation on line level 206
Case 3—Populating a UDF from OITM in a UDF on quotation 206
Case 4—Difference between two UDFs into another UDF 207
Case 5—Displaying warehouse name beside warehouse code 208
Case 6—Showing purchase order due date on sales order 208
Case 7—Auto populating the proit center code 209
Case 8—Calculation by three user-deined ields 209
Case 9—Open order reminder in new order 210

Table of Contents

[vi]

Case 10—Commitment checks for warehouse in stock 211
Case 11—Multiplying a ield from OITM with a ield on order line 211
Case 12—Multiplying two UDF values from two tables 212
Case 13—Last sales price for a customer 212
Case 14—Calling a UDF value in the BOM to Production Order 213
Case 15—Multiplying a UDF value with a system ield value 213
Case 16—Eliminating the duplicate lines returned by FMS query 214
Case 17—Getting the sales rep code assigned to an activity form 214
Case 18—FMS query for User-Deined Table (UDT) 215

Summary 216
Chapter 7: SQL Query for Reporting Tools 217

Query Print Layout Designer (QPLD) and its usage 218
Simple query report printing 220
Query Print Layout Designer 222

Working with a QPLD report 224
Creating a QPLD report 225
Editing a QPLD report 227
Saving a QPLD report 233
Printing a QPLD report 234
Deleting a QPLD report 234
Recreating the QPLD report 235

Direct query for Crystal Reports (Command) 238
Working with Standard Report Wizard 239

Creating a new database connection 240
Adding a Command to a report 245
Working with a Command 246

Basic formatting for a Crystal Report 251
Summary 255

Chapter 8: SQL Query for a Stored Procedure 257
Why Stored Procedure is included in this book 257
SBO_SP_TransactionNotiication overview 259
How to work with SBO_SP_TransactionNotiication 261
Some example queries for this SP 266

Case 1—Blocking an outgoing payment for a speciic BP 266
Case 2—Restricting outgoing payments above 20,000 268
Case 3—Blocking goods receipt entry 268
Case 4—Blocking a sales quotation if no value in row level UDF 270
Case 5—Blocking invoice based on GL account and project 271
Case 6—Blocking GRPO if quantity is more than PO quantity 272
Case 7—Blocking, adding, or updating an order for duplicated BP ref # 274
Case 8—Blocking sales documents based on dates 275
Case 9—Validation service type A/R credit memo 276

Table of Contents

[vii]

Case 10—Blocking goods issue for none super user 277
Case 11—Blocking Goods Receipt PO if no based PO 278

Summary 279
Chapter 9: More Complicated SQL Query Topics 281

The Case expression usage 281
Case 9-C1—Displaying Transtype as code instead of a number 282
Case 9-C2—Combining two queries with a Case expression 283
Case 9-C3—Showing discount percentage for each interval 284
Case 9-C4—Item wise subtotal in a goods receipt 285
Case 9-C5—Updating UDF with different dates 286

Working with a subquery 287
Case 9-S1—Item groups not in use 288
Case 9-S2—YTD sales for two years 288
Case 9-S3—Checking only the similar records 289
Case 9-S4—Showing the last A/P invoice document date for items 290

Using PIVOT to simplify a cross tab style queries 291
Case 9-P1—Monthly sales by geography 291
Case 9-P2—Complete list of all items with/without sales 292

Database query for Excel 294
Creating a new data source 294

New data source added within Excel 295
New data source added from the control panel 298

Query wizard for database query in Excel 302
Microsoft Query window 304

Avoiding pitfalls while building queries 308
Creating a query before knowing the data table structure 308
Complicating the logic instead of simplifying it 309
Trying to do too many things in one query 309
Relying on others' help only 310

Summary 310
Appendix 311

Original transaction list by code 311
Original transaction list by name 312
Object codes and names 314

Index 319

Preface
This book has been created to serve the needs of many SAP Business One users. If
you have a chance to browse the SAP business One website between mid-2008 and
mid-2011, you will ind that my name is always on the top contributor's list. I have
solved many SQL Query related problems faced by many users, and some such users
have asked me to write a blog or wiki page on the topic. However, the subject is too
big to it into any of those information holders. That is why this book came into being.

Business Intelligence (BI)
This is a buzz word nowadays. Usually, only big companies use this term very
often. However, from the strict deinition from Wikipedia, we can understand
the following:

BI refers to computer-based techniques used in spotting, digging-out, and analyzing business
data, such as sales revenue by products and/or departments or associated costs and incomes.
BI technologies provide historical, current, and predictive views of business operations. BI
often aims to support better business decision-making.

That means BI can be used in any type of solution as long as the technology
allows the supporting business decision making process. In this book, you
will learn why BI could be a perfect it for SAP Business One. Hence, it will beneit
small-to-midsized businesses. SQL Query is one of the most powerful tools in SAP
Business One that is related to BI.

SAP Business One is usually abbreviated as B1 by many users.
It could be easily confused with BI. In this book, B1 is not used.
Full names of SAP Business One can be found throughout.

Preface

[2]

What this book covers
There are two sections present in this book.

Section 1: SQL Query Basic
The irst section is mainly for beginners who have limited knowledge of SQL Query
but want to use this tool as soon as possible. You will learn basic tools to start writing
your query quickly. Upon completion, you could jump to the next section to further
your skills to complete more. Section 1, SQL Query Basic comprises three chapters:

Chapter 1, SAP Business One Query Users and Query Basics, discusses the basic
concepts and knowledge needed to use SQL query in SAP Business One. You will
learn a clear deinition of SQL query, the data dictionary, and table links.

Chapter 2, Query Generator and Query Wizard, introduces two basic tools for SAP
Business One. Query Generator and Query Wizard will teach you to create SQL
query in SAP Business One quickly to get the job done.

Chapter 3, Query Manager, illustrates the most important business intelligence tool
for SAP Business One. Query Manager will help you write query freely. This chapter
covers the most frequently used query statements one by one. All statements are
explained with concrete examples.

Through these three chapters, you will gain the basic knowledge to jump to the next
section and have to use SQL query in more areas. Even experienced readers may ind
some value in going through this section.

Section 2: SQL Query in Action
The second part of the book will jump to a higher level of complex SQL queries. You
will learn different skills for different categories. This section is more closely related
to Business Intelligence more closely because it can retrieve more business required
data at the right time by the right people. Section 2, SQL Query in Action comprises
six chapters:

Chapter 4, Query Examples, shows the most widely used query examples. You will
learn more query features irst. By showing query examples from three primary usage
categories, you will be able to build the queries to meet your speciic need. The alert
query examples are discussed especially for those important on-demand situation.

Preface

[3]

Chapter 5, Securities and Approval, describes the security for query by SAP Business
One and also the query associated with approval processes. You will learn how to
handle query security by utilizing query groups. You will also learn user query for
approval procedures with query examples.

Chapter 6, SQL Query for Formatted Search (FMS), emphasizes one of the most
frequently used and error-prone processes to create SQL Query for Formatted Search
(FMS). You will learn everything needed in FMS query and the associated Auto
Refresh functionality.

Chapter 7, SQL Query for Other Reporting Tools, focuses on SQL query usage in some
other reporting tools. You will learn Query Print Layout Designer as well as the SQL
query usage within Crystal Reports. The latter focuses on Command in the database
expert selection of Crystal Reports.

Chapter 8, SQL Query for Stored Procedure (SP), is about one of the very special cases
for query usage. You will learn query that is used in a special Stored Procedure:
SBO_SP_TransactionNotiication. By giving a clear overview of the SP, the last
section shows some kernel SQL query examples for this SP.

Chapter 9, More Complicated SQL Query Topics, extends the scope of basic SQL query
to more complicated cases. You will get in depth query knowledge to bring more
Business Intelligence into SAP Business One. At the end of the book, you will get
some good advices about query writing.

Through these six chapters, you will gain more knowledge regarding SQL query
for SAP Business One. If you have speciic questions in mind, you may jump to the
chapter that most attracts you and go from there.

Each chapter contains speciic query examples. For ease of reference in Chapters 4
and 9, each example refers to the chapter number, along with a letter code denoting
the subject of the query. Please refer to the following key:

Letter code Query subject

R Variables
D Data function

O Orange arrow

T Subtotal

M Marketing documents

I Inventory transactions

F Financial transactions

A Alerts

X Miscellaneous

www.allitebooks.com

http://www.allitebooks.org

Preface

[4]

Letter code Query subject

C Case expression usage

S Subquery

P PIVOT

What you need for this book
•	 SAP Business One installation or trial system

•	 An eagerness to get more pertinent information from your database

•	 A table reference from help ile REFDB.CHM in SAP Business One SDK
Help Center

Who this book is for
This book is written for every kind of SAP Business One user who needs to obtain
information, which is not available in the standard reports. SQL query is also the tool
to provide speciic solutions and alternatives to SAP Business One authorizations
and standard business Processes. The audience for this book includes Consultant,
Programmer, Administrator, and many other end users. In fact, every SAP Business
One customer could beneit from this book. To get the right information at the right
time is one of the most important tasks to bring SAP Business One's power to small
and midsize businesses. This is the main goal of the book.

If you have started to use SQL Query already, the book will help you to use this tool
more eficiently. If you are a beginner with very limited SQL knowledge, you will ind
the book easy to follow to solve your SQL query problems quickly. You may also ind
the book helpful if you are not a SAP Business One user, but have interest in learning
SQL query skills. However, to run example queries in the book, SAP Business One
installation or trial system is required. There are many examples in the book that are
"Ready to Go". They cover many areas that may be similar to what you need.

Conventions
In this book, you will ind a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "Although, you could link any
ields between tables, if the ield is not NULL, you should try to use key link
wherever possible."

Preface

[5]

A block of code is set as follows:

DECLARE @Factor as numeric(1,0)

SELECT @Factor =

CASE (SELECT TOP 1 DispPosDeb FROM OADM)

 WHEN 'N' THEN 1 ELSE -1

END

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Under
Select, three ields are selected from two tables".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or e-mail
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Preface

[6]

Downloading the example code
You can download the example code iles for all Packt books you have purchased
from your account at http://www.PacktPub.com. If you purchased this book
elsewhere, you can visit http://www.PacktPub.com/support and register to have
the iles e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you ind a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you ind any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are veriied, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Section 1

SQL Query Basic

SAP Business One Query Users

and Query Basics

Query Generator and Query Wizard

Query Manager

SAP Business One Query
Users and Query Basics

This chapter will begin by identifying the target audience of this book, and will then
go on to discuss the basic concepts and knowledge needed to use SQL query in SAP
Business One. In the irst section, you will be given a clear deinition of the speciic
scope of the SQL and Query used in this book. The following section discusses the
Data Dictionary and table links such as base tables versus target tables. The last
section gives you a key concept to remember for building a good query by keeping
it simple.

Who can beneit from using SQL Queries
in SAP Business One?
It may not be easy to deduce the ideal reader of this book. In fact, there are many
different groups of SAP Business One users who may need this tool.

To my knowledge, there is no standard organization chart for Small and Midsized
enterprises. Most of them are different. You may often ind one person that handles
more than one role. In this sense all users, especially end users, may need this
book as long as they can use SQL query with the basic knowledge required.

You may check the following list to see if anything applies to you:

•	 Do you need to check speciic sales results over certain time periods, for
certain areas or certain customers?

•	 Do you want to know who the top vendors from certain locations for certain
materials are?

SAP Business One Query Users and Query Basics

[10]

•	 Do you have dynamic updated version of your sales force performance in
real time?

•	 Do you often check if approval procedures are exactly matching
your expectations?

•	 Have you tried to start building your SQL query but could not get it
done properly?

•	 Have you experienced writing SQL query but the results are not always
correct or up to your expectations?

If the answer to any of the questions mentioned earlier is "yes", then you can
certainly beneit from reading this book. It will answer each and every question
mentioned earlier and give you the power to solve complicated problems.

Consultant
If you are an SAP Business One consultant, you have probably mastered SQL query
already. However, if that is not the case, this book would be a great help to extend
your consulting power. It will probably become a mandatory skill in the future that
any SAP Business One consultant should be able to use SQL query.

Developer
If you are an SAP Business One add-on developer, these skills will be good additions
to your capabilities. You may ind this book useful even in some other development
work like coding or programming. Very often you need to embed SQL query to your
codes to complete your Software Development Kit (SDK) project.

SAP Business One end user
If you are simply a normal SAP Business One end user, you may need this book
more. This is because SQL query usage is best applied for the companies who have
SAP Business One live data. Only you as the end users know better than anyone else
what you are looking for to make Business Intelligence a daily routine job. It is very
important for you to have an ability to create a query report so that you can map
your requirement by query in a timely manner.

Chapter 1

[11]

Non-SAP Business One users
To the other readers who are not SAP Business One users, you could still get some
hints and tips from this book because the working and the problematic queries
are both shown. Even without an SAP Business One user interface, you may still
gain some useful concepts. In one query example of this book, I will show you that
even without the actual data from my database to test the query due to localization
limitation, the correct answer to the questioner can still be deduced.

No matter what your background is, you will ind this book useful whenever you
need to get certain data quickly and accurately.

SQL query and related terms
Before going into the details of SQL query, I would like to briely introduce some
basic database concepts because SQL is a database language for managing data in
Relational Database Management Systems (RDBMS).

RDBMS
RDBMS is a Database Management System that is based on the relation model.
Relational here is a key word for RDBMS. You will ind that data is stored in the
form of Tables and the relationship among the data is also stored in the form of
tables for RDBMS.

Table
Table is a key component within a database. One table or a group of tables
represent one kind of data. For example, table OSLP within SAP Business One
holds all Sales Employee Data. Tables are two-dimensional data storage place
holders. You need to be familiar with their usage and their relationships with
each other. If you are familiar with Microsoft Excel, the worksheet in Excel is a
kind of two-dimensional table.

SAP Business One Query Users and Query Basics

[12]

Table is also one of the most often used concepts in the book. Relationships between
each table may be more important than tables themselves because without relation,
nothing could be of any value. One important function within SAP Business One is
allowing User Deined Table (UDT). All UDTs start with "@".

Field
A ield is the lowest unit holding data within a table. A table can have many ields. It
is also called a column. Field and column are interchangeable. A table is comprised
of records, and all records have the same structure with speciic ields. One
important concept in SAP Business One is User Deined Field (UDF). All UDFs
start with U_.

SQL
SQL is often referred to as Structured Query Language. It is pronounced as S-Q-L
or as the word "Sequel". There are many different revisions and extensions of SQL.
The current revision is SQL: 2008, and the irst major revision is SQL-92. Most of SQL
extensions are built on top of SQL-92.

This book has very speciic scope for the terms "SQL" and "query". Please read
through this section carefully irst if you ind that the scope of the book is not right
for your needs.

Chapter 1

[13]

T-SQL
We have to limit the scope of the term SQL in this book. First of all, since SAP
Business One is built on Microsoft SQL Server database, SQL here means Transact-
SQL or T-SQL in brief. It is a Microsoft's/Sybase's extension of general meaning for
SQL. Because we only use T-SQL throughout the book, SQL in this book will mean
T-SQL unless it is clearly mentioned otherwise.

Subsets of SQL
There are three main subsets of the SQL language:

•	 Data Control Language (DCL)

•	 Data Deinition Language (DDL)
•	 Data Manipulation Language (DML)

Each set of the SQL language has a special purpose:

•	 DCL is used to control access to data in a database such as to grant or revoke
speciied users' rights to perform speciied tasks.

•	 DDL is used to deine data structures such as to create, alter, or drop tables.

•	 DML is used to retrieve and manipulate data in the table such as to insert,
delete, and update data. Select, however, becomes a special statement
belonging to this subset even though it is a read-only command that will not
manipulate data at all.

Query
Query is the most common operation in SQL. It could refer to all three SQL subsets.
In this book, however, you will only learn the read-only part of the query. No Add,
Delete, or Update SQL statement in DML will be discussed in the book since it is
prohibited from SAP support policy for SAP Business One database integrity. All
DCL or DDL SQL will also not be included because we neither control access to data
in a database, nor deine data structure for a database. You will ind SELECT leading
query only within the book. Read-only query SELECT has powerful functionality for
inding useful information to meet your speciic needs.

You have to understand the risks of running any Add,
Delete, or Update queries that could potentially alter system
tables even if they are User Deined Fields. Only SELECT
query is legitimate for SAP Business One system table.

www.allitebooks.com

http://www.allitebooks.org

SAP Business One Query Users and Query Basics

[14]

Data dictionary
In order to create working SQL queries, you not only need to know how to write
it, but also need to have a clear view regarding the relationship between tables and
where to ind the information required. As you know, SAP Business One is built on
Microsoft SQL Server. Data dictionary is a great tool for creating SQL queries. Before
we start, a good Data Dictionary is essential for the database. Fortunately, there
is a very good reference called SAP Business One Database Tables Reference readily
available through SAP Business One SDK help Centre. You can ind the details in the
following section.

SAP Business One—Database tables
reference
The database tables reference ile named REFDB.CHM is the one we are looking for.
SDK is usually installed on the same server as the SAP Business One database server.
Normally, the ile path is: X:\Program Files\SAP\SAP Business One SDK\Help.
Here, "X" means the drive where your SAP Business One SDK is installed. The help
ile looks like this:

Chapter 1

[15]

In this help ile, we will ind the same categories as the SAP Business One menu
with all 11 modules. The tables related to each module are listed one by one. There
are tree structures in the help ile if the header tables have row tables. Each table
provides a list of all the ields in the table along with their description, type, size,
related tables, default value, and constraints.

Naming convention of tables for SAP
Business One
To help you understand the previous mentioned data dictionary quickly, we will be
going through the naming conventions for the table in SAP Business One.

Three letter words
Most tables for SAP Business One have four letters. The only exceptions are number-
ending tables, if the numbers are greater than nine. Those tables will have ive letters.
To understand table names easily, there is a three letter abbreviation in SAP Business
One. Some of the commonly used abbreviations are listed as follows:

•	 ADM: Administration

•	 ATC: Attachments

•	 CPR: Contact Persons

•	 CRD: Business Partners

•	 DLN: Delivery Notes

•	 HEM: Employees

•	 INV: Sales Invoices
•	 ITM: Items

•	 ITT: Product Trees (Bill of Materials)

•	 OPR: Sales Opportunities

•	 PCH: Purchase Invoices

•	 PDN: Goods Receipt PO

•	 POR: Purchase Orders

•	 QUT: Sales Quotations
•	 RDR: Sales Orders

•	 RIN: Sales Credit Notes

•	 RPC: Purchase Credit Notes

SAP Business One Query Users and Query Basics

[16]

•	 SLP: Sales Employees

•	 USR: Users

•	 WOR: Production Orders

•	 WTR: Stock Transfers

"O" tables
All tables starting with "O" refer to master tables. O here represents Object.
For example:

•	 OITM: Items Master

•	 OCRD: Business Partners Master

•	 OSLP: Sales Employee

"A" tables
Most tables starting with "A" may mean historical log tables. A here represents
Archive. For example:

•	 AITM: Items—History

•	 ACRD: Business Partners—History

•	 AUSR: Archive Users—History

Document header tables
These are special O tables with the exact same structure. They can be tables related to
Sales or Purchase. These are called Marketing Documents. These also include most
Inventory transaction tables. Some examples are:

•	 OINV: A/R Invoice Header
•	 OPCH: A/P Invoice Header

•	 OIGN: Goods Receipt Header

Document line tables
All tables ending with a number refer to document line detail tables or subtables
for the master table. Numbers here could refer to different properties of the
header tables.

•	 INV1: A/R Invoice Row
•	 PCH1: A/P Invoice Row

Chapter 1

[17]

•	 IGN1: Goods Receipt Row

•	 INV2: A/R Invoice—Row Expense

Important table examples
Some speciic tables very important for query building are listed here:

•	 OJDT-Journal Entry: This table includes all inancial journal entries no
matter whether they are automatically posted or manually posted.

•	 OINM-Warehouse Journal: This table includes all inventory-related
transactions. It is a single point to check everything in relation to your
inventory (or stock). It becomes a view in the new version. This view must be
queried very carefully.

•	 ADOC-Document History: This table includes all document history.
However, it is wrongly named in the documentation, "Invoice History" table
in the help ile.

Table links—the key for the right query
Table links are fundamental for query building. You will see some different links in
this section, but the most common links will be discussed in the next section because
there are too many and they are used too often.

To understand table links, you need to know more about table structures.

Primary key
Every table has a primary key. Some of the tables have foreign keys too. All those
keys are used for the index. Docentry is a typical primary key to link OXXX with
XXXn document tables. For example, Docentry is a common key ield to link OPOR
with POR1, POR2 to POR12.

A primary key can be one or more ields. For a simple table one key ield would be
good enough. For a complicated table, two or more ields for primary key are not rare.

A primary key has to be unique within the same table. This key will not allow NULL
value—that is, an empty ield or a ield with no data.

SAP Business One Query Users and Query Basics

[18]

Foreign key
A foreign key is usually used to link to some other table's primary key. This ield will
be updated whenever the other table record has changed.

Although, you could link any ields between tables, if the ield is not NULL,
you should try to use key link wherever possible in order to increase the
database performance.

Example of table links within SAP Business
One
To be clearer about the link, here are a few table link examples:

•	 OITM-Items table and ITM1-Items Prices table:

These two tables are linked through ItemCode ield. Both tables have the
same ield name to link. It is not one-to-one but one-to-many relationships.
One Item Code in item master may have more than one item price associated.

•	 OITT-Product Tree table and ITT1-Product Tree Child Items:

These two tables are linked through Code ield in OITT and Father ield in
ITT1. These tables are used for Bill of Materials.

•	 OCRD-Business Partner table and OSLP-Sales Employee table:

These two tables are linked through the same name ield SlpCode. In the
second table, SlpCode is the primary key for OSLP. On the other hand, it is a
foreign key in the irst table OCRD.

Base tables versus target tables
Base tables and target tables are special linked tables within SAP Business One.
They are the most often used linked tables for SQL queries too.

You may ind most of them related to "Sales-A/R" and "Purchase-A/P" documents
or so-called "Marketing Documents".

Chapter 1

[19]

Marketing documents may not have base tables or target tables. From the previous
screenshot, you could clearly ind that the Base Document and Target Document are
available to this Sales Order. To get the Base Document, you may click on the "left
arrow icon" or use the shortcut key Ctrl+N. To get the Target Document, you may
click on the "right arrow icon" or use the shortcut key Ctrl+T. Only when the base
table or target table is available to the current document, will you ind the menu items
and icons in active status. Otherwise, both icons and menu items are grayed out.

From the terms "Base" and "Target", it is clear that the target table can be based upon
the base table.

SAP Business One Query Users and Query Basics

[20]

One table could be based on different types of tables:

From this demonstration, you could get a clear picture about the relationship between
Base Document (table) and Target Document (table). A speciic pair of Purchase Order
and Good Receipt PO tables is shown here. This concept applies to all document type
tables. Here is a list of commonly used base-target pairs; they are not inclusive. You
may ind more, but the following are the most frequently used ones:

Base Table Target Table

OQUT—Sales Quotation ORDR—Sales Order

OQUT—Sales Quotation ODLN—Delivery

OQUT—Sales Quotation OINV—A/R Invoice
ORDR—Sales Order ODLN—Delivery

ORDR—Sales Order OINV—A/R Invoice
ODLN—Delivery ORDN—Returns

ODLN—Delivery OINV—A/R Invoice
ORDN—Returns ORIN—A/R Credit Note

ODLN—A/R Invoice ORIN—A/R Credit Note

OPOR—Purchase Order OPDN—Goods Receipt PO

OPOR—Purchase Order OPCH—A/P Invoice

OPDN—Goods Receipt PO ORPD—Goods return

OPDN—Goods Receipt PO OPCH—A/P Invoice

ORPD—Goods return ORPC—A/P Credit Note

OPCH—A/P Invoice ORPC—A/P Credit Note

Chapter 1

[21]

I have omitted the details for the link. Actually, you will ind that all the links exist
on the irst child table or so-called row table for the header table, such as QUT1
instead of OQUT.

The linking ields are very clear. For example:

•	 BaseEntry in the target table refers to the base table's DocEntry

•	 BaseType refers to the types of the base table

•	 BaseRef is usually linked to DocNum ield in the base table
•	 BaseLine will be the line number in the base line table

•	 TargetEntry in the base table refers to the target table's DocEntry

•	 TargetType refers to the types of the target table

Keeping it simple—The key to build a
good query
Before you go on to the next chapter, an important concept needs to be kept in mind:

Keep it simple is the key to
success to create queries eficiently.

Simplicity is in need everywhere in the current changing world. Wherever you
make things complicated, you may ind yourself in an awkward position to compete
with others.

My slogan is: simple, simpler, the simplest.

I have a habit in query building: the last step for any new query would be checking to
see if it is the simplest one. In this way, "keep it simple" would not only be kept in the
already built query, but also helps new queries to be the simplest in the beginning.

By keeping a query as simple as possible, it will ensure that the system performance
is not affected. It will also be a great help to the troubleshooting process. A short
checklist for simplicity is as follows:

•	 Other queries: Are there any other queries doing a similar job, and if yes,
why does the new query need to be built?

•	 Tables: Are there any tables that have not been used for the query?
•	 Fields: Are there any ields that have not been used for the query?
•	 Conditions: Are there any condition overlaps?

SAP Business One Query Users and Query Basics

[22]

The list can be much longer. The meaning behind it is clear: there is a never ending
battle to get rid of complications.

When you try this method and it becomes a routine, you will ind that query
building becomes an enjoyable process.

Summary
In this chapter, you have been identiied to be an appropriate reader who needs this
information, supposing that you read through the beginning chapter and still want
to read more.

You have been given all the basic concepts such as RDBMS, Table, SQL, T-SQL, SQL
Subsets, and Query. You also get the idea of what the strict meanings of "SQL" and
"Query" are within this book.

By going deeper into discussing table relationships, you gained a bigger picture of
SAP Business One's database structure and tables' naming conventions. You also
learned about base tables versus target tables in SAP Business One.

The "Keep it simple" principle has been emphasized in the last section of the chapter.
You are advised to use it whenever you practice your own queries.

The next chapter will introduce you to the Query Generator and Query Wizard tools,
so that you can start hands-on in building SQL query as soon as possible, if you have
not yet done so.

Query Generator and
Query Wizard

In the previous chapter, you learned basic concepts regarding certain terminologies
used in this book. You also know that tables and table relationships are important for
SQL Query. What are all of these concepts about? You will better understand when
you start your own journey to create a SQL Query report.

How do I start? That is a good question. I have learned this the hard way. Even
though the tools to create queries are readily available from the SAP Business One
menu, I myself had never gone through most of these tools before I planned to write
this book to show you how to start. I have kept using only Query Manager and
system queries until now. To be honest, I just found out too late that I took such a
longer route than necessary. What a pity! If I had started with Query Generator and
Query Wizard, it would have saved me a tremendous amount of time.

These tools are quite convenient and eficient for everyone to use, especially for starters
to write their irst query for SAP Business One. These tools will help you to omit this
process of writing every single statement, tables' names, or ields' names, etc.

This chapter will introduce you to two basic SQL Query tools for SAP Business One:

•	 Query generator

•	 Query wizard

Both tools are for starters to get to know SQL query in SAP Business One quickly.
After you have learned these tools, you could get a simple job done just with a few
mouse clicks. The introduction gives you detailed steps so that you can have step-by-
step advice.

www.allitebooks.com

http://www.allitebooks.org

Query Generator and Query Wizard

[24]

In the next section, the differences between these tools are discussed. You can
decide which one is more suitable for you when you read through all their features
and beneits.

If you are a more experienced reader, you may ind that these tools are no longer
necessary. Otherwise, you are strongly encouraged to go through the chapter to
refresh yourself.

The last section introduces System Queries built-in to SAP Business One. Those
system queries are another good start for readers whose SQL Query level is above
average. You could then customize them and create your own queries quickly. For a
beginner, you may just learn how to run those queries irst to save time.

The previous screenshot shows you how to access these different tools from the SAP
Business One menu. You can ind all tools for this chapter from it. They are all under
the Tools | Queries menu. Query Generator is the second item; Query Wizard is the
third item; and System Queries is number ive.

Query Generator
Query Generator is the irst tool to be discussed. It is located above the Query
Wizard in the menu item list.

Query Generator overview
Query Generator enables you to create queries using the SQL query engine. Like all
other tools, it is designed for data retrieval/selection only. You are not able to do any
DML queries such as updates, insert, or delete. This menu item can be accessed from
Tools | Queries | Query Generator.

Chapter 2

[25]

With this tool, you are able to:

•	 Create many queries yourself from a ixed set of tables in SAP Business One
•	 Access all the data in those tables and evaluate it according to your needs

•	 Create individual reports without writing any single query statements

Left part of Query Generator form
After you click on the Query Generator menu item, you can bring up the main
form of Query Generator. On the top left of the form, you may ind a yellow cell.
Click the Tab key from the empty cell to bring up Choose from List, as in the
following screenshot:

The set of table names will then show up. You could type any letters in the Find
textbox to bring up the table names starting with that letter. In the example, you
could ind that the letter O is typed in. All tables starting with O would be on the top
list. You could either use the scroll bar or page up/down key to ind the tables you
are looking for.

You'll remember we discussed the importance of the Data Dictionary in the previous
chapter. Without the dictionary, it might be too hard to ind which tables you need. If
Table References is available, you could easily ind the table quickly. For the sake of
time, if you already know the names then you could just type in the full table names.

Query Generator and Query Wizard

[26]

However, here is still one of the best places to ind all commonly used tables for SAP
Business One in case the help ile is not available to you. In this less than ideal case,
you probably need to go through the table name list quite a few times to become
familiar with them.

In the example screenshot, the highlighted table OCRD (Business Partner table) will
be selected when you click Choose:

You may select more than one table in the same way as the irst table was selected.
In the screenshot you just saw, the OCST (State table) has also been selected. If you
selected the wrong table or changed your mind, the X button here could be used to
remove it from the list.

Middle and right parts of Query Generator form
After the table selection, you would see that the middle part of the form shows
you the ields from the highlighted table in alphabetical order. The right part shows
the query component when you double-click the ield name or table names on a
proper box.

Under Select, three ields are selected from two tables. Under From, the table names
are automatically shown with the default alias T0 and T1. The default link by system
is also shown. If the link is not correct, you can manually ix it.

Under Where, you can choose any ields to restrict the query result. Here, T1.[Name]
has been selected for the purpose of bringing the Business Partner according to the
State/Province names.

Chapter 2

[27]

You may notice that there is an additional form shown. This appears after clicking on
the Conditions button. You may ind 12 conditional formulas from the form that can
be selected. The Variables part allows you to select variable as [%0], [%1], and so on.
The percent sign plus a number represents a variable for SQL query in SAP Business
One. It can allow the user to select or input values during query execution.

In the last example, Start With formula plus [%0] variable gives the result as
T1.[Name] like '[%0]'. The additional % on the right of [%0] is a manual input
wildcard character that can be used as a sufix to match any string of zero or more
characters.

Under Sort, T1.[Name] is also selected to allow query results to be sorted by State/
Province names.

Executing a query from Query Generator form
When all the required information has been selected, click on Execute. Then the
following form Query—Selection Criteria will pop up for you to input any letters:

In the previous example, a letter Y has been entered. That means you will get the
query result with all business partner code and names from the state/province with
the name starting with Y.

Query Generator and Query Wizard

[28]

The result looks like the next screenshot:

If this query could be used later, click on Save near the bottom to save your query.
It might be saved under any query categories with the name you entered. The
topic regarding query saving will be discussed in detail later.

The Reverse Table button at the bottom of the form is used to help you choose
to display the table either from right-to-left or from left-to-right. This is because
unlike English, some of the other languages may not start from left-to-right, but in
reverse order.

You may notice that all query script from different sections of the generator has been
linked together for you. Remember, you do not need to write any single statement.
This is such a good gift for you to reduce your learning curve in terms of query
learning. Do not waste this valuable resource!

Query Wizard
Query Wizard is the second tool to be discussed in this chapter. It is similar to Query
Generator. We are going to compare both tools later in the book.

Query Wizard overview
Query Wizard enables easy access to the database and an easy way of building user-
deined reports. It is designed for data retrieval/selection only. You are not able
to do any DML queries such as updates, insert, or delete. This menu item can be
accessed from Tools | Queries | Query Wizard.

Chapter 2

[29]

With this tool, you can do the following:

•	 Create queries through ive steps from a ixed set of tables from SAP
Business One

•	 Access all data in those tables and get help from tips on each step

•	 Create individual reports without writing any single query statements

Step 1—Splash screen
The irst step is very simple. After you click on Query Wizard menu item, you
get the irst screen that simply tells you: This wizard will guide you step-by-
step through the deinition of parameters required for a query. The screenshot
is omitted here since it is nothing but a splash screen for you to know you are
starting this wizard.

Step 2—Select tables for the report
The second step is similar to the left part in Query Generator. You can select as many
tables as you need. However, you must try to minimize the number of tables for
system performance and query eficiency.

Query Generator and Query Wizard

[30]

In the example screenshot you just saw, you may ind that the irst table selected is
OCRD (Business Partner table). The second table selected is OSLP (Sales Employee
table). Each table selected is placed in a separate row in the window. The second
column displays the full description of the tables.

One thing here is, it is noticeably better than Query Generator. When you select
any table, it automatically shows all linked tables under the lower part of the
form. You will then ind it very convenient to just choose the necessary tables by
double-clicking.

This process applies to all tables selected in the upper part of the form.

A linked table list in the lower part of the form changes when you highlight different
tables from the upper part of the form.

Step 3—Select ields and sort orders
Step 3 in Query Wizard has the same function as the middle part of Query
Generator. In addition, you have more options to select ields.

Chapter 2

[31]

You may tab out the Field column to bring up Choose from list from the selected
table. It is just like when you selected tables from both tools. You may type in any
letters on the Find textbox to search your requested ields. There are two columns on
the list:

•	 Name: Field names

•	 Description: Field description

As you know from the previous chapter, you can get all ield information from the
Table References for SAP Business One in advance. If that is not available to you, this
might be the second best place to ind all commonly used ield information. You will
probably need to go through them many times before you can reach frequently used
ields at ease.

You can type the letter C to bring the ield names starting with C on top of the list, so
that you can get to the ields quicker. Or, you may not need to type any letters. Just
use the mouse or page down to browse through the list in order to become familiar
with those ields.

Query Generator and Query Wizard

[32]

From the previous screenshot, you can see that two ields in OCRD have been
selected. Another ield from OSLP has also been selected. They are:

•	 CardCode: Business Partner Code from OCRD

•	 CardName: Business Partner Name from OCRD

•	 SlpName: Sales Employee Name from OSLP

The third column, Heading, displays the ield description by default. You can change
them to anything you want such as Customer Name instead of BP Name. It will
show on the top of the query result screen as a column heading.

The fourth column, Sort Order, uses an integer (1, 2, 3) to set the sort priority; you
can assign any orders to the ield you have selected.

The ifth column deines the sort type as Ascending or Descending.

The sixth column allows you to set the group on any ields you would like to add.
You just need to select Y for the ield you would like it to be grouped to. If you have
not selected this, the default value would be N.

The last column in the previous screenshot, Comp., offers six computation options:

•	 Total Records: Displays the number of records retrieved

•	 Total Distinct Records: Displays the number of distinct records retrieved

•	 Amount: Displays the sum of the values for numeric ield in the
retrieved records

•	 Average: Calculates and displays the average of the values of that ield in the
retrieved records

•	 Minimum: Displays the smallest value of this ield from within the
retrieved records

•	 Maximum: Displays the largest value of this ield from within the
retrieved records

Step 4—Conditions and relations
Step 4 is for deining the conditions and relations for retrieving data. Both conditions
and relations are based on the database structure and logic.

Chapter 2

[33]

For the previous example, it is the Display Conditions tab. You can see the condition
entered is Sales Employee's name, which contains Gordon.

You may select (or) on these two tabs to deine the priority sequence of the
conditions. You may also select And/Or to deine complex conditions.

www.allitebooks.com

http://www.allitebooks.org

Query Generator and Query Wizard

[34]

The other tab is for Display Relations. Under this tab, you will ind the irst column's
checkbox, Execute. It applies the deined relationship between the tables that
appear in the row. When this checkbox is selected, SAP Business One adds another
condition. This means that the records you want to retrieve must comply with the
conditions deined on the Deine Conditions tab and with the added condition.

Step 5—Query Wizard completion
When you complete all Conditions and Relations, clicking on Next will bring you to
the inal step, which shows you the Query script created by the system that applies
all of your selections.

You may review the query to check if it is all you need. If you ind that it did not
include all conditions, you can go back to edit some of them in the previous steps.

In the example case, there are no problems. Click Finish to bring up the query
result window.

Chapter 2

[35]

You can ind all Business Partner Codes and Names under the selected State/
Province from the query results.

Like Query Generator, if the query is useful, you can click Save to save your query.
The topic regarding query saving will be discussed in the Creating and saving user
queries section of the next chapter.

There is a video tutorial available for Query Wizard by
SAP. You can ind it here: http://www.youtube.com/
watch?v=xaLO_4JnG-E. From this video, you will have additional
information in a classroom-like instruction for the topic here.

What is the difference between Query
Generator and Query Wizard?
When you go through the irst part of the chapter, you have probably already
noticed the differences between the Query Generator and Query Wizard tools.

You will ind the summarized differences here to clarify any doubts you may have.

The irst tool, Query Generator, is one of the simplest tools for building SQL Queries.
It just uses one simple User Interface (UI) for you to create queries. You can start to
use it whenever you wish to ind the tables, ields, and their relationship.

The second tool, Query Wizard, has added ive steps with different forms, so that
you can ind the table relationship more easily. Also, inding ields becomes much
easier because you have the option to bring up Choose from list.

Query Generator and Query Wizard

[36]

Here is the list showing the similarities between these two tools:

•	 There is no need to write full query statements

•	 Allows selection of tables and ields
•	 Prohibits updating data

•	 Uses the mouse alone to add conditions

Differences Query Generator Query Wizard

Single step User Interface

Requires more tables and ields
knowledge

Less help and tips

Field level selection is basic

Multiple steps User Interface

Requires less tables and ields
knowledge

More help and tips

Field level selection is
sophisticated

In summary, the Query Generator is designed to get quick results in a single step,
while Query Wizard is more concentrated on step-by-step instructions to help you
build queries with clear selection in different phases.

I prefer the Query Generator over the Query Wizard because I am familiar with all
tables and ields. To me, the simpler the steps, the better. To a beginner, I would
suggest you try Query Wizard because it gives you more power to select different
tables and ields. You will also be provided with more helpful tips.

Beneitting from built-in system queries
Besides Query Generator and Query Wizard, there is another powerful tool for you
to learn SQL Query in SAP Business One. That is: System Queries.

System queries enable you to generate additional reports and retrieve data that is not
available by running the other reports. You may access system queries either from
the different modules—in each module the relevant system queries appear as entries
under report menu, identiied with the icon ? or by choosing them from Tools |
Queries | System Queries.

Chapter 2

[37]

The following screenshot shows you the names of all the available system queries.
You may ind as many as 18 queries here. Most queries are related to inance
and banking.

You can see the query results from one of the system queries: Purchase Order
Linked to Deposit.

The result is actually empty because there is no deposit linked to the purchase order
in the database. You would like this result, wouldn't you?

Query Generator and Query Wizard

[38]

What you need to know is the top part of the query result. You will see there is a Left
Arrow (Show icon) there. When you click on the arrow, you will get the full body of
the query statements.

As soon as you click on the Left Arrow icon, it will become Down Arrow (Hide icon).
You will notice there are two additional icons displayed. One is Pencil Only. The
other is a Pencil with Cross. All query statements are shown as well.

This is only available if you run those system queries under the tools menu instead
of each module under report.

When you click on the Pencil Only icon, the background of the query statement area
will become yellow instead of grey. You are now able to modify the query for your
own use.

Be careful about changing this. You need a good understanding of the
SAP Business One data structure in advance. Don't panic here either.
You can try anything to amend the query. There is no harm to the
system unless you try to overwrite the system query.

Chapter 2

[39]

When you inish editing, you may click the other icon (Pencil with Cross). That will
change back to the read only mode of the query body.

If you are interested, here is the complete statement of this query:

DECLARE @Factor as numeric(1,0)

SELECT @Factor =

CASE (SELECT TOP 1 DispPosDeb FROM OADM)

 WHEN 'N' THEN 1 ELSE -1

END

SELECT T0.CardCode,

T0.CardName,

T0.Balance,

T0.CreditLine,

(T0.CreditLine + @Factor*T0.Balance) "Deviation"

FROM OCRD T0

WHERE (select T0.CreditLine + @Factor*T0.Balance) < 0 AND T0.CardType

= 'C'

If you come across any dificulties in creating your query later, you can always come
back to system queries to ind some useful tips.

Query Generator and Query Wizard

[40]

Summary
In this chapter, you have learned about the following tools for creating or using SQL
queries in SAP Business One:

•	 Query Generator
•	 Query Wizard

•	 System Queries

You have also learned the differences between Query generator and Query
wizard. This is a good start for your progress in mastering SQL Queries for
SAP Business One.

By practicing these tools, you could have better understanding of the tables and table
relationship within SAP Business One. Some of the system queries will give you
more hints than others regarding how to create the correct query.

If you are a beginner, you may need to try those tools quite a few times. Only when
you feel comfortable in creating simple queries – without problems – with these
tools, will you build a solid foundation to create more sophisticated queries. In order
to beneit from Business Intelligence, it would be better to try to master these tools to
as high a level as possible. To learn the details of each statement and the complicated
syntax, continue to read the following chapters.

In the next chapter, you will learn about the Query Manager and all the commonly
used statements and functions, one by one, and in detail.

Query Manager and
Query Statements

In the previous chapter, you learned about two basic tools, Query Generator and
Query Wizard. Meanwhile, you also learned about system queries so that you can
create or use queries with these tools. However, those tools have certain limitations.

The most inconvenient limitation is that only a ixed set of tables is available to you
with these tools. For example, the table list does not show all tables in the database.
When the queries become complicated, these tools may not work for you.

You must be eager to know how to create queries freely without those restrictions.
Do you have other ways of creating queries when you need to create them in
complex logic? The answer is deinitely: "Yes". This is the topic of this chapter.

This chapter illustrates the most important business intelligence tool for SAP
Business One: Query Manager. You will learn how to manage your queries by
creating, saving, and deleting them directly from the Query Manager. At the same
time, you will learn how to organize your queries into categories. The detailed query
statements, keywords, and functions will be presented to you as well.

In the irst section, you will learn everything related to the Query Manager such
as User Interface, including each button. The query categories for saved query will
also be discussed. The next section will show you the most commonly used basic
statements for queries one by one. All statements are fully explained. They cover
the most frequently used statements. The last section covers the query functions,
including the most commonly used functions or expressions.

Query Manager and Query Statements

[42]

Query Manager user interface
The following screenshot shows you how to access this tool from the SAP Business
One menu:

Just like the other query tools, Query Manager can be accessed through the irst
menu item under Tools | Queries.

You can also access it directly from the toolbar. The Query Manager icon can be
found on the toolbar between the Form Settings and Message/Alert icons. This icon
is shown in the previous screenshot on the left side of Query Manager.

In the Query Manager window, you can:

•	 Display all existing queries

•	 Create and save user queries

•	 Delete user queries

•	 Manage query categories

Query Manager is used for query management. All queries can be saved, edited,
or deleted by using the Query Manager tool. It does not matter if the query is created
by tools like Query Generator/Query Wizard, or by users directly from the query
result windows.

Chapter 3

[43]

Display all existing queries
This is the simplest function for the Query Manager. You can ind all your saved
queries or system queries through the Query Manager User interface.

The irst text block on the top of the Query Manager can display the query name you
have selected or allow you to type a query name for a new query before you save it.

The next text block below the query name can display the query category you have
selected or allow you to type a query category name for a new query category before
you save it through the Manage Category function.

The big window under these two boxes is the place to display all query categories
and the query names for the expanded categories you have selected.

The irst screenshot shows the system query names:

www.allitebooks.com

http://www.allitebooks.org

Query Manager and Query Statements

[44]

The second example shows the query categories plus the query names under
expanded query categories:

You may notice that there are two different icons in front of each query category:
the Down Arrow icon next to the General category and the Right Arrow icon next
to System as well as other categories. The Down Arrow icons stand for the query
categories that are expanded to display the query names under the categories. The
Right Arrow icons refer to the query categories that are not expanded. When you
click on the icon, the status will change from expanded to non-expanded or vice
versa. To ind a query under a speciic category, you just need to click on the icon in
front of the query category to expand it.

You can display any queries in two ways:

1. The irst way is from the Query Manager window directly. You can ind
the required query name and double-click on the name or you can click OK
when you select a speciic query name. The selected query will be displayed
on the query result window with either method.

2. The second way is bypassing the Query Manager window. You can also ind
the query name directly from Tools | Queries | User Queries. One click is
good enough to bring up the query result window with this method.

Chapter 3

[45]

The second method presents a limitation. If the query name is too long, it might
be cut off when you display their names directly from the Tools menu. Or if you
have special characters, it may not display them fully either. It is advisable to
use shorter names for queries whenever possible. Avoid using special characters
whenever possible.

When you name a query, it is better not to name them similar to each
other. You may have the misfortune wherein, all names are not easily
distinguishable if the irst 40 characters are the same.

Creating and saving user queries
Creating user queries can be done directly after you run any queries in order to bring
up the query result window. The query you want to run can either be from query
tools directly or selected from the Query Manager.

When you open the query result window by either of the methods mentioned
earlier, you might be able to edit or create a query from scratch, if you have the right
authorization. In case you don't have the user privilege, check with the Superuser in
your company.

Query Manager and Query Statements

[46]

Once you have got proper user rights, you will be able to ind two icons on the
left screen beside the query script. They look like a pencil or a pencil with a red
line cross. From the previous screenshot, you can ind that the irst icon is used
for enabling edit queries and the second icon is the opposite, that is, to disable the
editing ability. When you click on the pencil icon, you will have the power to write
any queries to retrieve data from any tables in the database.

Unlike the other query tools, you have to write every single statement, keyword,
column name, table name, function, and parameter on your own. The freedom
to write query as you wish requires that you have both high level SQL query
knowledge and SAP Business One database structure knowledge. If you ind it is
dificult, you need to go back to the previous chapter. Spend your time with the tools
until you are ready.

To save your query, you just need to follow these steps:

1. Click on Save. The Save Query window will show up.

2. Select any categories from the list.

3. Type in a proper query name.

4. Click on Save under the bottom of the window.

Your query will be saved immediately with the previously mentioned steps.

The Save Query window is similar to the Query Manager window. Any query
categories or query names displayed in the Query Manager window, will be
displayed in the Save Query window too.

The following example shows that the existing query, BP Full List—Customer, has
been edited. The new query can be saved by selecting the category General and
selecting a query name to modify it to. The new name BP Full List—Vendors has
been entered. After clicking on Save, this new query is saved under the General
category. You can just type in the name if the name is not very long.

Warning: Although you can write some DML queries such as
UPDATE, DELETE, or INSERT in the query result windows, those
DML queries have to be restricted to only your User Deined Tables
(UDT). Even User Deined Field (UDF) in the system tables is not
allowed to be updated by the SQL Query directly. You face great
risk of losing your SAP support in case of any corruptions in your
database, if you have directly updated system tables.

Chapter 3

[47]

If you need to create a query from scratch without bringing up other queries, you can
create an empty query such as SELECT '' and save it by a name Blank or Empty.
If you run this query, you will see nothing in the query result but empty space that
allows you to create a brand new query.

Deleting user queries
It is simple to delete a user query. You don't need to open the query to run it, but
delete it from the Query Manager window directly. After you have selected the
Query Manager from the menu or through the icon, you can select the query you
want to delete. Click on the Remove button, and a warning message will popup to
conirm that you want to delete the query. If you have not reached this point through
a wrong mouse click, you can click on Yes to proceed. The query will be deleted from
the database.

There is an alternative way to delete queries. That is to bring up the Save Query
window by clicking Save under the query result window. Instead of saving queries,
you may select any user queries to delete. Clicking on the Remove button is all you
need to do.

After deleting queries, you can click on Cancel to return to the query result window.

Be careful when you delete your query. There is no Undo function
like some other applications. Once the query is deleted, there is
no way to retrieve it unless you restore your entire database! A
practical remedy is to copy and save all queries to a text document
after you have created them. It will save you time whenever you
ind the queries have to be revised or deleted.

Managing query categories
Categories are the folders for queries. They include categories for system queries and
categories for user queries. You always get a default category called General when
you have a new database. There is nothing else beside these system and general
categories in the beginning. It is dependent on an administration user to create and
maintain your queries with any categories you like.

If you only have few queries, categories may not be that important to you.
However, this will change as soon as you have more saved queries. Good category
management can save you tremendous time. You can maintain the categories with
the same structure as the SAP Business One menu system. Any queries can be found
quickly in this way.

Query Manager and Query Statements

[48]

Categories are similar to directories or folders in an operating system, with one
exception. This is not a trivial exception. There is only one level for categories under
the Query Manager. You don't have the option to create multi-level categories.

Due to the limitations of having only one level category, your plan to
create categories should avoid any overlap structure. If your categories
have not clearly divided the scope of your queries, you may face a
dilemma in saving your new query to a proper category. When you try
to ind the saved queries in the future, it may actually increase your
troubles in getting the right queries, instead of saving you time.

To manage categories, you can click Manage Category beside the second text box.
After you click the button, a window with a title Create/Edit Categories will pop up
like in the following screenshot:

When this window pops up, it is always in Add mode. You can add a new category
by typing any letters in the text box close to the top of window. Then click ADD. The
new category will be added right away.

Chapter 3

[49]

If you are not satisied with the category name, it is very easy to edit it. Just select a
category name when you are in the Add mode. The Add button will change to an
Update button instantly, like the example in the following screenshot. A/R & A/P
category is selected to be a candidate for update.

User rights for category maintenance should be left to the person who
has full administration right. Only Superusers must handle this function.
Detailed discussion can be found in Chapter 5 for query security.

You can type in your preferred category name at this time. In the example, Gordon
is typed in. When you click Update, the category name changes to Gordon instead of
A/R & A/P.

Query Manager and Query Statements

[50]

The query names under the same category will not be affected when you are editing
category names. Actually, this is the category ID to be used by the system. This
category ID is not changed during your category name update.

After you click Update, the window is changed to ind mode. The button is changed
again from Update to OK. You can still select any categories just like in the Add
mode. However, the button will not change to Update this time. It still shows OK.

Chapter 3

[51]

To add another new category, you have to change the window mode to Add mode.
This can be done through the menu item Data | Add, keyboard shortcut Ctrl+A or
the icon on the toolbar.

The last button to be discussed is the Select All button. This button allows you to
select all Authorization Groups. If you want to assign your query category to more
than half of the authorization groups, it will be easier to click on this button irst.
Then you can deselect any groups. If you just assign to less than half of the groups,
you can check them one by one. It will save you time compared with unchecking
many boxes after Select All.

Query Manager and Query Statements

[52]

Whenever you have not selected all groups, the Select All button will be available.
As soon as all groups are selected, the button will change to Clear All. The
authorization groups are used for query report user authorizations. The details for
query report user authorizations will be discussed in Chapter 5.

Commonly used statements
SQL queries comprise a statement, keyword, function, expression, and parameters.
To see how commonly used query statements work, you can have a look at the
following query example that includes most of the statements and some of the
functions. The query contents and meaning of these query results will be discussed
in the next chapter:

SELECT TOP 5 T0.ShortName 'Customer',

Max(T2.CardName) 'Customer Name',

SUM(ISNULL(T0.Debit,0) - ISNULL(T0.Credit,0)) as "Amount(LC)"

FROM dbo.JDT1 T0

INNER JOIN dbo.OJDT T1 ON T1.TransID = T0.TransID and T0.TransType IN

(13,14)

INNER JOIN dbo.OCRD T2 ON T2.CardCode = T0.ShortName

WHERE t1.RefDate >= [%0] and t1.RefDate <= [%1]

Chapter 3

[53]

GROUP BY T0.ShortName

HAVING SUM(ISNULL(T0.Debit,0) - ISNULL(T0.Credit,0)) > 0

ORDER BY SUM(ISNULL(T0.Debit,0) - ISNULL(T0.Credit,0)) DESC

This query can be used to return the top ive customers for sales in any period based
on the date range you selected. It includes most of the statements that are going to be
discussed in this chapter.

Let us go through those statements or functions in Bold from the sample query one
by one:

SELECT—irst statement to retrieve data
It is quite obvious from the meaning of the word that SELECT is used to display or
retrieve data from certain data sources.

The SELECT statement is used to return data from a set of values or database tables.

The result is stored in a result table, called the result-set.

SELECT is one of the most commonly used Data Manipulation Language (DML)
commands. It seems very simple. However, something important needs to be
explained for this statement:

•	 The scope of the value that can be retrieved

•	 The numbers of columns to be included

•	 Column name descriptions

•	 Keywords followed to this statement

The scope of the value that can be retrieved
Here is a return value list that SELECT can be used for:

•	 A single value

•	 A group of values

•	 Return a single database table column

•	 Return a group of database table columns

•	 Return complete database table columns

•	 Used in a subquery

www.allitebooks.com

http://www.allitebooks.org

Query Manager and Query Statements

[54]

A single value
The simplest SELECT query would be just to get a constant or text without any
additional statements. An example would be:

SELECT 'YES' AS 'Yes/No' or

SELECT 10 AS 'No.'

These queries will display Yes or 10 in one column when executed.

A group of values
You may also use this statement to get a group of values. For example:

SELECT 'YES' AS 'Yes/No', 10 AS 'No.', 'This is an example' AS

'Content'

This query will display Yes, 10, This is an example in three columns named Yes/No,
No., and Content when you execute it.

Some special uses of this statement to display a single value or group of values will
be discussed in other chapters when we introduce more speciic topics.

Please note the comma used above. Following the SELECT statement, each comma
will deine a new column to be displayed.

Do not forget to delete the last comma in a SELECT statement. This
simple mistake is one of the most frequent problems for a query. It
is mainly due to the fact that we are often used to copying columns
in our queries, which include the comma, and forget to remove the
last one before testing the query.

Return a single database table column
Similar to the single value SELECT, we can use it for a database table column. Here is
an example:

SELECT CompnyName

FROM OADM

This simple example will retrieve your company name from table OADM.

The formal query should be this:

SELECT T0.CompnyName

FROM dbo.OADM T0

Chapter 3

[55]

It is an important step to include Alias (T0) and Database Owner (dbo) for the table
in the query. It will ensure the query's consistency and eficiency. This topic will be
discussed in the FROM clause in more detail.

Return a group of database table columns
There is no big difference with the previous example. We can use the same principle
to select multiple database table columns. For instance:

SELECT CompnyName, CompnyAddr, Country, Phone1

FROM OADM

This example will retrieve not only your company name, but also your company's
address, country, and phone number from table OADM.

The formal query should be as follows:

SELECT T0.CompnyName, T0.CompnyAddr, T0.Country, T0.Phone1 FROM dbo.

OADM T0

Return complete database table columns
This is the simplest query to return all column values from table. That is:

SELECT *

FROM OADM

This example will retrieve every single column from table OADM. There is no need
to assign alias to the query because this kind of query is usually a one-time only
query. Here, * is a wildcard that represents everything in the table.

Be careful when running SELECT * from a huge table such as
JDT1. It may affect your system's performance! If you are not
sure about the table size, it is safer for you to always include
the WHERE clause with reasonable restrictions. Or you can run
SELECT COUNT(*) FROM the table you want to query irst. If
the number is high, do not run it without a condition clause.

Used in a subquery
SELECT can be used in a subquery within SELECT column(s). The topic of using
SELECT for subqueries will be discussed in the last chapter of the book, since it
needs above average experience level to use it suficiently.

Query Manager and Query Statements

[56]

The numbers of columns to be included
How many columns are suitable for a query? I don't think there are any standard
answers. In my experience, I can only suggest to you: the shorter, the better.

Some people have the tendency to include all information in one report. This kind of
request may even come from certain executives of the company's management.

One simple test would be a fair criterion. Can you it the query result within the
query result window? If you can, great; that would be a proper number of columns.
If not, then I would strongly suggest you double check every column to see if you
can cut one or more of them out.

If it is a query for alert, it needs even more special care. The column numbers in any
alert queries have to be trimmed to the minimum. Otherwise, you may only get part
of the result due to the query result size limitation. You will get more explanation for
this issue in the chapter for alert queries.

If you are requested to create super long and wide queries, explain the consequences
to the person in charge. Sometimes, they can change their mind depending on the
way you communicate with them. In my experience, if a print out report cannot be
handled within the width of a page, it might make the report dificult to read. Show
the result to a non-technical person. It is easily understandable when you can bring
the irst hand output to the report readers.

Column name descriptions
Column names usually come directly from column descriptions, if you have not
reassigned them in the query. You can, however, change them to make the query
result more useful for special cases. Some people use this method to translate
the description into their local language. Some people use it to make the column
description more clear.

For some of the value-only columns or formula columns it is mandatory to assign
descriptions, otherwise the column headings would be empty. This not only looks
unprofessional, but you will also have no way to export the query results to Excel for
those columns without the description.

You can use single or double quotation marks for the description. If the description
has only one word, you can even omit the quotation mark. The syntax is shown next:

[ColumnName] AS 'Column Description Here'

You can omit AS, so that you just keep [ColumnName] 'Description Here'.
However, whenever possible, you should keep the AS to make the query script
more consistent.

Chapter 3

[57]

Clauses can follow this statement
Not many clauses can directly follow a SELECT statement. The short list we discuss
here is this:

•	 Distinct

•	 Top

These two clauses will be discussed one by one as follows.

DISTINCT—duplicated records can be
removed
A DISTINCT clause is used for getting rid of duplicated records to return only
distinct (different) values.

The syntax of this clause is:

SELECT DISTINCT column_name(s)

FROM table_name(s)

column_name and table_name are self explanatory. They represent column name and
table name respectively. There will be no additional denotation for these two clauses
in this book. A DISTINCT clause is always the irst one after the SELECT statement.
It is optional. When you specify Distinct in the query, it will not allow any identical
rows in the query result. All lines are unique from each other.

Some users claim this clause may still allow duplicate rows. This can never be true.
The fact is: although most of the values are the same between two lines, the query
results always include at least one column, which contains the different values.
Those columns have to be taken out in order to beneit from this clause. You cannot
get both the DISTINCT working and some columns which have different values
within the scope you selected.

There are criticisms of this clause because it adds burden to the
SQL Server. Be careful while using it if the result-set is huge.
You can reduce the amount of the data returned by restricting
the query scope within a speciic date range.

Query Manager and Query Statements

[58]

TOP—number of lines returned by ranking
A TOP clause is used to specify the maximum number of records to return in a
query result-set. It is usually used together with the Order By clause at the end
of the query.

The syntax of the clause is as follows:

SELECT TOP (number)|percent[with ties] column_name(s)

FROM table_name(s)

The query result can be the top 10 sales orders, for example. In this case, descending
order must be used for the document amounts. Or you may get the top 20 percent
purchase invoices, if you specify the TOP by percentage. When you use percentage,
you need to write 20 percent instead of 20% after SELECT TOP.

The WITH TIES option speciies the additional rows that need to be returned from
the base result set with the same value in the ORDER BY columns appearing at the
end of the TOP n (PERCENT) rows. TOP...WITH TIES can be speciied only if an
ORDER BY clause is speciied.

TOP can be very useful on large tables with thousands of records.
Returning a large number of records may have an impact on database
performance. If you just need part of the result, give the top clause a try.

Microsoft suggests SELECT TOP (n) with parentheses. It is better to follow the
suggestion to be safe for the query results.

FROM—data resource can be assigned
It is very clear that FROM means where to ind the data. A FROM clause is actually not
a standalone statement since it must be used with SELECT. Most queries need this
clause because to only assign a ixed value or a group of values would not be very
useful. However, this is one of the most often misused parts of SQL queries. More
discussion is needed on this clause.

A FROM clause can be followed by the data sources mentioned next:

•	 A single table

•	 A group of linked tables

•	 Multiple tables separated by commas

Chapter 3

[59]

If you have read through Chapter 1, SAP Business One Query Users
and Query Basic, you should understand the concept of Table and
Table Relationships. If you directly jumped here bypassing that
previous chapter, you may need to go back to check.

A single table
This is the simplest query including a FROM statement. A simple example:

SELECT Code, Name, Remarks FROM OUDP

This will only touch one table—OUDP. This table is for a department. You can get
the Department Code, Department Name, and the Description from the query result.

The better format would be:

SELECT T0.Code, T0.Name, T0.Remarks FROM dbo.OUDP T0

Now, it is time to explain why those additional T0 and dbo are necessary here.

Actually, it may not make any difference if we only deal with this particular
query and this query is only run by one user. However, that is not generally true.
In most cases, we often have more than one table and more than one user to run the
same query.

T0 here stands for an Alias of OUDP table. It is the standard convention and most
frequently used alias. T means table. 0 is a sequence number. You can have T0, T1,
T2, …until Tn. If you have 10 tables in the query, n would be equal to 9 for alias.
This naming convention is convenient to use. You just need to name them in
sequential numbers.

The syntax for table alias looks like this:

SELECT alias_table_name.column_name

FROM table_name [AS] alias_table_name

An alias table name can be anything, but usually it is the shortest possible one.

If a query is not created by query tools, it is not mandatory for alias to take the Tn
sequence. You may just use A, B, C, …… to have one letter shorter than the standard
way, or make them easier to remember. However, it is advisable that you follow the
norm. It can save you time for maintaining your query in the long run.

Query Manager and Query Statements

[60]

When you have more than 10 tables in the query, an A, B, C,
…… sequence would be better than the normal T0, T1, T2, ……
convention because T10 and above need more spaces.

The function for alias is mainly for saving resources. If no alias is deined, you have
to enter the full table names for every single column in the query. Be careful when
you are using alias; you should use alias exclusively throughout your query. You are
not allowed to mix them with the actual table name. In other words, you may only
use alias or the actual table name, but you are not allowed to use them both in the
same query.

The other added word dbo means Database Owner. This is a special database user.
This user has implied permissions to perform all activities in the database. All tables
of SAP Business One have the owner of dbo. It is useful to add dbo in front of a table
name when you have more than one user running the query, but this is beyond the
scope of the book. I will try to use the simplest method to give you a rough idea.

Query running needs an execution plan. A query execution plan (or query plan)
outlines how the SQL Server query optimizer (query optimizer is too complicated
to explain here, you just need to know it is a tool built into SQL server) actually ran
(or will run) a speciic query. There are typically a large number of alternate ways to
execute a given query, with widely varying performance. When a query is submitted
to the database, the query optimizer evaluates some of the different, correct possible
plans for executing the query and returns what it considers the best alternative. This
information is very valuable when it comes to inding out why a speciic query is
running slowly.

The hard fact is: no one can control this plan manually at runtime. Once a plan is
created, it is reusable for the same user to run the query. If you are not entering dbo
in front of the table name, the query will check every user who runs the query. A
new plan may be added for every new user because the owner is not included in the
query body. That might cause too much unnecessary burden to the database.

To save time and increase your system performance, dbo is highly
recommended in front of table names for every query unless they
are only for temporary use. These three letters mean database
performance gain. Do not ignore, but add them to your query!

Chapter 3

[61]

A group of linked tables
This is the category that most queries will be included in. One example may not be
enough to show this clearly. You have two query examples to show. The irst one is
as follows:

SELECT Distinct T0.[DocNum], T1.DocNum, T0.[DocType], T0.[CardCode],

T0.[CardName], T0.[UserSign], T0.[UserSign2], T1.[UserSign],

T1.[UserSign2]

FROM dbo.ADOC T0

INNER JOIN dbo.ORIN T1 ON T0.DocNum = T1.DocNum

WHERE T0.[ObjType] = '14' AND T0.[UserSign2] != T1.[UserSign2]

This query links ADOC (Document History) and ORIN (Credit Memo Headers)
tables to show the credit memo document number, document type, user information,
and the change log user code for the credit memo. A detailed explanation can be
found in the next chapter.

The second query example is as follows:

SELECT T1.CardCode as "CustCode", T1.CardName as "CustName",

T2.SlpName, T1.DocNum "Incoming#", T1.DocDate, T1.DocTotal as "Payment

Total", T4.DocNum as "Invoice#", T3.SumApplied as "Applied Total"

FROM dbo.OCRD T0

INNER JOIN dbo.ORCT T1 ON T0.CardCode = T1.CardCode

LEFT JOIN dbo.OSLP T2 ON T0.SlpCode = T2.SlpCode

INNER JOIN dbo.RCT2 T3 ON T3.DocNum = T1.DocNum

INNER JOIN dbo.OINV T4 ON T4.DocEntry = T3.DocENtry AND T3.InvType =

'13'

WHERE T1.DocDate >= [%0] AND T1.DocDate <= [%1]

ORDER by T1.DocDate

This query links ive tables OCRD (Business Partners), ORCT (Incoming Payment
Headers), RCT2 (Incoming Payments—Invoices), OSLP (Sales Employees), and
OINV (Invoice Headers) together. It shows customers' payment with invoice details.
Again, the business case explanation is available in the next chapter.

Among the ive links in the query, there are two different kinds of links. One is
INNER JOIN. The other is LEFT JOIN; more explanation of these joins can be found
later in the chapter.

Again, one special case needs to be pointed out here. If
your table is a User Deined Table (UDT), do not forget
that @ is the irst letter of your table name.

Query Manager and Query Statements

[62]

Multiple tables separated by commas
When you link tables together, SQL Server just treats them as a view, or it acts as one
big table. However, there is another way to add your tables into the query without
linking them irst. The syntax is similar to comma delimited columns. You simply
need to enter a comma in between tables. In this case, table linking has to be done
under the WHERE conditions.

Technically, the way of linking tables without joining is the most ideal method
because you can get the minimum records out with the least database operations,
if you are very good at database structure. However, like the difference between
manual and automatic cameras, most people prefer automatic cameras because it is
very convenient, especially if you do not have extensive training or extraordinary
experience, and the ideal manual control may not help you get a better picture!

I always refuse to create queries without joining the tables irst. Comma-separated
table query is too dangerous. If you have the wrong conditions deined in the
WHERE clause, you may end up with countless loops. In the worst case scenario, it
may lock your system up. On the contrary, if you link all tables together, the worst
case scenario would be no results because of a bad link or bad conditions.

In other words, if you want to add all tables' linking conditions under the WHERE
clause, you are giving yourself an unnecessary burden in making sure they are
correct. Those veriications have to be done manually.

Whenever possible, you are better to avoid using comma separated table
queries. In most cases, it may use more resources and put you at a higher risk
of system instability.

JOIN—addition table or tables can be linked
You have learned the FROM statement. With this statement, you know that more
than one table can be put into one query.

In most cases, those additional tables should be linked together. The reason
we need to link tables before the WHERE clause has been discussed in the
previous paragraph. To link those extra tables, JOIN is used to combine rows
from multiple tables.

Chapter 3

[63]

A join is performed whenever two or more tables are listed in the FROM clause of a
SQL statement without using a comma to separate them. Joined tables must include
at least one common column in both tables that contain comparable data. Column
names across tables don't have to be the same. But if we have the same name
columns to join with correct relation, use them irst.

There are different types of JOIN statements to be discussed, listed as follows:

•	 Inner join

•	 Outer joins

•	 Self-join

One of the special join types is omitted from the list. This is called the Cross Join.
This type of join can list all possible combinations of your linked tables. You may end
up with 90,000 lines of huge output even if you have only 300 records in each table. I
have no idea who can beneit from this Cross Join. They must be very special.

First, let's look at the most commonly used one.

Inner Join
An INNER JOIN is also called a Simple Join. It is the simplest table join. INNER
JOIN is the default link type to join tables. You may even omit INNER to leave only
JOIN. When you see JOIN without any words in front, it means INNER JOIN. In
order to distinguish other types of JOIN, omission is not encouraged unless your
query length is an issue that requires you to reduce your query to the minimum size.

An INNER JOIN syntax looks like the following:

SELECT T[0]|[1].column_name(s)

FROM table_name0 T0

INNER JOIN table_name1 T1

ON T0.column_name=T1.column_name

In an INNER JOIN statement, the link is deined by the keyword ON with common
columns from each table to retrieve the matching records from those tables. To
link two or more tables correctly, the linking columns are very important. INNER
JOIN will select all rows from linked tables as long as there is a match between the
columns you are matching on. If you forget the keyword ON in the joined table list,
you will get an error message right away when you try to run the query.

Query Manager and Query Statements

[64]

The best way to link tables is by using the Key Columns such as the primary key or
the foreign key. That is because Key Columns are usually indexed. That makes links
easier and faster. In case there is no such columns' pair to link, care must be taken to
select the best eficient common columns between tables. When you have more than
one way to link, you can consider the shorter columns irst.

The previous example shows a real query about how an inner join works.

The query script is:

SELECT T0.CardCode as 'BP Code', T0.DocNum as 'Doc No.', T0.DocDate,

T1.ItemCode, T1.Price as 'Price', T1.Quantity, T1.LineTotal

FROM dbo.OINV T0

INNER JOIN dbo.INV1 T1 ON T1.DocEntry = T0.DocEntry

Two tables, OINV (A/R invoice headers) and INV1 (A/R invoice rows), are joined
by DocEntry columns. This DocEntry column is actually not included in the query
result. It is only for illustration purposes for easier understanding. From the previous
example, you can see how INNER JOIN works. For DocEntry 1 and 2, two rows each
are formed by the query. The query result shows four lines in total.

You should avoid linking by lengthy text only columns. To match those columns, not
only system performance becomes an issue, but also no ideal query results might be
shown. In general, if the column length is over 30 characters, the link eficiency will
be reduced dramatically.

Chapter 3

[65]

Keep in mind, an inner join will effectively ilter your query result by linking
columns. If there are no common values between linked columns, those records
are going to be dropped out. If you ind that the query result does not meet your
requirements, some other types of joins can be used instead.

Outer Join
Some may call OUTER JOIN a complex join. Actually, it may not be that
complicated at all and is only a little bit more complicated than INNER JOIN. You do
not need to worry about the complexity. When you ind the true meaning of OUTER
JOIN, it is similar and comparable with INNER JOIN.

There are three types of Outer Joins:

•	 Left Outer Join

•	 Right Outer Join

•	 Full Outer Join

We will examine each type as follows.

Left Outer Join
A LEFT OUTER JOIN is one of the most used outer joins in queries. Outer here
is optional. It can be omitted so that you just need LEFT JOIN. There is no added
beneit to using the full name of LEFT OUTER JOIN. Unless a query is automatically
created, you should keep using only LEFT JOIN.

A LEFT JOIN clause syntax looks like the following:

SELECT T[0]|[1].column_name(s)

FROM table_name0 T0

LEFT JOIN table_name1 T1

ON T0.column_name=T1.column_name

In the previous syntax, the irst table table_name0 T0 is the LEFT table, while
table_name1 T1 is the right table. LEFT JOIN means all records in the left table
will be returned, regardless of the right table linking condition. If the match cannot
be found in T1 table, it simply returns Null value for any columns coming from
T1 table.

Query Manager and Query Statements

[66]

A LEFT JOIN is very useful when you need to display all data records from one
table but also want to know some secondary table data without restricting the query
results. You will ind more examples in the next chapter. If you are still not very clear
about this LEFT JOIN clause, I hope the following example can help you:

The previous example shows a real query about how LEFT JOIN works.

The query script is as follows:

SELECT T0.[CardCode], T0.[CardName], T0.[Balance], T1.[DocNum],

T1.[DocDate], T1.[DocTotal]

FROM dbo.OCRD T0

LEFT JOIN dbo.OINV T1 ON T0.CardCode = T1.CardCode

WHERE T0.CardCode < 'C100005'

From the example, you can get a clear view. If you can only ind one BP Code
C100002 in the right table (OINV), you will get only one line with full information.
All other lines will still show left table columns though.

One thing is important for a LEFT JOIN: do not use secondary Left Join if possible.
Suppose you put more than one level of LEFT JOIN; the query result may become
less clear.

Right Outer Join
A Right Outer Join is not used as often as a LEFT JOIN in a query. OUTER here is
also optional. It can be omitted so that you just need RIGHT JOIN.

Chapter 3

[67]

A RIGHT JOIN clause syntax looks like the following:

SELECT T[0]|[1].column_name(s)

FROM table_name0 T0

RIGHT JOIN table_name1 T1

ON T0.column_name=T1.column_name

In the previous syntax, the second table table_name1 T1 is the right table while
table_name0 T0 is the left table. A RIGHT JOIN means all records in the right
table will be returned, regardless of the left table linking condition. If the match
cannot be found in T0 table, it simply returns Null value for any columns coming
from the T0 table.

Most people would be more interested in the irst table than the second table. That is
why not so many people use this RIGHT JOIN. Here is an example for you:

The query script is as follows:

SELECT T1.[DocNum], T1.[DocDate], T1.[DocTotal],T0.[CardName],

T0.[Balance], T0.[CardCode]

FROM dbo.OINV T1

RIGHT JOIN dbo.OCRD T0 ON T0.CardCode = T1.CardCode

WHERE T0.CardCode < 'C100005'

Unless you are used to reading from right to left, I bet no user prefers this result
instead of the LEFT JOIN.

Query Manager and Query Statements

[68]

Full Outer Join
A Full Outer Join syntax looks like the following:

SELECT T[0]|[1].column_name(s)

FROM table_name0 T0

FULL OUTER JOIN table_name1 T1

ON T0.column_name=T1.column_name

A Full Outer Join will return all rows from both tables, regardless of matching
conditions. It is one of the most dangerous clauses for SELECT queries too. Try to
avoid this kind of join wherever you have other options.

There is no example query for this kind of join because it may only be useful in very
special cases.

For people who like to use a Full Outer Join, you should always check what
alternatives you have. If only Full Outer Join can solve your issue, some big
problems might be hidden. Check them out!

Self-Join
A Self-Join is a special join in which a table is joined to itself. Self-Joins are used to
compare values in a column with other values in the same column in the same table.
It can be used for certain special needs such as obtaining running counts or running
totals in a SQL query. It is often used in subqueries.

To write a query that includes a Self-Join, select from the same table listed twice with
different aliases, set up the comparison, or eliminate cases where a particular value
would be equal to itself.

A Self-Join is mostly an INNER JOIN. However, it can also be an OUTER JOIN. It is
all dependent on your needs.

To my knowledge, this join is only a particular type of INNER JOIN or OUTER JOIN.
The classiication makes it outstanding only because it is too special.

You will get some example queries of Self-Join in later chapters.

WHERE—query conditions to be deined
It is very clear that the WHERE clause is to deine query conditions. By using the
WHERE clause, you may extract only those records that fulill a speciied criterion.

Chapter 3

[69]

The WHERE clause is optional. However, it is a good idea to make it mandatory for
your own sake to keep your query results safer. When you create your query without
a WHERE clause, all records will be retrieved no matter how big the table is. It is
highly recommended that you put the WHERE clause for all of your query scripts
before you test to run them. This can save you much more time if you just enter these
few letters.

If the WHERE clause exists in a query, it always follows the FROM clause. Its syntax
is as follows:

SELECT column_name(s)

FROM table_name(s)

WHERE [(]expression operator expression [and/or] [expression operator

expression][)]

In the previous syntax, expression stands for a column name, a constant, a function, a
variable, or a subquery. An operator can be set from the following list:

Operator Description

= Equal

<>/!= Not equal

> Greater than

< Less than

!> Not Greater than

!< Not Less than

>= Greater than or equal

<= Less than or equal

BETWEEN Between an inclusive range

LIKE Search for a pattern, used only for string

IN/EXISTS Test if a speciied value matches any value in a subquery (or a list for IN
operator only)

If a column used in the WHERE clause is one of the character data types, the value
must be enclosed in single quotes. In contrast, if the column used in the WHERE
clause is of a numeric data type, the value should not be enclosed. The numeric
values enclosed in quotes will always return 0.

To make the WHERE clause more eficient, it is better to avoid using Not Equal (<>
/!=) wherever possible. Some of the other conditions with NOT also need to be used
with care.

Query Manager and Query Statements

[70]

Five operators include >, <, =, >=, and <= symbols are very common for
comparisons. They are not needed for the purpose of this book. Therefore they are
omitted from the examples. Only three special comparisons will be discussed next.

BETWEEN—ranges to be deined from lower
to higher end
A BETWEEN operator is to specify a range to test.

The syntax for a BETWEEN operator is:

Value1 [NOT] BETWEEN Value2 AND Value3

All arguments are discussed as follows:

•	 Value1 is the value to be tested in the range deined by Value2 and Value3.
•	 NOT speciies that the result of the predicate be negated. It is optional.
•	 Value1 is any valid value with the same data type as Values.
•	 Value3 is any valid value that is greater than Value2 with the same data type.
•	 AND is mandatory and acts as a placeholder that indicates Value1 should be

within the range indicated by Value2 and Value3.
•	 This clause is equivalent to Value1 >= Value2 and Value1 <= Value3.
•	 When you use BETWEEN, it means that the start value and end value are

included. If you need to specify an exclusive range, you have to use the
greater than (>) and less than (<) operators instead.

There is a condition in the irst query example in this chapter before discussing the
statement:

WHERE t1.RefDate >= [%0] and t1.RefDate <= [%1]

Actually, it is equivalent to the following:

WHERE t1.RefDate BETWEEN [%0] and [%1]

The query result is exactly the same. I have chosen to use the longer expression only
because the system prompt for the irst one is better and clear.

Be careful; if any input to the BETWEEN or NOT BETWEEN predicate
is null, the result is UNKNOWN. When you do not get the desired
result, check if there is Null involved. If you are not sure about the
data having NULL or not, you better not use BETWEEN at all.

Chapter 3

[71]

IN/EXISTS—the value list that may satisfy the
condition
IN or NOT IN is an operator to compare a value with an existing value list that has
more than one value. You are allowed to have only one value in the list. However,
that should be by equal operator. It is not logical to deine only one value in the list.
An IN operator can be used to determine whether a speciied value matches or does
not match any values in a list. The list can be a result of a subquery. This subquery
must have only one column to return. In order for two sides to be comparable, both
sides must have matched data types.

This operator is similar to the OR condition but is much shorter. With the OR
condition, you not only have to repeat the similar conditions one by one, but you
also need parentheses if there are other co-existing conditions.

In the list to be compared, duplicate values are allowed. You do not need to specify
the DISTINCT keyword if the same values are the same. After all, you are comparing
the left side value to the right side value list. The result will be the same no matter
how many times the same values present in the list are compared with.

Any null values returned by a subquery or a list that are to be compared using IN or
NOT IN will return UNKNOWN. It can produce unexpected results. Get rid of the
Null value for the list wherever possible.

EXISTS or NOT EXISTS is also an operator to compare a value with a list. The list is
only a result of a subquery. This subquery can have more than one column to return.
In order for two sides to be comparable, both sides must have matched data types.

IN and EXISTS are almost the same, only that IN allows both ixed list and subquery.
The only other exception is the way they treat Null values. If the subquery contains
Null value, EXISTS will perform better than IN. This is because EXISTS only cares if
the value exists in the query result. It doesn't care if there is Null value or not.

The bottom line is: whenever using these operators, predict if you may get Null
values. Choose a proper one based on the prediction.

LIKE—similar records can be found
A LIKE operator allows you to do a search based on a pattern rather than specifying
exactly what is desired (as in IN) or spell out a range (as in BETWEEN). LIKE
determines whether a value to be tested matches a speciied pattern. A pattern can
include wildcard characters. During this matching, wildcard characters play lexible
roles to allow partly unmatched values to go through.

Query Manager and Query Statements

[72]

Using wildcard characters makes the LIKE operator more lexible than using the = or
!= string comparison operators. In case any one of the values is not of the character
string data type, the SQL Server Database Engine converts them to character string
data type if possible.

A LIKE operator syntax is as follows:

Value [NOT] LIKE Pattern

Two arguments are as follows:

•	 Value is any valid value of character string data type.
•	 Pattern is the speciic string of characters to search for in the Value, and can

include the following valid wildcard characters. Pattern can be a maximum
of 8,000 bytes.

Wildcard character Description

% Any string with zero or more characters

_(underscore) Any single character

[] Any single character within the speciied
range ([a-d]) or set ([abcd])

[^] Any single character not within the speciied
range ([^x-z]) or set ([^xyz])

Most of the LIKE operators include % and/or _ wildcard characters. % can be put in
the front, in the middle, or at the end. If you can ind a certain condition such as A
LIKE 'xy%' instead of A LIKE '%xy', the query result would be faster.

Although NOT is an optional keyword for LIKE, you should try to avoid it in any
way possible. It is not an effective way to compare a value with any patterns.

GROUP BY—summarizing the data according
to the list
A GROUP BY clause is very useful if you need to aggregate your data based on
certain columns. It is optional and must follow the FROM and WHERE clauses.

If you remember the irst query before discussing statements, you have:

GROUP BY T0.ShortName

GROUP BY speciies T0.ShortName i.e. Business Partner column would be the base
for summarizing debit and credit amounts for each Business Partner.

Chapter 3

[73]

Whenever you use the GROUP BY clause, it is mandatory to include all your
columns under this clause unless they are aggregated columns.

The following example shows a simple query:

The query script is simple:

SELECT T0.CardCode AS 'BP Code', T0.CardName AS 'BP Named', SUM(T0.

DocTotal) AS 'Total'

FROM dbo.OINV T0

WHERE T0.CardCode < 'C100003'

GROUP BY T0.CardCode, T0.CardName

In the previous example, neither the DocNum nor the DocTotal columns can be
included in the query. Otherwise, the group will not work for each customer.

HAVING—conditions to be deined in
summary report
A HAVING clause is normally used with a GROUP BY clause. This clause is
optional. It is equivalent to a WHERE clause under the main query body. It speciies
that a SELECT statement should only return rows where aggregate values meet
the speciied conditions. This clause was added to the SQL language after the main
clause had already been deined because the WHERE keyword could not be used
with aggregate functions.

If you remember the irst query before discussing, you have:

HAVING SUM(ISNULL(T0.Debit,0) - ISNULL(T0.Credit,0)) > 0

Query Manager and Query Statements

[74]

It can be found under the GROUP BY clause in the query. This means the query
result will only include those records if the aggregate summary function's result of
T0.Debit minus T0.Credit is greater than zero. In case there are Null values, they will
be replaced with zero from all occurrences before summary operation.

ORDER BY—report result can be by your
preferred order
An ORDER BY clause is very simple when you need to sort your query result based
on certain columns. This clause is always the last clause to be used in the query. If
you have UNION or UNION ALL to combine more than one query, this clause may
only be added to the end of the entire query.

There are two types of orders: One is ascending and the other is descending.
Descending can be abbreviated to DESC in the end. Ascending can be abbreviated
to ASC. If DESC is not included, the default ORDER BY will be ascending. Since
ascending is the default order, it is usually omitted from the query.

An ORDER BY clause can have more than one column. The rule for query result is:
the order irst applies to the irst column in the left. Then will be the second column,
the third column, and so on.

Remember, not all types of columns are orderable. Some image columns, memo
columns, etc. cannot be ordered.

If you remember the irst query before the discussion statement, the last statement is
as follows:

ORDER BY SUM(ISNULL(T0.Debit,0) - ISNULL(T0.Credit,0)) DESC

It means the query result will be ordered by descending order according to the
summary of T0.Debit minus T0.Credit. If there are Null values, they will be replaced
with zero for all occurrences.

UNION/UNION ALL—to put two or more
queries together
The UNION clause combines the results of two or more SQL queries into one
query result set. To use this clause, the number and order of columns from those
queries must be the same with compatible data types. Any duplicate records are
automatically removed by the UNION clause. It works like DISTINCT.

Chapter 3

[75]

One thing you need to be aware of: UNION results do not care about the order of the
rows. Rows from the irst query may appear before, after, or mixed with rows from
the following one. If you need a speciic order, the ORDER BY clause must be used.

The UNION ALL clause is almost the same as the UNION clause, except it allows
duplicated records.

UNION ALL may be much faster than plain UNION due to fewer checks in the
query process. Whenever duplication is not a concern, or duplication is needed,
UNION ALL should be used irst.

A UNION or UNION ALL query is usually longer than a normal query because it is
at least double the lines of query scripts. The example query that includes this clause
will be shown in later chapters.

Some important functions to return
values
Some important functions to return values are discussed as follows:

ISNULL() predicate
An ISNULL() function is used for replacing Null with the speciied
replacement value.

The syntax for the function is as follows:

ISNULL (Value1,Value2)

Value1 is normally a column value or a variable to be checked. Value2 is a ixed
value to be replaced to.

In the irst example query you read before the discussion of statement, there is
an instance of ISNULL(T0.Debit,0) or ISNULL(T0.Credit,0). Here, a column
T0.Debit or T0.Credit is checked. If it is Null, then it will be replaced with 0.
Otherwise, the query will not be able to return the correct results. That is because:
only 0 can be added but not Null. Even if you have one Null in the formula, the inal
result will be Unknown or an error.

Misunderstanding of how Null works is not a rare case. These mistakes are usually
the result of confusion between Null and either 0 (zero) or an empty string (''). Null
is actually different from both values. Null indicates the absence of any value. Null
means nothing. ISNULL() function is very effective for getting rid of Null. Use it
whenever you need it.

Query Manager and Query Statements

[76]

SUM() function
A SUM() function is used for returning the summed total of all the values, or only the
DISTINCT values, from the numeric columns.

The syntax for the function is as follows:

SUM ([ALL | DISTINCT] value)

Both ALL and DISTINCT keywords are optional. If you add DISTINCT keyword
to the function, it will only return the sum of distinct values. ALL is the default
selection. There is usually no need to add to the function at all.

The value here can be a constant, column, or a function, and any combination of
arithmetic operators.

MAX() function
A MAX() function is used for returning the maximum value from all checked values.

The syntax for the function is as follows:

MAX ([ALL | DISTINCT] value)

Both ALL and DISTINCT keywords are optional. If you add a DISTINCT keyword to
the function, it will only return the maximum of the distinct values. The result will be
exactly the same as the one without this keyword. ALL is default selection. There is
usually no need to add to the function at all.

The value here can be a constant, column, or function, and any combination of
arithmetic, bitwise, and string operators. MAX function can be used with numeric,
character, and datetime columns.

An example query would be as follows:

SELECT T0.CardCode, MAX(T0.DocTotal) 'Total'

FROM dbo.OINV T0

WHERE T0.CardCode LIKE '[%0]%'

GROUP BY T0.CardCode

ORDER BY MAX(T0.DocTotal) DESC

With this query, the maximum A/R invoice total will be returned in a range of
customers or all customers if you input nothing when you run the query.

Chapter 3

[77]

MIN() function
A MIN() function is used for returning minimum value from all checked values.

The syntax for the function is as follows:

MIN ([ALL | DISTINCT] Value)

Both ALL and DISTINCT keywords are optional. If you add DISTINCT keyword to
the function, it will only return the minimum of the distinct values. The result will be
exactly the same as the one without this keyword. ALL is the default selection. There
is usually no need to add to the function at all.

The value here can be a constant, column, or function, and any combination of
arithmetic, bitwise, and string operators. MIN can be used with numeric, character,
and datetime columns.

An example query would be as follows:

SELECT T0.CardCode, MIN(T0.DocTotal) 'Total'

FROM dbo.OPCH T0

WHERE T0.CardCode LIKE '[%0]%'

GROUP BY T0.CardCode

ORDER BY MIN (T0.DocTotal)

With this query, the minimum A/P invoice total will be returned in a range of
vendors or all vendors, if you input nothing when you run the query.

COUNT() function
A COUNT() function returns the number of items in a group.

The syntax for the function is as follows:

COUNT { [[ALL | DISTINCT] Value] | * })

Both ALL and DISTINCT keywords are optional. If you add DISTINCT keyword to
the function, it will only return the count of the distinct values. ALL is the default
selection. There is usually no need to add to the function at all.

The value here can be of any type except text or image. Aggregate functions and
subqueries are not permitted.

Query Manager and Query Statements

[78]

COUNT(*) cannot be used with DISTINCT. * speciies that all rows should be counted
to return the total number of rows in a table. COUNT(*) does not require any values
because it does not use information about any particular columns. COUNT(*) returns
the number of physical rows in a speciied table including duplicate rows and the
rows that contain null values. On the contrary, if it is not COUNT(*),only non-null
rows will be counted.

An example query is as follows:

SELECT Count(*) FROM OUSR

You will immediately know how many users you have set up in your system
from day one of your system. Remember all users, including deleted users, will be
counted. If you have a long history, this number could be well above your current
number of users.

Another useful query example is as follows:

SELECT Count(*) FROM JDT1

You will get the number of records for one of your largest tables.

DATEDIFF() function
A DATEDIFF() function returns an integer number of intervals of a speciied type
between two dates.

The syntax is simple:

DATEDIFF (Datepart , Date1 , Date2)

Three arguments are:

•	 Datepart is the parameter that speciies on which type of the date or time to
calculate the difference. The Datepart and abbreviations can be found from
the following table. These Datepart and abbreviations are an exclusive list
that cannot be supplied as a user-declared variable.

Datepart Abbreviations

Year yy, yyyy

Quarter qq, q

Month mm, m

Dayofyear dy, y

Day dd, d

Chapter 3

[79]

Datepart Abbreviations

Week wk, ww

Weekday dw

Hour hh

Minute mi, n

Second ss, s

Millisecond ms

•	 Date1 is the starting date for the interval. It is an expression that returns a
datetime value, or a character string in a date format.

•	 Date2 is the ending date for the interval. It is also an expression that returns a
datetime value, or a character string in a date format.

Date and time values included in the function must be within a valid range. Years
must be less than or equal to 9999. Months must be between 1 and 12. Days must be
between 1 and 31. Hours: 0 through 23. Minutes: 0 through 59. Seconds: 0 through 59.

For year format, it is recommended to always use four-digit years. If you specify only
the last two digits of the year, it may cause uncertainty. It will be affected by the two-
digit year cutoff coniguration option in your system. For example, if the two-digit
year cutoff is 2049 (default), 49 is interpreted as 2049 and 50 is interpreted as 1950.
The difference calculated across the boundary will be surprising.

DATEDIFF() function is one of the most useful date functions for getting proper
results. This is always the irst function to be used if you need a date compare
operation. For using abbreviations, two-letter abbreviations are recommended
because this is one of the most easily remembered options with the consistent format.

Here is an example:

SELECT DATEDIFF(DD, '10-10-2010', '01-01-2011')

It will return 83 since the difference between these two dates is 83 days. You could
change the date order to the following:

SELECT DATEDIFF(DD, '01-01-2011', '10-10-2010')

This will return -83 because the irst date is greater than the second one.

Query Manager and Query Statements

[80]

DATEADD() function
A DATEADD() function returns a new datetime value based on adding or subtracting
an interval to a speciied date.

The syntax is as follows:

DATEADD (Datepart , Number, Date)

Three arguments are as follows:

•	 Datepart is the parameter that speciies the part of the date or time to return.
The lists of the Dateparts and abbreviations can be found above, under the
DATEDIFF() function.

•	 Number is the value used to increment Datepart. If you specify a value that is
not an integer, the decimal part of the value is truncated. For example, if you
specify day for Datepart and 3.68 for number, date is incremented only by 3.

•	 Date is an expression that returns a datetime value, or a character string
in a date format. When you enter datetime values, always enclose them in
quotation marks.

An example query is as follows:

SELECT DateAdd(mm, 5, '05-05-2011')

It will return 10-05-2011, if your date format is mm-dd-yyyy, or it returns 05-10-2011,
if your date format is dd-mm-yyyy.

DATEPART() function
A DATEPART() function returns an integer that represents the speciied Datepart of
the speciied date or time.

The syntax is very simple:

DATEPART (Datepart , Date)

Two arguments are as follows:

•	 Datepart is the parameter that speciies the part of the date or time to return.
The lists of the Dateparts and abbreviations can be found above, under the
DATEDIFF() function.

•	 Date is an expression that returns a datetime value, or a character string
in a date format. When you enter datetime values, always enclose them in
quotation marks.

Chapter 3

[81]

An example query would be as follows:

SELECT DatePart(WW, '05-05-2011')

This would return 19 since the date May 5th, 2011, belongs to the nineteenth
week of 2011.

CAST()/CONVERT() function
To convert an expression of one data type to another explicitly, CAST and
CONVERT can be used. They provide similar functionality with different syntaxes.

Syntax for CAST:

CAST (Value AS Data_type [(Length)])

Syntax for CONVERT:

CONVERT (Data_type [(Length)] , Value [, Style])

Here, Value is any valid expression.

Data_type is the target system-supplied data type such as integer data, character
data, monetary data, date and time data, binary strings, and so on. Alias data types
cannot be used with this function.

Length is an optional parameter of string data types. For CONVERT, if length is not
speciied, the default length is 30 characters.

Style is the style of the value to be returned. When style is Null, the result returned
is also Null. In other words, you have to deine style in the CONVERT function,
otherwise, you may get nothing.

Do not use any unsupported styles or an unsupported
combination of style and target data type. Otherwise, it
might return an error or unreliable results. To ind the
supported style by SQL Server, check SQL Server references.

CASE expressions
A CASE expression is a unique conditional statement providing if/then/else logic
for any ordinary SQL statement. It returns a single value from one of the multiple
possible result expressions by evaluating a list of conditions.

Query Manager and Query Statements

[82]

The CASE expression has two formats:

•	 The simple CASE expression

•	 The searched CASE expression

Both formats support an optional ELSE expression that gives an alternative action, if
no THEN expression is executed.

The simple CASE expression compares an expression to a set of simple expressions
to determine the result. The searched CASE expression, on the other hand, evaluates
a set of Boolean expressions to determine the result.

CASE can be used in any statement or clause that allows a valid expression. You can
use CASE in statements such as SELECT, SET, or in clauses, such as WHERE, IN,
ORDER BY, and HAVING.

CASE expressions can be extremely useful when you have very complex
requirements. Through CASE expression, some complex queries can be changed into
simpler, more eficient SQL statements.

CASE is a very powerful tool to get query results that cannot be done through other
functions or expressions. It is mainly the topic of a later chapter.

The syntax for CASE expression is better shown by a query example:

SELECT CASE WHEN (DATEDIFF(dd,T0.refdate,getdate())) >= 90

THEN CASE

WHEN T0.SYSCRED= 0 THEN T0.SYSDEB

WHEN T0.SYSDEB= 0 THEN –T0.SYSCRED

END

END "90 + DAYS"

FROM DBO.JDT1 T0

WHERE T0.SHORTNAME LIKE '[%0]%'

This simple query can be used to show a selected business partner's aging balance
that is greater than or equal to 90 days. In the query, the ELSE is not used. Only
when the conditions meet the requirement the results can be returned. With the
condition (DATEDIFF(dd,T0.refdate,getdate())) >= 90, only those records in
the JDT1 table will be returned.

Chapter 3

[83]

There are two levels of CASE clauses that have been applied. After the irst
CASE check, the second level CASE will check whether T0.SYSCRED equals
zero or T0.SYSDEB equals zero. When one of them is zero, the opposite column
will be returned.

Notice there is only END without BEGIN. END is to be used to end the CASE
expression. A CASE expression will always imply BEGIN of the SQL block. END
is needed for every CASE expression. WHEN and THEN is the branch to make the
CASE expression work. If you need to cover all conditions, ELSE is required to get all
other records without meeting any of the WHEN conditions.

IF expressions
An IF expression introduces a condition that determines whether the next statement
is executed. The optional ELSE expression can give an alternate action to be executed
when the IF condition is not satisied.

The IF statement is logically equivalent to a searched CASE expression. In other
words, an IF expression will cover less than a CASE expression.

In SAP Business One, IF can be used in many places such as Formatted Search.

Similar to CASE expression, the syntax for IF expression is better shown with a query
example:

If Exists

(SELECT T1.DocEntry

FROM OIGE T0 INNER JOIN IGE1 T1

ON T0.DocEntry=T1.DocEntry

WHERE T0.DocEntry = @list_of_cols_val_tab_del

Group By T1.DocEntry

Having Sum(T1.Quantity) <=T0.U_nQty)

Begin

SELECT @error = 111,

@error_message = 'error quantity entered'

End

In the query example, the IF expression is used to check whether the query after
EXISTS returns anything. If it is positive, this query could be used for effectively
blocking the Goods Receipt being created. Notice that the parentheses are needed
when there is a SELECT statement included in the query body.

Query Manager and Query Statements

[84]

Summary
In this chapter, you learned about the most important tool for creating or using SQL
queries in SAP Business One, Query Manager. This included Query Manager user
interface and query display, creation, and save. We also discussed query categories.

You learned the most commonly used query statements such as SELECT, DISTINCT,
TOP, and more. You also learned some functions or expressions such as ISNULL(),
SUM(), and CASE.

From those statements, functions, and expressions, you have built a good foundation
to build your own SQL queries. When you are in doubt about your query building
knowledge, it is always advisable to come back here to have a good overview of the
statement you need.

In the next chapter, you will have more real world query examples to deal with.

Section 2
SQL Query in Action

Query Examples

Securities and Approval

SQL Query for Formatted Search

(FMS)

SQL Query for Other Reporting

Tools

SQL Query for Stored Procedure

(SP)

More Complicated SQL Query

Topics

Appendix

Query Examples
In the previous chapter, you learned about Query Manager and the most commonly-
used statements and functions. That gave you a necessary tool to create any SQL
queries within SAP Business One system freely. However, it may not be that easy to
create a query to meet your speciic needs.

This chapter will show you the following:

•	 The most widely used query examples to give you more powers to build
your own queries. These include:

	° Query variables
	° Date selection

	° Drill-down arrows

	° Subtotals

•	 Detailed solution examples give all readers an idea about how business
intelligence works within SAP Business One and breaks it down into three
primary categories:

	° Marketing documents

	° Inventory transactions

	° Financial transactions

•	 Alert query examples and miscellaneous query examples for better use of on
demand information.

You will ind the questions or some queries that do not fully satisfy what is required
irst. Then, the right queries to solve these problems. Finally, there will be an
explanation of the solution queries.

Query Examples

[88]

Within this chapter, any table or column in the queries can be found through
the table references mentioned in the previous chapters. If you do not know the
meaning of the tables or columns, you can refer to Chapter 1 to ind where to
get those references.

The column names in this book are often in two different formats. You
can ind some of them within brackets, that is, [Column]. However,
more than half of them are without brackets. Usually the differences
between them can be ignored. Column within brackets is only the
result of query tools by SAP Business One. For the sake of time, if the
original queries have brackets, the solution queries may have brackets
too. If it is created from scratch, the query will have no brackets.

Please refer back to the the preface for more information on the speciic naming
conventions of the query examples in this chapter.

Why three categories have been chosen
In this chapter, besides some examples for special areas, most of the query examples
are categorized based on Marketing Documents, Inventory Transactions, and
Financial Transactions.

You may wonder why these three categories have been picked for the book. These are
not randomly selected but are the result of investigation based on the query examples,
which I have written from the many requests received. You may get a clearer picture of
the query usage area from the following pie chart based upon a sample of 100 queries:

Chapter 4

[89]

From this chart, you can have a good idea which one is the most frequently used
category. Actually, the term Inventory here is not limited to stock only. It also
includes Production. Purchasing and sales are the main areas for query reports. It is
also one of the most important areas where business intelligence is deinitely a must.

Deining variables for queries
The irst type of query example to discuss is regarding query variables or
parameters. Query variables or parameters are important because the correct
parameters in the query will greatly increase the query lexibility and the query
intelligence. One query with variables may mean hundreds of hard-coded queries.
If you input different data for the variables, you can have pertinent information just
related to what you are interested in.

If you have read the previous chapters, you will remember [%0], [%1], etc. That is the
way SAP Business One deines variables.

Remember, you must deine an alias for the table in order to
use these variables. If you omit the table alias, you will get an
error message when you include the variables in your query.

Look at the cases below for variables usage.

Case 4-R1: Four variables in one query
One request is to create a simple query that needs four parameters. The information
required includes order no., date, customer data, amount, and status from the sales
order table. When a user selects OPEN, it should display open sales order; if the user
enters CLOSED it should display closed sales order during a speciic period. An
additional requirement is to add selectable customer groups besides initial request.

The solution can be found as follows:

SELECT T0.DocNum,

T0.DocDate,

T0.CardCode,

T0.CardName,

T0.DocTotal,

T0.DocStatus

FROM dbo.ORDR T0

INNER JOIN dbo.OCRD T1 ON T1.CardCode = T0.CardCode

Query Examples

[90]

INNER JOIN dbo.OCRG T2 ON T2.GroupCode = T1.GroupCode

WHERE T0.DocStatus = [%0] and

T0.DocDate BETWEEN [%1] and [%2] AND

T2.GroupName LIKE '[%3]%'

With this query, users can select a sales order with a different document status within
a certain period for selected customer groups. You probably noticed there are two
more tables in addition to the sales order table ORDR. One is OCRD that holds all
Business Partner data. Another is OCRG that holds Business Partner Group data. In
order to have a variable to select a customer group, these two tables are absolutely
necessary. Without these two tables, you will not be able to put in the customer group
selection variable, because in the sales order table, you can only ind the CardCode
and CardName columns. You need to link to the OCRD table irst. Then you can link
to the OCRG table in order to access business partner group information.

T0.DocDate BETWEEN [%1] and [%2] is equal to T0.docdate >= [%1] and T0.
docdate <= [%2], which gives users the power to select a speciic period.

Case 4-R2: Variables irst or last
A user created a questionable query that could not run. The problematic query is as
follows:

IF [%2] IS NULL

SELECT T0.[CardCode], T0.[CardName], T0.[DocNum], T0.[DocTotal],

T0.[GrosProfit], T0.[DocDate] FROM ADOC T0 WHERE T0.[CardCode] like

'C%' and T0.[DocDate] between [%0] and [%1]

ELSE

SELECT T0.[CardCode], T0.[CardName], T0.[DocNum], T0.[DocTotal],

T0.[GrosProfit], T0.[DocDate] FROM ADOC T0 WHERE T0.[CardCode] like

'C%' and T0.[DocDate] between [%0] and [%1] and T0.[CardCode] = [%2]

The previous query is not runnable. It pops up an error message when it is executed.

The solution query script is listed here:

SELECT DISTINCT

T0.CardCode,

T0.CardName,

T0.DocNum,

T0.DocTotal,

T0.GrosProfit,

T0.DocDate

Chapter 4

[91]

FROM dbo.ADOC T0

WHERE T0.CardCode like 'C%' and

T0.DocDate between [%0] and [%1]

AND T0.CardCode like '%[%2]%'

With this query, there is no need to check the condition of the variable. The variable
for T0.CardCode will only appear once. It effectively replaces the conditional check.
The way to put parameter like '%[%2]%' is very useful. This is because:

•	 [%2] can be Null. When it is Null, this query will return all CardCodes
starting with 'C'.

•	 [%2] can be very short, with one or two characters. This gives you great
lexibility instead of inputting the complete CardCode.

This query can still be improved by changing the following condition:

T0.[CardCode] like 'C%' to be replaced by T0.CardType = 'C'.

Obviously this condition is to restrict the query result to the customers only. The
second condition will be stronger to get everything you need without binding to
your customers' coding convention. Due to possible end-user error during creation
of the customer, the "C" could have been accidently left off the customer code. By
checking the CardType (BP Type) you will be certain to pick up all customers, no
matter what the naming convention used in your company.

The problem for the irst query is: no parameter is allowed for the IF clause. IF
EXISTS is the most common way to use the IF clause. Unless you declare them irst,
all variables should be located inside the WHERE clause.

Be careful when you deine variables; all variables like [%0],
[%1], [%2], and so on must be unique. If you use them in
more than one place, all values for one speciic variable
will be identical no matter where they are. The column to
compare with identical variables must have exactly the same
data type.

Date function—where the most problems
emerge
The date function is one of the most problematic areas for SQL query. It is often used
to return date-related results from a database. Some date functions were explained in
the previous chapter. Get familiar with them irst, if you are still not clear.

Query Examples

[92]

Case 4-D1: Balance of production for a month
A question which I received dealt with a query that needs to display the balance of
production for the current month or for the past month.

SELECT SUM(T0.SYSDeb - T0.SYSCred) AS 'Production'

FROM JDT1 T0

WHERE T0.Account in ('_SYS00000000238','_SYS00000000239','_

SYS00000000244')

UNION

SELECT SUM(T0.SYSDeb - T0.SYSCred) AS 'Production'

FROM JDT1 T0

WHERE T0.Account = '_SYS00000000053'

As this query will work in the Add-on it cannot specify T0.RefDate >= [%0] AND
T0.RefDate <= [%1].

The solution is very simple:

SELECT SUM(T0.SYSDeb - T0.SYSCred) AS 'Production'

FROM dbo.JDT1 T0

WHERE T0.Account in ('_SYS00000000238','_SYS00000000239', '_

SYS00000000244', '_SYS00000000053') AND

MONTH(T0.RefDate)=Month(Getdate()) AND YEAR(T0.

RefDate)=YEAR(Getdate())

If the results need to be for the last month, it can simply be done by
replacing MONTH(T0.RefDate)=Month(Getdate()) with MONTH(T0.
RefDate)=Month(Getdate())-1.

This example shows that when dealing with a date range, lexibility is important.
You don't need to compare the date range with speciic dates all the time. If the date
function is available, use function instead. Here, the YEAR and MONTH functions
are quite handy to solve the problem.

Another difference is, the UNION clause has been taken away completely. Because
two parts joined by UNION have identical columns and tables, here, the UNION
clause is not necessary at all. The second query can be included to the irst query
condition without any problems.

If you want to try this query, you need to replace the G/L account numbers with
some valid numbers from your system irst. This speciic example is using a
segmented account. These accounts in the query are probably not the same as yours.
All accounts beginning with _SYS are system generated account codes for segmented
accounts. They differ from system to system.

Chapter 4

[93]

Case 4-D2: How to input a ixed date range
Another example has a different requirement from the irst one. The query's main
structure has been created but not the date part. The query is as follows:

SELECT T0.DocNum as 'SO No.', T0.DocDate as 'Date', T0.CardCode as

'CustCode', T0.CardName as 'Customer Name', T0.NumAtCard as 'Ref/PO

No.', T0.DocCur as 'Currency', (T0.DocTotal - T0.VatSum) as 'SO Amt'

FROM ORDR T0

WHERE T0.DocDate >= Date1 and T0.DocDate <= Date2

Date1 = current date - 7 days

Date2 = current date - 1 day

The requester wants this query's date range to be between the current date minus
seven days and the current date minus one day. However, the user could not ind a
proper way to complete it.

The solution for this query is:

SELECT T0.DocNum as 'SO No.',

T0.DocDate as 'Date',

T0.CardCode as 'Customer Code',

T0.CardName as 'Customer Name',

T0.NumAtCard as 'Ref/PO No.',

T0.DocCur as 'Currency',

(T0.DocTotal - T0.VatSum) as 'SO Amount'

FROM dbo.ORDR T0

WHERE DateDiff(DD, T0.DocDate, GetDate()) > 0 and

DateDiff(DD, T0.DocDate, GetDate()) < 8

This is a perfect example to show the power of the DateDiff function. As you can ind
from the previous chapter, the DateDiff function is the irst and the foremost date
function available to you. It would be a great tool to compare dates. It usually works
in many cases to solve date-related problems.

This query could be used to display all sales orders created within the past week.
No matter what their status is, all documents can be browsed with the query result
viewer. If it is associated with an alert, the alert can be sent automatically based on
the alert setting.

You may notice the > and < signs used instead of >= and <=. They are equivalent
when you adjust the date boundaries by one day, that is: 1-1 = 0 and 7+1 = 8.

Query Examples

[94]

To show the power of the DateDiff() function, even the irst example can be
changed using it. The following can be replaced:

MONTH(T0.RefDate)=Month(Getdate()) AND YEAR(T0.

RefDate)=YEAR(Getdate())

With the following:

DateDiff(mm,T0.RefDate,Getdate())=0 AND

DateDiff(yy,T0.RefDate,Getdate())=0

Orange arrow—an excellent tool for drill
down
"Orange arrow" or "Golden arrow" is a linked button in SAP Business One. I prefer
calling it "Orange arrow" because the color of the arrow is orange. It is not golden.

However, it will be called "Link Arrow" in the book to prevent any confusion.

Link arrow is an excellent tool to get detailed information directly from the query
result. This is one of the best functions within SAP Business One that makes SQL
query a much more powerful tool than some other printable only reporting tools.
When you click on the link arrow, you will immediately open the linked document.
It is very convenient.

Some queries will hide link arrows by default. Here is a partial list:

•	 Queries with a Union clause
•	 Queries for Formatted Search
•	 Queries with parameters declared
•	 Queries with certain restricted names in comment section
•	 Queries with only historical "A" tables

In the last case, you may still ind certain link arrows. However, they are only from
foreign keys.

If your query is not subjected to the previous list, it is always better to place "For
Browse" at the end of each and every SQL query to ensure that link arrows appear.

Chapter 4

[95]

Case 4-O1: Make it simple
A good example is a working query that returns all AR Invoices posted before the
current day, excluding weekends. However, when this query executes, there are no
drill-down arrows in the result for DocNum. So the question is: "Is there a way that
the drill-down arrows can appear in this query?" The original query is as follows:

declare @dt_today datetime,

@dt_yesterday datetime

select @dt_today = DATEADD(dd, DATEDIFF(dd,0,GETDATE()), 0)

select @dt_yesterday = case DATEPART(DW,@dt_today)

when 2 then DATEADD(dd, -3, @dt_today)

when 1 then DATEADD(dd, -2, @dt_today)

else DATEADD(dd, -1, @dt_today) end

SELECT T0.DocNum As 'Invoice number', T0.DocDate As 'Posting Date',

T0.DocTotal As 'Invoice Total', T0.GrosProfit As 'Gross Profit',

((T0.GrosProfit / (T0.DocTotal - T0.GrosProfit))*100) As 'Profit %',

T1.CardCode, T1.CardName, T0.NumAtCard As 'Customer PO#',

T2.GroupName,

T1.Phone1, T1.CntctPrsn

FROM OINV T0 INNER JOIN OCRD T1 ON T0.CardCode = T1.CardCode INNER

JOIN OCRG

T2 ON T1.GroupCode = T2.GroupCode WHERE T0.DocDate = @dt_yesterday

The solution query is listed as follows:

SELECT T0.DocNum As 'Invoice number',

T0.DocDate As 'Posting Date',

T0.DocTotal As 'Invoice Total',

T0.GrosProfit As 'Gross Profit',

(T0.GrosProfit/(T0.DocTotal-T0.GrosProfit))*100 As 'Profit %',

T1.CardCode,

T1.CardName,

T0.NumAtCard As 'Customer PO#',

T2.GroupName,

T1.Phone1,

T1.CntctPrsn

FROM dbo.OINV T0

INNER JOIN dbo.OCRD T1 ON T0.CardCode = T1.CardCode

INNER JOIN dbo.OCRG T2 ON T1.GroupCode = T2.GroupCode

WHERE DATEDIFF(DD, T0.DocDate, GetDate()) = 1 OR

(DATEDIFF(DD, T0.DocDate, GetDate()) = 3 AND DATEPART(dw,GetDate()) in

(1,2))

Query Examples

[96]

As you know, there will be no link arrow if there are parameters used in the query.
The solution is to get rid of those parameters. The condition under the WHERE
clause handles the various weekdays, so that parameters can be omitted. Here,
DATEDIFF(DD, T0.DocDate, GetDate()) = 1 covers current weekdays, while
DATEDIFF(DD, T0.DocDate, GetDate()) = 3 AND DATEPART(dw,GetDate()) in

(1,2) handles days for weekends.

This solution just assumes that the original logic works. If you ind out that it may
not cover all possibilities, it is necessary to ine tune it to it your condition.

The most important hint from this example is: whenever possible, do not use
parameters if the link arrow is very important to you.

Case 4-O2: Sales order updating alert with
drill down
A requested query is needed to list a sales order's amendments. Then, an alert can
be created based on this query, so that it runs once a day and shows the sales orders
that have been amended during that particular day. The sales order has to allow you
to drill down.

The solution is:

SELECT DISTINCT T1.DocNum,

T0.DocStatus,

T0.DocDate,

T0.DocDueDate,

T0.CardCode,

T0.CardName

FROM dbo.ADOC T0

INNER JOIN dbo.ORDR T1 ON T1.DocNum = T0.DocNum AND T0.ObjType = '17'

WHERE DateDiff(d,T0.UpdateDate,GETDATE()) <= 0

FOR BROWSE

Chapter 4

[97]

In the query, joining table ORDR is the key to overcome the dificulty due to all
history log tables' inability to show link arrow. By linking the current table to the
ADOC table, the sales order can be opened through query result without any
problem.

The T0.ObjType = '17' in the query is the way to extract only the sales order from
the ADOC table. Sales order's object type is '17'.

If you have multiple series for document number, a third condition is needed for
INNER JOIN clause: AND T1.Series = T0.Series.

There is an interesting difference for this particular query. It can get the link arrow
in 2007A version without the last FOR BROWSE clause. However, it is mandatory
for version 8.8. This book is tested in both versions. I believe, even 2005 version users
could run most (if not all) of the queries within this book.

The ADOC table is a very useful table. It holds all historical records
for all marketing documents and certain inventory documents such as
Goods Receipt and Goods Issue. As I mentioned in the previous chapter,
this table is wrongly called Invoice History. In fact, it should be called
Documents History. You can ind individual type documents by their
object type. This object type list can be found at the end of the book.

Getting a subtotal from the query
Quite frequently someone will want to display either a subtotal or total within the
query. It is possible in the following ways. This is not the complete list, but they are
the most often used methods:

•	 By Union ALL

•	 By running total

•	 By system

Query Examples

[98]

The last method is very simple. It is a SAP Business One internal function. You can get
the column total under the query result window using Ctrl+Click on the column header
if the column is a numeric value. The following screenshot shows you an example:

Case 4-T1: By Union ALL
A request to add a summary to the following query script:

SELECT T0.[DocNum] as 'SO No.',

T0.[DocDate] as 'Date',

T0.[CardCode] as 'CustCode',

T0.[CardName] as 'Customer Name',

T0.[NumAtCard] as 'Ref/PO No.',

(T0.[DocTotalSy] - T0.[VatSumSy]) as 'SO Amt',

T2.[FrozenComm], T0.Comments

FROM ORDR T0

INNER JOIN OCRN T1 ON T0.DocCur = T1.CurrCode

INNER JOIN OCRD T2 ON T0.CardCode = T2.CardCode

WHERE DateDiff(DD, T0.DocDate, GetDate()) > 0 AND

DateDiff(DD, T0.DocDate, GetDate()) < 8 and

T0.[Canceled]='N'

ORDER BY T0.[DocDate], T0.[DocNum]

Chapter 4

[99]

Here is the solution:

SELECT T0.[DocNum] as 'SO No.',

T0.[DocDate] as 'Date',

T0.[CardCode] as 'CustCode',

T0.[CardName] as 'Custome Name',

T0.[NumAtCard] as 'Ref/PO No.',

(T0.[DocTotalSy] - T0.[VatSumSy]) as 'SO Amt',

T2.[FrozenComm], T0.Comments

FROM dbo.ORDR T0

INNER JOIN dbo.OCRN T1 ON T0.DocCur = T1.CurrCode

INNER JOIN dbo.OCRD T2 ON T0.CardCode = T2.CardCode

WHERE DateDiff(DD, T0.DocDate, GetDate()) > 0 and

DateDiff(DD, T0.DocDate, GetDate()) < 8 AND

T0.[Canceled]='N'

UNION ALL

SELECT '', NULL,'Total','','', SUM(T0.[DocTotalSy] - T0.[VatSumSy]) ,

'', ''

FROM dbo.ORDR T0

INNER JOIN dbo.OCRN T1 ON T0.DocCur = T1.CurrCode

INNER JOIN dbo.OCRD T2 ON T0.CardCode = T2.CardCode

WHERE DateDiff(DD, T0.DocDate, GetDate()) > 0 and

DateDiff(DD, T0.DocDate, GetDate()) < 8 AND

T0.[Canceled]='N'

In the previous solution, the Union All clause is used. It can effectively add the
same data from the irst part of the query. Other than the SUM(T0.[DocTotalSy] -
T0.[VatSumSy]) column, all other columns are set to a null value or replaced by
text. The number of columns as well as the data types must be the same for the irst
part of the query above UNION ALL and for the second part of the query below the
UNION ALL as well.

Case 2: By running total
A very common requirement is to add a running total to each line within the query
with the last line giving you a total of the entire query result. There is a way to do
this but it is extremely dificult and would take a long time. I would suggest you
don't attempt to provide a running total, but instead use the Export to Excel feature
available and then produce the running total column within Excel.

Query Examples

[100]

Query for marketing documents
Marketing Documents is the term used in SAP Business One to represent both
purchasing and sales documents. They also include A/P and A/R documents such
as A/P Invoice or A/R Credit Memo. This category is one of the most targeted areas
for query. Based on the chart shown in the irst part of the chapter, it represents more
than 60 percent of the query questions, which I have dealt with in the past.

Case 4-M1: Overview of BP with selection of
realized balance
Here is an example request to get an overview of all customers which realized
sales greater than 1,000 for the current year. The columns in need are the business
partner's name, address, zip code, city, and email address.

The following is the solution query:

SELECT T0.cardname, T0.address, T0.zipcode, T0.city, T0.e_mail

FROM dbo.OCRD T0

WHERE T0.CardCode IN

(SELECT T1.CardCode

FROM dbo.OINV T1 WHERE Year(T1.DocDate) = Year(Getdate())

GROUP BY T1.CardCode

Having SUM(T1.DocTotal) > [%0])

This solution will check much more than a ixed 1,000 amount. It can be any amount
the users are interested in. The subquery under IN clause is the real solution. This
query summarizes all customers' current year invoice totals. Then it compares with
the user entered value. The last statement in the subquery is the key to the solution.

GROUP BY T1.CardCode

Having SUM(T1.DocTotal) > [%0]

This means that only the customers with sales amounts greater than a user-deined
amount will be shown. The discussion of the subquery will be pushed to the end of
the book.

Case 4-M2: Top ive items sold
Sales ranking is one of the hot topics everywhere. There is no difference for SAP
Business One users. There are quite a few questions with similar requests. They need
certain top items sold during a certain period of time.

Chapter 4

[101]

The solution query is as follows; it has top ive items along with sales values between
the user's deinable date ranges:

SELECT TOP 5 T1.ItemCode,

MAX(T1.Dscription) as 'Item Description',

SUM(T1.LineTotal) as 'Amount(LC)'

FROM dbo.OINV T0

INNER JOIN dbo.INV1 T1 ON T1.DocENtry = T0.DocENtry

WHERE T0.docdate >= [%0] and T0.docdate <= [%1]

AND T0.doctype = 'I'

GROUP BY T1.ItemCode

ORDER BY SUM(T1.LineTotal) DESC

This query has just looked up Invoice tables OINV and INV1. The irst table is the
header. The other table is line detail of A/R invoices.

•	 TOP 5 T1.ItemCode here will list ive item codes that have the highest sale
values during a speciic period. You can change it to any number you like, or
go by the percentage.

•	 Max(T1.Dscription) here has two advantages:

	° It is convenient to omit the column from grouping.

	° It is very useful when your query includes multiple values in the
document. It can just return one item name instead of many different
names in the document for the same item. In other words, the query
only cares about item code.

•	 SUM(T1.LineTotal) means the summary amount – in local currency – of the
items sold in all invoice lines.

•	 T0.docdate >= [%0] and T0.docdate <= [%1] deine the user input date
range. Although this code is longer than using between, an advantage of this
is clearly showing the description of the date range greater than or equal to
and smaller than or equal to on the screen. If using between, the description
displayed before variables will not be very clear.

•	 T0.doctype = 'I' is to limit the document to item type only.

•	 GROUP BY T1.ItemCode is used to make sure summary will be based on
Item code.

•	 The last line ORDER BY SUM(T1.LineTotal) DESC means the query result
will be based on the descending order of the summary of the line total.

Query Examples

[102]

This query is only a rough estimate of the items sold. It has not taken credit
memo into consideration. In order to make sure the credit memos are taken into
consideration, it is best to include the UNION function and then the complete query
should be as follows:

SELECT TOP 5 S.ItemCode,

MAX(S.Description) as 'Item Description',

SUM(S.LineTotal) as 'Amount(LC)'

FROM

(SELECT T1.ItemCode AS 'ItemCode',

T1.Dscription AS 'Description',

T1.LineTotal AS 'LineTotal'

FROM dbo.OINV T0

INNER JOIN dbo.INV1 T1 ON T1.DocENtry = T0.DocENtry

WHERE T0.docdate >= [%0] and T0.docdate <= [%1]

AND T0.doctype = 'I'

UNION

SELECT T1.ItemCode AS 'ItemCode',

T1.Dscription AS 'Description',

-T1.LineTotal AS 'LineTotal'

FROM dbo.ORIN T0

INNER JOIN dbo.RIN1 T1 ON T1.DocENtry = T0.DocENtry

WHERE T0.docdate >= [%0] and T0.docdate <= [%1]

AND T0.doctype = 'I') S

GROUP BY S.ItemCode

ORDER BY SUM(S.LineTotal) DESC

This solution requires a subquery. The topic of the subquery will be discussed in the
last chapter of the book. There are two queries inside the subquery. They are linked
together by the Union clause. The second query only changes the tables from INV
related to RIN related, or invoice related to credit memo. Another change is adding a
minus sign for the T1.LineTotal column for credit memo.

GROUP BY S.ItemCode will ensure only one line for each item code with
summary data.

Chapter 4

[103]

Case 4-M3: A ilter by notes from OCRD
The following query is an example for displaying pending sales orders, which have
not been shipped completely to the customer. The requirement is to add a ilter by
notes column from the OCRD table.

SELECT T1.DocNum as 'Sales Order No', T1.DocDate as 'Sales Order

Date',

 T1.CardName, T0.Dscription, T0.Quantity as 'Sales Order Qty',

T0.Quantity-T0.OpenQty as 'Delivered Qty', T0.OpenQty as 'Balance

Qty',T0.Price as 'Selling Price', T0.OpenQty*T0.Price as 'Open Amount'

FROM dbo.RDR1 T0

INNER JOIN dbo.ORDR T1 ON T0.DocEntry = T1.DocEntry

INNER JOIN dbo.ITM1 T2 ON T0.ItemCode = T2.ItemCode AND T2.PriceList =

1

where T1.DocDate between [%0] and [%1] AND T1.U_Department =[%2] AND

T0.LineStatus = 'O'

The solution is:

SELECT T1.DocNum as 'Sales Order No',

T1.DocDate as 'Sales Order Date',

T1.CardName, T0.Dscription,

T0.Quantity as 'Sales Order Qty',

T0.Quantity-T0.OpenQty as 'Delivered Qty',

T0.OpenQty as 'Balance Qty',

T0.Price as 'Selling Price',

T0.OpenQty*T0.Price as 'Open Amount', T3.Notes

FROM dbo.RDR1 T0

INNER JOIN dbo.ORDR T1 ON T0.DocEntry = T1.DocEntry

INNER JOIN dbo.ITM1 T2 ON T0.ItemCode = T2.ItemCode AND T2.PriceList =

1

INNER JOIN dbo.OCRD T3 ON T3.CardCode = T1.CardCode

WHERE T1.DocDate between [%0] and [%1] AND

T0.LineStatus = 'O' AND T3.Notes LIKE '%[%2]%'

This is a very simple question with an easy solution. I put it here to help you
understand the table relationship and how to add another table.

The OCRD table holds all business partners' data. It is used very often in marketing
documents. No matter whether it is for sales analysis or purchase analysis queries,
this table is often needed to get more business partner related information.

Query Examples

[104]

Case 4-M4: Adding sales employees' names
to a query
A user would like to add the name of the Sales Employee that created the Sales
Order to an existing query. However, the user is not sure which JOINS need to be
added to which table. Here is what the query looks like:

SELECT T0.DocNum as 'SO No.', T0.DocDate as 'Date', DateDiff(DD,

T0.DocDate,

GetDate()) AS 'DayDiff', T0.CardCode as 'Customer Code', T0.CardName

as 'Customer Name',

T0.NumAtCard as 'Ref/PO No.', (T0.DocTotal - T0.VatSum) as 'SO Amt'

FROM OINV T0

WHERE

DateDiff(DD, T0.DocDate, GetDate()) >= '1' AND DateDiff(DD,

T0.DocDate, GetDate()) <= '7'

The solution is:

SELECT T0.DocNum as 'SO No.',

T0.DocDate as 'Date',

DateDiff(DD, T0.DocDate,GetDate()) AS 'DayDiff',

T0.CardCode as 'Customer Code',

T0.CardName as 'Customer Name',

T0.NumAtCard as 'Ref/PO No.',

(T0.DocTotal - T0.VatSum) as 'SO Amt',

T1.SLPName

FROM dbo.ORDR T0

INNER JOIN dbo.OSLP T1 ON T1.SLPCODE=T0.SLPCODE

WHERE DateDiff(DD, T0.DocDate, GetDate()) BETWEEN 1 AND 7

Although the solution mentioned earlier is the right solution, the person found out
they actually required the Sales Employee in the context of it being the "Owner", as
seen in the ield under the Sales Employee box on a Sales Order instead. So, the inal
solution is:

SELECT T0.DocNum as 'SO No.',

T0.DocDate as 'Date',

DateDiff(DD, T0.DocDate,GetDate()) AS 'DayDiff',

T0.CardCode as 'Customer Code',

T0.CardName as 'Customer Name',

T0.NumAtCard as 'Ref/PO No.',

(T0.DocTotal - T0.VatSum) as 'SO Amt',

Chapter 4

[105]

T1.LastName+', '+T1.firstName as 'Owner'

FROM dbo.ORDR T0

INNER JOIN dbo.OHEM T1 ON T1.empID=T0.OwnerCode

WHERE DateDiff(DD, T0.DocDate, GetDate()) BETWEEN 1 AND 7

To join tables, the irst thing to do is to ind the relationship between tables. This
task cannot be done without a good data dictionary. Again, the table reference from
SDK help should be used to ind this information. T1.empID=T0.OwnerCode gave the
right link between the ORDR and OHEM tables.

The irst solution gave the right link between the ORDR and OSLP tables. That link is
simpler because the primary key name SlpCode in the OSLP table is the same as the
foreign key name SlpCode in the ORDR table. The actual name of the Sales Person in
the OSLP table can be retrieved through these table joins.

Case 4-M5: A case for solution just from
deduction
Depending on your localization, sometimes you might need to know which A/R
Credit Memos still have not been converted into Incoming Excise Invoices.

The following query was initially created to display the Incoming Excise Invoices,
and has the AR Credit Memo as a base document. However, the initial attempt was
not successful.

SELECT distinct T0.[DocNum], T0.[DocDate], T0.[CardName], T1.[BaseRef]

as 'Credit Memo No', T1.[BaseType]

FROM OIEI T0 INNER JOIN IEI1 T1 ON T0.DocEntry = T1.DocEntry

WHERE T0.[DocDate] between '[%0]' and '[%1]' and T1.BaseType ='14'

Here is the solution:

SELECT distinct T0.[DocNum],

T0.[DocDate],

T0.[CardName]

FROM dbo.ORIN T0

INNER JOIN dbo.RIN1 T1 ON T0.DocEntry = T1.DocEntry

WHERE T0.[DocDate] between '[%0]' and '[%1]' and T1.TargetType != XXX

Query Examples

[106]

This is a typical case of getting the query solution to test without the actual tables. To
ind out if something is not being done, you always need to check the source table.
There is no way to get such information from the target table. This is because, before
copying the source table to a target table, nothing can be found in the target table yet.

With the solution, the source Credit Memo tables ORIN and RIN1 are checked. The
ORIN table is the header table to get the date range. The RIN1 table is the row table
to check if the target Incoming Excise Invoices have been converted or not. Since the
TargetType for Incoming Excise Invoices is unknown to me, I have left it as XXX. It
can be found easily if you have this object.

The symbol != instead of <> is used within the book. They are equivalent; the latter
symbol (Greater Than or Smaller Than) may not be able to display well on the web.
Also, the symbol != is more straightforward to stand for Not (!) Equal (=).

Case 4-M6: Goods Receipt PO within 10 days
A good way to manage warehouse receipts is to create a list of Goods Receipt POs
and review it periodically. However, there is a special requirement of all distinct
vendors who have supplied material in user deined 10 days and whose total
quantity – transaction wise – is less than 10. For example, suppose the date range is
ive days, then if the total number of Goods Receipt PO on any given day is in the
range less than or equal to ive, the document's total summary for the vendor should
be listed.

The solution:

SELECT T0.CardCode,

Max(T0.Cardname) 'Vendor Name',

SUM(T0.DocTotal) 'Total'

FROM dbo.OPDN T0

WHERE T0.DocDate >= '[%0]'

AND T0.DocDate <= '[%0]' + 10

AND T0.CardCode NOT in (SELECT T1.CardCode FROM OPDN T1 WHERE

T1.DocDate >= '[%0]' AND T1.DocDate <= '[%0]' + 10

GROUP BY T1.CardCode, T1.DocDate Having COUNT(T1.DocDate) > 10)

GROUP BY T0.CardCode

ORDER BY T0.CardCode

This request is somewhat special compared to all other query requirements. The
tricky part is how to get the count of the documents correctly.

Chapter 4

[107]

The key part of the solution is again by a subquery:

SELECT T1.CardCode FROM OPDN T1 WHERE T1.DocDate >= '[%0] ' AND

T1.DocDate <= '[%0] ' + 10

GROUP BY T1.CardCode, T1.DocDate Having COUNT(T1.DocDate) > 10

This subquery will return the list of vendors that have more than 10 transactions
during any speciic day in the selected date range. Those vendors who are not in
this list will be displayed. The 10 days can be changed to a variable. However, the
display of the variable will be misleading because it is the same as the irst one.
If you change this 10 to [%1], you will soon ind out that the variable description
changes to "posting date smaller or equal".

Case 4-M7: Quantity purchased, received, and
returned
A very common requirement in the purchasing function inside companies is to have
a query to capture the quantity purchased, quantity received, and quantity returned.

The solution is to link the required tables by left join:

SELECT T0.ItemCode,

SUM(T0.Quantity) 'PO Qty',

SUM(T1.Quantity) 'GRPO Qty',

SUM(T2.Quantity) 'Return Qty'

FROM dbo.POR1 T0

LEFT JOIN dbo.PDN1 T1

ON T0.DocEntry = T1.BaseEntry AND T0.LineNum = T1.BaseLine

LEFT JOIN dbo.RPD1 T2

ON T1.DocEntry = T2.BaseEntry AND T1.LineNum = T2.BaseLine

WHERE T0.ItemCode is not NULL AND T0.DocDate >= [%0] AND T0.DocDate <=

[%1]

GROUP BY T0.ItemCode

ORDER BY T0.ItemCode

There are three tables used within the query:

•	 POR1: Purchase Order Rows

•	 PDN1: Goods Receipt PO Rows

•	 RPD1: Goods Return Rows

Query Examples

[108]

LEFT JOIN is essential here. We need to list all Purchase Orders during the user
selected periods. However, not all Purchase Orders have been received yet. There
are even fewer Goods Returns. (No business can survive if all goods purchased
have been returned!) By LEFT JOIN clause, it will not bind any Goods Receipt PO or
Goods Returns to the Purchase Order. Only when there are target documents, will
they be included. Therefore, all Purchase Orders will be in the report regardless of
whether the target documents exist or not. This unbinding feature is a useful tool to
get a complete list with or without data binding to the main entry.

In this way, quantity purchased, quantity received, and quantity returned will be
listed in three columns for each item number. The irst column is item code. The
second column must be full, because all item codes are taken from POR1. The third
and the last column should have empty lines if the Purchase Orders have not been
received in full during the selected period.

Case 4-M8: Customized sales analysis report
Sometimes users are looking for a customized Sales Analysis query report so that
they can export the query result to Excel.

This query should include Invoices and Credit Memos, or the debit and the credit
columns in the journal entries details.

Here is the half done query that needs to be completed:

SELECT Distinct T0.[CardCode],

T0.[CardName],

(SELECT (SUM(T2.Debit) - sum(T2.Credit))

FROM OCRD T0 INNER JOIN JDT1 T1 ON T1.ShortName = T0.CardCode

WHERE T0.CardType = 'C' AND DateDiff(DD,T2.Duedate,GetDate()) between

0 and 30) AS 'Present Month',

FROM OCRD T0

INNER JOIN JDT1 T1 ON T1.ShortName = T0.CardCode

WHERE T0.CardType = 'C'

The query should pick up all sales amounts for those months such as July and
August. It also needs to remove payment transactions from the query results to show
only the invoices/credit memo amounts.

The solution is:

SELECT T0.[CardCode],

T0.[CardName],

(SUM(T1.Debit) - sum(T1.Credit)) AS 'July',

(SUM(T2.Debit) - sum(T2.Credit)) AS 'August'

Chapter 4

[109]

FROM dbo.OCRD T0

LEFT JOIN dbo.JDT1 T1 ON T1.ShortName = T0.CardCode AND Month(T1.

Duedate) = 7 AND Year(T1.Duedate) = Year(GetDate()) AND T1.TransType

in ('13','14')

LEFT JOIN dbo.JDT1 T2 ON T2.ShortName = T0.CardCode AND Month(T2.

Duedate) = 8 AND Year(T2.Duedate) = Year(GetDate()) AND T2.TransType

in ('13','14')

WHERE T0.CardType = 'C'

Group By T0.[CardCode], T0.[CardName]

Since this solution query only deals with journal entry tables, it should be under the
inancial query section. However, in common sense, sales analysis should be covered
within sales. That is why it is under this category. All query records are extracted
from the journal lines with TransType in ('13','14'). All those lines are the
result of automatic posting of A/R Invoices or A/R Credit Memos. So it makes sense
to be under this category.

The irst thing you should notice is that TransType in ('13','14') is equivalent
to ObjType in ('13','14') in the ADOC table. The difference is only the column
name. Under the journal entry, they are different transactions. Before the journal
entry, they are only different objects.

In this query, you can see the JDT1 table joined twice to the OCRD table. By using
two aliases from two joins, the query result can show the same table with different
selections for the same Shortname (equivalent to CardCode in the OCRD table).

Case 4-M9: Average sales per month
A user worked out a query to get the average sales for 2009:

SELECT T0.CardCode, T0.CardName, (SUM(T1.Debit) - sum(T1.Credit)) AS

'2009', ((SUM(T1.Debit) - sum(T1.Credit))/12)

FROM OCRD T0

LEFT JOIN JDT1 T1 ON T1.ShortName = T0.CardCode LEFT JOIN JDT1 T2

ON T2.ShortName = T0.CardCode WHERE T0.CardType = 'C' AND Year(T1.

Duedate) = 2009 Group By T0.CardCode, T0.CardName

The question is how to include the average sales for 2010 in the same query too.

Query Examples

[110]

The solution is:

SELECT T0.CardCode, T0.CardName,

(SUM(T1.Debit) - sum(T1.Credit)) AS '2009',

((SUM(T1.Debit) - sum(T1.Credit))/12) AS '2009 Avg',

(SUM(T2.Debit) - sum(T2.Credit)) AS '2010',

((SUM(T2.Debit) - sum(T2.Credit))/Month(GetDate()))AS '2010 Avg'

FROM dbo.OCRD T0

LEFT JOIN dbo.JDT1 T1 ON T1.ShortName = T0.CardCode AND Year(T1.

Duedate) = 2009 AND T1.TransType in ('13','14')

LEFT JOIN dbo.JDT1 T2 ON T2.ShortName = T0.CardCode AND Year(T2.

Duedate) = 2010 AND T2.TransType in ('13','14')

WHERE T0.CardType = 'C'

Group By T0.CardCode, T0.CardName

This query structure is similar to the previous example. The concept is the same. You
can always use two separate joins to the same table by different aliases and selections
to get the different scopes of data under the same line of query result. Maybe your
company also has a requirement to see the average sales per month. This average is a
good tool for the sales personnel to forecast and project their upcoming year.

Case 4-M10: Credit Memo user check
This example is to show the credit memo, document number, and the change log
user name for the credit memo.

A user had tried to use the ADOC table but could not ind the link between this and
the credit memo.

SELECT T0.[DocNum], T0.[DocType], T0.[ObjType], T0.[CardCode],

T0.[CardName], T0.[UserSign], T0.[UserSign2]

FROM ADOC T0 WHERE T0.[ObjType] = '14'

This query does not show the same data as the change log screen. With the query,
updated user is always the same user as the original user.

The solution is:

SELECT Distinct T0.[DocNum], T1.DocNum, T0.[DocType], T0.[CardCode],

T0.[CardName], T0.[UserSign], T0.[UserSign2], T1.[UserSign],

T1.[UserSign2]

FROM dbo.ADOC T0

Chapter 4

[111]

INNER JOIN dbo.ORIN T1 ON T0.DocNum = T1.DocNum

WHERE T0.[ObjType] = '14' AND T0.[UserSign2] != T1.[UserSign2]

The irst query just looks at the historical log of credit memos from ADOC. It
therefore could not get the required information.

In the solution query, by joining the ORIN table, that is, the current credit memo table
and adding the column from this table, the query result should satisfy the needs. The
condition T0.[UserSign2] != T1.[UserSign2] will list all records in the query
results if the user who updates the document is not the same as the current one.

This is a good example of what many users are looking for in the instance of who has
changed a document. It is an extension to "Change Log" for showing all changes.

Case 4-M11: Delivery date on sales order
A user requests an SQL query that identiies when the delivery date on a Sales Order
is modiied from the original date. This query needs to list who made the change
and the date of the change. It will be a base query for an alert in case any changes are
made on a sales order.

It has been doubly conirmed that the query results do not need to include the
delivery dates from the initial set up of a Sales Order.

The solution is:

SELECT T0.DocNum,

MAX(T1.UpdateDate) 'Last Update'

From dbo.ADOC T0

JOIN dbo.ADOC T1 on T1.DocNum = T0.DocNum AND T1.ObjType = '17'

WHERE T0.ObjType = '17' and T0.DocDuedate != T1.DocDueDate

Group BY T0.DocNum

In this solution query, a self join is used for the ADOC table. T0 and T1 are all
referred to in the same table. The query checks the same document number with
the object type of '17', that is, sales order records. If the query inds that the
DocDueDates are not the same, the results of the document number and the latest
update will be returned.

Query Examples

[112]

Be careful to run this query if you have a long history and a
large size database. ADOC table has too many records. Self
join of this table is not recommended. Unless you know
exactly what you are looking for, do not try any other self
join of ADOC. This applies to AJDT and AJD1 tables too.

Case 4-M12: Reducing from two to one line
for the sales summary
A user wants to show quantity, sales dollar amount, and tax amount for each
warehouse and customer group.

The following is the query by the user, but the query results have two lines for each
warehouse and customer group combination.

SELECT

T1.WhsCode AS 'WH',

T3.GroupName AS 'Cust Grp',

Sum(T1.Quantity) AS 'Quantity',

Sum(T1.LineTotal) AS 'Sls Dlr Amt',

Sum(T1.LineVat) AS 'Tax Amt'

FROM OINV T0

INNER JOIN INV1 T1

ON T0.DocEntry = T1.DocEntry

INNER JOIN OCRD T2

ON T0.CardCode = T2.CardCode

INNER JOIN OCRG T3

ON T2.GroupCode = T3.GroupCode

WHERE

T1.DocDate >= '[%0]' AND T1.DocDate <= '[%1]'

AND T0.DocType = 'I'

GROUP BY

T1.WhsCode,

T3.GroupName

UNION

SELECT

T1.WhsCode AS 'WH',

T3.GroupName AS 'Cust Grp',

Sum(T1.Quantity) * -1 AS 'Quantity',

Chapter 4

[113]

Sum(T1.LineTotal) * -1 AS 'Sls Dlr Amt',

Sum(T1.LineVat) * -1 AS 'Tax Amt'

FROM ORIN T0

INNER JOIN RIN1 T1

ON T0.DocEntry = T1.DocEntry

INNER JOIN OCRD T2

ON T0.CardCode = T2.CardCode

INNER JOIN OCRG T3

ON T2.GroupCode = T3.GroupCode

WHERE

T1.DocDate >= '[%0]' AND T1.DocDate <= '[%1]'

AND T0.DocType = 'I'

GROUP BY

T1.WhsCode,

T3.GroupName

ORDER BY

T1.WhsCode,

T3.GroupName

The solution is:

SELECT

T3.WhsCode AS 'WH',

T1.GroupName AS 'Cust Grp',

(Sum(ISNULL(T3.Quantity,0)) - Sum(ISNULL(T5.Quantity,0))) AS

'Quantity',

(Sum(ISNULL(T3.LineTotal,0)) - Sum(ISNULL(T5.LineTotal,0))) AS 'Sls

Dlr Amt',

(Sum(ISNULL(T3.LineVat,0)) - Sum(ISNULL(T5.LineVat,0))) AS 'Tax Amt'

FROM dbo.OCRD T0

INNER JOIN dbo.OCRG T1 ON T0.GroupCode = T1.GroupCode

INNER JOIN dbo.OINV T2 ON T0.CardCode = T2.CardCode AND T2.DocType =

'I'

INNER JOIN dbo.INV1 T3 ON T2.DocEntry = T3.DocEntry

LEFT JOIN dbo.ORIN T4 ON T0.CardCode = T4.CardCode AND T4.DocType =

'I'

LEFT JOIN dbo.RIN1 T5 ON T4.DocEntry = T5.DocEntry AND T3.WhsCode =

T5.WhsCode

Group By

T3.WhsCode, T1.GroupName

Query Examples

[114]

This solution returns one line per warehouse and customer group combination. This
is again taken out by the Union clause. If the Union clause is in use, the query will
always have two lines for each individual combination.

Left Joins are used in the query for ORIN and RIN1 tables to ensure no invoice will
be missing from the query results. Otherwise, if by inner join, only invoice with
credit memo will be shown. All other invoices will be iltered out.

ISNULL(T3.Quantity,0) and other similar formula are here to ensure no NULL
value will affect the query result.

Case 4-M13: Tax code summary
Taxation is always an important topic in companies due to the complexity of taxes
and possible errors with the entry of tax codes. An excellent report to have is to show
if there are two types of tax codes in one document.

SELECT M.CardCode,M.CardName as 'Vendor Name',

(SELECT Sum(TaxSum) FROM PCH4 where (statype=1 or statype=7) and

relatetype = 1 and DocEntry=M.DocEntry) as 'AmountOfTax'FROM OPCH M

Inner JOIN PCH1 L on L.DocEntry=M.DocEntry

Inner JOIN PCH4 T on T.DocEntry=L.DocEntry

Inner JOIN PCH12 T0 on T.DocEntry=L.DocEntry

INNER JOIN OLCT T2 ON L.LocCode = T2.Code

WHERE M.DocDate >= %1 and M.DocDate <= %2 and t.statype = 1 GROUP BY

M.CardCode,M.CardName,M.DocEntry, T.stccode ORDER BY

M.CardName,M.DocEntry

The solution is:

SELECT M.CardCode,M.CardName as 'Vendor Name',

(SELECT Sum(TaxSum) FROM PCH4 where statype=1 and relatetype = 1 and

DocEntry=M.DocEntry) as 'AmountOfTax1',

(SELECT Sum(TaxSum) FROM PCH4 where statype=7 and relatetype = 1 and

DocEntry=M.DocEntry) as 'AmountOfTax2'

FROM dbo.OPCH M Inner JOIN PCH1 L on L.DocEntry=M.DocEntry

Inner JOIN dbo.PCH4 T on T.DocEntry=L.DocEntry

Inner JOIN dbo.PCH12 T0 on T.DocEntry=L.DocEntry

INNER JOIN dbo.OLCT T2 ON L.LocCode = T2.Code

WHERE M.DocDate >= [%1] and M.DocDate <= [%2] AND

(t.statype = 1 or t.statype = 7)

GROUP BY

M.CardCode,M.CardName,M.DocEntry, T.stccode

ORDER BY

M.CardName,M.DocEntry

Chapter 4

[115]

This is another example query that is solved just by logical checking. LocCode is only
available in the purchase order detail in certain localizations, so it is not available
to test. However, the right query solution only needs the right logic. If the original
query is working, the new query will work one hundred percent because it follows
the same logic. The only difference is to change the OR condition under one or
two columns.

PCH related tables are for A/P Invoices. OPCH is the header. PCH4 is for the Tax
Amount per Document. PCH12 is the Tax Extension.

Using mixed aliases in the query such as M, L, T, T0, etc is not good practice. I left
the original unchanged just as an example to show you that this is awkward.

Case 4-M14: Sales by states
Depending upon the size and organizational sales department structure of your
company, you might need to show monthly sales by each state.

The solution is:

SELECT T0.State1 AS 'Bill-to State',

(SELECT SUM(T1.DocTotal) FROM OINV T1 with (NOLOCK)

INNER JOIN OCRD T2 ON T2.CardCode=T1.CardCode

WHERE MONTH(T1.DOCDATE) = 1 AND T2.State1 = T0.State1

AND YEAR(T1.DOCDATE) = YEAR(GETDATE())) AS 'JAN Amt',

(SELECT SUM(T1.DocTotal) FROM OINV T1 with (NOLOCK)

INNER JOIN OCRD T2 ON T2.CardCode=T1.CardCode

WHERE MONTH(T1.DOCDATE) = 2 AND T2.State1 = T0.State1

AND YEAR(T1.DOCDATE) = YEAR(GETDATE())) AS 'FEB Amt',

(SELECT SUM(T1.DocTotal) FROM OINV T1 with (NOLOCK)

INNER JOIN OCRD T2 ON T2.CardCode=T1.CardCode

WHERE MONTH(T1.DOCDATE) = 3 AND T2.State1 = T0.State1

AND YEAR(T1.DOCDATE) = YEAR(GETDATE())) AS 'MAR Amt',

(SELECT SUM(T1.DocTotal) FROM OINV T1 with (NOLOCK)

INNER JOIN OCRD T2 ON T2.CardCode=T1.CardCode

WHERE MONTH(T1.DOCDATE) = 4 AND T2.State1 = T0.State1

AND YEAR(T1.DOCDATE) = YEAR(GETDATE())) AS 'APR Amt',

(SELECT SUM(T1.DocTotal) FROM OINV T1 with (NOLOCK)

INNER JOIN OCRD T2 ON T2.CardCode=T1.CardCode

WHERE MONTH(T1.DOCDATE) = 5 AND T2.State1 = T0.State1

AND YEAR(T1.DOCDATE) = YEAR(GETDATE())) AS 'MAY Amt',

(SELECT SUM(T1.DocTotal) FROM OINV T1 with (NOLOCK)

INNER JOIN OCRD T2 ON T2.CardCode=T1.CardCode

WHERE MONTH(T1.DOCDATE) = 6 AND T2.State1 = T0.State1

AND YEAR(T1.DOCDATE) = YEAR(GETDATE())) AS 'JUN Amt',

Query Examples

[116]

(SELECT SUM(T1.DocTotal) FROM OINV T1 with (NOLOCK)

INNER JOIN OCRD T2 ON T2.CardCode=T1.CardCode

WHERE MONTH(T1.DOCDATE) = 7 AND T2.State1 = T0.State1

AND YEAR(T1.DOCDATE) = YEAR(GETDATE())) AS 'JUL Amt',

(SELECT SUM(T1.DocTotal) FROM OINV T1 with (NOLOCK)

INNER JOIN OCRD T2 ON T2.CardCode=T1.CardCode

WHERE MONTH(T1.DOCDATE) = 8 AND T2.State1 = T0.State1

AND YEAR(T1.DOCDATE) = YEAR(GETDATE())) AS 'AUG Amt',

(SELECT SUM(T1.DocTotal) FROM OINV T1 with (NOLOCK)

INNER JOIN OCRD T2 ON T2.CardCode=T1.CardCode

WHERE MONTH(T1.DOCDATE) = 9 AND T2.State1 = T0.State1

AND YEAR(T1.DOCDATE) = YEAR(GETDATE())) AS 'SEP Amt',

(SELECT SUM(T1.DocTotal) FROM OINV T1 with (NOLOCK)

INNER JOIN OCRD T2 ON T2.CardCode=T1.CardCode

WHERE MONTH(T1.DOCDATE) = 10 AND T2.State1 = T0.State1

AND YEAR(T1.DOCDATE) = YEAR(GETDATE())) AS 'OCT Amt',

(SELECT SUM(T1.DocTotal) FROM OINV T1 with (NOLOCK)

INNER JOIN OCRD T2 ON T2.CardCode=T1.CardCode

WHERE MONTH(T1.DOCDATE) = 11 AND T2.State1 = T0.State1

AND YEAR(T1.DOCDATE) = YEAR(GETDATE())) AS 'NOV Amt',

(SELECT SUM(T1.DocTotal) FROM OINV T1 with (NOLOCK)

INNER JOIN OCRD T2 ON T2.CardCode=T1.CardCode

WHERE MONTH(T1.DOCDATE) = 12 AND T2.State1 = T0.State1

AND YEAR(T1.DOCDATE) = YEAR(GETDATE())) AS 'DEC Amt'

FROM dbo.OCRD T0

LEFT JOIN dbo.OINV T1 ON T1.CardCode = T0.CardCode

GROUP BY T0.State1

ORDER BY T0.State1

This is an example of the traditional way of building a query based on months. You
might have noticed, all columns beside T0.State1 have the same logic. The only
difference between them is the months selected. This query is for the current year
and includes only invoices. The year can be changed easily such as: (T1.DOCDATE) =
YEAR(GETDATE()) -1 for last year.

There is a shorter way to complete the same task. This will be the topic in the last
chapter for complicated queries. It is much easier with the other query to include the
credit memo, so that the result will be more accurate.

Chapter 4

[117]

Case 4-M15: Many linked tables in one query
An initial request is to link seven tables including OJDT, JDT1, OCRD, OCRG, OINV,
OITM, and OITB.

Query input would be posting date range (from OJDT OR OINV) and item group
name (OITB).

Then an initial query was tried based on some other users' recommendation:

SELECT distinct T2.CardCode, T2.[CardName],T1.[RefDate],T0.[BaseRef],

T0.[Debit],T0.[Credit],T0.[BalDueDeb], T0.[BalDueCred]

FROM JDT1 T0

INNER JOIN OJDT T1 ON T0.TransId = T1.TransId

INNER JOIN OCRD T2 on T2.CardCode = T0.ShortName

INNER JOIN OCRG T3 ON T2.GroupCode = T3.GroupCode

INNER JOIN OINV T4 ON T2.CardCode = T4.CardCode

left JOIN OITM T5 ON T2.CardCode = T5.CardCode

left outer JOIN OITB T6 ON T5.ItmsGrpCod = T6.ItmsGrpCod

WHERE T0.[RefDate] BETWEEN '[%0]' AND '[%1]' AND T0.[BalDueDeb]'0' AND

T3.GroupName != 'Vendors' and T6.[ItmsGrpNam] = '[%2]'

However, there is no result from this query.

The solution is as follows:

SELECT distinct T2.CardCode,

T2.[CardName],

T1.[RefDate],

T0.[BaseRef],

T0.[Debit],

T0.[Credit],

T0.[BalDueDeb],

T0.[BalDueCred]

FROM dbo.JDT1 T0

INNER JOIN dbo.OJDT T1 ON T0.TransId = T1.TransId

INNER JOIN dbo.OCRD T2 on T2.CardCode = T0.ShortName

INNER JOIN dbo.OCRG T3 ON T2.GroupCode = T3.GroupCode

INNER JOIN dbo.OINV T4 ON T2.CardCode = T4.CardCode

INNER JOIN dbo.INV1 T5 ON T5.DocEntry = T4.DocEntry

LEFT JOIN dbo.OITM T6 ON T6.ItemCode = T5.ItemCode

LEFT JOIN dbo.OITB T7 ON T7.ItmsGrpCod = T6.ItmsGrpCod

WHERE T0.[RefDate] BETWEEN '[%0]' AND '[%1]'

AND T0.[BalDueDeb] != 0 AND T3.GroupName != 'Vendors'

AND T7.[ItmsGrpNam] = '[%2]'

Query Examples

[118]

The difference is one more table added. That is INV1—the A/R invoice row table.
The idea is to display item sales by item group. All sales item details could only be
found under the INV1 table. In the original query, linking CardCode in OITM with
OCRD cannot reach the goal.

Within this query, eight tables are used. Their functions are listed as follows:

•	 OJDT: Journal Entry Header

•	 JDT1: Journal Entry Row

•	 OCRD: Business Partners Master

•	 OCRG: Business Partners Groups

•	 OINV: A/R Invoice Header
•	 INV1: A/R Invoice Row
•	 OITM: Items Master

•	 OITB: Items Groups

The irst two tables are for the inancial section. We will discuss them in detail
under the inancial query section. OITB is not mentioned before. It holds item
group information.

Using this query, you can select the item group to display detailed sales transactions
for the speciied item group only.

Case 4-M16: Sales Order with PO
If you do any kind of drop-ship or consignment processing, it usually requires that
Purchase Orders are created directly from an individual Sales Order. For those
companies who rely mainly on drop-ship or consignment, a query showing the
connections between the documents is required. A user created the following query:

SELECT DISTINCT T0.DocNum as "Sale Order NO.",T0.CardName,

T1.Project,T1.ItemCode, T1.Quantity,T1.LineTotal, T0.DocTotal,

T2.CardName as BP Name,

T2.DocNum as PO Number, T2.DocDate as PO Date, T3.ItemCode as Stock

Item,

T3.Quantity, T3.OpenQty, T5.DocNum as Goods Receipt No, T5.DocDateas

GR Date,

T4.ItemCode as Stock Item, T4.Quantity, T4.OpenQty as Left to Deliver

FROM ORDR T0 INNER JOIN RDR1 T1 ON T0.DocEntry = T1.DocEntry,

dbo.OPOR T2

INNER JOIN dbo.POR1 T3 ON T2.DocEntry = T3.DocEntry

LEFT JOIN dbo.PDN1 T4 ON T4.BaseEntry = T2.DocEntry AND T4.BaseLine =

T3.Linenum

Chapter 4

[119]

LEFT JOIN dbo.OPDN T5 ON T5.DocEntry = T4.DocEntry

WHERE T3.ItemCode = T1.ItemCode and T3.BaseRef = T0.DocNum and

T1.Project Like '%%%0%%'

The problem for the query is: it only shows the sale order with the purchase order
posted. However, all sale orders should be shown no matter if there is any purchase
order posted or not based on the user's request.

The solution is:

SELECT DISTINCT T0.DocNum as 'Sale Order NO.',

T0.CardName,

T1.Project,

T1.ItemCode,

T1.Quantity,

T1.LineTotal,

T0.DocTotal,

T2.CardName as 'BP Name',

T2.DocNum as 'PO Number',

T2.DocDate as 'PO Date',

T3.ItemCode as 'Stock Item',

T3.Quantity, T3.OpenQty,

T5.DocNum as 'Goods Receipt No',

T5.DocDate as 'GR Date',

T4.ItemCode as 'Stock Item',

T4.Quantity,

T4.OpenQty as 'Left to Deliver'

FROM dbo.ORDR T0

INNER JOIN dbo.RDR1 T1 ON T0.DocEntry = T1.DocEntry

LEFT JOIN dbo.POR1 T3 ON T1.Docentry = T3.Baseentry and T1.LineNum=T3.

Baseline

LEFT JOIN dbo.OPOR T2 ON T3.Docentry = T2.Docentry

LEFT JOIN dbo.PDN1 T4 ON T4.BaseEntry = T2.DocEntry AND T4.BaseLine =

T3.Linenum

LEFT JOIN dbo.OPDN T5 ON T5.DocEntry = T4.DocEntry

WHERE T1.Project Like '%[%0]%'

Comparing the solution with the original query, you can ind a big difference. The
solution query has all tables joined. The original query has a comma inside the
FROM clause. If you have read the previous chapters of this book, you will know this
could lead to some problems.

Query Examples

[120]

In this case, the problem is not having too many records returned, but the opposite.
Due to the improper links between POR1, ORDR, and RDR1 by T3.ItemCode =
T1.ItemCode and T3.BaseRef = T0.DocNum, it iltered out all RDR1 lines if there
is no purchase order linked.

In the solution, sales order rows will be shown just by one condition of T1.Project
Like '%[%0]%'. In other words, only user inputted project code will affect query
results. It will not be affected by four Left Join tables.

Query for inventory transactions
Inventory transactions and inventory status are the second hot topics for SAP
Business One users. Here within the book, inventory will cover production too
because they are closely related.

Case 4-I1: Adding stock total to the query
The irst example is a simple one: to have an overview of total stock in all
warehouses sorted on items group with the total amount per item group and total
amount of units.

The user tried a report by XL Reporter for the goal. However, the result from
that report is different from the standard stock report in SAP Business One. So
it is not useful.

System report, however, is not sorted on item group; that could not meet their needs
either. The user only needs the total on hand for item groups. The other totals are not
of any interest.

The solution is:

SELECT T1.ItmsGrpNam, SUM(T0.OnHand) 'Total On Hand', SUM(T0.

OnHand*Case WHEN T0.AVGPRICE = 0 THEN T0.LastPurPrc ELSE T0.AVGPRICE

END) 'Total Amount'

FROM dbo.OITM T0

INNER JOIN dbo.OITB T1 ON T1.ItmsGrpCod = T0.ItmsGrpCod

WHERE T0.OnHand > 0

GROUP BY T1.ItmsGrpNam

Chapter 4

[121]

Using this query, the summary of the item on hand will be grouped by item groups.
This query can be used to get a rough idea of your total value of inventory. If you
need the accurate results, AvgPrice for item must not be zero. That is the item cost
value used by the system.

Case clause is included in the query. To understand this usage, wait until the last
chapter where you will ind a detailed explanation.

Case 4-I2: Adding a total to the query bottom
It is quite often required by the user to add a line to the query that also gives the
total of quantity and amount at the bottom. We use the previous case as an example.
The prices used in the query will be from price list number 10 instead of Avgprice or
Lastpurprc from the OITM table.

A solution is to add an UNION ALL clause under the query:

SELECT T1.ItmsGrpNam,

SUM(T0.OnHand) 'Total On Hand',

SUM(T0.OnHand*T2.Price) 'Total Amount'

FROM dbo.OITM T0

INNER JOIN dbo.OITB T1 On T1.ItmsGrpCod = T0.ItmsGrpCod

INNER JOIN dbo.ITM1 T2 On T2.ItemCode = T0.ItemCode AND T2.PriceList =

9

WHERE T0.OnHand > 0

GROUP BY T1.ItmsGrpNam

UNION ALL

SELECT 'Grand Total',

SUM(T0.OnHand) 'Total On Hand',

SUM(T0.OnHand*T2.Price) 'Total Amount'

FROM dbo.OITM T0

INNER JOIN dbo.ITM1 T2 ON T2.ItemCode = T0.ItemCode AND T2.PriceList =

9

WHERE T0.OnHand > 0

Comparing this query with the one in the irst part of the chapter, you will notice the
similarity. Union All is the universal way in getting this job done.

Query Examples

[122]

The second query under Union All is almost the same as the irst one. A small
difference is no Group By clause. The other difference is the T1.ItmsGrpNam column
is replaced by the text 'Grand Total'. This means the total for all records in the OITM
table, as long as items' on hands are greater than zero, will only return one line at the
end of the query result.

Case 4-I3: Items not delivered within 15 days
Good customer service requires almost any company to review the status of the
customer's orders. Sometimes you want to have a list of all items which are not
delivered from the last month.

The query to meet the requirement is:

SELECT Distinct T0.ItemCode,

T0.ItemName

FROM dbo.OITM T0

WHERE T0.SellItem = 'Y' AND

T0.ItemCode NOT IN

(SELECT Distinct T1.ItemCode FROM dbo.DLN1 T1

INNER JOIN dbo.ODLN T2 ON T2.DocEntry = T1.DocENtry

WHERE DateDiff(DD,T2.DocDate,GetDate()) <31)

This is a simple case.

The solution is in the subquery. The query lists all item codes from the delivery
document DLN1 table if those deliveries have been done within 30 days.
T0.ItemCode NOT IN will meet the requirement. T0.SellItem = 'Y' will make
sure only sellable items are displayed by the query result.

To know more about subquery, check the last chapter.

Case 4-I4: Active item list
An active item list is to list all items for which the item code cannot be changed
anymore, in other words, which have been used at least in a document or a
transaction.

The solution is:

SELECT T0.ItemCode

FROM dbo.OITM T0

Chapter 4

[123]

WHERE T0.ITEMCODE IN (SELECT DISTINCT CODE FROM dbo.ITT1) OR

T0.ITEMCODE IN (SELECT DISTINCT CODE FROM dbo.OITT) OR T0.ITEMCODE

IN (SELECT DISTINCT ITEMCODE FROM dbo.OINM) OR T0.ITEMCODE IN (SELECT

DISTINCT ITEMCODE FROM dbo.ADO1)

This solution is similar to the previous case. It also depends on subquery. This time
there is more than one of them.

The irst two subqueries check if the item is in the Bill of Material (BOM) or so
called Production Tree in SAP Business One. The third query checks if it has been
posted for inventory transaction before. The last one checks if it has been included in
the marketing documents in the history.

Filtered by these subqueries, the listed items will be active items. However, a more
accurate term should be: nonremovable item list.

Case 4-I5: How to ind stock taking details
A common occurrence of stock taking (inventory count) is to receive an error
message "quantity falls below minimum quantity" appearing during the process.

The problem is how to check which items are giving that error if 100 items have
been posted.

The solution query is as follows:

SELECT T1.WhsName,

T0.ItemCode,

SUM(T0.InQty - T0.OutQty) as 'On Hand Changed'

FROM dbo.OINM T0

INNER JOIN dbo.OWHS T1 ON T0.Warehouse = T1.WhsCode

WHERE T0.DocDate >= '[%0]' and

T1.WhsName like '[%1]%' and

T0.ItemCode like '[%2]%'

GROUP BY T1.WhsName, T0.ItemCode

Having SUM(T0.InQty - T0.OutQty) != 0

This query links OINM with OWHS. The second table is the warehouse table. You
can get warehouse names from this table. If warehouse code is good enough for you,
it can be omitted from the query altogether.

Query Examples

[124]

The last clause is as follows:

GROUP BY T1.WhsName, T0.ItemCode

Having SUM(T0.InQty - T0.OutQty) != 0

It is to ensure the query only returns those items that have on hand changed for
certain warehouses.

)The T0.DocDate >= '[%0]' condition by user input is used to enter the date for
stock take. All transactions after this date will be checked. This will greatly help you
to reduce the list from hundreds to just a couple. T1.WhsName like '[%1]%' and
T0.ItemCode like '[%2]%' give you further options to limit the output range in
case you have too many posted items in the same time.

Case 4-I6: Query on price updates
Price updates are extremely important for companies to maintain proper proits and
margins. A frequent request deals with receiving a report on a daily basis showing
information on updated price lists. Preferred columns would be Item Code, Item
Description, Price list Number, Old price, New Price, and User code (who updated
the prices). Parameters would be beginning date and ending date.

The solution is:

SELECT DISTINCT T0.ItemCode,

T1.ItemName,

T0.PriceList,

T2.Price 'OLD',

T0.Price 'New',

MAX(T2.LogInstanc) 'Last Changed'

FROM dbo.ITM1 t0

INNER JOIN dbo.OITM T1 ON T1.ItemCode = T0.ItemCode

INNER JOIN dbo.AIT1 T2 ON T2.ItemCode = T0.ItemCode AND T2.PriceList =

T0.PriceList

WHERE ISNULL(T0.Price,0) != ISNULL(T2.Price,0) AND

T0.ItemCode Like '[%0]%' AND T0.PriceList = '[%1]'

GROUP BY T0.ItemCode,T1.ItemName,T0.PriceList,T2.Price, T0.Price

This query links item price table ITM1 with its history table AIT1 through OITM,
and then compares the prices to get the difference. All different records will be found
by the query. But only the latest changes will be returned. That is due to the Group
By clause.

Chapter 4

[125]

The requirements cannot be satisied in full because there is no column saving the
date and user information for when and who updated the prices.

Case 4-I7: Planned quantity versus in stock
A user looks for a report that would show the planned quantity (based on
production order) and in stock of the raw material, so that the user in charge of
planning can decide whether to purchase the raw material or not.

There is added dificulty to the request. Some items in the production order are also
BOM item. The material needs for those components also need to be checked. It is
conirmed that they do not use multiple levels BOM very much. 99 percent of the
BOMs are one level or two levels.

The following query had been tried by the user but the result is unsatisfactory. It can
only show the components from the top level BOM:

SELECT T0.[DocNum], T0.[Status], T0.[DueDate], T0.[ItemCode],

T2.[ItemName], T1.[ItemCode],T2.[OnHand],

 T1.[BaseQty], T1.[PlannedQty]

FROM [dbo].[OWOR] T0 INNER JOIN [dbo].[WOR1] T1

ON T0.DocEntry = T1.DocEntry INNER JOIN [dbo].[OITM] T2 ON T1.ItemCode

= T2.ItemCode

WHERE T0.[ItemCode] = [%0] AND T0.[DocNum] = [%1]

The solution is:

SELECT T0.[DocNum],

T0.[Status],

T0.[DueDate],

T0.[ItemCode],

T3.[ItemName],

T3.[ItemCode],

T3.[OnHand],

T1.[BaseQty]*T2.Quantity 'Base Qty', T1.[PlannedQty]*T2.Quantity

'Planned Qty'

FROM [dbo].[OWOR] T0

INNER JOIN [dbo].[WOR1] T1 ON T0.DocEntry = T1.DocEntry

INNER JOIN [dbo].[ITT1] T2 ON T1.ItemCode = T2.Father

INNER JOIN [dbo].[OITM] T3 ON T2.Code = T3.ItemCode

WHERE T0.[ItemCode] = [%0] AND T0.[DocNum] = [%1]

This solution may only apply to two-level BOM to get those component's quantity
under the second level. This query needs to be used together with the original query
to get a complete picture of planned quantity and in stock.

Query Examples

[126]

Case 4-I8: Adding to the production orders
list from a sales order
Another example falls between inventory and marketing documents. Because the
main table used is the production order table, it is reasonable to include here:

SELECT distinct T0.DocNum As ProdOrder, T0.ItemCode, (select itemname

from OITM where T0.ItemCode = OITM.itemcode) As ProdName, T0.PostDate,

T0.PlannedQty As Planned FROM OWOR T0, OITM T1 where T0.Status 'C'

The user wants to add the NumAtCard column from ORDR to this query. This
column is for BP reference. What change should be made to the existing query?

Here is the solution:

SELECT distinct T0.DocNum As ProdOrder,

T0.ItemCode,

T1.itemname As ProdName,

T0.PostDate,

T0.PlannedQty As Planned,

T2.NumAtCard

FROM dbo.OWOR T0

INNER JOIN dbo.OITM T1 ON T0.ItemCode = T1.itemcode

LEFT JOIN dbo.ORDR T2 ON T2.DocEntry = T0.OriginAbs AND T0.OriginType

= 'S'

WHERE T0.Status != 'C'

The challenge for the query is to ind the relationship between the production order
and sales order. The link is T2.DocEntry = T0.OriginAbs AND T0.OriginType =
'S'. Instead of BaseEntry column in marketing document rows, OriginAbs column
in production header is used. OriginType = 'S' will ensure it is from a sales order.

Two tables under FROM without link in the original query is not recommended.
It will check the complete table many times to return the result. This will affect
database performances especially for a large database.

Case 4-I9: Complete item list with or without
transactions
If you are maintaining different item groups and need to display all the items
by grouping that particular warehouse or location (even though there are no
transactions in that given date range).

Chapter 4

[127]

The initial request is to change a query that only displays the items which have
transactions on that particular given date range.

Declare @FromDate Datetime:

Declare @ToDate Datetime

Declare @Group nvarchar(10)

Declare @Whse nvarchar(10)

Set @FromDate = (Select min(S0.Docdate) from dbo.OINM S0 where

S0.Docdate >='[%0]')

Set @ToDate = (Select max(S1.Docdate) from dbo.OINM s1 where

S1.Docdate <='[%1]')

Set @Group = (Select Max(s2.ItmsGrpCod) from dbo.OITB S2 Where

S2.ItmsGrpNam = '[%2]')

Set @Whse = (Select Max(s3.Warehouse) from dbo.OINM S3 Where

S3.Warehouse = '[%3]')

SELECT

@Whse as 'Warehouse',

a.Itemcode,

max(a.Dscription),

sum(a.Opening Balance) as Opening Balance,

sum(a.IN) as IN,

sum(a.OUT) as OUT,max(a.Price) as 'Price',

((sum(a.Opening Balance) + sum(a.IN)) - Sum(a.OUT)) as Closing

from(

Select

N1.Warehouse,

N1.Itemcode,

N1.Dscription,N1.Price,

(sum(N1.inqty)-sum(n1.outqty)) as Opening Balance,

0 as IN,

0 as OUT

From dbo.OINM N1

Where

N1.DocDate < @FromDate and N1.Warehouse = @Whse

Group By

N1.Warehouse,N1.ItemCode,N1.Dscription,N1.Price

Union All

select

N1.Warehouse,

N1.Itemcode,

N1.Dscription,N1.price,

0 as Opening Balance,

sum(N1.inqty) as IN,

0 as OUT

Query Examples

[128]

From dbo.OINM N1

Where

N1.DocDate >= @FromDate and N1.DocDate <= @ToDate and

N1.Inqty >0

and N1.Warehouse = @Whse

Group By

N1.Warehouse,N1.ItemCode,N1.Dscription,N1.price

Union All

select

N1.Warehouse,

N1.Itemcode,

N1.Dscription,N1.price,

0 as Opening Balance,

0 as IN,

sum(N1.outqty) as OUT

From dbo.OINM N1

Where

N1.DocDate >= @FromDate and N1.DocDate <=@ToDate and

N1.OutQty > 0

and N1.Warehouse = @Whse

Group By

N1.Warehouse,N1.ItemCode,N1.Dscription,N1.price) a, dbo.OITM I1

where

a.ItemCode=I1.ItemCode and

I1.ItmsGrpCod = @Group

Group By

a.Itemcode

Having sum(a.Opening Balance) + sum(a.IN) + sum(a.OUT) > 0

Order By a.Itemcode

The solution is:

Declare @FromDate Datetime

Declare @ToDate Datetime

Declare @Group nvarchar(10)

Declare @Whse nvarchar(10)

Set @FromDate = (Select min(S0.Docdate) from dbo.OINM S0 where

S0.Docdate >='[%0]')

Set @ToDate = (Select max(S1.Docdate) from dbo.OINM s1 where

S1.Docdate <='[%1]')

Set @Group = (Select Max(s2.ItmsGrpCod) from dbo.OITB S2 Where

S2.ItmsGrpNam = '[%2]')

Set @Whse = (Select Max(s3.Warehouse) from dbo.OINM S3 Where

S3.Warehouse = '[%3]')

Chapter 4

[129]

SELECT @Whse as 'Warehouse',

a.Itemcode,

a.max(a.Dscription) as 'Item Description',

sum(a.[Opening Balance]) as [Opening Balance],

sum(a.[IN]) as [IN],

sum(a.OUT) as OUT,

max(a.Price) as 'Price',

((sum(a.[Opening Balance]) + sum(a.[IN])) - Sum(a.OUT)) as Closing

FROM dbo.OITM I1

Left JOIN (Select N1.Warehouse, N1.Itemcode, N1.Dscription,N1.Price,

(sum(N1.inqty)-sum(n1.outqty)) as [Opening Balance],

0 as [IN],

0 as OUT

From dbo.OINM N1

WHERE N1.DocDate < @FromDate and N1.Warehouse = @Whse

Group By N1.Warehouse,N1.ItemCode,N1.Dscription,N1.Price

Union All

SELECT N1.Warehouse,

N1.Itemcode,

N1.Dscription,

N1.price,

0 as [Opening Balance],

sum(N1.inqty) as [IN],

0 as OUT

From dbo.OINM N1

Where N1.DocDate >= @FromDate and N1.DocDate <= @ToDate and N1.Inqty

>0 and N1.Warehouse = @Whse

Group By N1.Warehouse,N1.ItemCode,N1.Dscription,N1.price

Union All

SELECT N1.Warehouse,

N1.Itemcode,

N1.Dscription,

N1.price,

0 as [Opening Balance],

0 as [IN],

Query Examples

[130]

sum(N1.outqty) as OUT

From dbo.OINM N1

Where N1.DocDate >= @FromDate and N1.DocDate <=@ToDate and N1.OutQty >

0 and N1.Warehouse = @Whse

Group By N1.Warehouse,N1.ItemCode,N1.Dscription,N1.price) a ON

a.ItemCode=I1.ItemCode

WHERE I1.ItmsGrpCod = @Group

Group By a.Itemcode

Order By a.Itemcode

This is one of the longest queries in this book. In general, I am reluctant to create
any long queries like this one. That is because the longer the query, the more system
resources might be used. It also creates maintenance dificulty for other users.

If you compare the solution query to the original one, you will ind the difference is
only a little. This proves that such a long query is indeed problematic.

If you ind this query works for you, good. If not, that is no problem either. This
query may only work under 2007 version or below. OINM is changed from a table to
a view so the parameter may not work for version 8.8 or higher.

To put this query here is to show what kind of queries should be avoided.

Query for inancial transactions
Under this category, all banking related issues are included. There are fewer inancial
transactions related query requests than other queries. This is probably because:

•	 System provides more inancial reports than other reports
•	 The need for such reports is less

•	 It is too dificult to produce a proper report

No matter how many queries can be built, we should still go through some of the
queries so that we can ind more information related to business operations.

Chapter 4

[131]

Case 4-F1: Top ive customers
Sales ranking is discussed in the previous section. However, there are many
questions with some different requests. One example is top N customers during
any period.

Since this query only deals with the Journal Entry table, I have put it under the
inancial transactions section. Here is the query list:

SELECT TOP 5 T0.ShortName 'Customer',

Max(T2.CardName) 'Customer Name',

SUM(ISNULL(T0.Debit,0) - ISNULL(T0.Credit,0)) as "Amount(LC)"

FROM dbo.JDT1 T0

INNER JOIN dbo.OJDT T1 ON T1.TransID = T0.TransID and T0.TransType IN

('13','14')

INNER JOIN dbo.OCRD T2 ON T2.CardCode = T0.ShortName

WHERE T1.RefDate >= [%0] and T1.RefDate <= [%1]

GROUP BY T0.ShortName

ORDER BY SUM(ISNULL(T0.Debit,0) - ISNULL(T0.Credit,0)) DESC

This query has just looked up Journal Entry table OJDT and JDT1. It is only for
displaying customer names to link with the Business Partner table OCRD.

Max(T2.CardName) is used for convenience to omit the column from grouping.
It will be very useful when your query includes some multiple value documents
such as OINV or ORIN. It can just return one customer name in case you have any
different names in the documents for the same customer.

T0.TransType IN ('13','14') limits query results to A/R Invoice and A/R Credit
Memo transactions only.

This is similar to the top ive items query in the beginning. Something discussed
there will probably also apply here.

Case 4-F2: Incoming payment
An auditor would like to see a report that shows all the incoming payments between
two given dates along with the following columns:

•	 BPCode

•	 BPName

Query Examples

[132]

•	 Payment No

•	 Amount Paid

•	 Payment Date

•	 Invoice No (that was reconciled against the payment)

•	 Invoice Date

The user has no idea which tables to query to get the payment and
reconciliation information.

Here is the solution:

SELECT T0.[CardCode] AS 'Customer Code',

T0.[CardName] AS 'Customer Name',

T0.[DocNum] AS 'Payment Number',

T1.[SumApplied] AS 'Paid to Invoice',

T0.[DocDate] AS 'Payment Date',

T2.[DocNum] AS 'Invoice Number',

T2.[DocDate] AS 'Invoice Date'

FROM [dbo].[ORCT] T0

INNER JOIN [dbo].[RCT2] T1 ON T0.[DocNum] = T1.[DocNum]

INNER JOIN [dbo].[OINV] T2 ON T1.[DocEntry] = T2.[DocEntry]

WHERE T0.[DocDate] >= [%0] AND T0.[DocDate] <= [%1]

This query is the irst one in which I have used query generator for the solution, so
that you can see all brackets.

Incoming payment table links are different with marketing document links. They
use DocNum column for the link. I believe this is for the convenience of the table
structure. DocEntry columns are used by marketing documents. So you can ind that
the link between RCT2 and OINV is by the DocEntry column.

Case 4-F3: Linking an incoming payment with
an invoice
There is another one shown in the previous chapter too.

The original query is:

SELECT T1.CardCode as "CustCode", T1.CardName as "CustName",

T2.SlpName, T1.DocNum, T1.DocDate, T1.DocTotal as "Amount Total"

FROM [dbo].[OCRD] T0 INNER JOIN [dbo].[ORCT] T1 ON T0.CardCode =

T1.CardCode INNER JOIN [dbo].[OSLP] T2 ON T0.SlpCode = T2.SlpCode

WHERE T1.DocDate >=[%0] AND T1.DocDate <=[%1] order by T1.DocDate

Chapter 4

[133]

The initial attempt was to link the query result with A/R invoice data to have the
invoice details but it failed.

The solution is:

SELECT T1.CardCode as "CustCode",

T1.CardName as "CustName",

T2.SlpName,

T1.DocNum as "Incoming#",

T1.DocDate,

T1.DocTotal as "Payment Total",

T4.DocNum as "Invoice#",

T3.SumApplied as "Applied Total"

FROM dbo.OCRD T0

INNER JOIN dbo.ORCT T1 ON T0.CardCode = T1.CardCode

LEFT JOIN dbo.OSLP T2 ON T0.SlpCode = T2.SlpCode

INNER JOIN dbo.RCT2 T3 ON T3.DocNum = T1.DocNum

INNER JOIN dbo.OINV T4 ON T4.DocEntry = T3.DocENtry AND T3.InvType =

'13'

WHERE T1.DocDate >= [%0] AND T1.DocDate <= [%1]

ORDER by T1.DocDate

The link between Incoming Payment and A/R Invoice is through the RCT2 table.
You have seen that in the previous case. The linking column is DocEntry. The
SumApplied column in RCT2 holds each applied total for individual invoice. This
example is almost the same as the Case 2. However, due to the additional column
SlpName, OCRD, and OSLP are added.

Case 4-F4: Listing both types of payment
transactions
Some companies receive incoming payments in two ways. If it is by check,
by cash, or by bank transfer from a single party then they are posting Incoming
Payment transactions.

But in certain instances like the ield persons, they collect the money from dozens of
customers and the total amount of cash is deposited directly into the bank. At that
time, they are posting the payments just by passing a Journal Entry to the customer.

Query Examples

[134]

In order to get the total payments collected (either by Incoming Payment or by
Journal Entry) from all the customers for a particular dates frame, their client
tried to use the General Ledger report for BP but it is taking too much time to execute
and display.

The solution given is:

SELECT T1.TransID,

T0.ShortName,

T0.Debit,

T0.Credit

FROM dbo.JDT1 T0

INNER JOIN dbo.OJDT T1 ON T0.TransID = T1.TransID

INNER JOIN dbo.OCRD T2 ON T2.CardCode = T0.ShortName AND T2.CardType =

'C'

WHERE T0.ShortName LIKE '[%2]%' AND T0.TransType IN ('24', '30') AND

T1.RefDate Between '[%0]' AND '[%1]'

If you noticed, the structure of this query is similar to Case 4-F1 in this category.
The difference is, instead of T0.TransType IN ('13', '14'), T0.TransType
IN ('24', '30') is used. T0.TransType IN ('24', '30') refers to Incoming
Payment ('24') or Journal Entry transactions ('30').

Case 4-F5: Incoming payment iltering
The following query deals with customer un-deposited checks from previous post
but with revision. However, the query seems to not ilter incoming payments already
deposited, incoming payments cancelled, or incoming payment with 'Account type'.

select T2.CheckKey, T0.Canceled, T0.Docnum as 'Payment no.',T0.docdate

as 'Posting date',T0.cardcode as 'Customer Code',T0.cardname as

'Customer Name',

T2.CheckDate as 'Check Date', T2.CheckNum as 'Check Number',

T2.Bankcode as 'Bank', T2.Checksum as 'Check Amount'

from orct T0

inner join rct1 T1 on T0.docentry=T1.docnum

inner join ochh T2 on T2.CheckKey=T1.CheckAbs

WHERE T2.CheckDate between %0 and %1 and T0.DocType = 'C' and

T0.Canceled= 'y' AND T0.Series = '51' or T0.Series = '12' or T0.Series

= '63' or T0.Series = '52' AND T2.CheckKey Not In (SELECT CheckKey

FROM DPS1) ORDER BY T2.CheckDate

Chapter 4

[135]

The solution is:

SELECT T2.CheckKey,

T0.Canceled,

T0.Docnum as 'Payment no.',

T0.Docdate as 'Posting date',

T0.cardcode as 'Customer Code',

T0.cardname as 'Customer Name',

T2.CheckDate as 'Check Date',

T2.CheckNum as 'Check Number',

T2.Bankcode as 'Bank',

T2.Checksum as 'Check Amount'

FROM dbo.ORCT T0

INNER join dbo.RCT1 T1 on T0.docentry=T1.docnum

INNER JOIN dbo.OCHH T2 on T2.CheckKey=T1.CheckAbs

WHERE T2.CheckDate between [%0] and [%1] AND T0.Canceled= 'N' AND

T0.Series IN ('51','12', '63', '52') AND T2.CheckKey Not IN (SELECT

CheckKey FROM DPS1)

ORDER BY T2.CheckDate

The original query is almost not a problem. However, one of the conditions is not
correct. Instead of looking up T0.Canceled= 'Y', it should be T0.Canceled= 'N' to
get the result.

You should also notice by using the IN clause that the original condition under the
WHERE clause has been trimmed much shorter. Using the irst query, it is:

T0.Series = '51' or T0.Series = '12' or T0.Series = '63' or T0.Series

= '52'.

The solution is only T0.Series IN ('51','12', '63', '52'). They are
equivalent. You need to replace the series from your database if you want to try it.

User query for alert
One of the important usages of SQL query in SAP Business One is for alert. SAP
Business One provides a few standard alert messages after you irst install. However,
the numbers of built-in alerts are far from enough.

The good news is, the system provides you with the power to have your own alert
by SQL query. You will ind some examples here irst. With the following queries,
and with the ones you can create yourself, you will be able to have the right alert
messages to meet your business needs at the right time with the right person. That is
a great help to increase your system eficiency.

Query Examples

[136]

Case 4-A1: Creating a right alert without
duplicated lines
Here is a rather interesting and complex scenario: a company has two physical
warehouses on two different locations/cities. For transfers between warehouses/
cities they created an "in-transit" warehouse for each location. Material is placed in
those warehouses when it's shipped, and taken out when it reaches its destination.
Since ALL of the material is taken out after each transfer, those "in-transit"
warehouses are usually empty. The problem started when there were cost/price
changes when material was transferred to these warehouses. So it accumulated to a
signiicant amount on the empty warehouse account.

The user wants to create a query that gives an alert when there is zero inventory on
X warehouse but with a balance different from zero on the corresponding account. In
other words, whenever a warehouse is empty, it needs to be checked to see if it has
outstanding balances.

A simple query created by the user gave the total stock for a speciic warehouse:

SELECT sum(T0.OnHand)

FROM OITW

WHERE T0.WhsCode = 'X'

Then another query was created that listed the warehouse code, account code, on
hand, and current account balance:

SELECT T0.WhsCode, T1.AcctCode, T2.OnHand, T1.CurrTotal

FROM OWHS T0 INNER JOIN OACT T1 ON T0.BalInvntAc = T1.AcctCode INNER

JOIN OITW T2 ON T0.WhsCode = T2.WhsCode

WHERE T0.WhsCode = 'X'

The problem of this query is: a single line with zero on hand and the current account
balance will only be on an empty warehouse. If the warehouse is not empty, it will
have multiple lines on that warehouse for each item that has stock.

By trying the SUM(T2.OnHand) function, the user got an error message.

Help is needed to create a right alert without duplicated lines that gives warning
when a balance exists in an empty warehouse.

The solution query is:

SELECT T2.WhsCode,

T1.AcctCode,

T1.CurrTotal,

SUM(T2.OnHand) AS 'On Hand'

FROM dbo.OWHS T0

Chapter 4

[137]

INNER JOIN dbo.OACT T1 ON T0.BalInvntAc = T1.AcctCode

INNER JOIN dbo.OITW T2 ON T0.WhsCode = T2.WhsCode

WHERE T1.CurrTotal !=0

GROUP BY T2.WhsCode, T1.AcctCode, T1.CurrTotal

Having SUM(T2.OnHand)=0

This query solves the problem of multiple lines for a warehouse. Actually, the last
Group By clause is the ice breaker. It groups all on hands for any speciic warehouses
wherein Having SUM(T2.OnHand)=0 checks the condition to ensure the warehouses
are empty.

Case 4-A2: Alert for invoice without base
document
Another requirement is to create an alert query to catch anyone adding anything to
an invoice without a base document. This alert will inform someone in charge of the
need for further action. If an invoice has no base document, that could undermine
the correct accounting process.

Here is the solution:

SELECT T1.DocNum

FROM dbo.INV1 T0

INNER JOIN dbo.OINV T1 ON T1.DocEntry = T0.DocENtry

WHERE T1.DocNum = $[$8.0.0] AND

T0.ItemCode = $[$38.1.0] AND

T0.BaseType = -1

There is a system variable used in this query. The detail of its use will be explained
in a later chapter for formatted search. This solution is just showing you one type
of solution, which may be applied to some other types too. T0.BaseType = -1 is
the key for the solution. It means the line item has no base document. The normal
invoice will have basetype = '15' for delivery or have basetype = '17' for sales order.

Case 4-A3: A/R Invoice past due alert
A very commonly required Alert Message is to get the due amount after each A/R
Invoice is past due. Then this query will be used for an alert.

A simple solution is handy here:

SELECT T0.CardCode,

T0.CardName,

T0.DocNum,

Query Examples

[138]

T0.DocDate,

T0.DocDueDate,

(T0.DocTotal-T0.PAIDTODATE) 'Due Amount'

FROM dbo.OINV T0

WHERE DateDiff(DD,T0.DocDueDATE,GETDATE()) > 0 AND T0.DocTotal>T0.

PaidTODate

ORDER BY T0.CardCode

This query alert solution will check if the DocDueDate is already past due by
DateDiff(DD,T0.DocDueDATE,GETDATE()) > 0. Meanwhile, another check is to see
if the invoices have been paid already by T0.DocTotal>T0.PaidTODate. Although
you can check the document status to see if they are still open, I found that this
formula checking to be more eficient for the query.

If you have too many past due A/R invoices, T0.CardName should be taken
out. Or you deine a date range by adding something like DateDiff(DD,T0.
DocDueDATE,GETDATE()) < 180 to show the recent invoices only. It would probably
be good enough for the alert.

Case 4-A4: Special ship to alert for Sales
Order
If your company is expanding rapidly into new territories or if you have a promotion
going on in speciic states, you might like to have a query which shows when an
order was created for a customer with ship-to address in a particular state like 'A',
'B', 'C'. Whenever this situation occurs, an alert should be triggered.

The solution is:

SELECT T0.DocDate,

T0.DocNum,

T0.Cardname as 'Customer Name',

T0.NumAtCard as 'Customer Ref No.'

FROM dbo.ORDR T0

INNER JOIN dbo.OCRD T2 ON T2.CardCode = T0.CardCode

WHERE

T0.Address2 like '% CA %' AND T0.DoCStatus = 'O'

CA here is only for an easy test. It can be changed to any state. With this simple
query, you can have a template to create multiple alerts to suit speciic needs.

Chapter 4

[139]

Case 4-A5: Open Sales Opportunity alert
This alert deals with the Sales Opportunity module:

SELECT T0.OpprId, T0.Name, T0.CardCode, T0.CardName, T0.MaxSumLoc AS

'Potential Amt', T0.WtSumLoc AS 'Weighed Amt', T0.U_Term_Agree,T0.U_

Bus_Cat,T0.PredDate AS 'Predicted Closing Date', T1.Step_Id,

T1.DocNumber AS 'Quote No', T0.U_Bus_Cat, T0.U_new_bus,T2.SlpName AS

'Ac. Mgr.' FROM OOPR T0 INNER JOIN OPR1 T1 ON T0.OpprId = T1.OpprId

INNER JOIN OSLP T2 ON T0.SlpCode = T2.SlpCode WHERE T0.Status ='O'

The alert is sent out on a weekly basis to the key users of their staff. The alert
identiies all open opportunities.

The problem is when this SQL query runs using the email alert, it only shows some
records. However, under query manager it will show twice as many records.

The solution is:

SELECT T0.OpprId,

LEFT(T0.Name,20) As 'Sales Op',

T0.CardCode,

Left(T0.CardName,20) AS Customer,

T0.MaxSumLoc AS 'Potential Amt',

T0.WtSumLoc AS 'Weighed Amt',

T0.PredDate AS 'Predicted Closing Date',

Max(T1.Step_Id) 'Stage Key',

T2.SlpName AS 'Ac. Mgr.'

FROM dbo.OOPR T0

INNER JOIN dbo.OPR1 T1 ON T0.OpprId = T1.OpprId

INNER JOIN dbo.OSLP T2 ON T0.SlpCode = T2.SlpCode

WHERE T0.Status ='O'

Group By T0.OpprId, T0.Name, T0.CardCode, T0.CardName, T0.MaxSumLoc,

T0.WtSumLoc, T0.PredDate, T2.SlpName

This is a good example that the message from alert will cut out the query result by a
ixed number of characters. The main reason why this occurs is due to the fact that
Alert Messages have a limit on the number of characters which will be sent out. It is
best practice for Alert Messages to have very short results per line so that complete
information is provided. The solution is dependent upon reducing the number of
columns which are displayed in the Alert Message. You can compare the two SQL to
see what has been eliminated so that all records are displayed.

Query Examples

[140]

In the solution query, the irst thing to reduce the query result length is through
Group By clause. Max(T1.Step_Id) will ensure only one line for each opportunity.
LEFT(T0.Name,20) and Left(T0.CardName,20) will trim all names to have a
maximum 20 characters only.

User query alert guide
Because user query alert is a very good tool for getting the right information at the
right time for the right user, it is necessary to show you the complete steps to build
this kind of alert.

The Alert Management menu is easily found under the irst menu category
Administration. It is the last menu item of the said category if you do not have
any third-party add-ons installed.

The following screenshot gives you a clear path. You can also select Modules from
the menu item directly without going through the main menu.

Chapter 4

[141]

When you bring up the Alert Management form, it is in Find mode with all active
user names listed. You can search for all existing alerts to manage. The screenshot is
as follows:

To add a new user query alert, the irst thing to do is to change the form to Add
mode as in the following screenshot. This can be done either through the toolbar, or
through the shortcut key combination Ctrl+A.

Because alert queries have been discussed, one of the queries will be picked up
to show you an example. Before clicking the alert management function, always
remember alert query should be ready with suficient tests.

The query "Invoice without base document" in the previous pages will be used to
build the query alert.

Query Examples

[142]

A good practice many users use is to make sure they include
themselves in the receipt of the Alert Message for a speciic period
(one month or so). This will give you the chance to review what the
Alert Messages are doing in both eficiency and consistent processing.

The irst step to adding the user query alert is to assign a name for the alert, as
shown in the following screenshot. It is better to use your query name whenever
possible. Because the query name is Invoice without base document, we also name
the alert the same way.

After the alert name put in, tab your mouse to the query text box. Then click Open
Saved Query.

This will bring up the query manager window. Any saved queries can be picked up
in this stage. Make sure the right one is selected. When the alert name is the same as
the query name, this is guaranteed without problem. That is why it is better to keep
them consistent.

Chapter 4

[143]

The query Invoice without base document has been picked up by selecting the
query name. Now, click OK. This will close the query manager and the query
selected will be shown in the text box for Query.

Before adding the alert, the alert frequency needs to be set up. There are ive
options available:

•	 Minutes

•	 Hours

•	 Days

•	 Weeks

•	 Months

The example has 15 minutes selected for this speciic alert.

Query Examples

[144]

Many users like to set the alert at every minute. They hope
that will give them the most updated information. However,
it may not be true because this will affect system performance
especially if they have more alerts set up the same way.
Remember, everything needs resources. Be realistic.

After setting up the frequency, you can click Add. The alert will be added. However,
two things have not been completed here:

•	 Select the user(s) for alert to be sent

•	 Verify the Active checkbox

That is an easy ix. Just follow the steps mentioned next:

1. Find the saved alert irst.
2. Select all the required users to assign.

3. Make sure the alert checked is Active.

4. Click on Update.

Now the alert is ready to be triggered.

Chapter 4

[145]

Many users ind the alert function dificult to use, especially if they want to get an
email alert. This is because email alert is quite tricky. It involves more than just
SAP Business One. To troubleshoot the email alert problem, the following
procedure is recommended:

•	 Make sure the alert works by assigning both internal messages and emails

•	 Make sure the user who needs to receive the email alert has logged on to SAP
Business One

•	 Check the email server error logs if the alert is received only through internal
message but not email

Miscellaneous query examples
Only three main categories have been covered so far. There are some other modules
that also need query reports from time to time.

Besides all other query examples in the book, some of the examples do not it in any
of the categories. Here is the place for these outstanding ones.

Query Examples

[146]

Case 4-X1: Query related to service call
A useful query is to show items from delivery (with Serial Number or Batch
Number) which is under the 'expenses' tab on the service call form. The user having
this request could not ind the 'expenses' tab table. Trying to ind the link between
DLN1 and OSCL with 'Created from Service Call' failed because the base document
related columns in DLN1 are always empty.

The solution is:

SELECT T1.DocNum from DBO.SCL4 T0

INNER JOIN dbo.ODLN T1 on T1.DocENtry = T0.DocAbs

WHERE T0.Object = '15'

The solution will only point out the right direction for the link. Unlike normal
marketing documents, the link between Service Call and marketing documents are
always on the service call side. SCL4 table is titled "Expense Documents". T0.Object
= '15' means delivery document.

Case 4-X2: Concatenating two text columns
There are several ways to concatenate two text columns but probably the easiest way
to concatenate the two text columns from a table is to use the "+" (plus sign). For
example, combining the following data ields from the table of OHEM:

•	 Column 1: irstName
•	 Column 2: lastName

This solution is the easiest one:

SELECT T0.firstname + ' '+ T0.Lastname AS 'Employee Names' FROM dbo.

OHEM T0

There are two purposes to show this very simple example here:

•	 Human resource module may need query too

•	 How to concatenate text columns

To concatenate text columns, some people with different backgrounds are used to
some other string operation clauses such as CONCAT. The Print Layout Designer
also uses CONCATENATE. In T-SQL, the concatenate operation is the simplest one:
by + (plus sign) alone.

Chapter 4

[147]

Summary
You saw many examples in this chapter. Those query examples are good resources
for you to try. By understanding their logic, you should be able to create your own
query with ease. The best way to learn something is from examples. When you get
many examples to work with, you can increase the ability to create your own query
with amazing speed. This is especially true for learning SQL query.

From the next chapter to the end of the book, you will get different topics related to
SQL query. For example, query security and approval based on user queries will be
discussed in the next chapter.

Securities and Approvals
We have learned many query examples from the previous chapter. Now it is time
to check how securities can be set for SAP Business One query users. The query for
approval will also be discussed in this chapter. This chapter has the following topics:

•	 How to handle security for query by utilizing query groups

•	 User query for approval procedures with some query examples

In fact, these two topics could be discussed in two chapters because they emphasize
in different areas. However, there is something in common between them. That is,
both topics deal with people. No matter whether it is the user security using query
or the approval procedure for business processes, they focus on user rights and
user restrictions.

How to handle securities for query usage
SQL query is a powerful tool to build reports. It will deinitely contribute to business
intelligence. In fact, you can get any information from SAP Business One if you
are able to access the query. However, this power may have another side to be
scrutinized. What if the users who run the query report are not supposed to run it?
What if a dishonest user builds a query that can harm your database?

This is a grey area where the normal authorization for the user may not work well
enough. Care must be taken when dealing with query securities. If you are not aware
of this, you must read this chapter carefully.

Something needs to be done for query usage to ensure your database integrity and
data conidentiality. The following list is recommended to secure your query usage:

•	 Give only a few users the capability to build a query report

•	 Create queries under different categories

•	 Assign different user groups for different categories

Securities and Approvals

[150]

Giving only a few users the capability to build
a query report
This topic may not get enough attention from many SAP Business One customers.
However, it is a very important task to be carried out by every SAP Business
One administrator.

In a sense, every user who can create and save a query will be deemed as a
superuser. This is because SAP Business One user security is built upon windows
form level. Nevertheless, the query will bypass this form level security checking.

As there are no table or record level security checkings, users with an ability to
create query have the capability to access all SAP Business One tables without
any restrictions. Imagine, if they know database structure very well, it won't be a
secret information to them at all. They can get any critical information they want by
creating related queries.

To decrease or minimize this risk, irst thing to do is to analyze who can have
the authorization to build a query. Usually, only the superuser is responsible for
creating queries. However, there are quite a few superusers who may not have the
ability or the time for this task. There are certain principles you should follow to get
this job done:

1. Initially assign all users with No Authorization under Reports authorization
for Query Generator, Query Wizard, and Query Manager. This is to ensure
that no user is getting unnecessary authorization in the irst place.

2. Always give Read-Only authorization irst when the user needs to run a
query. Do not assign more.

3. Only when users complain about their inability to create or edit query, it
is high time for you to check what SQL levels they have and how much
database structure they know. Based on their job title and idelity, assign
them proper authorizations. Ideally, if you have time to plan, you can create
a matrix that list users and their access privilege beforehand.

4. Watch the saved queries from time to time to ensure all newly created
queries fall within the scopes that they should. You can create a user alert to
watch certain important queries too.

The following screenshot shows the authorization for a user under the Reports
module. It can be accessed from the menu item Administration | System
Initialization | Authorizations | General Authorizations. This screen is showing
an initial assignment for all new users. Make sure all of them have to be No
Authorization. A fresh start will keep your system safe. It is well worth to
perform this task.

Chapter 5

[151]

Care must be taken when you copy user authorizations. Double checking
is needed, especially under query authorization. Two users with similar
job titles don't guarantee that they have the same query authorizations.
When you assign the same authorizations by copying from existing
users, the new users may get more than they should be given.

Securities and Approvals

[152]

Let's go through these three different query authorization categories, one by one:

•	 Query Wizard is the simplest one. You have only two choices: No
Authorization or Full Authorization. When you grant full authorization to a
user, the user may be able to run this wizard to create any queries. However,
if the user has no authorization on the New Queries under Query Generator,
the wizard still won't run. If the New Queries are allowed, the query created
by this user may still not get saved if the user has no authorization on any of
the saved query groups.

•	 Query Manager is another simpler one. There are three options available:
No Authorization, Read-Only, and Full Authorization. As mentioned in
the principles above, always assign No Authorization irst. Then try
Read-Only. Only if you have conidence with the users, you can assign
them with a Full Authorization.

•	 Last but not least is the Query Generator. It should be the irst authorization
category for query. However, due to its complexity, explaining it last would
be more logical. There are more than 20 authorization items under Query
Generator authorization. The irst three are discussed next. The remaining 20
items called Saved Queries–Group XX will be discussed later.

	° New Queries: This authorization will give users the ability to create
new queries. It will not only control Query Generator but also control
the other query tools such as Query Wizard.

	° Create/Modify Categories: This is vital to query security. Full
authorization should be reserved to superusers only. Never give
the authorization to anybody else unless no superusers are available
for the task.

	° Modify SQL Statement: This authorization will allow users to modify
existing saved queries. It needs even more care than New Queries
authorization because the user can replace a good working query with
a bad one if the user has also allowed under saved query groups. If
you don't have backup of the working query, it will be a disaster.

Creating queries under different categories
In Chapter 3, you learned how to create and maintain query categories. Some of the
conclusions are as follows:

•	 Categories can resemble the module structures in the SAP Business One
main menu

•	 Categories have to minimize any overlaps between each other

•	 Categories should keep the queries owned by them only

Chapter 5

[153]

Just following these principles, you can create and maintain a good category list.
However, the last one is easier to say than to do. You must take great effort to make
sure the new queries are saved under the correct categories.

Some of the queries are easy to classify, such as sales and purchase. Some of them
may not be that easy to tell. Take good care of each user who wrongly saved a query,
especially for the new users who don't have enough knowledge about the query
categories which you have created. Whenever you ind something wrong, correct it
immediately. Make sure you check them often.

You can use the following query to check the query list by category:

SELECT

T1.CatName,

T0.Qname,

T0.Qstring

FROM dbo.OUQR T0

INNER JOIN dbo.OQCN T1 ON T0.QCategory = T1.CategoryId

ORDER BY T1.CatName,

T0.Qname

This is an important step in query security because all securities will be handled
based on the category level. Unless you have given full authorization to everyone,
you need to make sure that all categories only hold those queries that supposedly
belong to them.

Query Groups: a tool to assign user
permissions
You have learned that there are over 20 authorization items for query generator. The
irst three items have already been discussed. The other 20 of them are for Saved
Queries–Groups. The group numbers are from 1 to 20. Among them, group numbers
16 to 20 are not available to standard user interface. Therefore, we will only discuss
the irst 15 groups.

Securities and Approvals

[154]

The last ive groups may only be used when you have an add-on or through SDK
coding. Unless that is the case, they do not need to be set. Keep them unchanged as
shown next:

These groups are equivalent to Authorization Groups 1-15 under Create/Edit
Categories. The following screenshots show you detailed setups for a few categories.

For general category, common practice is to assign this category to all groups. This
category will be used for the queries that can be accessed to all users. For the overlap
rule, it's an exception. The main purpose for this query is for "convenience". It should
only keep those frequently used, non-critical queries. It will not be a good practice if
many queries are saved here, because it simply means you decided to give up query
security altogether.

My suggestions to save queries under this category are as follows:

•	 Minimize the numbers of the queries here. Unless you know it's being
frequently used and it should be available to everyone, do not save the query
under this category.

•	 Check it more often than other categories because most users with the
authority to save will easily choose to save their new queries here.

•	 In general, inance-related queries should not be saved here.
•	 When naming the query under this category, the names of the queries should

be clear so that everyone knows what the query results are. For example,
a query of "Sales Report" does not tell you much, but when the query is
named "Sales Report by Customer for Annual Commission Calculation",
it is more readable as to what the query is doing.

The following screenshot shows this category as assigned to all query groups:

Chapter 5

[155]

You can ind the Formatted Searches category in the next screenshot. It is also
assigned to all the groups. This is because most Formatted Searches queries cannot
be run directly. However, any user may require this function. It is safe to assign
this category to all the authorization groups. A detailed discussion about formatted
search can be found in the next chapter. The following screenshot shows the Format
Searches category assigned to all groups similar to General category.

The names of all queries under this category need to be more concise. Because it only
links to Formatted Search, the query name should relect where it will be triggered.
This topic is beyond this chapter's scope. You can browse the next chapter for
detailed information.

Securities and Approvals

[156]

The following screenshot shows the irst module Administration. All queries related
to users can be saved here. Assigning Group 1 would be an easy match to remember.

The same principle applies here: Financials has been assigned as Group 2 because
it's the second module.

Similarly, for Sales Opportunities: The third module has a Group 3 assigned.

Chapter 5

[157]

In a similar way, Sales–A/R has been assigned Group 4. This is the fourth module in
the system.

Again for Purchase–A/P: The ifth module in SAP Business One with Group 5.

For Business Partners: a different approach with not only Group 6 but also Group 4
and 5.

As usual for Inventory: It took Group 7 due to its occupation on the seventh module.

Securities and Approvals

[158]

It sounds redundant for more than one screenshot to show groups' assignments. You
may wonder whether it can be explained just through a few paragraphs. However,
it's more effective to show you more screenshots. In this way, you can follow these
suggestions easily. Remember, these are the only ways to solve the issue. You can
assign any groups by using the combination of these 15 groups, as long as it meets
your business needs.

After you have carefully assigned all the authorization groups, user security
becomes pretty straightforward. If the users belong to the purchase department,
you may assign Group No. 5 to them. As pointed out earlier, only assign Read-Only
authorization irst. Do not allow them to save query unless necessary. You will ind
out they can access both Purchase–A/P and Business Partner categories because
the latter belongs to three different groups namely Group 4, 5, and 6. The following
screenshot shows this concept:

Individual users can be assigned to more than one saved queries group. For
example, a sales person can be given Group 3 and 4 to use all queries under Sales
Opportunities, Sale A/R, as well as Business Partner categories.

These saved queries groups are not equivalent to the department or any other user
groups. It is lexible for you to design overlapped user privileges based on actual
business needs; in small and midsized business, some users may have more duties.
You can take advantage of this function to better manage the user security for queries.

Chapter 5

[159]

From these examples, you may wonder about whether you do not want the sales
person to access the Business Partner category. Well, if that is the case, you have to
assign a Business Partner to only one group instead of three in order to deine the
authorization without binding them.

To plan for business growth, it is better to leave a couple of
authorization groups without assignments. If you have assigned
all 15 groups, you would not be able to deal with any future needs
or growth. If the business is very stable, you can use them all.

How to use query for approval
procedures
An approval procedure is a very important tool in SAP Business One for business
management. It enables the management to control daily business processes.
Some standard work procedures require approvals from managers or supervisors
before entry level employees can generate certain documents. This is why approval
procedures are needed.

The topic covering overall approval procedures may require a separate book. This
book is primarily focused on SQL query. Therefore, it will not cover complete
scenarios for approval procedures. However, all required steps for query approval
procedures will be dealt with because you can't complete a user query approval
procedure without all those steps.

Securities and Approvals

[160]

The name Approval Procedure has been changed to Approval Process
in version 8.8 of SAP Business One. The concept is mostly the same.

There are two steps involved in creating an approval procedure:

•	 Creating approval stages

•	 Creating approval templates

These two steps can be accessed from the Administration module. They are the irst
and second menu items under the Approval Procedures category. The Approval
Procedures category lies between the Utilities and License categories.

The following screenshot shows you the path. You can also select Modules from the
menu directly without going through the Main Menu.

Chapter 5

[161]

Creating approval stages
The irst step in creating an approval procedure is to create an approval stage.
This ensures that the persons who are in charge of approving the documents are
deined irst.

From the following screenshot, you can only ind three textboxes that are required to
be illed on the header, namely the following:

•	 Stage Name: Enter the approval stage names. It can be any name that is not
more than 20 characters. The shorter, the better, as long as it can be identiied.
In the example, Delivery1 is entered as the name of the stage.

•	 Stage Description: Enter the approval stage descriptions. It can be any text
that's not more than 100 characters. Authorizers' names for the approval can
be used here.

•	 No. of Approvals Required: This is the maximum number of authorizers
required for approval. To simplify the process, only one approval is selected
here. If it's more than one, it will be more complicated.

Following the header is the place to select managers or supervisors who need to
approve documents. If the No. of Approvals Required is three, you need to select
three names here. In this example, it only needs one because the No. of Approvals
Required is only one. You can see that the manager is selected for this approval stage.

Securities and Approvals

[162]

Creating approval templates
After you have created an approval stage, you can create an approval template.

There are only two textboxes and one checkbox on the header. They are listed
as follows:

•	 Name: Enter the approval template's name. It can be any name and shouldn't
exceed 20 characters. It should be easy to identify, and the shorter, the better.
In the example, Overdue Delivery is entered as the name of the approval
template. This is because a query with this name will be used as the base
query for approval.

•	 Description: Enter the approval template's description. It can be any text that
doesn't exceed 100 characters. In the example, the same text has been entered
as the approval template name. It is self–explanatory, so there isn't any need
for further details in the example.

•	 Active: This is a checkbox. When selected, the template becomes active.
Otherwise, the template remains inactive.

There are four tabs under the approval templates header:

•	 Originator: For picking up users as originators

•	 Documents: For picking up certain types of documents

•	 Stages: For picking up approval stage

•	 Terms: The key part of the template

You will ind each tab in detail in the coming pages.

Originator
The irst tab is the Originator tab. In this tab, you can select those users who need to
do the data entry. It may be one or as many as you like.

Chapter 5

[163]

Do not put your username under this tab. If you do, you
will lose control of this template. Everything will appear
grayed out to you when you browse it.

Documents
The second tab in the following screenshot is the Documents tab. This tab is very
simple. You just need to select one or more document types here. In this example,
only the delivery document type has been selected, ensuring that only the delivery
document will be subjected to approval under this template. You can select more
than one document here.

Securities and Approvals

[164]

Stages
This tab is the simplest one because the approval stage has been set up already. You
can use the Tab key to search all available stages to select the one you need. The
following screenshot shows that the Delivery1 approval stage is selected.

One mistake here is to try to create the approval stage during the selection process.
That is not a good practice. It is problem prone. Always remember to add the
approval stage during the irst step. In case you forget, you have to quit from
the Approval Templates–Setup screen. Restart only after making up for the
missing stage.

There can be more than one stage as well. For simplicity, only one stage is illustrated
here. It is an example to show how query approval procedure works.

Chapter 5

[165]

Terms
The last tab after Stage will be Terms. This is the most complicated one and vital for
the template. There are two options to launch approval procedures:

•	 Always: Unconditional approval. If this is selected, all the documents under
the selected types will be subject to approval.

•	 When the following Applies: Conditional approval based on different
terms. If this is selected, some of the terms and conditions will be displayed.
Query approval is under this option.

It is quite surprising that you have to select Always irst for user query approval
creation. Otherwise, you can only select system deined terms to add the
approval template.

This screenshot shows that the Overdue Delivery approval has already been added.
Otherwise, the button would still show Add instead of OK.

Selecting a query for the approval template
After the approval template is added to the system, you can update it immediately.
Simply go to the Term tab directly and change the selection from Always to When
the Following Applies. You can see some of the built-in terms that are displayed in
the middle of the form after you have changed the selection. This is not related to
user query approval. It can be ignored. There are a couple of lines close to the bottom
of the screen. This is the place to put Term Based on User Queries.

Securities and Approvals

[166]

To include a query to the template, you can highlight and double-click the irst
line under Query Name. The query manager form will pop up. You can select any
prepared queries for this approval.

Remember that one of the most eficient ways for creating query approval is to use
the same name for your saved query and for the approval template. In the example,
you can ind that it avoids having the wrong query in place.

Chapter 5

[167]

When you double-click on the query name, the query manager form will be closed.
You can see that the query name Overdue Delivery has been selected into the irst
line under Terms Based on User Queries. You should also notice that the Total
Selected Terms are 2 instead of 1. This is because there is always a line in the end
even though it is empty. Before you add any query, the total selected terms is
already 1.

The last step is to click Update as showed in the last screenshot. After this action
has been done, the user query approval template will be completed. You will ind
all delivery documents that meet the query condition are triggering approval
procedures as long as the originator of the document is Trainee1. If the originators
were someone else, the approval wouldn't trigger.

Securities and Approvals

[168]

You can ind the completed approval template in the following screenshot:

Do not forget to check the Active box. Otherwise, the approval template will be
inactive and no approval will be triggered.

When you plan to change query for user query approval, you
have to delete the query under query name. Then you need
to uncheck any boxes under the Term option. Change the
template to Always. Then you can reselect the amended query.

Chapter 5

[169]

Examples of user queries for approval
These examples will familiarize you with how to apply a user query to the
approval procedure.

Case 1—Approval for adding delivery
document
The irst case is relatively simple. This approval in need is triggered when a
user tries to add a delivery document for a customer with A/R Invoices that have
overdue DocDueDates.

The solution to this simple request is shown here:

SELECT DISTINCT 'True'

FROM dbo.OINV T0

WHERE DateDiff(DD,GetDate(),T0.DocDueDate) > 0

AND T0.CardCode = $[$4.0.0]

This is a very simple query and is explained in the following points:

•	 SELECT DISTINCT 'TRUE' will be used for all approval queries. DISTINCT
keyword can be omitted if you can make sure the query result will only
return one line. When in doubt, it's always safe to leave it there. The side
effect for additional DISTINCT can be ignored as even one line would be
distinct from itself. Is it not? DISTINCT will ensure this query result returns
only True. This is required by approval procedure to trigger an approval
when the query result is True.

•	 FROM dbo.OINV T0 will retrieve data from the OINV table only. You must
still remember that this is an A/R Invoice table.

•	 WHERE DateDiff(DD,GetDate(),T0.DocDueDate)> 0 AND T0.CardCode

= $[$4.0.0] will compare system date with the invoice document's due
date as well as current customer's code for the invoice. If the query inds any
invoice document due dates greater than the system date for the selected
customer on the invoice, the approval will be triggered.

•	 T0.CardCode = $[$4.0.0] is using the system variable to compare with
the customer code. You can ind a detailed discussion of the system variable
usage for formatted search in the next chapter. If the approval is needed for
all customers, then this condition can be omitted.

Securities and Approvals

[170]

Case 2—"On Account" outgoing payment
approval
A user needs to set approval for "On Account" outgoing payment. "On Account" here
means "Payment On Account". It is related to the payment screen. The following
queries have been tried by the user but they aren't working:

SELECT (Case When (select $[ovpm.nodocsum.0]) > 0 then 'TRUE' Else

'FALSE' End) TF FROM OVPM where cardcode=convert(varchar(20),(Select

$[OVPM.cardcode.numeric]),103)

SELECT (Case When (select $[ovpm.nodocsum.0]) > 0 then 'TRUE' Else

'FALSE' End) TF FROM OVPM where cardcode=convert(varchar(20),(Select

$[OVPM.cardcode.numeric]),103) and docnum =(select $[OVPM.docnum.0])

Here is the solution:

SELECT DISTINCT 'TRUE'

FROM dbo.OVPM T0

WHERE $[ovpm.nodocsum.number] > 0 and T0.docnum = $[$3.0.0]

The original query has too many conversions and somehow, the logic becomes
unreadable. The selective Case used is also not needed because we only care when the
query result is True. If it is not True, then False is automatically returned. Another
mistake is $[ovpm.nodocsum.0]. It will be discussed in the Formatted Search chapter.

The query solution is very simple. $[ovpm.nodocsum.number] > 0 checks the
amount of "On Account" for the current outgoing payment. If it's greater than zero,
the approval procedure will be triggered.

Actually, the last condition T0.docnum = $[$3.0.0] can be omitted because the irst
condition only checks the current outgoing payment.

Case 3—Approval for invoice to special
customer groups
Another user tried the following query to be used for an approval procedure:

SELECT DISTINCT 'TRUE' FROM OINV T0 INNER JOIN OCRD T1 ON T0.CARDCODE

= T1.CARDCODE INNER JOIN OCRG T2 ON T1.GROUPCODE = T2.GROUPCODE AND

T2.GROUPNAME 'OVER SEAS CLIENTS' WHERE T0.CARDCODE = $[$4.0.0]

Chapter 5

[171]

The target of the query is to check whether the customer under the customer group
with the name of 'over seas clients' exists in any new invoice. If it is true, the invoice
needs to go through the approval procedure. However, nothing is triggered to any
invoices after assigning this query to the approval procedure.

By checking the user's query, the problem was igured out, for which the solution is
listed here:

SELECT distinct 'true'

FROM dbo.OINV T0

INNER JOIN dbo.OCRD T1 ON T0.CardCode = T1.CardCode

INNER JOIN dbo.OCRG T2 ON T1.GroupCode = T2.GroupCode

WHERE T0.CardCode = $[$4.0.0] AND T2.GroupName LIKE 'Over seas

clients%'

The original query has only one mistake. The condition to check the group name in
the business partner group table OCRG should be put under the where clause.

T2.GroupName LIKE 'Over seas clients%' is using LIKE instead of equal. It also
has the % at the end. That's because it's always a weak match to make a comparison
with any text string. The workaround is to make the scope bigger to increase the
chance of the match.

Case 4—Approval for over booking sales
order
There is another user who initially requests a formatted search query. The
background is, their client usually creates Sales Order and then issues a A/R Reserve
Invoice that commits certain items in certain warehouses. However, sometimes, the
sales person tends to sell more than the available stock. It is even worse because
the purchase order or production order quantities will also increase the available
quantities. To avoid returns due to overselling, the user requests a formatted search
query to check if (In Stock - Committed – Orders) <= 0 any items for the
warehouse selected are being transacted in the sales order.

After some discussion, it was found that this query is actually for triggering an
approval procedure when warehouse quantity falls below the available quantity.

Here is the solution based on the actual requirement:

SELECT Distinct 'true'

FROM dbo.OITW T0

Securities and Approvals

[172]

WHERE T0.ItemCode = $[$38.1.0] AND T0.WhsCode = $[$38.24.0]

AND (T0.OnHand - T0.IsCommited - T0.OnOrder) <= 0

With this query, the table to look up is the OITW—item warehouse table.

The condition is to check the sales order for the line item code and warehouse
code. Using these two, we have a formula (T0.OnHand - T0.IsCommited -
T0.OnOrder) <= 0 to relect (In Stock - Committed – Orders) <= 0.

This query has effectively saved one UDF and a Formatted Search. It can be used to
trigger an approval directly without additional burden to the system.

Case 5—None cash outgoing payment
approval
A user needs to set up an approval procedure for outgoing payments. The terms and
conditions are as follows:

Documents should go for approval only when an outgoing payment is raised by
choosing none cash account. Or in other words, outgoing payment from the cash
account is not subject to approval.

In addition, there is another validation that has to be done when outgoing payment
document series fall under any of the series in the list ('HEA10','KEE10','GIR10',
'DAS10'); the document should not be subjected to approval.

The following query is working for the above requirement.

Select distinct 'True' from ovpm where (select cast(BeginStr as

varchar(25)) from nnm1 where Series=(select $[OVPM.Series]) and a

approval either.

The previous query doesn't seem to work because all the outgoing payments are
subject to approval, whether they are by cash or not.

The solution is as follows:

SELECT DISTINCT 'TRUE'

FROM dbo.OVPM

WHERE (SELECT cast(BeginStr as varchar(25))

FROM NNM1 where Series=(select $[OVPM.Series]) and Remark is null) in

('HEA10','KEE10','GIR10','DAS10') OR

(T0.CashSum = 0 AND T0.DocNum = $[ovpm.DocNum])

Chapter 5

[173]

Only one condition OR (T0.CashSum = 0 AND T0.DocNum = $[ovpm.DocNum]) is
added. This condition ensures cash amount must not be greater than zero. If the cash
amount is zero, it means it's not a cash outgoing payment. This is different from cash
account checking.

The NNM1 table in the query is a row table for ONNM. This table holds all
series' names.

There is a very important limitation in user query for approval.
Approvals will only check the header tables. If you need to check
conditions in a row table for approval, then only the irst line can be
checked. All other lines will not be available to the approval terms. A
workaround can be done by SBO_SP_TransactionNotification
and a UDF. Details will be discussed in the later chapters.

Summary
In this chapter, you learned two important topics for SQL query usage in SAP
Business One. First, how the security can be set to query users. The other is query
used for approval procedures. All these topics are discussed in detail with many
examples and multiple screenshots.

When you follow the suggestion from this book for user query security, you will be
able to reduce potential problems in query usage. This will enable the users to get
just the query they need without any additional risk to the system.

For the approval procedure, you can follow the examples to build your own. Because
user query for approval is so lexible, you will be able to build more approval
procedures to meet your speciic business needs.

In the next chapter, we will discuss Formatted Search—a mystery topic for every
new SQL query user.

SQL Query for Formatted
Search (FMS)

In the previous chapter, you learned about user query security and user query for
approval procedures in SAP Business One.

This chapter focuses on one of the most frequently used but error-prone processes.
It is to create SQL Query for Formatted Search (FMS). This chapter covers the
following topics:

•	 Discussing the following two terms:

	° Formatted Search

	° User-Deined Values (UDV)

•	 Clariication of these two terms
•	 The process of how to set up UDV

	° Focus is given to FMS query and issues related to FMS query, such as
why there are internal error messages popping up and what a dollar
sign or negative sign means in FMS query

•	 The last section gives you some FMS query examples

Within this chapter, the term "ield" will be used if related to a table. Another term
'column' is reserved for a form-related place holder.

SQL Query for Formatted Search (FMS)

[176]

Formatted Search and User-Deined
Values
Before going into detail of Formatted Search (FMS), User-Deined Values (UDV)
need to be discussed in detail. These two concepts are closely related.

Formatted Search has been replaced by User-Deined Values with the 2007 version.
However, these two terms co-existed until version 8.8. There seem to be no stop signs
in using the term Formatted Search. Actually, this term is more popular than UDV.

The rationale behind this is that UDV is an overall concept to describe the ability
for users to deine values in both system and user-deined ields. It covers both the
values from a predeined value list and the values from FMS user query results. To
use it as a menu item, UDV its perfectly. However, Formatted Search emphasizes
how the value has been obtained. This term is more meaningful for user query
generated values. These two terms have different scopes. Formatted Search may
never be replaced by User-Deined Values completely.

The oficial explanation of the User-Deined Values can be found next.

The User-Deined Values function enables SAP Business One users to enter values,
originated by a predeined search process, for any ield in the system (including
user-deined ields).

Examples of using this function include:

•	 Entering values into ields using a predeined list
•	 Automatic entering of values into ields via user-deined queries
•	 Creating dependence between ields in the system, for example, the value in

ield X inluences the value in ield Y
•	 Displaying ields that are only available to queries, for example, User

Signature, Creation Date, Open Checks Balance for business partner,
and so on

In short, this function enables the user to enter data more eficiently and – perhaps
most importantly – more accurately. In fact, the concept is sort of a "Worklow Light"
implementation. It can both save user time and reduce data double entries.

Chapter 6

[177]

How to work with User-Deined Values
To access the User-Deined Values, you can choose menu item Tools | User-Deined
Values. You can also use the shortcut key Shift+Alt+F2 instead. Another option is
to access it directly from a non-assigned ield by using Shift+F2. This will be
discussed later.

You must notice that the option will not be available until you brought up at
least one form. This is because the UDV has to be associated with a form. It
can't stand alone.

The following screenshots are taken from A/R Down Payment Invoice. It is one of
the standard marketing documents. From the UDV point of view, there is no big
difference between this and the other types of documents, namely, Sales Order,
Purchase Order, Invoice, and so on.

SQL Query for Formatted Search (FMS)

[178]

After a form is opened, a UDV can be deined. We will start from an empty screen to
show you the irst step: bringing up a form.

Chapter 6

[179]

When a form is opened, you can deine or change any UDV. In this case, we stop our
cursor on the Due Date ield and then enter Shift+F2. A system message will pop up
as shown in the following screenshot:

If you click Yes, it will bring up the same window in the manner you select the menu
item mentioned earlier from the Tools menu or press Shift+Alt+F2.

SQL Query for Formatted Search (FMS)

[180]

When you get the User-Deine Values-Setup screen, you have three options. Apart
from the default option: Without Search User-Deine Values, you actually have only
two choices:

•	 Search in Existing User-Deine Values
•	 Search in Existing User-Deine Values according to Saved Query

Let's go through the last option irst: Search in Existing User-Deine Values
according to Saved Query. This book is focused on queries. Therefore, the topic
related to query will always be assigned with the top priority. There are quite a few
screenshots that will help you understand the entire process.

Chapter 6

[181]

Search in existing User-Deined Values
according to the saved queries
The goal for this example is to input the due date as the current date automatically.

The irst thing to do for this option is to click on the bottom radio button among
three options. The screenshot is shown next:

SQL Query for Formatted Search (FMS)

[182]

After you have clicked the Search in Existing User-Deined Values according to
Saved Query radio button, you will ind a long empty textbox in a grey color and
a checkbox for Auto Refresh When Field Changes underneath. Don't get confused
by the color. Even though in other functions throughout SAP Business One, a gray
colored ield normally means that you cannot input or enter information into the ield.
That is not the case here. You can double-click it to get the User-Deined Values.

When you double-click on the empty across-window text box, you can bring up the
query manager window to select a query.

Chapter 6

[183]

You can then browse the query category that relates to Formatted Searches and ind
the query you need. The query called Auto Date Today in the showcase is very
simple. The query script is as simple as this:

SELECT GetDate()

This query returns the current date as the result.

You need to double-click to select the query and then go back to the previous screen
but with the query name, as shown in the following screenshot:

SQL Query for Formatted Search (FMS)

[184]

It may not be good enough to select only query because if you stop here you have to
always manually trigger the FMS query run by entering Shift+F2.

To automate the FMS query process, you can click on the checkbox under the
selected query. After you check this box, another long text box will be displayed with
a drop-down list button.

Under the text box, there are two radio buttons for Auto Refresh When
Field Changes:

•	 Refresh Regularly

•	 Display Saved User-Deined Value

Display Saved User-Deined Values will be the default selection, if you do not
change it.

When you click on the drop-down list arrow button, you will get a list of ields that
are associated with the current form.

Chapter 6

[185]

You can see in the following screenshot that Customer/Vendor Code ield has been
selected. For header document UDV, this ield is often the most useful ield to auto
refresh the UDV.

In theory, you can select any ields from the list. However, in reality only a few ields
are good candidates for the task. These include Customer/Vendor Code, Document
Currency, Document Number, and Document Total for document header; Item
Code and Quantity for document lines. Choosing the correct data ield from this
drop-down list is always the most dificult step in Formatted Search, and you should
test your data ield selection fully.

Now, the text box is illed with Customer/Vendor Code for automatically refreshing
the UDV.

Between two options, this query can only select the default option of Display Saved
User-Deined Value. Otherwise, the date will always change to the date you have
updated the document on. That will invalidate the usage of this UDV. The Refresh
Regularly option is only suitable to the value that is closely related to the changed
ield that you have selected.

SQL Query for Formatted Search (FMS)

[186]

In general, Display Saved User-Deined Value is always a better option than
Refresh Regularly. At least it gives the system less burden. If you have selected
Refresh Regularly, it means you want to get the UDV changed whenever the base
ield changes.

The last step to set up this UDV is by clicking Update. As soon as you click the
button, the User-Deined Values–Setup window will be closed. You can ind a green
message on the bottom-left of the screen saying Operation Completed Successfully.

You can ind a small "magnifying glass" added to the right corner of the Due
Date ield.

This means the Formatted Search is successfully set up. You can try it for yourself.

Sometimes this "magnifying glass" disappears for no reason. Actually,
there are reasons but not easy to be understood. The main reason is
that you may have assigned some different values to the same ield on
different forms. Other reasons may be related to add-on, and so on.

Chapter 6

[187]

In order to test this FMS, the irst thing to try is to use the menu function or key
combination Shift+F2. The other option is to just click on the "magnifying glass". Both
functions have the same result. It will force the query to run. You can ind that the
date is illed by the same date as posting date and document date.

You may ind some interesting date deinitions in SAP Business
One, such as Posting Date is held by the ield DocDate.
Document Date however, is saved under TaxDate. Be careful in
dealing with dates. You must follow the system's deinition in
using those terms, so that you get the correct result.

A better way to use this FMS query is by entering the customer code directly without
forcing FMS query to run irst.

SQL Query for Formatted Search (FMS)

[188]

The following screenshot shows that the customer code OneTime has been entered.

Please note that the DueDate ield is still empty.

Is there anything wrong? No. That is the system's expected behavior.

Only if your cursor leaves the Customer Code ield, can the FMS query be triggered.

That is a perfect example of When Field Value Changes. The system can only know
that the ield value is changed when you tab out of the ield. When you are working
with the ield, the ield is not changed yet.

Chapter 6

[189]

Be careful to follow system requirements while entering data. Never press Enter in
most of the forms unless you are ready for the last step to add or update data. If you
do, you may add the wrong documents to the system and they are irrevocable.

The previous screenshot shows the complete process of setting up search in
Existing User-Deine Values according to Saved Query. Now it is time to discuss
the $ sign ield.

SQL Query for Formatted Search (FMS)

[190]

Where do the $ values come from?
Many users have this question when they irst read a FMS query script with system
variables, because not all users have the chance to access SAP's formal document.

A $ sign in the query means a system variable. There are few variables available all
the time such as $[user]. This is the variable to represent the current log in user
sign. However, most variables will be form dependent. To get detailed information
regarding the variable, you need to activate the System Information function as
shown in the next screenshot:

This menu option is under the Views menu. You can use the shortcut key
Ctrl+Shift+I to get the same result. This menu option is an On/Off switch. You
can change it from off to on or from on to off if you select it. A check in front of
the System Information means it is on.

When the system information switch is on, all system information related to the
current mouse position will be shown on the status bar at the bottom left of the
screen. It is irrelevant to the cursor position.

The following example shows that the mouse is over the top irst ield Customer. The
information related to it is as follows:

[Form=65300 Item=4 Pane=0 Variable=1 OPDI,CardCode]

This is a header ield so only two parts are useful to the FMS query:

•	 The irst one is Item=4. Item here means form element; it has nothing to do
with item master data.

•	 The second one is OPDI, CardCode. It is the table and ield name for
this item.

Chapter 6

[191]

In the FMS query, the usages can be either of the following:

•	 $[$4.0.0] that relects Item=4
•	 $[OPDI.CardCode] that only adds $[] to the ield name

The other similar screenshot, as follows, looks exactly the same but the mouse is over
the Item No. ield in the line detail of the form.

SQL Query for Formatted Search (FMS)

[192]

The information that relates to this ield is:

[Form=65300 Item=38 Pane=1 Column=1 Row=1 Variable=11 PDI1,ItemCode]

This is a line ield and three parts are useful to the FMS query:

•	 Item=38: This item stands for the whole matrix of the line detail

•	 Column=1: This refers to the ield in the table
•	 PDI1,ItemCode: Again it is table and ield name

In the FMS query, the usages can be in two equivalent formats:

•	 $[$38.1.0] that relects Item=38 and Column=1

•	 $[PD1.ItemCode] that only adds $[] to the ield name

Chapter 6

[193]

The syntax for a form based line level variable is $[$Item.Column.Type].

For header items, columns are always zero because all items on the header represent
a ield in a table if it has a datasource. Column is only useful for line details.

The last portion is the Type. It is not related to system information found on the
screen. It is the type of value you need to return, and can be any of the following:

•	 0-String(text)

•	 Number

•	 Currency

•	 Date

For example, a value returned by $[$22.0.0] as N'USD 100' when a marketing
document total is 100 US Dollars. If by $[$22.0.number], it will return 100. It returns
only N'USD' if you use $[$22.0.currency]. As a default selection of type 0, it can often
be omitted.

While in the form based variable, the column represents the order number of the
column in the form. For example, $[$38.11.number] stands for quantity ield in the
marketing document. It is the eleventh column within the line detail matrix.

The syntax for a table based variable is $[Table.Field.Type].

The ield in this syntax is the actual ield code within the table. It is the last part of the
system variables. It can be a UDF starting with U_. If you use a table based variable,
the form based variable $[$38.11.number] is equivalent to $[RDR1.quantity.number].

In general, you can always use a form based variable to reduce the trouble for
one query that has to be written multiple times based on the different tables for
different forms.

How to get the value you need from, and for, the
FMS query
To get any values from the FMS query, the irst thing to remember is: only the irst
ield can be returned to the ield if you select more than one ield in your query.
All ields from the second one will be ignored no matter how many ields you have
selected for the query. The additional ields can only be functioned as references.

To assign any values to a FMS query, the principle is: only a table available to the
current form can be based to set a variable. If you open a new form, the base form
variable will become inaccessible. For example, all variables on the main form of the
marketing document will not be available to a freight form and vice versa.

SQL Query for Formatted Search (FMS)

[194]

If you create a query using the $ variables and have a form open that
uses the variables then the query replaces the $ values with the current
values in the form. This is an important step to test FMS query before
assigning. Make sure you save the query irst. Otherwise, the variable
will become a hard value. You cannot get it back to $ variable.

Can you run FMS queries directly?
Can you run FMS query directly under query manager? The answer is partially
yes and partially no. It depends on whether you have form variables or dollar sign
ield values.

If a FMS query has a variable, then this query must be saved under one of your
categories. Preferably, you create an exclusive folder with the name related to
Formatted Search. It is considered as the best practice.

You will get an error message if you select run query from query manager or user
queries directly without any related form open. This is due to the undeined form. A
$ sign will be meaningless without current form support. You will get a red "Internal
error" message immediately on the status bar.

What is the negative sign's function in FMS query?
We often ind that certain FMS queries have a negative sign for variables.
For instance:

$[$-4.0.0]

What does the negative sign stand for?

A negative sign for a form variable means your FMS query is related to header level
User-Deined Fields. The form number will have the same value as the main form
but with the opposite sign.

For example, form 139 is a sales order form. UDF form for a sales order will be -139.
Form 142 is a purchase order form. UDF form for a purchase order will be -142. The
difference between those two related forms is only a negative sign.

When we refer the main form variable to the UDF form, a negative sign is always
needed. The actual form number is not important to FMS query. Only the negative
sign matters. $[$-4.0.0] refers to the BP code in the main document form. It will be
used for a FMS query assigned to the UDF form.

Chapter 6

[195]

Search in existing User-Deined Values only
The simplest form of a search for UDV is to deine a list of values, which the system
proposes as input values. These input values are triggered when the user selects
Shift+F2 in the relevant ield. The procedures to deine this simplest search will be
shown next.

Although this function may not be directly linked to SQL query, it is worth going
through the detailed process to get one more options under the same menu function
with FMS query for UDV.

The same process will be discussed as from the breaking point that showed the
Without Search User-Deine Values option previously. With one exception: the
cursor is not on the DueDate but the Remarks ield.

Instead of selecting the bottom option, the middle option, Search in existing user-
deine values only, will be selected as follows:

SQL Query for Formatted Search (FMS)

[196]

In the right-most screen of this middle selection, you can ind a button with three
dots. It is the access path for predeined values.

This button needs to be clicked to assign a list of predeined values. There is nowhere
else you can ind it.

Chapter 6

[197]

After clicking on the button, a new form will pop up with the title: Field Values–
Setup. There is only one ield in the form. The ield title is Field value. Your cursor
will remain on the irst line.

You can input any letter or number here. In the example, High is inputted on the
irst line. You will notice the button OK has changed to Update. This Update is not
only for the form but for every line. You only need to press Enter to move to the next
line. It acts as a click on the Update button.

SQL Query for Formatted Search (FMS)

[198]

After pressing Enter, the cursor moves down to the second line. The button becomes
OK again. A green message is shown on the bottom-left of the screen: Operation
Completed Successfully. You can input any characters just like in the irst line.

Chapter 6

[199]

Low is entered on the second line. The button now changes from OK to Update. As
before, you just need to press Enter to move the cursor down again.

SQL Query for Formatted Search (FMS)

[200]

When the line is empty and the button is OK, you can close the form by pressing
Enter or clicking on the OK button. This will complete the value list input. You can
always go back to Update or add new lines to the list.

Chapter 6

[201]

Just like the other example, you should ind that the magnifying glass has been
added to the right corner of the Remarks ield from the last screenshot. This means
that the UDV has been assigned successfully.

When you press Shift+F2, a list of values will pop up. All values that were entered on
the list will be available.

SQL Query for Formatted Search (FMS)

[202]

You can select any line from the list. Then press Enter to select one of the values
required or click the Choose button. Click the Cancel button if you do not want
to assign any values from the list. There is an additional button besides these two
buttons. It is the New button. This button allows you to edit or to add values on
the list.

As you can see, since the value selected is that of the irst line, High has been returned
to the ield. This value can be very long. That may save you a great amount of time.

Chapter 6

[203]

The previous screenshots conclude the process to set up Search in existing
user-deine values only function. Next, you will learn some FMS query examples
to help you build your own query quickly.

A typical FMS query application: auto
code creation
The irst kind of examples for FMS query will be the typical ones.

FMS query is a very good tool to facilitate auto code generation to maintain a cleaner
database. It is a good practice to create code without human intervention.

The code creation required is the BP code generation. The others will be for new item
code. Some special requirements can be user document numbers or line numbers
auto code.

Let's take a look at BP auto code generation irst, then item code creation, and inally
a special code-related issue will be discussed briely.

BP code auto generation
When adding BP code, auto generation can save time and reduce certain problems.
First, classify BP to three categories, namely: Lead, Customer, and Vendor. In
common practice, the irst letter will be reserved to BP type. We use L for lead, C for
customer, and V for vendor.

Here is an example code to auto generate the BP code:

SELECT

CASE $[$40.0]

When 'C' then 'C'

When 'L' then 'L'

When 'S' then 'V'

END

+Isnull(Substring(Str(100000+Max(Right(T0.

CardCode,5))+1,6),2,5),'00001')

FROM OCRD T0

WHERE T0.CardCode like '%[0-9][0-9][0-9][0-9][0-9]'

AND T0.CardType = $[$40.0]

SQL Query for Formatted Search (FMS)

[204]

The previous example deines a BP code with one letter for BP type and ive digits
for auto code. It is better to keep the same length code for consistency. If you have
more BP to be set up, you can increase one digit to six numbers. Usually 99,999
customers or vendors are more than enough for a SME to handle.

Item code auto generation
When creating new item code, it is also a good idea to automate the process.

There is a common wrong perception that a number must mean something in order
to manage the item by those codes easily. However, this is wrong in many cases.
Unless your business has very few items that need to be set up, autogenerated
item codes will always supersede the manual item code that fails to imitate the
complicated business process.

One way to adapt to both needs is by using an initial letter for item group or item
category. Other than that, all additional code should be by auto number.

An example of the item code auto creation FMS query is as follows:

SELECT

CASE $[$39.0.number]

When 101 then 'I'

When 102 then 'J'

When 103 then 'K'

END

+Isnull(Substring(Str(1000000+Max(Right(T0.

ItemCode,6))+1,7),2,6),'000001')

FROM OITM T0

WHERE T0.ItemCode like '%[0-9][0-9][0-9][0-9][0-9][0-9]'

AND T0.ItmsGrpCod = $[$39.0.number]

If you check between this example and the BP code example, you will ind
the differences are easy to tell. This FMS query assumes all items under item
group 101 will start with I. While item group 102 will start with J and item
group 103 will start with K, you can deine any kinds of naming convention
according to your convenience.

The item code includes one letter and six digits. You will get 999,999 items for one
item group. This would be more than suficient for any business. You can reduce the
digits to be less. However, it should not be too short in case the business grows.

Chapter 6

[205]

Special code auto generation
A user has requested to know if it's possible to have a value in a UDF in the invoice
rows automatically increase with each line entered.

This request is not normal because Linenum ield holds autoincrement value in
invoice row already. By clarifying the requirement, it turned out the actual need is
to increment another document number, which will not necessarily follow the same
numbering as the row numbers.

The solution is very simple:

SELECT U_special_number + $[inv1.linenum.number] + 1

This FMS query satisied the user's needs. The last part of + 1 is to keep the line
number starting with one instead of zero.

General FMS query examples
Other than the auto code FMS query, the other types will be dificult to classify. The
name general is chosen for all other queries. To be able to create a good FMS query,
a good practice is to try more whenever you have the opportunity. The examples
covered in this chapter will give you a solid foundation to start building your own
FMS query.

Case 1—Double quotes should be avoided
A user created a very simple query. It gave an error message when assigned to FMS.
The query is as follows:

IF (2500 < $[ORDR.DocTotal.number] or $[ORDR.CardCode] like "C99%")

SELECT 'Pre Pay No Charge'

ELSE

SELECT 'Pre Pay and Bill'

The logic is so simple that it should be correct. Where is the problem? Here is
the solution:

IF (2500 < $[ORDR.DocTotal.number] or $[ORDR.CardCode] like 'C99%')

SELECT 'Pre Pay No Charge'

ELSE

SELECT 'Pre Pay and Bill'

SQL Query for Formatted Search (FMS)

[206]

The difference between two queries may not be easy to identify. They are only using
different quotation marks. It is so simple but has often been neglected. Usually,
we can use both double quotes and single quotes within query without any issue.
However, it will not work in the FMS query. A good practice in creating SQL query
in SAP Business One is not using double quotes for any kinds of queries. Wherever a
pair of quotation marks is required, always use single quotes as a safe harbor.

Case 2—Price value validation on line level
A user is trying to do a user input validation on the price ield. A new UDF on
marketing document lines named U_price_validation has been created for the
task. Whenever the price ield on the given row is greater than 100, the U_price_
validation should be set to 1.

The following search query format has been tried:

SELECT TOP 1

CASE WHEN $[$38.14.N] > 100 THEN 1 ELSE NULL END AS Value

FROM OPDN T0

However, it is not working.

Here is the solution:

SELECT CASE WHEN $[$38.14.number] > 100 THEN 1 ELSE NULL END

This query can be set on U_price_validation. It will return value 1 to the ield
when you set autorefresh based on the price ield.

Case 3—Populating a UDF from OITM in a
UDF on quotation
A user created a query that can be run under query manager:

SELECT T1.U_NPS_QD FROM OITM T1 INNER JOIN QUT1 T2 ON T1.ItemCode =

T2.ItemCode WHERE T1.ItemCode = T2.ItemCode

The user wants to use the previous query to populate the query result to a user-
deined ield U_NPS_D2 on Sales Quotation. Whenever an item is added to quotation
or an item is changed, the ield U_NPS_D2 should be changed accordingly. It is
expected that U_NPS_D2 updating would be done automatically without the user
entering Shift+F2.

The question is: how do we convert the previous query to a FMS query with the
right syntax?

Chapter 6

[207]

This is a very straightforward query for FMS. Here is the solution:

SELECT T0.U_NPS_QD

FROM dbo.OITM T0

WHERE T0.ItemCode = $[$38.1.0]

This query should be assigned on U_NPS_D2 ield and set autorefresh on the
ItemCode ield. The ield can then be automatically populated by FMS query and
there is no need for users to press Shift+F2.

You can see the solution query is simpler than the original query. This is because
there is no need to join any tables anymore. The original query also has the
redundant statement T1.ItemCode = T2.ItemCode. The variable $[$38.1.0] is
equivalent to QUT1.ItemCode in current form. Whenever the item is changed in the
sales quotation, the UDF U_NPS_D2 will be updated automatically with U_NPS_QD
value from OITM.

Case 4—Difference between two UDFs into
another UDF
A user made three UDFs in row level of GRPO named U_AS_PER_CHALLAN, U_Rec_
Qty, and U_APPROVE_QTY to represent per Challan (a term used in Asia which means
receipt for payment or delivery), Received Quantity, and Approved Quantity.

An FMS query needs to be calculated using the following formula:

As per challan-Received Quantity = Approved Quantity

The inal Value should be returned to the third UDF's.

Here is the solution:

SELECT $[PDN1.U_AS_PER_CHALLAN.number] - $[PDN1.U_Rec_Qty.number]

The query is again a simple one. It is almost the same as the original formula. You
only need to add the table name PDN1, which stands for Goods Receipt PO, two
letters U_ for the UDF, and a number to convert the result to numeric values.

SQL Query for Formatted Search (FMS)

[208]

Case 5—Displaying warehouse name beside
warehouse code
A user wants to add a new ield or just "display" the warehouse name besides the
warehouse code ield in the Goods Receipt PO form. What is the FMS query for the
job?

This is the simplest request and the solution query is as follows:

SELECT T0.WhsName

FROM dbo.OWHS T0

WHERE T0.WhsCode = $[$38.24.0]

This query can be assigned to a UDF and the UDF can be moved to just beside the
warehouse code.

Case 6—Showing purchase order due date on
sales order
A user created a line level UDF called U_PO in the sales order documents to record
the purchase order number the particular item is ordered on.

There is another line level UDF called U_XMill, which will be used for the
corresponding PO document due date.

The user created a query wherein, only one part needs to be corrected:

SELECT T0.DocDueDate

FROM OPOR T0

WHERE T0.DocNum=$[$38.44.0]

FOR BROWSE

The user knows "38.44" in the query is wrong but has dificulty getting the UDF U_
PO value into the query.

Here is the solution:

SELECT T0.DocDueDate

FROM dbo.OPOR T0

WHERE T0.DocNum=$[RDR1.U_PO]

Chapter 6

[209]

This is a very simple one because all UDF needs is to get the table name in front, such
as this: $[RDR1.U_PO]. In the original query, FOR BROWSE is unnecessary and can be
omitted. FMS query will disable all Linked Arrows by default.

Case 7—Auto populating the proit center code
A user is trying to use a FMS query to autopopulate the proit center but it is not
working. The query is as follows:

select t0.ocrcode

from OOCR t0

where t0.ocrname like '%% $[ordn.cardcode]'

The proit center description (name) has been set up that includes the customer code
in the end as part of the description. An example name is "Customer ABC C00022",
wherein C00022 is the customer code and Customer ABC is the customer name. They
use the same length customer code for all their customers.

The user's FMS query is intended to read the customer code from the AR invoice
screen and pull the proit center based on the customer code that is included in the
proit center name. The query failed to reach the goal.

Here is the solution:

SELECT T0.ocrcode

FROM dbo.OOCR T0

WHERE $[$4.0.0] LIKE RIGHT(T0.ocrname,6)

There is only one difference with the original query. The original query tried to
compare the whole name with the customer code from sales return screen. The
solution query uses generic BP code in the marketing department, that is, $[$4.0.0]
to compare with the last six characters in the proit center description. This will
ensure it works for A/R invoice proit center description.

Case 8—Calculation by three user-deined
ields
A user set up three UDFs in the title level of Marketing Document and named them
as Cost1, Cost2, and Gross Proit.

The goal is to calculate the Gross Proit for sales order by assigning a formatted
search using a formula: Document Total - Cost1 - Cost2.

SQL Query for Formatted Search (FMS)

[210]

The query has been tried without success.

Here is the solution:

SELECT $[$29.0.number] - $[ordr.U_cost1.number] - $[ordr.U_cost2.

number]

Within the query, $[$29.0.number] stands for Document Total. The other UDFs
are straightforward; all three ields with .number as type because the values
are all numeric.

Case 9—Open order reminder in new order
When adding a new sales order for the customer, the user wants to have a reminder or
a pop-up block/notice. That will tell if the customer has open orders in the system.

The business background is: sometimes orders shipped out without notice that
another order had shipped a day before to the same customer.

The main goal is to give a notice or reminder whenever adding a new order to
a customer that already has some orders open. This is not in order to block any
customer from adding new orders; the more, the better.

This is only to remind clerks or the stock keepers to merge the orders into one
package in order to save shipping costs and not send two different packages to the
same address on different days.

Apparently, this pop up can be done only through SDK. However, based on the
need, I have suggested the user to use FMS query.

Instead, to show "Attention-client has open orders!", the FMS query can actually
show open order numbers if they exist.

Here is the solution:

SELECT T0.DocNum, T0.DocDate

FROM dbo.ORDR T0

WHERE T0.DocStatus = 'O' AND T0.CardCode = $[$4.0.0]

The query is very simple. It compares the current customer code against the
ORDR table. Then it lists all open order numbers with a posting date for the
selected customer.

Chapter 6

[211]

Case 10—Commitment checks for warehouse
in stock
A user has an initial request. Their client usually creats a sales order and then an
A/R Reserve Invoice, which creates a commitment for certain items in certain
warehouses. Sometimes, they tend to sell more than the available stock.

They are also quite misled when there is an ordered quantity because it will also be
added to the available quantity. To avoid returns due to overselling, a FMS query
is required with the formula: In Stock - Committed - Orders <= 0 to show items'
availability in certain warehouses selected in the sales order.

Here is the solution:

SELECT (T0.OnHand - T0.IsCommited - T0.OnOrder)

FROM dbo.OITW T0

WHERE T0.ItemCode = $[$38.1.0] AND T0.WhsCode = $[$38.24.0]

This query will calculate the item commitment based on item code and warehouse
for each line item in the sales order. Then check the OITW table for those three ields.

Finally, another solution is to create an alert directly based on the calculation. It can
be calculated on the ly. And it can reduce one UDF for holding the query result.

Case 11—Multiplying a ield from OITM with a
ield on order line
A user needs to multiply two ields. One is weight, located in the Purchase tab
from OITM, and the other is quantity from order lines. The user has tried with the
following query but got an error:

SELECT $[oitm.BWght1Unit.number]*$[por1.Quantity.number]

Here is the solution:

SELECT T0.BWeight1*$[$38.11.number]

FROM dbo.OITM T0

WHERE T0.ItemCode = $[$38.1.0]

Again, the problem is the use of the form variable. Order lines are in the marketing
documents. OITM is not opened. A $ sign should not be used for any ields from
OITM because Item master is not the current table in the form.

SQL Query for Formatted Search (FMS)

[212]

Case 12—Multiplying two UDF values from
two tables
A user has a user-deined ield on sales order row level called U_DEPFEEAMT.

The user would like this ield multiplied by a ield from OITM UDF called U_
DepositFeeON.

The details of the ield for U_DEPFEEAMT are:

Form=139, item=38, pane=1, column=10002117, and row=1

Here is the solution:

SELECT T0.U_DepositFeeON*$[$38.10002117.number]

FROM dbo.OITM T0

WHERE T0.ItemCode = $[$38.1.0]

The column number in this example is special. Because it is a UDF, the number
is much larger than usual. However, the same concept still applies. The second
component in the variable always represents a column in the matrix on a form.

Case 13—Last sales price for a customer
A user wants to get the last price on the unit price ield.

The correct FMS query to satisfy the need is as follows:

SELECT TOP 1 T0.Price

FROM dbo.RDR1 T0

INNER JOIN dbo.ORDR T1 ON T1.DocEntry = T0.DocEntry

WHERE T0.ItemCode = $[$38.1.0] AND T1.DocNum != $[$8.0.0]

ORDER BY T1.DocDate DESC

The last price normally refers to the last purchase price. However, the user didn't
require that price but instead the sales price that applied to the last sales order
before. The TOP function is used to get the latest price for the item. The query looked
up for reversed date range sorting by using the "DESC" in the last line. The top one
would be the latest sales price.

Chapter 6

[213]

Case 14—Calling a UDF value in the BOM to
Production Order
A user wants to know how to call a value in a user-deined ield at row level in the
BOM (Bill of Material or Production Tree) to Production Order.

The detail requirement is: as soon as a BOM item code entered on the production
order header, the values deined in a column in the line details of BOM should be
displayed in a user-deined ield in the Production Order line level.

Here is the solution:

SELECT T0.U_UDF

FROM dbo.ITT1 T0

WHERE T0.Father= $[$6.0.0] and T0.Code= $[$37.4.0]

This is an easy Formatted Search query. You only need to know two screen variables.
One is on the production order header. The other is on the production order lines.

Case 15—Multiplying a UDF value with a
system ield value
A user is trying a formatted search for Receipt from Production transaction. The
request is to multiply the system ield Quantity with a user-deined ield called
UOMinSale and display it in another UDF. UOMinSale is a numeric ield.

The user knows the irst part, that is, $[IGN1.Quantity] but not the UDF part.

Here is the solution:

SELECT $[IGN1.Quantity.number] * $[IGN1.U_UOMinSal.number]

This is another simple example. UDF is treated the same as a system ield with one
exception. A U_ will always be needed in front of UDF. The last part, .number,
should also be used to return a numeric value.

SQL Query for Formatted Search (FMS)

[214]

Case 16—Eliminating the duplicate lines
returned by FMS query
A user created a UDF on the service call table to identify the billing and shipping
information for that speciic service call. The intent is to create a Return Goods
Authorization from this UDF with that information.

The problem is with the following query. The query can return the addresses for the
BP but it will be repeated many times if there are multiple Service calls for that BP.
How do we limit it to only show the address once?

SELECT T2.Address, T2.Street, T2.City, T2.State FROM OSCL T0 INNER

JOIN OCRD T1 ON T0.customer = T1.CardCode LEFT OUTER JOIN CRD1 T2 ON

T1.CardCode = T2.CardCode WHERE T2.AdresType ='S' AND

$[OSCL.CUSTOMER] = T1.CardCode

Here is the solution:

SELECT Distinct T2.Address,

T2.Street,

T2.City,

T2.State

FROM dbo.OCRD T1

LEFT JOIN dbo.CRD1 T2 ON T1.CardCode = T2.CardCode

WHERE T2.AdresType ='S' AND $[OSCL.CUSTOMER] = T1.CardCode

From the solution, the duplicated lines will be eliminated by double insurances. The
irst one is takes out the unnecessary table OSCL from the original query. This will
reduce most of the duplicates. The second one is the keyword Distinct. Even if there
are duplicates returned by the query result, it will never be shown.

Case 17—Getting the sales rep code assigned
to an activity form
A user gave the following case:

Sales Operations Department schedules appointments for the Sales Representatives.

Currently, this is how the schedule appointment works:

•	 Sales Opportunity Module

•	 'Stages' tab

Chapter 6

[215]

•	 'Activities' Column

•	 Click the orange arrow

When clicking the orange arrow, an Activity form opens up.

On the Activity form, the Assigned To ield populates as the user who is logged in.

However, the Assigned To ield should be pointing to the Sales Representative
for that account. (Sales Reps do not schedule their own activities. It is the Sales
Operations Department's job). In other words, a FMS that puts OOPR.SlpCode into
OCLG.AttendUser is needed.

The following query has been tried with no success:

SELECT $oopr.slpcode as $oclg.AttendUser

SELECT

T0.slpcode

as $oclg.AttendUser

FROM dbo.OOPR T0

Here is the solution:

SELECT DISTINCT T0.SlpCode

FROM dbo.OOPR T0

WHERE T0.CardCode = $[$9.0.0]

The user's query will not work because the current form cannot have both OCLG and
OOPR tables. Since the OCLG is associated with Activity form, the query only needs
one variable, which is $[$9.0.0] that represents OCLG.CardCode.

Case 18—FMS query for User-Deined Table
(UDT)
A user created a user table with three ields. The table name is @Nor_VBN. As you
can see, @ is the irst character in the table name. That indicates it's a UDT.

•	 Itemcode

•	 ItemDesc

•	 Qty

A formatted search is needed in ItemDesc ield. Whenever the Itemcode has a value
entered, the description ield should be displayed automatically from item master.

SQL Query for Formatted Search (FMS)

[216]

An internal error is returned by the following query:

select ItemName

from OITM

where ItemCode=$[@NOR_VBN.ItemCode]

A careful examination of the previous query gave the following solution:

SELECT ItemName

FROM dbo.OITM T0

WHERE T0.ItemCode=$[@NOR_VBN.U_ItemCode]

There are two mistakes in the original query:

•	 Alias is mandatory when the query has a conditional statement to compare
with certain variables.

•	 All UDFs need two letter initials as U_. These include all ields within user-
deined tables.

After correcting these two errors, FMS can return values as expected.

Summary
You have learned about a very important tool for SAP Business One in this chapter:
Formatted Search.

This tool can save the company a fortune comparing with developing customized
solution by using SDK programming. Combined by User Deined Field, Formatted
Search will be very useful in getting the information to the right place without
double entries.

You have learned about User Deined Value and the relationship with Formatted
Search. You have learned the $ sign variable as $[$item.column.type] and
$[table.field.type].

With the large amount of real world examples of FMS queries in this chapter, you
will be able to create your own with ease.

SQL Query for
Reporting Tools

The standard usage of the SQL query for SAP Business One has been discussed in
previous chapters. You have quite a few query examples to work with.

In this chapter, the focus will be on some additional usages of SQL query, which are
applicable to SAP Business One. This chapter discusses the following two topics on
usage in some reporting tools:

•	 The irst topic illustrates Query Print Layout Designer (QPLD) including:

	° Simple query report printing

	° Working with a QPLD report
	° Creating/Editing/Deleting a QPLD report
	° Working with Print Layout Designer for a QPLD report

•	 The other topic explains the SQL query usage within Crystal Reports. It
focuses on Command in the database expert selection of Crystal Reports.
This includes:

	° Direct query for Crystal Reports (Command)

	° Working with Standard Report Wizard

	° Creating a new database connection

	° Adding a Command to a report

	° Working with a Command

	° Basic formatting for a Crystal Report

SQL Query for Reporting Tools

[218]

Query Print Layout Designer (QPLD) and
its usage
Query creation and examples are important. However, as a query report, it may not
be good enough to only view it on the screen. Quite often you need to print it out.

The most common practice to create a report is by using SAP Business One's "Export
to Excel" function to export the query results to an Excel Spreadsheet and then
reformat the data into the report required. It is a time consuming task. Another easy
method to print out a query result is to choose Print from the File menu directly, or
to use the keyboard shortcut Ctrl+P. However, the result of this simple print method
yields a different report from ones generated by the QPLD. In order to show you the
differences between a report by this simple print and a report by Query Print Layout
Designer, the results from the simple print method will be shown irst.

One simple query to make attachment statistics has been created for this chapter. All
query results are returned as numbers. This is designed to reduce the reliance on the
data but is focused on the report format. The query script is as follows:

SELECT T0.CntctDate,

Max(T0.atcentry) As 'AttachID',

T0.Closed,

Count(T0.CntctDate) AS 'No. of Attach',

Min(T0.UserSign) 'User'

FROM dbo.OCLG T0

WHERE T0.Atcentry > 0 and

T0.CntctDate> [%0] and T0.CntctDate< [%1]

GROUP BY T0.CntctDate, Closed

ORDER BY T0.CntctDate Desc

As shown in the following screenshot, the query is saved under the general category:

Chapter 7

[219]

The query is named Attachment Statistics. By pressing Enter key or double-clicking
on the query name, the query can be opened from the menu:

SQL Query for Reporting Tools

[220]

Simple query report printing
You can print the query in the previous screenshot by selecting Print from the File
menu, or by using the shortcut Ctrl+P. A Print preferences window will then pop
up. You have two Printing options to choose from:

•	 Window

•	 Table

Table would be a natural selection for the query report. You will have the option to
change the report title so that it can be different from your query name. By default,
the user name and date will be added to the report. If you don't want them, you have
to uncheck those checkboxes.

After clicking on OK, a query report will be printed out with the table option
as follows:

Chapter 7

[221]

The page header and report title are omitted here due to space constraints. All
reports will look similar to the format as shown in the previous screenshot when
you print this way.

You have another option to print out by Window instead of by Table:

Using this option, the report looks similar to a screenshot plus a title. That is why
this option is not normally used. The majority of users select the Table option and
also another check box Selection only. By checking this option, only the selected area
of the table will be printed. But for an example of how the "Window" option printout
looks see the results in the next screenshot:

SQL Query for Reporting Tools

[222]

Query Print Layout Designer
Compared with regular query printing, a better option is to use a system tool called
Query Print Layout Designer. It is usually abbreviated to Query PLD or QPLD. The
term Print Layout Designer (PLD) represents a printing tool exclusively developed
for SAP Business One. PLD will not be discussed here since it is out of the scope of
this book. If you have further interest in PLD, you can refer to related documents.

QPLD has the advantage that it can be used quickly whenever you need to show
your query results in a consistent manner with your preferred styles. It can either be
printed out to a printer or exported as a PDF ile with much better readability.

QPLD has more options than plain printing of the query. Some of these
options include:

•	 More text formats available

•	 Customizable ield width
•	 Parameter displayed by default

•	 Logo, picture, or formula ields to be added

There are many other options that are omitted and not listed here. In general, most
functions supported by PLD will be available to QPLD.

QPLD is available through the following menu item shown in the next screenshot.
The full menu path can be found from the Tools | Queries | Query Print Layout….

Chapter 7

[223]

When the QPLD form is opened, you will ind two tabs:

•	 Reports

•	 Templates

The Reports tab holds all QPLD reports that you have saved.

The Templates tab saves all QPLD templates that can be used as a base for
your report.

You can get two screenshots for one tab, each illustrated as follows.

The following is the screenshot for the Reports tab:

SQL Query for Reporting Tools

[224]

The following is the screenshot for the Templates tab:

Working with a QPLD report
If you want to create a QPLD report for the queries, each query will require its own
QPLD designed speciically for this individual query.

Chapter 7

[225]

Creating a QPLD report
We start with the same query "Attachment Statistics", which was used for simple
query printing in the previous section.

SQL Query for Reporting Tools

[226]

Notice the Create Report button under the query manager form, as shown in the
previous screenshot. When you click on this button, a QPLD form will be opened
similar to the one found in the next screenshot. The form title is: Create User Report.
The upper part of the form is for inputting or modifying the Name of the report. You
can accept the query name as the report name or change it to any name you like. The
lower part is Base Template for you to choose from and start a new report. You must
select one template; it is mandatory.

A default name that is the same as the query name has been accepted. And the base
template has been selected as User Report template. After you click OK, the QPLD is
added to the system. You are then taken back to the query manager screen. The next
screenshot shows the newly created QPLD on top of the list.

Chapter 7

[227]

The best practice is to add a version number, or possibly a date,
to the end of the report name in case additional report layouts
from the same data are required in the future.

Editing a QPLD report
To edit the newly created QPLD, you can go to the menu or use key combination
Alt+TQR. Your newly created QPLD name is ready for you to pick.

Base template is nothing but a special QPLD report where you can make
a special style to it your need. The editing of the template is exactly the
same as editing a normal QPLD report. In order to maintain your report
with the same style, you need to create a well-designed template irst.

SQL Query for Reporting Tools

[228]

Working with Print Layout Designer for a QPLD report
When you double-click the selected QPLD report name, the QPLD opens. This
action changes the toolbar at the top of the screen so that you can use either the Print
Layout Designer top menu or the icons from the toolbar to access PLD functions.

The QPLD report selected from the previous screen is the one created from the last
action. This QPLD contains three forms:

•	 QPLD layout—in this case, Attachment Statistics.

•	 Field Index

•	 Property

The whole screen is too large to it in the book page. I have squeezed these forms into
smaller sizes so that you can have them in one place with much larger text size.

Chapter 7

[229]

Working with a property form when editing QPLD
Suppose you need to change one of the default ields on the Page Header from a
database ield Administration: Printing Header to a static text ield that just shows
your query report title, the irst thing you need to do is to select the ield.

You may click on the area in the QPLD to select the ield or go to the Field Index
form to browse each ield. The irst method is always the preferred option as long as
you don't have too many ields in the query report, especially any hidden ields.

After you have selected the area, the Properties form shows the General tab with
information regarding the Unique ID, Height, and a checkbox to decide if the area
or ields need to be visible or not.

SQL Query for Reporting Tools

[230]

For the selection in this example, the Page Header area is selected. You can see that
the Page Header is highlighted under the Field Index form. The Unique ID for this
ield is F_001. Height is 80, which stands for the pixels of the entire area. The Visible
check is selected by default. If you want to hide any areas or ields, you can simply
uncheck this box.

Editing QPLD ield content and the limitation in editing
Only selecting an area is not suficient. To change any ield, make certain that you have
selected an individual ield and not just an area on the print layout. An example here
is to click on the text of Administration: Printing Header to select this ield. When you
have selected this ield, the Page Header section under Field Index is expanded. From
the Index form, you can ind the unique ID of this ield, which is F_007.

Chapter 7

[231]

To change this ield, the irst thing to do is select the second tab, which is Content.
The irst option under content is Source Type. There are four source types available:

Source Type Description

Free Text Any free entered strings or numbers

Database A database table ield from a preselected table list
Formula A formula from build in function within PLD

System Variable A variable deined by the system but not available to QPLD

The fourth source type option System Variable is only available to
documents or master data PLD. It is not available to QPLD. Type
option is also very limited to a few number of tables and ields.
They do not link to your query. Avoid wasting your time on this.
Refer to the previous screenshot to ind out.

SQL Query for Reporting Tools

[232]

If the selected ield type is the database type, there are more options available because
there are more properties. You need to select Table, Column, Relate to, and Next
Segment. However, this type is not good for QPLD use. It is mainly for normal PLD.

Changing ield type of QPLD
To change this ield to a text ield, you can select the Free Text ield type. When the
source type is selected as Free Text, the text area below the source can be used to
write any free forming texts. In this example, Attachment Statistics is typed in to
relect the name of QPLD.

On the right side of the Content tab of the properties form, you can ind a small
square box. This box is used for ield format preview. All settings under the Format
tab will be shown here such as font, style, color, border, and shade. If you are not
satisied with the result the system provides, you can change the settings under the
Format tab.

Chapter 7

[233]

Saving a QPLD report
When the ield change is completed, you can click on the close window icon (a
boxed-cross at the top right corner of the QPLD).

The system then pops up a message: Do you want to save the change? Click Yes
to change. If you select Save from the PLD menu without closing it, you will get the
same message.

SQL Query for Reporting Tools

[234]

Printing a QPLD report
To print out the QPLD report, select the report you want to print out or preview
from the QPLD menu. Then select the toolbar icons or ile menu items Print or Print
Preview to complete the task. A print preview screenshot can be found next:

In the print preview, the page count sounds incorrect. If you have gone through the
actual process step-by-step, you will ind something is wrong. The 'where clause' is
not yet implemented in the query, which means the QPLD is still using the old query.

I intentionally made this error to demonstrate an important point often asked by
forum members using the QPLD: Is it possible to only change the underlying query
without changing the QPLD? The answer is unfortunately: "No". If you keep the
QPLD, you will ind that the QPLD report will not be updated to the new query. The
report only uses the original query before an update. This is one reason to have a
version number or date at the end of the QPLD report.

Deleting a QPLD report
As a matter of the fact, the QPLD always uses a copy of the query during QPLD
report creation. There is no link between the query under query manager and the
QPLD created.

Chapter 7

[235]

The only solution is to delete and recreate the QPLD. To save time, make sure you
update the template to retain the customized contents and formats.

The function to delete QPLD can be found on the PLD menu. A system message:
Delete Document? pops up after you select the delete PLD option.

When you click OK to allow deletion, the old QPLD will be deleted. You are able to
add new QPLD based on the updated query that includes the missing where clause.

Recreating the QPLD report
You can still use the same name as the old QPLD when you create a new QPLD for
the newly edited query. A new template from the irst QPLD can be used as a base
template, so that you do not need to repeat what you have done for the old QPLD.

After making the correction, you will ind the correct query running behavior
because the Query—Selection Criteria window pops up before the print preview.
This is the expected result because there are two parameters set up in the sample to
restrict the date range for the report. Two System Dates are shown in the following
screenshots with two input boxes to the right.

SQL Query for Reporting Tools

[236]

Some users have questions regarding the parameter descriptions.
Sometimes they are not satisied with the way descriptions are displayed.
Unfortunately, all those descriptions are built into the application. It
is not possible to change them. You need to properly train your users
regarding the query. Let users know what parameters are expected.

To input the parameters, there are two options:

•	 Select the existing value from the list by clicking on the button to the right of
the box

•	 Input manually

The irst option is normally the preferred option because the input box only accepts
the correct values from the list. Manual input is a good choice when the parameter is
set up as a fuzzy value, such as %[%0]%.

In this example, two ixed dates are needed to be used as the "from date" and "to
date". Any valid dates can be used. You can save some keystrokes by typing in a
number that is less than 31 to get the date in the current month, or by typing in any
letters to get the current date.

Chapter 7

[237]

After illing in with two dates, you can click on OK to bring up the report to the
screen. The screenshot is as follows. You will notice the page number shows 1 of 1.

SQL Query for Reporting Tools

[238]

You can then move around in the report by using the Page Down, Page Up, or scroll
bar. The following screenshot shows the movement within report:

Before starting a PLD, ensure that you have reviewed the SQL
results with the person who requested the report. This is a
critical step in ensuring you can use everyone's time effectively.

Direct query for Crystal Reports
(Command)
Crystal Reports, a SAP product, is a business intelligence application used to design
and generate reports from a wide range of data sources.

Since version 8.8, Crystal Reports became an integrated reporting tool for
SAP Business One. Prior to this version, there is a "Crystal Reports Integration
for SAP Business one" add-on available. In both situations, you can use Crystal
Reports Designer.

Chapter 7

[239]

The following section contains query-related functions in Crystal Reports. This is
called Command for Crystal Reports. This tool ensures that the query can function
as the kernel for a crystal report without worrying about the complicated links if you
build a report from multiple tables directly. You can reuse some queries under user
query category directly to get better formatted reports. Crystal Reports is much more
powerful than QPLD. If you need a professional inal touch for the report, Crystal
Reports should be selected irst.

For this section, the assumption is that you have Crystal Reports Designer installed
and ready to run. Otherwise, the topic would be extremely dificult to understand.
All screenshots in this section are generated from Crystal Reports Designer.

Working with Standard Report Wizard
We start from the Standard Report Creation Wizard form as shown next. You will
get two windows within the form. The Available Data Source window is on the left
side while the Selected Tables window is on the right side.

SQL Query for Reporting Tools

[240]

To show you this function, the initial screens and some other parts of Crystal
Report Designer screens are omitted. If you are not familiar with how to run
Crystal Reports in general, you need to check some other resources.

To create a crystal report, the irst thing to do is choose a suitable data source. The
wizard shows you all available data sources from the operating system.

There are two items under Available Data Sources:

•	 My Connections

•	 Create New Connection

Creating a new database connection
Creating new connection is the initial step for any reports. As soon as you create a
new connection, it is shown under My Connections. You can expand Create New
Connection by clicking the Expand icon to the left of the text.

Chapter 7

[241]

You will get some available data sources from the connected SQL server. The next
two screenshots show some of the data sources. For SAP Business One database, you
can use ODBC, OLE DB (ADO), or other compatible sources. Both ODBC and OLE
DB are acceptable sources. In this sample, we select OLE DB (ADO).

The next screenshot shows the same available data source after scrolling down a few
lines of the list:

SQL Query for Reporting Tools

[242]

After expanding OLE DB (ADO) data source, you will get an option to Make New
Connection. You need to double-click on the link. This action brings up another
window that lists all OLE DB Providers. You have an additional option to Use Date
Link File in this window as well.

Within a dozen of OLE DB providers, SQL Native Client is normally at the bottom
of the list because of the alphabetical order. SQL Native Client is selected for this
sample report.

There is a Use Data Link File option under the Provider. It actually requires a ile
(.udl), which provides connection (string) to an ActiveX Data Objects (ADO). Every
time the report runs, it retrieves the connection string from the ile, which could
affect system performance and that is why we will not select this option.

After the selection, you will get two Next buttons. You have the option to click on
Finish whenever you are satisied with the system default or if you plan to complete
it later.

Chapter 7

[243]

Upon the irst Next button click, the window proceeds to the Connection
Information form. Under this form, you need to ill in the following:

•	 Server

•	 User ID

•	 Password

•	 Database

There is another check box: Integrated Security. If this box is checked, the User
ID and Password are greyed out. In this case, only server and database need to be
selected. Integrated security uses the current Windows identity established on the
operating system thread to access the SQL Server database. You can then map the
Windows identity to a SQL Server database and permissions. That is why those
boxes are greyed out.

If Integrated Security is not checked, you must enter a valid User ID and Password
to connect to the database. The root user for a SQL Server—sa is usually entered here.

The second Next will show you the Advanced Information form. Under this form,
you have three options:

•	 Add Property

•	 Edit Value

•	 Remove Property

SQL Query for Reporting Tools

[244]

These properties are so advanced that normally only a database administrator would
be able to differentiate them. They do not need to be touched for a regular report.

The Back button allows you to go to the previous step at any given point.

Clicking on the Finish button is needed in order to complete the connection selection.

As soon as you click on Finish in the Create New Connection stage, your new
connection is shown under My Connections. You can have more than one connection.

Under any of these connections, there are also two options:

•	 Add Command

•	 Database Connected that is expandable

Chapter 7

[245]

Adding a Command to a report
From here you can go to the normal route to select any table directly. However, that
is not the topic for this book. Add Command is all you need.

By double-clicking on Add Command, a new form pops up. The title of the form is:
Add Command to Report. You can enter or copy any SQL queries here in the large
text box area to the left side of the form. The box has a clear title: Enter SQL Query
in the box below. The right-side box is for maintaining a parameter list. It is not
tightly related to the query, so it will not be discussed in the book.

Two screenshots are shown next to illustrate two different views. One is only with an
empty text box and the other shows a SQL query illed box. The query is the same query
found on the irst page of this chapter except one minor change in the Where clause.

SQL Query for Reporting Tools

[246]

T0.CntctDate> [%0] and T0.CntctDate< [%1] in the original query is not a valid
statement for Crystal Reports. It has to be dropped off.

Examining the empty box, you will ind that the OK button is disabled if nothing has
been entered. As long as you have entered a valid SQL query script, you can click
OK to add the command to the report.

The system validates the query after you click OK. If the query has problems, you will
receive appropriate error messages and the add command will fail. A valid query is
mandatory. The best way to minimize this error would be to run the query irst under
query manager or SQL Server management studio, and make sure it is working. The
only restriction here is that you are not allowed to use [%] as a parameter. You can
add parameter ields to the report itself. It is much more convenient.

After validation, the Command is displayed on the right side of the form. It is treated
as one of the Selected Tables. You can still select some other normal tables if the
Command does not cover everything you need for the report.

To simplify the illustration of the Command function, you will only get this
particular Command under the Selected Tables.

Working with a Command
After you have created a Command, you can work with it.

Chapter 7

[247]

Click Next, and you will open up the Fields form. Under the left-side box, all
Available Fields in the Command will be listed. The right side of the form is
for Fields to Display.

Selecting ields from a Command
The irst task to work with a Command is selecting ields from it.

SQL Query for Reporting Tools

[248]

There are four buttons in the middle of the form:

•	 The top button with a single left arrow is used for selecting one ield
to display.

•	 The next button with a double left arrow is used to select all ields to display.
•	 The two right arrow buttons under these two top buttons reverse the left

arrow buttons' functionalities. You can take out one or all ields from the
display by using these two buttons.

For simplicity, we chose them all by clicking on the double left arrow.

There are two arrows at the top right of the Fields to Display box that can be used to
reorder the ields:

•	 The down arrow moves the selected ield down one level
•	 The up arrow moves the selected ield up one level

The actual result is presented from left-to-right instead of top-to-down, if you accept
default report layout for detail records.

Chapter 7

[249]

Under the Available Fields box, there are two buttons:

•	 Browse Data

•	 Find Fields

These two buttons are only useful if you have too many available ields to select
from. In that case, to ind a ield quickly, you need to use either the Browse Data or
Find Fields function. The usage of these functions is not elaborated here.

Working with two optional forms—records selection and
templates
Click Next from here, and you will get the Records Selection form.

This is an optional form. Using this form you can select a subset of information to
display. First is selecting the Filter Fields from command ields or report ields. Then
set the ilter condition to restrict the scope of the records.

SQL Query for Reporting Tools

[250]

The form acts as a WHERE clause in SQL query. Any conditions listed here are treated
as permanent ilters. Only records that meet all ilter conditions can be returned.

Since we can use the WHERE clauses in the query script directly, this function may not
be needed for Command. It is mostly used by a report with table data source only.

Now we can click on Next to bring up the last optional form.

The last optional form is used for selecting report format. The default selection is
No Template.

After accepting the default selection, you can click on Finish to inish this Standard
Report Creation Wizard.

No template means the report only has very simple output. It looks like the default
QPLD report with little formatting.

Chapter 7

[251]

Basic formatting for a Crystal Report
From the irst report output, the date format and number format seems odd. In order
to resolve this issue, you can select the ield and change the ield format.

For a date ield, there are dozens of formats to choose from. An mm/dd/yyyy
format is selected instead of the default date format with the time included.

SQL Query for Reporting Tools

[252]

For the number ield, because the report ield AttachID is not a regular number but
an identiier, it can be changed to No Thousand's separator.

A report title can be added to the Report Header or to the Page Header. For this
report, the title can be added to the report header so that the title does not get
displayed on every page of the report.

Chapter 7

[253]

After all these changes, you can get a better looking report as follows:

The template function is very powerful. If you decide to try other templates, that's
always possible. The default look of the report is based on the selected new template.

In the following example, the Table Grid Template has been selected instead of
No Template:

SQL Query for Reporting Tools

[254]

The manually edited date and number ield formats need to be applied again:

After the second edit, you can get a better looking report as follows:

Chapter 7

[255]

Summary
In this chapter, we discussed two main areas of SAP Business One reporting tools to
increase the query's usage. You learned Query Print Layout Designer and Command
for Crystal Reports.

By using these tools, you can generate user-friendly reports.

Query Print Layout Designer (QPLD) has the advantage of being used quickly
whenever you need to show your query results in a consistent manner using your
favorite style.

You learned how to create, edit, and delete QPLD.

Command for Crystal Reports ensures that the query can be the kernel for a Crystal
Report with no need to worry about the complicated links if you build the report
from multiple tables directly.

You leaned how to create data connections. Last but not least, you learned
how to add Command for Crystal Reports as well as some Report formatting
and presentation.

In the next chapter, you will have another tool to master: the only legitimate store
procedure allowed for SAP Business One—SBO Transaction Notiication.

SQL Query for a Stored
Procedure

In the previous chapter, we learned about two printing tools for SQL query: Query
Print Layout Design and query for Crystal Reports. This chapter focuses on one
of the very special cases for SQL query usages. It is regarding the query used in a
special Stored Procedure (SP) called SBO_SP_TransactionNotiication. The chapter
focuses on the following:

•	 Why this Stored Procedure is included in the book

•	 SBO_SP_TransactionNotiication overview
•	 How to work with this SP

•	 Multiple examples for the SP including its core SQL queries

Why Stored Procedure is included in this
book
Stored Procedure is a subroutine available to applications accessing a relational
database system. In the case of SAP Business One, the database accessed is
Microsoft SQL Server. Stored Procedures are mainly used to simplify the database
development process by grouping Transact-SQL statements into manageable blocks.

SQL Query for a Stored Procedure

[258]

It might sound like this topic does not it with this book. However, if you examine
the query usages within SAP Business One carefully, query for this SP usage is never
a trivial part to be ignored. This SP can turn out to be extremely useful. Based on
some example data, I have analyzed the distribution ratio of the query usages by the
following chart:

I have broken down 100 random queries by normal users into three categories:

•	 Stored Procedure

•	 Formatted Search

•	 Regular

There are no overlaps between each category. Queries for stored procedure and
queries for formatted search are easily identiiable. If none of them apply, the query
will be categorized as regular.

In the statistics, the percentage for stored procedure may not be exactly right. This
ratio should be close to formatted search. The smaller percentage is due to the
fact that I have answered many more questions on the formatted search query as
opposed to stored procedures. I have only counted what I have answered.

Chapter 8

[259]

SBO_SP_TransactionNotiication
overview
The SBO_SP_TransactionNotiication is the only legal way in SAP Business One to
do a validation with this stored procedure.

It is mainly used to prevent the user from performing an action if the validation
condition failed. The mechanism of this SP works by receiving notiication of data-
driven events from the system.

This stored procedure is created automatically with each database. A simple skeleton
to show this SP structure is as follows:

A default empty SP is shown as follows:

SET ANSI_NULLS ON

SET QUOTED_IDENTIFIER ON

GO

ALTER proc [dbo].[SBO_SP_TransactionNotification]

@object_type nvarchar(20), -- SBO Object Type

@transaction_type nchar(1), -- [A]dd, [U]pdate, [D]elete, [C]ancel,

C[L]ose

@num_of_cols_in_key int,

@list_of_key_cols_tab_del nvarchar(255),

@list_of_cols_val_tab_del nvarchar(255)

AS

begin

-- Return values

declare @error int -- Result (0 for no error)

SQL Query for a Stored Procedure

[260]

declare @error_message nvarchar (200) -- Error string to be

displayed

select @error = 0

select @error_message = N'Ok'

--

--

-- ADD YOUR CODE HERE

--

--

FINISH:

-- Select the return values

select @error, @error_message

end

The irst two sets of clauses are only meaningful for the database administrator. We
do not need to discuss them in this book.

There are ive input parameters and two output values.

The ive input parameters are as follows:

•	 @object_type nvarchar(20): This stands for the object type in SAP Business
One; the complete object type list can be found in the appendix of this book.

•	 @transaction_type nchar(1): Five valid transaction type values allowed are:

	° A for add

	° U for update

	° D for delete

	° C for cancel

	° L for close

•	 @num_of_cols_in_key int: Numbers of key columns in the table.

•	 @list_of_key_cols_tab_del nvarchar(255): Key column name.

•	 @list_of_cols_val_tab_del nvarchar(255): Value in the key column. This is
the most useful parameter to link the current transaction by this SP.

Chapter 8

[261]

As you can see, the structure for all samples remain the same and only the inside
query or logic changes.

Beginning with the 2007 version, there are four related Stored Procedures for SAP
Business One:

•	 SBO_SP_PostTransactionSupport

•	 SBO_SP_TransactionSupport (since SAP Business One 2007)

•	 SBO_SP_PostTransactionNotice (since SAP Business One 2007)

•	 SBO_SP_TransactionNotiication

Let us see what these Stored Procedures' functions are:

The irst two encoded Stored Procedures named SBO_SP_TransactionSupport and
SBO_SP_PostTransactionSupport cannot be edited by the user. They are database
notiication stored procedures, which can be used by SAP support only. They are
used to add diagnostic code, so they are of no use for the customer's daily work. Due
to this reason they are removed in SAP Business One Version 8.8.

SBO_SP_PostTransactionNotice and SBO_SP_TransactionNotiication are the only
Stored Procedures where a user can add SQL code to be a part of the notiication
process. The functionalities of both are the same. The only differences are when
they are triggered and the ability to use the @error functionality of SBO_SP_
TransactionNotiication to rollback transactions.

SBO_SP_PostTransactionNotice is triggered at the end of an action (transaction
committed). It is preferable to use SBO_SP_PostTransactionNotice. However,
because this occurs after the transaction, the @error rollback functionality can not be
used. SBO_SP_TransactionNotiication is the main SP that most companies can use to
help SAP Business One it their business process without investing a lot of time and
money in the SDK development. The ability to rollback transaction by this SP can
effectively help business rule enforcement.

How to work with SBO_SP_
TransactionNotiication
This SP cannot be accessed or maintained within a SAP Business One application. You
need to directly access Microsoft SQL Server Management Studio to work with it.

SQL Query for a Stored Procedure

[262]

There is a simple way to access and maintain this SP

1. To open up the management studio. This is usually done by clicking a
shortcut if you have standard SQL Server installation. Or you may go
through Start | All Programs | Microsoft SQL Server to ind the application
to run.

2. To locate the database that you need to work with. Be careful with this step if
you have multiple databases under one SQL Server. Each SP will only work
within one speciic database. Wrong database selection could cause serious
problems. Always handle it with care.

A good practice is to always work with this SP under a test
environment. When you are fully satisied with the SP results, you
can then open up production database to insert your tested code.

The following screenshot displays the irst screen after you run SQL Server
Management Studio. There are two panels under menu and toolbars:

•	 Object Explorer

•	 Object Explorer Details

Object Explorer displays categorized objects for the entire SQL Server. Object
Explorer Details shows the details of the selected objects.

The irst objet under Object Explorer is Databases. This object is our main interest in
this chapter. It needs to be expanded.

Chapter 8

[263]

Object Explorer works very similar to Windows Explorer. You can browse the
database list by expanding the category. Then you can locate the database you prefer.
Once you locate the database, you can open up the selected database. The following
objects can be found under the databases category:

•	 Database Diagrams

•	 Tables

•	 Views
•	 Synonyms

•	 Programmability

•	 Service Broker

•	 Storage

•	 Security

The Programmability category is the one that contains the required object. The irst
object under Programmability is the one you need:

By expanding Stored Procedures, you can locate this SBO_SP_
TransactionNotiication SP through an alphabetical order.

SQL Query for a Stored Procedure

[264]

Under this SP, there is only one subobject. It is Parameters. You can get ive
parameters and a returns integer under parameters.

The details of the parameters have already been explained in the overview section of
this SP. You may refer to the previous section if you have skipped that part.

To add your own SQL code to this SP, you need to modify it.

The modiied function can be found when you right-click on this selected SP. A
window will pop up. Click the second item to choose Modify. The alternative is
using the shortcut key y when you get the pop-up window.

When you have selected the Modify function, a new window pops up from the right
side in addition to the Object Explorer Details.

The SP is editable now. You can copy the code you have written to the section that
reads: Add your code here. You can also write directly under this window if you
have conidence and a tight schedule.

Chapter 8

[265]

It is recommended to click on the Parse or check mark icons to verify the grammar
of your code. If you get the message: Command(s) completed successfully, it means
the SP has no error in terms of grammar.

If you get an error, you can always check the line number indicated by the
error message. Troubleshoot your SP until it passes the test. There are different
methodologies to do the testing. However, it is beyond the scope of this book.

You might want to copy the successfully tested stored procedure
into a word processing document to ensure that you have a sound
back up. If the test environment is refreshed or overwritten before
you get a chance to insert it into the production environment, you
will have saved a good amount of time and effort.

The inal step is to save the modiication. This can be done by closing this window.
When you close it, the system will pop up a smaller window like the following
screenshot. The message is clear: Save changes to the following items?

SQL Query for a Stored Procedure

[266]

In the window, you can ind all the edited SPs that need to be saved. If you know
they are the right SPs, click Yes. If they should not be saved, click No. Or click
Cancel if you still want to continue working with the SP.

In the screenshot, you can see only one SP inside the window. The name is
SQLQuery1.sql. That is a temporary SP name before you save. If you have modiied
more than one SP in one session, you can get SQLQuery2.sql, SQLQuery3.sql, and so
on. Do not work with more than one SP if you are not familiar with it.

This concludes the procedures on how to work with this SP. As for how to write a
correct SP, the following examples should give you some guidelines.

Some example queries for this SP
Within this book, you have already found quite a few example queries. There is no
exception in this chapter. I do believe query by example is one of the most eficient
ways to learn queries.

Case 1—Blocking an outgoing payment for a
speciic BP
A user is trying to block outgoing payments (Object 46) for a speciic Business
Partner for some reason by using the following SP:

IF (@Object_Type = '46') AND (@transaction_type in (N'A', N'U'))

BEGIN

Chapter 8

[267]

 IF EXISTs (SELECT T0.[DocEntry] FROM OVPM T0 WHERE

 T0.[DocEntry] = @list_of_cols_val_tab_del and T0.CardCode = 'V0271')

 BEGIN

 SET @error = 10

 SET @error_message = N'Block BP'

 END

END

However, this SP blocks all outgoing payments for all BP Codes. What is the problem
with this SP?

Check the following solution:

IF (@Object_Type='46') AND (@transaction_type in (N'A', N'U'))

BEGIN

IF Exists (SELECT T0.DocNum

FROM OVPM T0

WHERE T0.DocEntry = @list_of_cols_val_tab_del and

T0.CardCode = 'V0271')

Begin

SET @error = 10

SET @error_message = N'Blocked BP'

End

END

The problem for this user's SP is quite simple. A condition like T0.DocEntry = @
list_of_cols_val_tab_del or similar is always required to identify the current
transaction being processed. Otherwise, SP will look through the entire table. As
long as there is one transaction in history, the condition will be satisied. That is why
all outgoing payments for all BP codes had been blocked by the user's SP.

For all sample SPs within this chapter, you will notice that two BEGIN
and END pairs have a different format. The outer pairs are all capitals as
BEGIN and END. The inner pairs are in proper format as Begin and End.
This is not mandatory but can help reduce errors. This is considered a "best
practice" as a way to ensure the SP is properly completing and closing its
intended function. The format also eliminates confusion on which "begin"
belongs with each "end". They function like different brackets as {[]}. You
can easily ind the right level begin with the corresponding end.

SQL Query for a Stored Procedure

[268]

Case 2—Restricting outgoing payments
above 20,000
The same user from Case 1 wants to restrict outgoing payments in which the cash
transactions for cash account above 20,000 should not be added.

An approval procedure is not suitable for them. The payment has to be stopped
from being created.

The solution is:

IF (@Object_Type='46') AND (@transaction_type in (N'A', N'U'))

BEGIN

IF EXISTs (SELECT T0.DocNum

FROM OVPM T0

WHERE T0.DocEntry = @list_of_cols_val_tab_del and

T0.CardCode = 'V0271' and

T0.CashSum > 20000)

Begin

SET @error = 10

SET @error_message = N'Cash amount >20,000 is Not allowed'

End

END

The difference between Case 2 and Case 1 is in one condition only. It is: T0.CashSum
> 20000.

Case 3—Blocking goods receipt entry
A user has been trying to block a new goods receipt from creation if the entered total
quantity of all the line items is greater than the quantity on the header UDF U_nQty.

For example, if header UDF U_nQty has quantity 4 and row level has two items:

•	 Item A with quantity 2

•	 Item B with quantity 3

Then the system will block the goods receipt because the sum of row level quantity is
5 (2+3). It is greater than the header level UDF U_nQty quantity 4.

Chapter 8

[269]

This user created an SP as follows but it was not working:

if @object_type='59' and @transaction_type='A'

BEGIN

If Exists

(SELECT *

FROM OIGE T0 INNER JOIN IGE1 T1

ON T0.DocEntry=T1.DocEntry

WHERE T0.DocEntry = @list_of_cols_val_tab_del

Group By T0.U_nQty

Having Sum(T1.Quantity) <=T0.U_nQty)

Begin

SELECT @error = 1,

@error_message = 'error'

End

END

The solution is:

IF @object_type='59' and @transaction_type='A'

BEGIN

If Exists

(SELECT T0.DocEntry

FROM OIGE T0

INNER JOIN IGE1 T1 ON T0.DocEntry=T1.DocEntry

WHERE T0.DocEntry = @list_of_cols_val_tab_del

Group By T1.DocEntry

Having Sum(T1.Quantity) <=T0.U_nQty)

Begin

SELECT @error = 1, @error_message = 'error'

End

END

Actually, the original SP by the user is almost correct. If you do not check the two
SPs very carefully, you may hardly notice the differences.

SQL Query for a Stored Procedure

[270]

The most important correction is for the Group By clause. Group By T1.DocEntry
can return the right result. The original Group By T0.U_nQty cannot work. Because
the grouped data is in IGE1, only DocEntry for IGE1 or T1 in query can be the ield to
return the correct result.

Another correction is SELECT *. Although it may still work, it is not
recommended in the query for SP because one ield is good enough
to show that the document meets the conditions. Selecting all ields
is not a good idea. The intent of the query for a Stored Procedure
is to create a "trigger" or to check for very speciic conditions in the
processing of business transactions. Only one ield should be selected
in the SP. Selecting all ields should be avoided at all costs.

Case 4—Blocking a sales quotation if no
value in row level UDF
Another user created the following SP with the intention to block the addition of a
sales quotation if there is no value in row level UDF U_Lot1. There are a few more
UDFs such as U_lot2 and U_lot3 with the same requirement. A question arising from
the user: "Is it possible to get all these UDFs in the same SP so that there is no need
to write a different SP for the other UDFs?" The following SP is a working SP for
U_Lot1 created by this user:

IF @transaction_type IN (N'A', N'U') AND

(@Object_type = N'23')

BEGIN

If exists(select T.docentry

From QUT1 T

where T.docentry = @list_of_cols_val_tab_del and

T.[U_Lot1] IS NULL)

Begin

SET @error = 14

SET @error_message = N'Please enter Lot Numbers for Item'

End

END

Chapter 8

[271]

The solution is:

IF @transaction_type IN (N'A', N'U') AND

(@Object_type = N'23')

BEGIN

If EXISTS (SELECT T.docentry

FROM QUT1 T

WHERE T.docentry = @list_of_cols_val_tab_del and

(T.[U_Lot1] IS NULL or T.[U_Lot2] IS NULL or T.[U_Lot3] IS NULL)

Begin

SET @error = 14

SET @error_message = N'Please enter Lot Numbers for Item'

End

END

The solution mentioned earlier clearly answered the user's question. There is no need
to create any other SP. The same logic can be put in to the same query easily. The
only addition is the extra OR conditions enclosed by parentheses. Remember, all
those conditions need to be put into one parenthesis only to get the correct result.

Case 5—Blocking invoice based on GL
account and project
A user gave a detailed case for A/R invoice validation.

The requirement is to block any other GL Accounts from using the Intercompany
Project Code except for the Intercompany Loan accounts.

Intercompany loan accounts range from 125100 to 125950 and the project code for
intercompany is 105000.

The solution SP is as follows:

IF @transaction_type='A' AND @Object_type = '13'

BEGIN

IF EXISTS

SQL Query for a Stored Procedure

[272]

(SELECT T0.DocEntry

FROM dbo.INV1 T0

WHERE T0.Account NOT LIKE '125%' AND

T0.Project = '105000' AND

T0.DocEntry = @list_of_cols_val_tab_del)

Begin

SET @Error = 13

SET @error_message = 'The Accounts are not allowed for this project.'

End

END

This validation is to block addition of the documents. So the @transaction_type =
'A' is the only type that needs to be checked. To exclude account codes ranging from
125100 to 125950 is equivalent to: T0.Account NOT LIKE '125%'.

Case 6—Blocking GRPO if quantity is more
than PO quantity
A user had created the following SP to block the Goods Receipt PO if Goods Receipt
PO quantity is more than Purchase Order quantity. The SP seems to be working but
the cursor shows a busy icon. It would not return to a normal cursor.

IF @transaction_type IN (N'A', N'U') AND

(@Object_type = N'20')

begin

if exists (SELECT T0.BaseEntry, SUM(T0.Quantity)

FROM dbo.PDN1 T0 INNER

JOIN dbo.POR1 T1 ON T1.DOCENTRY =

T0.BASEENTRY

WHERE T0.BaseType = 22 AND T0.ItemCode =

T1.ItemCode AND T0.BaseLine = T1.LineNum

and T0.DOCENTRY = @list_of_cols_val_tab_del

GROUP BY T0.BaseEntry

HAVING (SUM(T0.Quantity) > SUM(T1.Quantity)) or sum(t0.quantity) >

sum(t0.BaseOpnQty))

begin

select @Error = 10, @error_message = 'GRPO quantity is greater than PO

quantity'

end

end

Chapter 8

[273]

The solution is:

IF @transaction_type IN (N'A', N'U') AND

(@Object_type = N'20')

BEGIN

IF EXISTS (SELECT T1.BaseEntry

FROM dbo.OPDN T0

INNER JOIN dbo.PDN1 T1 ON T1.DOCENTRY = T0.DocEntry

INNER JOIN dbo.POR1 T2 ON T2.DOCENTRY = T1.BaseEntry

WHERE T1.BaseType = 22 AND

T1.ItemCode = T2.ItemCode AND

T1.BaseLine = T2.LineNum AND

T0.DOCENTRY = @list_of_cols_val_tab_del

GROUP BY T1.BaseEntry

HAVING SUM(T1.Quantity) > SUM(T2.OpenQty))

Begin

SELECT @Error = 10, @error_message = 'GRPO quantity is greater than PO

open quantity'

End

END

Comparing these two SPs, you can ind the following differences:

1. The irst difference can be found after SELECT. The original SP has two ields
to return. Actually, one ield is good enough and has fewer errors.

2. The second difference is an addition of another table OPDN. This is not
mandatory. However, it is clearer for the logic.

3. The last but obviously not the least is the HAVING clause. HAVING (SUM(T0.
Quantity) > SUM(T1.Quantity)) or sum(t0.quantity)>sum(t0.
BaseOpnQty)) in the original query is not correct. The correct one is to
compare the summary of PDN1 quantity against the summary of the
corresponding POR1 open quantity directly by HAVING SUM(T1.Quantity)
> SUM(T2.OpenQty).

These differences make the solution SP work without any problem.

SQL Query for a Stored Procedure

[274]

Case 7—Blocking, adding, or updating an
order for duplicated BP ref #
One of the users had some troubles in getting SP working. The goal is to stop an
order from adding or updating if the same BP reference number value exists in
NumatCard ield on another order from the same customer.

The following SP has been tried by the user but it is not working as expected:

DECLARE @PORef nvarchar (100)

DECLARE @BPCode Nvarchar (35)

IF @transaction_type in('A','U') AND @object_type = '17'

BEGIN

Set @PORef = (Select T1.NumAtCard

FROM ORDR T1

WHERE T1.docentry = @list_of_cols_val_tab_del)

Set @BPCode = (Select T1.CardCode

FROM ORDR T1

WHERE T1.docentry = @list_of_cols_val_tab_del)

IF @PORef, @BPCode In (Select T0.NumatCard, T0.CardCode

From ORDR T0)

BEGIN

SET @error = 11

SET @error_message = N'Customer PO is already in the system'

END

END

The solution is:

DECLARE @PORef nvarchar(100)

DECLARE @BPCode Nvarchar(35)

IF @transaction_type in ('A','U') AND @object_type = '17'

BEGIN

Set @PORef = (Select T1.NumAtCard

FROM ORDR T1

WHERE T1.docentry = @list_of_cols_val_tab_del)

Chapter 8

[275]

Set @BPCode = (Select T1.CardCode

FROM ORDR T1

WHERE T1.docentry = @list_of_cols_val_tab_del)

IF @PORef IN

(Select T0.NumatCard

From ORDR T0

WHERE T0.docentry != @list_of_cols_val_tab_del and

T0.CardCode = @BPCode)

Begin

SET @error = 11

SET @error_message = N'Customer PO is already in the system'

End

END

Again, the difference between these two SPs is not signiicant. All you need is the
addition of T0.docentry != @list_of_cols_val_tab_del, so that the condition
of comparison can be based on other records in the table that does not include the
current one.

Case 8—Blocking sales documents based on
dates
A user wants to block the creation of the sales order, the delivery, and the return of
previous months after the ifth of the current month.

The solution for sales order is as follows:

IF @object_type = '17' and @transaction_type = 'A'

BEGIN

IF EXISTS (SELECT T0.DocEntry

FROM dbo.ORDR T0

WHERE DateDiff(MM,T0.DocDate,GetDate())>1 AND DatePart(DD,GetDate())>4

AND

SQL Query for a Stored Procedure

[276]

T0.DocEntry = @list_of_cols_val_tab_del)

Begin

select @error = 99, @error_message = 'You are not allowed to post to

previous month.'

End

END

The month of the document date has been checked irst. Then the current date has
been checked to see if it is after the ifth. These two conditions satisfy the user's
request. All other types of documents can be easily added by the same logic.

For delivery, @object_type needs to be changed to '15' and table name would be
ODLN. For sales return, @object_type is '16' and table name is ORDN.

Case 9—Validation service type A/R credit
memo
A user wants to restrict the creation of service type A/R credit memo. SP had been
created to try to block certain users. The following SP by the user is not working to
serve this purpose:

declare @usersign as INT

SELECT @usersign=USERSIGN FROM ADOC WHERE DOCENTRY=@list_of_cols_val_

tab_del AND ObjType=14

If @transaction_type IN ('A','U') And @object_type = '14'

Begin

If exists (SELECT DocNum FROM ORIN WHERE DocEntry = @list_of_cols_val_

tab_del

 AND DocType = 'S' and @usersign not in (1,2,3))

 Begin

 Select @error = -1, @error_message = 'Access not allowed'

 end

END

The solution is:

If @transaction_type IN ('A','U') and @object_type = '14'

BEGIN

declare @user int

SELECT @user=SELECT usersign2 FROM ORIN WHERE DocEntry = @list_of_

cols_val_tab_del

Chapter 8

[277]

If @user in (1,2,3)

 Begin

 If EXISTS

(SELECT DocNum

FROM ORIN

WHERE DocEntry = @list_of_cols_val_tab_del AND

DocType = 'S')

 begin

 SELECT @error = 14, @error_message = 'Access not allowed'

 end

 End

END

The difference between the two queries is the variable deinition. In the solution, the
variable is reduced to only one. Declaration of the variable is moved to the section
after initial condition: If @transaction_type IN ('A','U') and @object_type
= '14'.

Instead of checking if users are not in a speciic list, the solution checks if users are
in a list. This is good for system performance if the number of users in the list is not
too many.

Case 10—Blocking goods issue for none
super user
A user successfully managed to apply a transaction notiication on a goods issue
document to give an error when WhsCode = '02'. The reason to block issuing from
this warehouse is because it has been deined as warehouse for scrap.

If @transaction_type = 'A' And @object_type = '60'

Begin

If Exists (Select T0.itemcode from dbo.IGE1 T0, dbo.OIGE T1 Inner Join

dbo.OUSR T2

On T1.userSign=T2.UserId where T0.docentry = @list_of_cols_val_tab_del

and T2.USER_CODE != 'manager2' And T0.whscode = '02')

Begin

select @error = 1, @error_message = 'You are not allowed to issue from

Warehouse 02'

end

end

However, this SP is blocking all users to add the goods issue document. The
intended result should only stop all other users but not super user 'manager2'. The
code added to the SP T2.USER_CODE != 'manager2' is not working.

SQL Query for a Stored Procedure

[278]

The solution is:

IF @transaction_type = 'A' And @object_type = '60'

BEGIN

If Exists (SELECT T0.itemcode

From dbo.IGE1 T0

INNER JOIN dbo.OIGE T1 ON T1.DocEntry = T0.DocEntry

Inner Join dbo.OUSR T2 On T1.userSign=T2.UserId

WHERE T1.docentry = @list_of_cols_val_tab_del AND

T2.USER_CODE != 'manager2' AND

T0.whscode = '02')

Begin

SELECT @error = 1, @error_message = 'You are not allowed to issue from

Warehouse 02'

End

END

The difference is that the solution linked all tables but the original one used a comma
between IGN1 and OIGN. OUSR (T2) is only linking to OIGN (T1). But OIGN has
not been bound to IGN1 (T0). That makes T0.docentry = @list_of_cols_val_
tab_del without binding of OIGN. All records on OIGN will return. It effectively
nulliies the condition put in to OUSR.

Case 11—Blocking Goods Receipt PO if no
based PO
A user wants to block Goods Receipt POs that are not based on Purchase Orders.

The solution is simplest as follows:

IF @transaction_type = 'A' AND @object_type = '20'

BEGIN

IF exists (Select ItemCode from dbo.PDN1 T0

Where T0.BaseType=-1

AND T0.DocEntry=@list_of_cols_val_tab_del)

Chapter 8

[279]

Begin

SELECT @error = 20, @error_message = 'GRPO without Purchase Order!'

End

END

This is a typical solution for a similar requirement. For example, you can change @
object_type from '20' to '15' and PDN1 to DLN1 to block delivery if delivery has no
base document.

Summary
Throughout this chapter, you have learned an important application for SQL query
in SAP Business One. This chapter presented a thorough overview of query writing
for SBO_SP_TransactionNotiication.

You also received an explanation of the important parameters showing you how to
work with the processing of Stored Procedures. It also sheds light on query writing
skills and query optimization technicalities.

By reading and testing a portion of the entire sample SPs within this
chapter, you should now be able to create your own core query for SBO_SP_
TransactionNotiication.

The next chapter is the last chapter. It focuses on more complicated query topics and
conditions for your use in writing advanced functionality into your queries.

More Complicated SQL
Query Topics

This is the last chapter of the book and we will have an extended discussion,
which will give you some of the most complicated examples of SQL query in SAP
Business One. This chapter will bring you closer to introducing even more Business
Intelligence into SAP Business One. The main topics include:

•	 The Case expression usage

•	 Working with subquery

•	 Using PIVOT to simplify a cross tab style queries
•	 Database query for Excel

In addition, this last section will give you some advice on the pitfalls and mistakes to
be avoided in query writing.

These topics are more suitable to the users who have extra interests to extend their
capabilities to create more complicated queries. Although the previous examples can
be revisited, I would like to show more query examples to cover more areas.

Please refer back to the the preface for more information on the speciic naming
conventions of the query examples in this chapter.

The Case expression usage
In Chapter 3, you have learned the grammar of Case and If expressions. Furthermore,
you should have noticed these expressions have been used quite a few times in the
sample queries of previous chapters. However, those examples are mainly focused
on the business processes. There were no extended discussions on how to use those
expressions. CASE has a similar function to what most individuals understand as
"IF/THEN" conditions often used in lowcharts and other programming languages.
However, in SQL query, the IF expression can only be used outside the SELECT

More Complicated SQL Query Topics

[282]

statement. On the contrary, CASE can be used within SELECT statement. Therefore, it
is used more frequently. You can ind some more queries using the CASE expression.
We will only discuss this expression and won't go into the other.

Case 9-C1—Displaying Transtype as code
instead of a number
A user had written a query to display the number of each type of journal entry
created by users during a speciic period:

SELECT COUNT(*) AS 'Created', T0.TransType, T0.UserSign, T1.U_NAME

FROM OJDT T0 JOIN OUSR T1 ON T0.UserSign = T1.USERID

WHERE T0.RefDate >= '20100301' AND T0.RefDate <= '20100331' GROUP BY

T0.TransType, T0.UserSign, T1.U_NAME

However, this query returns the origin number (TransType value), which is
not intuitive.

The user wants to replace those numbers with names or codes of where that journal
entry originated (Invoice, Credit Memo, etc).

Here is the solution:

SELECT COUNT(*) AS 'Created',

CASE T0.TransType

WHEN 13 THEN 'IN'

WHEN 18 THEN 'PU'

WHEN 19 THEN 'PC'

WHEN 20 THEN 'PD'

END as TransType,

T0.UserSign,

T1.U_NAME

FROM DBO.OJDT T0

JOIN DBO.OUSR T1 ON T0.UserSign = T1.USERID

WHERE T0.RefDate >= '20100301' AND T0.RefDate <= '20100331'

GROUP BY T0.TransType, T0.UserSign, T1.U_NAME

This is a perfect example to show how CASE expression can be used to solve
such a problem. It is one of the simplest CASE usages. As the values returned by
T0.TransType are within a known list and are predictable, it is easy to translate those
values with a standard CASE statement:

Case FieldName

When Value1 Then Result1

When Value2 Then Result2

Chapter 9

[283]

……

When ValueN Then ResultN

End

Here, N can be any limited integer. If you prefer the natural language instead of
code, you can replace those codes with a description such as "A/R Invoice" instead
of N. All those codes can be found in the Appendix of this book. Using code in query
is recommended because it matches the display in the system. The complete list for
TransType is very long. As for this speciic query, you do not need to put in all code.
Only the pertinent types should be included. They are good enough.

END is always needed for CASE expression. CASE…..END acts as a parenthesis. Do
not forget the END clause to terminate CASE.

Case 9-C2—Combining two queries with a
Case expression
There is a simple request from a user, which is to combine two similar queries:

Query 1:

SELECT T0.[U_empName], T0.[U_NetAmt] 'EPF Amt',

FROM [dbo].[@BIZ_SALLOG] T0

WHERE T0.[U_Code] = 'EPF' And T0.[U_MthID] Like '%[%0]%'

Query 2:

SELECT T0.[U_empName], T0.[U_NetAmt] 'ESI Amt',

FROM [dbo].[@BIZ_SALLOG] T0

WHERE T0.[U_Code] = 'ESI' And T0.[U_MthID] Like '%[%0]%'

To combine these two queries, the solution is as follows:

SELECT T0.U_empName,

CASE WHEN T0.U_Code = 'EPF' THEN T0.U_NetAmt ELSE 0 END 'EPF Amt',

CASE WHEN T0.U_Code = 'ESI' THEN T0.U_NetAmt ELSE 0 END 'ESI Amt'

FROM [dbo].[@BIZ_SALLOG] T0

WHERE T0.U_Code in ('EPF','ESI')

And T0.U_MthID Like '%[%0]%'

This solution is different from the previous example. Two case expressions are
needed because two columns have to be returned. Notice that there is only one WHEN
after CASE; also, the ield name is not in front of WHEN but behind it. Although you
can still use something like CASE T0.[U_Code] WHEN 'EPF' THEN, it is common
practice to put T0.[U_Code] after WHEN. This sounds more natural.

More Complicated SQL Query Topics

[284]

ELSE is an optional word in CASE expression. Only if you want to assign a speciic
value other than the listed value when all conditions fail, you do not need to include
it in the query. For this example, it is necessary because zero needs to be assigned to
all records if U_Code is not equal to the value under the WHEN condition. However,
though the output results are usually predictable, using ELSE statement is an extra
measure to reduce the chances of errors.

Case 9-C3—Showing discount percentage for
each interval
A user has the following condition to be applied on the ield discount percentage.

A percentage should be automatically calculated based on the document total of each
invoice as follows:

•	 500,000 – 750,000: 3 percent

•	 750,000 – 1,000,000: 5 percent

•	 1,000,000 – 1,250,000: 8 percent

•	 1,250,000 – 1,500,000: 10 percent

•	 1,500,000 – 1,750,000: 13 percent

•	 1,750,000 – 2,000,000: 15 percent

What would be the query syntax with conditions for each interval?

The solution is:

Case

WHEN (DocTotal >= 500000 AND DocTotal < 750000) THEN .03

WHEN (DocTotal >= 750000 AND DocTotal < 1000000) THEN .05

WHEN (DocTotal >= 1000000 AND DocTotal < 1250000) THEN .08

WHEN (DocTotal >= 1250000 AND DocTotal < 1500000) THEN .1

WHEN (DocTotal >= 1500000 AND DocTotal < 1750000) THEN .13

WHEN (DocTotal >= 1750000 AND DocTotal < 2000000) THEN .15

END

This example is almost the same as the irst one. The only difference is the conditions
following WHEN. A complete formula or statement is needed whenever one value
cannot be directly returned under the WHEN condition. The pattern is:

CASE

WHEN Condition1 THEN Value1

WHEN Condition2 THEN Value2

……

WHEN ConditionN THEN ValueN

END

Chapter 9

[285]

This is the standard usage of the CASE expression. It is used more often than the irst
example. In the example, one part is missing. There is no deinition for document
total > 2,000,000. So it may not be a complete list.

Case 9-C4—Item wise subtotal in a goods
receipt
A user got a query to display a Goods Receipt. The query works ine but it is not
summarized. It needs to add subtotal item wise.

Select t0.docdate,(t1.itemcode),sum(case (t0.comments) when 'P' then

t1.Quantity else 0 end) 'P',

sum(case (t0.comments) when 'S' then t1.Quantity else 0 end) 'S'

From oign t0 inner join ign1 t1 on t0.docentry = t1.docentry

inner join oitm t2 on t2.itemcode = t1.itemcode

where T0.Docdate >= %0 and T0.docdate <= %1 and t2.itmsgrpcod = 138

and (t0.comments like '%PAT%' or t0.comments like '%SAN%')

Group by t0.docdate,t1.itemcode

Output from this query looks like the following:

Posting Date Item P S

1/12/10 1 7116

2/12/10 1 7104

1/12/10 2 19632 16632

2/12/10 2 19680 16608

The expected results are as follows:

Posting Date Item P S

1/12/10 1 7116

2/12/10 1 7104

14220

1/12/10 2 19632 16632

2/12/10 2 19680 16608

39312 33240

More Complicated SQL Query Topics

[286]

The solution is as follows:

Select '' 'Total',(t1.itemcode),t0.docdate,sum(case (t0.comments) when

'P' then t1.Quantity else 0 end) 'P',

sum(case (t0.comments) when 'S' then t1.Quantity else 0 end) 'S'

From oign t0 inner join ign1 t1 on t0.docentry = t1.docentry

inner join oitm t2 on t2.itemcode = t1.itemcode

where T0.Docdate >= [%0] and T0.docdate <= [%1] and t2.itmsgrpcod =

138 and (t0.comments like '%PAT%' or t0.comments like '%SAN%')

Group by t1.itemcode,t0.docdate

UNION ALL

Select 'Subtotal',(t1.itemcode),'',sum(case (t0.comments) when 'P'

then t1.Quantity else 0 end) 'P',

sum(case (t0.comments) when 'S' then t1.Quantity else 0 end) 'S'

From oign t0 inner join ign1 t1 on t0.docentry = t1.docentry

inner join oitm t2 on t2.itemcode = t1.itemcode

where T0.Docdate >= [%0] and T0.docdate <= [%1] and t2.itmsgrpcod =

138 and (t0.comments like '%PAT%' or t0.comments like '%SAN%')

Group by t1.itemcode

UNION ALL

Select 'Grand Total','','',sum(case (t0.comments) when 'P' then

t1.Quantity else 0 end) 'P',

sum(case (t0.comments) when 'S' then t1.Quantity else 0 end) 'S'

From oign t0 inner join ign1 t1 on t0.docentry = t1.docentry

inner join oitm t2 on t2.itemcode = t1.itemcode

where T0.Docdate >= [%0] and T0.docdate <= [%1] and t2.itmsgrpcod =

138 and (t0.comments like '%PAT%' or t0.comments like '%SAN%')

ORDER by t1.itemcode

This example has something special because the CASE expression is after the SUM
clause. This is to show you how each CASE ……END pair can be treated as a normal
value to be part of any formula.

Case 9-C5—Updating UDF with different dates
A user has made a UDF in the sales order header. This UDF needs to be updated
automatically with the next day's date through a formatted search.

Chapter 9

[287]

A special requirement is that if the next day is Friday or Saturday then the date
should be Sunday because these two days are their days off.

The solution is:

SELECT

CASE WHEN DatePart(DW,$[ORDR.DocDate.Date])=6

THEN DateAdd(DD, 3, $[ORDR.DocDate.Date])

WHEN DatePart(DW,$[ORDR.DocDate.Date])=7

THEN DateAdd(DD, 2, $[ORDR.DocDate.Date])

ELSE

DateAdd(DD, 1, $[ORDR.DocDate.Date])

END

In the solution, these three kinds of possible dates based on the dates in the week
are covered by three cases. The Weekday (DW) in DatePart function stands for
the number of the day in the week, for example: Sunday = 1, Saturday = 7. It can
distinguish the required conditions easily. Apply this formatted search query to the
UDF; the date in the UDF should be updated automatically.

Working with a subquery
A subquery is a very useful tool to solve certain special problems. It can return values
to form a condition or to add a column. There are mainly three different usages:

•	 Subquery under a Where clause

•	 Subquery as a standalone column

•	 Subquery within a subquery

Although you can add a subquery within a subquery and the level
for subquery can be more than two, it is not recommended. The
more sublevels that exist in your query, the more trouble you may
end up with. It is not worth the effort to create such a monster-like
query unless you do not have any other choice.

The following query example cases belong to the irst two categories. No subquery
within a subquery is shown here due to the obvious reason just mentioned.

More Complicated SQL Query Topics

[288]

Case 9-S1—Item groups not in use
A user needs a query to show which item groups do not contain any items.

The solution is by a simple query:

SELECT T0.ItmsGrpCod,

T0.ItmsGrpNam

FROM dbo.OITB T0

WHERE T0.ItmsGrpCod Not IN

(SELECT Distinct ItmsGrpCod FROM dbo.OITM)

Even though the query is simple, a subquery is needed here. This is the case when
returned records have no link between two tables. A subquery is a good technique to
bridge the gap. Returned values from the subquery include all groups with the items.
Therefore, if nothing can be found from the list, it means the group does not contain
any items.

This subquery is under the Where condition. It is one of the simplest cases for
subquery. A subquery should always have a parenthesis to make a clear boundary
from other SQL statements.

Case 9-S2—YTD sales for two years
A user would like to add 2009 and 2010 YTD sales for each of the customers to the
following query:

SELECT T0.CardCode, T0.CardName, T0.Phone1, T1.Name, T1.E_MailL, T0.U_

ORDN

FROM dbo.OCRD T0

LEFT JOIN dbo.OCPR T1 ON T1.CardCode=T0.CardCode AND T1.Name ='A/P'

The solution is:

SELECT T0.CardCode,

(SELECT SUM(T2.Debit) - sum(T2.Credit) FROM JDT1 T2

INNER JOIN OJDT T4 ON T4.TransID = T2.TransID AND Year(T4.Refdate) =

2009

WHERE T2.ShortName = T0.CardCode AND T2.TransType in ('13','14')) AS

'Sales 2009',

(SELECT SUM(T2.Debit) - sum(T2.Credit) FROM JDT1 T2

INNER JOIN OJDT T4 ON T4.TransID = T2.TransID AND Year(T4.Refdate) =

2010

WHERE T2.ShortName = T0.CardCode AND T2.TransType in ('13','14')) AS

'Sales 2010'

FROM DBO.OCRD T0

WHERE T0.CardType = 'C'

Chapter 9

[289]

This solution is showing you two subqueries as two columns. It is often used when
you need to get values from the same table with different conditions. If you can use
the JOIN and GROUP BY clauses to achieve the same result, it can greatly boost the
performance of the query.

Case 9-S3—Checking only the similar records
A user has created a query to show service and contract.

The requirement is to show only those records which have more than one
"internalSN" code (Serial Number). This is to know whether the same equipment is
coming in for service more than once during a certain period. The following query
needs to be changed to get the desired result:

SELECT T0.[callID], T0.[customer], T0.[custmrName], T0.[manufSN],

T0.[internalSN], T0.[itemCode], T0.[itemName], T0.[createDate]

FROM OSCL T0 INNER JOIN OCTR T1 ON T0.contractID = T1.ContractID INNER

JOIN CTR1 T2 ON T1.ContractID = T2.ContractID

WHERE T0.[createDate] >=[%0] and T0.[createDate] <=[%1] and T2.[U_

Afdeling] LIKE 'meetin%'

The solution is:

SELECT Distinct T0.callID,

T0.customer,

T0.custmrName,

T0.manufSN,

T0.internalSN,

T0.itemCode,

T0.itemName,

T0.createDate

FROM dbo.OSCL T0

INNER JOIN dbo.CTR1 T2 ON T0.ContractID = T2.ContractID

WHERE T0.createDate >=[%0] and T0.createDate <=[%1]

AND T2.U_Afdeling LIKE 'meetin%'

AND T0.internalSN IN

(SELECT T0.internalSN

FROM OSCL T0

WHERE T0.createDate >=[%0] and T0.createDate <=[%1]

GROUP BY T0.internalSN

HAVING COUNT(T0.internalSN) > 1)

More Complicated SQL Query Topics

[290]

This query also has a subquery under the WHERE clause. You can see that a
subquery itself may also be a complicated query. That is one of the reasons why
multiple level subqueries should be avoided. Under the subquery, the condition to
ilter more than one identical internalSN is achieved with the following:

GROUP BY T0.[internalSN]

HAVING COUNT(T0.[internalSN]) > 1

Case 9-S4—Showing the last A/P invoice
document date for items
A user needs to link items with their 'last A/P invoice document date' and 'last A/P
Invoice BP name'.

The solution is:

SELECT Distinct T0.ItemCode,

T2.TaxDate,

T2.CardName

FROM dbo.PCH1 T0

INNER JOIN dbo.OPCH T2 ON T2.DocEntry=T0.DocEntry

WHERE T2.TaxDate > '[%0]' AND

T0.DocEntry in

(SELECT MAX(T1.DocEntry)

FROM dbo.PCH1 T1

WHERE T0.ItemCode = T1.ItemCode

GROUP BY T1.ItemCode)

This solution may not exactly meet the original requirement, but it is accepted by
the user. Instead of checking the document date, the subquery checks the document
entry. The document entry is a primary key of the table. It always increases
automatically. To me, it is a more reliable way to check the last record.

If your system has many manual date changes during document
creation, you need to revise the query to add more conditions.
If you ind a non logical answer that way, don't be surprised.
Different period selections may cause a reversed result
sometimes. For example, when you select an earlier date as the
duration, you may get a more recent invoice date instead.

Chapter 9

[291]

Using PIVOT to simplify a cross tab style
queries
The Pivot function is introduced in MS SQL Server 2005. If you are still using SQL
Server 2000 or lower (unlikely), you may skip this section. Pivot table is a common
term. I have used it in Excel extensively. If you are not familiar with it, run a sample
query here.

Even if your SQL server version is equal or higher than 2005, you may still get an
error message because the compatibility level of the server has to be 2005 or higher.
You can change this level under SQL Server Management Studio if the compatibility
level is low.

Pivot function is a very useful tool to simplify long repeating queries.

Case 9-P1—Monthly sales by geography
A user would like to get a listing of each state's sales by month. They are using the
irst two characters of a BP's account code to represent their states.

The query would be similar to the one under the Case 4-M14 of Query for marketing
document recipe in Chapter 4.

The solution is as follows:

SELECT P.[STATE],

 [1] as [Jan],

 [2] as [Feb],

 [3] as [Mar],

 [4] as [Apr],

 [5] as [May],

 [6] as [Jun],

 [7] as [Jul],

 [8] as [Aug],

 [9] as [Sep],

 [10] as [Oct],

 [11] as [Nov],

 [12] as [Dec]

FROM

(SELECT Left(T0.CardCode,2) as [State],

T0.DocTotal as [DocTotal],

MONTH(T0.docdate) as [month]

FROM dbo.oinv T0

More Complicated SQL Query Topics

[292]

WHERE Year(T0.docdate)=2010

UNION

SELECT Left(T0.CardCode,2) as [State],

-T0.DocTotal as [DocTotal],

MONTH(T0.docdate) as [month]

FROM dbo.orin T0

WHERE Year(T0.docdate)=2010) S

PIVOT (SUM(DocTotal) FOR [month] IN

([1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12])) P

ORDER BY P.[State]

You can see in the example that I am using the Left function in combination with a 2
to read the irst two characters of the Business Partner code, which, in turn, gives me
the state code for each BP based on the user's data.

If you compare this query with the one in Chapter 4, you will ind Pivot function can
simplify so much to get the same job done in less than 50 percent of the query size.

One thing needs to be pointed out here, the query example in Chapter 4 has only
queried one table. This example queries two tables.

Pivot function requests two parts. The irst part is the main data including all logic.
You can ind this part with alias as S table right after FROM. The S table acts as a
temporary table. The following part is P table that feeds in all data from S table into
different branches. All columns after SELECT are coming out of the P table. Alias S and
P can be changed to any other words. I just ind it is convenient to keep them this way.

Case 9-P2—Complete list of all items with/
without sales
A user needs to ind the quantity sold per month for each of their styles. The styles
have multiple color and sizes. Each style is indicated by the irst four characters of
the Item Code.

The user has a query already. The query also resembles the one in Case 4-M14
mentioned in Chapter 4. The beginning and the end of the query looks like
the following:

SELECT LEFT(T0.ITEMCODE,4) AS 'Style', (SELECT SUM(T1.QUANTITY)

FROM INV1 T1 with (NOLOCK) WHERE MONTH(T1.DOCDATE) = 1 AND

LEFT(T1.ITEMCODE,4) = LEFT(T0.ITEMCODE,4) AND YEAR(T1.DOCDATE) =

YEAR(GETDATE())) AS 'JAN Amt'

……

Chapter 9

[293]

(SELECT SUM(T1.QUANTITY) FROM INV1 T1 with (NOLOCK) WHERE MONTH(T1.

DOCDATE) = 12 AND LEFT(T1.ITEMCODE,4) = LEFT(T0.ITEMCODE,4) AND

YEAR(T1.DOCDATE) = YEAR(GETDATE())) AS 'DEC Amt'

FROM dbo.OITM T0 LEFT JOIN dbo.INV1 T1 ON LEFT(T1.ITEMCODE,4) =

LEFT(T0.ITEMCODE,4) WHERE T0.SellItem = 'Y' GROUP BY LEFT(T0.

ITEMCODE,4),YEAR(T1.DOCDATE) HAVING YEAR(T1.DOCDATE) = YEAR(GETDATE())

ORDER BY LEFT(T0.ITEMCODE,4)

One change is needed for the query to show a complete list of all styles. No matter if
there are sales for any month or not, this query only shows items that have sales.

The solution is as follows:

SELECT P.[Style],

 [1] as [Jan],

 [2] as [Feb],

 [3] as [Mar],

 [4] as [Apr],

 [5] as [May],

 [6] as [Jun],

 [7] as [Jul],

 [8] as [Aug],

 [9] as [Sep],

 [10] as [Oct],

 [11] as [Nov],

 [12] as [Dec]

FROM (SELECT LEFT(T0.ITEMCODE,4) AS 'Style', T1.QUANTITY, MONTH(T1.

Docdate) as [month]

FROM dbo.oitm T0

LEFT JOIN INV1 T1 ON T1.ItemCode=T0.ItemCode AND YEAR(T1.DocDate) =

YEAR(GETDATE())) S

 PIVOT (SUM(QUANTITY) FOR [month] IN

([1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12])) P

ORDER BY P.[Style]

The original query has only listed two months instead of twelve and is still very long.
The new query takes advantage of the Pivot function. You can see how much length
difference there is between the solution and the original query.

More Complicated SQL Query Topics

[294]

Database query for Excel
Database query for Excel is a built-in function of Microsoft Excel. It is available
from early versions of Excel. Once I started to use it, I found this function to be
very powerful. It can be used for almost all queries you are running under Query
Manager. The format of the report can be done quickly and attractively. To me, it is
an alternative to a simple Crystal Report.

The screenshots in the book all come from Excel 2003. If you are using Excel 2007 or
higher, you may need to from a similar menu but not an identical user interface. The
functionality has no signiicant changes.

Import External Data is the menu item you need to locate. It is under the Data menu.
The irst thing to do is to create a New Database Query. This is one of the submenu
items for Import External Data. You can select this menu to get to the next screenshot.

Creating a new data source
The irst task in creating a new database query is to Choose Data Source. If it is the
irst time you are trying to use this function, you will probably not have many data
sources to select from. In fact, you may not ind any data source that is related to
your SAP Business One system.

Chapter 9

[295]

New data source added within Excel
You can select the irst entry there: <New Data Source>. This is a clear name to lead
you into the right direction.

Make sure the check under the bottom of Choose Data Source form is in its default
position. You can take advantage of Use the Query Wizard to create/edit queries.

The following screenshot will pop up: Create New Data Source. There are four steps
in creating a new data source:

1. Name your new data source.

2. Select a database driver.

3. Test the data connection.

4. Select a default table for the data source (optional).

The irst step as shown in the following screenshot is the name given to the data
source—ASAP.

More Complicated SQL Query Topics

[296]

For the second step, since the database driver for SQL server is usually located at the
bottom, SQL Native Client is selected as the right data driver in order to connect to
the SAP Business One database.

After the selection of the database driver, the third step is the connection. Click
Connect. SQL Server logon form pops up. You can select from the available
SQL servers the right one that holds SAP Business One database. Use Trusted
Connection is usually checked in order to log in to SQL server without any need to
put in the username and password every time you want to refresh the data.

Chapter 9

[297]

In the previous form is the Options >> button. By clicking on it, this form can show
more options:

•	 Database

•	 Language

•	 Application Name

•	 Workstation

Under the SQL server selected, you must have more than one database. Select the
one you need SAP Business One data for. If you need access to more than one SAP
Business One database, multiple data sources are necessary.

Language is usually left as (Default), which usually gives you the right language
version based on your SQL server setting.

Application Name and Workstation are automatically illed in by the system. There
is no need to change them.

More Complicated SQL Query Topics

[298]

Click OK to close the SQL Server logon form. The screenshot is shown as follows:

New data source added from the control panel
The previous steps are complete steps to add a new ODBC data source from Excel
directly. You can get the data to a current Excel worksheet. However, there is a more
professional way to do so directly from ODBC Date Source Administrator under
Administration Tools from the Control Panel.

Chapter 9

[299]

The irst tab for this tool is User DSN. DSN is short form for Data Source Name.
This is the tab that we are interested in. Click Add, and the Create New Data Source
form pops up. You may ind that much fewer drivers are available to set up a data
source than from Excel directly. SQL Native Client may be just on top. Click Finish,
and you can go to the next screen.

The process in the following few screenshots is almost identical to the one provided
by Excel. The user interface is from SQL Server directly though.

You can have a bigger form for the same info required. The name, description, and
server are illed in, as shown in the following screenshot:

More Complicated SQL Query Topics

[300]

There is one more form apart from the previous example. You can select a more
detailed way to choose how SQL Server should verify the authentication of the log in
user ID. Default will be With Integrated Windows authentication. If you like, you
can also select With SQL Server authentication using a login user ID and password
entered by the user.

Connect to SQL Server to obtain default settings for the additional coniguration
options checkbox is selected by default. You should leave it there.

Click on Next again, you can ind the following screenshot. Here, you can change
the default database to SAP Business One database that you plan to create. All other
options should not be changed to avoid incompatibility.

The next screen is more technical. It is the last step in the process. You can ine tune
the way to connect to your database.

When you click Finish in this form, you should get a conirmation message window.
A message on the header says:

A New ODBC data source will be created with the following coniguration:

A big text message box with all your settings is displayed. You can check the setting
to verify the connection detail.

Chapter 9

[301]

Click on the Test Data Source… button at the bottom of the previous message form;
you can test data source immediately. If it is the correct setting, then you can get a
successful message for it.

More Complicated SQL Query Topics

[302]

Query wizard for database query in Excel
We have spent a lot of time on getting the data source, and now we can come back to
the main topic: Database query for Excel. We will continue from the irst step in New
Database Query. Assuming the correct data source is selected, you can go through
Query Wizard under Microsoft Query. You get Available tables and columns in the
left box. The table selected is OCRG. Expand and select all columns with the arrow
key to send them to the right box.

You can preview data in the selected column to conirm you are on the right track.

Chapter 9

[303]

The Next screen is an option form to ilter the data. You can use the given formula
to add conditions to restrict the data. In the following example, GroupCode< 102 is
selected. You can use And Or to add more conditions to ilter data.

Sort order is the next form that the follows ilter form. You can specify how you want
your data sorted. It is also an optional form. Since we don't want to sort the data, just
click Next.

You are now on the last form for Query Wizard—Finish. There are three options
for you:

•	 Return Data to Microsoft Ofice Excel
•	 View data or edit query in Microsoft Query
•	 Create an OLAP Cube from this query

More Complicated SQL Query Topics

[304]

If you select the irst option, you will return to Excel directly. This is for beginners
only. The last option is beyond the topic of this book. The option in the middle is the
right one. Let us go on this route to View data and edit query in Microsoft Query.

Microsoft Query window
You are now getting into the center function of the database query for Excel. You can
view data and edit a query within this query window.

Chapter 9

[305]

You can click the SQL icon in the middle of the toolbar to edit the SQL statement in
the SQL form.

When everything looks ine to you, you can return data to Excel at any time. When
you return, the system will ask you to select one cell for return. It is better to keep the
irst cell in column A. For better format, you can choose between A4 and A7. This is
to give you enough space for the report header.

You have the option to edit the query by using the Edit Query function under the
same menu tree. In order to get this function, your cursor must be inside the query
result. One option for you is to open the SQL form and copy one of the entire tested
queries directly. You can test the query under SAP Business One's Query Manager.

More Complicated SQL Query Topics

[306]

To choose this option, the database name and the characters of "dbo" must be added
in front of the table name. This is required by Microsoft Query. In fact, even if your
query does not include those parts being displayed, you can see it is automatically
added after you close and reopen the SQL window.

After copying the query, you can view the query result in the Microsoft Query
window to decide if you need to further edit the query.

Chapter 9

[307]

When you are satisied with your result, you can return to the Excel worksheet. The
query report is going to look different now.

Under Edit Query, there is a Data Range Property menu item if your cursor is
within the query result area.

One option under the bottom of the form is very useful. It is called Fill down
formulas in columns adjacent to data. This option is not ticked by default. When
you check this option, you will ind you can extend the query capability. All
formulas – directly beside the query – can grow automatically when the query
result is changed.

More Complicated SQL Query Topics

[308]

Avoiding pitfalls while building queries
There are many pitfalls when you begin to create new queries. You can ind some of
them by yourself. It would be better if you can avoid them before your start.

Here is a useful list of pitfalls I found that should be avoided:

•	 Starting to create a query before knowing the data table structure you
are querying

•	 Creating a complicated logic inside your SQL query and not simplifying it
•	 Trying to do too many things in one query

•	 Relying solely on others' help and not doing trial runs on your own

These topics are discussed one by one.

Creating a query before knowing the data
table structure
One of the most common problems for query writing is related to data structure. A
new query learner tends to start building the query as soon as possible. However,
that is not realistic without a good understanding of the data dictionary.

If you want to be good at query writing, the irst thing to do is to understand the
grammar of the query. That may only take a couple of hours. After that, the most
important task is to know the database, tables, and the columns within the tables. It
may need a month or more.

A good table reference is available through SDK help. This is already mentioned
at the beginning of the book. From my experience in correcting query mistakes for
many users, I found that more than half of them related to a lack of knowledge of
SAP Business One's table structure.

Business Intelligence is nothing more than getting the right data at the right time.
SQL Query is the right tool for this task to access database and to get the speciic data
you need. This may not be possible without a clear picture of the data.

Now, you will get my irst and foremost advice to anyone interested in writing
queries. You need to take out the time to understand the data and not be so eager to
just start writing a query. Make sure you understand what you are going to query.
One hour spent in a table relationship could save you two hours or more in writing
a good query.

Chapter 9

[309]

Complicating the logic instead of
simplifying it
I often ind some users that so quickly complicate a query beyond what is really
needed. That may be necessary when you face very complex problems to be solved.
To me, any query should never be too complicated.

My believe in query writing is: the simpler, the better. It is always possible to
simplify the logic. If you can get the same thing done, you must select the least
complicated way to achieve it. There are a few drawbacks for complicated queries
as follows:

•	 Dificult to maintain
•	 Dificult to troubleshoot
•	 Dificult for others to understand
•	 Query will use more resources
•	 And so on……

The list can go on and on. To simplify the matter is only a habit. Whenever I have
completed writing a query, I always check to see if it can be simpliied or not. If I ind
a way to simplify it, I will deinitely do it. In this way, I can more eficiently get the
simplest query done in the shortest possible time. Some users are astonished by the
speed with which I answered their question. A similar topic is discussed in Chapter 1
already. It is emphasized it from a different angle.

Trying to do too many things in one query
This problem has the same root as the previous topic. Trying to do too many things
in one query is the main reason most users have complicated queries. You should
attempt to keep the results, and hence the query itself, to providing results in only
one functional area.

A query is not there to be used for a complicated inancial statement. A statement
usually needs more than one query in one report. One query should focus on one
function only. Use a maximum of two functions when one function is not good enough.

To check if your query is trying to show too many things should not be too dificult.
Check how many tables are queried. If there are more than nine, that is most likely
too many. And, without a doubt, it will be extremely dificult to change when the user
requirements change in the future. If your query contains more than nine tables, then it
is time to go back to the end-users to see if their requirements would be best addressed
by Crystal Reports or by reducing the information they want from the SQL query.

More Complicated SQL Query Topics

[310]

My advice is to breakdown a complicated query into more than one small query. A
small query can give you more pertinent information quickly and easily.

Relying on others' help only
It is understandable that we always try to get as much help as we can. Especially
when you start to learn query, help requests are always more than welcome.

There is a line there though. You may ask help from time to time. But if you always
rely on others' help, you may never learn how to write a correct query by yourself.
There is absolutely no substitute for experience. Once you take on the task of writing
an SQL query, you will always learn something—either the process of writing SQL
query or the structure of the database and its associated tables. Going as far as you
can will make it easier for others to help you also.

Learning SQL query is an ongoing process. The logical power can grow only if
reasoning is from everyone's own point of view. The ability to reason logically can
only grow and mature if you yourself try to execute a query and then take the next
step to seek help from others. This will also aid in asking the correct question when
you do ask for help.

Actually, one of the best ways to learn a SQL query is to help others with their
questions and problems. I am certain one of the reasons that I have become an
"expert" in SQL query for SAP Business One is that I was fortunate enough to have
the opportunities to help all those other individuals who are walking the same path
as you: writing SQL query so your company can make solid decisions with the data
at hand in SAP Business One.

Summary
In this chapter, you have learned some of the more complicated query usages in
detail. The irst such usage is CASE expressions. You should know how to use each
expression correctly and reasonably. Going through the more interesting topic of
subqueries, you must learn when and where to use those subqueries. Pivot function
is also a powerful function. Through the real case discussion, you can tell how much
difference this function can make. The length of the query can be reduced by more
than 50 percent from the ordinary query.

Database query for Excel is one of my favorite functions. Through this utility, you
can get the power and convenience to link ofice documents with SAP Business One
live data. You do not need to log in to the system to get the data you need.

There are so many other topics to discuss. However, every book must have its
boundary and its ending. I hope this book can help you to study and create your
own SQL query successfully for SAP Business One!

Appendix

Original transaction list by code
In SAP Business One, there are hundreds of different transactions everyday. A
coding system is required to facilitate those business processes. You can ind them
when you look up Journal Entries (JE); you can get the Origin code on the top of JE
details. There is a drill-down arrow beside the code if the JE is not manually entered
but automatically posted.

Here is the most often used code list for SAP Business One:

Code Description Origin Object

BC Closing Balance -3

BN Bank Charge -4

BT BoE—Deposit to Paid 182

CN A/R Credit Note 14

CP Check for Payment 57

DD Postdated Credit Voucher Deposit 76

DN Delivery 15

DP Down payment 25

DT A/R Deposit 203

IF Landed Costs 69

IM Inventory Transfer 67

IN A/R Invoice 13

JE Manual Journal Entry 30

MR Material Revaluation 162

OB Opening Balance -2

Appendix

[312]

Code Description Origin Object

PC A/P Credit Note 19

PD Goods Receipt PO 20

PR Goods Receipt 21

PS Outgoing Payment 46

PU A/P Invoice 18

PW Production Order 202

RC Incoming payment 24

RE Return 16

RU Payment Linked to Reconciled Transaction - Internal -5

SI Goods Receipt 59

SO Goods Issue 60

ST Stock Taking 58

Original transaction list by name
A similar list that can be checked by the transaction description:

Description Code Origin Object

A/P Credit Memo PC 19

A/P Debit Memo PU 18

A/P Down Payment Invoice DT 203

A/P Invoice PU 18

A/P Reserve Invoice PU 18

A/R Bill IN 13

A/R Credit Memo CN 14

A/R Debit Memo IN 13

A/R Down Payment Invoice DT 203

A/R Exempt Bill IN 13

A/R Export Invoice IN 13

A/R Invoice IN 13

A/R Invoice + Payment IN 13

A/R Invoice Exempt IN 13

A/R Reserve Invoice IN 13

Bank Charge BN -5

Bill of Exchange – Deposit to Paid BT 182

Appendix

[313]

Description Code Origin Object

Check for Payment CP 57

Closing Balance BC -3

Delivery DN 15

Deposit DP 25

Goods Issue SO 60

Goods Receipt SI 59

Goods Receipt PO PD 20

Goods Return PR 21

Incoming Payment RC 24

Internal Invoice PU 18

Inventory Posting ST 58

Inventory Revaluation MR 162

Inventory Transfer IM 67

Issue for Production SO 60

Landed Costs IF 69

Manual Journal Entry JE 30

Opening Balance OB -2

Outgoing Payments PS 46

Payment Linked to Reconciled Transaction - Internal RU -5

Postdated Credit Voucher Deposit DD 76

Production Order PW 202

Receipt from Production SI 59

Return RE 16

This list has more lines than the irst list. That is because the duplicated codes are
allowed for the same object. You can ind the codes through different call names.
This is the purpose of the list.

Appendix

[314]

Object codes and names
This is a complete list of the objects used in SAP Business One. For query purposes,
especially for SBO_SP_TransactionNotiication, this list is important.

Code Name of objects Description of objects

1 oChartOfAccounts Chart of Accounts

2 oBusinessPartners Business Partners

3 oBanks Banks

4 oItems Items

5 oVatGroups Vat Groups
6 oPriceLists Price Lists

7 oSpecialPrices Special Prices

8 oItemProperties Item Properties

10 oBusinessPartnerGroups Business Partner Groups

12 oUsers Users

13 oInvoices Sales invoice document

14 oCreditNotes Sales credit note document

15 oDeliveryNotes Sales delivery note document

16 oReturns Sales return document

17 oOrders Sales order document

18 oPurchaseInvoices Purchase invoice document

19 oPurchaseCreditNotes Purchase credit note document

20 oPurchaseDeliveryNotes Purchase delivery note document

21 oPurchaseReturns Purchase return document

22 oPurchaseOrders Purchase order document

23 oQuotations Sales quotation document

24 oIncomingPayments Payments

28 oJournalVouchers Journal Vouchers
30 oJournalEntries Manual Journal entry

31 oStockTakings Stock Taking

33 oContacts Activity

36 oCreditCards Credit Cards

37 oCurrencyCodes Currencies

40 oPaymentTermsTypes Payment Terms Types

42 oBankPages Bank Pages

Appendix

[315]

Code Name of objects Description of objects

43 oManufacturers Manufacturers

46 oVendorPayments Payments to vendors

48 oLandedCostsCodes Landed Costs Codes

49 oShippingTypes Shipping Types

50 oLengthMeasures Length Measures

51 oWeightMeasures Weight Measures

52 oItemGroups Item Groups

53 oSalesPersons Sales Persons

56 oCustomsGroups Customs Groups

57 oChecksforPayment Checks for Payment

59 oInventoryGenEntry Enter general items to the inventory

60 oInventoryGenExit Exit general items from inventory

64 oWarehouses Warehouses

65 oCommissionGroups Commission Groups

66 oProductTrees Product Trees (Bill of Materials)

67 oStockTransfer Stock Transfer

68 oWorkOrders Work Orders

70 oCreditPaymentMethods Credit Payment Methods

71 oCreditCardPayments Credit Card Payments

73 oAlternateCatNum Alternate Category Number

77 oBudget Budget

78 oBudgetDistribution Budget Distribution

81 oMessages Messages

91 oBudgetScenarios Budget Scenarios

93 oUserDefaultGroups User Default Groups

97 oSalesOpportunities Sales Opportunities

101 oSalesStages Sales Stages

103 oActivityTypes Activity Types

104 oActivityLocations Activity Locations

112 oDrafts Draft document

116 oDeductionTaxHierarchies Deduction Tax Hierarchies

117 oDeductionTaxGroups Deduction Tax Groups

125 oAdditionalExpenses Additional Expenses

126 oSalesTaxAuthorities Sales Tax Authorities

127 oSalesTaxAuthoritiesTypes Sales Tax Authorities Types

Appendix

[316]

Code Name of objects Description of objects

128 oSalesTaxCodes Sales Tax Codes

134 oQueryCategories Query Categories
138 oFactoringIndicators Factoring Indicators

140 oPaymentsDrafts Payments

142 oAccountSegmentations Account Segmentations

143 oAccountSegmentationCategories Account Segmentation Categories

144 oWarehouseLocations Warehouse Locations

145 oForms1099 Forms 1099

146 oInventoryCycles Inventory Cycles

147 oWizardPaymentMethods Wizard Payment Methods

150 oBPPriorities Business Partner Priorities

151 oDunningLetters Dunning Letters

152 oUserFields User Fields MD

153 oUserTables User Tables MD

156 oPickLists Pick Lists

158 oPaymentRunExport Payment Run Export

160 oUserQueries User Queries
162 oMaterialRevaluation Material Revaluation

163 oCorrectionPurchaseInvoice Purchase invoice correction document

164 oCorrectionPurchaseInvoiceReversal
Reverse purchase invoice correction
document

165 oCorrectionInvoice Correction invoice document

166 oCorrectionInvoiceReversal Reverse invoice correction document

170 oContractTemplates Contract Templates

171 oEmployeesInfo Employees Info

176 oCustomerEquipmentCards Customer Equipment Cards

178 oWithholdingTaxCodes Withholding Tax Codes

182 oBillOfExchangeTransactions Bill of Exchange Transaction

189 oKnowledgeBaseSolutions Knowledge Base Solutions

190 oServiceContracts Service Contracts

191 oServiceCalls Service Calls

193 oUserKeys User Keys MD

194 oQueue Queue
198 oSalesForecast Sales Forecast

200 oTerritories Territories

Appendix

[317]

Code Name of objects Description of objects

201 oIndustries Industries

202 oProductionOrders Production Orders

203 oDownPayments Sales down payment

204 oPurchaseDownPayments Purchase down payment

205 oPackagesTypes Packages Types

206 oUserObjectsMD User Objects MD

211 oTeams Teams

212 oRelationships Relationships

214 oUserPermissionTree User Permission Tree

217 oActivityStatus Activity Status

218 oChooseFromList Choose From List

219 oFormattedSearches Formatted Searches

221 oAttachments2 Attachments detail

223 oUserLanguages User Languages

224 oMultiLanguageTranslations Multi Language Translations

229 oDynamicSystemStrings Dynamic System Strings

231 oHouseBankAccounts House Bank Accounts

247 oBusinessPlaces Business Places

250 oLocalEra Local Era

258 oNotaFiscalCFOP Nota Fisca lCFOP

259 oNotaFiscalCST Nota Fisca lCST

260 oNotaFiscalUsage Nota Fisca Usage

261 oClosingDateProcedure Closing Date Procedure

278 oBPFiscalRegistryID BP Fiscal Registry ID

280 oSalesTaxInvoice Sales tax invoice

281 oPurchaseTaxInvoice Purchase tax invoice

Index

Symbols

'%[%2]%', parameter 91
$ values 190-193
[%0] variable 27
@list_of_cols_val_tab_del nvarchar(255),

input parameter 260
@list_of_key_cols_tab_del nvarchar(255),

input parameter 260
@num_of_cols_in_key int, input parameter

260
@object_type nvarchar(20), input parameter

260
!< operator 69
!> operator 69
< operator 69
<= operator 69
<>/!= operator 69
= operator 69
> operator 69
>= operator 69
@transaction_type nchar(1), input parameter

260
_(underscore), wildcard character 72
[], wildcard character 72
[^], wildcard character 72
%, wildcard character 72

A

Account Segmentation Categories
(oAccountSegmentationCategories)
316

Account Segmentations
(oAccountSegmentations) 316

active item list 122

ActiveX Data Objects (ADO) 242
Activity Locations (oActivityLocations) 315
Activity (oContacts) 314
Activity Status (oActivityStatus) 317
Activity Types (oActivityTypes) 315
Additional Expenses (oAdditionalExpenses)

315
ADM 15

Administration. See ADM
alert

A/R Invoice past due alert 137
for invoice, without base document 137
for sales order, special ship 138
open sales opportunity alert 139, 140
right alert, creating without duplicated lines

136
user query alert guide 140-143
user query for 135

Alias (T0) 55
Alternate Category Number

(oAlternateCatNumber) 315
Amount 32
A/P Credit Memo (PC) 312
A/P Credit Note (PC) 312
A/P Debit Memo (PU) 312
A/P Down Payment Invoice (DT) 312
A/P invoice document date, subquery

displaying, for items 290
A/P Invoice (PU) 312
approval procedure

approval stages, creating 161
approval templates, creating 162
creating, steps 160
query, using for 159, 160

approval stages
creating 161

[320]

approval templates
creating 162

approval templates, creating
documents tab 163
originator tab 162, 163
query, selecting 165-168
stages tab 164
terms tab 165

A/P Reserve Invoice (PU) 312
A/R Bill (IN) 312
Archive tables 16
A/R Credit Memo (CN) 312
A/R Credit Note (CN) 311
A/R Debit Memo (IN) 312
A/R Deposit (DT) 311
A/R Down Payment Invoice (DT) 312
A/R Exempt Bill (IN) 312
A/R Export Invoice (IN) 312
A/R Invoice Exempt (IN) 312
A/R Invoice (IN) 311, 312
A/R Invoice past due alert 137
A/R Invoice + Payment (IN) 312
A/R Reserve Invoice (IN) 312
A tables 16
ATC 15

Attachments. See ATC
Attachments detail (oAttachments2) 317
Attachment Statistics query 219
Average 32

B
Back button 244
Bank Charge (BN) 311
Bank Charge (IN) 312
Bank Pages (oBankPages) 314
Banks (oBanks) 314
base table

versus target table 18-21
BEGIN pair 267
BETWEEN operator 69, 70
Bill of Exchange - Deposit to Paid (BT) 312
Bill of Exchange Transaction (oBill

ofExchangeTransaction) 316
BoE-Deposit to Paid (BT) 311
BP

overview, with realized balance selection
100

BP code auto generation, FMS query
application 203

BP Fiscal Registry ID (oBPFiscalRegistryID)
317

Browse Data function 249
Budget Distribution (oBudgetDistribution)

315
Budget (oBudget) 315
Budget Scenarios (oBudgetScenarios) 315
Business Partner Groups

(oBusinessPartnerGroups) 314
Business Partner Priorities (oBPPriorities)

316
Business Partners. See CRD
Business Partners (oBusinessPartners) 314
Business Places (oBusinessPlaces) 317
By running total 99
By Union ALL 98, 99

C

CASE expressions
about 81, 83
formats 82
searched CASE expression 82
simple CASE expression 82

case expression usage
about 281
discount percentage, showing for each

interval 284, 285
item wise subtotal, in goods receipt 285,

286
Transtype, displaying as code 282, 283
two queries, combining by case expression

283, 284
UDF, updating by different sales 286

CAST()/CONVERT() function 81
categories 47
Chart of Accounts (oChartOfAccounts) 314
Check for Payment (CP) 311, 313
Checks for Payment (oChecksforPayment)

315
Choose From List (oChooseFrom List) 317
CLOSED 89
Closing Balance (BC) 311, 313
Closing Date Procedure

(oClosingDateProcedure) 317

[321]

column 12
command, crystal reports

adding 245, 246
ields, selecting from 247, 248
working with 246, 247

Command function 246
Commission Groups (oCommissionGroups)

315
Comp, computation options

Amount 32
Average 32
Maximum 32
Minimum 32
Total Distinct Records 32
Total Records 32

conditions, query wizard 32-34
consultant, SAP Business One 10

Contact Persons. See CPR
Contract Templates (oContractTemplates)

316
Correction invoice document

(oCorrectionInvoice) 316
COUNT(*) 78
COUNT() function 77
CPR 15
CRD 15
Create New Connection stage 244
Create Report button 226
Credit Card Payments

(oCreditCardPayments) 315
Credit Cards (oCreditCards) 314
credit memo user check 110, 111
Credit Payment Methods

(oCreditPaymentMethods) 315
Cross Join 63
crystal reports

about 238, 239
basic formatting 251-254
command, adding to report 245, 246
command, working with 246, 247
creating 240
ields, selecting from command 247, 248,

249
new database connection, creating 240-244
records selection form, working with 249,

250
standard report wizard, working with 239

templates form, working with 249, 250
Currencies (oCurrencyCodes) 314
Customer Equipment Cards

(oCustomerEquipmentCards) 316
Customs Groups (oCustomsGroups) 315

D

Database Owner (dbo) 55, 60
database query

for Excel 294
Microsoft Query window 304-307
new data source, adding from control panel

298-301
new data source, adding within Excel 295-

297
new data source, creating 294
query wizard 302, 303

Data Control Language. See DCL

Data Deinition Language. See DDL
data dictionary 14
Data Manipulation Language. See DML
Data Manipulation Language (DML)

commands 53
data source, database query

adding, from control panel 298-301
adding, with Excel 295-297
creating 294

Data_type 81
Date 80
Date1 79
Date2 79
DATEADD() function 80
DATEDIFF() function 78, 79
date function

about 91
ixed date range, inputting 93
months production balance 92

Datepart 78, 80
DATEPART() function 80, 81
DCL 13
DDL 13
Deduction Tax Groups

(oDeductionTaxGroups) 315
Deduction Tax Hierarchies

(oDeductionTaxHierarchies) 315
Delete Document? 235

[322]

delivery date
on sales order 111, 112

Delivery (DN) 311, 313
delivery document

adding, approval for 169
Delivery Notes. See DLN
Deposit (DP) 313
developer, SAP Business One 10
discount percentage

displaying, for each interval 284, 285
Display Conditions tab 33
DISTINCT clause 57
DLN 15
DML 13
document header tables 16
document line tables 16
documents tab, approval templates 163
Down payment (DP) 311
Do you want to save the change? 233
Draft document (oDrafts) 315
Dunning Letters (oDunningLetters) 316
duplicated BP ref #

order, adding 274, 275
order, blocking 274, 275
order, updating 274, 275

Dynamic System Strings
(oDynamicSystemStrings) 317

E

Employees. See HEM
Employees Info (oEmployeesInfo) 316
END pair 267
end user, SAP Business One 10
Enter general items to the inventory

(oInventoryGenEntry) 315
Excel

database query for 294
EXISTS operator 69, 71
Exit general items from inventory

(oInventoryGenExit) 315

F

Factoring Indicators (oFactoringIndicators)
316

ield 12
Field Index form 229

ields, query wizard
selecting 30-32

inancial transactions, queries for
about 130
incoming payment 131, 132
incoming payment, iltering 134, 135
incoming payment, linking with invoice

132, 133
payment transactions types, listing 133
sales ranking 131
top ive customers 131

Find Fields function 249
Finish button 244
ixed date range

inputting 93
FMS

about 83, 175, 176
and user-deined values 176

FMS query
for user-deined table (UDT) 215, 216
negative sign 194

FMS query application
auto code creation 203
BP code auto generation 203
item code auto generation 204
special code auto generation 205

FMS query, examples
about 205
double quotes, avoiding 205
duplicate lines returned by FMS query,

eliminating 214
FMS query, for User-Deined Table (UDT)

215, 216
last sales price, for customer 212
OITM ield, multiplying with order line

ield 211
order reminder, opening in new order 210
price value validation, on line level 206
proit center code, auto populating 209
purchase order due date, displaying on

sales order 208, 209
sales rep code assigned to activity form,

getting 214, 215
three user-deined ields 209
two UDF values from two tables,

multiplying 212
UDF, differences 207

[323]

UDF, populating from OITM in UDF on
quotation 206

UDF value calling in BOM, to production
order 213

UDF value, multiplying with system ield
value 213

warehouse in stock, commitment checks
for 211

warehouse name, displaying beside
warehouse code 208

foreign key, table links 18
Formatted Search . See FMS
Formatted Searches (oFormattedSearches)

317
Forms 1099 (oForms 1099) 316
four variables

in one query 89, 90
FROM clause

about 58
linked tables, group 61
multiple tables, separated by commas 62
single table 59, 60

Full Outer Join 68

G

General category 44
golden arrow 94
goods issue

for none super user. blocking 277, 278
Goods Issue (SO) 312, 313
goods receipt

item wise, subtotal 285, 286
goods receipt entry

blocking 268, 270
goods receipt PO

blocking 278
within ten days 106, 107

Goods Receipt PO. See PDN
Goods Receipt PO (PD) 312, 313
Goods Receipt PO (PR) 312
Goods Receipt (SI) 312, 313
Goods Return (PR) 313
GROUP BY clause 72, 73
GROUP BY T1.ItemCode 101
GRPO

blocking 272, 273

H

HAVING clause 73
HEM 15
House Bank Accounts

(oHouseBankAccounts) 317

I

IF expressions 83
incoming payment

about 131
iltering 134, 135
linking, with invoice 132

Incoming payment (RC) 312
Incoming Payment (RC) 313
Industries (oIndustries) 317
Inner Join

about 63
Key Columns 64
syntax 63

IN operator 69, 71
Internal Invoice (PU) 313
INV 15
inventory count 123, 124
Inventory Cycles (oInventoryCycles) 316
Inventory Posting (ST) 313
Inventory Revaluation (MR) 313
inventory transactions

queries for 120, 121
inventory transactions, queries for

active item list 122
item list completing, without transactions

126-130
item list completing, with

transactions 126-130
items undelivered, within 15 days 122
price updates, queries 124, 125
production orders list adding to, from sales

order 126
stock taking detail, inding 123, 124
stock total, adding to queries 120, 121
total, adding to query bottom 121, 122

Inventory Transfer (IM) 311, 313
invoice

alert for, without base document 137
blocking, GL account based 271, 272
blocking, project based 271, 272

[324]

invoice to special customer groups
approval for 170, 171

ISNULL() function 75
Issue for Production (SO) 313
item code auto generation, FMS query

application 204
Item Groups (oItemGroups) 315
item groups, subquery 288
item list

completing, with out sales 292, 293
completing, without transactions 126-130
completing, with sales 292, 293
completing, with transactions 126-130

Item Properties (oItemProperties) 314
items

top ive items sold 100
undelivered, within 15 days 122

items. See also ITM
Items (oItems) 314
item wise subtotal

in goods receipt 285, 286
ITM 15
ITT 15

J

JOIN statement
about 62, 63
Inner Join 63, 64
Outer Join 65

Journal Entries (JE) 311
Journal Vouchers (oJournalVouchers) 314

K

Key Columns 64
Knowledge Base Solutions

(oKnowledgeBaseSolutions) 316

L
Landed Costs Codes (oLandedCostsCodes)

315
Landed Costs (IF) 311, 313
Left Outer Join 65, 66
left part, query generator form 25
Length 81
Length Measures (oLengthMeasures) 315

LIKE operator 69-72
link arrow

about 94
queries, for hiding 94

linked tables
multiple linked tables, in one query 117,

118
Local Era (oLocalEra) 317

M
Manage Category function 43
Manual Journal Entry (JE) 311, 313
Manual Journal entry (oJournalEntries) 314
Manufacturers (oManufacturers) 315
marketing documents 16
marketing documents, queries for

about 100
average sales per month 109, 110
BP overview, with realized balance

selection 100
credit memo user check 110
delivery date, on sales order 111
ilter by notes, from OCRD 103
goods receipt PO 106
multiple linked tables, in one query 117,

118
quantity, purchased 107, 108
quantity, received 107, 108
quantity, returned 107, 108
reducing from two lines to on eline, for

sales summary 113, 114
reducing from two lines to one line, for

sales summary 112-114
sales analysis report, customized 108, 109
sales by states 115, 116
sales employees name, adding to query

104, 105
sales order, with PO 118-120
sales ranking 100-102
solution case 105, 106
tax code summary 114, 115

master tables 16
Material Revaluation (MR) 311
Material Revaluation

(oMaterialRevaluation) 316
MAX() function 76

[325]

Maximum 32
Max(T1.Dscription) 101
Messages (oMessages) 315
Microsoft Query window, database query

304-307
middle part, query generator form 26, 27
MIN() function 77
Minimum 32
miscellaneous query, examples

about 145
service call related query 146
two text columns, concatenating 146

monthly sales
by geography 291, 292

Multi Language Translations (oMulti
LanguageTranslations) 317

N

negative sign, FMS query 194
none cash outgoing payment approval 172,

173
Non-SAP Business One users 11
Nota Fisca lCFOP (oNotaFiscalCFOP) 317
NotaFiscalCST (oNota Fisca lCST) 317
Nota Fisca Usage (oNotaFiscaUsage) 317
notes

iltering by, from OCRD 103
NOT EXISTS operator 71

O
OCRD 30
OCST (State table) 26
OLE DB (ADO) 241
On Account outgoing payment approval

170
OPEN 89
Opening Balance (OB) 311, 313
open sales opportunity alert 139, 140
OPR 15
orange arrow

about 94
sales order updating alert, with drill down

96, 97
ORDER BY clause 74
ORDER BY SUM(T1.LineTotal) DESC 101
originator tab, approval templates 162, 163

OSLP 30
O tables 16
Outer Join

about 65
Left Outer Join 65, 66
Right Outer Join 66-68
Self-Join 68

outgoing payment
above 20,000, restricting 268
for speciic BP, blocking 266, 267

Outgoing Payment (PS) 312
Outgoing Payments (PS) 313
over booking sales order

approval for 171, 172

P

Packages Types (oPackagesTypes) 317
Payment Linked to Reconciled Transaction -

Internal (RU) 312, 313
Payment Run Export (oPaymentRunExport)

316
Payments (oIncomingPayments) 314
Payments (oPayments) 316
Payments to vendors (oVendorsPayments)

315
Payment Terms Types

(oPaymentTermsTypes) 314
payment transactions

types, listing 133
PCH 15
PDN 15
Pick Lists (oPickLists) 316
pitfalls

avoiding, while building queries 308
logic, complicating 309
query, creating 308

Pivot
monthly sales, by geography 291-293
used, for simplifying cross tab style queries

291
planned quantity

versus in stock 125
POR 15
Postdated Credit Voucher Deposit (DD)

311, 313
Price Lists (oPriceLists) 314

[326]

primary key, table links 17
Print Layout Designer (PLD) 222
production

monthly balance 92
Production Order (PW) 312, 313
Production Orders. See WOR
production orders list

adding to, from sales order 126
Production Orders (oProductionOrders) 317
Product Trees (Bill of Materials) 315. See

ITT
Purchase credit note document

(oPurchaseCreditNotes) 314
Purchase Credit Notes. See RPC
Purchase delivery note document

(oPurchaseDeliveryNotes) 314
Purchase down payment

(PurchaseDownPayments) 317
Purchase invoice correction document

(CorrectionPurchaseInvoice) 316
Purchase invoice document

(oPurchaseInvoices) 314
Purchase Invoices. See PCH
Purchase order document (oPurchaseOrders)

314
Purchase Orders. See POR
Purchase return document

(oPurchaseReturns) 314
Purchase tax invoice (oPurchaseTaxInvoice)

317

Q
QPLD

about 218, 222
advantages 222
Attachment Statistics query 219
editing, property form working with 229,

230
ield content, editing 230-232
ield type, changing 232
limitation, editing 230-232
options 222
report, creating 225-227
report, deleting 234, 235
report, editing 227
report, printing 234

report, print layout designer working with
228

report, recreating 235-238
report, saving 233
reports tab 223
report, working with 224
simple query report printing 220, 221
tabs 223
templates tab 223
templates tab, screenshot 224

QPLD report
creating 225-227
deleting 234, 235
editing 227
printing 234
recreating 235-238
saving 233
working with 224

QPLD report, editing
about 227
ield content, editing 230-232
ield type, changing 232
limitation, editing 230-232
Print Layout Designer, working with 228
property form, working with 229, 230

quantity, purchased 107, 108
quantity, received 107, 108
quantity, returned 107, 108
queries

'%[%2]%', parameter 91
about 13
building, tips 21, 22
By running total 99
By Union ALL 98, 99
categories, managing 47-52
CLOSED 89
creating, under different categories 152, 153
displaying, for query manager 43
displaying, ways 44
examples 87, 88
for alert 135
for inancial transactions 130
for formatted search 94
for inventory transactions 120
for marketing documents 100
groups 153-159
on price updates 124, 125

[327]

OPEN 89
related, to service calls 146
sales employees name, adding 104, 105
stock total, adding 120, 121
subtotal, getting from 97
T0.CardCode, variable for 91
two queries, combining by case expression

283, 284
user queries, creating 45, 46
user queries, deleting 47
user queries, saving 46
using, for approval procedure 159, 160
variables, deining for 89
variables, irst 90, 91
variables, in one query 89, 90
variables, last 90, 91
with certain restricted names, in comment

section 94
with only historical 94
with parameters declared 94
with union case 94

queries for approval, examples
about 169
delivery document adding, approval for

169
invoice to special customer groups,

approval for 170, 171
none cash outgoing payment approval 172,

173
On Account, outgoing payment 170
over booking sales order, approval for 171,

172
Query Categories (oQueryCategories) 316
query execution plan (query plan) 60
query generator

about 23, 24
and query wizard, differences 35, 36
form, left part 25, 26
form, middle part 26, 27
form, query executing from 27, 28
form, right part 26, 27
overview 24

query generator form
left part 25, 26
middle part 26, 27
query, executing from 27, 28
right part 26, 27

query manager, user interface
about 42
existing queries, displaying 43-45
query categories, managing 47-52
user queries, creating 45, 46
user queries, deleting 47
user queries, saving 46

Query Print Layout Designer. See QPLD
query report

building capabilities, assigning 150-152
query usage

securities, handling for 149
query wizard

about 23, 28
and query generator, differences 35, 36
completion 34, 35
conditions 32-34
ields, selecting 30-32
overview 28
relations 32-34
sort orders, selecting 30-32
splash screen 29
tables, selecting fo report 29, 30
video tutorial, URL 35

query wizard, database query 302, 303
Queue (oQueue) 316
QUT 15

R

RDBMS 11
RDR 15
Receipt from Production (SI) 313
Relational Database Management Systems.

See RDBMS
Relationships (oRelationships) 317
relations, query wizard 32-34
reports tab, QPLD 223
result-set 53
Return (RE) 312, 313
Reverse invoice correction document

(oCorrectionInvoiceReversal) 316
Reverse purchase invoice

correction document
(oCorrectionPurchaseInvoice
Reversal) 316

Reverse Table button 28

[328]

right alert
creating, without duplicated items 136, 137

Right Outer Join 66, 67
right part, query generator form 26, 27
RIN 15
row table 21
RPC 15

S

sales
by states 115, 116

sales analysis report
customized 108, 109

Sales credit note document (oCreditNotes)
314

Sales Credit Notes. See RIN
Sales delivery note document

(oDeliveryNotes) 314
sales documents

blocking, dates based 275, 276
Sales down payment (oDownPayments) 317
sales employees name

adding, to queries 104, 105
Sales Forecast (oSalesForecast) 316
Sales invoice document (oInvoices) 314
Sales Invoices. See INV

Sales Opportunities. See OPR
Sales Opportunities (oSalesOpportunities)

315
sales order

with PO 118-120
Sales order document (oOrders) 314
Sales Orders. See RDR
sales order updating alert

with drill down 96, 97
sales per month

average 109, 110
Sales Persons (oSalesPersons) 315
Sales Persons (Sales Employees). See SLP
sales quotation

blocking, if no value in row level UDF 270,
271

sales quotations. See aslo QUT
Sales quotation document (oQuotations)

314

Sales return document (oReturns) 314
Sales Stages (oSalesStages) 315
sales summary

reducing from two lines to one line 112-114
Sales Tax Authorities

(oSalesTaxAuthorities) 315
Sales Tax Authorities Types (Sales

TaxAuthoritiesTypes) 315
Sales Tax Codes (oSalesTaxCodes) 316
Sales tax invoice (oSalesTaxInvoice) 317
SAP Business One

consultant 10
database table references 14, 15
developer 10
end user 10
naming conventions, for table 15
Non-SAP Business One users 11
query generator 24
query wizard 28
SQL queries, beneits 9, 10
SQL query tools 23
stored procedures 261
system queries 36
table links, examples 18

SAP Business One Database Tables
Reference 14

SBO_SP_PostTransactionNotice 261
SBO_SP_PostTransactionSupport 261
SBO_SP_TransactionNotiication 261

about 257, 259
maintaining 262
menu, panels 262
objects 263
toolbar, panels 262
working with 261

SBO_SP_TransactionSupport 261
searched CASE expression 82
securities

handling, for query usage 149
Select All button 51
SELECT statement

about 53
clauses 57
column name, descriptions 56
complete database table columns, returning

55

[329]

Data Manipulation Language (DML)
commands 53

DISTINCT clause 57
multiple database table columns, returning

55
multiple values, achieving 54
number of columns, adding 56
result-set 53
return value 53
single database table column, returning 54
single value 54
TOP clause 58
using, in subquery 55

Self-Join 68
service call

queries, related to 146
Service Calls (oServiceCalls) 316
Service Contracts (oServiceContracts) 316
service type A/R credit memo

validating 276, 277
Shipping Types (oShippingTypes) 315
simple CASE expression 82
SLP 16
Software Development Kit (SDK) 10
sort orders, query wizard

selecting 30-32
SP

about 257
default empty SP 259, 260
input parameters 260, 261
structure 259

special code auto generation, FMS query
application 205

Special Prices (oSpecialPrices) 314
splash screen, query wizard 29
Sp, queries for

about 266
goods issue for none super user, blocking

277, 278
goods receipt entry, blocking 268-270
goods receipt PO, blocking 278
GRPO, blocking 272, 273
invoice based on GL account and project,

blocking 271, 272
order for duplicated BP ref #, adding 274,

275

order for duplicated BP ref #, blocking 274,
275

order for duplicated BP ref #, updating
274, 275

outgoing payments above 20,000, restricting
268

outgoing payments, blocking for speciic BP
266, 267

sales documents dates based, blocking 275,
276

sales quotation, blocking 270, 271
service type A/R credit memo, validating

276, 277
SQL 12
SQL language, subsets

Data Control Language (DCL) 13
Data Deinition Language (DDL) 13
Data Manipulation Language (DML) 13

SQL query tools, SAP Business One
query generator 23, 24
query wizard 23, 28

stages tab, approval templates 164
standard report wizard, crystal reports

command, adding to report 245, 246
command, working with 246
ields, selecting from command 247-249
new database connection, creating 240-244
optional forms, working with 249, 250
working with 239, 240

statement
about 52, 53
BETWEEN operator 70
DISTINCT clause 57
EXISTS operator 71
FROM clause 58
GROUP BY clause 72, 73
HAVING clause 73
IN operator 71
JOIN statement 62
LIKE operator 71, 72
NOT EXISTS operator 71
NOT IN operator 71
ORDER BY clause 74
SELECT statement 53
TOP clause 58
UNION ALL clause 75

[330]

UNION clause 74
WHERE clause 68, 69

Stock Taking (oStockTakings) 314
Stock Taking (ST) 123, 124, 312
stock total

adding, to queries 120, 121
Stock Transfer (oStockTransfer) 315
Stock Transfers. See WTR

stored procedure. See SP
stored procedures, SAP Business One

SBO_SP_PostTransactionNotice 261
SBO_SP_PostTransactionSupport 261
SBO_SP_TransactionNotiication 261
SBO_SP_TransactionSupport 261

Style 81
subquery

item groups 288
last A/P invoice document, showing 290
similar records, checking 289, 290
working with 287
YTD sales, for two years 288

subtotal
getting, from query 97

SUM() function 76
SUM(T1.LineTotal) 101
Superuser 45
system queries

about 24
beneits 36-39

T

T0.docdate >= [%0] and T0.docdate <= [%1]
101

T0.doctype = 'I' 101
table 11
table links

about 17
examples, with SAP business one 18
examples, with SAP Business One 18
foreign key 18
primary key 17

table links, examples
 OCRD-Business Partner table and OSLP-

Sales Employee table 18
OITM-Items table and ITM1-Items Prices

table 18

OITT-Product Tree table and ITT1-Product
Tree Child Items 18

table naming convention, SAP Business
One

A tables 16
document header tables 16
document line tables 16
O tables 16
tables, examples 17
three letter words 15, 16

tables, examples
ADOC-Document History 17
OINM-Warehouse Journal 17
OJDT-Journal Entry 17

tables, query wizard
selecting, for report 29, 30

target table
versus base table 18,-21

tax code summary 114, 115
Teams (oTeams) 317
templates tab, QPLD 223
terms tab, approval templates

about 165
query, selecting for approval template 165-

168
Territories (oTerritories) 316
Tools menu 45
Tools | Queries | Query Wizard 28
TOP 5 T1.ItemCode 101
TOP clause 58
top N customers 131
total

adding, to query bottom 121, 122
Total Distinct Records 32
Total Records 32
Transtype

displaying, as code 282, 283
T-SQL 13
two text columns

concatenating 146

U

UDF
updating, by different dates 286

UDV. See user-deined values
UNION ALL clause

[331]

UNION clause 74
User Default Groups (oUserDefaultGroups)

315
User Deined Field (UDF) 12, 46
User Deined Tables (UDT) 46
User Deined Table (UDT) 12
user-deined values

$ values 190-193
about 176
and FMS 176
existing values, searching 181-189
FMS queries, running directly 194
searching in 195-203
values, retrieving 193
working with 177-180

User Fields MD (oUserFields) 316
User Interface (UI) 35
User Keys MD (oUserKeys) 316
User Languages (oUserLanguages) 317
User Objects MD (oUserObjects MD) 317
User Permission Tree

(oUserPermissionTree) 317
user queries

creating 45, 46
deleting 47
saving 46

User Queries (oUserQueries) 316
user query alert guide 140-145
Users. See USR
Users (oUsers) 314
User Tables MD (oUserTables) 316
USR 16

V
variables

deining, for queries 89

irst 90, 91
last 90, 91

Vat Groups (oVatGroups) 314
Visible check 230

W

Warehouse Locations
(oWarehouseLocations) 316

Warehouses (oWarehouses) 315
Weight Measures (oWeightMeasures) 315
WHERE clause 69, 250
wildcard character

[] 72
[^] 72
% 72
_(underscore) 72

Withholding Tax Codes
(oWithholdingTaxCodes) 316

Wizard Payment Methods
(oWizardPaymentMethods) 316

WOR 16
Work Orders (oWorkOrders) 315
WTR 16

X

X button 26

Y
YTD sales, subquery 288, 289

Thank you for buying
Mastering SQL Queries for

SAP Business One

About Packt Publishing
Packt, pronounced 'packed', published its irst book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on speciic technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books give
you the knowledge and power to customize the software and technologies you're using to get
the job done. Packt books are more speciic and less general than the IT books you have seen in
the past. Our unique business model allows us to bring you more focused information, giving
you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order to
continue its focus on specialization. This book is part of the Packt Enterprise brand, home to
books published on enterprise software – software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it irst before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

SAP® Business ONE
Implementation
ISBN: 978-1-847196-38-5 Paperback: 320 pages

Bring the power of SAP Enterprise Resource Planning
to your small-midsize business

1. Get SAP B1 up and running quickly, optimize
your business, inventory, and manage your
warehouse

2. Understand how to run reports and take
advantage of real-time information

3. Complete an express implementation from start
to inish

4. Real-world examples with step-by-step
explanations

Learning SQL Server 2008
Reporting Services
ISBN: 978-1-847196-18-7 Paperback: 512 pages

A step-by-step guide to getting the most of Microsoft
SQL Server Reporting Services 2008

1. Everything you need to create and deliver data-
rich reports with SQL Server 2008 Reporting
Services as quickly as possible

2. Packed with hands-on-examples to learn and
improve your skills

3. Connect and report from databases,
spreadsheets, XML Data, and more

Please check www.PacktPub.com for information on our titles

Expert Cube Development with
Microsoft SQL Server 2008
Analysis Services
ISBN: 978-1-847197-22-1 Paperback: 360 pages

Design and implement fast, scalable and maintainable
cubes

1. A real-world guide to designing cubes with
Analysis Services 2008

2. Model dimensions and measure groups in BI
Development Studio

3. Implement security, drill-through, and MDX
calculations

4. Learn how to deploy, monitor, and performance-
tune your cube

SAP BusinessObjects
Dashboards 4.0 Cookbook: RAW
ISBN: 978-1-849681-78-0 Paperback: 350 pages

Over 75 simple and incredibly effective recipes
for transforming your business data into exciting
dashboards with SAP BusinessObjects Dashboards
4.0 Xcelsius

1. Learn valuable Dashboard Design best practices
and tips through easy to follow recipes

2. Become skilled in using and coniguring all
Dashboard Design components

3. Learn how to apply Dynamic Visibility to
enhance your dashboards

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1:
SAP Business One Query Users and Query Basics
	Who can benefit from using SQL Queries in SAP Business One?
	Consultant
	Developer
	SAP Business One end user
	Non-SAP Business One users

	SQL query and related terms
	RDBMS
	Table
	Field
	SQL
	T-SQL
	Subsets of SQL
	Query

	Data dictionary
	SAP Business One—Database tables reference
	Naming convention of tables for SAP Business One
	Three letter words
	"O" tables
	"A" tables
	Document header tables
	Document line tables
	Important table examples

	Table links—the key for the right query
	Primary key
	Foreign key
	Example of table links within SAP Business One

	Base tables versus target tables
	Keeping it simple—The key to build a good query
	Summary

	Chapter 2:
Query Generator and
Query Wizard
	Query Generator
	Query Generator overview
	Left part of Query Generator form
	Middle and right parts of Query Generator form
	Executing a query from query generator form

	Query wizard
	Query Wizard overview
	Step 1—Splash screen
	Step 2—Select tables for the report
	Step 3—Select fields and sort orders
	Step 4—Conditions and relations
	Step 5—Query wizard completion

	What is the difference between Query generator and Query wizard?
	Benefitting from built-in system queries
	Summary

	Chapter 3:
Query Manager and
Query Statements
	Query manager user interface
	Display all existing queries
	Creating and saving user queries
	Deleting user queries
	Managing query categories

	Commonly used statements
	SELECT—first statement to retrieve data
	The scope of the value that can be retrieved
	The numbers of columns to be included
	Column name descriptions
	Clauses can follow this statement

	DISTINCT—duplicated records can be removed
	TOP—number of lines returned by ranking
	FROM—data resource can be assigned
	A single table
	A group of linked tables
	Multiple tables separated by commas

	JOIN—addition table or tables can be linked
	Inner Join
	Outer Join

	WHERE—query conditions to be defined
	BETWEEN—ranges to be defined from lower to higher end
	IN/EXISTS—the value list that may satisfy the condition
	LIKE—similar records can be found
	GROUP BY—summarizing the data according to the list
	HAVING—conditions to be defined in summary report
	ORDER BY—report result can be by your preferred order
	UNION/UNION ALL—to put two or more queries together

	Some important functions to return values
	ISNULL() predicate
	SUM() function
	MAX() function
	MIN() function
	COUNT() function
	DATEDIFF() function
	DATEADD() function
	DATEPART() function
	CAST()/CONVERT() function
	CASE expressions
	IF expressions

	Summary

	Chapter 4:
Query Examples
	Why three categories have been chosen
	Defining variables for queries
	Case 4-R1: Four variables in one query
	Case 4-R2: Variables first or last

	Date function—where the most problems emerge
	Case 4-D1: Balance of production for a month
	Case 4-D2: How to input a fixed date range

	Orange arrow—an excellent tool for drill down
	Case 4-O1: Make it simple
	Case 4-O2: Sales order updating alert with drill down

	Getting a subtotal from the query
	Case 4-T1: By Union ALL
	Case 2: By running total

	Query for marketing documents
	Case 4-M1: Overview of BP with selection of realized balance
	Case 4-M2: Top five items sold
	Case 4-M3: A filter by notes from OCRD
	Case 4-M4: Adding sales employees' names to a query
	Case 4-M5: A case for solution just from deduction
	Case 4-M6: Goods Receipt PO within 10 days
	Case 4-M7: Quantity purchased, received, and returned
	Case 4-M8: Customized sales analysis report
	Case 4-M9: Average sales per month
	Case 4-M10: Credit Memo user check
	Case 4-M11: Delivery date on sales order
	Case 4-M12: Reducing from two to one line for the sales summary
	Case 4-M13: Tax code summary
	Case 4-M14: Sales by states
	Case 4-M15: Many linked tables in one query
	Case 4-M16: Sales Order with PO

	Query for inventory transactions
	Case 4-I1: Adding stock total to the query
	Case 4-I2: Adding a total to the query bottom
	Case 4-I3: Items not delivered within 15 days
	Case 4-I4: Active item list
	Case 4-I5: How to find stock taking details
	Case 4-I6: Query on price updates
	Case 4-I7: Planned quantity versus in stock
	Case 4-I8: Adding to the production orders list from a sales order
	Case 4-I9: Complete item list with or without transactions

	Query for financial transactions
	Case 4-F1: Top five customers
	Case 4-F2: Incoming payment
	Case 4-F3: Linking an incoming payment with an invoice
	Case 4-F4: Listing both types of payment transactions
	Case 4-F5: Incoming payment filtering

	User query for alert
	Case 4-A1: Creating a right alert without duplicated lines
	Case 4-A2: Alert for invoice without base document
	Case 4-A3: A/R Invoice past due alert
	Case 4-A4: Special ship to alert for Sales Order
	Case 4-A5: Open Sales Opportunity alert
	User query alert guide

	Miscellaneous query examples
	Case 4-X1: Query related to service call
	Case 4-X2: Concatenating two text columns

	Summary

	Chapter 5:
Securities and Approvals
	How to handle securities for query usage
	Giving only a few users the capability to build a query report
	Creating queries under different categories
	Query Groups: a tool to assign user permissions

	How to use query for approval procedures
	Creating approval stages
	Creating approval templates
	Originator
	Documents
	Stages
	Terms

	Examples of user queries for approval
	Case 1—Approval for adding delivery document
	Case 2—"On Account" outgoing payment approval
	Case 3—Approval for invoice to special customer groups
	Case 4—Approval for over booking sales order
	Case 5—None cash outgoing payment approval

	Summary

	Chapter 6:
SQL Query for Formatted Search (FMS)
	Formatted Search and User-Defined Values
	How to work with User-Defined Values
	Search in existing User-Defined Values according to the saved queries
	Where do the $ values come from?
	How to get the value you need from, and for, the FMS query
	Can you run FMS queries directly?
	What is the negative sign's function in FMS query?

	Search in existing User-Defined Values only

	A typical FMS query application: auto code creation
	BP code auto generation
	Item code auto generation
	Special code auto generation

	General FMS query examples
	Case 1—Double quotes should be avoided
	Case 2—Price value validation on line level
	Case 3—Populating a UDF from OITM in a UDF on quotation
	Case 4—Difference between two UDFs into another UDF
	Case 5—Displaying warehouse name beside warehouse code
	Case 6—Showing purchase order due date on sales order
	Case 7—Auto populating the profit center code
	Case 8—Calculation by three user-defined fields
	Case 9—Open order reminder in new order
	Case 10—Commitment checks for warehouse in stock
	Case 11—Multiplying a field from OITM with a field on order line
	Case 12—Multiplying two UDF values from two tables
	Case 13—Last sales price for a customer
	Case 14—Calling a UDF value in the BOM to Production Order
	Case 15—Multiplying a UDF value with a system field value
	Case 16—Eliminating the duplicate lines returned by FMS query
	Case 17—Getting the sales rep code assigned to an activity form
	Case 18—FMS query for User-Defined Table (UDT)

	Summary

	Chapter 7:
SQL Query for
Reporting Tools
	Query Print Layout Designer (QPLD) and its usage
	Simple query report printing
	Query Print Layout Designer
	Working with a QPLD report
	Creating a QPLD report
	Editing a QPLD report
	Saving a QPLD report
	Printing a QPLD report
	Deleting a QPLD report
	Recreating the QPLD report

	Direct query for Crystal Reports (Command)
	Working with Standard Report Wizard
	Creating a new database connection
	Adding a Command to a report
	Working with a Command

	Basic formatting for a Crystal Report

	Summary

	Chapter 8:
SQL Query for a Stored Procedure
	Why Stored Procedure is included in this book
	SBO_SP_TransactionNotification overview
	How to work with SBO_SP_TransactionNotification
	Some example queries for this SP
	Case 1—Blocking an outgoing payment for a specific BP
	Case 2—Restricting outgoing payments above 20,000
	Case 3—Blocking goods receipt entry
	Case 4—Blocking a sales quotation if no value in row level UDF
	Case 5—Blocking invoice based on GL account and project
	Case 6—Blocking GRPO if quantity is more than PO quantity
	Case 7—Blocking, adding, or updating an order for duplicated BP ref #
	Case 8—Blocking sales documents based on dates
	Case 9—Validation service type A/R credit memo
	Case 10—Blocking goods issue for none super user
	Case 11—Blocking Goods Receipt PO if no based PO

	Summary

	Chapter 9:
More Complicated SQL Query Topics
	The Case expression usage
	Case 9-C1—Displaying Transtype as code instead of a number
	Case 9-C2—Combining two queries with a Case expression
	Case 9-C3—Showing discount percentage for each interval
	Case 9-C4—Item wise subtotal in a goods receipt
	Case 9-C5—Updating UDF with different dates

	Working with a subquery
	Case 9-S1—Item groups not in use
	Case 9-S2—YTD sales for two years
	Case 9-S3—Checking only the similar records
	Case 9-S4—Showing the last A/P invoice document date for items

	Using PIVOT to simplify a cross tab style queries
	Case 9-P1—Monthly sales by geography
	Case 9-P2—Complete list of all items with/without sales

	Database query for Excel
	Creating a new data source
	New data source added within Excel
	New data source added from the control panel

	Query wizard for database query in Excel
	Microsoft Query window

	Avoiding pitfalls while building queries
	Creating a query before knowing the data table structure
	Complicating the logic instead of
simplifying it
	Trying to do too many things in one query
	Relying on others' help only

	Summary

	Appendix
	Original transaction list by code
	Original transaction list by name
	Object codes and names

	Index

