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To my Family. In other words, to Love, the
genuine Love

Love is patient, love is kind. It is not jealous,
(love) is not pompous, it is not inflated, it is
not rude, it does not seek its own interests, it
is not quick-tempered, it does not brood over
injury, it does not rejoice over wrongdoing
but rejoices with the truth.

1 Cor 13,4–6

God is love, and whoever remains in love
remains in God and God in him.

1 J 4,16b
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Foreword

The number of different machine learning methods has grown over the past years
and so the user faced with the question of which method he/she should use on a
given problem. The problem is aggravated by the fact that many machine algo-
rithms require that parameters should be set prior to their application, and besides,
given data may be pre-processed in many different ways. The aim of the area of
metalearning is to facilitate the task of selecting, adapting or composing machine
learning, or data mining solutions. These are referred to in the book as learning
machines. As these are normally composed of different constituents, these are
identified also as configurations. These can be compared to what others call data
mining workflows.

This book represents various interesting contributions to this area. Although it
focuses on different variants of decision tree induction, the meta-learning approach
described is quite general. It is applicable to other types of machine learning
algorithms. The part of the book that discusses different variants of decision tree
induction represents a useful source of information in itself to whoever wishes to
review some of the techniques used in decision tree learning, as well as different
ensemble methods that involve decision trees.

The author rightly argues that the knowledge of different components used
within decision tree learning needs to be systematized to enable the system to
generate and evaluate different variants of machine learning algorithms with the
aim of identifying the top most performers or potentially the best one. A unified
view of decision tree learning enables to emulate different decision tree algorithms
simply by setting certain parameters. As metalearning requires running many
different processes with the aim of obtaining performance results, a detailed
description of the experimental methodology and evaluation framework is
provided.

Metalearning is discussed in great detail in the second half of the book. The
exposition starts by presenting a comprehensive review of many meta-learning
approaches explored in the past described in the literature, including for instance
approaches that provide a ranking of algorithms. The author distinguishes between
so-called passive methods and active ones.
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Passive methods rely on the information gathered in a prior phase. Different
configurations are obtained with the help of configuration generator and the can-
didate configurations are accompanied by estimates of time and memory. The
configurations that require less time and memory are ranked higher than those that
require more resources. The aim of such techniques is to identify the most
promising machine configurations with a high probability. The approach described
can be related to other work that exploits planning whose aim is to construct data
mining workflows. The book stimulates thus interchange of ideas between dif-
ferent, albeit related, approaches.

Active methods maintain a profile of different configurations which is updated
as more tests have been carried out. The system uses a sophisticated search process
driven by heuristics to identify processes/machine-learning configurations that
should be paid attention to and tested. Active methods provide a more practical
solution to real problems permitting that profiles be gradually built up as more
experience is gained and more results are gathered. It is expected that these will
gain even more importance in the future. The method is discussed in detail in the
last part of the book and represents an interesting contribution.

Metalearning is an active area of research and many publications exist. The
value of the book is in that it presents a unified view of different aspects of
metalearning. It systematizes the existing knowledge and presents a distinct
conceptual framework that facilitates further advances.

Porto, April 2013 Pavel Brazdil
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Preface

Miscellaneous learning machines have been designed and implemented for dec-
ades of computational intelligence (CI) research. More and more solutions are
being published all the time in all the subdomains like classification, regression,
clustering, and others. A natural question arises: how many algorithms to solve the
same goals must be proposed, before we regard the available set of tools as
satisfactory? One could claim that such time will never come, because there will
always be a possibility of improvement in various aspects, various contexts of
applications. This is certainly true, but on the other side, it seems quite reasonable
to claim something completely opposite: we already have so many tools that, to
solve new tasks, we no longer need new methods, but a robust knowledge about
how to use the tools we have already got. Probably, each real-world task fitting the
domain of computational intelligence can be solved by available tools in a way
close to optimal (statistically insignificantly different than optimal), but it does not
mean that finding a satisfactory solution is easy. Therefore, more effort of the CI
community should be focused on meta-level algorithms, capable of finding
attractive solutions with already available tools, than on development of new
learning methods that can solve some new, special types of problems.

This book is focused on learning decision tree (DT) models. One of its goals is
to show that even the part of CI devoted to DT induction is large enough to make
the pursuit of the most successful learning machine a very complex problem. To be
successful in assigning adequate learning machines for particular learning prob-
lems, we need more systematic research in the field. The number of available
solutions is even larger than we usually think, because each learning machine
consists of many components and each of them can be easily replaced by many
other compatible modules. Only well designed, general architectures of learning
machines reveal the real level of complexity of the problem, because in such
universal and flexible frameworks, available components may be combined in
huge numbers of ways. No human expert can try all these combinations when
solving a problem, so even the best experts are likely to miss quite simple and
attractive solutions. Therefore, we need automated tools performing reliable search
processes in the space of possible learning machines. Because all possible
machines cannot be tested, we need trustworthy metaknowledge helpful in rec-
ognizing the more and the less interesting algorithms in various contexts. Starting
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with the metaknowledge expressed by human experts and gathering new knowl-
edge, extracted from extensive, automated search processes, may easily bring large
knowledge bases of great value for automated expert systems. The metaknowledge
may be used not only to select probably the most accurate learning machines, but
also to construct new complex learning machines. The amount of such knowledge
is so large that very soon, no human expert will be able to use it in an optimal way.
Therefore, in many fields, the era of human designed models is close to its end—
automated learners will soon outperform humans as they already do in playing
chess, because in data modeling, also so large databases of metaknowledge must
be searched through and analyzed in appropriate order, that it gets unfeasible for
humans, but more and more eligible for automated learners.

The goal of the book is to propose some steps in the direction that seems the
most adequate: toward easy to explore taxonomy of DT induction methods and
automated tools for construction of successful DT learning machines.

Efficient exploitation of available algorithms and even construction of new
algorithms are possible only when the nature of the methods is perfectly under-
stood. Therefore, before writing the book got started, plenty of algorithms had
been analyzed, redesigned, implemented, and validated. It is not easy to implement
faithfully even the most popular algorithms, because some detailed solutions are
often kept hidden, but sometimes they are quite significant. Thus, apart from the
analysis of available descriptions (not always clear and exhaustive), sometimes,
the source codes had to be analyzed to discover some detailed solutions. In some
other cases, when the source codes were not available, some elements of algorithm
definition had to be guessed or inferred from the analysis of outputs generated by
the binary codes.

Chapter 2 is the result of the work in this area done for many years. It presents
many algorithms (more and less popular), described from the point of view of a
scientist trying to discover all important aspects of the solutions. Therefore, it is
not just a review of selected methods, but a survey of the domain with thorough
analysis of advantages and drawbacks, possibilities and limitations of many ideas
applied to DT induction. The goal of this chapter was to describe the most
important solutions shortly but quite exhaustively, intuitively, in common lan-
guage, but also with formal statements when necessary to make the algorithms
unambiguous. This should allow the readers easily understand the algorithms in
relatively short time.

After the survey of DT induction research, the book presents a unified view of
the algorithms (Chap. 3) that facilitates easy combination of many compatible
components into new learning machines. Such a framework is absolutely neces-
sary for advanced meta-learning purposes.

Advanced metalearning requires a robust environment for efficient running
machine processes, conducting complex tests, collecting, and analysis of the
results. Chapter 4 presents the most important solutions of Intemi system, designed
and implemented especially for the purposes of metalearning. It arose from many
years of experience with learning machines and very deep analysis of meta-
learning requirements.

x Preface
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Some aspects of meta-level analysis of DT components in action are presented
in Chap. 5, where the problems of reliable testing are discussed, some experiments
designed, and their results collected and compared. Adequate methods of result
visualization have been worked out to facilitate reliable conclusions. Appropriate
visualization of results is very important for humans, but gets quite difficult when
tens of thousands of results need to be presented together.

The coping stone of the work described in the book is the meta-learning
approach based on search and validation, presented in Chap. 6 with two particular
implementations of the idea: One based on machine configuration generators and
complexity control, and one dealing with learning results profiles.

Chapter 7 discusses the possible future of meta-learning research and points the
directions that seem the most promising and most adequate to follow.

Two appendices contain some descriptions of basic statistical and algebraic
methods often used in DT induction. They have been estimated as useful for each
inquisitive novice in the field, who may want to get more details without searching
outside of the book.

The contents of the book have been prepared thanks to many years of research
on DT induction, on learning machines in general, and recently on metalearning.
Some fragments of the book review the work of numerous authors, published in
miscellaneous articles. The original papers are always pointed as the sources of the
information. Some other fragments concern ideas presented by the book author in
some publications, but here they are displayed in the context of this monograph—
subordinate to the goal of the book, which is presenting the long and complex road
from various small and larger algorithms, to a unified approach and the robustness
of metalearning.

The book is addressed both to experienced machine learning scientists, inter-
ested in the research on DT induction, and to newcomers to the field. A novice
should find the review parts (Chap. 2 and Sect. 6.1) especially useful, as they can
help to understand many popular methods of DT induction and metalearning. Most
experts shall be more attracted by the final chapters, which take up the topic of
metalearning, however also many details of DT induction algorithms are likely to
interest even the experienced researchers, because the information presented there
is a result of a thorough analysis of the methods, performed by a researcher aiming
at understanding various computational aspects and practical advantages of the
algorithms. Moreover, the review parts may be seen as an interesting repository of
knowledge about many algorithms, presented in a succinct but usually exhaustive
descriptions, thus very valuable also for experts. The review and analysis of DT
induction approaches, presented in the book, is probably the most extensive one
and the most in-depth study, published so far.

Both novices to the field and experts may be interested in the unified view of
DT induction algorithms (Chap. 3) and the general machine learning framework
architecture (Chap. 4). Chapters 5 and 6 are intended to attract especially the
researchers focused on metalearning, interested in meta-level analysis of learning
algorithms and creating new meta-level algorithms.
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Chapter 1
Introduction

Decision trees (DTs) belong to the most commonly used computational intelligence
(CI) models. Even when other algorithms provide more accurate models (better
approximating the target), DTs are often regarded as very attractive. One of the most
important reasons of their attractiveness is comprehensibility. DTs can be easily
expressed in the form of a set of logical rules describing the decision functions. When
used for decision support, DTs provide simple explanations of particular decisions,
usually in the form of single logical rule (that applies to the case at hand) being a
conjunction of several readable premises.

In the pursuit of the best models, many algorithms have been proposed. Only in
the realm of DT induction, thousands of various solutions have been published. Their
possible combinations are so numerous that even in application to simple problems
described by small datasets, there is no possibility to check all possible algorithms.
Therefore, the question how to obtain as accurate models as possible has been and
will still be, for a long time, the most important concern of CI.

In most contemporary problems, arbitrary model selection performed by human
experts is not satisfactory, as humans have many significant limitations and, in par-
ticular, no expert can gain detailed knowledge about all the solutions worth a try.
Automated systems are more systematic than humans—can explore the space of
possible solutions in more thorough way, without missing any important method and
without repeating calculations. Human experts need more time for analysis of per-
formed calculations and are not ready for performing the analyses 24 h a day, 7 days a
week, as automated tools are. Therefore, automated learning machines can use time
more efficiently, so in such practical aspects, they have more potential than humans.
Naturally, CI algorithms are still not as intelligent as humans, so they can not draw so
deep and versatile conclusions. This is a space for further improvement of CI methods
of meta-learning (which extract and take advantage of meta-knowledge about learn-
ing processes). Continuous progress in the field lets believe that it is just the matter
of time that automated discoveries will be more successful than human experts. The
research described in this book has been planned as a step in this direction. It does
not answer all the questions related to the problem, but the results obtained so far
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2 1 Introduction

confirm that this approach to meta-learning can be successful, so it deserves further
development.

1.1 Learning Machines and Meta-Learning

Learning is usually defined as acquiring new or alteration of existing knowledge
or behavior. As a result of individual experience, perception of some stimuli, an
organism gains new abilities, modifies its behavior, extends its knowledge and so on.
Defining machine learning can be more precise. In place of miscellaneous stimuli,
machines get data (of different kind and form) and run learning processes to obtain
some models (artificial counterparts of human abilities, behaviors, knowledge, skills).
Models can also have arbitrary forms. Usually, they are functions of classification,
clustering, approximation and so on.

Learning Problem and Learning Machines

Formally, the term learning problem (or problem of learning from data or learning
task) denotes a pair

P = (D,M ) (1.1)

of data D ∈ D (D is a space of training data) and model space M . Solving a problem
(D,M ) consists in finding a model for D within M .

In the language of statistics, the set M can be called the hypothesis space and its
each member a hypothesis. Hence, a learning problem P can be equivalently called
a hypothesis selection problem or model selection problem.

There are no additional constraints on the shape of the training data space or
model space. Usually, the training data space consists of sequences of object-value
pairs, and the objective of learning is finding a mapping from the object space to the
value space, best reflecting the relation between objects and values.

The procedures solving learning problems are called learning algorithms or learn-
ing machines or just learners. From formal point of view, (learning) machines are
processes

L : KL ×D →M , (1.2)

where KL is a space of configuration parameters of L . One could also ignore KL and
treat a parameterized machine as a family of non-parameterized machines, but the
definition of Eq. (1.2) is more intuitive because closer to the natural use of the term.

In the definition above, the word “learning” is parenthesized, because it makes no
sense to define precisely which processes really learn something. Distinction between
learning and non-learning machines would be very subjective, and its potential profits
are doubtful. On the other hand, it is very advantageous to treat all the data analysis
processes in a uniform way. As a result, the processes of data transformation, test
procedures estimating some measures of learning machines accuracies and even the
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functions of data loading and other simple operations can also be seen as machines.
Calling them “learning machines” would be exaggerated, but embracing all the
processes (learning and non-learning) with the term “machines” is reasonable.

Another formal distinction is also very important and seems adequate at the begin-
ning of this book. It concerns the terms “machine” and “model”, which are often
mixed up in informal statements. As a result, it is possible to find expressions like
“learning process of a model” or “model has learned”, but in the formalism proposed
here, learning processes are the crucial parts of machines, not models, and mod-
els are output by the processes. Such distinction helps formulate clear and succinct
descriptions and conclusions. Naturally, models may also be capable of learning, but
in such cases it should be clearly specified which learning processes are referred to.

Learning machines may be complex. Practically useful learning machines are
almost always composed of several (k ∈ N ) other learning machines:

L = L1 ◦ L2 ◦ . . . ◦ Lk . (1.3)

For example, a composition of a data transformation machine and a classifier machine
is just another learning machine. Similarly, each committee is also a complex learn-
ing machine. What’s more, a committee of complex machines is also a learning
machine. Usually complex machines return complex models (models composed of
other models), but it is not obligatory. For example, a machine that runs a number
of other machines to collect their models and eventually selects one of the models
as the result of the whole complex process is a complex machine, but may return
simple (non-complex) model. A machine being a part of another machine is called
its submachine or child machine (and the other machine is called a parent machine).

Meta-Learning

Whenever a learning process or a model resulting from learning is analyzed, the
reasoning is performed at meta-level. Any form of learning from information about
learning processes and models can be referred to as meta-learning, so the term is very
general. Formally, meta-learning problems fit the definition of learning problem (1.1).
They just represent a specific type of learning (with specific data and model spaces,
concerning other learning processes). To distinguish the two levels of learning, the
processes analyzed at meta-level are referred to as object-level or base-level learning
machines.

The goal of meta-level analysis is to learning how to learn and to apply the
gained knowledge in further learning so as to obtain more attractive results. It is
a very important step in a complex process, aimed at finding optimal models. The
general definitions of learning problem (1.1) and learning machines (1.2) do not
touch the aspect of model optimality—any model can be a solution. In practice, we
are usually interested in as good models as we can find, and the goodness of the
model is formally expressed by a measure of model quality q :M → Q, where Q
is a linearly ordered set of quality values (usually the set of real numbers). Extending



4 1 Introduction

the definition (1.1) of learning problem by a model quality measure q, we can state
the optimal-learning problem (or model selection problem) as a triple

PO = (D,M , q). (1.4)

Solving the problem PO consists in finding possibly best model for D within M ,
that is, a model M ∈M maximizing q(M).

Finding the best solution for PO is usually NP-hard, because the set of possible
models M is so large that it is not possible to examine all possible models (usually
only a very tiny subset can be explored). Therefore, so many learning algorithms
have been created and propose different ways to suboptimal solutions. Although
the results of particular applications of learning machines are not guaranteed to be
globally optimal, they are often quite accurate models obtained within acceptably
short time. For many real-life problems, such solutions can be fully satisfactory.

The time of learning is another very important aspect of practical problems of
learning, neglected by the formulations of learning problems (1.1) and (1.4). We
never have infinite time to spend on searching for satisfactory solutions, even in
research enterprises. Therefore, time limits should be included in the definition of
learning tasks. According to this idea, extending the definition of an optimal-learning
problem PO with a time limit t for providing the solution constitutes a time-limited
optimal-learning problem

PT = (D,M , q, t). (1.5)

Such definition of the problem of learning from data is much more realistic, and
should be preferred also in research approaches. In a natural way, it reflects the
reality of data analysis challenges, where deadlines are crucial, but it is also more
adequate for real business applications, where solutions must be found in appropriate
time and any other applications with explicit or implicit time constraints.

The task of finding possibly best model for given data D can be reformulated
as the task of finding possibly most successful learning machine L for the data D.
algorithm selection problem is the most practical kind of meta-learning problems. It
used to be solved manually by machine-learning experts, although more and more
often, meta-learning algorithms of different kinds are proposed.

Many different views on meta-learning can be found in scientific publications.
Various learning processes, that acquire some knowledge about other algorithms
or exploit this sort of knowledge, are referred to as meta-learning methods. More
detailed review of meta-learning approaches can be found in Sect. 6.1.

1.2 Basic Definitions and Notations

Some definitions and notations are commonly used throughout the book. To make
finding them easier, they have been collected together and are introduced already here.
They are grouped into parts referring to the same concepts, for easier orientation.

http://dx.doi.org/10.1007/978-3-319-00960-5_6
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Less common symbols are introduced just in place where they are first used, so that
each definition should be found in close vicinity of the place where it is used or in
this section.

Datasets, Data Tables

Learning machines are given the input of data organized into various forms. The
most common form is a collection of data objects called a dataset. Data objects can
be described in arbitrary ways—in general no particular form is assumed. Images,
sounds, multidimensional structures or simple numbers are some examples of accept-
able forms. The term “dataset” is not strictly used as “a set of data objects”. In most
cases a dataset is actually a sequence (an ordered sample), as the objects come in
some order, with possible repetitions. Some learners are independent of the object
order in the training sequence, but some others are not. Despite that the term “dataset”
is commonly used. DT induction methods presented in this book are independent of
the data order, so here, using the term “dataset” is quite compatible with its natural
meaning. The algorithms analyzing data objects in sequence, select the objects at
random, so there is no clash with the term, beside the fact of possible repetitions.

Most machine learning algorithms are designed to handle objects as multidimen-
sional vectors of real numbers, and the most common approach to data analysis is
to describe objects with such vectors first, and then apply learning machines to such
form of data. When collections of objects are described as multidimensional vectors
of real numbers (O ⊂ Rn), they are called data tables. Then, the dimensions of Rn

are called attributes or features. There have been many discussions about distinction
between the terms “attribute” and “feature”, but for the purpose of this book, such
distinction has no value, so the terms mean the same and are defined as above. Partic-
ular values assigned to objects in a given dimension are called feature (or attribute)
values of the objects.

Features may be of different types. The ones with values being real numbers are
called continuous or numeric. Some attributes may be denoted by just several distinct
symbols. Such attributes are called discrete, symbolic or nominal. For the purposes
of learning machines, usually the most adequate is the distinction to ordered and
unordered features, because discrete features with several ordered values can (and
should) be treated as numeric.

Some scientific articles use the language of statistics to describe learning from
data. In this language, features in the context of data samples, are treated as random
variables and called covariates, explanatory variables, independent variables or
predictors. The target variables (output class, approximated values and so on) are
also called dependent variables or response variables.

Each feature value for subsequent data object is then a value of the random vari-
able. Data objects are often denoted as vectors (bold letters x, y, . . .) and collections
of data as matrices. Matrix/vector transposition is denoted with uppercase T letter
as superscript (for example, xT , DT , …).
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When dealing with datasets and data tables, the symbol n usually denotes the
number of objects in the dataset. When more than one dataset is regarded in the same
analysis, classical mathematical notation of the cardinality of a set is used (|D|, |Di |).
For data tables, m is used to denote features count and k—the number of classes (in
classification tasks). Some other symbols, for example, Greek letters α, β, θ , …, do
not have standard meaning for the whole book and follow conventions accepted by
original authors (were sensible). In some cases, the original notations are followed,
to make comparisons with the original sources easier. A drawback of such decision
is that sometimes different letters denote parameters of similar functionality, but it
hopefully does not introduce much confusion.

In some learning approaches, unordered features in data tables are converted into
so called binary indicator variables. A feature with l possible symbols f1, . . . , fl
is converted into l binary features with values determined by the indicator functions
associated with the original symbols:

I fi : { f1, . . . , fl} → {0, 1}, I fi ( f ) =
{

1 if f = fi

0 otherwise.
(1.6)

The new features, generated in this way are usually called indicator features or
indicator variables associated with the original feature.

Probabilities are denoted with uppercase letter P . Many shortcuts are followed in
the field of CI, when probabilities are referred to. For example, the notation P(C |D)

is a shorthand notation for P(x ∈ C |x ∈ D). In many situations some “natural”
assumptions are not explicitly written to make expressions shorter.

Classification

One of the most common tasks of CI is classification. In order to define a classification
problem one needs to:

• specify a (finite) set of class labels (or categories) C ,
• define a collection O of object descriptions (the domain of classification task) and

specify a learning dataset as a collection of object-label pairs D = {(oi ci ) : i =
1, . . . , n} ⊆ O × C ,
• restrict the model space to the set of functions f : O → C .

Less formally, in classification tasks, a function assigning class labels to objects
is searched, and training dataset contains a sample of objects with assigned labels.
For example, a task of image categorization may assume that one of two labels
(“yes” or “no”) should be assigned to each country in the world, depending on
whether more than half of its population declare themselves as Christian or not.
Naturally, there are many possible ways to define object (country) description: it
could be just the name of the country, English Wikipedia text describing the country,
and so on. Different definitions provide different classification tasks.

www.allitebooks.com

http://www.allitebooks.org


1.2 Basic Definitions and Notations 7

Classes (or categories) can be seen as subsets of the object space, so that intersec-
tions like D ∩ c of a dataset D and a class c ∈ C are formally correct. At the same
time the classes can be identified with labels (the elements of C can be seen as the
labels). This does not introduce any confusion, so the book accepts such points of
view too.

As defined above, classifiers are functions f : O → C assigning a class (label) to
each object in O . Sometimes, we are interested in so called probabilistic classifiers
or weighted classification, so that the assignment of a class is not crisp, but described
by a probability of belonging to each possible class. Thus a probabilistic classifier
can be defined as a function f : O → [0, 1]|C | or f : O × C → [0, 1] and provide
the probabilities.

Naturally, it is easy to define a probabilistic classifier (with binary probabilities)
corresponding to each crisp classifier. Inversely, a crisp classifier corresponding to a
probabilistic classifier can be defined as assigning the class label maximizing class
probability. The definition is not unique, but is possible, provided the axiom of choice
or an order in C .

Approximation

When objects are assigned some real numbers instead of discrete labels, the problem
is called an approximation or regression task. All other aspects of problem definition
are the same as in the case of classification. An example of such task may be assigning
to each country of the world, its gross domestic product (GDP) per capita, measured
in the currency of Polish złoty.

Testing

Quality of classification and approximation models is most often measured by means
of accuracy of their predictions for data not used for learning the models (so called
unseen data). It is not always possible to get another data sample to measure such
accuracy, so often a given finite dataset must suffice to train a model and estimate
its generalization abilities. One of the possibilities is to split the dataset into two
parts and use one of them for training and the other for estimation of the model’s
real performance. When a classification model is built, its accuracy measured for
the training part of the data is called reclassification accuracy or training accuracy
and the accuracy measured on the other part is called test accuracy or validation
accuracy. Errors may be referred to in analogous way to accuracies.

One of the most popular methods of testing classifiers is the technique of cross-
validation (CV). It splits the dataset into v parts of as similar sizes as possible (v-
fold CV), and performs v training and testing processes by selection of each part in
sequence as the test part and all the remaining v−1 parts as a single training dataset.
After such v training and test stages, all test results are averaged and given as the final
CV result. When splitting the dataset into v parts it is often important (especially
for small samples) to keep the original proportions between classes. When the split
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respects the proportions, the procedure is called an n-fold, stratified CV (as opposed
to non-stratified CV).

DT induction methods often use some validation process to adjust a pruning
parameter. They also use stratified CV for this purpose, which is then called an
internal CV or CV for training. The distinction is very important, because often the
DT induction algorithms are tested with external CV tests and use internal CV to
adjust parameters.

Entropy

Given a data sample D and a discrete feature A with values in A , let pa denote the
proportion of data objects with value a ∈ A of feature A. Entropy of the feature A
is then defined as

HA = −
∑
a∈A

pa log2 pa . (1.7)

Often, entropy is analyzed in the context of two discrete features (usually a feature
describing the objects and the column of class labels, being also a discrete random
variable; sometimes a partition of the data sample composes the “feature” tested
against the class labels). For variables A with values within a set A and class column
C with values within a set C , let pac denote the proportion of objects of class c ∈ C
with value a ∈ A of feature A, and pa· and p·c—the proportions of objects with
value a ∈ A of feature A and objects of class c ∈ C respectively. Then the following
formulae define entropies of partitions determined by A and C :

HA = −
∑
a∈A

pa· log2 pa·, HC = −
∑
c∈C

p·c log2 p·c. (1.8)

Joint entropy of A and C , and conditional entropy of C given A are defined as:

HA,C = −
∑
a∈A

∑
c∈C

pac log2 pac, HC|A = HA,C − HA. (1.9)

Decision Trees

Because the book is devoted mainly to DT models, some terms related to DTs are
often used. A decision tree node is usually denoted as a triple N = (D, c, Subnodes),
where D is a data sample accompanying the node (or just node dataset or node data),
c ∈ C is a class label assigned to N and Subnodes is a collection of nodes called
subnodes or child nodes.

With such definition of a decision tree node, a decision tree does not need a
separate definition, as each node determines a tree (a tree is defined by its root). A
tree determined by a tree node N is called a tree rooted at N and denoted also as TN

(just to emphasize the context, that is, to signal that the focus is on the structure not
on a single node; formally N and TN are the same).
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In discussions concerning DT construction, often, a node data sample is split
and subsamples created. The analyses use different counts like: nN —the number of
objects in the node N dataset (the same as |D|, if D is the node N data sample),
nN ,c—the number of objects in node N belonging to class c (the same as |D ∩ c|).

The splits are considered in the context of DT nodes or their datasets, so that
splitting a node and splitting a node data are two names for the same operation.
Splits may be performed by n-way split functions s(n) : O → On , such that each
dataset D ∈ O is mapped into a k-tuple of disjoint and complementary subsets of D.

In the context of a split function s, some counts n and datasets D, marked with
adequate indices are used. For example:

• ns denotes the number of nodes resulting from the split s (the n such that s is a
n-way split function),
• Dsi denotes the i’th part of the split of D,
• Dc is the set of objects in D of class c,
• Dsi ,c is the set of objects of class c in the i’th part of the split of D, and so on.

Given a tree T , the notation T̃ means the set of all leaves (that is, terminal nodes)
of T (thus |T̃ | is the number of leaves in T ). Each non-terminal node (non-leaf ) can
also be called a split node.

When a node dataset contains objects from one class only, the node is named
pure or clean. Generalization abilities of trees are obtained with techniques named
pruning, which regularize the model by converting some non-leaves of the tree to
leaves, to eliminate too detailed splits. Pruning can be performed during the process
of DT construction (then called pre-pruning) or after building full, maximally correct
tree (hence called post-pruning).

A tree obtained by pruning a tree T is called its subtree, which is denoted with
≺ relation, for example, Tα ≺ T . Sometimes, a tree rooted at one of the nodes of T
can also be called its subtree, but usually it is referred to as “a subtree rooted at given
node”, so that there is no confusion between the two kinds of subtree relation.

Sometimes in the context of DTs, but also in other contexts, a symbol⊥ is used. It
is a general “null” or “void” symbol, which can mean different things like empty split
(no further split of a tree node), empty subnode collection, none attribute selected
for split and so on.



Chapter 2
Techniques of Decision Tree Induction

Finding optimal DT for given data is not easy (with exceptions of some trivial cases).
The hierarchical structure of DT models could suggest that the optimization process
is also nicely reduced with subsequent splits, but it is not so. It is important to realize
that optimization of a criterion for tree node is not the same as optimization of the
whole tree or even subtree. The difference has been proved formally by de Sá (2001)
for decision trees of some specific, simple form—where each class is represented
by one leaf. On this assumption, each tree node can be assigned a subset of class
labels in such a way that the root node is assigned the full set of class labels, and
subsequent splits divide the set of labels assigned to the node being split into disjoint
parts. Further assumption of independence of the features used along each path of
the tree leads to the conclusion that probability of correct classification to class ck is
given by

PC (ck) =
nk−1∏
ik=1

PC (ck |Nik ), (2.1)

where (N1, . . . , Nnk ) is the tree branch ended with the leaf assigned ck label and
PC (ck |Ni ) is the probability of correct decision at node Ni . Then, the probability of
correct classification by the whole tree is

PC (T ) =
∑

ck∈C
P(ck)

nk−1∏
ik=1

PC (ck |Nik ). (2.2)

On the other hand, the probability of correct classification at node N is a linear com-
bination of probabilities of correct classification of objects belonging to subsequent
classes:

PC (N ) =
∑

ck∈C(N ) P(k)PC (ck |N )∑
ck∈C(N ) P(k)

, (2.3)

K. Grąbczewski, Meta-Learning in Decision Tree Induction, 11
Studies in Computational Intelligence 498, DOI: 10.1007/978-3-319-00960-5_2,
© Springer International Publishing Switzerland 2014
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where C(N ) is the set of class labels assigned to node N . As a result, optimization
of this probability can not be equivalent to optimization of PC (T ), because the latter
depends nonlinearly on subsequent PC (ck |N ).

With more general definition of DTs (for example, the one presented in Sect. 1.2),
the dependencies of tree accuracy on node accuracies is yet less straightforward, so
optimization at each tree node can also be quite different from the optimization of
the whole tree. It means that to find a global optimum, one would have to examine
all possible trees, but even in simple (but not trivial) cases, it is not possible, because
the number of possible trees is usually infinite (or at least very large, as it grows
exponentially with target tree depth). Therefore, in practical DT induction, the trees
are constructed with heuristic search methods. Since classification accuracy at tree
nodes does not directly affect the accuracy of the whole tree, instead of the accuracy
criterion, other measures of split quality are used as heuristics and turn out to be
more valuable.

Practical approaches put some constraints on the domain (assume some form of
node split functions) and perform a search based optimization in such limited space of
models. Scientists working in the area have come up with large number of different
ideas of how to restrict the search and how to optimize model selection. It is not
possible to list them all even in a book, but it is possible to present the most interesting
contributions to the field, proposed in recent decades. It would not make much sense
to present many similar solutions, so this chapter reviews the most popular kinds of
decision tree algorithms and some assessed as very interesting or possibly valuable.
Of course, the selection is subjective, but it definitely can give a good grasp of the
field, even to a novice to machine learning, and good orientation in the area to people
who do not have everyday experience in this branch of computational intelligence.

2.1 Recursive Top-Down Splits

The most common approaches to decision tree induction are based on recursive
top-down splits of the training dataset. Given a method to split DT nodes, or more
precisely, to split the training data corresponding to the node, it is executed at each
tree node to find the best splits. Denoting such split method by BestSplit(), the
recursive DT construction algorithm can be formally written as Algorithm 2.1. Most
often, splits are found with an exhaustive search through the collection of all possible
splits of the node at hand. In such approaches, the BestSplit function analyzes each
candidate split with a split quality measure (SQM) provided as one of the most
significant configuration parameters of the method. Many split quality measures are
based on common idea of impurity reduction (or purity gain). Provided a measure of
data sample purity (homogeneity), split quality may be estimated as the increase of
the homogeneity between the tree nodes after the split and before the split. Impurity
measures (or criteria or indices) should satisfy some conditions to be compatible
with the idea: a node containing data objects representing one class only should get

http://dx.doi.org/10.1007/978-3-319-00960-5_1
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minimum possible value of the index (usually zero). Maximum values should be given
to maximally mixed samples (all classes represented by the same number of objects).

Algorithm 2.1 (Common DT induction approach)

Prototype: CommonDTRec(D,BestSplit)
Input: Training dataset D, node splitting procedure BestSplit.
Output: Decision tree (= the root node of the tree).
The algorithm:

1. s ← BestSplit(D)

2. if s �= ⊥ then /* a split has been returned */

a. {D1, . . . , Dn} ← s(D) (split node N)
b. for i = 1, . . . , n do

Ni ← CommonDTRec(Di , BestSplit)
c. Children← (N1, . . . , Nn)

else
Children←⊥

3. return (D, s, Children)

Denoting the purity criterion as I , we get the following formula of purity gain
(impurity reduction):

ΔI (s, D) = I (D)−
k∑

i=1

|Di |
|D| I (Di ) (2.4)

where s is the split, D is the dataset to be split and s(D) = (D1, . . . , Dk). Given the
index I , the best splits of dataset D are those maximizing ΔI (s, D).

Exhaustive search for best split guarantees local maximum, however can be costly.
To avoid the cost, the exhaustive search is sometimes replaced by statistical tests
and/or discrimination methods. Statistical tests can determine the features which
seem to maximize the probability of providing attractive data splits. Discrimination
methods can calculate split points without the necessity of checking all possible
splits. Separating feature selection from split determination may significantly reduce
computational complexity of a single split procedure, but it is important to realize
that it does not necessarily imply faster tree construction (the resulting trees may be
larger, so more splits may compose the final trees).

On the other hand, yet more complex search methods can be run, to examine split
advantages more thoroughly. For example, one can estimate split quality on the basis
of analysis of potential further splits. More details on DT search procedures can be
found in Sect. 3.1.1.

Split criteria and search methods are not all the differences between DT induction
algorithms. Some methods use only binary splits, while others accept splits into
more than two subnodes. In some trees, only univariate splits are allowed and others

http://dx.doi.org/10.1007/978-3-319-00960-5_3
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perform multivariate analyses. Many more detailed differences could be enumerated.
The following sections present many DT induction algorithms in many interesting
aspects. Some alternative collections of decision tree induction techniques can be
found for example in Murthy (1998), Rokach and Maimon (2008, 2010), Kotsiantis
(2011). More organized analysis and a unified model of DT induction methods is the
subject of Chap. 3.

2.2 Univariate Decision Trees

Numerous DT construction algorithms result in models where splits are performed
on the basis of simple conditions concerning single features. Decision borders of such
models are perpendicular to axes of the space of data object descriptions. From one
point of view, it is a serious limitation of the approaches, but from another, decisions
can be described with readable formulae making the models 1comprehensible and
thanks to that easier acceptable by experts in many fields, for example in medicine,
where a responsible clinician can accept support from an artificial decision system
only if it provides comprehensible descriptions of its suggestions.

2.2.1 ID3

Iterative Dichotomiser 3 (ID3) (Quinlan 1986; Mitchell 1997) is one of the earliest
ideas of DT induction. Its split criterion was founded on information theory. The most
serious drawback of ID3 is the requirement that the data description may include only
discrete features. When the original data table contains numeric features, they must
be first discretized. Success of data mining processes consisting of data discretiza-
tion and final model creation usually depends on the former part more than on the
latter. Therefore, estimation of the efficiency and accuracy of ID3 in application to
continuous data does not make much sense, because with one discretization method
the results may be very good and with another one—completely wrong.

The method is a typical example of top-down recursive induction presented in
Algorithm 2.1. Split qualities are estimated with the purity gain criterion (2.4) using
entropy as node impurity measure:

IE (D) = HC (D) = −
∑
c∈C

P(c|D) log2 P(c|D). (2.5)

Such combination of formulae (entropy reduction) is called information gain (IG)
criterion:

I G(s, D) = ΔIE (s, D). (2.6)

http://dx.doi.org/10.1007/978-3-319-00960-5_3
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In practice, the probabilities of classes within the node N are usually estimated
by ratios nc

n of the numbers of objects in node N data representing class c and
the numbers of all objects falling into N . When implementing the information gain
criterion for the sake of DT induction, one usually simplifies the formulae. Converting
expressions according to the equality

−
∑
c∈C

nc

n
log

nc

n
= log n − 1

n

∑
c∈C

nc log nc,

the information gain resulting from the split of N into parts N p can be written as

I G = log n + 1

n

(
−

∑
c

nc log nc −
∑

p

n p log n p +
∑

p

∑
c

n p
c log n p

c

)
. (2.7)

Because in DT induction we are interested in comparison between splits, not in
precise calculation of IG, the constant parts of the formula given above can be ignored,
and only the second and third components in the big parentheses need to be calculated.

In each step of ID3 algorithm, a node is split into as many subnodes as the number
of possible values of the feature used for the split. The exhaustive search for best
split, in this case, just estimates the quality of each feature, because only one split is
possible per feature. The feature offering maximal entropy reduction is selected, the
node split, and the feature used for the split is removed from the data passed down
to the subnodes, because it is no longer useful in the tree branch (all objects have the
same value of this feature).

An important disadvantage of such split technique is that the features with many
possible values are preferred over those with small counts of symbols, even when the
former are not too valuable—in an extreme case, if each object has a unique value
of a feature, the feature will reduce the entropy to zero, so will be treated as very
precious, while in fact, its value is overestimated due to the split into many nodes
with single data objects.

Apart from the main ID3 algorithm, Quinlan (1986) has presented some other
interesting contributions. One of them is the method for fastening DT induction, when
training dataset is very large. Quinlan proposed an iterative framework discussed
also by O’Keefe (1983). It is based on using a window—a subset of the training
dataset instead of all training objects. In such approach, ID3 may need a number of
tree induction iterations to provide final classification tree. The process starts with
building a tree to classify objects in the window with maximum accuracy. Then, the
tree classifies the objects outside the window. If all the objects are classified correctly,
the tree is the final result. Otherwise, a selection of incorrectly classified objects is
added to the window and next tree is generated. If the window is allowed to grow
to the size capable of containing all training data objects, the process is guaranteed
to end up with a maximally accurate tree (with respect to the training data). If not,
some problems with convergence may also occur.
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Quinlan (1986) has also proposed some solutions to avoid overfitting noisy data.
Stop criterion defined as zero information gain is too little to guarantee general-
ization of tree models. Nonzero information gain can very often be observed even
in completely random distributions. A threshold for information gain is not recom-
mended either, because finding proper threshold value can be difficult. Therefore
Quinlan (1986) proposed a method based on Pearson’s χ2-test for stochastic inde-
pendence, described in appendix Sect. A.2.2 For example, when an attribute has v

possible values a1, . . . , av and classification problem defines k classes c1, . . . , ck ,
then the independence between the attribute and the classes can be estimated with
the Pearson’s χ2 statistic calculated for the contingency table reflecting the joint
distribution of the two variables. The statistic may be confronted with the χ2 distrib-
ution with (v− 1)(k − 1) degrees of freedom and a given confidence level, to verify
whether the attribute is irrelevant. When the hypothesis about the independence can
not be rejected, the attribute should not define the next split in the tree—a leaf should
be generated regardless of its impurity.

Quinlan (1986) mentioned several possible ways of dealing with missing values
(mostly proposed earlier by other authors) like imputing the most probable value,
using fractional objects, predicting the value with a decision tree trained for this
purpose, and others.

2.2.2 CART

Classification and Regression Trees (CART) is one of the most popular and very suc-
cessful methods of DT induction (Breiman et al. 1984; Michie et al. 1994; Cherkassky
and Mulier 1998). The algorithm is nonparametric and creates binary trees from data
described by both continuous and discrete features. For continuous features, all pos-
sible binary splits into intervals (−∞, a] and (a,∞) are considered. For discrete
attributes, the analysis concerns all possible splits of the set of symbols into two
disjoint and complementary subsets.

Exhaustive search for the best splits estimates split qualities with the impurity
reduction criterion (2.4) with impurity defined as so called Gini (diversity) index:

IG(D) = 1−
∑
c∈C

P(c|D)2. (2.8)

In place of Gini index, it is also possible to use entropy (2.5) or any other measure
of impurity.

Breiman et al. (1984) also proposed a technique named twoing, which was cre-
ated to handle multi-class problems by two-class criteria. Twoing means grouping
the classes into two superclasses and performing two-class analysis for the groups,
instead of the original classes. Naturally, when the number of classes is large, the
number of possible groupings can cause combinatorial explosion, if one tries to
check all possibilities. Instead of analyzing all splits for all possible class groupings,
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Breiman et al. (1984) proposed an efficient procedure to determine optimal super-
classes for each possible split. The procedure is valid for two-class impurity criterion
(compatible with Gini index) defined as

I (D) = P(c1|D)P(c2|D). (2.9)

Breiman et al. (1984) proved that for given binary split s, which for a dataset D
generates subsets DL and DR , maximum decrease of impurity is obtained when one
superclass contains all the classes c for which P(c|DL) ≥ P(c|DR), and the second
superclass—the remaining classes. This result lets keep attractive computational
complexity of the twoing procedure.

In CART, each tree node is assigned the class label dominating within the node.
There is also a possibility to respect misclassification costs in the decisions.

Missing data values are handled with a technique of surrogate splits. When a data
object is not described with a value necessary for the test of a tree node, it is passed
to another test, exploiting another feature to generate a split, as similar to the one of
the original test as possible. Several surrogate splits can be found and used for data
with missing values in appropriate order.

As indicated in the name of CART, the method is designed to be applicable to
both classification and regression problems. Approximation trees are very similar to
the classification ones, but instead of class labels, the nodes are assigned some real
values. Such tree definition allows the trees to represent piecewise constant functions,
so to approximate less trivial functions with low mean squared error, the trees need
to be large.

Many improvements and extensions to CART solutions have been proposed later.
For example Strobl et al. (2005) proposed using p-values to obtain unbiased feature
selection (see Sect. 2.7) and Piccarreta (2008) extended Gini criterion to ordinal
response variables.

Cost-Complexity Optimization

Breiman et al. (1984) have also proposed an interesting method for pruning CART
after learning, as stop criteria are neither as flexible nor accurate as post-pruning
methods. Although CART offers a stop criterion in the form of minimum node size
specification (minimum number of training data falling into the node), the main tool
for adjusting tree size to given problem is the cost-complexity optimization. As sug-
gested by the name, instead of just training error minimization, which usually leads
to overfitting the training data, the optimization concerns a risk measure involving
both misclassification cost and size (complexity) of the model, defined as the num-
ber of leaves of the tree (see Eq. (2.79) and Sect. 2.4.3.2 for detailed explanation).
A parameter α controls the trade-off between training data reclassification accuracy
and size of the tree. To determine the optimal value of α, validation procedures are
proposed to estimate the performance of the candidate values and select the best
one. The validation can be performed on the basis of a separate validation dataset
or by cross-validation. In the case of CV, in each pass, a DT is built and analyzed
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to determine all the threshold αs, that is, all the values of the parameter for which a
node obtains the same combined cost as the subtree and reduced to a leaf, so that for
α less than the threshold it is advantageous to leave the subtree as it is, and for values
greater than the threshold—to replace the subtree by a leaf. Finally, a tree is built for
the whole dataset, and its threshold αs are determined. On the basis of the CV, for
each threshold, its average risk value is calculated and the one providing minimum
risk is chosen as the optimum. The final tree is pruned in the way that minimizes the
risk for the selected threshold α. For more formal presentation of the algorithm see
Sect. 2.4.3.2.

Pruning Control with Standard Error Margin

CART implementation of the validation procedure introduced a parameter to enforce
simpler trees than resulting from normal cost-complexity analysis. As a result the
cost-complexity optimization usually comes in two versions: 1SE and 0SE. The
acronym SE stands for “standard error”. 0SE denotes just the fundamental version of
the method (without standard error based correction) while 1SE signifies the modified
version, where standard error is estimated and model selection prefers simpler trees
with the reservation that the cost can not increase by more than the value of the
standard error. More information on the SE parameter and methods of its calculation
can be found in Sect. 3.2.4.1.

2.2.3 C4.5

Another very popular DT induction system (next to CART) is C4.5 by Quinlan
(1993). It has found numerous applications. The system arose from ID3 and shares
many solutions with its ancestor. Main differences introduced in C4.5 are:

• modified node impurity measure,
• support for direct handling continuous attributes (no necessity to discretize them),
• introduction of a pruning method,
• precise methods for handling data with missing values.

Impurity Measure

Modified measure of node impurity aimed at eliminating bias in split feature selec-
tion, that is, favoring features with many possible values by the information gain
criterion used in ID3. To replace the IG, Quinlan (1993) proposed information gain
ratio (IGR) defined as

ΔI (s, D) = ΔIE (s, D)

SI (s, D)
, (2.10)

where split information SI (s, D) is the entropy of the split s(D) = (D1, . . . , Dn):

http://dx.doi.org/10.1007/978-3-319-00960-5_3
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SI (s, D) = −
∑

i

pi log2 pi ,

(
pi = |Di |

|D|
)

. (2.11)

Handling Continuous Attributes

The support for continuous attributes in the data is organized similarly to CART.
All sensible binary splits, deduced from the training data, are examined and the one
with the best score (here the largest information gain ratio) chosen. Unlike symbolic
features, continuous attributes may occur at different levels of the same tree many
times (symbolic ones, when used in the tree, are no longer useful and because of that
are not considered in further splits in the branch).

DT Pruning

In ID3 a statistical test of independence served as a stop criterion to prevent oversized
trees, overfitting the training data. C4.5 offers another technique of generalization
control. It builds (almost) maximally accurate trees and then prunes them to get rid
of too detailed nodes that have not learned any general classification rule but just
adjusted to specific data objects present in the training sample. The word “almost”
added in parenthesis reflects what can be found in the source code of C4.5 about
the process of tree construction: C4.5 has a parameter MINOBJS, which controls a
pre-pruning method. If a node to be split contains too small number of objects or
the split would generate too small nodes, further splits are rejected. After the tree is
constructed, each node is tested with a statistical tool to estimate the probability that
the node split causes error reduction (assuming binomial distribution of erroneous
decisions). Each node, for which the probability is below a given threshold, is pruned
or the subtree rooted in the node is replaced by its best subtree (the technique was
named grafting). More details about C4.5 pre-pruning and post-pruning (Error-Based
Pruning) methods can be found in Sect. 2.4.2.2.

Handling Missing Values

Objects with missing values can also be used in both the process of C4.5 DT construc-
tion and in further classification with a ready tree. At the stage of tree construction, in
calculation of IGR, the objects with missing values of the feature being analyzed are
ignored—the index is computed for a reduced set of objects and the result is scaled
by the factor of probability of value accessibility (estimated by the fraction of the
number of objects with non-missing value of the feature and the number of all train-
ing objects at the node). When the training data sample is split for subnodes creation,
weights are introduced to reflect that it is not certain which path should be followed
by the training data objects with missing decision feature values. The weights may
be interpreted as the probabilities of meeting or not the condition assigned to the
node. They are calculated as the proportions reflecting the distribution of other data
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(with non-missing value) among the subnodes. When the weights are introduced,
they must be considered also in further calculations of the IGR—wherever cardinal-
ities are used (see Eqs. (2.4), (2.10) and (2.11)), sums of the weights are calculated
instead of just the numbers of elements (naturally, the default initial weight value
for each object is 1). Similarly, at classification stage, if a decision feature value is
missing for a data object, all subnodes are tested and decisions obtained from each
path are combined by adequate weighting to obtain final probabilities of the classes
for the object.

Other Interesting Solutions

Apart from the decision tree algorithm, C4.5 system offers a methodology for build-
ing classifiers based on sets of logical rules. The algorithm called “C4.5 rules” starts
with building a decision tree and converting it into compatible classification rules,
but then the rules are subject to a simplification (pruning) process, which can sig-
nificantly change the decision function of the model. Rules pruning is performed
by removing premises if without them reclassification does not get deteriorated.
Each rule is simplified separately, so the resulting rule set based classifier may be
significantly different than the original tree (in practice, usually less accurate).

A modified version of C4.5, named C5.0 or See5, is a commercial product and its
popularity is very low in comparison to the ubiquitous C4.5. Because of that, also
its results are not so commonly known as those of C4.5.

2.2.4 Cal5

Müller and Wysotzki (1994, 1997) have created a decision tree induction algorithm
Cal5 for classification of objects described in spaces of continuous features. Fun-
damental element of the method is its procedure dividing continuous features into
intervals with application of statistical tools to estimate tree node purity.

As most other DT induction algorithms, Cal5 recursively splits nodes into subn-
odes, starting with the root node containing the whole training data sample. Analysis
of each node consists of three main steps:

• selection of the best attribute for the split,
• discretization of the attribute (dividing it into intervals),
• merging adjacent intervals resulting from the discretization.

Algorithm 2.2 sketches the topmost procedure of the method. The parameters
mentioned in the input specification section control some details of the three main
steps of each node analysis:

• the selection of a measure to estimate attribute eligibility for the split (Q or IG),
• threshold s, defining minimum probability of correct classification by given node,

that makes it a leaf,
• confidence level α for statistical tests performed within the discretization process.
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Algorithm 2.2 (DT induction by Cal5)

Prototype: Cal5(D)
Input: Training dataset D, some configuration parameters.
Output: Decision tree.
The algorithm:

1. A← BestAttribute(D)

2. I ntervals ← Discreti ze(A, D)

3. I ntervals ← MergeI f Reasonable(I ntervals)
4. If |I ntervals| > 1

a. For i = 1, . . . , |I ntervals|
Ni ← Cal5(I ntervalsi )

b. Children← (N1, . . . , N|I ntervals|)
else

Children = ⊥
5. return (D, sI ntervals , Children)

Precise meaning and application of the parameters is explained below, in the descrip-
tions of each of the three steps. To make Algorithm 2.2 more readable, they are not
disclosed there.

Nodes of Cal5 trees may have different numbers of subnodes. The counts are auto-
matically determined in the process of attribute discretization and interval merging.

Best Attribute Selection

Decisions, which attribute to select for node split generation, are made in Cal5 on
the basis of a statistical approach or with entropy measure.

In the statistical method, each feature eligibility is estimated with the following
quotient:

Q = A2

A2 + D2 , (2.12)

Q criterion where D2 is the mean value of squared variance of the classes with respect
to their centroid vector, and A2 is the mean value of squared distances between the
centroids of the classes. An attribute with minimum Q value is selected as the best
one.

The method based on entropy measure requires each attribute discretized, so in
that case, the order between the steps of feature selection and discretization gets
inversed. The discretization procedure, described below, is run for each feature and
an index of weighted sum of entropies of the subsets is calculated. In fact, the index
is just the information gain defined by Eqs. (2.4) and (2.5) and used in ID3. Naturally,
the best attribute is the one with the largest information gain.
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Discretization

The process of continuous attribute discretization starts with sorting the training data
sample (assigned to the node) in the order of nondecreasing values of the attribute.
Next, the intervals starting at −∞ and ending between subsequent two adjacent
values of the feature are analyzed. The analysis of an interval x is based on testing
two hypotheses:

H1 – there exists a class c ∈ C , such that p(c|x) ≥ s,
H2 – for all classes c ∈ C , p(c|x) < s.

The tests are done by calculation of the confidence interval [d1, d2] for a specified
level α, with the following formula derived from the Chebyshev’s inequality with
the assumption of Bernoulli distribution of each class:

d1/2 = 2αnc + 1

2αn + 2
∓ 1

2αn + 2

√
4αnc

(
1− nc

n

)
+ 1, (2.13)

and check whether the whole interval lies on the adequate side of the threshold s.
There are three possibilities:

1. Hypothesis H1 is true. Then, the interval is regarded as closed and it corresponds
to a leaf assigned with the label of the class c which made H1 condition true.
The analysis starts again for intervals beginning at the end of the interval just
closed.

2. Hypothesis H2 is true. Then, the interval is also regarded as closed, but it corre-
sponds to a node requiring further splits, because no class sufficiently dominates
in the node.

3. Neither H1 nor H2 is true. Then, the interval is exceeded to include the next
object from the ordered sample. If no more data objects are available, a leaf
labeled with the dominating class is created.

Interval Merging

After discretization, adjacent intervals are merged if they both are leaves with the
same class label. Adjacent intervals are also merged if no class dominates in them
and they contain the same set of classes represented at least as frequently as in the
case of the uniform distribution. The set of classes is determined by elimination of
the classes for which d2 < 1

nI
, where nI is the number of class labels occurring in

the interval I .

Symbolic Features

Although Cal5 was designed to deal with data descriptions containing continuous
features only, it is not very difficult to extend it to accept also symbolic attributes.
When attribute selection is made with IG criterion, it can be applied naturally to
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symbolic features (discretization is just not necessary). Instead of division to inter-
vals, groups of data objects sharing a value of discrete features can just be examined
with hypothesis H1 and H2, to decide whether a node should become a leaf or needs
further splits. It is also possible to apply the procedure of merging (designed for inter-
vals) to the groups of data objects sharing a symbolic feature value. When rephrasing
the algorithm, one needs to be careful about computational complexity of the result-
ing method, because in symbolic attributes there is no adjacency as in the case of
intervals, and analyzing each pair of values may be costly. Sensible restrictions for
the pairs of values considered for merging can be easily introduced in such a way,
that computational complexity remains attractive. For example, relations between
fractions of groups belonging to particular classes may be used as a substitute for
intervals adjacency.

2.2.5 FACT, QUEST and CRUISE

A family of interesting DT algorithms has been created in the group of prof. Wei-Yin
Loh. The family includes such algorithms as FACT (Fast Algorithm for Classification
Trees, Loh and Vanichsetakul 1988), QUEST (Quick, Unbiased, Efficient, Statistical
Tree, Loh and Shih 1997) and CRUISE (Classification Rule with Unbiased Interac-
tion Selection and Estimation, Kim and Loh 2001, 2003). The methods are called
“statistical trees” because they strongly base on statistical tools in tree construction
and refinement. They have both univariate and multivariate forms, but the univariate
algorithms are more often used so their descriptions are included here.

Algorithm 2.3 (DT induction by separate feature selection and split)

Prototype: FeatSelThenSplit(D)
Input: Training dataset D, some configuration parameters.
Output: Node split.
The algorithm:

1. A← BestAttribute(D)

2. If A = ⊥ return ⊥
3. s ← BestAttributeSplit(A, D)

4. If s = ⊥ return ⊥
5. return s

The algorithms can be seen as classical top-down DT induction algorithms, that is,
Algorithm 2.1 with a specific approach to best split selection (BestSplit procedure
of the algorithm) divided into two parts: first the feature for split is selected and
then particular split is searched for the selected feature, as in Algorithm 2.3. Thanks
to independent feature selection and split, there is no need to perform exhaustive
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search for possible splits of a given node—only the splits of selected feature need
to be analyzed. This may fasten the algorithm, if only the feature selection part is
accurate. Otherwise the tree may become much larger and it may shatter the gains
of the restrictions in split search space.

The authors paid much attention and undertook much effort to make their methods
of feature selection unbiased. More detailed discussion of this subject is presented
in Sect. 2.7, so here it is not further explored.

2.2.5.1 FACT

FACT (Fast Algorithm for Classification Trees, Loh and Vanichsetakul 1988) is
designed to split datasets described by numeric features, but the authors provided a
solution to convert symbolic attributes to continuous ones before the fundamental
algorithm starts.

Conversion of Symbolic Features to Continuous Ones

To convert a discrete attribute X D into a continuous XC , FACT first creates a space
of n − 1 binary features, where n is the number of possible values of the symbolic
feature. Each dimension of the space is a binary indicator variable corresponding to
one feature value (informs which objects originally had this value and which had
not). Then, the largest discriminant coordinate (crimCoord, see appendix Sect. B.1,
Gnanadesikan 1977) is found in this n − 1-dimensional space. It becomes a new
continuous feature (XC ) replacing the original symbolic one (X D). After the split is
determined for the converted feature, it is easy to convert the conditions like XC > z
to more informative form of X D ∈ A.

Feature Selection

For univariate splits, FACT selects the feature by means of analysis of each attribute
(discrete ones are analyzed after the conversion to continuous variables, described
above) with the F statistic known from ANOVA (analysis of variance) methods,
which is the ratio of between to within class variance (for more details see appendix
section A.2.1 about F-test or (Tadeusiewicz et al. 1993; Brandt 1998)). The feature
with the largest F ratio is selected, if only its F statistic exceeds a threshold F0
(user-specified parameter of the method, with default value of 4). If F < F0 each
feature X is transformed to Z = |X − X | and F ratios for such transformed features
are calculated. If the largest F ratio FZ ≥ F0, than its feature Z is used for the split.
Otherwise, the original feature X maximizing F ratio is used to generate a binary
split with respect to X .

FACT also offers an option to search for polar coordinate splits, more effective if
there is an angular or radial symmetry in the data. It must be pointed out, however,
that the feature constructed in this way makes the splits multivariate. If such option
is selected anyway, the original data vectors are first converted into vectors of larger
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principal components (as presented below, in the description of the LDA-based split
procedure). The resulting new features (linear combinations of the original ones)
are subject to a similar analysis of F ratios, as in the case of original features,
described above. As a result, either a linear combination feature is used for the split
or a possibility of spherical symmetry detected. Since the symmetry may not be
present in every variable, the original features are selected on the basis of Levene’s
homogeneity test of variances (see Levene 1960, appendix Sect. A.2.3), before they
are transformed into polar coordinates.

Split Selection

FACT performs splits by means of linear discriminant analysis (LDA). The pro-
cedure is defined for multidimensional data descriptions. For univariate trees, the
calculations get very simple. To avoid nonsingular covariance matrices a principal
component analysis (PCA) is done at each node before the actual analysis. The com-
ponents with eigenvalues smaller than β times the largest eigenvalue are rejected (β
is a user-specified parameter). The remaining components take part in determination
of the linear discriminant functions:

dc(y) = μT
c �−1y− 1

2
μT

c �−1μc + ln p(c|N ), (2.14)

where y denotes a vector in the space of selected principal components μc is the
sample mean vector of class c, � is the pooled estimate of the covariance matrix at
node N and N is the node being split.

Nodes are split into as many subnodes as the number of classes represented within
the node being split. Objects are delegated to the subnodes corresponding to the class
minimizing the following formula respecting also a misclassification cost matrix
Cost :

cwin = arg min
c∈C

∑
k∈C

Cost (c|k)edk (y). (2.15)

The technique is called normal theory option.

Stop Criterion to Improve Generalization

To prevent overfitting the training sample, FACT is equipped with a stop criterion,
which is tested at each node. Further splits are not accepted if one of the following
two conditions is met:

1. The node contains no more than one class represented by at least MINDAT
objects (MINDAT is a user-specified parameter).

2. The split does not decrease predicted error rate. For a node N split into subnodes
N1, . . . , Nk , denoting by cX the class assigned to node X , the split is not accepted
if
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∑
c∈C

Cost (cN |c)p(c|N ) ≤
k∑

i=1

∑
c∈C

Cost (cNi |c)p(c|Ni ). (2.16)

FACT does not use any validation based pruning method similar to CART’s cost-
complexity minimization.

2.2.5.2 QUEST

Quick, Unbiased, Efficient, Statistical Tree (QUEST) algorithm (Loh and Shih 1997;
Lim et al. 2000) was created as a significant improvement of FACT. The general
idea and organization of the algorithm remained the same: the method realizes algo-
rithm 2.3 separating feature selection from determination of the split, converts sym-
bolic features to numeric ones in a similar way, and uses statistical tests to make
some decisions. The main changes concern how the particular goals are obtained:

• split feature is selected on the basis of another approach to estimate feature impor-
tance, aimed at unbiased selection,
• the split is made with quadratic discrimination instead of linear,
• the resulting tree is binary, classes are grouped before the split,
• generalization is obtained with cost-complexity minimization, as in the case of

CART.

Loh and Shih (1997) claim that the way they convert symbolic feature to continuous
ones is also different in QUEST than in FACT, however they mention that FACT’s
method first converts the feature symbols into binary “dummy” vectors, and then
converts them into real numbers with a method that can split the node into more than
two subnodes, which is not acceptable in QUEST. They evidently refer to another
version of FACT than the one of Loh and Vanichsetakul (1988), because as described
above, the latter uses crimCoord transformation (see appendix section B.1) to convert
symbols to numeric values, and the same is done in QUEST. Naturally, there is a
difference between the two methods in the way they split the features after the
conversion. As in FACT, after the split is determined for the continuous counterpart
of a symbolic feature, it can be easily rephrased in the language of original symbols,
so in the resulting tree, the continuous feature generated during the analysis is not at
all visible.

Feature Selection

Estimation of both continuous and symbolic features with F ratio (for symbolic ones
calculated for the derived continuous feature) is prone to more frequent selection of
symbolic features than continuous ones, also when they are all independent from the
target. The idea of QUEST to get rid of the bias (or at least to try to; see Sect. 2.7
for more discussion) is to compare p-values of independence tests most eligible for
each type of features, instead of comparing the F ratios. Continuous attributes are
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still analyzed with F statistic, but discrete features are subject to the χ2-test (no
conversion to numeric values is performed at the stage of feature selection). The
F and χ2 values are not directly comparable, but comparing their p-values makes
sense. The feature with the smallest p-value (the smallest probability of independence
with the target variable) is selected as the best one. If none of the p-values exceeds a
user-defined threshold parameter, Levene’s F-test for unequal variances is computed
for each ordered variable. The tests thresholds are Bonferroni corrected (see lines 5
and 5d of algorithm 2.4 and appendix section A.1.4). If the best result exceeds the
threshold, the corresponding feature is selected, otherwise the algorithm returns the
feature with the smallest p-value calculated in the first stage (with F-test or )χ2-
test.The method is written formally as Algorithm 2.4.

Algorithm 2.4 (QUEST split feature selection)

Prototype: QUESTFeatSel(D, α)
Input: Training dataset D described by discrete features X1, . . . , Xd and continuous features

Xd+1, . . . , X f , confidence threshold α.
Output: Feature index.
The algorithm:

1. If d > 0 (there are continuous features)

a. for i = 1, . . . , d
Fi ← the ANOVA F statistic for feature Xi

b. best1 ← arg maxi=1,...,d Fi
c. α1 ← p-value of the adequate F distribution for feature best1

2. If f > d (there are discrete features)

a. for i = d + 1, . . . , f
pi ← p-value of the χ2-test of independence between feature Xi and class labels

b. best2 ← arg mini=d+1,..., f pi
c. α2 ← pbest2

3. α12 ← min(α1, α2)

4. If α12 = α1 then best12 ← best1 else best12 ← best2
5. If α12 ≥ α

f (no feature is good enough)

a. for each i = 1, . . . , d
F ′i ← the ANOVA F statistic for feature Zi = |Xi − Xi |

b. best3 ← arg maxi=1,...,d F ′i
c. α3 ← p-value of the adequate F distribution for feature best3
d. If α3 < α

f+d then return best3
6. return best12

Split Selection

QUEST finds the best split points with quadratic discriminant analysis (QDA).
Because QUEST is assumed to be a binary tree, the splits are done between two
classes. If the problem at hand concerns classification to more than two classes,
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they are first grouped into two superclasses, with the clusteringtwo-means clustering
method (Hartigan and Wong 1979) applied to the set of mean vectors calculated
for all the classes. The two-means algorithm is initialized with two most distant
class means as the cluster centers. If all the class means are identical, then the most
populous class composes superclass A and the rest—superclass B.

In the case of continuous features, a procedure of QDA is directly performed,
and in the case of symbolic ones the crimCoord based procedure is run to obtain a
continuous substitute for the feature, which is then analyzed with QDA.

The QDA estimates the two classes (A, B) distributions with normal densities
and determines the split point as the point of intersection of the two Gaussian curves,
being a root of the equation

P(A|N )
1√

2πsA
e
− (x−x A)2

2sA = P(B|N )
1√

2πsB
e
− (x−x B )2

2sB , (2.17)

where N is the node being split, x A, x B are the means of class A and B respec-
tively and sA, sB are standard deviations observed within the classes. The normal
densities parameters (means and standard deviations) are calculated from the sam-
ples. Equation (2.17) after simple transformations gets the form of a typical quadratic
equation:

ax2 + bx + c = 0, (2.18)

where

a = s2
A − s2

B, b = 2(x As2
B − x Bs2

A), (2.19)

c = (x BsA)2 − (x AsB)2 + 2s2
As2

B log
n AsB

nBsA
.

The split point is one of the two roots that is closer to x A, provided this yields two
nonempty subsets.

2.2.5.3 CRUISE

Classification Rule with Unbiased Interaction Selection and Estimation (CRUISE,
Kim and Loh 2001, 2003) is a descendant of FACT and QUEST. It is the next
significant step towards unbiased feature selection. As its predecessors, CRUISE
also fits the general strategy of Algorithm 2.3, but differs in many detailed solutions:

• generates multi-split trees,
• introduces new method for split feature selection, named 2D because of analysis

of pairs of features (more precisely some contingency tables), but still supports
the method of QUEST (here named 1D) based on comparing p-values of proper
independence tests for each type of features (ANOVA F-test for continuous ones
and χ2-test for categorical),
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• uses Box-Cox power transformation to adjust class distributions in order to
improve the accuracy of LDA.

Similarly to FACT and QUEST, categorical features are transformed with
CrimCoord at the start of the analysis and Bonferroni corrections (see appendix
section A.1.4) are used when performing multiple statistical tests. Missing values in
the data can be ignored or imputed. As the main advantages of CRUISE its authors
mention its sensitivity to local interactions between variables (thanks to )2D analysis,
which results in more intelligent splits and shorter trees, and its speed obtained in
parallel with not statistically significant difference in mean misclassification rates,
in comparison to the best methods.

CRUISE can be configured to generate linear combination splits as well as uni-
variate splits.

Feature Selection

Two different methods of feature selection are available in CRUISE. They are named
“1D” and “2D” respectively. 1D is exactly the same method as the one used in QUEST.
The novelty is the second method based on two-dimensional contingency-tables
analysis. This method performs statistical tests for five different types of sources
(two marginal tests and three interaction tests). For each case, the space is split into
a number of regions and a contingency table with classes as rows and the regions
as columns is created. The possible sources and the ways of the contingency tables
construction are the following:

• for single numeric variable X , four regions correspond to the sample quartiles
of X ,
• for single categorical variable, the regions correspond to the values of the variable,
• for a pair of numeric variables, the regions correspond to four quadrants resulting

from splits at the sample medians,
• for a pair of categorical variables, the regions correspond to pairs of possible values

of the variables,
• for a pair of one numeric and one categorical variable, the regions correspond to

combinations of two parts of the numeric attribute (split at the median) and all
possible categories of the categorical feature.

The procedure of building the contingency table for each context is noted in Algo-
rithm 2.6 as ContTable() and its arguments clearly show which of the five versions is
called. Testing contingency tables for pairs of variables is aimed at detecting interac-
tions between features, but the possibilities are significantly limited, because splitting
numeric features arbitrarily at medians, can correspond to proper decision borders
only accidentally.

Each contingency table is analyzed with Algorithm 2.5 to get a corresponding
z-value. Maximum of the 5 z-values (with a bootstrap bias correction factor) points
the selected feature according to the rules presented in the algorithm 2.6.

The BootstrapCorrection() function used in the algorithm, finds a factor f ∈ R,
that brings proper balance between discrete and continuous features (eliminates the
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Algorithm 2.5 (z-statistic of a contingency table)

Prototype: ZStatistic(T)
Input: Contingency table T with n rows and m colums.
Output: z-statistic.
The algorithm:

1. χ2 ← the Pearson χ2 statistic with ν = (n − 1)(m − 1) degrees of freedom for T
2. W ← χ2 − ν + 1
3. if z > 1 then (Peizer-Pratt transformation)

z← 1
|W | (W − 1

3 )
√

(ν − 1) log ν−1
χ2 +W

else
z← √

χ2

4. return z

Algorithm 2.6 (CRUISE 2D feature selection)

Prototype: CRUISE2DFeatSel(D, α)
Input: Training dataset D described by discrete features X1, . . . , Xd and continuous features

Xd+1, . . . , X f and targets Y.
Output: z-statistic.
The algorithm:

1. if d = 0 then zd ←−∞
else zd ← maxi=1,...,d ZStatistic(ContTable(Y;Xi ))

2. if f = d then zc ←−∞
else zc ← maxi=d+1,..., f ZStatistic(ContTable(Y;Xi ))

3. if d = 0 then zdd ←−∞
else zdd ← maxi, j=1,...,d ZStatistic(ContTable(Y;Xi , X j ))

4. if f = d then zcc ←−∞
else zcc ← maxi, j=d+1,..., f ZStatistic(ContTable(Y;Xi , X j ))

5. if d = 0 and f = d then zdc ←−∞
else zdc ← maxi=1,...,d; j=d+1,..., f ZStatistic(ContTable(Y;Xi , X j ))

6. f ← BootstrapCorrection(D)

7. z← max{zd , f zc, zdd , f zcc, zdc}
8. if z = zd or z = f zc then return the feature maximizing z
9. if z = zdd or z = f zcc then return the feature in the interacting pair with larger marginal

z
10. return the categorical feature in the interacting pair

bias). Bootstrap data samples are generated (the data input is copied and the targets are
bootstrapped to make them independent from the input) repeatedly and the 5 z-values
are calculated for each bootstrap sample as in Algorithm 2.6. A win is scored for
continuous features if f max{zc, zcc} ≥ max{zd , zdd , zdc} and for discrete features
otherwise. Several values of f are tested and for each, the proportion between the
wins of continuous and discrete features is calculated. Eventually, if necessary, linear
interpolation is used to find the final result: such value of f that its proportion of wins
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is equal to the proportion of the counts of continuous and discrete features describing
the data.

Split Selection

When a continuous feature is selected for a split, Box-Cox power transformation (see
appendix section B.4) is run to make the feature more adequate for linear discriminant
analysis (LDA) which decides about the split in the same way as it does in FACT.

If the feature selection stage is won by a categorical variable X ∈ X n , where
X = {a1, . . . , ar }, then it is converted into r binary indicator variables, so that each
value ai is converted into a unit vector eX (ai ) = ei with 1 at position i and 0 at all
the others. Such vectors are then projected onto the largest discriminant coordinate
(CrimCoord) and the new dimension is treated in the same way as numeric attributes:
it is passed to the Box-Cox transformation and split with LDA. The final result is
translated to the language of the original, discrete feature, to make it comprehensible.

This is the procedure performed by the 2D method. In 1D, there is a difference
that the Box-Cox transformation is not run if the feature was selected by Levene’s
test. Then, instead, LDA is applied to the absolute deviations from the sample mean
at the node.

Because LDA happens to generate splits with no data within, such intervals are
divided into halves and merged with their neighbors.

2.2.6 CTree

The pursuit of unbiased feature selection in DT construction has gained many dif-
ferent solutions. One of the most interesting results is the approach of Hothorn et al.
(2004, 2006a, 2008) and Zeileis et al. (2008) to a conditional inference framework,
capable of unbiased recursive partitioning. The authors found the work of Strasser
and Weber (1999) on permutation statistics very useful in DT induction.

The main idea behind the framework of CTree is the same as in the case of the
FACT family, and as depicted by algorithm 2.3, where feature selection and split
finding are separate processes. Here, for feature eligibility estimation, and possibly
for best split determination, non-parametric permutation tests are used (in place of
the F-test and χ2-test of the FACT line).

Feature Selection and Stop Criterion

The same permutation tests used for feature selection are helpful in deciding when to
stop further splits of a node. The null hypothesis of interest is that the unconditional
distribution of the target variable Y and its conditional distributions with respect to
each covariate Y|Xi are the same. If we are not able to reject such hypothesis at a
tree node, the node should be closed into a leaf with no further splits. Otherwise,
the input variable Xi∗ providing the least independence of the two distributions (the
least p-value) is selected as the best feature for the split.
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Given a data sample D of n objects described by m features X1 ∈X n
1 , . . . , Xm ∈

X n
m and the target variable Y = (Y1, . . . , Yn) ∈ Y n , and a case weight vector

w ∈ Rn , Hothorn et al. (2006b) proposed to measure the association between Y and
X j , j = 1, . . . , m, by linear statistics of the form:

T j (D, w) = vec

(
n∑

i=1

wi g j (X ji )h(Yi , Y)T

)
∈ R p j q , (2.20)

where:

• g j : X j → R p j is a transformation of feature X j (for example, to convert
symbolic features to more reasonable form like binary vectors),
• h : Y × Y n → Rq is the influence function dependent on the responses Y in a

permutation symmetric way,
• vec operator converts the p j×q matrix it gets as the argument to a p j q-dimensional

vector by column-wise concatenation.

This is a general definition that can be used in both classification and regression tasks
with miscellaneous definitions of the feature spaces X j and Y and proper substi-
tutions for functions g j and h. For example, for the sake of univariate classification
trees:

• the features are either continuous (real numbers) or symbolic,
• the target variable space is Y = C = {c1, . . . , ck},
• the function h can be defined as

h(y, Y) = eC (y), (2.21)

that is, a k-dimensional unit vector with 1 at the position i such that y = ci (the
dimensions are binary indicator variables),
• for j = 1, . . . , m, the function g j can be defined as:

g j (x) =
{

x ifX j = R

eX j (x) ifX j = {a1, . . . , ar }, (2.22)

where eX j (x) is an r -dimensional unit vector with 1 at index i such that x = ai .

Under the null hypothesis H j
0 , that the distributions of Y and Y|X j are identical,

the distribution of T j (D, w) can be analyzed by means of permutation tests. In place
of the dependency of T j (D, w) on usually unknown joint distribution of Y and X j ,
one can fix the covariates and condition on all possible permutations of the responses.
Following Strasser and Weber (1999), the conditional expectation μ j ∈ R p j q and
covariance matrix � j ∈ R p j q×p j q of T(D, w), given all permutations σ ∈ S(D, w)

are:
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μ j = E(T j (D, w)|S(D, w)) = vec

((
n∑

i=1

wi g j (X ji )

)
E(h|S(D, w))T

)
,

(2.23)

� j = V (T j (D, w)|S(D, w))

= w�

w� − 1
V (h|S(D, w))⊗

(
n∑

i=1

wi g j (X ji )⊗ wi g j (X ji )
T

)
(2.24)

− w�

w� − 1
V (h|S(D, w))⊗

(
n∑

i=1

wi g j (X ji )

)
⊗

(
n∑

i=1

wi g j (X ji )
T

)

where w� =∑n
i=1 wi and⊗ is the Kronecker product and the conditional expecta-

tion and covariance matrix of the influence function are:

E(h|S(D, w)) = 1

w�

n∑
i=1

wi h(Yi , Y) ∈ Rq , (2.25)

V (h|S(D, w)) = 1

w�

n∑
i=1

wi (h(Yi , Y)− E(h|S(D, w))) (2.26)

(h(Yi , Y)− E(h|S(D, w)))T .

On the basis of the pq-dimensional statistic T, the final test statistic c can be defined
in an arbitrary way. The most natural solution for univariate statistic, suggested by
Hothorn et al. (2006b) is:

cmax(t, μ,�) = max
i=1,...,pq

∣∣∣∣ (t − μ)i√
�i i

∣∣∣∣ . (2.27)

Another possibility is a more computationally expensive quadratic form:

cquad(t, μ,�) = (t − μ)�+(t − μ)T . (2.28)

In any case, one must be aware that the test statistics c may not be directly comparable.
In such circumstances, p-values should be calculated, because they allow for unbiased
feature selection. Naturally, the way of calculating p-values is closely bound up with
the definition of the c statistic. From theorems proved by Strasser and Weber (1999) it
can be derived that asymptotic conditional distribution of cmax is normal. Quadratic
cquad follows asymptotic χ2 distribution with degrees of freedom given by the rank
of �.

To get precise stop criterion, the overall null hypothesis being the conjunction of
all hypotheses H j

0 needs to be verified. One can construct and analyze an aggregate
statistic for this purpose, but in practice it is preferred to use simple techniques like
Bonferroni correction for multiple testing. A significance level α must be provided to
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control the pre-pruning. Hothorn et al. (2006b) suggest the default value of α = 0.05,
but the meta-parameter can also be optimized in a validation-based procedure similar
to cost-complexity optimization cost-complexity minimization of CART.

Split Selection

When the feature of split is selected, different ways of finding the best split of the
feature can be applied including those of CART, FACT, QUEST and many others.
The splits can be binary or multi-way, accordingly. After such suggestion, Hothorn
et al. (2006b) proposed another application of the permutation test framework to
determine optimal binary splits. According to their approach, given a subset A of the
sample space X j , the linear statistic TA

j is defined as

TA
j = vec

(
n∑

i=1

wi 1A(X ji )h(Yi , Y)T

)
∈ Rq , (2.29)

where 1A is the indicator function of set A. Given the conditional expectation μA
j

and its covariance �A
j calculated with Eqs. (2.23) and (2.24), the optimum split is

determined by the set A
, such that

A
 = arg max
A⊂X j

c(tA
j , μA

j , �A
j ). (2.30)

Although the optimization extends over all subsets of X j , the number of binary splits
is usually significantly limited. In the case of numeric features, only splits into two
disjoint and complementary intervals defined by points between values represented
in the data are taken into account. Symbolic features with large number of possible
values may also need some restrictions in subset analysis, because of computational
complexity.

2.2.7 SSV

Separability of Split Value (SSV, Grąbczewski and Duch 1999, 2000) criterion is
defined as a split quality measure, but is not based on the purity gain rule (2.4).
It reflects the idea that splitting pairs of vectors belonging to different classes is
advantageous, while splitting pairs of vectors of the same class should be avoided if
possible. Originally, it has got two forms:

SSV(s, D)
de f= 2 · SSV1(s, D)− SSV2(s, D), (2.31)

SSVlex (s, D)
de f=

(
SSV1(s, D),−SSV3(s, D)

)
, (2.32)



2.2 Univariate Decision Trees 35

where:

SSV1(s, D)
de f=

ns∑
i=1

ns∑
j=i+1

∑
c∈C
|Dsi ,c| · |Ds j \ Ds j ,c|, (2.33)

SSV2(s, D)
de f=

∑
c∈C

(|Dc| − max
i=1,...,ns

|Dsi ,c|), (2.34)

SSV3(s, D)
de f=

ns∑
i=1

ns∑
j=i+1

∑
c∈C
|Dsi ,c| · |Ds j ,c|. (2.35)

The SSV1 part counts the pairs of separated objects belonging to different
classes—it can be called a reward part. SSV2 and SSV3 define, in two different
ways, some penalties for splitting objects representing the same class. The SSVlex
version provides pairs of values, which are compared in lexicographic order, so the
second value is considered only in the case of equal first elements.

It is not easy to keep proper balance between the reward part and the penalty
part of the criteria like (2.31) or (2.32), because repairing some cases may easily
spoil the functionality in other cases. Some analyses of special cases, brought an
idea to weight the pairs of separated objects when counting the separability index.
Weighting can be seen as a heuristic reflecting the fact that separating pairs of objects
is more advantageous, when the objects belong to the majority classes within their
sides of the split, and less valuable if the objects are still misclassified after the split.
Therefore a parameter weight α was introduced (Grąbczewski 2011) as a factor to
diminish the contribution of the minority objects in separated pairs. The result is the
following definition:

SSVα(s, D)
de f=

ns∑
i=1

ns∑
j=i+1

∑
a∈C
b∈C
a �=b

Wα(Dsi , a) · |Dsi ,a | ·Wα(Ds j , b) · |Ds j ,b|, (2.36)

where

Wα(D, c) =
{

1 if c is the majority class within D,

α otherwise.
(2.37)

Such definition introduces three levels of contribution of the separated pairs (1, α and
α2), dependent on whether the objects represent the majorities or not. If more than
one class is represented in a sample with maximum count, one of them is arbitrarily
selected as the majority class (in practice, the one with the smallest index).

Search Methods

The basic approach to searching for SSVtrees is the classical top-down induction
method presented as Algorithm 2.1 with an almost exhaustive search for each node
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split. The term “almost exhaustive” means that all possible splits are examined if
only it is acceptable from the point of view of computational costs and does not
introduce evident bias in feature selection (favoring symbolic features with many
possible values).

In the case of continuous features, all sensible split points are examined and the one
maximizing SSVselected. Here, “sensible” means the ones with nonzero probability
that they can bring the best result. It is obvious that only the points between the feature
values occurring in the node data are worth any interest. It can be easily proved that
the points between objects belonging to the same class can be omitted, because some
other points are certainly better. So the analysis procedure of a numeric feature starts
with sorting all sample objects by the values of the feature and exploring the sorted
values one by one and calculating SSVfor the “sensible” split points.

Symbolic features are split not with points but with subsets of symbols, hence
the general term “value” in the name SSV. Exhaustive search would test all possible
subsets as the split generators. Such algorithm complexity is exponential, so it can be
dangerous to run it for larger counts of feature symbols. It would also give symbolic
features significantly greater probability of selection, in comparison to continuous
ones, when they are similarly informative. To avoid such bias and the danger of
combinatorial explosion, SSVuses a subset pair enumerator with a possibility to
limit the number of enumerated splits. The enumerator provides subsequent pairs
of complementary subsets, by generating the first one and setting the other as the
complement to the whole set of symbols. Preference is given to smaller subsets
(against their complements), so at first, the singletons are handled then pairs and so
on. The limit can be set on the size of the first subset. SSVsets the limit to make the
number of tested splits as close to the one of continuous features (and the number of
objects in the node) as possible.

Apart from the most popular method of tree construction, based on hill climbing,
the SSVapproach has been successfully tested with beam search and lookahead
search (see Sect. 2.5). Both solutions are more computationally expensive than hill
climbing, but often can find smaller trees. Different explorations of the area of search
methods (Quinlan and Cameron-Jones 1995; Segal 1996; Janssen and Fürnkranz
2009) have shown that these approaches can be successful, but also can lead to so
called “oversearching”, so one must use these methods with caution.

2.2.8 ROC-Based Trees

Receiver Operator Characteristic (ROC, Green and Swets 1966) is an idea that has
found especially much interest in domains close to medicine, where it is very impor-
tant to differentiate between false positive and false negative answers (statistical Type
I errortype Itype I and type II error). When the null hypothesis is the diagnosis of
“healthy”, erroneous rejecting the hypothesis means a false alarm (False positive
answer), while failed rejection of the hypothesis, when it is not true (type II error)
means ignoring the illness and no medical treatment, when it should be undertaken,
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which can be much more serious. One of the solution of dealing with such differ-
ences in errors importance is considering misclassification costs (available in many
classification learning machines). Clinicians are usually interested in the informa-
tion about how many errors of each kind are made by the decision support system,
they use. Therefore, they find ROC curves very useful, because they are plots visu-
alizing numbers of erroneous answers of both kinds, given by classifiers. In binary
classification, the decisions can be divided into four groups:

Predicted class Original class
Positive Negative

Positive True positive (TP) False positive (FP)
Negative False negative (FN) True negative (TN)

On the basis of the four groups we can define many important performance indices,
for example:

accuracy
de f= T P + T N

T P + F P + F N + T N
, sensitivity

de f= T P

T P + F N
,

error
de f= F P + F N

T P + F P + F N + T N
, specificity

de f= T N

F P + T N
.

(2.38)

All the values are real in the range [0, 1]. Intuitions about the terms of accuracy and
error are common and obvious. Sensitivity (Se, also called true positive rate) shows
which part of the “positive” class is correctly detected (in medicine: how big part
of patients with the disease is correctly diagnosed). Specificity (Sp, also called true
negative rate) tells, how accurately the negative cases are recognized. In medicine,
even more important is the value of “1-specificity” (false positive rate, or fall-out),
which represents the amount of negative cases classified as positive.

It is easy to increase the sensitivity of a predictor paying the price of lower speci-
ficity, and inversely. In utter cases, classification of all objects as positive results in
100 % sensitivity but 0 % specificity, while constant “negative” answers are 100 %
specific but 0 % sensitive. The art of learning is to maximize both sensitivity and
specificity.

ROC curve is a line plot depicting transition from one extremity to the other
through the most valuable solutions. The axes of the plot are: 1-specificityspecificity
and sensitivity. Assuming two-element set of classes C = {positive, negative}, each
classifier is a function φ : O → {positive, negative} and can be visualized as a single
point in the ROC plot.

For a probabilistic classifier φ : O → R2, we can easily generate a series of crisp
classifiers by shifting the decision threshold θ :

φ(θ) : O → C , φ(θ)(o) =
{

positive if φ(o)1 ≥ θ,

negative otherwise.
(2.39)
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Fig. 2.1 Two example ROC
curves: one for crisp and one
for probabilistic classifier
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Each crisp classifier can be easily converted into a trivial probabilistic classifier
(with probabilities 0 or 1 only). Such models can be visualized by an ROC curve
based on three points: (0,0), (Se, 1-Sp), (1,1). Each ROC curve starts at point (0,0)
and ends at (1,1).

Two example ROC curves are presented in Fig. 2.1. One corresponds to a crisp
classifier and one to a probabilistic classifier with several levels of predicted proba-
bilities. The curves are nondecreasing (here, also concave, though not strictly, as they
are piecewise linear), because in such families of classifiers, increasing sensitivity is
closely bound up with nonincreasing specificity.

In many applications the area under the ROC curve (AUC) has been found very
attractive index of classifier (family) quality. The larger the AUC, the better the
classifier.

AUC Split Criterion

Measuring the area under ROC curve has found applications also in DT construction.
Ferri et al. (2002) started their road to AUCsplit criterion with an analysis of decision
tree models in a similar manner as the transition from crisp to probabilistic classifier
described above. They discuss possibilities of different labeling of DT leaves and
prove formally an intuitive property that the number of optimal labelings is linearly,
not exponentially dependent on the number of leaves. They order the leaves by local
positive accuracy defined as pN

pN+nN
, where pN and nN are the counts of objects in

the node N with labels “positive” and “negative” respectively, and show that optimal
labelings are those that give label “positive” to a number of beginning nodes in the
sequence and label “negative” to the rest of the nodes. In this way, they obtain a
collection of points P0, . . . , Pk , such that
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∀
i=1,...,k

Pi = Pi−1 +
(

ni

n
,

pi

p

)
=

(∑i
j=1 n j

n
,

∑i
j=1 p j

p

)
, (2.40)

where k is the number of leaves in the tree, pi and ni are the numbers of objects
with labels “positive” and “negative” respectively in i ′th DT leaf of the ordered
collection, while p and n are the respective sums for all leaves. The points define the
ROC curve, which is a piecewise linear function.

The area under such curve can be easily calculated as the sum of the areas of
subsequent trapezia.

AUC(P0, . . . , Pk) =
k∑

i=1

yi + yi−1

2
(xi − xi−1), (2.41)

where Pi = (xi , yi ).
This idea is a foundation of the AUCsplit criterion (Ferri et al. 2002). Each split s of

a node N yields a number of subnodes: N s
1 , . . . , N s

ns
. When the subnodes are sorted

by local positive accuracy, they determine ROC points Ps
0 , . . . , Ps

ns
. The AUCspli t

criterion is defined as

AUCspli t (s) = AUC(Ps
0 , . . . , Ps

ns
). (2.42)

It can be used to estimate quality of candidate splits and select the best split of given
tree node in the classical top-down DT induction procedure (Algorithm 2.1).

In the case of a crisp classifier, the ROC is determined by three points (0, 0), (1−
Sp, Se), (1, 1), where Sp and Se are the classifier’s specificity and sensitivity. The
AUC of such ROC is equal to 1

2 (Se + Sp) which is the same as balanced accuracy
(in two-class problems). It gives some specific view of the AUCspli t optimization.

Ferri et al. (2002) have tested DTs based on their criterion in combination with
the Pessimistic Error Pruning, described in more detail in Sect. 2.4.2.1, but any other
pruning method can also be used to increase generalization abilities of the trees.

One of the most serious drawbacks of the AUCsplit criterion is that it can be
used only for two-class problems. Although it is not difficult to generalize the ideas
to arbitrary number of classes, the authors have not proposed such generalizations.
Instead they combined the method with the 1-vs-1 strategy (Hand and Till 2001; Ferri
et al. 2003) and proposed some improvements to provide more attractive probability
estimates from the trees. Doetsch et al. (2009) used the criterion with maximization
of the criterion over all class pairs in their Logistic Model Trees.

2.3 Multivariate Decision Trees

Splitting decision tree nodes on the basis of univariate functions is very attractive
because of models comprehensibility. A price to pay for the comprehensibility is not
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too flexible shape of decision borders. Univariate conditions correspond to separation
hyperplanes perpendicular to the axes of the selected features. When the splits are
allowed to base on hyperplanes without restrictions, the node conditions may contain
linear combinations in place of single features. Resulting trees are usually simpler in
the sense of the number of nodes or leaves, but it is important to realize that the nodes
are more complex so the overall tree complexity is not necessarily lower. At the same
time, it gets much more difficult to interpret the resulting classification functions.

Many DT induction algorithms facilitate building both kinds of DTs by proper
parameter settings. For example, some of the algorithms described above as the
univariate methods (CART, FACT, QUEST and CRUISE) can also determine linear
combinations of original features as new variables to be split. Many others have been
especially designed to perform multivariate splits. In subsections below, a subjective
selection of algorithms has been presented in more detail, however it must be pointed
out that many other interesting approaches can also be found in the literature. It should
certainly be recommended to also read the original publications about such methods
like SADT (Heath et al. 1993), SPRINT (Shafer et al. 1996), CLOUDS (Alsabti
et al. 1998), CMP (Wang and Zaniolo 2000), SODI (Lee and Olafsson 2006), Cline
(Amasyali and Ersoy 2008) and many others.

2.3.1 LMDT

One of the first, very popular approaches to building DTs with splits based on linear
combinations of features is the LMDT algorithm (Utgoff and Brodley 1991; Brod-
ley and Utgoff 1992a,b). Similarly to the univariate trees described above, the main
engine of LMDT is Algorithm 2.1. The main difference is inside the BestSplit proce-
dure used in the approaches. LMDT does not select a feature for the split or analyze
the dataset feature by feature to find the best split, but builds a linear machine for
each node to split it. Each linear machine is a set of k linear discriminant functions
combined in a single machine to classify data objects to one of the k classes of
the problem being solved (C = {c1, . . . , ck}). Let O ⊆ Rm be the domain of the
classification task. The discriminant functions of the machine are

gi : O × {1} → R, gi (y) = wT
i y i = 1, . . . , k. (2.43)

The input vectors are extended by one dimension with constant value of 1 to facilitate
versatility of hyperplanes definition. The linear machine classification function is

φg : O → C , φg(x) = ci ⇔ ∀
j �=i

g j (x, 1) < gi (x, 1). (2.44)

In theory, when no unique maximum value of gi (x, 1) exists, the value of the linear
machine is undefined. Practical implementations usually select arbitrarily one of the
joint winning classes if there is a draw, because it is more advantageous in usual



2.3 Multivariate Decision Trees 41

classification tests to select one of the classes and have some chance to guess the
result, than to give up because of equal probabilities of two classes.

The training process of an LMDT linear machine, tests randomly selected training
vectors, and if the class assigned to the vector by the machine is incorrect (say c j

instead of ci ), then the weight vectors wi and w j are adjusted appropriately, to correct
the classification of the vector. The detailed procedure is presented as Algorithm 2.7.

Algorithm 2.7 (Thermal linear machine training process)

Prototype: LMTraining(D,a,b)
Input: Training dataset D ⊆ O × C (O ⊆ Rm), thermal parameter adjustment values a and b

(default a = 0.995, b = 0.0005).
Output: Linear machine φg.
The algorithm:

1. β ← 2
2. for i = 1, . . . , m do

wi ← 0
3. while β ≥ 0.001 and Accuracy(φg, D) ≤ 0.99 do

a. Select an instance (x, ci ) ∈ D at random
b. if φg(x) = c j and j �= i then

i. y← [x1, . . . , xm , 1]T
ii. k ← (w j−wi )

T y
2yT y

iii. if k < β then

A. c← β2

β+k
B. wi ← wi + cy
C. w j ← w j − cy
D. if the magnitude of φg decreased but increased in previous adjustment

then
β ← aβ − b

4. return φg

The term magnitude of φg, referred to in item 3(b)iiiD of the algorithm, means
the sum of magnitudes of the weights wi , i = 1, . . . , m.

If the problem is linearly separable, then the procedure will find a solution in a
finite time (Duda et al 2001). Otherwise, error corrections would not end. Hence the
parameter β has been introduced to realize the idea of thermal perceptron (Frean
1990). It is reduced from time to time to simulate the annealing phenomenon, which
guarantees convergence of the process also in the case of linearly non-separable data.

Variable k is set to the absolute error correction needed to correctly classify
the misclassified object. But it is not used directly in weight change formulae. To
eliminate deterioration in the convergence process caused by error correction for the
cases of misclassified instances located very far or very close to the decision border,

the c parameter controlling weight changes is set to β2

β+k , which guarantees process
stability.
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To help the thermal linear machine separate the classes, the training data objects
should be appropriately prepared. Utgoff and Brodley (1991) proposed to standardize
numeric features before the process and convert symbolic features to a number of
binary features. If the feature has just two possible symbols, they can be encoded as
+1 and−1 respectively. Otherwise, the symbolic attribute is encoded by a number of
binary features equal to the number of possible symbols. For a given data object, one
of the new features (the one corresponding to the symbol assigned to the object) gets
the value of +1 and all the remaining features get −1. Missing values are replaced
by 0s, which correspond to the means of the values observed in the training sample.

It may happen that a linear machine does not in fact split the node—all training
data objects belong to the same part of the feature space split. In such cases the node
gets closed as a leaf, regardless of the fact that it is not pure.

Minimization of arbitrary misclassification cost functions was introduced to the
LMDT approach by Draper et al. (1994). They assigned proportions to the classes
(all equal to 1 at start) to reflect the misclassification costs and respect them in the
thermal learning of the linear machine.

Variable Elimination

To make the models of LMDT as simple as possible, and sometimes more accurate,
Utgoff and Brodley (1991) also described a technique to eliminate variables during
the learning processes. They proposed to repeat training after elimination of the
feature that contributes least to the discrimination. The best solutions, found so far,
must be recorded and new ones compared to them so as to estimate if the results
do not deteriorate. The comparisons performed by Utgoff and Brodley (1991) used
t-test with α = 0.01 to estimate if the new results are not significantly worse than
the saved result. Moreover, they used an additional threshold parameter defining the
size of acceptable decline in accuracy when the feature is eliminated.

After a number of train and eliminate cycles, the best result, saved in appropriate
time, is returned as the final linear machine. The scenario described here is the
strategy of sequential backward elimination (one of the fundamental approaches to
feature selection). Brodley and Utgoff (1992a) have also proposed an approach of
sequential forward selection, where the best single feature is selected first, and then
subsequent features are added one by one, so as to maximize the increase of a merit
criterion.

Moreover, they have suggested a combination of the two strategies, referred to
as heuristic sequential search. Its idea is to run the first stages of both approaches
(Forward selection and Backward elimination) and select the better of the two. Such
initial test may detect, whether there are many noise features that spoil the result or
most of the features are important, and select the method accordingly.
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2.3.2 OC1

Oblique Classifier 1 (OC1, Murthy et al. 1993; Murthy et al 1994; Murthy 1997) is a
method for DT construction by means of a search for optimal hyperplane separating
classes of objects. The search uses a heuristics to find local minima and ideas of non-
deterministic approaches to get out of the minima in the pursuit of better solutions.

At each DT node a single hyperplane is determined, so the resulting trees are
binary. Similarly to the LMDT approach, the hyperplanes are defined by m + 1-
dimensional vectors, where m is the dimensionality of the object space. The key
procedure of OC1 is its, so called, perturbation method, adjusting one selected coef-
ficient in the hyperplane to maximize a measure of impurity of the hyperplane split.

Algorithm 2.8 (OC1 hyperplane perturbation algorithm)

Prototype: OC1Perturb(w,d,D,Impurity)
Input: Initial hyperplane parameters w = (w1, . . . , wm+1), index of the dimension to be per-

turbed d, training dataset D ⊆ O×C (O ⊆ Rm), D = {(xi , ci ) , i = 1, . . . , n}, hyperplane
split impurity measure Impurity.

Output: Modified hyperplane parameters w.
The algorithm:

1. for i = 1, . . . , n do
a. Vi ←∑m

j=1 w j x j + wm+1

b. Ui ← wd xid − Vi

xid
2. Sort U1, . . . , Un in nondecreasing order
3. w′ ← w
4. w′d ← the best 1-D split of the sorted U1, . . . , Un
5. if Impurity(w, D) < Impurity(w′, D) then

a. wd ← w′d
b. stagnant ← 0

else if Impurity(w, D) = Impurity(w′, D) then
a. wd ← w′d with probability e−stagnant

b. stagnant ← stagnant + 1
6. return w

The procedure is presented as Algorithm 2.8. It calculates Ui values for each data
object, sorts the objects by nondecreasing values of Ui and performs linear search to
find the best 1-D split of the data.

Murthy et al. (1993) performed the hyperplane perturbations in three different
ways:

Seq: The coefficients were perturbed one by one in sequence, many times, until
none of the coefficient values were modified:
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Repeat
1. v← w
2. for i = 1, . . . , m + 1 do

w← OC1Perturb(w,i,D,Impurity)

until v = w

Best: Each coefficient was perturbed independently, to get the one providing maxi-
mum impurity reduction. The optimization was run until the same coefficient
was returned twice in sequence:

Repeat
1. j ← the coefficient providing maximum impurity reduction when perturbed
2. OC1Perturb(w,j,D,Impurity)

until j is the same as in the previous iteration

R-50: The coefficient to be perturbed was selected randomly 50 times:

for i = 1, . . . , 50 do
1. j ← random integer between 1 and m + 1
2. OC1Perturb(w,j,D,Impurity)

Escaping from Local Minima

The procedures, described above, optimize hyperplanes in such a way that when a
local minimum is reached, no further perturbation reduces the impurity. To increase
the probability of finding global minimum, two techniques were applied by Murthy
et al. (1993): perturbing coefficients in a random direction and choosing mul-
tiple initial hyperplanes. In the first technique, they selected randomly a vector
r = (r1, . . . , rm+1) and analyzed hyperplanes determined by vectors of the form
w+ αr. In a perturbation procedure analogous to the algorithm 2.8, they calculated
the best value of α from the point of view of hyperplane impurity. If the new hyper-
plane impurity was lower than that of w, the perturbation procedure was continued
for the new coefficients. Otherwise, the hyperplane of w was returned as the final
result.

The other method was just to start with different initial hyperplane vectors w and
select the best of the local minima found with the OC1 optimization procedure.

Hyperplane Impurity Measures

Algorithm 2.8 is parameterized by the method to calculate impurity of a hyperplane
in the context of particular dataset. Murthy et al. (1993) have proposed three methods
to measure such impurity:

max minority : M M(s, D) = max(min(|Ds1,c1 |, |Ds1,c2 |), min(|Ds2,c1 |, |Ds2,c2 |)),
sum minority : SM(s, D) =∑2

i=1 min(|Dsi ,c1 |, |Dsi ,c2 |),
sum of impurity : SI (s, D) =∑2

i=1
∑

(x,c)∈Dsi
(Bin(c)−avgi )

2,where Bin(c) ∈
{0, 1} is a binary coding of the classes and avgi = 1

|Dsi |
∑

(x,c)∈Dsi

Bin(c).
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Although the measures are defined for split s in general, while Algorithm 2.8 calls
the Impurity method with vectors determining hyperplanes, it is easy to make them
compatible also formally, as the hyperplane splits the space into halves. Also, it is not
difficult to extend the definitions given by Murthy et al. (1993) to arbitrary numbers
of classes.

Other Solutions

Murthy et al (1994) have listed additional measures like information gain, Gini index
or twoing criterion. In fact, any measure of split quality may be used here.

Similarly, any pruning method is suitable for OC1 trees, but Murthy et al (1994)
have used the cost-complexity optimization cost-complexity pruning of Breiman
et al. (1984).

In the original definition, missing values in the data were replaced by mean values
of the attribute, before training or testing OC1.

2.3.3 LTree, QTree and LgTree

Probabilistic linear trees LTree Gama(1997) result from a combination of three ideas:
divide and conquer methodology of decision trees, linear discriminant analysis and
constructive induction.

According to the paradigm of constructive induction, each split of an LTree node
(the corresponding training data sample) is performed in two independent steps:

• new attributes construction (linear combinations of existing features),
• best split determination by a technique for univariate DT construction.

Such scheme and other ideas introduced to LTree induction caused important differ-
ences between the approach and other methods, introduced earlier:

• the number of features describing data can differ between the nodes of the same
classification tree,
• new attributes, once created, are propagated downwards, so that other splits in the

branch can also use them,
• the trees estimate probabilities by an analysis of data distributions in the whole

path followed when classifying an object: from the root to appropriate leaf.

Attribute Construction

When new features are generated for the sake of a tree node split, it is important that
it brings as much information about class discrimination as possible. To determine
the class of a given object x, it is sufficient to determine conditional probabilities
P(c|x) for each possible class c. The most probable class should be indicated as the
class of x. Given the Bayes theorem:
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P(c|x) = P(c)P(x|c)
P(x)

. (2.45)

To determine the winner class, the denominator (common for all the classes) can be
ignored leaving P(c)P(x|c) as the value to be estimated for each class c ∈ C .

Linear discriminant analysis assumes that each class is normally distributed
and that all classes share the covariance matrix �. In such case, maximization of
P(c)P(x|c) is equivalent to maximization of P(c) fc(x), where fc(x) is the proba-
bility density function for class c. Multidimensional normal density function of mean
μ and covariance � is given by:

fμ,�(x) = 1√
(2π)n|�|e

− 1
2 (x−μ)T �−1(x−μ). (2.46)

After some more simplifications (like comparing logarithms instead of exponential
expressions and throwing out the constant components for all classes) one can easily
get:

P(c|x) ∝ log(P(c))+ xT �−1μc − 1

2
μT

c �−1μc. (2.47)

Therefore, Gama(1997) defined the linear discriminant hyperplane as:

Hc = αc + xT βc, (2.48)

where αc = log(P(c))− 1
2μT �−1x and βc = �−1μc. The mean μc and covariance

matrix � are calculated as the training sample mean and pooled covariance matrix.
Because in some circumstances the polled covariance matrix may be singular, Gama
(1999) suggested using SVD (see appendix section B.2) to reduce the features that
cause the singularity.

The hyperplane formula (2.48) defines new features added at the tree node. New
features are constructed for kN − 1 classes of the kN represented in the node N by
the number of objects greater than the number of attributes (Gama (1999) suggested
twice the number of attributes).

When adding the attributes, the αc is constant for all the objects and could be
omitted. In fact, the fragments ignored when deriving (2.47) as not important from
the point of view of winner-class selection for an object are not meaningless when
comparing different objects and could play significant role here.

Gama (1999) also proposed two other discriminant approaches to be used in
analogous ways as the linear one: quadratic and logistic discriminants, yielding
algorithms named QTree and LgTree respectively. Quadratic discriminants can be
inferred similarly to the linear ones from the assumption of normal distributions
but without the constraint of equal covariance matrices for all the classes. Similar
reasoning as for linear discriminants brings the conclusion that

P(c|x) ∝ log(P(c))− 1

2
log(|�c|)− 1

2
(x − μc)

T �−1
c (x − μc), (2.49)
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where �c is the covariance matrix for class c. Again, possible problems with covari-
ance matrix singularity can be solved by SVD analysis and feature elimination.

In the LgTree algorithm, generation of new features starts with selecting one of
the classes (c1, . . . , ck) as so called reference class (say the last one ck) and k − 1
vectors β1, . . . ,βk−1 to estimate the conditional class probabilities:

P(ck |x) = 1∑k−1
j=1 eβ j x

, P(ci |x) = eβi x∑k−1
j=1 eβ j x

, i = 1, . . . , k − 1. (2.50)

Then the Newton-Raphson iterative procedure is used to find such βs that maximize
the likelihood:

L(β1, . . . ,βk−1) =
k∏

i=1

∏
x∈Dci

P(ci |x). (2.51)

As in the case of linear discriminants, the subsequent βs can be used as the projection
vectors to create new features discriminating the classes.

Split Criteria

The constructive approach can be combined with any method of univariate DT induc-
tion. By default Gama (1997, 1999) used a method very similar to C4.5: the Informa-
tion gain criterion was used for split quality estimation. Continuous features splits
were binary, while using categorical features for splits resulted in multi-way branch-
ing (as many subnodes as symbols of the feature).

Decision Making

As mentioned above, the LTree family methods have implemented a special way
of class probability estimation, based on data distribution in the whole path from
the root to the leaf of interest, instead of the most common solution to base just on
the distribution in the leaf. Gama (1997) suggested weighting class proportions in a
given node N with its parents probabilities:

P(c|N ) = P(c|Parent (N ))+ w
nN ,c
nN

1+ w
. (2.52)

Only for the root node, class probabilities were based directly on class frequencies
in the training data sample. The parameter w was set to 1 by default, but its value
was up to the user. Such definition of class probabilities may cause that the winner
class is not the majority class of the leaf.

www.allitebooks.com
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Pruning

To obtain well generalizing trees, Gama (1997) suggested using one of two methods:
the Error-Based Pruning of C4.5 (but without the option of grafting the best subtree
in the place of its parent, when the subtree seems to be better) and another one,
strongly related to the way of calculating probabilities, described above. When the
sum of errors made by subbranches of a given node, was not less than the error of
the (parent) node acting as a leaf, then the node was turned into a leaf. In the most
common approach of estimating probabilities by leaves frequencies, it cannot happen
that the children nodes make, in total, more errors than their parent, but it is possible
with so untypical probability estimation, as described above.

Algorithm 2.9 (Iterative refiltering)

Prototype: IterativeRefiltering(D,LM)
Input: Training dataset D, a learning machine L M.
Output: A model.
The algorithm:

1. repeat
a. M ← T rain(L M, D) /* model M is the result of training L M on D */
b. D′ ← Classi f y(M, D) /* D′ is D with classes predicted by the ones provided by

M */
c. D← D ∩ D′

while D′ �= D do
2. return M

2.3.4 DT-SE, DT-SEP and DT-SEPIR

John (1995b, 1996) has contributed to the field of multivariate DT induction by
presenting the ideas of using soft criteria for split quality estimation and iterative
refiltering in DT regularization. Soft miltidimensional criteria are not compatible with
symbolic features, so the family of DT-SE methods needs some data preprocessing
to get rid of the symbols which have no sensible order. In the experiments of John
(1996), all unordered categorical attributes were converted into corresponding 0-1
indicator variables (see p.6) to prevent introduction of accidental information or
hiding existing information by arbitrary symbols ordering. Therefore, binary splits
are most natural in this family of trees, although one could easily apply the same
optimization methods for analyzing multi-way splits.
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Soft Split Criteria and Soft Entropy

In general, the proposition of John (1996) was softening different criteria evaluating
split quality, so that they can be optimized with methods like gradient descent. To
make it easier, he described the problem of finding an optimal split of a dataset D as
the problem of finding parameters θ
 ∈  of a split function gθ that minimize some
split quality measure I :

θ
 = arg min
θ∈ I (D|gθ ). (2.53)

The domain  can be arbitrarily defined for particular problems: it may contain
simple, single-value parameters like split thresholds, but also more sophisticated
objects consisting of more important values parameterizing the split function gθ .

The objective function I may be any split criterion including information gain,
Gini index and so on. Although most of the criteria are defined on the basis of
cardinalities of datasets D ∈ O , they can be easily softened by using fuzzy mem-
bership functions and fuzzy cardinalities: |D|w = ∑

x∈O w(x). An example of a
fuzzy membership function is the sigmoid function performing linear discriminant
splitting:

gθ (x) = 1

1+ e−θT x
. (2.54)

The composition of the objective function from a split function like (2.54) and
split quality measure I helps in using gradient methods for minimization. By the
chain rule δ I

δθ
= δ I

δgθ

δgθ

δθ
, so if the quality measure function is differentiable with

respect to gθ and gθ with respect to θ , performing gradient descent minimization is
very easy.

The experiments of John (1996) were performed with the information gain func-
tion as the split quality measure and the split function gθ defined by (2.54). More
precisely, the negated sum of entropies (2.5) of the datasets resulting from the split
needs to be calculated, as the entropy of the whole dataset is constant for all splits.
The result got the name of soft entropy (SE) which gave rise to the name DT-SE.
A simple steepest descent procedure was used for objective function minimization.
After the θ
 was found, the dataset was crisply split into two parts corresponding to
the conditions gθ
(x) ≥ 1

2 and gθ
(x) < 1
2 which are equivalent to a typical linear

discriminant solution: θ
T x ≥ 0 or θ
T x < 0.

Pruning

Tree regularization process prepared by John (1996) for his DT-SE trees used two
kinds of methods: pre-pruning and retraining. The former is very simple: tree nodes
are not further split if one of the classes has less than 5 representatives. Naturally,
the 5 is the value of a parameter, but in John’s experiments it was set just to 5. The
technique of retraining got the name of iterative refiltering and was borrowed from
the field of regression methods, where it had been used under the names of robust
(Huber 1977) or resistant (Hastie and Tibshirani 1990) fitting. A general definition of
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iterative refiltering is presented as algorithm 2.9. It could be made even more general
by replacing the call of Classify() method by a more general one and generalizing
the stop condition of the loop. The idea behind the algorithm is that if an object is
classified incorrectly by the model, then it probably spoils not only the leaves of the
tree but also the nodes along the whole path from the root, so it should be advantageous
to get rid of such object during learning. The procedure just repeats learning, testing
the resulting model and removing the data objects incorrectly classified by the model,
until the subsequent model classifies correctly all the objects that remain in the
training dataset. The algorithm was presented first by (John 1995a) in application
to C4.5 creating the method named Robust C4.5. The training procedure called
within iterative refiltering must be equipped with some generalization mechanisms.
Therefore, in application to DT-SE, the simple stop criterion was used. C4.5 has its
own pruning strategy, so it was used for tree regularization.

The DT-SE method augmented by the simple stop-criterion for the purpose of
pruning was named DT-SEP and the version using also Iterative refiltering is called
DT-SEPIR.

2.3.5 LDT

Yildiz and Alpaydin (2000, 2005a) performed an analysis of six aspects of DT induc-
tion algorithms and proposed their own algorithm named Linear Decision Trees
(LDT). The six aspects are:

• node type: univariate or multivariate,
• branching factor: splitting to two or more subnodes,
• grouping classes into two superclasses for binary trees,
• split quality measures,
• minimization methods for finding best splits.

The resulting LDT algorithm creates binary trees, performing Discriminant analy-
sis at each node (with options of univariate or multivariate splits and Linear discrim-
inant analysis linear or )Quadratic discriminant analysis after the classes with repre-
sentatives in the node, are grouped into two superclasses with one of two algorithms.

The Discriminant Analysis

LDT follows the idea of Fisher’s linear discriminant analysis (FDA). The goal of
FDA is finding the hyperplane providing the best separation of two groups of objects.
In other words, the direction w
 that maximizes the distances between different class
centers while minimizing the average variance within classes:

w
 = arg max
w∈Rk

wT SBw

wT SW w
, (2.55)



2.3 Multivariate Decision Trees 51

where SB is the between-class covariance matrix and SW is the within-class covari-
ance matrix:

SB = (xc1 − xc2)(xc1 − xc2)
T , (2.56)

SW =
∑

c∈{c1,c2}

∑
x∈c

(x − xc)(x − xc)
T . (2.57)

The solution of the maximization problem is

w
 = S−1
W (xc1 − xc2), (2.58)

so the projection w
T x provides optimal class discrimination. Assuming normal
distributions of the separated groups, the optimal threshold in the new dimension is

w0 = −1

2
(xc1 + xc2)

T S−1
W (xc1 − xc2)− log

nc1

nc2

. (2.59)

Alternatively, one can analyze all possible split positions and select the best one
according to a given quality measure like classification accuracy, entropy, Gini index
and so on.

The new dimension created as a linear combination of the original variables
describing the data can be handled in the same way as the original features in uni-
variate DTs. The split point w0 of (2.59) is the optimal split point, on the assumption
of equal variances of the new feature in the two groups. When resigning from the
assumption about the parameters of normal distributions, the QDA analysis can be
done to determine the split point in the same way as in QUEST (see Eqs. (2.17),
(2.18), and (2.19)). In the case of equal variances the quadratic equation has one root
equivalent to w0 of (2.59). Otherwise, there can be two roots. If so, the one between
the means of the groups (if exists) is selected. If not, or both roots are outside the
interval designated by the means, then the middle point between the means is used
as the split point.

Symbolic features are transformed to the appropriate number of Indicator vari-
ables, and the split is found in such space. As described in the case of QUEST,
such splits can be easily decoded back to the original feature and verbalized in the
language of the symbolic input feature.

Avoiding Problems of Covariance Matrix Singularity

When a linear dependency exists between two variables describing the data, the
matrix SW is singular and S−1

W does not exist. Similarly to the approach of FACT,
Yildiz and Alpaydin (2000) propose using principal component analysis (PCA) to
get rid of the undesirable features. The difference between the two is the way the
limitation is introduced. Here, provided the Eigenvalues λ1, . . . , λr in nonincreasing
order, and the associated Eigenvectors c1, . . . , cr , minimum d is determined, such
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that d initial eigenvectors explain more than ε of the variance:

λ1 + · · · + λd

λ1 + · · · + λd + · · · + λr
> ε. (2.60)

Then, each data vector x is transformed into the space of selected eigenvectors to

z = (cT
1 x, . . . , cT

d x)T , (2.61)

and the LDA is performed in the new space, where the inverse of corresponding SW

certainly exists. The solution is then transformed back to the original space.

Grouping into Superclasses

When the number k of classes is greater than 2, the LDA procedure described above
is preceded by the stage of grouping the classes into two superclasses. Yildiz and
Alpaydin (2000) proposed two algorithms for this purpose: one based on selection
and the other on exchange. Unlike the method of QUEST (ClusteringTwo-means
clustering), the methods of LDT are supervised. The selection method is presented
as Algorithm 2.10. Different random selection at start of the process may generate
different superclasses. Yildiz and Alpaydin (2000) suggested to select two most
distant classes in place of the random selection.

Algorithm 2.10 (LDT superclasses by selection)

Prototype: SuperclassesBySelection(D, SQM)
Input: Training dataset D with classes C = {c1, . . . , ck}, a Split quality measure SQM.
Output: Superclasses A and B.
The algorithm:

1. Select two classes ca and cb from C at random
2. A← ca
3. B ← cb
4. C ← C \{ca, cb}
5. while C �= ∅ do

a. s ← the split provided by the FDA for data D and classes A and B.
b. Select the class c ∈ C that added to A or B results in the best result returned by

SQM
c. if c maximized SQM when added to A then

A← A ∪ c
else

B ← B ∪ c
d. C ← C \{c}

6. return A and B



2.3 Multivariate Decision Trees 53

The second solution offered by LDT is Algorithm 2.11 constructing Superclasses
by exchange, proposed by Guo and Gelfand (1992). It divides the classes into two
superclasses and then moves the classes from one superclass to the other so as to
maximize Information gain of LDA splits. Yildiz and Alpaydin (2000) also suggested
a heuristic to replace random initialization: they started with two most distant classes
and added remaining ones to appropriate parts, according to the rule of minimum
inter-mean distance.

Algorithm 2.11 (LDT superclasses by exchange)

Prototype: SuperclassesByExchange(D)
Input: Training dataset D with classes C = {c1, . . . , ck}.
Output: Superclasses A and B.
The algorithm:

1. A←⋃
i≤ k

2
ci , B ←⋃

i> k
2

ci

2. repeat
a. s ← the split provided by the FDA for data D and classes A and B
b. I G0 ← I G(s, D) /* information gain – see equation (2.6) */
c. for i = 1, . . . , k do

i. Construct Ai and Bi by moving ci from its superclass to the other
ii. si ← the split provided by the FDA for data D and classes Ai and Bi

iii. I Gi ← I G(si , D)

d. i
 ← arg maxi=1,...,k I Gi
e. if I Gi
 > I G0 then

A← Ai
 , B ← Bi


until I G
 ≤ I G0 /* no improvement */
3. return A and B

Both superclass generation methods require multiple runs of LDA, so they may
be a significant additional cost, as they are run for each DT node, generated during
the induction process.

2.3.6 Dipolar Criteria for DT Induction

Decision trees based on dipolar criteria, offered by Bobrowski and Krętowski (2000),
are based on the same fundamental idea as the SSV criterion (see Sect. 2.2.7): to
find splits that separate possibly many pairs of objects belonging to different classes.
Bobrowski and Krętowski (2000) defined dipoles as pairs of objects and distinguished
between pure dipoles (containing objects belonging to the same class) and mixed
dipoles (containing objects from different classes).

To define the objective, dipolar criterion function, two penalty functions need to
be defined first, for each input vector v, to control whether it stays on the positive or
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negative side of the candidate hyperplane:

ϕ+v (w) =
{

δ − wT v if wT v < δ,

0 if wT v ≥ δ,
(2.62)

ϕ−v (w) =
{

δ + wT v if wT v > −δ,

0 if wT v ≤ −δ,
(2.63)

where δ is a margin parameter (usually set to 1 by the authors).
Then, for each dipole, the functions can be combined to measure the cost related

to dividing the dipole or not. For pure dipoles, the cost can be calculated as

ϕ
p
u,v(w) = ϕ+u (w)+ ϕ+v (w) or ϕ

p
u,v(w) = ϕ−u (w)+ ϕ−v (w), (2.64)

while for mixed dipoles as:

ϕm
u,v(w) = ϕ+u (w)+ ϕ−v (w) or ϕm

u,v(w) = ϕ−u (w)+ ϕ+v (w). (2.65)

Eventually, appropriately weighted costs of the dipoles compose the dipolar cri-
terion to be optimized:

�(w) =
∑

(u,v)∈Ip

αu,vϕ
p
u,v(w)+

∑
(u,v)∈Im

αu,vϕ
m
u,v(w). (2.66)

Optimization of this kind of objective functions, can be performed with a Basis
exchange algorithm (Bobrowski 1991, 2005) similar to the standard methods of
Linear programming. An additional difficulty is the orientation of the dipoles, which
makes only one of the two alternative forms of each penalty function (2.64) and
(2.65) adequate in particular circumstances. For this purpose, the basis exchange
algorithm has been equipped with proper search for adequate orientations of the
dipoles (Bobrowski 1999, 2005).

Oblique decision trees stand a chance to preserve some comprehensibility if the
linear combinations do not include large numbers of features. Therefore, the DT
induction algorithm based on the dipolar criterion, implements some Feature selec-
tion functionality. In this aspect, the authors followed Brodley and Utgoff (1992a) and
used their Heuristic sequential search of the LMDT (see Sect. 2.3.1). The procedure
is the most time consuming part of the overall DT induction process.

A step toward cost decline may be early stopping of the splits. Bobrowski and
Krętowski (2000) used a simple rule of stopping the splits, when the count of training
data objects falling into the node was less than 5. Apart from that, they pruned the
trees after construction, according to the principle of Reduced Error Pruning (see
Sect. 2.4.3.1). They used 70 % of the training dataset for tree construction and after-
wards, decided which nodes to prune by validating the tree on the dataset containing
the remaining 30 % of data.
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2.4 Generalization Capabilities of Decision Trees

There are many reasons, for which, decision trees generated on the basis of a training
data sample are not perfect classifiers for the whole population of data objects. One
of them is imperfectness of the training data sample. It often happens that the data
objects descriptions are noisy. The noise may come from imprecise measurements,
errors made during data collection, loosing some data and so on. On the other side,
very often, the data sample is not representative of the problem and does not contain
full information about the relations being learned. Sometimes, the information is
contained in the data, but it is too difficult to discover it with the learning processes,
because there are many local minima, which “conceal” the global minimum or the
decision functions of the learning machines are not capable of describing the hidden
dependencies. In all these cases and many others, the model resulting from DT
induction may overfit the training data in the sense that it perfectly describes the
sample, but not exactly the relations of interest.

When Overfitting occurs close to the root node, then the tree model is completely
inaccurate and often, nothing can be done to fix it, but when it is due to splits close to
the leaves, Pruning some tree branches can be a successful solution. Pruning makes
the models simpler, so it is compliant with the idea of the Occam’s razor. Fortunately,
the root node and other nodes close to it, are usually created on the basis of large
data samples, and because of that, generalize well. They should not be affected by
pruning techniques, which ought to delete relatively small nodes, responsible for
distinction between single data items or very small groups, existent in the training
sample but being exceptions rather than representative objects of the population.

Another kind of problems can be observed when the number of features describing
data objects is large in relation to the number of objects. Then, it is probable that the
data contains features accidentally correlated with the output variable. Such features
may be selected by the DT induction algorithms as the most informative ones and may
significantly distort the model. In such cases, pruning is less helpful—a better way is
to create many models and combine their decisions. In the Ensemble, the influence
of accidentally correlated features is likely to be dominated by really informative
ones. The price to pay for that is often model comprehensibility, but one can still
search for some explanations by exploration of the ensemble members with respect
to their compatibility with the ensemble decisions, and so on.

Some researchers, for example Bohanec and Bratko (1994) and Almuallim (1996),
have used pruning techniques for tree simplification, which they describe as slightly
different task than increasing generalization capabilities. They assume that the full
tree is maximally accurate and search for simpler descriptions of the data, consciously
accepting some loss in accuracy. So the task is to minimize the loss in accuracy for
a given size constraint for the tree.

Most of the commonly used pruning techniques belong to one of two groups:

• pre-pruning: the methods acting within the process of DT construction, which can
block splitting particular nodes,
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• post-pruning: the methods that act after complete trees are built and prune them
afterwards by removing the nodes estimated as not generalizing well.

Some other techniques, aimed at tree generalization, do not fit either of the groups.
An interesting example is the strategy of Iterative refiltering used in DT-SE family of
methods (see Sect. 2.3.4), where the final trees are results of multi-stage DT induc-
tion with adequate adjustment of the training data sample. Yet another (completely
different) approach is the optimization of decision rules, but in fact, they are not
proper DT pruning methods, as their final results may not have the form of DTs,
even when started with the classification rule sets exactly corresponding to DTs.

Pre-pruning methods are also called stop criteria. The most natural condition to
stop splitting is when no sensible further splits can be found or when the node is clean
(pure), that is, contains objects belonging to only one class. Some generalizations of
these ideas are the criteria of stopping when the node is small enough or contains
small number of erroneously classified objects (reaching some purity threshold).
They also stop further splitting, so are recognized as pre-pruning techniques.

Usually, it is very hard to estimate whether further splitting the node at hand may
bring significant information or not, so apart from the simplest conditions like the
ones mentioned above, pre-pruning techniques are not commonly used.

Post-pruning methods simplify trees by replacing subtrees by leaves in a previ-
ously constructed DT. Again, the group can be divided into two subgroups:

• direct pruning methods, that decide which nodes to prune just on the basis of the
tree structure and information about training set distribution throughout the tree,
• validation methods, that use additional data sample (separate from the one used for

training) in a validation process to determine which nodes do not seem to perform
well on data unseen during learning.

Among the latter group, there are methods using single validation dataset (like
Reduced Error Pruning) and others, performing multiple tests in a process like Cross-
validation (for example, Cost-complexity optimization cost-complexity pruning of
CART) to estimate optimal values of some parameters to be used in final tree pruning.

2.4.1 Stop Criteria

Like all recursive algorithms, DT induction methods must define a condition to stop
further recursion, to avoid infinite loops.

One of the most natural criteria breaking the recursive splitting process is the
condition of nodes purity. A clean node, that is, containing objects of one class only,
does not need further splits, as it is 100 % correct (as far as the training data is
concerned). Some softened purity conditions may also be defined. It is a popular
approach to define the maximum allowable number of errors to be made by a tree
node. When a node contains objects from one class and n objects from other classes
it is not split when n < θ , where θ is a pre-defined threshold. Another variant of
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this idea is to define the threshold as the proportion of objects from classes other
than the majority one, and calculate not just the number of errors, but the percentage
of errors yielding different allowable error count for nodes of different sizes. Yet
another similar methods put size constraints on each node and do not accept splits
that generate a subnode smaller than a given threshold.

Another situation, when the recursive process is stopped in a natural way, is when
the split criterion being used does not return any splits for the node. For example,
when all the object descriptions are the same, but some data objects belong to one
class and some to others. Such circumstances may occur when the dataset is noisy
or when the features describing data are not sufficient to distinguish the classes.

Some split criteria can return no splits not only when all the data vectors are the
same, but because of the setting of their parameters. It is common in the split methods
based on statistical tests, that a split is acceptable only if a statistical test rejects the
hypothesis of concern, with a specified level of confidence. For example, algorithms
like Cal5 or CTree test some hypothesis to determine the split feature and the split
of the node. On the basis of the tests they make decisions whether to make further
splits or not. They may decide to not split the node even if it is not pure. Naturally,
such statistical stop conditions could also be used with algorithms, where the split
points are searched with exhaustive methods, but it is not common to do so. It is
more popular to use statistical methods to prune the tree after it is fully grown, but
such approaches perform post-pruning (the direct part) not pre-pruning.

The authors of DT algorithms usually prefer to build oversized trees and then
prune them instead of using advanced stop criteria, because their wrong decisions may
significantly affect the quality of the resulting trees. Comparative tests of pre-pruning
and post-pruning algorithms (for example, the ones made by Mingers (1989a)) prove
that the latter are more efficient, so most often, DT induction algorithms use only
the most natural stop criteria. Sometimes, to avoid loosing time for building too big
trees, small impurity thresholds are accepted. For example, when a node contains a
single object of another class than that of all the others, it is not very reasonable to
expect that further splits can generalize well, so ignoring such impurities, in most
cases, just saves some time with no negative impact on resulting tree quality.

2.4.2 Direct Pruning Methods

Direct pruning is very time-efficient because it just examines the decision tree and
training data distribution throughout the tree. On the other hand, they are provided
with information about training data distribution, so they get less information than
Validation methods, which are given also the results for some Unseen data. Hence,
the task of direct pruning may be regarded as more difficult than the task of validation.

Methods for direct pruning usually estimate misclassification risk of each node
and the whole subtree suspended at the node. If the predicted error rate for the node
acting as a leaf is not greater than corresponding error for the subtree, than the subtree
is replaced by a leaf. The differences between methods of this group are mainly in
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the way of the misclassification rate estimation, as the natural estimation on the basis
of the training data is overoptimistic and leads to oversized trees.

The following subsections describe some direct pruning methods. To provide a
valuable review of this family of algorithms, several methods of diverse nature have
been selected (including the most popular ones):

• PEP: Pessimistic Error Pruning (Quinlan 1987; Mingers 1989a; Esposito et al.
1997),
• EBP: Error-Based Pruning (Quinlan 1987; Esposito et al. 1997),
• MEP and MEP2: Minimum Error Pruning (Niblett and Bratko 1986; Mingers

1989a; Cestnik and Bratko 1991),
• MDLP– Minimum Description Length Pruning – different approaches have been

proposed by Quinlan and Rivest (1989), Wallace and Patrick (1993), Mehta et al.
(1995), Oliveira et al. (1996), Kononenko (1998); here only the approach of
Kononenko (1998) is presented in detail.

2.4.2.1 Pessimistic Error Pruning

PEP Sometimes it is advantageous to approximate binomial distribution with normal
distribution. To avoid some unfavorable consequences of the transfer from discrete
values to continuous functions, an idea of continuity correction has been successfully
used (Snedecor and Cochran 1989). Quinlan (1987) proposed to apply it to estimation
of the real misclassification rates of DTs. Given a node N with the information
about the number nN of training data objects falling into it and the number eN of
errors (training data items belonging to classes different than the one with majority
representation in N ), Quinlan estimated the misclassification risk as

eN + 1
2

nN
. (2.67)

The rate for the subtree TN rooted at N can be defined as the weighted sum of the
rates for all leaves in TN (T̃N ) with weights proportional to leaves sizes, which can
be simplified to: ∑

L∈T̃N
eL + 1

2 |T̃N |
nN

. (2.68)

Because the continuity correction is often not satisfactory to eliminate overopti-
mistic estimates, the approach of Pessimistic Error Pruning uses it with the margin of
one standard deviation of the error (SE for standard error) (Quinlan 1987; Mingers
1989a; Esposito et al. 1997). Denoting the corrected error of the subtree TN , that is,
the numerator of (2.68), by ETN , the estimation of the standard error can be noted
as:

SE(ETN ) =
√

ETN × (nN − ETN )

nN
. (2.69)



2.4 Generalization Capabilities of Decision Trees 59

The algorithm of PEP replaces a subtree by a leave when the error estimated for
the node (2.67) is not greater than the corrected error counted for the subtree (2.68)
minus its standard error (2.69).

The procedure is applied in top-down manner, which usually eliminates a part of
calculations, because if a node at high level is pruned, all the nodes of its subtree
need not be examined.

2.4.2.2 Error-Based Pruning

Another way of pessimistic error evaluation gave rise to the Error-Based Pruning
algorithm (Quinlan 1987) used in the popular C4.5 algorithm. Although it is often
described as PEP augmented with possibility of grafting maximum child in place of
the parent node, the difference is much larger—estimation of the pessimistic error is
done in completely different way. Here, confidence intervals are calculated for given
probability of misclassification and the upper limits of the error rates are compared
(for given node as a leaf and the subtree).

From the source code of C4.5r8 it can be discovered that the Wilson’s approach
to confidence intervals (Wilson 1927) was applied. Probably, the reason for such
a choice was that the Wilson’s intervals offer good approximation even for small
samples, which are very common in DT induction. Actually, pruning is required
almost only for nodes with small data samples. Nodes with large samples usually
allow for reliable splits and are not pruned.

Wilson defined the confidence interval at level α for a sample of size n, drawn
from binomial distribution with probability p as:

p + z2

2n ± z
√

p(1−p)
n + z2

4n2

1+ z2

n

, (2.70)

where z = z1− α
2

is the critical value of the Normal distribution for confidence level α.
To determine whether to prune a node N or to keep the subtree, or to graft maxi-

mum child node in place of N , one needs to calculate the upper limit of the confidence
interval for misclassification rate of N as a leaf, the subtree TN and for the maximum
child of N . The decision depends on the fact, which of the three limits is the smallest.

To avoid comparing the quality of the node at hand with all possible results of
pruning its subtree, one can compare just to the best possible shape of the subtree.
However, to obtain the best pruning of the subtree before its root node pruning is
considered, the process must be run from bottom to the root of the tree (as opposed
to PEP, which is a top-down approach).

EBP has been commented as more pessimistic than PEP. Esposito et al. (1997)
argument that although the estimation is more pessimistic, it is so for both the subtree
and its root acting as a leave, which makes the method prune less than the PEP. As can
be seen in the experiments described in Chap. 5, on average, EBP generates smaller

http://dx.doi.org/10.1007/978-3-319-00960-5_5
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trees than PEP. The discussion there gives some explanation about the most probable
reasons of so different conclusions.

The code of C4.5 contains additional tests, controlling the size of result trees. For
example, it checks whether the node to be split contains at least 4 known values (more
precisely 2·MINOBJS, where MINOBJS is a parameter with default value of 2) and
whether the split would not introduce too small nodes (of size less than MINOBJS).
When any of the tests reports the danger of too small DT nodes, the node is not split
(gets closed, converted into a leaf).

Existence of missing values in the data is reflected in the method by weights
assigned to each training data object. Initially each object gets the weight of 1 and in
the case of uncertain splits (splits using feature values not available for the object)
the object is passed down to all the subnodes, but with properly decreased weights
(equal to the proportions of the training data without missing values, passed down
to the subnodes). The numbers of objects in each node are calculated as the sums of
weights assigned to objects instead of the crisp counts.

2.4.2.3 Minimum Error Pruning

MEPAs noticed by Niblett and Bratko (1986), misclassification probability estimates
of DT leaves can be calculated according to the Laplace’s law of succession (also
called Laplace correction). In the case of a classification problem with k classes
c1, . . . , ck , the class probability distribution may be estimated by:

p(ci ) = nN ,ci + 1

nN + k
. (2.71)

Cestnik and Bratko (1991) proposed using a more general Bayesian method for
estimating probabilities (Good 1965; Berger 1985). According to this method, called
m-probability-estimation, the estimates (called m-estimates) are:

p(ci ) = nN ,ci + pa(ci ) · m
nN + m

, (2.72)

where pa(ci ) is a priori probability of class ci and m is a parameter of the method.
It is easy to see that the Laplace correction is a special case of m-estimates,

where m = k and prior probabilities are all equal to 1
k . The m parameter serves

as a coefficient determining how much the raw training data estimations should be
pushed towards a priori probabilities — with m = 0 the raw proportions are effective
and with m →∞ the probabilities become the priors.

Given the probability estimation scheme (2.71) or (2.72), the decisions about
pruning a node are made according to the results of comparison between the proba-
bility of misclassification by the node acting as a leaf, and by the subtree rooted in
the node. Such pruning methods are referred to as MEP (Minimum Error Pruning)
and MEP2 respectively.
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To sum up the differences between MEP and MEP2, it must be mentioned that:

• MEP assumes uniform initial distribution of classes, while MEP2 incorporates
prior probabilities in error estimation.
• MEP is parameterless and the degree of MEP2 pruning can be controlled with m

parameter.
• the m parameter of MEP2 can reduce the influence of the number of classes to the

degree of pruning.

It is not obvious what value of m should be used in particular application. Cestnik
and Bratko (1991) suggested using domain expert knowledge to define m on the basis
of the level of noise in the domain data (the more noise the larger m) or performing
validation on a single separate dataset or in the form similar to the one proposed by
Breiman et al. (1984) and presented in more detail in Sect. 2.4.3.2. More discussion
on validation of the m parameter is given in Sect. 3.2.4.3.

2.4.2.4 Minimum Description Length Pruning

Many different approaches to DT pruning based on the Minimum Description Length
(MDL) principle have been proposed (Quinlan and Rivest 1989; Wallace and Patrick
1993; Mehta et al. 1995; Oliveira et al. 1996; Kononenko 1998). All of them share
the idea that the best classification tree built for a given dataset is the one that offers
minimum length of the description of class label assignment for training data objects.
Such approaches deal with a trade-off between the size of the tree and the number
of exceptions from tree decisions. A nice illustration of the problem is the analogy
presented by Kononenko (1995) of the need to transmit data labels from a sender to a
receiver with as short message as possible. Naturally, the smaller tree the shorter its
encoding, but also the larger part of the training data is misclassified with the tree, so
the exceptions require additional bits of code. In other words, if a tree leaf contains
objects from one class, it can be very shortly described by the code of the class, and
if there are objects from many classes in the leaf, than the class assignment for all
the objects must be encoded, resulting in significantly longer description.

The MDL-based DT pruning algorithm implemented and tested in Chap. 5 is the
one presented by Kononenko (1998), based on the ideas of using MDL for attribute
selection, assuming that the best attribute is the most compressive one (Kononenko
1995).

Given a decision tree node N containing nN training data objects (belonging to
classes c1, . . . , ck), the encoding length of the classification of all instances of N can
be calculated as:

PriorMDL(N ) = log

(
nN

nN ,c1 , . . . , nN ,ck

)
+ log

(
nN + k − 1

k − 1

)
. (2.73)

The first term represents the encoding length of classes of the nN instances and the
second term represents the encoding length of the class frequency distribution.

http://dx.doi.org/10.1007/978-3-319-00960-5_3
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The value of PriorMDL(N ) suffices for the estimation of the description length
of the classification in node N treated as a leaf. The description of the subtree TN

must include the description of the structure of the subtree and classification in all
its leaves. After some simplifications, Kononenko (1998) proposed:

PostMDL(TN ) =
⎧⎨
⎩

PriorMDL(N ) if N is a leaf

1+
∑

M∈Children(N)

PostMDL(M) if N has children nodes,

(2.74)
where Children(N ) is the set of children nodes of N .

Eventually, to decide whether to prune at node N or not, it suffices to compare
the description lengths of the leaf N and the subtree TN and prune when

PriorMDL(N ) < PostMDL(TN ). (2.75)

The condition must be tested in bottom-up manner for all nodes of the tree,
similarly to EBP and MEP methods.

2.4.2.5 Depth Impurity Pruning

Another interesting approach to decision tree pruning was presented by Fournier and
Crémilleux (2002). They defined a measure of DT quality to reflect both purity of
DT leaves and DT structure.

An important part of the quality index is Impurity Quality of a node N in a tree T :

IQNT (N ) = (1− ϕ(N ))βdepthT (N )−1, (2.76)

where ϕ is an impurity measure normalized to [0, 1]. Since the node quality (2.76)
reflects how deep the node occurs in the tree, Depth Impurity of the tree can be
defined just as the weighted average of the quality values of all its leaves:

DI(T ) =
∑
N∈T̃

nN

nN0

IQNT (N ), (2.77)

where N0 is the root node of T .
The definition (2.77) refers to the whole final tree—the depth in the tree must

always be calculated for the whole tree, which is often impractical, because when
pruning a subtree, it is usually more reasonable to focus just on the subtree vs its root
node. Hence, the DI index can be redefined in a recursive form as:

DI(TN ) =
⎧⎨
⎩

1− ϕ(N ) if depth of TN is 1,

β
∑

M∈Children(N )

nM

nN
DI(TM ) otherwise. (2.78)
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The method of Depth Impurity Pruning compares DI(TN ) regarding the full subtree
TN and reduced to a single leaf N . It prunes the node if the DI index for the leaf N
is lower than the one for the subtree rooted at N .

As usual, proper selection of the β parameter is a nontrivial task. There is no
justification for regarding a single value as the best one, so it needs to be determined
in special processes, for example in CV based analysis, as described in Sect. 3.2.4.3.

2.4.3 Validation Based Pruning

Validation is a stage of learning, where models being already results of some initial
learning processes are adjusted with respect to the results obtained for a data sample
different than the one used for the initial learning. It seems a very attractive way of
improving DT generalization capabilities, so it has been applied by many authors.

Among numerous DT validation methods, we can distinguish the group of algo-
rithms that perform only a single initial learning followed by a single validation pass
and the group of those optimizing parameters in multistage processes.

A typical algorithm belonging to the former group is Reduced Error Pruning
(REP), which adjusts the tree to provide minimum classification error for given vali-
dation data. The methods based on single training and validation have a disadvantage
that the resulting DT model is built on a part of the whole training data (another part
is used for validation, so can not be included in tree construction). Therefore, the
methods from the latter group have more possibilities in providing accurate trees.
Naturally, the methods capable of multi-pass validation are also eligible for single
pass validation, but not inversely.

Several validation based pruning methods are presented in the following subsec-
tions. Apart from REP, all other methods presented below use Cross-validation to
learn how to prune the final tree built on the whole training data.

2.4.3.1 Reduced Error Pruning

The most natural use of a validation dataset to adjust the tree trained on another set is
to prune each node, if only it does not increase the classification error calculated for
the validation data. Although the method is called Reduced Error Pruning (REP),
it is advisable to prune nodes also when the error after pruning does not change.
According to Occam’s razor, a simpler model should be preferred, if it provides the
same accuracy as a more complex one. The algorithm passes the validation dataset
through the tree to determine numbers of errors made by each node, and analyzes
all the splits in the tree, starting from those with leaves as subnodes, up to the root
node, by comparing the numbers of errors of the node and the subtree rooted at the
node. When the error count of the subtree is not lower than that of its root node, then
it is replaced by a leaf.

http://dx.doi.org/10.1007/978-3-319-00960-5_3
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A theoretical analysis of why the algorithm often fails to prune the tree, although
large trees are not significantly more accurate than small ones, was conducted by
Oates and Jensen (1999). As a result, they proposed to decide about pruning a node
and its subnodes on the basis of different validation samples. It is easy to do so for
artificial data, if a new sample can always be generated, but not often feasible in
real applications, where data samples are limited, and sometimes so small that even
extracting a single validation sample can significantly reduce learning gains.

2.4.3.2 Cost-Complexity Minimization

Accepting Occam’s razor in the realm of DT induction implies care for as small
trees as possible without decline of models accuracy. This leads to a typical trade-
off condition, because pruning branches of trees built for given training data causes
deterioration of reclassification scores. Breiman et al. (1984) proposed to control the
trade-off with α parameter in a measure of DT misclassification cost involving tree
size defined as the number |T̃ | of leaves of the tree T :

Rα(T ) = R(T )+ α|T̃ |, (2.79)

where R(T ) is a standard misclassification cost.
To determine the optimal value of α, Breiman et al. (1984) defined validation

procedures which estimate performance of the candidate α values and select the best
one. They have proven some important properties of the formula, which revealed
that the pursuit of the optimal value of α can be efficient. First of all, they noticed
the following property:

Property 2.1 For each value of α there is a unique smallest subtree Tα ≺ T mini-
mizing Rα .

It means that if any other subtree T ′ ≺ T also minimizes Rα , then Tα ≺ T ′.
Further reasoning proved a theorem rephrased as the following property, which

laid foundation for Cost-complexity optimizationcost-complexity validation method-
ology.

Property 2.2 There exist: a unique increasing sequence α1, . . . , αn and a decreasing
sequence of trees T1 � · · · � Tn , such that α1 = 0, |T̃n| = 1 and for all i = 1, . . . , n,
Ti minimizes Rα for each α ∈ [αi , αi+1) (to be precise, we need to define additional
αn+1 = ∞).

Less formally: there exists a unique decreasing sequence of αs that explores all
possible trees optimizing Rα , and the trees are also precisely ordered. A natural result
is that to determine all the αs, one can act sequentially, starting with the whole tree
and determining nodes to be pruned, one by one (when it happens that pruning two
or more nodes is conditioned by the same value of α, they must be pruned together).
Formally, algorithm 2.12 presents the method. It is important from the point of view
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of algorithm complexity, that after pruning a node only the nodes on the path to
the root need an update of their αs—recalculating all of them would be a serious
workload.

Provided the algorithm to determine the sequence of αs and corresponding small-
est trees, the optimal α and the optimally pruned tree can be selected, for example,
according to Algorithm 2.13.

Algorithm 2.12 (Determining αs and their optimal trees for cost-complexity minimization)

Prototype: CCAlphasAndTrees(D,Learner)
Input: Training data D, DT induction method Learner.
Output: Sequences of αs and trees as in property 2.2.
The algorithm:

1. T ← Learner.LearnFrom(D)—induce full DT to be analyzed
2. Determine threshold αN for each node N of T
3. i ← 1
4. α← 0
5. repeat

a. Prune all nodes N of T with αN = α (modifies T )
b. Update all αN for nodes N on the path from the root to just pruned node(s)
c. Ti ← T
d. αi ← α

e. α← minN∈T αN
f. i ← i + 1

until |T̃ | = 1
6. return α1, . . . , αi−1 and T1, . . . , Ti−1

The method assumes that two separate datasets are input: one for tree construc-
tion and one for validation. After a tree is built, its all sensible (according to cost-
complexity minimization rule) pruned trees are determined and their accuracy esti-
mated by classification of the validation data. The smallest tree with minimum clas-
sification error is selected as the validated pruned tree.

The situation is slightly more complex, when multiple validation is performed
(for example Cross-validation). In each pass of the CV, a DT is built and analyzed
to determine all the threshold αs and their smallest trees. Similarly, in the final
pass, a DT is trained on the whole dataset and the two sequences are determined.
Unfortunately, the series of αs in each pass of CV and in the final pass may be all
different. To select a winner α all values of the final pass must be examined and
average accuracy estimated for them. Since the sequence contains threshold αs, it is
not the most sensible to check how they would behave in CV. In place of the border
values αi , Breiman et al. (1984) proposed using geometrical averages

α′i =
√

αi · αi+1. (2.80)
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Algorithm 2.13 (Cost-complexity minimization with external validation data)

Prototype: CCTrnVal(Dtrn ,Dval ,Learner)
Input: Training data Dtrn , validation data Dval , DT induction method Learner.
Output: Optimally pruned DT, optimal α.
The algorithm:

1. ((αi ), (Ti ))← CC Alphas AndT rees(Dtrn, Learner)

2. for i = 1, . . . , n do
Rval(αi )← misclassification error of Ti measured for Dval

3. opt ← arg mini=1,...,n Rval(αi )

4. return Topt and αopt

For each α′i proper validation errors are extracted from CV and averaged. The largest
α′ with minimum average is the winner. Formal notation of the algorithm is presented
as Algorithm 2.14. In line 4 of the algorithm, it should be specified what is meant by
α j+1 for maximum j . Breiman et al. (1984) do not propose a solution, but since it is
the matter of the largest α in the sequence, it is reasonable to assume α j+1 = ∞, as
further increasing α to infinity does not change the corresponding optimal tree—for
all values of α in the range [α j ,∞), the optimal tree is a stub with no split, classifying
to the class with maximum prior probability. Such definition is advantageous, because
in all the series, always the last α = ∞ corresponds to maximally pruned tree, where
the root acts as a leaf (sort of baseline, majority classifier).

Algorithm 2.14 (Cost-complexity minimization with CV-based validation)

Prototype: CCCV(D,Learner,n)
Input: Training data D, DT induction method Learner, number of CV folds n.
Output: Optimally pruned DT, optimal α.
The algorithm:

1. Prepare training-validation data splits:
(
Dt

1, Dv
1

)
, …,

(
Dt

n, Dv
n

)
2. for i = 1, . . . , n do(

(αi
j ), (T i

j )
)
← CC Alphas AndT rees(Dt

i , Learner)

3.
(
(α j ), (Tj )

)← CC Alphas AndT rees(D, Learner)

4. for each α j do
RCV (α j )← 1

n

∑n
i=1 Rval

(√
α j · α j+1

)
5. opt ← arg min j RCV (α j )

6. return Topt and αopt
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2.4.3.3 Degree-Based Tree Validation

The idea of the degree of pruning applied in SSV DT (Grąbczewski and Duch 1999,
2000) is based on counting differences between reclassification errors of a node
and its descendants. Pruning with given degree (which is an integer) means pruning
the splits, for which the difference is not greater than the degree. The rationale
behind the definition is that the degree defines the level of details in DT and that
for decision trees trained on similar data (in CV, large parts of training data are the
same), optimal pruning should require similar level of details. The level of details
can be described by the number of leaves in the tree, but then, an additional method
is needed for deciding which nodes should be pruned and which should be left.
The definition of degree of pruning clearly determines the order in which nodes are
pruned. Properties analogous to 1 and 2 are in this case trivial, so are not reformulated
here. To analyze all possible degrees of pruning, tree nodes are pruned one by one
in the order of increasing differences between node reclassification error and the
sum of errors of node children. Such value is immutable for each node, so once
determined it does not need recalculation. Therefore the algorithm collecting pairs
of degrees and optimal trees is slightly simpler than the corresponding algorithm for
Cost-complexity optimizationcost-complexity minimization.

Algorithm 2.15 (Determining degrees of pruning and trees pruned to degrees)

Prototype: DegreesAndTrees(D,Learner)
Input: Training data D, DT induction method Learner.
Output: Sequences of degrees and pruned trees.
The algorithm:

1. T ← Learner.LearnFrom(D)—induce full DT to be analyzed
2. Determine the degrees of pruning dN for each node N of T
3. i ← 1
4. for each degree d determined above, in increasing order do

a. for each node N of T , with all subnodes being leaves do
if dN <= d then prune node N (change into a leaf)

b. di ← d
c. Ti ← T
d. i ← i + 1

5. return (d1, . . . , di−1) and (T1, . . . , Ti−1)

Also the main algorithms performing validation and selecting the best pruned trees
get simpler. To save space only the one based on CV is presented (Algorithm 2.16).
In the case of degrees, no geometrical averages are applied. Average risk is calculated
directly from CV tests, where the errors for particular pruning degrees can be easily
read out.

Instead of direct optimization of the pruning degree, one can optimize tree size
(defined as the number of leaves) and use the concept of pruning degrees, just to
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Algorithm 2.16 (Degree-based DT validation based on CV)

Prototype: DegCV(D,Learner,n)
Input: Training data D, DT induction method Learner, number of CV folds n.
Output: Optimally pruned DT, optimal degree d.
The algorithm:

1. Prepare training-validation data splits:
(
Dt

1, Dv
1

)
, …,

(
Dt

n, Dv
n

)
2. for i = 1, . . . , n do(

(di
j ), (T i

j )
)
← Degrees AndT rees(Dt

i , Learner)

3.
(
(d j ), (Tj )

)← Degrees AndT rees(D, Learner)

4. For each d j :
RCV (d j )← 1

n

∑n
i=1 Rval(d j )

5. opt ← arg min j RCV (d j )

6. return Topt and dopt

determine the order in which the nodes are pruned. To obtain such methods, it suffices
to modify Algorithms 2.15 and 2.16 to handle sequences of leaves counts in place
of the sequences of degrees.

This method is much simpler, easier to implement and a bit faster than the cost-
complexity optimization of Breiman et al. (1984).

2.4.3.4 Optimal DT Pruning

Bohanec and Bratko (1994) proposed the OPT algorithm for construction of the
optimal pruning sequence for given DT. By means of Dynamic programming they
determined an optimal subtree (maximizing training data reclassification accuracy)
for each potential tree size. Then, depending on which final accuracy they were
interested in, they pruned the tree to the appropriate size. Algorithm 2.17 presents the
main procedure of the method. It generates sequences of error counts (for the training
data) and pruned nodes collections for integer arguments denoting the decrease in
the number of leaves, corresponding to subsequent sequence positions. The main
procedure recursively gets the sequences for each child of the node being examined,
and combines the results with the Combine() method presented as Algorithm 2.18,
in a way compatible with the paradigm of Dynamic programming.

To be precise, there is a little difference between this formulation of the OPT
algorithm and the original one: Bohanec and Bratko (1994) did not record the error
counts in one of the result sequences (here named E), but the difference in error
count between the node acting as a leaf and the whole subtree rooted at the node. The
difference is null when the full tree is 100 % accurate. It does not matter either, when
only one tree is analyzed. Some differences in decisions can appear when multiple
validation is performed (for example Cross-validation) to average the scores and draw
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Algorithm 2.17 (OPTimal DT pruning sequence)

Prototype: OPT(N )

Input: Tree node N (let n = |T̃ N |).
Output: Sequences of reclassification errors E = (E[i]) and collections of nodes to be pruned

P = (P[i]) (for each sensible leaves reduction i = 0, . . . , n − 1).
The algorithm:

1. P[0] ← ∅
2. E[0] ← 0
3. for i = 1, . . . , n − 1 do

E[i] ← −1
4. for each subnode M of N do

a. (EM , PM )← O PT (M)

b. (E, P)← Combine(E, P, EM , PM )

5. if N has subnodes then
P[n − 1] ← {N }

6. E[n − 1] ← eN /* eN is the number of errors made by N for the training data */
7. return E and P

Algorithm 2.18 (Combining OPT sequences)

Prototype: Combine(E1, P1, E2, P2)
Input: Sequences of error counts and collections of nodes to be pruned (E1, P1, E2, P2, indexed by

0, . . . , n1 and 0, . . . , n2 respectively).
Output: Combined sequence of reclassification errors E and collections of nodes to be pruned P.
The algorithm:

1. P[0] ← ∅
2. E[0] ← 0
3. for i = 1, . . . , n − 1 do

E[i] ← −1
4. for i = 0, . . . , n1 do if E1[i] ≥ 0 then

for i = 0, . . . , n2 do if E2[i] ≥ 0 then
a. k ← i + j
b. e← E1[i] + E2[ j]
c. if E[k] < 0 or e < E[k] then

i. P[k] ← P1[i] ∪ P2[ j]
ii. E[k] = e

5. return E and P
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some conclusions from the means, but the probability of differences in decisions is
not high.

For binary trees, the sequences are full (no −1 value is left in the E sequence,
because it is possible to get any tree size with pruning. When the pruned tree contains
multi-way splits, it may be impossible to get some sizes, so in the final E sequence,
some elements may stay equal to −1 after the optimization.

The original algorithm was justified from another point of view than improv-
ing classification of unseen data (generalization). Instead, the authors assumed that
the full tree was maximally accurate and searched for the smallest tree preserving
given level of accuracy. Although the motivation for DT validation is different, the
same Dynamic programming scheme can be used to determine expected accuracy of
trees of each size, inside a Cross-validation. The size maximizing expected accuracy
becomes the size of the target tree obtained with optimal pruning of the tree generated
for the whole training data.

The idea is quite similar to that of the degree-based pruning, however it is much
more detailed, in the sense that it analyzes all possible tree sizes, while in the former
algorithm only those resulting from pruning to a given degree (two subsequent trees
may have sizes differing by quite large number, because increasing the pruning
degree from 1 to 2 may prune many nodes in the tree). Naturally, the cost paid
for the increased level of details is an increase of computational complexity of the
method—the dynamic programming optimizations cost much more, so in the case of
large trees the time of learning may get significantly larger. Almuallim (1996) offered
some improvements in the calculations, which under some assumptions reduces the
computational costs, but they are not always helpful. They can be applied when
we are interested in a particular tree size, but for example, in the tests described in
Chap. 5 where many different tree sizes are examined, the simplifications proposed
by Almuallim (1996) are not applicable.

2.5 Search Methods for Decision Tree Induction

Search methods and tree structures are inextricably linked with each other. Traces of
search procedures have the form of trees, and inversely: tree construction is naturally
obtained with search methods. Therefore, also in the area of decision trees, search
methods serve as fundamental tools of induction. The simplest and usually the fastest
search technique is the greedy one, which at each stage preforms a local minimization
to determine the next state and never returns to the previous stages in order to try
alternative solutions. Apart from the term greedy search such technique can be called
many other names. Because of no returns and the goal of class separation (each split
may improve the separation and never deteriorate it), the techniques of depth first
search, best first search, hill climbing and some others are all equivalent in the sense
that they end up with the same tree (just the order of nodes creation may be different,
but it does not cause differences in the final models). As a result, they all can be seen
as the top-down greedy DT induction method formalized as Algorithm 2.1. Such

http://dx.doi.org/10.1007/978-3-319-00960-5_5


2.5 Search Methods for Decision Tree Induction 71

technique is used in vast majority of DT induction approaches, but is not the only
one applicable to the problem. Some applications of Beam search and Lookahead
search, described below, have also been examined.

General Search Aspects

Regardless of the search method used for DT induction it is always important to avoid
unnecessary calculations. When a node split is regarded, a set of split candidates must
be analyzed and the best one selected. The list of candidates must be determined
reasonably, because many of the seeming candidates can be judged in advance as
certainly worse than some others and ignored with no change to the final tree.

When the optimal (with respect to a given criterion) binary split of a continuous
feature is to be found, it is natural that the sensible split points are only those lying
between the values observed in the training data. All split points lying between
the same two adjacent values observed in the training data bring the same split
result, so in practice, only the points in the middle of the interval are taken into
account. Moreover, split quality measures usually have a form of Concave functions
or have other properties that justify ignoring the split points lying between objects
belonging to the same class, because separating them gives lower scores than putting
the neighbors together to one or the other side of the split. Proofs of such properties,
with special attention paid to particular methods, have been published for example
by Breiman et al. (1984, Gini index), Fayyad and Irani (1992b, Information gain)
Grąbczewski (2003, SSV criterion).

In the case of unordered features, the splits are not determined by a point (a real
value) but by division of the sets of symbols into disjoint and complementary subsets.
A subnode is created for each subset, and the training data objects are distributed
to the subnodes, according to the symbols describing them. Some algorithms (for
example C4.5) consider only singletons and split into as many subnodes as the
number of possible symbols of the split feature. In such approach there is just one
way to split on the basis of a symbolic feature. The most serious drawbacks of such
solutions are that they can split the training data into many small datasets without
significant reason, and that split quality measures may give overoptimistic estimates
of the symbolic splits, because of accidental correlation between the (numerous)
symbols and assigned classes. Therefore, often, binary splits are preferred also for
symbolic features. But the number of possible splits may get huge if the number of
possible symbols is large. To check all possible splits one needs to examine 2s−1−1
candidates, where s is the number of possible symbols of the feature. The number
comes from the count of all subsets of an s-element set (2s) and the fact that neither
the empty set nor full set of symbols can be accepted to determine a subnode, and
that a subset and its complement determine the same split, so only one of them
should be used: (2s − 2)/2 = 2s−1− 1. When the number s is large, analyzing each
possible split may be unfeasible and additional restrictions must be applied to reduce
the amount of calculations. A solution based on a subset generator was described in
Sect. 2.2.7 on the SSV algorithm.
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Another aspect of splitting on the basis of single features is bias in feature
selection. When two features are equally informative, they should have the same
probability of being selected as the split feature. If the number of analyzed splits is
significantly different for ordered and unordered features, then a bias can be observed
in favor of one of the types. More thorough discussion of the bias in feature selection
for DT induction is presented in Sect. 2.7.

Lookahead Search

One of the possibilities of more thorough search is to use the methods called looka-
head search. As suggested by the name, such algorithms grow subsequent DT
branches not on the basis of direct split quality measurements, but with some forward
insight to the potential gains of using particular splits. After hypothetical acceptance
of a split, the resulting subnodes are further split, in order to check the quality of
the best possible depth-restricted subtree rooted at the node (the depth is given by a
parameter). The search with depth n is also called an n-ply lookahead search. The
algorithms resemble mini-max search used in game playing, but here, the decisions
at subsequent levels are made by cooperating parties, not by adversaries (with the
same, not competitive, quality measures).

Algorithm 2.19 (Lookahead split selection)

Prototype: LookaheadBestSplit(depth,D)
Input: Lookahead depth, training dataset D.
Output: The split estimated as the best.
The algorithm:

1. for each s ∈ CandidateSplits(D) do
Ns ← Spli t Ahead(depth, D, s)

2. best ← arg maxs Quali t y(T Ns )

3. return best

Formally, we can see the lookahead search algorithms as ordinary top-down DT
induction methods (Algorithm 2.1) with the procedure of best split selection based
on some forward insight. So in fact, it is not a new search method, but a special
split selection method, although its intuitive perception may be different. A natural
instance of such lookahead split selection is presented as Algorithm 2.19. It builds a
branch of a pre-defined depth for each candidate split (with the SplitAhead() method
presented as Algorithm 2.20) and estimates the quality of the split hierarchy. The
split providing the highest quality of the generated branch is returned as the result of
the lookahead split selection. It is important to realize that the quality measure used
in such procedure must be ready for assessment of tree structures, not just single
splits. However, each Split quality measure designed to estimate multipart splits is
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Algorithm 2.20 (Depth-limited splits)

Prototype: SplitAhead(depth, D, s)
Input: Lookahead depth, training dataset D, initial split s.
Output: The root node of the created tree.
The algorithm:

1. if s �= ⊥ and depth > 0 then
a. {D1, . . . , Dn} ← s(D) /* split the node data */
b. for i = 1, . . . , n do

i. best ← Best Spli t (Di )

ii. Ni ← Spli t Ahead(depth − 1, Di , best)
c. Children← (N1, . . . , Nn)

else
Children←⊥

2. return (D, s, Children)

naturally applicable, because each tree can be treated as a single split into the parts
corresponding to its leaves.

The lookahead split selection can be called a meta-level split procedure, as it uses
external method of node split selection (BestSplit()) to build small trees and estimate
their quality. Also the methods CandidateSplits() and Quality() can be arbitrarily
chosen to obtain different effects. In fact, the three functions mentioned above are
the parameters of LookaheadBestSplit(), but are not listed explicitly in the parameter
list to keep the code clearer.

The number of splits to be made in a lookahead estimation, grows exponentially
with the depth parameter, so to avoid large computational overhead, it is not recom-
mended to look deeper than just one level (depth=1).

Beam Search

Greedy selection of the best split at each node would be the only sensible technique,
if the split quality estimation were perfect. As discussed in the beginning of Chap. 2,
optimization of a quality measure at a single node is not the same as optimization
of the overall tree, so sometimes it may be more adequate to select a split of lower
local quality, but providing better data environment for further branch splits, and in
effect, bringing shorter or more accurate trees.

A tool facilitating a number of top-ranked partial solutions to take part in further
pursuit of maximum overall quality is the beam search—the process conducted in
almost the same way as the breadth-first search, but with a limit on the number
of states that can be explored at each level, to prevent combinatorial explosion. In
decision tree induction, the beam is a container for a number of top-ranked partial
trees, which are developed in parallel. So the main difference from the standard
greedy approach is that at each stage of the search, the focus is not only on a single

http://dx.doi.org/10.1007/978-3-319-00960-5_2
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tree but on all models contained within the beam. The size of the beam container
(beam width) is a parameter of the method.

In general, the algorithm operates on so called states (here a state is a tree developed
so far) and iteratively generates new states from the current ones, with the restriction
that only the best ones are placed in the beam and further explored. Algorithm 2.21
presents the scheme formally. It is a general, abstract procedure capable of handling
any kind of states, not just decision trees. At the beginning there is a single initial
state in the beam. In each iteration, all possible children states of the trees contained
in the beam are generated, and the best w of them (the beam width parameter) are
placed in the beam. Since the goal is a single final tree, the search is stopped when
a final state (a complete tree) is found.

Algorithm 2.21 (Beam search)

Prototype: BeamSearch(S, w)
Input: Initial search state S, beam width w.
Output: Final search state.
The algorithm:

1. beam ← {S}
2. while NoFinalState(beam) do

a. children← ∅
b. for each state ∈ beam do

children← children ∪ ChildrenStates(state)
c. beam ← BestStates(w, children)

3. return the final state in beam

Apart from the explicit parameters of the code, the functions called within the main
procedure also significantly influence the process and its results. The most important
of the subroutines is BestStates() which selects the best trees to be put into the beam
of width w. It may compare the children states (here the trees) according to many
different criteria like model accuracy, purity of decision tree leaves, information
measures, MDL criteria and so on. The fundamental difference between application
of these measures and of those used for single split quality assessment is that they
need to compare the whole trees, not single splits. In particular, similarly to the
measures used in the lookahead approach, they have to be applicable to multi-way
splits, because nontrivial trees may split the space into large number of parts. The
other subroutines (NoFinalState() and ChildrenStates()) can also be implemented in
various ways, but their goals are rather straightforward, when the aim of the main
search strategy is precisely defined.

The practice of filling the beam with the best states shows that trivial selection of
the models maximizing criteria like accuracy, amount of information and others is not
the most successful choice. When many children states are generated for each state
in the beam, it often happens that after two or three iterations, all trees in the beam
are very similar. For example, after the first iteration, the beam contains w single split
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trees with different features used for the split, but after the second iteration, the beam
contains w children of the same single split tree. As a result, the time consumption
is significantly larger, but the time is wasted for exploration of almost the same areas
of the model space. A remedy for this is nontrivial beam selection equipped with
tools protecting from appropriation of the whole beam by a close family of trees.
The tools may be some measures of diversity, for example, the ones proposed in the
field of data clustering (Hubert and Arabie 1985; Vinh et al. 2010), as the feature
space partition given by a tree ideally fits the assumption of clustering and similarity
between trees may be determined by means of similarity between the space partitions
they determine.

Broader search means larger complexity of the procedure, so in comparison to
simple top-down greedy DT induction, beam search is naturally more expensive.
The complexity grows by the factor of w (beam width), because in each iteration,
w trees are examined in place of a single one of the greedy approach. Obviously,
one can give examples, where beam search ends in a shorter time than the greedy
search and inversely, where the relative cost factor of beam search is much greater
than w. The former situation may occur when the most attractive split at the root of
the tree requires complicated splits in subsequent levels, while some less attractive
single split perfectly matches some other splits and yields small and accurate tree.
The opposite relation can be observed when beam search rejects the direct solution
of the greedy search, because of finding other seemingly more attractive solutions,
which turn out to be a blind alley.

Beam search has been found attractive not only in searching for single DTs.
Grąbczewski and Duch (2002a, 2002b) have found it useful for generation of a
number of trees to act in ensembles (Decision forests). Small modifications of Algo-
rithm 2.21 to stop the search after a specified number of final states (not just the
first one) is found, gives an opportunity to build forests without much additional
computational effort.

Restrictions on the beam width can be helpful, when combined with the lookahead
search described above (Buntine 1993). It can reduce the increase of computation
time requirements when the lookahead depth is greater than 1.

The Danger of Oversearching

Some authors have reported that using more thorough search procedures (than the
most common, simple hill climbing) is often assisted by a decline in models accu-
racy (Murthy and Salzberg 1995; Quinlan and Cameron-Jones 1995; Segal 1996;
Janssen and Fürnkranz 2009). Their observations mostly concerned classification
rules induction, not decision tree algorithms, however the tasks are so similar, that
they should be subject to the same effects, if the conclusions are derived from general,
reliably prepared experiments.

Murthy and Salzberg (1995) compared greedy DT induction algorithm with a
lookahead approach and concluded that both methods are similarly accurate on aver-
age and pointed out the pathology, that the lookahead approach can generate larger
and less accurate trees than the greedy strategy. On average, the trees obtained with
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lookahead turned out to be shallower, although in many cases it was just the mat-
ter of balance, lacking in the results of the greedy search. The authors proposed a
procedure of balancing the trees based on rotations (without changes to the decision
function). Another conclusion was that pruning can provide better results than looka-
head, because the trees pruned with the cost-complexity optimizationcost-complexity
minimization method (see Sect. 2.4.3.2) to prune the trees on the basis of a validation
dataset consisting of 10 % of the training data excluded before tree construction. The
observation is reasonable, but should not be treated as an argument against more
thorough search procedures, as search and pruning should be perceived rather as
two complementary, not alternative techniques. It seems that larger test errors of the
lookahead method were not a consequence of oversearching, but the effect of pruning
the trees coming from the competing algorithm.

Quinlan and Cameron-Jones (1995) performed some test of beam search applied to
a classification-rules-induction method, where model generalization was controlled
by Laplace error correction (see Eq. (2.71). They presented some experiments where
the rules minimizing the Laplace error estimates turned out to be the less accurate
the larger beam width was used (in the range 1–512 with exponential growth). As a
proposed solution they introduced the layered search method which can be seen as
beam search with changing beam width. They started the search with beam width
equal to 1 (corresponding to hill climbing) and then, in each iteration doubled it.
Such strategy gave more attractive results than both hill climbing and beam search.

The experiments of Quinlan and Cameron-Jones (1995) were repeated and ana-
lyzed by Segal (1996), who noticed that the Laplace error estimation of single rule is
not much correlated with the true error rate calculated on external test dataset. The
“oversearching effect” was a result of poor match between the evaluation function
used for training and the test performance measure. Low accuracies were the result
of ordinary overfitting. Segal (1996) noticed that Laplace error estimation trades off
accuracy for coverage, which is detected by accuracy tests on external data. They
suggested a modification of the Laplace correction, named LaplaceDepth, calculated
for each rule R, and defined as

LaplaceDepth(R) = 1− nc + d · pa(c)

n + d
(2.81)

where c is the decision class of the rule R, pa(c) is the prior probability of class c,
n is the number of examples covered by R, nc is the number of objects from class c
satisfying the rule and d is a parameter. Such evaluation criterion is compatible with
the m-probability-estimation (see Eq. (2.72)). Here the m parameter is named d and,
in the proposed strategy, should be equal to the length of the rule. The modification
of the rule evaluation criterion practically removed the effect of “oversearching”.
Segal (1996) suggested that other measures of rule quality may do even better than
the improved Laplace error.

More recently, Janssen and Fürnkranz (2008, 2009) revisited the problem and,
also seeking the causes of the conclusions about oversearching in Laplace error
estimation, examined nine different heuristics (including Laplace corrected error) in
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experiments with three search strategies applied to the task of decision rule induction.
The search methods they examined were: hill climbing, beam search and ordered
exhaustive search. The latter is an implementation of exhaustive search, optimized to
avoid repeated generation of the same rules. Significant simplification was possible
because of the specificity of the definition of the rule induction problem, where the
form of rules was limited, for example, in such a way that two premises could not
use the same feature, so the features could be analyzed in a strictly defined order.
From illustrations in the article, one can infer that the beam search also had a specific
form. One of the figures and some text suggest that each new beam is created in a
way supporting one child of each state from the previous beam. This is compatible
with the heuristics aimed at beam diversity, described above in the description of the
beam search approaches.

The experiments of Janssen and Fürnkranz (2009) also show that when the error
estimation with Laplace correction is used, the test accuracy tends to deteriorate with
increasing beam width. Nevertheless, for other measures, the results are completely
different. Evaluating the rules by their precision gives stable accuracy plots, almost
constant in the whole range of beam width, while the rules get simpler with larger
beam widths. An example utterly opposite to Laplace error is the odds ratio for which
a significant increase of accuracy was observed with increasing beam width.

To sum up, the conclusions from all the experiments performed to research
the aspects of oversearching in DT and rule induction are not consistent. Some-
times, more exhaustive search improves the results and sometimes deteriorates them.
Dependence on rule quality measures has been reported, but the notifications require
more evidence. The only certain conclusion is that more advanced search procedures
should be used with special care, but should not be forgotten. Future meta-learning
algorithms will certainly help make decisions also about search method selection.

2.6 Decision Making with Tree Structures

Regardless of the strategy of decision tree induction, a method for final decision
making must be selected. The most common approaches are based on the distribution
of data objects of different classes falling into proper DT leaves. When a new data
object is to be classified with a DT, it traverses the tree to discover the most adequate
leaf. Most often, the object is assigned the label of the class dominating within the
leaf. If the classification decision is to be presented in the form of probabilities of
belonging to particular classes, they are usually estimated on the basis of that leaf
(more precisely the training data falling into the leaf), and sometimes on the basis of
all the nodes on the path to the leaf.

Probabilities as Proportions

The simplest method to obtain probability estimates is to calculate the proportions
of objects within the leaf belonging to particular class and all the objects in the leaf:
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P(c|x) = nL(x),c

nL(x)

, (2.82)

where L(x) is the leaf adequate for x . The same notation is used in subsequent
formulae.

Laplace Correction

When the counts of objects within the leaf are small, the proportions do not estimate
real probabilities accurately. For example, when just three or four objects (all of
the same class) fall into a leaf, proportion-based probabilities are binary, claiming
that the probability of finding a representative of any other class in the area is zero.
Usually, such extreme claims are not true. Therefore, some corrections have been
proposed and successfully used in many applications. One of the methods, called
Laplace correction (or Laplace’s law of succession), has already been introduced in
the context of Minimum Error Pruning (see Sect. 2.4.2.3) and is calculated as:

P(c|x) = nL(x),c + 1

nL(x) + k
, (2.83)

where k in the number of classes in the classification problem.

m-Probability-Estimation

Another way of probability correction was proposed by Cestnik and Bratko (1991)
and called m-probability-estimation. It has also been introduced in the section on
Minimum Error Pruning. The corrected probabilities, referred to as m-estimates, are
defined by:

P(c|x) = nL(x),c + m · pa(c)

nL(x) + m
, (2.84)

where pa(c) is the a priori probability of class c and m is the method parameter.
When the a priori probabilities of all the classes are equal, by setting m to the
number of classes, we obtain the formula equivalent to the Laplace correction. In
general, the parameter m defines the “strength of pushing” the proportions towards
a priori probabilities. In a couple of applications, the authors of the idea proposed
using m = 2. It is important to realize that this method may result in different winner
class than the one resulting from pure proportions or those with Laplace correction—
when m → ∞, the probabilities converge to the priors, so the winning class may
be different than the one dominating the data sample of the leaf. Laplace version
of the estimation is compatible with pure proportions when just the winner is to be
determined, but of course, the probabilities have different values, so for example,
combined with others in an ensemble, may also bring significantly different results.
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Path Combined Majority

In LTree family of algorithms Gama (Gama 1997), it is proposed that the decision
making strategy respects class distributions in the nodes of the whole path of the
tree, followed by the data item to be classified. Gama (1997) suggested to calculate
probabilities for each tree node, starting with the root node, down to the leaves, in
such a way that only the root node probabilities are estimated as proportions and for
each non-root node N , its proportions and the probabilities calculated for the parent
node contribute to the final probability estimates:

P(c|N ) = P(c|Parent (N ))+ w nc
nN

1+ w
, (2.85)

where w is a method parameter. With w = 1 (suggested by the author), if the path
from the root node to the leaf NL = L(x) is N0, . . . , NL , then the probability

P(c|x) = P(c|NL) =
L∑

i=0

1

2L−i

nNi ,c

nNi

. (2.86)

Similarly to the m-probability-estimation approach, including class proportions of
parent nodes may significantly change the decisions in relation to the ones calculated
on the basis of the leaf only. Unlike the m-estimates, in this approach, the probabilities
are not pushed towards the prior probabilities, but towards probability distributions
in larger groups of objects (parent nodes). Although the contribution of the root node
plays similar role as m-estimates, because the proportions in the root (that is, in
the whole training data sample) are exactly the same as the estimates of priors in
m-probability-estimation, the influence of the root node on the final values is very
small for longer paths, as its factor is 1

2L .
More sophisticated combinations of path nodes proportions were proposed by

Buntine (1993) and Kohavi and Kunz (1997) as part of their Option Decision Trees
approach. In a Bayesian analysis, they define weights for ensembles of classifiers
extracted from trees. The weights can combine decisions, not only of the options
(different trees), but also of the nodes of a single path. Indeed, the nodes on a path
from the root to a leaf can be treated as separate classifiers combined into an ensemble.
Some more information about the approach can be found in Sect. 2.8.1.

2.7 Unbiased Feature Selection

One of the aspects of decision trees interpretation is feature relevance. When splits
are performed on the basis of single features, it is reasonable to expect that the feature
occurring in a tree node is, in some sense, the most informative one in the context
of class discrimination among the data sample of the node. However, the term “the
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most informative” is not precise, so there is not a unique measure of such feature
relevance. Otherwise, there would exist a single, the most appropriate way to split
DT nodes, and one method would be sufficient for all purposes. Therefore, so many
different approaches to DT induction have been undertaken, and still none has been
announced to outperform all the others.

Despite the fact, that no universal measure exists to estimate feature relevance,
many researchers have been struggling for solutions of the problem of unbiased fea-
ture selection for DT splits. The goal of their research has been to provide methods of
DT induction, that would not favor features because of their accidental relationships
with the target variable.

So fair selection of split variable would provide very valuable information about
the most discriminative features of the data table at hand in the context of particular
task. DT techniques have been successfully used to extract information about feature
importance for the purpose of feature ranking and selection (Duch et al. 2002, 2003;
Grąbczewski 2004; Grąbczewski and Jankowski 2005), but still, conclusions about
feature significance on the basis of feature selection made by a DT induction algo-
rithm should be drawn with special care, especially when strong interaction between
features can be observed.

The problem of variable selection bias has been observed from the early stages of
research on DT induction. In AID (see Sect. 2.9 and Morgan and Sonquist 1963a,b),
performing binary splits by means of dividing the set of possible feature symbols
into two disjoint subsets, more categories of a feature means more split possibilities,
resulting in a bias in favor of the features with many symbols. Kass (1980) proposed
CHAID as a modification of the method to perform significance testing, so as to
nullify the bias.

Similarly, in the efforts of DT induction based on miscellaneous heuristics instead
of statistical tests, such as the one of the pioneer method, ID3, symbolic features with
many possible values are favored, because the more symbols, the larger probability
of coincidental correlation between the feature and the target variable. An extreme
case is a feature with so many values that no value is repeated in the training data.
Then, a perfect split can always be done, but it can be fully accidental, providing
no sensible information, so that a tree using the split is very unlikely to generalize
well the knowledge behind the training data. Probably the most popular enterprise
to reduce the bias was introduction of information gain ratio in place of information
gain in C4.5 algorithm (see Sect. 2.2.3 and Quinlan 1993).

The problem of bias is not specific only to selecting among unordered features with
various counts of possible symbols. It also concerns comparisons between symbolic
and numeric variables. Moreover, in different methods the bias may be in favor
of different groups of features, for example, some methods are biased in favor of
multi-valued symbolic features and some others against them.



2.7 Unbiased Feature Selection 81

Statistical Methods

One of the most popular idea in the approaches to unbiased variable selection for
DT splits is separation of the procedures of feature selection and final split definition
(feature selection and split-point selection).

In so called statistical trees, it has been often realized by application of statistical
tests to estimate feature importance as an opposite of independence between the
feature and the target variable.

A turn to such statistical approach was made by White and Liu (1994), who pro-
posed using χ2 distribution for the purpose of attribute selection instead of measures
like information gain, information gain ratio and Mántaras distance (de Mántaras
1991), which are biased in favor of attributes with large numbers of symbols. The
approaches utilizing χ2 distribution are preferable, because they facilitate sensible
comparisons of results calculated for different attributes. Compensation of the depen-
dence on the number of cells in the contingency tables being analyzed, was obtained
by using χ2 probability instead of the test statistic, as the probabilities are compara-
ble also in the case of different distribution parameters (degrees of freedom), while
the values of test statistics are not. White and Liu (1994) also proposed using G
statistic, defined in the language of information theory for the same purpose.

The idea of using statistical test p-values instead of test statistics directly has been
applied by many more authors in their approaches to unbiased comparisons. In fact,
it is the most commonly used tool of bias elimination efforts.

White and Liu (1994) illustrated their conclusions with simulation results on
datasets with three different class distributions, but all with the assumption of inde-
pendence between the class variable and the predictors.

Because the probabilities coming from theχ2 and G statistics can be approximated
with large error when the expected frequencies are small, White and Liu (1994)
suggested using Fisher’s exact probability test (see Appendix section A.2.4) instead,
in the case of two-class problems. For multi-class tasks, similar approaches can be
developed.

Both ideas of separating feature selection from split selection and making deci-
sions on the basis of p-values of statistical tests have been extensively explored and
applied to several interesting DT induction algorithms proposed by the group of
prof. Loh: FACT, QUEST, CRUISE, GUIDE and others (see Sect. 2.2.5 and Loh and
Vanichsetakul 1988; Loh and Shih 1997; Kim and Loh 2001; Loh 2002).

In FACT, symbolic features are converted into numeric ones, and then, for both
types of features, F statistic is calculated for each variable to estimate its eligibility
for the split. It favors symbolic features, especially those with many possible values.

The solution of QUEST (Loh and Shih 1997) was to reduce the bias by using dif-
ferent statistics (F statisticF and χ2 statisticχ2) to estimate continuous and discrete
features respectively. Final comparisons were performed for the p-values obtained
from adequate distributions. Comparative bias analysis was performed for many pairs
of variables of various distributions by drawing samples according to the distribu-
tions with class labels generated independently from the predictors. The scores of
QUEST were quite close to the value of 0.5, expected in the case of unbiased method.
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The results obtained with FACT and exhaustive search were significantly different
than 0.5 in many of the tests, confirming their bias.

The feature selection strategy of QUEST was so successful that the CRUISE
method of Kim and Loh (2001), published several years later, borrowed this part of
the algorithm for its 1D option. Moreover, it introduced the option 2D, capable of
detecting some interactions between features with negligible bias in variable selec-
tion, similarly to the univariate split analysis (1D). The 2D method, analyzing pairs
of features from the point of view of contingency tables of their joint distributions,
is presented in detail in Sect. 2.2.5.3.

Apart from the null case of bias analysis (assuming no discriminatory power
of the predictors), Kim and Loh (2001) have also examined the problem of bias
created by missing values. One of the predictors was deprived of a part of values
(20, 40, 60, 80 %) to examine how it affected the split feature selection process
(still assuming independence of the target from the predictors). The experiments
confirmed the values of CRUISE solutions, in the sense that they selected each of
the uninformative features with the same probability.

Another study of attribute selection bias was made by Shih (2004), who focused
on the Pearson χ2 statistic used in many approaches to statistical DTs like CHAID,
FIRM (Hawkins 1999) and QUEST family (Loh and Shih 1997; Shih 1999; Kim and
Loh 2001). The simulations performed and analyzed by Shih (2004) were composed
to test two aspect of bias: the null case of class variable independent of five predic-
tors drawn from different distributions (with some missing observations in one of
the variables), and the power studies, testing the abilities to detect an informative
predictor among uninformative ones. In the latter tests, different counts of predic-
tors independent from the target were drawn as Gaussian noise. With the total of 5,
10, 15, 20 input variables, the influence of sample size on feature selection has been
examined. Conclusions are compatible with those from all other similar experiments,
that is, the p-values are more adequate for feature selection than χ2 statisticχ2 and
φ2 statisticφ2 (χ2 divided by the number of cases) statistics.

Bias in feature selection has also been analyzed in the context of problems with
multivariate responses. Some aspects of multi-label classification (where each object
can belong to many classes) have been explored by Noh et al (2004), resulting in a DT
induction algorithm (M2) splitting nodes with a statistic of Nettleton and Banerjee
(2001) for testing equality of distributions of categorical random vectors. In M2,
feature selection is also separated from split determination. Similar experiments as
in other approaches (null case and power tests) are performed to confirm that the
algorithm is unbiased.

An approach to learning multivariate responses by DT models has also been
undertaken by Lee and Shih (2006), who generalized the variable selection method
of QUEST and CRUISE for multivariate responses. They proposed CT algorithm
based on conditional independence tests. The feature selection of CT constructs
3-way contingency tables (with dimensions corresponding to feature values, class
variables, and response layers respectively) and use χ2-test extension to estimate
features with corresponding p-values. Continuous features are split into quartiles
before the 3-way contingency tables are created. Lee and Shih (2006) compared their
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new method with an approach of Siciliano and Mola (2000), where weighted sums of
Gini index reduction for each response component were used to select variables, and
to the M2 algorithm of Noh et al (2004), mentioned above. Both CT and M2 are free
of selection bias (in the null case), but CT is shown as providing higher estimated
probability of selecting the correct covariate when the response vector depends on
that covariate.

Dramiński et al. (2008, 2011) proposed a feature selection method based on a
costly Monte Carlo procedure and thousands of DTs generated for different feature
sets and training data objects. Feature selection based on relative importance of the
features, calculated on the basis of their role in large number of trees, also shows a
negligible bias.

When statistical tests are performed to select split features in DTs, there is also a
simple possibility of bias reduction by means of Bonferroni corrections, respecting
the numbers of possible split candidates available for particular features.

Permutation Tests

Most of the statistical approaches to feature selection for DT splits, discussed above,
share the idea of preparing contingency tables and assessing independence between
each feature and the target, by means of test statistics like χ2 statisticχ2 of G
statisticG. They are statistically correct and successful, if the data samples, for which
they are calculated, are sufficiently large. Then, both χ2 and G are distributed with
chi-squared distribution. Otherwise, the assessment accuracy may be low (Agresti
1990). Unfortunately, in DT induction, dealing with small samples is inevitable,
because the data samples are getting smaller and smaller with subsequent splits.

A robust family of methods has been proposed as a result of applying permutation
tests to the goal of variable assessment. The fundamental advantage of permutation
tests in the context of DT learning is their eligibility for small data samples. Their p-
values can be calculated directly, without passing through χ2 or any other “transient”
statistic. By analysis of all possible permutations of the series of values defining
targets of the training data, one can estimate the probability of observing such input-
target association as in the training data, on the assumption that the input and the
target variables are independent.

Frank and Witten (1998) proposed application of approximate permutation tests
presented by Good (1994). The tests are based on the multiple hypergeometric dis-
tribution. In the approach, appropriate p-values are determined and used for attribute
selection and pre-pruning of decision trees.

The permutation tests framework of Strasser and Weber (1999) has been found
very useful by Hothorn et al. (2004) and Zeileis et al. (2008) for another successful
DT induction approach. The CTree algorithm is described in detail in section 2.2.6.

Bias in Heuristic-Based Methods

Naturally, bias in feature selection has also been a concern of the authors of heuris-
tic based DT induction algorithms. For example, favoring discrete features with
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many possible values became the foundation of information gain ratio of C4.5. Also
Breiman et al. (1984) noted that, when Gini gain is used as splitting criterion, “vari-
able selection is biased in favor of those variables having more values and thus
offering more splits”. The analysis of Quinlan and Cameron-Jones (1995) addressed
the problem of “Fluke theories” that can be selected by DT algorithms, because
they seem accurate, but then, turn out to have low predictive accuracy. Analysis of
multi-valued symbolic variable, means testing many theories, among which such
“fluke theories” may be selected with the higher probability, the more symbols are
possible in the variable. In exhaustive search, the number of tested theories grows
exponentially with the number of symbols.

Kononenko (1995) analyzed a number of DT split measures in the context of
multi-valued attributes, and concluded that for some of the measures, the probability
of selecting a feature increases, and for some other decreases with growing number of
possible feature symbols. Using p-values of statistical tests can bring almost unbiased
decisions, but suffers from the problem of discriminating more and less informative
attributes. When the target is certainly dependent on an attribute, the corresponding
p-value gets the value of 1. Two such informative attributes get the same value,
although one can still be significantly more informative than the other. When both
estimates come from distributions of the same parameters (for example χ2 with the
same degrees of freedom), raw statistic values can be compared to determine which
feature is better, but if the distributions are different, no tool to discriminate the
two variables is available. As an alternative solution, Kononenko (1995) proposed a
criterion based on the MDL principle, which is slightly biased against multi-valued
attributes.

An analysis of bias of the Gini criterion used in CART has interested Dobra and
Gehrke (2001), who proposed a general method to remove bias of such criteria and
showed its application to Gini index. The general method of bias removal consists
of two steps: first the value of split criterion is calculated and then its p-value under
null hypothesis is determined. Dobra and Gehrke (2001) proposed four ways of com-
puting the p-values for split criteria: exact computation (very expensive), bootstrap
estimation (also costly), asymptotic approximations (inaccurate for small samples)
and tight approximations (may be hard to find). The authors presented a tight approx-
imation of the Gini gain.

Another p-value based measure derived from Gini index has been proposed by
Strobl et al. (2005). Their selection criterion based on the Gini gain was inspired by
the theory of maximally selected statistics. To calculate the criterion score, they esti-
mated the distribution function of the maximally selected Gini gain, and calculated
appropriate p-value under the null-hypothesis of no association between the target
and predictor variables. To derive the exact distribution function of the maximally
selected Gini gain, Strobl et al. (2005) used a combinatorial method following the
ideas of Koziol (1991) to determine the distribution of the maximally selected χ2

statistic.
Similarly to other authors studying bias of different DT criteria, Strobl et al. (2005)

performed a null case experiment, where five predictors contained no information
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about the response variable, and power case studies, assuming that one feature was
informative and contained some percentage of missing values.

Concluding Remarks

The pursuit of unbiased feature selection methods for DT induction has brought
several very interesting algorithms, but they still are just some among many possible
approaches and do not guarantee more accurate models, when solving particular
tasks.

It might seem that provided an unbiased method for split-feature selection and
equally valuable split selection algorithm, one can create a perfect algorithm, gener-
ating optimal DT models for all learning problems. The truth is different because of
two reasons:

1. As discussed at the very beginning of the chapter, optimization at node level is
not the same as optimization of tree models.

2. The term “unbiased” sounds almost like “perfect”, but its definition is not as
general as its common sense meaning, and as a result, unbiased methods are not
as robust as they might seem from general statements.

To make the efforts viable, unbiased attribute selection is usually defined as preserv-
ing equal probability of selection of each feature, independent from the response
variable. Theoretical proofs of unbiasedness have nice statistical foundations and
are mathematically correct, but do not have so much practical value as might be
expected, because good behavior for uninformative (statistically independent) fea-
tures does not guarantee fair selection between informative features. Models useful
in practice make decisions on the basis of informative features, so do not fit the the-
oretical frameworks. Experiments, confirming that unrelated features are selected
equally often, are also correct, but do not explore the actual areas of interest.

As it has been pointed out above, p-values of independence tests run for informa-
tive features often are equal to 1, which makes just comparison impossible. When
uninformative features are analyzed, their expected p-values are close to 0.5, and the
analysis is focused on the area of the most changeable part of cumulative distribution
functions, where comparisons may be accurate. When the p-values are equal to 1
and the values of statistics for different attributes are incomparable to each other, fair
feature selection can not be done with such tools.

There is no single, commonly accepted definition of a measure of information
about response variable, contained within an attribute. That’s why so many split
criteria have been proposed and no one seems definitely better than all the others.
Again, the conclusion about the most reasonable strategy of the search for the best
models, directs attention towards meta-learning techniques, capable of

• gathering and drawing conclusions from meta-knowledge about advantages of
various algorithms in various applications,
• making predictions of potential gains resulting from running various learning

machines for particular learning data,
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• making algorithm-selection decisions after validation of models estimated as the
most adequate.

Successful model selection is possible only with a bunch of powerful base-level
learning algorithms, some meta-knowledge and robust, efficient meta-learner.

2.8 Ensembles of Decision Trees

Many researchers have been attracted by the idea of constructing complex models on
the basis of collections of other models. Scientists working in the area of decision tree
induction have been especially prolific in this context. The ideas of bagging, boosting
and other approaches to combining decisions of sets of models are regarded by some
experts as the most significant achievements of computational intelligence research
of the 1990s.

Averaging decisions of multiple models can be justified in many theories. One
of the most sensible way is the analysis on the ground of Bayesian learning theory.
When many models (hypotheses) exist for given training data D, the optimal choice
of the class c ∈ C for a data object x is defined by the Bayes Optimal Classifier:

B OC(x |D) = arg max
c∈C

P(c|x, D) = arg max
c∈C

∑
M∈M

P(c|x, M)P(M |D). (2.87)

Although it is usually not possible to explore the whole space M of possible models,
approximations by some families of probable models are very sensible. Often, a single
model is selected on the basis of a criterion like MAP (maximum a posteriori) or ML
(maximum likelihood):

MM AP = arg max
M∈M

P(M |D) = arg max
M∈M

P(D|M)P(M), (2.88)

MM L = arg max
M∈M

P(D|M). (2.89)

They can be seen as extreme approximations of the M family by one-element sets.
Informally, one can claim that such approximations make more sense than using
random collections of models, because the MAP and ML models are models of
confirmed quality.

More detailed analysis and more information on Bayesian learning theory can be
found, for example, in the (very good) chapter on the subject by Mitchell (1997).

Approximating Bayes Optimal Classifier by a restriction of usually infinite model
space M to a finite set of models M ′ = {M1, . . . , Ms} ⊆ M and estimation of
P(M |D) by some weights wM leads to a classifier estimating class probabilities for
given object x as:

P(c|x) =
∑

M∈M ′
wM · P(c|x, M). (2.90)
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Estimation of the conditional probabilities P(c|x, M) of class c given DT models is
quite easy (although not unanimous, so many authors have proposed their solutions).
More difficult part of the task is finding proper weights wm . Some researchers try
to go further in Bayesian analysis and determine wm = P(M |D) as P(D|M)P(M)

(Buntine 1993), but here also the definition of priors P(M) is not self-evident. In
other approaches, the weights are assumed to be equal (like in bagging and other
unweighted voting scenarios) or are determined by miscellaneous algorithms to
reflect model competence and the strength of its influence on final ensemble deci-
sions.

By averaging decisions of many models, one can also generalize to new varia-
tions, not observed in the training data sample (Bengio et al. 2010). This feature is
unavailable to single DT learners, because the splits are determined on the basis of
the evidence available in the training data.

Building complex models can bring improvement in approximation error, but a
price must be paid for that. Computational costs are the most obvious, but not the only
ones. In the realm of decision tree models, the most significant loss accompanying
the ensemble gains in modeling accuracy is the loss of model comprehensibility. This
cost is especially oppressive, because readable and understandable form is one of the
most important reasons of DT induction popularity and appreciation. Interpretation
of complex models is much more difficult, so different forms of visualization and
explanation of the decision functions are created as some recompense.

Ensembles owe the improvement in accuracy to diversity of their component mod-
els. Only a set of committee members specializing in different subareas of the domain
of learning can introduce new value, when properly combined. Model diversity may
come from different sources (Zenobi and Cunningham 2001; Melville and Mooney
2003; Brown et al. 2005). Two groups of the sources seem the most important:

• different learning algorithms (methods of completely different domains or just
changes in parameters of a single learning strategy),
• different training datasets (sampling, transformations and so on).

Analyzing similarity between algorithms does not seem to make much sense, as
no dissimilarity guarantees diversity of resulting models. Quite often, completely
different DT induction algorithms create very similar (or even exactly the same)
decision trees. From formal point of view, it is not justified to distinguish between
“completely different algorithms” and “small differences in parameters of the same
algorithm”, because even the smallest change in parameter settings results in a dif-
ferent algorithm. It is also quite common that a small change in a single parameter
results in completely different DT model.

Decision tree induction methods are known to be unstable, which means that small
changes of the input data may cause significant changes in the results of learning.
Because of that, in the realm of DTs, manipulating the training sample seems much
more interesting source of model diversity, and has been explored by many scientists.

In construction of ensembles, two techniques can be distinguished with respect
to the fundamental organization of the member learning processes:
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• independent model generation, also called perturb and combine (P&C) approach,
• dependent subsequent models, also referred to as adaptive resample and combine

methods.

The former group facilitates easy parallelization of computations, because each mem-
ber model is generated independently. In the latter approach, ensemble members must
be generated sequentially, one by one, because each next model is constructed on
the basis of the results of all the previous models.

Practical learning problems are usually defined by a restricted set of data object
descriptions that can be used for learning, so that it is not possible to generate arbitrary
many datasets of arbitrary size. Therefore, generation of different training datasets
is not a trivial task. The most popular approaches belong to one of two groups:
resampling and reweighting. Resampling methods generate new sets by selection of
objects from the original dataset (possibly with repetitions). Reweighting techniques
assign weights to each data object from the original dataset and pass the weights to the
learning algorithm together with the dataset. Obviously, such operation makes sense
only when the learning algorithm accepts and can take advantage of such weights in
its learning process.

The most popular approach to independent model generation is bagging (Breiman
1996; Quinlan 1996) described in Sect. 2.8.2. Its original definition was a resampling
method, but a modification to accept weights (called wagging) has also been exam-
ined (Bauer and Kohavi 1999).

The family of algorithms generating dependent models is usually referred to as
boosting and is described in Sect. 2.8.3. The methods are so general that can be used
in the manner of both resampling and reweighting.

Breiman (2001) presented a general view of DT ensembles and presented some
particular algorithms for random forests generation. More on these methods can be
found in a successive subsection.

Many other algorithms have also been proposed to construct ensemble mod-
els. Some authors noticed that partitioning methods like cross-validation can be
successful in building diverse committees (Parmanto et al. 1995; Domingos 1996;
Grąbczewski and Jankowski 2006a; Grąbczewski 2012).

Another idea to collect diverse DT models for ensemble construction is to perform
more thorough search in the space of DT models and collect a number of attractive
trees instead of just a single tree classifier. Beam search is a perfect tool for such
purposes and has been used to induce DT forests based on SSV criterion, also het-
erogeneous ones, that is, using premises concerning distances from prototypes apart
from standard single feature splits (Grąbczewski and Duch 2002a, 2002b).

2.8.1 Option Decision Trees

Option Decision Trees (ODT, Buntine 1993; Kohavi and Kunz 1997) are classification
models comprising many DTs in a single complex structure. Actually, ODT structures
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are equivalent to a number of separate DTs, but thanks to keeping them together, no
common branches are represented in multiple copies. During DT induction process, at
each node, several alternative splits are recorded if possible, and the whole alternative
branches are constructed.

Nevertheless, not the memory saving is the main focus of ODTs. Thanks to col-
lecting alternative splits at each node of the tree, alternative paths are available and
each data object can be classified with respect to many paths, by proper decision
averaging. Buntine (1993) has proposed a framework for Bayesian averaging of
collections of possible decision paths in trees. The framework is applicable also to
single trees, because a set of trees resulting from all possible ways of pruning the
tree can be seen as an approximation M ′ of the space of models of Eq. (2.90). With
the procedure named tree smoothing, Buntine (1993) assigned probabilities to tree
leaves that are reported to estimate class probabilities more accurately.

The most serious drawback of the approach is significant increase of the com-
putation time in comparison to single DT induction techniques. Buntine tested his
algorithms also with more thorough search techniques like n-ply lookahead searchn-
ply lookahead with beam width restriction, but naturally, it additionally increased
the time of computations.

2.8.2 Bagging and Wagging

The term bagging comes from the expression bootstrapbootstrap aggregating (Breiman
1996; Quinlan 1996). Diverse learning machines are created by means of preparing
bootstrap samples for each subsequent learning process. A bootstrap sample drawn
from a given dataset D is a collection of items drawn from D at random, indepen-
dently, with replacement. This shows the inadequacy of the term “dataset”, as in
the bootstrap sample, an object can occur several times. It has been confirmed that
bootstrap samples are successful sources of model diversity.

The technique of bagging is presented by Algorithm 2.22. A predefined number
of bootstrap samples of the same size as the original training data is created and a
model learned from each. Eventually, the decisions of all the models are combined
by ordinary majority voting.

If the learning algorithm applied to generate the ensemble member models can
learn with respect to weights assigned to training data objects, instead of drawing
bootstrap samples, one can just draw weights and pass them to the learning machine.
Such methodology has been named wagging (for weight aggregation, Bauer and
Kohavi 1999) and is presented as Algorithm 2.23.

The definition of the algorithm is very general, as it refers to arbitrary weighting
distribution given as a parameter. Bauer and Kohavi (1999) added Gaussian noise
to each weight with mean zero and a given standard deviation. Because negative
weights do not make sense, each weight value falling below 0 is treated as 0 and
the object assigned such weight has no influence on the learning process (the object
is treated as nonexistent). Increasing the standard deviation of the noise reduces the
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Algorithm 2.22 (Bagging)

Prototype: Bagging(D, s, L)
Input: Training data D containing n objects, ensemble size s, learner (machine) L.
Output: Voting committee.
The algorithm:

1. for i=1,…,s do
a. Di ← bootstrap sample of size n generated from D
b. Mi ← L(Di ) /* train a machine */

2. return the committee {M1, . . . , Ms}

Algorithm 2.23 (Wagging)

Prototype: Wagging(D, s, L , d)
Input: Training data D, ensemble size n, learner (machine) L, weighting distribution d.
Output: Voting committee.
The algorithm:

1. for i = 1, . . . , s do
a. w = (w1, . . . , wn)← weights drawn randomly from d for each data object in D
b. Mi ← L(D, w) /* train a machine */

2. return the committee {M1, . . . , Ms}

training dataset, so increases the bias and reduces the variance of learning, facilitating
some control on the bias-variance trade-off.

When comparing the algorithms of bagging and wagging, it can be noticed that
the learning process is called in different ways. This reflects the difference between
resampling and reweighting that bore the wagging algorithm.

Although the original definition of bagging assumed ordinary majority voting as
the final decision function of the ensemble, the decision module can be modified
in several ways. For example, the combination may reflect probabilities estimation
(of belonging to particular classes) returned by probabilistic classifiers as in the
experiments presented in Chap. 5.

Another interesting technique to improve bagging and wagging results is back-
fitting proposed by Bauer and Kohavi (1999). Because the training data samples
generated for bagging purposes, contain significantly less objects than the origi-
nal data (around 63.2 %, see the explanation below), it is advantageous to feed the
whole original dataset to the tree and estimate class probabilities at the leaves more
accurately. Combined probabilities, estimated in this way, provide better results than
simple voting and then probabilities estimated on the bootstrap samples. Similarly,
in wagging, the training dataset can be passed through the trees with equal weights
for all the objects to obtain better estimation of class probabilities.

http://dx.doi.org/10.1007/978-3-319-00960-5_5
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Error Estimation with .632 Bootstrap

An analysis of bootstrapping in the context of bagging (Efron 1983; Efron and Tibshi-
rani 1997) brings interesting conclusions about learning possibilities. The probability
that a given data object occurs in the bootstrap sample of size n drawn from an input
dataset of size n is equal to

1−
(

1− 1

n

)n

. (2.91)

With n → ∞ it converges to 1 − 1
e ≈ 0.632. Already for n = 24 the value is less

than 0.64. The larger n the closer to the limit. Hence it is justified to approximate
the part of original dataset occurring in the bootstrap sample as 63.2 %.

Because bootstrap samples contain on average just 63.2 % of objects from the
training set, the error estimates are pessimistic. On the other hand, it is obvious that
the error estimate calculated for the data used for training can be too optimistic.
Therefore, Efron (1983) proposed the .632 estimator:

êrr (.632) = .368 · err + .632 · êrr (1), (2.92)

where err is the error estimate calculated from training data (biased downwards) and
êrr (1) is the bootstrap estimate (prediction from classification error calculated for
points not occurring in the bootstrap sample; biased upwards). Efron and Tibshirani
(1997) suggested further improvement of the estimate and proposed a êrr (.632+)

estimate shifting the balance between err and êrr (1) towards the latter, on the basis
of a factor named relative overfitting rate.

Recent studies by Kim (2009), aimed at fair comparison of three approaches
to estimating error rates of classifiers (repeated cross-validation, repeated hold-out
and .632 bootstrap), have brought conclusions that different methods provide the
best estimations for different tasks, depending on the learning sample size and the
classification learner being tested. In particular, repeated CV turned out to be more
adequate for “highly adaptive” classifiers, that is, methods like boosting, capable of
gaining resubstitution error close to 0.

2.8.3 Boosting

The idea of boosting classifiers has been introduced by (Freund and Schapire 1995,
1996, 1997). They have proven some important properties justifying the solutions. In
general, boosting is a method of converting “weak” learning algorithm to a “strong”
algorithm with arbitrarily high accuracy. Because the main means of the method is
adaptive resampling (or reweighting) and combining, Breiman has used the name
arcing for this technique.

Boosting classifiers is a technique of repeated training of a given learning machine
on data samples (or weighted data) generated with respect to probability distributions
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adjusted to the results of previous learning processes. After a number of models is
learnt, they form a committee with properly weighted decisions.

AdaBoost Algorithm

One of the first boosting procedures proposed by Freund and Schapire (1995) was
AdaBoost (for adaptive boosting). The algorithm is still the most popular one of this
kind. It is presented formally as Algorithm 2.24. The method builds a collection of
models on the basis of the training dataset and probabilities px assigned to each object
x of the training set. The learning stage (item 2a of the algorithm) can be realized
in different ways, depending on the preferred (or at all possible) strategy: weighting
or sampling. If the learning process accepts weights assigned to each training data
object, then the training dataset and the weights may be passed to it. Otherwise, a data
sample is derived from the training set with respect to the probability distribution p
and passed to the learning machine.

Algorithm 2.24 (AdaBoost)

Prototype: AdaBoost(D, s, L)
Input: Training data D = {(x1, c1), . . . , (xn, cn)}, ensemble size s, “weak” learner L.
Output: Weighted committee.
The algorithm:

1. for each (x, c) ∈ D do /* initialize the probability distribution as uniform */
px ← 1

n
2. for i=1,…,s do

a. Mi ← Learning(L , Di , p·) /* train a machine with respect to p· */
b. εi ←

∑
{(x,c)∈D:Mi (x) �=c}

px

c. if εi > 1
2 then

i. s ← i − 1
ii. break the loop

d. βi ← εi

1− εi
e. for each (x, c) ∈ D do /* modify the probability distribution */

px ← px · 1

2εi
· β1{c}(Mi (x))

i

3. return the weighted committee M =
(
{M1, . . . , Ms}, {log 1

β1
, . . . , log 1

βs
}
)

:

M(x) = arg max
c∈C

∑
i :Mi (x)=c

log
1

βi

The initial distribution is uniform, so D1 is a bootstrap sample generated in the
same way as in the bagging approach. Then, after each subsequent model Mi is
created, its error εi is calculated and the probability distribution is modified (see
item 2e of the algorithm) to focus the subsequent learning processes more on the
misclassified data objects than on the ones classified correctly. The idea of distribution
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changes is to multiply by βi < 1 (diminish) the probabilities of correctly classified
objects in such a way that the sum of probabilities of incorrectly classified objects
becomes equal to 1

2 (the other half is the sum of probabilities of correctly classified
objects). Hence the factor βi ← εi

1−εi
, because the sum of px for all correctly

classified xs, before the modification is 1− εi , so after multiplication by βi becomes
εi which by definition is the sum for incorrectly classified objects. Therefore, the
factor 1

2εi
restores the properties of probability distribution.

The final decision of the ensemble is made on the basis of combined decisions of
the members with larger weights for more accurate models and smaller for the poorer
classifiers. The goal is reached by the weights specified in AdaBoost as log 1

βi
.

Such formulation of the AdaBoost algorithm has originally been named
AdaBoost.M1 as a modification of the first formulation devoted to two-class prob-
lems. In multi-class classification, one of the most significant weak points of
AdaBoost is the requirement that the errors of weak learners εi < 1

2 . Otherwise,
the factors βi would get larger than 1 and the goal of boosting would get inverted:
the probabilities for erroneously classified objects would be decreased instead of
increased. To remedy this, Freund and Schapire (1995) proposed an algorithm named
AdaBoost.M2, which uses another shape of the models (fuzzy classification by
assigning a value in the interval [0, 1] to each class instead of crisp class assignment),
another scheme of handling the probability distribution and modified ensemble deci-
sion function. The algorithm is less popular, so it is not presented here in detail. It
can be found in the articles by Freund and Schapire (1995, 1996, 1997).

When the error of subsequent model gets larger than 1
2 , the AdaBoost algorithm is

stopped and the ensemble is composed of the models, found so far, without the last one
of too large error (see item 2(c)ii of Algorithm 2.24). Other authors suggest restarting
the probabilities (going back to the uniform distribution) in such circumstances,
instead of breaking the process or preforming the normal scheme of probability
adjustment. After the reset of the probability distribution, the next sample is again
a bootstrap sample. If each model results in error greater than 1

2 , then each sample
is a bootstrap sample, and the member models are the same as in bagging. The only
difference with bagging, in such case, is the weighted decision function of the final
model instead of the majority voting used in bagging.

When a model at some stage perfectly classifies the training data (εi = 0), the
next stage of AdaBoost is not feasible, because the distribution gets degenerate. In
such cases, it is also suggested by some authors to reset the probability distribution
and build next model on another bootstrap sample.

AdaBoost Modifications

Many different variants of AdaBoost can be found in the literature. Three of them have
been used in the experiments described in Chap. 5: conservative boosting (Kuncheva
and Whitaker 2002), averaged boosting (Oza 2003) and averaged conservative boost-
ing (Torres-Sospedra et al 2007).

Conservative boosting (Kuncheva and Whitaker 2002), as suggested by its name,
uses a more conservative method of distribution adjustment. The conservativeness

http://dx.doi.org/10.1007/978-3-319-00960-5_5
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is realized by changing the step 2d of Algorithm 2.24 to

βi ←
√

εi

1− εi
, (2.93)

and replacing the denominator 2εi of the renormalization factor used in step 2e to∑
(x,c)∈D px · β1{c}(Mi (x))

i . The introduction of the square root makes the factor βi

larger, so the decrease of the probabilities assigned to correctly classified objects is
slower and more correctly classified objects are kept in the next training data. The
change of normalization factor is a natural consequence of the modified βi .

Kuncheva and Whitaker (2002) have also tried a version of boosting called

inversed, because by changing the factor from β
1{c}(Mi (x))

i to β
1−1{c}(Mi (x))

i , the prob-
abilities assigned to correctly classified vectors are increased in this approach, while
the incorrectly classified objects get less probable in the next sample. The inversion
is a technique similar in idea, to iterative refiltering, used in the DT-SE family of DT
induction methods (see section 2.3.4).

The algorithm of averaged boosting (Oza 2003) also differs from AdaBoost in
the way it modifies the probability distribution after each step. It also slows down
the changes in comparison to the standard AdaBoost, as instead of the new value
calculated in the AdaBoost manner, it sets new values as the average of all AdaBoost
corrected values from the first stage of the process:

px ←
i · px + px · 1

2εi
· β1{c}(Mi (x))

i

i + 1
. (2.94)

Averaged conservative boosting (Torres-Sospedra et al 2007) is the method com-
bining the ideas of averaged boosting and conservative boosting. The βi factor of
the algorithm is defined by Eq. (2.93), and the probability distribution is corrected
according to the formula

px ← 1

Zi
· i · px + px · β1{c}(Mi (x))

i

i + 1
, (2.95)

where Zi is the renormalization value that guarantees the probability distribution
properties of p. This definition may seem slightly inconsequent, because the average

is calculated from normalized px and not normalized new part px · β1{c}(Mi (x))

i . It
seems more adequate to normalize the new part first and then calculate the weighted
mean, which would not need further normalization as is averaged boosting.

Arc-x4 Algorithm

Breiman (1998) has also undertaken the analysis of adaptive resampling and com-
bining (hence the term arcing). He has examined the original approach of Freund
and Schapire (1995, 1996, 1997) to boosting in application to creating DT ensembles
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and introduced his own ad-hoc algorithm of similar idea. In this work, the original
boosting approach was referred to as arc-fs and the Breiman’s ad-hoc version as
arc-x4. Arc-fs was modified to reset the uniform distribution in the case of εi > 1

2
or εi = 0.

Algorithm 2.25 presents the Breiman’s algorithm formally. The fourth power of
mi,x was chosen as the best of three tested values (1, 2 and 4), so it does not come
from a significant optimality analysis. Even so simple boosting approach turned out
to be quite successful.

Algorithm 2.25 (Arc-x4)

Prototype: Arc-x4(D, s, L)
Input: Training data D = {(x1, c1), . . . , (xn, cn)}, ensemble size s, “weak” learner L.
Output: Voting committee.
The algorithm:

1. for each (x, c) ∈ D do /* initialize the probability distribution as uniform */
px ← 1

n
2. for i = 1, . . . , s do

a. Mi ← Learning(L , Di , p·) /* train a machine with respect to p· */
b. for each (x, c) ∈ D do /* modify the probability distribution */

px ←
1+ m4

i,x∑
(x ′,c′)∈D

1+ m4
i,x ′

,

where mi,x is the number of models in {M1, . . . , Mi } that misclassify x

3. return the voting committee M = (M1, . . . , Ms)

Breiman used resampling to generate each training dataset Di on the bases of the
probability distribution p. Apart from the training set, he used another set generated
in the same way, from the same probabilities p, as a validation set for DT pruning.
It was significantly more efficient than pruning on the basis of cross-validation.

TreeNet

Another boosting approach worth mentioning is a commercial product named
TreeNet. It arose from the Multiple Additive Regression Tree (MART) system dated
back to 1999. The fundamental idea of the approaches is the stochastic gradient
boosting technology of Friedman (1999a,b). Similarly to the boosting approaches
described above, also here, the ensembles are additive models combining a set of
base models:

M(x) =
s∑

i=1

βi Mi (x). (2.96)
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Each subsequent model Mi is selected to minimize the value of a loss function,
determined on the basis of a training dataset. This technique is a very similar to
cascade correlation used for training neural networks, where neurons are added in
sequence to improve the performance of the network on the training set.

The main difference between the methods of MART (or TreeNet) and AdaBoost
is that the gradient boosting methods are devoted to regression, not classification
problems. Naturally, classification tasks can be solved by means of regression tools
with binomial log-likelihood loss function.

The power of the algorithms is in large numbers of DT models combined. Each
single tree learns very little from the data. It can be claimed that high quality of single
DTs is not desired in these approaches. Because of that, the trees are never trained
on the whole training dataset—usually a random half of the data is used for learning
a single tree.

Single trees are not very adequate models for regression goals, because they rep-
resent coarse step functions (piecewise constant). Thanks to combining large num-
bers of trees, quite “smooth” curves can be obtained. Because of large numbers of
combined models, the final models do not share the advantages of single tree compre-
hensibility. Instead, special reports are designed to extract the meaning of the model
in the form of feature importance rankings or graphs illustrating the relationship
between inputs and outputs.

Alternating Decision Trees

Induction of a generalized decision trees called alternating DTs (ADTrees) has been
proposed by Freund and Mason (1999).

As a generalization of DTs, ADTrees can represent standard DTs but also signif-
icantly more complex structures. They have a form very similar to the one of Option
Decision Trees. Similarly to ODT, they can encode many trees in a single structure.
Thus, they can also easily represent voting stumps.

ADTrees consist of two types of nodes (prediction nodes and decision nodes)
that occur interchangeably on tree paths. Each prediction node is assigned a real
value used in decision making on the basis of the structure: all the real values on
the multi-path traversed by an object to be classified are summed and the sign of
the sum decides about classification into one of two classes. An object can follow a
multi-path, not a single standard path, because in a general alternating tree, at each
prediction node, all children are tested and point different further paths.

Decision (splitting) nodes of ADTrees are described with a special form of rules,
where precondition corresponds to the path from the root to the decision node and
condition represents the test of the node.

To learn ADTree models, the authors decided to use a modification of Adaboost
algorithm proposed by Schapire and Singer (1999), because it is suitable for dealing
with real valued predictions of ADTrees.

Freund and Mason (1999) declared that their approach showed results competitive
with boosted C5.0 trees, but usually with smaller and easier to interpret trees. As
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another important advantage, they pointed out that alternating trees give a natural
measure of classification confidence.

2.8.4 Random Forests

Breiman (2001) proposed a general definition of decision tree forests as a collection of
tree classifiers built with respect to random vectors. In the framework, given a random
vector i for each i = 1, . . . , s, a tree is grown for the training data and i . Denoting
i’th DT classification model as Mi : O → C , a random forest is defined as the
majority voting classifier based on the collection of DT models {Mi : i = 1, . . . , s}.
Additionally, Breiman (2001) assumed that the random vectors i were independent
and identically distributed.

Such definition of random forests encircles many different schemes of DT ensem-
bles, for example bagging, where the random vectors i may directly correspond to
the n (n is the number of elements in the training dataset) object indices pointing the
elements of subsequent bootstrap sample.

Boosted classifiers might also fit the definition of random forests, but the assump-
tion of independent and identically distributed i is not satisfied. To be precise,
we may state that boosting algorithms do not conform to the idea of random forest
construction, although each particular boosted model might be obtained with the
scheme.

The definition of random forests is constructed in a way suggesting the algorithm
for growing forests. Such algorithm, for subsequent values of i , draws the random
vector i and then uses it in the learning process to obtain model Mi .

Randomization of the trees composing forests may come from different sources,
for example, training data sampling or different configurations of the DT inducer.
Breiman (2001) analyzed two methods of random feature selection for each DT split
within the CART algorithm:

• random input selection consisting in drawing a small group of input variables (pre-
specified count F) from the set of all features describing data objects and limiting
the analysis of possible splits to the F selected variables only,
• random linear combinations of randomly selected inputs, where F linear com-

binations are generated and analyzed to find the best split; each combination is
determined by random selection of features to combine (of pre-specified size L)
and drawing L coefficients from uniform distribution on [−1, 1].
The randomization idea of random forests was inspired by the article of Dietterich

(2000), where C4.5 algorithm was modified to randomize split selection at each DT
node. The idea was to introduce diversity by means of split randomization without
counting on inducer instability. For each node, the split was randomly selected from
the 20 best splits determined in the normal way. The candidate splits were not pre-
selected in any way, so in special cases, all 20 best splits could involve the same
(continuous) attribute.
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Random feature selection used by Breiman (2001) has additional advantage
of reducing the cost of computations needed for DT induction. The approach of
Dietterich (2000) required the same calculations as normal C4.5 run plus insignifi-
cant time for random selection of the split at each node. In the case of random input
selection, calculations may be much cheaper, because not all features are analyzed,
but only the selected ones. Therefore random forests can easily handle data with large
number of attributes—in practice, the complexity does not depend on the number of
features composing the object space. The speed up and improved scalability certainly
belong to the most attractive properties of the random forests approach.

2.9 Other Interesting Approaches Related to DT Induction

Many more (than described above) algorithms for DT induction have been proposed
by miscellaneous authors. It is not possible to present all the techniques in a sin-
gle article or even book. Many comparative analyses have been performed and are
certainly worth a focus, when searching for interesting solutions. Some reviews and
comparisons have been published by Safavian and Landgrebe (1991), Murthy (1998),
Provost and Kolluri (1999), Anyanwu and Shiva (2009), Rokach and Maimon (2010),
and Kotsiantis (2011).

Miscellaneous Split Quality Measures

The most commonly used and some other interesting split quality measures have
been presented above. Exhaustive discussion of all other methods published by CI
researchers is not possible in this book, but it would not be right to completely ignore
all of them. Therefore, some measures are shortly listed below. Some comparisons of
selected criteria are available in the literature. For example, Kononenko (1995) com-
pared eleven measures and introduced the MDL measure presented in Sect. 2.4.2.4.
Beside the well known measures of Gini index and information gain ratio, he exam-
ined the methods of J-measure, Mántaras distance, average absolute weight of evi-
dence, relief , relevance, measures based on χ2 statisticχ2 and G statisticG statistics
and the proposed MDL measure.

J-measure
(Goodman and Smyth 1988b) was defined for discrete random variables X and Y ,
in the language of information theory:

J (X |Y = y) = P(y)
∑

x

P(x |y) · log

(
P(x |y)

P(y)

)
. (2.97)

It has been used in the ITRULE system (Goodman and Smyth 1988c; Smyth and
Goodman 1992) for rule induction from data and then applied also to DT induction
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(Goodman and Smyth 1988a). J-measure has also been applied to pre-pruning of
DTs, resulting in a method named J-pruning Bramer (2002).

Mántarasdistance
Similarly to information gain and J-measure, Mántaras distance is also defined in
the language of information theory. With the definitions of entropy, joint entropy
and conditional entropy as in formulae (1.8) and (1.9) in the introduction, the
information gain, resulting from the split according to feature A can be written as

I G(A, C) = HC − HC|A = HC + HA − HA,C . (2.98)

Mántaras distance between partitions determined by feature A and class C can be
expressed as

M D(A, C) = 1− I G(A, C)

HA,C
. (2.99)

Absoluteweightof evidence
The measure of absolute weight of evidence has been introduced by Michie (1990)
for two-class problems, but it can be easily extended to multi-class problems by
averaging:

W E(A, C) =
∑
c∈C

pc

∑
a∈A

pa·
∣∣∣∣log

pc|a(1− pc)

(1− pc|a)pc

∣∣∣∣ , (2.100)

where pc|a is the proportion of objects of class c among those with value a of A.

Relief
The relief algorithm was designed to solve feature selection problems (Kira and
Rendell 1992a,b). It adjusts weights assigned to the features (initially zeros for
all features) on the basis of an iterative procedure, which for each data vector
finds its closest positive and negative instances (called nearest-hit and nearest-miss
adequately to the class of the data vector) and increases the weights of features
“responsible” for the distance to nearest-miss and decreases the weights of features
participating in the distance to the nearest-hit (the larger the distance the bigger
the change). An extension of the algorithm has been proposed, that respects k
nearest hits and misses in the analysis (Relief-A). Kononenko (1994) analyzed the
algorithm and proved that if the k is not restricted (all data vectors are taken into
account), then the weight for a discrete feature A (with values in A ) is highly
correlated with Gini index:

Relief(A, C) =
∑

a∈A p2
a·∑

c∈C p2·c(1−
∑

c∈C p2·c)
× Gini’(A, C), (2.101)

where

Gini’(A, C) =
∑
a∈A

⎛
⎝ p2

a·∑
a∈A p2

a·

∑
c∈C

p2
c|a

⎞
⎠−∑

c∈C
p2·c, (2.102)

http://dx.doi.org/10.1007/978-3-319-00960-5_1
http://dx.doi.org/10.1007/978-3-319-00960-5_1
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which differs from Gini index in that it uses coefficients p2
a·∑

a p2
a·

instead of Gini’s

pa· = pa·∑
a pa· .

Relevance index
Baim (1988) introduced the following relevance measure of a partition A with
respect to classes C :

Relevance(A, C) = 1− 1

|C | − 1

∑
a∈A

∑
c∈C

c �=cm (a)

nac

n·c
, (2.103)

where cm(a) = arg maxc∈C nac
n·c . The purpose of the measure was feature selection,

so it perfectly fits the needs of split quality evaluation.

ORT
ORT criterion, introduced by Fayyad and Irani (1992a) measures the quality of
binary splits on the basis of orthogonality of class probability vectors calculated
for the two data subsets resulting from the split. For a data sample D and a test τ

inducing a binary partition on D into Dτ and D¬τ , having class probability vectors
Vτ and V¬τ , respectively, the orthogonality measure is defined as

O RT (τ, D) = 1− cos φ(Vτ , V¬τ ) = 1− Vτ ◦ V¬τ

||Vτ || · ||V¬τ || , (2.104)

where ◦ is the inner (dot) product of two vectors. A comparative analysis of the
ORT criterion and impurity measures defined as concave-maximum criteria has
been presented by Crémilleux et al. (1998).

Kolmogorov-Smirnovdistance
Kolmogorov-Smirnov distance between two distributions f1 and f2 is defined as
the maximum distance between their cumulative distribution functions F1 and F2:

D( f1, f2) = max
x
|F1(x)− F2(x)|. (2.105)

Although in classification problems, the conditional distributions of the classes
with respect to the features describing the data are usually unknown, they can be
estimated on the basis of the data and used as decision rules for recursive partition-
ing (Friedman 1977; Utgoff and Clouse 1996). Kolmogorov-Smirnov criterion for
interval valued variables has been studied by Mballo and Diday (2006). They have
also compared the criterion to Gini index and entropy-based decisions.

DKMcriterion
Dietterich et al. (1996) and Kearns and Mansour (1999)DKM criterion explored
the properties of concave functions on [0, 1], symmetric about 0.5 with maximum
value 1 for argument 0.5 and minimum value 0 at the borders of the interval. The
functions can play the role of impurity measures in impurity-based split criteria
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(see Eq. (2.4)). The criterion based on one of the functions, f (q) = 2
√

q(1− q),
has been later named a DKM criterion.
Hellingerdistance
Cieslak and Chawla (2008) adapted the Hellinger distance for the purpose of DT
induction (HDDT). The Hellinger distance measures the divergence between two
continuous distributions P and Q with respect to a parameter λ as

dH (P, Q, λ) =
√∫

�

(√
P −√

Q
)2

dλ. (2.106)

MAPDTmodel
A Bayesian approach to DT induction has been proposed by Voisine et al. (2009).
Their criterion is used in an optimization process performing search for maximum a
posteriori (MAP) DT model. They claim that the algorithm offers similar predictive
accuracy as the state-of-the-art DT induction methods, with significantly simpler
trees.

CCP
After an analysis of some weaknesses of C4.5 and CART, Liu et al. (2010) proposed
new measure named Class Confidence Proportion (CCP) and CCPDT algorithm
for learning DTs on the basis of the new criterion. To provide statistically significant
decision rules, they check the significance of tree branches with Fisher’s exact test
to decide whether to prune them.

AID Family

One of the first DT induction algorithms with statistical foundations is Automatic
Interaction Detection (AID) proposed by Morgan and Sonquist (1963a,b). In AID
trees, at each binary split the between-group-sum-of-squares (the F statistic) is max-
imized for each predictor, with respect to the groups determined by the dependent
variable. In the case of input variables with ordered categories (called monotonic),
the splits respect the ordering, while for purely nominal predictors (called free), all
possible binary splits are analyzed. This results in a bias in favor of nominal features
with large numbers of possible values, as they provide more possible splits to be
analyzed.

An attempt to nullify the bias brought the CHAID (Chi-Squared Automatic Inter-
action Detection) algorithm (Kass 1980). Reduction of the bias of AID was achieved
by significance testing and using χ2 statistic.

The original definition of CHAID was applicable to nominal dependent variables.
An extension to ordinal target variables has been proposed by Magidson (1993).
Moreover, the technique of merging predictor categories with the same prediction of
the dependent variable facilitated building smaller and more comprehensible DTs.

ID3 Descendants

Especially in the earliest decades of DT research, various modifications of the ID3
algorithm have been published. An example extension is the system NewID (Niblett
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1989; Boswell 1990), using information gain criterion for feature and split selection
(as in ID3) and facilitating analysis of continuous attributes (with similar technique
as in C4.5). According to the assumptions of Niblett (1989), the NewID system was
to operate with a number of split criteria, with the possibility to select the most
adequate one for the data at hand. In practice, to the best of my knowledge, it has
never been accomplished.

Other interesting examples of ID3 extensions are ID4 (Schlimmer and Fisher
1986) and ID5R (Utgoff 1989, 1994) systems, facilitating incremental induction.

Miscellaneous Software

Many ideas estimated by their authors as valuable have been followed by complete
software solutions. Again, it is not possible to address all of them here, but some
arbitrary selection of systems, capable of DT induction, is shortly commented below.

INDpackage
IND is a popular system written in C and C shell languages (Buntine and Caruana
1992) and distributed as opensource. It reimplements such algorithms as ID3, C4,
CART and various MML (Minimum Message Length) and Bayesian approaches
to DT induction.

1R
An idea of very simple classifiers built from a single decision rule (1R) was pre-
sented and tested by Holte (1993). The simple rules can be seen as decision trees
with just a single split (so called decision stumps). It turns out that for many datasets
tested there, so simple method offers similar accuracy as much more complex mod-
els. Naturally, there are also many datasets for which so simple models as decision
stumps are significantly less attractive than more advanced solutions.

TDDT
Top-Down Decision Trees (TDDT) is the name of DT induction algorithm imple-
mented by Kohavi et al. (1996) as a part of MLC++ (Machine Learning in C++)
library, that became a part of the SGI’s MineSet system as SGI MLC++. TDDT is
very similar to C4.5. The most important difference is a change in the split quality
measure, which is the information gain divided by the logarithm of the number of
subnodes generated by the split. The goal of the change was to remove the bias
in favor of splits into many small subnodes (see Sect. 2.7 for more information on
methods dealing with the bias).

SLIQ
The SLIQ algorithm (Supervised Learning in Quest, Quest was the name of a
Data Mining project developed at IBM Almaden Research Center) was created
with special emphasis on its scalability (Mehta et al. 1996). The improvement in
learning time was achieved with the techniques of pre-sorting and breadth-first
growth of the trees. They proposed to sort the training data items once, at the
beginning of the process, according to each ordered feature, to avoid the necessity
of sorting at each tree node. The algorithm deals efficiently with large disk-resident
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training data, although does not get rid of the limits completely, since some data
structures that must be kept in memory grow with the size of the training data.
SLIQ uses Gini index for split selection and three possible methods of pruning
based on the MDL principle.

SPRINT
Speed and scalability were also the most important objectives of the approach
of Shafer et al. (1996), which resulted in the SPRINT (Scalable PaRallelizable
INduction of decision Trees) algorithm. It was designed to remove all the memory
restrictions (as compared to SLIQ, created in the same research group) and to
facilitate parallelization. Shafer et al. (1996) presented both serial and parallel
versions of SPRINT and the results of performance evaluation. SPRINT can be
run with any impurity based split criteria.

RPart
The RPart package (Therneau and Atkinson 1997) is in fact a reimplementation
of the ideas of CART described by Breiman et al. (1984).

RainForest
Gehrke et al. (1998, 2000) created a general framework, that can be used with
many specific DT induction methods (C4.5, CART, CHAID and others) to make
them fast and scalable. The authors claim that the framework offers performance
improvements of over a factor of five over the SPRINT algorithm.

PUBLIC
Rastogi and Shim (2000) proposed to integrate the two stages of standard DT
induction approaches, construction and pruning, in a single procedure, to fasten
the induction process. The pruning procedure founded on the MDL principle makes
it possible to estimate if a tree node would certainly be pruned and save some time
thanks to resigning from further analysis of such a node.

BOAT
Bootstrapped Optimistic Algorithm for Tree Construction (BOATGehrke et al.
1999) is another general framework, applicable to a wide range of split selection
methods. The main idea of the method is to construct an initial tree using a small
subset of the training data and then refine it appropriately. It is guaranteed that
the refined tree is exactly the same as the tree that would result from traditional
ways of induction. The methodology has an interesting possibility of incremental
update to both insertions and deletions over the training dataset.

WhiBo
WhiBo (Delibasic et al. 2011) is an open source platform for white box (component
based) machine learning algorithm design. It has been created as an extension of the
RapidMiner system (Mierswa et al. 2006). The goal of the framework is to facilitate
algorithm design from reusable components that can be extracted from different
successful algorithms. WhiBo offers a set of reusable components, including many
modules for DT induction.
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Miscellaneous Goals and Techniques

Even so well-defined models like decision trees can be analyzed and optimized in
many various ways. Some researchers are especially interested in some particular
features of the models, so they focus on these aspects and are not interested in
penetration of other contexts. This usually results in general techniques, focused on
particular subgoals and applicable to many kinds of components, responsible for
other subgoals of DT induction.

Probabilityestimation
It is sometimes very important to obtain good estimates of probabilities of belong-
ing to candidate classes, when trying to classify new data items with a DT classi-
fier. Focus on probabilities made some authors refer to their models as Probabil-
ity Estimation Trees (PETs). In most applications, class probabilities are derived
from DTs by calculating appropriate data proportions with possible modifications
like Laplace correction or m-probability-estimation (Cestnik 1990; Cestnik and
Bratko 1991). Section 2.6 presents some detailed information about the most pop-
ular methods. A comparison of several algorithms with respect to probabilistic
classification has been conducted by Fierens et al (2005). An approach to dealing
with uncertainty during both DT induction phase and in classification with ready
trees was published by Jenhani et al. (2008). They introduced a Non-Specificity
based Possibilistic Decision Tree (NS-PDT) algorithm and its extended version,
capable of building option trees. Zhang and Su (2006) analyzed probabilities from
the perspective of classifiers yielding large AUC. They proposed a new AUC-based
algorithm for learning conditional independence trees (CITrees).

Multivariate responses
multivariate responses In standard classification problems, there is a single dis-
crete response variable. Some applications concern recognition of several aspects
in parallel, for example in health-related problems, where several separate but cor-
related health problems are to be recognized. Because of correlations, it is often
more appropriate to learn them together than to treat the problems as completely
separate and independent. Zhang (1998) used a generalized entropy criterion and
two other measures, to deal with multiple binary responses. Another set of split
criteria to grow decision trees with multivariate responses has been proposed by
Siciliano and Mola (2000). The new split rules were derived as extensions of cri-
teria used in two-stage binary segmentation. An unbiased method for induction of
multi-label classification trees has been presented by Noh et al (2004). As in most
statistical approaches interested in unbiased feature selection, they separated the
process of variable selection from the search for the best split point. They applied a
test statistic to examine the equality of distributions of multi-label target variable.
Another interesting generalization is the approach of Lee and Shih (2006), who
realized similar ideas as in CRUISE (Kim and Loh 2001), but with the analysis of
3-dimensional contingency tables.
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ConstrainedDTinduction
Garofalakis et al. (2000, 2003) grappled with constructing decision trees satisfying
additional constraints on tree size and accuracy. With such approaches, one can, for
example, define the goal as obtaining properly simple trees of appropriately high
accuracy. More general constraints have been analyzed by Nijssen and Fromont
(2010), who proposed an adaptation of extensively studied methods from the area
of local pattern mining to the field of DT induction.

Three-stageDTinduction
Cappelli et al (2002) came up with an interesting idea to introduce third stage
into standard DT induction processes. After tree construction and validation, they
proposed procedures to guide the search for the parts of tree structure that are
statistically significant, and eventually make the final tree statistically reliable.

Hybridmethods
Seewald et al. (2000) presented a hybrid learning algorithm, defined by simple
modifications of C4.5 algorithm, aimed at local adjustment of inductive bias by
proper selection of leaf-models. In the reduced error post-pruning of C4.5 trees,
they were replacing the original leaf nodes by more sophisticated learning models
like Naive Bayes or instance-based learners. Their experiments confirmed that
such strategies improved performance of created models.
Generalization abilities of a classifier are much larger, when the decision borders
are not restricted to perpendicular to feature space axes, as in classical DT induction
approaches. Linear combinations of features are more robust, but still can not
simply describe nonlinearities. Therefore, Duch and Grąbczewski (2002) proposed
heterogeneous trees, that is, trees with split tests referring to distances from some
points in the feature space. Naturally, the price for more flexibility is increased
computational complexity of the method.
Miningdatastreams
Wozniak (2011) addressed the problem of learning DTs, when new data streams
frequently arrive and dependencies between feature values and classes are con-
tinually changing. These are significantly different learning circumstances than in
the standard approach with static training data.
Recently, Rutkowski et al. (2012) have proposed to use McDiarmid?s bound
instead of the commonly used Hoeffding?s bound, to build DTs for data streams,
that are almost identical with the result of standard DT induction procedures. They
have examined the bounds in application to the information gain criterion and Gini
index.

Upliftmodeling
Rzepakowski and Jaroszewicz (2012) have explored the possibilities of using DT
induction algorithms for uplift modeling, that is, prediction of changes in class
probabilities caused by an action. The main goal of their approach has been to
recognize data objects for which an action causes the most significant change, for
example, to find out the customers that are most likely to respond to a marketing
action. From another point of view, the algorithms can help in deciding which
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action (of several options) to take in order to maximize profit. For this purpose,
Rzepakowski and Jaroszewicz (2012) have proposed some new splitting criteria
and pruning methods.

Largedataanalysisand inductionspeedup
Learning from high-dimensional data or large collections of data objects is also
a very important aspect of DT induction. Some algorithms mentioned above (like
SLIQ, SPRINT and RainForest) address these problems either directly or indi-
rectly. One of the means is parallelization. Srivastava et al. (1999) described
two standard methodologies: Synchronous Tree Construction and Partitioned Tree
Construction, to propose a hybrid method joining the advantages of both.
Amado et al (2001) also derived their new parallel implementation of C4.5 from
an analysis of different approaches to parallelization.
The CLOUDS algorithm (Classification for Large or OUt-of-core DataSets,
Alsabti et al. 1998) samples split points of ordered features to reduce complexity
of the search, which is then run in a reduced area, not exhaustively.
Beside the methods dealing with large data collections, also other techniques have
been proposed to prevent too complex calculations in DT induction processes. For
example, Coppersmith et al. (1999) suggested some techniques to avoid analysis
of all possible partitions of nominal attributes. Because, in general, the problem
of finding optimal partition is very complex, they also proposed a new heuristic
search algorithm based on ordering the attribute values according to corresponding
class probabilities.
Li et al. (2008) developed a clustering-based classification technique Automatic
Decision Cluster Classifier (ADCC) for high-dimensional data. In the method,
a tree clustering model is generated and Anderson-Darling test is used to auto-
matically determine the adequate size of the resulting model. The test procedures
eliminate the necessity of visual cluster validation required in a former approach
of Huang et al. (2000).

2.10 Meta-Learning Germs

So far, meta-knowledge analysis has usually been performed by human experts, as
it is not easy to define standard automated ways that would regularly bring valuable
conclusions.

Each comparison of alternative techniques, analysis of algorithm eligibility for
particular kinds of problems, and drawing conclusions about influence of learning
parameters on the results can be called meta-learning.

Numerous articles discussing the subjects of various split quality measuresplit
quality measures (Mingers 1989b; Buntine and Niblett 1992), different techniques
of pruning methods (Quinlan 1987; Mingers 1989a; Mehta et al. 1995; Malerba et al.
1996; Esposito et al. 1997; Breslow and Aha 1997; Kononenko 1998) or advantages
of using less and more complex search processes for DT induction (Quinlan and
Cameron-Jones 1995; Segal 1996; Janssen and Fürnkranz 2009) are very precious
for the area of meta-learning, although they should be rather treated as a prelude
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to actual science of meta-learning. The early approaches point the need for meta-
learning solutions, as they show that various methods outperform others in various
applications, but there are no simple rules that could easily point the most successful
methods for a dataset at hand.

Bias analysis approaches (Kononenko 1995; Kim and Loh 2001; Shih 2004;
Lee and Shih 2006; Hothorn et al. 2006b) bring some interesting conclusions and
new attractive algorithms, but they do not solve the problem of algorithm selection.
Although the methods are nicely supported by theoretical reasoning, they have two
major disadvantages:

1. They deal with “abstract” definitions, not too compatible with most practical
applications, because the bias is defined and verified for features with no infor-
mation about the target, that is, features that are completely useless for clas-
sification. It does not guarantee proper feature selection when information is
present in the data. Moreover, “proper feature selection” is not even defined in
such circumstances.

2. As discussed in the beginning of Chap. 2, improving feature selection at each
single tree node does not guarantee the best quality of the whole resulting tree.
Optimization of the whole tree is impossible even for very small structures and
not too large sets of features, because the analysis of feature interaction is very
complex.

Techniques used by Option Decision Trees (see Sect. 2.8.1 and Buntine 1993;
Kohavi and Kunz 1997) can be certainly regarded as meta-learning germs, because the
analysis on meta-level, they perform, leads to proper DT ensemble with adequately
combined decisions.

Another example of incorporating meta-learning in the process of DT induction is
the method of Omnivariate Decision Trees (Yildiz and Alpaydin 2001, 2005b; Yildiz
2011), where the kind of decision borders (axis-perpendicular, linear, nonlinear) is
tuned automatically on the basis of meta-analysis.

In the area of rule induction, very close to DT induction, interesting meta-learning
approaches can also be found. An example is the effort of Janssen and Fürnkranz
(2007, 2008, 2010), who investigated the possibility of learning rule induction heuris-
tic from experience. The tools used for this purpose are very similar to those of the
METAL project described in more detail in Sect. 6.1.4.
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Dramiński M, Kierczak M, Nowak-Brzezińska A, Koronacki J, Komorowski J (2011) The
Monte Carlo feature selection and interdependency discovery is unbiased. Control Cybernet
40(2):199–211

Draper B, Brodley CE, Utgoff PE (1994) Goal-directed classification using linear machine decision
trees. IEEE Trans Pattern Anal Mach Intell 16:888–893
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Chapter 3
Unified View of Decision Tree Induction
Algorithms

A thorough analysis of all the algorithms described in the preceding chapter (and
also some other less popular approaches) has brought numerous conclusions on
their similarities and differences. The conclusions have resulted in the uniform view
of DT induction algorithms described here. This chapter is completely different in
form and substance from the previous one. It can be seen like a partial report of
object-oriented design and functionality specification of particular modules, created
for universal modeling of different DT induction algorithms. Common functionality
modules have been extracted from many induction methods and encapsulated to
provide maximum possibilities and reduce communication between modules and
necessary minimum.

From the topmost point of view, the tasks related to building decision tree models
can be split into two separate groups:

• algorithms of tree construction,
• methods of tree refinement that are applied on top of different tree construction

algorithms, including various techniques of post-pruning and approaches like iter-
ative refiltering.

The groups are discussed separately in the following subsections.

3.1 Decision Tree Construction

Following the top-down approach of object-oriented analysis and design, we can
determine components of the tree construction algorithms:

• search method that composes the tree node by node,
• node splitter—a procedure responsible for splitting the nodes,
• stop criterion—the rule that stops the search process,
• split acceptor—the rule that decides whether to accept the best split of a node or

to make it a leaf,

K. Grąbczewski, Meta-Learning in Decision Tree Induction, 119
Studies in Computational Intelligence 498, DOI: 10.1007/978-3-319-00960-5_3,
© Springer International Publishing Switzerland 2014
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Decision tree construction

Data transformation
1 discretization
2 discrete to continuous
3 discrete to indicators
4 feature selection
5 feature extraction

6 class grouping

Search method

1 greedy search – hill climbing

2 beam search

3 greedy with lookahead

Split prospects estimator

1 constant

2 perfect classification prospects

3 perfect SSV prospects

Stop criterion

1 satisfactory accuracy

2 node too small
3 tree has k leaves
4 statistical test
5 all criteria satisfied

6 any criterion satisfied

Split acceptor

1 accept if improved

Tree decision

1 node majority classification

2 branch majority classification

3 Laplace correction

4 m-probability-estimation

Node splitter

1 exhaustive 1D search for splits

2 analyze whole features

3 select feature and split

4 find linear combination and split

Split quality measure

1 classification accuracy

2 Information Gain
3 Information Gain Ratio
4 Gini index
5 SSV criterion

6 permutation tests

Whole feature splitter

1 LDA
2 QDA

3 discretize and test (Cal5)
Split feature selector

1 F or χ2 statistic

2 Q statistic

3 permutation tests

Fig. 3.1 Information flow between DT construction algorithm modules

• split prospects estimator—a procedure that defines the order in which the nodes
of the tree are split—when using some stop criteria, the order of splitting nodes
may be very important, but in most cases it is irrelevant,
• decision making module which provides decisions for data items on the basis of

the tree,
• optional data transformations that prepare the training data at the start of the

process or convert the parts of data at particular nodes.

A sketch of dependencies between the modules is presented in Fig. 3.1. It can
be viewed in terms of classes and interfaces: each box represents an interface and
enumerates some classes implementing the interface. Although one could regard
UML diagrams as more appropriate form of presentation for the object oriented
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design of the system, this form is not used here, because it would take much more
space and would be less readable. In the figure, the solid arrows represent submodule
relation while the dotted ones show the modules used by the search process.

Such amount of extracted interfaces and their implementations as depicted in
Fig. 3.1 is satisfactory for building quite large number of DT induction algorithms
including the most popular ones and many others.

3.1.1 Search Strategies

The search process is the main part of each tree construction algorithm. Its fundamen-
tal function is performed by a method Search() described in the interface 3.1. It uses
the modules passed as parameters to grow the tree on the basis of given dataset D.
Each parameter has its unique functionality and is responsible for some parts of the
DT induction process. The roles of particular modules/parameters are the following:

Interface 3.1 (Search strategies interface)

Method: Search(D, NodeT, NS, SPE, SC, SA, DM)
Input: Training dataset D, data transformation NodeT, node splitter NS, split prospects estimator

SPE, stop criterion SC, split acceptor SA, decision maker DM
Output: Decision tree.

• Data transformation NodeT may be used at each node to somehow prepare the
node data before the split. It may be a way to implement the technique of LTree
family of algorithms, where new features are generated at each node and then
analyzed with a split quality measure like information gain. It can also simplify
the data at particular node after the split of its parent—for example, a feature can
be deleted, when it is useless, because all data vectors share a single value of that
feature. Most algorithms do not use this component.
• Node splitter NS is called at each node to determine the best splits of subsequent

tree nodes.
• Split prospects estimator SPE rarely affects the resulting tree. Many algorithms do

not use such component at all. If used, it defines the order in which the nodes are
split. The order may be important when using a stop criterion that acts globally,
for example, sends a stop signal when the tree gets a predefined size.
• Stop criterion SC decides when to stop further growth of the tree. Usually, further

splits are rejected when the nodes are pure enough or get too small.
• Split acceptor SA is a module used by algorithms, which decide a posteriori,

whether the split should be accepted or not: first, the split is determined, and then
accepted or withdrawn (if withdrawn then the node is converted back into a leaf).
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• Decision module DM of the tree does not drive the search process, and its presence
among the modules required during search processes may surprise, as it is rather
related to using a ready tree, not tree construction. The reason of passing it to the
search process is that from technical point of view, cooperation between the two
modules may be very advantageous. For example, the decision module may prepare
some information for further decision making just in time when the information is
available, that is, during the search process. When such information is extracted,
some data like the training datasets of particular nodes may be discarded from
memory, which improves the efficiency of the process.

As described in Sect. 2.5, almost all approaches to DT induction use the same
search method: they split the nodes recursively starting with the root node, down to
the leaves. For better understanding of the general scheme of cooperation between
the search process and other modules, algorithm 3.2 presents the implementation
of the Search() method of the standard top-down DT induction.The code has been
reformatted to get rid of programming language specifics and non-crucial technical
stuff. Although not very short, the algorithm should be readable without the need of
great programming skills. It shows how particular modules can be arranged to per-
form hill-climbing search. The implementation is very precise but still very flexible,
because separation of particular functionalities facilitates using different implemen-
tations of the interfaces by simply passing appropriate objects as the arguments. As a
result, the same (configurable) algorithm is the base of all classical top-down splitting
DT algorithms.

Recursive nature of greedy search procedure has been replaced by iterative one,
based on a queue of nodes awaiting a split. The queue is not a classical LIFO (last-in-
first-out) structure, but an ordered collection. Most DT induction approaches do not
need the order, but in some cases, we want to make the most improving splits first and
to stop before the whole tree is built, hence the order of splitting is important. For this
purpose, the (rarely used) split prospects estimator object has been introduced. Its goal
is to measure potential separability power of nodes, so that the most promising ones
are split first. One could reproach the solution for wasting time on order management,
since in most cases it is not necessary, but it needs to be pointed out that properly
implemented heap structure allows to add and remove elements in constant time,
when all keys are equal.

At start, the root node of the tree is created and added to the queue (item 3). Then,
the most promising node is repeatedly popped from the queue, until the queue gets
empty. When popped out, each node is analyzed and if the stop criterion is not satisfied
(item 4c), the optimal split is determined (item 4e). After optional verification of split
acceptability (item 4(f)iii), each child node is pushed to the queue for further analysis
(item 4(f)iv).

Getting the best split from the node splitter is performed with a call to BestSplits()
function (item 4e), which receives, maybe unexpectedly, two parameters (here 1 is
passed as the second one). The second parameter tells how many best splits should
be returned. In hill climbing, it is set to 1, but other methods may need more than
one candidate split, so the interface of node splitters is ready for that.

http://dx.doi.org/10.1007/978-3-319-00960-5_2
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Algorithm 3.2 (Hill-climbing search for DT)

Prototype: Search(D, NodeT, NS, SPE, SC, SA, DM)
Input: Training dataset D, data transformation NodeT, node splitter NS, split prospects estimator

SPE, stop criterion SC, split acceptor SA, decision maker DM.
Output: Decision tree.
The algorithm:

1. tree← new tree for D with root only
2. queue← empty ordered queue of candidates to split
3. queue.Add(SPE.SplitProspects(tree.Root, D), tree.Root)
4. while queue is not empty do

a. node← node from queue of maximum estimated prospects
b. node.trainingInfo← DM.TrainingInfo(node, node data)
c. if SC.ShouldStop(node, node data, tree) then continue with next iteration
d. D← if NodeT is given then NodeT.Transform(node data) else node data
e. split← NS.BestSplits(D, 1)
f. if split �= ⊥ then

i. children← perform the split for D
ii. if children = ∅ then continue with next iteration

iii. if SA is given and not SA.SplitAcceptable(node, tree, D, children data) then
convert node to a leaf and continue with next iteration

iv. for each child ∈ children do /* enqueue the children */
queue.Add(SPE.SplitProspects(child, child data), child)

5. return tree

As mentioned above, the proper action of decision maker takes place after the tree
is ready, but during the construction phase, it may be advantageous to prepare some
data for further actions and to help in saving memory during the induction process.

A data transformation may be run just before each node is analyzed in the pursuit
of the best splits (item 4d). It facilitates adding many interesting possibilities of the
general algorithm.

Other search methods, like beam search, are implemented as other implementa-
tions of the search method interface. The lookahead search for DTs can be obtained
by the hill-climbing method run with proper node splitter, capable of the lookahead
functionality. Authors of new search methods should focus on the idea of the search
and use the other interfaces to run their functionality, as it is usually done in object
oriented programming.

3.1.2 Node Splitters

Node splitting methods are probably the most diverse among the components of
DT induction algorithms. The literature offers so many examples that Fig. 3.1 can
hold just a very short excerpt of the list of solutions. General specification of their
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functionality is quite simple, as presented in the listing of interface 3.3. It contains
just one method that, given a data sample D and a number n of splits to be returned,
examines the data and returns up to n splits selected as the best ones found. Parameter
n defines the maximum number of splits to be returned. The result collection may
be smaller when the method is not capable of finding n splits.

Interface 3.3 (Node splitter interface)

Method: BestSplits(D, n)
Input: Dataset to be split D, the count n of best splits to return.
Output: A collection of candidate splits.

To realize the methods described in Chap. 2, four kinds of implementations of the
node splitter interface have been defined:

Exhaustive one-dimensional search
The most often used strategy is to test all possible splits (within a specified family)
and select the best ones. It has been applied in algorithms like CART, C4.5, SSV,
LMDT, OC1 and many others. Continuous features are usually split into two intervals
by a single threshold value. Unordered ones can be split into as many subnodes as the
number of values they possibly have. In utter approaches, binary splits of unordered
features are obtained by checking all possible subsets of the set of feature symbols.
Less extreme methods use some heuristics to restrict the number of subsets to analyze.

Select feature and split
Algorithms like Cal5, CTree and the family of FACT, QUEST and CRUISE, separate
split selection into two stages: feature selection and split selection. This technique
is aimed at minimizing bias in feature selection and reduction of computational
complexity of single split determination.

Find features combination and split
Some oblique DT induction methods (for example OC1) generate splits by extracting
new features as combinations of the original ones, and using them for the splits.

Whole feature analysis
Yet another possibility is to generate one split for each feature and then compare the
results to find out the best one. Such solution is conceptually and computationally
intermediate between the exhaustive search and the methods splitting only one feature
selected with separate tools. An option of Cal5 performing entropy based feature
selection worked in this way, but also each other method of separate feature selection
and split procedures can be modified to do so.

Each node splitting method can be further analyzed to extract some separate ideas,
define interfaces and their implementations. Three such examples are included in
Fig. 3.1. Methods of the split quality measures group can cooperate with a general
exhaustive search procedure by taking responsibility for estimation of each single

http://dx.doi.org/10.1007/978-3-319-00960-5_2
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split quality. Routines of “whole feature analysis” and “separate feature selection
and split” have also been designed as general methods using subroutines focused on
particular splitting. The feature selection part is also done by separate, specialized
modules (different for FACT, QUEST and so on).

3.1.3 Stop Criteria

Before splits are searched for, it can be verified if the efforts should be undertaken.
Implementations of stop criteria (interface 3.4) must contain a single ShouldStop()
method.On the basis of the node, its training data sample and the whole tree, they
should determine whether further splitting should be tried or not.

Interface 3.4 (Stop criterion interface)

Method: ShouldStop(Node, Data, Tree)
Input: Tree node to be split (Node), training data corresponding to the node (Data), the whole tree

(Tree).
Output: Boolean value indicating whether to stop splitting.

An obvious stop criterion occurs when the node splitter returns no candidate splits.
In fact, such situation is not regarded as a subject to analysis by stop criteria. The
code of hill-climbing search (algorithm 3.2) handles this case separately from split
criteria (see items 4e vs 4c).

Commonly, splitting is ceased when the node is pure enough. Its purity may be
measured in many ways, but the most common (in the context of stop criteria) is
node accuracy. Sometimes maximum possible accuracy is required. In other cases,
some error is accepted and a threshold is defined as acceptable number of errors or
error percentage.

Some authors decide not to split small nodes. Again a size threshold must be
provided to precise what “too small” means.

Another possibility is to stop splitting when the tree has reached an assumed
complexity (number of leaves). Such strategy may be used when one needs to save
time and wants to get trees of some size (not to grow full trees). To prevent growing
just a single branch, the technique should be used together with proper split prospects
estimator, to guarantee that the nodes with possible large improvement are split before
the less promising ones. Another way to prevent unbalanced trees is to use search
methods that grow the tree in a balanced way (for example breadth-first search).

Algorithms like Cal5 or CTree join stop criteria with split feature selection,
because when it is not possible to reject any hypothesis claiming target indepen-
dence from the features, it can be suspected that no split can be useful and stop
decision should be made. Although such functionality resembles the function of stop
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criteria, this is an example of an implicit stop rule, because its result is that an empty
collection of split candidates is returned by the node splitter module and a leaf is
created not because of a stop criterion, but as a natural consequence of no possibility
of further splits.

Stop criteria may also be combined in a manner corresponding to logical operators
“and” and “or”. Formally, such combinations are also split criteria (hence listed in
Fig. 3.1).

3.1.4 Split Acceptors

When the best possible split may still be assessed as not satisfactory, it is rejected
and the node it was to split, becomes a leaf. To determine whether to accept a
split or not, the functionality of interface 3.5 must be implemented.The method
SplitAcceptable() gets the information about the node, the tree, and the training data
samples corresponding to the node being split and to its daughter nodes. It outputs
the decision whether the split should be accepted or not.

Interface 3.5 (Split acceptor interface)

Method: SplitAcceptable(TreeNode, Tree, Data, SplitData)
Input: Tree node to be split TreeNode, the whole tree Tree, training data corresponding to the node

Data, collection of datasets after the split SplitData.
Output: Boolean value indicating split acceptance.

Most of the algorithms unconditionally accept the splits and leave the task of split
quality verification to pruning methods. Some methods, like FACT, verify whether
splits improve tree classification and accept them only when this condition is satisfied.

3.1.5 Split Prospects Estimators

In typical DT induction by recursive splits, the order of splitting is not significant.
When tree branches are not grown maximally, the order may become very important.
For example, when the target binary tree is to contain maximally seven leaves, after
splitting the root node, it would not be right to focus on one arbitrary subnode
only and generate a subtree with six leaves while keeping the second subtree as
a leaf. To maximize the expected value of tree accuracy, it is sensible to always
split the node which seems the most promising. Naturally, there are many possible
ways of defining what “promising” means. The heuristics acting as split prospects
estimators implement interface 3.6. Its SplitProspects() method returns a real value
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corresponding to the predicted gain resulting from further splits of the node given as
a parameter together with the corresponding training data sample.

Interface 3.6 (Split prospects estimators interface)

Method: SplitProspects(Node, Data)
Input: Tree node to examine (Node), training data corresponding to the node (Data).
Output: Real value indicating prospective gain of further splitting.

In the search implementation presented as algorithm 3.2, the value returned by
SplitProspects(), serves as the 3key in a key-value heap structure. In general, adding
items to the heap and removing the item of the largest key are operations of complexity
O(log n), where n is the number of elements in the heap. When the order of splits
is irrelevant, an estimator returning the same value for all splits may be used. If all
items in the heap have the same key, new elements are added in constant time (O(1)),
because the heap property is always preserved. Also, removing the maximum key
element (the root of the heap) is performed in O(1), because after single move of
the last element to the root, the heap is still correct.

Another natural solution is to estimate node split perspective as the maximum
possible accuracy gain of further splits. Then, the nodes have no larger key values
then their parents, so most often, the nodes are added to the heap in decreasing order.
When an item is added with key value not greater than the minimum key in the heap,
the time complexity of the operation is also O(1). Removing from such heap costs
O(log n) of time, but it must be kept in mind, that the heap size n is the number of
nodes waiting for splits, which is close to the length of the path being analyzed, so
such solution is also very efficient.

3.1.6 Decision Making Modules

The target functionality of decision tree models is to assign class labels or real
values to data objects. Decision making modules have been extracted to focus on
this task. Also this aspect of DTs is not unambiguous, so various methods have been
proposed. An analysis of possible solutions has resulted in interface 3.7, which must
be implemented by decision making modules. The main method of the interface is
Decision(), which gets the decision tree and a dataset of objects, and returns adequate
collection of decisions assigned to subsequent data items, calculated on the basis
of the tree. Optionally, when classification DTs are regarded, apart from the most
probable class assignment, each object can be described with a number of weights
corresponding to particular classes (often interpreted as probabilities of belonging
to the classes).
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Interface 3.7 (Decision making interface)

Method: TrainingInfo(Node, Data)
Input: Tree node to examine (Node), training data corresponding to the node (Data).
Output: An object prepared for the purpose of further decisions.

Method: Decision(Tree, Data)
Input: Decision tree (Tree), data to make decisions about (Data).
Output: Decisions for all data objects, optional weights for the objects.

Aside the main functionality, additional method TrainingInfo() has been included
in the interface. The auxiliary method is called during the tree construction process
(as discussed earlier, in the context of algorithm 3.2) to extract the information
required for further decision making. It helps reduce memory consumption, because
after the necessary information is extracted, the training data sample is no longer
used and can be released from memory. So, in fact, the method is introduced for
technical purposes, not because of the algorithmic substance. It could also be moved
to another interface, specializing in describing DT nodes, but since the main goal of
the description is to make decisions based on the trees, it has extended the decision
making modules functionality.

In DT classifiers, the decision making module usually determines target values
according to the class distribution in appropriate tree leaf, however other solutions
have also been proposed. Several selected methods can be found in Sect. 2.6.

3.1.7 Data Transformations

As mentioned in the comments on hill-climbing implementation, the data sample at
each node may be transformed, before a node splitter is applied. Data transformations
are optional. When supplied, they should just transform one data sample into another.
Formally, interface 3.8 must be implemented.

Interface 3.8 (Data transformation interface)

Method: Transform(Data)
Input: Data to be transformed (Data).
Output: Data after transformation.

Data transformation objects are a perfect mean to realize the algorithms of the
LTree family (see Sect. 2.3.3), as they add new features at each tree node before the
analysis. They are also helpful, when split methods require data in some specific
form, for example, discretized or described in the space of continuous features only.

http://dx.doi.org/10.1007/978-3-319-00960-5_2
http://dx.doi.org/10.1007/978-3-319-00960-5_2
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3.1.8 Some Implicit Details

Not all techniques used in DT algorithms have been visualized in Fig. 3.1. For exam-
ple, there are many different ways of dealing with missing data or reflecting clas-
sification error costs in the tree building processes and in final decision making.
Such techniques are easily incorporated into data transformations (missing value
imputations), split quality measures (error costs), tree decision making (surrogate
splits of CART), and so on. Offering some of these solutions, requires special data
representation (for example, including misclassification costs or using importance
weights assigned to objects). Therefore, compatibility issues must be kept in mind
when designing such components, so that they can successfully cooperate with all
other modules composing the induction method.

3.2 Decision Tree Refinement

Miscellaneous methods aimed at as good generalization of DT models as possible
are described in Sect. 2.4. According to the taxonomy, presented there, three groups
of such methods can be distinguished for the purpose of the unified model of DT
induction algorithm:

• stop criteria (pre-pruning methods),
• direct pruning methods (post-pruning with no separate validation dataset),
• validation methods (post-pruning with single or many validation passes).

Each of the three approaches must be implemented in different way, in a practical
data-mining system. The unified framework, described here, offers adequate solu-
tions for each of them. Specific aspects of each implementation are discussed in
subsequent subsections.

3.2.1 Stop Criteria

The concept of stop criteria is intrinsic to the tree induction process, although its
aim is very close to tree pruning methods. The stop criterion interface and its most
natural implementations have been presented in Sect. 3.1.3.

Simple stop criteria have proven to be far from satisfactory. In many publications
they are referred to as significantly worse than numerous post-pruning methods.
Therefore, most approaches use one of the two other strategies, that is, build complete
trees, possibly overfitting the training data and then try to prune them appropriately.

http://dx.doi.org/10.1007/978-3-319-00960-5_2
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3.2.2 Direct Pruning

According to the definition, direct DT pruning methods perform their task directly
on the basis of the full DT and the information about training data distribution
among tree nodes. Most often, the techniques belonging to this group analyze the
training process with statistical tests and, on the basis of their results, prune nodes or
keep tree splits. Therefore, they can be designed as simple transformations of DTs,
which receive a DT and return another DT. No more inputs or outputs are necessary
to perform the tasks, just the tree structure and information extracted by decision
making module’s TrainingInfo() method.

3.2.3 DT Validation

Validation methods are more complicated than direct pruning methods. As described
in Sect. 2.4.3, this group of algorithms may be further split into two subgroups:
performing single-pass validation and based on multi-pass validation.

Single pass-validation is very simple. It is presented as algorithm 3.9. Its input
parameters are separate training and validation data samples (DT and DV ), a DT
induction algorithm (Learner) and a validation procedure (Validator). Given the
four parameters, the algorithm learns a tree (with Learner) for DT and validates
the resulting tree on DV with the Validator. The validation process is split into two
parts: method Validate(), which extracts the information about the validation and
PruneOptimally(), capable of pruning given tree according to the validation results
extracted with Validate(). The split may seem unnecessary here, but it allows the
multi-pass validation methods to act as single-pass validators.

Algorithm 3.9 (DT learning with single-pass validation)

Prototype: LearnDTSingle(DT , DV , Learner, Validator)
Input: Training data (DT ), validation data (DV ), DT learner (Learner), DT validator (Validator).
Output: Decision tree.
The algorithm:

1. tree← Learner.LearnFrom(DT )
2. validationInfo← Validator.Validate(tree, DV )
3. tree← Validator.PruneOptimally(tree, validationInfo)
4. return tree

The general idea of multi-pass validation is presented as algorithm 3.10.Its para-
meter list is slightly different than the one of single-pass validation. Here, only one
data sample D is given, as multiple training and validation samples are generated
inside the algorithm by means of the parameter named Distributor. At the beginning

http://dx.doi.org/10.1007/978-3-319-00960-5_2
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of the algorithm, the Distributor generates a collection of pairs of data samples for
n passes of training and validation. Then, for each pair of data samples (Dt

i , Dv
i ),

the Learner is run to induce a DT from Dt
i , which is validated on Dv

i by the Valida-
tor. The validation results are collected into V, which then serves as the source of
information for determining what optimal pruning means in this particular situation.
Finally, in item 3, the final tree is induced and, in item 4, pruned optimally by the
Validator on the basis of validation information V.

Algorithm 3.10 (DT learning with multi-pass validation)

Prototype: LearnDTMulti(D, Distributor, Learner, Validator)
Input: Training data (D), training and validation datasets distributor (Distributor), DT learner

(Learner), DT validator (Validator).
Output: Decision tree.
The algorithm:

1. (Dt
1, Dv

1 ), . . . , (Dt
n, Dv

n )← Distributor.PrapareTrnValData(D)
2. for i = 1, . . . , n do

a. Ti ← Learner.LearnFrom(Dt
i )

b. Vi ← Validator.Validate(Ti , Dv
i )

3. tree← Learner.LearnFrom(D)
4. tree← Validator.PruneOptimally(tree, V)
5. return tree

Thanks to such design of algorithms 3.9 and 3.10, they can be given any compatible
validation object, implementing validation interface 3.11,

Interface 3.11 (DT validator interface)

Method: Validate(Tree, Data)
Input: Tree to validate (Tree), validation data sample (Data).
Output: An object describing results of validation.

Method: PruneOptimally(Tree, ValidationInfo)
Input: Decision tree (Tree) to be pruned, collection of validation results (ValidationInfo).
Output: Decisions tree (pruned Tree).

that is, capable of gathering validation information (method Validate()) and pruning
DTs according to the information gathered in one or more validation passes (method
PruneOptimally()).
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3.2.4 Pruning Methods Parameters

One of the aims of learning-machines unification is to facilitate equitable compar-
isons of different implementations of the same interfaces by putting them in the
same environment, so that the differences in results can unambiguously point the
real causes of results improvements and declines.

Each DT pruning or validation method has been published with its own set of para-
meters and often with some auxiliary solutions, which in a unified framework must be
pulled out and separated from the main algorithm. Apart from the parameters closely
related to specific functions of the methods, there are some parameters, applicable to
most (or even all) of the methods performing similar tasks. Fair comparison should
not give advantages of using additional parameters (or techniques) to one method
and not to the others. Therefore, all pruning algorithms must be implemented in such
a way, that the common parameters may be used, wherever possible. Two common
parameters have been extracted in this way and can be used with all adequate algo-
rithms in the same way. These are two factors modifying the way validation error
is calculated and applied to model selection: one concerning standard error and the
other including training error in the validation process. They are discussed in the
succeeding subsections.

3.2.4.1 Standard Error Factor

In most pruning techniques, the main objective is classification error. In the set of
algorithms described in Sect. 2.4, there are two exceptions of direct pruning methods
based on MDL and DI—they do not directly use misclassification as the main crite-
rion. All the others are eligible for extensions reflecting the idea of standard error,
introduced by Breiman et al (1984). According to their suggestions, it is often worth
to accept less accurate (as estimated in the validation process) model if only:

• its result is not much worse that the best one, and
• it is structurally simpler than the one with the best validation score.

The latter condition is quite precise, in the case of DTs, where “simpler” may
mean “with smaller number of leaves”. The former premise is not as precise, and
requires more formal definition. Breiman et al (1984) have defined this as the 1SE
rule, according to which, they selected smaller tree if its misclassification risk was
not larger than the best one observed, by more than the value of estimated standard
deviation of the error. Given the estimated error value e ∈ [0, 1], they estimated its
standard deviation by treating the classification results as a series of n independent
random variables of the same binomial distribution with probability of success equal
to e (or 1−e for more natural interpretation of the term “success”). On such assump-
tion, the standard deviation of the mean of the series of binomial variables is given
by the formula:

SE =
√

e(1− e)

n
. (3.1)

http://dx.doi.org/10.1007/978-3-319-00960-5_2
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There is no reason, for which the distance of one standard error, should be the
only way to define the threshold. A generalization of 0SE (selection of the model
with the smallest validation error) and 1SE methods is to use a factor for SE to define
the maximum acceptable distance from the minimum error. The tests presented in
Chap. 5 deal with the factors of 0, 0.5 and 1 to define the acceptable error increase in
simpler models. As a result, 0SE means selection of the parameter which recorded
the best result, while 1SE and 0.5SE denote selection of the simplest models with
errors not larger than the best one by more than the SE from the formula (3.1), and
half of the value of SE respectively.

There is also another possible way of standard error estimation. In the case of
multiple validation (based on CV), the standard deviation of the error may be esti-
mated from the sample of CV results. Such algorithms are denoted with additional
‘s’ (for ‘sample’) in the name: 0.5SEs and 1SEs.

Direct pruning methods can also respect three values of the parameter (0SE, 0.5SE
and 1SE), though in slightly different context: here subtree is pruned, if the estimated
error of the leaf replacing the subtree is not worse than the result of the whole subtree
by more than appropriate part of the estimated standard error.

Although the SE parameters are used in slightly different meaning in different
types of pruning methods, the major task of the options is the same—to accept
smaller trees, if their results are not significantly worse—and because of that, it
makes sense to consider the parameters correspondingly in results comparisons.

3.2.4.2 Training Error Factor

When validating a number of models, in order to select the one of the highest expected
accuracy, it is very important to get as good estimates of the accuracy/error as pos-
sible. The same concern inspired the work of Efron (1983); Efron and Tibshirani
(1997) on 0.632 bootstrap estimator (see Sect. 2.8.2). They noticed that when train-
ing on bootstrap samples and testing on the difference between the whole data and its
part engaged in the bootstrap sample, the test error is biased upwards, while the train-
ing error is biased downwards (which is quite understandable). Because bootstrap
samples are expected to contain 63.2 % of the training data objects, Efron (1983)
proposed to estimate the error by combining training error and test error linearly
with coefficients of 0.368 and 0.632 respectively (see Eq. (2.92) page (91)) .

The phenomenon of biased error estimates is very important also from the point
of view of DT validation. For example, in tenfold cross-validation, the training sam-
ple contains 90 % of the whole input dataset and the validation data sample is much
smaller (just 10 %). When validation maximizes the model performance on the val-
idation data, it may spoil some parts of the model, when the validation sample does
not contain objects from some parts of the object space. Since the validation sample
is so small, it is very likely to not represent all important areas of the feature space.
As a result, the model providing best validation results, may overfit the validation
sample.

http://dx.doi.org/10.1007/978-3-319-00960-5_5
http://dx.doi.org/10.1007/978-3-319-00960-5_2
http://dx.doi.org/10.1007/978-3-319-00960-5_2
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The idea of training error factor is the same as that of the 0.632 estimator: to
combine both training sample and validation sample misclassification in final model
selection. If model selection is based on the misclassification rate, one can use

E = Eval + TEF× E trn

1+ TEF
, (3.2)

where Etrn is the training sample error, Eval is the validation sample misclassification
rate and TEF is the parameter factor—with TEF = 0 only the validation error is in
function, and increasing the factor makes pruning weaker and weaker up to some
point, above which no pruning is done. The value of TEF = 0.5 combines the errors
with linear coefficients 2

3 and 1
3 respectively (quite close to the .632 estimator) and

the value of TEF = 1 results in fifty-fifty weights.
In practical implementations, the denominator of (3.2) may be ignored, because

it is the same for all candidate trees and the goal is to find the one minimizing the
error, not in exact prediction of the error value.

The factor can be successfully used both in model ranking for building cross-
validation based committees of decision trees and in single DT induction (see Chap. 5
for more details).

In some sense, the function of TEF is opposite to the SE factor described above,
because increasing SE factor forces more pruning, while increasing TEF strives
in smaller error rate on the training data, which means larger trees. The intuition
behind using the two parameters together is that the SE factor can offer small trees,
while TEF can keep the nodes most adequate for the whole data available (training
+ validation) not just for the validation sample. Therefore, proper balance between
the two, may result in small trees, containing the most important nodes.

3.2.4.3 Parameter Search for MEP2 and DI

The algorithms MEP2 and DI, described in Sects. 2.4.2.3 and 2.4.2.5 in the context
of direct pruning, use parameters (m and β respectively) to control the strength of
pruning. Although the authors of the algorithms mentioned possibilities of CV-based
validation of the parameters in Breiman style, they did not propose any particular
solutions.

Unfortunately, finding the most appropriate m in MEP or β in DI, is not as easy as
determination of the α parameter of cost-complexity pruning or the degree of pruning
or the size used by the OPT algorithm. The problem lies in finding the thresholds for
the parameters, for which the error of a subtree and a leaf replacing it are the same. In
cost-complexity pruning the threshold can be easily calculated as a solution of a linear
equation with one parameter (α) regardless of subtree sizes. For finding the threshold
m in MEP or β in DI, an equation to solve can also be determined, but its degree is
proportional to subtree depth, as the variables modify the objective functions at each
node of the path in a cascading way. Since the thresholds are zeros of polynomials of

http://dx.doi.org/10.1007/978-3-319-00960-5_5
http://dx.doi.org/10.1007/978-3-319-00960-5_2
http://dx.doi.org/10.1007/978-3-319-00960-5_2
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degrees proportional to proper subtree depth, it gets computationally unattractive for
trees of larger sizes, because the problem of finding zeros of polynomials is ill-posed.

Therefore, to create algorithms applicable to all domains, other solutions need
to be chosen. A suboptimal, but feasible solution is searching for the best values
of the parameters within a predefined set. Because the nature of the parameters is
exponential, in the experiments of Chap. 5, the MEP parameter validation has been
configured to estimate the values of m = 2k for k = −12, . . . , 12 and select the
best of them for the final model. In the case of the DI algorithm, the validation

process has been defined to select the most attractive of the values of β = √2
−k

for
k = 0, 1, 2, . . .. In each node, the end of the scope may be determined separately—
the calculations may end when the node becomes a leaf.

3.3 Well Known Algorithms as Instances of the Uniform
Approach

All the algorithms described in Chap. 2 perfectly fit the unified view presented
above.They have been decomposed into suitable modules. Table 3.1 presents gen-
eral information about the types of modules required to realize the goals of particular
algorithms.

It is not possible to show all the details in such compact visualization. Some table
cells contain more than one numbered bullet indicating that the methods have several
variants. Some options are deliberately omitted to keep the table readable, for exam-
ple, all algorithms but one are assigned 1 in the row of tree decision, while in fact,
many algorithms have been tried also with Laplace correction or m-estimates of prob-
abilities. The table just illustrates that algorithm analysis and extraction of separate
functional units gave possibility to easy construct many DT induction algorithms,
including those described in Chap. 2.

3.4 Framework Facilities

Supplied with many implementations of the interfaces, described above, one can
construct thousands of different algorithms by just combining proper components.

It is especially important in meta-learning that algorithms can be easily modified
and validated to adjust them to the needs of particular data. The framework has been
created because of such needs. It seems inevitable that in future, only such versatile
environments, supported by large databases of meta-knowledge extracted from vast
amount of experiments, will be used and will provide many interesting models for
various purposes. Such architecture can be very beneficial in different kids of analysis
on the meta-level.

http://dx.doi.org/10.1007/978-3-319-00960-5_5
http://dx.doi.org/10.1007/978-3-319-00960-5_2
http://dx.doi.org/10.1007/978-3-319-00960-5_2
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The framework is being successfully used in research activities concerning mis-
cellaneous aspects of DT induction. It facilitates as fair comparisons of different
components in action as possible. For example, to perform a reliable comparative
test of a number of split criteria, one can embed each competing component into
the same surroundings consisting of a repeated cross-validation of a DT induction
process specified by the search method, validation method, decision module and so
on. Providing the same environment to all the competing modules guarantees the
same training and test data in corresponding passes, even in the case of inner val-
idation, if required by the test scenario. After collecting the results from such test
procedures, full information about corresponding scores is available, so statistical
tests like paired t test, Wilcoxon test or even McNemar test (which requires the
information about correspondence between single classification decisions, not only
between the mean accuracies for the whole test datasets) can be applied. In the same
way, we may compare other types of components like data transformations, stop
criteria, validation methods and others.

Conducting the test is quite easy with such framework at hand, implemented
within as flexible machine learning environment like Intemi, presented in Chap. 4.

The information from such tests provides very precious meta-knowledge to be
used in further meta-learning approaches and eventually to compose more accurate
DT induction methods. The meta-knowledge can be gathered in special repositories,
facilitating robust algorithm selection by meta-learners.
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Chapter 4
Intemi: Advanced Meta-Learning Framework

Serious meta-learning applications may require running huge counts of learning
processes. The results obtained from the calculations must be reliably analyzed by
many comparisons and statistical tests.To gain valuable knowledge about data at
hand, it does not suffice to run a couple of methods and show the results. Also in
scientific experiments, it should no longer be accepted, that several algorithms are
tried and new approaches are claimed to be advantageous, on the basis of several
simple tests and comparisons to several other methods. The era of so undemanding
data analysis has passed, since available computational power facilitates significantly
more thorough experiments. More and more sophisticated, automated meta-learning
tools are being developed and will certainly, more and more often, outperform human
experts in building accurate models for various kinds of data.

Robust meta-learning analyses, reliable comparisons of numerous methods in
complex test scenarios are possible only with a universal and versatile, but also effi-
cient and easy to use framework.It should support learning numerous machines and
avoiding multiple calculations of the same tests. It should facilitate robust compar-
isons between old and new calculations (performed in different runs of the system),
due to testing machines on exactly the same data samples.A robust meta-learning
framework should provide the following features:

• A unified encapsulation of most aspects of handling CI models like learning-
machines creation, running and removal, defining inputs and outputs of adaptive
methods and their connections, adaptive processes execution, and so on.
• The same way of handling and operation of simple learning machines and complex,

heterogeneous structures. Easy definition, configuration and running of machine
hierarchies (submachines creation and management).
• Easy and uniform access to learners’ parameters.
• Easy and uniform mechanisms for representation of machine inputs and outputs,

and for universal information interchange between machines.
• Efficient and transparent multitasking environment for processes queuing/spooling

and running on local and remote CPUs.
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• Versatile time and memory management for optimal usage of the computational
resources.
• Easy and uniform access to exhaustive browsing and analysis of the machine

learning results.
• Simple and efficient methods of validation of learning processes, conducive to fair

validation, that is, not prone to testing embezzlements.
• Tools for estimation of model relevance, analysis of reliability, complexity and

statistical significance of differences [a useful set has been collected by Lowry
(1998–2013)].
• Mechanisms of machine unification and a machine cache system preventing

repeated calculations (significant in so large scale calculations like meta-learning).
• Templates for complex method structures with exchangeable parts, instantiated

during meta-learning.
• Rich library of fundamental methods providing high functionality, versatility and

diversity.
• Simple and highly versatile Software Development Kit (SDK) for programming

system extensions.

It is not easy to design an architecture fulfilling so many expectations, especially,
when one of the strong requirements for the system is simplicity of use. Fortunately,
proper system kernel foundations reconciled all the requirements, despite they seem
contradictory.

The key idea of Intemi system is to create projects, where:

• configurable machines interact by means of their outputs and inputs,
• each machine can create submachines as modules performing appropriate parts of

more complex tasks,
• machine unification mechanisms prevent multiple runs of the same models,
• requests for machine runs are ordered within a task spooler and performed by

multithreaded task running managers,
• general results repository provides uniform mechanisms of access to other

machines results,
• universal query system lets the user easily collect the results of interest from the

repository,
• results series can be easily transformed to extract required information.

The following sections describe the crucial solutions of the modules responsible for
all these aspects.

4.1 Machines and Models

The discussion of Sect. 1.1 has pointed out that the terms machine and model are
often used without proper definition, which sometimes introduces a confusion. It
has proposed a distinction between the two terms.Intemi follows these guidelines, so

http://dx.doi.org/10.1007/978-3-319-00960-5_1
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that its machine is any process that can be configured and run to bring some results,
and a model is the result of such a process (of a machine run). For example, an MLP
network algorithm (the MLP machine) can be configured to use appropriate network
structure, initial weights and learning process parameters. It can be run on some
training data, and as a result we get a trained network—the MLP model created by
the learning process of the MLP machine.

The unified view of machines deliberately avoids the term “learning machine”,
since a machine can perform any process which, not always, would naturally be
called a learning process, such as loading data from a disk file, data standardization
or testing a classifier on external data.

A general view of machine is presented in Fig. 4.1. Before a machine may be
created, its configuration must be specified and inputs (input ports) bound to some
outputs (output ports) of other machines. After a machine is created and its process
finished, the machine outputs and results deposited in the repository are available
to other machines and to the user. The outputs and repository results compose the
model of the machine.

Machine configuration is defined as

C = 〈i, o, p, (Ci )i=1,...,n〉, (4.1)

where

• i and o are specifications of inputs and outputs respectively, in the form of mappings
from port names to types of acceptable objects,
• p represents machine process parameters,
• (Ci )i=1,...,n is a sequence (possibly empty) of submachine configurations.

The possibility of defining machine subconfigurations and creating submachines
within each machine run is crucial for construction of complex machines, inevitable in
nontrivial projects. In fact, machine subconfigurations could be included in machine
parameters p, but because of their special function, common usage and a need for
tools handling them in a uniform way, they have been made explicit in the defini-
tion. The abstract view of machines presented in Fig. 4.1 does not include machine
subconfigurations. In further figures, starting with Fig. 4.4, the submachines are visu-
alized as boxes placed within the boxes corresponding to their parent machines and,
in the same way, machine subconfigurations are shown inside their parent-machine-

Fig. 4.1 The abstract view of
a machine

Machine

Input 1...
Input n

Output 1...
Output m

Machine process
parameters

Results
repository
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configuration boxes (with different border color used for machines and machine
configurations).

It is important to realize that a single machine configuration may be used to create
more that one submachine. For example, a bagging machine must be given a con-
figuration of a classification machine to be repeatedly applied to different bootstrap
samples generated from the training data.Implementations created in compliance
with the art of object oriented design and programming would also define a sep-
arate machine for bootstrap sample generation and generate each subsequent data
sample with machines of the same configuration (the outputs can still be different
for each machine, because of their randomized behavior—see Sect. 4.2.2.3 for more
information on handling random processes in Intemi).

Because of the relations between machines, projects may be seen as directed
graphs of machines with edges defined in two different ways:

• by parent–child relation,
• by input–output interconnections.

The former graph is a tree with the role of root played by the project (which can be
treated as the main machine), while the latter is a directed acyclic graph of machines
(more precisely of their contexts, because machine unification mechanisms make
the relation between machines more complicated, but not much interesting from the
point of view of the project user—see Sect. 4.2).

Machine ports (inputs and outputs) are the main means of information exchange
between machines. The difference between machine inputs and parameters is that
inputs come from other machines while the parameters are specific to the process
and are provided directly by the user or result from parent machine configuration.
Similarly, outputs exhibit parts of the model to other machines (to be passed as
their inputs, when proper input–output connection is established). Results repository
serves as kind of report from machine run and contains an excerpt from the model.
It is up to the machine author whether the machine receives any inputs, whether it
has some adjustable parameters and whether it has outputs and/or puts results in the
repository.

Two examples of simple machines are presented in Fig. 4.2. The Data loader
machine receives no inputs and declares a single parameter which is a string contain-
ing the file name path from which the data is to be loaded. So Data loader machine
configuration has a form of C = (⊥, o, p,⊥), where o = {“Data”→ type of data}
and p is just a string representing a file path. The machine process exposes the data
series as the output and deposits no entries into the results repository.

Fig. 4.2 Machine examples:
a data loader and a classifi-
cation test
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The machine of Classification test , presented in Fig. 4.2 on the right, takes
inputs but not parameters. The inputs introduce the classifier (more exactly an
interface with the classification routine) to be tested and the test data series. For-
mally, its configuration can be written as C = (i,⊥,⊥,⊥), where i = {“Data”→
type of data, “Classifier” → type of classifier}. A result of the machine process is
the information about accuracy of the classifier (in more complex implementations
it could also present such results as confusion matrix). The machine provides no out-
puts, because the information it gains is not expected as input of any other machine
(other points of view could result in outputs representing class labels given by the
classifier to each data object, a vector of misclassification indicators or other poten-
tially useful information).

In the following examples, machine parameters and results deposited in the repos-
itory are not presented explicitly, as they are not so important from the point of view
of presenting machine relations. The information flow between outputs and inputs
is usually very important, so the interconnections are thoroughly presented.

The unified concept of machine does not introduce any kind of machine type, so we
do not split machines to classifiers, data loaders, data transformers and so on.Instead,
the inputs and outputs of a machine define possible contexts of its application, that
is, any machine providing an output of type Classifier may be called a classifier and
used in the context of a classifier, for example, may be tested by the Classification
test machine when the latter’s Classifier input is bound to the classifier output of
the former machine. Thus, a single machine may be useful in a number of ways.
For example, a decision tree may expose a Classifier output and also a Feature
rankingoutput (generated on the basis of features occurring in the conditions defining
the tree nodes). It lets the decision tree machine occur both in the context of a classifier
and of a feature ranking.

4.1.1 Feature Selection and Ranking

The family of feature selection methods based on ranking measures is an interesting
illustration of the information flow between machines.

The object oriented encapsulation idea leads to a split of the feature selection
process into two stages: generation of feature ranking and selection of the adequate
number of the top-ranked features. It results in just one feature selection machine
of this kind, and a number of feature ranking machines implementing particular
algorithms.

As shown in Fig. 4.3, the feature selection machine declares two inputs (Data and
Feature ranking) and outputs two interfaces (Data providing data series obtained by
filtering the input data to keep just the selected features and the feature selection
Transformation in a form applicable to external data). How many features are to
be selected is defined within the feature selection machine parameters: arbitrary
number of top-level features or the features with the ranking value exceeding given
threshold. Naturally, there is no single rule for optimal setting of these parameters for
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Fig. 4.3 Configurations of
feature selection and feature
ranking machines
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all data (all problems), so they must be determined separately for each data.It can be
obtained with meta-learning: sometimes so simple methods as meta parameter search
presented in Sect. 4.4.1 are satisfactory and sometimes more advanced approaches
combining feature selection with other data transformation methods are inevitable
(Jankowski and Grąbczewski 2008; Grąbczewski and Jankowski 2008).

The right side of Fig. 4.3 shows two configurations of machines generating feature
rankings, eligible for cooperation with the Feature selection machine. The top one
(CC ranking) is dedicated to feature ranking, but the bottom one (SSV decision
tree) is a DT induction machine. Its main output is Classifier, but because it also
builds a ranking on the basis of the features used by the tree, it can also play a role
of feature ranking.

4.1.2 Schemes and Configuration Templates

Configuration of complex learning machines often requires providing not only single
subconfigurations, but whole scenarios of many machines. To make definitions of
such scenarios easy, a machine named Scheme has been created to function as a
machine container or machine group.

An example of Scheme machine is presented in Fig. 4.4). Its scenario assumes
two data collections coming through the inputs (one for training and one for test). Two
learning machines: k Nearest Neighbors (kNN) and Support Vector Machine (SVM)
are to be trained on the training data and their classifier outputs tested by separate test
machines on the test data.Such scenario is very useful for detailed comparison of the
results of the two learning algorithms, because they are trained on exactly the same
data series and tested on the same data, so each particular decision can be reliably
compared (see Sect. 4.3).

Formally, configuration of the scheme machine presented in Fig. 4.4 is C =
(i,⊥, p, (Cknn, Csvm, Ctk, Cts)), where i specifies types of the two inputs (“Training
data” and “Test data”), the four subconfigurations correspond to kNN, SVM and two
classification test machines and p defines all the bindings of the four submachine
inputs (bindings are instructions to the scheme, where the submachines will get their
inputs from).
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Fig. 4.4 A scheme machine
example
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The process of a scheme machine simply runs all submachine processes in one-
to-one correspondence to the configuration. It is formalized as algorithm 4.1.

Algorithm 4.1 (Scheme machine process)

Prototype: Scheme.Run(C)
Input: Scheme machine configuration C = (

i, o, p, (Ci )i=1,...,n
)
.

Output: Scheme model.
The algorithm:

1. (C ′i )i=1,...,n ← topologically sorted (Ci )i=1,...,n
2. for i = 1, . . . , n do

request submachine configured by C ′i with its input bindings defined in p
3. Wait until all submachines are ready
4. Define scheme machine outputs according to the bindings in p
5. return the scheme model (the outputs and submachines)

First, the subconfigurations must be sorted topologically with respect to the input–
output relation, to guarantee that each machine request can provide consistent
information about input bindings.Then, all machines are requested in the order just
determined. The algorithm reflects multithreaded architecture of the task running
module, so the machines are requested asynchronously and after that, the scheme
machine process waits until all submachines are ready.Finally, the outputs of the
scheme machine (if defined) must be exhibited to the system by informing which
submachines outputs are the outputs of the scheme.

Schemes have been created to provide an easy-to-use tool for defining com-
plex machine hierarchies. Each machine can just define a scheme configuration and
request a submachine corresponding to it. The scheme configuration can be adjusted
to particular needs by adequate definition of the contents, that is: inputs, outputs,
submachines and their IO bindings.
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Configuration templates

Schemes are also very useful from the point of view of meta-learning. They may play
the role of placeholders for machine configurations (of single machines or complex
machine scenarios).Such incomplete configurations are called machine configuration
templates. A template can be easily converted into fully specified (correct, feasible)
machine configuration, by inserting machine configurations inside it and binding
proper ports. A template scheme configuration becomes feasible when:

• all its outputs are bound to a compatible output of any machine placed inside the
scheme,
• all inputs of internal machines are bound to some ports (either outputs of other

machines or the scheme inputs).

A valuable template for performing feature selection is presented in Fig. 4.5. The
dashed box represents a placeholder for a ranking. In practice, it is represented
by a scheme with adequate definitions of its inputs and outputs, so that filling the
template can be done by adding subconfigurations to the scheme and specification of
ports interconnections.The possibility of fixing scheme outputs facilitates defining
machines with universal parts, responsible for precisely defined IO transformations
that can be defined by the user, without a danger of changing the ports and loosing
compatibility with the parent-machine goals.

After filling the Ranking scheme with a feasible scenario, the whole construct
can be created and run or put inside another, more complex configuration.In this way,
any complex scenario can play the role of feature ranking machine in Fig. 4.5.

Another substantial configuration template is the raw configuration of Transform
and classify (T&C) machine, presented in Sect. 4.1.3 and depicted in Fig. 4.6. T&C
is a general machine for combining transformations and classifiers, so its raw config-
uration does not specify either the transformation part or the classifier to be used. Both
combined machines may be defined arbitrarily at configuration time, so raw T&C
configuration contains just two empty schemes which can be seen as “placeholders”
for subconfigurations performing functions defined by the inputs and outputs of the
schemes. As a consequence, the raw T&C configuration is a template for miscella-
neous configurations of classification machines requiring some data transformation
before the proper learning process can be run.

Similar empty scheme may be used to parameterize configuration of boosting
algorithm. The placeholder should be filled, at configuration time, with a classifier
to be boosted.It means that the raw configuration of boosting is also a template.

Fig. 4.5 Feature selection
template
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Fig. 4.6 A configuration of the transform and classify machine (raw and filled)

Yet another example of a template configuration is the one of the Repeater
machine, discussed in Sect. 4.1.4.

Just two of the templates described above (for feature selection and combining
data transformations with classifiers), augmented with information about available
simple machines for feature ranking, some other data transformations (like stan-
dardization) and classification learning machines, comprise quite robust tool for
generating machine configurations and, in consequence, for robust meta-learning.

4.1.3 Transform and Classify Machine

Combining data transformations and classification learners is the main goal of the
Transform and classify (T&C) machine. It has been created as a general tool eligible
for any particular transformations and classifiers. Figure 4.6 illustrates two configura-
tions of the machine: the raw version and a feasible instance. The two templates inside
the raw configuration make the T&C a general machine capable of performing any
(arbitrarily complex) scenarios of data transformation and classification. It creates
unlimited possibilities of applications of the machine. Specific contents of the two
schemes may be given by the user at configuration time. For example, one can put a
standardization machine inside the Transformation scheme and an SVM machine
into the Classifier scheme to perform SVM classification after data standardiza-
tion (as in the right part of Fig. 4.6). The interconnections within the two schemes
(submachines of T&C) define the behavior within the schemes. There are no inter-
connections between the inputs of the parent machine and submachines or between
the outputs of submachines and the outputs of the parent machine, because they are
not configurable—the T&C machine will take care of appropriate connections at run
time.

After the machine is run, it gets a form depicted in Fig. 4.7. Beside the connec-
tions defined at configuration time, the input bindings of internal schemes can be
seen—they were decided by the parent machine (T&C) according to the aim of
the submachines: the transformation is run on the incoming training data and the
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Fig. 4.7 T&C machine at run
time
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classifier is trained on the transformed training data.When the classifier output of
the main machine is questioned to classify a series of data objects, it first transforms
the data using the Transformation output of the transformation scheme (in fact of the
standardization machine) and then classifies the transformed data with the Classifier
output of the classifier scheme (in fact SVM output). This procedure guarantees that
the test data series is standardized (with respect to the statistics of the training data)
and then classified. The T&C machine can be used wherever a classifier is expected
(in the same contexts as other classifiers, for example SVM), because of its Classifier
output.

Additional advantage of the Transform and classify machine is that such form
of cooperation between machines is also suitable for further optimization and test
procedures. For example, classifiers may be easily combined with feature selection
methods and the parameters like the number of features can be optimized in a simple
and universal way, using machines like meta parameter search (see Sect. 4.4.1).

4.1.4 Repeater Machine

Performing tests like cross-validation, estimating miscellaneous performance indices
by averaging, building ensemble models according to strategies like bagging, and
many other data mining techniques require repeated calculations of similar scenar-
ios. Therefore, one of the most important machines, constructed in Intemi as one of
the first, is a general machine named Repeater. Initial view of the repeater config-
uration is presented in Fig. 4.8 on the left. It declares two scheme submachines: one
for generating inputs for subsequent repetitions (Distributor scheme) and one for
a scenario to be repeated (Test scheme). A single cycle of the repeater job is to
generate the distributor according to the first subconfiguration, and pass its proper
outputs to a number of subsequent instances of the test scheme. The distributor’s
outputs are so called multi-outputs, that is, collections of output objects. The collec-
tions size must be the same for all distributor’s outputs, because the elements that
occur in multi-output at the same index compose a suit, passed to subsequent test
schemes. The number of suits defines the number of the test scheme instances that
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Fig. 4.8 Repeater machine configuration (raw and filled)

will be created by the repeater. Moreover, the repeater has a parameter defining how
many times the whole scenario is to be repeated. Algorithm 4.2 presents the process
of repeater machine more formally.

Algorithm 4.2 (Repeater-machine process)

Prototype: Repeater.Run(C)
Input: Repeater configuration C = (i,⊥, n, (CD, CT )), where i = {“Data” → type of data}, n

is the number of repetitions and CD, CT are configurations of distribution scheme and test
scheme respectively.

Output: Repeater model.
The algorithm:

1. for i = 1, . . . , n do
a. Request the distributor scheme Di with configuration CD and its input bound to the

repeater input
b. Wait until Di is ready
c. m ← count of output suits of Di
d. for j = 1, . . . , m do

Request the test scheme Ti with configuration CT and its inputs bound 1-1 to the
j’th suit of Di ’s outputs

2. Wait until all submachines are ready
3. return the repeater model (the hierarchy of submachines)

All instances of the distributor scheme and test scheme are assumed to be inde-
pendent, so they all may run in parallel after being requested. Synchronization is
performed at the end of the repeater process, because all submachine processes must
be finished before the parent process may return.
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Fig. 4.9 Run time view of
Repeater machine config-
ured to perform twice 2-fold
CV. Test schemes are sim-
plified for clearer view—in
fact each one contains four
submachines as in Fig. 4.8
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The example presented in Fig. 4.8 on the right is a repeater configured to perform
a comparative CV test of kNN and SVM machines. The CV distributor receives the
data as input and splits it into a number of training datasets and the same number of
test datasets, according to the rule of n-fold cross-validation. During configuration of
the repeater, adding the CV distributor to the distributor scheme results in propagation
of the outputs from the distributor to the scheme and also to test scheme inputs, so
that there is one-to-one correspondence between the distributor scheme outputs and
the test scheme inputs. Only when the test scheme inputs are created, the scheme can
also be properly configured.

Assuming that the number of repetitions is set to 2 and the number of CV folds
in the parameters of CV distributor is also set to 2, a request for repeater machine
with this configuration produces machine hierarchy presented in Fig. 4.9. Performing
twice (independently) 2-fold CV requires two distributors (one for each CV cycle)
and four test schemes (two per CV cycle). The outputs of each CV distributor are
two training sets and two test sets—the first elements go to the inputs of the first test
scheme and the second elements to the second scheme, as signaled by the numbers
placed at the arrows. Although not shown in Fig. 4.9, each test scheme contains four
machines as defined in Fig. 4.8, so that for each suit of training and test datasets
coming out from the distributor schemes, kNN and SVM machines are trained on
the training data and tested with classification test machine on the test data sample.

4.2 Machine Factory

When the system is to create a machine, it must be given more information than
just machine configuration. Above, when talking about requests for new machines,
usually machine configuration and input bindings were specified. It was sufficient
from the point of view of understanding the processes, but formally, more detailed
specification is required. Full information necessary for proper handling of machine
requests is called a machine context and can be written formally as
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MC = (C, P, I, B) , (4.2)

where:

• C is the requested machine configuration,
• P is the parent machine requesting for child,
• I is the child index,
• B is the description of input bindings.

The information about the parent machine (handled automatically by the system,
when a machine requests creation of a submachine) and the child index is necessary,
mainly for the purpose of machine unification and management of random processes.
Also input bindings can be defined in a more flexible way, when placed in the context
together with the specification of parent machine. Input bindings are quite intuitive
and naturally depicted as arrows between ports. Their formal introduction is given
in Sect. 4.2.1.1.

Thanks to the unified view of machines, their configurations, contexts and related
aspects, we can simply state that the fundamental task of a data mining system is to
create and run machines in given contexts.

The system serves the request by assigning adequate machine to it and, if neces-
sary, runs the machine process to make the machine ready for further analysis of its
outputs and the information deposited in the results repository. Thanks to the concept
of machine context, the system may assign the same machine to many contexts (uni-
fication). Then, such machine may provide its services and be analyzed in different
contexts within arbitrarily complex machine structures. As shown further, sharing
machines in different contexts yields significant savings in CPU time and memory.

The possible paths, machine requests go through, are presented in Fig. 4.10. The
flowchart presents different states of the requests while the dashed lines encircle the
areas corresponding to particular system modules.

When a machine is requested, it is necessary to determine its inputs (proper
machines outputs, effectively bound to the inputs) first. Given input providers, the
request goes to the unification system which determines whether the machine needs
to be created or has already been run in another context and can be substituted (then,
the same machine gets assigned to more than one context). If a new machine must be
executed, the request goes to the task spooler (sort of advanced queue), from where
it is taken by a task manager thread in order to be run.

The life of a request may be aborted at any time by the parent machine or by the
system user. This may influence the flows of other requests for the same machine.
Task spooler must be aware of this and react properly to such events.

The Fig. 4.10 shows a general view of the most important stages of the process and
does not contain many details that have been assessed as too technical (for example,
the act of registering a newly created, ready machine in the cache system for further
unification purposes).

The modules, working at the assembly line of machine production, act inde-
pendently in a signal-driven manner. Proper signals are sent between them when
necessary, and are handled as soon as possible. Such architecture minimizes the time
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Fig. 4.10 Machine request life cycle

needed by modules to wait for each other—they serve the requests that are ready for
the service, and the control of when the requests are ready for next stage takes place
just in time, when appropriate events occur.

4.2.1 Inputs Resolution

Input bindings, included in machine context at request time, are high-level abstract
information about the bindings, corresponding to arrows connecting ports drawn in
the figures. Intemi system kernel must decode it properly to determine:

• first, machine contexts providing the inputs (the machines may not exist yet),
• then, the actual machine outputs providing information for the inputs.

These are two stages of input resolution performed by Intemi at appropriate times.
More details are presented in the following subsections.
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4.2.1.1 Input Bindings

Abstract information about input bindings, coming in machine requests, must
describe at least one connection for each machine input. Otherwise, the request
is incorrect and must be rejected at the very beginning. Therefore, input bindings are
defined as mappings

B = {inputi → Bi |i = 1, . . . , n}, (4.3)

where input1, . . . , inputn are all inputs of the machine and B1, . . . , Bn are collections
of single bindings. Usually the collections contain just 1 element each, but some
machines declare multi-inputs, which means that many sources can be bound to
a single input. For example, machines acting as committee decision modules may
combine a number of members. Then, the member collections are determined by
specification of the input bindings. As a result, different instances of the same decision
module type may get different counts of members.

A single binding can be defined in one of three ways, referring to:

• a parent’s input (as it was often the case in the figures presented so far),
• a sibling’s output (usually an output of a machine that does not exist at the time of

configuration),
• an output of a machine determined by a capsule (which can be seen as a path in

the machines subtree, from a machine called the root of the path to its ancestor
following the line of direct parent-child dependencies).

In the first case, the binding is determined simply by the name of parent’s input. The
second type of binding is declared by an identifier of the sibling and its output name.
The third option requires specification of the capsule (root machine identifier and a
series of child indices of subsequent generations) and the output name.

Such information may be called abstract, because it must be decoded in particular
context, to receive outputs specification containing references to proper machine
contexts.

After that, a signal is sent to the input readiness control module responsible for
appropriate notification sent when providers of all the inputs of the request are ready
(their processes are finished), which means that full information, determining the
requested machine, is available.

4.2.1.2 Inputs Readiness Guard

Optimal machine-running services must perform their operations immediately after
adequate conditions are met. As soon as all the inputs of a requested machine are
ready, the request should be served and either closed thanks to a substitution (when
another identical copy has already been created) or passed to the task spooler for
machine creation and run. Therefore, the inputs readiness guard controls, in real
time, all the changes in machine readiness and submits runnable requests to the
unification module for further services.
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When a request occurs, it is handled by the method Control() of the inputs-
readiness-guard module. Algorithm 4.3 presents the service. At the beginning, the
abstract bindings B are converted to a collection of contexts providing desired out-
puts. All input providers are filtered to determine the set of contexts, MC needs
to wait for, before it can be further serviced. If the set is empty, then finding the
machines, that actually provide MC inputs, is possible, so the context is passed to
the bindings resolver module for the next step. Otherwise, internal information must
be updated to include the fact that MC must wait until other contexts are ready (until
they are assigned with proper machines).

Algorithm 4.3 (Inputs readiness guard control method)

Prototype: IRG.Control(MC)
Input: Machine context MC = (C, P, I, B).
The algorithm:

1. dependenceContexts← machine contexts providing the inputs for MC
2. notReadyContexts← not ready contexts of dependenceContexts
3. if notReadyContexts = ∅ then

Pass MC to the bindings resolver module
else

Add information about MC waiting for notReadyContexts

On the other hand, inputs readiness guard must be signaled, when machines get
ready, because their contexts may be awaited by some other machine contexts. Such
signals are handled with the MachineFinished() method sketched by algorithm 4.4.

Algorithm 4.4 (Inputs readiness guard handler of finished machines)

Prototype: IRG.MachineFinished(M)
Input: Machine M after its process finished.
The algorithm:

1. for each awaited ∈ contexts of M do
for each context ∈ contexts waiting for awaited do

a. if context has all inputs ready then
Pass context to the bindings resolver module

else
Remove information about context waiting for awaited

2. Remove information about contexts of M

Every context, awaiting for the machine just finished, is checked if this is its last
inaccessible input and if it is, then the context is passed to the next stage.

Inputs readiness guard keeps internally all the necessary information in appropri-
ate data structures, including mappings from machines to their contexts and between
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waiting and awaited contexts. Statements “add information” of algorithm 4.3 and
“remove information” of algorithm 4.4 handle the internal data structures, so that
only the information that may be needed is kept.

4.2.1.3 Resolving Input Bindings

Both main methods of inputs readiness guard, under appropriate circumstances, pass
a context to the binding resolver module. The module is not displayed in Fig. 4.10,
because it is just a simple step on the way from the inputs readiness guard to the
unification system.

The goal of inputs resolution is to replace machine contexts directly connected
to the inputs by references to proper machines (possibly remote), which exhibit the
required outputs. The remoteness of the right machines means that the machines,
that actually own the output, are not necessarily assigned to the machine contexts
bound to the input at start. For example, an output of a scheme is just a “transit”
from another machine output (usually a child of the scheme). The same occurs when
any other machine exhibits output of a submachine as its own (it is quite common
consequence of classical object oriented design of machines).

Resolved input bindings (RIB) contain precise information about the outputs pro-
viding input information to the requested machine. They may have one of two possible
forms:

• a pair of machine identifier and its output name,
• an output identifier.

The first form is just a specification of the actual output. The second one is a con-
sequence of using output-level unification (see Sect. 4.2.2), which is used to detect
situations when two different machines exhibit equal outputs (then, two machines
may be unified even if their inputs are bound to distinct but identical outputs). For
such purposes, common outputs are given output identifiers and can be accessed
independently from the machines they come from.

Resolving input bindings is the operation of transforming input bindings B =
{inputi → Bi |i = 1, . . . , n} to resolved input bindings being a mapping

RB = {inputi → RI Bi |i = 1, . . . , n}, (4.4)

where RI Bi are collections of resolved input bindings Bi , defined as above.
After determining the resolved input bindings RB of a machine context C bind-

ings, the pair (C, RB) is passed as a signal to the machine unification system.

4.2.2 Machine Unification System

Machine unification has been introduced to avoid wasting computational time and
memory for two exactly the same machines. In advanced data mining project it is
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inevitable that a machine with the same configuration and inputs is requested twice
or even more times. It would not be right, if an intelligent data analysis system were
running the same adaptive process more than once and kept two equivalent models
in memory. Therefore, machine contexts have been introduced as objects separate
from proper machines. Different contexts may request for the same machine and may
share the machine. The goal of the unification system is to detect the possibilities
of machine reuse and substituting the same machine to all the equivalent contexts,
requesting the machine.

For the purposes of machine unification, all machines are registered in a machine
cache. When a new request is analyzed by the unification module, the machine
cache is checked, whether exactly the same machine has already been requested
(and successfully finished) before, which means that the machine of the requested
configuration and assigned the same resolved inputs already exists in the cache and
may be reused.

When a request can not be unified with any machine already built, it is passed
to the task spooler module, responsible for task distribution to special task running
services. It does not mean that the possibilities of unification end here—the spooler
must also be aware of unification and control if two tasks contain requests for the
same machine. If two (or more) requests are unified before any of them is finalized,
then two (or more) tasks of the same machine creation are pushed to the task spooler
(with different priorities). Spooler services control the requests to prevent running
two requests for the same machine in parallel and producing two identical machines.
When the request of the highest priority is finished, all others are just substituted with
the same machine. More details about the spooler, also in the context of machine
unification, are presented in Sect. 4.2.3.1.

All unification efforts must be very carefully synchronized to guarantee that two
identical machines are never created.

4.2.2.1 Unification Methods

Different requests are guaranteed to result in the same machine if:

• configurations of the machines (parameters of the processes) are equal and
• the inputs are bound to the same or equivalent outputs.

Such requests may be unified, which means that they may share the machine—the
request being served later gets the machine from the cache and next instance of the
machine is not run.

Configuration equivalence

The first condition is rather clear and unambiguous, though precise definition of
parameter equality function is up to the author of the machine. To supply a prop-
erly defined machine configuration class, one has to include a method to determine
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equality of two parameter structures of the same type, which is used by the unification
system.

The term “machine parameters” includes information about pseudo-random
processes performed by the machine (if any) and subconfigurations (if present).
Therefore, a strategy to effectively deal with randomness in complex machine hier-
archies has been worked out and easy-to-use tools provided for management of ran-
dom processes within Intemi machines. The idea and its influence on the unification
system and on fair results comparisons are described in Sect. 4.2.2.3.

Input equivalencence

Determining equivalenore complicated. First of all, inputs unification possibility
may be judged only after the machine inputs are ready (machine contexts are not
sufficient, the machines must have finished their processes). Therefore, the resolved
inputs (as of Eq. 4.4) must be provided next to pure machine context (Eq. 4.2).

With respect to resolved inputs, natural two levels of unification, corresponding
to analysis depth, can be offered:

1. Inputs must be bound to the same output to be regarded as equivalent.
2. Different inputs are compared to determine equivalence.

Naturally, switching unification completely off is a third possibility (zero level),
but out of interest here. The first option is much simpler computationally than the
second, because on its assumptions, it is sufficient to check if both input bindings
being compared are assigned the same output (name) of the same machine.

Level 2 is more expensive computationally, because it must run comparison rou-
tines, which for large objects can be costly. Therefore, it is absolutely unreasonable
to compare each resolved input of the machine to be created with all outputs of
other machines, as it would mean pairwise comparisons of all outputs and would
completely paralyze the system. Instead, a repository for outputs is created and out-
puts are given identifiers at registration in the repository. Equivalent outputs get the
same identifier, so once added to the repository, they do not need to be compared
with other outputs (from the repository). At registration time, new machine outputs
are efficiently checked, whether they need new identifier or are equivalent to some
outputs already present in the repository. The operation has two stages:

• first, the hash code is calculated for the output at hand and the repository is checked
for other outputs of the same hash code,
• then, for each output registered in the cache and assigned the same hash code,

proper comparison routine is called.

Therefore, it is very important that machine code authors provide high-quality rou-
tines for hash-code calculation. High quality of hash code generation means close to
uniform probability distribution, so that repetitions of hash codes are very unlikely
and the number of calls to comparison routines is as small as possible.
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There is a number of ways to further speed up verification of input equivalence.
For example:

• The outputs can be indexed by their types, so that smaller repository of outputs
of the same type is examined. This helps estimate quality of hash code generation
routine for each type by analysis of the frequency of repetitions.
• Late output registration, that is, adding outputs to the repository not instantly after

their machine process is finished, but later, when the output is really used by another
machine context. It can be very advantageous because unused outputs would just
unnecessarily increase the repository and slow down the unification procedures.

Naturally, level 1 is also a part of level 2, thus detailed tests are performed only
for the bindings that have any chance to be different.

Outputs like classification correctness (binary vectors showing which decisions of
a classifier are correct and which are not) are always very similar, so rough methods
of hash code calculation may result in distributions, very different than uniform.
Since they are very seldom bound to inputs of other machines, they can be easily
excluded from the unification analysis described above. Actually, the analysis is off
by default, and to switch it on, the programmer must give a special attribute to the
output class and implement special interface, containing the methods used by the
unification processes.

Memory cache and disc cache

All machines are deposited in machine cache just after they are ready. To make
machine search as fast as possible, the cache is built from three hash dictionaries to
realize three types of mappings:

• unificator dictionary, mapping (C, RB) pairs to unique machine identifiers,
• unificatorRev dictionary, providing the mapping inverse to unificator (from

machine identifiers to (C, RB) pairs),
• cache dictionary, mapping machine identifiers to machines.

Given machine configuration C and resolved input bindings RB, the machine cache
may provide compatible machine only if the unificator dictionary contains appropri-
ate (C, RB) key. Therefore, verification of machine availability is fast.

The three hash dictionaries obviously need fast calculation of hash codes with
distribution close to uniform. If this condition is satisfied, they guarantee attractive
time complexity of the access to machines, independent of the number of machines
in the cache (very important for scalability of data mining systems). This means that
each machine configuration has to implement two methods: verifying the equality of
two configurations and the hash function of the configuration. Provided high quality
of the methods, the maintenance of the unification system costs very little.

Although access to machines in the cache is independent of the cache size, avail-
able memory is always limited. It is advantageous to keep all the machines run within
the project, but for large projects, containing thousands or even millions machines,
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it would result in too much memory consumption. Therefore a disk cache cooperat-
ing with the memory cache has been introduced. If possible, machines are kept in
memory, but to make more memory available, they are swapped to the disc cache.

In fact, each machine is scheduled for saving in the disc cache immediately after
its adaptive process is finished. It is kept in memory as long as it is needed by any
other machine. The information interchange through inputs and outputs is a subject to
open–close management, so that the system receives all information about machines
and outputs usage. The requirement to open and close machine inputs facilitates also
optimization of machine exchange between the project and computational servers
running the project tasks (possibly remote servers).

Unique, specialized structure of the disk cache and its management guarantee that
the access to machines (loading/saving) does not depend on the number of machines
in the disc cache but just on the length of binary representation of the machine. It
keeps the whole unification and cache system as efficient as possible.

A question might be asked here: why to introduce a disc cache instead of relying on
the operating system virtual memory mechanisms? The answer is that our internally
managed disk cache can be much more effective because it can take advantage of
the information about project internal structure and act without any delay that could
disable performing the tasks scheduled in the project. Moreover, the operating system
cache has no information about which machines are necessary at the moment or will
be necessary in further steps, in contrary to the Intemi system, that has full knowledge
about that, because each machine usage is registered. The knowledge lets the system
decide whether given machine should be kept in the memory cache or just in the disc
cache or should be completely discarded from the cache while operating system’s
virtual memory manager has no such information.

4.2.2.2 Example of Advantages

To better see the advantages of machine unification, imagine a project to test and
compare suitability of different feature selection methods for a classification prob-
lem. Provided the design of feature selection machines, described in Sect. 4.1.1, the
comparison concerns feature ranking methods rather than feature selection methods.
To make the test credible, we should, for instance, perform a cross-validation of
complex machines consisting of feature ranking, feature selection and classification
machines. The complex machine could have the form of Transform and classify
machine (see Fig. 4.6) with transformation scheme replaced by the feature selection
template (of Fig. 4.3) filled with proper feature ranking. When performing the CV
test with different ranking machines, it may turn out that the selection of topmost
features of different rankings results in the same set of features, so it makes no sense
to train and test the classifier twice for the same data.

Table 4.1 shows feature rankings obtained for Wisconsin breast cancer data from
the UCI repository Frank and Asuncion (2010), with eight different methods: three
based on indices estimating feature eligibility for target prediction (F-score, correla-
tion coefficient and entropy based mutual information index), one based on internals
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Table 4.1 Feature rankings for UCI Wisconsin breast cancer data

Ranking method Feature ranking

F-score 6 3 2 7 1 8 4 5 9
Correlation coefficient 3 2 6 7 1 8 4 5 9
Information theory 2 3 6 7 5 8 1 4 9
SVM 6 1 3 7 9 4 8 5 2
DT, Gini 2 6 8 1 5 4 7 3 9
DT, information gain 2 6 1 7 3 4 8 5 9
DT, information gain ratio 2 6 1 5 7 4 3 8 9
DT, SSV 2 6 1 8 7 4 5 3 9

of trained SVM model and four based on decision trees using different split criteria
(Gini index, information gain, information gain ratio and SSV). To test a classifier
on all sets of top-ranked features for each of the eight rankings, we would need to
perform 72 tests, if we did not control subsets identity. An analysis of the 72 subsets
brings a conclusion that there are only 37 different sets of top-ranked features, so
we can avoid 35 repeated calculations. Very similar relative savings occur, when the
rankings are determined inside the CV test (for each training sample, not for the
whole dataset as in the case of rankings presented in the table).

Naturally, being aware of saving possibilities, one can design the project in such a
way, that different rankings are analyzed first to check such redundancies and avoid
them, but it requires programming a special machine to perform the test in proper way.
System feature of avoiding repeated calculations eliminates the overload without any
special effort from the user and is a general and very efficient solution which may
help in many other circumstances.

In advanced meta-learning, it would be highly nontrivial to predict all the pos-
sibilities of repeated machines and prevent them in advance (for a more complex
example of machine unification advantages see Sect. 4.4.1). To maximize the gains,
Intemi solves the unification problem at kernel level. Each machine created and run
within the project is registered in machine cache. Each request for a new machine
is checked against the machine cache, whether the machine is already available, and
if it is, the machine request gets substituted with the ready machine and the request
is not sent to the task spooler. Using hash codes when comparing different machine
contexts makes the cost of machine cache management very small, so the overall
balance is definitely positive.

All the automated solutions do not cause that the authors of machine implemen-
tations do not need to care for unification in any way. In the example shown above,
almost 50 % of tests could be avoided, because feature rankings could be verified,
in advance, as equivalent. When two methods return the same set of top n features,
but the feature order is different, then treating them as sequences, not as sets, would
prevent the savings. It is up to machine authors, how they organize machine outputs
and how they implement equivalence test methods. Keeping in mind the power of
machine unification, one can build very efficient machines and projects.
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4.2.2.3 Unification of Random Processes

The strategy of random processes management is an aspect, which seems minor, but
gets very important when more advanced data analysis is to be performed. It had not
been completely solved by any data mining package before Intemi. It is common
to include a seed value (controlling the randomness) inside configuration structures
of CI algorithms. Then, the seed value can be set arbitrarily or chosen randomly
(usually on the basis of current time to provide better randomness), however in the
case of complex machines, it is not satisfactory, especially when the mechanisms of
machine unification are expected to be maximally functional. Intemi design of seed
control aimed to facilitate:

• unification of complex, multi-level machines, possibly with pseudo-random behav-
ior of machines at different levels,
• robust comparisons of different CI methods, based on testing machines on exactly

the same data, even when the tests are performed within distinct projects.

These two features are not guaranteed when it is only possible to configure machines
to use either fixed or random seed. For example: to perform 10 repetitions of 10-fold
cross-validation, just one machine providing cross-validation data is configured and
the same configuration is used 10 times. If the seed property is set to “fixed”, each
repetition results in the same sets of training and test data, and exactly the same 10-
fold CV is performed 10 times. If the seed is set to “random” (dependent on time),
it is not be possible to repeat the same splits in further tests. This reveals the need
for a system that allows the subsequent CVs to run with different seeds and makes it
possible to repeat the whole procedure with the same sequence of seeds. The same
need occurs, for example, when performing a CV of a neural network initialized by
random weights.

For full functionality, the seed control should be done in three ways:

1. The seed is fixed to a given integer value.
2. The seed value is determined by a pseudo-random number generator initialized

with the time of machine preparation.
3. The seed is managed automatically by the system to reflect the seed settings of

parent machines.

Intemi implements the functionality exactly in this way. The third option of automatic
seed management means that the machines can get different seeds in a machine
branch, but the seeds depend on the seed of the root machine of the branch and the
child machine indices. When a 10-fold CV is to be run 10 times independently, but in
such a way that can be repeated at any time, the repeater machine should get a fixed
seed and the auto mode should be assigned to the seed of the machine generating data
for CV. With such configuration, each repeated CV gets different seed, but dependent
on the seed of the repeater. This provides both diversity of different CV repetitions
and possibility to repeat the whole procedure. The same 10 times repeated 10-fold
CV can be obtained later with the same configuration of the seed for the repeater
machine and auto mode for seed control at the CV data generator. Moreover, when
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the whole scenario is repeated for exactly the same configuration of a classifier, the
whole repeater machine may be unified with the former one and no calculations are
necessary because the whole structure is already available.

The possibility of performing tests with exactly the same training and test data,
also in completely different projects, opens the gates to the most adequate methods
for comparison of different machines results, including paired t-test, Wilcoxon test
or even McNemar’s test.

4.2.3 Task Management

When all inputs of a requested machine are ready (the processes of all machines
providing necessary outputs are finished) and machine can not be substituted by
another one, already created and residing in machine cache, the machine context is
equipped with proper task information and commissioned to the task spooler, where
it waits for its turn and for a free processing thread.

The processes of task spooling are quite nontrivial, because different requests may
be subject to unification with other requests in the spooler. For example, canceling
a task must be properly managed to not cancel other requests for the same machine.
Also the structure of the spooler is very important from the point of view of efficiency.
Although the order of task running can not affect the resulting models (the tasks are
added to the spooler when they are ready to run, and the time when they are started
is not significant unless the seeds of random processes are time-dependent), it is
important from the point of view of memory and time consumption.

The spooler cooperates with task managers which run computational threads, and
when a thread is free, request for available tasks and start them.

4.2.3.1 Task Spooler

The task spooler of Intemi is not a simple standard queue. To optimize the efficiency
of task running, a system of hierarchical priorities has been introduced. Each par-
ent machine can assign priorities to its children, so that they can be run in proper
order. It prevents starting many unrelated tasks in parallel, and as a result, reduces
consumption of memory and computation time.

Because of the priorities and machine unification mechanisms, which may result
in spooling the same task twice with different priorities, the task spooling system
gets quite different than operating systems task schedulers. The number of tasks may
be quite large and the spooler can not use the policy of equal CPU time gratification,
because it would very often lead to memory exhaustion. As a result, the main part
of the spooler has the form of tree, containing nodes with priorities. Apart from the
tree, there is a container for machine requests waiting for machines being run for
the sake of other contexts—when a machine is running, other requests for the same



4.2 Machine Factory 163

machine may not be run, because it would violate the rule of not creating the same
machine twice.

When a task gets its turn, it is popped out from the spooler and if the machine
ordered within the task is not currently running, it is created and run. When a task
related to another context of the same machine is currently running, the new task
for the same machine must wait until the other context is fully serviced. If the other
context finishes successfully, the machine is assigned to all its contexts, otherwise
(that is, when the machine process of the other context gets aborted) the waiting
task is started in the same way as when it is not unified with any other task. The
functionality described above is succinctly expressed as algorithm 4.5. The main
loop, described above, is contained in item 2. Two collections (WaitingForOthers
and StoppedWaitingForOthers) require an additional explanation. When a task is
popped from the spooler but can not be run because other instance of the same
machine is already running, then the task is moved to the (WaitingForOthers collec-
tion. When the awaited task finished, a signal is sent and the waiting task is moved
to StoppedWaitingForOthers) collection. The loop in item 1 handles the Stopped-
WaitingForOthers collection by checking items one by one and changing status to
Substituted when the awaited task finished correctly or returning the task if the
awaited task was aborted.

Algorithm 4.5 (Spooler method to pop a task)

Prototype: GetNextTask()
Input: None.
Output: A task to run or ⊥ if no task available.
The algorithm:

1. while StoppedWaitingForOthers 
= ∅ do
a. task← pop task from StoppedWaitingForOthers
b. if the other task aborted then

return task
c. task.Status← Substituted /* the machine is ready */

2. while spooler 
= ∅ do
a. task← pop task from the spooler
b. if task’s machine is finished in another context then

task.Status← Substituted; continue
c. if task’s machine is running in another context then

push task to WaitingForOthers
d. return task

3. return ⊥

The method GetNextTask() is called whenever a task manager finds a free thread
and needs a new task to run.

After the machine process is finished, the machine gets the status “ready”. It is
not the end of its life, but from the point of view of its different states it is the final
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state—the machine results and outputs can be exploited, but the machine does not
change anymore.

The whole machine life cycle is managed completely automatically. From the
user’s point of view, only the start and the end of the path, machine goes through,
must be taken care of, that is, the user orders a machine providing its configuration and
input bindings, and then just waits for the machine (or for a collection of submachines)
to be ready for further analysis of the created model(s).

4.2.3.2 Task Running

Task managers (computation servers) pop machine-creation requests from task spool-
ers and run machines in threads. The idea is depicted in Fig. 4.11. Each project (more
precisely, its task spooler) can subscribe to services of any number of task managers
executed on either local or remote computers. Moreover, subscribing to and unsub-
scribing from task managers may be performed at project run time, so the CPU power
can be assigned dynamically. Each task manager serves the computational power to
any number of projects. Task managers run a number of threads in parallel to make
all the CPU power available to the projects. Each project and each task manager
presented in Fig. 4.11 may be executed on different computer, but it is also possible
to integrate projects and task managers even in a single application.

Task threads run machine processes one by one. When one task is finished, the
thread queries for another task to run. If a task enters waiting mode (a machine
requests some submachines and waits until they are ready) the task manager is
informed about it and starts another task thread, to keep the number of truly running
processes constant.

Machine tasks may need information from other machines of the project (for
example, input providers or submachines). In the case of remote task managers a
project proxy is created to supply the necessary project machines to the remote
computer. To optimize the information flow, only the necessary data is marshaled.

Naturally, all the operations are conducted automatically by the system. The
only duty of a project author is to subscribe to and unsubscribe from task man-

Task
spooler

Project 1

Task
spooler

Project 2

Thread 1 Thread 2 . . . Thread n

Task manager 1

Thread 1 Thread 2 . . . Thread m

Task manager 2

Fig. 4.11 Two projects and two task managers
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ager services—each is just a single method call. Similarly, an author of a complex
machine needs just to request for submachines and call a Wait() method to suspend
operation until the ordered machines are ready.

4.2.3.3 Example of Advantages

To observe the advantages of Intemi spooling system in comparison to standard
queue, let’s analyze the progress of calculating 10 repetitions of 10-fold CV to
compare classification accuracy of kNN and SVM algorithms. Such configuration
results in a repeater machine as presented in Fig. 4.9, but with 10 distributor schemes
instead of 2 and 10 test schemes per distributor scheme in place of 2. The result-
ing machine hierarchy is sketched in Fig. 4.12. The repeater machine creates 10
distributor schemes (ds1–ds10) and 100 test schemes (ts1

1–ts1
10· · · ts10

1 –ts10
10). Each

distributor scheme creates one cross-validation distributor (cvi) and each test scheme

requests 4 child machines: kNN (ki
j), SVM (si

j) and classification tests of kNN (ktij)

and SVM (stij).
To avoid nondeterministic behavior of the process, due to parallel calculation, all

the tasks were calculated by one task manager with one running thread. The request
for the repeater machine pushes the root node of the tree (of Fig. 4.12) into the
spooler. When the request is popped out, the repeater process is run and requests all
its children (which puts the requests in the queue): the first distribution scheme (ds1),
10 test schemes (ts1

1,…,ts1
10) bound to ds1 outputs, the second distribution scheme

(ds2), 10 test schemes of the second CV and so on. Thus, 110 machine requests go
to the spooler. After that, the repeater starts waiting for the children. To avoid a lock,
the task manager receives the information that its thread started waiting and fires up a
new thread. The new thread starts and requests a task from the spooler (by the agency
of the task manager). The GetNextTask() method (algorithm 4.5) returns ds1. The
distributor scheme (in its process) requests the CV distributor machine (cv1) and
starts waiting until cv1 is ready.

When a standard queue is used as the spooler, there are 109 requests in the queue
before cv1, so it is run after all the 109 preceding requests are popped, run and start
waiting after pushing all their requests for child machines to the spooler. It means

Repeater

ds1 ts1
1

. . . ts1
10

. . . ds10 ts10
1

. . . ts10
10

cv1 k1
1 s1

1 kt1
1 st11 . . . k1

10 s1
10 kt1

10 st110
. . . cv10 k10

1 s10
1 kt10

1 st10
1

. . . k10
10 s10

10 kt10
10 st10

10

Fig. 4.12 Repeater submachine tree performing 10×10-fold CV of tests defined in Fig. 4.9. ds
distributor scheme, ts test scheme, cv CV distributor, k kNN, kt classification test for kNN, s SVM,
st classification test for SVM
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that when cv1 gets its turn to run, 111 threads are in waiting mode (the repeater
machine and all 110 of its children) and all the 410 machines of the third level are in
the queue. So, the task manager controls 112 task threads. It costs a lot: the operating
system must deal with many waiting threads and all the started machines occupy
memory at the same time (usually, machines need more memory during the process
than after it—when the model is ready).

With Intemi spooling system based on tree with ordered nodes, the history of
machine requests and pops is quite different. Only the begin is similar, because the
repeater machine is popped, run and it requests its 110 children. Then, ds1 is popped
out and run. It pushes cv1 to the spooler and starts waiting. Next pop from the spooler
returns not ts1

1 as in the case of a standard queue, but cv1, because the branch of ds1
is favored over all the other children of the repeater. When cv1 is finished, ds1 can
be finished too and ts1

1 is run. It requests its 4 children, which are finished before ts1
2

is started, thanks to the spooling system based on ordered tree. As a result, only two
waiting machine processes and one running may be observed at the same time, so
the task manager controls only 3 threads. This is because the machines are popped
from the spooler in the following order:

Repeater , ds1, cv1, ts1
1, k1

1 , s1
1, kt11, st11, . . ., ts1

10, k1
10, s1

10, kt110, st110, . . ., ds10, cv10,

ts10
1 , k10

1 , s10
1 , kt10

1 , st10
1 , . . ., ts10

10, k10
10 , s10

10, kt10
10, st10

10,

while in the case of a standard FIFO the order is:

Repeater , ds1, ts1
1, . . ., ts1

10, . . ., ds10, ts10
1 , . . ., ts10

10, cv1, k1
1 , s1

1, kt11, st11, . . ., k1
10, s1

10,

kt110, st110, . . ., cv10, k10
1 , s10

1 , kt10
1 , st10

1 , . . ., k10
10 , s10

10, kt10
10, st10

10.

Since, thanks to the spooling system, Intemi keeps just three running machines at a
time, both memory and CPU time are saved significantly. When running this example
on the UCI Wisconsin breast cancer data, the peak memory usage was about 30 MB,
while with the standard queue it was over 160 MB. Also the overall time used by
the project was significantly reduced (around 15 %) although the calculations were
exactly the same. The CPU time gain is apparently due to handling the process with
smaller number of threads and less memory consumption, which turned out to be so
smaller burden for the operating system.

4.3 Results and Query System

Apart from efficient machine creation and running, a successful data mining system
must provide convenient tools for handling machine results. From the point of view of
meta-learning applications, it is extremely important to manage the results in a unified
way, facilitating analysis of results coming from machines completely unknown to
the meta-learners.

As described before, machine outputs are handled in a standardized way, indepen-
dently of particular machine peculiarities. Also the results that are not expected to
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have the form of outputs can be deposited in a standard manner. Intemi implements
special results repository, where machines and special objects named commentators
can deposit relevant information.

The information stored in results repository can be accessed directly (it can be
called a low level access) or by running a query (definitely recommended) to collect
the necessary information from a machine subtree.

Queries return series of results in especially designed containers, which can be
easily transformed with numerous series transformations.

The system is open to extensions with new methods to control queries and trans-
form result series. General mechanisms are offered by the system, together with the
most commonly used methods, but specific behavior can always be obtained with
user’s implementations, usually without much effort.

4.3.1 Results Repositories

Results in the form of name-to-object mappings are stored by Intemi within a repos-
itory integrated with the project. Standard form of results collections makes them
easily accessible and manageable, due to the general, uniform tools. Putting the
results into the repository is advantageous also from the perspective of memory
usage. Machines can be discarded from memory when no other machine needs their
outputs, while the results and comments repositories stay in memory and are available
for further analysis. Therefore, results repository should be used with moderation.

Intemi provides three standard ways of exposing such information:

• depositing to the machine’s results repository by the machine itself,
• commenting machines by their parent machines,
• commenting machines by commentators.

The three methods of adding information have been implemented to allow
machines to put just the most important information into the repository. This is not
a loss of possibilities, because more information can be added later, after machines
are finished, by machine commentators. The idea of parent’s comments on child
machines is slightly different than the two others. Such comments describe the child
role, seen from the parent’s point of view, not the details learnt by the machine.

Machine-deposited results

Results repository consists of small dictionaries mapping string labels to the results
objects, created by the system for particular machines. Machines can put there the
information describing the model, the learning procedure and so on. Adding results
to the repository is performed by calling the AddToResultsRepository() method of
Machine class (each machine class is obliged to derive from it). For example, the
Classification test machine adds calculated accuracy to the repository in the fol-
lowing way:
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AddToResultsRepository("Accuracy" accuracy);

There is no limit for the number of elements that can be put into the repository or
their size, however it is advisable to put there only the most important information,
in order to save memory. When a machine is swapped to the disc cache, its result
repository entries are still kept in memory, so that the most important information
about the model is available without the need to restore the whole machine.

Parent’s comments

Each machine can comment its submachines to augment further analysis of the
submachines structure. For example, the repeater of Fig. 4.9 comments each of its
submachines with labels denoting which repetition and which CV fold the subscheme
belongs to. Thanks to this, we can run queries filtering appropriate results, for exam-
ple, we can select all the accuracies of the first CV cycle or all the accuracies of the
second folds of each CV cycle and so on.

A machine can comment a child with a call to the AddChildComments() method
of the Machine class. The child index, comment label and comment value must be
passed to the method. In the case of the example mentioned above, the repeater
comments each subscheme with the code:

AddChildComments(submachineId, "Repetition", group + 1);
AddChildComments(submachineId, "Fold", fold + 1);

The “+1” shifts of indices convert from 0-based to 1-based index system.
It is important to realize that the comments assigned by parent machines to their

children are not attached to machine, but to the parent–child link (edge instead of
node in the terms of graph theory). When machine unification occurs, the machine
and its results are common for different contexts, but the parent’s comments may be
different.

Commentators

Queries collect and series transformers analyze data gathered in results repositories.
Because, by default, machines should put in the repositories only the most important
information, additional tools are provided to facilitate adding machine description
items to the repository, when necessary. Such additional information is deposited in
the system as a comment on a machine.

Each machine can order making comments on its successors. The order can be
attached to the request for creation of the submachines, in the form of objects called
commentators.

To continue the example of the kNN and SVM test, if we need to perform a McNe-
mar’s test of statistical significance of difference between performance of kNN and
SVM, we need detailed information about correctness of each single answer of each
machine. The best way to achieve this is to request comments on both classification
tests. The CorrectnessCommentator comments a classification test machine with a
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binary vector of the length equal to the number of objects in the test data and con-
taining a 1 for each correct answer and 0 for incorrect answer. It would be wasteful
to generate and keep such vectors for each classification test machine, so it can be
done on demand by means of commentators.

Comments do not need to be requested at the time, the commented machine is
requested. It is a very important advantage, that also for machine hierarchies built
earlier, one can easily apply a search for machines qualifying for comments and run
given commentators for them. The idea of the technique is the same as the one of
queries defined in the following section.

Similarly to machine-deposited results and parent comments, comments made
by objects like the CorrectnessCommentator, can be collected with queries, and
transformed with series transformations, as described below.

4.3.2 Query System

To simplify the management of submachines results, which constitute a tree hierar-
chy, Intemi provides uniform tools for quick and easy results collection and analysis.
A series of results selected from a machine tree can be obtained by running a query.
A query is defined by:

• the root machine of the query search (root of the searched subtree),
• a qualifier, that is, a filtering object—the one that decides whether an item corre-

sponding to a machine in the tree is added to the result series or not,
• a labeler, that is, the object collecting the results objects that describe a machine

qualified to the result series.

Running a query means performing a search through the tree structure of subma-
chines of the root machine, and collecting a dictionary of label-value mappings (the
task of the labeler) for each tree node qualified by the qualifier.

For example, consider a repeater machine producing a hierarchy of submachines
as in Fig. 4.9. After the repeater is finished, its parent needs to collect all the accuracies
of SVM machines, so it runs the following code:

Query.Series results = Query(repeaterCapsule,
new Query.Qualifier.RootSubconfig(1, 3),
new Query.Labeler.FixedLabelList("Accuracy"));

The method Query takes three parameters: the first repeaterCapsule is the result
of the CreateChild() method which had to be called to create the repeater, the second
defines the qualifier and the third—the labeler. The qualifier RootSubconfig selects
the submachines which were generated from the subconfiguration of repeater corre-
sponding to path “1, 3”. The two-element path means that the source configuration
is the subconfiguration 3 of subconfiguration 1 of the repeater. A look at the repeater
configuration in Fig. 4.8 clarifies that subconfiguration 1 of the repeater is the con-
figuration of the test scheme (0-based indices are used) and its subconfiguration 3
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is the SVM Classification test. Thus, the qualifier accepts all the machines gen-
erated on the basis of the configuration Classification test taking Classifier input
from SVM machine. These are classification tests, so they put "Accuracy" to the
results repository. The labeler FixedLabelList of the example simply describes each
selected machine by the object put into the results repository with label "Accuracy".
As a result, we obtain a series of four descriptions containing mappings of the label
"Accuracy" to the floating point value of the accuracy.

Intemi provides a number of qualifiers and labelers, most likely to be needed by
researchers. For example, instead of the RootSubconfig(1, 3) qualifier, one could
use ConfigType(typeof(ClassTestConfig)). This would collect the results for all the
machine tree nodes for which ClassTestConfig is the configuration class, that is, from
all the classification test machines. The result series would contain not four but eight
elements since both Classification test machines (taking Classifier input from kNN
and SVM machines) would be qualified by the query.

The labelers are given access to the whole path of machine results: from the query
root submachines to the leaves of the machine tree. Thus, the labelers can use labels
from any level. For instance, the labeler AllLabels collects all the labels commenting
the whole path. It lets us easily collect, for example, the accuracies calculated by the
classification test machines and fold identifiers given by the repeater machine to its
submachines (distribution and test schemes).

Partial results of a n × 5 CV are presented in Table 4.2. The "Repetition" and
"Fold" entries are the comments made by the repeater on its submachines.

4.3.3 Series and Series Transformations

The result of a query is contained within an object of Series class. The series is a
collection of label-value pairs describing subsequent items. In the case of the series
presented in Table 4.2, each item is described by three values assigned to the labels
"Accuracy", "Repetition" and "Fold" respectively.

The series returned by queries are often just intermediate results that undergo more
or less sophisticated analysis. Each series can be transformed by specialized objects
called series transformations. The transformations get a number of series objects
and return another series object. One of the basic transformations is BasicStatistics

Table 4.2 Partial results obtained with labeler AllLabels for a n × 5 CV

Item 1 2 3 4 5 6 7 8 9 10 11 …

Accuracy 0.93 1.0 0.97 0.93 0.97 0.9 0.97 1 1.0 1.0 0.97 …
Repetition 1 1 1 1 1 2 2 2 2 2 3 …
Fold 1 2 3 4 5 1 2 3 4 5 1 …
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which transforms a series into a single item series containing the information about
minimum, mean, maximum values and standard deviation.

Quite advanced manipulation of series of results can be performed with groups
related transformations. As mentioned before, when a query uses a ConfigType qual-
ifier pointing to the configuration type of classification test, it collects all the classifi-
cation test results (regardless which classifier it tests—kNN or SVM in the example
shown before). So, a series obtained in this way (say allResults) contains descriptions
of kNN classification tests and SVM classification tests (by turns). We can easily
create two groups by separating kNN results from SVN results with a call to the
GroupModulo transformation:

Series inGroups = allResults.Transform(new GroupModulo(2));

It is also easy to group series items containing common values for particular
label. For example, when we repeat 7 times a 10-fold CV and collect all available
labels from classification test machines, we can group the resulting series by the
"Repetition" with:

Series repetitions = allResults.Transform(new Group("Repetition"));

and obtain a series of 7 series containing separated results of each repetition of
the whole CV cycle.

A grouped series can be traversed to transform each of its subseries. The MAP
transformation performs a given transformation on all the subseries. For example,
running the code

Series stats = repetitions.Transform(new MAP(new BasicStatistics));

calculates basic statistics for all the series within repetitions. The result remains
a series of series (as repetitions was), so it must be ungrouped with the Ungroup
transformation, to obtain a plain series of basic CV statistics for each repetition.

A shorthand notation is available to speed up writing code for such manipulations:

Series flatStats =
allResults.Group("Repetition").MAP(new BasicStatistics()).Ungroup();

Several other methods of grouping result items have also been implemented in
Intemi. For example, they can split a series into several series of given sizes or select
some groups of results while dropping others, also in cycles.

One of the labels contained within the series is selected as the main label. Some
transformations are focused on the items with main label or treat them in a special way
in the transformations. For example, the BasicStatistics transformation calculates the
statistics for the values assigned to the main label.

There are also basic arithmetic operators available and they also act on the main
label values. They can be used in a natural manner as infix operators. For example,
the code

Series diff = kNNResults − SVNResults;
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calculates the differences of accuracies (assuming that the "Accuracy" is the main
label in the series kNNResults and SVNResults). An example of such operation on
results of 10-fold CV (performed once) is shown in Table 4.3.

One of the most important aspects of such results manipulation is easy testing
of statistical hypotheses about the results differences. Thanks to universality of pro-
posed ideas, we can easily run statistical tests like t-test, paired t-test, Wilcoxon test,
McNemar’s test and others. They are implemented as series transformers, so calling
them may be as simple as:

Series tTest = new TTest().Transform(kNNResults, SVNResults);
Series tTestP = new TTestPaired().Transform(kNNResults, SVNResults);

The returned objects are new series containing information about the test results.
TTest and TTestPaired transformations return series with single items labeled with
"t value" and "p value" presenting the value of calculated statistic (t) and the esti-
mated probability of the null hypothesis (about equality of the means) being true.
The results calculated for the 10-fold CV accuracies from Table 4.3 are presented in
Table 4.4.

In this case, the t-test allows to reject the null hypothesis with 95 % confidence
(α = 0.05), but not with 99 % confidence (α = 0.01). The paired t-test, provided
with the information about differences in subsequent passes, confirms that the results
are statistically significantly different with more than 99 % confidence.

To perform McNemar’s test (for the example scenario testing kNN and SVM with
10-fold CV), binary vectors of classification correctness for each of the two methods
are needed. McNemar’s test is run for two corresponding samples. Here, we have 10
pairs of data samples, but according to CV, each object from the original data occurs
in exactly one test data sample, so merging all CV test samples is very reasonable. On
the assumption that the CorrectnessCommentator has been run for each classification
test machine, an example C# code that performs the McNemar’s test can be quite
short and readable:

Series s = project.Query(repeaterCaps,

Table 4.3 5NN and SVN accuracies (in %) for 10-fold CV for UCI image segmentation data

Fold 1 2 3 4 5 6 7 8 9 10 Mean±St.dev.

5NN 95.2 81.0 90.5 81.0 95.2 81.0 90.5 85.7 90.5 90.5 88.1±5.6
SVM 81.0 76.2 90.5 71.4 81.0 76.2 90.5 76.2 90.5 81.0 81.4±6.9
5NN-SVM 14.2 4.8 0.0 9.6 14.2 4.8 0.0 9.5 0.0 9.5 6.7±5.6

Table 4.4 Statistical significance tests results

Test name t-test paired t-test McNemar

statistic 2.370 3.772 12.25
p-value 0.0292 0.0044 0.0005
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new ConfigType(typeof(ClassTestConfig)),
new FixedLabelList("Correctness"));

s = s.GroupModulo(2).MAP(new Unpack());
Series r = new McNemar().Transform(s[0], s[1]);

First three lines define the query to collect just the "Correctness" results from all
classification test machines. The fourth line groups the results of kNN and SVM and
maps each of the two groups with Unpack transformation which unfolds all given
collections of binary results added by the CorrectnessCommentator into a single,
long series. The fifth line runs McNemar’s test on the two long series of correctness
binary flags and returns the χ2 statistic value and the p-value as two values in a single
item series. Last column of the Table 4.4 contains the results of the McNemar’s test
run for the example being discussed.

The mechanisms of query and series facilitate such analyses with very simple
means. There are many more predefined series transformations and new transforma-
tions can be easily implemented.

4.4 Meta-Learning Support

Intemi framework has been designed with special emphasis on the needs of meta-
learning. Therefore, it provides an abundance of tools for efficient and friendly meta-
level operation including:

• easy machine configuration manipulation,
• pre-defined machines for testing other machines, including the Repeater machine,

which can serve as a basis for such techniques like stacking, bagging, boosting
and others,
• easy test results collection and queries for selected results,
• series transformations for easy reorganization of the results, comparisons, testing

statistical hypotheses and so on,
• efficient machine creation and running with general unification system working at

any level of machine hierarchies.

Intelligent machines for learning at meta-level can be easily constructed and tested. In
some simple applications, a machine performing meta parameter search, described
below, can be very useful, although it can not be regarded as an advanced meta-
learning algorithm.

4.4.1 Meta Parameter Search

One of the first steps toward advanced meta-learning is a machine capable of efficient
searching in the space of model parameters. Various data mining systems introduce
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such tools, but the implementations are either very limited or look like external
patches that do not fit the overall inner architecture. Shortages of the engine-level
design do not allow for advanced meta-learning in a natural way. When Intemi was
being designed, the meta-learning requirements decided about many solutions at the
engine level of the system (like those presented in preceding sections), so meta-
learning machines are built in the same manner as all base-level machines and are
served in ordinary ways. Simple parameter search machine is the first step toward
more sophisticated meta-learning and constitutes a good illustration of cooperation
of different mechanisms described above.

The aim of the meta parameter search (MPS) machine is to repeatedly create
a submachine and test different values of parameters included in the submachine
configuration. The algorithm of MPS machine allows for testing arbitrarily complex
submachines and can search for optimal values of parameters of any part of the
submachine configuration hierarchy.

The configuration of the parameter search machine includes:

• a test configuration defining arbitrarily complex machine structure,
• a scenario of parameter changes,
• a query specification which determines the way of estimation of the test results.

The process realized by the meta parameter search machine creates a sequence of
submachines for the test configuration with some parameters changed in each itera-
tion, according to the configured scenario. In each pass, it

• gets a candidate configuration from the scenario object,
• creates a submachine to test the configuration,
• runs a query on the submachine branch to collect proper results,
• transforms the series of values resulting from the query by given series transformer

to obtain the final measure of the configuration parameters performance,
• passes back the performance result to the parameter changes scenario object, so

that it can adjust the process of producing subsequent machine configurations.

The main part of the parameter search is presented as algorithm 4.6. In the main loop
(item 2), it repeatedly creates test machines (usually a complex hierarchy) returned
by the scenario of parameter changes. When the test is finished, it runs the same query
for each iteration, to collect the crucial results obtained with current parameters. The
results (usually a collection of accuracy estimations) are then transformed to obtain
one real value as the overall estimation of current configuration. After all tests (for all
parameter settings returned by the scenario) are finished and their results examined,
the best configuration is returned as the main result of the search.

Normally, the test submachine configuration defines the whole test process, for
example, multiple training and test of a classifier, so it is convenient to derive it
from a test template scheme, introduced in Sect. 4.1.2, by filling placeholders with
proper machine configurations, for example, embedding a classifier configuration in
a cross-validation test template.
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Algorithm 4.6 (Meta parameter search process)

Prototype: MPS.Search(C,S,Q,T)
Input: Configuration of test machine C, scenario of parameter changes S, query collecting results Q,

series transformation calculating the final quality estimation T.
Output: Best configuration found and its quality estimation.
The algorithm:

1. S.Initialize(C)
2. while (C← S.GetNext()) 
=⊥ do

a. create child with configuration C
b. wait for the child
c. series← execute query Q
d. series← T(series)
e. objective← series[0] as double;
f. if objective is the best of all seen so far then

best← C
g. S.RegisterObjective(C, objective)
h. remove the child

3. return best

The role of parameter-changes scenarios is to set some parameters to appropriate
values in subsequent tests. Different scenarios may be used to perform miscellaneous
types of search.

A parameter search scenario may just iterate over a set of possible values of a
parameter or perform a sophisticated process exploiting specialized meta-knowledge
and the feedback from subsequent tests. Item 2g of algorithm 4.6 is responsible for
the feedback passed to the scenario object. The scenario of parameter changes can
adapt its behavior according to the results it is informed about. Thanks to that, many
intelligent scenarios can be created and used by MPS, resulting in quite sophisticated
meta-learning algorithms.

Although it is not possible to define a single scenario, that would guarantee sat-
isfactory results in a short time, machine authors may define default scenarios for
machine parameters, that is, the default way of searching for optimal parameter
values (suggestions of scenarios that should perform well on average).

After the search process is finished, the MPS machine can create the winner
model and exhibit the outputs of the best machines as its own outputs, to provide the
functionality of the best model to other machines. For example, a search for the best
classification learner for given data, together with pointing the best solution found,
can be treated as a machine learning classification itself. The same applies to any
other type of models, one would like to search for: regression functions, clustering
and so on.
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Example experiment with MPS

To summarize many techniques described in this chapter, to put them together, illus-
trate their common functionality with a practical example, and show that so nontrivial
projects can be created in quite readable form, an application of the MPS machine
is presented as its original C# source code:

1 DataLoaderConfig dCfg = new DataLoaderConfig();
2 dCfg.InputFileName = "breast−cancer.dat";
3 Capsule dCaps = project.CreateMachine(dCfg, null, null);
4

5 RepeaterConfig rCfg = new RepeaterConfig();
6 rCfg.SetCVDistributor();
7 rCfg.TestScheme.Add(0, new StdConfig(),
8 new Bindings().Bind("Data", "Training data"));
9 rCfg.TestScheme.Add(1, new SVMClassifierConfig(),

10 new Bindings().Bind("Data", 0, "Data"));
11 rCfg.TestScheme.Add(2, new ExtTransformationConfig(),
12 new Bindings().Bind("Data", "Test data")
13 .Bind("Transformer", 0, "Transformer"));
14 rCfg.TestScheme.Add(3, new ClassTestConfig(),
15 new Bindings().Bind("Data", 2, "Data")
16 .Bind("Classifier", 1, "Classifier"));
17 rCfg.CVParams(5, 2);
18

19 ParamSearchConfig psCfg = new ParamSearchConfig();
20 psCfg.TestingConfiguration = rCfg;
21

22 int[] subcfgPath = new int[] { 1, 1 };
23 StepScenario_D SigmaScenario = new StepScenario_D(subcfgPath,
24 new string[] { "Kernel", "Sigma" },
25 StepScenario_D.StepTypes.Power2, −12, 2, 8);
26 StepScenario_D CScenario = new StepScenario_D(subcfgPath,
27 new string[] { "C" },
28 StepScenario_D.StepTypes.Power2, −1, 2, 7);
29 psCfg.Scenario = new StackedScenario(
30 StackedScenario.StackTypes.Grid,
31 new IScenario[] { SigmaScenario, CScenario });
32

33 psCfg.QueryDefinition = new QueryDefinition(
34 new Intemi.Query.Qualifier.RootSubconfig(1, 1),
35 new Intemi.Query.Labeler.FixedLabelList("Accuracy"),
36 new Intemi.Query.BasicStatistics());
37

38 Capsule psCaps = project.CreateMachine(psCfg,
39 new Bindings().Bind("Data", dCaps, "Data"), null);
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40 project.WaitAll();

The lines 1–3 define a configuration of a data loading machine and request the
machine. The lines 5–17 prepare a configuration of a repeater performing 5 times
2-fold cross-validation of an SVM machine trained on standardized training part of
CV data and tested on the test part after standardization performed according to the
statistics calculated for the training data. Thus, the machines built for StdConfig and
ExtTransformationConfig are put inside the repeater test scheme. The repeater con-
figuration is then (in the line 20) passed to the configuration of the MPS machine as
the configuration of test procedure. It is very advantageous to analyze the code con-
structing the MPS configuration, together with Fig. 4.13, presenting the configuration
graphically.

In the lines 22–31, the scenario of the parameters search process is defined. The
search has a form of a grid (see the line 30), so that each declared value of the σ

parameter of the Gaussian kernel function is tried against each declared value of the
C parameter. Both parameters belong to the SVM machine which is identified by the
path 1, 1 (see the lines 22, 23 and 30) of subconfigurations of the MPS test configu-
ration (that is, the repeater configuration defined in the lines 5–17). The indices in the
path are 0-based, so the repeater’s subconfiguration 1 is its test scheme containing
SVM configuration as its subconfiguration 1 (see the line 9). Both parameters are of
exponential nature, so the explored sets of values are {2i : i = −12,−10, . . . , 4}
and {2i : i = −1, 1, 3, . . . , 11} respectively. The sets specification is in the lines 25
and 28, containing the declaration of the exponential type, start exponent, step (the
increment of the exponent) and how many values are to be tried. Many other pre-
defined parameter search scenarios are also provided and completely new scenarios
can be easily added.

The lines 33–36 specify the query to collect the test results and the transformation
of the resulting series to another series containing the final estimate of the configura-
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Fig. 4.13 Meta parameter search project configuration corresponding to the source code
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Table 4.5 Meta parameters search results for SVM tested by 5×2-fold CV on Wisconsin breast
cancer data

C Gaussian kernel σ

0.0010 0.0039 0.02 0.06 0.25 1 4 16

0.5 0.6635 0.9393 0.9642 0.9671 0.9674 0.9588 0.9419 0.8798
2 0.9396 0.9645 0.9677 0.9665 0.9659 0.9605 0.9508 0.9159
8 0.9645 0.9677 0.9668 0.9645 0.9591 0.9479 0.9508 0.9159
32 0.9677 0.9668 0.9634 0.9474 0.9428 0.9451 0.9508 0.9159
128 0.9674 0.9617 0.9456 0.9413 0.9322 0.9422 0.9508 0.9159
512 0.9617 0.9474 0.9428 0.9365 0.9293 0.9416 0.9508 0.9159
2,048 0.9476 0.9416 0.9391 0.9339 0.9273 0.9416 0.9508 0.9159

tion performance. The estimate implemented here is the average accuracy obtained
within the repeated CV test (transformation BasicStatistics calculates mean value,
minimum, maximum, standard deviation and some other values, and sets the mean
as the main label of the resulting series).

The results obtained with the code are presented in Table 4.5. They are available
as an output of the parameter search machine after the whole process is finished.

Finally, the lines 38–40 request the MPS machine from the project and wait for
all the machines to finalize their processes.

The system takes care for all the machines that must be built to provide the
requested machine. It creates subsequent machines, when it can be determined that
such a machine must be created, and uses the unification mechanisms to reuse
machines created earlier, wherever possible. In this project, the repeater is performed
many times with changed configuration of the SVM machine but without changes to
the configuration of the CV processes. Thus, many submachines in this project, for
example those responsible for data splits, are reused to save time and memory.

The project configuration is visualized in Fig. 4.13. At run time, a single Data
loader and a single Meta parameter search are created. Within the MPS process,
a Repeater machine is created for each of the 56 = 8×7 pairs of parameters. Each
repeater performs 5×2 CV, so it creates 5 distributor schemes and 10 test schemes.
Thus, the overall number of needed machines is quite large. Thanks to the unification
framework (described in Sect. 4.2.2), the number of machines that are really created
and run is significantly smaller.The numbers are presented in Table 4.6.

Table 4.6 is not extended with columns describing other data mining systems,
because no other system is able to reuse machines, and even if one were 10 % faster
in the first learning of a given machine, it would not be faster after next computation of
the machine, since Intemi is able to reuse machines, so that serving repeated requests
costs almost nothing. Learning processes are sometimes really CPU consuming and
this problem can not be trivially neglected.

It can be easily seen in Table 4.6, which machines are reused many times: distribu-
tor scheme, CV distributor, standardization, external transformation, kernel provider
scheme and kernel provider. Indeed, there is no point in repeating CV data distri-
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Table 4.6 Numbers of
machines that exist in the
project logically and
physically

Machine
logical
count

physical
count

Data loader 1 1
Meta parameter search 1 1

Repeater 56 56
Distributor scheme 280 5

CV distributor 280 5
Test scheme 560 560

Standardization 560 10
External transformation 560 10
SVM 560 560

Kernel provider scheme 560 80
Kernel provider 560 80

Classification test 560 560

Sum 4,538 1,928

bution for different repeater instances, since each time, the data split is the same.
Thus, only 5 different CV data pairs are needed, as the repeater performs 5 inde-
pendent splits. Similarly, the training and test data coming as test scheme inputs are
cyclically repeated, so only 10 different standardization machines and 10 different
external transformation machines are necessary.

A nice surprise can be the unification of the SVM kernel calculations. Intemi
realization of the SVM machine extracted kernel calculations to a separate machine
(submachine of SVM) to enable multiple use of the same kernel table. More precisely,
as visible in Fig. 4.13, SVM defines the Kernel provider scheme, which can be filled
with any machine structure providing kernel calculation interface. In the test being
analyzed, the scheme contains a single Kernel provider machine, which outputs
Gaussian kernel calculation routine. SVMs are run with different parameters of C
and Gaussian kernel σ . Two SVM machines trained on the same data with different
C parameter and the same σ may share the kernel table (that is, use the same Kernel
provider scheme and Kernel provider). Thus, only 80 different kernel tables are
requested in the project (8 different values of σ and 10 different training datasets).

As a result of all the savings, out of 4,538 machines comprising the project there
are only 1,928 different machines. Naturally, it means completely different peak
memory usage: more than 250 MB and less than 60 MB respectively. Moreover, less
machines to be created and run means also time savings: the analysis described above,
for Wisconsin breast cancer data, with machine unification takes just 10.5 s, while
without unification it takes 16.5 s of a 2 GHz CPU. So different ratios describing
savings in the number of machines, memory occupation and CPU time consump-
tion result from the fact, that the machines that were unified in this project need
much memory, but little time (the distributors that split data and data standardization
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machines). Even the SVM kernel providers have not affected the result significantly,
though their complexity is O(n2) in both space and time.

The unification possibilities are detected automatically. No machine is run twice
with the same parameters, which saves both time and memory during the project run.
It also saves the time of machine implementers, since they do not need to predict
when exactly machines can be reused.

4.4.2 Meta Search Scenarios

The most powerful aspect of MPS (see algorithm 4.6) is the possibility of using
arbitrary scenarios of parameter changes. From the algorithm 4.6, it can be easily
inferred, that a scenario object must implement at least the three methods listed in
interface 4.7. The life of a scenario starts with a call to the Initialize() method, which
provides the test architecture, in which the scenario is to manipulate some parameters.
Then, the GetNext() method is called as many times as necessary to get all possible
configurations offered by the scenario. After each test is finished and objective value
calculated, the scenario is informed about the achievement of its product with a call to
the RegisterObjective() method. Thanks to that, the scenario can adapt its operation
with respect to the results and move to other areas of the parameter space, if the
suggested configurations perform poorly in the tests. Many scenarios completely
ignore the information received by RegisterObjective(). It concerns both scenarios
engaged in the MPS experiment discussed in the preceding section: StepScenario
and StackedScenario. The former performs tests of several values of a continuous
parameter, step by step, according to given conditions (start value, step, type of
changes like linear or exponential, and so on). The latter combines other scenarios
in a given way (one after another, combined into a grid and so on). For symbolic
parameters, a scenario named SetScenario has been prepared, to test the elements of
a specified set as the values of selected parameter.

Interface 4.7 (Scenario of parameter changes)

Method: Initialize(C)
Input: Test configuration to be manipulated (C).
Output: None.

Method: GetNext()
Input: None.
Output: Test configuration with current parameter values.

Method: RegisterObjective(C, O)
Input: None.
Output: The configuration just tested (C), objective value derived from the test (0).
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Advanced scenarios (respecting the feedback) can be constructed in numerous
ways. A modification of StepScenario named StepScenarioWithZoom facilitates
testing continuous parameters in several stages with step changing in each stage.
When several values are tested and a border one turns out to provide the best result,
the step is increased and larger area is searched in the next stage. When the winner
point lies inside the tested interval, the step is decreased to perform more detailed
search in the area of the winner. Moreover, StepScenarioWithZoom can perform its
search for several parameters in parallel, testing points on a line in multidimensional
space, not necessarily along a selected axis.

Yet more advanced feedback analysis is performed by MultiLineSearchScenario,
which uses StepScenarioWithZoom to search along different directions and tries to
determine new better ones, on the basis of the results obtained with earlier attempts.

Many other search strategies can be constructed, so even with quite simple tool
such as meta parameter search machine, but with sophisticated search scenarios,
one can create very interesting algorithms, capable of learning from their earlier
experience.
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Grąbczewski K, Jankowski N (2008) Meta-learning with machine generators and complexity con-

trolled exploration. In: Artificial intelligence and soft computing. Lecture notes in computer
science. Springer, Berlin, pp 545–555
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Chapter 5
Meta-Level Analysis of Decision Tree Induction

Object oriented design divides complex algorithms and data structures into smaller
and simpler components, specializing in solving extracted subproblems. As a result,
also in the approach to a general framework for DT induction, the algorithms can be
composed by a number of compatible components. In the framework described in
Chap. 3, even the simplest DT induction algorithms are composed of several com-
ponents responsible for such tasks as performing search process, estimating split
quality, pruning and so on.

Functionality of each component can usually be implemented in at least several
ways, so when all implementations are regarded of all components, the number of
algorithms, that can be constructed within the framework, is very large. Hence, the
number of comparative analysis scenarios is so large, that only a tiny sample can be
presented in a book like this one. The sections of this chapter present and analyze
just two comparative test scenarios, after a discussion on comparison techniques,
that should not be used, because they introduce a bias into the comparisons, and
the methods for fair, reliable tests. The analyses, presented below, can not go into
all details that could be interesting for a reader, since deeper analysis of each test
scenario, like the ones presented below, can be illustrated in hundreds of tables and
figures, presenting various contexts of the analysis. The selected aspects, discussed
below, are:

• an analysis of single tree induction methods, focused especially on tree validation
(Sect. 5.3),
• a comparison of components for construction of DT committees (Sect. 5.4).

Such selection lets demonstrate a variety of important DT induction techniques.
Because model comprehensibility is usually very important when DT models are
preferred, large forests are not analyzed here (though they serve as a reference point
for evaluation of small DT committees in Sect. 5.4).
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5.1 Results Comparison Techniques

Reliable conclusions may be drawn only from carefully prepared experiments. Com-
parisons of algorithms must be performed in such conditions that guarantee the same
environment for the compared procedures. Although these remarks sound like tru-
isms, the practice of scientific publications in the field of data mining shows that it is
very easy to overlook some important details. Practical algorithms, almost always,
consist of many procedures, detailed solutions, specialized data structures, so it is
often tempting to simplify analyses by ignoring some of the incorporated concepts,
because they seem marginal. Unfortunately, such intuitions sometimes turn out com-
pletely wrong, because detailed solutions can cause significant differences in results.

An example of such consequences may be observed when the QUEST algorithm
(of Sect. 2.2.5.2) learns multi-class problems by converting them to two-class prob-
lems. Two superclasses are generated with two-means clustering of the set of class
centers. Such information seems quite precise, but it turns out that such detailed
solutions as the way of handling categorical variables may be responsible for large
differences between obtained results. Comparing classical Euclidean distance with
a symbolic-data-aware version (using Hamming distance for symbols instead of
absolute difference between naturals encoding subsequent values), one can observe
the difference in classification accuracy of as much as 10 % (flag data, 50.67 vs.
60.48 % accuracy respectively).

Another example of hidden information that significantly changes the achieve-
ments of DT induction algorithm is the “trivial” stop criterion of C 4.5 (see Sect. 2.2.3),
that is, the control of node size (if there is just a single data object to be split from
the others or the whole node dataset contains less than 4 objects, it is not split).
Such conditions seem to be not important, because so small nodes are expected to
get deleted by further pruning processes, but for some datasets, they introduce quite
large, significant differences in the results.

Many more examples can be given, to illustrate that every detailed setting of
complex DT induction algorithm can be very important. Therefore, to draw reliable
conclusions about influence of particular parameters on final results, one needs to
conduct tests of different values of the parameter in accompany with exactly the
same other components. Otherwise, one can never be sure about the real reasons of
the result differences. Below, some important aspects of fair testing are discussed.

5.1.1 Bad Testing Practices

Data mining tools like Intemi described in Chap. 4 provide very precious mecha-
nisms, supporting conscientious testing of learning algorithms. Uniform representa-
tion and management of simple and complex machines, clear distinction between the
configuration and runtime lives of machines, results repositories, queries, and many
other solutions are very helpful in performing unbiased comparative tests. Naturally,

http://dx.doi.org/10.1007/978-3-319-00960-5_2
http://dx.doi.org/10.1007/978-3-319-00960-5_2
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5.1 Results Comparison Techniques 185

improper use of the tools is always possible, so there is no guarantee that tests per-
formed with them are fair. Nevertheless, available easy-to-use procedures performing
some standard tests are usually very efficient mean to discourage scientists from cre-
ating their own testing scenarios from scratch, prone to miscellaneous small and
larger errors. Vulnerabilities to testing embezzlements are far larger when no uni-
form environment is used and many separate applications are combined. Some frauds
come in disguise and require deeper analysis to be revealed, so that many have been
accepted in numerous scientific articles. The unified view of machines and results
handling (collection and transformation), proposed by systems like Intemi, make the
embezzlements easier to see and avoid. Of course, it is not possible to completely
prevent the frauds with system level protection, because that would mean significant
restrictions of the system.

Probably the most common kind of testing mistakes is using data transformation
methods in an unfounded way. There are many techniques of data preparation for
final adaptive model construction. Many researchers clearly split the whole data
mining process into stages including separate data preprocessing and final learning
or testing. It is dangerous, because it suggests that testing machine generalization
may be performed on preprocessed data without unjust consequences. As a result,
there are many publications describing such unfair approaches to data mining.

Supervised Preprocessing

The most common mistake is using supervised data transformation methods before
testing generalization abilities of learning algorithms, instead of including the super-
vised transformations in a complex model to be tested.

The set of the most popular fraud techniques of supervised data preprocessing
includes:

• supervised data discretization,
• supervised missing values substitutions,
• supervised feature extraction.

In the list of fraud techniques, the word “supervised” has been emphasized delib-
erately. Naturally, using unsupervised methods (for example, data standardization)
as data preprocessing, before testing generalization is not a cheat, although would
also be odd in practical applications. For instance, in medicine, the process of gath-
ering data usually takes some time to enable training of adaptive machines. When
the models are ready, they are used to classify new data collected for new patients.
Standardization of the whole data, which is the union of training and test datasets,
would require waiting until the whole data, we want to classify, is collected. After
that, the machines would be trained and the decisions for all the new patients deter-
mined. Decision support is required at the time each patient is examined, not after
years of data collection. This would not make sense either, to retrain the system each
time a new patient comes. Instead, it is the most sensible and the most common,
that a model created for the data available at some time is used for diagnosing new
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patients without retraining. Sensible tests should simulate practical applications, so
using strange techniques, because they provide better scores, is unjustifiable.

When testing learning machines, one should always treat all the data transfor-
mations performed before training as a part of the training process, and in tests
like cross-validation, repeat the whole procedure from the very beginning, for each
CV fold. However, assuming that the training data is representative of the whole
population, unsupervised data preprocessing methods like different forms of nor-
malizations give very similar results for the whole data and for the training part.
Then, the differences are very unlikely to affect further validation results.

An example of a genuine fraud is filling missing values in a supervised manner
within the data preprocessing stage. If we allow a data preprocessing method to
be supervised, we could create a method to fill the missing values with the class
label of the particular data object. It would introduce very precious information and
significantly decrease the estimated error rate. In an extreme case, we could delete
all the values of a feature and replace them by the class labels. Then, simple identity
function would be a perfect classifier, but what would we need to do with new data to
be classified? We should do the same we did for the training data, that is, put the class
label in proper place, so we would need to now the class label in order to predict it.
When the supervised data transformation is included in a complex learning machine,
the problem of test data transformation (where no targets are available) gets clearly
visible and makes such fraud models infeasible. Using data preprocessing before
proper tests does not reveal the problem and accepts such erroneous approaches.

It is important to notice that filling missing values with the mean values observed
within the corresponding class is practically equivalent to filling with the class labels,
since almost always, the means are unique for particular classes, so they are equally
informative as class labels.

Another example of influence of supervised data preprocessing on validation
result may be adding new, more informative features, on the basis of an analysis
of a model built for the whole dataset. Again, an extreme example of such unfair
calculations would be adding the targets to the data. In such case, everybody would
have no doubt that it would be a cheat. Unfortunately, less radical examples quite
frequently go successfully through the sieve of peer review processes. To not cite
erroneous publications, let’s regard the following example.1 SSV decision tree algo-
rithm (Grąbczewski and Duch 2000) generates a very simple and relatively very
accurate description of the appendicitis data from the UCI repository:

if HNEA < 7520.5 ∧MBAP < 12 then class 2 else class 1.

The rule accuracy calculated for the whole set is 91.5 %. Extending the original
data by adding a binary feature corresponding to the value of the rule premises
introduces the knowledge gained by SSV (by an analysis of the whole dataset) to
the data. Therefore, most classifiers can find the information and reach the CV test
accuracy of up to 91.5 %, never available in fair CV tests. Of course, the SSV decision

1 The example has been prepared especially for this illustration. It has not been published in any
article as an approach claiming to be right.
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tree reaches the maximum accuracy when tested on the modified data, while when
trained in a fair way, its average CV accuracy is about 86.1 %. So, the alleged CV
test result (after adding the feature) is in fact the reclassification accuracy. It is a less
spectacular and less obvious example than adding the target as one of the features,
but reveals the same vulnerability.

Data Multiplication

Even unsupervised transformations, when used as preprocessing, may be very dan-
gerous. For example, multiplication of instances (with optional addition of noise) has
sometimes been treated as a “cure” for small number of instances or class represen-
tation imbalance. This lets obtain much better results with learning machines very
sensitive to training data size or requiring balanced classes. When this transformation
is made before separation of testing data part, it causes that the same instances can
be found in the training and test data (when noise is added at multiplication, not the
same, but very similar instances can be found). As a result, if large part of the original
dataset is multiplied, a miracle is nearly guaranteed, especially with machines like
1NN, which finds original clone-instances as nearest neighbors.

When tests like cross-validation are performed after data multiplication, the prob-
ability that a test data item can be found also in the training data part gets quite large,
and leads to highly overoptimistic estimates of model accuracy. For example, if the
original data describes two-categories classification problem, and the relation of class
frequencies is 80–20 %, the second class needs to be included in four copies to restore
the balance. In 10-fold CV, the probability that an instance falls into a given test part
is equal to 0.1, so the probability that all the remaining 3 copies of a second class
instance fall into the same test part (so that none is in the corresponding training part)
is just 0.001. Thus, on average, one test data instance of thousand, belonging to the
second class, has not been represented in the training data. This completely distorts
the test results.

Naturally, data multiplication applied after determination of training and test parts
is completely fair and equivalent to using weights assigned to data instances.

Single Test Files

Another abuse in data mining is excessive exploitation of single external test data
files, as numerous machine tests on the same data change testing to validation, giving
completely different role to the test sample, which in fact, becomes a validation part
of the training data.

Although in the case of different contests it seems the best way of estimation of
learning-machines generalization abilities, it is not good to isolate a sample as the test
data and distribute it with targets alongside the training data. An illustrative, extreme
example is a “learner” that does not learn, but simply guesses the target model. It
is just the matter of sufficiently large number of trials, to find a model performing
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perfectly on the test set. But it would no longer be a fair result, because we would
have selected a model on the basis of its behavior on the test data, that is, we would
have used the test data for a peculiar type of training.

In the case of the hypothyroid data from the UCI repository, SSV decision trees
(with some setting of the parameters) reach 99.73 % accuracy in reclassification of
the training data and 99.09–99.36 % when classifying the “test data”. The success
of the most accurate configuration parameters can not be regarded as fair, since
we would never guess that it is so accurate model, if we had not checked it on
the test data. Similarly with a kNN machine equipped with mechanisms of feature
weighting, one can obtain almost as good results as with SSV decision tree, but
running a CV on the union of training and test sets results in definitely lower results,
showing that the model with weighting is so accurate, as a result of a coincidence or
using the “test data” for model validation. Training and testing machines many times
makes finding an accurate model more and more probable. That’s why Bonferroni
corrections (see Appendix Sect. A.1.4) are used in estimating statistical significance
of results differences, when many models are tried.

Adjusting Test Domain

The most difficult to eliminate are the errors made on purpose. One of the easiest
ways of results manipulation is to perform many tests on various datasets and select
some of them for presentation. Today’s large computational possibilities are very
advantageous, but they also facilitate obtaining attractive results of particular algo-
rithms by the fraud of selecting a subset of tasks, providing the most favorable quality
estimates. In combination with the pressure on the researchers all over the world,
to publish numerous articles, this results in many publications of not very valuable
algorithms. Such practices impede the valuable research, but no simple solution to
the problem exists.

A method to avoid such biased results is blind selection of datasets before starting
the experiments. Although it does not guarantee that the set of learning tasks is
representative of the whole space of real problems, it does not introduce evident
bias. Random selection of the test data and (if feasible) performing tests on as large
number of datasets as possible may be very valuable and very important from the
point of view of fair results comparison.

5.1.2 Reliable and Just Comparisons

From the comments on bad testing practices, it is easy to infer the correct way
of testing learning machines and comparing their results. The most important rule
is that testing should always concern the whole complex machine, if the machine
consists of a number of components. Series of transformations from raw data, through



5.1 Results Comparison Techniques 189

all necessary data transformations, to the final decision making module should be
treated as a single machine.

Results obtained on external test data samples can be really treated as test results,
estimating model accuracy on unseen data, only if no feedback from tests on the data
is taken into account before the final model is created. This rule is fundamental in
organizing fair contests in data mining. The targets of the test data sample should
be kept secret till the end of the contest and competitors should not be given any
feedback about the accuracy obtained by their models on the test data. Otherwise, it
is possible to learn from the feedback, and the test set stops being a test set. In fact,
on the basis of multiple model submission and overall accuracy results it is possible
to recover all the outputs expected for the test data items.

When testing different versions of a machine, for own purposes, the authors should
also be very careful in defining the tests to avoid different kinds of bias. Extracting a
pair of training and test data samples for multiple experiments does not bring reliable
estimation of machine capabilities, because accidental correlation of machine results
with the true outputs is more and more probable with increasing number of tested
machines. Therefore, more trustworthy results are output by cross validation. When
comparing results, not only raw accuracy estimates should be taken into account, but
also standard deviations of the results.

The best way to compare the results of two methods is to use statistical significance
tests, and judge whether the differences can be accidental. The tests estimate the
probability that the two samples come from the same distribution—small value of the
probability (p-value) is a basis to reject the hypothesis (about the same distribution)
and to claim that the differences are not accidental, but statistically significant.

If only possible, it is advantageous to collect the results of two machines to be
compared, as pairs of results obtained with the two algorithms after training on the
same data sample and test on identical samples. This facilitates using statistical tests
specialized in comparing paired samples, which is much more informative, than
for example comparing just means and standard deviations. The most popular tests
for paired samples are paired t-test (a parametric test, see Appendix Sect. A.1.2).
and Wilcoxon test (nonparametric, see Appendix Sect. A.1.2). Their counterparts
for samples not organized in pairs are t-test (parametric) and Mann-Whitney test
(nonparametric).

For faster results comparisons, some simpler ways of results comparison, may
also be useful (especially in meta-learning). Quite good measures for the purposes
of algorithm selection are simple combinations of results means and their standard
deviations (like the difference between the two).

Researchers testing many variants of their methods should always remember that
multiple comparisons increase the probability of type I error of statistical tests (reject-
ing true hypothesis about insignificance of result differences). To avoid such bias in
comparisons, one should use techniques like Bonferroni corrections, described in
Appendix Sect. A.1.4.

The community of machine learning researchers, still lacks reliable data repos-
itories supporting as reliable comparisons of different methods as possible. Such
repositories should specify the datasets for experiments and testing methodologies,
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facilitating exactly the same training and test data in each iteration of multi-part
tests like cross-validation. Repositories of results obtained with a variety of meth-
ods for each training data of each test can be very helpful in thorough comparative
analysis of new methods on the background of other algorithms. Such databases
will certainly become available in a close future and will prevent publication of
fake results. They will also serve as very precious sources of meta-knowledge for
advanced meta-learning approaches and will determine the strength of automated
learning environments.

Some practice of trustful and successful results comparison can be observed
by examples of data mining contests, where methods of testing, parameter search
and combining transformations must be joined in the common effort—the pursuit
of the most successful models (Grąbczewski and Jankowski 2006; Jankowski and
Grąbczewski 2007).

5.2 Test Scenarios for DT Induction Analyses

Many meta-level experiments, presented in this book, were performed for the same
selection of datasets. At some time of development of the unified model of decision
trees (presented in Chap. 3), 21 datasets from the UCI repository (Frank and Asun-
cion 2010), were selected as the basis of comparative tests, and then, they have also
served for some meta-learning experiments. The datasets define classification prob-
lems as summarized in Table 5.1. Such collection of datasets has several important
advantages, for example:

• The datasets are fully satisfactory for the sake of simple and more advanced tests.
They represent a variety of domains, so they test algorithms in different applica-
tions.
• They have different characteristics, so they allow to observe different winners and

analyze which methods perform better in which conditions.
• They are very popular and available to anyone, so other authors may easily compare

their results with the ones presented here.

Some datasets (of the repository) were not selected, because they would need
some preprocessing (for example, to delete classes with very few examples) and that
would spoil the clarity of the tests. Some other reasons eliminated other datasets,
for example, the popular mushroom data was rejected, because it is too easy for
DT learning—many configurations of DT algorithms are 100% accurate with zero
variance, so the dataset would add no value to the comparisons. Moreover, in some
experiments, where the differences between results are rescaled to the units of stan-
dard deviations of the best result observed, the mushroom data would be problem-
atic, because nonzero differences would be converted to infinities and would spoil
the analysis.

In the experiments based on the 21 datasets, for each of the datasets, 10-fold cross-
validation was repeated 10 times with different data splits, so that 100 accuracies (and

http://dx.doi.org/10.1007/978-3-319-00960-5_3
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Table 5.1 Datasets used for the experiments

Symbol Dataset Classes Instances Features
Total Ordered Unord.

APP Appendicitis 2 106 7 7 –
AUS Australian credit 2 690 14 6 8
BRE Breast cancer (Wisconsin) 2 699 9 9 –
FLA Flag 8 194 28 10 18
GLA Glass 6 214 9 9 –
HEA Heart 2 303 13 13 –
IMA Image 7 2310 19 19 –
ION Ionosphere (trn+tst) 2 351 34 34 –
IRI Iris 3 150 4 4 –
KVK kr-vs-kp 2 3196 36 – 36
LBR Ljubjlana breast cancer 2 286 9 1 8
LET Letter recognition 26 20000 16 16 –
PIM Pima indians diabetes 2 768 8 8 –
SON Sonar 2 208 60 60 –
SOY Soybean large 19 307 35 – 35
SPL Splice 3 3190 60 – 60
THY Thyroid (trn+tst) 3 7200 21 6 15
VOT Vote 2 435 16 – 16
VOW Vowel 6 871 3 3 –
WAV Waveform 3 5000 21 21 –
WIN Wine 3 178 13 13 –

100 other adequate results, for example, tree sizes for DT induction methods) were
collected for each of the algorithms being compared. Naturally, each of the algorithms
observed the same inputs as the others in all 100 training and test stages. Therefore,
after collecting 100 test accuracies (possibly accompanied by other results) for each
tested algorithm, the differences could be and have been thoroughly analyzed with
statistical tests for paired samples (usually paired t-test, but also Wilcoxon test),
because they are very robust in detecting difference significance.

5.3 Single Decision Tree Models

Even in so seemingly narrow area as the family of single DT induction methods, it is
possible to perform plenty of comparative tests, by various selection of the methods
components. Provided the Intemi DT induction framework, they all can be easily
defined and executed. The test presented here is focused on DT pruning methods.
Nevertheless, we can not ignore many other algorithmic components which, together
with pruning techniques, compose fully-functional learning algorithms. Reliable esti-
mation of pruning advantages is possible only with tests on various kinds of trees, so
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different approaches to DT induction have been engaged. Each algorithm has been
tested with all possible values of several factors of concern, to learn more about
methods parameters and their cooperation. For the sake of conclusions about the
most accurate pruning techniques, a broad range of pruning methods of different
kinds has been selected.

In compliance with the remarks on fair tests and comparisons of data mining
techniques, presented above, all the methods have been compared by training and
testing on exactly the same data samples, and collected results have been analyzed
with statistical significance tests. Also, when learning processes consist of initial
learning and validation, each method has been trained and validated on exactly the
same samples. Similarly, multi-pass validation methods have been run on exactly
the same validation trees and data, and finally, all the methods have been applied to
same tree model.

5.3.1 Algorithms

A selection of the most popular pruning methods representing various approaches,
has been done arbitrarily, but most researchers should agree that the collection
includes the most interesting techniques. The selected methods can be organized
in three groups with respect to their topmost strategies:

• direct pruning methods

– Pessimistic Error Pruning (PEP),
– Error-Based Pruning (EBP),
– Minimum Error Pruning (MEP),
– Minimum Error Pruning 2 (MEP2),
– Minimum Description Length Pruning (MDLP),
– Depth Impurity Pruning (DIP),

• single-pass validation methods

– Reduced Error Pruning (REP),
– all multi-pass validation methods listed below, run with single training and

validation,

• multi-pass validation methods

– cost-complexity minimization,
– degree-based tree validation,
– OPT,
– MEP2 with CV-based m parameter estimation,
– DI with CV-based β parameter estimation.

Raw list of algorithm names does not give complete information about the algo-
rithms details. As emphasized in Sect. 5.1, reliable conclusion can be drawn only
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from fair comparison of the methods working in the same environment (with the
same list of components composing the fully functional learning machine). There-
fore, the list of algorithms to be compared is much longer than the list of pruning
methods given above, as each pruning method has been applied in combination with
some other parameters.

First of all, to test the performance of pruning methods in application to trees
generated with different approaches, each of them has been run in accompany with
each of five DT induction methods based on the following split criteria:

• accuracy maximization criterion,
• Gini index,
• information gain (IG) criterion,
• QUEST algorithm,
• Separability of Split Value (SSV) criterion.

Each split criterion has been used with the greedy search algorithm.
Other parameters are not common for all pruning methods, so they need some more

explanation. First four of the direct pruning methods and all single-pass validation
methods have been run with three values of SE factor (0, .5SE and 1SE). All multi-
pass validation methods were run with five values of the SE parameter (0, .5SE, 1SE,
.5SEs, 1SEs), because additionally, they facilitate estimation of standard deviations
on the basis of results samples. The SE parameter does not apply to MDLP and DIP
methods of the direct-pruning group.

Similarly, the training error factor has been applied with three values (0TE, .5TE
and 1TE), wherever adequate, that is, to all (both single and multiple) validation
based methods.

5.3.2 Experiment

The comparison, discussed here, has been founded on running 10-fold CV repeated 10
times (as announced before) for each combination of the parameters, according to the
recipes given above. As a result, the test has been run for 4 ∗ 3+ 2 = 14 direct pruning
methods, (1+5)∗3∗3 = 54 single validation methods and 5 ∗ 5 ∗ 3 = 75 multiple
validation methods. These give the total of 14 + 54 + 75 = 143 pruning methods.
A report on the numbers of configurations corresponding to various parameters is
presented in Table 5.2.

Many result tables shown below (starting with Table 5.3 on p. 194), contain 145
result cells, because two full DT models (with no pruning) are also included in
comparisons: one for the whole training data and one for the part of the training data
used for initial learning of single-pass validation methods. The cells corresponding
to unfeasible parameter combinations (incompatible parameters), are left blank.

Since each pruning method has been applied in combination with each of the 5
decision tree induction methods, we finally get 5 ∗ 145 = 725 complete DT algo-
rithms for each examined dataset.
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Table 5.2 Summary of configuration counts corresponding to the parameters

Type Count SE TE Total

Direct (1) 4 3 12
Direct (2) 2 2
Single val. 1+ 5 3 3 54
Multiple val. 5 5 3 75

The same numbers refer to each of the 5 methods of DT construction

Table 5.3 The counts of datasets, for which particular methods obtained results not significantly
worse than the best one observed within the tested methods

All the results come from application of different pruning methods to the trees built with the QUEST
algorithm

For deeper analysis, the tests have also included validation algorithms applied
to test data (in place of validation data). Such models may be blamed for cheating,
because they use targets of the test data. Therefore, they do not appear as competitors
in the presentations. They have been run to show the maximum accuracies that could
theoretically be obtained with subsequent approaches, and serve as reference, ideal
pruning methods defining maximum possible scores, although in practice usually
not available. They have been tested to facilitate some special analyses, for example,
to compare tree sizes to the optimal ones.

5.3.3 General Results Visualization and Analysis

The results collected for the 21 datasets reported in Table 5.1 are rich enough to
facilitate many interesting conclusions. The divergence among the datasets makes
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different algorithms win different applications. Focusing on proper selection (or
projection) of results can reveal significant properties of the algorithms and confirm or
reject the hypotheses about differences between the results obtained with alternative
algorithm components.

Classification Accuracy

One of the most important aspects of the models being analyzed is classification
accuracy. Because the error level and its variance are completely different among
the datasets (for example, the error is less than 0.5 % and its standard deviation less
than 0.25 % in the case of the well known thyroid data and close to 38 ± 10 % for
the flag data), it does not make much sense to compare the nominal results averaged
over the datasets. Therefore, it is more interesting to know the numbers of datasets
for which the results obtained by the method at hand are not statistically significantly
worse than the best results observed in the tests. In all the comparisons presented
below, statistical significance refers to the results of paired t-test with significance
level α = 0.01. From this point, the methods that obtained results of the largest
average accuracy or insignificantly worse than the best ones, are shortly referred to
as winners of particular tasks, and unless otherwise stated, the number of wins means
the number of datasets for which the method turned out to be one of the winners.

An example visualization of the numbers of wins is presented in Table 5.3, where
the counts are organized in a tabular form to clearly relate the scores with particular
values of the parameters. Columns correspond to pruning methods and rows to dif-
ferent configurations of their parameters. The results, shown in the table, refer to the
trees built with the QUEST algorithm. Not all cells of the table are filled, because
not all configurations of the parameters are feasible.

The first column of the table shows the number of datasets for which full decision
trees (with no pruning at all) scored a win. Just the first row is filled, because no
pruning parameters apply to full DT (the cell corresponding to 0SE and 0TE is the
most natural for this configuration).

Next six columns correspond to direct pruning methods (embraced above the
table with “pruning” label). Among them, four can be used with standard error (SE)
parameter, but with no sample based estimations (only a single result is available) and
no training error factor, because it applies only to validation based approaches. MDL
and DI based pruning methods do not deal with error directly, so the SE parameter
is not applicable either.

Next, a group of 7 columns is denoted as “single”. These are the pruning methods
performed with single validation pass. It is important to realize that they prune
different trees than the other methods, because for their purpose, a validation sample
must be extracted from each training dataset, and only the remaining data subset is
used for training. Because of that, there is another column labeled “full DT”, which
presents the number of wins obtained with full DTs built for the data subsets. The
remaining six columns of the group correspond to methods, to which both SE and
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training error factors apply, but because of single validation pass, no sample based
estimation of SE is possible.

Only the methods performing multiple validation contain full sets of results,
because all values of SE and TE factors are compatible with such methods. The
last five columns, labeled “multiple”, present the results obtained for these methods.

The labels placed on the right of the table, describe the values of TE factor and
SE factor, respectively. Rows and columns corresponding to different groups are
separated with some lines to make reading and comparing the scores easier.

Visual analysis of Table 5.3 can bring many interesting conclusions from various
points of view. For example:

• The largest number of wins has been obtained by the OPT method with two settings
of standard error and training error factors:

– both SE and TE factors equal to 0,
– SE factor equal to 1 and estimated from sample (1SEs) and including training

error with the factor of 0.5.

• When 0SE is used, increasing the training error factor does not (in general) improve
the results.
• When SE factor of 0.5 or 1 is used, the training error factor of 0.5 seems the most

adequate in most cases.
• Increasing the SE factor, with no training error influence (the TE factor equal to

0) does not improve the results.
• Although Breiman et al. (1984) presented the 1SE rule as an advantageous tool,

the experiment, similarly to other publications (Esposito et al. 1997; Lim et al.
2000), has shown that the trees pruned in this way are less accurate.

It must be notified, that the conclusions derived from analysis of Table 5.3 should
not be regarded as global rules concerning DT pruning in general. The table sum-
marizes the results of pruning trees generated by the Intemi implementation of the
QUEST algorithm, so the conclusions are derived in such context. Nevertheless, all
the phenomena but the first one (being a detailed observation) can also be observed
(more or less evidently) for the other DT induction algorithms.

The conclusions remain valid also for the overall results (summed for the 5 DT
construction algorithms) presented in Table 5.4. The absolute winner (of the first
conclusion) differs between the algorithms. The highest score overall2 has been
obtained by the OPT method with 0SE and 0TE. The runner-up is the EBP algorithm
with 1SE parameter, and the second runner-up is OPT with 1SE and 0.5TE.

Pure counts of winning results are not fully informative. For example, very high
score is obtained by the EBP method, but can it really be regarded as so attractive
pruning algorithm? Table 5.5 presents average scores obtained for each of the algo-
rithms, by calculating the accuracy difference between particular method and the best
one and dividing the difference by the standard deviation of the best method results

2 Since the counts in Table 5.4 are summed over 5 algorithms, the maximum possible value is
5 ∗ 21 = 105. The highest score of 56 means wins in more than half of the tests.
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Table 5.4 Win counts summed over all five DT construction algorithms tested

Table 5.5 Mean differences between different methods and the best possible pruning of the full
DT (pruned by REP with the test data as the validation sample) measured in the units of standard
deviations of the best possible pruning

(the difference with respect to the best, expressed in the units of standard deviations).
The table sheds another light on the comparison: the larger SE factor for EBP, the
larger average loss. The notice seems contradictory with the win counts, however a
closer check confirms that it is possible, because when 1SE rule overprunes the tree,
the loss gets large, and such losses significantly influence the mean result. It clearly
shows the need for accurate meta-learning approaches capable of recognizing when
the resulting trees are very good and when can be very poor, to avoid large costs of
misclassification.
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Table 5.6 Win-draw-loss counts of the competitions with full DT, summed over all 21 datasets
and over all 5 DT algorithms tested

Another example of deceptive appearances is the impression that the score of
35, obtained by full DT, and many results below the value mean that many pruning
methods provide, on average, worse models than not pruning at all. Table 5.5 does
not confirm such suspicion. Although full DT reached 35 wins, its average loss is
−1.73, which is significantly worse than, for example, the results of−1.42 and−1.46
corresponding to the smallest numbers of wins recorded for multi-pass validation
methods (the scores of 19 and 20 registered for MEP2 in Table 5.4). Another way to
reject the conclusion about no-pruning superiority, is to analyze Table 5.6 presenting
the win-draw-loss counts of the comparisons of each method against no pruning.
Here, a win means statistically significantly higher accuracy, loss–inversely, and
draw–no significant differences observed. Full DTs often record higher variance
of the results, which does not allow t-test to reject the null hypotheses about no
significant differences to the highest score method. As a result, they can be regarded
as winners, while other results, although with higher accuracy, may record small
variance and be judged as significantly lower than the best scores. This reveals
an important danger of drawing misleading conclusions from properly performed
statistical tests.

Table 5.6 also facilitates an observation about the influence of training error factor
on pruned DT accuracy and stability. In the part of the table devoted to multi-pass
validation, it is quite common, that with increasing factor for training data error, the
number of losses against full DT decreases and the number of draws increases. In
most cases, the number of wins grows with the TE factor of 0.5, but often decreases
when it reaches 1. It confirms the intuitions, that respecting training data in validation
can prevent overfitting the validation sample. The resulting trees get larger, but it often
compensates the overpruning caused by increased SE parameter. In consequence, the
trees have similar size to those obtained with 0SE, but are more reliable, because
valuable splits are not pruned just because the validation sample does not contain an
evidence for their value.

Gains offered by the training data error factor can be perfectly observed in
Tables 5.7 and 5.8, presenting results obtained for sonar data. Table 5.7 shows mean
accuracies (and their standard deviations) of pruned trees, while Table 5.8 contains



5.3 Single Decision Tree Models 199

Table 5.7 Mean accuracies and standard deviations for IG DTs built for sonar data

Table 5.8 Means and standard deviations of leaves counts in the IG trees built for sonar data

means and deviations of the leaves counts in the corresponding trees. Increasing TE
factor results in larger DTs, while greater SE factors decrease the average number of
leaves in the trees. Relations between accuracies are not so monotonic, but in general,
increasing the SE factor significantly deteriorates classification, though increasing
TE factor often elevates the result above the original score (with both SE and TE set
to 0). The highest accuracies (above 75.5) are in some cases obtained with not larger
trees than those obtained with both parameters equal to 0.

Naturally, the phenomena are not observed always, but very often. For some
datasets, full trees are so accurate, that pruning them may only spoil the result.
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Table 5.9 Win counts in competition between direct pruning methods

5.3.4 Analysis of Results Subgroups

Interesting conclusions can also be drawn from restricted analyses of similar sub-
groups of algorithms. By focusing on subgroups, one can pay more attention to the
influence of particular parameters on the results and gain knowledge about the most
appropriate ways of application of each method.

Direct Pruning Methods

To compare the performance of direct pruning methods and their parameters, numbers
of wins have been counted with restriction to the four parameterized direct pruning
methods: PEP, EBP, MEP and MEP2. The results are presented in Table 5.9. Each
row of the table should be analyzed separately, because it contains a set of results
from single comparison. For all five DT induction algorithms, some of the largest
numbers of wins can be found within the results of EBP. It can not be claimed
unambiguously, which values of the SE parameter should be used with particular
pruning methods—in some cases 0SE is the most efficient, in others 1SE records the
highest score. However it is clear that significant differences between the methods
can be observed in vast majority of applications.

Esposito et al. (1997) have claimed, in their comparison of EBP and PEP, that EBP
produces larger trees than PEP. The experiment presented here, revealed an opposite
relation, which probably shows how details can affect conclusions, since there are
small differences between the two implementations of the algorithms. For example,
the Intemi implementation of EBP does not use child–parent grafting, performed by
the C4.5 implementation. Nevertheless, grafting is performed relatively rarely, so
despite the difference, in most cases, the results of the two versions of EBP should
be the same. Another small difference between the implementation tested here and
the one of C4.5 is that in C4.5, it works with some pre-pruning, as described in
Sect. 2.4.2.2. These little differences in the implementation details, might be a reason
of some performance differences, however there is much more probable reason—
the original definition of PEP includes the 1SE rule by default, so probably, such
implementation was tested by (Esposito et al. 1997), while EBP was not equipped

http://dx.doi.org/10.1007/978-3-319-00960-5_2
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Table 5.10 Mean leaves count differences with respect to the optimum tree in the units of standard
deviations

with similar correction, as it is not an integral part of the original definition of the
algorithm. If we compare the results of such configurations (PEP with 1SE and EBP
with 0SE) in the experiment described here, the conclusions are the same as those
of (Esposito et al. 1997).

Table 5.10 contains the information about average tree sizes in the overall exper-
iment. As before, to sum over different datasets, the numbers were transformed into
proper differences expressed in the units of standard deviation. In this case, the dif-
ferences are calculated with respect to the size of the trees pruned optimally, that
is, to maximize the test data accuracy (as a result of running REP on the test data).
Positive numbers mean that the trees were larger than the optimal ones. Very few
numbers are negative (small negative), so one may conclude that no algorithm tends
to significantly overprune the trees, however such claims should be formulated care-
fully, because the optimum size of the trees with respect to the test data is not the
same as the optimum size for the whole population—we should rather expect that
the optimal solution for test data overprunes instead of providing globally optimal
pruning. Coming back to the comparison of PEP with 1SE and EBP with 0SE, the
scores in the table are 2.56 and 4.96 respectively, so they are compatible with the
findings of Esposito et al. (1997), but if we compare the pairs with the same SE
parameter, in each of the three cases, we will find EBP to produce smaller trees (on
average, of course) than PEP.

Single-Pass Validation Methods

A performance report for pruning methods based on single-pass validation is pre-
sented in Table 5.11. Each three rows should be analyzed separately, because they
correspond to subsequent DT induction algorithms. Since the algorithms produce
different trees, separating the groups is more reasonable for the analysis. Therefore,
the pruning methods have been compared separately in the context of each DT induc-
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Table 5.11 Win counts in competition between pruning methods based on single-pass validation

tion method, which means that for each node split technique, the winner was selected
independently from the others and the scores show wins within the group, not among
all the methods. The last three rows, present summed scores for the five groups.

The three subsequent rows of each group, correspond to the three values of TE
parameter (0, 0.5 and 1). With rows corresponding to TE and columns to SE, it is
easier to analyze the interaction between the parameters, so this is why they have
been arranged in this way. In fact the three rows contain the scores of 54 competing
configurations of single-pass validation methods.

It can be easily inferred from the darkness of the table cells, that for each node split-
ting technique, the highest scores can be found in the columns of REP, CC and OPT.

By focusing on squares of 3×3 cells corresponding to particular pruning and node
split methods, one can easily observe the effects of interaction between SE and TE.
Advantages of the parameters are visible especially in the REP squares. Increasing
both parameters gives better overall results in all REP squares for the five split
methods, and therefore also for the total summary square. It can be interpreted, that
the training data error factor prevents overpruning by REP algorithm, as expected. It
is not surprising either, that TE factor works best with 1SE parameter—1TE factor
prevents overfitting validation data, while 1SE preserves generalization capabilities
of the trees.

The effect observed so consistently in the case of REP is not so common in the
other 3 × 3 boxes, but although most often the winning results are offered by 0SE
and 0TE, increasing TE factor to 0.5 and SE to 0.5 or 1 can also be successful.
Such knowledge may be very helpful in constructing model search algorithms at
meta-level.
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It can be claimed with very high confidence, that the two parameters (SE and TE)
need each other very much. Increasing just one of the parameters, while keeping the
other equal to 0, never provides the highest scores and usually decreases the numbers
of wins. It can be seen as the brighter cells in the top right and bottom left parts of
each 3× 3 box.

All DT induction algorithms can be described with the same conclusions. The
patterns of win counts are similar in all five cases, so it is possible to claim that the
success of particular pruning technique is not much dependent on the method of tree
construction.

On the basis of Table 5.11, it is not possible to draw any conclusions about rela-
tions between effects of using particular DT construction methods. Such claims are
groundless, because the scores have been calculated for each method independently
and ignore the relations between the node split techniques.

Multi-Pass Validation Methods

Table 5.12 is analogous to Table 5.11, but presents the scores obtained by multi-pass
validation methods. Therefore, each box corresponding to particular pruning method
and node splitting technique contains five instead of three columns corresponding to
tested values of SE parameter (additional values of .5SEs and 1SEs using standard
error estimated from samples of validation results).

Table 5.12 Win counts in competition between pruning methods based on multi-pass validation
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Similarly to the previous analysis, each three rows of the table need to be treated
separately, as the winners were determined for proper subsets of algorithms.

It is not possible to definitely point a single overall winner within this group of
algorithms. The largest number of wins (68) is recorded for OPT algorithm with
parameters of 0SE and 0TE, followed by another settings of OPT (1SE and .5TE)
reaching the total of 67 wins. When focused on particular node splitting methods,
the OPT pruning is not always the best: for accuracy criterion (Acc) pruning with
CC reaches better scores, for Gini criterion, pruning with Degree and DI scores more
wins and for IG, CC and DI pruning offer more attractive numbers. Because the
counts are similar for many configurations, they could be easily changed by adding
or removing a single dataset, so the conclusions must be announced cautiously.

Unlike the previous analysis, here, more difference can be observed between .5TE
and 1TE parameters. In corresponding pairs of results, it is rare that the 1TE score
is better than the one for .5TE, but quite many opposite relations can be observed.

In competition between the methods of SE estimation, the two approaches provide
so similar results, that no winner may be announced. Both methods are quite simple
computationally, so neither should be definitely preferred, though the theoretical
estimation is O(1) and the sample based estimate is of linear complexity with respect
to the sample size (usually very small).

Because of many unsolvable competitions between pruning parameters, there is
even stronger need (than in the case of single validation methods) for meta-learning
algorithms supporting decision making in the task of algorithm selection.

A comparison between multiple and single validation methods can be performed
visually on the basis of Tables 5.4, 5.5 and 5.6, presented before. It can be captured
with the naked eye, that multi-pass validation methods are more successful, but it
should not be forgotten, that the single validation methods used smaller data samples,
as a part had to be left unseen during training for further validation, so they were not
given equal possibility of knowledge extraction. It can also be important, in some
applications, that the multi-pass validation requires significantly more computational
resources.

5.3.5 Summary

Especially when comparing many similar algorithms, capturing significant differ-
ences requires much attention to be paid when constructing the test. Only carefully
prepared test scenarios may bring reliable results and adequate conclusions. Even,
when tests are conducted in a fair way, and the results of tested methods are close
to each other, it is easy to manipulate the final conclusions by adequate selection of
datasets for the experiment.

The tests, presented above, have been performed without a dedicated dataset
selection and cross-validation of all the methods has been performed for the same
data samples, so the results are as credible as possible.
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As discussed above, there are no common winners for all tested datasets. Some
algorithms have performed with insignificant differences to the best solutions for
most of the datasets, but none has been among the winners in all tests. In general,
the methods of EBP and multi-pass validation techniques are the most successful,
but it is not true, that they should always be selected as the best solutions. Usually,
we do not face the problem of finding algorithms that provide best average results
or are very good in most applications, but given a problem we need to find the best
model for this particular case. Moreover, the success can be defined in many ways, so
there is no single, commonly accepted method of best model selection. We can draw
some interesting conclusions and extract helpful heuristics for algorithm selection,
but eventually one should always compare many learning machines in application to
the problem at hand.

The experiments, discussed above, have confirmed, that using training error factor
and respecting standard error factor bring opposite results with respect to the tree size,
but using them together can improve final trees by avoiding overfitting the validation
data and preserving generalization capabilities at the same time.

Another expected result, confirmed by the experiments, is that in most cases,
multiple validation produces more accurate trees than single validation. On the
other side, single validation is computationally cheaper, so it may be valuable under
circumstances of strong time restrictions.

Error Based Pruning is a very attractive method, because it offers similar accuracy
as the best multiple validation methods, and very low complexity. EBP with 1SE is
often very accurate, but sometimes provides large errors, so proper meta-learning is
needed to detect whether for a given task, the method is valuable or not.

Heuristics supporting meta-learning, may also be based on elimination of machine
configurations that are not too probable to bring attractive solutions. The analysis
performed above lets assume, that there is not much sense in testing both alternative
methods of standard error estimation, as most probably, it just costs twice the time, but
without significant gains. Further time savings can be attained by avoiding nonzero
values of just one of the SE and TE parameters.

Apart from the global meta-knowledge (about average gains of particular machine
configurations), also local knowledge may be extracted by analyses focused on sub-
sets of possible configurations. The rules extracted in this way may significantly
improve meta-level search processes, discussed in Chap. 6.

5.4 Cross-Validation Committees

Model comprehensibility is definitely one of the most appreciated features of deci-
sion tree induction methods. Since it usually comes in accompany with fast learning
processes, DTs belong to the most popular classification learning schemes. If apart
from the two attractive aspects, one observes also the third one, in the form of very
good generalization possibilities (high classification accuracy also for unseen data),
the solution can be regarded as perfect. Often, DT models are preferred over other

http://dx.doi.org/10.1007/978-3-319-00960-5_6
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classifiers acting as “black boxes”, even when they provide slightly worse classifica-
tion results. This is because their additional advantages recompense for the shortages.

Unfortunately, it is not an easy task, to find a single DT capable of good gen-
eralization of the knowledge encoded in the learning data. Instead of chasing after
the impossible, one can use a number of trees together and in this way, recompense
for the non-optimality of single trees. When the number of trees is not large, the
ensemble model can still be quite comprehensible. Ensembles based on numerous
DT models do not provide easy, human-understandable explanations, but have also
attracted many researchers and practitioners (Breiman 1996; Gehrke et al. 2000).
Such solutions often provide much better classification accuracy than single deci-
sion trees, but apart from loosing model comprehensibility, they require much more
computational resources to build the models, which may be difficult to accept.

The experiment examined here, tests CV-based committees of decision trees
(DTCV committees). Such ensemble classifiers also offer significant improvement in
classification accuracy while not resigning from the comprehensibility of the model
and low computational cost. When classification is made on the basis of small num-
bers of trees, several alternative classification rules may be presented to the expert
(often some of them are almost identical) providing even more comprehensible deci-
sion support.

During the processes of DT validation based on CV, a tree is generated and
validated in each fold of the CV. DTCV committees arose from the natural suspicion
that these nicely validated DTs should provide a successful collective model. It
is important to notice that such collective models do not require any additional
calculations in comparison to single tree models validated with the CV. Inversely,
building an ensemble model of the CV trees is computationally cheaper, because the
final tree trained on the whole data need not be created.

The idea of DTCV committees and their advantages have been initially presented
in (Grąbczewski 2011). Here, some of the algorithmic components underlying the
DTCV committees have been reformulated and some others have been introduced
to increase the flexibility of the algorithm and to examine it in a more exhaustive
manner. Interesting meta-knowledge has been extracted from the experiments and is
discussed below.

Extensive analysis has been performed within Intemi, described in Chap. 4, with
respect of all the rules of fair comparison of learning machines, described in Sect. 5.1.

5.4.1 DTCV Committee Algorithm

There exist many possibilities of creating committees from validated trees. The dif-
ferences between solutions may concern methods of tree growing, pruning, model
selection, combining decisions of ensemble members and other components. Each
of the aspects may introduce several parameters influencing the final complex model.

The analysis described below, concerns 13390 different configurations of cross-
validation committees and their performance on 21 datasets estimated with 10 inde-

http://dx.doi.org/10.1007/978-3-319-00960-5_4
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pendent runs of 10-fold cross-validation on each dataset. The test has yielded a
number of interesting conclusions about how to build successful DT committees.
The result is very precious for human experts building such models manually and
for automated meta-learning approaches.

Decision Tree Construction

DVCV committees can be constructed from models created by any DT induction
methods. For the purpose of this experiment, to examine advantages of DTCV com-
mittees in a broad spectrum of detailed solutions, the committees have been con-
structed in the context of four algorithms for DT induction following the most popular
and successful algorithms like CART (Breiman et al. 1984), C4.5 (Quinlan 1993) or
QUEST (Loh and Shih 1997), and the SSV approach (Grąbczewski and Duch 1999,
2000; Grąbczewski 2011a). Details about the algorithms can be found in Chap. 2.

The ideas of CART, C4.5 and SSV are implemented in Intemi as split criteria: Gini
index, information gain (IG) and the separability of split value (SSV) criterion, used
with a greedy, almost exhaustive search for decision trees with univariate binary splits.
The term “almost exhaustive” is explained in Sect. 2.2.7. It denotes a restricted search
to prevent much time consumption and uneven contest between features describing
learning data. The subject of bias in split feature selection is addressed in Sect. 2.7.

IG criterion is not exactly the solution of C4.5, where information gain ratio is
used instead (see Sect. 2.2.3), but the ratio has been introduced to reduce the bias in
favor of symbolic features, inherent in the multi-split technique of C4.5. When using
the almost exhaustive search for binary splits, the advantages of the IGR disappear.
Other experiments have shown, that with this type of search, IG performs better than
IGR (Grąbczewski 2011a).

Pruning Strategies

All the algorithms for growing DTs, used in the experiment, build oversized trees in
a top-down manner and then prune them for better generalization. For the purpose
of DTCV committees, it is also preferable that the member models are pruned and
generalize nicely, because the quality of committee members is very important when
the members count is not as large as in most applications of bagging, boosting or
other types of forests.

The methods of pruning do not need to be especially designed or optimized, to
prepare members of DTCV committees. Therefore, the experiment has exploited the
most often used pruning techniques based on cross-validation (CV), for example,
the cross-complexity pruning of CART, degree based pruning of SSV and dynamic
programming based OPT algorithm (Bohanec and Bratko 1994; Almuallim 1996).
Also other parameterized methods, like MEP2 or DI, can be embedded in similar
CV-based procedure of parameter selection (see Sect. 3.2.4.3). They have also been
included in the tests.

http://dx.doi.org/10.1007/978-3-319-00960-5_2
http://dx.doi.org/10.1007/978-3-319-00960-5_2
http://dx.doi.org/10.1007/978-3-319-00960-5_2
http://dx.doi.org/10.1007/978-3-319-00960-5_2
http://dx.doi.org/10.1007/978-3-319-00960-5_3
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Computationally simpler method of Reduced Error Pruning (REP) (Quinlan
1987), has also been engaged as eligible method of another kind than the CV-based
algorithms.

No pre-pruning method has been included in the tests, because their applications
are, in general, less successful, so despite their small computational requirements
they are not as common as post-pruning. Moreover, in CV-based learning, pruning
methods based on validation are more adequate then pre-pruning techniques, because
they naturally fit the CV scheme and have additional advantage of using more data
for learning.

Committee Size

The most obvious method to obtain different committees is to engage different num-
bers of members, as there is no obligation to use all the models generated during the
CV process. It may happen that a training data sample is drawn so unluckily, that the
resulting model can not generalize well and can spoil the decisions of the committee.

A way to select members is to order the candidate trees by their validation results
and add them one by one to the set of members, creating a series of committees.
Such heuristic lets us reduce the number of ensembles to be tested, from 2N − 1 to
N , where N is the number of validated models. Moreover, it facilitates knowledge
transfer between different learning approaches, because the terms like “best five
trees” preserve their functionality when applied to another collection of models,
while terms like “trees from CV folds: 2, 3, 5, 6, 8” do not (though technically
feasible). It also conforms to the intuitions, that the trees performing well in the
validation process are better candidates for the ensembles than those of poor results.

Common or Separate Validation Results

Pruning decision trees, in the validation process, can also be done in a number of
ways. For example, the pruning methods based on CV, can be applied in two variants:
with common optimum parameter determined for all the validated trees (globally,
on average) or with independent optimization for each CV fold.

In the following descriptions and result tables these two methods are distinguished
by the terms common and separate validation (or by some shorthand notations of the
two words).

Standard Error for Better Validation

Growing trees for the purposes of DTCV committees is subject to the same ways of
validation and pruning as in the case of single DTs. A generalization of the standard
error (SE) parameter introduced by Breiman et al. (1984) to control the “strength”
of pruning is described in Sect. 3.2.4.1.

http://dx.doi.org/10.1007/978-3-319-00960-5_3
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In the experiment, the values of 0, 0.5 and 1 for the SE parameter have been tested.
Apart from the theoretical estimation of standard error proposed by Breiman et al.
(1984), the assessment from the sample of validation results has also been examined
(where adequate). In this way, additional methods denoted as .5SEs and 1SEs have
been introduced.

Training Error Included in Validation

Similarly to the SE factors, the training error factors, described in Sect. 3.2.4.2, have
been incorporated into the validation processes, to provide additional control over
tree pruning, with special respect to deterioration of training data reclassification
accuracy. The TE factor has been examined with values of 0, 0.5 and 1 (also referred
to with TE suffix).

Committee Decision Making

Classifiers committees usually make the final decision by counting votes of the
members and determining the winner class in the democratic voting (each vote has the
same strength). When the member classifiers are capable of providing probabilities
of belonging to different classes, instead of simple voting, average probabilities
supplied by the members may decide about the committee decision. As shown by
Grąbczewski (2011), such decisions are much more reliable then voting.

Another idea of Grąbczewski (2011) was to use weights provided by the committee
members in place of probabilities. The weights were the numbers of vectors of
different classes falling into the same tree leaf as the examined data item. When
summed for all the trees (committee members), they were used to determine the
winner class. The suspicion was that it could perform better than the probabilities-
based collective decisions, but the idea turned out to be fruitless, because often, when
a data object is classified by the trees, it falls into large leaves when it is misclassified,
and into small ones when it is classified correctly, so that one erroneous answer
happens to dominate (and spoil) the decisions of several correct models. Because of
this result, the experiments described below used only the method with probabilities
in the committees, however the probabilities were calculated in three different ways,
as described in Sect. 2.6.

5.4.2 Experiment

With different values of the parameters of DT induction, validation and committee
construction, described above, many configurations of DTCV committees may be
created. In the experiments discussed below, the committees were created with the
following parameters:

http://dx.doi.org/10.1007/978-3-319-00960-5_3
http://dx.doi.org/10.1007/978-3-319-00960-5_2
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• split strategy (DT induction algorithm): Gini index, IG, SSV, QUEST,
• tree validation method: REP, cost-complexity optimization, degree-based tree

validation, OPT, MEP2 and DI,
• validation parameter optimization: separate, common,
• standard error consideration: 0SE, .5SE, 1SE, .5SEs, 1SEs,
• training data error factor: 0TE, .5TE, 1TE,
• committee size (members count): 1,…,10.

Not each combination of the parameters is consistent. For example, REP can not
be applied with common parameter optimization, because the error reduction is made
for particular validation data, not for a parameter, that could be common for several
trees. For the same reason, in REP and other methods using separate validation, there
is no possibility of standard error estimation from sample, because no appropriate
sample is available. Another exception is the MEP2 validation, which makes sense
only with m-estimates of the probabilities at the stage of decision making, because the
validation process optimizes the performance of m-estimates—using another tech-
nique of probabilities estimation would be completely inconsistent with the learning
process. Because of the exceptions, there are less DTCV committee configurations
for validation methods of REP and MEP2 than for the others and some of the tables
presented below contain empty cells.

The parameterization, listed above, with the exceptions, gives the total of 13560
different committee configurations. The numbers of combinations for each validation
method are presented in Table 5.13.

Standard (single tree) validated models were also built for each of the 4 split
criteria (Gini, IG, QUEST, SSV), for each of the CV-based validation methods (CC,
Deg, OPT, MEP2, DI) and for each value of standard error consideration (0SE, .5SE,
1SE, .5SEs, 1SEs), which makes the total of 4 ∗ 5 ∗ 5 = 100 single-tree machine
configurations.

To analyze all the parameter values, the corresponding committees have been
tested and compared in a number of combinations (also against traditional models
with single validated trees as the final classifiers). The comparisons have been done
on the basis of 10 independent runs of 10-fold CV (100 accuracy results), by means
of paired t-test with α = 0.01. For the same 100 splits, each of the 100 standard
single trees trained with CV have been built and each of 13560 committees created.

Table 5.13 The counts of DTCV committee configurations for all validation methods used

Validator DT alg Sep/com SE factor TE factor Decision Size Total

REP 4 1 3 3 3 10 1080
CC 4 2 3/5 3 3 10 2880
Deg 4 2 3/5 3 3 10 2880
OPT 4 2 3/5 3 3 10 2880
MEP2 4 2 3/5 3 1 10 960
DI 4 2 3/5 3 3 10 2880

13560
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As in the other experiments presented in this book, the solutions of Intemi sys-
tem (Grąbczewski and Jankowski 2011) facilitated easy comparisons, conducted in
completely fair manner: even the internal CVs (within the training data) used exactly
the same data splits for all the committees, and as a result—the same set of induced
trees. Apart from the fairness, the experiments have an advantage of fast calculations,
because the trees did not have to be induced repeatedly, thanks to Intemi mechanisms
for machine unification which saves time and memory without much effort from the
designer of the test projects.

5.4.3 Win Counts

The goal of the first analysis was to check each particular configuration, how many
times (for the 21 datasets) it obtained results not statistically significantly worse
than the results of the best machine (providing the largest average accuracy) of the
13660 configurations (100 single trees and 13560 committees). As before, the fact of
obtaining the results not statistically significantly worse than the best ones is called
a win, and each method satisfying this condition is called a winner of the task.

It is not easy to show 13660 numbers at once in a readable form, so a form of
visualization has been prepared for this reason and the results are split into parts. The
configurations have been organized in a way making finding results for particular
configurations quite easy.

A subset of results is presented in Table 5.14. It contains 100 squares correspond-
ing to the results of 100 single-tree configurations. Each square contains a number
of datasets (of the 21) for which the configuration provided results not significantly
worse than the best (in term of the mean accuracy) of the 13660 methods. The color,
the square is filled with, corresponds to the number of wins—the greater the number
the darker the square—to facilitate easy visual analysis. We can see that the max-
imum number in the table is 3 and most of the squares show 0 or 1, which means
that single trees are very seldom comparable to the best results observed for the
committees (quite expected result).

Table 5.14 Results for single decision tree models

Numbers of datasets (of 21) with results not significantly worse than the best ones
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Table 5.15 Results for DTCV committees based on IG criterion. Counts of results not worse than
the best

The fill color of the squares is more informative in Table 5.15, which presents
3390 results obtained for the committees of trees generated with the information
gain criterion ( 1

4 of all the results for the committees).
The table has six “large” columns corresponding to different validation methods.

As mentioned before, REP and MEP2 are not consistent with some other combi-
nations of the parameters, so in the places of inconsistent configurations there are
no numbers displayed. Each “large” column consists of 10 “small” columns corre-
sponding to subsequent numbers of committee members (1, …, 10). The remaining
parameter values are shown on the left. First, two large blocks corresponding to
separate and common pruning are marked with proper long braces. Inside each of
the two blocks, there are smaller blocks of results corresponding to committees with
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the methods of SE consideration, denoted as 0SE, .5SE, 1SE, .5SEs and 1SEs (addi-
tional ‘s’ at the end of the identifier means that the SE is estimated “from sample”).
For separate validation, there are 3 smaller blocks (for first three options) and for
common validation, all 5 settings are compatible, so 5 blocks are presented. Mov-
ing deeper, each of the SE-related blocks contains 9 rows of numbers (3 groups
of 3 rows). The groups show the results for adequate factors of training data error
(0TE, .5TE and 1TE), and each of them contains 3 rows with the results obtained
with different approaches to probabilities estimation (‘n’ means no correction, just
proportions, ‘L’—Laplace correction, ‘m’—the m-estimates).

Provided Table 5.15, we can draw interesting conclusions about the performance
of various committee parameters, with the naked eye. For example, everyone can
easily notice that the darkest areas can be found in the rows corresponding to the
0SE parameter. The results for .5SE are not so dark, and the rows of 1SE are much
lighter.

Another interesting regularity can be easily observed when we focus on the
columns corresponding to committee members count:

• combining just one or two models does not offer attractive results,
• the darkest areas in the top part (corresponding to separate pruning) occur in

columns from 3 to 6, pointing these values as the most adequate committee sizes,
• in the lower part (of common pruning) the cells are the darker, the closer to the

maximum committee size.

Such distribution of the more successful configurations is understandable: separate
pruning results in more diverse trees—some are very accurate, some others quite
poor, so adding the latter to the committee just spoils the results. When common
pruning parameter is determined, it is validated in such a way that all the trees on
average act successfully, and it is reflected also in the committees.

It is also worth a notice, that the most successful configurations reach the level of
8 of 21 datasets, where they do not get significantly worse results than the best ones.
This means that no single configuration can solve even a half of the 21 problems in a
satisfactory way. Although not all the results are presented here, those in Table 5.15
belong to the most successful of the four alternatives, so the conclusions are valid for
the overall results. This fact reveals the need for meta-learning approaches capable
of recognizing which methods are most likely to provide successful results for the
data at hand.

Complete result tables, illustrating many aspects of the analyses of the DTCV
committees, can be found in an auxiliary document about this experiment available
at http://www.is.umk.pl/~kg/papers/12-DTCVCommRes.pdf.

5.4.4 DTCV Committees Versus Single Validated Trees

One of the most important premises for using DTCV committees can be their advan-
tage over single decision tree models. Therefore, a comparative analysis of classifiers

http://www.is.umk.pl/~kg/papers/12-DTCVCommRes.pdf
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in the form of committees and single validated trees has also been conducted. Nat-
urally, the comparison may be made from different points of view: classification
accuracy, model comprehensibility, model complexity and so on.

To observe the gains or losses in accuracy, we can compare the results of each
particular committee to the results obtained with a single DT model corresponding
to the same parameters. The correspondence must respect the DT induction method,
the validation method and the option of the standard error factor. Among the 100
single DT models tested aside the committees, one can be naturally assigned to each
committee, but those using REP. The natural assignment means that the committee
is constructed from exactly the same trees which are created in the process of single
DT validation, so the comparison between the two classifiers answers the question if
it is better to build a single final model or to use the validated models in an ensemble.
Because, for REP-based committees, we can not find a naturally corresponding single
tree, they are compared with one of the classical approaches, namely the trees built
on the basis of information gain criterion and cross-complexity validation. Again,
the results have been prepared as the numbers of datasets for which the particular
committee performed significantly better than the corresponding single tree and
significantly worse than the single tree. Tables 5.16 and 5.17 visualize the results for
committees built with the information gain criterion (the images for the other DT
induction methods look very similar and can be found in http://www.is.umk.pl/~kg/
papers/12-DTCVCommRes.pdf).

It is easy to see that most of the committees perform much better than single trees.
Only the committees pruned with REP are often worse than their counterparts in
single trees, but, as mentioned above, they are compared to CC-validated DTs, so the
conclusions that can be drawn from these results concern the differences between
REP-validated committees and single models validated with CC. It is also very
important to realize, that the REP-validated trees are trained on smaller training data
samples, because a part of each must be left aside for validation, so the comparison
should not be a foundation of wide-ranging conclusions.

Our main interest in this comparison should be focused on the remaining five
“large” columns, containing the scores of direct competitions between correspond-
ing committees and single-tree models. In most cases the advantage of committees
is overwhelming, up to the score of 14 significant wins (see Table 5.16). The losses
can be observed mostly for “committees” made of 1 or 2 trees (see Table 5.17), and
there are many areas of the table, where we can see just zeros meaning that for nei-
ther of 21 datasets the committees recorded significantly worse results than single
tree classifiers.

The conclusion from this analysis is that the DTCV committees of many differ-
ent settings of their parameters, provide significantly higher accuracy than single
validated models. Therefore, instead of using single trees one should consider DT
committees, which are very likely to obtain more attractive results.

http://www.is.umk.pl/~kg/papers/12-DTCVCommRes.pdf
http://www.is.umk.pl/~kg/papers/12-DTCVCommRes.pdf


5.4 Cross-Validation Committees 215

Table 5.16 IG DTCV committees better than single validated trees

Model Comprehensibility

Sometimes, a very important criterion in learning machine selection is model com-
prehensibility. In such cases, single DTs are very much appreciated, but DTCV
committees also offer interesting possibilities. Since the number of trees in the com-
mittees is usually in the scope of 3–9, we can easily provide explanations of particular
committee members as the rules supporting the decisions. An expert supplied with
several alternative sets of rules, can find it even more useful than a single explanation
in classical logic. The alternative rule sets can also point to another diagnosis than
that of the committee. It may be a precious hint about other possible answers and
about more complex nature of the problem being solved. On the other hand, many
trees can provide very similar or even identical decision rules, which can be treated
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Table 5.17 IG DTCV committees worse than single validated trees

as an additional confirmation of the rule and its stability. As a result, a bit more
complex explanation than in the case of a single tree, may be very valuable, and may
increase the comprehensibility, not reduce it.

5.4.5 DTCV Committees Versus Bagging and Boosting

As shown above, CV committees of decision trees are more accurate than single
DT’s. Another interesting aspect is if they have advantages over the state-of-the-art
ensemble machines like bagging and boosting (Breiman 1996; Quinlan 1996; Freund
and Schapire 1996; Dietterich 2000; Torres-Sospedra et al. 2007).
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To check this, the CV committees have been compared to many different bag-
ging and boosting algorithms. Wherever possible, bagged (or boosted) trees were
constructed with the same parameters as those used for particular CV committee.
It means that bagging and boosting algorithms were applied to four DT induction
algorithms (Gini index Gini, IG, QUEST, SSV) to produce ensembles of size from
1 to 10. For each of the settings, seven ways of DT pruning not requiring any vali-
dation were followed: no pruning, PEP—Pessimistic Error Pruning (Quinlan 1987;
Mingers 1989; Esposito et al. 1997), EBP—Error-Based Pruning (Quinlan 1987;
Esposito et al. 1997), MEP and MEP2—Minimum Error Pruning (Niblett and Bratko
1986; Mingers 1989; Cestnik and Bratko 1991), MDLP—Minimum Description
Length Pruning (Kononenko 1998) and DIP—Depth Impurity Pruning (Fournier
and Crémilleux 2002).

For comparison with bagging-based ensembles, two ways of final decision mak-
ing have been used: simple voting and making decisions on the basis of average
probabilities of belonging to different classes, provided by the ensemble members.

Similarly, to make the comparison reliable, four boosting methods have been
applied and compared: adaptive boosting, averaged boosting, conservative boosting
and averaged conservative boosting. They differ in the ways they modify the prob-
ability distribution used for drawing subsequent data samples in subsequent steps.
See Sect. 2.8.3 for more details on the algorithms.

All these conditions make 560 (4×10×7×2) different configurations of bagging
and 1120 (4× 10× 7× 4) configurations of boosting. Each configuration has been
tested by 10 independent runs of 10-fold cross-validation (same as in the tests of CV
committees).

The comparison between CV committees and bagged or boosted trees has been
conducted by counting significant wins and losses between the ensembles of the
same member count. Each CV committee can be naturally compared to two corre-
sponding methods of bagging and four of boosting. All the comparisons have been
thoroughly performed and their results put in tables available from http://www.is.
umk.pl/~kg/papers/12-DTCVCommBagBoost.pdf. They all can not be presented
here, because of the amount of tables. To support the final conclusions, Tables 5.18
and 5.19 present the results of the comparisons between DT CV committees of trees
validated with cost-complexity approach to the ensembles obtained with bagging
and boosting respectively. The results are summed for the two methods of bagging
and four of boosting. Therefore, we get 294 competitions in each comparison with
bagging (21 datasets, 7 DT validation algorithms, 2 decision making methods) and
588 with boosting (21 datasets, 7 DT validation algorithms, 4 boosting approaches).
The numbers presented in each table cell are summed win-draw-loss counts.

CV committees with up to 3-4 members overwhelmingly outperform both bagging
and boosting approaches. There are several potential reasons of this:

• validation on unseen data,
• selection of the best models as the first CV committee members,
• more representative training sample (90 % of the training data for each commit-

tee member versus approximately 63.2 % for bagging and the first iteration of
boosting).

http://dx.doi.org/10.1007/978-3-319-00960-5_2
http://www.is.umk.pl/~kg/papers/12-DTCVCommBagBoost.pdf
http://www.is.umk.pl/~kg/papers/12-DTCVCommBagBoost.pdf
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Table 5.18 IG DTCV committees built with CC validator compared to bagged DT ensembles
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Table 5.19 IG DTCV committees built with CC validator compared to boosted DT ensembles
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When we focus on the parts of the tables corresponding to 0SE and the training
error factors of 0.5 and 1, we can see that the numbers of wins and losses get more
or less equal in columns 5 and 6.

Building decision support systems based on several alternative DT models is
reasonable, when the number of alternatives is low enough to let a human analyze
them and understand the knowledge behind their classification. In this context, three
or four sets of rules seem adequate, and DTCV committees provide better solutions
of this size than bagging and boosting.

Ensembles containing more DT models are more accurate when built with bag-
ging or boosting approaches, but their comprehensibility gets smaller and smaller
with increasing number of combined models. Also for lower number of ensemble
members, boosting models are not easy to interpret, because the weights controlling
final decisions are quite far from intuitive.

For small numbers of ensemble members, lower accuracy of bagged or boosted
trees in relation to CV committees, is accompanied by the fact that single trees are
also less accurate. The power of bagging and boosting consists in averaging decisions
of many models, which not necessarily are accurate alone. From the point of view
of decision support it is quite important that the trees used by the model are as
accurate as possible, because it makes explanations most valuable. Therefore, the
trees provided by CV committees are more adequate for such applications. Their
members are validated, which makes them more reliable or at least provides some
estimation of their performance.

5.4.6 Algorithm Parameters Analysis

Large collection of results obtained with many method configurations facilitates more
detailed analyses of particular parameters by focusing on properly selected results.
Monitoring result changes caused by modification of a single parameter value may
bring reliable conclusions on the parameter function.

Committee Sizes

To compare the performance of different committee sizes (member counts), the
whole set of 13560 committee results can be split into ten groups (corresponding to
the sizes) and the groups compared with paired t-test. It must be pointed out, and
it concerns all the following grouped results analyses, that the results within each
group are not quite statistically independent, because some committees consist of
the same trees, are tested on the same data, and differ only in a single parameter
which does not always cause changes in the decisions. Therefore, the assumptions
of the t-test are not satisfied, however the tested populations are very large, so the
differences we want to observe, are probably well reflected. The interpretation of the
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Table 5.20 The results for particular committee member counts

confidence level is certainly violated in such populations with repetitions, but it is
not so important here (at least when we realize the violation of the assumptions).

The comparison of the 10 populations corresponding to subsequent committee
sizes is depicted in Table 5.20. The first row below the header shows the numbers
of not significantly worse results than the best of all considered sizes, determined
on the basis of the results of all configurations. The following rows display similar
comparisons for filtered data corresponding to given DT induction method (4 rows)
and then for the 6 validation methods used in the test. It can be seen, that with different
filters we obtain different images, but with a common pattern of larger values for
sizes from 3 to 7 and another increase at 10. The larger numbers in the middle of
the scope result from the models built with separate validation, while those at the
end of the scope from commonly validated trees. It does not mean that other values
are useless—even one dataset for which a method outperforms the others makes it
very valuable, if only we have some meta-knowledge about the reasons (or at least
the circumstances) of the success. Since it is not obvious, which size should be
preferred, in different contexts, one may need to try significantly different member
counts. Keeping in mind the violation of the within-sample independence, we must
be aware, that real counts of insignificant differences are larger—large samples in
the paired t-test strive to incorrectly claim statistical significance, so the committees
of the highest scores do not outperform the others so much as one could read out
from the table.

Another visualization of the results differences is given in Table 5.21. It shows the
effect of pairwise comparisons between the collections of results corresponding to
given committee size. In each cell of the table we can see three numbers: the first one
is the number of significant wins of the committee size given by the row label over the
committee size given by the column label, the last one—inversely, and the middle one
is the number of datasets, for which no committee size significantly outperforms the
other. The same information is also presented as the colored bars in the background
of each cell. The length of each horizontal bar corresponds to the adequate number.
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Table 5.21 Pairwise comparisons of committee member counts

From the table, we can conclude that, in general, the most successful CV committees
are built from 4 to 7 members. This confirms that it is advantageous to combine
decisions of several models, however it is not always advisable to take all 10 trees
for the committee, because some of them happen to be sort of degenerate and can
spoil the team work.

Probability Estimation

Table 5.22 summarizes the results in the context of probability estimation methods.
On the left, we can see the numbers of datasets, for which the result of particular
option was not significantly worse than the best of the three. On the right, selected
filtered comparisons are presented as win-draw-loss counts of direct competitions
between the parameter values.

The overall results seem to show, that both Laplace correction and m-estimates
offer slightly better results than no correction (just proportions). However, the scores
are so close to each other, that one should suspect more or less equal usefulness of all
the variants. Indeed, a closer look at the filtered comparisons gives the information

Table 5.22 Comparison of probability estimation methods
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that in some contexts (like REP) the corrections rather spoil than improve, while with
Gini or IG criteria, they are quite successful. It should not be surprising that REP
trees do not perform better with the corrections. They are pruned to maximize clas-
sification based on proportions, so the proportions perform the best. REP modified
to respect other classification schemes would certainly bring significantly different
numbers in its row.

It is also worth mentioning that the models using REP, which improve the overall
result of simple proportions, are usually not too accurate. If we ignore the REP, the
comparison of the probability estimates would be worse for proportions. Anyway,
no probability estimation method can be pointed as a significant winner.

Training Data Error Factors

The idea of including training data error in the validation process has proven to be
very advantageous. The tests have been done for the factors of 0, 0.5 and 1 and the
results with respect to the three values are presented in Table 5.23.

Paired t-test with α = 0.01 showed no significant difference from the best result
in 3, 3 and 19 cases, respectively. So the TE factor of 1 seems to be quite clear
winner—only for two datasets it has provided significantly worse results than the
best of the three methods. Also, when looking at the scores for selected results, we
can easily find out, that the value of 1 is the most successful. The example of REP
is the extreme one with respect to the scores of 1TE factor. REP prunes as much as
possible without loss to the validation sample classification. It may cause that some
valuable parts of the tree are pruned because the validation sample (9 times smaller
than the training sample) does not contain examples in this area of the data space.
That’s why the factor respecting the training data error improves the results so much.

Table 5.23 Comparison of training data error factors
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Table 5.24 Comparison of standard error factors

Standard Error Factors

Very interesting dependencies can be observed in Table 5.24 illustrating differences
among methods of SE consideration. It must be pointed out that because of the differ-
ence in the sets of possible SE values for separate and common pruning, to calculate
the overall summary and the filtered results respecting DT induction methods, only
the models validated separately were analyzed.

The overall summary and all the filtered comparisons clearly show that the most
accurate parameter is 0SE. It means that the methods do not underprune the trees
(at least for the purpose of acting as committee members). Thus, further pruning
spoils the committees. The context of committees must be kept in mind in such
analysis, because slight underpruning of particular members may not be destructive
for the whole committee, as classification of single data objects overfit by one tree
may be rescued by other committee members.

Only in the case of REP models, the factor of 0.5 reaches a relatively large score,
but we must still remember, that the REP-based committees belong to the least
successful ones (of those used in the test).

The knowledge about so large differences between the values of the parameters is
very precious from the point of view of meta-learning, because it lets us easily restrict
the model search space without much loss in the maximum accuracy obtainable.
Thanks to focusing on the most promising parts of the model space, we can find
attractive solutions in significantly shorter time.

Separate or Common Optimization

In general, committees of trees pruned separately provide lower accuracies than those
optimized together for a common global pruning parameter. The results comparison
is presented in Table 5.25. Common pruning is not applicable to REP, so the table
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Table 5.25 Separate versus common optimization

ignores the results obtained with this method. The overall result and a majority of the
filtered views show the dominance of common validation, however the differences
are small—both methods happen to outperform the other. It confirms again that
in particular applications, the winners may be different. Even for the same task,
the success of a parameter may be dependent on the settings of other parameters.
Here, as discussed above, separate validation would be the winner in the case of
smaller committees and common validation for larger ones. Such correlations are
also a precious meta-knowledge, that can speed up obtaining attractive results by
meta-search processes.

There is still a strong need for more meta-knowledge explaining why and when
one method is better than another. This will certainly be one of the main subjects of
future research in the area of advanced data mining.

Standard Error Estimation Methods

In the case of common validation, several trees are analyzed in parallel, so a sample
of error estimates is available and can be used to empirically evaluate the standard
deviation of the error. The results obtained with configurations using sample-based
SE estimation and theoretical estimates have been compared, and the scores are
presented in Table 5.26. The labels tell whether sample-based estimation was used,
so that “no” and “n” denote theoretical estimation and “yes” and “y” mark the results
of sample-based calculations.

In the population of test results generated in the experiment, SE estimated from
sample has been more successful than the theoretical one in all examined categories,
however it must be emphasized, that the comparison concerns the factors of 0.5 and
1 (the way of SE estimation may be significant only if the SE correction is used)
which, as discussed above, provide lower accuracies than the factor of 0.
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Table 5.26 Comparison of standard error estimation methods (theoretical and sample-based)

Standard Error Factors with Separate and Common Validation

More informative comparison of SE factors may be done when all variants of separate
and common validation are distinguished at the same time. More precisely, we can
compare 8 different parameter settings: the values 0SE, .5SE and 1SE used with
separate validation, and the values 0SE, .5SE, 1SE, .5SEs and 1SEs working with
common validation. The scores corresponding to the eight parameter combinations
are presented in Table 5.27. The columns of separate and common validation are
described explicitly and the methods of SE estimated from sample are placed after
the dashed vertical line.

The table confirms the remarks given above, that the factor of 0 is the most suc-
cessful, especially when used with common validation. Increasing the factor spoils
the results. The decrease in accuracy is slightly less with SE estimated from samples,
than with theoretical estimation and the least in the case of separate validation, but
still the results are significantly worse than with no SE-based corrections.

Table 5.27 compares the results obtained with all possible values of the other para-
meters (like committee size, TE factor and so on), so the conclusions are still very
general, averaged over many configurations. Some parameters may be successful
only with some particular settings of other parameters, for example, in small com-
mittees or with Laplace correction used. Averaged, general summary does not show
such possibilities. To draw conclusions, that may be more useful in particular cases,
one should impose further restrictions on the set of compared results and examine
the differences in such contexts. Context-dependent analysis should be performed
on demand, when the context of interest is fully specified. The number of possible
context is so large, that performing all analyses a priori is impossible. Mechanisms
to extract context-dependent knowledge may be incorporated into automated meta-
learning processes, dynamically searching for successful machines.
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Table 5.27 Comparison of standard error factors, including separate and common validation

Table 5.28 Comparison of DT validation methods

C cost-complexity, D degree-based validation, O OPT, DI depth impurity

Validation Methods

Another subject for interesting observations is the efficiency of tree pruning methods
in preparation of DTCV committee members. Of the six methods used in the tests,
four (CC, Degree, OPT and DI) have provided complete lists of results (for maximum
number of parameters combinations), so they can be reliably compared. The other
two (REP and MEP2) are compatible with selected parameters only, and have been
ignored in this comparison.

The comparison results are presented in Table 5.28. The clear advantage of the DI
method may be a bit surprising and misleading. DI gives attractive results mostly for
large committees with common pruning—in the areas where other methods obtain
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poorer results, however in the comparison, the advantages in all areas (also, where all
the methods record very weak results) are equally important. Although the globally
successful machine configurations must never be forgotten, the most attractive para-
meter combinations must be searched locally, where the relations may be completely
different from the global ones. As can be found in the table, the degree-based pruning
which recorded the score of 0 in the global comparison, significantly outperformed
CC, OPT and DI, respectively in 11, 12 and 8 tests of 21, so the 0 score can not
absolutely be interpreted as uselessness of the method.

DT Induction Method

The last comparison within the DTCV committee algorithms experiment, concerns
the parameter of DT induction method. The four values (Gini index, information gain,
QUEST and SSV) have been compared in a similar manner as the other parameters:
their series of results were collected for all the tests and filtered by validation methods.
The comparison is presented in Table 5.29.

All the methods reached some significant wins over the others. Although Gini
index obtained the lowest scores, it is still capable of outperforming all three remain-
ing methods for some datasets. Information gain has recorded the largest number of
successes, 9 datasets with the best (or close) results means 12 datasets with signifi-
cantly worse results than may be obtained with one of the four methods. Therefore,
again, no single method should be regarded as satisfactory. Instead, to determine the
most suitable method, one should define the context first, and then analyze properly
filtered results.

5.4.7 Summary

The experiment presented above, has been designed to examine miscellaneous
aspects of DTCV committees, that in some applications provide an interesting bal-
ance between comprehensibility and accuracy. Decision tree models are especially

Table 5.29 Comparison of DT induction methods.

G Gini index, I information gain, Q QUEST, S SSV
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attractive, when comprehensibility and accuracy come together. DTCV committees
containing just several member trees can still be quite comprehensible, while offering
more accurate decisions than single trees. Many techniques of DT construction, prun-
ing and combining decision functions have been evaluated in a reliable test. Many
interesting conclusions have been drawn from the results analysis and visualization.

A general conclusion may be formulated, that DT committees may be highly
more accurate than single validated trees with no additional effort at learning time in
relation to the approaches employing CV for tree pruning. Because the committees
are constructed from the trees prepared during the validation process, building them
is computationally cheaper than CV-based pruning, because no final DT needs to
be induced. Slightly larger computational cost must be paid when the classification
routine is called, but the additional cost is not big—all the members must be tested
instead of a single tree, but it is still a constant factor equal to the number of committee
members, multiplying the time of classification with a DT model, which is usually
tiny, since classification with DT models is very fast.

Combining several decision trees into an ensemble does not necessarily mean the
lack of comprehensibility. A decision support system based on a DTCV committee
model, may easily present several rules when explaining decisions. Because the trees
grown within CV are often very similar, the rules extracted from the trees for a par-
ticular data item can be very similar or even identical, so that the number of rules may
be significantly less than the number of committee member trees. Alternative clas-
sification rules are desirable in the applications, where the most important premises
of particular classification decisions are searched for. They point to different aspects
of the classification problem, which may shed more light on the decision making
process.

DTCV committees containing up to five committee members, are (on average)
more accurate than models of the same size obtained with bagging or boosting
techniques. So small members count is quite adequate for complex models that are
expected to be comprehensible. At the same time, the committees of size greater
than 2, significantly outperform single tree models. Although the area of superiority
of DTCV committees over both single trees and popular ensembles, seems narrow
(3–5 trees in the model), these member counts are very attractive from the point
of view of robust and comprehensible decision support systems. Therefore, the CV
committees often provide a golden mean between comprehensibility and accuracy
(between single trees and large ensembles).

Extensive comparative tests have been quite easily performed, thanks to the versa-
tility and rich test tools of the Intemi system. Thanks to the machine unification mech-
anism, testing 13560 committees, 100 single tree algorithms, 560 bagging approaches
and 1120 boosting techniques, each with 10 runs of 10-fold cross-validation were
conducted in relatively short time, because the decision trees underlying the com-
mittees were not built repeatedly for each committee, but were unified and reused.
The results have been collected in a uniform manner facilitating fair comparisons
with statistical tests for paired samples.

The results collected for 21 datasets, show that all the parameters may signifi-
cantly influence the final performance of the committees. In the pursuit of the best
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models, one always needs to try many different parameter combinations. Because no
parameters are definitely best in all cases, special meta-level algorithms are neces-
sary to determine which parameters should be used in particular applications. Such
meta-search methods can take advantage of different kinds of meta-knowledge, which
may speed up the search process. Different estimations of the distribution of winning
configurations may be a form of such helpful meta-knowledge.

The results of the experiment include very precious meta-knowledge about the
influence of particular learning parameters to the final results. Using the meta-
knowledge, advanced search processes may omit testing some parameter settings
without significant loss in their final achievements. Meta-learning approaches should
take advantage of the meta-knowledge, to save time of further explorations. They can
resemble human experts in not loosing time for doubtful approaches, while searching
more thoroughly and systematically than humans.

Miscellaneous algorithms and data structures for meta-knowledge representation
and gaining, certainly belong to the most important directions for future research
in the area of computational intelligence. They will improve machine autonomy
in learning from data and will significantly change the future, eventually replacing
human experts in many disciplines with autonomous machine learners.
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Chapter 6
Meta-Learning

The problems of learning and meta-learning have been introduced formally in
Sect. 1.1. Many learning algorithms have been proposed by the CI community to
solve miscellaneous problems like classification, approximation, clustering, time
series prediction and others. Each method specializes in models of some particu-
lar shape (decision trees, neural networks of specific architecture, nearest neighbors
classifiers and so on) and tries to maximize some model quality function (or mini-
mize some cost function). None of the algorithms can be regarded as better than all
others. Each one has its own inductive bias , which can be shortly and informally
defined as eligibility for solving some kinds of problems and less potential for learn-
ing other tasks, or in other words, the circumstances which make the method succeed.
Large amount of algorithms and their different performance in particular applications
have naturally risen questions about possibilities to select the most adequate and the
most successful learning methods for particular tasks. Unfortunately, it is not easy
to describe the inductive bias of learning machines in such a way that would be of
much help in selection of the most suitable algorithms for particular task. This fact
has born the idea of using CI methods in the pursuit of attractive learning machines,
hence the field of meta-learning .

The task of algorithm selection is a natural consequence of using the divide-and-
conquer technique for learning—instead of searching directly for the best model, it
is often advantageous to select a learning machine to finally use its model. Such sce-
nario shows the ultimate goal of meta-learning—improvement in object-level learn-
ing. Miscellaneous meta-learning approaches gather meta-knowledge about learning
processes to eventually use it for model selection.

Respecting the ultimate goal of meta-learning and the perspective of real-world
applications, the most adequate formulation of learning from data is addressed by
the definition of time-limited optimal-learning problem P = (D,M , q, t), where
not only the training data D and the model space M are provided, but also a model
quality measure q is strictly defined and a time limit t enforces a deadline for all
calculations (see Eq. 1.5 on page 4).
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Fig. 6.1 Rice’s model of algorithm selection problem

The quality measure is sometimes precisely defined (as predicted classification
accuracy, the opposite of approximation error estimate and so on) and sometimes
given by some imprecise description (for example: large accuracy accompanied by
model comprehensibility). To make crisp optimization possible, imprecise definitions
must be clarified. Although fuzzy problem statements are common, when presenting
the goals to human experts, they must be defined more precisely for artificial learners.

Definition of time limit is usually very natural, because in practical applications
we always need to keep within a deadline (of a data mining contest, of scheduled
implementation of the model in a plant and so on). Even in research experiments, one
needs to receive results in a reasonable time, so calculations can not run without end.
Therefore, the definition of time-limited optimal-learning problem, perfectly fits the
concept of algorithm selection.

The algorithm selection problem (ASP ASP) has been discussed already by Rice
(1974, 1976), who presented an abstract model of the problem as in Fig. 6.1. The
task is to find a mapping S : D → A , such that for given data D ∈ D , A = S(D) is
an algorithm maximizing some norm of performance ||p(A, D)||. The problem has
been addressed by many researchers and undertaken from different points of view
(Bensusan 1999; Guyon et al. 2010; Grąbczewski and Jankowski 2007; Hilario 2002;
Smith-Miles 2009; Vilalta et al. 2004).

Solving ASP is the ultimate goal of meta-learning, but not its only possible
approach. Each task defined in such a way that the data D or model space M
somehow refers to learning processes, should be seen as a task of meta-learning.
So general understanding of meta-learning is coherent with the abundance of pub-
lications using the term. Various attempts to review and summarize the field have
been undertaken (Brazdil et al. 2009; Giraud-Carrier 2008; Vilalta and Drissi 2001,
2002). Some surveys of systems and frameworks devoted to meta-learning have also
been prepared (Brazdil et al. 2009; Vanschoren 2011). Because of large amount of
methods, no review can be exhaustive and go into details of all approaches.

A survey is also presented below, in Sect. 6.1, and it does not aspire to be full,
either. It is included to show the diversity of meta-learning concepts, to sketch the
main interests and to present the approaches of further sections against appropriate
background. Section 6.2 presents a general algorithm of meta-learning performing
a search for attractive algorithms with feedback from validation and the subsequent
Sects. 6.3 and 6.4 present two frameworks compatible with the general algorithm: one
based on configuration generators and complexity control, and one using learning
profiles to steer the search process.
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6.1 Meta-Learning Approaches

The definition of meta-learning introduced on page 3 encircles all methods dealing
with information about learning processes. So broad definition encompasses the
whole spectrum of techniques aiming at gathering meta-knowledge and exploiting
it in learning processes. Indeed, abundance of publications devoted to such methods
use the term “meta-learning ” in many different contexts.

As emphasized before, many different particular goals of meta-learning have been
defined, but the ultimate goal is to use meta-knowledge for finding (construction of)
more accurate models at object-level and/or to find them with as little resources (time
and memory) as possible. Because, the ultimate task is very complex and requires
much valuable meta-knowledge, a reasonable way to attractive solutions is to solve
many simpler problems (in compliance with the divide-and-conquer principle) and
use the results for more and more advanced meta-learning processes. This way of
thinking has led many researchers to miscellaneous ideas and algorithms (including
complex knowledge-based systems) for meta-level analysis of learning machines.

Some attempts to describe the algorithm selection problem and analyze it the-
oretically have been undertaken. One of the results is the very famous bunch of
no-free-lunch theorems, which is very often referred to by CI researchers, although
its practical impact is very weak. Because of its popularity, it is the subject of a
discussion presented in Sect. 6.1.1.

One of the simplest approaches, claiming to perform meta-learning, combines
decisions of object-level models, creating different kinds of ensembles. Section 6.1.2
discusses some methods of this family.

In another group of approaches, regression methods are used to predict learning-
machines gains, expressed as numeric scores, so that in future applications, the
learning data may be used to anticipate the scores before the methods are run. Such
methods are shortly commented in Sect. 6.1.3.

Yet another group of methods strives for accurate ranking of learning algorithms
or in other words, prediction which methods will provide best results for a given
learning task. Section 6.1.4 is devoted to this kind of algorithms. Many approaches
of this family end with unverified rankings, while others rank according to the results
of a validation procedure run for each ranked method. The latter approach results
from the conviction that building successful tools for automated selection of most
suitable learning methods for particular tasks, requires integration of meta-level and
object-level learning in a single search process with built-in validation of object-level
learning machines and meta-knowledge acquisition and exploitation. Although they
still end up with a ranking of algorithms, they are so different from the unvalidated
ones, that should be regarded as a separate group of methods. Two algorithms worked
out recently, are presented in Sects. 6.3 and 6.4. Both fit the general algorithm for
meta-learning based on validation presented in Sect. 6.2. The former validates con-
figurations of learning machines suggested by machine configuration generators and
ordered by estimated complexity (Jankowski and Grąbczewski 2011). The latter tests
learning machines in the order determined on the basis of learning profiles analysis.
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These groups of meta-learning research do not cover all the area of this field.
Many other approaches can also be classified as meta-learning. They concern both
theoretical analyses and practical applications.

A taxonomy of inductive biases with respect to various properties have been
introduced by Bensusan (1999). He presented a meta-learning system named The
Entrencher, using induction to select appropriate generalization procedures.

An attempt to automatically learn inductive bias of learners was also undertaken
by Baxter (2000). He presented a model to automatically restrict the hypothesis space
for particular learning data.

Several ideas of meta-learning ontologies have also been proposed. They are
especially interesting and auspicious, because meta-knowledge is usually gained
with too large effort, to be extracted each time a meta-learning project is run. Thus,
there is a strong need to collect the meta-knowledge is special repositories that can
be used by meta-learning processes. Since meta-knowledge may have miscellaneous
forms, construction of a versatile and practical knowledge base is extremely diffi-
cult. Although several systems based on the ideas of ontologies have already been
created, for example CAMLET (Abe and Yamaguchi 2004; Suyama et al. 1998),
IDEA (Bernstein et al. 2005) and e-LICO (Hilario et al. 2009, 2011), there is still
much to do in this very important area, that will certainly play very important role
in the future of machine learning.

Complex ontologies require adequate tools for their exploration. From this point
of view, the approaches like the one of Kalousis and Hilario (2003) focused on a
relational case-base representation for meta-learning seem very important. They pro-
posed a multi-relational structure of information describing the classification datasets
and prepared some similarity measures to facilitate similarity-based relational learn-
ing. Relational representation is certainly an interesting idea that needs much further
exploration to provide more attractive tools for meta-learning. The information con-
tained within well designed ontologies may bring efficient methods for construction
of accurate complex learning machines. Properly organized meta-knowledge may
bring attractive descendants of such methods for learning machine design as the
approaches of machine configuration generators (Jankowski and Grąbczewski 2011,
and Sect. 6.3) and KDD (Knowledge Discovery in Databases) workflows (Kietz et al.
2012).

Certainly, the gains of many fields should be joined in the common effort of provid-
ing functional and comprehensive ontologies for meta-learning. For example, fuzzy
linguistic data summaries and fuzzy query systems used in decision support systems
may also supply a valuable contribution to the goal (Kacprzyk and Zadrożny 2007;
Zadrożny and Kacprzyk 2007). The ideas aimed at optimal decision support sys-
tems (Kosiński et al. 2010), concerning knowledge acquisition, opinion mining and
sentiment analysis are also very close to the concepts of decision support regarding
algorithm selection. Because of the necessity to deal with uncertainty and fuzziness
in meta-knowledge analysis and meta-level reasoning, modern, flexible neuro-fuzzy
systems (Cpałka et al. 2008; Rutkowski and Cpałka 2003) can also be successfully
applied to meta-knowledge management.
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The research classified to the field of active learning (Cohn et al. 1994), can also
be treated as a part of the domain of meta-learning. Active learning techniques control
the input data (usually by adjusting the training data sample) to optimize the gains
of learning processes. As such, they also perform their tasks on the meta-level. The
technique of active learning has also been used for meta-learning to result in an active
meta-learning (Prudêncio and Ludermir 2008), aimed at saving time for collecting
meta-examples and improving meta-learning accuracy. An example application of
active learning in the realm of DT induction is the algorithm called ALASoft [Active
Learning with Automatic SOFt labeling for induction of decision Trees (Su et al.
2009)]. It uses active learning to select high quality unlabeled data to be labeled
by human experts and by a random forest, so as to improve the final DT induction
process.

Similar comment can be made on the techniques of deep learning (Bengio 2009;
Hinton et al. 2006), where analysis of deep model structures is very important for
efficient learning.

Many applications of various meta-learning techniques to some specialized tasks
can also be very precious for the domain, especially, when at some time, their results
are placed in meta-learning repositories, enriching the meta-level knowledge about
learning algorithms. Some examples of such applications are: feature construction
methods proposed by Mierswa and Wurst (2005), the analysis of instance selection
algorithms performed by Smith-Miles and Islam (2011), the application of meta-
learning to ranking methods of clustering gene expression data and time series fore-
casting problems, by Prudêncio et al. (2011), choosing the most promising metric for
distance based learners, as a compromise between random selection and computa-
tionally very expensive exhaustive search (François et al. 2011) or ranking clustering
algorithms (de Souto et al. 2008).

More and more often, data mining systems are equipped with some tools for
meta-knowledge collection and exploitation. Each of the systems like GhostMiner
(Grąbczewski et al. 2004), MiningMart (Morik and Scholz 2004), Data Mining Advi-
sor (arose from the experience gathered within the METAL project; Giraud-Carrier
2005), Intemi (Grąbczewski and Jankowski 2007, 2011) and others, deals with meta-
knowledge in its own way. It will certainly take much time till some common rep-
resentation of meta-knowledge and common formats of meta-learning ontologies
appear and get accepted by large part of the CI community, because there is still
much research necessary to discover most useful types of meta-knowledge.

6.1.1 No Free Lunch Theorems

In the world of computational intelligence, articles by Wolpert and Macready (1995,
1996) have caused very much reaction. Numerous authors refer to their work, but
often cite their theorems in not adequate contexts. This is the main reason for devoting
this subsection to that subject, because in practice of machine learning, the theorems
are not useful (although theoretically correct).
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So popular no-free-lunch (NFL ) theorems were first published in the context of
search processes (Wolpert and Macready 1995) and then of optimization algorithms
(Wolpert and Macready 1996), but in fact they are equivalent, because the definitions
of the algorithms performing search and optimization are the same. The difference
between the two reports consists in vocabulary and some notations used.

The goal of this analysis is not to reject the NFL theorems, because, as mentioned
above, they are theoretically correct, but to point their assumptions which unfortu-
nately are easily disregarded by the commentators, leading to misinterpretations of
the theses.

A Closer Look at NFL Theorems

Wolpert and Macready (1995, 1996) analyzed the scenario of search/optimization
algorithms aimed at finding the optimal points in a space X with respect to cost
functions f : X → Y . They assume that both X and Y are finite sets. The
algorithms work iteratively by selection of next points in X on the basis of a series
of earlier visited points and the costs assigned to them. Formally, algorithms are
functions

a :
⋃

i=0,1,...,|Y |−1

(X × Y )i →X . (6.1)

At i th iteration, on the basis of a sequence of pairs (x j , y j ) ∈ X × Y for j =
1, . . . , i − 1, they determine the next point xi ∈ X \{x j : j = 1, . . . , i − 1}. With
such definition of the problem, the fundamental NFL theorem is defined as:

NFLNFL theorem: For any pair of algorithms a1 and a2, a sample size m ≤ |Y | and a
series of costs y = (y1, . . . , ym) ∈ Y m

∑
f ∈Y X

P(y| f, m, a1) =
∑

f ∈Y X

P(y| f, m, a2), (6.2)

where P(y| f, m, a) denotes the probability that in m iterations of a, the costs calculated
with f for subsequent results returned by a are y.

A natural conclusion from the theorem is that also the expected values of the outputs y
are the same for all algorithms. Rephrased to informal language: each algorithm
brings on average the same quality of its output. The result seems surprising, but such
conclusion is possible because of the assumptions which are not congruent with real
life observations, with the principles of neither natural nor machine learning (see the
explanation below).

Analysis of Theorems’ Assumptions

The crucial assumption responsible for the confusion about NFL is averaging over
all possible cost functions, which means that all methods of results estimation are
equally possible. This contradicts the natural principles and assumptions of learning,
where we assume some consistency, for example, that similar decisions should bring
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similar assessment and that input data contains some information about the problem
being solved. If all cost functions are assumed equally probable, then we deal with
completely chaotic environment, where costs of new solutions are completely inde-
pendent of the solution-cost assignment available in the input. Wolpert and Macready
(1996) notice that the uniform prior probabilities of cost functions are not what we
usually observe, so it is more reasonable to analyze

P(y|m, a) =
∑

f ∈Y X

P(y| f, m)P( f ). (6.3)

This makes a significant difference. Arguments that the priors are negligible when
not incorporated into the optimization algorithms are not well-founded, because in
fact, the non-uniform distribution of f is the foundation of each learning, where the
cost estimation feedback is expected to be consistent in some way, and the algorithms
adjust to this feedback.

If we accepted the uniform priors of cost functions in real life, it would make all
our learning senseless. For example, imagine lessons of mathematics with a teacher
using completely inconsistent ways of assessment. That would mean that the pupils
could be given any possible mark for a correctly solved maths problem, because all
ways of assessment would be equally possible, correct answers would be equally
likely rewarded and penalized. It would not make any sense. Education would make
no sense. Our children would be happy (at least temporarily), but we would easily
spoil the world with such assumptions.

Treating each cost function as equally likely would bring the same expected
effects as assignment of completely random costs, which is not what we observe in
everyday life. The nature is ruled with some laws, which cause that learning is pos-
sible. When we analyze the definitions of “learning”, “intelligence”, “generalization
from experience” and similar concepts, we can see that behind them all, there is the
assumption that similar circumstances result in similar effects, which is meant by
the term “consistency”, used above. Learning is based on the belief that the same
actions undertaken in similar situations will bring similar effect which, of course, is
not always true (therefore surprises are possible), but in most cases it is. Otherwise
there would be no place for learning or intelligence.

Also the principles of machine learning are founded on the assumption that we
deal with the class of problems eligible for learning. We expect that there is some
knowledge hidden in the data, and try to discover it. In the spaces analyzed by
NFL theorems, such assumptions are not valid. In fact, the NFL theorems, rephrased
informally, may get the forms like:

• In the space, where no learning is possible from assumption, each algorithm per-
forms the same.
• Random costs can not be predicted.
• From the assumptions that generalization does not make sense we can infer that

there is no point in generalizing.

All they are truisms, and also NFL is a truism in the guise of a formal statement.
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Wolpert and Macready (1995, 1996) analyzed also some more optimization
scenarios, for example, families of cost functions dependent on time, stochastic
algorithms, but all they share the fundamental assumptions incongruent with the real
life environment.

Learning Binary Logical Functions

The problem of learning arbitrary logical function g : {0, 1}n → {0, 1} for a given
natural n is very similar to those of NFL theorems. Here the counterpart of averaging
over cost functions is averaging over datasets coming from different logical functions.
When a subset of possible mappings is given, is it possible to predict the remaining
part of the function? If the assumption is that all functions are equally possible (a
priori), than the answer is “no”. Each predictor gives the same average number of
incorrect predictions.

For simplicity, assume that n = 2 and the training dataset consists of three assign-
ments:

(1, 1) �→ 1,

(1, 0) �→ 1,

(0, 1) �→ 1.

Is it possible to predict the output of the logical function for the last possible input
(0, 0)? Naturally, it is not, because there are two different boolean functions com-
patible with the training set, and each provides different output for the pair (0, 0).
Moreover, each of them can seem attractive, because one of them is the constant func-
tion of value 1 and the other is the well-known disjunction. Therefore, the results for
each predictor, averaged over all possible functions, are equal.

If we assume equal priors for all possible functions, learning makes no sense, but
if we know that there is some “simple” logical function hidden in multidimensional
data, then learning is possible and the algorithms that prefer simple solutions are
more accurate on average than random predictions.

Unjustifiable “Conclusions” from NFL

Unfortunately, many authors refer to NFL theorems and repeat their theses without the
assumptions, leading their analyses astray and formulating incorrect “conclusions”.
For example, some researchers explain the need for many alternative algorithms with
NFL theses, by claiming that because each learner has an area of competence, we
need to develop miscellaneous algorithms to cover as broad area in the space of cost
functions as possible and to create meta-level algorithms to select proper learning
machine. It is true, that the possibility of trying diverse learning machines is usually
advantageous, and that meta-learning algorithms are valuable, but it does not imply
from the NFL theorems. When focusing on NFL theorems, we can just infer that any
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combination of learning algorithms, being just another learning algorithm, has the
same burden of NFL, that is, its average result is the same as any other’s.

It is often claimed that the meta-level algorithm can recognize the kind of problem
and select proper object-level learner, but there is no reason to accept the assumptions
of NFL neither at object-level nor at meta-level. When equal priors are assumed at
meta-level, any recognition is also equally accurate on average as random guess,
so we can not defend the hypothesis that new learning methods can bring any new
value.

Justifiable Conclusions from NFL

What one can reliably claim on the basis of NFL theorems is that each algorithm has
the same performance on average. Creating more and more complex algorithms
brings just other methods equivalent on average to completely random decision
making. If one algorithm outperforms another for a collection of cost functions, than
it must be outperformed by the other for some other collection of cost functions.

Most of the statements, derivable from NFL theorems, seem very depressing and
discouraging, but only when we do not keep in mind the unreal assumptions.

One could also rephrase the pessimistic conclusions in an optimistic way, for
example, that for each algorithm one can find data to confirm its advantage over
another algorithm. So in fact, interesting results can be prepared for any method, if
we know how the method works. Actually, whether this is an optimistic or pessimistic
conclusion is the matter of the point of view, so the final opinion is up to the reader.

Conclusions on NFL

To summarize the conclusions on NFL theorems and their applications, it must be
emphasized once again that the theorems, although mathematically correct, have no
practical value for computational intelligence research. The theorems’ assumptions
make them unreal, applicable only to the spaces, where no learning makes sense, as no
consistency in cost measurement is assumed. The spaces of all possible cost functions
with equal priors are not congruent with what we experience in real life, where
learning and intelligence are extremely valuable, because of prevailing consistency
of phenomena.

Although NFL theorems are true, one should be very careful when drawing con-
clusions and always keep in mind the theorems assumptions. The authors can not
be blamed for providing the theses, because they are true, but their followers often
go too far in their interpretations. Also some comments in the original reports were
exaggerated and put much stress on theses, but less on assumptions, but unfortu-
nately it is normal (or even necessary) in contemporary science, as articles with
no claims about revolutionary results, or at least such perspectives, are difficult to
publish. Nevertheless, some comments of the authors are not too accurate. For exam-
ple, Wolpert and Macready (1995) claim that the NFL theorems are not affected by
relaxing the assumption of non-retracing search algorithms, and then explain that
a retracing algorithm can be reduced to non-retracing one, for which the NFL is
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true. It does not mean that the NFL is valid for retracing algorithms. Inversely, it
is easy to prove that an algorithm that checks all possible points in the X space
and then returns always the solution of the lowest cost, outperforms algorithms like
random selection. Important assumptions are, unfortunately, so easily neglected. It
can sometimes result in a serious confusion.

6.1.2 Ensembles of Decision Models

Simple committees performing majority voting or other simple decision combi-
nations do not learn at meta-level, although contain the decision module dealing
with object-level models. More “intelligent” decision modules perform some meta-
analysis to decide which decisions of the ensemble members deserve more trust and
which should be ignored as probably wrong. Such approaches are often referred to
as model stacking, because on top of the object-level models (more precisely: their
results), a meta-level learner is applied as the decision module. There are plenty of
publications about such models, so that all of them can not be mentioned here. A
selection of algorithms with interesting activity on meta-level is presented here.

Some of the successful approaches have been proposed by Prodromidis and Chan
(2000) and Stolfo et al. (1997) (parallel, distributed Java Agents for Meta-learning).
Meta Decision Trees (properly adapted C4.5 decision trees) have been used by Todor-
ovski and Dzeroski (2003) and Zenko et al. (2001) to determine which model to use.
In NOEMON system (Kalousis and Theoharis 1999; Kalousis and Hilario 2000)
stacking has also been referred to as meta-learning.

Another type of methods in the category of model combination is characterized
by manipulation of the training data, in order to create specialized models and then
appropriately combine their decisions. They perform some meta-analysis to build
more stable decision makers. Very popular examples are methods like bagging and
boosting (also called arcing) (Breiman 1996, 1998; Dietterich 1999; Freund and
Schapire 1996; Quinlan 1996; Torres-Sospedra et al. 2007). These meta-level tech-
niques have been run not only to create ensembles, but also for many other tasks.
For example, in DT induction it has been applied to feature construction performed
at each DT node, to stabilize the process susceptible to significant changes caused
by small variations in the training data sample (Vilalta and Rendell 1997).

Meta-level analysis may lead to estimation of the areas and degrees of competence
of each base learner, to provide more reasonable decision of the decision module. As
a result we get undemocratic committees , also heterogeneous ones. For example,
meta-learning by arbitration and combining was proposed by Chan and Stolfo (1993,
1996). In their approach, the arbiters were models built on top of two other decision
makers and deciding which of the two underlying models should be used for particular
decisions. Binary trees of arbiters were constructed in bottom-up fashion, so first,
the members were organized in pairs and an arbiter was trained for each pair. After
that, the newly created arbiters were organized in pairs, and the next level of arbiters
was created. The procedure was finished, when a single arbiter was created on top
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of the whole structure. After that, this arbiter was queried, to get the decisions of the
whole hierarchy.

Duch and Itert (2003) defined incompetence functions to describe (in)competence
of each committee member in particular points of the data space. Jankowski and
Grąbczewski 2005 introduced solutions of reflecting global and local competence
in final ensemble decisions. Both kinds of competence were expressed as factors,
used for weighting members decisions in the final decision making process of the
ensemble.

Yet another approach to meta-learning by stacking was proposed by Kadlec and
Gabrys (2008). In their Learnt Topology Gating Artificial Neural Networks each
object-level committee member ( local expert) was accompanied by a gating network
to learn the performance of the local expert and link it to the positions of samples in
the input space.

Learning hierarchical models has also interested Johansson (2007), the author of
the Genetic Rule EXtraction (G-Rex ) system, who has presented six approaches to
meta-level analysis of ensemble members. In one of the approaches, he has exam-
ined several methods of combining artificial neural networks (ANNs). In another
experiment, he tested his GEMS algorithm (Genetic Ensemble Member Selection)
as a mean to combine some of a large number of trained ANNs into hierarchical
ensembles. Yet another study of Johansson (2007) concerned potential advantages
of restricting ANN training to a subset of the training data in order to use the remain-
ing part for validation and selection of ensemble members.

Cornelson et al. (2003) used the term “meta-learning” to reflect the process of
learning from data describing the performance of many information retrieval (IR )
algorithms. A classifier trained on the meta-level was successfully used to combine
the IR algorithms. In example applications it significantly improved precision while
preserving the same level of recall available with base learners.

6.1.3 Meta-Level Regression

It would be very easy to create a ranking of algorithms if we could predict the
accuracy of the candidates. The approaches to meta-level regression try to predict the
accuracies of different learning machines on the basis of the training data containing
dataset descriptions. Bensusan and Kalousis (2001) and Köpf et al. (2000) have
applied regression algorithms to predict accuracy of given model (usually a classifier)
from the input consisting of series of values derived from information theory and
statistics (describing the datasets). To create a ranking of algorithms, they created one
regression model for each algorithm, and ordered the learning machines according
to decreasing predicted accuracy.

Janssen and Fürnkranz (2007, 2010) have also used regression algorithms for
meta-level learning, but with significantly different goal. They investigated possibil-
ities of learning heuristics for rule induction and concluded that the standard rule
learning heuristics were outperformed by the meta-learned ones.
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6.1.4 Rankings of Algorithms

The tasks of algorithm selection and algorithm ranking are in fact equivalent, because
a ranking may be the basis for selection of its top-ranked methods and inversely a
ranking can be created by multiple selection of subsequent items. Therefore, algo-
rithm ranking is even more frequent form of the problem.

The task of algorithm selection defined by Rice (1974) and depicted in Fig. 6.1 on
page 234, often gets reduced to the problem of assigning optimal algorithm to a vec-
tor of features describing data. Such approaches are certainly easier to handle, but the
conclusions they may bring are also significantly limited. Separating meta-learning
(ranking) and object-level learning processes simplifies the task, but implies resig-
nation from on-line exploitation of meta-knowledge resulting from object-learners
validation.

μy

This concept lies behind the most popular approach to meta-learning (probably the
largest so far), that was initiated by the meta-learning project METAL. It was focused
on learning rankings of algorithms from simple descriptions of data. The idea fol-
lowed by the approaches of METAL and its descendants is sketched in Fig. 6.2. Given
a dataset representing a problem to be solved, first, the dataset is described by some
features ( meta-features), and on the basis of this description, a ranking of learning
algorithms is generated.

In the first enterprises of this kind, meta-attributes were basic data characteris-
tics like the number of instances in the dataset, the number of features, the types of
features (continuous or discrete, how many of which), data statistics and so on. Fea-
tures resulting from more advanced statistical analysis and information theory have
also been proposed, for example by Engels and Theusinger (1998). A Data Charac-
terization Tool (DCT, Lindner et al. 1999) was prepared to describe datasets with
many meta-features, including statistical data, information theory based features,
meta-features describing single object-level features and relations between pairs of
the object-features.

Provided a description of a dataset, rankings were generated by meta-learners in
such a way, that for each pair of algorithms to be ranked, a classification algorithm was
trained on two-class datasets describing wins and losses of the algorithms on some
collection of datasets, and after that, decisions of the meta-classifiers were combined
to build the final rankings (Brazdil and Soares 2000a). The same technique was also
used by Kalousis (2002), Pfahringer et al. (2000) and Soares et al. (2001) and in
many other approaches, as it is a simple, intuitive and quite successful solution.



6.1 Meta-Learning Approaches 245

Another kind of ranking methods, examined within the METAL project, consisted
in combining the results of comparisons between gains of candidate learners recorded
for a number of datasets available in the knowledge base. The combinations that
determined the ranks of the algorithms, were calculated according to one of several
measures (Brazdil and Soares 2000a):

• average ranks (AR ), calculating just the mean rank obtained by the learners for
all datasets of the knowledge base,
• success rate ratios (SRR ), calculating the mean of success ratios between the

method of concern and all the others for all datasets of the knowledge base (for

methods A and B and data D, the ratio is S R RD
A,B = 1−Err D

A
1−Err D

B
, where Err D

X is the

error rate of algorithm X obtained for dataset D),
• significant wins (SW ), calculating the mean of estimated probabilities of winning

between the algorithm of concern and each of the others (the probability that
algorithm A wins against algorithm B was estimated by the fraction of the count
of datasets with the results of A statistically significantly better than those of
method B and the number of all analyzed datasets).

The group working on METAL has also introduced an index to assess relative
performance, adjusted ratio of ratios (ARR ) combining ratios of accuracy and time
(Soares 1999; Soares and Brazdil 2000):
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1+ log
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. (6.4)

In the formula, AccD
Y and T D

Y are accuracy and time of algorithm Y on data D and
X is a parameter interpreted as, “the amount of accuracy we are willing to trade for
10-times speed-up”. Another index, called relative landmark (RL), was proposed for
cases involving n > 2 algorithms:

RL D
A =

∑
B �=A AR RD

A,B

n − 1
. (6.5)

Ranking quality was estimated by comparison to the ideal one (obtained after
collecting the results for the test dataset). As the measures of ranking comparison they
used some statistical methods: Spearman’s rank correlation coefficient , Friedman’s
significance test and Dunn’s multiple comparison technique.

As a contribution of Brazdil and Soares (2000b) and Brazdil et al. (2003) more
interesting meta-attributes were proposed, including advanced statistical measures
of datasets and indices derived from histogram analysis or information theory. The
authors used k nearest neighbor (kNN) algorithm to choose similar datasets and
tested the ranking methods described above: AR, SRR and SW.
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6.1.4.1 Landmarking

Dataset descriptions consisting of just statistics about the data and other information
about the representation form of the data, are not satisfactory for ranking algorithms,
because they ignore much information existing in the data, which makes particular
learners succeed or fail. An interesting step forward was proposed by Pfahringer
et al. (2000) and called landmarking. The idea was to use meta-features measuring
the performance of some simple and efficient learning algorithms (landmarkers) like
linear discriminant learners, naive Bayesian learner or C5.0 decision tree inducer. It
has proven to perform better than the methods based on descriptions derived from
information theory (Bensusan and Giraud-Carrier 2000).

The results provided by the landmarkers were used as features describing data by
meta-learners, aimed at recognizing which algorithms perform better for particular
data. The set of algorithms used at meta-level contained C5.0 decision trees and
rules, boosted C5.0, some linear discriminant learners and decision tree induction
methods with linear discrimination as node splitters, naive Bayesian classifier and
nearest neighbors approaches.

The next step forward in landmarking was introduction of meta-attributes describ-
ing relations between results instead of accuracies ( relative landmarking). Fürnkranz
and Petrak (2001, 2002) and Fürnkranz et al. (2002) extended the descriptions by
ranks of landmarkers, order of landmarkers (inverse of ranks), results of pairwise
comparisons between accuracies of landmarkers (+1, -1, ?) and pairwise accuracies
ratios. To facilitate landmarking by the target algorithms (usually of larger computa-
tional complexity), they proposed subsampling—the original datasets were reduced
to smaller samples before application of the learning procedures.

Relative landmarking and subsampling were combined together by Soares et al.
(2001), who presented some experiments to illustrate advantages of combining the
two improvements.

A serious disadvantage of methods like SRR, ARR and SW, is that they perform
pairwise comparisons of algorithms, so when the number of candidate algorithms
reaches tens of thousands or even millions, they are not applicable. Also, the statistical
measures, used to compare rankings to the ideal one, are not too adequate for practical
algorithm selection problems, because they measure similarity between rankings
with the same attention paid to top-ranked and bottom-ranked methods. This is
quite suitable for comparisons of several methods, but not for selection of the best
algorithms from large sets of candidates.

Another system advising which classifier to use and performing classification was
NOEMON (Kalousis and Hilario 2000; Kalousis and Theoharis 1999). Its model
selection was also based on pairwise comparisons of algorithms results. The meta-
learning space contained miscellaneous data characteristics resulting from statistics
and concentration analysis (histograms), and some performance measures of algo-
rithms like accuracy, training time, execution time, resource demands and so on. As
the meta-learners, trained on results of pairs of algorithms, NOEMON used kNN
and decision tree algorithms.
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Many other landmarking related solutions have also been proposed. An interesting
idea was presented by Peng et al. (2002) in DecT system, where data characteristics
were derived from the structure of C5.0 decision trees, built on the data. Features
related to the shape and size of the trees induced from the dataset, were used to
extend the space of data description for the purpose of meta-learning. Similarly to
other approaches, they used kNN to select similar datasets, ARR to rank candidate
algorithms, and Spearman’s rank correlation coefficient to estimate rankings.

More advanced DT analysis was proposed by Bensusan et al. (2000). Their typed
higher-order inductive learning can be seen as landmarking with some higher-order
information derived directly from decision trees, instead of just some characteristics
of the resulting trees. They created a special meta-learning framework to facilitate
typed higher-order inductive learning.

Providing many features to describe data for the purpose of meta-learning, causes
a problem that needs to be solved when the number of meta-features gets large in
relation to the number of meta-cases collected for learning. To make meta-learning
feasible and prevent meta-learner from building decision models on accidentally
correlated features, proper feature selection techniques have been applied at meta-
level (Kalousis and Hilario 2001; Todorovski et al. 2000).

Meta-learning has also engaged methods related to clustering . Todorovski et al.
(2002) proposed using Predictive Clustering Trees (PCT) for ranking and illustrated
the method on the problem of ranking learning algorithms according to predicted per-
formance. Predictive Clustering Trees (Blockeel et al. 1998) are multi-split decision
trees built with minimization of intra-cluster variance and maximization of inter-
cluster variance. In application to meta-learning, the main concern of the induction
of PCTs is that clusters should contain data with similar relative performance of
algorithms. Meta-data for learning was obtained from statistics, information theory
and landmarking methods.

6.1.4.2 A Critique of Passive Ranking Methods

A possibility of ranking algorithms ideally, without running them on the data at hand,
would be found with great enthusiasm by many people grappling with data analysis.
Unfortunately, the task is very hard. Even with many restrictions imposed on the
kind of data and the family of algorithms to be ranked, it is not so easy to provide
optimal (or just close to optimal) solutions.

Very naive approaches based on simple data characteristics are doomed to failure,
because the information about the methods that can be most successful, is usually
encoded deeply in the decision borders and other properties of the data, not in simple
information about the form of data. Thus, neither discrimination methods applied to
pairs of algorithms nor regression approaches trying to predict the resulting accuracy
from simple data descriptions have much chance to gain the goal.

Actually, it can be stated that the task of building rankings of algorithms on
the basis of simple data characteristics is ill-posed, because in extreme cases, two
datasets with the same descriptions may require completely different methods to be
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properly modeled. Moreover, even simple data transformations like discretization or
conversion of symbols to continuously valued features, move the dataset representa-
tion to very distant point in the feature space of dataset descriptions. As a result, such
data transformations may completely change the rankings of methods, even when
the information within the dataset remains almost the same.

Of course, transformations which change data significantly, can cause that com-
pletely different methods provide attractive results, but this is the result of the changes
made inside the data, that usually can not be described by means of simple feature
counts, ratios of symbolic and numeric features or simple statistics.

Reliable meta-learning can not just suggest final decision module on the basis of
the current form of the data. It should also give hints about the transformations that
should be performed to make final learning easier or improve the results.

Landmarking is definitely a step in the right direction, because it tries to take
advantage of the knowledge extracted by landmarkers in their learning processes.
Nevertheless, methods of landmarking are still passive, in the sense that the selection
of landmarkers and of meta-features is done once at the beginning of the process. The
resulting ranking can also be called static, because it is not verified—no feedback is
expected and no adaptation is performed.

To provide a trustworthy decision support system, the rankings it provides should
be validated. No human expert would blindly trust in raw rankings estimating algo-
rithms eligibility for given task. Comparison of some rankings obtained with a method
to the ideal ones, is not sufficient to guarantee the quality of other rankings obtained
with the method.

Another problem of most ranking approaches is that to estimate the quality of a
ranking it is usually compared to the ideal one with the Spearman’s rank correlation
coefficient (Berrer et al. 2000; Brazdil and Soares 2000a; Soares 1999), which does
not reflect what we really expect from meta-learning algorithms. Usually, we do not
need the whole ranking to be very close to the ideal one. When the goal is to select
the most attractive algorithms from a large set of methods, really important is just
the beginning of the ranking, because the positions close to the end will never be
tried. Naturally, if there are just several candidate machine configurations examined
(as in most applications published so far), the whole ranking can be regarded as
the beginning, but a versatile meta-learning algorithm must be capable of algorithm
selection in much broader domains. It is not so important whether a learning machine
configuration is placed at rank 50000 instead of 100000, but it is very important
whether a configuration is at position 1000 while it should be at 1 (though the
difference between ranks is much smaller). The measures used in the publications
cited above, impose the same penalty to rank differences at the top and at the bottom
of the rankings. Giving priority to rankings accurate on average, can bring a winner
ranking with very poor methods placed at the top.

In machine learning, it is quite common to separate data analysis process into data
preprocessing stage and final learning. As discussed in Sect. 5.1, it sometimes leads
to incorrect conclusions from experiments, especially when supervised data trans-
formations are performed. Such split into stages is even less suitable for automated
decision support. Often, the data transformation stage is more important in the whole

http://dx.doi.org/10.1007/978-3-319-00960-5_5
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process of knowledge extraction, than just the final learner which can be as simple as
linear discrimination. In serious meta-learning applications, we are not interested in
raw rankings of simple methods, but in complex machine combinations that model
the data as accurately as possible. Thus, the whole complex machines must be the
subject of meta-learning, not just the final decision makers.

The ranking methods, mentioned above, restrict the set of possible solutions to a
fixed number of predefined learning machine configurations, so they can not discover
new successful combinations of techniques. Advanced meta-learning tools should
provide such possibilities, so they need to actively construct complex machine con-
figurations and estimate their attractiveness.

6.1.5 Meta-Learning as Active Search

In general, it is not possible to predict the structure and configuration of the most
successful learner on the basis of simple and inexpensive description of data. Pro-
viding reliable rankings requires complex processes of model construction including
adjustment of training parameters for different parts of the model, construction of
hierarchies, combining miscellaneous data transformation methods and other adap-
tive processes. Candidate machines, whether simple or complex, need to be validated
and undergo complexity analysis to select models most required by the user, as we
usually prefer simple and comprehensible solutions. In such approaches to meta-
learning, complex processes use meta-knowledge provided by experts or gained
during automated meta-level analyses, and gather new meta-data to improve pend-
ing and further applications. When meta-knowledge is used to control a search for
successful learning machines, the process may be called an active search.

A meta-search process with validation of machine configurations has been pro-
posed by Duch and Grudziński (2001, 2002). Their method was a search in the space
of learning machines parameters. It was illustrated in application to a similarity-
based classification learner. Although its use of meta-knowledge was restricted to
iterative selection of the learner that gained the largest accuracy estimate, it can be
treated as a very simple example of active search.

In the approach of Jankowski and Grąbczewski 2011, meta-learning was con-
ducted as more sophisticated search process driven by heuristics (created and adjusted
according to proper meta-knowledge) protecting against spending time on learning
processes of poor promise and against the danger of combinatorial explosion.

Meta-learning can be regarded as successful only if it efficiently uses the time it is
given. Hence, it must be realized within as efficient CI environment as possible. Such
environment must support complex machines development, learning and analysis.
During recent years, a robust CI framework Intemi, that efficiently manages time
and memory, has been developed (Grąbczewski and Jankowski 2011). It has made
meta-learning research easier to conduct: thousands of machine configurations can
be easily tested, their results analyzed and meta-level algorithms created and tested
in a robust way.
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The Intemi system supported implementation of a complexity based meta-search
that fulfills the requirements of active machine configuration construction, validation
and ranking (Jankowski and Grąbczewski 2011). In this approach the key element
is the order in which machine configurations are validated. The process can be sup-
plied with appropriate configuration generators, capable of machine configuration
construction and respecting the feedback coming on-line from validation processes.
The candidate configurations are subject to complexity prediction and are ordered
in the queue for validation. Rough estimates of the amount of time and memory,
try to evaluate machine efficiency in the validation scenario, so as to test candidate
configurations from the simplest ones to more and more complex. Exact prediction
is impossible, so additional mechanisms prevent large overhead in resources con-
sumption. Such techniques help in testing most promising machine configurations
first, so they make optimal usage of the time assigned for calculations. This is the
main goal of the approach—to find as attractive and as simple model as possible in
the specified amount of time. The algorithm is discussed in detail in Sect. 6.3.

The approach to meta-learning as a complexity-driven search process, also has
some shortcomings: when there are many algorithms of similar complexity, the order
defined by rough estimators is in fact random, so finding the most attractive ones
would require testing all of them. An alternative is to use methods based on learning
profiles, that is, collections of values describing learning processes. The profiles are
very helpful in finding datasets for which similar behavior of the processes has been
observed, for example, there are similar relations between results obtained by the
processes. On the basis of similar datasets, and more precisely of machine rankings
observed for the similar datasets, one can easily build new rankings of candidate
machines. Profiles can be actively adjusted to current state of knowledge extracted
from the experiments, so that conclusions about dataset similarities and rankings of
algorithms to try in next steps can be updated on-line during the search process. The
profile based approach is presented and discussed in Sect. 6.4. Similar observations
inspired the research done independently by Leite et al. (2012). The method of active
testing, they proposed, is also a pursuit for the most successful learning machine, that
selects the most promising algorithms and tests them with much care for spending
as little time for the computations as possible.

6.2 Meta-Learning as Search with Feedback from Validation

Many meta-learning approaches discussed above, create rankings of algorithms on
the basis of some heuristics, but most of them do not validate the rankings. This is
the most important difference between what they do and what is the usual practice of
human experts. We should never forget, that the ultimate goal of meta-learning is to
obtain better results on the base-level of learning. Therefore, when a learning problem
is given, experts try to use their knowledge to point some algorithms as the most likely
to succeed in learning the task, and candidate solutions are subject to verification.
Results of the validation are analyzed by the experts to draw conclusions about
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adequacy of used methods for this particular task. On the basis of these conclusions,
new candidates are picked from the space of machine configurations, to be validated
in the same way as the previous candidates. Often, when no significant information
about the data to be learned is available, the first choice of candidate methods is
almost random or the selection is done with care for diversity of algorithms, because
running several learners of different nature may bring rough information about which
techniques are most successful. Depending on the time available for analysis, the
cycles of algorithm selection, validation and results analysis before the next selection,
can be performed many times.

Stating the same more formally, an expert is given a time-limited problem P =
(D,M , q, t), so the goal is to find possibly best (according to q) solution contained
in a search space M , within time t . To provide attractive solutions, the expert needs
to pay much attention to the quality measure and defined time restriction. The quality
measure is used by the expert for validation of candidate machines, and influences
decisions about what meta-knowledge to use when selecting next candidates and how
to collect new meta-knowledge, that can be helpful in further search process. The time
restriction must also be actively monitored. It may force decisions about not trying
some complex machines that, although suspected of success, could not be validated
within the time. Instead of selecting unvalidated machines, it is more reasonable,
to validate some less complex machines and select among them. Pursuing the goal,
the experts (although not in a formal, systematic way) order testing tasks during the
progress of the search and build meta-knowledge based on experience from passed
tests. They try to avoid test tasks, that could consume too large amount of time, since
it would decrease the probability of finding the most interesting solutions.

The same rationale should be the foundation of automated meta-learning machines.
It lies behind the tools presented in this book: the meta parameter search (MPS )
machine presented in Sect. 4.4.1, and its generalization, presented below. Search,
validation and learning from feedback are three pillars of the approach. Good selec-
tion of algorithms for the three substantial roles is the key to really successful model
selection. The quality measure should be reflected by the validation procedure. To
maximize the expected quality of the best model found, with respect to time restric-
tions, candidate machines must be tested in adequate order. During the search process,
meta-knowledge of different kinds may be extracted and may help in choosing fur-
ther steps. The meta-knowledge may come from the analysis of correlations between
machine configurations and obtained results, between subparts of machines and oth-
ers, in the context of their performance, complexities of machines and so on.

Automated procedures can be even more successful than humans, because of more
regular search (not susceptible to omitting interesting solutions), better memory of
already tested configurations (helpful in avoiding repeated calculations) and signifi-
cantly greater possibilities in exploring large databases of results obtained for other
problems.

http://dx.doi.org/10.1007/978-3-319-00960-5_4
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6.2.1 The Algorithm

Because, many meta-learning algorithms may share the idea of iterated generation
of candidate learning machines and observation of their behavior in test scenar-
ios, it is advantageous to have a general algorithm, performing common functional-
ity and using appropriate components to realize the parts responsible for particular
approaches.

The algorithms differ in the strategy of selecting learning machines for observation
in tests and in the objectives estimated from tests and optimized during the search
process. In practice, the processes must respect some limitations of memory and
time. Memory limitations may be ignored, because usually learning algorithms are
constructed in a way facilitating running them on available machines and in the worst
case, one can run tests in sequence or find a computer with larger amount of RAM
to avoid running out of available memory. As a result, the assumption that memory
limitations do not affect the final result is not a serious misdemeanor. Time limits
are more important, because they can have crucial influence on attainability of high
quality models (see the discussion at the beginning of the chapter).

A general view of the functionality of general meta-learning (GML ) by search
with validation and feedback is presented in Fig. 6.3 in the form of a flowchart. It is
also presented formally as algorithm 6.1, since this form has been chosen for most
procedures discussed in the book.
The algorithm is called a scheme, because it shows the topmost shape of many possi-
ble algorithms and does not perform any learning itself, but prepares the workspace
for proper meta-learner given as a parameter to do the meta-learning parts of the
job. Many existing meta-learning algorithms fulfill this scheme, including bagging,
boosting, the algorithm based on machine configuration generators and complex-
ity analysis, presented in Sect. 6.3 and the profile-based meta-learning algorithm of
Sect. 6.4.

Fundamental common idea of the algorithms fitting this scheme is that they iter-
atively run learning machine and adapt the process to results obtained from each
learning. As a result, the general algorithm performs a single loop, in which learn-
ing/testing tasks are run and when any task is finished, it is analyzed and new tasks
are created with respect to the conclusions drawn from the analysis.

Apart from a time deadline, the algorithm has two parameters, responsible for
tasks generation and analysis (the meta-learner) and for task running. Actually, these
are two modules that determine the whole system possibilities and efficiency.

There are three ways to get out of the loop:

• when the proper meta-learner decides that the process should stop,
• when all candidate tasks are finished and there is nothing more to do in the process,
• when the time for calculation is passed and the algorithm must finish with what it

has managed to gain so far.

All three loop exits are clearly seen in both flowchart and meta-code: in the flowchart,
the conditions are represented by the three decision boxes, while in the meta-code,
the first exit is encoded in the loop condition and the two others are the break calls.
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ML –meta-learner, TR –task runner, t –time
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Fig. 6.3 General meta-learning algorithm scheme

In each iteration of the loop, the meta-learner can provide any number of tasks
to be executed. For example, bagging can generate all its submachines in the first
cycle, as the subsequent machines are not dependent on the results of their sibling
machines, generated earlier. On the other hand, most approaches to boosting need to
generate submachines one by one and wait until each process ends before the next
machine is determined.

After starting all the tasks scheduled by the meta-learner, the GML algorithm
starts waiting until a task is finished. Then, immediately, the proper meta-learner is
informed about the task which is finished and can analyze the results for the purpose
of adequate generation of further tests.

When one of the three stop conditions gets satisfied and the loop is broken, all
running tasks (if any) are killed and the meta-learner is given an opportunity to
conclude its learning and return the final model (with the Result() method), which
becomes the result of the whole procedure.
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Algorithm 6.1 (General meta-learning scheme)

Prototype: GML(ML,TR,t)
Input: Proper meta-learner (ML), task running service (TR), a time deadline (t).
Output: Winner machine configuration and model.
The algorithm:

1. runningTasks← ∅
2. while ¬ML.ShouldStop do

a. Tasks←ML.GetTasks()
b. TR.StartAll(Tasks)
c. runningTasks.Add(Tasks)
d. if runningTasks = ∅ then break /* nothing more to do */
e. finishedTask←WaitAny(runningTasks, t)
f. if finishedTask = ⊥ then break /* out of time */
g. runningTasks.Remove(finishedTask)
h. ML.Analyze(finishedTask)

3. TR.StopAll(runningTasks)
4. return ML.Result()

6.2.2 Proper Meta-Learners

The flowchart in Fig. 6.3 and the Algorithm 6.1 allow to realize the importance and
the interface of proper meta-learners which give shape to the GML algorithm. Inter-
face 6.2 is a summary of the functionality.

Interface 6.2 (Proper meta-learner)

Method: GetTasks()
Input: None.
Output: Collection of machine configurations to be run.

Method: Analyze(finishedTask)
Input: Reference to a task just finished.
Output: None.

Method: Result()
Input: None.
Output: An adequate form of results (up to particular instance).

Property: ShouldStop
Output: Informs that the process is finished.

The method GetTasks() returns the most important information, deciding about
the crucial parts of the meta-learning process, that is, the collections of machine
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configurations to be run. Within this method, the meta-learner decides what tests
should be performed.

On the other end of each subprocess life, the method Analyze() is called to inform
the meta-learner about just-finished submachine run. This method is called for each
task separately and immediately after the task is finished. The meta-learner should
analyze the results obtained by the task and adjust its internal knowledge to this
information. For example, it may save information about best machines, build meta-
knowledge about influence of some parameter values on the results or about different
machines cooperation. Such knowledge may be very useful in improving further
meta-learning.

At the beginning of each iteration (or from another point of view: instantly after
each call to Analyze()), the meta-learner is queried if the process should be stopped
or continued. When the main goal of the search is to find a satisfactory solution,
it may be undesirable to continue the search after a task satisfied the criteria. To
minimize interaction between the meta-learner and task running system, the meta-
learner does not need to request for cancellation of all its subtasks—it suffices that the
ShouldStop property returns true, and the main loop gets broken and the remaining
tasks are aborted by the GML .

Although the familiarity of meta-learners with task running subsystem is not
required, some cooperation may be useful. For example, a meta-learner, after schedul-
ing a set of tasks for running, may find out from results of some tasks, that some others
are very improbable to give interesting results and would like to cancel some subtasks
without finishing the whole process. Then, it may be very useful that meta-learners
can cancel their subtasks. Actually the same functionality is advantageous also for
other machines which generate submachines, not necessarily the meta-learning ones.

When the main loop of the GML algorithm is finished, the proper meta-learner
prepares and returns the final result (a call to the Result() method). It may be the con-
figuration of the winner learning machine, a ranking of learning machines (ordered by
a degree of goal satisfaction), comments on chosen learning machines and their inter-
actions, and so on. It is up to particular implementations to decide what is regarded
as the result of the ML process and how it is represented.

As mentioned above, a bagging machine may be realized as an instance of the
GML algorithm, though it does not perform any learning, but just creates children
and combines their decisions. All the submachines can be requested in the first call to
GetTasks() and Analyze() can be empty in this case. The task of Result() in bagging,
is to prepare the final ensemble and return its functionality.

Implementation of boosting must be slightly different. First of all, it should request
(with GetTasks()) its children one by one, because each next submachine depends on
the results from the previous ones. During the subtask results analysis (the Analyze()
method), it should calculate proper weights for the next training data sample, and
in fact, determine the configuration to be returned by the next call to GetTasks().
Finally, the call to Result() should prepare the final decision module of the ensemble
and return the boosted model.

More advanced meta-learners can be defined in many different ways. This frame-
work has facilitated creating such algorithms as the one based on configuration
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generators and complexity control (see Sect. 6.3), and profile-based meta-learning
algorithm described in Sect. 6.4. Also, the ranking validation algorithm presented in
Sect. 6.4.3 has been built according to this general framework.

Validation Scenarios

ML search processes usually aim at finding the most successful learning machine of
some pre-specified kind, for example, the best classifier or approximator. The tasks
returned by meta-learners in subsequent iterations of GML algorithm should perform
sensible tests of the configurations being the proper subject of the search. The same
circumstances have been observed for the MPS machine presented in Sect. 4.4.1). In
both cases, a natural solution is to generate configurations of learning machines of
interest and embed them in the same validation scenario. For such purposes, Intemi
system provides its templates (see Sect. 4.1.2). An example of a template eligible
for testing classification models is given in Fig. 6.4. It is a template representing the
same scenario as the one analyzed in the context of MPS experiment discussed in
Sect. 4.4.1. The only difference is that here, it is a template—it contains the Classifier
placeholder, which in the case of MPS was substituted by an SVM configuration.

In the process of meta-learning, the Classifier template scheme can be replaced
by (or filled with) any configuration of a machine providing Classifier output. Meta-
learners can just generate miscellaneous classifiers and put them into the template
to obtain a feasible test configuration that can be requested from the task-running
system.

The scenario illustrated in Fig. 6.4 performs a number of repetitions (a parameter
of the Repeater machine) of n-fold cross-validation tests (n is a parameter of the CV
distributor), where in each fold, the training data is standardized (by the Standard-
ization machine), the test (validation) data transformed according to the training
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Test data

Test scheme
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Fig. 6.4 Example validation scenario for classifiers

http://dx.doi.org/10.1007/978-3-319-00960-5_4
http://dx.doi.org/10.1007/978-3-319-00960-5_4
http://dx.doi.org/10.1007/978-3- 319-00960-5_4


6.2 Meta-Learning as Search with Feedback from Validation 257

Repeater

Data

Distributor scheme

Data

Training data

Test data

Test scheme

Training data

Test data

CV distributor

Data

Training data

Test data

Classifier

Data Classifier

Classification test

Data

Classifier

Fig. 6.5 Typical validation scenario for classifiers

data standardization parameters (with the External transformation machine), the
classifier is trained and its accuracy on the transformed test data is checked (with the
Classification test machine).

Classifiers replacing the Classifier scheme do not need to be simple machines.
They can be any complex hierarchies of machines, from which a compatible classifier
output is exhibited through the Classifier output of the scheme. In particular, the
classifier can be composed of a data transformation machine and proper classifier
(for example, in the form of the Transform and classify machine presented in
Sect. 4.1.3), performing the same function as the composition of Standardization ,
Classifier and External transformation machines from Fig. 6.4.

Obligatory data standardization may sometimes be harmful, so in most applica-
tions, raw training and test scenario, presented in Fig. 6.5 is more adequate.

Using the same test template for each configuration proposed within the search,
is very advantageous from the point of view of reliable results comparison. It tests
each machine in the same environment for exactly the same training and test data.

6.2.3 Task Requests and Task Running

The task runner interface used in the GML algorithm, is quite simple. It is summarized
as interface 6.3. Naturally, it is just the interface to a complex task-running system
implementing a solution to the nontrivial problem of efficient task running. The
solution of Intemi is sketched in Sect. 4.2.3.

It is important to realize that when StartAll() is called, the task runner is not
obliged to start processes immediately, but just to schedule the tasks for running
in appropriate time. Optimization of task running is an internal matter of the task
management module and should not require meta-learners to know its assumptions
and specificity.

http://dx.doi.org/10.1007/978-3-319-00960-5_4
http://dx.doi.org/10.1007/978-3-319-00960-5_4


258 6 Meta-Learning

Interface 6.3 (Task runner)

Method: StartAll(tasks)
Input: Collection of machine configurations to run.
Output: None.

Method: WaitAny(tasks, t)
Input: Collection of tasks to monitor (tasks), maximum time to wait.
Output: One of the tasks, that have finished.

Method: StopAll(tasks)
Input: Collection of machine configurations to cancel.
Output: None.

Waiting until a requested task ends it process is realized by the WaitAny() method.
It must be provided with a collection of tasks to be monitored and the time deadline
for waiting. When a task gets finished before the time elapses, it is returned as the
result. If the time elapses before any task is finished, it returns null, so that it is easy
to recognize whether any task has finished or the time deadline has come.

Additional time constraints may also be contained within a task. For example,
the meta-learning algorithm using complexity control, described in Sect. 6.3, can
assign a maximum run time for a task, so that it is broken when it consumes more
time than assigned. It is possible to assign an amount of CPU time, an absolute time
deadline, or both at the same time or any other time-related constraint, compatible
with the task manager. Thanks to respecting the limits, long-lasting processes do not
lock computing resources. Such constraints and related services are not visible in the
GML, because they are internal to the task management system.

A disadvantage of machines designed to use time constraints is that unification
of such machines is impossible due to their nondeterminism. Even consumed CPU
time measurements can give different results for the same process run twice, so it
is impossible to predict if two runs of such machine with the same parameters end
up with the same model or not. What is more, it is never known whether a machine
process will finish in the specified time or will be aborted, even if another instance
with the same parameters has already been run and the results are known.

Time limits, assigned to the tasks, cause that the task returned by WaitAny() may
be finished abnormally, due to such time limit, so it is not guaranteed that the model
of returned task is ready. Nevertheless, meta-learners imposing time limits, can draw
important, valuable conclusions also from such interrupted machine runs.

The StopAll() method is called when the GML algorithm is about to exit and needs
to clean up the remainders of its activity. The tasks contained within the collection
given to the method as parameter, are not necessarily running—they can still be
waiting in the spooler. The task runner should handle them correctly regardless of
whether they have already been started or not.
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6.3 Meta-Learning with Configuration Generators and
Complexity Control

An example of meta-learning algorithm working in a manner compatible with the
general meta-learning algorithm scheme is the meta-search based on machine con-
figuration generators and complexity control, published recently (Jankowski and
Grąbczewski 2011). Its general idea is exactly the same as that of GML framework
discussed above: candidate machine configurations are generated, embedded in a
validation scenario, run and estimated by means of multiple cross-validation test
analysis.

Apart from the common assumptions, the goal of this approach is to test as many,
most promising machine configurations, as possible in given time t . Although the
main criterion of model selection is based on an estimate of classification accuracy
(so far, the algorithm has been tested on classification problems only), other very
important premises are model size and time necessary for learning models and testing
them.

Because the key idea of the method is complexity based control of the search
process, the algorithm can be given the name of Complexity-Driven Meta-Learning
(CDML) algorithm.

The second important idea of the CDML approach, is that machine configuration
generators can produce arbitrarily complex machine structures, so that not only sim-
ple learning machines are tested but also such machines as compositions of (several)
transformations and classifiers (or other final decision making machines), commit-
tees of different types of machines (including complex ones in the role of members,
for example, compositions of data transformers and classifiers).

6.3.1 CDML as an Instance of GML

Implementation of the CDML algorithm has been done within Intemi framework, so
the matters of task management have been solved by the engine of the system. The
only component of the approach that needs to be specified is the proper meta-learning
module of the GML algorithm. Its implementation of the interface 6.2 is sketched
below.

GetTasks() The idea of constructing machine tests by embedding learning machines
in validation scenarios allows to focus just on proper learning machines here,
though remembering about the embedding. Anyways, two main aspects of pro-
viding subsequent test tasks have the most important influence on the performance
of CDML algorithm:

• formulation of the search space of learning machine configurations—the def-
inition of the set of learning machines that are regarded for testing,
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• definition of the order in which the test tasks are run—since normally time
limits do not allow to perform all the tests, the order strongly affects the avail-
ability of attractive results.

For the purpose of the CDML approach, a family of machine configuration gen-
erators has been created. Their configuration determines the space of machine
configurations regarded by the algorithm. More detailed discussion on generators
follows in Sect. 6.3.2. Task complexity issues, that determine the order of task
submission are discussed in Sect. 6.3.3

Analyze() Notifications about finished tasks may trigger analysis of several aspects.
First of all, because of complexity control, the tasks may finish normally (with
a model generated) or because of timeout. One of the aspects is to analyze the
execution times and rerun aborted tasks when appropriate. Other aspects analyze
the model accuracy to rank tested methods, to adjust further treatment of the con-
figurations supplied by generators, to modify operation of generators and so on.

ShouldStop CDML algorithm does not use any other stop criterion than just the
time available for calculations. Therefore its ShouldStop property is always false.
In practice, the timeout is usually the only stop criterion, because finishing because
of testing all candidate configurations is possible only when the number of possible
configurations is so limited that can be called degenerate. The main idea of CDML
is to construct machine configuration generators in such way that many more
configurations are generated than can be tested, and complexity control helps in
performing tests in a sensible order.

Result() Depending on the needs, the final result of the CDML algorithm may be
a single best machine configuration determined by the process or a ranking of
some number of the best configurations. Naturally, the winner configurations can
be easily converted into models and CDML may exhibit the best models as its
own outputs to play the role of the model built with the best configuration found.

6.3.2 Machine Configuration Generators

In the CDML algorithm, the search space is defined in the functional form of gen-
erators flow. It is a special type of directed graph, where machine configuration
generators (MCGs) are vertices and the edges are used to send machine configura-
tions provided by one generator to another. For a quick grasp of the mechanism, it is
recommended to start with a look at Fig. 6.6, where a simple example of generators
flow is presented. A generator may have a number of inputs and must provide a single
output. The ports serve as transfer media for configuration collections. Each MCG
generates collections of machine configurations and exhibits them through the output
to other MCGs or to the flow output, which is the final port providing the overall
collection of generated configurations. Because MCGs may have many inputs, each
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connection between MCGs is labeled with the input name it connects to. The simple
generators flow presented in Fig. 6.6 has three MCGs inside, two of which are con-
nected to the flow output. It means that the collection output by the flow is the union
of collections obtained from Classifiers generator and Transform and classify
generator. Before the latter generates its output, it is given the configurations output
by the two other generators.

Each MCG may act in its own way, may base on different meta-knowledge and
may change its behavior in time (during the progress of meta-learning). The gener-
ators discussed here may be divided into two groups:

• set-based generators,
• template-based generators.

Two generators of the flow in Fig. 6.6 (Transformers generator and Classifiers
generator) belong to the former group and one (Transform and classify generator)
to the latter.

Set-based generators have no inputs and just generate a collection of pre-defined
configurations. In fact, they just exhibit the sets of configurations they are given a
priori. In the example of Fig. 6.6, one of the set-based generators outputs a collection
of machine configurations for data transformation and the other for classification.

Transform and classify generator is a template-based generator. It means that it
is parameterized by a template machine configuration with placeholder(s) for other
machines configurations. The transform-and-classify machine has been described
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in Sect. 4.1.3. Its raw configuration is actually a template presented in Fig. 6.7. It
contains two placeholders for subconfigurations, so the generator based on this
template has two inputs—each input provides configurations to be put in adequate
placeholder. Therefore, the name of the generator, shown in Fig. 6.6, has two words
printed in red—they inform about the placeholders contained within the generator’s
template. The role of template based generators is to produce configurations from
their templates by replacing the placeholders with configurations obtained through
corresponding inputs. When filling the placeholders, template-based generators may
use different strategies to combine the input collections. The most natural methods
to combine two lists into a list of pairs are:

• sequential pairs construction (the lists must be of equal size, and elements at the
same positions are joined in pairs),
• combinatorial pairs construction (each element of the first list is combined with

each element of the second list).

For full clarity, let’s consider the simple generators flow with 5 data transforma-
tions and 7 classifier configurations generated by the set-based generators and the
template-based generator configured to combine the inputs combinatorially. Then,
the flow outputs 42 configurations: 7 classifier configurations from the Classifiers
generator (passed directly to the generator flow), and 5 × 7 = 35 transform-and-
classify configurations from the template based generator.

So simple generator flows are good illustrations, but are not very useful in practice.
In serious search for models solving a real world problem, it is necessary to use
much more complex flows. An example of a flow that can be useful in some real
meta-learning problems is presented in Fig. 6.8. It contains all the generators of the
simple flow (with the same connections) and also several other generators. Additional
set-based generator (Rankings) provides a collection of configurations of feature
ranking machines to the template-based generator named Feature selection from

Generators flow

output

Transformers

Classifiers

Rankings Feature selection
from rankings

Transform and
classify

MPS for classifiers

Transform and
classifyII

MPS for
transform and classify

Fig. 6.8 Example of a practical generators flow

http://dx.doi.org/10.1007/978-3-319-00960-5_4
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rankings using the template presented in Fig. 4.5. The template contains just one
placeholder, so normally, it generates a collection of configurations containing the
same number of elements as the collection it gets as the input, but later, at the
corresponding MPS generator, more configurations may be generated because of the
possibility to select different numbers of top-ranked features from each ranking.

The meta-parameter search machine is described in Sect. 4.4.1. It can optimize
parameters of any learning machine (either simple or complex) basing on declara-
tions of the suggested optimization strategies for given learning machines. It means
that the MPS for transform and classify generator can manipulate all parame-
ters of machines occurring in the input configurations, namely both feature-ranking
machines and feature-selection machine (the configuration of transform-and-classify
machine can not be changed by MPS because it has no parameters). In its name, the
whole transform-and-classify part is printed in red in the figure, because the whole
name refers to a placeholder, filled with this type of machines, not two placeholders
as in the previous example.

The Transform and classify II generator combines feature selection methods with
classifiers in the same way as its twin generator does with transformation methods
obtained from another source.

The output of the whole graph collects configurations from 5 generators, so that
the final collection contains:

• pure classifiers from a set-based generator,
• classifiers combined with transformations,
• classifiers with parameters manipulated with MPS,
• classifiers combined with feature selection based on rankings,
• MPS-manipulated configurations of classifiers combined with feature selection

based on rankings.

Provided that the set-based generators output rich sets of configurations, such graph
of generators can bring a variety of configurations (see Sect. 6.3.7 for the generators
flow in action). Slight and simple changes in settings of the generators, facilitate
flexible control of the search space definition resulting in powerful meta-learning
algorithms.

Generator flows may consist of any number and any kind of generators. There are
no a priori limits on the number of connections between the generators, either. Often,
the number of configurations available from a generators flow grows exponentially
with the number of connections between generators. Sometimes, it is even preferable
to separate groups of configurations (like classifiers or data transformations) into
independent set-based generators to simplify the connection paths in the generators
flow graph, and to avoid “strange” combinations of machine configurations that are
very unlikely to discover valuable knowledge. Grouping data transformations may
provide more flexibility, for example, when some machines have to be preceded by
a transformation to discretize data or should be used with (or without) proper filter
transformations. The possibilities introduced by generators flow, are very large and
can bring much profits to meta-learning.

http://dx.doi.org/10.1007/978-3-319-00960-5_4
http://dx.doi.org/10.1007/978-3-319-00960-5_4
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6.3.3 Complexity Control

Not all configurations coming out from a generator flow are instantly submitted to
task runner. The most important aspect of the Complexity-Driven Meta-Learningz
algorithm is the control over the order in which candidate configurations are tested.
CDML keeps the control by means of complexity estimation: each machine configu-
ration is subject to multi-aspect analysis aimed at estimation of its overall complexity.
The configurations of the lowest estimated complexity are transformed into tasks and
run first.

There is no single, perfect complexity measure that could be accepted by every-
body as the best solution, however there are some unarguable values that should be
taken into account when creating such measure:

• time consumed by machine process,
• model simplicity,
• predicted attractiveness of the model.

Only the first item is quite precise, the other two are ambiguous, general terms
that can be formalized in many different ways. Since the complexity measurement
should be done before a machine is run (provided just its configuration and uncertain
information about input data), also the aspect of time consumption is undecidable.
When combination of the three aspects comes into play, new ambiguous factors are
introduced, so prediction of the most promising configuration is extremely difficult.

One of the easily accepted ideas of meta-learning algorithms is that simple solu-
tions should be favored and given precedence over more complex ones. Therefore,
it might seem that ML algorithms based on search and validation should start with
single learning machines, then test simple compositions of machines (for example, a
single transformation and a classifier), and then proceed to more and more complex
structures of learning machines (complex committees, multiple transformations and
so on).

Unfortunately, the problem is not that simple and the structural complexity of
machines does not correspond to real time and space complexity of the tasks. Some-
times, a composition of a transformation and a classifier may be indeed of smaller
complexity than the classifier without transformation. When using a transformation,
the data passed to the learning process of the classifier may be of lower complexity
and, as a consequence, classifier’s learning is simpler and the difference between the
classifier learning complexities with and without transformation may be larger than
the cost of the transformation.

Moreover, even when time complexities of two algorithms are known, it can still
be impossible to point one of them as less time consuming. For example, consider two
learning machines M1 and M2 of computational complexities O(n f 2) and O(n2 f )

respectively, where n is the number of vectors in the training data and f is the number
of features describing objects (the training dataset is assumed to have a form of data
table). In such case, it is not possible to compare time consumption of M1 and M2
until the final values n and f are known. If the machines occur inside a more complex
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structure, the crucial information may be available not earlier than after part of the
structure is created and run. The CDML algorithm must cope with the complexities
before the whole task is started, so it must find some ways to predict such values like
n and f or directly the complexity estimate.

Fortunately, very rough estimation and additional mechanisms preventing sin-
gle machines from blocking the CPU with “never-ending” calculations can be quite
satisfactory. Some particular measures are described in Sect. 6.3.5. Here, the discus-
sion focuses on the methods of using the estimates to control the meta-level search
process.

Generator flows provide machine configurations, which are embedded in valida-
tion scenarios to facilitate

• estimation of machine quality in a reliable test,
• analyze both training and testing procedures (some machines may learn very fast

or need no learning at all, and have very large CPU time requirements at the stage
of testing, for example, most nearest-neighbors algorithms).

The test procedures should be as similar to the whole life cycle of a machine as
possible (and of course as trustful as possible). The whole validation tasks are passed
to the task runner in appropriate order, respecting the estimate of task complexity.

During meta-learning, new information may arrive from the analysis of finished
tasks. It can bring new knowledge, which affects the order of other tasks. Therefore,
MCGs are given opportunity to learn from experience—they receive feedback from
the tests and can modify the way they produce new configurations.

Problems of Complexity Estimation for Complex Machines

To understand the needs and problems of complexity computing, we need to keep
in mind the specifics of machines and their learning processes.To provide a learning
machine, regardless of whether it is a simple machine or a complex structure, whether
it is an important, target machine or a machine constructed to help in the process of
analysis of other machines, its configuration and inputs must be specified (machine
process is a function mapping the inputs to the outputs with respect to given parame-
ters). An input is specified, when it is bound to an output of another machine (resolved
in the vocabulary of Intemi and Chap. 4). Complexity computation must reflect the
information from machine configuration and inputs. The recursive nature of con-
figurations, together with input–output connections, may compose quite complex
information flow. Sometimes, the inputs of submachines become known just before
they are started, that is, after learning of some other machines (providing necessary
outputs) is finished.This is one of the most important reasons why determination of
complexity, in contrary to actual learning processes, must base on meta-inputs, not
on exact inputs (which often remain unknown). Assume a simple scene, in which
a classifier TC is built from two parts: a data transformer T and a classifier C (for
example, a transform-and-classify machine). It is impossible to compute complexity
of the classifier C basing on its inputs, because one of the inputs is taken from the
output of the transformer T, which is not known before the learning process of T is

http://dx.doi.org/10.1007/978-3-319-00960-5_4
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finished. Computing complexity of the TC machine may not be limited to a part of
the machine or wait until some machines are ready.

To make complexity computation possible in any case, the concept of meta-inputs
has been introduced. Meta-inputs are counterparts of inputs in the “meta-world”.
They contain (as informative as possible) descriptions of inputs, which “explain” or
“comment” every useful aspect of each input that can be helpful in determination of
complexity of various procedures dealing with the input. Because machine inputs are
outputs of other machines, the space of meta-inputs and the space of meta-outputs
are the same.

For complex machine configurations, complexity is determined recursively. This
is natural, because of the recurrent nature of the definition of machine configuration
and the recurrent structure of real machines. Therefore, the functions which compute
complexity must also provide meta-outputs, because they are crucial in complexity
computation for machines which read the outputs through their inputs.

Respecting all the specifics of machines and their processes, a function computing
the complexity for machine class L should be a transformation

DL : KL ×M+ → R2 ×M+, (6.6)

where the domain is composed by the configuration space KL and the space of
meta-inputs M+, and the results are: time complexity , memory complexity and
appropriate meta-outputs.

Although the type of the function in Eq. (6.6) is quite simple, the problem of
finding a good mapping is not easy. Influence of some configuration elements and of
some inputs (meta-inputs) to the machine complexity is sometimes unpredictable,
so in general, there is no hope for finding real dependencies and describing them
as a function. Configuration elements are not always as simple as single scalar val-
ues. Some configuration elements may be represented by functions or submachine
configurations. Similar problem concerns meta-inputs, because they may have quite
complex functional form. Often, they need their own complexity estimation tool to
reflect their features. For example, a committee of machines, which plays a role of
a classifier, uses other classifiers as “slave” machines. It means that the committee
will use classifiers’ outputs, and the complexity of using the outputs depends on
members’ outputs, not on the committee itself. This shows that the behavior of meta-
inputs/outputs is not trivial and proper complexity determination requires multi-level
encapsulation.

6.3.4 Analysis of Finished Tasks and the Quarantine

The GML algorithm of Sect. 6.2.1 assumes that a task comes from a call to
ML.GetTasks() method of the proper meta-learner, then goes to task runner, and
is analyzed with ML.Analyze() when the process is finished. Slightly more detailed
flow, showing the stages, a task goes through in the CDML algorithm, is presented in
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configuration
generation

task creation
(embedding)

complexity
control

running analysis

Fig. 6.9 CDML task life stages

Fig. 6.9. Task life starts, when a machine configuration (coming out from generators
flow) is embedded in a validation scenario. Then, it undergoes the complexity control
procedure (complexity estimation and putting the task in the task spooler for run-
ning). From there, the tasks go out to the GML algorithm with a call to ML.GetTasks()
(after all tasks with more attractive complexity estimates have already been passed
to the GML in the same way). Then, they are run and, after the process is finished,
the results are analyzed.

The analysis is not necessarily the last stage of such task life. Because the com-
plexity is only an approximation, the meta-learning algorithm must be ready for
situations of inaccurate approximations or even of the test tasks that are not going to
finish (for example, due to some problems with convergence of learning).

To bypass the halting problem and the problem of inaccurate approximations,
complexity control is still active during the process run, and each task is assigned a
time limit for running:

task.timeLimit← τ · task.cmplx.time/task.cmplx.r (6.7)

In this assignment, task.cmplx.time is the predicted time consumption of the machine
process, task.cmplx.r is a task reliability factor (at start set to 1 for all tasks) and
τ is a factor of forbearance shown to the tasks when they consume more time than
estimated (suggested default value of 2 lets the tasks run twice as long as estimated,
to prevent breaking the tasks too early and too often).

The time is calculated in universal seconds, to make time measurements inde-
pendent of the computer that computes the task. The time in universal seconds is
obtained by multiplication of the real CPU time by a factor reflecting the compari-
son of the CPU power with a reference computer. It is especially important when a
cluster of different computers is used for computations or when learning processes
of complexity estimators are run on another machine than the meta-learning project.

When the task gets timed out, it is stopped and, although the machine process is
formally finished, the machine is not ready. During the analysis process it must be
checked, whether the model is ready or not. If not, then the task goes back to the
complexity control module, where it is quarantined. The quarantine is realized by
reassignment of complexity estimation to the task and putting it back in the queue.
The position in the queue reflects an update of complexity estimate by a pre-defined
factor (default of 4) and the task can still get its chance, when all less complex tasks
are finished (or aborted and also delegated to the quarantine). Technically, increasing
the complexity estimate is performed by dividing the quality factor cmplx.r assigned
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to the task. It keeps the information about originally estimated complexity and adds
information about the broken run, encoded as cmplx.r. When the task is given the
next try, it will get significantly more time for running, according to Eq. (6.7).

The task analysis procedure of the CDML algorithm is presented as Algorithm 6.4.

Algorithm 6.4 (Task run analysis in complexity-driven meta-learning)

Prototype: CDML.Analyze(task)
Input: Task, that has just finished its run (task).
The algorithm:

1. if task was broken due to timeout then
a. task.cmplx.r← task.cmplx.r / 4
b. Pass task to complexity control module for quarantine

2. else
a. quality← quality calculated from the test
b. Add pair (quali t y, task.machineCon f ig) to the final ranking
c. Send feedback about quality to the machine generators flow
d. if attractiveness module in use then

analyze quality attractiveness

Depending on whether the task has been successfully completed or broken due to
a timeout, different steps are undertaken. As described above, if the task has been
aborted, the reliability of the task is updated and the task goes back to the complexity
control module to wait for the next chance to be run.

When the task is finished normally, the quality of underlying machine config-
uration is determined on the basis of the test task results. Usually, the quality is
calculated by means of a query and series transformations (see Sect. 4.3).The infor-
mation is added to the machine ranking, and feedback sent to the flow of machine
generators and to the attractiveness module (if used) to improve their functions in
subsequent iterations. The attractiveness modules are tools for yet another control
on the order in which the test tasks are submitted for running. They may learn and
organize meta-knowledge, for example, to avoid running many similar tasks of low
complexity, but not providing as attractive results as expected, to care for diversity
of machine configurations tested and so on. For more information on attractiveness
see Sect. 6.3.5.2 and especially Eq. (6.16).

Costs of the Quarantine

It has been already mentioned, that when a task is aborted because of exceeding
the time-limit (assigned with respect to the complexity approximation), the task is
moved to the quarantine for a period not counted in time directly, but determined
by the complexities.Instead of constructing a separate structure responsible for the
functionality of a quarantine, the quarantine is realized by two naturally cooperating
elements: the ordered queue of test tasks and the reliability term of the complexity

http://dx.doi.org/10.1007/978-3-319-00960-5_4
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formula [see Eq. (6.16)]. First, the reliability of the test task is updated, and then, the
task is sent back to the complexity control module.

The role of the quarantine is very important and the costs of using the quarantine
are, fortunately, not too large. The CDML algorithm restarts only those test tasks,
for which the complexity was badly approximated. To better see the costs, assume
that a test task was completely badly approximated and visited quarantine maximum
number of times. If the real universal time used by this task is t , then, in the above
scheme of the quarantine, the ML algorithm may spend for this task, a time not
greater than

t + t + 1

4
t + 1

16
t + · · · = 7

3
t. (6.8)

Thus, the maximum overhead is 4
3 t , however it is the worst case—the case where

we halt the process just before it would be finished (hence the two whole t’s in the
sum). The best case gives only 1

3 t overhead which is insignificant. The overhead is
not a serious hamper, especially, when we take to the account that the CDML with
the quarantine is not affected by the halting-problem of test-task.

Moreover, the cost estimation is pessimistic also from another point of view:
when a task is run again, all its calculations are not necessarily repeated. Thanks to
the modular structure of Intemi machines and to the unification engine embedded
in the system (see Sect. 4.2.2), cooperating with the specialized machine cache, the
submachines that have been successfully created during the previous run(s) can be
reused—do not need to be recalculated. Under such circumstances, when the cache
is large enough to maintain the finished submachines of the aborted task, the next
run of the same task can be seen as continued from the point it was aborted at, so the
recalculation overhead is rudimentary.

6.3.5 Machine Complexity Evaluation

To obtain the right order in the ML queue of test tasks, a complexity measure applica-
ble to machine structures of any structural complexity, should be used. It reveals a
natural analogy with the algorithmic information theory, where object complexity is
measured on the basis of the amount of computational resources necessary to spec-
ify the object (for example, to print some output). In meta-learning, we search for
models, which can be analyzed in the same manner, because machines are programs
that need some CPU time and memory to generate their models.

6.3.5.1 Complexity Measures by Kolmogorov and Levin

Kolmogorov complexity (Kolmogorov 1965; Li and Vitányi 1993) is very well known
and has been analyzed from theoretical point of view. It measures the complexity of
a given output O as

http://dx.doi.org/10.1007/978-3-319-00960-5_4
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CK (O) = min
p
{l p : program p prints O}, (6.9)

where l p is the length of program p. Unfortunately, this definition is inadequate
for the CDML approach, because the program p may work for unacceptably long
time. The Kolmogorov complexity is not useful in real tasks (in particular in com-
putational intelligence problems), also because the problem of finding a minimal
program is undecidable—the search space of programs is unlimited and the time of
program execution is unlimited. Levin’s complexity definition (Li and Vitányi 1993)
introduced a term responsible for time consumption:

CL(O) = min
p
{CL(p) : program p prints O in time tp} (6.10)

where
CL(p) = l p + log tp. (6.11)

The Levin’s definition facilitates finding the complexities with the Levin Universal
Search (LUS, Jankowski 1995; Li and Vitányi 1993), but the problem is that this
algorithm is NP-hard. This means that, in practice, it is impossible to find an exact
solution to the optimization problem. Anyways, the strategy of meta-learning is
different than the one of LUS. The goal of ML is not to find the optimal program,
but as good program as possible in some limited time, so it is acceptable to apply
some algorithms providing approximate solutions in reasonable time.

It is also important to notice that the CDML complexity must be computed
for machine configurations and descriptions of the inputs, not for ready learning
machines, because the information about complexity is needed before the machine
is ready. In most cases, there is no direct analytical way of computing the machine
complexity on the basis of its configuration. Therefore, an approximation frame-
work for automated complexity estimation has been introduced (Jankowski and
Grąbczewski 2011).

6.3.5.2 Complexity in the Context of Machines

An assumption of the CDML approach is that machine generators flows output large
numbers of machine configurations to be tested. The tests need to be performed in
the most advantageous order because of a time limit and impossibility to perform all
the tests in time (in most real applications just a little fraction of all the calculations
can be done).

Given a learning problem P with time limit t and a machine generators flow that
generates learning machine configurations m1, m2, . . . , mq , assume that their testing
times are t1, t2, . . . , tq respectively. When not all tests can be done within the time
limit (

∑q
i=1 ti > t) and if we assume that no machine configuration is preferred to

another (each one is equally promising), then to maximize the expected value of the
best test result obtained within the time, we need to run as many tests as possible.
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Therefore, the optimal order of the tests is the order i1, i2, . . . , iq of nondecreasing
testing times:

ti1 ≤ ti2 ≤ . . . ≤ tiq , (6.12)

and the choice of first m shortest tests such that

m = max
{
k ∈ {1, . . . , q} : ti1 + · · · + tik ≤ t

}
, (6.13)

is the optimal selection of tests to be done in time t . The proof of this property is
trivial.

This property clearly confirms that the CDML approach is the most reasonable
solution to the problem. We can claim that CDML is optimal if the strategy of
estimating complexities is accurate.

Even if we do not assume that learning machines are equally promising, but some
meta-knowledge allows to estimate the attractiveness of each candidate machine, the
order may be accurately determined by proper adjustment of the complexity measure
to maximize the expected value of test results (see Eq. (6.16) and comments about
it).

The halting problem directly implies that, in general, it is not possible to accurately
calculate time and memory usage of a learning process.

Strengthening Time Influence

The property of optimal ordering of tests means that ordering programs (machines)
only on the basis of their length [as it was defined in Kolmogorov Eq. (6.9)] is not
rational in the context of learning machines. The problem of using Levin’s additional
term of time in real applications is that it is not rigorous enough in respecting time.
For example, a program running 1024 times longer than another one may have just
a little bigger complexity (just +10) when compared to the program length.

On the other side, total rejection of the length l p is also not recommended because
always machines have to fit in memory, which is also limited. Besides, the length
control is in compliance with the commonly accepted rule of Occam’s razor.

In learning machines, typically time complexity exceeds significantly memory
complexity. Therefore, a measure of complexity combining time and memory com-
plexity has been proposed:

Ca(p) = l p + tp

log tp
. (6.14)

Although the time part may seem to be respected less than the memory part, it is
not really so, because, as mentioned above, time complexity almost always signifi-
cantly exceeds memory complexity. Thus, in fact, memory part dominates anyway,
so the order of performing tests is very sensitive to time requirements. The length
component l p just “keeps in mind” the limited resources of memory and the whole
Ca defines a sensible balance between the two complexities.
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Complexity Measure and Quarantine

Naturally, we can use just an approximation of the complexity of a machine, because
the actual resource consumption is not known before the real test task is finished.
Because of that and because of the halting problem (we never know whether given
test task will finish) an additional penalty term is added to the above definition:

Cb(p) = 1

rp

(
l p + tp

log tp

)
, (6.15)

where r−1
p is a factor reflecting reliability of Ca(p) estimate, modified when it turns

out that the estimate is too optimistic.
At first run of a task p, CDML sets rp = 1 (generally rp ≤ 1), but when the

estimated time is not sufficient to finish the program p, the program p is aborted and
the reliability is decreased. The aborted test task is quarantined according to the new
value of complexity reflecting the change of the reliability term. This mechanism
prevents running test tasks for unpredictably long time (or even infinite time). Oth-
erwise, the meta-learning algorithm would be very brittle and susceptible to running
tasks consuming unlimited CPU resources. More details on the mechanism of rp are
presented in Sect. 6.3.4.

Complexity Measure and Machine Attractiveness

Another extension of the complexity measure is possible thanks to the fact that
CDML algorithms are able to collect meta-knowledge during learning. The meta-
knowledge may be useful in assessment of configuration generators, complexity
estimators, machine results quality and so on. It may be used to modify the order
of test tasks waiting in the machine heap and machine configurations which will be
provided during next iterations of configuration generation. A comfortable way of
doing this is adding a new term to the Cb(p) to shift the start time of given test in
appropriate direction. The new measure

Cm(p) = 1

rp · ap

(
l p + tp

log tp

)
, (6.16)

obtained in this way respects additional ap factor interpreted as the attractiveness of
the test task p.

Ca(p) is a measure aimed at such order of the tasks that maximizes the expected
value of results obtained in a limited time, assuming equal a priori probabilities of
each task p. Introducing the factor a−1

p is a correction to the initial assumption of
equal priors, so on the assumption that the attractiveness factors can be estimated
with a reasonable accuracy, the new measure Cm(p) may be much more adequate
tool for proper task ordering.
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6.3.5.3 Meta-evaluators

Measuring complexity with Eq. (6.16) requires approximation of all values occurring
on the right-hand side. rp is controlled by precise rules, described above and ap is
an optional factor for advanced control of the meta-learning process, so at least l p

and tp require estimation to make the complexity control practical.
Computing complexity-related values for machine of class L has been announced

as a function DL , of type defined in Eq. (6.6). It has also been mentioned that precise
definition of the function can be difficult or even impossible. Therefore, a framework
has been created to learn functions that can provide successful approximations of the
values necessary for calculation of complexity measures.

Equation (6.6) defines the domain in terms of meta-outputs describing real
machine inputs. Sometimes, it is necessary to estimate complexity on the basis of
real inputs, so we would need also another type of machine evaluators:

D ′L : KL ×I+ → R2 ×M+, (6.17)

where I+ is the space of inputs for machine class L . To avoid learning evaluators
of both forms, we can replace the evaluators based on real outputs by compositions
of mappings from real to meta-outputs (output evaluators) and evaluators for meta
outputs:

D ′L = (Do1 , . . . ,Don ) ◦DL , (Do1, . . . ,Don ) : I+ →M+, (6.18)

In this way, instead of learning dual evaluators for each machine, just the one based
on meta-inputs can be learned and applied together with output evaluators.

Sometimes, machine complexity depends on nontrivial machine components,
which should not be regarded as integral machine parts, but rather external (often
exchangable) modules. For example, configurations of machines like kNN or SVM
are parameterized by metric. The complexity of metric (the time needed to calcu-
late single distance between two instances) does not depend on the kNN or SVM
machine, but on the metric function. Separate evaluators for such nontrivial object-
s/components simplify creation of machine evaluators. Every evaluator may order
creation of any number of such nested evaluators.

Very general framework has been developed for these purposes, because there are
many different kinds of machines, machine outputs and miscellaneous components
used by machines at learning time or later, when resulting model performs its services.
The concept of meta-evaluators has been introduced to

• evaluate and exhibit some values representing different aspects of complexity
inferred from meta-descriptions like meta-inputs or configuration (for example,
amounts of time and memory needed by the machines),
• exhibit functional descriptions of complexity aspects useful for further use by other

meta evaluators (for example, meta-outputs are exhibited to be used by evaluators
of machines bound to these outputs through their inputs).
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Because of the recurrent nature of machines (and machine configurations) and
the complex, object-oriented, hierarchical structure of computational intelligence
projects realized in Intemi, meta-evaluators are created for different types of entities:

• machines (for time and memory estimates),
• outputs (to describe different aspects of their functionality),
• components used by machines, because of object-oriented, hierarchical design.

Each evaluator needs an adaptation process, which can be seen as initialization and
can be compared to the learning processes of machines. The adaptation process is
the major functionality of each evaluator and depends on the type of the evaluator.
Because of this dependence, adaptation of different evaluators may be parameterized
with completely different types of values. Some evaluators may need just several
numerical values and some others may require functional descriptions of some nested
objects. For example:

• if an evaluator is defined for a machine, then the parameters may provide a real
machine or a machine configuration and meta-inputs,
• evaluators constructed for outputs, get references to real outputs as parameters,
• in other cases, the parameters depend on the needs of particular evaluators.

Despite the differences, the goal of each adaptation process is to use the data given
as parameters, as the “source of information” for building evaluation functions.

When evaluators may be defined analytically (quite rare cases), their preparation
requires just the adaptation process (they are called plain evaluators). In other cases,
the approximation framework is used to construct learnable evaluators. Figure 6.10
depicts the differences between the two processes. Details about the process of eval-
uators creation and training approximators to perform proper functions of evaluators
are described in (Jankowski and Grąbczewski 2011).

Precise functionality of meta evaluators depends on their types. Some contexts
are shortly addressed below.

Machine Evaluator

In the case of any machine evaluator, the additional functionality consists of:

Plain Evaluator

Ready to use evaluator

adaptation

Learnable Evaluator

data collection

evaluator learning

Ready to use evaluator

adaptation

Fig. 6.10 Creation of ready to use evaluator for plain evaluator and evaluator constructed with
approximation framework
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Declarations of output descriptions: Machines that exhibit outputs, must be
accompanied by output evaluators, devoted to the machine type, providing meta-
descriptions of the outputs. The descriptions of outputs are meta evaluators of
appropriate kind (for example: meta-classifier, meta-transformer, meta-data and
so on). Output description may be the machine evaluator itself or a nested eval-
uator produced by the machine evaluator or the evaluator provided by one of
submachine evaluators constructed by the machine evaluator (machine may cre-
ate submachines, evaluator may create evaluators of submachines basing on their
configurations and meta-inputs).

Time and memory: Complexities defined by Eqs. (6.10), (6.14)–(6.16) make use
of program length and time (machine size and learning time). The two quantities
must be provided by each machine evaluator to enable proper computation of time
and memory components of the complexities.

Child evaluators: For advanced analysis of complex machines complexities, it is
useful to have access to meta evaluators of submachines. Child evaluators are
designed to provide this functionality.

Classifier Evaluator

An evaluator of a classifier output has to provide the time complexity of classification
of an instance:

real ClassifyCmplx(DataEvaluator dtm);

Apart from the learning time of given classifier, the time consumed by the classifi-
cation routine is also very important in calculation of complexities. To estimate time
requirements of a classifier test machine, one needs to estimate time requirements of
the calls to the machine classification function. The final time estimation depends on
the classifier and on the data being classified. The responsibility to compute the time
complexity of the classification function belongs to the meta classifier (the evaluator
of the classifier). Consider a classification committee: to classify data, it needs to call
a sequence of classifiers to get the classification decisions of the committee members.
The complexity of such classification, in most natural way, is a sum of the costs of
classification using the sequence of classifiers, plus a (small) overhead which reflects
the scrutiny of the committee members results to make the final decision. Again, the
time complexity of data classification is crucial to estimate the complexity and must
be computable.

Approximator Evaluator

An evaluator of an approximation machine has exactly the same functionality as
the one of a classifier, except that approximation time is considered in place of
classification time:

real ApproximationCmplx(DataEvaluator dtm);
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Data Transformer Evaluator

An evaluator of a data transformer has to provide two estimation aspects. The first one
is similar to the functionality of the evaluators described above. Here, it represents
the time complexity of transformation of data instances. The second requirement is
to provide a meta-description of data after transformation: a data evaluator. It is very
important because the quality of this meta-transformation of data-evaluator affects
the quality of further complexity calculations.

Metric Evaluator

The machines that use metrics, usually allow to set the metric at the configuration
stage (for example, kNN or SVM). As parameters of machine configurations, metrics
have nontrivial influence on the complexity of the machine, while not being separate
learning machines. The most reasonable way to enable complexity computation in
such cases is to reflect the metric-dependence inside the evaluators (one evaluator
per one metric). The meta-evaluators for metrics provide the functionality of time
complexity of distance computation and are used by the evaluators of proper machines
or outputs:

real DistanceTimeCmplx();

Data Evaluator

Another examples of evaluators of crucial meaning are data evaluators. Their goal
is to provide information about data structure and statistics. Data evaluator has to
be as informative as possible, to facilitate accurate complexity determination by
other evaluators. In the context of data tables, the data evaluators should provide
information like the number of instances, the number of features, descriptions of
features (ordered/unordered, the count of symbols used and so on), descriptions of
targets, statistical information per feature, statistical information per data and others
that may provide useful information to compute complexities of different machines
learning from the data.

Other Evaluators

The number of different types of meta evaluators is not determined. Above, only a
few examples are mentioned. Many other instances are also available in Intemi. When
the system is extended with new types of machines, it should also be extended with
appropriate evaluators to facilitate including the new machine types in meta-search
processes.
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6.3.6 Learning Evaluators

In the examples of evaluators listed above, many kinds of values can be found
including time and memory consumption of machine processes, classification related
data, metric-calculation estimates, time and result characteristics of data transforma-
tion and so on. Manual definition of procedures calculating all the values would
be very hard or even impossible, so adequate solutions to simplify this task had to
be introduced. Fortunately, in meta-learning based on search and validation, it is not
necessary to predict time and memory consumption accurately. Very rough estimates
are fully satisfactory because the differences of orders of magnitude need to be found
out, not just differences of several or tens percent. When a meta-learning process is
limited by a total time given, it is important which methods are tested within the time,
but not in which order. Even with very rough estimates, it is very rare to invert the
order between very small/fast processes and very large/time-consuming ones. Thus,
order disturbance usually affects meta-learning results only in the scope of similarly
complex processes which happen to be tested at the end of assigned time—then an
inversion may cause that a more complex task is run and less complex one is not
because of the time limit. When the time limit is not too restrictive (that is, not tens
but at least thousands of tests fit in time), even estimation errors of 100 % are not too
significant.

Since the estimation of complexity is expected to reflect the orders of magnitude
rather than the exact values, it is fully satisfactory to train some learning machines on
specially prepared data about relations between experimental configurations and their
results. Human experts preparing environments for such learning processes can use
their meta-knowledge about the processes to point some values, that are known (or
expected), to relate with time and memory consumption of the machine of concern.
Then, approximation machines may be used to learn the final relationships.

For the purpose of the task of learning complexity estimation from examples, a spe-
cial framework has been developed. It facilitates building advanced meta-evaluators,
that learn their estimation functions from example applications. The major rules
governing creation of evaluators are that

• a single evaluator may contain a number of approximators organized in levels and
layers,
• training is performed on the basis of specially prepared data tables,
• training dataset is collected from experiments generated from an observation con-

figuration and scenario for changes,
• each evaluator is trained once, and then can be used arbitrarily many times.

To realize all these goals, the meta-evaluator must implement the functionality
defined by interface 6.5.

The main function of each meta-evaluator is Adaptation(), responsible for:

• performing the (final) adaptation of the values needed for complexity analysis (in
both plain and learnable evaluators),
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Interface 6.5 (Advanced meta-evaluator functionality)

Method: Adaptation(objectCollection)
Input: Collection of objects with training data (objectCollection).
Output: Ready evaluator.

Method: GetMethodsForApprox()
Input: None.
Output: Collection of additional methods used for complexity estimation.

Method: ApproximatorDataIn(level)
Input: Integer defining the level for which the input data vector is requested.
Output: Input vector for approximators of given level (collection of real numbers).

Method: ApproximatorDataOut(level)
Input: Integer defining the level for which the output data vector is requested.
Output: Output vector for approximators of given level (collection of real numbers).

• preparation of the experiment environment to collect learning data for approxima-
tors.

The approximators trained within an evaluator, learn real-valued functions on
the basis of multidimensional real data. The training data sequences are collected
from experiments performed in such a way, that an environment for observations (a
test configuration) is created and its modifications obtained with a scenario changes
scenario are analyzed to extract data items. Input and output data of each item are
generated with calls to ApproximatorDataIn() and ApproximatorDataOut() meth-
ods of the evaluator. The observations environment and changes scenarios are the
same solutions as those for generating test configurations in meta-parameter search
machine (see Sect. 4.4.1).

Approximators can be created to estimate miscellaneous quantities. The most
important ones are those responsible for assessment of time and memory consump-
tion. Each method declared for analysis with GetMethodsForApprox() is also a sub-
ject to approximator creation and training. Yet another group of approximators may
be created to estimate arbitrary values, that the author of the learning evaluator
regards as helpful in learning other assessed quantities (for example, some infor-
mation about predicted neural network structure, when automatically determined
by the algorithm). The three groups are called layers and differentiate the way,
the approximators are handled. The most important discrepancy between them is
the way the output part of training data is prepared. Only the group corresponding
to arbitrary values needs output specification by ApproximatorDataOut(). The other
groups approximate functions of well-defined outputs, so it is known how they should
be prepared—time and memory consumption must be measured for machines and
the methods declared with GetMethodsForApprox() (memory occupation can be
measured, because they return collections of created objects for the purpose of
memory analysis).

http://dx.doi.org/10.1007/978-3-319-00960-5_4
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The approximators are created and run one by one in appropriate order: first
these belonging to the layer of arbitrary quantities, then the ones corresponding to
declared methods and finally the one estimating time and memory consumption of
the machine. Jankowski and Grąbczewski 2011 presented more detailed description
of the approximation framework.

6.3.7 Example Experiment

The complexity-driven meta-learning algorithm, presented above, can be realized in
different ways. Although it is an instance of the GML approach, it is still a general
framework, not a single algorithm. Some general assumptions about CDML imple-
mentations of the functionality of the interface of proper meta-learner are presented in
Sect. 6.3.1. The experiment described below has been performed with the following
specification of particular functions.

GetTasks() As in all CDML implementations, two substantial modules have been
defined: configurations generator and complexity estimation strategy.
The design of complexity estimation framework including meta-evaluators, pre-
sented above, is eligible for any kind of learning machines used in meta-learning
projects, so it can be used without changes in many applications, and so it was,
in this experiment.
The flow of machine configuration generators, used for search space definition, is
presented in detail just below the items describing proper meta-learner function-
ality.
Because the experiment concerns classification problems, the machine configura-
tions output by the flow have been embedded in the typical test validation scenario
based on multiple cross-validation test presented in Fig. 6.5 on page 257.

Analyze() Each machine configuration, tested with cross-validation, was assessed
by a measure of average accuracy obtained in the CV test.The results analysis
performed below uses this measure as the estimator of machine configuration
quality.

Result() From the point of view of this experimental analysis, it is not important,
what is formally regarded as the result of the meta-learning algorithm. Here, the
most interesting is the ranking of algorithms generated and all the details about
the course of the ML process. It is the subject of detailed analysis presented below.

ShouldStop Because we consider an experiment to present the mechanisms of
CDML and their advantages, the stop criterion is not typical for real-life approaches.
To maximize analysis possibilities, the number of generated configurations was
kept small and no special stop criterion was used (apart from the standard ones of
the GML), so that all configurations could be successfully tested and CPU time
management analyzed.
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Generators flow
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from rankings

Classifiers

MPS for classifiers

Transform and
classify

MPS for
transform and classify

Fig. 6.11 Generators flow used in the experiment

Generators Flow

For the sake of readable analysis, facilitating observation of different mechanisms
in action, the generators flow used for this CDML experiment is rather simple. It is
not the best choice for solving classification problems in general, but lets us better
see very interesting details of cooperation between configuration generators and
complexity control mechanism including the quarantine. The generators flow used
in the experiment is presented in Fig. 6.11.

To know what exactly will be generated by the generators flow, the configuration of
classifiers generator and rankings generator must be specified. Here, the configuration
includes the following sets:
Classifiers:

1. kNN (Euclidean)—k Nearest Neighbors with Euclidean metric,
2. kNN [MetricM (EuclideanOUO)]—kNN with Euclidean metric for ordered fea-

tures and Hamming metric for unordered ones,
3. kNN [MetricM (Mahalanobis)]—kNN with Mahalanobis metric,
4. NBC—Naive Bayes Classifier
5. SVMClassifier—Support Vector Machine with Gaussian kernel
6. LinearSVMClassifier—SVM with linear kernel
7. [ExpectedClass, kNN [MetricM (EuclideanOUO)]]—first, the ExpectedClass1

machine transforms the original dataset, and then, the transformed dataset
becomes the learning data for kNN,

8. [LVQ, kNN (Euclidean)]—first, Learning Vector Quantization algorithm (Koho-
nen 1986) is used to select prototypes, then kNN uses them as its training data
(neighbor candidates),

9. Boosting (10x) [NBC]—boosting algorithm with 10 NBCs.

1 ExpectedClass is a transformation machine, which outputs a dataset consisting of one “super-
prototype” per class. The super-prototype for each class is calculated as the vector of means (for
ordered features) or expected values (for unordered features) for given class. Followed by a kNN
machine, it composes a very simple classifier, though sometimes quite successful.
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Rankings:

1 RankingCC—correlation coefficient based feature ranking,
2 RankingFScore—Fisher-score based feature ranking.

The sets of classifiers and ranking algorithms, together with the generators flow
presented in Fig. 6.11, produce 54 configurations, that are nested (one by one) within
the meta-learning test-scheme (Fig. 6.5 on page 257) and sent to the complexity
control module. The 54 configurations come from the four generators connected to
the flow output: 9 from pure Classifiers, 9 from MPS for classifiers, 2×9 = 18 from
Transform and classifygenerator (2 feature selections combined with 9 classifiers)
and another 18 from the MPS for transform and classify generator.

All the configurations provided by the generators flow are presented in Table 6.1.
For the sake of further analysis, the order in the table corresponds to the complexities
estimated for a particular dataset. The square brackets, used in the descriptions of
the machines, denote submachine relation. A machine name standing before the
brackets is the name of the parent machine, and the machines in the brackets are the
submachines. When more than one name is embraced with the brackets (comma-
separated names), the submachines are placed within a scheme machine. Parentheses
embrace significant parts of machine configurations.

To make the notation easier to read, some entries of the table are explained below.
The notation does not present the input–output interconnections, so it does not allow
to reconstruct the full scenario in detail, but it shows the machine structure, which
is sufficient here and significantly reduces the occupied space. With the information
about the generators flow and particular machines, that can be found in the preceding
chapters and sections, it is not difficult to faithfully reconstruct the whole machine
test scenarios.

The following notation:

TnC [[[RankingCC], FeatureSel], [kNN (Euclidean)]]

means that a feature selection machine selects features from the top of a correlation
coefficient based ranking, and next, the dataset composed of the selected features is
an input for a kNN with Euclidean metric—the combination of feature selection and
kNN classifier is controlled by a transform-and-classify machine. The sequence

TnC [[[RankingCC], FeatureSel], [LVQ, kNN (Euclidean)]]

means nearly the same as the previous example, except the fact that an LVQ
machine for instance selection functions between the feature selection machine and
the kNN.

The following notation represents the meta-parameter search machine which opti-
mizes parameters of a kNN machine:

MPS [kNN (Euclidean)]
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Table 6.1 Complexities of the tasks produced by the generators flow for mushroom data

22 TnC [[[RankingFScore], FeatureSel], [NBC]] 5.89E + 006
13 TnC [[[RankingCC], FeatureSel], [NBC]] 5.91E + 006
4 NBC 6.50E + 006
31 MPS [NBC] 6.72E + 006
7 [ExpectedClass, kNN [MetricM(EuclideanOUO)]] 8.79E + 006
25 TnC[[[RankingFScore], FeatureSel],

[ExpectedClass, kNN
[MetricM(EuclideanOUO)]]]

9.21E + 006

16 TnC [[[RankingCC],FeatureSel], [ExpectedClass,
kNN [MetricM (EuclideanOUO)]]]

9.22E + 006

19 TnC [[[RankingFScore], FeatureSel],
[kNN(Euclidean)]]

1.12E + 007

10 TnC [[[RankingCC],FeatureSel], [kNN
(Euclidean)]]

1.13E + 007

26 TnC[[[RankingFScore], FeatureSel], [LVQ, kNN
(Euclidean)]]

2.11E + 007

17 TnC [[[RankingCC], FeatureSel], [LVQ,
kNN(Euclidean)]]

2.11E + 007

27 TnC [[[RankingFScore],FeatureSel], [Boosting
(10×) [NBC]]]

5.41E + 007

18 TnC [[[RankingCC], FeatureSel], [Boosting (10×)
[NBC]]]

5.41E + 007

34 MPS [ExpectedClass, kNN [MetricM
(EuclideanOUO)]]

8.91E + 007

8 [LVQ, kNN (Euclidean)] 9.49E + 007
9 Boosting (10×) [NBC] 1.04E + 008
36 MPS[Boosting (10×) [NBC]] 1.04E + 008
20 TnC[[[RankingFScore], FeatureSel], [kNN

[MetricM (EuclideanOUO)]]]
1.79E + 008

11 TnC [[[RankingCC], FeatureSel], [kNN[MetricM
(EuclideanOUO)]]]

1.79E + 008

49 MPS [TnC[[[RankingFScore], FeatureSel], [NBC]]] 1.81E + 008
40 MPS [TnC [[[RankingCC], FeatureSel], [NBC]]] 1.81E + 008
52 MPS [TnC [[[RankingFScore], FeatureSel],

[ExpectedClass, kNN[MetricM
(EuclideanOUO)]]]]

2.65E + 008

43 MPS [TnC[[[RankingCC], FeatureSel],
[ExpectedClass, kNN
[MetricM(EuclideanOUO)]]]]

2.65E + 008

21 TnC[[[RankingFScore], FeatureSel], [kNN
[MetricM (Mahalanobis)]]]

2.91E + 008

12 TnC [[[RankingCC], FeatureSel], [kNN[MetricM
(Mahalanobis)]]]

2.91E + 008

46 MPS [TnC[[[RankingFScore], FeatureSel], [kNN
(Euclidean)]]]

3.17E + 008

Continued.
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Table 6.1 Continued

37 MPS [TnC [[[RankingCC], FeatureSel],
[kNN(Euclidean)]]]

3.18E + 008

1 kNN (Euclidean) 3.56E + 008
2 kNN [MetricM (EuclideanOUO)] 3.61E + 008
53 MPS [TnC [[[RankingFScore], FeatureSel], [LVQ,

kNN(Euclidean)]]]
5.64E + 008

44 MPS [TnC[[[RankingCC], FeatureSel], [LVQ, kNN
(Euclidean)]]]

5.64E + 008

24 TnC [[[RankingFScore],
FeatureSel],[LinearSVMClassifier
[LinearKernelProvider]]]

1.01E + 009

15 TnC [[[RankingCC], FeatureSel],
[LinearSVMClassifier[LinearKernelProvider]]]

1.01E + 009

TnC[[[RankingFScore], FeatureSel],
[SVMClassifier [KernelProvider]]]

1.08E + 009

14 TnC [[[RankingCC], FeatureSel],[SVMClassifier
[KernelProvider]]]

1.08E + 009

54 MPS[TnC [[[RankingFScore], FeatureSel],
[Boosting (10×) [NBC]]]]

1.60E + 009

45 MPS [TnC [[[RankingCC], FeatureSel],[Boosting
(10×) [NBC]]]]

1.60E + 009

6 LinearSVMClassifier [LinearKernelProvider] 1.65E + 009
33 MPS [LinearSVMClassifier [LinearKernelProvider]]1.65E + 009
3 kNN [MetricM (Mahalanobis)] 1.97E + 009
5 SVMClassifier [KernelProvider] 2.40E + 009
29 MPS[kNN [MetricM (EuclideanOUO)]] 2.48E + 009
47 MPS[TnC [[[RankingFScore], FeatureSel], [kNN

[MetricM(EuclideanOUO)]]]]
3.75E + 009

38 MPS [TnC[[[RankingCC], FeatureSel], [kNN
[MetricM (EuclideanOUO)]]]]

3.75E + 009

48 MPS [TnC [[[RankingFScore],FeatureSel], [kNN
[MetricM (Mahalanobis)]]]]

6.06E + 009

39 MPS [TnC [[[RankingCC], FeatureSel], [kNN
[MetricM(Mahalanobis)]]]]

6.06E + 009

35 MPS [LVQ, kNN(Euclidean)] 8.19E + 009
30 MPS [kNN [MetricM(Mahalanobis)]] 1.35E + 010
28 MPS [kNN (Euclidean)] 1.87E + 010
51 MPS [TnC [[[RankingFScore],FeatureSel],

[LinearSVMClassifier [LinearKernelProvider]]]]
2.18E + 010

42 MPS [TnC [[[RankingCC],
FeatureSel],[LinearSVMClassifier
[LinearKernelProvider]]]]

2.18E + 010

50 MPS [TnC [[[RankingFScore], FeatureSel],
[SVMClassifier[KernelProvider]]]]

2.41E + 010

41 MPS [TnC[[[RankingCC], FeatureSel],
[SVMClassifier [KernelProvider]]]]

2.41E + 010

32 MPS [SVMClassifier [KernelProvider]] 9.24E + 010
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In the case of
MPS [LV, kNN (Euclidean)]

both LVQ and kNN parameters are optimized by the MPS machine. However, in the
case of notation

MPS [TnC [[[RankingCC], FeatureSel], [kNN (Euclidean)]]]

only he number of chosen features is optimized. This configuration is provided by
the MPS for transform and classify generator (see Fig. 6.11), where the MPS con-
figuration is set up to optimize only the parameters of the feature selection machine.
Of course, in general, the MPS machine can optimize all the parameters of all subma-
chines, but this is not the goal of the example and, moreover, the optimization of too
many parameters may provide very complex machines (sometimes uncomputable in
a rational time).

Given the notation, sketched above, it is quite easy to recognize the source gen-
erator of each item in Table 6.1. The four kinds of entries start in characteristic way:
some with MPS followed by TnC, others with MPS but not followed by TnC, some
start with TnC and the remaining nine represent pure machines from the set-based
generator of classifiers (start with neither MPS nor TnC).

Data Benchmarks

Table 6.2 summarizes the properties of five data benchmarks from the UCI repository,
selected for the presentation of CDML in action. All the benchmarks are classification
problems. The goal is not to gain as attractive classification results as possible, but to
monitor the mechanisms of meta-learning by a couple of examples. Therefore, the
analysis is not focused on accuracies obtained by the models, but on the correctness
of complexity based task ordering.

Table 6.1 presents condensed descriptions of all the classifier configurations that
came out from the configuration generators flow, ordered by the complexities, cal-
culated according to Eq. (6.15) (for full test scenarios, not just the machine configu-
ration) for the mushroom dataset. The table has three columns: the first one contains
the task id which reflects the order in which the configurations are provided by the

Table 6.2 Benchmark data for the CDML experiment

Dataset # Classes # Instances # Features # Ordered f.

Mushroom 2 8124 22 0
German-numeric 2 1000 24 24
Glass 6 214 9 9
Splice 3 3190 60 0
Thyroid-all 3 7200 21 6
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generators flow, the second column is the task configuration description, and the third
one shows the task complexity (the ordering key). It is important to realize that the
numbers are not directly interpretable as amounts of time or memory consumption,
because they were calculated as proper combinations of the two.

CDML Results Diagrams

The CDML algorithm results obtained for the benchmarks are presented in the form
of diagrams. Each diagram is very reach in specific CDML information, presenting
many properties of the meta-learning algorithm in application to one of the datasets.
The diagrams present information about the relative times of starting, stopping and
breaking of each task, about complexities (global, time and memory) of each test task,
about the order of the test tasks (according to their complexities, compare Table 6.1)
and about the accuracy of each tested machine.

In the middle of the diagram—see the first diagram in Fig. 6.12—there is a column
with task ids (the same ids as in Table 6.1). Row ordering reflects the complexities
of test tasks, but is inversed in relation to that of Table 6.1: the most complex tasks
are placed at the top and the tasks of the smallest estimated complexity (run by the
system as the first ones) at the bottom.

The beginning of Table 6.1 illustrates the possibility, signaled before, that more
complex machine structures may in fact bring lower complexities. It is fully under-
standable, that for example, single NBC machine can run longer than a machine
with the same configuration run for a dataset obtained after some feature selection.
Therefore, such order between the first two rows and the third one.

On the right side of the “Task id” column, there is a plot presenting starting,
stopping and breaking times of each test task. As it was presented above, the tasks
are started in the order of the estimates of their complexities, and with time limits
defined on the basis of the estimates. When the task does not end within the limit,
it is broken and restarted according to the modified complexity (see Sect. 6.3.4). For
examples of restarted tasks please look at Fig. 6.12, at the topmost and the third
topmost tasks (id 32 and 50)—in each of the two rows, there are two horizontal
bars corresponding to two periods of the task run. The break means that the task
was started, broken because of exceeded allocated time and restarted when the tasks
of larger complexities got their turn. In both rows referred above, we can observe
the results of Intemi system efficiency due to the cache system and unification. The
second bar in both examples is shorter than the first bar for the same task. If Intemi
had to recalculate the whole machine again, each next bar for the same machine
would be longer than the previous one. The fact that the second bars are shorter
means that the unification system reused parts of the machine from the previous run
and continued the process instead of running it from the beginning. The task with id
50 is a perfect example of this: when the task was restarted it reused all the subtasks
finished during the first pass so that the second bar is very thin, meaning that very
little time was consumed after the restart.

A survey of different diagrams (in Figs. 6.12, 6.13, 6.14, 6.15 and 6.16) easily
brings the conclusion that the amount of inaccurately predicted time complexity
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Fig. 6.12 Results for mushroom data
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is quite small (there are quite few broken bars). It confirms that the prediction of
relations between learning machine complexities can be quite accurate.

At the bottom of the figure, the “Time line” axis can be seen. The scope of the
time is the interval [0, 1] to show the times relative to the start and the end of all the
computations for the dataset. To make the diagrams clearer, the tests were performed
on a single CPU, so only one task was running at a time. Thus, there are no bars
overlapping in time. If the projects were run on more than one CPU, a number of
bars would be “active” at almost each time point, which would make reading the
plots more difficult.

The tasks estimated as the simplest, are started first. They can be seen at the
bottom of the plot. Their bars are very short because they required relatively short
time to be calculated. It confirms that the tasks started at the beginning are really
the simplest. The higher in the diagram (that is, the larger predicted complexity),
the longer bars can be observed. Again, it confirms the adequacy of the complexity
estimation framework, because the relations between the predictions correspond very
good to the relations between real time consumed by the tasks. When browsing other
diagrams, similar behavior can be observed—the simplest tasks are started at the
beginning and then, more and more complex ones are executed.

The leftmost column of the diagram presents ranks of the test tasks (the ranking
of the accuracies). In the case of the mushroom data, it is not difficult to obtain 100 %
accuracy, so there are many machines with rank 1.

Between the columns of task id and accuracy ranks, on the left side of each dia-
gram, the accuracies of classification test tasks and their approximated complexities
are presented. At the bottom, there is the “Accuracy” axis with interval from 0 (on
the right) to 1 (on the left side). Each test task is illustrated with a gray bar, starting
at 0 and finished at the point corresponding to the accuracy, so that the accuracies of
all the tasks are easily visible and comparable (the longer bar, the higher accuracy).
Although the best accuracies obtained among the 54 classification methods seem not
bad, it is not justified to draw far-reaching conclusions from the experiments, as they
were not tuned to obtain the best accuracies possible, but to illustrate the behavior
of the complexity driven meta-learning and the generators flow.

On top of the gray bars corresponding to the accuracies, some thin solid lines can
be seen (at least in the upper part of the diagram). The lines start at the right side
as the accuracy bars and go to the right according to proper magnitudes involved in
calculation of complexity. Three lines are drawn for each task. They correspond to
the total complexity (Eq. 6.15), the memory complexity (l p) and the time complexity
(t/ log t). All three complexities are assessed with the approximation framework.
Approximated complexities presented on the left side of the diagram can be easily
compared visually to the time-schedule obtained in the real time on the right side of
the diagram. Longer lines mean higher complexities. The longest line is spread to
maximum width and the others are proportionally shorter. Therefore, the complexity
lines at the top of the diagram are long while the lines at the bottom are almost
invisible. It can be seen that sometimes the time complexity of a task is smaller while
the total complexity is larger and vice versa. For an example see the tasks 28 and 51
in Fig. 6.12. Memory complexity is related to the kind of machine, for example, top
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Fig. 6.14 Results for glass data
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Fig. 6.15 Results for splice data
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Fig. 6.16 Results for thyroid-all data
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5 rows of the diagram (5 machines estimated as the most complex) have memory
complexity part, significantly different than 0 (hence, at all visible). They correspond
to machines involving SVM , so memory consumption is mainly due to the kernel
tables. The following rows, have almost invisible memory-complexity lines. They
correspond to the machines engaging kNN , so the models do not use much memory.

Results Analysis

The diagrams illustrating CDML operation for different datasets (Figs. 6.12, 6.13,
6.14, 6.15 and 6.16) clearly show that the behavior of machines changes between
benchmarks. When looking at accuracies within some test, groups of machines of
similar accuracy may be seen, however for other benchmark, within the same group
of machines, the accuracies are quite diverse. Of course, the complexity of a test task
for given configuration may change significantly from benchmark to benchmark.
However, it can be seen that in the case of benchmarks of similar properties (like
similar feature counts), the permutations of task ids in the diagrams are partially
similar (for example, see the bottoms of Figs. 6.12 and 6.16).

The most important feature of the CDML algorithm is that it facilitates finding
accurate solutions in the order of increasing complexity. Simple solutions are started
before the complex ones, to maximize the probability that a simple and accurate
solution is found as soon as possible. It is confirmed by the diagrams in Figs. 6.12,
6.13, 6.14, 6.15 and 6.16. Thanks to this property, in the case of a strong stop-
condition (significant restriction on the running time) we are able to find really good
solution(-s) because of starting test tasks in proper order. Even if some tasks get
broken and restarted, it is not a serious hindrance to the main goal of the algorithm.

For some benchmarks, very simple and accurate models were found just at the
beginning of the meta-learning process. For an example see task ids 4 and 31 in
Fig. 6.15 or task id 19 in Fig. 6.16. But “simple” does not refer to the structural
simplicity, but to the complexity measure of Eq. (6.15). The most accurate machine
(of the 54 machines being analyzed) for thyroid data is the combination of feature
selection based on F-score with kNN machine (task id 19). In the case of very huge
datasets (with huge numbers of instances and features) almost no single algorithm
works successfully in rational time. However, the same algorithms preceded by not
too complex data transformation methods (like feature selection or instance selection)
may be calculated in a very short time. The transformations may reduce the costs
of learning and testing of the machines applied afterwards, resulting in significant
decrease of the overall time/memory consumption.

In some of the benchmarks (see Figs. 6.12 and 6.13) the most accurate machine
configurations were not of so small complexity as in the cases mentioned above.
The CDML algorithm running on the mushroom data has found several alternative
configurations of very good performance: the simplest is a boosting of naive bayes
classifier (task id 9), the second simplest is the kNN [MetricM (EuclideanOUO)],
followed by SVM (with Gaussian kernel). Some of the most complex machines
applying MPS to kNN and SVM have also finished with 100 % accurate models.
For the german-numeric benchmark, the best machines are SVMs with linear and
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Gaussian kernels (task ids 6, 33 and 5). The winner machines, for this benchmark,
are of average complexity and are placed in the middle of the diagram.

Naturally, in most cases, more optimal machine configurations may be found when
using more sophisticated configuration generators and larger sets of classifiers and
data transformations (for example: adding decision trees, instance selection methods,
feature aggregation and other methods) and performing deeper parameter search.

The approximated complexity time is not in perfect correlation with the real time
consumed, presented by the bars at the right side of the diagrams. The differences
are due to not only the approximation inaccuracy, but also the machine unifications
and natural deviations in real CPU time consumption observed also for two runs
of the same task (probably it is caused by the .Net kernel, for example, by garbage
collection which, from time to time, must use the CPU to perform its tasks).

Without repeating the experiments, one can think of the results obtained with the
stop criterion set to a time-limit constraint. For example, assume the time limit set
to 20 % of the time really used by the whole analysis of 54 machines. In such case,
some of the solutions described above would not be reached, but still, for several
datasets the optimal solutions would be obtained and for other benchmarks, some
slightly worse solutions would be the winners. A very important observation is that
thanks to the complexity control solutions of CDML, in the 20 % of time, about 85 %
of candidates would have been examined and only several most complex methods
would not be tried because of the time limits.

These properties of CDML are very advantageous because in real life problems
the time is always limited, and to find as good solutions as possible within the time,
it is necessary to test as many candidate machines (suspected of being successful) as
possible.

6.4 Profile-Based Meta-Learning

Driving meta-search with complexity control is very attractive and adequate when
the set of machines to be tested is diverse with respect to memory and time consump-
tion. When the task of meta-learning is to search for the most successful learners
among large groups of similarly complex machines, complexity control can not offer
a reasonable solution, because complexity prediction errors may by larger than real
differences between amounts of resources occupied by the algorithms. Even if accu-
rate complexity prediction were possible, it would be no point in testing learners in
the order of their complexity, because time savings would be marginal and probabil-
ity of finding more accurate machines before less accurate ones would be fifty-fifty
(exactly as when running the tests in completely random order), because of likely
independence between complexity and accuracy.

The problems of handling many machine configurations of similar complexity
are inherent in the realm of decision trees. Many algorithms can be constructed by
combining various components in appropriate ways, so two methods may differ only
in a single component like split quality measure , stop criterion, validation method
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and so on. Such difference in configuration may result in none or tiny difference in
time and memory consumption of the algorithms. At the same time, the difference
in accuracy may be significant. Therefore, we can not base on complexity estimates
(which are equally successful as random guess in this case), but need other knowledge
about the machines abilities, to judge which machines should be validated first and
which ones are not worth testing at all.

A rationale behind the approach of profile-based meta-learning (PBML ) is that
the relative differences between the results obtained by different machines may point
the directions to more attractive machine configurations. The idea is similar to relative
landmarking, but in contrast to it, is realized in an active way—there is no a priori
definition of landmarkers, but instead, a results profile is created as a collection of
results obtained in validation processes for selected machine configurations. The
selection of profile members is not fixed a priori as it is in landmarking approaches.
Here, any machine can become a landmarker, if its results are assessed to be useful
in prediction of attractive solutions (not necessarily must be attractive itself). On
the basis of profile similarity between learning tasks, the candidates for best results
providers are determined as the ones that turned out to be the most successful in
solving the most similar problems.

Profiles are called active, because they can change on-line, when the feedback
shows that the current profile predictions are not as good as they could. Because of
the similarity to relative landmarking, the technique could also be called an adaptive
(or active) relative landmarking .

Active ranking validation is a procedure resembling what human experts do when
they want to find as accurate model as possible, within some limited time period.
Since they usually have some suspicions (resulting from their expertise) about what
learning machines may be adequate for the task, they test different candidates and
propose the models which passed the test with the highest scores. After each test,
they analyze the results and possibly modify their bets about the methods of most
probable success. Naturally there are significant differences between operation of
human experts and automated processes. Some of them are in favor of humans and
some in favor of machines. The automated search procedures conduct the experi-
ments in more systematic ways, so they are not susceptible to forgetting about simple
solutions that should be tested first, they better use the time available and so on. The
fundamental difference in humans’ favor is that humans have still more abilities to
learn from the experiments and use their expertise to efficiently modify the sequence
of candidate configurations when they read from the experiments results that their
original assumptions were not fully correct. It can be said that human experts perform
active search, as they modify their plans of the search according to the results of per-
formed tests. This has been one of the most significant inspiration for the automated
active search in the form of PBML.

The idea of profile-based meta-learning is not an alternative to complexity-driven
ML. The two approaches should be seen as complementary, since CDML can suc-
cessfully deal with collections of algorithms of diverse complexity, and needs special
attractiveness modules to adjust to estimated success possibilities, while PBML can
deal with families of methods of similar complexity and is focused on discovery
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of successful machines. Proper combination of the two approaches can join their
forces. One of the possibilities is to use a profile-based analysis as an attractiveness
estimation module of CDML.

6.4.1 The Algorithm

Profile-based meta-learning can be presented as an instance of the general meta-
learning (GML) approach defined by Algorithm 6.1 (on page 254). It means that
PBML is an iterative procedure, testing properly selected machine configurations.
The selection is based on prediction of the best algorithms made by means of an
analysis of gathered results.

Profiles of results are created and maintained during the ML process to encode
the meta-information contained within the learning machines test results, and use the
knowledge to rank other methods. Their applications may take advantage of relations
between results to determine the most promising directions of machine parameter
changes.

Method Parameters

Although PBML is an instantiation of GML, it is still a very general algorithm and
can be configured to search in different machine configuration spaces, with different
detailed strategies.

Apart from the general parameters like the time deadline and task runner, defined
and handled by the GML algorithm, there is a number of parameters pertaining to
the subject matter of PBML. The parameters specific to PBML are:

• the set of machine configurations C , the search is performed within,
• validation scenario VS, defining how candidate configurations are tested,
• result calculator RC, that is, a tool to extract a result assessing the machine quality

on the basis of the test just performed,
• profile manager PM, defining the rules of profile management and its use for

subsequent rankings generation,
• number cpi of configurations tested in each iteration.

All they can get miscellaneous forms and values, so that PBML is still quite large
family of algorithms.

In contrary to CDML, machine configurations are not generated gradually, but all
possible configurations are in the scope of interest from the very beginning.

The validation scenario defines what needs to be done to facilitate estimation
of the quality of a given machine configuration. The implementation inside the
Intemi framework uses the most natural solution for such purposes, namely template
schemes. A template playing the role of VS must contain a single placeholder which
is filled with the configuration to be tested. Such instantiated template becomes a
feasible configuration and the corresponding complex test machine may be requested
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from the task runner. For testing classification learners, the most commonly used VS
is a template for cross-validation such as the one presented in Fig. 6.5 (on page 257).

When the machine corresponding to the VS is ready, the result calculator RC is
asked to assess the quality of the machine just tested. In general, we can just assume,
that the quality result is an element of a set R (specified for particular purposes). It
may be just the set of real numbers or a set of collections of results (from multiple
test) or any other form of results—the only requirement is that each two results can
be compared (and thanks to that, used as keys for ordering). In Intemi, the result
estimating machine quality is also calculated in the most natural way supported
by the system, that is, with a query augmented by a series transformation. The
query extracts a series of results from the test machine hierarchy and the series
is transformed accordingly. When searching for classification machines, the most
natural solution is a query collecting classification accuracies and a simple series
transformer calculating the mean value (sometimes it is preferred to estimate the
quality by the mean accuracy decreased by the standard deviation observed in the
sample).

The profile manager (PM) is directly responsible for profile maintenance and its
usage for measurements of learning problems similarity. More information on this
subject can be found below, in Sect. 6.4.2.

Natural number cpi defines the count of machine configurations, tested in parallel,
before profile changes take effect. The strategy of PBML is to return a collection
of this size with a call to GetTasks() method, and then withhold returning next tests
until the ones already submitted are finished. According to the GML algorithm,
methods Analyze() and GetTasks() are called each time a task gets finished, but it is
up to the meta-learner, when GetTasks() returns nonempty collection. PBML updates
the profile if necessary, but returns next package of tests for running only after the
previous package is completely served. Setting cpi to be greater than 1 has three
major roles:

• lets the runners-up of the rankings also be validated,
• speeds up the process because of less frequent ranking generation,
• facilitates more parallelization of the tests.

In the experiments of Sect. 6.4.5 cpi was set to 5, so that 5 top-ranked configurations
of each ranking were validated and new rankings were created after validation of
each 5 configurations.

Internal Data Structures

Meta-learners steer the GML algorithm with subsequent calls of their methods. To
keep track of the learning process, they need to create proper internal representation
of the process and reflect it in their responses to calls from the GML algorithm.

Main PBML internals are three collections of machine configurations equipped
with some additional information:
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• CR—a collection of machine configurations c validated so far (in the search
process) assisted by their validation results r (formally, collection of pairs cr ∈
C ×R),
• CP ⊆ CR—a collection of specially selected results (the profile),
• CQ—a sequence of candidate configurations (the queue) ordered with respect to

the estimated qualities and step numbers at which they were added.

An auxiliary ordered collection CB is used temporarily in the algorithm to represent
the current ranking of candidate machine configurations.

To avoid long but fully formal statements, some shortcuts are taken below. For
example, the expression “configuration in the profile” should be understood as appro-
priate pair of the configuration and its result. Although slightly informal, they will
not introduce ambiguities and will significantly simplify descriptions.

In the Algorithms 6.6 and 6.7, two control counters are used: step and tasksRun-
ning. The former iterates calls to GetTasks() and the latter informs about the number
of requests that have been submitted and have not generated a feedback yet, to indi-
cate when the next package of tasks should be passed to the task runner.

Proper Meta-learning Methods

Full functionality of a meta-learner within GML algorithm is obtained by proper
implementation of the four members composing interface 6.2 (page 21). Before
standard search cycles start, internal PBML structures need initialization. It could be
done in the first call to GetTasks(), but object-oriented programming knows better
locations of such initialization. Regardless of the placement, the initialization needs
the following instructions:

1. CR ← ∅
2. CQ ← ∅
3. step← 0
4. tasksRunning← 0
5. Initialize PM (with C )

After proper initialization, PBML algorithm is ready for the main loop of GML,
which exploits its implementation of the meta-learner interface.

GetTasks() The procedure generates new ranking only when all the tasks submitted
for execution have already been finished (resulting in taskRunning = 0) and either
the process has just started or the profile has changed since the last time the
ranking was built. Configurations listed in the new ranking are pushed to the
ordered collection CQ (called queue) with keys combining the step number and
the ranks. The value of step is introduced to guarantee that the newest ranking,
as the most current, is popped first from the queue. When no changes have been
done to the profile, since providing the last tasks, it makes no sense to create new
ranking as it would be the same as before—the tasks are popped from the queue
without new ranking preparation. If all configurations from the newest ranking
are popped out, the next newest ranking is served and so on. Finally, each popped
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configuration is embedded in the validation scenario and such tasks are returned.
The operations are written formally as Algorithm 6.6

Algorithm 6.6 (PBML tasks preparation)

Prototype: PBML.GetTasks()
Input: None passed directly, but the general PBML parameters (profile manager PM, validation

scenario VS, natural number cpi) and internal data structures of PBML are used.
Output: Collection of tasks to be run.
The algorithm:

1. if tasksRunning = 0 then
return ∅

2. if step = 0 or PM.ProfileChanged then

a. CB ← PM.CurrentRanking()
b. for each c ∈ CB do

if c does not occur in CR then add
(

c, step+ rank of c in CB
length(CB )

)
to CQ

3. if CQ = ∅ then break the loop
4. (c1, . . . , ck)← try to pop from CQ, up to cpi items with maximum ranks
5. tasksRunning← k
6. step← step+ 1
7. return {VS(c1), . . . , VS(ck)}

Analyze() The analysis method of PBML is very simple, as it just delegates ade-
quate parts of the functionality to the results calculator (the call RC(task) deter-
mines the result of the test) and to the profile manager (PM.RegisterResult(c,r)
adjusts its internal structures according to the result of the test). Algorithm 6.7
presents the method in a more formal way.

Algorithm 6.7 (PBML analysis of finished task)

Prototype: PBML.Analyze(task)
Input: Test task, just finished, general PBML parameters (profile manager PM, results calculator

RC), internal PBML data structures.
Output: None.
The algorithm:

1. tasksRunning← tasksRunning− 1
2. r← RC(task)
3. Add (c, r) to CR
4. PM.RegisterResult(c,r)
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ShouldStop The goal of PBML is to search the space of candidate configurations
during a pre-specified time period, so as to determine the most accurate machines.
There is no premise that would let us regard the search as accomplished and stop it
with a fully satisfactory solution. Thus, PBML defines no additional stop criterion
and just relies on the main GML loop control.

Result() As usual in meta-learning, the final result may be defined in a couple
of ways, but the fundamental objective is to find as accurate learner as possible,
so the most natural output is a single learning machine estimated as the most
successful (according to the validation result). A natural alternative is to return
a ranking of the best scorers and let the addressee of the result message decide
what to do next.

6.4.2 Profile Management

It is easy to notice in Algorithms 6.6 and 6.7 that the substantial functionality of the
profile manager is exhibited by three members specified in interface 6.8.

Interface 6.8 (Profile manager)

Method: RegisterResult(c,r)
Input: Machine configuration (c) and test results (r).
Output: None.

Method: CurrentRanking()
Input: None passed directly, set of machine configurations C from internal structures.
Output: Ranking of machine configurations wrt predicted eligibility for solving the problem.

Property: ProfileChanged
Output: Informs whether the profile has changed since last ranking generation.

Maintenance of the profile is the task of the RegisterResult() method. On the basis
of the configuration–results pair provided as arguments, profile manager decides
about the shape of the profile, that is, when the profile should be modified and which
machine configurations should be added to or removed from the profile.

The current machine configuration ranking, built with respect to the eligibility for
solving the problem at hand, estimated on the basis of the profile, is returned by the
CurrentRanking() method. Each time a ranking is generated, a flag is set to notify
that the profile has been used to generate a ranking and there is no point in generating
next ranking until a call to the RegisterResult() method modifies the profile and resets
the flag. The information about the state of the flag can be retrieved with the property
ProfileChanged.
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Profile Maintenance

It is not obvious how to create a profile, what should be its size and which
configurations should be kept in it. It would be naive to believe that there exists
a globally optimal solution to these problems. Moreover, simple strategies like keep-
ing the most successful configurations in the profile are not successful at all. Exper-
iments show that it is more advantageous to care for diversity among the profile
configurations. The most successful configurations are often similar to each other
and obtain similar results. When the differences between result pairs are small, it
is more probable that they are statistically insignificant, so it can be very brittle to
derive conclusions from such relations. When the differences between result pairs
are large, they are more stable and can carry significant information. Thus, results
diversity in profiles is highly recommended.

Usually, when there is no single best method of solving a problem it is advanta-
geous to comply with the rule of divide and conquer. As a result, profile manager can
be defined as a general solution, which cedes the crucial decisions to submodules.
For example, one of the most intuitive choices is to additionally parameterize PM
by:

• the number of configuration–result pairs to keep in the profile,
• the strategy of determining the configurations to remove from the profile, when a

new configuration is provided and the profile has already reached its destination
size.

Profile adjustment done by such PM may be quite simple: the configuration is added
to the profile and if the profile size gets larger than the maximum allowed size, one
of the elements is removed from CP .

According to the remarks made above, that the profile results should be diverse,
removing a result from the profile should be done with respect to a diversity measure.
When the profile size is not too large, greedy maximization procedures may be
acceptable.

Profile-Based Ranking Provision

Providing rankings for a given profile can also be done in a variety of manners. The
most natural one is to collect the results obtained with the profile configurations
for other data files, determine the most similar profile, or more precisely, the data
for which the profile is the most similar, and generate a ranking corresponding to
the most successful configurations for that data. Instead of focusing on a single
dataset, one can use nearest neighbors methods to select a number of the most similar
datasets and then combine the rankings for all these datasets into one final sequence.
The similarity measure can also be used to calculate weights defining the strength
of influence of particular dataset results on the final scores used for ranking. So,
additional fundamental parameters of the PM are:

• profile similarity measure,
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• configuration selection strategy (deciding how many and which configurations are
included in the ranking),
• knowledge base used for calculations: the collection of datasets D1, . . . , Dk and

results obtained for these dataset with the methods of interest, that is, a set of
functions fDi : C → R.

In practice, it may be very advantageous if the methods of profile adjustment and
ranking generation are designed together to interact in their tasks. Therefore, they
are enclosed in a single PM object. It can also be very profitable to use the feedback
sent to PM not only for profile adjustment, but also for learning how to generate
rankings on the basis of the profiles (to exploit the information about how successful
the previous rankings were).

Profile Similarity Measures

Comparisons of profiles can be performed with standard similarity/distance mea-
sures. Numerous metrics have been tried with the abundance of nearest neighbors
methods. They all are perfectly eligible also in this application, so it is possible to
exploit the meta-knowledge gathered by many authors during decades of research.

A very important aspect of similarity measurements, in the context of learning
results comparisons, is normalization of the compared values. For example, when
the results are single real numbers corresponding to measures like classification/ap-
proximation error, it would not be sensible to compare raw values of the errors, as
the optimal error values for different datasets may be quite distant although rela-
tions between the scores can be very informative. We need to compare the shapes
of the profiles (when plotted as lines in the style of parallel coordinates), not the
values themselves. Therefore, measures like the Pearson’s linear correlation coeffi-
cient or cosine similarity measure seem very suitable for this purpose. However, any
vector similarity measure can also perform well, if applied after a method of data
normalization.

In the domain of similarity-based methods, many techniques of feature selection
and feature weighting have been profitable in numerous applications. The experi-
ence of the field can also be helpful in profile similarity measurement. Moreover,
the techniques of feature selection (or weighting) can bring much help to profile
maintenance, as the selection (or weights) nicely suggest which scores in the profiles
are of little benefit or maybe even spoil the information exhibited by other features.
A lot of research may still be done in this area.

6.4.3 Ranking-Based Meta-Search

Advantages of a meta-learning approach like PBML can only be appreciated when
analyzed on the background of other similar techniques. Since the PBML approach
is an active ranking method, some baseline approaches to compare with, are passive
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rankings, that is, simple rankings generated according to some analysis of the results
obtained by the same methods for other datasets, with no on-line adjustment to the
feedback from tests performed for the data currently being learned.

In the case of passive ranking methods, meta-learning based on the rankings is in
fact a step-by-step validation of machine configurations with subsequent ranks. After
collecting validation results, the meta-search can return machine configurations in
new order, corresponding to the validation results.

Validation of passive rankings is much simpler then advanced, active meta-
learning methods, but it fits the general scheme of the GML algorithm. Therefore, it
can be implemented in the same framework, by definition of the four members of the
meta-learner interface 6.2. From the perspective of GML, passive ranking validation
(PRV) is a lean example, as it submits all the tasks in the first call of GetTasks() and
performs no meta-level analysis apart from simple results collection and ordering.

Specification of all the details of the PRV machine, requires providing the follow-
ing additional parameters:

• validation scenario VS defining how tests are performed,
• result calculator RC that determines the final results on the basis of subsequent

tests.

Validated ranking is constructed during the whole ML process, when feedback
informs about each finished test separately, so the PRV machine uses an internal data
structure CR to collect the final ranking. It must be initialized with the instruction
CR ← ∅, before the main algorithm starts.

Precise information about the main functionality of PRV as a meta-learner is
provided in the following members descriptions.

GetTasks() The method is presented as Algorithm 6.9. It is very simple, as it just
generates the ranking and returns tests of all ranked configurations, embedded in
the validation scenario VS.

Algorithm 6.9 (Passive ranking tasks preparation)

Prototype: PassiveRanking.GetTasks()
Input: None passed directly, PassiveRankingMethod and VS given as a part of machine configu-

ration.
Output: Collection of tasks to be run.
The algorithm:

1. if CR �= ∅ then /* check if not the first call */
return ∅

2. (c1, . . . , ck)← PassiveRankingMethod()
3. return {VS(c1), . . . , VS(ck)}

The operations are performed only in the first call to the method, which is controlled
by the test performed at the beginning: second call to the method is made after a call
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to Analyze(), where an item is added to CR , so the condition CR �= ∅ means that it
is not the first run.

Analyze() By definition, passive rankings do not use the feedback coming from
the tests performed for the sake of ranking validation. Therefore, no analysis of
the results is necessary, beside calculating the results (with RC) and registering
them in the final, validated ranking CR , as in algorithm 6.10.

Algorithm 6.10 (Passive ranking analysis of finished task)

Prototype: PBML.Analyze(task)
Input: Test task, just finished, results calculator RC as machine parameter, internal data.
Output: None.
The algorithm:

1. r← RC(task)
2. Add (c, r) to CR

ShouldStop Similarly to PBML, passive-ranking validation does not use any addi-
tional stop criterion. It relies on the time-limit control performed within the GML
algorithm.

Result() Depending on the needs, the final result may get various forms, but usually
it is the validated ranking CR or just the winner machine configuration, if the goal
is to find the best single method.

Because of the time limit, it is important in what order the candidate machine config-
urations are tested. The better the ranking returned by the PassiveRankingMethod(),
the higher result can be obtained within given time.

The scheme of passive ranking validation can also be used to get the absolute
baseline algorithm performing validations completely at random, which can be seen
as validation of a randomly generated passive ranking.

6.4.3.1 Ranking Criteria

Many ranking algorithms have been proposed and can be found in the literature.
Some examples of the approaches are presented in Sect. 6.1.4. Unfortunately, many
of them are not adequate for advanced ML applications, because of their computa-
tional complexity, making them feasible only for small numbers of machine con-
figurations. The algorithms performing pairwise comparisons, like ARR with RL ,
SRR or SW must be regarded as unfeasible, when the number of candidate machine
configurations is tens of thousands and more than several datasets are considered.
They are practical only for analysis of several algorithms. For larger sets of machine
configurations, even if they are still feasible, they are not suitable for meta-learning
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by ranking validation, because calculating input ranking, could consume most of
the time allotted to the process. In comparisons to other methods, it would bring
conclusions, highly disadvantageous for these methods—in fact, others could finish
all validations before these ones could start the first one. If we ignored this time, then
the comparisons (done with respect to time) would not be fair. Because of that, the
passive rankings included in the plots depicting the experiments of Sect. 6.4.5, are
based on less computationally complex formulae, presented below.

Let the knowledge base used for meta-learning contain n datasets. For each can-
didate configuration c, let’s define Accc(i) as the accuracy of the machine c tested
on i’th dataset and σc(i) as the standard deviation of this accuracy estimated in the
test.

The index of average test accuracy is given simply by:

AA(c) = 1

n

n∑
i=1

Accc(i). (6.19)

Since the accuracies for different datasets may have quite different scopes, it
seems more sensible to calculate average difference between the test accuracies of
the method of interest, and the best method in the examined population, expressed
in the units of standard deviations of the best method:

AD(c) = 1

n

n∑
i=1

Accc(i)− AccBest (i)(i)

σBest (i)(i)
. (6.20)

Notation Best (i), used above, stands for a configuration that has reached the highest
accuracy for the i th dataset. Such definition is not fully precise, because there may
be more than one configuration with maximum accuracy, but in the tests described
below, when such situations happened, all the machines of maximum accuracy, gave
the same variance of the results, so the ambiguity did not appear.

Another possibility to make the results of different scopes comparable is to cal-
culate average ranks of the methods:

AR(c) = 1

n

n∑
i=1

Rank(c, i), (6.21)

where Rank(c, i) is the rank of configuration c in the ordered results for the i th
dataset.

Yet another sensible ranking can be made on the basis of average p-values p(c, i)
of the paired t-test comparing the results of the method of interest and those of the
best method in the population:

AP(c) = 1

n

n∑
i=1

p(c, i). (6.22)
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Experiments of meta-learning are usually performed for not large numbers
of datasets. Under such circumstances, usually the technique of leave-one-out is
selected, which, on one hand, is quite natural or even seems the only sensible method,
but on the other hand, suffers from serious disadvantages: as argued by Kohavi (1995),
in classification tasks, when classes are represented by equal numbers of objects and
we take one object out of the population, the class of the object becomes a minor-
ity in the population, and classification on the basis of majorities gets completely
wrong. In meta-learning, we observe the same phenomenon: the datasets “similar”
to the one taken out, become a minority and get dominated by the datasets for which
other methods are more successful, so the rankings get less appropriate. To solve this
problem, weighting or nearest neighbors methods may be used to select “similar”
datasets before averaging particular indices.

6.4.4 Comparing Rankings of Algorithms

Meta-learning based on search for the most adequate algorithms for given problem
results in a ranking of algorithms. Even if the formal output of a method is a single
learning machine, selected as the winner, the learning process has assessed a set of
solutions and compared them with a criterion to select the best one, so in fact, it has
created a ranking. This is a property common to all algorithms compatible with the
GML approach, so in particular, also PBML, passive ranking validation and random
machine validation methods.

Comparisons of the rankings output by the ML algorithms, should reflect what we
expect from the rankings, but the problem is that the expectations from meta-learning
search processes are not so easy to express. In general we want the procedures to
find as attractive learning machines as possible in as short time as possible, but
this formulation is imprecise. The rankings should include the best solutions at the
beginning and then alternative models with as high accuracy as possible, in the
decreasing order of their quality.

In the literature, reviewed in Sect. 6.1.4, one can find many approaches to rankings,
and rankings evaluation usually made by comparison to the ideal rankings with some
statistical tools like correlation coefficients. Although the strategy suits experiments
involving several learning algorithms, it is completely inadequate for comparing
long rankings of algorithms. When several algorithms are in focus, it is important to
preserve each relation between the pairs of algorithms. When thousands of algorithms
are available, and an ML algorithm is to find the best ones in a limited time, full
rankings should not be compared item by item, from top to bottom. The focus should
be on the top-ranked items, to estimate how attractive model(s) can be found in
different time periods. In most cases, we are not interested in the similarity of the
whole rankings but in obtaining one or several models of as high quality as possible.
For example, when we search for an accurate classifier, the meta-search should find
a single classifier of maximum accuracy and it is not important how accurate are
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the remaining models tested by the algorithm and at which position they have been
ranked.

Sometimes, we can get n top-ranked machines provided by the meta-search and
create a committee, or just be supplied with n alternative learners. Then, it gets
important how accurate are the n top-ranked machines, but not if other machines in
the ranking are accurate. In fact, when n machines are selected to create a committee
or to build other kind of complex model, the task should also be commended to
the meta-search process, so that the ensembles could also be validated and possibly
returned by the algorithm, if better than other machines. Thus, even the restriction
of n = 1 is quite acceptable.

In all above-mentioned applications, it should be regarded as much more costly
to put the best algorithm on position 100 of the ranking, than to switch positions
10000 and 20000. The most popular, also in the domain of meta-learning, ranking
comparison techniques do not address such requirements and pay the same attention
to each part of the ranking.

Meta-learning conceived as search for the best solutions, requires results analysis
to answer the question, how accurate model (the best one) can be found in a given
time. Complying with this idea, the comparisons presented below are focused most
on plots of maximum accuracy (estimated in the validation process) obtained till
given time.

6.4.5 Experiments, Results and Analyses

Reliable test of the PBML framework required a nontrivial knowledge base of
learning-machines results. Comparative experiments in the realm of cross-validation
committees of DTs, presented in Sect. 5.4, resulted in collecting a database of 10×10-
fold CV test results for 13660 different machine configurations and 21 datasets. It is
perfectly suitable for miscellaneous meta-learning experiments, so it was chosen as
the knowledge base for evaluation of the PBML approach.

Datasets

The 21 datasets come from the UCI repository (Frank and Asuncion 2010) and are
summarized in Table 5.1.

The count of 21 datasets is not large—the probability that almost each of them has
different nature and requires different methods is quite large. It makes meta-learning
difficult, but turned out to be sufficient to show some relations between meta-learners
results.

Learning Machines

The 13660 different machine configurations, mentioned above, are 100 parame-
ter settings of single decision tree induction methods and 13560 different settings

http://dx.doi.org/10.1007/978-3-319-00960-5_5
http://dx.doi.org/10.1007/978-3-319-00960-5_5
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of cross-validation committees. The committees were constructed from validated
decision trees generated in 10-fold cross-validation processes. Hence, the number of
cooperating models could be set in the range from 1 to 10. Moreover, different con-
figurations were obtained by application of four different methods for decision tree
induction: two methods based on purity gain criterion with Gini index and entropy
(information gain ), QUEST and the algorithm based on Separability of Split Value
value criterion. Several methods of DT validation have also been tested: Reduced
Error Pruning (REP REP), cost-complexity optimization cost-complexity minimiza-
tion (CC), degree-based tree validation , OPTimal pruning, Minimum Error Pruning
2 and Depth Impurity . Some other parameters like respecting standard error in
pruning strength determination, combining validation and training error in pruning
criteria, common or separate parameter optimization in subsequent folds of CV, were
also examined, resulting in the final number of 13560 CV committee configurations.
More information about the parameters and the overall experiment settings, can be
found in Sect. 5.4.

Each configuration had been tested with 10×10-fold CV using the same training-
test data splits. As a consequence, a nice database of results had been collected and
is perfectly suitable for meta-learning experiments.

6.4.5.1 PBML Versus Random and Passive Rankings

To test the possibilities of the PBML framework, the exchangeable general modules
like VS and PM had to be precisely defined and implemented.

Because the task concerned classification, the validation scenario was defined to
perform 10 × 10-fold cross-validation and estimate average accuracy of the tests.
Such definition was compatible with the experiments that generated the knowledge
base, so the CV tests could be just reused instead of recalculating them.

Ranking Methods

In the experiments presented here, profile management has been specified to maintain
profiles of variable size. At the beginning of the search process, the profile was empty
and grew up during the process. Each time a new configuration was validated, its
result was calculated and added to the profile. For readability, the experiments were
restricted to 100 configurations. Because of that, it was not a problem to keep and
handle full profiles, especially that the algorithms of profile management used here
were very efficient.

In Algorithm 6.6, the first ranking is created when the profile is empty, so ranking
generation procedure must be ready for that. Also, when the profile contains just
one configuration, it is not very useful, because relative differences are the base of
machine quality predictions. Therefore, profiles of size less than 2, are not helpful
in ranking generation. In the experiments described here, the initial PBML ranking
was calculated on the basis of average p-values (6.22). The cpi parameter was set to
5, so the second call to ranking generation was given a profile of 5 results, and each

http://dx.doi.org/10.1007/978-3-319-00960-5_5
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next time the profile was larger. Rankings based on profiles, were calculated with
respect to weighted p-values for candidate configurations:

W PV (c)←
∑

D∈K B

Max(0, CC(P, D)) ∗ PV (c, D), (6.23)

where:

• D ∈ K B means “dataset D in the knowledge base”,
• CC(P, D) is the Pearson linear correlation coefficient calculated for the results

in the profile and corresponding results extracted from the knowledge base for
dataset D,
• PV (c, D) is the p-value obtained in paired t-test of difference significance,

between the results obtained by c and the best configuration recorded for dataset D.

Pearson linear correlation coefficient serves here as a measure of similarity
between the profile and corresponding results obtained for other datasets. The sim-
ilarity factor is replaced by 0, when the correlation is negative (hence Max in the
formula), to ignore the results of utterly dissimilar datasets (instead of accepting
penalties for obtaining high accuracy on such data).

Results and Analysis

In the first comparison, the results obtained with the PBML algorithm have been
confronted with the results of 5 passive ranking methods: completely random one
and 4 implementing formulae (6.19)–(6.22).

The test has been conducted as the leave-one-out procedure: for each of the 21
datasets, the dataset was removed from the knowledge base to be used for testing,
while the remaining 20 datasets served for rankings generation.

The most important aspect of the comparison is to check what maximum validation
accuracy can be obtained by each method in given time. Since the time consumed
by the competing methods was more or less equal for all configurations, we can use
more readable time unit than seconds: the number of configurations validated so far.
Each method was run to generate a ranking of 100 configurations (for each of the 21
datasets), and the averages of the results are presented in Fig. 6.17. Detailed results
for each step of the leave-one-out procedure can be found in an external document
available from http://www.is.umk.pl/~kg/papers/12-PBMLRes.pdf.

The most important plot is placed at the top. For each dataset, for each ranking,
for each argument t in the scope from 1 to 100, the maximum accuracy obtained by
one of the t top-ranked machines was determined. The results for all 21 passes were
first converted to the unit of standard deviations of the best result recorded for the
dataset and then averaged. The means for t = 1, . . . , 100 became subsequent points
in the line corresponding to given ranking. Function values shown on the left of the
vertical axis show maximum and minimum of all the points presented in the plot.
The legend presents which line corresponds to which ranking. The same line colors
have been used in all plots.

http://www.is.umk.pl/~kg/papers/12-PBMLRes.pdf
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Maxima found till given time

1 100

-0.7999

-0.0896

0.0000

random av. rank
av. accuracy av. p-value

av. acc. diff. PBML

Means of 3 maximal results till given time

1 100

-1.0228

-0.1120

0.0000

Accuracy difference

1 100

-2.2147

-0.2684

0.0000

Means of all results till given time

1 100

-1.0228

-0.4149

0.0000

(a)

(b)

(c)

(d)

Fig. 6.17 Results obtained in the experiment, averaged over the 21 datasets. Arguments—time
(the number of configurations tested), values—average accuracy difference in the units of standard
deviations of the best results observed for particular datasets. a Maxima found till given time. b
Means of 3 maximal results till given time. c Accuracy difference. d Means of all results till given
time
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What can be observed in the topmost plot is a bit surprising: the place of the curve
corresponding to completely random ranking is unexpectedly attractive in relation
to other rankings. Only the line representing PBML ranking occurs higher than the
one for random ranking (after the initial 5 steps in which the p-value-based ranking
was used and no PBML mechanisms had yet a chance to act). The random ranking
picks quite attractive solutions from time to time, so it managed to outperform (in the
topmost, maxima plot) all other rankings but PBML. As can be noticed in the third
plot (counting from the top), presenting just average accuracies at each step (instead
of “maxima till the step” of the first plot), the random ranking is characterized by
the largest variance and significantly lower mean than any other ranking. Averaged
means of all the results recorded up to given step t are presented in the bottom plot of
the figure. It clearly shows that the random ranking obtains the lowest mean accuracy,
which according to the law of large numbers, goes to the overall mean, marked in
the plots as the dotted horizontal line. Another advantage of the PBML approach
can also be seen in the bottom plot: the method keeps high average accuracy with
increasing number of configurations validated. In fact, the curve is growing to the
end of the scope, so it confirms that for the whole range of the plot, active profiles
bring new information, helpful in finding yet more attractive solutions.

If we expected three attractive models to be output by the ranking algorithms,
the second plot from top, would be more adequate. It shows means of three best
results obtained till subsequent steps. In this plot, the lines of random and p-value-
based ranking almost overlap, showing that the attractiveness of the random selection
decreases. At the same time, the advantage of PBML over the random ranking gets
even larger. Actually, the relations between all other lines are preserved, just the
random ranking result is less attractive, which is not surprising.

As an explanation of why averaging over all 20 training datasets produces rankings
loosing with the random one, it can be stressed again, that in the group of 21 datasets,
the datasets are, in general, quite variant, so the collections of most accurate machines
are also quite different. Averaging over 20 datasets yields rankings of machines,
where top places are taken by machines that perform well on average, but not perfectly
on any of the datasets. This property transfers to the data left out, so that we can
clearly see in the two bottom plots in Fig. 6.17, that the configurations selected with
ranking methods provide quite good results in the tests: all the lines of non-random
rankings are above the average at almost whole range of the plots. There are very few
exceptions, showing that with safe strategies we can find quite stable, solid results,
but to find the best machine configurations (or better prediction), more advanced
means must be undertaken.

6.4.5.2 Passive Rankings, Nearest Neighbors Selection and Active Profiles

Passive rankings based on averaging results globally, can be significantly improved to
win competitions with the random ranking, also in the case of registering single max-
ima. One of the solutions is to engage a nearest neighbors technique to select datasets
within the knowledge base, being the most similar to the test data, and then calculate
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the averages for the selected subpopulation of datasets. A reasonable way to describe
the datasets for nearest neighbor analysis is landmarking with selected machines of
the examined population. It has been shown that landmarking performs better than
describing the data by statistical and information theory measures. Machines from
the population are the most representative of the population, so there is no point in
searching for other candidates for landmarkers.

In the approach presented here, simple k nearest neighbors algorithm was used
with Euclidean distance measure to calculate distances between profiles (more pre-
cisely: squares of the distances, to simplify calculations while introducing no changes
to the NN results). The distances determined five closest datasets (5NN) and the
results obtained for these datasets were averaged to get the quality estimation for
candidate machine configurations. Four quality measures were applied: classifica-
tion accuracy, accuracy differences expressed in the units of standard deviations of
the best result, ranks resulting from ordering by test accuracy and p-values from t-test
of statistical significance of differences.

The GML framework is so general, that made it easy to implement the algorithms
of passive landmarking with kNN selection, too. The active parts of the general
algorithm got deactivated by dummy implementation of adequate methods of the
profile manager (as in the case of ordinary passive rankings, no changes to the profile
are necessary and no new rankings need to be generated). Common implementation
of all the methods within the same framework in Intemi helped in preparation of fair
conditions for the comparisons.

The overall results of the comparison between the passive methods, their modi-
fications by kNN-based selection and algorithms with active profiles, are presented
in Fig. 6.18. Detailed results for each dataset can be found in a document available
from http://www.is.umk.pl/~kg/papers/12-PBMLRes.pdf. The active profile meth-
ods started with randomly selected machine configurations in the role of the profile, to
calculate the first distances and select neighbors for the first ranking (as mentioned
above, when first ranking is generated the profile is still empty). Subsequent dis-
tance calculations and rankings generation were performed normally, with actively
extended profiles according to the general PBML algorithm.

To make visual analysis of Fig. 6.18 easier, all methods using accuracy as the crite-
rion, got red color, those using accuracy difference measured in standard deviations—
green, the three lines based on average ranks—blue, and the three representing meth-
ods that average out p-values—brown. Whether the line corresponds to a passive
ranking, to a passive ranking augmented by nearest neighbors (5NN) selection or to
an active profile based method, can be recognized by line pattern, adequately: dotted,
dashed and solid. Additionally, the lines shown in cyan, represent random ranking
results.

All four aspects of the analysis clearly show that the PBML methods, based on
active profiles, provide the most attractive results. In the topmost plot, each solid
line lies above the cyan one within almost whole scope, proving that active profile
management can significantly fasten finding attractive results. At the same time, they
keep high results all over the scope, providing large mean accuracies, so in contrary

http://www.is.umk.pl/~kg/papers/12-PBMLRes.pdf
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Maxima found till given time
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-0.7999

-0.0625

0.0000

av. accuracy random

av. acc. diff. passive

av. rank with kNN

av. p-value profiles

Means of 3 maximal results till given time

1 100

-1.0228

-0.0737

0.0000

Accuracy difference

1 100

-2.2147

-0.1535

0.0000

Means of all results till given time

1 100

-1.0228

-0.2526

0.0000

Fig. 6.18 Comparison of passive ranking methods (dotted lines), passive ranking with nearest
neighbors selection (dashed lines) and active profile based methods (solid lines). a Maxima found
till given time. b Means of 3 maximal results till given time. c Accuracy difference. d Means of all
results till given time
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to random ranking they detect appropriate machine configurations and find accurate
models not by chance, but by meta-level analysis.

Calculating average results for datasets selected by 5NN also significantly out-
performs the classical passive methods, but does not provide as attractive results as
using active profiles. The line of NN-supported p-values on the maxima plot is as
attractive as some active methods. The plots of accuracy difference and means clearly
show that the improvement introduced by 5NN is significant.
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Chapter 7
Future Perspectives of Meta-Learning

The preceding chapter shows various approaches to learning at meta-level. It empha-
sizes that although the goals may be defined in many different ways, the ultimate goal
should always be an improvement in learning at base-level. Even the most attractive
form of meta-knowledge is not a value for itself, but only if it can help improve
learning processes, so that learning at object-level gets faster or more accurate.

Regardless of the particular goal definition of a meta-learning approach, its meta-
level perspective is characterized by answers to the following three fundamental
questions:

1. What kind of meta-knowledge can be useful in the approach and in what form it
should be kept in repositories?

2. How to extract the meta-knowledge from learning experiments?
3. How to use the collected meta-knowledge in further learning processes?

The future success of the field will definitely depend of how the repositories are
prepared and whether they can be shared by various approaches. Since collecting
valuable meta-knowledge is very costly, it can not be done from scratch each time a
meta-learning approach is undertaken.

Building advanced meta-learning systems is not very popular, yet. The reason of
that is not insufficient attractiveness of the field for the researchers. The difficulty
of the problem of answering the three questions, enumerated above, is not the cause
either. It seems that the main reason is the lack of convenient and powerful tools for
easy construction of so complex systems. It can be changed with systems like Intemi,
presented in Chap. 4—an environment facilitating multi-aspect analysis of learning
processes, with easy-to-use tools. Such frameworks may significantly change the
meta-learning research thanks to fastening the development of advanced projects. In
preparation of standard and substantial comparisons, the researchers must be freed
from the necessity of laborious organization of sophisticated tests, collecting results
and thorough, attentive analysis. Easy to run, high-level tools should take care for fair
comparisons with statistical methods, leaving for researchers just the most advanced
task at higher level of abstraction, requiring non-standard reasoning and intelligence.
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The mechanisms of Intemi made it possible to easily prepare and explore
the possibilities of two meta-learning algorithms presented in Sects. 6.3 and 6.4
(the former based on machine configuration generators and complexity control, and
the latter driving the search with analysis of learning profiles), and will certainly help
create many more attractive meta-learning systems.

Meta-learning as search with validation
The general meta-learning algorithm based on search with feedback from validation,
described in Sect. 6.2, integrates meta-learning with the ultimate goal of algorithm
selection, that is, solving the object-level tasks. It can be used to solve any shapes
of model selection problems, however it does not mean that everything has already
been done and no further research in the area is desired. Inversely, there is still
a lot of research to do in the realm of meta-learning, because the success of the
GML algorithm relies on the proper meta-learners it employs for meta-knowledge
extraction and exploitation.

Creating such general algorithm has not given a global answer to the three ques-
tions about meta-knowledge, so they can still be answered arbitrarily by specific
implementations of the method. Two possible answers have been given in the two
instantiations of the GML algorithm discussed in the previous chapter.

Complexity-Driven Meta-Learning
CDML algorithm has been described and tested in Sect. 6.3. One of the most impor-
tant aspects of this approach concerns the order in which candidate machine con-
figurations are tested. The order is defined by estimates of machine complexities. A
general framework of learning evaluators for complexity estimation has also been
proposed. An important feature of such evaluators is that they approximate com-
plexity of simple and complex machines, including huge hierarchies performing
complicated tests. Complexity control is very advantageous in meta-search, because
it helps find the most interesting simple solutions at the beginning of the process and
proceed to testing more complex solutions after the simplest ones are verified. Such
control prevents spending much time on testing complex machines, while simpler and
more accurate models are not checked because of timeout. The results obtained with
complexity control are very successful and confirm the advantages of the approach.

The questions about handling meta-knowledge are answered by CDML in a man-
ner specific to this algorithm:

1. CDML uses meta-knowledge of several kinds:

• usually experts knowledge is very useful in preparing adequate machine gen-
erators flow, so that valuable configurations are output by the generators, how-
ever the knowledge gained during automated machine generation can also be
very helpful and opens new possibilities, because machines may search the
areas, that humans would never try,

• meta evaluators collect meta-knowledge about time and memory consumption
of learning machines,

• optimization scenarios encode meta-knowledge about machine parameter
spaces,
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• the attractiveness modules remember which machine configuration generators
produced attractive solutions and which have not—they can help avoid loosing
time for time-consuming calculations, that are not very likely to bring attractive
results.

2. Meta-knowledge supporting the CDML algorithm is collected partly from human
experts (during the configuration of the meta-learning search) and partly during
the search process by analysis of test results and during learning complexity
estimation by the evaluators.

3. Exploiting the meta-knowledge is intrinsic to the search process—the factors
resulting from complexity analysis or attractiveness estimates represent the meta-
knowledge and significantly influence the ML process.

Although more precise than GML, the CDML algorithm is still a general scheme
of methods, not a single, strictly defined and closed one. With configuration of
subsequent modules, one can obtain a variety of effects, so there is still much space
for improvement and new experiments that can bring important meta-knowledge.

One of the future possibilities in this area is certainly a research on new, more
and more sophisticated machine generators. Another possibility is to develop intel-
ligent attractiveness modules, significantly more sophisticated than just recording
accuracies assigned to machine configurations and their generators. The feedback
from experiments can be thoroughly analyzed to draw conclusions about correlations
between the configurations and their successfulness.

It is also very important to learn how to transfer the knowledge gained in one
ML process to another, that is, how to extract universal information from particular
experiments.

Profile-Based Meta-Learning
PBML is also an open framework that facilitates implementation of many meta-
learning algorithms integrating meta-knowledge extraction and exploitation with
object-level learning. It fits the scheme of the GML algorithm, and specifies many
details of dealing with the meta-knowledge, but still, different kinds of problems may
be solved with appropriate implementation of the framework modules (the valida-
tion scenario and the profile manager). The framework facilitates active management
of learning-results profiles, leading to more adequately adapted meta-learning algo-
rithms.

Profile-Based Meta-Learning specifies its own answers to the three fundamental
questions about meta-knowledge:

1. The meta-knowledge is encoded in the profiles and their performance. Properly
selected profiles can distinguish between data of different internal type, data for
which different learning methods are successful. Such information may be a very
efficient lodestar in the search for the most suitable learners.

2. Profiles should be constructed with respect to the information that distinguishes
between data for which different learners are successful. This kind of profile
optimization is at the same time a method for meta-knowledge extraction.
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3. As in CDML, the meta-knowledge (here, contained in the profiles and their man-
agement) is used internally by the PBML algorithm for proper ordering of can-
didate learning machines. No special tools for exploitation of this knowledge are
necessary, because using the profiles does the job.

A lot of research can still be done to provide successful implementations of the
PBML framework. In the previous chapter, only some very simple methods of profile
management were used. There is still much space for development of more intelligent
methods, that would make the profiles yet more informative. Some experiments with
simple methods of profile size reduction have shown, that it is very easy to spoil
the results by inaccurate profile maintenance. For example, the idea of handling
the profile by keeping the results with as high accuracy as possible, turned out to
degenerate the profiles. This is because such technique may, at some point, generate a
poor ranking, which is kept and followed to the end of the time scheduled for learning,
because once machines of poor accuracy appear at the top, subsequent validations end
up with weak results, not eligible for the profile, so the profile does not change and
the poor ranking is kept as still valid and is followed on and on. The lack of changes in
the profile implies no changes in ranking and inversely. A sort of dead lock appears.
Therefore, intelligent profile management must be aware of such possibilities and
eliminate them in advance. The profiles must be diverse, and continuously controlled,
whether they result in attractive rankings. Otherwise, it can be more successful to
return to an old profile and check another way of its modification, instead of loosing
time for validation of many machines from a degenerate ranking.

The task of profile management encircles also adaptive methods of dataset sim-
ilarity measurement. The shape of the profile and the methods of profile similarity
measurement are strictly bound with each other in the context of PBML. They must
be analyzed and adjusted together to provide successful rankings.

It is not certain if a single profile is the most reasonable way of data similarity
measurement. Large knowledge-bases may contain several groups of learning tasks,
with completely different sets of characteristic methods, that should be placed within
the profile. In such cases it may be much more reasonable to implement multi-profile
approaches.

During the processes of profile analysis, some control over knowledge base prop-
erties should also be performed to detect irregularities that can spoil the results. As a
result, one can prepare knowledge bases in the form, most eligible for meta-learning.

Meta-knowledge repositories
Meta-learning approaches, published so far, are usually completely separate algo-
rithms worked out from scratch. The domain is so huge and so complicated, that
significant progress can be made, when new methods “do not look back” all the time
and do not start everything from the beginning again and again, but learn to take
advantage of many previous experiments.

Each meta-learning experiment is quite costly, and we should not waste any gain
of such effort. It is very important, to collect the meta-knowledge within special-
ized repositories and make it available to other learners through adequate, easy-
to-use interfaces. The repositories should not be just databases but ontologies for
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more comprehensible meta-learning. As mentioned in the review of Sect. 6.1, sev-
eral ontologies for meta-learning have already been proposed. These steps certainly
move in right direction, however new quality of meta-learning will require creation
of very general, easily accessible and easily extensible ontologies, that will attract
and will be intensively used by many researchers.

Naturally, with growing amount of meta-knowledge contained within such ontolo-
gies, more and more specialized services will be necessary to provide access to the
knowledge at appropriate level of abstraction.

Apart from the large repositories and their services, we must still use versatile
data mining systems capable of meta-learning, supporting fair validation and drawing
reliable conclusions. Otherwise, the knowledge bases may get infected with unreli-
able information, that could spoil the whole enterprise, so the problem is not so easy
as collection of some results.

From specialized search to more and more general solutions
The two meta-learning algorithms described in the previous chapter (CDML and
PBML) have been created for significantly different circumstances. CDML can suc-
cessfully perform validation of learning machines of different kinds (various time
and memory complexity) and is not very useful when we need to select between tens
of thousands of similarly complex learners. On the other side, the PBML special-
izes in searching for successful learners among large numbers of similarly complex
algorithms, but it does not measure any complexities or adjusts to them.

As in most algorithmic design problems, we will certainly need many more tools
specialized in particular applications and mechanisms that will integrate them appro-
priately, to take advantage of all their skills. Such general and versatile solutions
can occur in quite short time, as computational resources available today are not a
barrier. Adequate general forms of meta-knowledge representation and methods of
meta-knowledge acquisition and exploitation will definitely bring many successful
systems, that will more and more often replace human experts in miscellaneous areas.

http://dx.doi.org/10.1007/978-3-319-00960-5_6


Appendix A
Some Statistical Methods

The goal of this appendix is not to give a thorough lecture on statistical methods, but
to present some details about several methods used by the DT induction algorithms
described in the book. Therefore, no complete elementary material is presented here,
but only precise information on particular methods.

All algorithms presented here are closely related to hypothesis testing. When
looking for statistically significant differences between results of two algorithms, or
testing if a sample comes from a random variable of some particular parameters, the
general idea is to define the null hypothesis, prepare a statistic, and estimate, how
probable it is to observe such value of the statistic, assuming the null hypothesis. If
the probability (the p-value) is small enough, one can reject the null hypothesis with
a certain level of confidence.

A.1 Results Comparison

The most robust comparisons of results series are performed on the basis of paired
collections. When preparing a test scenario, one should always remember, that avail-
ability of results assigned to exactly the same learning tasks but obtained with differ-
ent learners will facilitate the most reliable assessment of the learners possibilities.

Comparative studies should apply learning and test procedures with the same
training data and test data for each algorithm being compared. The result should be a
collection of result series of the same length n for each algorithm, A = (A1, . . . , An),
B = (B1, . . . , Bn) and so on, such that all results with the same index should come
from experiments on the same training data and test data samples. For simplicity, the
analyses below concern just two samples A and B.

More detailed explanations of the concepts presented below, together with infor-
mative examples, can be found in the materials prepared and exhibited by Lowry
(1998–2013).
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A.1.1 t-Test and Paired t-Test

The t-test for the significance of the difference between the means of two correlated
samples (paired t-test) assumes normal distribution of the samples. The procedure
starts with calculations of the differences Di = Ai − Bi (i = 1, . . . , n) between the
correlated results. Then, it suffices to estimate the mean value μD and its standard
deviation σμD . The mean estimated from the sample is given by:

m D = 1

n

n∑
i=1

Di . (A.1)

The estimate of the variance of the population is

s2 = 1

n − 1

⎛
⎝ n∑

i=1

D2
i −

(
n∑

i=1

Di

)2
⎞
⎠ . (A.2)

Since we are interested in the standard deviation of the mean μD , we estimate it as

sμD =
√

s2

n
. (A.3)

Finally, we calculate the t-statistic as

t = m D

sμD

. (A.4)

To decide about significance of the difference, the critical value of t distribution with
n−1 degrees of freedom must be calculated or read from appropriate table (keeping
in mind whether a one-tailed or two-tailed test is conducted).

Sometimes, preparation of paired results for comparison is not possible. If we
have two independent samples of results, they can be compared, for example, with
the plain version of the t-test (for two independent samples). Starting with samples
A = (A1, . . . , An) and B = (B1, . . . , Bk), the mean difference may be estimated as

m A−B = 1

n

n∑
i=1

Ai − 1

k

k∑
i=1

Bi . (A.5)

The variance of the source population is then estimated as

s2 =

(∑n
i=1 A2
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i=1 Ai
)2
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+
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i −
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Hence, the standard deviation of the mean difference can be estimated as

sμA−B =
√

s2

n
+ s2

k
. (A.7)

Finally, the t-statistic is calculated as

t = m AB

sμA−B

, (A.8)

and critical values of t distribution with n − 1+ k − 1 degrees of freedom are used.

A.1.2 Wilcoxon Test

Wilcoxon signed-rank test is a non-parametric counterpart of the parametric paired
t-test. Similarly, the Mann-Whitney test is a non-parametric counterpart of the t-test
for independent samples. Here, only the Wilcoxon test is presented. It also starts with
calculations of the differences Di = Ai − Bi (i = 1, . . . , n) between the correlated
results. Then, each difference Di gets split into the sign (+ or −) and the absolute
difference |Di |. Next the results are ordered by the absolute difference |Di | and
assigned ranks Ri . Before the ranks are assigned, the results with zero difference are
usually removed. The ranks are granted from smallest to the largest |Di | in such a
way, that if several scores happen to be the same, all they get the same rank equal to
the mean of the ranks applicable to their positions, for example, if the same scores
are placed at position 2 and 3, they both get the rank of 2.5. Given the ranks, they
are multiplied by the corresponding signs to get the signed ranks Si . All the signed
ranks are summed and the sum denoted as W :

W =
n∑

i=0

Si . (A.9)

Under the null hypothesis (of insignificant differences between the results), the value
of W is expected to follow a distribution with

μW = 0, σW =
√

n(n + 1)(2n + 1)

6
. (A.10)

With increasing n, the distribution of W gets closer to normal. In practice, when
n ≥ 10 the z-ratio is calculated:

z = (W − μW )± 0.5

σW
= W ± 0.5

σW
, (A.11)



328 Appendix A: Some Statistical Methods

and the standard normal distribution is used for making decisions about null hypoth-
esis rejection. The ±0.5 is added for continuity correction (positive when W < 0
and negative otherwise).

For samples smaller than 10-elements, individual analysis of the exact sampling
distribution can be performed.

A.1.3 McNemar’s Test

McNemar’s test verifies significance of the difference between two correlated pro-
portions. It is applied to 2×2 contingency tables with matched pairs of binary values,
to determine whether the row and column marginal frequencies are equal. It perfectly
fits the task of comparing the correctness and errors of decisions made by two clas-
sifiers. After checking the correctness of n decisions of each classifier (A and B),
denote by n11 the number of cases with correct answers of both classifiers, n00—the
number of cases with errors observed in both A’s and B’s decisions, n01—the num-
ber of cases for which A is wrong and B is correct, and n10—how many times A
was right and B was wrong. The contingency table can be written as:

B:1 B:0
A:1 n11 n10
A:0 n01 n00

The null hypothesis is that the two marginal distributions (row sums and column
sums) are the same (marginal homogeneity), which means that n10 = n01.

Thus, the McNemar’s statistic is calculated as

χ2 = (n10 − n01)
2

n10 + n01
, (A.12)

and is distributed as χ2 with 1 degree of freedom. In practice, this path is followed
if n10 + n01 > 25. Also, a continuity correction is often applied in the form:

χ2 = (|n10 − n01| − c)2

n10 + n01
, (A.13)

with c = 0.5 or c = 1.
When n10 + n01 ≤ 25, then assuming binomial distribution of successes with

p = 0.5, the exact probability of k = min(n10, n01) or fewer successes in n10 + n01
trials can be calculated:

P(X ≤ k) =
k∑

i=0

(
n10 + n01

i

)
0.5n10+n01 . (A.14)
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A.1.4 Bonferroni Corrections

Hypothesis testing can be a very precious source of information, if only it is performed
in a fair, reliable manner. So formal procedures can also be used improperly and
falsify conclusions. For example, when a researcher creates a new parameterized
classification algorithm and compares its results with some state-of-the-art methods,
a temptation can occur to test a number of possible values of the parameters to
explore the space of capabilities of the new approach. Comparing each parameter
settings separately, against the state-of-the-art methods, with statistical significance
tests at confidence level α, does not authorize to a conclusion that the best setting
is significantly better at level α, even if the test confirms so. When a number of
learning machines is tested, the probability of obtaining erroneous confirmation of
the significance grows, so interpretation of the α should be changed.

Bonferroni proposed to use appropriately smaller confidence level in such multiple
tests. Without the assumption of statistical independence of the tests, it can be easily
inferred from the Boole’s inequality, that when n tests are performed and the final
conclusions is expected at the confidence level of α, than it suffices to run each of
the n tests with the level of α

n .
Similar analysis of type I errors in multiple tests, but with the assumption of

statistical independence between the tests, leads to the conclusion, that to guarantee
the overall type I error of n tests to be smaller than α, each particular test should be
performed with the confidence level of 1− n

√
1− α.

A.2 Distribution Comparison

The statistical tests presented below are often used in DT induction to determine
whether a random variable (usually a feature or a split) contains some statistically
important information about the classification of interest.

A.2.1 F-Test of ANOVA

Some statistical DT induction algorithms use the F-test of ANOVA (analysis of
variance) to measure how different the groups of objects representing different classes
are.

Given k groups of values Xi1, . . . , Xini (i = 1, . . . , k), the ANOVA F statistic is
defined as the ratio between the variability observed between groups by the within-
group variability:

F =
1

k−1

∑k
i=1 ni (Xi · − X)2

1
n−k

∑k
i=1

∑ni
j=1(Xi j − Xi ·)2

, (A.15)
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where X is the overall mean of the data, and Xi · is the sample mean within i’th
group. Under the null hypotheses that all groups are normally distributed with the
same variance, the definition of F follows the F distribution with k−1, n−k degrees
of freedom.

When the null hypotheses is rejected, the test still does not answer the question
which group is significantly different than the others, but it has been successfully
exploited to detect discrimination potential of variables describing data.

A.2.2 Pearson’s χ2 Test

In classification DT induction the Pearson’s χ2-test is often used to test independence
between a data feature and the class variable. Generally, given two discrete variables
V and C with possible values v1, . . . , vm and c1, . . . , ck respectively, the counts of
observed objects with appropriate combinations of the values may be written as the
following contingency table:

c1 . . . ck
v1 O11 · · · O1k

.

.

.
.
.
.

.

.

.

vm Om1 · · · Omk

Under the null hypothesis, about independence of variables V and C , the expected
values of observed combinations are proportional to the marginal frequencies:

Ei j = 1

n

k∑
u=1

Oiu ·
m∑

w=1

Ow j , (A.16)

where n is the total sample size (the sum of all cells). The χ2 statistic can be defined
as:

χ2 =
m∑

i=1

k∑
j=1

(Oi j − Ei j )
2

Ei j
. (A.17)

Assuming the independence (null hypothesis), the statistic follows the χ2 distribution
with (k − 1)(m − 1) degrees of freedom.

In some approaches to variable selection, a statistic φ2 = χ2

n is used in place of
χ2, to reduce the bias in favor of variables with many values.
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A.2.3 Levene’s Test of Homegeneity of Variances

The null hypothesis in Levene’s test claims that the variances of k groups of values
Xi1, . . . , Xini (i = 1, . . . , k) are equal. The test statistic is defined as

W =
1

k−1

∑k
i=1 ni (Zi · − Z)2

1
n−k

∑k
i=1

∑ni
j=1(Zi j − Zi ·)2

, (A.18)

where Zi j = |Xi j − Xi ·|, and Xi · is the mean of the i th group. Naturally, Zi · and
Z are respectively the mean of the i’th group and the overall mean of Z variable.
Sometimes, in the definition of Zi j , the median or a trimmed mean is used instead
of the mean Xi ·.

Assuming homogeneity of variances, W follows F distribution with k − 1, n− k
degrees of freedom.

A.2.4 Fisher’s Exact Test

Fisher’s exact probability test is a nonparametric technique for analyzing 2 × 2
contingency tables, representing a small sample. It determines whether the groups
differ in the proportion with which they fall into the two classifications. Therefore,
it perfectly fits many situations in DT induction, where analysis of a small sample is
necessary (for example, in the context of deciding whether to prune a branch or not).

Given a 2× 2 contingency table

1 2 Total
Group 1 a b a + b
Group 2 c d c + d

Total a + c b + d n = a + b + c + d

the exact probability of observing the particular frequencies, regarding the marginal
totals as fixed, can be calculated as

p =

(
a + c

a

)(
b + d

b

)
(

n
a + b

) = (a + b)!(c + d)!(a + c)!(b + d)!
n!a!b!c!d! . (A.19)

When the p-value is appropriately small, one can reject the null hypothesis that the
two groups do not differ significantly in the proportions shown in columns.



Appendix B
Some Algebraic Methods

The four algebraic procedures presented in this appendix are a selection of the most
important algebraic transformations referred to in the book. No systematic introduc-
tion to algebra is provided here. Included procedures are not discussed exhaustively,
but just shortly described, to give the reader orientation about the goals of the trans-
formations and a general view of the techniques.

B.1 CrimCoord Transformation

CrimCoord is a short name of a procedure called discriminant coordinate or canon-
ical variate transformation. This transformation is used, for example, in QUEST
and CRUISE methods of the FACT family (see Sect. 2.2.5) to convert symbolic fea-
tures to numeric ones. The CrimCoord transformation detects the most discriminant
direction, analogously to the Principal Component Analysis (PCA) which detects
directions of the largest variance. Discrimination means that the objects are grouped
in a way, so the algorithm is supervised, in opposition to PCA which is unsupervised.
The most discriminant direction means the projection aT that maximizes the ratio of
between-classes to within-classes sum-of-squares

aT Ba
aT Wa

, (B.1)

where:
B =

∑
C∈C

nC (vC − v)(vC − v)T , (B.2)

W =
n∑

i=1

(vi − vci )(vi − vci )T . (B.3)
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The vector vi is the i’th data vector, ci is its class label, v is the mean vector of the
whole set of vectors, vC is the mean of the vectors assigned class C ∈ C and nC is
the number of vectors assigned class label C .

Algorithm B.1 (CrimCoord transformation)

Prototype: CrimCoord(V,c)
Input: n × m matrix V, group labels vector c ∈ C n, C = {C1, . . . , Ck}.
Output: m-dimensional vector.
The algorithm:

1. H← I − 1
n 11T (centering matrix)

2. PDQT ← SVD(HV) (D = diag(d1, . . . , dm), d1 ≥ · · · ≥ dm ≥ 0)
3. r ← max{i = 1, . . . , m : di > max(m, n)d1ε} (ε is the machine epsilon: the smallest

machine number such that 1+ ε > 1)
4. F← (Q1, . . . , Qr )

5. U← diag( 1
d1

, . . . , 1
dr

)

6. G ← (L1, . . . , Lk)
T , where Li = (vCi − v, . . . , vCi − v) (n × nCi matrix, needs group

labels c)
7. a← eigenvector associated with the largest eigenvalue of GFU (another SVD call)
8. return aT UFT

Algorithm B.1 presents the procedure formally. It runs Singular Value Decompo-
sition twice, to eventually determine a vector transforming each vector of the original
space into a real number, being the discriminant coordinate.

In QUEST and CRUISE the method is applied to the binary indicator variables,
encoding symbolic features, so as to convert each symbolic feature to a continuous
one.

B.2 Singular Value Decomposition

Singular Value Decomposition (SVD) is a decomposition of a matrix into a product
of three matrices as described by the following theorem:

Theorem 2.1 For each m × n matrix A of rank r , there exist:

• a m × m orthonormal matrix U,
• a n × n orthonormal matrix V,

• and m × n matrix � =
[

D 0
0 0

]
, D = diag(σ1, . . . , σr ), σ1 ≥ · · · ≥ σr > 0 are

singular values of A,

such that
A = U�VT . (B.4)
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SVD has a number of useful consequences:

• Columns of Uare eigenvectors of AAT for eigenvalues σ 2
1 , . . . , σ 2

r (because
AAT = U�2UT ).
• Columns of Vare eigenvectors of AT A for eigenvalues σ 2

1 , . . . , σ 2
r (because

AT A = V�2VT ).
• If Ais a nonsingular square matrix (n × n), than its inverse is A−1 = V�−1UT ,

where �−1 = diag( 1
σ1

, . . . , 1
σn

).

B.3 Principal Component Analysis

Principal Component Analysis (PCA) is a statistical method of data analysis, often
used for data reduction, visualization of high-dimensional data and other purposes.
It is a linear transformation that changes the basis from the original, possibly cor-
related coordinates into linearly uncorrelated variables in such a way that the first
coordinate (first principal component) of the destination system corresponds to the
greatest variance, second coordinate contains the second greatest variance and so on.
The transformation is often used for dimensionality reduction because several first
principal components usually contain almost all information about the variance in
the data, so that for example, by looking at just two first principal components one
can see all the dependencies in the original multidimensional space.

PCA is usually performed by means of eigenvalue decomposition or Singular
Value Decomposition. A nice compilation of the two methods has been presented by
Shlens (2005).

Formally, PCA transforms a given matrix X into Y = PX with an orthonormal
matrix Psuch that the covariance matrix CY = 1

n−1 YYT is diagonalized. Then, the
rows of Pare the principal components of X.

Performing PCA by means of SVD is based on the property that the principal
components of Xare eigenvectors of the covariance matrix CX = 1

n−1 XXT . Given

this fact, it suffices to perform the SVD of matrix Z = 1√
n−1

XT , because when

Z = U�VT , then the columns of Vare eigenvectors of ZT Z = CX so they are the
principal components of X.

B.4 Box–Cox Transformation

Best results in data modeling can be obtained when data distribution is compatible
with the assumptions of the modeling method. Logarithmic or exponential transfor-
mations may be valuable tools in proper data preparation. This idea lies behind the
Box-Cox power transformation (Box and Cox 1964; Sakia 1992; Qu and Loh 1992)
defined as the following function parameterized by λ:
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x (λ) =
{

xλ−1
λ

when λ �= 0,

log(x) when λ = 0.
(B.5)

CRUISE uses the transformation before linear discriminant analysis is applied to
split a tree node. Before the transformation, all data points are shifted to make the
sample contain positive values only. The shift is defined as θ = x(2) − 2x(1), where
x(1) and x(2) are the first and the second order statistics of the sample (that is the first
and the second smallest values occurring in the sample). Transformation parameter
λ is selected to minimize the following formula:

k∑
j=1

nC j∑
i=1

(
x (λ)

j i − x (λ)
j

)2

exp

⎛
⎝−2

n
λ

k∑
j=1

nC j∑
i=1

log x ji

⎞
⎠ , (B.6)

where nC j is the count of objects in the sample representing class C j , x ji is the value

of i’th object from class C j , and x (λ)
j is the mean of transformed values of objects

from class C j .
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