B A
. A
- . %‘Q\ -
. L\
i X«
o

Quick answers to common problems

Microsoft Dynamics AX 2012
Development Cookbook

Solve real-world Microsoft Dynamics AX development problems
with over 80 practical recipes

_ _ R .-
Mindaugas Pocius [PACKT] enterprise

PUBLISHING

http://www.it-ebooks.info/
http://www.allitebooks.org

Microsoft Dynamics
AX 2012 Development
Cookbook

Solve real-world Microsoft Dynamics AX development
problems with over 80 practical recipes

Mindaugas Pocius

enterprise 83

professional expertise distilled

PUBLISHING

BIRMINGHAM - MUMBAI

[vuwwveiti eblookskénden]

http://www.it-ebooks.info/
http://www.allitebooks.org

Microsoft Dynamics AX 2012 Development
Cookbook

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: December 2009

Second edition: May 2012
Production Reference: 1270412

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-84968-464-4
www . packtpub.com

Cover Image by David Gutierrez (bi Ibaorocker@yahoo.co.uk)

[vumwwveliieblookkénten]

http://www.it-ebooks.info/
http://www.allitebooks.org

Credits

Author
Mindaugas Pocius

Reviewers
Angela McClelland

Yev Taranovs

Acquisition Editor
Kerry George

Lead Technical Editor
Meeta Rajani

Azharuddin Sheikh

Technical Editors
Merin Jose

Lubna Shaikh
Mehreen Shaikh

Copy Editor
Brandt D'Mello

Project Coordinators
Alka Nayak

Proofreader
Kelly Hutchinson

Indexer
Tejal Daruwale

Rekha Nair

Hemangini Bari

Production Coordinator

Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

[vumwwveliieblookkénten]

http://www.it-ebooks.info/
http://www.allitebooks.org

About the Author

Mindaugas Pocius is currently a freelance Dynamics AX technical and functional
consultant and trainer at DynamicsLab Limited (www.dynamicslab.com). The company
specializes in providing development, consulting, and training services for Microsoft Dynamics
AX resellers and customers.

Mindaugas started his IT consulting career back in 2001 while still in his Information Technology
Master Studies at a Lithuanian university. Since then he has become a recognized Microsoft
Certified Professional for AX in all major areas: Development, Configuration and Installation,
Financials, Projects, and Trade and Logistics. He is also a Certified Microsoft Trainer for
Dynamics AX and has delivered numerous Dynamics AX training courses across Europe.

From 2001 to 2012, Mindaugas has participated in over 20 Dynamics AX implementations.
He has had a wide range of development, consulting, and leading roles, while always
maintaining a significant role as a business application developer.

In December 2009, Mindaugas released his first book, "Microsoft Dynamics AX 2009
Development Cookbook", Packt Publishing, which is the predecessor of this book.

First of all, | would like to thank my wife Rasa and my two boys Dominykas
and Augustas for their support and understanding during my long hours
spent on this book. | also want to apologize for the time | have stolen from
them to make this book real.

Secondly, | wish to thank the reviewers—Angela and Yev—my colleagues,
very experienced Dynamics AX developers, and good friends.

And lastly, special thanks should be given to the Packt Publishing team who
made this book possible.

[vumwwveliieblookkénten]

http://www.it-ebooks.info/
http://www.allitebooks.org

About the Reviewers

Angela McClelland is a Software Developer and Technical Consultant for Dynamics AX
(AX) currently working as a freelance consultant in the United Kingdom.

Angela began working with AX in 2001, while completing a Computer Science degree at The
University of Waikato in New Zealand. After a successful implementation of version 2.5, and a
later upgrade to 3, the spouse and bags were packed up and moved over to England to seek
out bigger project challenges, and for a taste of world travel.

Since this move, Angela has worked on many AX implementations, specializing in business
solutions design, X++ programming, reporting, and business intelligence. She is a Microsoft
Certified Professional for AX: Development, Installation and Configuration, as well as key
modules: Finance, Projects, Production, and Trade and Logistics. She is also a Microsoft
Certified Trainer for AX.

A big thanks to Mindaugas for his efforts in writing this book, and for inviting
me to be one of the reviewers. | have learned a lot, and already have plans
to make use of some of these handy recipes.

Yev Taranovs is an experienced Dynamics AX consultant. Yev has been working with AX
since 2002 and has a wide angle of expertise, both technical and functional. Apart from
Dynamics AX, Yev is also working with other Microsoft technologies including Microsoft CRM,
SharePoint, Reporting Services, Analysis Services, and Visual Studio.

Yev's home town is Riga, Latvia. He started his Dynamics career there and moved to the
United Kingdom in 2005. Yev is currently working for Hitachi Solutions.

[vumwwveliieblookkénten]

http://www.it-ebooks.info/
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www . PacktPub . com for support files and downloads related to your book.
Did you know that Packt offers eBook versions of every book published, with PDF and ePub

files available? You can upgrade to the eBook version at www . PacktPub.comand as a

print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub . com for more details.

At www . PacktPub . com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

[@ PACKT! 5"

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library.
Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?

» Fully searchable across every book published by Packt
» Copy and paste, print and bookmark content

» Ondemand and accessible via web browser

Free Access for Packt account holders

If you have an account with Packt at www . PacktPub . com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

Instant Updates on New Packt Books

Get notified! Find out when new books are published by following @PacktEnterprise on Twitter,
or the Packt Enterprise Facebook page.

[vumwwveliieblookkénten]

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/
http://www.it-ebooks.info/
http://www.allitebooks.org

Table of Contents

Preface 1
Chapter 1: Processing Data 7
Introduction 7
Creating a new number sequence 8
Renaming the primary key 13
Merging two records 17
Adding a document handling note 19
Using a normal table as a temporary table 21
Copying a record 22
Building a query object 25
Using a macro in an SQL statement 30
Executing a direct SQL statement 31
Enhancing the data consistency check 37
Exporting data to an XML file 41
Importing data from an XML file 44
Creating a comma-separated value file 46
Reading a comma-separated value file 49
Using the date effectiveness feature 52
Chapter 2: Working with Forms 57
Introduction 57
Creating a dialog 58
Handling a dialog event 63
Building a dynamic form 67
Adding a form splitter 72
Creating a modal form 77
Modifying multiple forms dynamically 79
Storing last form values 82
Using a tree control 85

[vuwwveiti eblookskénden]

http://www.it-ebooks.info/
http://www.allitebooks.org

Table of Contents

Building a checklist 97
Adding the View details link 105
Chapter 3: Working with Data in Forms 109
Introduction 109
Using a number sequence handler 110
Creating a custom filter 113
Creating a custom instant search filter 117
Building a selected/available list 120
Preloading images 127
Creating a wizard 134
Processing multiple records 144
Coloring records 146
Adding an image to records 147
Chapter 4: Building Lookups 157
Introduction 157
Creating an automatic lookup 158
Creating a lookup dynamically 161
Using a form for building a lookup 163
Building a tree lookup 169
Displaying a list of custom options 173
Another way of displaying custom options 175
Building a lookup based on record description 179
Building the Browse for Folder lookup 185
Building a lookup for selecting a file 190
Creating a color picker lookup 194
Chapter 5: Processing Business Tasks 201
Introduction 201
Using a segmented entry control 202
Creating a general journal 207
Posting a general journal 215
Processing a project journal 217
Creating and posting a ledger voucher 221
Changing an automatic transaction text 225
Creating a purchase order 228
Posting a purchase order 231
Creating a sales order 236
Posting a sales order 239
Creating an electronic payment format 243

[vumwwveliieblookkénten]

http://www.it-ebooks.info/
http://www.allitebooks.org

Table of Contents

Chapter 6: Integration with Microsoft Office 253
Introduction 253
Creating an Excel file 254
Reading an Excel file 256
Creating a Word document from a template 259
Creating a Word document with repeating elements 262
Creating a Microsoft Project file 266
Sending an e-mail using Outlook 271

Chapter 7: Using Services 275
Introduction 275
Consuming the system query service 276
Consuming the system metadata service 279
Consuming an existing document service 281
Creating a document service 285
Consuming a document service 290
Using an enhanced document service 292
Creating a custom service 298
Consuming a custom service 301
Consuming an external service 303

Chapter 8: Improving Development Efficiency 309
Introduction 309
Creating an editor template 310
Modifying the Tools menu 315
Modifying the right-click context menu 317
Searching for an object in a development project 322
Modifying the Personalization form 325
Modifying the application version 329

Chapter 9: Improving Dynamics AX Performance 333
Introduction 333
Calculating code execution time 334
Writing efficient SQL statements 336
Caching a display method 338
Using Dynamics AX Trace Parser 341
Using SQL Server Database Engine Tuning Advisor 345

Index 349

[vumwwveliieblookkénten]

http://www.it-ebooks.info/
http://www.allitebooks.org

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

As a Dynamics AX developer, your responsibility is to deliver all kinds of application
customizations, whether it is a small adjustment or a bespoke module. Dynamics AX is a
highly customizable system and requires a significant amount of knowledge and experience
to deliver quality solutions. One goal can be achieved in multiple ways and there is always the
question of which way is the best.

This book takes you through numerous recipes to help you with daily development tasks.
Each recipe contains detailed step-by-step instructions along with application screenshots
and in-depth explanations. The recipes cover multiple Dynamics AX modules, so at the same
time the book provides an overview of the functional aspects of the system for developers.

What this book covers

Chapter 1, Processing Data, focuses on data manipulation. It explains how to build data
queries, how to check and modify existing data, how to read and write external files, and how
to use date effectiveness.

Chapter 2, Working with Forms, covers various aspects of building forms in Dynamics AX. In
this chapter, dialogs and their events are explained. Also, various useful features such as
splitters, tree controls, checklists, and others are explained.

Chapter 3, Working with Data in Forms, basically supplements the previous chapter and
explains data organization in forms. Examples in this chapter include instructions on how to
build form data filters, process multiple records, and work with images and colors.

Chapter 4, Building Lookups, covers all kinds of lookups in the system. The chapter starts with
a simple automatically-generated lookup, continues with more advanced ones, and finishes
with standard Windows lookups such as the file selection dialog and color picker.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Chapter 5, Processing Business Tasks, explains the usage of the Dynamics AX business logic
API. In this chapter, we cover topics on how to process journals, purchase orders, and sales
orders. Other features such as modifying transaction text and creating electronic payment
formats are included too.

Chapter 6, Integration with Microsoft Office, shows how Word, Excel, Outlook, and Microsoft
Project applications could be integrated with Dynamics AX.

Chapter 7, Using Services, explains how to use services in Dynamics AX. The chapter covers
standard query, metadata, and document system services. It also demonstrates how to create
custom services and how to consume external services.

Chapter 8, Improving Development Efficiency, presents a few ideas about how to make daily
development tasks easier. This chapter demonstrates how to build code templates, modify
the tools and the right-click context menus, use search in development projects, and how to
customize the personalization form.

Chapter 9, Improving Dynamics AX Performance, discusses how system performance could
be improved by following several simple rules. This chapter explains how to calculate code
execution time, how to write efficient SQL statements, how to properly cache display methods,
and how to use Dynamics AX Trace Parser and SQL Server Database Engine Tuning Advisor.

What you need for this book

All coding examples were done using a virtual Microsoft Dynamics AX 2012 Image from the
Microsoft Learning Download Center. The following list of software from the virtual image was
used in this book:

» Microsoft Dynamics AX 2012 (kernel: 6.0.947.0, application: 6.0.593.0)

» Microsoft Dynamics AX Trace Parser (version: 6.0.947.0)

» Microsoft Windows Server 2008 R2 Enterprise

» Microsoft SQL Server 2008 R2

» Microsoft Office Excel 2010

» Microsoft Office Word 2010

» Microsoft Office Outlook 2010

» Microsoft Office Project 2010

» Microsoft Visual Studio 2010

» Microsoft Internet Explorer 8

» Notepad

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Although all recipes were tested on the mentioned software, they might work on older or
newer software versions without any implications or with minor code adjustments.

Who this book is for

This book is for Dynamics AX developers primarily focused on delivering time proven
application modifications. Although new X++ developers could use this book alongside
their beginner guides, this book is more focused on people who are willing to raise their
programming skills above beginner level and at the same time learn functional aspects of
Dynamics AX. So, some Dynamics AX coding experience is expected.

Conventions

In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "Dynamics AX contains a list of
NumberSeqgApplicationModule derivative classes, which holds the number sequence
setup data for the specific module."

A block of code is set as follows:

static void CustAccountRename(Args _args)

{
CustTable custTable;

select firstOnly custTable
where custTable.AccountNum == "1103";

if (custTable.Recld)

{
custTable_AccountNum = "1103_";
custTable.renamePrimaryKey(Q);

}

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "Run the number sequence
wizard by clicking on the Generate button in Organization administration | Common |
Number sequences | Number sequences."

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

% Warnings or important notes appear in a box like this.

~\l
Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www . packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code

You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find

any errata, please report them by visiting http://www.packtpub.com/support, selecting
your book, clicking on the errata submission form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will be
uploaded to our website, or added to any list of existing errata, under the Errata section of
that title.

—a]

www.it-ebooks.info

http://www.packtpub.com
http://www.packtpub.com/support
http://www.it-ebooks.info/

Preface

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions

You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

www.it-ebooks.info

mailto:copyright@packtpub.com
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Processing Data

In this chapter, we will cover the following topics:

» Creating a new number sequence

» Renaming the primary key

» Merging two records

» Adding a document handling note

» Using a normal table as a temporary table
» Copying a record

» Building a query object

» Using a macro in an SQL statement

» Executing a direct SQL statement

» Enhancing the data consistency check
» Exporting data to an XML file

» Importing data from an XML file

» Creating a comma-separated value file
» Reading a comma-separated value file
» Using the date effectiveness feature

Introduction

This chapter focuses on data manipulation exercises. Here, we will discuss how to work

with query objects from X++ code. We will also discuss how to reuse macros in X++ SQL
statements and how to send SQL statements directly to the database. This chapter will explain
how to rename primary keys, how to merge and copy records, how to add document handling
notes to selected records, and how to create and read XML and comma-separated files. The
chapter ends with a recipe about the date effectiveness feature.

www.it-ebooks.info

http://www.it-ebooks.info/

Processing Data

Creating a new number sequence

Number sequences in Dynamics AX are used to generate specifically formatted numbers for
record identification. It could be anything from voucher numbers or transaction identification
numbers to customer or vendor accounts.

When developing custom functionality, very often one of the tasks is to add a new number
sequence to the system to support newly created tables. Dynamics AX contains a list of
NumberSeqgApplicationModule derivative classes, which holds the number sequence
setup data for the specific module.

These classes are read by the number sequence wizard, which detects existing number
sequences and proposes to create the missing ones or newly added ones. The wizard is
normally run as part of the application initialization. It can also be rerun at any time later
when expanding the Dynamics AX functionality used, where a setup of additional number
sequences is required. The wizard also has to be rerun if new custom number sequences
are added to the system.

In this recipe, we will add a new number sequence to the system. In a standard application,
the customer group number is not driven by any number sequence, so we will enhance this
by creating it.

How to do it...

Carry out the following steps in order to complete this recipe:

1. Open the NumberSegModuleCustomer class in the Application Object Tree (AQT),
and add the following code to the bottom of the loadModule() method:

B Downloading the example code y
\1 You can download the example code files for all Packt books
Ny you have purchased from your account at http://www .
Q packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

datatype.parmDatatypeld(extendedTypeNum(CustGroupld));
datatype.parmReferenceHelp(''Customer group I1D'™);
datatype.parmWizardlsContinuous(false);
datatype.parmWizardlsManual (NoYes: :No);
datatype.parmWizardlsChangeDownAl lowed(NoYes: :Yes);
datatype.parmWizardlsChangeUpAllowed(NoYes::Yes);
datatype.parmWizardHighest(999);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

datatype.parmSortField(20);
datatype.addParameterType(

NumberSeqgParameterType: :DataArea, true, false);
this.create(datatype);

Create a new job with the following code and run it:

static void NumberSeqgLoadAll(Args _args)

{
NumberSegApplicationModule: :loadAlIl();

}

Run the number sequence wizard by clicking on the Generate button in Organization
administration | Common | Number sequences | Number sequences, and click on
the Next button, as shown in the following screenshot:

E;]Setup number sequences (1 - cew) EI =] @I
‘_ Welcome
AL Microsoft Dynamics This wizard helps you create the required nurmber sequences inyour

application setup,

The application determines which number sequences have not been
specified and includes anly these in the list,

You can choose to accept the application proposal for setup of each of the
unspecified number sequences,

You can also choose to change names, wvalues ar other setup parameters,
befare the application creates your number sequences,

Ifyou do notwant the application to create a specific number sequence,
you can just delete it in the list.

< Back Mext = ” Cancel

Invuwwveltieblookkéntont

http://www.it-ebooks.info/
http://www.allitebooks.org

Processing Data

4. Click on Details to view more information. Delete everything apart from the lines
where Area is Accounts receivable and Reference is Customer group. Note the
number sequence codes, and click on the Next button:

I;—;] Set up number sequences (1 - ceu) EI\ = I@I
Setup

Update the setup of each number sequence

Custormer group ID
1
‘\lJ

7< Delete Include scope in format Remave scope fram format

[0K Area Reference Murber sequence code Srallest Largest C. Format a
v Accounts receivable Customer group Acco 1206 1 009 [7] CERE-#
vy Accounts receivable Customer group Acco_1307 1 999] CER-#
[Accounts receivable Customer group Acco 1308 1 999 7] CEU-#a#
vy Accounts receivable Customer group Acco_1309 1 999 [7] CEUE-## L
vy Accounts receivable Customer group Acco 1310 1 999 [7] CEUF-st
Lvd Accounts receivable Customer group Acco_1311 1 999 [7] DAT-##
[< Back I [Mext =] [Cancel

5. On the last page, click on the Finish button to complete the set up:

I;—;] Set up number sequences (1 - ceu) EI\ = IIEI
Completed

‘- Microsoft Dynamics'

The application is now ready to create nurmber sequences for 13 references in total in the system

Area Murnber of

Accounts receivable 13

< Back ” Finish H Cancel

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

The newly created number sequences can now be found in Organization
administration | Number sequences | Number sequences, as shown in the
following screenshot:

MNumber sequence code « Name Smallest Largest Mext Format o
Acco_1295 Acco_1295 1 1 CEBD

Acco_ 1288 Acco_ 1296 140000 148899 140000 CEBD-#HHERERR

Acco_1297 Acco_1297 150000 153999 150000 CEBD-#RRRE

Acco_1288 Acco_ 1288 1 499999 1 CEBD-tRHRREE

Acco_1299 Acco_1299 1 999 1 CEBD-###

Acco_1300 Acco_1300 1 999 1 CEC-a##

Acco_1301 Acco_1301 1 999 1 CEDL-#t

Acco_ 1302 Acco_1302 1 999 1 CEE-###

Acco_1303 Acco_1303 1 999 1 CEED-###

Acco_1304 Acco_1304 1 999 1 CEEI-s#

Acco_1305 Acco_1305 1 999 1 CEEU-###

Acco_1308 Acco_1306 1 999 1 CERE-##¢

Acco_1307 Acco_1307 1 999 1 CERW-##%#

Acco_1308 Acco_1308 1 999 1 CEU-aH

Acco_1309 Acco_1309 1 ‘ 999 1 CELE-###

Acco_1310 Acco_1310 1 999 1 CEUF-#&

Acco_1311 Acco_1311 1 999 1 DAT-#

Acco_16 CEC-Acco_16 1 499999 1 CEC-#HHHERE

Acco_l6 Acco_l6 1 999599 1080 ARPESREEE

Acco_16 CEBD-Acco_16 1 499999 1 CEBD-tHHERHE 3
Acco_lGmov Acco_l6 1 999599 1078 ARPESRREEE

Acco 17 Acco 17 1 999909 T APPHRRHN

Acco_17 Acco_17 1 999599 997 APPESREEE

Acco_ 173 Acco_ 173 1 49999999 26 HEERHERE 173 i

Open Organization administration | Number sequences | Segment configuration
and notice the new Customer group reference:

:i Segment configuration (1)

Reference:

Address book
Alerts

Bank

Basic

Bill of materials

Budget

Cost accounting
Document managerment
Environmental sustainability
Fixed asset

Foreign trade

General ledger

Human resources

IBS

Internet

Inwventory managerment
Master planning
Organizations
PRODCOM

m

Product Builder ~

Bill 1D

Closing voucher
Collection letter
Collection lettervoucher
Customer account

Exchange rate adjustment wouch
Free text credit note

Free text credit note woucher
Free text invoice

Free text invoice voucher
Interest note

Interest note woucher
One-time customer
Payment ID

Payrment management voucher
Payrment voucher
Recurrence ID

Reimburserment

Remittance nurmber

Area

Reference:
Countries/regions:
Segments

Company!

1 You cannot change a number sequence configuration that is curently in use. Before you change this configuiation, you must delete .
Accounts receivable

Custormer group

[F=3ECH

(=X5)

Close |

www.it-ebooks.info

-

http://www.it-ebooks.info/

Processing Data

8. Open Accounts receivable | Setup | Accounts receivable parameters and go to the
Number sequences tab page. Here we should see the new number sequence code:

|- Accounts receivable parameters (L - ceu) E@
oe
General Set up number sequences for receivables documents
Updates
Project
Reference MNumber sequence code Sales tax book section Reuse numbers Use same number as W
SUGRITEIR) e RMA nurnber AR]
Shiprments Quotation AR_D20 |
Quotation journal AR_DZL =]
el enit) elem s Quotation confirmation AR_022 =]
Settlernent Confirmation AR 023 (]
o Picking list AR_024 |
Packing slip AR_0ZS (]
Callections Customer invoice AR_D26]
Credit rting Sales credit note AR_D2T |
Packing slip woucher AR_030 = Packing slip
Prices Customer invaice voucher AR_031 = Customer invoice
aF Sales credit note woucher AR 032 (] Sales credit note
Price/fdiscount joumal number AR_023] L
Invertary dimensions Bill of lading AR_029] 1
* Number sequences Sales agreement 1D Acco_1007]
Recurrence ID Acca 1177]
Packing slip correction woucher Sale_1240 |
i Custorner group § Acco_1308 =
Customer graup ID
Reference type Close |

9. The last thing to do is to create a helper method for this number sequence. Locate
the CustParameters table in the AOT and create the following method:

public server static NumberSequenceReference numRefCustGroupld()

{

return NumberSeqReference: :findReference(
extendedTypeNum(CustGroupld));
}

We start the recipe by adding a number sequence initialization code into the
NumberSegModuleCustomer class. As we can understand from its name, it holds the
initialization of all number sequences that belong to the Accounts receivable module.

The code in the loadModule () method defines the default number sequence settings to
be used in the wizard, such as data type, description, highest possible number, and so on.
Additional options, such as starting sequence number, number format, and others could
also be added here. All mentioned options could be changed while running the wizard. The
addParameterType() method is used to define number sequence scope. In the example
we created a separate sequence for each Dynamics AX company.

=

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Before we start the wizard, we need to initialize number sequence references. This is normally
done as a part of the Dynamics AX initialization checklist, but in this example we have to execute
it manually by calling the loadAl 1 () method of the NumberSeqgApplicationModule class.

Next, we will run the wizard. We will skip the welcome page and in the second step of the
wizard, the Details button can be used to display more options. The options can also be
changed later in the Number sequences form before or even after the number sequence is
actually used. The last page shows an overview of what will be created. Once completed, the
wizard creates new records in the Number sequences form for each company.

The newly created number sequence reference appears in the Segment configuration form.
Here we can see that the Data area checkbox is checked, meaning that we will have separate
number lists for each company. The number sequence setup can normally be located in the
module parameter forms.

See also

See Chapter 3, Working with Data in Forms:
» Using a number sequence handler

Renaming the primary key

Most of you, who are familiar with the Dynamics AX application, have probably used the
standard Rename function. This function allows us to rename the primary key of almost
any record. It is irreplaceable if a record was saved by mistake or simply needs renaming.
The function ensures data consistency that is, all related records are renamed too. It can be
accessed from the Record information form (shown in the following screenshot), which can
be opened by selecting Record info from the right-click menu on any record:

= Record information (1) [==

The following actions are available

Customers

Custorer account: 1101

. . . L —
aF R_ename the unique record key, This action is - ——
time consuming because all references will be

updated too,

;. Microsoft Dynamics A% (1) o | @ | =]

j Display informati Enter a new value for 1101,

record.
Custorner account:

_2 Create insert scri OK l I Cancel
The script lines a

Customer account number.

www.it-ebooks.info

http://www.it-ebooks.info/

Processing Data

When it comes to manual mass renaming, this function might be very time-consuming.
An alternative way of doing that is to create a job that automatically runs through all

required records and calls this function automatically.

This recipe will explain how the record primary key can be renamed through the code. As an

example, we will create a job that renames a customer account.

How to do it...

Carry out the following steps in order to complete this recipe:

1. Open Accounts receivable | Common | Customers | All customers and find the
account that has to be renamed:

] Mame = Customer account Telephone Extension
Banana Conference Center 2014 123-555-0115 16
Basketball Stadium 2121
Birch Cormpany q02301 111-555-0113
Black Curse Sirport (LI5) 2202

[¥]§ Cave Wholesales 11032 123-355-0161
Cheetah Concert Hall 2104 (0123) 4367 8901
Consolidated Messenger Marketing 2003 123-555-0121 10
Contoso Europe a100 01234 567390
Contoso Retail Boston 3007 123-555-0115
Contoso Retail Chicago 3010 123-555-0118
Contoso Retail Dallas 3009 123-555-0117
Contoso Retail Demver 3012 123-555-0120
Contoso Retail Detroit 3011 123-555-0114
Contoso Retail Los Angeles 3003 123-555-0116 18
Contoso Retail Miami 3006 123-555-0114
Contoso Retail Mew York 2008 123-355-0118
Contoso Retail Portland 3004 123-555-0114 18
Contoso Retail San Diego 2001
Contoso Retail Seattle 3002 412-555-0119 333
Contoso Retail Washington DC 3005 123-555-0113

m

=

www.it-ebooks.info

http://www.it-ebooks.info/

2. Click on Transactions in the action pane to check the existing transactions:

1 Custorner transactions (1 - ceu) - Youcher: PYY-10349, 87182010, Customer account: 1103 EI@
“oucher History Payrment managerent™ Cash flow forecasts Original document Cpen > 1| ﬂ

Chapter 1

Overview | General | Payment | Bill of exchange | Settlement | Callections | Histary | Financial dimensions
[voucher Transaction type Date Irvoice BillID Sequence number Status Remittance number Amount =
ARPO0LI00E Payment 4/25/2.., 1] MNone
[[] shv-101008 Sales arder 5/9/2008 10100% I Mone
ARPO01030 Payment 5162, 0 Mone
SM-101038 Sales order 5/23/2.. 101038 Il MNane
SCY-100080 Sales arder 5/30/2.. 100080 1] MNone
SM-101059 Sales order 6/13/2.. 101059 I Mone
W0_000001 8/18/2.., 0 Mone
P¥-10344 Foreign currency revaluation 8/18/2.. 100030 0 MNone
P-10345 Foreign currency revaluation 8/18/2.. 100970 0 MNone =
P¥W-10346 Foreign currency revaluation 8/18/2.. 100979 n Mone
P¥-10347 Foreign currency revalustion 8/18/2. 101008 0 Mone
P¥-10348 Foreign currency revaluation 8/18/2.. 101038 0 MNone
P¥W-10349 Foreign currency revaluation 8/18/2.. 101059 1] MNone
1 [T} b
Description: Amount: Balance:
Currency rate adj. 101033 (.00 000
4 « » M| ||| B | show open transactions only, | A{0) | USD | ceu Close |

3. Open the AOT, create a new job named CustAccountRename, and enter the
following code. Use the previously selected account:
static void CustAccountRename(Args _args)

{
CustTable custTable;

select firstOnly custTable
where custTable.AccountNum == "1103";

if (custTable.Recld)

{
custTable_AccountNum = "1103_*;

custTable.renamePrimaryKey(Q);

www.it-ebooks.info

http://www.it-ebooks.info/

Processing Data

4. Run the job and check if the renaming was successful, by navigating to Accounts
receivable | Common | Customers | All customers again, and finding the new
account. The new account should have retained all its transactions and other
related records, as shown in the following screenshot:

Marme = Custormer account Telephone Extension i
Banana Conference Center 2014 123-555-0115 16
Baskethall Stadium 121
Birch Company anz2anl 111-555-0113
Elack Curve Airport (US) 2202
7 ECa\.-'e Mitholesales 1103_ 123-555-0161
Cheetah Concert Hall 2104 (01237 4567 8901 =
Consolidated Messenger Marketing an03 123-555-0121 10
Contoso Europe a100 01234 567890
Contoso Retail Boston o7 123-555-0115
Contoso Retail Chicago 1010 123-555-0118
Contoso Retail Dallas 009 123-555-0117
Contoso Retail Derver iz 123-555-0120
Contoso Retail Detroit 011 123-555-0119
Contoso Retail Los Angeles 3003 123-555-0116 18
Contoso Retail Miami 3006 123-555-0114
Contoso Retail Mew York 3008 123-555-0116
Contoso Retail Portland 3004 123-555-0116 12
Contoso Retail San Diego 3001
Contoso Retail Seattle oz 412-555-0119 EEE]
Contoso Retail Washington DC 3005 123-555-0113 il

5. Click on Transactions in the action pane in order to see if existing transactions are
still in place:

—,; Customer transactions (1 - cew) - Woucher: PY-10349, 18/08/2010, Customer account: 1103 _ E@
Woucher History Payment managernent™ Cash flow forecasts Oviginal document Open > 7| 0

Owerview | General | Payment | Bill of exchange | Settlement | Collections | History | Financial dimensions
“oucher Transaction type Date Invoice BilllD Sequence number Status Remittance number Amoun *
ARPO0L008 Payment 25/04/2... 0 Maone
SIV-101008 Sales order 09/05/2.. 101008 0 None
ARPO0L030 Payment 16/05/2... 0 Mone
SIV-101038 Sales order 23/03/2.. 101038 0 None
SCV-100000 Sales order 30/05/2.. 100080 0 Mone
SM-101059 Sales order 13/06/2.. 101059 0 Mone
WO_000001 18/08/2... 0 Mone
Pf-10344 Foreign currency revaluation 18/08/2.. 100080 0 Mane
PYy-10345 Foreign currency revaluation 18/08/2.. 100870 0 MNone =
Py-10346 Foreign currency revaluation 18/08/2.. 100979 0 Maone
PYy-10347 Foreign currency revaluation 18/08/2.. 101008 0 None
PYy-10348 Foreign currency revaluation 18/08/2.. 101038 0 Mane
P¥W/-10349 Foreign currency revaluation 18/08/2.. 101039 0 MNone

< m r
Description: Amount: Balance:
Currency rate adj. 101059 0.00 0.00
4 < > Pl |||] | Show open transactions only. |) | USD | ceu Close

5]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

In this recipe, first we will select the desired customer account that is, 1103. Here we
can easily modify the select statement to include more accounts for renaming, but for
demonstration purposes, let's keep it simple. Note that only fields belonging to a table's
primary key can be renamed in this way.

Then we call the table's renamePrimaryKey () method, which does the actual renaming.
The method finds all the related records for the selected customer account and updates them
with the new account. The operation might take a while depending on the volume of data, as
the system has to update multiple records located in multiple tables.

Merging two records

For various reasons, data in the system such as customers, ledger accounts, configuration
settings, and similar data may become obsolete. This could be because of changes in the
business or it could simply be a user input error. For example, two salespeople could create
two records for the same customer, start entering sales orders and post invoices. One of the
ways to solve that is to merge both records into a single one.

In this recipe, we will explore how to merge one record into another one, including all related
transactions. For this demonstration, we will merge two ledger reason codes into a single one.

How to do it...

Carry out the following steps in order to complete this recipe:

1. Open General ledger | Setup | Ledger reasons to find two reason code records to be
merged. In this example we will use COUNTER and AUCTION:

4 Ledger reasons (1 - cewl) E\@
Mew 2 Delete 1l ﬂ
Reason code = Default comment Ledger i

Outside appraisal
Sold at auction o
Best deal on the quantity ordered

m

BestDealOn Best deal on the pricing

COUMTER Sold at counter Vv

Deliver~01 Delivery Tirme

Delivery Late Delivery i
A code indicating a reason for a transaction or other action Clase

-

www.it-ebooks.info

http://www.it-ebooks.info/

Processing Data

2.

Open the AQT, create a new job named LedgerReasonMerge with the
following code:

static void LedgerReasonMerge(Args _args)

{
ReasonTable reasonTableDelete;
ReasonTable reasonTable;
ttsBegin;
select firstOnly forUpdate reasonTableDelete
where reasonTableDelete_Reason == "COUNTER";
select firstOnly forUpdate reasonTable
where reasonTable.Reason == "AUCTION";
reasonTableDelete.merge(reasonTable);
reasonTable._doUpdate();
reasonTableDelete.doDelete();
ttsCommit;
}

Run the job to merge the records.

Open the Ledger reasons form again and notice that one of the reasons were deleted
and all related transactions have also been updated to reflect the change:

‘i Ledger reasons (1 - ceu) EI@I
Mew X Delete 18] 9
Reasoncode +« Default comment Ledger o
APPR. Outside appraisal] =
Sold at auction
I.BestDea~Dl [Best deal on the quantity ordered [
BestDealOn Best deal on the pricing [
Deliver~01 Delivery Time |
Delivery Late Delivery] 5
A code indicating a reason for a transaction or other acticn Close |

First, we retrieve both records from the database and prepare them for updating.

The key method in this recipe is the merge () method. It will ensure that all data from one
record will be copied into the second one and all related transactions will be updated to
reflect the change.

=]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Finally, we save changes on the destination record and delete the first one.

All code has to be within the ttsBegin/ttsCommit pair as we perform several database
update operations in one go.

Such a technique could be used to merge two, or even more, records of any type.

Adding a document handling note

It is good practice to add some kind of note to the record when doing data renaming, merging,
or any other data manipulation task, whether it's manual or automatic. Dynamics AX allows
adding a note or a file to any record by using the so-called Document handling feature.

By default, it is enabled for all tables, but can be restricted to fewer tables by changing its
configuration parameters.

Document handling can be accessed from the form action pane by clicking on the
Attachments button, choosing Document handling from the File | Command menu or
selecting the Document handling icon from the status bar. Document handling allows
adding text notes or files to any currently selected record.

Dynamics AX also allows adding document handling notes from the code too, which helps
developers or consultants to add additional information when doing various data migration
or conversion tasks.

In this recipe, we will add a note to a vendor account.

How to do it...

Carry out the following steps in order to complete this recipe:

1. Open Accounts payable | Common | Vendors | All vendors, and locate the vendor
account that has to be updated:

Vendor account MName =« Vendor hold Phone Extension i
3008 A, Daturmn Cerporation Mo 987-555-0119 5
3106 A, Datum Electronics Mo
713001 Adventure Services Mo
3107 Alpine Electronics Mo
3005 Alpine Ski House Mo 087-555-0126
8500 April Stewart Mo 099-555-5555 555
4203 Beetle Electronics Mo
3113 Blue Yonder Repair Mo -

[vumwwveliieblookkénten]

http://www.it-ebooks.info/
http://www.allitebooks.org

Processing Data

2. Open the AQT, create a new job named VendAccountDocu, and enter the following
code. Use the previously selected vendor account:

static void VendAccountDocu(Args _args)

{
DocuRef docuRef;
VendTable vendTable;
vendTable = VendTable::find("3001%);
docuRef_RefCompanyld = vendTable.dataAreald;
docuRef_RefTableld = vendTable.Tableld;
docuRef_RefRecld = vendTable.Recld;
docuRef._Typeld = "Note";
docuRef_Name = "Imported”;
docuRef.Notes = "This vendor was imported.";
docuRef._insert();

}

3. Runthe job to create the note.

4. Click on the Attachments button in the form's action pane or select Document
handling from the File | Command menu to view the note added by our code:

—“ Document handling of Vendor account: 3001, (1) o=@ [=]
m Mew~™ X Delete Setup* Functions™ Inquiries™ 1| ﬂ
Select All v Showreferences only: [0 Showfile [C]

Overview | General

[[] Created date and time Type Description Restriction Attached
8/9/2011 01:36:24 pm Nete Imported Internal .

This vendor was imported,

4 - > M| iF4 | il | Select whether to show references for all users or th... | A(0) Cloze |

=]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

All the document handling notes are stored in the DocuRef table, where the three fields
RefCompanyld, RefTableld, and RefRecld are used to identify the parent record. In our
recipe, we will set those fields to the vendor company ID, vendor table ID, and vendor
account record ID, respectively.

Next, we will set note type, name, and description, and insert the document handling record.
In this way, we will add a note to the record. The code in this recipe could also be added to a
separate method for further reuse.

Using a normal table as a temporary table

Standard Dynamics AX contains numerous temporary tables, which are used by the
application and could be used in custom modifications too. Although new temporary tables
can also be easily created using the AOT, sometimes it is not effective. One of the cases could
be when the temporary table is very similar or exactly the same as an existing one. The goal
of this recipe is to demonstrate an approach for using standard non-temporary tables to hold
temporary data.

As an example, we will use the vendor table to insert and display a couple of temporary
records without affecting the actual data.

How to do it...

Carry out the following steps in order to complete this recipe:

1. Inthe AOT, create a new class named VendTableTmp with the following code:

class VendTableTmp

{
}

server static void main(Args _args)

{
VendTable vendTable;

vendTable.setTmp();

vendTable.AccountNum "1000";
vendTable.Blocked CustVendorBlocked: :No;
vendTable.Party =1;
vendTable.dolnsert();

www.it-ebooks.info

http://www.it-ebooks.info/

Processing Data

vendTable.clear();

vendTable.AccountNum = "1002";
vendTable.Blocked = CustVendorBlocked: :All;
vendTable.Party = 2;

vendTable.dolnsert();

while select vendTable

{
info(strFmt(
"l - %2",
vendTable.AccountNum,
vendTable.Blocked));
}

}

2. Run the class and check the results:

4 Message (11:32:03 pm)
iefgld 1000 - Mo

The key method in this recipe is in the setTmp() method. It is available on all tables, and

it declares the current table instance to behave as a temporary table in the current scope.
So in this recipe, we will first call the setTmp() method on the vendTabl e table to make it
temporary in the scope of this method. That means any data manipulations will be lost once
the execution of this method is over and actual table content will not be affected.

Next, we will insert a couple of test records. Here, we use the dolInsert() method to bypass
any additional logic, which normally resides in the table's insert() method.

The last thing to do is to check for newly created records by listing the vendTabl e table.
We can see that although the table contains many actual records, only the ones which we
inserted were displayed in the Infolog. Additionally, the two we inserted do not appear in the
actual table records.

Copying a record

One of the tasks often used when manipulating data is record copying. For various reasons,
an existing record needs to be modified and saved as a new one. The most obvious example
could be when a user requires a function that allows him or her to quickly duplicate records
on any of the existing forms.

=

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

There are several ways of copying one record into another in X++. In this recipe, we will explain
the usage of the table's data() method, the global buf2buf() function, and their differences.
As an example, we will copy one of the existing ledger account records into a new one.

How to do it...

Carry out the following steps in order to complete this recipe:

1. Open General ledger | Common | Main accounts, and find the account to be
copied. In this example, we will use 211100:

Main account Marme & Main accounttype Main account category ™
211250 Accounts Payable - Clearing Balance sheet Ap =
211200 Accounts Payable - Foreign Balance sheet Ap
211300 Accounts Payable - Other Balance sheet AP
v]: 211100 Accounts Payable - US Balance sheet AP
130300 Accounts Receivable - Clearing Balance sheet AR
130200 Accounts Receivable - Foreign Balance sheet AR
130100 Accounts Receivable - U3 Balance sheet AR
200110 Accrued Income Balance sheet OTHERCURLIA
211350 Accrued purchases Balance sheet OTHERCURLIA
211400 Accrued purchases - Intercomparny Balance sheet OTHERCLURLIA
420300 Accrued Rewenue - On Account Profit and loss SALES i

2. Open the AQOT, create a new job named MainAccountCopy with the following code,
and run it:

static void MainAccountCopy(Args _args)

{

MainAccount mainAccountl;
MainAccount mainAccount2;

mainAccountl = MainAccount: :findByMainAccountld("211100%);
ttsBegin;

mainAccount2.data(mainAccountl);
mainAccount2.MainAccountld = "211101";

it (ImainAccount2._validateWrite())
{

throw Exception::Error;

}

mainAccount2._insert();

ttsCommit;

=]

www.it-ebooks.info

http://www.it-ebooks.info/

Processing Data

3. Open General ledger | Common | Main accounts again, and notice that there are
two identical records now:

] Mainaccount Mame & Main accounttype Main account category i
211250 Arcounts Payable - Clearing Balance sheet Ap
211200 Accounts Payable - Foreign Balance sheet AR E
211300 Accounts Payable - Other Balance sheet AP
211100 Accounts Payable - U5 Balance sheet AP
(211101 Accounts Payable - US Balance sheet Ap
130300 Arcounts Receivable - Clearing Balance sheet AR
130200 Accounts Receivable - Foreign Balance sheet AR,
130100 Accounts Receivable - US Balance sheet AR
200110 Accrued Income Balance sheet OTHERCURLIA
211350 Arcrued purchases Balance sheet OTHERCURLIA,
211400 Accrued purchases - Intercompany Balance sheet OTHERCURLIA, Il

In this recipe, we have two variables—mainAccountl for original record and
mainAccount2 for the new one. First, we will need to find the original record by
calling findByMainAccountld() on the MainAccount table.

Next, we will copy it to the new one. Here, we will use the data() table member method,
which copies all data fields from one variable to another.

After that, we will set a new ledger account number, which is a part of a unique table index
and must be different.

Finally, we call the insert() method on the table, if val idateWrite() is successful.
In this way, we have created a new ledger account record, which is exactly the same as the
existing one apart from the account number.

There's more...

As we saw before, the data() method copies all table fields, including system fields such as
record ID, company account, created user, and so on. Most of the time, it is OK because when
the new record is saved, the system fields are overwritten with the new values. However, this
function may not work for copying records across companies. In this case, we can use another
function called buf2Buf(). It is very similar to the table's data() method with one major
difference. The buf2Buf() function copies all data fields excluding the system ones. The
code in the function is as follows:

static void buf2Buf(Common _from, Common _to)
{
DictTable dictTable
Fieldld fieldld

new DictTable(_from.Tableld);
dictTable._fieldNext(0);

=

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

while (Fieldld && ! isSysld(Fieldld))
{

_to.(Fieldld)
fieldld

_from.(fieldld);
dictTable.fieldNext(fieldld);

}

We can clearly see that during the copying process, all the table fields are traversed, but the
system fields are excluded. We can also see that this function is slower than the internal
data() method, as it checks and copies each field individually.

In order to use the buf2Buf() function, the code of the MainAccountCopy job could be
amended as follows:

static void MainAccountCopy(Args _args)

{

MainAccount mainAccountl;
MainAccount mainAccount2;

mainAccountl = MainAccount: :findByMainAccountld("211100%);
ttsBegin;

buf2Buf(mainAccountl, mainAccount2);
mainAccount2._MainAccountld = "211101";

if (ImainAccount2.validateWrite())
{

throw Exception::Error;

}

mainAccount2.insert();

ttsCommit;
T

Building a query object

Query objects are used to visually build SQL statements, which can be used by Dynamics AX
reports, views, forms, and other objects. Normally, queries are stored in the AOT, but they can
also be dynamically created from code. This is normally done when visual tools cannot handle
complex and dynamic queries.

In this recipe, we will create a query dynamically from the code to retrieve project records from
the project management module. We will select only the projects of type fixed price, starting
with 2 in its number and containing at least one hour transaction.

Eas

www.it-ebooks.info

http://www.it-ebooks.info/

Processing Data

How to do it...

Carry out the following steps in order to complete this recipe:

1. Open the AOT, create a new job named ProjTableQuery, and enter the
following code:

static void ProjTableQuery(Args _args)

{
Query query;
QueryBui ldDataSource gbdsi;
QueryBui ldDataSource gbds2;
QueryBui ldRange gbril;
QueryBui ldRange qgbr2;
QueryRun queryRun;
ProjTable projTable;

query = new Query();

gbdsl = query.addDataSource(tableNum(ProjTable));
gbdsl.addSortField(

fieldNum(ProjTable, Name),

SortOrder: :Ascending);

gbrl = gbdsl.addRange(fieldNum(ProjTable,Type));
gbrl.value(queryValue(ProjType: :FixedPrice));

gbr2 = gbdsl.addRange(fieldNum(ProjTable,Projld));
gbr2.value(queryvValue("2") + "*%);

gbds2 = gbdsl.addDataSource(tableNum(ProjEmplITrans));
gbds2.relations(true);
gbds2. joinMode(JoinMode: :ExistsJoin);

queryRun = new QueryRun(query);

while (queryRun.next())
{
projTable = queryRun.get(tableNum(ProjTable));
info(strFmt(
%1, %2, %3,
projTable.Projld,
projTable.Name,
projTable.Type));

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

2. Run the job and the following screen should appear:

-4 Message (12:11:58 am)

E Ejr" 20002, Cheetah Concert: Hall, Fixed-price
lzir" 20001, School of Fine A, Fixed-price
gl 20003, Valley Hatel, Fixed-price

First, we create a new query object. Next, we add a new ProjTable data source to the query
object by calling its addDataSource() member method. The method returns a reference to
the QueryBui ldDataSource object—gbdsl. Here, we call the addSortField() method
to enable sorting by project name.

The following two blocks of code create two ranges. The first is to show only projects of

type fixed price and the second one is to list only records, where the project number starts
with 2. Those two filters are automatically added together using the SQL and operator.
QueryBui IdRange objects are created by calling the addRange () member method of the
QueryBui ldDataSource object with the field ID number as argument. The range value

is set by calling value() on the QueryBui IdRange object itself. It is a good practice to
use the queryValue() function to process values before applying them as a range. More
functions such as queryNotValue(), queryRange(), and so on can be found in the
Global application class. Note that these functions are actually shortcuts to the SysQuery
application class, which in turn have even more interesting helper methods that might be
handy for every developer.

Adding another data source to an existing one connects both data sources using the SQL
Join operator. In this example, we are displaying projects that have at least one posted hour
line. We start by adding the ProjEmplTrans table as another data source.

Next, we need to add relations between the tables. If relations are not defined on tables,
we will have to use the addLink() method with relation field ID numbers. In this example,
relations on the tables are already defined so it is enough only to enable them by calling the
relations() method with true as an argument.

Calling JoinMode () with JoinMode: :ExistsJoin as a parameter ensures that a
record from a parent data source will be displayed only if the relation exists in the attached
data source.

The last thing to do is to create and run the queryRun object and show the selected data on
the screen.

7}

www.it-ebooks.info

http://www.it-ebooks.info/

Processing Data

There's more...

It is worth mentioning a couple of specific cases when working with query objects from code.
One of them is how to use the or operator and the other one is how to address array fields.

Using the OR operator

As you have already noted, regardless of how many ranges are added, all of them will be
added together using the SQL and operator. In most cases it is fine, but sometimes complex
user requirements demand ranges to be added using SQL or. There might be a number of
workarounds, such as using temporary tables or similar tools, but we can use the Dynamics
AX feature that allows passing a part of raw SQL string as a range.

In this case, the range has to be formatted in a similar manner as a fully qualified SQL where
clause, including field names, operators, and values. The expressions have to be formatted
properly before using them in a query. Here are some of the rules:

» The expression must be enclosed within single quotes.

» Inside, the whole expression has to be enclosed in parenthesis.

» Each subexpression must be enclosed in parentheses too.

» String values have to be enclosed within double quotes.

» For enumerations use their numeric values.

» Forvalue formatting use various Dynamics AX functions, such as queryValue(),

Date2StrXpp(), or methods from the SysQuery class.

Let us replace the code from the previous example:

gbrl.value(queryValue(ProjType: :FixedPrice));

with the new code:

gbrl.value(strFmt(
(1 = %2) |1 (B3 = "%47))HT,
fieldStr(ProjTable,Type),
ProjType: :FixedPrice+0,
fieldStr(ProjTable,ProjGroupld),
queryValue("T™M1%)));

Notice that by adding zero to the enumeration in the previous code, we can force the
striFmt() function to use the numeric value of the enumeration.

=]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Now, the result will also include all the projects belonging to the group TM1 regardless of
their type:

4 Message [04:00:39 pm]

:_fr’ 20002, Cheetah Concert Hall, Fized-price, FP2

‘,jr, 20001, School of Fine &rt, Fized-price, FP1

:_fr’ 20001-4, Zervice - Ongoing Maintenance, Tire and material, Th1
‘,jr, 20002-4, Zervice - Ongoing Maintenance, Time and material, Th1
:_fr’ 20003, Valley Hatel, Fixed-price, FP3

Using arrays fields

Some table fields in Dynamics AX are based on extended data types, which contains more
than one array element. An example in a standard application could project sorting based

on a ProjSortingld extended data type. Although such fields are very much the same as
normal fields, in queries they should be addressed in a slightly different manner. In order

to demonstrate the usage, let us modify the example by filtering the query to list only those
projects containing the value South in the field labelled Sort field 2, which is the second value
in the array.

First, let us declare a new QueryBui IdRange object in the variable declaration section:
QueryBui ldRange gbr3;
Next, we add the following code, right after the gbr2.value(..) code:

gbr3 = gbdsl.addRange(
fieldld2Ext(Ffieldnum(ProjTable,Sortingld),2));
gbr3.value(queryValue("South®));

Notice that we use the global Fieldid2ext() function, which converts the field ID and the
array number into a valid number to be used by the addRange () method. This function can
also be used anywhere, where addressing the dimension fields is required.

Now, we can run this job, as the project list based on previous criteria will be reduced even
more to match projects having only a specific Sort field 2:

4 Message [04:04:39 pm]
:_fr’ 20002, Cheetah Concert Hall, Fixed-price, FP2, South
‘,jr, 20002-4, Zervice - Ongoing Maintenance, Tirme and material, Th41, South

e

[vumwwveliieblookkénten]

http://www.it-ebooks.info/
http://www.allitebooks.org

Processing Data

See also

See Chapter 3, Working with Data in Forms:
» Creating a custom filter
See Chapter 4, Building Lookups:

» Using a form for building a lookup

Using a macro in an SQL statement

In a standard Dynamics AX application, there are macros such as InventDimJoin and
InventDimSelect, which are reused numerous times across the application. These macros
are actually full or partial X++ SQL queries, which can be called with various arguments. Such
approach saves developing time by allowing you to reuse pieces of X++ SQL queries.

In this recipe, we will create a small macro, which holds a single where clause to display only
active vendor records. Then we will create a job, which uses the created macro for displaying a
vendor list.

How to do it...

Carry out the following steps in order to complete this recipe:

1. Open the AQT, and create a new macro named VendTableNotBlocked with the
following code:

(%1.Blocked == CustVendorBlocked: :No)

2. Inthe AOT, create a new job called VendTableMacro with the following code:
static void VendTableMacro(Args _args)

{
VendTable vendTable;
while select vendTable
where #VendTableNotBlocked(vendTable)
{
info(strFmt(
"%l - %2",
vendTable.AccountNum,
vendTable.name()));
}
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

3. Run the job and check the results, as displayed in the following screenshot:

4 Message (11:43:21 pm)

E‘jr’ 1001 - Earth Telewisions

gl 1002 - Wind Televisions

—fl) 1003 - Fire Televisions

gl 1101 - Rain Projectars

@l 1102 - Snow Projectars

-fl) 1103 - Fog Projectors

gl 1201 - Wingtip Toys Electronics
E‘jr’ 1202 - Fabrikarm Electronics
‘Efr’ 1203 - Prosewvare Electronics
il 2001 - Daturn Receivers <

First, we define a macro that holds the where clause. Normally, the purpose of defining SQL in
a macro is to reuse it a number of times in various places. We use %1 as an argument. More
arguments could be added here.

m| s

Next, we create a job with the select statement. Here, we use the previously created macro
in a where clause and pass vendTable as an argument.

The query works like any other query, but the advantage is that the code in the macro can be
reused elsewhere.

Note that although using a macro in a SQL statement can reduce the amount of code, too
much code in it might decrease the SQL statement's readability for other developers. So keep
it balanced.

Executing a direct SQL statement

Dynamics AX allows developers to build X++ SQL statements that are flexible enough to fit into
any custom business process. However, in some cases, the usage of X++ SQL is either not
effective or not possible at all.

One of the cases is when we run data upgrade tasks during an application version upgrade.
The standard application contains a set of data upgrade tasks to be completed during the
version upgrade. If the application is highly customized, then most likely the standard tasks
have to be modified to reflect data dictionary customizations, or even a new set of tasks have
to be created to make sure data is handled correctly during the upgrade.

e

www.it-ebooks.info

http://www.it-ebooks.info/

Processing Data

Normally at this stage, SQL statements are so complex that they can only be created using
database-specific SQL and executed directly in the database. Additionally, running direct SQL
statements dramatically increases data upgrade performance because most of the code is
executed on the database server where all data resides. This is very important while working
with large volumes of data.

Another case when we would need to use direct SQL statements is when we want to connect
to an external database using the ODBC connection. In this case, X++ SQL is not supported
at all.

This recipe will demonstrate how to execute SQL statements directly. We will connect to the
current Dynamics AX database directly using an additional connection and will retrieve the list
of vendor accounts.

How to do it...

Carry out the following steps in order to complete this recipe:

1. Inthe AOT, create a new class named VendTableSql with the following code:
class VendTableSqgl

{

}

server static void main(Args _args)

{
UserConnection userConnection;
Statement statement;
str sqlStatement;
SqlSystem sqlSystem;
SglStatementExecutePermission sqglPermission;
ResultSet resultSet;
DictTable tblVendTable;
DictTable tbIDirPartyTable;
DictField fldParty;
DictField FfldAccountNum;
DictField fldDataAreald;
DictField fldBlocked;
DictField fldRecld;
DictField fldName;
tblVendTable = new DictTable(tableNum(VendTable));

tbIDirPartyTable = new DictTable(tableNum(DirPartyTable));

fldParty = new DictField(
tableNum(VendTable),

=

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

fieldNum(VendTable,Party));

fldAccountNum = new DictField(
tableNum(VendTable),
fieldNum(VendTable,AccountNum));

fldDataAreald = new DictField(
tableNum(VendTable),
fieldNum(VendTable,DataAreald));

fldBlocked = new DictField(
tableNum(VendTable),
fieldNum(VendTable,Blocked));

fldRecld = new DictField(
tableNum(DirPartyTable),
fieldNum(DirPartyTable,Recld));

fldName = new DictField(
tableNum(DirPartyTable),
fieldNum(DirPartyTable,Name));

sqlSystem = new SqlSystem();

sqlStatement = "SELECT %3, %4 FROM %1 * +
"JOIN %2 ON %1.%5 = %2.%6 " +
"WHERE %7 = %9 AND %8 = %10";

sqlStatement = strFmt(
sqlStatement,
tblVendTable.name(DbBackend: :Sql),
tbIDirPartyTable._name(DbBackend: :Sql),
fldAccountNum.name(DbBackend: :Sql),
fldName.name(DbBackend: :Sql),
fldParty.name(DbBackend: :Sql),
fldRecld.name(DbBackend: :Sql),
fldDataAreald.name(DbBackend: :Sql),
fldBlocked.name(DbBackend: :Sql),
sqlSystem.sqlLiteral (curext(), true),
sqlSystem.sqglLiteral (CustVendorBlocked: :No, true));

userConnection = new UserConnection();
statement userConnection.createStatement();

sqlPermission = new SqglStatementExecutePermission(
sqlStatement);

sqlPermission.assert();

s

www.it-ebooks.info

http://www.it-ebooks.info/

Processing Data

resultSet = statement.executeQuery(sqglStatement);

CodeAccessPermission: :revertAssert();

while (resultSet.next())

{
info(strFmt(
"l - %2",
resultSet.getString(1),
resultSet.getString(2)));
}

}

2. Run the class to obtain the list of vendors retrieved directly from the database:

4 Message [11:46:50 pm) o~
gl 1001 - Earth Televisians

gl 1002 - Wind Telewizions

gl 1003 - Fire Telewisions

-l 1101 - Rain Projectars

-t 1102 - Snow Projectars

-} 1103 - Fag Projectars

-l 1201 - Wingtip Toys Electranics

-} 1202 - Fabrikam Electronics

‘IEir‘ 1203 - Proseware Electronics

-l 2001 - Datumn Receivers S

We start the code by creating DictTable and DictField objects for handling the
vendor table and its fields used later in the query. DirPartyTable table is used to get

additional vendor information.

A new SqlSystem object also has to be created. It will be used to convert Dynamics AX types

to SQL types.

Next, we set up an SQL statement with a number of placeholders for table or field names and

field values to be inserted later.

The main query creation happens next when the query placeholders are replaced with the
right values. Here we use the previously created DictTable and DictField type objects by
calling their name () methods with the DbBackend: : Sql enumeration as an argument. This
ensures that we pass the name exactly how it is used in the database—some of the SQL field

names are not necessary the same as field names within the application.

We also use the sglLiteral () method of the previously created sqlSystem object to
properly format SQL values to make sure they do not have any unsafe characters.

S ED

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Once the SQL statement is ready, we initialize a direct connection to the database and run the
statement. The results are returned into the resultSet object, and we get them by using the
whi le statement and calling the next() method until the end of the resul tSet object.

Note that we create an sqlPermission object of type SqlStatementExecutePermission
here and call its assert() method before executing the statement. This is required in order to
comply with Dynamics AX trustworthy computing requirements.

Another thing to mention is that when building direct SQL queries, special attention has to be
paid to license, configuration, and security keys. Some tables or fields might be disabled in
the application and may contain no data in the database.

The code in this recipe can be also used to connect to the external ODBC databases. We only
need to replace the UserConnection class with the OdbcConnection class and use text
names instead of the DictTable and DictField objects.

There's more...

The standard Dynamics AX application provides an alternate way of building direct SQL
statements by using a set of SQLBui lder classes. By using those classes, we can create
SQL statements as objects as opposed to text. Next, we will demonstrate how to use the
SQLBui Ider classes. We will create the same SQL statement as before.

First in AOT, we create another class named VendTableSqglBui Ider with the following code:

class VendTableSqlBuilder

{

}

server static void main(Args _args)

{
UserConnection userConnection;
Statement statement;
str sqlStatement;
SglStatementExecutePermission sqglPermission;
ResultSet resultSet;
SQLBui lderSelectExpression selectExpr;
SQLBuilderTableEntry vendTable;
SQLBuilderTableEntry dirPartyTable;
SQLBuilderFieldEntry accountNum;
SQLBuilderFieldEntry dataAreald;
SQLBuilderFieldEntry blocked;
SQLBuilderFieldEntry name;

E3s

www.it-ebooks.info

http://www.it-ebooks.info/

Processing Data

selectExpr = SQLBuilderSelectExpression::construct();
selectExpr.parmUsedoin(true);

vendTable = selectExpr.addTableld(
tablenum(VendTable));

dirPartyTable = vendTable.addJoinTableld(
tablenum(DirPartyTable));

accountNum = vendTable.addFieldld(
fieldnum(VendTable,AccountNum));

name = dirPartyTable.addFieldld(

fieldnum(DirPartyTable,Name));

dataAreald = vendTable.addFieldld(
fieldnum(VendTable,DataAreald));

blocked = vendTable.addFieldld(
fieldnum(VendTable,Blocked));

vendTable.addRange(dataAreald, curext());
vendTable.addRange(blocked, CustVendorBlocked: :No);

selectExpr.addSelectFieldEntry(
SQLBui lderSelectFieldEntry: :newExpression(
accountNum,
"AccountNum®));

selectExpr.addSelectFieldEntry(
SQLBui lderSelectFieldEntry: :newExpression(
name,
"Name®));

sqlStatement = selectExpr.getExpression(null);

userConnection = new UserConnection();
statement userConnection.createStatement();

sqlPermission = new SqlStatementExecutePermission(
sqlStatement);

sqlPermission.assert();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

resultSet = statement.executeQuery(sqlStatement);
CodeAccessPermission: :revertAssert();

while (resultSet.next())

{
info(strfmt(
"%l - %2',
resultSet.getString(l),
resultSet.getString(2)));
}

}

In this method, we first create a new selectExpr object, which is based on the
SQLBui lderSelectExpression class. It represents the object of the SQL statement.

Next, we add the VendTable table to it by calling its member method addTableld(). The
method returns a reference to the vendTabl e object of type SQLBui lderTableEntry,
which corresponds to a table node in an SQL query. We also add DirPartyTable as a
joined table.

Then, we create a number of field objects of type SQLBui lderFieldEntry to be used later
and two ranges to show only this company account and only active vendor accounts.

We use addSelectFieldEntry() to add two fields to be selected. Here we use the
previously created field objects.

The SQL statement is generated once the getExpression() method is called, and the rest
of the code is the same as in the previous example.

Running the class would give us results, which are exactly similar to the ones we got before.

Enhancing the data consistency check

It is highly recommended to run the standard Dynamics AX data consistency check from

time to time, that is located in System administration | Periodic | Database | Consistency
check, to check the system's data integrity. This function finds orphan data, validates
parameters, and does many other things, but it does not do everything. The good thing is that
it can easily be extended to match different scenarios.

In this recipe, we will see how we can enhance the standard Dynamics AX consistency check
to include more tables in its data integrity validation.

www.it-ebooks.info

http://www.it-ebooks.info/

Processing Data

Getting ready

Before we start, we need to create an invalid setup to make sure we can simulate data
inconsistency. Open Fixed assets | Setup | Value models and create a new model, for
instance, TEST:

4 Walue models (1 - ceu)
MNew 2% Delete Fixed asset groups
Walue model + Description Value model: | TEST| |
ussr flesinolcensizencyichech Description: Testing consistency check
BUIL Buildings
BULL-TAX Buildings tax 4 General
COMP Computer equipment Depreciation
COMP-TRX Computer equipment tax Depreciation: 0
FIXT Fixures Depreciation profile: ‘v
FICT-TA Fiures tax Alternative depreciation profile: ‘ -
FURR Fumiture Extraordinary deprecistion profile: ‘v
FLRM-TAX Furniture tax
LaND Land Round off depreciation: 0.00
LAMD-TaX Land tax Leawe net book value at: 0.00
MACH Machines and equipment Create depreciation sdjustments with basis adjustments: [
MACH-TAX Machines and equipment tax
OFFI Office hardware Setup
OFFI-TAX Office hardware tax Pasting layer: Current -
PATE Patents Allaws net book value higher than acquisition costs: O
PATE-TAX Patents Tax Alloyw negative net book walue: =)
WEHC Wehicles
VEHC-TAX Vehicles tax Calendar =
Derived value models &
7 - . Derived depreciation books &
Identification of value model. Close |

Open Fixed assets | Setup | Fixed asset posting profiles and under the Ledger accounts
group, create a new record with the newly created value model for any of the posting types:

= Fixed asset posting profiles (1 - ceu) =l ===

Fil Mew 7% Delete | Disposal™ O e

Posting profile Description Pasting profile: ALL
ALL General posting profile Description: Gereral pasting profile
4 Ledger accounts

R fdd P Remove

@ Acquisition Walue model & Graupings Fixed assetnumber Main account Offsetaccount ~
2 Acquisition adjustrment TEST Al | 130100 510315
- Depreciation BLIL 2l 180100 510815
~ Depreciation adjustment gy pay All 160100 510815
O Revaluation comp Al 160100 510815 1
“)Write up adjustment
COMP-TAX Al 160100 510815
O Write down adjustment
FDCT Al 160100 510815
) Disposal - sale
FDCT-TaX Al 160100 510815
) Disposal - scrap
) FURN Al 160100 510815
) Provisian for reserve
) Transfer from resenve FURN-TAX 2l 160100 510815
) Extraardinary deprecistion | LAND All 160100 510815
 Derogatory incresse LAND-TAX &l 150100 510815
" Derogatory decrease MACH &l 150100 510815 ,

« n b

Grouping used for fixed asset posting profile, Close |

=]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Go back to the Value models form, and delete the previously created value model.

Now, we have a non-existing value model in the fixed asset posting settings.

How to do it...

Carry out the following steps in order to complete this recipe:

1.

In the AOT, create a new class AssetConsistencyCheck with the following code:
class AssetConsistencyCheck extends SysConsistencyCheck

{
}

client server static ClassDescription description()

{

return "Fixed assets';

}
client server static HelpTxt helpText()
{
return ""Consistency check of the fixed asset module";
}
public Integer executionOrder()
{
return 1;
}
public void run(Q)
{
this_kernelCheckTable(tableNum(AssetLedgerAccounts));
}

s

[nsvweitiebiookkénton]

http://www.it-ebooks.info/
http://www.allitebooks.org

Processing Data

2. Open System administration | Periodic | Database | Consistency check, select
the newly created Fixed assets option in the Module drop-down, and click OK to run

the check:
|.-;—i] Consistency check (1) EI@

General | Batch
Madule: -
Check/Fit Check
From date: :ﬁ

------ [+ Fixed assets Dialog

Execute
Consistency check of the fixed asset module
’ Ok] [Cancel]

3. Now the message displayed in the Infolog should complain about the missing value
model in the fixed asset posing settings:

4 Fixed assets
- %) Table Fixed asset ledger accaunts
© %) Posting profile: ALL, Acquisition

) Murnber of errors found: 1
gl Murnber of errors corrected:
o Errors found in total: 1

‘@) Errars carrected in total: 0

The consistency check in Dynamics AX validates only the predefined list of tables for each
module. The system contains a number of classes derived from SysConsistencyCheck.
For example, the CustConsistencyCheck class is responsible for validating the Accounts
receivable module, LedgerConsistencyCheck—for General ledger, and so on.

@

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

In this recipe, we created a new class named AssetConsistencyCheck, extending
the SysConsistencyCheck class for the fixed asset module. The following methods
were created:

» description() provides a name on the consistency check form.
» helpText() displays some explanation about the check.
» executionOrder() determines where in the list the check is located.

» run() holds the code to perform actual checking. Here we use the
kernelCheckTable() member method, which validates the given table.

There's more...

The classes we just mentioned can only be executed from the main Consistency check form.
Individual checks could also be invoked as stand-alone functions. We just need to create an
additional method to allow running of the class:

static void main(Args args)

{
SysConsistencyCheckJob consistencyCheckJob;
AssetConsistencyCheck assetConsistencyCheck;

consistencyCheckJob = new SysConsistencyCheckJob(
classidget(assetConsistencyCheck));

if (IconsistencyCheckJob.prompt())
{

return;

}

consistencyCheckJob.run();

}

Exporting data to an XML file

Briefly, eXtensible Markup Language (XML) defines a set of rules for encoding documents
electronically. It allows the creation of all kinds of structured documents to exchange between
systems. In Dynamics AX, XML files are widely used across the application. For example, user
profiles can be exported as XML files. Business data, such as financial statements can also be
exported as eXtensible Business Reporting Language (XBRL) files, which are based on XML.

[

www.it-ebooks.info

http://www.it-ebooks.info/

Processing Data

Probably, the main thing that is associated with XML in Dynamics AX is the Application
Integration Framework. It is an infrastructure that allows exposing business logic or
exchanging data with other external systems. The communication is done by using XML
formatted documents. By using the existing XML framework application classes prefixed with
Axd, you can export or import data from or to the system in an XML format to be used for
communicating with external systems. It is also possible to create new Axd classes using the
AIF Document Service Wizard from the Tools menu to support the export and import of newly
created tables.

Dynamics AX also contains a set of application classes prefixed with Xml, such as
XmIDocument and XmINode. Basically, those classes are wrappers around the System. XML
namespace in the .NET framework.

In this recipe, we will create a new simple XML document by using the latter classes, in order
to show the basics of XML. We will create the file with the data from the chart of the accounts
table and will save it as an XML file.

How to do it...

Carry out the following steps in order to complete this recipe:

1. Open the AOT and create a new class named CreateXmlFi le with the
following code:

class CreateXmlFile

{

}

public static void main(Args _args)

{
XmIDocument doc;
XmIElement nodeXml;
XmlElement nodeTable;
XmlElement nodeAccount;
XmlElement nodeName;
MainAccount mainAccount;
#define_filename(@"C:\Temp\accounts.xml")

doc XmIDocument: :newBlank();
nodeXml = doc.createElement("xml*®);
doc.appendChild(nodexml);

while select Recld, MainAccountld, Name from mainAccount

{

nodeTable = doc.createElement(tableStr(MainAccount));

nodeTable.setAttribute(

=

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

fieldStr(MainAccount, Recld),
int642str(mainAccount_Recld));

nodeXml .appendChild(nhodeTable);

nodeAccount = doc.createElement(
fieldStr(MainAccount, MainAccountld));

nodeAccount.appendChi ld(
doc.createTextNode(mainAccount._MainAccountld));

nodeTable.appendChild(nodeAccount);

nodeName = doc.createElement(
fieldStr(MainAccount, Name));

nodeName . appendChi Id(
doc.createTextNode(mainAccount._Name));

nodeTable.appendChild(nodeName) ;
}

doc.save(#filename);

info(strFmt("File %1 created.', #filename));
}

2. Runthe class. The XML file accounts . xml should be created in the specified folder.
Open it using any XML editor or viewer, such as Microsoft Internet Explorer, and
review the created XML structure:

m oy

<?xml version="1.0" encoding="utf-8" 7>

- <xml>
- <MainAccount Recld="5637145792">
<MainAccountld>110100</MainAccountlid=
<Name=Cash and Cash Equivalents</Name >

</MainAccount>

<MainAccount Recld="5637145793">
<MainAccountld>=110110</MainAccountld=
<Name>110110</Namez

</MainAccounts

<MainAccount Recld="5637145794">
<MainAccountld >119000 </MainAccountld=>
<Mame>TOTAL CASH & CASH EQUIVALENTS</Name >

</MainAccount>

<MainAccount Recld="5637145795">
<MainAccountld>=120100</MainAccountld=
<Name=Bonds and marketable securities</Name >

</MainAccounts

<MainAccount Recld="5637145796">
<MainAccountld >120300 </MainAccountld=>
<Name=Bill of Exchange (BOE)</Name=

</MainAccount>

<MainAccount Recld="5637145797">
<MainAccountld =120400</MainAccountld=
<Mame=Misc. Securities </Name=

</MainAccounts

- <MainAccount Recld="5637145798"=

<MainAccountld=129900 </MainAccountld= -

@]

www.it-ebooks.info

http://www.it-ebooks.info/

Processing Data

We start the recipe by creating a new XmIDocument using its newBlank() method,
which represents an XML structure. Then we create its root node named xml using the
createElement() method, and add the node to the document by calling the document's
appendChi Id() method.

Next, we go through the MainAccount table and do the following for each record:

1. Create a new XmIElement node, which is named exactly as the table name, and add
this node to the root node.

2. Create a node representing the account number field and its child node representing
its value. The account number node is created using createElement(), and its
value is created using createTextNode (). The createTextNode () method
basically adds a value as text with no XML tags.

3. Add the account number node to the table node.

4. Create a node representing the account name field and its child node representing
its value.

5. Add the account name node to the table node.
Finally, we save the created XML document as a file.

In this way, we can create documents having virtually any structure.

Importing data from an XML file

In Dynamics AX, XML file importing is done in a very similar way as exporting. In this recipe, we
will continue using the System. XML wrapper application classes. We will create a new class
which reads XML files and displays the content onscreen. As a source file, we will use the
previously created accounts . xml file.

How to do it...

Carry out the following steps in order to complete this recipe:

1. Open the AQT, and create a new class named ReadXmlFi le with the following code.
Use the document created in the previous recipe:
class ReadXmlFile

{
}
public static void main(Args _args)

{

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

XmIDocument doc;

XmINodeList data;

XmlElement nodeTable;

XmlElement nodeAccount;

XmIElement nodeName;
#deFfine.Filename(@"C:\Temp\accounts.xml™)

doc = XmlDocument::newFile(#filename);
data = doc.selectNodes("//"+tableStr(MainAccount));
nodeTable = data.nextNode();

while (nodeTable)
{

nodeAccount = nodeTable.selectSingleNode(
fieldStr(MainAccount, MainAccountld));

nodeName = nodeTable.selectSingleNode(
fieldStr(MainAccount, Name));

info(striFmt(
"%l - %2',
nodeAccount.text(),
nodeName.text()));

nodeTable = data.nextNode();

}

2. Runthe class. The Infolog should display the contents of the accounts.xml file on
the screen:

- Message (02:58:27 pm) it
-}/ 110100 - Cash and Cash Equivalents

E]H 110110 - 110110

E]H 119000 - TOTAL CASH & CASH EQUIVALENTS
ﬁjr" 120100 - Bonds and marketable securities
1E]H 120300 - Bill of Exchange (BOE)

-{}.) 120400 - Misc. Securities

1:-] ./ 129300 - TOTAL SECURITIES

L—,jrj 130100 - Accounts Receivable

E‘jrf 130300 - Accounts Receivable - Clearing

E‘jrf 130350 - Accounts Receivable - Intercompany

20 amann -~ [(s} - _uw

@]

www.it-ebooks.info

http://www.it-ebooks.info/

Processing Data

In this recipe, we first create a new XmlDocument. We create it from the file and hence we
have to use its newFi le() method. Then we get all the document nodes of the table as
XmINodeList. We also get its first element by calling the nextNode () method.

Next, we loop through all the list elements and do the following:

1. Getan account number node as an XmlElement.
2. Getan account name node as an XmlElement.
3. Display the text of both nodes in the Infolog.

4. Getthe next list element.

In this way, we retrieve the data from the XML file. A similar approach could be used to read
any other XML file.

Creating a comma-separated value file

Comma-Separated Value (CSV) files are widely used across various systems. Although
nowadays modern systems use XML formats for data exchange, CSV files are still popular
because of the simplicity of their format.

Normally, the data in the file is organized so one line corresponds to one record, and each line
contains a number of values normally separated by commas. Record and value separators
could be any other symbol, depending on the system requirements.

In this recipe, we will learn how to create a custom comma-separated file from code. We will
export a list of ledger accounts—the CSV format.

How to do it...

Carry out the following steps in order to complete this recipe:

1. Open the AQT, and create a new class named CreateCommaFi le with the
following code:

class CreateCommaFile

{
b
public static client void main(Args _args)
{
CommaTextlo file;
container line;

www.it-ebooks.info

http://www.it-ebooks.info/

MainAccount mainAccount;
#define.Ffilename(@"C:\Temp\accounts.csv")
#File

file = new CommaTextlo(#filename, #io_write);

if (Ifile || file.status() = 10_Status::0k)

{
throw error(File cannot be opened.™);
}
while select MainAccountld, Name from mainAccount
{
line = [
mainAccount.MainAccountlid,
mainAccount.Name];
file.writeExp(line);
}

info(strFmt("File %1 created.', #filename));
}

Chapter 1

2. Runthe class. A new file named accounts.csv should be created in the specified

folder. Open that file with Notepad or any other text editor to view the results:

File Edit Format View Help

| accounts.csv - Motepad E\@

['110100","Cash and Cash Equivalents”
"110110","110110"

"119000", "TOTAL CASH & CASH EQUIVALENTS"
"120100", "Bonds and marketable securities”
"120300","Bi11 of Exchange (BOE)}"
"120400","Misc. Ssecurities”
"129900","TOTAL SECURITIES"

"130100", "Accounts Receivable”

"130300", "Accounts Receivable - Clearing”
"130350", "Accounts Receivable - Intercompany”
"130400","Credit Card Receivable"
"130500","Interest Receivable”

"130600", "Notes Receivable”
"130700","other Receivables”
"130900","TOTAL ACCOUNTS RECEIVABLE"
"131100","Prepaid Expenses and Insurance”
"131300", "Advances and Prepaid Commissions”
"139990", "TOTAL OTHER CURRENT ASSETS"
"140120", "Inventory - Car audio”
"140220","Inventory - DVD player”
"140320", "Inventory - DVR"

4 ;

www.it-ebooks.info

@1

http://www.it-ebooks.info/

Processing Data

In the variable declaration section of the main() method of the newly created
CreateCommaFi le class, we define a name for the output file, along with other variables.
Normally, this should be replaced with a proper input variable. Here, we also define a standard
#File macro, which contains a number of file-handling modes, such as #i0_read, #i0_
write, #10_append, and so on, file types, delimiters, and other things.

Next, we create a new CSV file by calling the new() method on a standard Commalo class. It
accepts two parameters—filename and mode. For mode, we use #i0_write from the #File
macro to make sure a new file is created and opened for further writing. If a file with the given
name already exists, then it will be overwritten. In order to make sure that a file is created
successfully, we check if the Fi le object exists and its status is valid, otherwise we show an
error message.

In multilingual environments, it is better to use the CommaTextlo class. It behaves the same
way as the Commalo class does plus it supports Unicode, which allows us to process data
with various language-specific symbols.

Finally, we loop though the MainAccount table, store all account numbers and their names in
a container, and write them to the file using the writeExp() method.

In this way, we create a new comma-separated value file with the list of ledger accounts.

There's more...

You probably already noticed that the main() method has the cl ient modifier, which forces
its code to run on the client. When dealing with large amounts of data, it is more effective to
run the code on the server. In order to do that, we need to change the modifier to server.
The following class generates exactly the same file as before, except that this file is created in
the folder on the server's file system:

class CreateCommaFileServer

{

}

public static server void main(Args _args)

{
CommaTextlo file;
container line;
MainAccount mainAccount;
FileloPermission perm;
#define.filename("C:\\Temp\\accounts.csv")
#File

=)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

perm = new FileloPermission(#filename, #io_write);
perm.assert();

file = new CommaTextlo(#filename, #io_write);

if (Ifile || file.status() = 10_Status::0k)

{
throw error(File cannot be opened.™);
}
while select mainAccount
{
line = [
mainAccount._MainAccountlid,
mainAccount.Name];
file.writeExp(line);
}

CodeAccessPermission: :revertAssert();

info(strFmt("File %1 created.', #filename));

}

File manipulation on the server is protected by Dynamics AX code access security and we
must use the FileloPermission class to make sure we match the requirements.

Finally, we call CodeAccessPermission: :revertAssert() to revert the previous assertion.

Reading a comma-separated value file

Besides data import/export, CSV files can be used for integration between systems. It is
probably the most simple integration approach, when one system generates CSV files in some
network folder and another one reads those files at specified intervals. Although this is not
very sophisticated real-time integration, in most cases it does the job and does not require
any additional components, such as Dynamics AX Application Integration Framework or
something similar.

Another well-known example is when external companies are hired to manage the payroll. On
a periodic basis, they send CSV files to the finance department, which are then loaded into the
General journal in Dynamics AX and processed as usual.

In this recipe, we will learn how to read CSV file from code. As an example, we will process the
file created in a previous recipe.

[vumwwveliieblookkénten]

http://www.it-ebooks.info/
http://www.allitebooks.org

Processing Data

How to do it...

Carry out the following steps in order to complete this recipe:

1. Inthe AOT, create a new class named ReadCommaFi e with the following code:
class ReadCommaFile

{
}
public static client void main(Args _args)
{
CommaTextlo file;
container line;
#deFfine.filename(@"C:\Temp\accounts.csv")
#File
file = new CommaTextlo(#filename, #io_read);
if (Ifile || file.status() !'= 10_Status::0k)
{
throw error(File cannot be opened.™);
}
line = file.read();
while (Ffile.status() == 10_Status::0k)
{
info(con2Str(line, * - "));
line = file.read();
}
}

2. Run the class to view the file's content, as shown in the following screenshot:

2 Message (03:13:56 pm) i
- 110100 - Cash and Cash Equivalents

‘IIP 110110 - 110110

E‘r“ 119000 - TOTAL CASH & CASH EQUIVALEMTS
Ejﬁ' 120100 - Bonds and marketable securities
- 120300 - Bill of Exchange (BOE)

-l 120400 - Misc. Securities

‘IIP 129900 - TOTAL SECURITIES

-}/ 130100 - Accounts Receivable

Ejﬁ' 130300 - Accounts Receivable - Clearing

Eer 130350 - Accounts Receivable - Intercompany

Lammans s~ e~ il

=]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

As in the previous recipe, we first create a new Fi le object using the CommaTextlo class.
This time we use #10_read as the mode to make sure that the existing file is read only.
We also perform the same validations to make sure that the file object is correctly created,
otherwise we show an error message.

Finally, we read the file line by line until we reach the end of the file. Here we use the while
loop until the file status becomes not 10_Status: :OK, meaning we have reached the file
end. Inside the loop, we call the read() method on the file object, which returns the
current line as a container and moves the internal file cursor to the next line. File data is then
simply output to the screen using the standard global info() function in conjunction with the
con2Str () function, which converts a container to a string for displaying.

The last element of code, where the data is output, should normally be replaced by proper
code that processes the incoming data.

There's more...

File reading, could also be executed in a similar way as file writing on a server to improve
performance. The modifier cl ient has to be changed to server, and code with the
FileloPermission class has to be added to fulfil the code access security requirements.
The modified class should look similar to the following code:

class ReadCommaFileServer

{

}

public static server void main(Args _args)

{
CommaTextlo file;
container line;
FileloPermission perm;
#deFfine.filename("C:\\Temp\\accounts.csv")
#File

perm = new FileloPermission(#filename, #io_read);
perm.assert();

file = new CommaTextlo(#filename, #io_read);

if (Ifile || Ffile.status() != 10_Status::0k)
{

throw error("File cannot be opened.");

}

i

www.it-ebooks.info

http://www.it-ebooks.info/

Processing Data
line = file.read();

while (Ffile.status() == 10_Status::0k)

{
info(con2Str(line, " - "));
line = file.read();

}

CodeAccessPermission: :revertAssert();

}

Using the date effectiveness feature

Date effectiveness is a new feature in Dynamics AX 2012 allowing developers to easily create
date range fields. Date ranges are used for defining record validity between the specified
dates, for example, defining employee contract dates.

This feature significantly reduces the amount of time that developers spend writing code and
also provides a consistent approach to implement data range fields.

This recipe will demonstrate the basics of date effectiveness. We will implement date range
validation on the standard E-mail templates form.

How to do it...

Carry out the following steps in order to complete this recipe:

1. Inthe AOT, find the SysEmailTable table and change its property as shown in the
following table:

Property Value
ValidTimeStateFieldType Date

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

2. Notice the two new fields that are automatically added to the table:

[£0T - \Data DictionanATa. | = || = |5

= = Fields
= ValidFrom
“f ValidTo
=3 Description
=3 Emailld
S0 Senderbddr
=3 Defaultlanguage
=3 SenderMarne
=& Priarity
=3 BatchGroupld
I:_ZJI Field Groups
[T Indexes
[Full Text Indexes
1; Relations
[Deletections
;? Iethods

3. Add the newly created ValidFrom and ValidTo fields to the existing emailldldx index
and change the properties shown in the following table:

Property Value
AlternateKey Yes
ValidTimeStateKey Yes
Val idTimeStateMode NoGap

4. The index should look similar to the following screenshot:

] AOT - \Data DictionanTabl.. [= || = |[=5]

(=B F 5w

=

= Fields

ﬂ Field Groups

S| E Indexes

=l [emailldIdx

<3 Emailld
= WalidFrom
= WalidTo

[Full Text Indexes

15‘ Relations

a Deletefictions

s? Methaods

s

www.it-ebooks.info

http://www.it-ebooks.info/

Processing Data

5. Next, add the ValidFrom and ValidTo fields to the table's Identification group:

1 A0T - \Data DictionanATabl.. [= || = |[=5]

-

Field Groups
[AutoReport
4 Lj Autolookup
4| Lj Autoldentification
4 Lj, AutoSumrmary
4] Lj, AutoBrowse
* [Batch
=l [5] Identification
=3 Emailld
=3 Description
=7 Defaultlanguage
=3 SenderMarne
53 Senderfddr
=1 ValidFrom
=8 Walid T
B Overview
| [Priority
[t Sender
* ﬁ Indexes
+ [Full Text Indexes
53 Relations
cl yj Deletedctions
* Y Methods

6. Inthe AOT, find the SysEmailTable form, refresh it using the Restore command which
can be found in the form's right-click context menu. Then, locate its data source
named SysEmailTable and change its properties as follows:

Property Value
ValidTimeStateAutoQuery DateRange
ValidTimeStateUpdate Correction

7. In order to test the results, navigate to Organization administration | Setup | E-mail
templates and notice the newly created fields: Effective and Expiration columns. Try
creating records with the same E-mail ID and overlapping date ranges—you will notice
how the system is proposing to maintain valid date ranges:

S

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

=4 E-mail ternplates (2 - cew) - E-mail ID: Alerts, E-mail Alerts E@
D e
Showu systern e-rnails:
Owerview | General
E-mail ID E-mail description Default language code Sender name Sender e-mail Effective = Expiration
V| Alerts E-rmail &lerts En-us Mindaugas Pocius mp@dynamicslab.com 17172012 12312012
i Alerts E-mail Alerts BN-US lohn Doe jdoe@myemail.carm 1/1/2011 12/31/2011
CaseMail Follow up ermail en-us Tester tester@ contoso.com Mewer
E-raillD « Language Subject Layout E-mail ressage
Alerts HTRL
14 « | 2 S | &7 | E-mail message ID | A0) | USD | ceu | Close

We start the recipe by setting the ValidTimeStateFieldType property to Date on the
SysEmailTable table. This automatically creates two new fields: ValidFrom and ValidTo that
are used to define a date range.

Next, we add the created fields to the primary index where the Emailld field is used and adjust
the following index's properties:

» We set the AlternateKey property to Yes to ensure that this index is a part of an
alternate key.

» We set the ValidTimeStateKey property to Yes to specify that the index is used to
determine the valid date ranges.

» We also set the ValidTimeStateMode property to NoGap to ensure that e-mail
templates with the same identification number can be created within continuous
periods. The property can also be set to Gap allowing non-continuous date ranges.

Finally, we adjust the SysEmailTable form to reflect the changes. We add the newly created
ValidFrom and ValidTo fields to the SysEmailTable table's Identification group so that they
automatically appear on the form's Overview grid. We also change a few properties of the
SysEmailTable data source:

www.it-ebooks.info

http://www.it-ebooks.info/

Processing Data

Set the ValidTimeStateAutoQuery property to DateRange to ensure that all records are
visible. The default AsOfDate value could be used if we want to display only the records for
the current period.

Set the ValidTimeStateUpdate property to Correction, allowing the user to modify the dates.

There's more...

Forms with date effective records can be enhanced with an automatically-generated
toolbar for filtering the records. This can be done with the help of the
DateEffectivenessPaneController application class.

In order to demonstrate that, let's modify the previously used SysEmailTable form and add the
following code to the bottom of the form's init() method:

DateEffectivenessPaneController::constructWithForm(
this,
SysEmailTable_ds);

Now when you open the form, it contains an automatically-generated date effectiveness filter
at the top:

- 4 E-mail templates (2 - cew) - E-mail I0: Alerts, E-mail Alerts ===
File ~ O e
Display the records as of: | /2002002 | B Display all recards: [0 Bpply

Show systern e-mails: [C]
Owverview | General
[7] E-mailld E-rnail description Default language code Sender narme Sender e-mail Effective * Expiration
Alerts E-mail &lerts En-us Mindaugas Pocius rp@dynamicslab.com 1/1/2012 12/31/2012
Alerts E-mail Alerts En-us John Doe jdoe@myemail.com 11201l 1273172011
CaseMail Follow up email En-us Tester testercontosa.com Mewer
[] E-mailld =~ Language Subject Layout E-mail message
Alerts HTHL
4 « |] | Advanced options for displaying records in this form | A0) | USD | ceu Close ‘

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Forms

In this chapter, we will cover:

» Creating a dialog

» Handling a dialog event

» Building a dynamic form

» Adding a form splitter

» Creating a modal form

» Modifying multiple forms dynamically
» Storing last form values

» Using a tree control

» Building a checklist

» Adding the View details link

Introduction

Forms in Dynamics AX represent the user interface and are mainly used for entering
or modifying data. They are also used for running reports, executing user commands,
validating data, and so on.

Normally, forms are created using the AOT by creating a form object and adding form controls
such as tabs, tab pages, grids, groups, data fields, images, and others. Form behavior is
controlled by its properties or the code in its member methods. The behavior and layout of
form controls are also controlled by their properties and the code in their member methods.
Although it is very rare, forms can also be created dynamically from the code.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Forms

In this chapter, we will cover various aspects of using Dynamics AX forms. We start with
building Dynamics AX dialog, and explaining how to handle its events. The chapter will also
show how to build a dynamic form, how to add a dynamic control to existing forms, and how to
make a modal form.

This chapter also discusses the usage of a splitter and a tree control, how to create a
checklist, save last user selections, and other things.

Creating a dialog

Dialogs are a way to present users with a simple input form. They are commonly used for
small user tasks, such as filling in report values, running batch jobs, presenting only the most
important fields to the user when creating a new record, and so on. Dialogs are normally
created from X++ code without storing actual layout in the AOT.

The application class Dialog is used to build dialogs. Other application classes, such as
DialogField, DialogGroup, DialogTabPage, and others, are used to create dialog
controls. A common way of using dialogs is within the RunBase framework classes, where
user input is required.

In this example, we will demonstrate how to build a dialog from the code using the RunBase
framework class. The dialog will contain customer table fields shown in different groups and
tabs for creating a new record. There will be two tab pages, General and Details. The first
page will have Customer account and Name input controls. The second page will be divided
into two groups, Setup and Payment, with relevant fields inside each group. The actual record
will not be created, as it is out of scope of this example. However, for demonstration purposes,
the information specified by the user will be displayed in the Infolog.

How to do it...

Carry out the following steps in order to complete this recipe:

1. Open the AQT, and create a new class CustCreate with the following code:
class CustCreate extends RunBase

{
DialogField fieldAccount;
DialogField fieldName;
DialogField fieldGroup;
DialogField fieldCurrency;
DialogField fieldPaymTermld;
DialogField fieldPaymMode;
CustAccount custAccount;
CustName custName;
CustGroupld custGroupld;
CurrencyCode currencyCode;

=]

www.it-ebooks.info

http://www.it-ebooks.info/

}

Chapter 2

CustPaymTermld paymTermid;
CustPaymMode paymMode;

public container pack()

{
}

return conNull(Q;

public boolean unpack(container _packedClass)

{
}

return true;

protected Object dialog()

{

}

Dialog dialog;
DialogGroup groupCustomer;
DialogGroup groupPayment;

dialog = super();
dialog.caption(*"Customer information™);

fieldAccount = dialog.addField(
extendedTypeStr(CustVendAC),
""Customer account'™);

fieldName =
dialog.addField(extendedTypeStr(CustName));

dialog.addTabPage("'Details™);

groupCustomer = dialog.addGroup("'Setup'™);

fieldGroup = dialog.addField(
extendedTypeStr(CustGroupld));

fieldCurrency = dialog.addField(

extendedTypeStr(CurrencyCode));

groupPayment = dialog.addGroup(*"Payment');

fieldPaymTermld = dialog.addField(
extendedTypeStr(CustPaymTermld));

fieldPaymMode = dialog.addField(
extendedTypeStr(CustPaymMode)) ;

return dialog;

public boolean getFromDialog()

{

custAccount = fieldAccount.value();
custName = fieldName.value();

[vumwwveliieblookkénten]

http://www.it-ebooks.info/
http://www.allitebooks.org

Working with Forms

custGroupld fieldGroup.value(Q);
currencyCode = fieldCurrency.value();
paymTermld fieldPaymTermld.value();
paymMode = fieldPaymMode.value();
return super();

}

public void run(Q)

{
info(""You have entered customer information:");
info(strFmt(""Account: %1", custAccount));
info(strFmt(""Name: %1", custName));
info(strFmt("Group: %1', custGroupld));
info(strFmt(""Currency: %1'", currencyCode));
info(strFmt("Terms of payment: %1, paymTermld));
info(strFmt(""Method of payment: %1, paymMode));

}

public static void main(Args _args)

{
CustCreate custCreate = new CustCreate();
if (custCreate.prompt())
{

custCreate.run();

}

}

In order to test the dialog, run the class. The following form should appear with the

General tab page open initially:

;. Microsoft Dynarmics A% (2) \EI = @
Customer information

General | Details

Custorner account: |

Marre:
MNumber identifying the account.

www.it-ebooks.info

http://www.it-ebooks.info/

3. Click on the Details tab page to see the following screen:

I:Ti] Microsoft Dynarmics & (2)

Customer information

General | Details

=)= (==

Setup

Currency: |v

Payrment

Custorner group: | ‘v

Terrns of payrment: ‘ -

Method of payrment: ‘ -

Group of customers,

Chapter 2

4. Enter some information into the fields and click OK. The results are displayed in

the Infolog:

-4 Message [11:49:23 am)

&l Account: 1000

Eir) Mame: Perfect Wholesales
G Group: 20

&l Currency: GBP

Gl Terms of payment: M030

&l fou have entered customer information:

First, we create a new class CustCreate. By extending it from RunBase, we utilize a

standard approach of developing data manipulation functions in Dynamics AX. The RunBase
class defines a common structure and automatically adds additional controls, such as OK and
Cancel buttons to the dialog.

Then we declare class member variables, which will be used later. Variables of the
DialogField type represent user input fields. Other variables are used to store the

actual user input.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Forms

The pack() and unpack() methods are normally used to convert an object to a container,
which is a format to store an object in the user cache (SysLastValue) or to transfer it
between Server and Client tiers. RunBase requires those two methods to be implemented in
all its subclasses. In this example, we are not using any of the pack()/unpack() features,
but because those methods are mandatory, we return an empty container from pack() and
true from unpack().

The layout of the actual dialog is constructed in the dialog() member method. Here, we
define local variables for the dialog itself—tab pages and groups. Those variables, as opposed
to the dialog fields, do not store any value for further processing.

The super () of the RunBase framework creates the initial dialog object for us. The object
is created using the Dialog application class. The class actually uses an AOT form named
Dialog as a base, automatically adds the relevant controls, including OK and Cancel
buttons, and presents it to the user as a dialog.

Additional controls are added to the dialog by using the addField(), addGroup(),

and addTabPage () methods. There are more methods to add different types of controls,
such as addText(), addImage (), addMenul temButton(), and others. All controls have
to be added to the dialog object directly. Adding an input control to groups or tabs is done by
calling addField() right after addGroup() or addTabPage (). In the previous example,
we added tab pages, groups, and fields in logical sequence top down. Notice that it is enough
only to add a second tab page, the first one labeled General is added automatically by the
RunBase framework.

Values from the dialog controls are assigned to variables by calling the value() member
method of the DialogField class. If a dialog is used within the RunBase framework, as in this
example, the best place to assign dialog control values to variables is the getFormDialog()
member method. RunBase calls this method right after the user clicks OK.

The main processing is done in the run() method. For demonstration purposes, this class
only shows the user input the Infolog.

In order to make this class runnable, the static method main() has to be created. Here, we
create a new CustCreate object, invoke user dialog by calling the prompt() method, and
once the user finishes entering customer details by clicking OK, we call the run() method
to process the data.

See also

In this chapter:

» Handling a dialog event

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Handling a dialog event

Sometimes in the user interface, it is required to change the status of one field, depending
on the status of another field. For example, if the user marks the Show filter checkbox, then
another field, Filter, appears or becomes enabled. In AOT forms, this can be done by using
the input control modi fied() event. However, if this feature is required on runtime dialogs,
handling events are not that straightforward.

Very often, existing dialogs have to be modified to support eventing. The easiest way of doing
that is of course to convert a dialog into an AOT form. However, in cases when the existing
dialog is complex enough, probably a more cost effective solution would be to implement
dialog event handling instead of converting it into an AOT form. Event handling in dialogs is not
as flexible as in AOT forms, but in most cases it does the job.

In this recipe, we will create a dialog very similar to the previous one, but instead of entering
the customer number, we will be able to select it from the list. Once the customer is selected,
the rest of the fields will be completed automatically by the system from the customer record.

How to do it...

Carry out the following steps in order to complete this recipe:

1. Inthe AOT, create a new class named CustSelect with the following code:
class CustSelect extends RunBase

{ DialogField fieldAccount;
DialogField fieldName;
DialogField fieldGroup;
DialogField fieldCurrency;
DialogField fieldPaymTermld;
DialogField fieldPaymMode;

}

public container pack(Q)

{ return conNull(Q);

}

public boolean unpack(container _packedClass)

{
return true;

}

protected Object dialog()
{

=

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Forms

Dialog dialog;
DialogGroup groupCustomer;
DialogGroup groupPayment;

dialog = super();

dialog.caption(*"Customer information™);
dialog.allowUpdateOnSelectCtri(true);

fieldAccount = dialog.addField(
extendedTypeStr(CustAccount),
""Customer account'™);

fieldName = dialog.addField(extendedTypeStr(CustName));
fieldName.enabled(false);

dialog.addTabPage("'Details');

groupCustomer = dialog.addGroup("'Setup'™);

fieldGroup = dialog.addField(
extendedTypeStr(CustGroupld));

fieldCurrency = dialog.addField(

extendedTypeStr(CurrencyCode));
fieldGroup.enabled(false);
fieldCurrency.enabled(false);

groupPayment = dialog.addGroup(*""Payment');
fieldPaymTermld = dialog.addField(
extendedTypeStr(CustPaymTermld));
fieldPaymMode = dialog.addField(
extendedTypeStr(CustPaymMode)) ;
fieldPaymTermld.enabled(false);
fieldPaymMode.enabled(false);

return dialog;

}

public void dialogSelectCtri()

{
CustTable custTable;
custTable = CustTable::find(fieldAccount.value());
fieldName.value(custTable.name());
fieldGroup.value(custTable.CustGroup);
fieldCurrency.value(custTable.Currency);
fieldPaymTermld.value(custTable.PaymTermid);
fieldPaymMode.value(custTable.PaymMode) ;

}

public static void main(Args _args)

{

Sz

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

CustSelect custSelect = new CustSelect();

if (CustSelect.prompt())

{

CustSelect.run();

}
}

2. Run the class, select any customer from the list, and move the cursor to the next
control. Notice how the rest of the fields were populated automatically with the

customer information:

General | Details

I:,—i] Microsoft Dynamics AX (2)

Marrie:

fol = s
Customer information
Custormer account: -
Sunset Wholesales

Customer account number.

3. When you click on the Details tab page, you will see the details as shown in the

following screenshot:

=g Microsoft Dynamics AX (2) EI' =l '@
Customer information
General | Details
Setup
Customer group: 10
Currency: LsD
Payrnent
Terrns of payment: | M0G0
Method of payrment: | CHCK
Customer account number,

[G]-

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Forms

The new class CustSelect is actually a copy of the CustCreate class from the previous
recipe with a few changes. In its class declaration, we leave all DialogField declarations
and remove the rest of the variables.

The methods pack()/unpack() remain the same as we are not using any of their features.

In the dialog() member method, we call the al lowUpdateOnSelectCtr1 () method with
the argument true to enable input control event handling. We also disable all controls apart
from the Customer account by calling enable() with parameter false for each control.

The member method dialogSelectCtrl () of the RunBase class is called every time

the user modifies any input control in the dialog. It is the place where we have to add all the
required code to ensure that, in our case, all controls are populated with the correct data from
the customer record, once the Customer account is chosen.

The static main() method ensures that we can run this class.

There's more...

Usage of the dialogSelectCtrl () method sometimes might appear a bit limited as this
method is only invoked when the dialog control loses its focus. Also, no other events can be
controlled, and it can become messy if events on multiple controls need to be processed.

The Dialog class does not provide direct access to the underlying form's event handling
functions, but we can easily access the form object within the dialog. Although we cannot
create the usual event handling methods on runtime form controls, we can still control this
in a slightly different way. Let us modify the previous example to include more events. We will
add an event on the second tab page, which is triggered once the page is activated.

First, we have to override the dialogPostRun() method on the CustSelect class:

public void dialogPostRun(DialogRunbase dialog)

{
dialog.formRun() .controlMethodOverload(true);
dialog.formRun() .controlMethodOverloadObject(this);
super(dialog);

}

Here, we enable event overloading on the runtime form after it is fully created and is ready
for displaying on the screen. We also pass the CustSelect object as an argument to the
controlMethodOverloadObject() method to make sure that the form knows where the
overloaded events are located.

]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Next, we have to create a method that will be executed once the tab page is opened:

public void TabPg_1 pageActivated()

{
info("Tab page activated®);

}

The method name consists of the control name and event name joined with an underscore.
Now run the class again, and select the Details tab page. The message should be displayed in
the Infolog.

Before creating such methods, we first have to get the name of the runtime control. This
is because the dialog form is created dynamically, and the system defines control names
automatically without allowing the user to choose them. In this example, we have to
temporarily add the following code to the bottom of the dialog(), which displays the
name of the Details tab page control. Just replace the following code:

dialog.addTabPage(''Details');
With the following code:
info(dialog.addTabPage("'Details'™) _name());
Running the class would display the name of the control in the Infolog.

Note that this approach may not work properly if the dialog contains an automatically-generated
query. In such cases, control names will change if the user adds or removes query ranges.

See also

In this chapter:

» Creating a dialog

Building a dynamic form

A standard approach for creating forms in Dynamics AX is to create and store form objects in
the AOT. Using this approach, it is possible to achieve a high level of complexity. However, in a
number of cases, it is required to have forms created dynamically. In the standard Dynamics
AX application we can see that application objects, such as the Table browser form, various
lookups, or dialogs, are built dynamically.

In this recipe, we will create a dynamic form. In order to show how flexible it can be, we will
replicate the layout of the existing Customer groups form located in the Accounts receivable
module. It can be opened from Accounts receivable | Setup | Customers.

67}

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Forms

How to do it...

Carry out the following steps in order to complete this recipe:

1. Inthe AOT, create a new class called CustGroupDynamic with the following code:
class CustGroupDynamic

{

T

public static void main(Args _args)

{
DictTable dictTable;
Form form;
FormBuildDesign design;
FormBui ldDataSource ds;
FormBui ldActionPaneControl actionPane;
FormBui ldActionPaneTabControl actionPaneTab;
FormBui ldButtonGroupControl btngrpl;
FormBui ldButtonGroupControl btngrp2;

FormBui ldCommandButtonControl cmdNew;
FormBui ldCommandButtonControl cmdDel ;
FormBui ldMenuButtonControl mbPosting;
FormBuildFunctionButtonControl mibPosting;
FormBuildFunctionButtonControl mibForecast;

FormBuildGridControl grid;
FormBui ldGroupControl grpBody;
Args args;
FormRun formRun;
#Task

dictTable = new DictTable(tableNum(CustGroup));

form = new Form(Q);
form.name(*'CustGroupDynamic');

ds = form.addDataSource(dictTable.name());
ds.table(dictTable.id());

design = form.addDesign("Design®);
design.caption(''Customer groups');
design.style(FormStyle::SimpleList);
design.titleDatasource(ds.id());

actionPane = design.addControl(

FormControlType: :ActionPane, "ActionPane”);
actionPane.style(ActionPaneStyle: :Strip);
actionPaneTab = actionPane.addControl(

FormControlType: :ActionPaneTab, "ActionPaneTab");

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

btngrpl = actionPaneTab.addControl(

FormControlType: :ButtonGroup, "NewDeleteGroup®);
btngrp2 = actionPaneTab.addControl(

FormControlType: :ButtonGroup, "ButtonGroup®);

cmdNew = btngrpl.addControl(

FormControlType: :CommandButton, "NewButton®);
cmdNew. buttonDisplay(FormButtonDisplay: : TextAndImageLeft);
cmdNew.normal Image("11045%);
cmdNew. imageLocation(SyslImagelLocation: :EmbeddedResource);
cmdNew.primary(NoYes::Yes);
cmdNew . command (#taskNew) ;

cmdDel = btngrpl.addControl(

FormControlType: :CommandButton, "NewButton®);
cmdDel . text("'Delete™);
cmdDel .buttonDisplay(FormButtonDisplay: : TextAndImageLeft);
cmdDel .normal Image("101217);
cmdDel . imageLocation(SyslImagelLocation: :EmbeddedResource);
cmdDel .saveRecord(NoYes::Yes);
cmdDel .primary(NoYes::Yes);
cmdDel . command (#taskDeleteRecord) ;

mbPosting = btngrp2.addControl(

FormControlType: :MenuButton, “"MenuButtonPosting”);
mbPosting.helpText(''Set up related data for the group.');
mbPosting.text(*'Setup™);

mibPosting = mbPosting.addControl

FormControlType: :MenuFunctionButton, "Posting");
mibPosting.text("ltem posting”);
mibPosting.saveRecord(NoYes: :No);
mibPosting.dataSource(ds.id());
mibPosting.menultemName(menuitemDisplayStr(InventPosting));

mibForecast = btngrp2.addControl(

FormControlType: :MenuFunctionButton, "SalesForecast®);
mibForecast. text("Forecast”);
mibForecast.saveRecord(NoYes: :No);
mibForecast.menultemName(

menuitemDisplayStr(ForecastSalesGroup));

grpBody = design.addControl (FormControlType::Group, "Body");
grpBody.heightMode(FormHeight: :ColumnHeight);
grpBody.columnspace(0);

grpBody.style(GroupStyle: :BorderlessGridContainer);

grid = grpBody.addControl (FormControlType::Grid, "Grid");
grid.dataSource(ds.name());
grid.widthMode(FormWidth: :ColumnWidth);

[}

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Forms

grid.heightMode(FormHeight: :ColumnHeight);

grid.addDataField(
ds.id(Q), FieldNum(CustGroup,CustGroup));

grid.addDataField(
ds.id(Q), FieldNum(CustGroup,Name));

grid.addDataField(
ds.id(), FieldNum(CustGroup,PaymTermld));

grid.addDataField(
ds.id(), fieldnum(CustGroup,ClearingPeriod));

grid.addDataField(
ds.i1d(), fieldNum(CustGroup,BankCustPaymldTable));

grid.addDataField(
ds.id(Q), FieldNum(CustGroup,TaxGroupld));

args = new Args(Q);
args.object(form);

formRun = classFactory.formRunClass(args);
formRun.init();
formRun.run(Q);

formRun.detach();
}

2. In order to test the form, run the class. Notice that the form is similar to the one in
Accounts receivable | Setup | Customers | Customer groups:

1 Custorner groups (2 - cew) El@
Mewr 2% Delete Setup~™ Forecast O @
[[] Custornergroup = Description Terms of payrment Settle period Default tax group
o " Wrholesale Custorners OGO MO07

20 " Major Customers NO30 noo7

Ell Retail Custormers 010 RTINS

40 Internet Custamers Mool RTINS

] Cther Customers M010 NI

a0 Intercompany Custorners NOD1 RILINE

Group of customers. Close |

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

We start the code by declaring some variables. Note that most of them begin with
FormBui Id, which is part of a set of the application classes used for building dynamic
forms. Each of these types correspond to the control types manually used when building
forms in the AOT.

Right after the variable declaration, we create a dictTable object based on the CustGroup
table. We will use this object several times later in the code.

Then we create a new form object and set its AOT name by calling the following code:

form = new Form(Q);
form.name(*'CustGroupDynamic');

The name is not important as this is a dynamic form, unless we are planning to save
it in the AOT.

The form should have a data source, so we add one by calling the addDataSource()
method on the Form object and providing the previously created dictTable object.

ds = form.addDataSource(dictTable.name());
ds.table(dictTable.id());

Every form has a design, so we add a new design, define its style as a simple list, and set its
title data source:

design = form.addDesign("Design®);
design.caption(''Customer groups');
design.style(FormStyle::SimpleList);
design.titleDatasource(ds.id());

Once the design is ready, we can start adding controls from the code as if we were doing this
from the AOT. The first thing to do is to add a strip action pane with its buttons:

actionPane = design.addControl(

FormControlType: :ActionPane, "ActionPane®);
actionPane.style(ActionPaneStyle: :Strip);
actionPaneTab = actionPane.addControl(

FormControlType: :ActionPaneTab, "ActionPaneTab®);
btngrpl = actionPaneTab.addControl(

(71}

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Forms

Right after the action pane, we add an automatically expanding Grid control pointing to the
previously mentioned data source. Just to follow best practice, we place the grid inside
of a Group control:

grpBody = design.addControl (FormControlType::Group, "Body");
grpBody . heightMode(FormHeight: :ColumnHeight);

grpBody . columnspace(0);

grpBody.style(GroupStyle: :BorderlessGridContainer);

grid = grpBody.addControl (FormControlType::Grid, "Grid");
grid.dataSource(ds.-name());

grid.widthMode(FormWidth: :ColumnWidth);
grid.heightMode(FormHeight: :ColumnHeight);

Next, we add a number of grid controls pointing to the relevant data source fields by calling
addDataField() on the grid object.

The last thing is to initialize and run the form. Here we use a recommended approach to
create and run forms using the globally available classFactory object.

Adding a form splitter

In Dynamics AX, more complex forms consist of one or more sections. Each section may
contain grids, groups or any other element. In order to maintain section sizes while resizing
the form, the sections are normally separated by so-called splitters. Splitters are not special
Dynamics AX controls; they are group controls with the properties modified so they look like
splitters. Most of the multisection forms in Dynamics AX already contain splitters.

In this recipe, to demonstrate the usage of splitters, we will modify one of the existing forms
that does not have a splitter. We will modify the Account reconciliation form in the Cash
and bank management module, which can be opened from Cash and bank management

| Bank accounts list page, by clicking on the Reconcile | Account reconciliation button in
the action pane, and then selecting any of the existing records and hitting the Transactions
button. In the following screenshot, you can see that it is not possible to control the sizes of
each grid individually, and they are resized automatically using a fixed ratio when resizing
the form:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

I.-;—i] Account recanciliation (1 - ceu) - Bank account: LISA OPER, 771/2007, Bank account: LISA OPER EI@
A i 0e
Showe transactions: 4| -
Totals
Opening balance: 0,00 Ending balance: 6,026,078.90 Unreconciled: 0.00
Orverview | General | Financial dimensions
[[] € Banktransac.. Date Check nu.. Amountin .. Correction .. Bank amount *
Tf1/2006 5,000,000.00 0.00 5,000,000.00
03 TfE006 4 -235.00 0.00 -235.00 |=
03 T/1/2006 5 -401.00 0.00 -401.00
03 7/14/2006] -547,960,14 0.00 -547,960,14 L
03 Tf14/2000 7 -1,728.00 0.00 -1,728.00
72172006 -205.00 0.00 -205.00
03 7f21/2006] -735.00 0.00 -735.00
06 72172006 55,864.02 0.00 55,864.02
72172006 56,180.12 0.00 56,160.12
72172006 7.038.89 0.00 703888 T
Main account: Sales tax group: |v
Description: Ttern sales tax group: |v
Sales tax armount: 0.00
[7] Banktr.. = Description Trar. Cleared =
T4 4,0938,462.00 ‘E‘
10 Checks 00 SHEREHERHEE
20 Depasits 95 18,500,851.83
4 « | 2 |,__,9|| E | Depaosit slip number, | —;(U} | USD | ceu

In this recipe, we will demonstrate the usage of splitters by resolving this situation. We will
add a form splitter in the middle of the two grids in the mentioned form. It will allow users to
define the size of both grids to make sure the data is optimally displayed.

How to do it...

Carry out the following steps in order to complete this recipe:

1. Open the BankReconciliation form in the AOT, and in the form's design add a new
Group control right after the ActionPage control with the following properties:

Property Value

Name Top
AutoDeclaration Yes

Width Column width
FrameType None

(73}

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Forms

2. Move the AllReconciled, Balances, and Tab controls into the newly created group.
3. Add a new Group control right below the Top group with the following properties:

Property Value

Name Splitter
AutoDeclaration Yes

Width Column width
Height 5

FrameType Raised 3D
BackgroundColor Window background
HidelTEmpty No

4. Add the following line of code to the bottom of the form's class declaration:
SysFormSplitter_Y fs;

5. Add the following line of code to the bottom of the form's init() method:
fs = new SysFormSplitter_Y(Splitter, Top, element);

6. Override three methods in the Splitter group with the following code:
public int mouseDown(

int X,
int Y,
int _button,

boolean _ctrl,
boolean _shift)

{

return fs_mouseDown(_x, _y, _button, _ctrl, _shift);
}
public int mouseMove(

int _X,

int v,

int _button,

boolean _ctrl,
boolean _shift)

{

return fs_mouseMove(_Xx, _y, _button, _ctrl, _shift);

}

public int mouseUp(
int X,

Sz

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

int Y,

int _button,

boolean _ctrl,

boolean _shift)
{

return fs_mouseUp(_x, _y, _button, _ctrl, _shift);
}

Change the following properties of the existing BankTransTypeGroup group:

Property Value

Top Auto

Width Column width
Height Column height

Change the following property of the exiting TypeSums grid located inside the
BankTransTypeGroup group:

Property Value
Height Column height

In the AOT, the modified BankReconciliation form should look similar to the
following screenshot:

[« 1 ADT - \Forms EI@
| B F & o
BlBankReconciliation]

! Methods
(a3 Data Sources
[Parts
=l B2 Designs
= & Design
I [ActionPane:ActionPane]
=] m [Group:Top]
' Methads
_Q ComboBox:AllReconciled
m [Group:Balances]
1 [Tab:Tab]
=] m [Group:Splitter]
B ¢ Methods
"; mouseDown
"; mouseMove
"; mousellp
M [Group:BankTransTypeGroup]
' Methads
[[Grid:TypeSums]
¥4 DesignList
3 Permissions

4| i b

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Forms

10. Now, to test the results, open Cash and bank management | Bank accounts, select
any bank account, click Reconcile | Account reconciliation, choose an existing one
or create a new bank statement, and click on the Transactions button. Notice that
the form now has a nice splitter in the middle, which makes the form look better and
allows resizing of both grids:

-

E;i] Account reconciliation (1 - ceu) - Bank account: US2& OPER, 7/1/2007, Bank account: US& OPER

Show transactions: A -
Totals
Opening balance: 0.00 Ending balance: 6,026,078.90 Unreconciled: 0.00

Owerview |Genera| | Financial dimensions|

[T] Cleared Bank tramsaction type Date Check nurber Depaosit slip Amount in transaction currency %
: L 7s1/2006 5,000,000.00
1172006 4 -235.00 |7
[IE} 12006 5 -401.00 L
[IE} 1442 fi -547,960.14
[IE} 77142, 7 -1,728.00
T, -205.00
[IE} T2, g -735.00
06 T, 55,864.02
o e meamnan
kain account: Sales tax group:
Description: Itern sales tax group:
Sales tax amount: 0.00

[[] Banktransaction groups « Description Transactions Cleared
79 493846200
10 Checks 409 -19,309,273.15
20 Deposits 95 18,500,851.83
30 Transfers 32 1,896,038.22
4 -« > M| |,'__,9| | E | Transaction type in bank module. | _).(D} | USD | ceu

7]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Normally, a splitter has to be placed between two form groups. In this recipe, to follow that
rule, we need to adjust the BankReconciliation form's design. The AllIReconciled, Balances
and Tab controls are moved to a new group called Top. We do not want this new group to be
visible to the user, so we set FrameType to None. Setting AutoDeclaration to Yes allows us to
access this object from the code. Finally, we make this group automatically expanding in the
horizontal direction by setting its Width to Column width. At this stage, visual form layout does
not change, but now we have the upper group ready.

The BankTransTypeGroup group could be used as a bottom group with slight changes. We
change its Top behavior to Auto and make it fully expandable in the horizontal and vertical
directions. The Height of the grid inside this group also has to be changed to Column height
in order to fill all the vertical space.

In the middle of those two groups, we add a splitter. The splitter is nothing but another group,
which looks like a splitter. In order to achieve that, we set the Height to 5, FrameType to
Raised 3D, and BackgroundColor to Windows background. This group does not hold any
other controls inside, therefore, in order to make it visible we have to set the HidelfEmpty
property to No. The Column width value of the property Width forces the splitter to
automatically fill the form's width.

Mouse events are handled by the SysFormSplitter_Y application class. After it has been
declared in the form's class declaration, we instantiate it in the form's init() method.

We pass the name of the splitter control, the name of the top group, and the form itself as
arguments when creating it.

A fully working splitter requires three mouse event handlers. It is implemented by
overriding the mouseMove (), mouseDown(), and mouseUp()event methods in the
splitter group control. All arguments are passed to the respective member methods of the
SysFormSplitter_Y class, which does all the work.

In this way, horizontal splitters can easily be added to any form. The Dynamics AX application
also contains nice examples about splitters, which can be found in the AOT in the Tutorial _
Form_Spl it form. Vertical splitters can also be added to forms using a very similar
approach. For this, we need to use another application class called SysFormSplitter_X.

Creating a modal form

Quite often people who are not familiar with computers and software tend to get lost among
open application windows. The same could be applied to Dynamics AX. Often a user opens
one form, clicks a button to open another one, and then goes back to the first one without
closing the second one. Sometimes this happens intentionally, sometimes not, but the result
is that the second form is hidden behind the first one and the user starts wondering why it is
not possible to close or edit the first form.

(77}

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Forms

Such issues can be easily solved by making the child form a modal window. In other words,
the second form always stays on top of the first one until closed. In this recipe, we will do
exactly that. As an example, we will make the Create sales order form a modal window.

How to do it...

Carry out the following steps in order to complete this recipe:

1. Open the SalesCreateOrder form in the AOT, and set its Design property:

Property Value
WindowType Popup

2. Inorder to test, open Sales and marketing | Sales orders | All sales orders, and
start creating a new order. Notice that now the sales order creation form always stays
on top:

. i Micrasaft Dynarnics 3 - Derno [NYC-DCL: Session 1D - 3] - [1 - ceu] E@I
@‘\;/" » CEU » Salesand marketing » Common Sales orders » All sales orders ‘7“ Search p - |
Sales order Sell Manage Pick and pack Irvvoice General ="l '@'
=70 [Service order ~“Editin grid 2‘ 7 Framall "’ "?E [}

s Purchase arder 75 Delete] & From journal
Sales Edit Total Refresh Exnortto Microsaft | Attachment:

arder 5, Directy
ECreatesalesorder(l-ceu) = @

Custarner

Meyy

4 Favorites 8 X orders -~
he-tirme custarmer: i
[Iy Favorite Status Creation da

Custamer account: 1101 |v Open .. 87217201
Mame: Open .. 5/21/201
Area page Invoic.., /200
G > Trwic. . 71200

4 Sales and ma

4 Carrnon
Custormer| Address
Prospects
ok Delivery narme: Primary address, Address: 456 Black Road

Bothell, W4 98021
Contacts us

rmation ~

Opportun)
Carnpaig|

Telemnark Delivery address: Primary address, ‘v Delivery contact:

Sales quo

e

Sales orddf © Gemeral 50-101251

Al sales| Shipping
Opensqd ¢ Administration
COpen 19

/l‘ Home

W F e BEW

Create sales order ‘ _).(U} | usD | ceu

=]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

The design of the form has a WindowType property, which is set to Standard by default. In
order to make a form behave as a modal window, we have to change it to Popup. Such forms
will always stay on top of the parent form.

There's more...

We already know that some of the Dynamics AX forms are created dynamically using the
Dialog class. If we look deeper into the code, we could find that the Dialog class actually
creates a runtime form. This means that we can apply the same principle—change the
relevant form's design property. The following code could be added to the Dialog object and
would do the job. The format is given as follows:

dialog.dialogForm() .buildDesign() .windowType(
FormWindowType: :Popup);

Here we get a reference to the form's design, by first using the dialogForm() method
of the dialog object to get a reference to the DialogForm object, and then we call
buildDesign() on the latter object. Finally, we set the design property by calling its
windowType() with an argument FormWindowType : - Popup.

See also

In this chapter:

» Creating a dialog

Modifying multiple forms dynamically

In the standard Dynamics AX application, there is a class called SysSetupFormRun. Every
runtime form inherits that class; therefore the class could be used to override some of the
common behavior for all Dynamics AX forms.

For example, form background color could be changed depending on some parameters, some
controls could be hidden or added depending on specific circumstances, and so on.

In this recipe, we will modify the SysSetupFormRun class to automatically add an About
Microsoft Dynamics AX button to every form in Dynamics AX.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Forms

How to do it...

Carry out the following steps in order to complete this recipe:

1. Inthe AQT, open SysSetupFormRun class, and create a new method with the
following code:

private void addAboutButton()

{

FormActionPaneControl actionPane;
FormActionPaneTabControl actionPaneTab;
FormCommandButtonControl cmdAbout;
FormButtonGroupControl btngrp;
#deFfine.taskAbout(259)

actionPane = this.design().controlNum(l);
if (lactionPane ||
1(actionPane is FormActionPaneControl) ||
actionPane.style() == ActionPaneStyle::Strip)
{

return;

}

actionPaneTab = actionPane.controlNum(l);
if (lactionPaneTab ||
I(actionPaneTab is FormActionPaneTabControl))

{

return;

}

btngrp = actionPaneTab.addControl(
FormControlType: :ButtonGroup, "ButtonGroup®);
btngrp.caption("About™);

cmdAbout = btngrp.addControl(

FormControlType: :CommandButton, “About®);
cmdAbout.command(#taskAbout) ;
cmdAbout. imageLocation(SyslImagelLocation: :EmbeddedResource) ;
cmdAbout.normal Image("4127);
cmdAbout.big(NoYes::Yes);
cmdAbout.saveRecord(NoYes: :No);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

2.

In the same class, override the run() method with the following code:

public void run(Q)

{

this.addAboutButton();
super();

In order to test the results, open any list page, for example, Accounts receivable |

Customers |

All customers and look for the new button About Microsoft Dynamics

AX in the action pane:

_ it Microsoft Dynamics A% - Dema [MYC-DC1: Session 0 - 3] - [1- ceu] E=nEEn==<=
P — =
<IN » CEU b Accounts receivable » Common Customers » Al customers || Searat P+
File ~ Custorner | Sell Invoice Collect Projects Service Market General S~]
$ —= [i =
g A Editin grid Sl . T, E [, Bank accounts " EEE 0 r]
X Delete 3 - 3} Summary update ™
Customer Edit Contacts Transactions | Balance Forecast | oo Refresh the Exportto Microsoft Attachments About Microsoft
53 Credit cards list (F5) Office Excel Dynamics A
e Maintain Accounts | Transactions | Balance | Forecast Setup List Attachrments About
4 Favorites All customers | Name v Primary address X
b My Favarites [E] Name = Customer account Phone Extension - g‘ﬁdg\’f&'l";g’gf;&“
Basketball Stadium 2121 United States of America
1 s Beaver Wholesales 1303 123-555-0168
2 naos Berry Conference Center 2015 E
< (G Berry Conference Center 2014 123-555-115 16 Contacts -
4 Customers)
— Birch Company 902301 111-555-0113 Recent activity i
- aed el Barregn Springs Airport 2203 123-555-0163 3 |
ustorner postdated checks R ing invoice t
: Bright Yellow Services 8002 321-555-0110 == LSS LU b
Customners on hold -
Cave Wholesales 1102 123-555-0161 Statistics v
Customers past due
Cheetah Concert Hall 2104 123-555-0142 Related information -
[Customer imvoices -
5 et Calarado Airport 2202
b Contaso Europe 9100 987-555-2212
i i Contaso Retail Bostan 3007 123-555-0115
b Sales orders Contoso Retail Chicaga 3010 123-555-0118
> ool Cantoso Retail Dallas 3009 123-555-0117
b Inquiries Cantasn Retail Nerver Elihbd 123-555-0120 -
I Reports 2121 : Basketball Stadium it
b Periodic Custarner group: 20 Terms of payment: MO30
Ep Credit limit: 0.0 Method of payment: CHCK 5
4P Home Deliveny terms: ~ FOB_OR Payment schedule; 1 Vear |
Sales tax group: No-Tax Modified date and time: 12/10/2008 05:35:51 prn |
| ek BB TR .
| A | USD | ceu

SysSetupFormRun is the application class that is called by the system every time a user
runs a form. The best place to add our custom control is to override the run() method.

We use the this.design() method to obtain a reference to the form's design, then we
check if the first control in the design is an action pane, but not an action pane strip, and the
first control in the action pane is an action pane tab. If one of those conditions is not met, we
stop the code, otherwise we continue by adding a new separate button group and the About
Microsoft Dynamics AX command button. Now every form in Dynamics AX with an action
pane will have one more button.

[Ei}-

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Forms

Storing last form values

Dynamics AX has a very useful feature that allows saving of the latest user choices per user
per form, report or any other object. This feature is implemented across a number of standard
forms, reports, periodic jobs, and other objects, which requires a user input. When developing
a new functionality for Dynamics AX, it is recommended to keep it that way.

In this recipe, we will demonstrate how to save the latest user selections. In order to make it

as simple as possible, we will use existing filters on the General journal form, which can be
opened from General ledger | Journals | General journal. This form contains two filters—Show
and Show user-created only. The Show filter allows journals to be displayed by their posting
status and the Show user-created only toggles between all journals and the currently logged in
user's journals.

How to do it...

Carry out the following steps in order to complete this recipe:

1. Inthe AOT, find the LedgerJournalTable form, and add the following code to the
bottom of its class declaration:

AllOpenPosted showStatus;
NoYes showCurrentUser;
#define.CurrentVersion(l)
#localmacro.CurrentList
showStatus,
showCurrentUser
#endmacro

2. Create the following additional form methods:
public void initParmbefault()

{
showStatus = AllOpenPosted: :Open;
showCurrentUser = true;
}
public container pack(Q)
{
return [#CurrentVersion, #CurrentList];
}

public boolean unpack(container _packedClass)

{

int version = RunBase::getVersion(_packedClass);

=]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

switch (version)

{
case #CurrentVersion:
[version, #CurrentList] = _packedClass;
return true;
default:
return false;
}
return false;
}
public ldentifierName lastValueDesignName()
{
return element.args().menultemName();
}
public ldentifierName lastValueElementName()
{
return this.name();
}
public UtilElementType lastValueType()
{
return UtilElementType::Form;
}
public Userld lastValueUserld()
{
return curUserld();
}
public DataAreald lastValueDataAreald()
{
return curext();
}

Add the following code to the form's run() method right before its super():

xSysLastValue: :getLast(this);
AllOpenPostedField.selection(showStatus);
ShowUserCreatedOnly.value(showCurrentUser);

Add the following code to the bottom of the form's close() method:

showStatus = AllOpenPostedField.selection();
showCurrentUser = ShowUserCreatedOnly.value();
xSysLastValue: :savelLast(this);

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Forms

5. Now to test the form, open General ledger | Journals | General journal, change
the filter's values, close the form, and open it again. The latest filter selections

should stay:

l-T—;i] Jaurnal (1 - ceu)

Mew 2% Delete

o[-]
0 e

>

A Lines

Shaowe Al

-

Showe user-created only:

Onepvie |Genera| | Setup I Blacking | Financial dirnensions | History|

[Marme

Journal batch number
0003497_010
0o0398_010

-

Description Posted Inuse
Cash adwance request C4,_000011

Cash adwance request C4,_000022

Log

1

> | [@]| B

| Identification of the journ... | _).([J} | USD| ceu Cloze |

First of all, we define two variables, one for each filter control. We will store the journal posting
status filter value in showStatus, and the current user filter value in showCurrentUser.

The macro #CurrentList is used to define a list of variables that we are going to save in the
usage data. Currently, we have both variables inside it.

The macro #CurrentVersion defines a version of the saved values. In other words, it says
that the variables defined by the #CurrentList, which will be stored in system usage data,
can be addressed using the number 1.

Normally, when implementing the last value saving for the first time for a particular object,
#CurrentVersion is set to 1. Later on, if we decide to add new values or change existing
ones, we have to change the value of #CurrentVersion, normally increasing it by 1. This
ensures that the system addresses the correct list of variables in the usage data and does not
break existing functionality.

The initParmDefault()method specifies default values if nothing is found in the usage
data. Normally, this happens if we run a form for the first time, we change #CurrentVersion
or clean the usage data. This method is automatically called by the xSysLastValue class.

=0

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

The methods pack() and unpack() are responsible for formatting a storage container from
variables and extracting variables from a storage container, respectively. In our case, pack()
returns a container consisting of three values: version number, posting status, and current
user toggle. These values will be sent to the system usage data storage after the form is
closed. During an opening of the form, the xSysLastValue class uses unpack() to extract
values from the stored container. It checks whether the container version in the usage data
matches the current version number, and only then the values are considered correct and are
assigned to the form variables.

A combination of the lastValueDesignName(), lastValueElementName(),
lastvValueType(), lastValueUserld(), and lastValueDataAreald() method
return values forms a unique string representing the saved values. This ensures that
different users can store last values for different objects without overriding each other's
values in the usage data.

The lastValueDesignName() method is meant to return the name of the object's current
design in cases where the object can have several designs. In this recipe, there is only one
design, so instead of leaving it empty, we used it for a slightly different purpose. The same
LedgerJournalTable form can be opened from various menu places. For example, the
form could be presented to the user as General journal, Periodic journals or Payment
journal forms. In order to ensure that the user's latest choices are saved correctly, we include
the caller menu item name as part of the unique string.

The last two pieces of code need to be added to the form's run() and close() methods.
In the run() method, xSysLastValue: :getLast(this) retrieves the saved user values
from the usage data and assigns them to the form's variables. The next two lines assign the
values to the respective form controls.

Finally, code lines in the close() method are responsible for assigning
user selections to the variables and saving them to the usage data by calling
xSysLastValue: :savelLast(this).

Using a tree control

Frequent users should notice that some of the Dynamics AX forms use tree controls instead

of commonly used grids. In some cases, it is extremely useful, especially when there are
parent-child relationships among records. It is a much clearer way to show the whole hierarchy
compared to a flat list. For example, projects and their subprojects are displayed in the
Projects form of the Project management and accounting module and give a much better
overview when displayed in a tree layout.

This recipe will discuss the principles of how to build tree-based forms. As an example,

we will use the Budget model form, which can be found in Budgeting | Setup | Budget
models. This form contains a list of budget models and their submodels, and although the
data is organized using a parent-child structure it is still displayed as a grid. In this recipe, to
demonstrate the usage of tree controls, we will replace the grid with a new tree control.

(]

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Forms

How to do it...

Carry out the following steps in order to complete this recipe:

1. Inthe AOT, create a new class named BudgetMode I Tree with the following code:
class BudgetModelTree

{
FormTreeControl tree;
BudgetModel 1d model ld;

}

public void new(
FormTreeControl _formTreeControl,
BudgetModelld _budgetModel 1d)

tree _formTreeControl;
modelld = _budgetModelld;

}

public static BudgetModelTree construct(
FormTreeControl _formTreeControl,
BudgetModelld _budgetModelld = *7)

return new BudgetModelTree(
_formTreeControl,
_budgetModel Id);
}

private Treeltemldx createNode(
Treeltemldx _parentldx,
BudgetModelld _modelld,
Recld _recld)

Treeltemldx itemldx;
BudgetModel model;
BudgetModel submodel;

model = BudgetModel: :find(HeadingSub: :Heading, _modelld);

itemldx = SysFormTreeControl::addTreeltem(
tree,
_modelld + * - " + model.Txt,
_parentldx,
_recld,

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

}

0,
true);
if (modelld == _modelld)
{
tree.select(itemldx);
}
while select submodel
where submodel .Modelld == _modelld &&
submodel . Type == HeadingSub: : SubModel
{
this.createNode(
itemldx,
submodel . SubModel Id,
submodel .Recld);
}

return itemldx;

public void buildTree()

{

BudgetModel model;
BudgetModel submodel;
Treeltemldx itemldx;

tree.deleteAll();
tree.lock();
while select Recld, Modelld from model
where model .Type == HeadingSub: :Heading
notExists join submodel
where submodel .SubModelld == model .Modelld &&
submodel . Type == HeadingSub: : SubModel

itemldx = this.createNode(
FormTreeAdd: :Root,
model .Model Id,
model .Recld);
SysFormTreeControl: :expandTree(tree, itemldx);

}

tree.unLock(true);

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Forms

2. Inthe AOT, open the BudgetModel form's design, expand the Body group, then
expand the GridContainer group, and change the following property of the
BudgetModel grid control:

Property Value
Visible No

3. Create a new Tree control right below the BudgetModel grid with the
following properties:

Property Value

Name Tree

Width Column width
Height Column height
Border Single line
RowSelect Yes

4. Add the following code to the bottom of the form's class declaration:
BudgetModelTree modelTree;

5. Add the following code to the bottom of form's init():

modelTree = BudgetModelTree: :construct(Tree);
modelTree.buildTree();

6. Override selectionChanged() on the Tree control with the following code:

public void selectionChanged(
FormTreeltem _oldltem,
FormTreeltem _newltem,
FormTreeSelect _how)

BudgetModel model ;
BudgetModel Id modelld;

super(_oldltem, _newltem, _how);

if (_newltem.dataQ))

{
select firstOnly model
where model .Recld == _newltem.data();
if (model.Type == HeadingSub: :SubModel)

{
model Id = model .SubModelld;

www.it-ebooks.info

http://www.it-ebooks.info/

7.

10.

Chapter 2

select firstOnly model
where model .Modelld == modelld
&& model .Type == HeadingSub::Heading;
}
BudgetModel _ds.findRecord(model);
BudgetModel _ds.refresh();

}

Override the delete() method on the BudgetModel data source with the
following code:

public void delete()

{
super();
if (BudgetModel .Recld)
{
modelTree.buildTree();
}
}

Override the delete() method on the SubModel data source with the
following code:

public void delete()

{
super();
it (SubModel .Recld)
{
modelTree.buildTree();
}
}

Add the following code to the bottom of the write() method on the BudgetModel
data source:

modelTree.buildTree();

Override the write() method on the SubModel data source and add the following
code to its bottom:

modelTree.buildTree();

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Forms

11. In the AOT, the BudgetModel form should look like the following screenshot:

= 20T - \Farms EI@

E| BudgetModel
W Methods
t;—.:é' Data Sources
[J Parts
B M Designs
EN4 Desigh
I [&ctionPanefctionPane]
2M [Group:Body]
i Methods
m [Group:GridContainer]
SN [Group:TreeGroup]
& Methods
= EE Tree:Tree
El i Methods
3 selectionChanged
™ [Group:WSplitter]
™ [Group:DetailsContainer]
% DesignlList
[Permissions

12. To test the tree control, open Budgeting | Setup | Budget models. Notice how the
ledger budget models are presented as a hierarchy:

Ei]Budget model (1 - ceu) EI@
SFMew 4 Delete 1w} .@.
EUELESREEIIER pgger model, TOTA
SUBL: Submodel 1
----- SUBZ : Submadel 2 Marne: Total Model

a4 General -

Administration
Stopped: [

Cash flow forecasts:

a4 Submodel

EﬂiAdd K Remove
[Submodel
SUEL
sue2

m

5]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

This recipe contains a lot of code, so according to best practice we create a class to hold most
of it. This allows us to reuse the code and keep the form less cluttered.

The new class contains a few common methods like new() and construct() for initializing
the class and two methods, which actually generate the tree.

The first method is createNode () and is used for creating a single budget model node with
its children, if any. It is a recursive method, and it calls itself to generate the children of the
current node. It accepts a parent node and a budget model as arguments. In this method, we
create the node by calling the addTreel tem() method of the SysFormTreeControl class.
The rest of the code loops through all submodels and creates subnodes (if there are any) for
each of them.

Secondly, we create the bui ldTree() method where the whole tree is created. Before we start
building the tree, we delete all nodes and lock the tree control. Then, we add nodes by looping
through all parent budget models and calling the previously mentioned createNode(). We call
the expandTree() of the SysFormTreeControl class to display every parent budget model
initially expanded. Once the hierarchy is ready, we unlock the tree control.

Next, we modify the BudgetModel form by hiding the existing grid section and adding a new
tree control. Tree nodes are always generated from the code, and the class mentioned above
will do exactly that. On the form, we declare and initialize the model Tree object and build the
tree in the form's init().

In order to ensure that the currently selected tree node is displayed on the form on the right, we
override the tree control's selectionChanged() event which is triggered every time a tree
node is selected. Here we locate a corresponding record and place a cursor on that record.

The rest of the code on the form is to ensure that the tree is rebuilt whenever the data
is modified.

There's more...

In this section we will discuss how to improve tree control's performance and how to enable its
drag-and-drop functionality.

Performance

Tree hierarchy generation might be time consuming, so for bigger trees it is not beneficial to
build the whole tree initially. Instead, it is better to generate only a visible part of the tree,
which most of the time is a first level of nodes, and generate the rest of the branches only
when/if the user expands them. This could be achieved by placing the relevant code into the
expanding() method of the tree control which represents an event when a tree node is
being expanded. Such an approach ensures that no system resources are used on generating

unused tree nodes.
[oi}-

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Forms

Drag-and-drop

Besides hierarchical layout, tree controls also allow users to use drag-and-drop functionality.
This makes daily operations much quicker and more effective. Let's modify the previous
example to support drag-and-drop. We are going to allow the users to move ledger budget
submodels to different parents within the tree. In order to do that, we need to make some
changes to the BudgetModel Tree class and the BudgetModel form. Add the following code
to the BudgetMode l Tree class declaration:

Treeltemldx dragltemldx;
Treeltemldx lastltemldx;

Create the following additional methods in this class:

private boolean canMove()

{
BudgetModel model;
Recld recld;
recld = tree.getltem(dragltemldx) .data();
select FirstOnly recld from model
where model .Recld == recld
&& model .Type == HeadingSub::SubModel;
return model .Recld ? true : fTalse;
}

private void move(Recld _from, Recld _to)

{
BudgetModel modelFrom;

BudgetModel modelTo;

select firstOnly Modelld from modelTo
where modelTo.Recld == _to;

ttsBegin;

select firstOnly forupdate modelFrom
where modelFrom.Recld == _from;

modelFrom.Modelld = modelTo.Modelld;

it (modelFrom.validateWrite())
{

www.it-ebooks.info

http://www.it-ebooks.info/

}

public void stateDropHilite(Treeltemldx _idx)

{

}

modelFrom.update();
b

ttsCommit;

FormTreeltem item;

it (lastltemldx)

{
item = tree.getltem(lastltemldx);
item.stateDropHilited(false);
tree.setltem(item);
lastltemldx = O;

}

if Cidx)

{
item = tree.getltem(_idx);
item.stateDropHilited(true);
tree.setltem(item);
lastltemldx = _idx;

}

public int beginDrag(int _x, int _y)

{

}

[dragltemldx] = tree.hitTest(_ X, _VY);
return 1;

public FormDrag dragOver(

FormControl _dragSource,

FormDrag _dragMode,
int _X,
int Y

Treeltemldx currltemldx;

if (1this.canMove())
{

return FormDrag::None;

Chapter 2

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Forms

}

}

[currltemldx] = tree.hitTest(_ X, _VY);
this.stateDropHilite(currltemldx);

return FormDrag: :Move;

public void drop(

FormControl _dragSource,

FormDrag _dragMode,
int _X,
int Y)

Treeltemldx currltemldx;

if (1this.canMove())
{

return;

}

this.stateDropHilite(0);
[curritemldx] = tree.hitTest(_X,_VY);

it (Icurrltemldx)
{

return;

}

this.move(
tree.getltem(dragltemldx).data(),
tree.getltem(currltemldx).data());

tree.moveltem(dragltemldx, currltemldx);

www.it-ebooks.info

http://www.it-ebooks.info/

In the AOT, locate the BudgetModel form, find its Tree control, and change the
following property:

Property Value

DragDrop Manual

Also, override the following methods of the Tree control:

public int beginDrag(int _x, int _y)
{

return modelTree.beginDrag(_x, _VY);

}

public FormDrag dragOver(
FormControl _dragSource,
FormDrag _dragMode,
int X,
int Y)

return modelTree.dragOver(
_dragSource,
_dragMode,
_X’
_¥):
}

public void drop(
FormControl _dragSource,

FormDrag _dragMode,

int X,

int Y
{

modelTree.drop(_dragSource, _dragMode,
}

Chapter 2

Now, when you open Budgeting | Setup | Budget models, you should be able to move
budget models within the tree with a mouse.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Forms

The main element in the latter modification is the DragDrop property of the tree control. It
enables the drag-and-drop functionality in the tree, once we set its value to Manual. The next
step is to override the drag-and-drop events on the tree control. Trees can have a number of
methods covering various drag-and-drop events. A good place to start investigating them is
the Tutorial_Form_TreeControl form in the standard application. In this example, we will cover
only three of them:

>

beginDrag() is executed when dragging begins. Here, we normally store the
number of the item that is being dragged for later processing.

dragOver()is executed once the dragged item is over another node. This method
is responsible for highlighting nodes when the dragged item is over them. Its return
value defines the mouse cursor icon once the item is being dragged.

drop() is executed when the mouse button is released that is, the dragged
item is dropped over a node. Here, we normally place the code that does actual
data modifications.

In this example, all logic is stored in the BudgetModel Tree class. Each of the mentioned
form methods call the corresponding method in the class. This is to reduce the amount of
code placed on the form and allow the code to be reused on multiple forms. We added the
following methods to the class:

>

canMove () checks whether the currently selected node can be dragged. Although
there might be more conditions, for this demonstration we only disallow dragging of
top nodes.

move () is where the actual movement of the budget model is performed that is, the
submodel is assigned with another parent.

stateDropHilite() is responsible for highlighting and removing highlighting from
relevant items. Using stateDropHi lited(), we highlight the current item and we
remove highlighting from the previously highlighted one. This ensures that as we move
the dragged item over the tree, items are highlighted once the dragged item is over
them and the highlight is removed once the dragged item leaves them. This method is
called later from several places to make sure node highlighting works correctly.

beginDrag() saves the item currently being dragged into a variable.

dragOver () first checks if the currently selected item can be moved. If not, then

it returns FormDrag : :None, which changes the mouse cursor to the forbidden
sign. Otherwise, the cursor is changed to an icon representing node movement. This
method also calls stateDropHi lite() to ensure correct node highlighting.

drop() also checks if the item being dropped can be moved. If yes, then it uses
move () to update the data and moveltem() to visually change the node's place in
the tree. It also calls stateDropHi lite() to update tree node highlighting.

=]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

See also

Chapter 3, Working with Data in Forms:
» Preloading images
Chapter 4, Building Lookups:

» Building a tree lookup

Building a checklist

Anyone who has performed a Dynamics AX application installation or upgrade has to be
familiar with standard checklists. Normally, a checklist is a list of menu items displayed in a
logical sequence. Each item represents either mandatory or optional action to be executed by
the user in order to complete the whole procedure. In custom Dynamics AX implementations,
checklists can be used as a convenient way to configure non-standard settings. Checklists can
also be implemented as a part of third-party modules for their initial setup.

In this recipe, we will create a checklist for user-friendly ledger budget setup. The checklist will
consist of two mandatory items and one optional item.

How to do it...

Carry out the following steps in order to complete this recipe:

1. Open the AQOT, and create a new interface named SysCheckListInterfaceBudget:
interface SysCheckListInterfaceBudget
extends SysCheckListInterface

{
}

2. Create three classes, one for each checklist item, with the following code:

class SysCheckListltem_BudgetModel
extends SysCheckListltem
implements SysCheckListlInterfaceBudget

{
}
public str getCheckListGroup()
{
return "'Setup’;
}

57}

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Forms

public str getHelpLink(Q)

{

#define.Topicld("Dynamics://DynamicsHelp/Topic?ld=" +
"84030522-0057-412c-bfc7-dbeb4d40e5al™)

return #Topicld;

}

public MenultemName getMenultemName()

{
return menuitemDisplayStr(BudgetModel);

}

public MenultemType getMenultemType()

{
return MenultemType::Display;

}

public str label()

{
return "Models";

}

class SysCheckListltem_BudgetCode

extends SysCheckListltem
implements SysCheckListInterfaceBudget

{
}
public void new()
{
super();
this.placeAfter(classNum(SysCheckListltem_BudgetModel));
}
public str getCheckListGroup()
{
return "'Setup’;
}

public str getHelpLink(Q)

{
#define.Topicld("Dynamics://DynamicsHelp/Topic?ld=" +
"d42c3c30-d3b3-4d71-aa86-396516a3c8ee™)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

return #Topicld;

}
public MenultemName getMenultemName()
{
return menuitemDisplayStr(BudgetTransactionCode);
}
public MenultemType getMenultemType()
{
return MenultemType::Display;
}
public str label()
{
return ""Codes";
}
class SysCheckListltem_Budget

extends SysCheckListltem
implements SysCheckListInterfaceBudget

{

}

public void new()

{
super();
this.addDependency(classNum(SysCheckListltem_BudgetModel));
this.addDependency(classNum(SysCheckListltem_BudgetCode));
this.placeAfter(classNum(SysCheckListltem_BudgetCode));
this.indeterminate(true);

}

public str getCheckListGroup()

{
return "Create budgets;

}

public str getHelpLink(Q)

{
#deFfine.Topicld("Dynamics://DynamicsHelp/Topic?ld=" +
"846e3e47-acc3-4a86-bbd3-678a62d2953f")

[}

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Forms

100

return #Topicld;

}
public MenultemName getMenultemName()
{

return menuitemDisplayStr(BudgetTransactionListPage);
}
public MenultemType getMenultemType()
{

return MenultemType::Display;
}
public str label()
{

return ""Budget register entries';
}

Create another class for the checklist itself, with the following code:

class SysCheckList_Budget extends SysCheckList
{

container log;

}
protected str getCheckListCaption()
{
return "Budget checklist";
}
protected str getHtmlHeader()
{
return ""Budget checklist";
}
protected Classld getinterfaceld()
{
return classNum(SysCheckListlInterfaceBudget);
}
public void save(
IdentifierName _name,
ClassDescription _description = ')

if (!conFind(log, _name))
{

log = conlns(log, conLen(log)+1, _name);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

}
}
public boolean find(
IdentifierName _name,
ClassDescription _description = ')
{
return conFind(log, _name) ? true : false;
}
protected boolean isRunnable()
{
return true;
}
public static void main(Args _args)
{

SysCheckList: :runCheckListSpecific(
classNum(SysCheckList_Budget),
true);

}

Find the SysCheckList class in the AQT, and replace its checkListltemsHook()
and checkListsHook () methods with the following code:

protected static container checkListltemsHook()

{
return [classNum(SysCheckListltem_Budget),
classNum(SysCheckListltem_BudgetCode),
classNum(SysCheckListltem_BudgetModel)];
}
protected static container checkListsHook()
{
return [classNum(SysCheckList_Budget)];
}

Open the BudgetModel form in the AOT, and override its close() method with the
following code:

public void close()

{
super();
SysCheckList: :finished(
classNum(SysCheckListltem_BudgetModel));
}

101

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Forms

6. Open the BudgetTransactionCode form in the AOT, and override its close() with
the following code:

public void close()

{
super();
SysCheckList: :finished(
classNum(SysCheckListltem_BudgetCode));
}

7. Inthe AQT, create a new action menu item with the following properties:

Property Value

Name SysCheckList_Budget
Label Budget checklist
ObjectType Class

Object SysCheckList_Budget

8. To test the checklist, run the SysCheckList_Budget menu item from the AOT. The
following should appear on the right-hand side of the Dynamics AX window:

Budget checklist @

Budget checklist

Infarmation

B ﬁ Setup

5] Models {Required)

gt up budget models
Help

5] Codes (Required)

~ 9et up codes to provide default values For budget
transackions and ko group kransackions
Help

B Create budgets

Budget register entries

Zpen list of budget kransactions, such as original
budget and transfers

Help

102

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

9. Click on the listed items to start and complete the relevant actions. Notice how the
status icons change upon completion of each task.

Budget checklist @

Budget checklist
Information
= 5@ Setup

$@ Muodels {Required)

Set up budget models
Help

3‘3} Codes {(Required)
Set up codes ko provide defaulk values for budget
transactions and ko group kransactions
Help

S 3‘3} Create budgets

5»} Budget register entries

Open lisk of budget transactions, such as ariginal
budget and kransfers
Help

The main principle when creating the checklist is that we have to create a main class, which
represents the checklist itself, and a number of checklist item classes representing each item
in the checklist. The main class has to extend the SysCheckList class, and the items must
extend the SysCheckListltem class. The relation between the main class and the items

is made by the use of an interface, that is, each list item implements it, and the main class
holds the reference to it.

In this example, we create a new interface SysCheckListInterfaceBudget and specify
it in the getlnterfaceld() of the main checklist class SysCheckList_Budget. Next, we
implement the interface in three SysCheckListltem classes, which correspond to Models,
Codes, and Budget register entries items in the checklist.

Each SysCheckListltem class contains a set of inherited methods, which allows us to
define a number of different parameters for individual items:

» Allinitialization code can be added to the new() methods. In this example, we use
placeAfter () to determine the position of the item in the list relative to other
items, indeterminate() to make an item optional and addDependency() to
make an item inactive until another specified item is completed.

103

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Forms

» getCheckListGroup() defines a group name of the current item. The budget
checklist has two groups, Setup and Create budgets.

» getHelpLink() is responsible for placing the relevant help link.

» getMenultemName() and getMenultemType() contain a name and a type of
a menu item, which is executed upon user request. Here, we have Budget models,
Budget codes, and Budget register entries menu items, respectively, in each class.

» And, finally, custom labels can be set in the label () method.

Once the items are ready, we create the main checklist class SysCheckList_Budget,
which extends the standard SysCheckList class. Next we override some of the methods to
add custom functionality to the checklist:

» getCheckListCaption() sets the title of the checklist.
» getHtmlHeader () could be used to add some descriptive text.

» As mentioned earlier, getInterfaceld() is the place where we specify the name
of the checklist item interface.

» The methods save() and find() are used to store and retrieve, respectively, the
status of each item in the list. In this example, we store each status in the local
variable log to make sure that each status is reset every time we run the checklist.

» The static method main() runs the class. Here, we use
runCheckListSpecific() of the SysCheckList class to start the checklist.

The display menu item we have created points to the checklist class and may be used to add
the checklist to a user menu.

When building checklists, it is necessary to add them and their items to the global
checklist and checklist item list. The SysCheckL ist class contains two methods:
checkLists() and checkListltems(), where all system checklists and their items
are registered. The same class provides two more methods—checkListsHook() and
checkListltemsHook—where custom checklists should be added. As a part of this
example, we also add our budget checklist and its items to the SysCheckList class.

Final modifications have to be done on each form called by the checklist. We call the
finished() method of the SysCheckL i st class, within the close() method of each
form, to update the status of the corresponding checklist item. This means that the checklist
item status will be set as completed when the user closes the form. Obviously, this will not
ensure that each checklist item was completed successfully, but still gives some level of
control. This code does not affect the normal use of the form when it is opened from the
regular menu. Normally, more logic is added here if the completion of a specific item is not
that straightforward.

104

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

There's more...

The checklist in this example stores each item status per single run. This means that every
time you close the checklist, each status is lost and is set to their initial states upon checklist
start. By replacing save() and find() in the SysCheckList_Budget with the following
code, we can permanently store the status in the SysSetuplLog table:

public boolean find(

IdentifierName _name,
ClassDescription _description = ')
{
return (SysSetuplLog::find(_name, _description).Recld != 0);
}
public void save(
IdentifierName _name,
ClassDescription _description = ')
{
SysSetupLog: :save(_name, _description);
}

In this case, every time the checklist starts, the system will pick up its last status from the
SysSetuplog table and allow the user to continue the checklist.

Adding the View details link

Dynamics AX has a very useful feature, which allows the user to open the main record form
with just a few mouse clicks on the current form. The feature is called View details and is
available in the right-click context menu on some controls. It is based on table relationships
and is available for those controls whose data fields have foreign key relationships with
other tables.

Because of the data structure integrity, the View details feature works most of the time.
However, when it comes to complex table relations, it does not work correctly or does not work
at all. Another example of when this feature does not work automatically is when display or
edit methods are used on a form. In those and many other cases, the View details feature
has to be implemented manually.

In this recipe, to demonstrate how it works, we will modify the General journal form in the
General ledger module and will add the View details feature to the Description control,
allowing users to jump from the right-click context menu to the Journal names form.

105

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Forms

How to do it...

Carry out the following steps in order to complete this recipe:

1. Open the LedgerJournalTable form in the AOT, expand its data sources, and override
JumpReTf() of the Name field on the LedgerJournalTable data source with the
following code:

106

public void jumpRef()

{

}

LedgerJournalName name;
Args args;
MenuFunction mf;

name = LedgerJournalName: :find(
LedgerJournalTable.JournalName);

if (Iname)
{

return;
}

args = new Args(Q);
args.caller(element);
args.record(name);

mf = new MenuFunction(
menuitemDisplayStr(LedgerJournalSetup),
MenultemType: :Display);

mf.run(args);

Go to General ledger | Journals | General journal, select any of the existing records,
and right-click on the Description column. Notice that the View details option, which
will open the Journal names form, is now available:

www.it-ebooks.info

http://www.it-ebooks.info/

Owverview |Genera| | Setup I Blocking | Financial dirnensions | History|

Ei]]ournal (1-ceuw) EI@
Mew X Delete Lines » O e
Showe a)| v Show user-created only: 0

4 I

Open a form where the related record is selec

[C] Mame Journal batch nurnber = Posted Log Inuse
Trv a003497_010 | Cash adva..
Tre n00388_010 Copy
Paste
Expand Crl+
Collapse Ctrl+
Apply filter 4
Filter By Field

Filter By Selection

Sort Ascending

Sort Descending

Hide

Create alert rule...

Rewersing entry

Personalize

Record info

Wiew Record

Chapter 2

Normally, the View details feature is controlled by the relationships between the underlying
tables. If there are no relations or the form control is not bound to a table field, then this
option is not available. We can force this option to appear by overriding the control's or data

source field's jumpRef() method.

In this method, we add code that opens the relevant form. This can be done by declaring,
instantiating, and running a FormRun object, but the easier way is to simply run the relevant
menu item from code. In this recipe, the code in JumpRef() does exactly that.

In the code, first we check if a valid journal name record is found. If yes, we run the

LedgerJournalSetup menu item with the Args object holding the journal name record and
the current form object as a caller. The rest is done automatically by the system, that is, the
Journal names form is opened with the currently selected journal name.

www.it-ebooks.info

107

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Data In
Forms

In this chapter, we will cover:

» Using a number sequence handler

» Creating a custom filter

» Creating a custom instant search filter
» Building a selected/available list

» Preloading images

» Creating a wizard

» Processing multiple records

» Coloring records

» Adding an image to records

Introduction

This chapter basically supplements the previous one and explains data organization in the
forms. It shows how to add custom filters to forms in order to allow users to filter data and how
to create record lists for quick data manipulation.

This chapter also discusses how displaying data could be enhanced by adding icons to record
lists and trees, and how normal images could be stored along with the data, reusing existing
Dynamics AX application objects.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Data in Forms

A couple of recipes will show how to create wizards to guide users through complex tasks.
This chapter will also show how to create a wizard to guide users through complex tasks.
It will demonstrate several approaches for capturing user-selected records on forms, and
how to distinguish specific records by coloring them.

Using a number sequence handler

As already discussed in the Creating a new number sequence recipe in Chapter 1, Processing
Data, number sequences are widely used throughout the system as part of the standard
application. Dynamics AX also provides a special number sequence handler class to be used
on forms. It is called NumberSegFormHandler and its purpose is to simplify the usage of
record numbering on the user interface. Some of the standard Dynamics AX forms, such as
Customers or Vendors, already have this feature implemented.

This recipe will show how to use the number sequence handler class. Although in this
demonstration we will use an existing form, the same approach should be applied when
creating brand new forms.

For demonstration purposes we will use an existing Customer groups form located in
Accounts receivable | Setup | Customers and we will change the Customer group field from
manual to automatic numbering. We will use the number sequence created earlier in the
Creating a new number sequence recipe in Chapter 1, Processing Data.

How to do it...

Carry out the following steps in order to complete this recipe:

1. Inthe AOT, open the CustGroup form and add the following code to its
class declaration:

NumberSegFormHandler numberSegFormHandler;

2. Also, create a new method called numberSegFormHandler () in the same form:
public NumberSegFormHandler numberSegFormHandler()

{
if (InumberSeqFormHandler)
{
numberSegFormHandler = NumberSeqgFormHandler: :newForm(
CustParameters: :numRefCustGroupld() -NumberSequenceld,
element,
CustGroup_ds,
FfieldNum(CustGroup,CustGroup));
}
return numberSeqFormHandler;
}

110

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

3.

In the same form, override the CustGroup data source's create() method with the
following code:

public void create(boolean _append = false)

{
element._numberSeqFormHandler(

) -formMethodData sourceCreatePre();
super(_append);
element._numberSeqFormHandler(

) -formMethodData sourceCreate();

}

In the same data source, override its delete() method with the following code:
public void delete()

{
ttsBegin;
element._numberSeqFormHandler() - formMethodData sourceDelete();
super(Q);
ttsCommit;
}

In the same data source, override its write() method with the following code:
public void write()

{
ttsBegin;
super(Q);
element._numberSeqFormHandler () . formMethodData sourceWrite();
ttsCommit;
}

In the same data source, override its val idateWrite() method with the
following code:

public boolean validateWrite()

{

boolean ret;

111

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Data in Forms

ret = super();

ret = element.numberSeqgFormHandler(
) - formMethodData sourceValidateWrite(ret) && ret;

return ret;

}

7. Inthe same data source, override its linkActive() method with the
following code:

public void linkActive()

{
element.numberSeqgFormHandler(
) -formMethodData sourcelLinkActive();
super();
}

8. Finally, override the form's close() method with the following code:
public void close()

{
it (numberSeqFormHandler)
{
numberSeqFormHandler . formMethodClose();
}
super();
}

9. In order to test the numbering, open Accounts receivable | Setup | Customers |
Customer groups and try to create several new records—the Customer group value
should be generated automatically:

;g Custormer groups (1 - ceu) - Mew Record EI@
Mew € Delete Setup¥ Forecast 1m| 9

Custorner group 4« Description Terrns of payment Settle period De

1n Wholesale Customers HO60 Hoon?
20 Major Customers HO30 Moo
E]l Retail Custorners MNO10 MO0l
40 Internet Custorners Mool Mool
an Other Custamers MO0 Mool
an Intercompary Customers Mool Mool

“ [b

Group of customers, Close |

112

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

First, we declare an object of type NumberSeqgFormHandler in the form's class declaration.
Then, we create a new corresponding form method numberSeqFormHandler (), which
instantiates the object if it is not yet instantiated and returns it. This method allows us to hold
the handler creation code in one place and reuse it many times within the form.

In the method, we use the newForm() constructor of the NumberSegFormHandler class to
create the numberSeqgFormHandler object. It accepts the following arguments:

» The number sequence code, which was created in the prerequisite recipe, and
which ensures a proper format of the customer group numbering. Here, we call the
numRefCustGroupld() helper method from the CustParameters table to
find which number sequence code should be used when creating new customer
group record.

» The form object itself.
» The form data source where we need to apply the number sequence handler.
» The field number of the field into which the number sequence will be populated.

Finally, we add various NumberSegFormHandler methods to the corresponding methods
on the form's data source to ensure a proper handling of the numbering when various events
are triggered.

See also

Chapter 1, Processing Data:

» Creating a new number sequence

Creating a custom filter

Filtering on forms in Dynamics AX is implemented in a variety of ways. As a part of the
standard application, Dynamics AX provides various filtering options, such as Filter By
Selection, Filter By Grid, or Advanced Filter/Sort, located in the toolbar to allow you to
modify the underlying query of the currently displayed form. In addition to the standard filters,
the Dynamics AX list pages normally allow quick filtering on most commonly used fields.
Besides that, some of the existing forms have even more advanced filtering options, allowing
users to quickly define complex search criteria. Although the latter option needs additional
programming, it is more user-friendly than standard filtering and is a very common request in
most Dynamics AX implementations.

113

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Data in Forms

In this recipe, we will learn how to add custom filters to a form. We will use the Main accounts
form as a basis and will add a custom filter, allowing users to list only accounts of a certain
type. We will also implement an option allowing you to quickly disable the filter.

How to do it...

Carry out the following steps in order to complete this recipe:

1. Inthe AOT, locate the MainAccountListPage form and change the following property
for its Filter group:

Property Value
Columns 2

2. Inthe same group, add a new CheckBox control with the following properties:

Property Value

Name FilterShowAll
AutoDeclaration Yes

Label Show all

3. Add a new ComboBox control to the same group with the following properties:

Property Value

Name FilterType

AutoDeclaration Yes

EnumType DimensionLedgerAccountType

4. Override the modified() methods for both the newly created controls with the
following code:

public boolean modified()
{

boolean ret;
ret = super(Q);

it (ret)
{

MainAccount_ds.executeQuery();

}

114

www.it-ebooks.info

http://www.it-ebooks.info/

}

Chapter 3

return ret;

5. After all of these modifications in the AOT, the MainAccountListPage form should
look similar to the following screenshot:

[AGT - WFarms (== =]
(BB L
EvainAccountiistpage]

W MWethods
&7 Data Sources
3 Parts
= B Designs
S| E Design
B [ActionPanedctionPane]
8™ [Group:Filter]
W Methods
El [¥ CheckBoxFilterShowall
= Methods
l: modified
ENE:] ComboBox:FilterType
= Methods
EL: modified
[GridiGrid]
M DesignList
¥ Perrnissions

4 1 L

6. Inthe same form, override the executeQuery() method of the MainAccount data
source with the following code:

public void executeQuery()

{

QueryBui IdRange gbrType;
gbrType = SysQuery: :FindOrCreateRange(
MainAccount_g.data sourceTable(tableNum(MainAccount)),

fieldNum(MainAccount,Type));

it (filterShowAll_value())

{
gbrType.value(SysQuery: :valueUnlimited());
}
else
{
gbrType.value(queryValue(FilterType.selection()));
}
superQ);

115

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Data in Forms

7. In order to test the filter, open General ledger | Common | Main accounts and
change the values in the newly created filters—the account list should change
reflecting the selected criteria:

Main account type: Balance sheet v
"] Mainaccount Mame = Main accounttype Main account category ™
211250 Accounts Payable - Clearing Balance sheet Ap
211200 Accounts Payable - Foreign Balance sheet AP -
211300 Accounts Payable - Other Balance sheet Ap 1
211100 Accounts Payable - US Balance sheet AP
130300 Accounts Receivable - Clearing Balance sheet AR T
130200 Accounts Receivable - Foreign Balance sheet AR
130100 Accounts Receivable - US Balance sheet AR
200110 Accrued Income Balance sheet OTHERCURLLA
211350 Accrued purchases Balance sheet OTHERCURLIA
211400 Accrued purchases - Intercompany Balance sheet OTHERCURLIA il

8. Click on the Advanced Filter/Sort button in the toolbar to inspect how the criteria
was applied in the underlying query:

= | Inquiry - Main accounts (1 - ceu) o -5 =5]

- Madify.. »

Select query: | (ST

Y

4 Tables
hain account

i) Main account categories

Range | Sorting

[7] Table Derived table Field Criteria Add

Main account Mainaccount Main accounttype Balance sheet R
emowve

Reset I [Ok] I Cancel

We start by changing the Columns property of the existing empty Filter group control to make
sure all our controls are placed from left to right in one line. It is good practice to have the
Filter group on the list page forms even if it is empty; in some cases, it is added automatically
by the system.

116

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Next, we add two controls representing the Show all and Main account type filters and
enable them to be automatically declared for later usage in the code. We also override
the modified() event methods to ensure that the MainAccount data source's query
is re-executed whenever the control values change.

Finally, we place all the code in the executeQuery() method, which is responsible for data
fetching. The code has to be placed before super () to make sure the query is modified
before fetching the data.

Here we declare and create a new QueryBui IdRange object representing the type range on
the query. We use the FindOrCreateRange() method of the SysQuery application class
to get the range object. The method is very useful as if the range already exists, it will return it,
and if not then it will create a new one.

Once the range is ready, we set its value. If the Show all filter is selected, we use
valueUnlimited() of the SysQuery application class to clear the range, to show

all records. Otherwise, we pass the user selected account type to the range. The global
queryValue() function—which is actually a shortcut to SysQuery: :value()—ensures
that only safe characters are passed to the range. It is recommended to use this function
whenever the user is allowed to change query range values directly.

Note that the SysQuery helper class is very useful when working with queries, it does all
kinds of input data conversions to make sure they can be safely used. Here is a brief summary
of some of the SysQuery methods:

» valueUnlimited() returns a string representing an unlimited query range value,
therefore no range at all.

» value() converts an argument to a safe string. Global queryValue() is a
shortcut for this.

» valueNot() converts an argument to a safe string and adds an inversion sign
before it.

See also

In Chapter 1, Processing Data:

» Building a query object

Creating a custom instant search filter

The standard form filters and the majority of customized form filters in Dynamics AX are only
applied once the user presses a button or a key. It is acceptable in most cases, especially if
multiple criteria are used. However, when the result retrieval speed and usage simplicity has
priority over system performance, it is possible to set up the search function so the record list
is updated instantly while the user is typing.

117

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Data in Forms

In this recipe, to demonstrate the instant search we will modify the Main accounts form. We
will add a custom filter Account name, which will update the account list automatically while
the user is typing.

How to do it...

Carry out the following steps in order to complete this recipe:

1. Inthe AOT, open the MainAccountListPage form and add a new StringEdit
control with the following properties to the existing Filter group:

Property Value

Name FilterName
AutoDeclaration Yes
ExtendedDataType AccountName

2. Override its textChange () method with the following code:

public void textChange()

{
super();

MainAccount_ds.executeQuery();

}

3. Override the control's enter () method with the following code:
public void enter()

{
super();
this.setSelection(
strLen(this.text()),
strLen(this.text()));
}

4. Override the executeQuery () method of the MainAccount data source with the
following code:

public void executeQuery()

{
QueryBui ldRange gbrName;

gbrName = SysQuery: :findOrCreateRange(
this.queryBuildData source(),
FfieldNum(MainAccount,Name));

118

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

gbrName.value(
FilterName.text() ?
"*"+queryValue(FilterName.text())+"*" :
SysQuery: :valueUnlimited());

superQ);
T

5. In order to test the search, open General ledger | Common | Main accounts
and start typing in the Account name filter. Notice how the account list is being
filtered automatically:

Account narne: | cash|
"] Mainaccount Marne <« Main account type Main account category i
110155 All Other Cash Advanc.., Balance sheet CASH
110153 CaD Cash Advances &, Balance sheet CASH
110101 Cash Advance returns Balance sheet CASH =
520201 Cash Discounts Received Profit and loss
520200 Cash discounts taken Profit and loss SALERETDIS
618150 Cash discrepancies Profit and loss OTHEREXP
1101y Cash in bank - US (Fixe.. Balance sheet CaSH
110152 EUR Cash Advances fc.. Balance sheet CASH
110180 Petty cash account Balance sheet CASH i

First, we add a new control which represents the Account name filter. Normally the user
typing triggers the textChange () event method on the active control every time a character
is entered. So we override this method and add code to re-execute the form's query whenever
a new character is typed in.

Next, we have to correct the cursor's behavior. Currently, once the user types in the first
character, the search is executed and the system moves the focus out of this control and
then moves back to the control, selecting all the typed text. If the user continues typing,
the existing text will be overwritten with the new character and the loop will continue.

In order to fix this behavior, we have to override the control's enter () event method. This
method is called every time the control receives a focus, whether it was done by the user's
mouse, key, or by the system. Here, we call the setSelection() method. Normally, the
purpose of this method is to mark a control's text or a part of it as selected. Its first argument
specifies the beginning of the selection and the second one specifies the end. In this recipe,
we are using this method in a slightly different way. We pass the length of the typed text as

a first argument, which means the selection starts at the end of the text. We pass the same
value as a second argument, which means that selection ends at the end of the text. It does
not make any sense from the selection point of view, but it ensures that the cursor always
stays at the end of the typed text, allowing the user to continue typing.

119

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Data in Forms

The last thing to do is to add some code to the executeQuery() method to change the
query before it is executed. Modifying the query was discussed in detail in the Creating a
custom filter recipe in this chapter. The only thing to note here is that we add asterisks to the
beginning and the end of the search string to make the search by a partial string.

Notice that system performance might be affected as the data search is executed every time
the user types in a character. It is not recommended to use this approach for large tables.

See also

In this chapter:

» Creating a custom filter

Building a selected/available list

Frequent users might notice that some of the Dynamics AX forms contain two sections

placed next to each other and allow moving items from one side to the other. Normally, the
right section contains a list of possible values and the left one contains a list of the already
selected values. Buttons in the middle allow data to be moved from one side to another.
Double-click and drag-and-drop mouse events are also supported. Such a design improves
the user experience as data manipulation becomes more user-friendly. Some of the examples
in the standard application are General ledger | Setup | Financial dimensions | Financial
dimension sets or System administration | Common | Users | User groups.

This functionality is based on the SysListPanelRelationTable application class.
Developers only need to create its instance with the required parameters on the form where
the list is required, and the rest is done automatically.

This recipe will show the basic principle of how to create selected/available lists. We will add
an option for assigning customers to buyer groups in the Buyer groups form in the Inventory
management module.

How to do it...

Carry out the following steps in order to complete this recipe:

1. Inthe AQOT, create a new table named InventBuyerGroupList. Do not change any of
the properties as this table is for demonstration only.

120

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Add a new field to the table with the following properties (click on Yes if asked to add

a new relation to the table):

Property Value

Type String

Name Groupld
ExtendedDataType ItemBuyerGroupld

Add another field to the table with the following properties:

Property Value

Type String

Name CustAccount
ExtendedDataType CustAccount

In the AOT, open the InventBuyerGroup form and change the design properties

as follows:

Property

Value

Style

Auto

Add a new Tab control with the following properties, to the bottom of the design:

Property Value
Width Column width
Height Column height

Add a new TabPage control with the following properties to the newly created tab:

Property Value
Name BuyerGroups
Caption Buyer groups

Add another TabPage control with the following properties to the newly created tab:

Property Value
Name Customers
Caption Customers

www.it-ebooks.info

121

http://www.it-ebooks.info/

Working with Data in Forms

8. Move the existing Grid control to the first tab page and hide the existing Body group
by setting the property:

Property Value
Visible No

9. The form should look similar to the following screenshot:

|- AOT - YForms E@
[B F Z o
BlinventBuyerGroup|

El i Methods
3 classDeclaration
L2 init
54 Data Sources
B Parts
El @ Designs
2 % Design
“ [ActionPane:fctionPane]
B [[Group:Body]
W Methods
El [[Tab:Tab]
W Methods
=[] [TabPage:BuyerGroups]
W Methods
= [Grid:Grid]
[= | [TabPage:Customers]
= Methods
EE pagehctivated
% DesignlList
¥ Permissions

10. Add the following line to the form's class declaration:
SysListPanelRelationTable sysListPanel;

11. Override the form's init() method with the following code:
public void init()
{

container columns;
#ResAppl

columns = [FfieldNum(CustTable, AccountNum)];

sysListPanel = SysListPanelRelationTable::newForm(
element,
element.control1d(
formControlStr(InventBuyerGroup,Customers)),
"Selected",
"Available",

122

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

#ImageCustomer,
tableNum(InventBuyerGroupList),
fieldNum(InventBuyerGroupList,CustAccount),
FfieldNum(InventBuyerGroupList,Groupld),
tableNum(CustTable),
fieldNum(CustTable,AccountNum),

columns);

superQ);

sysListPanel.init(Q);

}

12. Override the pageActivated() method on the newly created Customers tab page
with the following code:

public void pageActivated()
{

sysListPanel .parmRelationRangeValue(
InventBuyerGroup.Group);

sysListPanel .parmRelationRangeRecld(
InventBuyerGroup.Recld);

sysListPanel . fill();

superQ);
T

13. In order to test the list, open Inventory and warehouse management | Setup |
Inventory | Buyer groups, select any group, go to the Customers tab page and use
the buttons provided to move records from one side to the other. You could also do a

double-click or drag-and-drop with your mouse:

=4 Buyer groups (1 - ceu) E@
Mew X Delete o] 9
Buyer groups | Custorners
Selected Available
€ 1n & 1n -
8 1102 8 102 =
£ 1103 £ 103
€ 1104 2| 8 1204
8 1301
u £ 10z

8 1303
8 1304
£ 2m
8 2002
& 2003 s

Z ||] | Identificatio... | _A0) | USD| ceu Close ‘

123

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Data in Forms

In this recipe, the InventBuyerGrouplList table is used as a many-to-many relationship table
between buyer groups and customers.

In terms of form design, the only thing that needs to be added is a new tab page. The rest is
created dynamically by the SysListPanelRelationTable application class.

In the form's class declaration, we declare a new variable based on the
SysListPanelRelationTable class and instantiate it in the form's init() method using
the newForm() constructor. The method accepts the following parameters:

» The form object.

» The name of the tab page.

» The label of the left section.

» The label of the right section.

» The number of the image that is shown next to each record in the list.

» The relationship table number.

» The field number in the relationship table representing the child record. In our case it
is the customer account number—CustAccount.

» The field number in the relationship table representing the parent table. In this case,
it is the buyer group number—Groupld.

» The number of the table that is displayed in the list.
» A container of the field numbers displayed in each column.

We also have to initialize the list by calling the member method init() in the form's init()
method right after its super ().

The list controls are created dynamically when the Customers tab page is opened. In order to
accommodate that we add the list's creation code to the pageActivated() event method of
the newly created tab page. In this way, we ensure that the list is populated whenever a new
buyer group is selected.

There's more...

The SysListPanelRelationTable class can only display fields from one table. In the
previous example, we only used the customer account number, but it would have been
impossible for the customer name to be stored in a different table as it can only be retrieved
by using the name() method on the CustTable table.

124

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

For this purpose, we can use another application class named
SysListPanelRelationTableCal lback, which allows you to create customized lists.
In order to demonstrate its capabilities, we will expand the previous example to display the
customer name along with its account number.

First, in the form's class declaration, we have to change the list declaration to the following

code line:

SysListPanelRelationTableCal lback sysListPanel;

Next, we create two new methods—one for the left list, the other for the right - which
generates and returns data containers to be displayed in each section:

private container selectedCustomers()

{
container ret;
container data;
CustTable custTable;
InventBuyerGroupList grouplList;
while select custTable
exists join grouplList
where groupList.CustAccount == custTable.AccountNum
&& groupList_Groupld == InventBuyerGroup.Group
{
data = [custTable.AccountNum,
custTable_AccountNum,
custTable_name(Q)];
ret = conlns(ret, conLen(ret)+l, data);
}
return ret;
}
private container availableCustomers()
{
container ret;
container data;
CustTable custTable;

InventBuyerGroupList grouplList;

while select custTable
notExists join firstOnly grouplList
where groupList.CustAccount == custTable.AccountNum

125

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Data in Forms

&& groupList.Groupld == InventBuyerGroup.Group
{
data = [custTable.AccountNum,
custTable.AccountNum,
custTable.name(Q)];
ret = conlns(ret, conLen(ret)+1l, data);
}

return ret;

}

Each method returns a container of containers. The inner container represents one line in the
section and it contains three items—the first is an identification number of the line and the
next two are displayed on the screen.

Finally, we replace the form's init() method with the following code:

public void initQ)

{
container columns;
#ResAppl

columns = [0, 0];

sysListPanel = SysListPanelRelationTableCallback: :newForm(
element,
element.controlld(

formControlStr(InventBuyerGroup,Customers)),

"Selected",
"Available",
#ImageCustomer,
tableNum(InventBuyerGroupList),
fieldNum(InventBuyerGroupList,CustAccount),
fieldNum(InventBuyerGroupList,Groupld),
tableNum(CustTable),
fieldNum(CustTable,AccountNum),
columns,
0,

identifierStr(selectedCustomers),
identifierStr(availableCustomers));

super();
sysListPanel.init();

126

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

This time we used the newForm() constructor of the SysListPanelRelationTableCal Iback
class, which is very similar to the previous one but accepts the names of methods as arguments,
which will be used to populate the data in the right and left sections.

Notice, that the columns container that previously held a list of fields now contains two zeros.
By doing this, we simply define that there will be two columns in each list and because the
lists actually are generated outside the SysListPanelRelationTableCal lback class,

we do not need to specify the field numbers of the columns anymore.

Now, when you run the Buyer groups form, both sections contain a customer name column:

:i Buyer groups (1 - ceu) E@
Mews X Delete 1| 9

Buyer groups | Custorners

Selected Available
g 1101 ForestWhaolesales g 101 Sparrowe Wholesales -
§ 1102 Sunset'Wholesales 8 1202 Owl'Whalesales =
8 1103 Cave Wholesales 8 1203 Pelican Wholesales

8 1204 Grebe WWholesales

8 1301 Whale Wholesales

@ 1302 Turtle WWhalesales

8 1303 Shrike Wholesales

£ 1304 Otter'Wholesales

€ 2001 waterfall Hatel

€ 2002 River Hotel

€ 2003 Rainbow Hotel i
f‘- mn »

g 1104 DesertWvholesales

.

|V|

4 « > M ||| 2] | dentification... | JA(0) | USD | ceu | Close |

Preloading images

Some of the Dynamics AX controls, such as trees or lists, in most cases have small icon
images in front of the text. The icons make the user interface look better and could represent
a type, status, availability, or any other property of the current item in the control.

Images are binary data and processing them might be resource-demanding. The Dynamics AX
application provides a way of handling images to increase application performance. Normally,
for the forms with lists or trees, all required images are preloaded during the form initialization.
This reduces the image loading time when the image is actually displayed to the user.

127

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Data in Forms

For this purpose, Dynamics AX contains a set of ImageListAppl derivative classes, which
hold a specific set of image data required in specific circumstances. For example, the
ImageListAppl_Proj class in the Project management and accounting module preloads
project-related images representing project types during the project tree initialization. So,
virtually no time is consumed for displaying the images later, when the user starts browsing
the project tree control.

In this recipe, we will create a new image list class for image preloading. As a base, we will use
the list created in the Building a selected/available list recipe in this chapter. We will enhance
that list by showing different icons for customers on hold.

How to do it...

Carry out the following steps in order to complete this recipe:

1. Inthe AOT, create a new class named ImageListAppl_Cust with the
following code:

class ImageListAppl_Cust extends ImageListAppl

{

}

protected void build(Q)

{
super(Q);
this.add(#ImageCustomer);
this.add(#ImageWarning);

}

2. Inthe AOT, find the SysListPanelRelationTableCal Iback class and modify the
newForm() method by adding one more argument to the end of the argument list:

ImageListAppl _imageListAppl = null

3. Inthe same method, add the following code right before sysListPanel _.build():
sysListPanel _parmlmageList(_imageListAppl);

4. Inthe AOT, find the InventBuyerGroup form and add the following code to its
class declaration:
#ResAppl

5. On the same form, replace the existing methods with the following code:

public void Init(Q)
{

container columns;
ImageListAppl_Cust imageListAppl;

128

www.it-ebooks.info

http://www.it-ebooks.info/

}

Chapter 3

columns = [0, 0];

imageListAppl = new ImageListAppl_Cust(

Imagelist::smalllconWidth(),
Imagelist::smalllconHeight());

sysListPanel = SysListPanelRelationTableCallback: :newForm(

element,

element.controlld(
formControlStr(InventBuyerGroup,Customers)),

"Selected",

"Available",

0,

tableNum(InventBuyerGroupList),

FfieldNum(InventBuyerGroupList,CustAccount),

fieldNum(InventBuyerGroupList,Groupld),

tableNum(CustTable),

fieldNum(CustTable,AccountNum),

columns,

0,

identifierStr(selectedCustomers),
identifierStr(availableCustomers),
0,

imageListAppl);

superQ);

sysListPanel.init();

private container selectedCustomers()

{

container ret;
container data;
CustTable custTable;

InventBuyerGroupList grouplList;

while select custTable

exists join grouplList

where groupList.CustAccount == custTable.AccountNum
&& groupList.Groupld == InventBuyerGroup.Group
129

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Data in Forms

{
data = [custTable.AccountNum,
(custTable.Blocked==CustVendorBlocked: :No ?
#ImageCustomer :
#ImageWarning),
custTable.AccountNum,
custTable.name(Q];
ret = conlns(ret, conLen(ret)+1l, data);
}
return ret;
}
private container availableCustomers()
{
container ret;
container data;
CustTable custTable;
InventBuyerGroupList grouplList;
while select custTable
notExists join firstOnly grouplList
where groupList.CustAccount == custTable.AccountNum
&& groupList.Groupld == InventBuyerGroup.Group
{
data = [custTable.AccountNum,
(custTable.Blocked==CustVendorBlocked: :No ?
#ImageCustomer :
#ImageWarning),
custTable.AccountNum,
custTable.name(Q)];
ret = conlns(ret, conLen(ret)+1l, data);
}
return ret;
}

6. In order to test the results, open Inventory and warehouse management | Setup |
Inventory | Buyer groups, go to the Customers tab page and notice that customers
on hold are now marked with a different icon:

130

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

~

(5] Buyer groups (1- ceu) [= ==

Mewr X Delete O @
Buyer graups | Custarners

Selected Available
s 1101 ForestWhaolesales s 1104 DesertWidholesales T
_g 1102 SunsetMWholesales _g 1203 Pelican Whaolesales |E|
A0 1103 Cawe Wholesales _?, 1204 Grebe Wholesales bl

8 1301 Whale Whalesales

£ 1302 Turtle Wholesales

8 1303 Shrike Whalesales

8 1304 OtterWholesales

£ 2000 waterfall Hotel

8 202 RiverHatel

£ 2003 Rainbow Hatel

8 2004 valley Hotel i

4 | 1 +

B 1201 Sparrow Wholesales
£ 1202 OwdWholesales

nn

4 < > M ||7|| @ |dentification.. | JA(0) | USD | ceu Close |

The first task in this recipe is to create a class that handles the required set of images. We
only need two different images—one for normal customers and one for customers on hold.

Standard Dynamics AX has lots of image resources, which we can select from for any
given scenario. Most of these are listed in the #ResAppl macro library. We use the
add() method to include relevant resources within the bui 1d() method of the new
ImageListAppl_Cust class.

The second step is to modify the SysListPanelRelationTableCal lback class to make
sure the newForm() method accepts ImageListAppl as an argument and passes it to the
class using the parmlmageList() method. A new method could have been created here but
it is not a good idea to copy so much code, especially when our changes are very small and do
not affect the standard method's behavior as the parameter is set to nul I by default.

The final step is to modify the form. First, we instantiate a new imageListAppl object

based on our class and pass it to the modified newForm() method as a last argument. At
this stage, sysListPanel holds the images that we are going to use when displaying the
lists and is going to reuse them from cache instead of loading every time from the original
source. Then, we modify the form's selectedltems() and avai lableltems() methods
to include image resource numbers in the returned data. We use the #ImageCustomer
macro for normal customers and #ImageWarning for customers on hold. Notice that the
inner container structure when using the SysListPanelRelationTableCal Iback class is
different—the second element is an image resource number.

131

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Data in Forms

There's more...

As mentioned earlier, images can be used on tree controls too. In this section, we will enhance
the tree created in the Using a tree control recipe in Chapter 2, Working with Forms. We will
add small icons in front of each node.

First, in the AOT we create a new class called ImageListAppl_LedgerBudget with the
following code:

class ImageListAppl_LedgerBudget extends ImagelListAppl

{

}

protected void build()

{
super();
this.add(#ImageFolder);
this.add(#ImagelLedgerBudget) ;

}

As in the previous example, the class extends ImageListAppl and is responsible for
preloading the images to be used on the tree. We will use only two different images—a folder
icon for parent ledger budget models and a budget icon for submodels.

Next, we need to modify the BudgetMode I Tree class created in the earlier chapter. Let us
add the following line to the bottom of the class declaration:

ImageListAppl imagelListAppl;
Add the following code to the bui IdTree() method, right after the variable declaration section:

imageListAppl = new ImageListAppl_LedgerBudget();
tree.setlmagelist(imageListAppl.imageList());

This creates an instance of the ImageListAppl_LedgerBudget class and passes it to the
tree control.

Replace the createNode () method with the following code:

private Treeltemldx createNode(
Treeltemldx _parentldx,
BudgetModelld _modelld,
Recld _recld)

Treeltemldx itemldx;
BudgetModel model;

BudgetModel submodel;
ImageRes imageRes;

132

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

#ResAppl

it (_parentldx == FormTreeAdd: :Root)

{
imageRes = imageListAppl.image(#ImageFolder);
}
else
{
imageRes = imageListAppl.image(#ImagelLedgerBudget);
}

model = BudgetModel::find(HeadingSub: :Heading, _modelld);

itemldx = SysFormTreeControl::addTreeltem(

tree,
_modelld + * - " + model.Txt,
_parentldx,
_recld,
imageRes,
true);
if (modelld == _modelld)
{
tree.select(itemldx);
}
while select submodel
where submodel .Modelld == _modelld &&
submodel . Type == HeadingSub: : SubModel
{
this.createNode(
itemldx,
submodel . SubModel ld,
submodel .Recld);
}

return itemldx;

}

At the top of this method, we check whether the current node is a parent node. If yes, then we
set the image as the folder icon, otherwise—the budget model icon. Then, we pass the image
to the addTreeltem() method

133

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Data in Forms

In order to test the tree icons, open Budgeting | Setup | Budget models and notice how the
tree has changed:

—. Budget model {3 - ceu) EI@
MNew < Delete O @

=3 TOTAL : Total Mode
SUBL: Submaode
42 SUB2 : Subrmode Marne: Tatal Model

Budget model: TOTAL

4 General T
Administration
Stopped:

Cash flow forecasts: [V

Submodel

SRAdd 9 Rernove
Subrnodel
SUBL
sUB2

m

Close

See also

Chapter 2, Working with Forms:

» Using a tree control

Creating a wizard

Wizards in Dynamics AX are used to help a user to perform a specific task. Some examples
of standard Dynamics AX wizards are Report Wizard, Project Wizard, Number Sequence
Wizard, and so on.

Normally, a wizard is presented to a user as a form with a series of steps. While running the
wizard, all user inputs are stored in temporary memory until the user presses the Finish
button on the last wizard page.

In this recipe, we will create a new wizard for creating main accounts. First, we will use the
standard Dynamics AX Wizard to create a framework and then we will manually add some
additional controls.

134

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

How to do it...

Carry out the following steps in order to complete this recipe:

1. Open Tools | Wizards | Wizard.
2. Click on Next on the first page:

= Wizard Wizard = B |

‘_’ Welcome
£ Microsoft Dynamics' Use this wizard to make your own custorn wizards,

Click Mext to continue,

< Back [Mext =]I Cancel

3. Select Standard Wizard and click on Next:

= T iizard Wizard EIE@
Wizard type

Select the type of wizard you want to create

The wizard type determines where the wizard will be offered to the user,

Select type
@ Standard Wizard

<Back || Met> || cancel |

135

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Data in Forms

4. Specify MainAccount in the name field and click on Next:

& Wizard Yiizard =HIN=

Naming
Select a narne for your wizard

Specify the narme of yourwizard: Maindccount

Application object narnes are created and narmed autormatically,

Application object names

Project narme: MainAccountiizard
Class narme: MainfccountWizard
Form narme: MainfccountWizard
Fenu itern narme: MainfccountWwizard

< Back H Mext = H Cancel

5. Accept the default number of steps and click on Next:

= Wizard Wizard o || @

Setup
Specify how many steps the wizard should hawve

MNurnber of steps: 3

< Back H Mext = H Cancel

6. Click on Finish to complete the wizard:

136

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

= Wizarel Wizard = =A==

4_' Finished
ATt Ue @D g a ol Cick Finish to create the wizard,

[<Back][Finish |[concel |

7. The wizard creates an AOT development project, with three new objects in it: a form,
a class, and a menu item, as shown in the following screenshot:

| Project Main&ccountiizard EIIEI

=] »%3 MainAccountWizard
"; classDeclaration
2]; accessMenuFunction
"; formMame
"; run
;' setupMavigation
3 validate
EJJ"; main

= [E7] MainAccountWizard

Bl # Methads
classDeclaration

|‘3.-_-§1 Data Sources
B Parts
= [l Designs
B & Design
B[] [Tab:Tab]
¥ Methods
] [TabPage:Stepl]
1 [TabPage:Step2]
1 [TabPage:Step3]
&2 Designlist
¥ Permissions
-¢ MainAccountWizard

137

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Data in Forms

8. Create a new macro library named MainAccountWizard with the following code:
#define.tabStep2(2)

9. Modify the MainAccountWizard class by adding the following code to its class
declaration:
MainAccount mainAccount;
#MainAccountWizard

10. Add the following line to the existing setupNavigation() method in the
same class:
nextEnabled[#tabStep2] = false;

11. Override the Finish() method of the class with the following code:
protected void finishQ)

{
mainAccount._initValue();
mainAccount.LedgerChartOfAccounts =

LedgerChartOfAccounts: :current();

mainAccount_MainAccountld = formRun.accountNum();
mainAccount_Name = formRun.accountName();
mainAccount._Type = formRun.accountType();
superQ);

}

12. Replace the val idate() method of the same class with the following code:
boolean validate()

{

return mainAccount.validateWrite();

}

13. Replace the run() method of the same class with the following code:
void run(Q)

{
mainAccount.insert();
info(striFmt(
"Ledger account *"%1" was successfully created",
mainAccount._MainAccountld));
}

138

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

14.

15.

16.

17.

18.

19.

In the MainAccountWizard form, add the following code to the class declaration:
#MainAccountWizard

Change the form's design property:

Property Value
Caption Main account wizard

Modify the properties of the Stepd tab page as follows:

Property Value
Caption Welcome

Add a new StaticText control in this tab page with the following properties:

Property Value
Name WelcomeTxt

Text This wizard helps you to create a new
main account.

Modify the properties of the Step2 tab page:

Property Value
HelpText Specify account number, name, and type.
Caption Account setup

Add a new StringEdit control in this tab page with the following properties:

Property Value

Name AccountNum
AutoDeclaration Yes

Label Main account
ExtendedDataType AccountNum

139

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Data in Forms

20. Add one more StringEdit control in this tab page with the following properties:

Property Value

Name AccountName
AutoDeclaration Yes
ExtendedDataType AccountName

21. Add a new ComboBox control in this tab page with the following properties:

Property Value

Name AccountType
AutoDeclaration Yes

EnumType DimensionLedgerAccountType

22. Modify the properties of the Step3 tab page as follows:

Property Value
Caption Finish

23. Add a new StaticText control in this tab page with the following properties:

Property Value

Name FinishTxt

Text This wizard is now ready to create new
main account.

24. Create the following four methods at the top level of the form:
public MainAccountNum accountNum()

{
return AccountNum.text();
}
public AccountName accountName()
{
return AccountName.text();
}
public DimensionLedgerAccountType accountType()
{
return AccountType.selection();
}

140

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

public void setNext()

{
sysWizard.nextEnabled(
this.accountNum() && this.accountName(),
#tabStep2,
false);
}

25. Now override the textChange() method on the AccountNum and AccountName
controls with the following code:

public void textChange()

{
super();
element.setNext();

}

26. After all of the modifications, the form should look as follows:

=1 AOT - WForms EI@
]
= i Methods
"; classDeclaration
; init
ﬂ"; run

ﬂ'; setTexts

55 accountMum
ﬂ; accountMame
El: accountType
]S setMext
(57 Data Sources
[Parts
El @ Designs
Sl 4 Design
B[] [Tab:Tab]
- Methods
8 [TabPage:Stepl]
i Methods
A StaticText:WelcomeTxt
1 [[TabPage:Step2]
! Methods
I [l StringEdit:AccountMum
=3 Methods
"; textChange
= [l StringEdit:Accountdame
= i} Methods
"; textChange
=] _E ComboBox:Account Type
O 3¢ Methods
8 [[TabPage:Step3]
i Methods
A StaticText:FinishTxt
¥4 Designlist
¥ Permissions

4| 1 3

141

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Data in Forms

27. In order to test the newly created wizard, run the MainAccountWizard menu item.
The wizard should appear. On the first page click Next:

'g,-—;l Main account wizard (2) o | () |I§|

Welcome

i Microsaft Dynamics'

This wizard helps you to create a nevw main account,

< Back [Mext = H Cancel ‘

28. On the second page, specify Main account, Account name, and Main account type:

Ei]Main account wizard (2 EI = @

Account setup

Specify account number, name, and type,
tain account: 211105
Account name: Accounts Payable - UK

tdain account type: Balance sheet

< Back H Mext = H Cancel

142

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

29. On the last page, click on Finish to complete the wizard:

';'—.7 hain account wizard (2) = |IE|
Finish

i—-MiCﬂZ‘S‘Jﬁ BYUCTUIM This wizard is now ready to create new main account.

[<mack |[Finish || cancel |

30. The Infolog should display a message to show that a new account was
created successfully:

-4 Message (02:32:20 pm)

The wizard creates three AOT objects for us:
» The MainAccountWizard class, which contains all the logic required to run
the wizard.
» The MainAccountWizard form, which is the wizard layout.
» Finally, the MainAccountWizard display menu item, which is used to start the wizard
and could be added to a menu.

We start by defining a macro #tabStep2, which holds the number of the second tab page.
We are going to refer to this page several times, so it is good practice to define its number in
one place.

143

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Data in Forms

In the MainAccountWizard class, we override the setupNavigation() method, which is
used for defining initial button states. We use this method to disable the Next button on the
second page by default. The variable nextEnabled is an array holding the initial enabled or
disabled state for each tab page.

The overridden Finish() method is called when the user clicks on the Finish button.
Here, we initialize the record and assign user input to the corresponding field values.

In the val idate() method, we check the account that will be created. This method is called
right after the user clicks on the Finish button at the end of the wizard and before the main
code is executed in the run() method. Here, we simply call the val idateWrite() method
for the record, from the main account table.

The last thing to do in the class is to place the main wizard code—insert the record and display
a message—in the run() method.

In the MainAccountWizard form's design, we modify properties of each tab page and add text
to explain to the user the purpose of each step. Notice that the HelpText property value on the
second tab page appears as a step description right below the step title during runtime. This
is done automatically by the SysWizard class.

Finally, on the second tab page, we place three controls for user input. Then we create
three methods, which return the control values: account number, name, and type values,
respectively. We also override the textChange() event methods on the controls

to determine and update the runtime state of the Next button. The methods call the
setNext() method, which actually controls the behavior of the Next button. In our case,
we enable the Next button as soon as all input controls have values.

Processing multiple records

In Dynamics AX, by default most of the functions available on forms are related to a currently
selected single record. It is also possible to process several selected records at once, although
some modifications are required.

In this recipe, we will explore how a selection of multiple records can be processed on a form.
For this demonstration, we will add a button to the action pane on the Main account list page
to show multiple selected accounts in the Infolog.

How to do it...

Carry out the following steps in order to complete this recipe:

1. Inthe AOT, open the MainAccountListPage form and create a new method with the
following code:

public void processSelected()

144

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

{
MainAccount tmpMainAccount;
tmpMainAccount = MainAccount_ds.getFirst(l) ?
MainAccount_ds.getFirst(l) :
MainAccount_ds.cursor();
while (tmpMainAccount)
{
info(strFmt(
"You"ve selected "%1°",
tmpMainAccount.MainAccountld));
tmpMainAccount = MainAccount_ds.getNext();
}
}

Add a new Button control anywhere in the form's action pane with the
following properties:

Property Value

Name ProcessSelected
Text Process
MultiSelect Yes

Override the button's cl icked() event method with the following code:
void clicked()
{

super();

element._processSelected();

}

In order to test the record selection, navigate to General ledger | Common | Main
accounts, select several records and click on the new Process button. The selected
items should be displayed in the Infolog:

4 Message [06:46:22 am)
: Eir" YWou've selected '211200°
Eir" YWou've selected '211100°

145

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Data in Forms

The key element in this recipe is the processSelected() method. In this method we

have to determine if multiple records were marked by the user. This can be done by calling
getFirst(1) on the MainAccount form data source, which returns the first marked record.
If nothing is marked, we use the current cursor. The latter normally happens if a single record
is selected without explicitly marking it using the checkbox on the left.

Next, we go through all marked records and process them one by one. In this demonstration,
we simply show them on the screen.

The last thing to do is to add the ProcessSelected button to the form and call the
processSelected() method from the button's clicked() method. Notice that the button
property MultiSelect is set to Yes to ensure it is enabled when multiple records are marked.

Coloring records

One of the exciting Dynamics AX features that can enhance the user experience is the ability
to color individual records. User will find the system more intuitive and user-friendly through
this modification.

For example, by emphasizing the importance of disabled records, such as terminated
employees or stopped customers, marking them in red, allow users to identify relevant
records at a glance. Another example is to show processed records, such as posted journals
or invoiced sales orders in green.

In this recipe, we will learn how to change the color of a record. We will modify the existing
Users form located in System administration | Users and show disabled users in red.

How to do it...

Carry out the following steps in order to complete this recipe:

1. Inthe AOT, open the SysUserinfoPage form and override the displayOption()
method in the UserInfo data source with the following code:
public void displayOption(
Common _record,
FormRowDisplayOption _options)

{
if (!_record. (FieldNum(UseriInfo,Enable)))
{
_options.backColor(WinAPI: :RGB2int(255,100,100));
}
super(_record, _options);
}

146

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

2. In order to test the record coloring, open System administration | Users | Users and
notice how disabled users are now displayed in a different color:

[C] Account type Alias Metwork domain - UserID = User name Company Enabled External i
Active Directory user Sdministrator contoso.com Adrmin Adrninistratar CEU
Avctive Directory user AHMED contoso.com AHMED Ahmed Abu-Dayah
Active Directory user | ALICIA contosocom ALICIA AiciaThomber
Active Directory user ANMNIE contoso.com ANMIE Annie Herriman -nu =
______-:--:-
Ative Directory user ARNIE contoso.com ARMIE Arnie Mondloch
Auctive Directary user BEMJAMIN contoso.com BEMJAMIN - Benjamin Martin Ceu
Avctive Directory user BRAD contoso.com BRAD Benjarmin hartin ceu b
Active Directory user BROOKE contoso.com EROOKE Brooke Drynan ceu
Active Directory user CASSIE contoso.com CASSIE Cassie Hicks ceu
Autive Directory user CHARLIE contoso.com CHARLIE Chatlie Carson Ceu
Avctive Directory user CHRIS contoso.com CHRIS Chris Ashton ceu
Active Directory user CLAIRE contoso.com CLAIRE Claire Kennedy ceu
Active Directory user COMNMIE contoso.com COMMIE Connie Yrettos ceu
Auctive Directary user DAMIEL contoso.com DAMIEL Daniel Brunner Ceu il

The method displayOption() on the data source of any form can be used to change some
of its visual options. Before displaying each record, this method is called by the system with
two arguments—the first is the current record and the second is a FormRowDisplayOption
object—whose properties can be used to change a record's visual settings. In this example,
we check if the current user is disabled, and if yes we change the background property to light
red by calling the backColor () method with the color code.

Note that for demonstration purposes, we specified the color directly in the code, but it is good
practice if the color code comes from some configuration tables.

Adding an image to records

Company-specific images in Dynamics AX can be stored along with the data in the database
tables. They could be used for different purposes, such as a company logo that is displayed in
every printed document, employee photos, inventory pictures, and so on.

Images are binary objects and can be stored in container table fields. In order to enable the
system to perform better, it is always recommended to store the images in a separate table so
it does not affect the retrieval speed of the main data.

147

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Data in Forms

One of the most convenient ways to attach images to any record is to use the Document
handling feature of Dynamics AX. It does not require any changes in the application. However,
the Document handling feature is a very generic way of attaching files to any record and
might not be suitable for specific circumstances.

Another way of attaching images to records could be to utilize the standard application
objects, though minor application changes are required. For example, the company logo in
the Organization administration | Setup | Organization | Legal entities form is one of the
places where the images are stored that way.

In this recipe, we will explore the latter option. As an example, we will add the ability to store
an image for each customer. We will add a new button, Image, on the Customers list page,
allowing attaching or removing images for customers.

How to do it...

Carry out the following steps in order to complete this recipe:

1. Open the CustTableListPage form in the AOT. Add a new Menu Il temButton control
to the bottom of the MaintainGroup button group, which is located in the HomeTab
tab of the form's action pane. Set the following button's properties:

Property Value

Name Image

Text Image
ButtonDisplay Text & Image above
Normal Image 10598
ImagelLocation EmbeddedResource
Data source CustTable
MenultemType Display

Menul temName Company Image

148

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

2. Open Accounts receivable | Common | Customers | All customers and notice the

new Image button in the action pane:

i Microsoft Dynamics &% - Demo [SEA-DEV: Session ID - 3] - [1- ceu] E@
@'_/’" ¥ CEU » Accountsreceivable » Common » Customers » Al custormers "7” image p - |
Custormer Sell Invoice Collect Projects Service Market General
8 ~AEditin grid i = &‘% iz, Bank accounts " Ex_.‘.: E E
75 Delete 1] o WS Summary update i
Custormer Edit Contacts | Transactions | Balance . Refresh Expaortto Attachime.. | Forecast
2| Image - [Credit cards Microsoft Excel
Mewr Maintain Accounts | Transactions | Balance Set up List = Forecast
¥ All customers = Trpe tofilter Marne o= Primary address Bl A
0 . 123 Banana Street Toronto, OM
M - Custi t Teleph Ext i 2
2] Marne ustarner accoun elephone ension e MBS 154 A,
5 Banana Conference Center 2014 123-555-0115 16 E-
£
E Basketball Stadium 2121
a Birch Company apz2301 111-555-0113
H] Black Curve Airport (U5 2202 Recent activity B v
; Cave Whaolesales 1103 123-555-0161 Statistics B v
t= Cheetah Concert Hall 2104 (0123) 4567 8901 Roles -
= Consaolidated Messenger Marketing ano3 123-355-0121 in i
& Relationships B v
= 2014 : Banana Conference Center
— Contacts Bl w
Custorner group: 20 Terrns of payrment: MO0
Credit limit: 000 Method of payment: CHCK Recurring invoice templ... [5] «
Delivery terrns: PRD Payrnent schedule: Related information B v
Sales tax group: M& Modified date and tirme: 12/10/2009 053551 pm
Cash discount: Modified by
ﬂ | Load a logo image. | J{U) | USD | ceu

3. Click on the button and then use the Change button to upload a new image for the

selected item:

|;—i] Irnage (1)

Change Remuove
© DynamicsLab
[Close |

Change image.

4. The Remove button could be used to delete an existing image.

149

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Data in Forms

In this demonstration there are only three standard Dynamics AX objects used:

» The Companylmage table, which holds image data and the information about the
record to which the image is attached. The separate table allows easy hooking
image functionality to any other existing table without modifying it or decreasing
its performance.

» The Companylmage form, which shows an image and allows it to be modified.

» The display menu item Companylmage, which opens the form.
We added the menu item to the CustTableListPage form and modified some of its visual
properties. This ensures that it looks consistent with the rest of the action pane. We also

changed its Data source property to the CustTable data source to make sure that the image
is stored against that record.

There's more...

The following two topics will explain how a stored image could be displayed as a new tab page
on the main form and how it could be saved back to a file.

Displaying an image as part of a form

In this section, we will extend the recipe by displaying the stored image on a new tab page on
the Customers form.

First, we need to add a new tab page to the end of the CustTable form's TabHeader control,
which is located inside another tab page called TabPageDetails. This is where our image will
be displayed. Set the properties of the new tab page as shown in the following table:

Property Value

Name Tablmage
AutoDeclaration Yes

Height Column height
Caption Image

Add a new Window type control to the tab page. This control will be used to display the image.
Set the properties as follows:

150

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Property Value

Name Custlmage
AutoDeclaration Yes

Width Column width
Height Column height
AlignControl No

Setting the Height and Width properties to Column height and Column width, respectively,
will ensure that the image control occupies all available space. The image does not have a
label, so we exclude it from the form's label alignment by setting the AlignControl property

to No.

Next, let's create a new method at the top level of the CustTable form:

public void loadlmage()

{

}

Image img;
Companylmage companylmage;

companylImage = Companylmage: :find(
CustTable.dataAreald,
CustTable.Tableld,
CustTable.Recld);

ifT (companylmage. Image)

{
img = new Image(Q);
img.setData(companylmage. Image);
Custlmage. image(img);

}

else

{
Custlmage. image(null);

}

This method finds a Companylmage record first, which is attached to the current record,
and then displays the binary data using the Custlmage control. If no image is attached, the
Window control is cleared to display an empty space.

151

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Data in Forms

Next, we override the selectionChanged() method of the CustTable data source to ensure
that the image is loaded for a currently selected record:

public void selectionChanged()

{
super();
element. loadlmage();

}

In the AQOT, the form should look similar to the following screenshot:

[« 40T - WFarms EI@
RlcustTable]

W Methods
5 Data Sources
B Parts
B g Designs
S| M Design
I [&ctionPane:fctionPaneHeader]
B [[TabiTah]
7 Methods
= [l [TabPage:TabPageDetails]
7 Methods
g [GroupiHeaderInfa]
B [[TabTabHeader]
W Methods
(3 [TabPage:TabGeneral]
(3 [TabPage:Tab&ddress]
1 [TabPage:TabCommunication]
1 [TabPage:TabDetails]
1 [TabPage:TabSalesDernographics]
1 [TabPage:TabCredit]
1 [TabPage:TabSetup]
1 [TabPage:TabPageSales]
1 [TabPage:TabPayrnent]
1 [TabPage:TabFinancialDirnensions]
1 [TabPage:Tablmage]
W Methods
|3l Window:CustImage
1 [TabPage:TabPageGrid]
[DesignList
¥ Permissions

DIHEEHEEEHEEEHEBBH

4 | 11 F

Now open Account receivable | Common | Customers | All customers, select previously
used customers, and click on the Edit button in the action pane. On the Customers form,
notice the new tab page with the image displayed:

152

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

E&] Custarmers (1 - ceu) - Custamer account: 2014, Banana Conference Center EI@
Custormner Sell Invoice Caollect Frojects Service Market General '] '@-
| = == [P m b
/ 7< Delete g) --.;r r% E iy Bank accounts ;,, @
=] -~ - 2y Summary update
Edit Customer Contacts Transactions | Balance | Forecast " Generate frorn Attachrments
o [Credit cards b i
emplate
Maintain NET Accounts | Transactions | Balance | Forecast Set up Attachrments
2014 : Banana Conference Center Primary address b
123 Banana Street Toronto, ON
4 General W10 e saca
=] Change name |\,;;Change party association
Customer Organization details
Account: 2014 Mumber of employees: 0 Recent activity B~
Record type: Organization number: Relationships B~
MNarme: Banana Conference Center ABC code; MNorme Statistics B~
Search name: Banana Conference Ce DUNE number:
Contacts B o~
Cust : 0
sstemeraroup |' Other information Recurring invoice templ... [«
Classification group: 01 [Sddress haaks: AILCEECEL - Related information B o~
Language: eh-us -
I\:II Show more fields
I Addresses
I» Contact information
I Miscallaneous details 03 Albsays
I+ Sales demographics 1000 | Hospitality | Convention
I Credit and collections Mo Good | 0.00
I Invoice and delivery FPD 10 | has
I Sales order defaults
- Payment cefaults MO30 | CHCK
I Financial dimensions
4 Image
© DynamicsLab™
4 « > M ‘/‘ | |D| 1| B | The customer account number | hy | USD | ceu Close |

Saving a stored image as a file

This section will describe how the stored image could be restored back to a file. This is quite a
common case when the original image file is lost. We will enhance the standard Image form
by adding a new Save as button, which allows us to save the stored image to a file.

Let us find the Companylmage form in the AOT and add a new Button control to the form's
ButtonGroup, which is located in the first tab of the action pane. Set the button's properties
as follows:

Property Value
Name SaveAs
Text Save as

153

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Data in Forms
Create a new method on the form:

public void savelmage()
{
Image img;
Filename name;
str type;
#File

if (limageContainer)
{

return;

= new ImageQ);
-setData(imageContainer);

type = "_"+strLwr(enum2value(img.saveType())):
name = WinAPI::getSaveFileName(

element_hWnd(),

[WinAPI: :FileType(type) ,#AllFilesName+type],

¥

if (name)
{
img.savelmage(name);
}
}

This method will present the users with the Save as dialog, allowing them to choose the
desired file name for saving the current image. Notice that the imageContainer variable
holds image data. If it is empty, it means there is no image attached and we do not run any of
the code. We also determine the loaded file type to make sure our Save as dialog shows only
files of that particular type, for example JPG.

Override the button's cl icked() method with the following code to make sure that the
savelmage() method is executed once the user clicks on the button:

void clicked()

{
super();
element.savelmage();
¥
154

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

In the AQOT, the form should look similar to the following screenshot:

|«] ADT - YFarms E’

FElCompanyImage

iy Methods
ﬂ{ﬁ' Data Sources
2 Parts
El [Designs
E & Design
El I [ActionPanedtctionPane]
W Methods
=] li [ActionPaneTabutctionPaneTab]
& Methods
El = [ButtonGroup:ButtonGroup]
& Methods
d Button:Change
d Buttor:Rermowve
= _d Button:Saveds
B Methods
Z; clicked
[iLI [Group:Grouplmage]
¥ Designlist
? Permissions

4| 1 b

Now when you open the image form, a new button Save as is available:

24 Tmage (1 (=N EoR ==
Change Remowe Sawe as 1| @

© DynamicsLab

155

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Data in Forms

Use this button to save the stored image to a file:

Ei] Save O @
Ol_/l |I Desktop » - | 5 | | Search Desktop ol
Organize v New folder BE ~ .@.

T Favarites Libraries } Adrministrator
|| Systern Fold ? Systern Fald
= wster Folder & witern Faolder
4 Libraries o
. 2 Docurmnents P | Computer t Metwark
. J’- Music =SS System Folder L- Systern Folder
» e Pictures
> E Yideos
/M Camputer
>'&‘¥ Metwork
File name: -
Save as type: | JPEG Image (*,jpg) V]
(%) Hide Folders [Save] [Cancel]

Note that the Companylmage form is used system-wide and the new button is available
across the whole system now.

156

www.it-ebooks.info

http://www.it-ebooks.info/

Building Lookups

In this chapter, we will cover the following recipes:

» Creating an automatic lookup

» Creating a lookup dynamically

» Using a form for building a lookup

» Building a tree lookup

» Displaying a list of custom options

» Another way of displaying custom options

» Building a lookup based on record description
» Building the Browse for Folder lookup

» Building a lookup for selecting a file

» Creating a color picker lookup

Introduction

Lookups are the standard way to display a list of possible selection values to the user, while
editing or creating database records. Normally, standard lookups are created automatically
by the system, and are based on extended data types and table setup. It is also possible to
override the standard functionality by creating your own lookups from the code or using the
Dynamics AX forms.

In this chapter, we will cover various lookup types, such as file selector, color picker, or tree
lookup, as well as the different approaches to create them.

www.it-ebooks.info

http://www.it-ebooks.info/

Building Lookups

Creating an automatic lookup

Simple lookups in Dynamics AX can be created in seconds without any programming
knowledge. They are based on table relations, and appear automatically. No additional
modifications are required.

This recipe will show how to create a very basic automatic lookup using table relations. To
demonstrate this, we will add a new Method of Payment control to the existing Customer
group form.

How to do it...

1. Open the CustGroup table in the AOT, and create a new field with the
following properties:

Property Value

Type String

Name PaymMode
ExtendedDataType CustPaymMode

Add the newly created field to the end of the Overview field group of the table.

3. Open the EDT relation migration tool form located in Tools | Code upgrade. Find
the CustGroup table on the left (refresh relation data before, if required). In the EDT
relations section, change the value in the Migration action field to Migrate, where
the Field name is set to PaymMode, as follows:

4] EDT relation migration tool (2 - ceu) S ==
m Refresh relation data Scan test artifacts Migrate single table 0@
Table name + “ Logfile: CUsers\drministratoriicrasaftiDynarmics £ 3
CustEinvoicelntegrationTrans L EDT relations
CustEinvoicelntegrationTypeTable _—
Cunimroicalines [Field name Extended data type name Migration status Migration sction [Migrateall |
CustEinmiceTable CustGroup CustGroupld Hot migrated Skip
CustbrchRateAdSimulstionTrmp ClesringPeriod ClearingPeriod Migrated to 3 new table relation Skip
CustErchRatedjustinent Maymiode Custbaymidode Hot migrated Figrate
CustFormlettarDocument TaGroupld CustVendTaxGroup Migrated to s new table relation Skip
CustFormletterParameters PaymTermld PaymTermld Migrated to 5 new table relation Skip
| Custiroup
" CustinPaymentCHTmp
CustinPaymTrphld
CustinPaymTrrpSE
Custinterest
CustinterestejustmentHistory
CustnterestFee Relation properties
CustInterestlour Affected delete action
CustinterestMoteTrap Affected forms
CustinterestRange Affected queries

CustinterestTrans Affected data sets

Affected X+ + reports

CustnterestVersion

CustInterest¥ersionDetail

Name Close |

158

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

4. Click on the Migrate single table button to migrate the relation. The Infolog should
prompt a message to inform that the migration is successful.

5. To check the results, open Accounts receivable | Setup | Customers | Customer
groups, and notice the newly created Method of payment column with the lookup:

E;] Custarner groups (1 - ceu) - Custamer group: 10, Wholesale Custarners E@
Mew 7% Delete Setup~ Forecast O @
Customergroup = Description Terrns of payrment Settle period Default tax group Method of payment
= TR — — ey
20 Major Custorners Hoz0 Moot Method of payrnent + Description
30 Retail Custorners Ho10 Noo1 {BOE ! Bill of Exchange
40 Internet Customers oL moIL caeH Cash
a0 Other Customers W10 NODL CHCK Check
a0 Intercompany Customers Mool noo1 CRED Credit card
EP Electronic Payment
Refund Refund
WIRE Wire/Electranic transfer
< | m 3
Identification of the customer method of payment. Close |

The newly created PaymMode field is based on the CustPaymMode extended data type,
and therefore it automatically inherits its relation. To follow best practices, we run the EDT
relation migration tool to copy the relation from the extended data type to the table. We
also add the newly created field to the table's Overview group to make sure that the field
automatically appears on the Customer group form. The relation ensures that the field has
an automatic lookup.

There's more...

The automatically generated lookup in the preceding example has only two columns—Method
of payment and Description. Dynamics AX allows us to add more columns or change the
existing columns with minimum effort by changing various properties. Lookup columns can be
controlled in several different places:

» Relation fields, on either an extended data type or a table itself, are always shown on
lookups as columns.

» Fields defined in the table's TitleField1l and TitleField2 properties are also displayed
as lookup columns.

» The first field of every table's index is displayed as a column.

159

www.it-ebooks.info

http://www.it-ebooks.info/

Building Lookups

» The index fields and the TitleField1 and TitleField2 properties are in effect
only when the AutoLookup field group of a table is empty. Otherwise, the fields
defined in the AutoLookup group are displayed as lookup columns, along with the

relation columns.

» Duplicate columns are shown only once.

Now, to demonstrate how the AutoLookup group can affect lookup columns, let's modify
the previous example by adding an additional field to this group. Let's add the PaymSumBy
field to the AutoLookup group on the CustPaymModeTable table in the middle between
the PaymMode and Name fields. Now, the lookup has one more column as displayed in the
following screenshot:

10

Customergroup = Description

Whalesale Customers
Wajor Custarners
Reetail Custorners
Internet Customers
Other Customers

Intercompany Custamers

Identification of the customer method of payment,

Farecast

4 Customer groups (1 - ceu) - Customer group: 10, Whalesale Customers

File « New < Delete Setupw

Terms of payment

MO0
O30
MO0
[RLLiR
MO0
Moo

Settle period
MO07
HO07
Mo01
Mo01
MO01
HMO01

Default tax group

[E=5E=H |
0 @
Method of payment
Method of payment = Period Description
BOE {Tatal Bill of Exchange
CAsH Invaice Cash
CHCK Tatal Check
CRED Inwaice Credit card
£ Invaice Electronic Payment
Refund Total Refund
WIRE Inwaice \Wire/Electronic transfer

Close |

It is also possible to add display methods to the lookup's column list. We can extend our
example by adding the paymAccountName() display method to the AutoLookup group on
the CustPaymModeTable table right after the PaymSumBYy. And here is the result:

Custarner group =
10
b}
30

K Delete | Setupw Forecast

Description
Wiholesale Custormers
Major Customers
Retail Customers
Internet Customers
Other Customers

Tntercomparty Customers

Identification of the customer method of payment.

4 Customer groups t1.- ceu) - Customer group: 10, Whelesale Customers

Terms of payment

06D
N30
MO0
nOnL
N1
NonL

Settle period Default tax group

007
[NIITES
NonL
nOnL
DL
NonL

Wethod of payment

BE)

Method of payment
EOE

CAsH

CHCK

CRED

Ep

Refund

W/IRE

~ Period Account name
Total
Invoice
Total

Imvoice Credit Card Receivable

Ivenice
Total

Invoice

Description

Bill of Exchange
Cash

Check

Credit card
Electronic Payment
Refund

Wire/Electronic transfer

Close |

160

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Creating a lookup dynamically

Automatic lookups, mentioned in the previous recipe, are widely used across the system, and
are very useful in simple scenarios. When it comes to showing different fields from different
data sources, applying various static or dynamic filters, or similar, some coding is required.
Dynamics AX is flexible enough that the developer can create custom lookups, either using
AQT forms, or by running them dynamically from the X++ code.

This recipe will show how to dynamically build a runtime lookup from the code. In this
demonstration, we will modify the Vendor account lookup on the Customers form to

allow users to select only those vendors that use the same currency as the currently

selected customer.

How to do it...

1. Open the VendTable table in the AOT, and create a new method:

public static void lookupVendorByCurrency(
FormControl _callingControl,
CurrencyCode _currency)

Query query;
QueryBui ldDataSource gbds;
QueryBui ldRange gbr;
SysTablelLookup lookup;

query = new Query();

gbds = query.addDataSource(tableNum(VendTable));
gbr = gbds.addRange(fieldNum(VendTable,Currency));
gbr.value(queryvalue(_currency));

lookup = SysTablelLookup: :newParameters(
tableNum(VendTable),
_callingControl,
true);

lookup.parmQuery(query);

lookup.addLookupField(
FfieldNum(VendTable, AccountNum),
true);

lookup.addLookupField(fieldNum(VendTable,Party));
lookup.addLookupField(fieldNum(VendTable,Currency));
lookup.performFormLookup();

161

www.it-ebooks.info

http://www.it-ebooks.info/

Building Lookups

In the AOT, open the CustTable form, and override the lookup() method of the

2.
VendAccount field on the CustTable data source with the following code:
public void lookup(FormControl _formControl, str _FfilterStr)
{
VendTable: : lookupVendorByCurrency(
_formControl,
CustTable.Currency);
}
3.

To test this, open Accounts receivable | Customers | All customers, select

any of the customers, and click on the Edit button in the action pane. Once the
Customers form is displayed, expand the Vendor account lookup located in the
Miscellaneous details tab page, under the Remittance group. The modified lookup
now has an additional column named Currency, and vendors in the list should match

the customer's currency:

;. Customers {1 - ceu) - Customer account: 2014, Banana Conference Center EI@
Customer | Sel Inwoice Collect Projects Seice Market Genersl O @
| X Fad 5 [Fr e T F 3
/ 75 Delete 5) =] .fwl l_ﬂ i Bank accounts ;,(U]
15 S 2 Surmary update
¥ L
Edit Custamer Contacts | Transactions | Balance = Forecast B Credi d Generate from Attachments
= 4 Credit cards ternplate ™
Maintain ey Accounts | Transactions | Balance | Forecast Set up Attachrments
2014 : Banana Conference Center Primary address I »
123 Banana Street Toronta, O
General WM ssisaca
Aclclresses
Contact information
Miscellaneous details
“ i Alorays Recent activity B v
Orne-time customer: [] Government identification
Relationships EH ~
Statistics group: 03 v [Dnumber K
. Relationship &to B
Account staternent: Ay - Country/region: |‘ Contact persan of
Customer self-service State ar province: | -
History available: Web ord -
Y & oreers Remittance
Wendor account: |v
Sales demographics Wendoraccount ~ Mame Currency B
Credit and collections Wondpecker Audin CAD g
~
Invoice and delivery Smoke Supplier CAD o
invoice templ... i
Sales order defaults
formation B v
Payment defaults
Financial dimensions
4 « > pl |7 | | Vendor account numbser. | LA0) | USD | ceu Close ‘
162

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

First, on the VendTable table, we create a new method that generates the lookup. This is the
most convenient place for such a method, taking into consideration that it may be reused in a
number of other places.

In this method, we first create a new query which will be the base for lookup records. In the
query, we add a new data source based on the VendTable table and define a new range
based on the Currency field.

Next, we create the actual lookup object and pass the query object through the parmQuery()
member method. The lookup object is created by using the newParameters() constructor of
the SysTablelLookup class. It accepts three parameters:
1. The table ID, which is going to be displayed.
2. Areference to the form calling the control.
3. An optional boolean value, which specifies that the current control value should be
highlighted in the lookup. The default is true.

We use the addLookupField() method to add three columns—Vendor account, Name, and
Currency. This method accepts the following parameters:
» The field ID of the field that will be displayed as a column.
» An optional boolean value that defines which column value is returned to the caller
form upon user selection. The default is false.
Finally, we run the lookup by calling the performFormLookup() method.

The last thing to do is to add some code to the lookup() method of the VendAccount field of
the CustTable data source in the CustTable form. By replacing its super () with our custom
code, we override the standard automatically generated lookup with the custom one.

Using a form for building a lookup

For the most complex scenarios, Dynamics AX offers the possibility to create and use a form
as a lookup. For example, it might be a lookup with tab pages or a search filter.

In this recipe, we will demonstrate how to create a lookup using a form. As an example, we will
modify the standard customer account lookup to display only active customers.

163

www.it-ebooks.info

http://www.it-ebooks.info/

Building Lookups

How to do it...

1. Inthe AOT, create a new form named CustLookup. Add a new data source with the
following properties:

Property Value

Name CustTable
Table CustTable
Index Accountldx
AllowCheck No
AllowEdit No
AllowCreate No
AllowDelete No
OnlyFetchActive Yes

2. Change the properties of the form's design as follows:

Property Value
Frame Border
WindowType Popup

3. Add a new Grid control to the form's design, with the following properties:

Property Value

Name Customers
ShowRowLabels No
DataSource CustTable

4. Adda new StringEdit control to the grid, with the following properties:

Property Value

Name AccountNum
AutoDeclaration Yes
DataSource CustTable
DataField AccountNum

164

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Add a new ReferenceGroup control to the grid with the following properties, right
after the AccountNum:

Property Value

Name Name
DataSource CustTable
ReferenceField Party

Add one more StringEdit control to the grid with the following properties, right
after the Name:

Property Value

Name Phone
DataSource CustTable
DataMethod phone

Add a new ComboBox control with the following properties to the end of the
Customers grid:

Property Value

Name Blocked
DataSource CustTable
DataField Blocked

Override the form's init() method with the following code:
public void init(Q)
{

super();
element.selectMode (AccountNum);

}

Override the form's run() method with the following code:
public void run(Q)

{
FormStringControl callingControl;
boolean filterLookup;

callingControl = SysTablelLookup::getCallerStringControl(
element_args(Q));

165

www.it-ebooks.info

http://www.it-ebooks.info/

Building Lookups

filterLookup = SysTablelLookup: :filterLookupPreRun(
callingControl,
AccountNum,
CustTable_ds);

superQ);

SysTableLookup: : FilterLookupPostRun(
filterLookup,
callingControl.text(),
AccountNum,

CustTable_ds);
}

10. Finally, override the init() method of the CustTable data source with the
following code:
public void initQ)
{
Query query;
QueryBui ldDataSource gbds;
QueryBui ldRange qbr;

query new Query(Q);

gbds query.addDataSource(tableNum(CustTable));
gbr = gbds.addRange(fieldNum(CustTable,Blocked));
gbr.value(queryvalue(CustVendorBlocked: :No));

this.query(query);

166

www.it-ebooks.info

http://www.it-ebooks.info/

11. The form in the AOT should look similar to the following screenshot:

=T AT - WForms EI@

= 59 Data Sources
El {9 CustTable
= Methods
"; init
= Fields
(35 Reference Data Sources
B Parts
B [Designs
EN™4 Design
El [[Grid:Customers]
W Methods
[abl StringEdit:AccountMum
[abl [ReferenceGroup:Name]
[l StringEdit:Phone
ﬁ ComboBox:Blocked
% DesignList
¥ Perrnissions

Chapter 4

12. Locate the CustAccount extended data type in the AOT, and change its property

as follows:

Property Value
FormHelp CustLookup

13. To test the results, open Sales and marketing | Common | Sales orders | All sales
orders, and start creating a new sales order. Notice that now the Customer account
lookup is different, and it includes only active customers:

Customer

Mame:

Contact:

Address

Delivery name:

Delivery address:

I General %
I Shipping

[=] Create sales order (1 - ceu)

DOne-time customer: |:|

o o]

1104

1301
1202
1203
1204
1301
1302
1303

<

m

Customeraccount = Mame Telephone Invoicing and delivery *
| Forest Wholesales 111-555-0100 Mo
T R L TTer—— 115500100 e
Desert Wholesales 487-555-0124 Mo
Sparrow Wholesales 987-555-0124 Mo
Ol Mivholesales 987-555-0128 Mo
Pelican Wholesales 123-553-0165 Mo
Grebe Wholesales (0123) 4567 8901 Mo
Whale Whaolesales 123-553-0167 Mo
Turtle Yholesales 123-555-0168 Ma
Shrike Mvholesales 123-555-0169 Mo

I Administration %

125(

167

www.it-ebooks.info

http://www.it-ebooks.info/

Building Lookups

The newly created CustLookup form will replace the standard automatically generated
customer account lookup. It is recommended to append the text Lookup at the end of the
form name, so that lookup forms can be easily distinguished from other AOT forms.

First, we add a new data source and change its properties. We do not allow any data

updates by setting the AllowEdit, AllowCreate, and AllowDelete properties to No. Security
checks should be disabled by setting AllowCheck to No. To increase performance, we set
OnlyFetchActive to Yes, which will reduce the size of the database result set to only the fields
that are visible on the form. We also set the data source index to define initial data sorting.

Next, in order to make our form lookup look exactly like a standard lookup, we have to adjust
its layout. So, we set its form design Frame and WindowType properties, respectively, to
Border and Popup. This removes form borders and makes the form very similar to a standard
lookup. Then, we add a new Grid control with four controls inside, which are bound to the
relevant CustTable table fields and methods. We set the ShowRowLabels property of the grid
to No, to hide the grid's row labels.

After this, we have to define which form control will be used for returning a value from the
lookup to the calling form. We need to specify it manually in the form's init() method, by
calling element.selectMode(), with the name of the control as argument.

In the form's run(), we add some filtering, which allows the user to use the asterisk

(*) symbol to search for records in the lookup. For example, if the user types 1* into

the Customer account control, the lookup will open automatically with all customer
accounts starting with 1. To achieve that, we use the TilterLookupPreRun()and
TilterLookupPostRun() methods of the standard SysTableLookup class. Both the
methods require a calling control, which we get by using the getCal lerStringControl ()
method of the same SysTableLookup class. The first method reads the user input and
returns true if a search is being performed, otherwise, false. It must be called before the
super () in the form's run(), and accepts four arguments:

1. The calling control on the parent form.

2. The returning control on the lookup form.

3. The lookup data source.

4. An optional list of other lookup data sources.

The FilterLookupPostRun() method must be called after the super () in the form's
run() method, and also accepts four arguments:

1. Aresult value from the previously called filterLookupPreRun() method.
2. The user text specified in the calling control.
3. The returning control on the lookup form.
4. The lookup data source.
168

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

The code in the CustTable data source's init() method replaces the data source query
created by its super () with the custom one. Basically, here we create a new Query object,
and change its range to include only active customers.

The FormHelp property of the CustAccount extended data type will make sure that this form
is opened every time the user opens the Customer account lookup.

See also

Chapter 1, Processing Data:

» Building a query object

Building a tree lookup

Form tree controls are a user-friendly way of displaying a hierarchy of related records, such
as a company's organizational structure, inventory bill of materials, projects with their
subprojects, and so on. Such hierarchies can also be displayed in the custom lookups,
allowing users to browse and select the required value in a more convenient way.

In the Using a tree control recipe in Chapter 2, Working with Forms, it was explained how to
present the budget model hierarchy as a tree in the Budget model form. In this recipe, we will
reuse the previously created BudgetModelTree class, and will demonstrate how to build a
budget model tree lookup.

How to do it...

1. Inthe AQOT, create a new form named BudgetModelLookup. Set its design properties
as follows:

Property Value
Frame Border
WindowType Popup

2. Add a new Tree control to the design, with the following properties:

Property Value
Name ModelTree

3. Add the following line to the form's class declaration:
BudgetModelTree budgetModelTree;

169

www.it-ebooks.info

http://www.it-ebooks.info/

Building Lookups

4. Override the form's init() method with the following code:

public void Init(Q)
{

FormStringControl callingControl;

callingControl = SysTablelLookup::getCallerStringControl(
this.args(Q));

super(Q);

budgetModelTree = BudgetModelTree: :construct(
ModelTree,
callingControl._text());

budgetModelTree.buildTree();
}
5. Override the mouseDbIClick() and mouseUp() methods of the ModelTree control
with the following code, respectively:
public int mouseDbIClick(

int _x,
int _y,
int _button,

boolean _ctrl,
boolean _shift)

{
int ret;
FormTreeltem formTreeltem;
BudgetModel budgetModel ;
ret = super(_x, _y, _button, _ctrl, _shift);
formTreeltem = this.getltem(this.getSelection());
select firstOnly SubModelld from budgetModel

where budgetModel .Recld == formTreeltem.data();

element._closeSelect(budgetModel . SubModel Id);
return ret;

}

public int mouseUp(
int _x,
int _y,
int _button,
boolean _ctrl,
boolean _shift)

{
int ret;
ret = super(_x, _y, _button, _ctrl, _shift);
return 1;

}

170

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

6. The form should look similar to the following screenshot:

= |[-=]

[« | BOT - \Farms

EE| BudgetModell ookup

= s? tethods
; classDeclaration
EL: init
Eﬁl Data Sources
O E] Parts
=l] Designs
N4 Design
= “g Tree:ModelTree
=] é’ Methods
El¢ mouseDbiclick
g,, mousellp
s DesignlList
¥ Permissions

7. Inthe AOT, open the BudgetModel table, and change its lookupBudgetModel ()
method with the following code:

public static void lookupBudgetModel (
FormStringControl _ctrl,
boolean _showStopped = false)

Args args;
Object formRun;

args = new Args(Q);
args.name(formStr(BudgetModelLookup));
args.caller(ctrl);

FformRun

= classfactory.formRunClass(args);
formRun.ini

tQ;

_ctrl _performFormLookup(formRun);

171

www.it-ebooks.info

http://www.it-ebooks.info/

Building Lookups

8. To see the results, open Budgeting | Common | Budget register entries. Start
creating a new entry by clicking on the Budget register entry button in the action
pane, and expand the Budget model lookup:

|- Budget register entry (1) - New Record

[E=5(E=0 =
Budget register entry O @
7% Delete = 8 Budget models e - i
& s o5 e 4—, E
| &2 Budget codes
Budget Refresh
reqgister entry
Maintain Hew Setup Update Transfer List Attachments

000527_1032

4 Budget register entry %
Transaction

Default date: 1041072011 E

Draft

Select Status

Burdget model: In use:

Budget register entry to... [~
Lines:

Expense budget total:

Revenue budget total:

Budget balances B v
Entry number: 000527_1032 Budget code: 0 B e In use by usen
s Actuals vs. budget v
Source document: Budget type: SUBL: Submodel 1 Budget register entry status: Draft g]
SUBZ: Subrnodel 2
Reason code:
Reason comment;
Budget account entries
o o »
[] Budgetcheck results Date Account structure Amount Amounttype Currency
Tl
I+ Buclget account entry details
[[Z]] & | [Ao [cose |

First, we create a new form named BudgetModelLookup, which we will use as a custom
lookup. We set the design Frame and WindowType to Border and Popup, respectively, to
change the layout of the form, so that it looks like a lookup. We also add a new Tree control

to the form's design.

In the form's class declaration, we define the BudgetMode I Tree class, which we have
already created in the Using a tree control recipe in Chapter 2, Working with Forms.

The code in the form's init() builds the tree. Here, we create a new BudgetModel Tree
object, by calling the constructor construct(), which accepts two arguments:

1. Tree control which represents the actual tree.

2. Budget model, which is going to be preselected initially. Normally, it's a value of the
calling control, which can be detected by using the getCallerStringControl ()
method of the SysTableLookup application class.

172

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

The code in the mouseDbIClick() returns the user-selected value from the tree node back
to the calling control, and closes the lookup.

Finally, the mouseUp() method has to be overridden to return 1, to make sure that the lookup
does not close while the user expands or collapses the tree nodes.

See also

Chapter 2, Working with Forms:

» Using a tree control

Displaying a list of custom options

Besides normal lookups, Dynamics AX provides a number of other ways to present the
available data for user selection. It doesn't necessarily have to be a record from the database;
it could be a list of "hardcoded" options, or some external data. Normally, such lists are much
smaller as opposed to those of the data-driven lookups, and are used for very specific tasks.

In this recipe, we will create a lookup of several pre-defined options. We will use a job for
this demonstration.

How to do it...

1. Inthe AOT, create a new job named PickList with the following code:
static void PickList(Args _args)

{
Map choices;
str ret;
choices = new Map(
Types::Integer,
Types::String);
choices.insert(l, "Axapta 3.0");
choices.insert(2, '"Dynamics AX 4.0");
choices.insert(3, "Dynamics AX 2009");
choices.insert(4, "Dynamics AX 2012");
ret = pickList(choices, "', '"Choose version™);
if (ret)
{
info(strFmt(""You"ve selected option No. %1", ret));
}
}

173

www.it-ebooks.info

http://www.it-ebooks.info/

Building Lookups

2. Run the job to view the results:

l-':—i] Choose version (2) EI@

% Accapta 3.0

% Dynarnics A 2000
3% Dynamics A 2012
2% Dynamics A% 4.0

3. Double-click on one of the options to show the selected option in the Infolog:

-4 Message [01:45:03 pm])

----- EE_J Wou've selected option Mo, 4

The key element in this recipe is the global pickList() function. Lookups created using this
function are based on values stored in a map. In our example, we define and initialize a new
map. Then, we insert few key-value pairs and pass the map to the pickList(). This function
accepts three parameters:

1. A map, which contains lookup values.
2. A column header, which is not used here.
3. Alookup title.

The function that displays values from the map returns the corresponding keys, once the
option is selected.

There's more...

The global pickList() function could basically display any list of values. Besides that,
Dynamics AX also provides a number of other global lookup functions, which can be used in
more specific scenarios. Here are a few of them:

» pickDataArea() shows a list of Dynamics AX companies.

» pickUserGroups() shows a list of user groups in the system.

» pickUser() shows a list of Dynamics AX users.

174

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

» pickTable() shows all Dynamics AX tables.

» pickField() shows table fields. Table number has to be specified as an argument
for the function.

» pickClass() shows a list of Dynamics AX classes.

Another way of displaying custom options

The global system functions, such as pickList(), pickUser(), and so on, allow
developers to build various lookups displaying a list of custom options. Besides that, the
standard Dynamics AX application contains a few more quite useful functions, allowing us to
build more complex lookups of custom options.

One of the functions is called selectSingle(), and it presents the user with a list of
options. It also displays a checkbox next to each option, allowing users to select the option. To
demonstrate this, we will create a new job that shows the usage of this function.

How to do it...

1. Inthe AQT, create a new job named SysListSelectSingle:

static void SysListSelectSingle(Args _args)
{

container choices;

container headers;

container selection;

container selected;

boolean ok;

choices = [
["3.0\nAxapta 3.0", 1, false],
[""4.0\nDynamics AX 4.0", 2, false],
['2009\nDynamics AX 2009, 3, false],
["2012\nDynamics AX 2012, 4, truel]l;

headers = ["Version', "Description'];

selection = selectSingle(
""Choose version",
"Please select Dynamics AX version",
choices,
headers);

175

www.it-ebooks.info

http://www.it-ebooks.info/

Building Lookups

[ok, selected] = selection;

if (ok && conLen(selected))

{
info(strFmt(
"You"ve selected option No. %1",
conPeek(selected,1)));
}

}
2. Run the job to display the options:

|;_;] Microsoft Dynarmics A% () EI@

_hoose version

Please select Dynamics AX wersion

Wersi., Description

(12009 Dynarnics A3 2000
[¥] 2012 Dynarnics AX 2012
[13.0 Axapta 30

(140 Dynarnics 43 4.0

Ok J \ Cancel

3. Select any of the options, click the OK button, and notice your choice displayed in
the Infolog:

4 Message (02:00:51 pm)

176

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

We start with defining the choices variable and setting its values. The variable is a container
of containers, where each container inside the parent container is made of three elements,
and represents one selectable option in the list:

1. The first element is a text displayed on the lookup. By default, in the lookup, only one
column is displayed, but it is possible to define more columns, simply by separating
the text using the new line symbol.

2. The second element is a number of an item in the list. This value is returned from
the lookup.

3. The third value specifies whether the option is marked by default.

Now, when the list values are ready, we call the selectSingle() function to build the actual
lookup. This function accepts five arguments:

1. The window title.

The lookup description.

A container of list values.

A container representing column headings.

ok 0N

An optional reference to a caller object.
The singleSelect() function returns a container of two elements:

1. true or false, depending on if the lookup was closed using the OK button or not.
2. Numeric value of the selected option.

There's more...

You may have noticed that the lookup, which is created using the singleSelect(),
allows only one option to be chosen from the list. There is another similar function named
selectMultiple(), which is exactly the same except that the user can select multiple
options from the list. The following code demonstrates its usage:

static void SysListSelectMultiple(Args _args)
{

container choices;

container headers;

container selection;

container selected;

boolean ok;

int i;

177

www.it-ebooks.info

http://www.it-ebooks.info/

Building Lookups

choices = [
["3.0\nAxapta 3.0", 1, false],
['"4.0\nDynamics AX 4.0", 2, false],
[("'2009\nDynamics AX 2009", 3, true],
[("'2012\nDynamics AX 2012", 4, true]l];

headers = ['"Version', "Description'];
selection = selectMultiple(

"Choose version",
"Please select Dynamics AX version",

choices,
headers);

[ok, selected] = selection;

if (ok && conLen(selected) > 0)

{
for (i = 1; i <= conLen(selected); i++)
{
info(strFmt(
"You"ve selected option No. %1",
conPeek(selected, i)));
}
}

}

Now, in the lookup, it is possible to select multiple options:

;g Microsoft Dynarnics AKX (2) EI@
Choose version

Please select Dynamics AxX version

Wersin, Description es toall
[2008 Dynamics 23 2004 Mo to all
F 2012 Dymarnics 2% 2012

[T 30 Asapta 3.0
[T 40 Dynamics & 4.0

QK Cancel

Notice that in this case, the returned value is a container holding the selected options.

178

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Building a lookup based on record

description

Normally, data lookups in Dynamics AX display a list of records where the first column always
contains a value, which is returned to a calling form. The first column in the lookup normally
contains a unique record identification value, which is used to build relations between tables.
For example, the customer lookup displays the customer account number, the customer
name, and some other fields; the inventory item lookup displays the item number, the item
name, and other fields.

In some cases, the record identifier may not be so informative. For example, it is much more
convenient to display a person's name versus its humber. In the standard application, you
can find a number of places where the contact person is displayed as a person's name, even
though the actual table relation is based on the contact person's ID.

In this recipe, we will create such a lookup. We will replace the vendor group selection lookup
on the Vendors form to show group description, instead of group ID.

How to do it...

1. Inthe AOT, create a new String extended data type:

Property Value

Name VendGroupDescriptionExt
Label Group

Extends Description

2. Open the VendTable table and create a new method with the following code:

public edit VendGroupDescriptionExt editVendGroup(
boolean _set,
VendGroupDescriptionExt _group)

{
VendGroup vendGroup;
if (Cset)
{
it (_group)
{
if (VendGroup: :exist(_group))
{
this._.VendGroup = _group;
}

179

www.it-ebooks.info

http://www.it-ebooks.info/

Building Lookups

else
{
select firstOnly VendGroup from vendGroup
where vendGroup.Name == _group;
this.VendGroup = vendGroup.VendGroup;

}
}
else
{
this.VendGroup = *7;
}

}

return VendGroup: :name(this.VendGroup);

}

3. Inthe AOT, find the VendTable form, locate the Posting group control inside MainTab
| TabPageDetails | Tab | TabGeneral | UpperGroup | Identification, and modify its
properties as follows:

Property Value
DataGroup

4. Inthe same form, in the Posting group, modify the Posting_VendGroup control

as follows:
Property Value
DataField
DataMethod editVendGroup

5. Override the lookup() method of the Posting_VendGroup control, with the
following code:

public void lookupQ

{
this._performTypeLookup(extendedTypeNum(VendGroupld));

}

6. To check the results, open Accounts payable | Common | Vendors | All vendors,
select any record, and click on the Edit button in the action pane. In the opened form,
check the newly created lookup on the Group control, located in the General tab of
the page:

180

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

E}] Wendors (1 - ceu) - Yendor account: 3003, Acclaitmed Dog Services E@
Wendor Procurement Invaice General | '@'
7 Delete 2 E] 2 = fug; % 2 E w
(i) On hold~ ! I o U s - L
Wendar | Ireaices Add vendor to Contacts Transactions Balance T Wendor Vendor | Attachme..
anothet legal entity™ b informati,.. requests search
Maintain Mew Trwaice Copy Set up Transactions Balance = Related infarmation <
3003 Acclaimed Dog Services Primary address Lia
345 Fourth Street Brunswick, WA,
4 General 3014 US
=0 Change name .= Change party association
Identification Organization details
Wendor account: 3003 Murnber of ernployees: 1]
Related infor mation Bl
Record type: Organization number:
P rganization 9 Recent activity B ~
Marne: Acclaimed Dog Services ABC code: Mane
Statistics Bl w
Search name: Acclaimed Dog Servic DUMS number:
)) Roles Bl
Group: Services Vendors ~ Other information
Relationships B w
L aks: All;CEY -
Wendorgroup + Description
1 Wideo Vendors en-us M
(%) Showr o) 20 fudio Vendars
30 Services Vendors
b Addresses an Parts Vendors
I Contact inform| 5, Packaging Wendors
I Miscellaneous { 70 Tax Authorities Good | 0,00 MNo
I Wendor profile Other Vendors Caucasian
I Purchasing d i U el e USD | 7380 | Supplier | Supplier
I Invoice and del EQES PCK |10
I Purchaseorder , | 5 [1 03 | Damestic
I Payment MO0 | USAUSD_CHE 22010
I Tax 1099
I Financial dimensions
4 « > b |7 | Group of vendors. | Qo | usp| ceu Close |

First, we create a new extended data type, which we will use as basis for the vendor group
selection control. The type extends the existing Description extended data type, as it has
to be of the same size as the vendor group name. It should also have the same label as the
VendGroupld, because it is going to replace the existing Group control on the form.

Next, we create a new edit method, which is used to show the group description instead of the
group ID on the form. It also allows changing the control's value.

The edit method is created on the VendTable table—most convenient place for reuse—and
it uses the newly created extended data type. This ensures that the label of the user control
stays the same. The method accepts two arguments, as this is a mandatory requirement for
the edit methods. The first argument defines whether the control was modified by the user,
and if yes, the second argument holds the modified value. In this recipe, the second value
can be either group ID—if the user selects a value from the lookup—or group description—if
the user decides to manually type the value into the control. We use the extended data type,
which is bigger in size, that is, the VendGroupDescriptionExt. The method returns a vendor
group name, which is shown on the form.

www.it-ebooks.info

181

http://www.it-ebooks.info/

Building Lookups

Next, we need to modify the VendTable form. We change the existing vendor group ID control
to use the newly created edit method. By doing so, we make the control unbound, and
therefore we lose the standard lookup functionality. To correct this, we override the lookup()
method on the control. Here, we use the performTypelLookup() method to restore the
lookup's functionality.

There's more...

In the previous example, you may have noticed that the lookup does not find the currently
selected group. This is because the system tries to search group ID by group description. This
section will show how to solve this issue.

First, we have to create a new form named VendGroupLookup, which will act as a lookup. Add
a new data source to the form, with the following properties:

Property Value

Name VendGroup
Table VendGroup
Index Groupldx
AllowCheck No
AllowEdit No
AllowCreate No
AllowDelete No
OnlyFetchActive Yes

Change the properties of the form's design as follows:

Property Value
Frame Border
WindowType Popup

Add a new Grid control to the form's design, with the following properties:

Property Value

Name VendGroups
ShowRowLabels No
DataSource VendGroup
DataGroup Overview

182

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Five new controls should appear in the grid automatically. Change the properties of the
VendGroups_VendGroup control as follows:

Property Value
AutoDeclaration Yes

Override the form's init() and run() methods, with the following code, respectively:

public void initQ)

{

}

element.selectMode(VendGroups_VendGroup) ;

public void run(Q)

{

}

VendGroupld groupld;
groupld = element.args().lookupValue();

VendGroup_ds. findValue(
fieldNum(VendGroup,VendGroup), groupld);

The key element here is the FindValue() method in the form's run() method. It places
the cursor on the currently selected vendor group record. The group ID is retrieved from the
arguments object by using the lookupValue() method.

In the AQOT, the form should look similar to the following screenshot:

1 AQT - \Forrns =l e ==
(BB F & e
FvendGrouptookur]

= ¢ Methods
"; classDeclaration
25 init
3 un
= 5 Data Sources
E4 VendGroup
B Parts
El g Designs
E b Design
B [[Grid:YendGroups]
W Methods
[abl StringEdit:YendGroups_YendGroup
a6l StringEditiendGroups_Mame
a6l StringEditWendGroups_PaymTermld
[abl StringEditvendGroups_ClearingPeriad
[abl StringEditWendGroups_TaxGroupld
% DesignList
¥ Permissions

HEHBHBEB

www.it-ebooks.info

183

http://www.it-ebooks.info/

Building Lookups

Next, we need to create a new static method on the VendGroup table, which opens the new
lookup form:

public static void lookupVendorGroupForm(
FormStringControl _callingControl,
VendGroupld _groupld)

FormRun formRun;
Args args;

args = new Args(Q);
args.name(formStr(VendGroupLookup));
args. lookupValue(_groupld);

formRun = classFactory.formRunClass(args);
formRun.init();

_callingControl .performFormLookup(formRun) ;

}

Here, we use the formRunClass() method of the global classFactory object. Notice that
here we pass the group ID to the form through the Args object.

The final touch is to change the code in the lookup() method of the VendGroups_VendGroup
control on the VendTable form:

public void lookupQ

{
VendGroup: : lookupVendorGroupForm(this, VendTable.VendGroup);

}

Now, when you open the Vendors form, the current vendor group in the Group lookup is
pre-selected correctly:

184

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

;‘ Wendors (1 - ceu) - Vendaor account: 3003, Acclaimed Dog Services E@
Yendor Procurernent General Q ﬂ
/‘ ?_‘ Delete : T 1B i Ggy L1) /:. w
: (i) On hold~ | WA W= 4 Y s =
Edit | Wendor | Imvoices Contacts Transactions | Balance Tax Wendor Wendor | Attachme..
another legal entity™ b informati., | requests search
Iaintain Mew Ireenice Setup Transactions | Balance v Related information v
3003 Acclaimed Diog Services Primary address { EIfi)
345 Fourth Street Brunswick, Wia,
4 General 33014 US
=l Change name | Change party association
Identification Organization details
“endor account: 3003 Mumber of ermployees: 1]
Related information B~
Record type: [s] izati Organization number:
kG (rganizaton | 3 Recent activity E ~
Marme: Acclaimed Dog Services ABC code; Mone *
Statistics B~
Search narne: Acclaitmed Dog Servic DUME number:
; } Roles E ~
Group: Services WVendors Other information
Relationshi B v
Wendargroup 4 Description Terms of payment Settle period [
0 Video Vendors MNO30 Moo7
(%) Show ol Audio Vendors HO30 NOO7
| Services Vendors MO0 NO01
Acldrasses Parts Vendors MO0 No07
Contact inform| 57 Packaging Vendors MO30 NO07
Miscellaneous { 70 Tax Authotities M15 NOoT
Vendor profile| 80 Other Wendors MO30 Hon? an
Purchasing den a0 Intercornpary Vendors MooL Mool
Invoice and de 10
Purchase order| , m } stic
Payment MO0 | USAUSD_CHEK 2010
Tax 1099
Financial dimensions
i > p |2 | ¥ | Group of vendors. | 0 |usD|ceu [Close |

Building the Browse for Folder lookup

Folder browsing lookups can be used when the user is required to specify a local or network
folder, for storing or retrieving external files. Such lookups are generated outside of Dynamics

AX, by using Windows API.

In this recipe, we will learn how to create a lookup for folder browsing. As an example, we will
create a new field and control named Documents in the General ledger parameters form,
which will allow us to store a folder path.

www.it-ebooks.info

185

http://www.it-ebooks.info/

Building Lookups

How to do it...

1. Inthe AOT, open the LedgerParameters table, and create a new field with the
following properties:

Property Value

Type String

Name DocumentPath
Label Documents
ExtendedDataType FilePath

2. Add the newly created field to the bottom of the table's General field group.
In the AOT, open the LedgerParameters form, and create a new method with the
following code:
public str filePathLookupTitle()
{

return "Select document folder";

}

4. To test the results, open General ledger | Setup | General ledger parameters, and
notice the newly created Documents control, which allows you to select a folder:

[sg) General ledger parameters (1 - cew) =@]=]
e "n| @
® Led . .
ecger Set up general information for general ledger
Sales tax
Inventory dimensions 4 General
Check forvoucher used: Reject duplicate -
Numnber sequences
Check continuous numbers:]
Batch transfer rules
Interrupt in case of error account: =]
Postdated checks Maximum penny difference: 0.01
Wasdimurn penny-rounding in the reparting currency: 01
Documents: ca
Journalizing

Browse for Folder ==

Select document folder

Extended ledger joumal;

Use nancantinuaus page numbering:

Check journalizing:

B Desktop
b Accounting rules » S Matwork

- > 4 Lbraries
|- Fiscal year close & Recyce Bin
> Bank document 5 B Administrator

» (8 Contral Parel

4 18 Computer
> 4 Floppy Disk Drive (A:)
o &L, Local Disk (C)
o g DWD Drive (D1}

File path and name. Close

186

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

The folder browsing lookup form is bound to the FilePath extended data type, and it appears
automatically for every control that is based on that type. In this recipe, we create a new field,
which extends the FilePath, and consequently inherits the lookup. We also add the newly
created field to the field group, in order for it to appear on the form automatically.

We also create a new form method named filePathLookupTitle(), which is required
by the browse for folder lookup. This method holds the description displayed on the lookup
window. The system will show an error if this method is not present on a caller form.

There's more...

In this section, we will explore few more enhancements to the previous example. Firstly, we
will build exactly the same lookup but use a slightly different technique, and secondly, we will
enable the Make New Folder button on the lookup, allowing users to create new folders.

Manual folder browsing lookup

The lookup created in this recipe has a few programming limitations. First, the lookup requires
the FilePathLookupTitle() method to be present on a caller form. The name of this
method has to be exactly like this, and cannot be prefixed with a three-letter code, as per best
practice recommendations, and it might lead to confusion when performing system changes
in the future.

Another reason is that a single form cannot have two or more folder browsing lookups unless
they share the same description. Every lookup calls the same FilePathLookupTitle()
method, and will obviously have the same descriptions.

Internally, the browsing for folder lookup is generated with the help of the browseForPath()
method of the WinAP1 class. The method invokes the standard Windows folder browsing
dialog, and we can call this method directly without using the extended data type.

Let's modify our previous example by deleting the Ti lePathLookupTitle() method from
the LedgerParameters form, and overriding the lookup() method of the DocumentPath
field in the LedgerParameters form data source with the following code:

public void lookup(FormControl _formControl, str _filterStr)

{
FilePath path;

path = WinAPI: :browseForPath(
element._hWnd(),
"Select document folder extended™);

LedgerParameters.DocumentPath = path;
LedgerParameters_ds.refresh();

187

www.it-ebooks.info

http://www.it-ebooks.info/

Building Lookups

Now, if you open the lookup, you may notice that it looks exactly the same as before, apart
from its description. The description is defined in the lookup() method, and is only used
for this particular lookup. Using this technique, we can create more than one folder browsing
lookup on the same form, without adding additional methods to the form itself.

;j General ledger parameters (2 - ceu) o= | = |
.
®* Led . .
S Set up general information for general ledger
Sales tax
Iresentory dimensions 4 General
Check forwoucher used: Reject duplicate -
Murnber sequences
Check continuous numbers: B
Batch transfer rules .
Interrupt in case of error account: &)
Postdated checks Maximurm penny difference 0.01
rdaxirnurm penny-rounding in the reporting currency: 001
Docurnents:]
Journalizing
Browuse for Folder
Extended ledger journal: = @
Use nancontinuaus page numbering: il Select documnent Foldsr extended
Check journalizing:] P Desktop
Accounting rules - S network
» | Libraries
Fiscal year close & Recycle Bin
Bank document 2 Administrator
- [control Panel
a |8 Computer
‘TJ'-J Floppy Disk Drive (A1)
iy Local Disk (Ct)
> \—_m DVD Drive (D:)
File path and name. Close |

Adding a Make New Folder button
The mentioned WinAP1 class has one more method named browseForFolderDialog().
Besides folder browsing, it also allows creating a new one. The method accepts three
optional arguments:

1. The lookup description.

2. The folder path selected initially.

3. The boolean value, where true shows and false hides the Make New Folder
button. The button is shown by default if this argument is omitted.

188

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Let's replace the lookup() method of the DocumentPath field in the LedgerParameters
form data source with the following code:

public void lookup(FormControl _formControl, str _FfilterStr)

{
FilePath path;

path = WinAPI: :browseForFolderDialog(
"Select document folder extended",
LedgerParameters.DocumentPath,
true);

LedgerParameters.DocumentPath = path;
LedgerParameters_ds.refresh();

}

Now, the folder browsing lookup has a new Make New Folder button, which allows the user to
create a new folder straight away without leaving the lookup:

E;]General\edgerparameters (2 - ceu) (==][=]
O @
® Ledger f :
Set up general information for general ledger
Sales tax
Inwentory ditmensions + General
Check for woucher used: Reject duplicate -
Mumber sequences
Check continuous numbers: =
Batch transfer rules .
Interruptin case of errar account: [
Postdated checks Maximum penny difference: 0.01
Maxirmum penry-rounding in the reporting currency: 0.1
Documents: [}
Journalizing
Extended ledger journal: [B s @i el @
Use nancontinuous page nurmbeting: = Select document Folder extended
Check journalizing: =
" Dieskt
Accounting rules B Desktop
a Libraries
Fiscal year close
2 Administrator
Bank document 18 Computer
€W Netwark
& contral Panel
£ Recycle Bin
Make Mew Folder I [OK] I Cancel I -
File path and name. |
189

www.it-ebooks.info

http://www.it-ebooks.info/

Building Lookups

Building a lookup for selecting a file

In Dynamics AX, file reading or saving is a very common operation. Most of the non-automated
file reading or writing operations prompts the user to specify the file name.

This recipe will demonstrate how the user could be presented with the file browse dialog, in
order to choose a file in a convenient way. As an example, we will create a new control called
Terms & conditions in the Form setup form in the Procurement and sourcing module, which
allows storing of a path to the text document.

How to do it...

1. Inthe AOT, open the VendFormLetterParameters table and create a new field with
the following properties:

Property Value

Type String

Name TermsAndConditions
Label Terms & conditions
ExtendedDataType FilenameOpen

2. Then add the field to the bottom of the table's PurchaseOrder field group.

3. Next, open the PurchFormLetterParameters form, and create the following
four methods:

public str fileNameLookupTitle()

{
return "Select Terms & conditions document'';
by
public str fileNameLookuplnitialPath(Q)
{
container file;
file = fileNameSplit(
VendFormletterParameters.TermsAndConditions);
return conPeek(Ffile ,1);
by

public str fileNameLookupFilename()

{

Filename path;

190

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Filename name;
Filename type;

[path, name, type] = FileNameSplit(
VendFormletterParameters.TermsAndConditions);

return name + type;

}

public container fileNameLookupFilter()

{
#File

return [WinAPI::FfileType(#txt), #AllFilesName+#txt];
}

4. As a result, we should be able to select and store a text file in the Procurement and
sourcing | Setup | Forms | Form setup form in the Terms & conditions field under
the Purchase order tab of the page:

E;] Form setup (1 - ceu) [= = =]
oe
General Set up formats for purchase orders
® Purchase order
L t
Receipts list ayou
Paper farmat: Blank paper -
Product receipt .
Terms & conditions: ca
Request for quotation
Purchase requi I;—;] Select Terms & conditions document @
—~—
= A &, |
T — A | J » Libraries » Documents » - ‘ + ‘ | Search Documents P
Organize = New folder ==~ '@
/¢ Favorites Documents library Arange by: Folder =
Includes: 2 locations
S B
Jg_lerar\es Mame Date modified Type Si
j Docurments
Jv‘ Music Integration Services Script Component 842010 6:52 AM File folder
] Pictures Integration Services Script Task 8/4/2010 £:52 Ab File falder
E Videas \5 My Shapes B8J2010 5:25 AM File folder
Qutlaok Files 10/8/2011 818 &M File falder
8 Computer SQL Server Management Studio TAL2011 2:26 AM File folder
&, Local Disk (G Wisual Studio 2003 8/7/2010 6:05 Phd File falder
Wisual Studio 2008 87472010 5:4T A File folder
gy Hetwork Wisual Studio 2010 27772010 6:42 Phd File falder
1 1 3
File name: | - lTExt Document {*) 'I
[Open l l Cancel]
File path and name. Close |

191

www.it-ebooks.info

http://www.it-ebooks.info/

Building Lookups

In this recipe, we first create a new field where we will store the file location. We use the
FilenameOpen extended data type, which is bound to the file selection dialog. The newly
created field automatically inherits the dialog. We also add this field to the field group in the
table to ensure that it is displayed on the form automatically.

The following four form methods are called by the lookup, and must be present on a
caller form:

1. The FileNameLookupTitle()method contains a text to be displayed as the
lookup title.

2. The fileNameLookuplInitialPath() method defines the initial folder. In our
example, if there is a value in the Terms & conditions field, then this method
strips the filename part and returns the directory path to the lookup to be used as a
starting point. Here, we use the global Ti leNameSplit()function to process the
stored file path.

3. The fileNameLookupFilename() method detects the current value in the
field, and extracts the filename to be displayed on the lookup. We use the global
TileNameSplit() function again to separate the given directory path into three
parts—directory path, filename, and file extension. For example, if the current Terms
& conditions value is \\LONDON\Documents\terms.txt, then once the user clicks
on the lookup button, the method returns only the filename terms.txt (file name + file
extension) separated from the rest of the directory path.

4. The fileNameLookupFilter() method is responsible for displaying a list of
allowed file extensions. It returns a container of allowed extensions in pairs of two.
The first, third, fifth, and other odd values hold the name of the file extension, and
the second, fourth, sixth, and other even values contain an extension filter. In this
example, only the text files are allowed, and the method returns two values in the
container. The first value is a string Text Document, and the second one is *.txt. In
order to avoid literals in the X++ code, we use two definitions from the #Fi le macro:
#txt and #A1IFi leName, which contain the .txt and * strings, respectively, and
which are concatenated by the lookup to present the user with the Text Document
(*.txt) filter. The FileType() method of the WinAP1 class converts file extensions
to their textual representation.

There's more...

Although the file browsing dialog created in this recipe is technically correct, it still has some
limitations. Firstly, it requires creating a number of methods on the caller form, and secondly,
it will not work with multiple file lookups on the same form. A slightly different approach could
be used to avoid those issues and keep the lookup's appearance unchanged.

192

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Let's modify the previous example by removing all the four methods from the form itself and
overriding the lookup() method on the TermAndConditions field, with the following code:

public void lookup(FormControl _formControl, str _FfilterStr)

{

}

FilenameOpen file;

Filename path;
Filename name;
Filename type;
#File

[path, name, type] = FfileNameSplit(
VendFormLetterParameters.TermsAndConditions);

file = WinAPI::getOpenFileName(
element_hWnd(),
[WinAPI: :FfileType(#txt), #AllFilesName+#txt],
path,
"Select Terms & conditions document™,

name + type);

it (Ffile)

{
VendFormLetterParameters.TermsAndConditions = file;
VendFormLetterParameters_ds.refresh();

The file browsing dialog is in the getOpenFi leName() method of the WinAP1 class, which in
turn opens the Windows file browsing dialog. The method accepts a number of arguments:

>

>

A handler to the calling window.

A container of allowed file extensions. This is exactly what the
fileNameLookupFi I'ter() method returns in the previous example.

The file path selected initially.
The lookup's title.
The default file name.

In this way we can create multiple file browsing lookups on the same form.

193

www.it-ebooks.info

http://www.it-ebooks.info/

Building Lookups

Creating a color picker lookup

In Dynamics AX, the color selection dialog boxes are used in various places, allowing the
user to select and store a color code in a table. The stored color code can be used in various
scenarios, such as marking important records, changing the control's background, and so on.

In this recipe, we will create a color lookup. For demonstration purposes, we will add an option
to set a color for each legal entity in the system.

How to do it...

1. Inthe AOT, open the Companylnfo table and create a new field with the
following properties:

Property Value

Type Integer

Name CompanyColor
ExtendedDataType CCColor

2. Open the OMLegalEntity form, locate the TopPanel group in Body | Content | Tab |
General, and add a new IntEdit control with the following properties to the bottom

of the group:
Property Value
Name CompanyColor
AutoDeclaration Yes
LookupButton Always
ShowZero No
ColorScheme RGB
Label Company color

3. Inthe same form, create a new method with the following code in the Companylnfo
data source:

public edit CCColor editCompanyColor(

boolean _set,
CompanylInfo _companylnfo,
CCColor _color)

if (_companylnfo.CompanyColor)
{

CompanyColor .backgroundColor(

194

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

_company Info.CompanyColor);

}

else

{

CompanyColor.backgroundColor(
WinAPI : :RGB2int (255,255, 255));

}

return O;

}

Update the properties of the newly created CompanyColor control as follows:

Property Value
DataSource Company Info
DataMethod editCompanyColor

In the same control, override its lookup() method with the following code:
public void lookup(Q)

{
int red;
int green;
int blue;

container color;

[red, green, blue] = WinApi::RGBint2Con(
CompanyColor .backgroundColor());

color = WinAPI::chooseColor(
element_hWnd(),
red,
green,
blue,
null,
true);

if (color)
{
[red, green, blue] = color;
CompanyInfo.CompanyColor = WinAPI::RGB2int(
red,
green,

195

www.it-ebooks.info

http://www.it-ebooks.info/

Building Lookups

blue);

CompanyColor.backgroundColor(
Company Info.CompanyColor);

}

6. To test the results, open Organization administration | Setup | Organization |
Legal entities and click on the Company color lookup:

s4] Legal entities (1) - Company: ceu, Contoso Entertainment Systems (West) [=[@]=]
File ~ Mews =l Change name & Company logo S50 View in hierarchy O @
Name Company Marme: Cantoso Entertainment Systems [V
Compaty accounts data dat Cornpany: ceu
Contoso Consulting Slsa G .
Contoso Consulting Denmark SDEka 4 Genera
Contoso Consulting France SFRA, Mermo: In hierarchy:
Contoso Consulting US4 SUsE Use for financial consalidation process: []
Cantaso Entertainment - Retail (East... CERE Use for financial elimination praocess: [C]
Contoso Entertainment - Retail (West.. CERWS c
ompany colar: |v
Contoso Entertainment Systerms Search name: CEU
Contoso Entertainment Systems - De... ceed Language Eall @
Contosa Entertainment Systems - E&,.. CEBD Longuages enus | oo 4
Contoso Entertainment Systems - Fra.. CEUF
) | SR e N
Conteso Entertainment Systemns (West) ceu Time zone ECCTEFEEN
Contoso Entertainrnent Systems Distr.. CEDU Time zone: (GMT-08: EEEEEEENE
Contoso Entertainment Systerns Euro,., cee » Add EEEEEEEN
resses

Contoso Entertainment Systerms Haly ceei
Contoso Entertainment Systems UK ceeu » Centact information | H Il Il I H H N .
Contoso Entertainrnent Systerns USA .., ceue I Tax registration HEEENT .

P Tax 1099 Custorn colrs:

I» Statutory reporting EEEEEEEN e 70 et T

I+ Bank account inform; I B BN BN BN B W W S“El : . © -

I: Foreign trade and log 3 een

Numbe Deefine Custom Colors > ColorSold |y 240 Blue: 255

umber

< | L] oK Cancel l Add to Custom Colors]
Select a color. Close

Dynamics AX does not have a special control for selecting colors. So, we have to create a fake
control, which is presented to the user as a color selection.

Colors in Dynamics AX are stored as integers, so we first create a new Integer field on
the Companylinfo table. On the form we create a new control, which will display the color.
The created control does not have any automatic lookup, and, therefore, it does not have
the lookup button next to it. We have to force the button to appear by setting the control's
LookupButton property to Always. We also need to set the ColorScheme to RGB to make
sure the control allows us to set its color using red-green-blue code.

196

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Next, we create a new edit method, which is then set on the created control as a data method.
The method is responsible for changing the control's background to match the stored color.
This gives an impression to the user that the chosen color was saved. The background is set
to white if no value is present. The method always returns 0, because we do not want to show
the actual color code in it. The control's ShowZero property is set to No to ensure that even
the returned O is not displayed. In this way, we create a control that looks like a real color
selection control.

The last thing to do is to override the control's lookup() method with the code that invokes
the color selection dialog. Here we use the RGBint2Con() method of the WinAP1 class to
convert the current control's background color into a red-green-blue component set. The set
is then passed to the chooseColor () method of the same WinAP1 class to make sure that
currently set color is initially selected on the lookup. The chooseColor () method is the main
method which invokes the lookup. It accepts the following arguments:

» The current window handle.

» The red color component.

» The green color component.

» The blue color component.

» A binary object representing up to 16 custom colors.

» Aboolean value, which defines whether the full or short version of the lookup is

displayed initially.

This method returns a container of red, green, and blue color components, which has to be
converted back to a numeric value in order to store it in the table field.

There's more...

You probably must have noticed that the fifth argument in the preceding example is set to
nul L. This is because we did not use custom colors. This feature is not that important, but
may be used in some circumstances.

To demonstrate how it can be used, let's modify the lookup() method with the following
code in order to implement the custom colors:

public void lookupQ

{
int red;
int green;
int blue;
container color;
Binary customColors;

197

www.it-ebooks.info

http://www.it-ebooks.info/

Building Lookups

customColors

customColors
customColors
customColors

customColors
customColors
customColors

customColors
customColors

customColors

[red, green,

= new Binary(64);

-byte(0,255);
-byte(1,255);
.byte(2,0);

.byte(4,0);
-byte(5,255);
.byte(6,0);

-byte(8,255);
.byte(9,0);
.byte(10,0);

blue] = WinApi::RGBint2Con(

CompanyColor .backgroundColor());

color = WinAPI::chooseColor(
element.hWnd(),

red,
green,
blue,

customColors,

true);

if (color)
{

[red, green, blue] = color;
CompanyInfo.CompanyColor = WinAPI::RGB2int(

red,

green,
blue);

CompanyColor.backgroundColor(
CompanyInfo.CompanyColor);

}

Here, we define the customColors variable as a binary object, for storing the initial set of
custom colors. The object structure contains 64 elements for storing the color codes. The set
of red, green, and blue components for each color is stored in three subsequent elements in
the object, followed by an empty element. In our code, we store yellow (red = 255, green =
255, and blue = 0) in the elements from O to 2, green (red = O, green, = 255, blue = 0) in the
elements from 4 to 6, and red (red = 255, green = 0, blue = 0) in the elements from 8 to 10.
The system allows you to create up to 16 custom colors.

198

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

After implementing those changes, the color selection dialog now has three predefined
custom colors, as shown in the following screenshot:

(5§l Legal entities (1) - Company: ceu, Contoso Entertainment Systems (ivest)
New < =Ti Change name | Company logo | &5 View in hierarchy > 0@
arne: ontaso Entertainment Systerns
Mame Company Iy c E 5 ™
Company accounts data dat Compary: ceu
Contaso Consulting sUsA P "
Contaso Consulting Denmark DA 4 benera
Contoso Consulting France SFRA Memo: In hierarchy:
Contoso Consulting US4 SUsE Use for financial consolidation process: [C]
Contaso Entertainment - Retail (East... CERE Use for financial elimination process: [
Contoso Entertainment - Retail (M¥est.., CERW c
ormpany color: ‘v
Cantoso Entertainrment Systerns cec Search name: CEU
Contoso Entertainment Systems - De.., ceed Language Color @
Contoso Entertainment Systems - Eé., CEED Language: eneus | g q
Contoso Entertainment Systems - Fra.. CELF ECEECEE
Contoso Entertainment Systerns (West) ceu Time zone ErCEEEE
Contoso Entertainment Systems Distr.., CEDU Timezone: (GMT-08: EENEEEEN
Contoso Entertainment Systems Euro.., cee
Contosa Entertainment Systems ltaly ceei b Addresses EfiEEEEN
I Contact information | I I I I I I N
Contosa Entertainment Systems UK ceeu
Contosa Entertainment Systemns USA.... ceue I Tax registration EEEENTE
b Tax 1089 Custom ealors:
I Statutory reporting mE N B R R | el e
. e L
> Bankaccountinform: Il Il I I H W wult 5 o
at: reer
I: Foreign trade and lo
" :e E Define Custom Colars >» ColorfSold |\ ;w240 Blue: 255
> Number
T T v . oK Cancel [Add to Custom Colars
Select a color.

The custom colors can also be modified by the user, and can be saved in a table field or cache
for later use by storing the whole binary customColors object.

199

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Processing Business
Tasks

In this chapter, we will cover the following recipes:

» Using a segmented entry control

» Creating a general journal

» Posting a general journal

» Processing a project journal

» Creating and posting a ledger voucher
» Changing an automatic transaction text
» Creating a purchase order

» Posting a purchase order

» Creating a sales order

» Posting a sales order

» Creating an electronic payment format

Introduction

This chapter explains how to process various business operations in Dynamics AX. We will
discuss how to use the segmented entry control and how to create and post various journals.
The chapter also explains how to work with the ledger voucher object and how to enhance the
setup of the automatically-generated transaction texts. It also covers how to create and post
purchase and sales orders, as well as creating electronic payment format.

www.it-ebooks.info

http://www.it-ebooks.info/

Processing Business Tasks

Using a segmented entry control

In Dynamics AX, segmented entry control can simplify the task of entering complex main
account and dimension combinations. The control consists of a dynamic number of elements
named segments. The number of segments may vary, depending on the setup, and their
lookup values may be dependent on the values specified in other segments in the same
control. The segmented entry control always uses the controller class, which handles the entry
and display in the control.

In this recipe, we will show how a segmented entry control can be added to a form. In this
demonstration, we will add a new Ledger account control to the General ledger parameters
form, assuming that the control could be used as a default ledger account for various
functions. The example does not make much sense in practice, but it is perfectly suitable to
demonstrate the usage of the segmented entry control.

How to do it...

1. Inthe AOT, locate the LedgerParameters table and create a new field with
the following properties (click on Yes to automatically add a foreign key relation

once asked):
Property Value
Type Int64
Name LedgerDimension
ExtendedDataType LedgerDimensionAccount

Add the newly created fields to the General group in the table.

Find the table's relation named DimensionAttributeValueCombination, and change
its property as follows:

Property Value
UseDefaul tRoleNames No

4. Inthe AOT, find the LedgerParameters form, and add the following code to its
class declaration:

LedgerDimensionAccountController ledgerDimensionAccountController;

5. Add the following code to the bottom of the form's init() method:

ledgerDimensionAccountController =
LedgerDimensionAccountController: :construct(
LedgerParameters_ds,
fieldStr(LedgerParameters,LedgerDimension));

202

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

6. On the same form, locate the General_LedgerDimension segmented entry control
located in Tab | LedgerTab | LedgerTabBody | LedgerTabFastTab | GeneralTabPage
| General, and override three of its methods with the following code:

public void loadAutoCompleteData(LoadAutoCompleteDataEventArgs _e)
{

super(_e);
ledgerDimensionAccountController.loadAutoCompleteData(_e);

¥

public void loadSegments()

{
super();
ledgerDimensionAccountController _parmControl (this);
ledgerDimensionAccountController._loadSegments();

¥

public void segmentValueChanged(SegmentValueChangedEventArgs _e)

{
super(_e);
ledgerDimensionAccountController_segmentValueChanged(e);

}
7. Onthe same form, in its LedgerParameters data source, locate the
LedgerDimension field, and override three of its methods with the following code:

public Common resolveReference(
FormReferenceControl _formReferenceControl)

{
return ledgerDimensionAccountController.resolveReference();
}
public void jumpRef()
{
super();
ledgerDimensionAccountController._jumpRef();
}
public boolean validate()
{
boolean ret;
ret = super();
ret = ledgerDimensionAccountController._validate() && ret;
return ret;
}

203

www.it-ebooks.info

http://www.it-ebooks.info/

Processing Business Tasks

8. To test the results, open General ledger | Setup | General ledger parameters, and
notice the newly created Ledger account control, allowing to select and save the
main account, and a number of financial dimensions:

I;—E]Gemera\ladgerparameters (1-ceu) EI\EI
O @&
® Led . .
S Set up general information for general ledger
Sales tax =
MainAccount
Inventory dimensions + General Petty cash account
Check farvoucher used: Department
MNurnber sequences
Check continuous nurmbers: CostCenter
Batch transfer rules .
Interrupt in case of error account:
Expens...
Postdated checks Mairnurm penny difference:
Maximurn penny-rounding in the reparting currenc
Ledger account: |110130 - - - -
Journalizing oul Internal sales -
Extended ledger jourmal: = ou11s Main sales group u
Qu_116 M. t:
Use noncontinuous page nurmbering: = - aor accounts
Qu_180 Miscellaneous
Check journalizing: = QU_2310 Finance
I Accounting rules ouzir m
- QU 2317 Human Resources
|- Fiscal year close)
Qu_2313 Praduction
» Bank document QU_2314 Contoso Enterprise
ou_241 Prajects -
E
The account number, including financial dimensions, for posting to the ledger T

We start the recipe by creating a new field in the LedgerParameters table. The field
extends the LedgerDimensionAccount extended data type, to ensure that the segmented
entry control appears automatically once this field is added to the user interface. We also
add the newly created field to one of the table's groups to make sure that it appears on the
form automatically.

Next, we have to modify the LedgerParameters form. In its class declaration and the init()
method, we define and instantiate the LedgerDimensionAccountController class,
which handles the events raised by the segmented entry control. The combination of the class
and the control allows the user to see a dynamic number of segments, based on the system
configuration.

Then we override the following methods on the control:

» loadAutoCompleteData() retrieves the autocomplete data.
» loadSegments() loads the stored value in the table field to the control.

» segmentedValueChanged() updates the controller class when the value of the
control is changed by the user.

204

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5
Lastly, we override the following methods on the data source field:

» resolveReference() finds the ledger account record specified by the user.
» JumpReFf() enables the View details link in the control's right-click context menu.
» validate() performs user input validation.

There's more...

In this section, we will discuss how the input of the segmented entry control can be simulated
from code. It is very useful when migrating or importing the data into the system. In the AOT,
locate the DimensionAttributeValueCombination table and create a new method with the
following code:

public static LedgerDimensionAccount getlLedgerDimension(
MainAccountNum _mainAccountlid,

container _dimensions,
container _values)

{
MainAccount mainAccount;
DimensionHierarchy dimHier;
LedgerChartOfAccountsStructure coaStruct;
Map dimSpec;
Name dimName;
Name dimvalue;
DimensionAttribute dimAttr;
DimensionAttributevValue dimAttrValue;
List dimSources;
DimensionDefaultingEngine dimEng;
int i

mainAccount = MainAccount: :findByMainAccountld(
_mainAccountld);

if (ImainAccount.Recld)
{

return O;

}

select firstOnly Recld from dimHier
where dimHier.StructureType ==
DimensionHierarchyType: :AccountStructure
&& dimHier.IsDraft == NoYes::No
exists join coaStruct

205

www.it-ebooks.info

http://www.it-ebooks.info/

Processing Business Tasks

where coaStruct.ChartOfAccounts ==
LedgerChartOfAccounts: :current()
&& coaStruct.DimensionHierarchy == dimHier.Recld;
if (!dimHier.Recld)
{

return O;

}

dimSpec =
DimensionDefaultingEngine: :createEmptyDimensionSpecifiers();

for (i = 1; i <= conLen(_dimensions); i++)
{
dimName = conPeek(_dimensions, i);
dimvValue = conPeek(values, i);

dimAttr = DimensionAttribute::findByName(dimName);
if (1dimAttr.Recld)
{

continue;

}

dimAttrVvalue =
DimensionAttributeValue: : findByDimensionAttributeAndValue(

dimAttr, dimValue, false, true);
it (dimAttrValue.lIsDeleted)
{

continue;

}

DimensionDefaultingEngine: :insertDimensionSpecifer(
dimSpec,
dimAttr._Recld,
dimvValue,
dimAttrVvalue.Recld,
dimAttrValue.HashKey);

}

dimSources = new List(Types::Class);
dimSources.addEnd(dimSpec);

dimEng = DimensionDefaultingEngine: :constructForMainAccountld(
mainAccount.Recld,
dimHier.Recld);

206

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

dimEng.applyDimensionSources(dimSources);

return dimEng.getlLedgerDimension();

}

This method can be used to convert a combination of a main account and a number of
financial dimension values into a ledger account. The method accepts three arguments:
1. The main account number.
2. A container of dimension names.
3. A container of dimension values.

We start this method by searching for the main account record. We also locate the record of
the hierarchy of the current chart of accounts.

Next, we fill an empty map with the dimensions values. Before inserting each value, we try to
locate if the dimension and its value is present in the system. Here we use the methods on
the DimensionAttribute and the DimensionAttributeValue tables to do that.

We end the method by creating a new DimensionDefaul tingEngine object and
passing the list of dimensions and their values to it. Now, when everything is ready, the
getLedgerDimension() method of DimensionDefaul tingEngine returns the ledger
account number.

See also

In this chapter:

» Creating a general journal
» Creating and posting a ledger voucher

Creating a general journal

Journals in Dynamics AX are manual worksheets that can be posted into the system. One of
the frequently used journals for financial operations is the General journal. It allows processing
virtually any type of operation: ledger account transfers, fixed asset operations, customer/
vendor payments, bank operations, project expenses, and so on. Journals, such as the Fixed
assets journal, or the Payment journal in the Accounts receivable or Accounts payable
modules, and many others, are optimized for specific business tasks, but they basically do

the same job.

In this recipe, we will demonstrate how to create a new general journal record from code.
The journal will hold a single line for debiting one ledger account and crediting another one.
For demonstration purposes, we will specify all the input values in the code.

207

www.it-ebooks.info

http://www.it-ebooks.info/

Processing Business Tasks

How to do it...

1. Inthe AOT, create a new class named LedgerJournalTransData with the
following code:

class LedgerJournalTransData extends JournalTransData

{
}

public void create(
boolean _dolnsert false,
boolean _initVoucherList = true)

lastLineNum++;
journalTrans.LineNum = lastLineNum;

if (JournalTableData.journalVoucherNum())

{

this.initVoucher(
lastVoucher,
false,
_initVoucherList);

}

this.addTotal (false, false);

if (_dolnsert)
{

journalTrans.dolnsert();

}

else

{

journalTrans.insert();

}

if (JournalTableData.journalVoucherNum())

{

lastVoucher = journalTrans.Voucher;

}

208

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

2. Open the LedgerJournalStatic class, and replace its
newJournalTransData() method with the following code:

JournalTransData newJournalTransData(
JournalTransMap _journalTrans,
JournalTableData _journalTableData)

{
return new LedgerJournalTransData(
_journalTrans,
_journalTableData);
}

3. Double check that the getLedgerDimension() method exists on the
DimensionAttributeValueCombination table. If not, create it as described in the first
recipe in this chapter.

4. Create a new job named LedgerJournalCreate, with the following code:
static void LedgerJournalCreate(Args _args)

{

LedgerJournalTable JourTable;
LedgerJournalTrans jourTrans;
LedgerJournalTableData jourTableData;
LedgerJournalTransData jourTransData;
LedgerJournalStatic jourStatic;
DimensionDynamicAccount ledgerDim;
DimensionDynamicAccount offsetlLedgerDim;

ttsBegin;

ledgerDim =
DimensionAttributeValueCombination: :getLedgerDimension(
"110180°",
["Department”, "CostCenter®, "ExpensePurpose’],
[FOU_2311", "0U_3568", "Training"]);

offsetlLedgerDim =
DimensionAttributeValueCombination: :getLedgerDimension(
"170150°",
["Department”, "CostCenter®, "ExpensePurpose’],
[FOU_2311", "0U_3568", "Training"]);

jourTableData = JournalTableData: :newTable(jourTable);
jJjourTableData.nextJournalld();

LedgerJournalType: :Daily;
"Gendrn*;

JourTable.JournalNum
JourTable_JournalType
jJjourTable._JournalName

JourTableData. initFromJournalName(

209

www.it-ebooks.info

http://www.it-ebooks.info/

Processing Business Tasks

LedgerJournalName: :find(JourTable.JournalName));

jourStatic = jourTableData. journalStatic();

jourTransData = jourStatic.newJournalTransData(
jourTrans,
jourTableData);

jourTransData. initFromJournalTable();

jourTrans.CurrencyCode = "USD";
jourTrans.initValue();

jourTrans.TransDate = systemDateGet();
jourTrans.LedgerDimension = ledgerDim;
jourTrans.Txt = "General journal demo®;
jourTrans.OffsetlLedgerDimension = offsetLedgerDim;
jourTrans.AmountCurDebit = 1000;

jourTransData.create();
jourTable.insert();
ttsCommit;

info(strFmt(
"Journal "%1" has been created', jourTable.JournalNum));

}

5. Run the job and check the results by opening General ledger | Journals |
General journal:

;‘ General journal (1 - ceu) EI@
Mew X Delete cALines o Walidate Postv Print> 1. 9

Shown Open = Show user-created only: =

Orwerview | General | Setup | Elacking | Financial dimensions | History|

[[] Name Journal batch number ~ Description Posted Log Inuse Rewversing entry Rewersing date

CGanim . B004z0 010 General Journal J

4 - P P || || B | Identification of the journal name | LA(0) | USD | ceu Close |

210

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

6. Click on the Lines button to open journal lines and notice the newly created line:

=4 Journal woucher (1 ceu) - Journal: Genlm, journal batch nurmber: 000420_010, Fosted: Nalournal type: Daily =
File Mew < Delete Post™ Validate Financial dimensions™ Salestax Period journal ™ Functions™ Flxed assets ™ Inquiries™ Print™ O @
Balance Total debit Total credit Budget check results

Journal: 0.00| Journal: 1,000.00 | Journal: 1,000.00 | Pervoucher:

Pervouchen 0.00| Pervoucher: L000.00 | Pervouchen: 100000

Ovenview | General | Invoice | Payment [Payment fee [Fixed assets | Remittance | Histary|

[] Date Voucher Accounttype Account Description Debit Credit Offsetaccounttype Offset account Use a deposit

VIS RAHH00SE Tedger -6l S0 S88d-Training General journal deme . L0i.00 Ledger 758G 516 5565- Training [l

<[
Currency: UsD |-
Sales tax group: |-
Ttern sales tax group: |v
Calculated sales tax amount: 0.00

Actual sales tax amount: 0.00

0
Settlernent type: None Withhalding tax group: |-

Account narme: Petty cash account Release date:]

Offset account name: | Goodwill

M <

B B |[Z]] 9 | posting date

| o) | usD | ceu Close |

We start the recipe by creating the LedgerJournal TransData class, which will handle

the creation of journal lines. It inherits everything from the Journal TransData class, apart
from its create() method. Actually, this method is also a copy of the same method from the
JournalTransData class, with the exception that it does not check the VoucherDraw field
on the LedgerJournalTable table, as this functionality is not relevant here. We also modify
the newJournalTransData() constructor of the LedgerJournalStatic class to use
our new class.

For demonstrating the journal creation, we create a new job. Here, we use the
getLedgerDimension() method from the previous recipe to get ledger dimensions. We
also create a new jourTableData object used for journal record handling. Then, we set the
journal number, type, and name, and call the initFromJournalName() method to initialize
some additional values from the journal name settings. At this stage, the journal header
record is ready.

Next, we create a journal line. We create a new jourTransData object for handling the
journal line, and call its initFromJournalTable() method to initialize additional values
from the journal header. Then, we set some of the journal line values, such as currency,
transaction date, and so on.

Finally, we call the create() method on the jourTransData object, and the insert()
method on the jourTable object to create the journal line and the header records,
respectively. The journal is ready now for reviewing.

211

www.it-ebooks.info

http://www.it-ebooks.info/

Processing Business Tasks

There's more

The preceding example could easily be modified to create different journals, not just the
General journal. For instance, the Payment journal in the Accounts payable module is based
on the same data sources as the General journal, and some of its code is the same. So, let's
create a new, very similar job named VendPaymJournalCreate with the following code:

static void VendPaymJournalCreate(Args _args)

{
LedgerJournalTable jourTable;
LedgerJournalTrans jourTrans;
LedgerJdournalTableData jourTableData;
LedgerJdournalTransData jourTransData;
LedgerJournalStatic jourStatic;
DimensionDynamicAccount ledgerDim;
DimensionDynamicAccount offsetLedgerDim;
ttsBegin;
ledgerDim = DimensionStorage: :getDynamicAccount(

"1001",

LedgerJournal ACType: :Vend);
offsetLedgerDim = DimensionStorage: :getDynamicAccount(

"USA OPER",

LedgerJournal ACType: :Bank) ;
jourTableData = JournalTableData: :newTable(jourTable);
jourTable.JournalNum = jourTableData.nextJournalld();
jourTable.JournalType = LedgerJournalType::Payment;
jourTable.JournalName = "APPay”;
jourTableData. initFromJournalName(

LedgerJournalName: :find(JourTable.JournalName));
jourStatic = jourTableData. journalStatic(Q);
jourTransData = jourStatic.newJournalTransData(

jourTrans,

jourTableData);
jourTransData. initFromJournalTable();

212

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

jourTrans.CurrencyCode = "USD";

jourTrans.initValue();

jourTrans.TransDate = systemDateGet();
jourTrans.AccountType = LedgerJournalACType: :Vend;
jourTrans.LedgerDimension = ledgerDim;

jourTrans.Txt = "Vendor payment journal demo®;
jourTrans.OffsetAccountType = LedgerJournalACType: :Bank;
jourTrans.OffsetlLedgerDimension = offsetLedgerDim;
jourTrans.AmountCurDebit = 1000;

jourTransData.create();
jourTable.insert();
ttsCommit;

info(strFmt(
"Journal "%1" has been created", jourTable.JournalNum));

}

Now, the newly created journal can be found in Accounts payable | Journals | Payments |
Payment journal:

|;—;] Payrment journal {1 - ceu) EI@

Mew X Delete Alines o Validate Post~ Print™ 1| 'ﬂ'_@-

Showe Open = Show user-created only: [

Crerview | General | Setup | Blacking | Financial dirnensions | Histor}f|

[[] Marme Journal batch nurnber < Description Posted Log Imuse

| 000421010 AP Payrment

4 - > b ||”V"‘|| 1 | Identification of the journal na.. | JA{0) | USD | ceu Close |

213

www.it-ebooks.info

http://www.it-ebooks.info/

Processing Business Tasks

The journal lines should reflect what we've specified in the code:

Ei]lnumal woucher (1 - ceu) - lournalt APPay, journal batch number: 000421_010, Posted: Nolournal type: Vendor dishurserment EI@
Mew X Delete Post™ Walidate™ Financial dimensions™ Salestax Functions™ Paymentstatus™ Payment proposal ™ » O @
Balance Total debit Total credit
Journal: 0.00 | Journal: 1,000.00 | Journal: 1,000.00
Perwvoucher: 0,00 | Perwoucher 1,000,00 | Perwoucher 1,000.00
Owerview ‘ General I Paymentl Payment fee | Remnittance | Bank | Fixed assets | H|5tury|
[Date Compary accounts Account Description Debit Credit Offsetaccounttype Offsetaccount Payment status
113/03/2012 ceu Wendor payment journal derno 1,000,00 Bank Usa OPER Mone
WVoucher: APPO009YT Method of payment: |v Document:
Currency: usp - Payrnent specification: |v Daocurment date: iz
Account name: Earth Televisions Payment I Withholding tax group: ‘v
Offset account name: Bank of USA Operating Settlement type: Mone
Check number:

M 4

> P ||/7|| [| Posting date

| o | usp| ceu

The code in this section has only slight differences compared to the previous example:

» The ledger dimension contains a reference to a vendor account, and offset ledger

dimension refers to a bank account record.

» The journal type was changed to a vendor disbursement, that is,

LedgerJournalType: :Payment.

» The journal name is different to match the payment journal configuration.

» The journal line account type was set to vendor, and the offset account type was set

to bank.

See also

In this chapter:

» Using a segmented entry control
» Posting a general journal

214

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Posting a general journal

Journal posting is the next step to do once the journal has been created. Although most of

the time journals are posted from the user interface, it is also possible to perform the same
operation from the code.

In this recipe, we will explore how a general journal can be posted from code. We are going to
process the journal created in the previous recipe.

How to do it...

1. Open General ledger | Journals | General journal, and find previously created
journal or manually create a new one. Note the journal's number.

In the AOT, create a new job named LedgerJournalPost with the following code
(replace the text 000420_010 with the journal's number from the previous step):

static void LedgerJournalPost(Args _args)

{
LedgerJournalCheckPost jourPost;
LedgerJournalTable jJourTable;
jourTable = LedgerJournalTable::find("000420_010");
jourPost = LedgerJournalCheckPost: :newLedgerJournalTable(
jourTable,
NoYes::Yes);
jourPost._.run();
}

3. Run the job, and notice the Infolog, confirming that the journal was
successfully posted:

4 Message (09:30:44 am]

----- Ejr" MNumber of wvouchers posted to the journal: 1

215

www.it-ebooks.info

http://www.it-ebooks.info/

Processing Business Tasks

4. Open General ledger | Journals | General journal and locate the journal to make
sure that it was posted:

Ei]Generaljournal (1-ceu) EI@
New 2 Delete Hlines o Print™ O @

Shows Posted = Show user-created only: [C]

e b ey | General I Setup | Blacking I Financial dimensions | Histor}f|
[[] Marne Journal batch number < Description Posted Log Inuse Rewversing entry Rewersing date =
Genlrn 000413_010 General Journal
Genlrn 000414 010 General Journal
Genlrn 000415_010 General Journal
Genlrn 000416_010 General Journal
Genlrn 000417_010 General Journal N
Genlrn 000418_010 General Journal
gGenJrn ooo420_010 General Journal £

4 « | ||/f|| ﬂ, | Identification of the journal name. | _;I.{U) | USD | ceu

In this recipe, we create a new job named LedgerJournalPost, which holds all of the code.
Here, we use the LedgerJournalCheckPost class, which does all the work. This class
ensures that all the necessary validations are performed. It also locks the journal so that no
user can access it from the user interface.

In the job, we create the jourPost object by calling the newLedgerJournalTable()
constructor on the LedgerJournalCheckPost class. This method accepts a journal header
record to be processed, and a second argument defining whether the journal should be
validated and posted, or only validated. In this recipe, we find the previously created journal
record and pass it to the LedgerJournalCheckPost class along with the second argument,
instructing it to perform both validation and posting.

See also

In this chapter:

» Creating a general journal

216

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Processing a project journal

As with most of the modules in Dynamics AX, the Project management and accounting
module contains serveral journals, such as Hour, Expense, Fee, or Item journals. Although
they are similar to the General journal, they provide a more convenient user interface for
working with projects, and contain some module-specific features.

In this recipe, we will create and post a project journal from code. We will process an Hour
journal, holding a registered employee's time.

How to do it...

1. Inthe AQT, create a new job named ProjJournalCreate with the following code:
static void ProjJournalCreate(Args _args)

{

ProjJournalTable jJourTable;
ProjJournalTrans jourTrans;
ProjJournalTableData jourTableData;
ProjJournalTransData jourTransData;
ProjJournalStatic jourStatic;

ttsBegin;
jourTableData = JournalTableData: :newTable(jourTable);
jJjourTableData.nextJournalld();

ProjJournalType: :Hour;
"Hours*™;

jourTable._.Journalld
JourTable_JournalType
jourTable.JournalNameld

JourTableData. initFromJournalName(
ProjJournalName: :find(JourTable.JournalNameld));

jourStatic = jourTableData.journalStatic();
jJourTransData = jourStatic.newJournalTransData(
jourTrans,
jourTableData);
jJourTransData. initFromJournalTable();
jourTrans.initValue();
jourTrans.Projld = "10001";

jourTrans.initFromProjTable(
ProjTable::find(JourTrans.Projld));

217

www.it-ebooks.info

http://www.it-ebooks.info/

Processing Business Tasks

jourTrans.TransDate = systemDateGet();
jourTrans.ProjTransDate = jourTrans.TransDate;

jourTrans.Categoryld = "Design”;

jourTrans.setHourCostPrice();

jourTrans.setHourSalesPrice();

jourTrans.TaxltemGroupld =
ProjCategory::find(JourTrans.Categoryld).TaxltemGroupld;

jourTrans.Worker =

HcmWorker : : findByPersonne INumber ("000062") .Recld;
jourTrans.Txt = "Design documentation”;
jourTrans.Qty = 8;

jourTransData.create();
jourTable.insert();
ttsCommit;

info(strFmt(
"Journal "%1" has been created", jourTable.Journalld));

}

2. Run the job and check the results by going to Project management and accounting
| Journals | Hour:

|;_E]J0urna| {1- ceu) E'@

Mew < Delete S5 Copy % Rewverse “Lines o Walidate » O @

Sho: Open =

Chvereieny | General | Default walues | Blacking | Historyl

[Marne lourkal = Description Hours Lines Posted Inouse

‘Hours Pll_onogsy Hours Mo &pproveal lournal a.00 1

|4 - | |vf|| ﬂ | The identification number of th... | _L{0) | USD | ceu Clase |

218

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

3. Click on the Lines button to open the journal lines, and notice the newly
created record:

I;—i] Journal lines for hours (1 - ceu) - Project [D: 10001, Design, lournal: PI_000657 EI\EI

L}Add x Rermowve o Walidate Post Financial dimensions Functions¥ Trade agreement™ | '9

laurnal: 200 Lines: 1
Woucher 200 Lines: 1

Owerview | General

[] Project date ProjectID Activity number Category Worker Description Hours Line property Log
1370372012 10001 Design 000062 Design documentation 8.00 Charge :

4 - > b ‘/‘“ 99| project transaction date | oy | USD| ceu Close |

In this recipe, we create a new job where we store all the code. In the job, we use the
ProjJournalTableData and the ProjJournalTransData classes in a very similar

way as we used the LedgerJournalTableData and the LedgerJournal TransData
classes in the Creating a general journal recipe. Here, we create a new jourTableData
object used for journal record handling. Then we initialize the journal number, the type, and
the name of the actual journal record. For demonstration purposes, we set the journal name
in the code, but it could be easily replaced with a value from some parameter. Next, we call
initFromJournalName() on the jJourTableData object to initialize some additional
values from the journal name settings. At this stage, the journal header record is ready.

Next, we create a journal line. Here we first create a new jourTransData object for handling
the journal line. Then, we call its initFromJournalTable() method to initialize the
additional values from the journal header. Finally, we set some of the journal line values, such
as transaction and project date, category, worker number, and so on. Normally, these values
have to be taken from the user input, external data, or any other source, depending on the
functionality being built. In this example, we simply specify the values in the code.

Lastly, we call create() on the JourTransData, and insert() on the jourTable,
to create the journal line and the header records, respectively. The journal is now ready
for reviewing.

219

www.it-ebooks.info

http://www.it-ebooks.info/

Processing Business Tasks

There's more...

For further journal processing, we can use the class named ProjJournalCheckPost
for posting project journals from code. In the AOT, let's create another job named
ProjJournalPost with the following code (replace PJJ_000657 with your journal number):

static void ProjJournalPost(Args _args)

{

}

ProjJournalCheckPost jourPost;

jourPost = ProjJournalCheckPost: :newJournalCheckPost(
true,
true,
JournalCheckPostType: :Post,
tableNum(ProjJournalTable),
"PJJ_000657");

jourPost.run();

Run the job to post the journal. The Infolog should display the confirmation:

» 4 Posting - Journal
- Journal: P1_000657

..... ﬂrj lournal has been posted.

In the newly created job, we use the newJournalCheckPost() constructor of the
ProjJournalCheckPost class. The constructor accepts the following arguments:

>

A boolean value that specifies whether to block the journal while it is being posted
or not. It is good practice to set it to true, as this ensures that no one modifies this
journal while it is being posted.

A boolean value that specifies whether to display results in the Infolog.

The type of action being performed. The possible values for this class are either
JournalCheckPostType: :Post or JournalCheckPostType: :Check. The
latter one only validates the journal, and the first one validates and posts the journal
at once.

The table ID of the journal being posted.
The journal number to be posted.

And finally, we call the run() method which posts the journal.

220

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Creating and posting a ledger voucher

In Dynamics AX, all financial transactions, regardless of where they are originated, end up in
the General ledger module. When it comes to customized functionality, developers should
use Dynamics AX APlIs to create the required system entries. No transactions can be created
directly in the tables as it may affect the accuracy of financial data.

In order to ensure data consistency, the system provides numerous APIs for developers to

use. One of them is ledger voucher processing. It allows posting a financial voucher in the
General ledger. Vouchers in Dynamics AX are balancing financial entries representing a single
operation. They include two or more ledger transactions. The ledger voucher API ensures that
all required criteria, such as voucher numbers, financial periods, ledger accounts, financial
dimensions, balances, and others, are valid.

In this recipe, we will demonstrate how a ledger voucher can be created and posted from
code. We will create a single voucher with two balancing transactions.

How to do it...

1. Double-check that the getLedgerDimension() method exists in the
DimensionAttributeValueCombination table. If not, create it as described in the first
recipe in this chapter.

2. Inthe AQT, create a new job named LedgerVoucherPost with the following code:
static void LedgerVoucherPost(Args _args)

{
LedgerVoucher voucher;
LedgerVoucherObject voucherObj ;
LedgerVoucherTransObject voucherTrObj1;
LedgerVoucherTransObject voucherTrObj2;
DimensionDynamicAccount ledgerDim;
DimensionDynamicAccount offsetlLedgerDim;
CurrencyExchangeHelper currencyExchHelper;

CompanyInfo companyInfo;
ledgerDim =
DimensionAttributeValueCombination: :getLedgerDimension(
"110180",

["Department®, "CostCenter®, "ExpensePurpose’],
[FOU_2311", "0U_3568", "Training"]);

offsetlLedgerDim =
DimensionAttributeValueCombination: :getLedgerDimension(

"170150",

221

www.it-ebooks.info

http://www.it-ebooks.info/

Processing Business Tasks

["Department®, "CostCenter®, "ExpensePurpose’],
[FOU_2311", "0OU_3568", "Training"]);

voucher = LedgerVoucher::newLedgerPost(
DetailSummary: :Detail,
SysModule: :Ledger,

"7);
voucherObj = LedgerVoucherObject: :newVoucher("TESTO0001");
companylnfo = Companylnfo::findDataArea(curext());

currencyExchHelper = CurrencyExchangeHelper: :newExchangeDate(
Ledger: :primaryLedger(companylnfo.Recld),
voucherObj .parmAccountingDate());

voucher .addVoucher(voucherObj);

voucherTrObjl =
LedgerVoucherTransObject: :newTransactionAmountDefaul t(
voucherObj,
LedgerPostingType: :LedgerJournal,
ledgerDim,
"usb-,
1000,
currencyExchHelper);

voucherTrObj2 =
LedgerVoucherTransObject: :newTransactionAmountDefaul t(
voucherObj,
LedgerPostingType: :LedgerJournal,
offsetlLedgerDim,
"usb-,
-1000,
currencyExchHelper);

voucher .addTrans(voucherTrObjl);
voucher .addTrans(voucherTrObj2);

voucher.end();
info(strFmt(

"Voucher "%1" has been posted', voucher.lastVoucher()));

222

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

3. Run the class to create a new ledger voucher.
4. To check what has been posted, open General Ledger | Inquiries | Voucher
transactions and type in the voucher number used in the code:

[« VInquiny (1 - cewd
- Madify... ¥

Select query: ST

7 Tables
20 Genersl jmurnal entry
| [General joumal account entry

[Reason references
: [Audit trail i
Range | Sorting
[C] Table Derived table Field Criteria Add
General journal entry General journal entry Journal number
Date

General journal entry General journal entry
Main accaunt Main accaunt

Main accaunt
Subledger voucher to general journal entry .. Vaucher

Subledger vaucher to general journal entry .

TESTO000L

Reset | [ok | [concel

5. Click on OK to display the posted voucher:

WVDuchertvansactmr\s (1- cew) - Journal number GJT-035631, 13/03/2012
File - Transaction origin -~ Transactions Audittrail Posted salestax Original docurnent [1m] @.

Overview | General [Amount
[[] Journal number ~ Date Yearclosed Ledger account Currency Bmountin transaction currency &mount Amountin reporting currency Posting layer
al 13/13/2012 170150-0U_2311-0U_3586-Training USD! -1,000.00 1,000.00 -1,000.00 Current
e, 1 1340342012 110180-0U_2311-0U_3568-Training USD 1,000.00 1,000.00 1,000.00 Current
Description: Posting type: Ledger journal
Name; Petty cash account
1 4 i B Pl |[7]]) | Unigue key for generating generalledger entries | Qo) | usp | ceu

In the newly created job, first of all, we define ledger accounts where the posting will be done.
Normally, this comes from the user input, but here for the demonstration purposes, we specify
it in the code. We used the previously created getLedgerDimension() method to simulate

the ledger account entry.

223

www.it-ebooks.info

http://www.it-ebooks.info/

Processing Business Tasks

Next, we create a new LedgerVoucher object, which represents a collection of vouchers.
Here, we call the newLedgerPost() constructor of the LedgerVoucher class. It accepts
three mandatory and four optional arguments, which are listed as follows:

» Post detailed or summarized ledger transactions.

» The system module from which the transactions are originating.

» A number sequence code, which is used to generate the voucher number.
In this example, we will set the voucher number manually. So, this argument
can be left empty.

» The transaction type that will appear in the transaction log.
» The transaction text.

» A boolean value specifying whether this voucher should meet the approval
requirements.

» Aboolean value, defining whether the voucher could be posted without a posting type
when posting inventory transactions.

Then, we create a new LedgerVoucherObject object, which represents a single voucher.
We call the newVoucher () constructor of the LedgerVoucherObject class. It accepts only
one mandatory and a number of optional parameters, which are listed as follows:

» The voucher number. Normally, this should be generated by using a number
sequence but, in this example, we set it manually.

» The transaction date. The default is the session date.

» The module from which the transactions are originating.

» The ledger transaction type.

» Aflag defining whether this is a correcting voucher. The default is No.

» The posting layer. The default is Current.

» The document number.

» The document date.

» The acknowledgment date.

The addVoucher () method of the LedgerVoucher class adds the created voucher object
to the voucher.

Once the voucher is ready, we create two voucher transactions. The transactions are
handled by the LedgerVoucherTransObject class. They are created by calling its
newTransactionAmountDefault() constructor with the following mandatory arguments:

» The ledger voucher object.

» The ledger posting type.

» The ledger account number.

224

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

» The currency code.
» The amountin currency.

» The currency exchange rate helper.

Notice the last argument, which is a currency exchange rate helper, used when operating in
currencies other that the main company currency.

We add the created transaction objects to the voucher by calling its addTrans() method. At
this stage, everything is ready for posting.

Finally, we call the end() method on the LedgerVoucher object, which posts the
transactions to the ledger.

See also

In this chapter:

» Using a segmented entry control

Changing an automatic transaction text

Every financial transaction in Dynamics AX can (and normally should) have a descriptive

text. Some texts are entered by users, and some can be generated by the system. The latter
option happens for automatically-generated transactions, where the user cannot interact with
the process.

Dynamics AX provides a way to define text for automatically-generated transactions. The setup
can be found in Organizations administration | Setup | Default description. Here, the user
can create custom transaction texts for various automatic transaction types and languages.
The text itself can have a number of placeholders—digits with a percent sign in front of them,
which are replaced with actual values during the process. Placeholders can be from %1 to %6,
and they are substituted with the following values:

» %1:the transaction date.

» %2: a relevant number, such as invoice, delivery note, etc.

» %3: the voucher number.

» %4 to %6: custom; depends on the module.
In this recipe, we will demonstrate how the existing automatic transaction text functionality
can be modified and extended. One of the places where it is used is the automatic creation of
vendor payment journal lines during the vendor payment proposal process. We will modify the

system so that the text of the automatically-generated vendor payment lines will include the
vendor names.

225

www.it-ebooks.info

http://www.it-ebooks.info/

Processing Business Tasks

Getting ready

First, we need to make sure that the vendor payment transaction text is set up properly.
Open Organization administration | Setup | Default descriptions, find a line with Vendor
- payment, vendor, and change the text to Vendor payment %2 to %5, as shown in the
following screenshot:

I.-Ti] Default descriptions (1 - ceu) - Description: Wendor - payment, vendor, en-us |E||E||E|

Mews 2 Delete O @
Description ~ Language Text i
Wendor - Exch, adj, Vendor en-us Currency rate adj, %62

Wendor - cash discount, ledger en-us Discount %62

YWendor - cash discount, vendar En-Us Discount %2

Wendor - penny difference, ledger EN-Us Rounding differences %2

Wendor - penny difference, vendor en-us Rounding differences %2

Wendor - payment, ledger en-us Wendor payment %62

I\u"endor- payrment, vendor | en-us Wendor payment %62 to %5

Wendor - cash payment BN-us Cash payment %2

Sales order - invoice, ledger en-us Sales invaoice %62

Sales order - invoice, customer En-Us Sales invoice %2 3
Sales order - credit note, ledger en-us Sales credit note 962

Sales order - credit note, custormer En-Us Sales credit note %42

Sales order - packing slip, ledger en-us Packing slip %62

Sales - commission en-us Sales commision %62

Sales - total discount en-us Discount %62

Purchase order - invoice, ledger en-us Purchase invoice %62

Purchase order - invoice, vendor BN-us Purchase invoice %2 il
Transaction type for which this text is used Close |

How to do it...

1. Inthe AQT, find the CustVendPaymProposal TransferToJournal class and add
the following code to the bottom of the getTransactionText() method, right
before its return command:

transactionTxt.setKey2(
_custVendPaymProposalLine.custVendTable() -name());

2. Open Accounts payable | Journals | Payments | Payment journal and create a new
journal. Open journal lines, run Payment proposal | Create payment proposal from
the action pane. Define the desired criteria and click on OK. On the newly opened
Vendor payment proposal form, click on the Transfer button to transfer all proposed
lines to the journal. Notice that the transaction text on each journal lines includes the
vendor name, as shown in the following screenshot:

226

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Perwvoucher:

=4/ Joumal vaucher {1 - ceu) - Journal: 8PPay, joumnal batch number; 000422_010, Posted: Noloumnal type: Vendor disbursement [=fe =
File Mew X Delete | Postv Validate™ Financial dimensions™ Salestax Functions™ Paymentstatus™ Payment proposal ™ Inquiries™ > O @
Balance Total debit Total credit

Journal: 70,283.05| Jaurnal: 995,811.20 | Jaurnal: 925,528.15

0.00| Perwvoucher 23,000.00| Pervouchen 23,000.00

Crverviews | General | Payment | Paymentfee | Remittance | Bank | Fired assets | History|
[Date Company accounts Account Description Debit Credit Offsetaccounttype Offsetaccount Payment status *
$15/04/2... ceu 1001 Wendor payrent ETV0078 to Earth Televisions 23,000.00 Bank LS OPER Mone ig
15/04/2.. ceu 1002 Wendar payrment Irv-2-36 to Wind Televisions 130,920.20 Eank USa& OPER Mone [
15/04/2.. ceu 1002 Wendar payrment Irne-2-63 to Wind Televisions 130,920.20 Eank USa& OPER Mone
15/04/2... ceu 1002 Wendor payrnent Imv-2-593 to Mind Televisions 14,264.10 Bank US& OPER Nane
15/04/2... ceu 1002 Wendor payrnent Imv-2-657 to Mind Televisions 15,453.30 Bank US& OPER Nane
15/04/2.. ceu 1l Wendar payrment Ire-2-399 to Rain Projectors 9,125.00 Bank USa& OPER Mone
15/04/2.. ceu 1l Wendar payrment Ir-2-1018 to Rain Projectors 9,123.00 Eank USa& OPER Mone A
| e o A TP iconon - - . ,
Woucher: APPO009ST Method of payment: USALSD_CHIC ‘v fi Docurnent:
Curreny: usp - Payrment specification: ‘v Docurnent date: 15/04/2012 E
Account name: Earth Televisions PaymentID: Withhalding tax group: |-
Offset accaunt name: Bank of USA Operating Settlement fype: Designated transactions
Check number:

4 4

L

||ZM 1] | Posting date | oy |usD| ceu

The vendor payment proposal uses the CustVendPaymProposalTransferToJournal
class to create the lines. The same class contains a method named
getTransactionText(), which is responsible for formatting the text on each line. If we
look inside it, we can see that the TransactionTxt class is used for this purpose. The class
contains the following methods, which are used for substituting the placeholders from %1 to
%6 in the defined text:

>

%1:
%z2:
%3:
%4
%5:
%6:

setDate()
setFormLetter()
setVoucher()
setkeyl()
setkey2()
setkey3()

By looking at the code, we can see that only the %4 placeholder is used. So, we can
occupy the %5 placeholder and fill it with the vendor name. To achieve this, we have

to call the setKey2() method with the vendor name as an argument. In this way, every
journal line created by the automatic vendor payment proposal will contain a vendor name
in its description.

227

www.it-ebooks.info

http://www.it-ebooks.info/

Processing Business Tasks

There's more...

If more than three custom placeholders are required, it is always possible to add an additional
one by creating a new setKey() method in the TransactionTxt class. For example, if we
want to add placeholder %7, we have to do the following:

Add the following code to the class declaration of the TransactionTxt class:
str 20 key4;
Create a new method with the following code:

void setKey4(str 20 _key4)
{

key4 = _key4;
}

Change the last line of the txt() method to the following:

return striFmt(
t™@t,
date2StrUsr(transDate, DateFlags::FormatAll),
formLetterNum,
voucherNum,
keyl,
key2,
key3,
key4);

Now we can use the setKey4 () method for substituting the %7 placeholder.

Notice that although even more placeholders could be added, it should be considered
that the transaction text field has a finite number of characters, and the excessive text will
be simply truncated.

Creating a purchase order

Purchase orders are used throughout the purchasing process to hold the information about
the goods or services that a company buys from its suppliers. Normally, purchase orders are
created from the user interface, but in automated processes, purchase orders can be also
created from code.

In this recipe, we will learn how to create a purchase order from code. We will use a standard
method provided by the application.

228

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

How to do it...

1. Inthe AOT, create a new job named PurchOrderCreate with the following code:

static void PurchOrderCreate(Args _args)

{

}

NumberSeq numberSeq;
PurchTable purchTable;
PurchLine purchLine;

ttsBegin;

numberSeq = NumberSeq: : newGetNum(
PurchParameters: :numRefPurchld());
numberSeq.used();

purchTable.Purchld = numberSeq.num();
purchTable.initvalue(Q);
purchTable. initFromVendTable(VendTable: :find("1001%));

if (IpurchTable.validateWrite())
{

throw Exception::Error;

}

purchTable.insert();

purchLine.Purchld
purchLine. Itemld

purchTable.Purchld;
"1205";

purchLine.createLine(true, true, true, true, true, true);
ttsCommit;
info(strFmt(

"Purchase order "%1" has been created",
purchTable.Purchld));

2. Run the job to create a new purchase order.

229

www.it-ebooks.info

http://www.it-ebooks.info/

Processing Business Tasks

3. Open Procurement and sourcing | Common | Purchase orders | All purchase
orders to view the created purchase order:

All purchase orders + Type to filter Purchase order » | = .
] Purchaseorder = Wendoraccount Mame Invoice account Purchasetype Approval status Status Quality order status a
IERY) 2001 Daturn Receivers 2001 Purchase order Approved Open order
Qoo4on 2001 Daturn Receivers 2001 Purchase order Finalized Canceled
Qoo4nl 2001 Daturn Receivers 2001 Purchase order Finalized Ireeoiced
nondnz 2001 Datum Receivers 2001 Purchase order Approved Open order
noo4n3 3001 Adwventure Serdces annl Purchase arder Confirmed Open order
noo404 3005 Alpine Ski House 3005 Purchase order Approved Open order
noo4n5 1001 Earth Telewisions 1001 Purchase order Approved Open order
noo4ns 2102 Wioodgrove Audio 2102 Purchase order Finalized Ireeoiced
Qoo4ny 2002 Coho Receivers 2002 Purchase order Confirmed Received =
Qoo4ng 1001 Earth Telewisions 101 Purchase order Confirmed Ireeoiced
i Y Earth Televisions 1001 Purchase order Approved Open order
000408 i
Currency: USD
Line number Iterm number Froduct name Procurement category Quantity Unit Unitprice Metamount E
1 1205 Home Theate.., Procurement Hierarc.., 100 ea 200,00 200,00

In this recipe, we create a new job named PurchOrderCreate, which holds all of the code.
Here, we start by getting the next purchase order number with the help of the NumberSeq
class. We also call the initValue() and the initFromVendTable() methods to initialize
various purchTable buffer fields. For demonstration purposes we specify the vendor
account in the code. We insert the purchase order record into the table only if the validation in
the validateWrite() method is successful.

Next, we create purchase order lines. Here, we assign the previously used purchase order
number and then we set the item number. Again, for demonstration purposes we specify the
item number in the code.

Finally, we call the createLine() method of the PurchLine table to create a new line. This is
a very useful method, allowing us to quickly create purchase order lines. The method accepts
a number of optional boolean arguments, which are listed as follows:

» Perform data validations before saving? The default is false.

» Initialize the line record from the PurchTable table? The default is false.
» Initialize the line record from the InventTable table? The default is false.
» Calculate inventory quantity? The default is false.

230

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

» Add miscellaneous charges? The default is true.
» Use trade agreements to calculate item price? The default is false.

» Do not copy inventory site and warehouse from the purchase order header? The
default is false.

» Use purchase agreements to get item price? The default is false.

See also

In this chapter:

» Posting a purchase order

Posting a purchase order

In Dynamics AX, a purchase order goes through a number of statuses in order to reflect its
current position within the purchasing process. This status can be updated either manually by
using the user interface or programmatically from code.

In this recipe, we will demonstrate how a purchase order status can be updated from code.
We will confirm the purchase order created in the previous recipe and will print the relevant
document on the screen.

How to do it...

1. Inthe AOT, create a new job named PurchOrderPost with the following code
(replace 000409 with your number):

static void PurchOrderPost(Args _args)
{
PurchFormLetter purchFormLetter;
PurchTable purchTable;

purchTable = PurchTable: :find("000409");

purchFormLetter = PurchFormLetter::construct(
DocumentStatus: :PurchaseOrder);

purchFormLetter.update(
purchTable,
systemDateGet(),
PurchUpdate: :All,
AccountOrder: :None,
NoYes: :No,
NoYes::Yes);

231

www.it-ebooks.info

http://www.it-ebooks.info/

Processing Business Tasks

2. Run the job to post the specified purchase order and display the purchase
order document:

D @

1 Show purchase order (2) EI@

1 of 1 Y r.!,v 100% - Find | Mext
Contoso Entertainment Systems [Aest)
123 Coffee Street
Suite 300

Redmaond, Wi 95052
LIsa,

Telephone 425-555-0156
Fax

Giro

Earth Televisions Tax registration number

749 Janes Street
Bellevue, Wa 93004 Purchase order

United States of America

Page 1nof1l
Mumber 000405-1
Date 31372012
Prepayment obligation Mo
Delivery terms FOBE_DS

Delivery address
Contoso Entertainment Systems [West)
123 Coffee Street

Suite 300
Redmond, WA, 95052
Lsa,
Ling Discount Print
number em number Description Delivery Quantity Unit Unit price Discount percent Amount code
10 1205 Home Theater System 3/19/2012 1.00 ea 200,00 0.00 0.0o 200,00
2.1 Channel Model 05
BLE
This text is from the Purchase Order - Requisition form notes
Sales
subtotal Total
Currency amounk discount Charges Sales tax Round-off Total
Ush 200,00 0.00 0.00 0.00 0.00 200,00

Close

232

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

3. Open Procurement and sourcing | Common | Purchase orders | All purchase
orders, and notice that the Approval status of the posted order is now different:

All purchase orders - Tpe to filter Purchase order ¥ | =
| Purchase order + Vendoraccount MNarne Ireeoice account Purchase type Approval status Status Quality order status M
000399 2001 Daturn Receivers 2001 Purchase arder Approved Open order
(ano4o0 2001 Daturn Receivers 2001 Purchase order Finalized Canceled
nooani 2001 Daturn Recervers 2001 Purchase order Finalized Inwoiced
noo4n2 01 Daturn Receivers 2001 Purchase arder Approved Open arder
noo4n3 3001 Abventure Services 3001 Purchase arder Confirmed Open order
non4n4 3003 Alpine Ski House 3003 Purchase order &pproved Open order
nno4ns 1001 Earth Telewvisions 1001 Purchase arder Approved Open order
noo4ng 2102 Woodgrove Audio 2102 Purchase order Finalized Tresniced
anodoy 2002 Coho Receivers 2002 Purchase order Confirmed Received =

101 Earth Telewisians 1001 Purchase arder Confirmed Trwiced
L1001 Earth Televisions 1001 Purchase arder Confirmed Open order

000409 i
Currency: USD
Line number Iterm number Product name Procurement categony Quantity Unit Unit price Met amount E
1 1205 Home Theate.. Procurernent Hierarc.., 100 ea 200.00 200,00

In this recipe, we create a new job named PurchOrderPost, which holds all of the code.

First, we find a purchase order, which we are going to update. In this recipe, we use the
purchase order created in the previous recipe. Here, we normally would replace this code with
a user input or an output from some other function.

Next, we create a new PurchFormLetter object using its construct() constructor. The
constructor accepts an argument of type DocumentStatus, which defines the type of the

posting to be done. Here we use DocumentStatus: : PurchaseOrder as a value, as we

want to confirm the purchase order.

The last thing to do is to call the update() method of the PurchFormLetter object, which
does the actual posting. It accepts a number of arguments, which are listed as follows:
» The purchase order header record. In this case, it is the PurchTable table.

» An external document number. It's not used in this demonstration, as it is not
required when posting a purchase order confirmation.

» The transaction date. The default is the system date.

233

www.it-ebooks.info

http://www.it-ebooks.info/

Processing Business Tasks

» The quantity to be posted. The default is PurchUpdate: : Al l. Other options, such
as PurchUpdate: :PackingSlip or PurchUpdate: :ReceiveNow, are not
relevant when confirming a purchase order.

» Order summary update. This argument is not used at all. The default is
AccountOrder: :None.

» Aboolean value defining whether a preview or actual posting should be done.
» Aboolean value defining whether the document should be printed.

» A boolean value specifying whether printing management should be used. The
default is false.

» A boolean value defining whether to keep the remaining quantity on order; otherwise
it is set to zero. This argument is used when posting credit notes.

» A container of a number of TmpFrmVirtual records. This argument is optional, and is
used only when posting purchase invoices.

There's more...

The same technique could be used to post a purchase packing slip, invoice, or update to any
other status, which is available in a given context. In our example, let's replace the previous
code listed here:

purchFormLetter = PurchFormLetter::construct(
DocumentStatus: :PurchaseOrder);

With the following code:

purchFormLetter = PurchFormLetter::construct(
DocumentStatus: : Invoice);

Also, replace the code:

purchFormLetter .update(
purchTable,
systemDateGet(),
PurchUpdate: :All,
AccountOrder: :None,
NoYes: :No,
NoYes::Yes);

234

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

With the following code:

purchFormLetter.update(
purchTable,
"8001",
systemDateGet(),
PurchUpdate: :All,
AccountOrder: :None,
NoYes: :No,
NoYes::Yes);

Now, when you run the job, the purchase order should be updated to an

invoice document should be displayed on the screen:

invoice, and the

=& Show invoice (2}

Sales tax code Amount origin uantit Sales tax amount Sales tax amount

Following pay ment schedule has been agreed

Due date Amount in transaction currency

Sales subtotal

amount Total discount Charges Sales tax Round-off Total Currency
200.00 0.00 o.on 0.00 200.00 uso

Cash discount granted: 4.00 USD hefore 23/03/2012, 1.00 USD hefore 12/04/2012,

1 of 1 P E~ 100% - Find | Mext
Contoso Entertainment Systems [West)
123 Coffee Street
Suite 300 'IF'eIEphnne 425-555-0156
Redmond, ve, 38052 i
Usa Tax registration number
Invoice
Mumber 8001
Date 371372012
Page Page 1of1
Purchase order 000403
Earth Tel - & Dept Internal number 11127
arth Televisions Accounts Dept. Payment 120472012
781 lanes Street
Bellevue, Wa, 95004
United States of America
Ttem Discount
number Description Quantity Size Color Configuration Unit Unit price percent Discount Amount
1205 Home Theater 100 ea 200,00 0.00 o.00 200,00
System 2.1 Channel
Model 05 BLK
0.00 0.00 0.00 0.00

Close |

www.it-ebooks.info

235

http://www.it-ebooks.info/

Processing Business Tasks

To check the updated purchase order, locate it in Procurement and sourcing | Common |
Purchase orders | All purchase orders, and notice that its Status field is now different:

000383
aoo400
noo401
noo402
nnn403
000404
0004035
nnn40s
aoo407
000408

000408
Currency: USD

[T] Purchase order =

All purchase arders ~

2001
2001
2001
2001
ann1
2005
1001
2nz
2002
1001
1001

Line number Itern number
10 1208

Vendor account Mame

Daturn Receivers
Datum Receivers
Datum Receivers
Daturn Receivers
Adventure Services
Alpine Ski House
Earth Televisions
Wandgrove Audio
Coho Receivers
Earth Televisions

Earth Telewisions

Product name Procurement category

Horne Theate... Procurerment Hierare,.,

Invoice account
2001
2001
2001
2001
3001
2005
1001
2102
2002
1001
1001

Quantity Unit

100 ea

Type to filter

Furchase type
Purchase order
Purchase order
Purchase order
Purchase order
Purchase order
Purchase order
Purchase order
Purchase order
Purchase order
Purchase order

Furchase arder

Unit price
200.00

Purchase order = = '

Approval status Status
Approved Open order
Finalized Canceled
Finalized Invoiced
Approved QOpen order
Confirmed Open arder
Approved Open order
Approved Open order
Finalized Invoiced
Confirmed Received
Confirmed Invoiced
Confirmed Invaiced
Met amount

200.00

Quality order status i

m

m

Creating a sales order

Sales orders are used throughout the sales process to hold the information about goods or
services that a company sells to its customers. Normally, sales orders are created from the
user interface, but in automated processes, sales orders can be also created from code.

In this recipe, we will learn how to create a sales order from code. We will use a standard
method provided by the application.

How to do it...

1. Inthe AOT, create a new job named SalesOrderCreate with the following code:

static void SalesOrderCreate(Args _args)

{

236

NumberSeq numberSeq;

SalesTable salesTable;

SalesLine salesLine;

ttsBegin;

numberSeq = NumberSeq: : newGetNum(
SalesParameters: :numRefSalesld());

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

}

numberSeq.used();

salesTable.Salesld = numberSeq.num();
salesTable.initvValue();
salesTable.CustAccount = "11017;
salesTable.initFromCustTable();

if (IsalesTable.validateWrite())
{

throw Exception::Error;

}

salesTable.insert();

salesLine.Salesld = salesTable.Salesld;
salesLine. ltemld "1205";

salesLine.createLine(true, true, true, true, true, true);
ttsCommit;

info(strFmt(
"Sales order "%1" has been created", salesTable.Salesld));

2. Runthe job to create a new sales order.

3. Open Sales and marketing | Common | Sales orders | All sales orders to view the
newly created sales order:

All sales orders = Tvpe to filter Sales arder - | = -

(] Sales order =
50-101236
50-101237
50-101240
S0-101241
S0-101243
S0-101244
S0-101245
50-101246
S0-101247
[50-101248

50-101248
Currency: USD

Itern nurnber
1205

Custorner account Mame Irwsoice account Order type Status Quality order status ProjectlD *
3003 Contoso Retail Los Angeles 3003 Itern requirements Open order 10007
2114 QOrchid Shopping Mall 2114 Ttern requirements Open order 1000
2121 Basketball Stadium 2121 Sales order Open order
2104 Cheetah Concert Hall 2104 Sales order Open order
2014 Berry Conference Center 2014 Sales order Open order
2124 Football Stadium 2124 Sales order Open order
3012 Contoso Retail Denwver 3012 Sales order Open order
2003 Rainbow Hotel 2003 Sales order COpen order
2121 Baskethall Stadiurm 2121 Sales order Open order
: 1101 Farest Wholesales 1101 Sales order Open order

Product name Sales category Quantity Unit Unit price Met amaount
Horne Theate., Procurernent .. 100 ea 262,00 262,00

m

237

www.it-ebooks.info

http://www.it-ebooks.info/

Processing Business Tasks

In this recipe, we create a new job named SalesOrderCreate, which holds all of the code.
The job starts by generating the next sales order number with the help of the NumberSeq
class. We also call the initValue() and the initFromCustTable() methods to initialize
various salesTable buffer fields. Notice that for initFromCustTable(), we first set the
customer account and call the method afterwards, instead of passing the customer record
as an argument. We insert the sales order record into the table only if the validation in the
val idateWrite() method is successful.

Next, we create purchase order lines. Here, we assign the previously used sales order number,
and set the item number.

Finally, we call the createLine() method of the SalesLine table to create a new line. This is
a very useful method allowing quickly create sales order lines. The method accepts a number
of optional boolean arguments. The following list explains most of them:

» Perform data validations before saving? The default is fal se.

» Initialize the line record from the SalesTable table? The default is false.

» Initialize the line record from the InventTable table? The default is false.

» Calculate inventory quantity? The default is false.

» Add miscellaneous charges? The default is true.

» Use trade agreements to calculate item price? The default is False.

» Reserve the item? The default is false.

» Ignore customer credit limit? The default is false.

See also

In this chapter:

» Posting a sales order

238

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Posting a sales order

In Dynamics AX, a sales order goes through a number of statuses in order to reflect its current
position within the sales process. The status can be updated either manually using the user
interface or programmatically from code.

In this recipe, we will demonstrate how a sales order status can be updated from code. We
will register a packing slip for the sales order created in the previous recipe, and will print the
relevant document on the screen.

How to do it...

1. Inthe AOT, create a new job named SalesOrderPost with the following code
(replace SO-101248 with your number):

static void SalesOrderPost(Args _args)
{
SalesFormLetter salesFormlLetter;
salesTable salesTable;

salesTable = SalesTable::find("S0-101248%);

salesFormLetter = SalesFormLetter: :construct(
DocumentStatus: :PackingSlip);

salesFormLetter.update(
salesTable,
systemDateGet(),
SalesUpdate: :All,
AccountOrder: :None,
NoYes: :No,
NoYes::Yes);

239

www.it-ebooks.info

http://www.it-ebooks.info/

Processing Business Tasks

2. Run the job to post the specified sales order, and display the packing slip document
on the screen:

<&/ Show packing slip (2) =N ESR ===
o e
1 of 1 % r.!,v 100% - Find | Mext
Contoso Entertainment Systems [Aest)
123 Coffes Street
Suite 300
Redmond, WA 95052 =
usa, T E ot
g nter tainme
Telephone 425-555-0156
Fax
Girn
Tax registration number
Ship to:
Main warehouse, Gate 2 - -
678 Central Avenue, Gate 2 Padﬂng 5||P
Alpharetta, GA 30005
s, Page 1of1
Mumber P3-101694
Bill o Wersian P5-101694.1
Forest Wholesales Date 3132012
456 Black Road Sales order 50-101248
Bothell, Wa 95021 Requisitian
us Your ref,
o ref, o000131
Mode of delivery Truck
Terms of delivery FOBE destination
Freighted by Carrier
Customer account 1101
Ttem number Descriplion Ordered Unit Delivered Remaining
quantity
1205 Haome Theater System 2.1 Channel o0 ea 100
Model 05 BLE
Quantity : 1,00 YWarehouse 1 21
This text iz from the Sales Order Packing Slip form notes
Receipt:
Close
240

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

3. Open Sales and marketing | Common | Sales orders | All sales orders, and notice

the updated sales order status:

All sales orders = Type to filter Sales order
7] Salesorder = Customeraccount Name Inwoice account Order type Status Quality order status ~ Projectld =
50-101236 3003 Contoso Retail Los Angeles 3003 Itern requirerments Open order 10007
50-101237 2114 Orchid Shopping Mall 2114 Itern requirerments Open order 10008
S0-101240 2121 Basketball Stadium 2121 Sales arder Open order
S0-101241 2104 Cheetah Concert Hall 2104 Sales arder Open order
S0-101243 2014 Berry Conference Center 2014 Sales arder Open arder
S0-101244 2124 Football Stadium 2124 Sales arder Open arder
S0-101245 aniz Contoso Retail Denver aniz Sales arder Open arder
50-101246 2003 Rainbow Hotel 2003 Sales order Open order
30-101247 1 Basketball Stadium 121 Sales order Open order E‘
(s T Forest Whalesales 101 Sales order Delivered
50-101248 n
Currency: USD
Ttern rureber Product mame Sales category Quartity Unit Uit price Met amount B
1205 Home Theate., Procurement ... 100 ea 262.00 262.00

In this recipe, we create a new job named SalesOrderPost, which holds all of the code.

First, we find a sales order, which we are going to update. In this recipe, we use the sales
order created in the previous recipe. Here, we normally would replace this code with a user
input or an output from some other function.

Next, we create a new SalesFormLetter object using its construct() constructor. The
constructor accepts an argument of type DocumentStatus, which defines the type of the
posting to be done. Here we use DocumentStatus: :PackingSlip as a value, as we want
to register a packing slip.

Finally, we call the update () of the PurchFormLetter, which does the actual posting.
It accepts a number of arguments:

» The sales order header record, that is, the SalesTable table.

» The transaction date. The default is the system date.

» The quantity to be posted. The default is SalesUpdate: :All.

» The order summary update. This argument is not used at all. The default is
AccountOrder: :None.

» A boolean value defining whether preview or actual posting should be done.
» A boolean value defining whether the document should be printed.

» A boolean value specifying whether printing management should be used. The
default is False.

241

www.it-ebooks.info

http://www.it-ebooks.info/

Processing Business Tasks

» Aboolean value defining whether to keep the remaining quantity on order; otherwise
it is set to zero. This argument is used when posting credit notes.

» A container of a number of TmpFrmVirtual records. This argument is optional and is
used only when posting sales invoices.

There's more...

The SalesFormLetter class could also be used to do other types of posting, such as sales
order confirmation, picking list, or invoice. For example, to invoice the previously used sales
order, let's replace the code:

salesFormLetter = SalesFormLetter: :construct(
DocumentStatus: :PackingSlip);

With the following code:

salesFormLetter = SalesFormLetter: :construct(
DocumentStatus: : Invoice);

Now when you run the job, the sales order should be updated to an invoice, and the invoice
document should be displayed on the screen:

£ Show imvoice (2 B3 BN x5

Fil: - oe
1 of 1 2 - 1% - Find | Next

Contoso Entertainment Systems [West) Telephone 425-555-0156

123 Coffee Straet Fax

Suite 300

Redmond, Vs 95052 Giro

usa Tax registration number

Forest Whalesales Invoice

456 Black Road
Eothell, Wwa 95021

o Number 101093
Invoice date 3/13/2012 12:00:00 &M
Fage 1 of 1
Date and time 3/13/2012 4:43 PM
Sales order £0-101248
Requisition
Your ref.
Qur ref,
Payment Het 60 days
Invoice account 1101
Rem Discount
number Configuration Size Color _ Description Quantity Unit_Unit price percent Discount Amount
1205 Home Theater System 2.1 100 e 26200 o 000 26200

Channel Model 15 BLK
Quantity : 100 Warehouse : 21

This text is fram the Sales Order Invoice form notes

Sales

subtotal Total Total

amount discount charges Sales tax Round-oft Total
262.00 0.00 .00 .00 0.00 262,00 LISD
Payment per 5/12/2012

When payment hefore 23/03/2012, 1.31USD is granted in cash discount,

This invoice originates from a bookkeeping system which is consistent with the provisions of Regulation No.
59871999

Close

242

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

To check the updated sales order, find it in Sales and marketing | Common | Sales orders |
All sales orders and notice that the Status field has now changed:

1205

All sales orders - Tiwe to filter Sales arder
(] Salesorder + Custorneraccount Marne Inwoice account Order bype Status Quality order status ProjectID #

30-101236 3003 Contoso Retail Los Angeles 3003 Itern requirements Open order 10007
S0-101237 2114 Orchid Shopping Mall 2114 Itern requirements Open order 10008
S0-101240 2121 Baskethall Stadium 2121 Sales order Open order
S0-101241 2104 Cheetah Concert Hall 2104 Sales order Open order
S0-101243 2014 Berry Conference Center 2014 Sales order Open order
S0-101244 2124 Foaotball Stadium 2124 Sales order Open order
30-101245 301z Contoso Retail Denwver 3012 Sales order Open order
S0-101246 2003 Rainbow Hotel 2003 Sales order Open order
S0O-10124 2131 Basketball Stadium 11211 Sales order Open order =

50101248 1101 ForestWWholesales 1101 Sales order Invoiced

50-101248 -

Currency: USD

Itern nummber Productname Sales category Quantity Unit Unit price. Met armount

m

Horne Theate.. Procurement .., L00 ea 262,00 262,00

Creating an electronic payment format

Electronic payments, in general, can save time and reduce paperwork when making or
receiving payments within a company. Dynamics AX provides a number of standard out of the
box electronic payment formats. The system also provides an easy way of customizing the
existing payment forms or creating new ones.

In this recipe, we will learn how to create a new custom electronic payment format. To
demonstrate the principle, we will only output some basic information and will concentrate on

the appr

oach itself.

How to do it...

1.

In the AOT, create a new class named VendOutPaymRecord_Test with the
following code:

class VendOutPaymRecord_Test extends VendOutPaymRecord

{

}

public void output()

{
str outRecord;
Name companyName;

243

www.it-ebooks.info

http://www.it-ebooks.info/

Processing Business Tasks

BankAccount bankAccount;
outRecord = strRep(® ", 50);

companyName = subStr(
custVendPaym.receiversCompanyName(), 1, 40);
bankAccount = subStr(
custVendPaym. receiversBankAccount(), 1, 8);

outRecord = strPoke(outRecord, companyName, 1);
outRecord strPoke(outRecord, bankAccount, 43);

file.write(outRecord);

}

2. Create another class named VendOutPaym_Test with the following code:
class VendOutPaym_Test extends VendOutPaym

{
}
public PaymlnterfaceName interfaceName()
{
return "Test payment format';
}
public Classld custVendOutPaymRecordRootClassld()
{
return classNum(VendOutPaymRecord_Test);
}
protected Object dialog()
{
DialogRunbase dialog;
dialog = super();
this.dialogAddFileName(dialog);
return dialog;
}

public boolean validate(Object _calledFrom = null)

{

return true;

244

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

}

public void open()

{

#LocalCodePage

file = CustVendOutPaym: :newFile(Ffilename, #cp_1252);

it (Ifile || file.status() != 10_Status::0k)

throw error(
strFmt(""File %1 could not be opened.", filename));

}

file.outFieldDelimiter("");
file.outRecordDelimiter(""\r\n");

file.write("Starting file:");

}

public void close()

{

file.write("Closing file");

}

3. Open Accounts payable | Setup | Payment | Methods of payment and create a

new record as follows:

= 4 Methads of payment - vendors (1 - ceu)

Mew 2% Delete
Method of payment + Period
Test Invoice
ERIDGING Invoice
PROMISSORY Invoice
USa_CHKTOT Total
USa EL Invoice
USAUSD_CHK Invoice
UISALSD_REF Invoice

Liquidity account for payment,

Payment specification

Payment fee setup Remittance files forven.,

Method of payment: Test
Period: Invoice
Description: Test payrent rethod
Grace period: 0
Payment status: MNone A
Payment type: Other A
Allow copies of payments:
4 General
File Posting
Last file Mo,] Account type:
Taday:] Payment accaunt:
Date: Bridging posting:
Bridging account:
Bank transaction type:
Promissory note
Type of draft:
File formats

Payment control

Payment attributes

File analyze

Bank -

USA OPER -

]

———

|+

Mo draft

Close |

245

www.it-ebooks.info

http://www.it-ebooks.info/

Processing Business Tasks

4. Open the File formats tab page, click on the Setup button, and move Test payment
format from the right to the left:

l.-,—;] File formats for methods of payment (1)

Export | Return |Remittance

[E=% Nol)

Selected

Available

=2

o Check
2 Forrnat 1 (Test)

2 Pramissary note document

2 ANZ Direct Credit Service (AU)
2 BACS

2 Bankernes Erhvervsystern BEC (DK}

2 Bankgirot (3E)
2 BBS Direkte Remittering (MO}

2 BG Bank, ErhwervsGiro-Udbetaling (DK

2 CBA Direct Credit Service (AU)
2 cfanb - virements (fr)

@ Danske Bank Tele Service, kommasepareret

»

|.m

5. Then, go back to the Methods of payment form, and select this format in the Export
format field as follows:

Allow copies of payrments:

I General
a File formats

Setup

File formats
Export forrnat:
Return format:

Remittance format:

Invoice update

Test payment format

Create and post draw journal autornatically when posting invoices: [C]

Run expart script

Journal name:

I Payment control

I Payment attributes

The method of payment selected by the vendor

E}] Methods of payment - vendors {1 - ceu) EI\EI
Mew 7% Delete Payment specification Payment fee setup Remittance files forven.., File anakyze E ‘.@

Method of payrment =~ Period Method of payrment: Test

Lo Period: Irwvnice -

BRIDGING Irrvoice

PROMISSORY Inoice Description: Test payment method

USa_CHKTOT Total St pavdoch v

Uss, EL Trwoice Payrnent status: Mone -

UsalUsD_CHE Invoice Payment type: Other -

usaush_REF Irwaice

Close |

246

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

6. Close the Methods of payment form. Open Accounts payable | Journals | Payments
| Payment journal and create a new journal:

I.-Ti] Payrment journal (1 - ceu)

Mews % Delete o Lines

B."" Walidate

Past~

Show Open = Show user-created only:]
Overview | General | Setup | Blacking | Financial dimensians | History|
[[] Marne Journal batch number = Description Pasted Log Inuse
APPay 000423 010 AP Payrment
4 = | 2 Rl | Identification of the journal name. | _A{0) | USD | ceu Close |

7. Click on the Lines button to open the journal lines. Create a new line and make sure
you set the Method of payment to Test:

I;—;]Juumal voucher {1 - ceuy - Journal: APPay, journal batch number: 000423_010, Posted: Nolournal type: Vendor disbursement EI@
Mew X Delete Post¥ Walidate™ Financial difmensions ™ Salestax Functions™ Payment status ™ Payment proposal ™ > .@.
Balance Total debit Total credit
Journal: 0,00 | Journal: 1,200.00 | Journal: 1,200.00
Perwaucher: 0.00 | Perwaoucher 1,200.00 | Perwaucher: 1,200.00
Owervien | General I Paymentl Payment fee | Remnittance | Bank | Fixed assets | H|stury|
7] Date Cornpany accounts Account Description Debit Credit Offsetaccounttype Offsetaccount Payment status
113/03/2012 ceu 1002 Test payment. 1,200.00 Bank Uss, OPER Mone
WVoucher: APPO00S9Y Method of payrment: Test |v Docurnent:
Currency: [IE] - Payment specification: |v Docurmnent date:
Account name: Wind Televisions PaymentID: Withholding tax group:
Offset account name: Bank of US& Operating Settlement type: Mone
Check number

4 4

> M

Z

| _lt‘i ‘ Offset account for the transaction.

| o) | USD | ceu Close |

www.it-ebooks.info

247

http://www.it-ebooks.info/

Processing Business Tasks

8. Next, click on Functions | Generate payments. Fill in the dialog fields as displayed in

the following screenshot:

|;—i] Microsoft Dynamics AX (1)
Generate payments

@ Payment method
Journal lines

Method of payment: Test - Accaunt type: Yendor

© Export format Offset account type:

Export format: tethod of payment:

() Export payment using service Payrient specification:

Payment format: Payrment status: Mane, Rejected
Selection Bank transaction type:

Bank account: Usa OFER - Bank account:

Currency:

Dimension code combination

Combination display:

o e

QK

| cone

Accept changes, and exit the window

9. Click on OK, and choose the export file name:

|;_i] Microsoft Dynarmics & (1) EE@

File information

File name: Chternphpayrmenttxt |

014 l ’ Cancel

File path and name.

248

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

10. Click on OK to complete the process, and notice that the journal line's Payment
status changed from None to Sent, which means that the payment file was
generated successfully:

I;—E] Journal voucher (1- ceu) - lournal: APPay, journal batch number: 000423_010, Posted: Nolournal type: Wendor dishursement EI@
Mew X Delete Post™ Walidate™ Financial dimensions ™ Salestax Functions™ Paymentstatus™ Payment proposal ™ = O '@'
Balance Total debit Total credit
Journal: 0.00 [Journal: 1,200.00 | Journal: 1,200.00
Perwvoucher: 0.00 | Perwvoucher 1,200.00 | Perwoucher 1,200.00
Overview | General | Payment | Payment fee | Remittance | Bank | Fixed assets | Histary|
[Date Compary accounts Account Description Debit Credit Offset accounttype Offsetaccount Payment status
(13/03/2012 ceu 1002 Test payment 1.200.00 Bank LS4 OPER Sent
Youcher: APPOO0I9Y Method of payrment: Test 1 Document:
Currency: usD Payment specification: Document date:
Account name: Wind Televisions PaymentID: Wfithholding tax group:
Offset account name: Bank of US& Operating Settlement type: MNane
Check number:

4 « > p |

| @ | Posting date | ko) | USD | ceu Close ‘

11. Open the created file with any text editor, for example Notepad, to check its contents:

"I payment s - Notepad [F=%[ECh ==
File Edit Format View Help

IStar‘t"lngI; file:

wind TeTevisions 2345678
Closding File

In this recipe, we create two new classes, which are normally required for generating custom
vendor payments. The electronic payments are presented as text files to be sent to the bank.
The first one is the VendOutPaymRecord_Test class, which is responsible for formatting the
payment lines, and the second one is the VendOutPaym_Test class, which generates the
header and the footer sections, and creates the payment file itself.

249

www.it-ebooks.info

http://www.it-ebooks.info/

Processing Business Tasks

The VendOutPaymRecord_Test class extends VendOutPaymRecord, and inherits all
the common functionality. We only need to override its output() to define our own logic for
formatting the payment lines. The output() is called once for each payment line.

Inside of the output() method, we use the outRecord variable, which we initially fill in

with 50 blank characters using the global strRep() function, and then insert all required
information into the predefined positions within the variable as per format requirements.
Normally, here we should insert all the required information such as dates, account numbers,
amounts, references, and so on. But, to keep this demonstration to a minimum, we only insert
the company name and the bank account number.

In the same method, we use another variable named custVendPaym of type CustVendPaym,
which already holds all the information we need. We only have to call some of its methods to
retrieve it. In this example, to get the company name and the bank account number, we call
receiversCompanyName() and the receiversBankAccount(), respectively. We trim the
returned values using the global substr() function, and insert them into the first and 43rd
positions of the outRecord variable using the global strPoke () function.

And finally, at the bottom of the output() method, we add the formatted text to the end of
the payment file.

Another class that we create is VendOutPaym_Test. It extends the VendOutPaym class and
also inherits all common functionality. We only need to override some of the methods that are
specific to our format:

» The interfaceName() method returns a name of the payment format. Normally,
this text is displayed in the user interface when configuring payments.

» The custVendOutPaymRecordRootClassld() method returns an ID of the class,
which generates payment lines. It is used internally to identify which class to use
when formatting the lines. In our case, it is VendOutPaymRecord_Test.

» The dialog() method is used only if we need to add something to the user screen
when generating payments. Our payment is a text file, so we need to ask a user to
specify the file name. We do that by calling the dialogAddFi leName () method,
which is a member method of the parent class. It will automatically add a file
selection control, and we will not have to worry about things, such as a label or how to
get its value from the user input. There are numerous other standard controls, which
can be added to the dialog by calling various dialogAdd. . . () methods. Additional
controls can also be added here by using the addField(), or similar methods of the
dialog object directly.

» The validate() method is one of the methods which has to be implemented on
each custom class. Normally, user input validation should go here. Our example does
not have any validation, so we simply return true.

250

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

» Inthe open() method, we are responsible for initializing the file variable for further
processing. Here, we use the newFi le() constructor of the CustVendOutPaym
class to create a new instance of the variable. After some standard validations, we
set the field and the row delimiters, by calling its outFieldDel imiter() and
outRecordDel imiter() methods, respectively. In this example, the values in each
line should not be separated by any symbol, so we call the outFieldDelimiter()
method with an empty string. We call the outRecordDel imiter() method with the
new line symbol to define that every line ends with a line break. Note that the last line
of this method writes a text to the file header. Here, we place some simple text, so
that we can recognize it later when viewing the generated file.

» The last one is the close() method, which is used to perform additional actions
before the file is closed. Here, we specify some text to be displayed in the footer of
the generated file.

Now, this new payment format is ready to use. After some setup, we can start creating the
vendor payment journals with this type of payment. Note the file generated in the previous
section of this recipe—we can clearly see which text in the file comes from which place of
the code. These places should be replaced with your own code to build custom electronic
payment formats for Dynamics AX.

251

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Integration with
Microsoft Office

In this chapter, we will cover the following recipes:

» Creating an Excel file

» Reading an Excel file

» Creating a Word document from a template

» Creating a Word document with repeating elements
» Creating a Microsoft Project file

» Sending an e-mail using Outlook

Introduction

In most of the companies where Dynamics AX is used, people use Microsoft Office Suite too.
The new Dynamics AX 2012 and Microsoft Office is now even closer—similar navigation, look
and feel, out of the box integration, and so on.

In this chapter, we will pay special attention to the Microsoft Office applications, such as Excel,
Word, Project, and Outlook. We will learn how to create and read various Office documents
that could be used for exporting/importing business data for further distribution or analysis.
We will also see how personalized documents can be created within Dynamics AX from
predefined templates. The chapter also discusses about how to export Dynamics AX data as
Microsoft Project plan and how to send emails from Dynamics AX using Outlook.

www.it-ebooks.info

http://www.it-ebooks.info/

Integration with Microsoft Office

Creating an Excel file

The Microsoft Office Excel format is one of the formats that have been supported by Dynamics
AX right from its early versions. Since Dynamics AX 2009, almost every form has the Export to
Excel function, which quickly allows loading data on the screen into Excel for further analysis
with powerful Excel tools. In Dynamics AX 2012, the new Microsoft Office Add-ins were
introduced. They allow data exporting, refreshing, editing, and publishing back to Dynamics
AX, in a very user-friendly manner.

But if the Add-ins are not installed, it is still possible to create an Excel document from code.
Dynamics AX holds a set of standard application classes prefixed with SysExcel. Basically,
those classes are COM wrappers for Excel, and they contain additional helper methods to
make the developer's tasks easier.

In this recipe, we will demonstrate the use of the SysExcel classes. We will create a new
Excel file from code, and will fill it with a customer list from the system.

How to do it...

Carry out the following steps in order to complete this recipe:

1. Inthe AOT, create a new job named CreateExcelFi le with the following code:
static void CreateExcelFile(Args _args)

{
CustTable custTable;
SyskExcelApplication excel;
SyskExcelWorkbooks workbooks;
SysExcelWorkbook workbook;
SyskExcelWorksheets worksheets;
SyskExcelWorksheet worksheet;

SysExcelCells cells;
SysExcelCell cell;
int row;

excel = SysExcelApplication::construct();

workbooks = excel .workbooks();
workbook = workbooks.add();
worksheets = workbook.worksheets();
worksheet = worksheets. itemFromNum(1);
cells = worksheet.cells();

254

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

cells.range("A:A") .numberFormat("@");

while select custTable

{
row++;
cell = cells.item(row, 1);
cell.value(custTable.AccountNum);
cell = cells.item(row, 2);
cell.value(custTable.name());

}

excel .visible(true);

}

2. Runthe job and check the list of customers on the screen:

I‘l_—'-ll = s = Bookl - Microsoft Excel = = 22
Home Insert Page | Formi| Data | Rewies Wiew Dynar | Load ™ Team &2 @ o e R
hA58 - b v
2 B C D E o

Forest Whaolesales

=
=
=

Sunset Wholesales

=
=
=1

Cave Wholesales

=
=)
)

Desert Wholesales

=
=
-

Mmoo U E w R e

=
=

004 walley Hotel
Kiwi Conference Center

v

1

v

1

r

1

v

1

1201 Sparrow YWholesales

1202 Owl Wholesales

"1203 Pelican Wholeszales

204 Grebe wholesales

1301 YWhale Wholesales
10 1302 Turtle ¥Whaolesales
11 1303 Shrike Wholesales
121304 Otter whalesales
132001 ‘waterfall Hotel
1472002 River Hatel
15 2003 Rainbow Hatel

"

v

2

Y

i
-
=
=
=

Fear Conference Center
13 2013 Grape Conference Center

-
@
=)
=
=
%]

A

20 '20111 Banana Conference Center
4 < » ¥| Sheetl ~Shest? ~ Shestd . ¢J EN! m_____]
Ready | [EEm w0 =) Iy,

3. Save the list as a file for further use in the next recipe, say C:\temp\customers.xIsx.

We start the code by creating the SysExcel Application object, which represents

an instance of Excel. Next, we get a collection of Excel documents that are stored in the
SysExcelWorkbooks class. Initially, the collection is empty, so we have to create a new
document by calling the add () method of the SysExce lWorkbooks class.

255

www.it-ebooks.info

http://www.it-ebooks.info/

Integration with Microsoft Office

Once the document is ready, we get a reference to a collection of sheets within the document,
and then we get a reference to the first sheet in the collection. This is where we start adding
the data.

Next, we get a reference to a collection of cells within the sheet. We use the SyskExcelCells
class for this. The first column in the sheet will contain a customer's account number, so we
have to make sure it is formatted as text. To do that we address the first column by using the
A:Arange and setting its format to @.

To display all customers, we start looping through the CustTable table and fill customer
account into the first column and customer name into the second one, for each row. In this
way, we populate as many rows as we have customers in the system.

Finally, we set the Excel instance to show up on the screen by calling its visible()
method. We do this after all data has been populated, to make sure the user cannot
interfere with the process.

Note that we formatted only the first column of the sheet. This is to prevent automatic Excel
formatting. Most of the time, customer accounts are expressed as numbers such as 1000,
1001, and so on, and although they are stored in the system as text, Excel will automatically
display them as numbers. We do not have to format the second column as its data is
unambiguous, and here we can rely on Excel's automatic formatting.

Reading an Excel file

In Dynamics AX, retrieving data from Excel files can be done with the help of the same
SysExcel classes that we used for creating Excel files. The classes provide a simple interface
for developers to access and read data in Excel files.

In this recipe, we will demonstrate how to read Excel files using the SysExcel classes. We
will read the customer file created in the previous recipe and display its content in the Infolog.

How to do it...

Carry out the following steps in order to complete this recipe:

1. Inthe AQT, create a new job named ReadExcelFile with the following code
(replace the file name with your own):

static void ReadExcelFile (Args _args)

{
SyskExcelApplication excel;
SyskExcelWorkbooks workbooks;
SysExcelWorkbook workbook;
SyskExcelWorksheets worksheets;

256

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

SysExcelWorksheet worksheet;

SysExcelCells cells;
COMVariantType type;
int row;
CustAccount account;
CustName name;

#deFfine.filename(@"C:\temp\customers.xlsx")
excel = SysExcelApplication::construct();

workbooks = excel .workbooks();

try
{
workbooks.open(#filename);
}
catch (Exception::Error)
{
throw error(File cannot be opened");
}
workbook = workbooks.item(1);

worksheets = workbook.worksheets();

worksheet = worksheets.itemFromNum(l);

cells = worksheet.cells();

type = cells.item(row+1l, 1).value().variantType(Q);

while (type '= COMVariantType::VT_EMPTY)

{
row++;
account = cells.item(row, 1).value().bStrQ);
name = cells.item(row, 2).value(Q).bStr(Q;
info(strFmt("%1 - %2", account, name));
type = cells.item(row+1l, 1).value().variantType(Q);
}

excel.quit();

257

www.it-ebooks.info

http://www.it-ebooks.info/

Integration with Microsoft Office

2. Runthe job to display the contents of the file in the Infolog, as shown in the
following screenshot:

< Message [06:36:23)

-l 1101 - Forest Whaolesales
gl 1102 - Sunset YWholesales
-l 1103 - Cave Whalesales
) 1104 - Desert Whalesales
L—,j_j 1201 - Sparrow Wholesales
-l 1202 - Owl Whalesales
-l 1203 - Pelican Whalesales
gl 1204 - Grebe Wholesales
-l 1301 - Whale Whalesales -

We start the code by creating the SysExcelApplication object, which represents

an instance of Excel. Next, we get a collection of Excel documents that are stored in the
SysExce lWorkbooks class. Initially, the collection is empty and we open the previously
created file as the first document in the collection, by calling the open() method of the
SysExcelWorkbooks class. Then, we get a reference to the opened document, which is
expressed as the SysExcelWorkbook class.

m| s

Once the document is ready, we get a reference to a collection of sheets within the document,
and then we get a reference to the first sheet in the collection. This is where our data is located.

Next, we get a reference to a collection of cells within the sheet. We use the SyskExcelCells
class for this. We also use a do whi le statement to go through all the rows until the first cell
of the next row is empty. Inside the statement, we read the customer account from the first
cell and customer name from the second cell in each row, and output them to the Infolog. The
value() method of the SysExcelCel Is class returns an object of type COMVariant, and
we call its bStr() method to retrieve the textual data.

Note that the COMVariant class is used for storing various types of data when dealing with
external objects. It could be of any type, such as string, integer, decimal, and so on. In cases
when it is not known what type of data to expect in a cell, we may call the variantType()
method to check what kind of data is stored in the cell and, depending on the result, we may
use bStr(), int(), float(), or other relevant methods of the COMVariant class.

The last thing to do is to close the instance of Excel.

258

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Creating a Word document from a template

Microsoft Office Word can present Dynamics AX data in a variety of formats. One way is to use
Word templates which can combine predefined formats with Dynamics AX data to generate
nice looking business documents. Another way of formatting extracted Dynamics AX data
using Office documents is the newly introduced Microsoft Office Add-ins.

But if Add-ins are not installed, Dynamics AX still allows Word documents to be created from
code. Although there are no standard helper classes for Word as we have for Excel, Word
documents can still be created using a very similar approach by calling COM components directly.

In this recipe, we will create a simple Word document from a template. We will use the COM
component model to read the Word template and fill it in with data from the system.

Getting ready

Before we start with the code, we have to create a new Word template and save it as a file
named letter.dotx. Add some text and four bookmarks (use the Insert | Links | Bookmark
button). as per the following list:

» Customer, one space after the text To:

» User, in the next line after the text Kind Regards

» Company, in the next line after the text User

» Phone, one space after the text Tel.:

The document should look identical to the following screenshot:

WEHd9-0= - @ =

File Home Insert Pagelayout References Mailings Review View Dynamics AK > @

Bookmark 2]

To:

Thank youfor contactingus. Lser

Kind Regards,

Tel.:

Cancel

Fage:lof1 | Waords § | English (U5) | BB = = w% o) (+)

259

www.it-ebooks.info

http://www.it-ebooks.info/

Integration with Microsoft Office

How to do it...

Carry out the following steps in order to complete this recipe:

1. Inthe AOT, create a new job named CreateWordDocument with the following code:
static void CreateWordDocument(Args _args)

{
Filename template;
CustTable custTable;
COM word;
COM documents;
COM document;
COM bookmarks;
COM bookmark;
COM range;
void processBookmark(str _name, str _value)
{
iT (Ibookmarks.exists(_name))
{
return;
}
bookmark = bookmarks.item(_name);
range = bookmark.range(Q);
range. insertAfter(_value);
}

#define Word("Word.Application®)
#define._.template(@"C:\temp\letter.dotx");

custTable = CustTable::find("1101%);

try
{
word = new COM(#Word);
}
catch (Exception::Internal)
{
if (word == null)
{
throw error(Microsoft Word is not installed™);
}
}
documents = word.documents();
document = documents.add(#template);
bookmarks = document.bookmarks();
processBookmark(

260

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

"Customer”,
custTable.name());

processBookmark(
"User-,
HecmWorker - - Find(
DirPersonUser: :current() .worker()).name());

processBookmark(
“Company*®,
CompanyInfo: :find() .Name);

processBookmark(
"Phone*”,
CompanyInfo: :find() .phone());

word.visible(true);

}

2. Runthe job to see the results. Note the data from the system inserted in the template
near each bookmark:

IE' =, = Documentl - Microsoft Word =

Haome Insert Page Layout References Mailings Rewiew e Dyhamics Ax &7

v | @ B

To: Forest Wholesales

Thank youfar contacting us.

Kind Regards,

Julia Funderburk
ContosoEntertainment Systerm s (West)
Tel.: 425-555-0156

“« oo oA

Page: 1of 1 | Waords: 18 | English U.5) | || =l & B

100% (=) U (F)

261

www.it-ebooks.info

http://www.it-ebooks.info/

Integration with Microsoft Office

In this recipe, we start by declaring various COM objects and their collections, a collection of
documents, and so on. We also declare a local function for inserting a value into a document
near a predefined bookmark.

Next, we create a new instance of Word, get a reference to the document collection, and create a
new document from the template. Then, we get a reference to the bookmark collection and start
inserting the values into the document with the help of the previously defined function.

Finally, once the document is finished, we display it on the screen.

Creating a Word document with repeating

elements

Microsoft Office Word documents created from Dynamics AX code, besides simple data
output, can have more complex structures, such as a dynamic number of repeating elements.
For example, a collection letter document can have a variable list of overdue invoices for
different customers.

In this recipe, we will create a Word document with repeating elements. For this
demonstration, we will display the contents of the LedgerParameters table in a
dynamically generated Word table.

Getting ready

For this example, we need to prepare a new Word template and save it as a file named
table.dotx. The template should contain one bookmark named TableName at the top,
and one table beneath with a single row and two columns, as follows:

Wl 9~ < o B 0=
Home Insert Page Layout References Mailings Review View Dynamics ax v @

Cancel

Page:ilofl | Wordsi0 | English (4.5 | |EBEE =

100% (=) (+)

262

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

Carry out the following steps in order to complete this recipe:

Chapter 6

1. Inthe AOT, create a new job named CreateWordTable with the following code:

static void CreateWordTable(Args _args)

{

Tableld
COM

COM

COM

COM

COM

COM

COM

COM

COM

COM

COM

COM
Query
QueryRun
Common

TmpSysTableField

DictField
int

void processBookmark(str _name, str _value)
it (!'bookmarks.exists(_name))

return;

{
{
T
bookmark
range

T

#define _Word("Word.Application®)
#define.template(@"C:\temp\table.dotx");

tableld = tableNum(LedgerParameters);

try
{

tableld;
word;

documents;

document;

bookmarks;

bookmark;
tables;
table;
rows;
row;
cells;
cell;
range;
query;
queryRun;
common;
fields;

dictField;

bookmarks. item(_name);
bookmark.range(Q);
range. insertAfter(_value);

word = new COM(#Word);

263

www.it-ebooks.info

http://www.it-ebooks.info/

Integration with Microsoft Office

}

catch (Exception::Internal)

{
if (word == null)

{
}

throw error("Microsoft Word is not installed™);

}

documents = word.documents();
document = documents.add(#template);
bookmarks = document.bookmarks();
processBookmark(
"TableName",
tableld2pname(tableld));

tables = document.tables();
table tables.Item(1);
rows table.rows();

query = new Query(Q);
query.addDataSource(tableld);

queryRun = new QueryRun(query);
queryRun.next();

common = queryRun.get(tableld);

fields = TmpSysTableField: :findTableFields(
null, tableld);

while select fields
{
dictField = new DictField(
tableld,
fields.Fieldld);

if (dictField.isSystem())

{
continue;
}
i++;
row = rows.item(i);
cells = row.cells(Q);

264

www.it-ebooks.info

http://www.it-ebooks.info/

}

row.

word.vi

}

cell = cells.item(1);
range cell.range();
range. insertAfter(fi

lds.FieldLabel);

cell = cells.item(2);
range cell.range();
range. insertAfter(
strFmt("%1", common.(Ffields.Fieldld)));

row = rows.add(Q);

delete();

ible(true);

Chapter 6

2. Run the job to generate the document containing a list, the LedgerParameters table
field, and their values:

@ o9~ 3 Documentl - Microsoft Word
m Home Insert Pagelayout References Mailings Review View Dynamics X
ILedger parameters
Check journalizing Mo
Checkfor voucher used Reject duplicate
Delete cloze-of -yeartransactions duringtransfer Yes
Interruptin case of error account Mo
Maximum penny difference 0.01
Check continuaus numhbers Mo
Maximum penny-roundinginthe reporting 0.01
currency
Create closingtransactions duringtransfer Mo
Extended edgerjournal Mo
Use noncontinuous page numbering Nao
“ouchernumbermust hefilledin Yes
Carrection Mo
Enable Alandtax reguirements Mo
Setfiscal year status to closed No
Limited numhber of openfiscal years 0
Transactiondate referencetocompetence date No
Use posting definitions Mo
EnableZakat reports No
Enable encumbrance process Mo
Enable pre-encumbrance process MNo
Enable budget appropriation N
Account forinflation carrection (REPORMO) 0
Inflation offset account o
Enableimport letter of credit MNo
Enable export letter of credit Mo
Enable letter of guarantee MNo
Transactionjournal
Clearingaccount forissued checks i}
Clearing account for received checks 0
Enable postdated checks Mo
Fost journal entries for postdated checks Mo
Page: 1of1 | \Words: 203 | English [LLS) | IEE=S 100% (=

=

G
v @

“«o w4

265

www.it-ebooks.info

http://www.it-ebooks.info/

Integration with Microsoft Office

In this recipe, in a way quite similar to what we did previously, we declare COM objects
representing various elements, such as the Word application itself, a document collection,
and bookmarks. We also declare objects representing table, row, cell, and their collections,
respectively, and a local helper function for inserting a value into a document near a
predefined bookmark.

After the declaration section, we create a new instance of Word, get a reference to the
document collection, and create a new document from the template. Then, we get a reference
to the bookmark collection and insert the selected table name as a document title with the
help of the previously defined function.

Next, we get a reference to a table collection and then a reference to the first and only table
in the collection. This is the table we inserted into the template previously. Then, we prepare a
query for retrieving data from the selected table and get the first record in the returned result
set. The LedgerParameters table is a configuration table and normally contains a single
record per company. We also get a list of its fields with the help of the findTableFields()
method of the TmpSysTableField table. The field information is inserted into the temporary
table for further use.

Lastly, we insert each field's name into the first column of the table in the document and its
respective value into the second column. Here, we exclude any system fields, such as Recld,
dataAreald, createdBy, and others. Once the document is finished, we display it on the screen.

Creating a Microsoft Project file

Microsoft Project files are one of the many files that can be created in Dynamics AX
by using the COM component model. Microsoft Project files can be very useful when it
comes to presenting some kind of scheduling information, such as a project plan or a
production schedule.

In this recipe, we will create a new Microsoft Project file from code. We will output a project's
forecast data as a project plan in Microsoft Project.

Getting ready

For this recipe, we need to set up some data. Open Project management and accounting
| Common | Projects | All projects, select any of the open projects and click on Plan |
Forecast | Hour forecasts in the action pane. In the open Hour forecasts form, create
several forecast lines similar to the ones in the following screenshot:

266

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

-4 Hourforecasts - Forecast model: Total, 11/3/2011 (1 - ceu] - Project ID: 10001, Contaso Retail Los &ngeles = EEh |
Mew X Delete ‘/' Edit Q-\';: General ledger preview & Transfer quotation lines Scheduling™ Trade agreement™ (1| e

Owervien | General | Dates | Resource requirements I Scheduling I Financial dirmensions

7] Forecastriodel Projectdate ProjectID Activity number Category Worker Description Hours Line property Budget bype
i Total 11/2/2011 10001 Service Inspection 1 2000 Charge None H
Total 117372011 10001 Service Inspection 2 1200 Charge MNone

4 4 » Pl ||| E] | Forecast model number. | L) | USD | ceu Close ‘

To update scheduling, click on Scheduling | Scheduling in the action pane of the
Hour forecasts form, and then click on the OK button to accept the default parameters

and run scheduling:

-. Microsoft Dynamics &3 (1) EI = @

Scheduling
Identification
Project ID: 10001] -
hadel: Total |v
Scheduling
In/Cut: -
Date: 11732011 |
Tirme: 12:00 am
Methaod: Operations scheduling -
Sort using: Transaction order =

Frirmary resource selection! Duration

Limitation
Finite capacity: E

keep production unit:]

References
Schedule references: (&

Syhchronize references:

| ok || concel

Project identification

267

www.it-ebooks.info

http://www.it-ebooks.info/

Integration with Microsoft Office

Now, the information in the Scheduling tab of the Hour forecasts form should look identical
to the following screenshot:

<& Hour forecasts - Forecast rodel Total, 11372011 (1 - cew) - Project ID: 10001, Contoso Retail Los Angeles EI@
File = Mew X Delete _/‘ Edit L'-g General ledger preview & Transfer quotation lines Scheduling™ Trade agreement™ 1| e
| Overview | General | Dates | Resource requitements | Scheduling | Financial dimensions
[Activity number Link Link type Working time Capacity Resource Hours scheduled Project date Starttime End date Endtime @
i EndStart Soft oos 20,00 114372011 12:00 am 11/3/2... 1200 am
EndStart Soft 05 1200 117372011 1z00am 11472, 1&00am
4 « > P[] 2] | The activity number | L0} | USD | ceu Close ‘

How to do it...

Carry out the following steps in order to complete this recipe:

1. Inthe AOT, create a new job named CreateProjectFi le with the following code
(replace the project number and the forecast model with your own):

static void CreateProjectFile(Args _args)

{
ProjTable projTable;
ProjForecastEmpl forecastEmpl;
COM msproject;
COM projects;
COM project;
COM tasks;
COM task;
int n;

#define _MSProject("MSProject_Application®)

projTable = ProjTable::find("10001%);

try
{
msproject = new COM(#MSProject);
}
catch (Exception::Internal)
{

if (msproject == null)

{

268

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

throw error(
"Microsoft Project is not installed™);

}

projects = msproject.Projects();
project = projects.AddQ);

tasks = project.Tasks();

task = tasks.AddQ);
task.Name(ProjTable.Name);
task.OutlineLevel (1);

while select forecastEmpl
where forecastEmpl.Projld == projTable.Projld
&& forecastEmpl.Modelld == "Total"

{
task = tasks.Add(Q);
task.OutlineLevel (2);
task.Name(forecastEmpl.Txt);
task.Start(forecastEmpl.SchedFromDate);
task.Duration(forecastEmpl.SchedTimeHours*60) ;
if (n)
{

task.LinkPredecessors(tasks.UniquelD(n));

}
n = task.UniquelD(Q);

}

msproject.visible(true);

269

www.it-ebooks.info

http://www.it-ebooks.info/

Integration with Microsoft Office

2. To test the code, run the job. Note the forecasted project hours displayed as a
Microsoft Project plan:

@d9- 1= Projectl - Microsoft Project |£m\ Chart uu| = @ m
Resource Project Wiew Team Format o @& =
o E e e o MarkonTrack - [~] TP Inspect - el =] -
3 Calibri fu - PEeSSR [- o
ErRY =2 Respect Links] Move - & =] 2
Gantt | Paste B|7 U &-A- L5 88 e dh _ . Manually | Auto Task Infarmation - Scroll
Chart ~ - = - WETRE S = machate Schedule Schedule| [Mode - - toTask &7
“Wiewn Clipboard Font] Schedule Tasks Insert Properties Editing
i}
=
T Start |] Finish
E Thu11/3/11 Tue 1/8/11
[) Task ., TaskName + Duration . Start « Finish - |Predecessars _ | £S0,'11 |Mov 6, '11 [Mow 2 &
Mode MIT T [F s[5 [m[TTw[T[F]s s =
1 = = Contoso Retail Los 3.65 days? Thu11f3f11 Tuel1/8f11 P———y
Angeles :
z + Inspection 1 25days? Thull/3/11 Mon11/7/11 EE :
3 + Inspection 2 1.5days? Monll/7/11 Tuell/gf1l 2 :
a9
3
: -
4[] SIENm} »
Ready | " Mew Tasks : Manually Scheduled | \@m &= 8 (=) 00—

In this recipe, we use very similar approach used previously to create other Microsoft Office
documents. We declare the project and task objects, and their collections, respectively. Then,
we create a new instance of the Microsoft Project application, get a reference to the collection
of projects, which is initially empty, and create a new project.

Once the project is ready, we get a reference to the collection of tasks and start adding
individual tasks. The first task is a parent task and we set its name to the name of the
selected project.

Next, we go through all project hour forecast records and start adding each line as a new
task in the document. Here, we set various task properties, such as name, start date, and
duration. We also define every task to be dependent on the previous one by calling the
LinkPredecessors() method with the previous task number as an argument.

Finally, once the document is ready, we display it on the screen.

270

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Sending an e-mail using Outlook

In Dynamics AX, e-mails can be sent in several ways. One of them is to use Microsoft Office
Outlook. The benefit of using Outlook is that the user can review e-mails and modify if
required, before they are actually sent. Also, all the sent e-mails can be stored in the user's
Outlook folders.

In this recipe, we will send an e-mail using Outlook. We will incorporate customer data from
the system into a template to create the e-mail's text.

Getting ready

Before we start with the code, we need to create a new e-mail template. This is standard
Dynamics AX functionality and can be found in Organization administration | Setup | E-mail
templates. Open the E-mail templates form and create the following record:

;. E-rnail termplates (1 - ceu) - E-rail ID: Rerminder, Customer reminder EI@
D e
Showw systern e-rnails:
Owerview | General
E-mailll =~ E-mail description Default language code Sendername Sender e-rnail
Alerts E-rnail &lerts en-us lohn Doe jdoe@rmyernail.com
CaseMail Fallow up email en-us Tester tester@contoso.corm
{Reminder Custorner reminder en-us Dynamics &4 administrator@cantoso.msft:
E-mailID + Language Subject Layout E-rnail message
Rerninder £n-us Rerninder HTRL
4 « > bl] | E-mail message ID | LA | USD | ceu Close |

271

www.it-ebooks.info

http://www.it-ebooks.info/

Integration with Microsoft Office

Next, click on the E-mail message button and enter the e-mail body, as shown in the

following screenshot:

= | E-rail editor Customer reminder (en-ush (1)

File Edit: Wiewn Insert Format Tools
H = 4 LB s X A =

MNarrnal +* Srial Unicode MS + Jormal = B 2 O

=8 o =

|
11
e
(U]

To: Yacustomers

This 13 a reminder from Dynarmics A7

Eind Regards
Yocompany¥o
Yauser®e

MNaormal | HTHAL | Pre\.-'\ew|

Readhy

How to do it...

Carry out the following steps in order to complete this recipe:

1. Inthe AOT, create a new job named SendCustReminderEmai I with the following

code (replace the customer account number with your own):

static void SendCustReminderEmail (Args _args)

{
CustTable custTable;

Map mappings;

custTable = custTable::find("1101%);

mappings = new Map(Types::String, Types::String);

mappings. insert(
"customer”,
custTable_name());

mappings. insert(
"company”®,
CompanyInfo: :find() -Name);

mappings. insert(

272

www.it-ebooks.info

http://www.it-ebooks.info/

“user-,
HecmWorker - - find(
DirPersonUser: :current() .worker()).name());

SysINetMail : :sendEMai I (
"Reminder”,
custTable. languageld(),
custTable.email(),
mappings);
}

Chapter 6

2. Run the job, and click on the Allow button once Microsoft Outlook displays the

following security warning:

Microsoft Outlook @

r? A program is trying to send an e-mail message on your behalf,
=/ [Ifthisis unexpected, click Deny and werify your antivirus
software is up-to-date.

For more information about e-mail safety and how you might
be able ko avaid getting this warning, click Help.

I Allows I [Deny] I Help I

3. To review the results, open Outlook and look for the newly created message in either
the Outbox or Sent Items folders. Note that all placeholders were replaced with

actual values from the system:

el &~ = Reminder - Message (HTRL) = B =2
Message Insert Cptions Format Text Rewview & @
= . Calibri 12 v A AT ggﬁ -a‘fg;] [l &ttach File ¥ Follow Up ~
J B 7 U =~ éE - EEiE VJ _@Attach ttem = ¥ HighImportance b
Paste Address Chedk Zoom
- - A . Book Mames | Lk Signature - I LowImportance
Clipboard Basic Text Mames Include Tags Zoom
T, ‘Forest wholesales@customer4d, consolidatedmessenger . com’
Coo
Subject: | Reminder
i)
To: Forest Wholesales "
This is a reminder from Dynamics AX,
Kind Regards L
Contoso Entertainment Systems (West)
Julia Funderburk
w
I:l ‘forest.wholesales@ customerd8.consolidatedmessenger.com’

www.it-ebooks.info

273

http://www.it-ebooks.info/

Integration with Microsoft Office

In this recipe, we prepare a number of key-value mappings, which will be inserted into the
e-mail template. Then, we use the sendEMai 1 () method of the SysINetMai l class to send
an e-mail using Outlook. The method accepts the following arguments:

» The name of the template.

» Customer language code.

» Customer e-mail address.

» The prepared mapping.

Note that, depending on the version of Outlook, the To field may not be populated
automatically with the customer's email. This is due to a MAPI compatibility issue.

274

www.it-ebooks.info

http://www.it-ebooks.info/

Using Services

In this chapter, we will cover the following recipes:

» Consuming the system query service

» Consuming the system metadata service
» Consuming an existing document service
» Creating a document service

» Consuming a document service

» Using an enhanced document service

» Creating a custom service

» Consuming a custom service

» Consuming an external service

Introduction

Dynamics AX provides many out of the box services—programmable objects that can be used
to communicate with application components or third-party applications. In order to meet
complex business requirements, the existing services can also be customized or new services
can be created from scratch.

The services are divided into three categories: non-customizable built-in system services,
document services, which provide a standard approach for communicating between systems,
and custom services, which allow any X++ logic to be exposed as a service.

In this chapter, various scenarios of creating and consuming all three types of services will
be presented. The recipes in this chapter will demonstrate how services can be exposed and
consumed using different techniques. All examples, one way or another, will use the system
currency information.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Services

Consuming the system query service

The query service is one of the built-in system services in Dynamics AX. The service provides a
set of operations allowing any AOT or dynamic query to be executed. The results are returned
as an ADO.NET DataSet object. The query service cannot be customized and is hosted on
the Application Object Server at a fixed address.

In this recipe, we will create a .NET console application that will connect to the query service.
The application will retrieve a list of currencies in the system, with the help of a dynamically
created query.

How to do it...

Carry out the following steps in order to complete this recipe:
1. InVisual Studio, create a new Visual C# Console Application project named
ConsumeSystemQueryService.

2. Add a new service reference named QueryService, to the project
(replace SEA-DEV:8101 with your address):

Add Service Reference @

To see a list of available services on a specific server, enter a service URL and click Go. To browse for available
services, click Discowver,

Address:
http: Y SEA-DEV: 8101/ Dynarmics Ay Services/QueryService - [Go J [Discwer vJ
Services: Operations:
(@] QueryService W ExecuteDynarmicQuery i
;u IQueryService W ExecuteQuery

W Execute QuenVithExternal Context
W ExecuteStaticQuery
WwExecuteStreamedDynamicQuery

m

WwExecuteStreamedQuery

WExecuteStrearned Static Query

W GetDynamicQueryhdetadata

W GetDynarmicQueryRowCount 8

1 service(s) found at address "hitp//SEA-DEVIL0L DynamicsfoyServices/QueryService’,

Mamespace:

Quenyservice

Advanced... Ok l I Cancel

276

www.it-ebooks.info

http://www.it-ebooks.info/

Add the following code to the top section of the Program. cs file:

using ConsumeSystemQueryService._QueryService;
using System.Data;

Add the following code to the Main() method:

QueryServiceClient serviceClient;
QueryMetadata query;
QueryDataSourceMetadata currencyDataSource;
QueryDataFieldMetadata fieldl, field2;
Paging paging = null;

DataSet result;

query = new QueryMetadata();

query._QueryType = QueryService.QueryType.Join;
query.AllowCrossCompany = true;

query._DataSources = new QueryDataSourceMetadata[1l];

currencyDataSource = new QueryDataSourceMetadata();
currencyDataSource.Name = "Currency";
currencyDataSource.Enabled = true;
currencyDataSource.FetchMode = FetchMode.OneToOne;

currencyDataSource.Table = "Currency";
currencyDataSource._DynamicFieldList = false;

currencyDataSource.Fields = new QueryFieldMetadata[2];

query .DataSources[0] = currencyDataSource;

fieldl = new QueryDataFieldMetadata();
fieldl_FieldName = "CurrencyCode";
fieldl_SelectionField = SelectionField.Database;
currencyDataSource.Fields[0] = fieldl;

field2 = new QueryDataFieldMetadata();
Ffield2.FieldName = "Txt";

field2_SelectionField = SelectionField.Database;
currencyDataSource.Fields[1] = field2;

serviceClient = new QueryServiceClient();

result = serviceClient.ExecuteQuery(query, ref paging);

foreach (DataRow row in result.Tables[0].Rows)

{

Chapter 7

Console_WriteLine(String.Format("'{0} - {1}, row[0], row[1]));

}

Console.ReadLine();

www.it-ebooks.info

277

http://www.it-ebooks.info/

Using Services

5. Run the program to see the results, as shown in the following screenshot:

B file:fffefusersfadministrator/documents fisual studio 2000/Projects/Consuming SysternQuenySend... EI@
-

New Taiwan Dollaw
Tanzanian Shilling
Hryvnia

Uganda Shilling

Us Dollar

Uruguay Peso en Unidades Indexadas
Peso Uruguayo
Uzhekiztan Sum
Bolivar Fuerte
Dong

Uatu

Tala

CFA Franc BEAC
Silver

Gold

East Caribbean Dollar
SDR

CFA Franc BCEAO
Palladium

CFP Franc

Platinum

Yemeni Rial

Rand

Zimbabwe Dollar

We start the recipe by creating a new Visual C# Console Application project and add a new
service reference. The address is set to the standard query service address. The format of the
query service address is as follows:

m

net._tcp://<hostname:port>/DynamicsAx/Services/QueryService
hostname and port define an Application Object Server address.

Next, we allow the use of the types in a namespace, so we do not have to qualify them later in
the code.

All the code goes into the Main() method of the application. In the code, we create a new
query with the help of the QueryMetadata class, add a new data source based on the
QueryDataSourceMetadata class, and define two fields in the data source that will be
retrieved from the database. The query, data source and field classes, and their properties are
very similar to the Query, QueryBui ldDataSource, and QueryBui ldFieldList classes
in Dynamics AX.

278

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Finally, we call the query service with the created query as an argument. The service
returns a DataSet object, so we go through each row in the first table and display its

fields on the screen.

Consuming the system metadata service

The metadata service is another system service that allows clients to get information about
the AOT object metadata, such as table and field properties, labels, and others. The metadata
services are not customizable and are hosted on the Application Object Server, at a fixed address.

In this recipe, we will create a .NET console application that will connect to the metadata
service. The application will retrieve a few properties of the Currency and ExchangeRate tables.

How to do it...

Carry out the following steps in order to complete this recipe:
1. InVisual Studio, create a new Visual C# Console Application project named
ConsumeSystemMetadataService.

2. Add a new service reference named MetadataService to the project
(replace SEA-DEV:8101 with your address):

Add Service Reference @

To see a list of available services on a specific server, enter a service URL and click Go. To browwse for available
services, click Discowver,

Address:
hittpe/FSEA-DEVIB10 1/ Dynarnic s Service s/ Metadataservice v | Go
Serdices: Operations:
® | SxddetadataService % GetClasshetadatabyld T
57 laaetadataService W GetClasshetadataByMame =

W GetClassMarmes

W GetConfigKeyhetadatabyId

W GetConfigkeyhMetadataByMames

W GetConfigkeyMNarmes

W GetCueGrouphetadataByMame

W GetCueGroupMames

W GetCuebdetadataByMarme i

1 serviceis) found at address 'hitp//SEA-DEVIEL0 1/ DynamicsfxServices/ MetadataService',

Marmespace:

Metadataservice

Advanced.., oK l l Cancel ‘

279

www.it-ebooks.info

http://www.it-ebooks.info/

Using Services

3. Add the following code to the top section of the Program.cs file:
using ConsumeSystemMetadataService.MetadataService;

4. Add the following code to the Main() method:

AxMetadataServiceClient serviceClient;
TableMetadata[] tables;

serviceClient = new AxMetadataServiceClient();
serviceClient._Open();

tables = serviceClient.GetTableMetadataByName (
new string[] { "Currency", "ExchangeRate" });

for (int i = 0; 1 < tables.Length; i++)

{

Console_WriteLine(
String.Format("'{0}: {1}, {2}",
tables[i] -Name,
tables[i]-TitleFieldl_Name,
tables[i].TitleField2_Name));

}

Console.ReadLine();

serviceClient.Close();

5. Run the program to see the results, as shown in the following screenshot:

B filewffefusersfadministrator/do cumentsfisual studio 2010/Projects/Consuming Systernbletadatase..,

Currency: CurrencyCode. Txt
ExchangeRate: ExchangeRateCurrencyPair, UalidFrom

o[-

m| s

280

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

In this recipe, we first create a new Visual C# Console Application project and then add a new
service reference. The address is set to the standard metadata service address. The format of
the metadata service address is follows:

net.tcp://<hostname:port>/DynamicsAx/Services/MetadataService
hostname and port define an Application Object Server address.

Next, we allow the use of the type in a namespace, so we do not have to qualify it later in the
namespace.

All the code resides in the Main() method of the application. Here, we create and open the
client object. Then we call the GetTableMetadataByName () method—one of the many
available operations. This method accepts a list of field names and returns the information
about them in an instance of the TableMetadata class.

Finally, we display on the screen TitleField1 and TitleField2 properties of each object in the
returned result and close the client object.

Consuming an existing document service

In Dynamics AX, document services allow data to be exchanged with external systems by
sending and receiving XML documents, such as customers, sales orders, vendors, and
many others.

In this recipe, we will explore how data could be retrieved from the system using one of the
existing services. We will create a .NET console application that will get a currency description
from the system using the read operation.

How to do it...

Carry out the following steps in order to complete this recipe:

1. Inthe AQOT, locate the CurrencyServices service group.

2. Choose the Deploy Service Group option from the right-click context menu. A number
of messages should be displayed in the Infolog about successful deployment.

281

www.it-ebooks.info

http://www.it-ebooks.info/

Using Services

3. Open System administration | Setup | Services and Application Integrat
Framework | Inbound ports to check the newly deployed service (note the
WSDL URI value):

ion

) Inbound parts (1) [E=2[Ech =)
Mew 7 Delete (@) Deactivate O @
Port name Description Port rare; CurrencyServices
 AIFGDS Description:
+ AifServices Categore: Basic Deveioper defined service group
o AppConfigServices Address
o AxClient N =
ter: t
 BxManageabilityServiceGroup S b
o BlSenvices URL nettcpi/ /A0S SERVICE_HOST/Dynarmicsfix/Services/CurrencyServices
 CuesSeniceBroup WSDLURL hitpy//SEA- DEVIS101/DynamicsusServices/CurrencyServices
 [CurrencySenices
+ DocumentHandling 4 Troubleshooting Logging disabled
o ysSecurityFieldiccessServic.. Logging mode: | Logging dissbled
o SysSecurityServices
o SysSetupSenices
o UserSessionSenice
Q= 0
Narme of port Close

4. In Visual Studio, create a new Visual C# Console Application project named
ConsumeExistingDocumentService.

5. Add a new service reference named CurrencyServices to the project.
6. Copy the address from the WSDL URI field into the Address field:

Add Service Reference @

To see a list of available services on a specific server, enter a service URL and click Go. To browse for awvailable
services, click Discover,

Address:
it/ SEA-DEV: 8101/ Dynarnic i Services/CurrencyServices - |?|
Services: Operations:
@) CurrencyServices Yfind
57 CurrencyService wfindKeys
%~ ExchangeRateService WgetChangedKeys
> ExchangeRateTypeService getkeys

“read

1 service(s) found at address 'hitp://SEA-DEW:8101/Dynarmicsfe/Services CurrencyServices',

Mamespace:

CurrencyServices

| Advanced.., Ok l | Cancel

282

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

7. Add the following code to the top section of the Program.cs file:

using ConsumeExistingDocumentService.CurrencyServices;

8. Add the following code to the Main() method:

CurrencyServiceClient serviceClient;
AxdLedgerCurrency currency;

KeyField keyField = new KeyField();
keyField.Field = "CurrencyCode";
keyField.Value = "LTL";

EntityKey keys = new EntityKey();
keys._KeyData = new KeyField[1] { keyField };

serviceClient = new CurrencyServiceClient();
currency = serviceClient_read(null, new EntityKey[1] { keys });

Console._WriteLine(
String.Format("{0} - {1}",
currency.Currency[0]-CurrencyCode,
currency.Currency[0]-Txt));

Console.ReadLine();

9. Run the program to see the results, as shown in the following screenshot:

B fileyffoifusers/administrator/docurments/visual studio 2010/Projects/ConsumingExistingDocument... | = || = @
LTL — Lithuanian Litas

m | s

283

www.it-ebooks.info

http://www.it-ebooks.info/

Using Services

We start this recipe by deploying the CurrencyServices service group. This action reads
the group's configuration, creates a basic port record in the Inbound ports form, and then
activates it. The existing service will be overridden.

Then we create a new Visual C# Console Application project, add the newly deployed service
as a new reference, and allow the use of the type in a namespace.

The Main() method starts by defining and creating a new KeyField instance. Here, we set
the information that will be used for searching—field name and its value. Then the key field is
added to the table key list, which normally holds a number of elements matching the number
of fields in the table's primary key.

Next, we create the service client object and call its read operation with the table key list
as an argument. The result is an AxdLedgerCurrency object, which represents the
Currency table.

Lastly, we display some of the field values on the screen.

There's more

The previous example returns only one value matching the key provided. It could be slightly
modified to return multiple results, depending on the query provided. Let's replace the code in
the Main() method with the following code:

CriteriaElement criteriaElement = new CriteriaElement();

criteriaElement.DataSourceName = "'Currency"';
criteriaElement.FieldName = "CurrencyCode";
criteriaElement._Valuel = "A??";

criteriaElement.Operator = Operator.Equal;
QueryCriteria query = new QueryCriteria(Q);
query.CriteriaElement =

new CriteriaElement[1l] { criteriaElement };

CurrencyServiceClient serviceClient = new CurrencyServiceClient();
AxdLedgerCurrency currency = serviceClient.find(null, query);

if (currency.Currency !'= null)

{
for (int i = 0; i < currency.Currency.Length; i++)
{
Console.WriteLine(
String.Format("{0} - {1}",
284

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

currency.Currency[i]-CurrencyCode,
currency.Currency[i]-Txt));

}

Console.ReadLine();

The difference is that we now we use the find operation, which executes the provided query
and returns the results. In the code we defined a query with a single data source, with a
filter on the CurrencyCode field to find all currencies starting with the letter A. The program's
results now are as shown in the following screenshot:

B filed/ffcifusersfadministrator/documentsfvisual studio 2010/Projects/ConsumingExistingDocurment., | = | = @

UAE Dirham
Afghani
Lek

m | »

Armenian Dram

Hetherlands Antillian Guilder
Kuanza

Argentine Peso

Australian Dollaw

Aruban Guilder

Azerbaijanian Manat

Creating a document service

In Dynamics AX, new document services can be created using the AIF Document Service
Wizard. The developer has to provide a table and a query representing the document service,
and the wizard generates all objects required to run the service. Document services created
by the wizard can be further customized to meet more complex requirements.

In this recipe, we will use the AIF Document Service Wizard to create a new document
service for exposing currency information. Dynamics AX already contains out-of-the-box
currency document service, but for demonstration purposes we will create another one.

285

www.it-ebooks.info

http://www.it-ebooks.info/

Using Services

How to do it...

Carry out the following steps in order to complete this recipe:

1. Inthe AOT, create a new query named CurrencyQuery.
2. Add a new data source to the newly created query with the following properties:

Property Value
Name Currency
Table Currency
Update Yes

3. Inthe data source, change the properties of the Fields node as follows:

Property Value
Dynamic Yes

4. Open the AIF Document Service Wizard form, which can be found either in Tools |
Wizards or in the Add-Ins section of the right-click context menu, on the query in the
AQT. In the latter case, the wizard will start from the second page with the query
name already filled in. In any case, once the query name is entered click on the
Next button:

= | AIF Docurnent Service Wizard EI = IEI

Select document parameters

Select the document name, label, and the query it is based on,
Query

Query: CurrencyQuery -

Document identification
Docurment narme: CurrencyQuery

Document label:

< Back MNext » H Cancel

286

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

5. On the next page, leave the default names, select the service operations, as in the

following screenshot, and click on the Next button:

|1 ATF Dacument Service Wizard EI (=] @

Select code generation parameters

Select class names, service operations, and AxBC generation pararmeters,

Class names

Service class name: CurrencyQueryService
Docurnent object class narme: CurrencyQuery

A class name: AxdCurrencyQuery

Service operations

create: find:
read: findKeys:
update; getieys
delete: getChangedieys: [V]

AxBC generation
Generate 2B C classes:
Regenerate existing SxBC classes: [[]

[<Back |[met> |[cance |

6. On the following page, review what will be generated by the system and click on the

Generate button:

= | AIF Docurnent Service Wifizard EI = @

Generate code
The following artifacts will be generated. To proceed, click Generate,

Project -

AxdCurrencyQuery

m

Service node

CurrencyQueryService

Service, document object, and data object classes

CurrencyQueryService
CurrencyQuery
CurrencyQuery_Currency

< Back | [Generate] ‘ Cancel

287

www.it-ebooks.info

http://www.it-ebooks.info/

Using Services

7. Onthe last page, click on the Finish button to complete the wizard:

|| AIF Docurment Service Wizard EI =] @

Completed
l Microsoft Dynamics [T
- SxdCurrencyQuery

Service, document object, and data object classes

- CurrencyQueryService
- CurrencyQuery
- CurrencyQuery_Currency

Axd document class

- SxdCurrencyQuery
AxBC classes

- BxCurrency

Job
- GenerateX3DSchema_fxd CurrencyQuery

8. To review the newly created objects, locate and open the AxdCurrencyQuery private
development project:

22| Project AxdCurrencyQuery EI@

2 fxCurrency

= CurrencyQuery

“% AxdCurrencyQuery

“% CurrencyQuery

g CurrencyQueryService

“% CurrencyQuery_Currency

=] CurrencyQueryService

@ AxdCurrencyQueryDCT

@ DataContainerTypes

2 AifTableMaturalkeyDataContainerTypes
s GenerateX5DSchema_AxdCurrencyQuery

5o

HEHEEHEBEBE

9. Compile the project to ensure that there are no errors.

288

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

10. In the AQOT, create a new service group named BasicCurrencyServices.
11. In the service group, create a new service node with the following properties:

Property Value
Name CurrencyQueryService
Service CurrencyQueryService

12. Deploy the service group by selecting the Deploy Service Group option from the
service group's right-click context menu. The Infolog should display a number of
messages about successful deployment.

13. Open System administration | Setup | Services and Application Integration
Framework | Inbound ports, to view the newly deployed service:

-4l Inbound ports (1) = e]

New 7€ Delete (@) Deactivats 0@
Port name Description Portname: BasicCurrencyServices

o BifEDS Description:

 AifServices Category Basic Develgper defined service group
#ppConfigs

« AppConfigServices Address

o Batlient " =

o BsManageabilitySendceGroup apter: H5Ip Canfigure

 BasicCurrencyServices URL nettep://B0S_SERVICE_HOST/Dynamicsdu/Services/BasicCurrency Services

" ElSendces WSDL URL httpi//SEA-DEV:8101/DynamicsduServices BasicCurrencySenvices

o CuesSenviceGroup

« DocumentHandling 4 Troubleshooting Logging disabled

o SysSecurityFieldBccessServic.. Logging made: Logging disabled

o SysSecurityServices

o SysSetupSenvices

o« UserSessionSenvice

o v

Name of port Close

We start the recipe by creating a new query. This query will be used by the service to return
data. The query contains only one data source linked to the Currency table. Although, in this
recipe, we will only be retrieving the data, setting the Update property of the data source to
Yes would allow modifying the data too. We also set the Fields node to be dynamic, to make
sure any field added to the table later will automatically appear in the query.

Once the query is ready, we start the wizard. On the second page we specify the query name
and document name. On the third page we select the operations to be implemented. And on
the two final pages, we review which objects will be created and finish the wizard. The wizard
creates a new private development project with all the generated objects in it. At this point
everything is ready, and we only need to create a new service group, add our service, and
publish the group.

289

www.it-ebooks.info

http://www.it-ebooks.info/

Using Services

If everything is successful, we should see a new entry in the Inbound ports form. It is
activated automatically and we can use the address specified in the WSDL URI field to
access the service.

Consuming a document service

In Dynamics AX, document services normally provide a number of predefined operations, such
as create, delete, read, find, findKeys, and others. Each operation is responsible for some
particular action, for example, create allows creating a new document, delete allows deleting
a document, and so on. The read operation was demonstrated in the Consuming an existing
document service recipe.

In this recipe, we will create a .NET console application to demonstrate how the find operation
can be used. We will consume the service created in the Creating a document service recipe
to list all currencies in the system.

How to do it...

Carry out the following steps in order to complete this recipe:
1. InVisual Studio, create a new Visual C# Console Application project named
ConsumeBasicDocumentService.
2. Add a new service reference named BasicCurrencyServices to the project.

Copy the address from the WSDL URI field, from the Creating a document service
recipe, into the Address field:

Add Service Reference @

To see a list of available services on a specific server, enter a service URL and click Go, To browse for available
services, click Discover,

Address:

hittp:/fSEA-DEV: 8101/ Dynamic sy Services/BasicCurrencyServices ~ | Go

Services: Operations:

@ 4w BasicCurrencyServices W create
57 CurrencyQuenyService Wdelete
find
wfindieys
wgetChangedkeys

W getieys
Wread
Wupdate

1service(s) found at address "http/SEA-DEViB101/Dynarnicsfo'Services/BasicCurrencyServices',

Marespace:

BasicCurrencyServices

Advanced.., 0K] I Cancel

290

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Add the following code to the top section of the Program. cs file:

using ConsumeBasicDocumentService.BasicCurrencyServices;

Add the following code to the Main() method:
CriteriaElement criteriaElement = new CriteriaElement();

criteriaElement.DataSourceName = "'Currency"';
criteriakElement.FieldName = "CurrencyCode";
criteriaElement.Valuel = ""';

criteriaElement.Operator = Operator._NotEqual;

QueryCriteria query = new QueryCriteria(Q);
query.CriteriaElement = new CriteriaElement[1] {
criteriaElement };

CurrencyQueryServiceClient serviceClient = new
CurrencyQueryServiceClient();
AxdCurrencyQuery currency = serviceClient.find(null, query);

if (currency.Currency != null)

{
for (int i = 0; 1 < currency.Currency.Length; i++)
{
Console._WriteLine(
String.Format("'{0} - {1}",
currency.Currency[i]-CurrencyCode,
currency.Currency[i]-Txt));
}
}

Console.ReadLine();

Run the program to display the results as shown in the following screenshot:

5 filei/ffcifusersfadministrator/documents/visual studio 2010/Projects/ConsumingBasicDocumentSer,., | = || = @

New Taiwan Dollar

Tanzanian Shilling

Hryvnia

Uganda Shilling

Us Dollar

Uruguay Peso en Unidades Indexadas
Peso Uruguavo

Uzhekistan Sum

Bolivar Fuerte

East Caribbean Dollar
SDR

GFA Franc BCEAD
Palladium

GFP Franc
Platinum

Yemeni Rial
Rand

Zimhabuwe Dollaw

291

www.it-ebooks.info

http://www.it-ebooks.info/

Using Services

In this recipe, we first create a new Visual C# Console Application project and then add a new
service reference pointing to the address from the previous recipe. Then, we allow the use of
the type in a namespace.

The code in the Main() method creates a new query based on the Currency table and a filter
on the CurrencyCode field. Here, we set the filter to not empty, that is, return all records from
the table.

To get the results we call the find operation, which accepts the query as an argument and
returns the AxdCurrencyQuery document. The last thing to do is to display all the records in
the document on screen.

See also

In this chapter:

» Creating a document service

Using an enhanced document service

In Dynamics AX, services can be exposed using basic or enhanced integration ports. Normally,
simple services are exposed using basic ports. Conversely, enhanced ports are used in

more complex scenarios. Enhanced ports offer additional capabilities compared to the basic
integration ports. Enhanced ports can restrict returned data, execute complex pre-processing
and post-processing rules, can be hosted on Internet Information Services, and so on.

In this recipe, we will demonstrate how to create and consume a document service using an
enhanced integration port. We will use the document filtering feature of the enhanced port to
restrict the range of data being exposed.

How to do it...

Carry out the following steps in order to complete this recipe:

1. Open System administration | Setup | Services and Application Integration
Framework | Inbound ports and create a new record as follows:

292

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

I 4/ Inbound ports (1) E=R(ESH 5
T e
Port name Description Portname: EnhancedCurrencySerivees
' RifGDS Description:
AifS
v A' ECMC:SS Categons Enhanced
< bBppConfigServices Address
o PClient
o BsManagesbilityServiceGraup S S m
 BlServices LRI nettep:/fAOS_SERVICE_HOST/Dynamics&x Services/EnhancedCurrencySerivees
« CuesServiceGroup
v 4 Service contract customizations
% Euposesence ogersions
o SysSecurityFieldiceessdenc.. Customnize documents: =] Data policies
o SysSecurityServices
o SysSetupServices |- Processing options Continue
 UserSessionSerice 4 Troubleshooting Lugging disabled
Logging mode: Logging disabled -
Include exceptions in fault: =)
Respond after error in asynchronous request: [£]
4 Security
Restrict to company: -
Restrict users: B Authorized users
Allowe trusted intermediany to impersonate; [0 Trusted intermediary users
T v
Name of port Close |

2. Click on the Service operations button to open the Select service operations form.

3. Select all of the CurrencyQueryService service operations that were previously
created in the Creating a document service recipe:

I.-Ti] Select service operations (1)

Selected service operations

Select operations that you want to make available on this port

Remaining service operations

£) CurrencyQuenyService.create
£] CurrencyQuenyService,delete
£) CurrencyQueryService find

£] CurrencyQuenyService, getkeys
£] CurrencyQuenyService.read
Q CurrencyQuenyServiceupdate

£] CurrencyQuenyService findkeys
£] CurrencyQuenyService.getChangedkeys

£) CuesService,GetLoadedModeledCueGroup
Q CuesService.Gethodeled CueCount

Q Cueslervice,Gethlodeled CueSum
QCuesSeNice.GetNewCueGroup
QCuesSeNice.GetSumFieIdList

Q CuesService.Save CuePersonalizationRow
QCuesSeNice.UpdateCueGroup

Q CustCustomerService.create

Q CustCustomerService. delete
QCustCustomerSeNice.find
QCustCustomerSeNice.findKeys
QCustCustomerSeNice.getChangedKeys
QCustCustomerSeNice.getKeys

Q CustCustomerService.read
QCustCustomerSeNice.update

G

A0)

www.it-ebooks.info

293

http://www.it-ebooks.info/

Using Services

4. Close the Select service operations form.

5. On the Inbound ports form, expand the Processing Options tab page and open the
Document filters form by clicking on the Document filters button.

6. On the opened form, click on the Add button, type Currencies starting with B into
the Description field, and save the record. The form should look as follows:

;. Document filters (1) - Port name: EnhancedCurrencySerivees, CurrencyQuenyService, Port narme: EnhancedCurrencySerivoes8IF service,., EI@
o e
Dacurnent narme Document narme: CurrencyQuery
(4 CurrencyQuery Document filters
ghAdd I Rermove Canfigure

Description Document filter type

/¥ Currencies starting with B Document query filter

Type of document filter | Close |

7. Click on the Configure button while the newly created record is selected, and specify
B?? in the Criteria field, as follows:

= | CurrencyQuery (1 - ceu) o [E]=s]
5 Table
[Currency table
Range
Table Derived table Field Criteria [add |
Currency table Currency table Currency B¥? | e |
QK l | Cancel
294

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

8. Click on OK to close the query configuration form and then click on Close to close the
Document filter form.

9. On the Inbound ports form, make sure the EnhancedCurrencyServices record is
selected and click on the Activate button. The status should change as follows (note
the value in the WSDL URI field):

=4 Inbound parts (1)

Fi

<

A O TN N U N N N

= Mew 7% Delete

Port name

AIfGDS

AifServices
AppConfigServices

AxClient
LuhdanageabilityServiceGroup
BlServices

CuesServiceGroup
DocumentHandling
EnhancedCurrencySerivees
SysSecurityFieldAccessSenc..,
SysSecurityServices
SysSetupSenvices

UserSessionService

I

Name of port

() Deactivate

Port name: EnhancedCurrencySerivees

Description:

Category: Enhanced

Address
Adapter: MetTcp Configure
URL: nettep:/fA05_SERVICE_HOST/Dynamicsfu/Services/EnhancedCurrencySerivees

WSDL URL http:ffSEA-DEY:3101/Dynamicsfs/Services/Enhanced CurrencySerivees

4 Service contract customizations

Expose service operations:
Customize docurnents:
Processing options

4 Troubleshooting

Lagging mode:

Include exceptions in fault:

Respond after errar in asynchronous request:

4 Security

Restrict to company:

Restrict users:

Allows trusted intermediary to impersonate:

Service operations

Data policies

Logging disabled

Authorized users

Trusted intermediany users

Continue

Lagging disabled

Close |

10. In Visual Studio, create a new Visual C# Console Application project named

ConsumeEnhancedDocumentService.

11. Add a new service reference named EnhancedCurrencyServices to the project.

295

www.it-ebooks.info

http://www.it-ebooks.info/

Using Services

12. Copy the address from the WSDL URI field into the Address field:

Add Service Reference @

Ta see alist of available services on a specific server, enter a service URL and click Go, To browse for available
services, click Discover,

Address:

httpe /fSEA-DEV:B101/DynamicsfxServices/EnhancedCurrencySerivces - Gao

Services: Operations:

O] #| EnhancedCurrencySerivees W create
57 CurrencyQueryService W delete
Wfind
WiindKeys
W getChangedkeys
v getkeys
Wread
Wupdate

1 service(s) found at address "hitp:ffSEA-DEV: 8101/ DynamicsfefServices/Enhanced CurrencySerivees',

MNarmespace:

EnhancedCurrencyServices

Advanced... [0K l l Cancel

13. Add the following code to the top section of the Program.cs file:

using ConsumeEnhancedDocumentService.EnhancedCurrencyServices;

14. Add the following code to the Main() method:

296

CurrencyQueryServiceClient serviceClient =
new CurrencyQueryServiceClient();
EntityKeyPage keyPage = serviceClient_getKeys(null, null);

for (int i = 0; 1 < keyPage.EntityKeyList.Length; i++)
{

Console._WriteLine(keyPage.EntityKeyList[i].-KeyData[0]-Value);

}

Console.ReadLine();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

15. Run the program to display the results as shown in the following screenshot:

B filesff o fusersfadministratorfdocumentsfvisual studio 2010/Projects/ConsumingEnhancedDocurme... El@

m| »

In this recipe, no X++ code is required. In the Inbound ports form, we created a new entry
and selected the operations created in one of the previous recipes. Note that the Category
field for manually created ports is set to Enhanced, meaning that the additional features are
available. One of them is document filtering. To demonstrate its use, we create a new filter
to limit the returned results to only currencies starting with B. Once everything is ready, we
activate the service.

At this stage the service is ready. Next, we create a new Visual C# Console Application project
and add a new service reference pointing to the address of the newly created port. We also
allow the use of the type in a namespace.

In the Main() method, we create a new service client object and call its getKeys()
operation. Document filters applied on enhanced ports are used only in the
getChangedKeys() and getKeys() operations, so our operation returns only entity
keys that match the applied filters.

The last thing to do is to go through the results and display them on the screen.

See also

In this chapter:

» Creating a document service

297

www.it-ebooks.info

http://www.it-ebooks.info/

Using Services

Creating a custom service

A custom service in Dynamics AX allows any X++ logic to be exposed as a service. Custom
services are normal X++ classes decorated with attributes, which allow any existing methods
to be exposed as service operations without writing any additional code.

In this recipe, we will create a new custom service with a single, simple operation. The
operation will accept currency code and return the currency description.

How to do it...

Carry out the following steps in order to complete this recipe:

1. Inthe AOT, create a new class named CustomCurrencyService with the
following code:

class CustomCurrencyService

{
}

[SysEntryPointAttribute]
public CurrencyName getCurrencyName(CurrencyCode _currencyCode)

{

return Currency::find(_currencyCode).Txt;

}

2. Set the class properties as follows:

Property Value
RunOn Server

3. Inthe AOT, create a new service with the following properties:

Property Value
Name CustomCurrencyService
Class CustomCurrencyService

4. Expand the newly created service and choose the Add Operation option from the
Operations node's right-click context menu.

298

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

5. On the Add service operations form, select the getCurrencyName line by marking

6.

7.
8.

the Add checkbox and clicking on OK:

|«] &dd service operations EI@
Operation method name ~ Add
i getCurrencyMarne - lal
Ok] [Cancel]

The service in the AOT should look like the following screenshot:

=T = ECh ==

g Operations
£ getCurrencyMarme

In the AQOT, create a new service group named CustomCurrencyServices.

In the service group, create a new service node reference with the following properties:

Property Value
Name CustomCurrencyService
Service CustomCurrencyService

www.it-ebooks.info

299

http://www.it-ebooks.info/

Using Services

9. Deploy the service group by selecting the Deploy Service Group option from its
right-click context menu. The Infolog should display a number of messages about
successful deployment.

10. Open System administration | Setup | Services and Application Integration
Framework | Inbound ports to check the newly deployed service:

4l Inbound ports (1)

New 7 Delete (@) Deactivate 0@

Port narme Description Partnarme: CustormCurrencyServices
" AIfGDS Description:
' AifServices Categoryt Basic Developer defined service group
+ AppConfigSer

prConfigSenices .
+ AaClient N o

ter: 3]

o AxMianageabilityServiceGroup KL B Configure
 ElServices URL net.tep:/780S_SERVICE_HOST/DynamicsfuServices/CustomCurrencyServices
~ CuesServicelroup WSOL URL hitp://SEA-DEW:B101/Dynamicsix/ServicesfCustomCurrencyServices
+ CustomCurrencyServices
« DacumentHandling 4+ Troubleshooting Logging disabled
' SysSecurityFieldAccessServic... Logging made: [Logging dissbled
+ SysSecurityServices
+ SysSetupServices
' UserSessionService

< L b

Name of port Close

11. To verify the service, open the address specified in the WSDL URI field in a browser:

<?uml version="1.0" encoding="utf-8" 7=
- «wsdl:definitions name="CustomCurrencyServices" targetNamespace="http:/ ftempuri.org/" zmin=: wedl="http://schemas.xmlsoap.org/wsdl/"
smins:wsx="http://schemas.xmlsoap.org/ws/2004/09/mex" zmins:wsal0="http:/ fwww.w3.0rg/2005/08/addressing"
zmins: tns="http:/ ftempuri.org/" zmins:soap12="http://schemas.xmlsoap.org/wsdl/soap12/" zmins: wsu="http:/ /docs.oasis-
open.org/wss/2004/01/0asis-200401-wss-wssecurity-utility-1.0.xsd" xmins: wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
wmlns:wsap="http:/ /schemas.xmlsoap.org/ws /2004 /08 /addressing/policy”
sc="http://schemas.microsoft.com/ws/2005/12/wsdl/contract"
za="http://schemas.xmlsoap.org/ws/2004/08/addressing" xmins: wsam="http:/ /www.w3.0rg/2007/05/addressing/metadata"
saw="http://www.w3.0rg/2006/05/addressing/wsdl" zmins: soap="http://schemas.xmlsoap.org/wsdl/soap/"
="http:/ /tempuri.org" zmins: xsd="http://www.w3.0rg/2001/XMLSchema"
wmilns: soapenc="http://schemas.xmlsoap.org/soap/encoding /">
=wsp:Policy wsu:Id="NetTepBinding_CustomCurrencyService_policy'>
=wsdlimport namespace="http:/ /tempuri.org" location="http://sea-dev:8101/DynamicsAx/Services /CustomCurrencyServices?
wsdl=wsdl0" />
=wsdl:types /=
<wsdl:binding name="NetTcpBinding_CustomCurrencyService" type="i0:CustomCurrencyService">
- <wsdliservice name ustomGurrencyServices">
- <wsdl:port name="NetTcpBinding_CustomGurrencyService" binding="tns:NetTcpBinding_CustomGurrencyService'>
<s50apl2: address location="net.tcp://sea-dev:8201/DynamicsAx/Services/CustomCurrencyServices" />
- «<wsall:EndpointReference»
=wsalld: address=net.tcp://sea-dev:8201/DynamicsAx/Services/CustomCurrencyServices</wsall: Addresss>
- <Identity zmins="http://schemas.xmlsoap.org/ws/2006/02/addressingidentity">
<Upn=AX_AOS_Service@contoso.com</Upn
</ldentity>
<fwsall:EndpointReferences
</wsdl portz
<fwsdl: services
<fwsdl definitionss

+

+

300

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

In Dynamics AX, any class can be a custom service. Here, we create a new one with a single
method that accepts currency code and returns the currency name. To enable the method
as a service operation, we specify the SysentryPointAttribute attribute at the top of
the method, which will ensure that the method is available in the service operation list when
creating service nodes. We also set the class to run on the server.

Next, we create a new service node and add the newly created operation to it. In order to
deploy it, we also have to create a new service group that includes the created service. Once
deployed, a new record is created in the Inbound ports form.

If everything is successful the service will be ready to be consumed, which is explained in the
next recipe.

See also

In this chapter:

» Consuming a custom service

Consuming a custom service

Custom services are consumed in a way quite similar to any other Dynamics AX service. The
difference is that each custom service can have a totally different set of operations, where the
system or document services always expose the same list operations.

In this recipe, we will create a .NET console application to demonstrate how to consume a
custom service. We will use the service created in the Creating a custom service recipe, which
returns a description of the provided currency.

How to do it...

Carry out the following steps in order to complete this recipe:

1. In Visual Studio, create a new Visual C# Console Application project named
ConsumeBasicCustomService.

2. Add a new service reference named CustomCurrencyServices to the project.

301

www.it-ebooks.info

http://www.it-ebooks.info/

Using Services

3. Copy the address from the WSDL URI field, from the Creating a custom service
recipe, into the Address field:

Add Service Reference @

To see a list of available services on a specific server, enter a service URL and click Go. To browse for available
services, click Discover,

Address
http:/FSEA-DEV: 101/ Dynarnics A Services fCustorm CurrencyServices * | Go
Services: Operations:

® % CustarnCurrencyServices W getCurrencyMame

5% CustornCurrencyService

Lservice(s) found at address "hitpfSEA-DEVE10 L Dynamic st Services/ CustormCurren oy Services',

Mamespace:

CustomCurrencyServices

Advanced.., [Ok l I Cancel

4. Add the following code to the top section of the Program.cs file:

using ConsumeBasicCustomService.CustomCurrencyServices;

5. Add the following code to the Main() method:

CustomCurrencyServiceClient serviceClient =
new CustomCurrencyServiceClient();
string currencyName = serviceClient.getCurrencyName(null, "EUR'™);
Console._WriteLine(currencyName);
Console.ReadLine();

302

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

6. Run the program to display the results as shown in the following screenshot:

B file:yfcifusersfadministrator/documentsfdisual studio 2010/Projects/ConsumingBasicCustomServic,., El@

m | »

We start this recipe by creating a new Visual C# Console Application project and adding a new
service reference pointing to the address from the previous recipe. Then, we allow the use of
the type in a namespace.

The code in the Main() method is very similar to the other recipes. Here, we create a new
service client object and call its getCurrencyName () operation to find the currency name.

See also

In this chapter:

» Creating a custom service

Consuming an external service

In Dynamics AX, external services can be used in a variety of scenarios for retrieving
information from external providers. This could be currency exchange rates, address
information, logistics data, and many others. Such external services can be consumed
directly from X++ code, with the help of Visual Studio.

303

www.it-ebooks.info

http://www.it-ebooks.info/

Using Services

In this recipe, we will demonstrate how external services can be consumed from X++ code.
For demonstration purposes, we will use the service created in the Creating a custom service
recipe, and we will assume that this service is an external service.

How to do it...

Carry out the following steps in order to complete this recipe:

1. In Visual Studio, create a new Visual C# Class Library project named EXtSrv.
2. Add a new service reference named CurServices, to the project.

3. Copy the address from the WSDL URI field, from the Creating a custom service
recipe, into the Address field:

Add Service Reference @I

To see a list of available services on a specific server, enter a service URL and click Go. To browse for awvailable
services, click Discowver,

Address:
http:fFSEA-DEV: 3101/ DynamicsfxfServices fCustom CurrenoyServices - [Ga I lDiscwer -]
Services: Operations:

(& #] CustormCurrencyServices WgetCurrencyMarne

57 CustomCurrencyService

1servicels) found at address "http:/SEA-DEV: 3101/ DynarnicsAxServicesCustormCurrencyServices',

Mamespace:

CurZerdices

T

4. In Visual Studio, add the project to the AOT by selecting the Add ExtSrv to AOT option
from the File menu.

304

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

5. Open the Properties window from the View menu, change the following properties of

6.

the project, and save the project:

Property Value

Deploy to Client Yes
Deploy to Server Yes

In Visual Studio, the project should look as follows:

Solution Explarer

= Bia s
‘g Solution 'Ext3re' (1 project)
4 E ExtSry
4 |7 Properties
#] AssernblyInfo.cs
. |ng] References
g Service References
i app.config
#] Classlcs

Properties

ExtSr¥ Project Properties

= =

Debug Target Mone
Deploy to Client Yes
Deploy to EP Mo
Deploy to Server Yes

Praoject File ExtSre csproj

Project Falder chusershadministratordo

Startup Elernent

Debug Target

Specifies the process to attach to when
debugging.

www.it-ebooks.info

305

http://www.it-ebooks.info/

Using Services

7. Restart the Dynamics AX client and verify that the EXtSrv project exits in the AOT
under the Visual Studio Projects | C Sharp Projects node:

¥ AOT -Wisual Studio Projects [-=-] 23]

E EPProjHourtaternentReport.BusinessLogic
E EPSalesByRegionReport.BusinessLogic
E EPTrefipplicationProxies
= E ExtSry
= 3 Project Content
[Properties I
' 1 Service References
3 CurServices
=] app.config
=] Classl.cs
=] ExtSrv.csproj
= 3 Project Output
=] ExtSrv.dil
=] ExtSrv.dil.config
E ForecastsalesItermPBeport.BusinessLogic
E FreeTextInvoiceReport.BusinessLogic
E Hem&bsenceddrministrationReport,BL
E Hembbsencelournalkizsing, BusinessLogic
E HemdbsenceSetupReport.BusinessLogic
E Hem&ccommodationListReportBusinessLogic -

IHEHEHEHEE

8. Create a new job named ConsumeExternalService with the following code:

static void ConsumeExternalService(Args _args)

{

306

ClrObject serviceClientType;
ExtSrv.CurServices.CustomCurrencyServiceClient serviceClient;
System.Exception ex;

try
{
serviceClientType = CLRInterop::getType(
"EXtSrv.CurServices.CustomCurrencyServiceClient");
serviceClient = AifUtil::CreateServiceClient(
serviceClientType);
info(serviceClient.getCurrencyName(null, "USD'™));

}

catch (Exception::CLRError)

{
ex = CLRInterop::getLastException();
info(ex.ToString());

}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

9. Run the job to display the results:

-4 Message (08:14:23 am])

In this recipe, we create a new Visual C# Class Library project and add a new service
reference pointing to the address from the previous recipe.

Next, we add the project to the AOT and then change the deployment properties to make sure
the service is available for X++ code running on both tiers.

To demonstrate how to consume the service, we create a new job. We start the job by defining
the service reference created in Visual Studio. Then, we create the service client object and
call its getCurrencyOperation() operation, as if it was a regular X++ method.

See also

In this chapter:

» Creating a custom service

307

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Improving
Development
Efficiency

In this chapter, we will cover the following recipes:

» Creating an editor template

» Modifying the Tools menu

» Modifying the right-click context menu

» Searching for an object in a development project
» Modifying the Personalization form

» Modifying the application version

Introduction

Dynamics AX has its own integrated development environment called MorphX, which contains
various tools for designing, modifying, compiling, and debugging code. Besides that, the
system allows us to modify existing tools and create new tools for improving development
experience and efficiency.

This chapter contains several recipes for this purpose. It explains how code editor templates
can be created, how the Tools and the right-click context menus can be modified, and how to
search within development projects for the AOT objects. The chapter also discusses how we
can modify the Personalization form and change the application version.

www.it-ebooks.info

http://www.it-ebooks.info/

Improving Development Efficiency

Creating an editor template

Editor templates allow developers to reuse commonly used blocks of code. Dynamics AX
provides a number of out of the box code templates for creating construct(), main(),
and parm() methods, various statements such as 1T, else, switch, code comments,
and others. The existing templates can also be modified, or new templates can be created.

In this recipe, we will create a new code template for the find() method, which is normally
created on most of the tables. The template will only be available for table methods and

will automatically detect the current table's name and use its primary key to determine the
method's arguments.

How to do it...

Carry out the following steps in order to complete this recipe:

1. Inthe AOT, locate the xppSource class and create a new method with the
following code:

public Source findMethod(TableName _tableName)

{
str method;
DictTable dictTable;
Dictlndex dictlndex;
DictField dictField;
FieldName fieldName;
DictType dictType;
DictEnum dictEnum;
int fieldCount;
int i;
container fieldsl;
container fields2;
container fields3;

IdentifierName varName;
IdentifierName varType;

method =
"public static %1 find" +
"(%2, boolean _forUpdate = false)%5" +

(5" +
" %1 table;%5" +

"%5% +

" it (3)%5" +

- {%5" +

" if (_forUpdate)®s5* +

310

www.it-ebooks.info

http://www.it-ebooks.info/

5"

B

Chapter 8

table.selectForUpdate(_forUpdate) ;%5 +
+
select firstOnly table%5" +
where %4;%5" +
J%5* +
return table;%5" +

dictTable = new DictTable(tableName2id(_tableName));

dictIndex = dictTable.indexObject(
dictTable.replacementkey() ?

dictTable.replacementkey() :
dictTable.primarylndex());

if (dictindex)

{

fieldCount = dictindex.numberOfFields();

for (i = 1; i <= fieldCount; i++)

{

dictField = new dictField(
dictTable.id(Q),
dictindex.field(i));

fieldName = dictField.name();

varName = "_* + strLwr(subStr(fieldName,1,1)) +
subStr(fieldName,2,strLen(FfieldName)-1);

if (dictField.typeld())

{
dictType = new DictType(dictField.typeld());
varType = dictType.name();
}
else if (dictField.enumid())
{
dictEnum = new DictEnum(dictField.enumld());
varType = dictEnum.name();
}
else
{
throw error(
strfmt(
“"Field "%1" type is not defined”,
fieldName));
}

fieldsl += strFmt("%1 %2°,

311

www.it-ebooks.info

http://www.it-ebooks.info/

Improving Development Efficiency

varType,

varName) ;
fields2 += varName;
fields3 += striFmt(

"table. %1 == %2",
fieldName,
varName) ;
}
}
source = strFmt(
method,
_tableName,

con2str(fields1,",),

con2str(fields2, " && 7),

con2Str(fields3, #newLine + strRep(" ", 14) + "&&),
#newLine);

return source;

}

2. Inthe AQT, locate the EditorScripts class, and create a new method with the
following code:

public void template_method_find(Editor _editor)

{

TreeNode objNode;

XppSource Xpp;

Source template;

objNode = EditorScripts::getApplObjectNode(editor);

it (lobjNode)

{
return;

}

_editor.gotoLine(l);

_editor.firstLine(;

while (_editor.moreLines())

{
_editor.deleteLines(l);
_editor.nextLine();

}

Xpp = new xppSource();

template = xpp.findMethod(objNode.AOTname());

_editor.insertLines(template);

}

312

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

In the same class, find the isApplicableMethod() method, and add the following
code to the bottom of the switch statement:

case methodStr(EditorScripts, template_method_find):
return (_aotNode &&
_aotNode.treeNodeType() -id() == #NT_DBTABLE);

To test the template, in the AQT, create a new table or locate any table which does not
have the Find() method, for example CustCollectionsPool.

Create a new table method, then right click anywhere in the code editor and choose
Scripts | template | method | find from the context menu (alternatively, type find
anywhere in the editor and click on the TAB key):

=] \Data DictionanATables\CustCollectionsPaol - Editor E@
PN

method]

| p @ B o BB G RO o
private void method1() .
. ||
I MNews Ctrl+M
Sawve Ctrl+5

Copy Ctri+C
Cut Cirl+X
Paste Cirl

Delete Del

Lackup Label/Text Ctrl+Alt+Space

Find Ctrl+F
Lookup Definition F1z

Scripts v addlns

documentation

sendTa

datahase 3

template

flow 3

method 3 construct

edit
editWithClass
find

main

parm

100 AR >

313

www.it-ebooks.info

http://www.it-ebooks.info/

Improving Development Efficiency

6. The following code should be generated:

1= \Dats DictionanATables\CustCollectionsPool - Editor EI@
E.IE“" |' .':J-H '.a|-l.’ Exsb 4 4=\.|'1?'|Eﬂ5a
find | public static CustCollectionsPool find(CustCollectionsPoolId _name, boolean _forUpdate = false)
¢ CustCollectieonsPool table;
if {_name)

if (_forUpdate)
table.selectForUpdate(_forUpdate);

select firstOnly table
where table.Name == _name;

return table;

100 % v 4 m 3

Code templates are located in the xppSource class of a standard application. We start

the recipe by creating a new method in the class that holds all the code for generating the
Ffind() method template. The method accepts table name as an argument as this is the only
thing we need to create the find() method.

Right after the variable declaration section, we initialize the method variable containing
static code for the Find() method. The placeholders, %1, %2, and others, will be dynamically
replaced with the following table information:

» %1 - The table name.

» %2 - The list of arguments that depend on a number of fields in the table's primary
key. The list contains pairs of type and argument, separated by commas.

» %3 - The list of fields in the 1 ¥ statement. The list consists of the method's
arguments separated by &&. The statement is used to improve the method's
performance, so that no database query is executed if any of the primary fields are
empty.

» %4 - The list of fields in the where clause. The list consists of table fields from the
primary key and corresponding arguments.

» %5 - A new line symbol.

The method returns a dynamically generated code for the find() method, for a given table.

314

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

In this recipe, to simplify the demonstration, the findMethod() method was created using

a simple string formatting function, strFmt(). Alternatively, the template code could be
formatted using various helper methods of the xppSource class such as beginBlock(),
endBlock(), indent(), and others. For more information, explore the other methods in the
same class.

The next step is to create a link in the right-click context menu for the newly created template.
This is done by creating a relevant method in the EditorScripts application class. The
method name is template_method_find(), which represents a location in the right-click
menu, that is, template | method | find. In this method, first we clear any existing code in the
editor, and then we call the previously created method of the xppSource class to insert the
generated code into the editor.

The last thing is to modify the isApplicableMethod() method in the same class, to make
sure the find option is only available for table methods.

Modifying the Tools menu

In the AOT, Dynamics AX contains the menus section, which holds all the user menus.
Although most of them correspond to a specific module, there are several special system
menus. For example, the MainMenu menu is a top menu that holds references to all module
menus and allows navigation throughout the system. The GlobalToolsMenu menu represents
File | Tools in the user workspace and contains shortcuts to commonly used user functions.
The DevelopmentTools menu represents the Tools menu in the development workspace and
contains tools for a developer.

In this recipe, we will demonstrate how system menus can be modified. We will add a link to
the Online users form in the DevelopmentTools menu.

How to do it...

Carry out the following steps in order to complete this recipe:

1. Inthe AOT, locate the DevelopmentTools menu.
2. Add a new separator to the top of the menu.
3. Add a new menu item to the top of the same menu with the following properties:

Property Value
MenultemType Display
Menu I temName SysUsersOnline

315

www.it-ebooks.info

http://www.it-ebooks.info/

Improving Development Efficiency

4. The DevelopmentTools menu should look as shown in the following screenshot:

3 DevelopmentTools

E Online users

[Model management
[Unit test

[E Code profiler

g Debugger

[E] Tracing cockpit
= [
[5] Rewverse engineer
[E7 Nurnber of records

E Type hierarchy browser 57

5. To test the menu, restart the client and note the newly added Online users option
under the Tools menu:

File Edit View Build Debug [N Wersion Control Cormmand Windows — Help

Cross-reference

todel management

Unit test

Code upgrade

Code profiler

Debugger

Tracihg cockpit

Rewerse engineer

Mumber of records

Type hierarchy browser

Type hierarchy context
Application Integration Framework
Wieb development

Wizards

Label

Business Intelligence (BD) tools

Caches

Embedded resources

Custamize

Options

| A© | USD | USR Model |usr| ceu

316

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

In this recipe, we only need to add the desired menu item to the DevelopmentTools menu.
The menu item is available the next time you log in to Dynamics AX, under the Tools menu.

Modifying the right-click context menu

In the development workspace, many developer tools can be accessed from the right-click
context menu in the AOT. Some of the tools, such as Export, Delete, Restore, and others,
are common for all AOT objects. Some of the options are only available for specific objects,
for example, the Compile function is only available for classes, tables, and other objects that
contain code.

In this recipe, we will demonstrate how to modify the right-click context menu. We will add two
new options for development project nodes, allowing setting and clearing any selected project
as a startup project.

How to do it...

Carry out the following steps in order to complete this recipe:

1. Inthe AOT, create a new action menu item with the following properties:

Property Value
Name DevProjectStartupUpdateSet
Label Set as startup project

2. Create one more action menu item with the following properties:

Property Value
Name DevProjectStartupUpdateClear
Label Clear startup project

3. Inthe AQT, create a new class with the following code:

class DevProjectStartupUpdate

{
}

public static void main(Args _args)

{

Userlinfo userinfo;
SysContextMenu contextMenu;

317

www.it-ebooks.info

http://www.it-ebooks.info/

Improving Development Efficiency

IdentifierName projectName;

if (I_args.menultemName() ||
1SysContextMenu: :startedFrom(_args))

{
return;
}
contextMenu = _args.parmObject();

switch (_args.menultemName())

{
case menuitemActionStr(DevProjectStartupUpdateSet):
projectName =
contextMenu.getFirstNode() .treeNodeName();
break;
case menuitemActionStr(DevProjectStartupUpdateClear):
projectName = "*;
break;
default:
return;
}
ttsBegin;

select firstOnly forUpdate userlinfo
where useriInfo.id == curUserld();

userInfo.startupProject = projectName;

if (luserinfo.validateWrite())
{

}

userinfo.update();

throw Exception::Error;

ttsCommit;
s

public static boolean isStartupProject(
IdentifierName _projectName,
Userld _userld = curUserld())

{
return (select firstOnly Userlinfo
where UseriInfo.id == _userld
&& UserlInfo.startupProject == _projectName).Recld ?
true :
false;
}

318

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

4. For the both menu items, set the properties as follows:

Property Value
ObjectType Class
Object DevProjectStartupUpdate

5. Add the newly created menu items to the SysContextMenu menu, as shown in the
following screenshot:

1 &0T - \Menus E@

B QRSysContextMenu E

Y Set as starbup project
“% Clear startup project
“T% Mark as resolved
“I% Mark as unresoheed
“I Mark as resobved (including subnodes) |4
“I Mark as unresolved (including subnodes)
“I9 Rerun conflict detection
[——

[Cross-reference

[Security tools
= [—
[E7 Table browser
[E7 Auto-report
2 ,

m

6. Inthe AQT, find the SysContextMenu class, open its verifyltem() method, and
locate the following code at the bottom of the method:

case menuitemActionStr(SysXpplLIncrementalBuild):
case menuitemActionStr(SysXpplLFullBuild):

// enable for AOT root node only

return FirstNode.treeNodeType().id() == 1;

7. Add the following code right after the code mentioned in the previous step:

case menuitemActionStr(DevProjectStartupUpdateSet):
if (FirstNode.handle() !'= classNum(ProjectNode) ||
Imatch(#pathProjects, firstNode.treeNodePath()))
{

return O;

}
return !DevProjectStartupUpdate: :isStartupProject(

FfirstNode.treeNodeName());

319

www.it-ebooks.info

http://www.it-ebooks.info/

Improving Development Efficiency

case menuitemActionStr(DevProjectStartupUpdateClear):

ifT (firstNode.handle() !'= classNum(ProjectNode) ||
Imatch(#pathProjects, firstNode.treeNodePath()))

{
return O;

}

return DevProjectStartupUpdate: :isStartupProject(
firstNode.treeNodeName());

8. To test the results, open the project window, select any project, and choose the
newly created Add-Ins | Set as startup project option from the right-click context
menu as follows:

L] \Projects [E=0 EER (<
.3_] Projects nd
1 Private
= 3 Shared

[aifcha Open

[AxdFra

= Deploy to EP

.3_5] Batch L 3

,:_E] CreditL Export 3

,3_5] Custaor Delete

.8_5_] Deliver

.3_5] Dirmen Restaore

'g—f] Dimen Cuplicate

.3_5_] Dirmen

[DirPart Campile —

Add-Ins Set as startup project

.3_5] Docuy Properties Cross-reference 4
,:_E] DocuSetup

,3_:_] DO SitesProject
Ig_E] Gantt Rewerse engineer
,:_E] Gantt_Hierarchy
,3_5] Gantt_ReqExplosion
.3_5] Gantt_Shid, Run tests
,:_E] Gantt_WrkCtr

,3_5] GLProjectDatalpgrade

Security toals 4

Extract XML docurmentation

Copy 4

EE| InterCornpary

.:_E] Irventddjustment

,:_E] InventDim2 MewlternDim
EE| IrrventTagCounting

| IrventTransfer

(! I P Y

T

Check best practices

Help properties

Open newwind ow 4

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

9. Open the Options form from the Tools menu, you will see that the previously selected
project is set as Startup project in the Development tab:

Ei] Options (1)
Fil: « Apply

Default:

Usage data

General
Motifications
Delegation
Status bar

& Development
QL
Confirmation
Preload

Microsoft Outlook

Set up options for the development workspace

Toolbar Best practices Campiler

4 General
Startup project:

Message limit:

Development warnings: O

Startup model:

Execute business operations in CIL:

[N

Application ohject tree
Application object layer:

Show no layers -

Application object model:

[Shuwnn maodels v]

Debugy
Auto

Trace

v|lw|w|w

Property sheet

Name

10. To clear the startup project in the project window, select the same project again and
choose the Add-Ins | Clear startup project option from the right-click context menu:

Ls] WProjects

Gantt_Hierarchy
Gantt_ReqExplosion
Gantt_SMA

Gantt_ WrkCtr
GLPrajectDatalipgrade
InterCompany
Irventidjustment
IrventDimZNewlternDim
IrwentTagCounting

InventTransfer

L adnarfecriale

% s
rojects
[Private
B[4 Shared
AfChar OPE
AxdFrar Deplay to EP
Batch —
Creditli Export
Customn Delete
g :L:i\? Restore
Dirmens Duplicate
Dirmens
DitParty Compile
Add-Ins
Doty Froperties
DocuSetup
DOSitesProject
Gantt

o5]

>

m

Cross-reference 4

Security tools 3
Reverse engineer

Extract XML documentation

Run tests

Copy 4
Check best practices

Help praperties

Open new window ’

www.it-ebooks.info

321

http://www.it-ebooks.info/

Improving Development Efficiency

We start this recipe by creating two new menu items. One of them is used for setting the
currently selected project as the startup project, and the other one is used for clearing the
current project from the startup project, if it was set before. Each of the menu items points
to the class that, depending on the caller menu item, will update the UseriInfo table with the
startup project or will clear it. The same class also contains the isStartupProject()
helper method, which is used later to determine if the given project is already defined as a
startup project.

Next we add the newly created menu items to the SysContextMenu menu, which is actually
the right-click menu for the AOT. In order to ensure that the menu items are displayed only
for project nodes, we modify the verifyltem() method of the standard SysContextMenu
class. At the top level, this method has a switch statement with three cases, one for each
type of menu item: display, action, and output. Inside each case, there is another switch
statement with cases for individual menu items located in the SysContextMenu menu—an
item is displayed in the menu if a case returns 1 and is not visible if O is returned.

We add two additional cases for our menu items under the action case. The menu item for
setting the startup project will appear only if the currently selected project is not already
specified in the UserInfo table. It is the opposite for the menu item for clearing the startup
project, that is, it is only shown if the current project is specified in the Userinfo table.

Searching for an object in a development

project

In Dynamics AX, any development changes to the application normally have to be organized in
development projects. The same object could belong to one or more projects, but Dynamics
AX does not provide an easy way to determine this.

In this recipe, we will create a class for searching the development projects. The class is only
for demonstration purposes but could easily be converted to a standalone tool or integrated
into the right-click menu.

How to do it...

Carry out the following steps in order to complete this recipe:

1. Inthe AOT, create a new class with the following code:
class DevProjectSearch

{
}

private boolean findChildren(

322

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

TreeNode _parent,
UtilElementType _type,
IdentifierName _name)

TreeNode child;
TreeNodelterator iterator;
#TreeNodeSysNodeType

iterator = _parent.AOTiterator();
child = iterator.next();

while (child)
{
if (child.treeNodeType().id() == #NT_PROJECT_GROUP)

{
return this.findChildren(child, _type, _name);

}
else it (child.AOTname() == _name &&

child.treeNodePath() &&
child.utilElement().recordType == _type)

{

return true;

}

child.treeNodeRelease();
child = iterator.next();

}

return false;

}

public void find(UtilElementType _type, ldentifierName _name)
{

TreeNode projects;
ProjectNode project;
projects = SysTreeNode: :getSharedProject();
if (Iprojects)
{
return;

}

project = projects.AOTfirstChild();

323

www.it-ebooks.info

http://www.it-ebooks.info/

Improving Development Efficiency

while (project)

{
if (this.findChildren(
project.loadForlinspection(),
_type,
_name))
{
info(project.AOTname());
}
project = project.A0OTnextSibling();
}

}

2. To test the class, create a new job with the following code:
static void TestDevProjectSearch(Args _args)

{
DevProjectSearch search;
search = new DevProjectSearch();
search.find(UtilElementType::Table, tableStr(CustTable));
}

3. Run the job to display the results in the Infolog, as follows:

-4 Message (05:36:17 am]
Ei"' InterCompany

il W_FiscaltasterData

izl ProductBuilder

In this recipe, we create a new class with several methods. One of them is FindChildren()
and is used for a recursive search operation within the AOT node. It accepts a TreeNode
object, element type, and element name. In this method, we go through all the children of
the argument object and check if any of them matches the element type and name. If any of
the child nodes contain more nodes within, we use the same FindChi ldren() method to
determine if any of its children matches the element type and name.

324

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

The second method is named Find() and is used for the actual search for the given element
type and name. The method goes through all of the shared development projects and calls
the FindChi ldren() method to determine whether the given element is in one of its nodes.

The class can be called from anywhere in the system, but in this recipe we create a new job,
define and instantiate the class, and use the find() method to search for the CustTable
table in all shared projects.

See also

In this chapter:

» Modifying the right-click context menu

Modifying the Personalization form

The Personalization form allows users to customize their most often used forms to fit their
needs. Users can hide or move form controls, change labels, and so on. This setup is available
for any Dynamics AX form and can be opened from the right-click context menu by selecting
the Personalize option.

For developers, this form can be very useful too. For example, it contains the very handy
System name field, which displays the name of the currently selected table field or method,
so that you do not need to search in the AOT. The Information tab provides details about the
form itself, the caller object, and the menu item used, and it allows opening those objects
instantly in the AOT view. The last tab page, Query, shows information about the tables used

in the form's query, which is also very useful to facilitate quick understanding of the underlying
data structure.

In this recipe, we will demonstrate how to enhance the Personalization form. We will add a
new button to the last tab, which will open the selected table in the AOT.

How to do it...

Carry out the following steps in order to complete this recipe:

1. Open the SysSetupForm form in the AOT and find the following code in its
fillQueryTreeQueryDatasource() method:
formTreeltem = new FormTreeltem(
nodeText, imagelist.image(#ImageDataSource), -1, null);

325

www.it-ebooks.info

http://www.it-ebooks.info/

Improving Development Efficiency

2.

326

Replace it with the following code:

formTreeltem = new FormTreeltem(
nodeText,
imagelist. image(#ImageDataSource),
_1,
queryBuildDataSource.table());

Add a new ButtonGroup control to the QueryPage tab with the following properties:

Property Value
Name ButtonGroupl

Add a new Button control to the created button group and set its properties as follows:

Property Value

Name EditTable
AutoDeclaration Yes

Text Edit

Override the clicked() event method of the button with the following code:

void clicked()
{

FormTreeltem formTreeltem;
Tableld tableld;
TreeNode treeNode;
#AOT

formTreeltem = QueryTree.getltem(
QueryTree.getSelection());

tableld = formTreeltem.data();

if (1tableld || !'tableld2name(tableld))
{

}

treeNode = infolog.findNode(
#TablesPath +
#AOTDelimiter +
tableid2name(tableld));

if (ItreeNode)

{

}
treeNode.AOTnewWindow();

return;

return;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

6. On the QueryTree control, override the selectionChanged() event method with
the following code:

public void selectionChanged(
FormTreeltem _oldltem,
FormTreeltem _newltem,
FormTreeSelect _how)

super(_oldltem, _newltem, _how);

EditTable.enabled(
tableid2name(_newltem.data()) ? true : false);

}

7. To test the changes, open any form, for example, Main accounts located in the
General ledger, and open the Personalization form by right-clicking anywhere on the
form and selecting the Personalize option:

i Microsoft Dynamics A% - Derma [MYC-DCL: Session I0 - 4] - [1- ceu] ===
P~ _
< IOk b CEU b Generalledger » Commen » Main accounts 43| Searct PI-]
M sceourts ==}
A K @ 355 By currency D y @ 40 Cost cateqory . ,‘_‘.
- 3 - H
r' —1] Perind T fals 3 [Statistics 2 5 L -
Main | Edit Delste | Posted Parameters | Account Financials | Cashflow o Refresh Export to Micrasoft
accaunt = forecasts @ 10 accounts Office Excel
Mew Maintain Journal entries Balances Staterents Related information List
< N
4 Favorites Wain accounts ~ | Trpe to filter Ilain account -l Balance ~
0.00
e [7] Mainaccount Mame « Type Main account categn *
211250 { Accounts Payable - Clearing i Balance sheet AP SR e ot
o G ke b |
L 211200 Open Balance sheet AR
4 Eomrs 211300 T Balance shest AP
EE— 211100 . Balance sheet AP
e
= B 10300 ot 3 Balance sheet AR
Toials 130200 Expand Corl+ Balance sheet AR
T 130100 Collapse Ctrl+ Balance shest AR
Reports 200110 Applyfilter v Balance sheet OTHERCURLLA
Petindic 211350 Filter By Field Balance sheet OTHERCURLLA
Set 211400 Balance sheet OTHERCURLLA
P Filter By Selection P Fance shee
£20300 B Profitand loss SALES
420050 Sort Ascending , Profitand loss SALES
420100 Sart Descending Profitand loss SALES
420200 Hide Profitand loss SALES -
4 _— [3
Create alert rule..
211250: Accounts P
DB/CR propesal: Ja not allow manual entry:
DB/CR requirerne Recard info ctive from:
Balance cantrol; Active to:
¥ Home Exchange adjustment: Suspendeds
@ | ek % B B2 Mot
Customize the current form

www.it-ebooks.info

http://www.it-ebooks.info/

Improving Development Efficiency

8. Go to the Query tab and select one of the tables displayed:

|« Persanalization (1) \EI

| Layout | Infarmation | Query |

=5 MainfAccountlistPage Edit {q)

5‘3 Maindccount
E‘]‘.ib MainAccount
2.1 Sorting (Order by

-i%' Relation
E‘]‘.i}_'l Ref_MainAccount_LedgerChartOfAccounts_LedgerChartOfdccounts (LedgerChartOfdccounts)
-35' Relation

9. Click the newly created Edit button to open the selected table in the AOT:

(7] AOT - \Data DictionanTa...| = |

= Fields

[Ed Field Groups
m Indexes

3 Full Text Indexes
23 Relations

[Deletesictions
& Methods

328

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

First, we modify the creation of the query tree control. Normally, each tree node can hold
some data. The query tree in the SysSetupForm form does not have any data associated
with its nodes, so we have to modify the code and store the table number in each node that
represents a table.

Next, we add a new button and override its cl icked() method. In this method, we get the
table number stored in the currently selected node—this is what we stored earlier—and search
for that table in the AOT. We display it in a new AOT window, if found.

Finally, we override selectionChanged() on the QueryTree control to make sure the
button's status is updated upon node selection. In other words, the Edit button is enabled if
the current tree node contains some data, otherwise it is disabled.

In this way, we have modified the Personalization form to provide the developer with quick
access to the underlying tables directly in the AOT.

Modifying the application version

Dynamics AX releases are identified with two main numbers—Kernel version and Application
version. The numbers indicate the major Dynamics AX release, and if there are any service
packs, cumulative updates, or individual hotfixes installed. Version numbers can be viewed in
the About Microsoft Dynamics AX dialog, which can be accessed from the Help menu. This
dialog can also be modified to contain additional versions for solution developers to control
their releases.

In this recipe, we will learn how to modify the system to include additional version numbers
in the About Microsoft Dynamics AX dialog. For demonstration purposes, we will add a new
custom version line to this dialog.

How to do it...

Carry out the following steps in order to complete this recipe:

1. Inthe AQT, find the ApplicationVersion class and create a new method with the
following code:

static str usrAppl(Q)
{

return "1.0.0%;

}

329

www.it-ebooks.info

http://www.it-ebooks.info/

Improving Development Efficiency

2. Inthe AOT, locate the SysAbout form and add a new StaticText control with
the following properties to the bottom of DetailGrp | MainGrp | RightGroup |

VersioninfoGroup:
Property Value
Name CustomVersion
AutoDeclaration Yes
Width Column width
Text

3. The form in the AOT should look as shown in the following screenshot:

=] AOT - YForms = oh =
Esysabout]

s? Methaods
Eﬁ Data Sources
E] Parts
B B Designs
= & Design
= ™ [Graup:Detail Grp]
é’ tdethods
m [Group:Graphic]
=] [tl [Group:tainGrp]
i Methods
[*] Graup:L eftGroup]
= ™ [Graup:RightGroup]
é’ flethods
=] [tl [Group:ersionInfoGroup]
7 Methods
A staticText:Productlicenselnformation
A staticTestiLicenseHolder
A_ StaticText:SenalMurmber
A_ StaticText:Kernelversion
A StaticText:&pplicationersion
A staticTextiLocalizationVersion
A staticTextHotfixVersian
A StaticText:Solutionyersion
A_ StaticText:CustomYersion
[tl [Group:Links]
[izl [Group:BottornGrp]
& Designlist
¥ Permissions

4| 1M r

330

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

4. Add the following code to the variable declaration section of the form's run() method:
str usrVersionNumber = ApplicationVersion::usrAppl(Q);

5. Add the following code to the same method, right before element_unLock(true):
element.unLock(true):

ifT (usrVersionNumber)
{

CustomVersion.text("Custom version: " + usrVersionNumber);

}

6. Open Help | About Microsoft Dynamics AX and note the newly created Custom
version control:

:‘. About Microsoft Dynamics 2 (2) @

4 “ Microsoft Dynamics Ax 2012

Microsoft Dynamics® AX 2012
Copyright Microsoft Corporation, All rights reserved,

This product is licensed ta
Demo

Serial nurnber: 05516332
This software contains barcode compaonents licensed from IDAutomation.com,

Inc. These products may only be used as part of and in connection with Kernel wersion; 6.0.947.0
Microsoft Dynamics 8% 2012, All rights reserved, Application wersion: 6.0.947.0
Includes material from the zlib.h project, available at Custom version: 1.0.0

httpd funnnizlib. et /zlib_license.html, Copyright @ 1995-2010 Jean-loup Gailly

Read our Microsoft Dynamics Ax 2012 privacy staternent online
and Mark Adler, All rights reserved,

Show installed models
Wiews system information...
Warning: This cormputer program is protected by copyright law and Read the Microsoft software license terms
international treaties, Unauthorized reproduction or disttibution of this

prograrn, ar any portion of it, may resultin severe civil and criminal penalties,
and will be prosecuted to the maximurm extent possible under the law,

331

www.it-ebooks.info

http://www.it-ebooks.info/

Improving Development Efficiency

The ApplicationVersion class is the place where the application version numbers are
stored. For example, the appIBui IdNo() method returns the current application version.
By modifying this class, Dynamics AX developers can modify original or add custom version
numbers. This class is called from the SysAbout form, which is actually the About Microsoft
Dynamics AX dialog.

In this recipe, first we create a new method in the ApplicationVersion class, which
returns our version number. Normally, the number should be updated with every new release.

Next, we modify the SysAbout form by adding a new control. Then we modify the form's run()
method to ensure that the number in the previously created method is displayed on the form.

Now, the About Microsoft Dynamics AX dialog contains a new line showing our custom
version number.

332

www.it-ebooks.info

http://www.it-ebooks.info/

Improving Dynamics
AX Performance

In this chapter, we will cover the following recipes:

» Calculating code execution time
» Writing efficient SQL statements
» Caching a display method

» Using Dynamics AX Trace Parser

» Using SQL Server Database Engine Tuning Advisor

Introduction

It is quite common for many larger Dynamics AX installations to suffer from performance
issues. This could be caused by insufficient hardware, incorrect configuration, ineffective
code, lack of user training, and many other reasons.

This chapter discusses how the system's performance could be improved by following several
simple rules. This is not a complete guide for troubleshooting Dynamics AX performance
issues, but a compilation of must-know information for developers.

www.it-ebooks.info

http://www.it-ebooks.info/

Improving Dynamics AX Performance

Calculating code execution time

While working on improving an existing code, there is always the question of how to measure
the results. There are numerous ways of doing that, for example, visually assessing the
improvements, getting feedback from users, using the code profiler, or some other tool to
measure execution times, and so on.

In this recipe, we will discuss how to measure the code execution time using a very simple
method, just by temporarily adding a few lines of code. In this way, the execution time of
the old code can be compared with the execution time of the new one to show whether any
improvements were made.

How to do it...

Carry out the following steps in order to complete this recipe:
1. Inthe AOT, create a new job with the following code:

static void GetExecutionTime(Args _args)

{
int start;
int end;
start = WinAPIl::getTickCount();
sleep(1000); // pause for 1000 milliseconds

end = WinAPI: :getTickCount();

info(strFmt("%1", end - start));
}

2. Run the job to see how many milliseconds it takes to execute the code:

2 Message (01:40:09 pm]

In this recipe, the main element is the getTickCount() method of the standard WinAP1
class. The method returns the TickCount property of the .NET environment, which is a 32-bit
integer containing the amount of time, in milliseconds, that has passed since the last time the
computer was started.

334

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

We place the first call to the getTickCount() method before the code we want to measure,
and we place the second call right after the code. In this way, we know when the code was
started and when it was finished. The difference between the times is the code execution time
in milliseconds.

Normally, using such a technique to calculate the code execution time does not provide very
useful information, as we cannot exactly tell whether it is right or wrong. It is much more
beneficial to measure the execution time before and after we optimize the code. In this way,
we can clearly see if any improvements were made.

There's more...

The approach described in the previous section could be successfully used for measuring
long-running code, such as various calculations or complex database queries. But, it may
not be possible to assess code that takes only a few milliseconds to execute. The code
improvement may not be noticeable, as it could be greatly affected by variances caused by
current system conditions. In such a case, the code in question could be executed a number
of times, so the execution times can be properly compared.

To demonstrate this, we can modify the previously created job as follows:

static void GetExecutionTime(Args _args)

{
int start;
int end;
int i;
start = WinAPIl::getTickCount();
for (i = i; 1 <= 100; i++)
{
sleep(1000); // pause for 1000 milliseconds
}
end = WinAPI: :getTickCount();
info(strFmt("%1", end - start));
}

Now, the execution time will be much longer, and therefore easier to compare.

335

www.it-ebooks.info

http://www.it-ebooks.info/

Improving Dynamics AX Performance

Writing efficient SQL statements

In Dynamics AX, SQL statements can often become performance bottlenecks. Therefore, it is
very important to understand how Dynamics AX handles database queries and follow all the
best practice recommendations in order to keep your system healthy.

In this recipe, we will discuss some of the best practices to use when writing database
queries. For demonstration purposes, we will create a sample method with several scenarios
and will discuss each of them. The method will locate the CustGroup table record of the given
customer account.

How to do it...

Carry out the following steps in order to complete this recipe:

1. Inthe AOT, locate the CustGroup table and create the following method:

public static CustGroup FindByCustAccount(
CustAccount _custAccount,

boolean _forupdate = false)
{
CustTable custTable;
CustGroup custGroup;
if (_custAccount)
{
select firstOnly CustGroup from custTable
where custTable.AccountNum == _custAccount;
}
if (custTable.CustGroup)
{
if (_forupdate)
{
custGroup.selectForUpdate(_forupdate);
}
select firstOnly custGroup
where custGroup.CustGroup == custTable.CustGroup;
}
return custGroup;
}

336

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

2.

On the same table, create another method with the following code:

public static CustGroup FindByCustAccount2(
CustAccount _custAccount,
boolean _forupdate = false)

CustTable custTable;
CustGroup custGroup;

if (_custAccount)

{
if (_forupdate)
{

}

select firstOnly custGroup
exists join custTable
where custGroup.CustGroup == custTable.CustGroup
&& custTable_AccountNum == _custAccount;

custGroup.-selectForUpdate(_forupdate);

}

return custGroup;

}

In this recipe, we have two different versions of the same method. Both methods are
technically correct, but the second one is more efficient. Let's analyze each of them.

In the first method, we should pay attention to the following points:

>

Check that the _custAccount argument is not empty; this will avoid running an
unnecessary database query.

Use the FirstOnly keyword in the first SQL statement to disable the effect of the
read-ahead caching. If there were no FirstOnly keyword, the statement would
retrieve a block of records, return the first one, and ignore the others. In this case,
even though the customer account is a primary key and there is only one match, it is
always recommended to use the FirstOnly keyword in Find() methods.

In the same statement, specify the field list—the CustGroup field—we want to
retrieve, instructing the system not to fetch any other fields that we are not planning
to use. In general, this could also be done on the AOT query objects by setting the
Dynamic property of the Fields node to No on the query data sources, and manually
adding only the required fields. This can also be done in forms by setting the
OnlyFetchActive property to Yes on the form data sources.

Execute the selectForUpdate() method only if the _forupdate
argument is set. The 1T statement is more efficient than calling the
selectForUpdate() method with an argument false.

337

www.it-ebooks.info

http://www.it-ebooks.info/

Improving Dynamics AX Performance

The second method already uses all of the discussed principles, plus one additional,
as follows:

» Both SQL statements are combined into one using an exists join. One of the
benefits is that only a single trip is made to the database. Another benefit is that no
fields are retrieved from the customer table because of the exists join. This makes
the statement even more efficient.

Caching a display method

In Dynamics AX, display methods are widely used to show additional information on forms
or reports that come from different data sources, including special calculations, formatting,
and more.

Display methods are shown as physical fields and are executed each time the form is redrawn.
This means that the more complex the method is, the longer it takes to display it on the
screen. Normally, it is recommended to keep the code in display methods to a minimum.

The performance of display methods can be improved by caching them. This is when display
method's return value is retrieved from a database or calculated only once, and subsequent
calls are made to the cache.

In this recipe, we will create a new cached display method. We will also discuss a few
scenarios to learn how to properly use caching.

How to do it...

Carry out the following steps in order to complete this recipe:

1. Inthe AOT, locate the CustGroup table and create a new display method with the
following code:
display Description displayPaymTermDescription()
{

return (select firstOnly Description from PaymTerm
where PaymTerm.PaymTermld == this.PaymTermld) .Description;

338

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

2. Add the newly created method to the table's Overview group, right beneath the
PaymTermld field, as shown in the following screenshot:

3.

] 20T - \Data Dictionand Tables

] CustGroup

=3 Fields

=] ﬁ Field Groups
[E3) AutoReport
[AutoLaokup
Ei Autoldentification
[E] AutoSummary
[AutoBrawse
Eﬁj LSdministration

Description

=D Tdentification
= El Overview

S CustGroup
=0 Mame

= PaymTerml

dis A Term
=F ClearingPeriod
[BankCustPaymIdTable
=E TaxGroupld

E Indexes
[H Full Text Indexes
=5 Relations
a Deletebctions
E i Methods
El: displayPaym TermDescription

rlasrinnParind

Lo 5)

»

m

In the AOT, find the CustGroup form and override the init() method of its

CustGroup data source with the following code:

public void init(Q)
{
super();

this.cacheAddMethod(
tableMethodStr(CustGroup,displayPaymTermDescription));

www.it-ebooks.info

339

http://www.it-ebooks.info/

Improving Dynamics AX Performance

4. To test the display method, open Accounts receivable | Setup | Customers |

Customer groups:
I;—;i] Custorner groups (1 - ceu) - Custarmer group: 10, Whaolesale Customers EI@
File - Mew % Delete Setup¥ Forecast O @

Customergroup « Description Terms of payment Description Settle period D
10 | Whalesale Custamers MOgD Met 60 days MODT

T — Msjor Custorners w020 Kt 20 doys e

i Retail Custormers Mi10 Met 10 days MO0l

40 Internet Custormers Moo Met 1 day MO0l

E]] Other Custormers MO10 Met 10 days MO0l

a0 Intercornpany Custormers MO0l Met 1 day MO0

] m 3

Group of customers. Close |

In this recipe, we create a new display method on the CustGroup table to show the description
of the Terms of payment defined on a customer group record. In the method, we use a query
to retrieve only the Description field from the PaymTerm table. Here, we could have used the
find() method of the PaymTerm table, but that would have decreased the display method's
performance, as it returns the whole PaymTerm record, while we only need a single field. We
also add the method that we created to the Overview group on the table, to ensure that it
automatically appears on the overview screen of the Customer group form.

In order to cache the display method, we override the init() method of the CustGroup data
source and call its cacheAddMethod() method to make sure the method's return values are
stored in the cache.

The cacheAddMethod () method instructs the system's caching mechanism to load the
method's values into the cache for the records visible on the screen, plus some subsequent
records. It is important that only display methods that are visible on the Overview tab page
are cached. Display methods located on different tab pages does not properly utilise the
caching mechanism. They normally show a value from a single record at a time and therefore
three is no point to cache subsequent records as they not displayed on the screen anyway.

340

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

Speaking about display method caching, the best option, of course, is not to place any display
methods on the overview screen, or at least keep the number of display fields to a minimum.
It is also advised not to create display methods on the forms directly as they cannot be reused
elsewhere.

Alternatively, in this recipe, we could have used the SysClientCacheDataMethodAttribute
attribute by adding it to the top of the display method, as shown in the following code:

[SysClientCacheDataMethodAttribute]
display Description displayPaymTermDescription()
{
return (select firstOnly Description from PaymTerm
where PaymTerm.PaymTermld == this.PaymTermld) .Description;

}

In this case, the method will automatically be cached on any form where it is used without any
additional code. Note that this is only acceptable if the display method is only shown on the
overview screen.

Using Dynamics AX Trace Parser

Dynamics AX has a feature that allows generating trace files of the client and server activity.
It collects lots of useful information, such as user sessions, call trees, SQL statements,
execution durations, and much more. Such trace files can be analyzed with a tool called
Dynamics AX Trace Parser, which displays all the trace information within the informative
graphical user interface and allows developers to see what is happening behind the scenes
and make appropriate decisions.

In this recipe, we will demonstrate how to use Dynamics AX Trace Parser. We will create and
run a simple class containing a simple SQL statement while running AX tracing. Then, we will
analyze the generated trace using Trace Parser.

How to do it...

Carry out the following steps in order to complete this recipe:

1. Inthe AOT, create a new class with the following code:
class CustTransTracing

{
}

341

www.it-ebooks.info

http://www.it-ebooks.info/

Improving Dynamics AX Performance

public static void main(Args _args)

{
CustTrans custTrans;
select count(Recld) from custTrans
where custTrans.Approved;
}

2. Change the following property of the class:

Property Value
RunOn Server

3. Open Tools | Tracing cockpit. Mark the Bind parameters checkbox and accept the

default values for the rest of the parameters as follows:

E;]Tracing cockpit {2 - ceu) EI@
Start trace 18] ':9
Date File name Directary Collect server trace:
This grid is ermphy, Circular Logging:]
a Event selection
Bind parameters: TTS
Detailed database: Xpp:
RPC: Hpphdarker:
0L Client Access: [}
Tracelnfa: ¥pp Parameters Info: =

a File options
b axirmurmn file size (MEB):

XppMarker

Active

This grid is emphy,

Date that the trace was collected.

1000

Start

End

Close |

4. Click on Start trace and then save the trace file to, say, C:\temp\trace.etl.

5. Go back to the created class and run it.

342

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

6. Now, in the Tracing cockpit form, click on Stop trace:

E}] Tracing cockpit (2 - ceu}
File = Start trace Open trace]

File name Directary Collect server trace:

Cihtermnp | Circular Logging: L}

a Event selection

Bind pararmeters: TTS:
Detailed database: Hpp:
RPC: Hpphdarker:
sQL Client Access: |}
Tracelnfa: ¥pp Pararmeters Info: [

a File options
Maxirnurn file size (MB): 1000

XppMarker

Start

Active

This grid is empty. B

Date that the trace was collected.

7. Open Microsoft Dynamics AX 2012 Trace Parser, import the previously saved trace
file, and select your session in the Session field at the top:

& Micrasoft Dynamics &% Trace Parser - trace (1)
File Edit View Help
Session: Aw325erv exe [3084) Session 3 - Admin -

Overview || Call Tree | o++/RPC | SOL |

Show summary across all sessions: [0

Top 5 X++ Methods by Inclusive Duration

Count

ServerEvalFunc 1 18.10 078 1 1
CustTransTracing: :main 1 17.32 0.32 a 1
ServeriritzBegin 1 131 0.64 1 a
ServerUtiload 1 118 118 1 [t}
ServeririteEnd 1 071 029 1 a

Top 5 X++ Methods by Exclusive Duration

Count

ServerUtiload 1 118 118 1 1}
ServerEvalFunc 1 18.10 ors 1 1
ServeriiriteBegin 1 131 0.64 1 a
CustTransTracing: :main 1 17.32 0.32 a 1
Serveririt=End 1 071 0.29 1 a

Top 5 S0QL Queries by Inclusive Duration

SELECT COUNT(T1.RECID) FROM CUSTTRANS T1 WHERE ((DATAAREAID=7) AND (4PPROVED... 1 16,88

| Registered database: SEA-DETraceParser :

343

www.it-ebooks.info

http://www.it-ebooks.info/

Improving Dynamics AX Performance

8. Open the SQL tab page. The query should be displayed here. If there are too many
records, apply the filter by typing CustTrans into the Name Filter field and marking
the Show Tables checkbox to find your query:

File Edit Wiew Help

Session. Ax32Serv.exe (3064) Session 3 - Admin -

Overvigw | Call Tree | %++/APC | SOL

Kame Fiter CustTrans
Show Aggregate
Show Tables
. Row
N Count ‘HD‘#S'\{E‘ Iscluswe Exclusive Exclusive Fetch F'(ntal
ame oun ot Helng Tatal[ms] Average [ms) Total ons
ms] [ms) e Fetched

Call Stack
MT(T1.RECID] FR

CustTransTracing: main

ServerEvalFunc

H 41 of1| Wl Sortby Count - | Stack Trace Count: 1/ Total Inclusive: 16.881 Jump to Call Tree

Code

SELECT COUNT[TT.RECID

FROM CUSTTRANS T1

wHERE ([DATAAREAID="c21)
AND [BPPROVED=T))

Registered database: SEA-DEVATraceParser .

9. Click on Jump to Call Tree to display the query in the call stack:

File Edit View Help

Session: Ax325erv.exe [30B4): Session 3 - Admin -

| Dverview | Call Tree') xas/RPC | SOL |

Call Stack. Inclusive [ms) Exclusive [ms) | RPC Calls gatabase Database Time
alls ms]
=155 Total 213 0.00 4 1 16.88
54 ServerlltiLoad Mame = main parentld = 1023961 pare... 1.18 118 1 1}
1

% CustTrans:postLoad 0.0g 0 a 0.00
:g Servemi/riteBegin 1.3 0.64 1 a 0.00
:3 Servem/riteEnd 071 023 1 a 0.00

Context

SELECT COUNT[TT.RECID)

FROM CUSTTRANS T1

"w/HERE [[DATAAREAID='ceu)
AND [APPROVED=T]]

Registered datahase: SEA-DEVVTraceParser .:

344

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

The goal of this recipe is to demonstrate how we can trace X++ code and X++ SQL statements
converted to actual database queries.

For this purpose, we created a simple class with a main() method containing a single
SQL statement.

Then, we start tracing, run the class, and stop tracing, which generates a trace file with all
the information we need. Note that tracing can also be started and stopped from the code by
calling the start() and stop() methods of the xClassTrace class.

The next step is to open the file using Trace Parser. The tool provides a lot of information, but
for the purpose of this recipe, we only search for our SQL statement on the SQL tab page. On
this tab page we see the details of our query, along with its tracked execution times. We can
see the class and method name that this SQL statement was called from. We can also see
what the actual SQL statement, which has been executed on the database, looks like. Such
information is very useful to understand how Dynamics AX converts X++ code into SQL queries.

Additionally, it is possible to locate the SQL statement in the call stack by clicking on
the Jump to Call Tree button. This view shows the code in question in the context of
other processes.

Note that the statement we used contains a non-indexed field in its where clause, which
makes it inefficient. In the next recipe we will demonstrate how we can improve it.

See also

In this chapter:

» Using SQL Server Database Engine Tuning Advisor

Using SQL Server Database Engine Tuning

Advisor

SQL Server Database Engine Tuning Advisor allows developers to analyze and improve
database queries. Database Engine Tuning Advisor examines query usage and recommends
how it can be improved. Though most of the time the results of this tool are accurate, before
making any database changes it is recommended to confirm them manually or by using
another technique.

In this recipe, we will use Database Engine Tuning Advisor to analyze the query captured by
Trace Parser from the previous recipe.

345

www.it-ebooks.info

http://www.it-ebooks.info/

Improving Dynamics AX Performance

How to do it...

Carry out the following steps in order to complete this recipe:

1. Open SQL Server Management Studio and connect to the server where your
Dynamics AX database resides.

2. Select the Dynamics AX database, create a new query, and copy the SQL

statement from Trace Parser from the previous recipe. Execute the query to
ensure it is error free:

SQLQuery2.sql - S...ministrator (80))*
[3ELECT COUNT(T1.RECID)
\‘ FRON CUSTTRANS T1

v [%

WHERE | (DATRAREAID='ceu')
AND [APPROVED=1) ||

m

€ | 1

I Resuls 3 Messages

[Mo column name)

1

(&| SEA-Dev (10,50 RTM) | CONTOSOVAdministrator ... | MicrosoftDynamicsX | 00:00:00 | 1 rows

3. Right-click anywhere in the query window, and from the context menu select Analyze

Query in Database Engine Tuning Advisor, and then click on Start Analysis and wait
for the results:

346

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

MY Dutabist Engina Tuning Advitor R A
File 0at View Actions Tooli Window Help =
Lo K

SEADer - Administiator WIAZIIZEMIZAM |

Torgllers | Poges Racorandiions | Fegt

= i STADw
£ Admrwraten 11020222 () T

5| (pletisin Mo = [y —_— Rtcommreraipion = Tpstol Psconmandston Dask Pation Schese » Soa(KI) Daimtion

¥ [Micoscmymnicud. T ol [CUSTTRANG] comnm B _da_uw_13132ETI_@1_17 [RATAARLAID] CAFFRDVED
¥ [Micsifiynacaiit 0 [cbol ICUSTTRAIG] cmnie B e VIVIZE0ETI_VEE_1T TshiS LiIEAIL | L
¥ 1§ Micoscifymmscaitt 7 [l EUSTTRANS] cmsin T _dha_indes CUSTIRANS 25 139222867 K17 K& = (WAPPROVED e IDATAAAENE uic)

B farpt e
CACATE NOKCLUSTERED INDEX .
| e ruden, CLIS T TRANS_29 1FIZZ05R K17 K80 | O e}
[ELSTIRARS]
i
PPPRCVED] ASC
AR A5C
MWITHISOAT IN_TEMPON = OFF, IGNOAE_DUP. KEY = OFF
DHOP_EXSTIHG = OFF. CHUNE = DFFI O PRIRAKY)

Coy o Ciotond. | [Co]

Emal

O Gerweeal

Bl Stalus

Shew einting obtects Wl Sow oot ko siges of eeshing chincly

Turing session campletesd sure ershlly,

The goal of this recipe is to demonstrate how we can use suggestions from Database Engine
Tuning Advisor to improve the performance of SQL statements in Dynamics AX. As an example,
we use the SQL statement from the previous recipe that contains a non-indexed field in its
where clause.

Database Engine Tuning Advisor can be opened from the Tools menu of SQL Server
Management Studio, or directly from the right-click context menu of the query window. In the
latter case, it will automatically analyze a query specified in the query window.

Once the analysis is completed, Database Engine Tuning Advisor displays a list of
recommendations, which can be reviewed by clicking on the value in the Definition column of
the Recommendations tab page.

In this recipe, the tuning advisor suggests creating database statistics and a new index. The
index here is the most important element. In the SQL Script Preview window, we can see
which fields are included in the index and we can create this index in Dynamics AX.

Normally, after creating indexes, we have to run Database Engine Tuning Advisor to verify
whether the estimated query performance was improved.

See also

In this chapter:

» Using Dynamics AX Trace Parser

347

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Symbols

#CurrentList macro 84
#CurrentVersion macro 84

A

accounting module 217
addDataField() method 72
addDataSource() method 27
addDependency() method 103
addField() method 62
addGroup() method 62
addimage() method 62
addLink() method 27
addLookupField() method 163
addMenultemButton() method 62
addParameterType() method 12
addRange() method 29
addSelectFieldEntry() method 37
addSortField() method 27
addTabPage() method 62
addText() method 62
addTreeltem() method 91, 133
addVoucher() method 224
AllowCreate property 168
AllowDelete property 168
AllowEdit property 168
allowUpdateOnSelectCtri() method 66
AND operator 28
AOT 25, 57
AOT objects 309
appendChild() method 44
Application Integration Framework 42
application version

modifying 329-331

working 332

Index

ApplicationVersion class 329
arrays fields

using 29
assert() method 35
automatic lookup

creating 158-160
automatic transaction text

modifying 225-227
availableltems() method 131
available list

building 120-127
AxdLedgerCurrency object 284

backColor() method 147
beginBlock() method 315
beginDrag() method 96
browse
building, for folder lookup 185-187
browseForFolderDialog() method 188
browseForPath() method 187
bStr() method 258
BudgetModelTree class 92, 96, 132, 169
buf2Buf() function 24
buildDesign() method 79
buildTree() method 91, 132
business operations, Dynamics AX
automatic transaction text, modifying 225-
227
electronic payment format, creating 243-251
general journal, creating 208-214
general journal, posting 215, 216
ledger voucher, creating 221-225
ledger voucher, posting 221-225
project journal, processing 217-220
purchase order, creating 229, 230

www.it-ebooks.info

http://www.it-ebooks.info/

purchase order, posting 231-235

sales order, creating 236-238

sales order, posting 239-243
segmented entry control, using 202-207

C

cacheAddMethod() method 340
canMove() method 96
CheckBox control 114
checklist

about 97

building 97-104
checklListltems() method 104
checkListsHook() method 104
checklLists() method 104
chooseColor() method 197
classFactory object 72, 184
clicked() event method 326
clicked() method 154
close() method 85,112, 251
code execution time

calculating 334, 335
color picker lookup

about 194

creating 194-199
ComboBox control 114, 140, 165
Commalo class 48
Comma Separated Value. See CSV
CommarTextlo class 51
COMVariant class 258
con2Str() function 51
construct() method 310
ConsumeBasicDocumentService 290

controlMethodOverloadObject() method 66

CreateCommakFile class 48
createElement() method 44
createLine() method 230, 238
create() method 111,211
createNode() method 91, 132
createTextNode() method 44
CSV 46
CSV files

about 46

creating 46-49

reading 49-51
CustConsistencyCheck class 40

350

CustCreate class 58, 61
CustGroupDynamic class 68
CustGroup table 158, 336
customColors variable 198
CustomCurrencyServices 299
custom filter

about 113

creating 114-117
custom instant search filter

about 117

creating 118-120
custom options

displaying, alternatives 175-178
custom options list

displaying 173, 174
custom service

about 275,298

consuming 301, 302

creating 298-300

working 301, 303
CustSelect class 66
custVendOutPaymRecordRootClassld()

method 250
CustVendPaymProposalTransferToJournal
class 227

D

data
exporting, to XML file 42-44
importing, from XML file 44-46
data consistency check
about 37
enhancing 38-41
data() method 23, 24
date effectiveness feature
about 52
using 52-56
delete() method 111
development project
searching 322-324
DevelopmentTools menu 315
dialogAddFileName() method 250
Dialog class 58, 66
dialog event
about 63
handling 63-67

www.it-ebooks.info

http://www.it-ebooks.info/

DialogField class 58
DialogGroup class 58
dialog() method 250
dialogPostRun() method 66
dialogs
about 58
creating 58-62
working 62
dialogSelectCtri() method 66
DialogTabPage class 58
DimensionAttributeValueCombination table
205, 209
DimensionDefaultingEngine object 207
display method
caching 338-341
display methods 338
displayOption() method 147
document filtering 297
document handling note
adding 19, 20
document service
about 275
consuming 290, 291
creating 285-289
working 289, 292
dolnsert() method 22
drag-and-drop functionality, tree control 92,
95
dragOver() method 96
drop() method 96
dynamic form
building 68-72
Dynamic property 337
Dynamics AX
alternatives, for displaying custom options
175-178
application version, modifying 329, 331
automatic lookup, creating 158-160
available list, building 120-127
browse, building for folder lookup 185-187
business tasks, processing 201
checklist, building 97-104
code execution time, calculating 334, 335
color picker lookup, creating 194-199
custom filter, creating 114-117
custom instant search filter, creating 118-120
custom options list, displaying 173, 174

custom service, consuming 301, 302

custom service, creating 299-301

development projects, searching 322, 324

dialog event, handling 63-67

dialogs, creating 58-62

dialogs, working 62

display method, caching 338-341

document service 286-288

document service, consuming 290-292

document service, creating 285

dynamic form, building 68-72

CSV files, creating 46-49

CSV files, reading 49-51

data consistency check, enhancing 38-41

data, exporting to XML file 42-44

data, importing from XML file 44-46

date effectiveness feature, using 52-56

document handling note, adding 19, 20

macro, using in SQL statement 30, 31

normal table, using as temporary table 21,
22

number sequence, creating 8-13

primary key, renaming 13-17

query object, building 26, 27

record, copying 22-24

records, merging 17, 18

SQL statement, executing 31-35

Dynamics AX Trace Parser, using 341-345

editor template, creating 310-314

efficient SQL statements, writing 336-338

enhanced document service, using 292-296

existing document service 281

external service, consuming 303-307

forms 57

form splitter, adding 72-77

form, used for building lookup 163-168

images, adding to records 147-150

images, displaying as part of form 150-152

images, preloading 128-133

last form values, saving 82-85

lookup, building based on record description
179-184

lookup, building for file selection 190-193

lookup, creating dynamically 161-163

modal form, creating 78, 79

MorphX 309

multiple forms, modifying dynamically 79-81

351

www.it-ebooks.info

http://www.it-ebooks.info/

multiple records, preprocessing 144-146
number sequence handler, using 110-113
Personalization form, modifying 325-328
records, coloring 146, 147
right-click context menu, modifying 317-321
selected list, building 120-127
SQL Server Database Engine Tuning Advisor,
using 346, 347

stored image, saving as file 153-156
system metadata service 279
system query service 276
Tools menu, modifying 315, 316
tree control, using 86-91
tree lookup, building 169-173
View details link, adding 105, 107
wizard, creating 135-144

Dynamics AX 2012 253

Dynamics AX Trace Parser
about 341
using 341-345
working 345

E

EditorScripts class 312
editor template

about 310

creating 310-312

working 314, 315
EDT relations migration tool 158, 159
electronic payment format

about 243

creating 243-251
e-mail

sending, Outlook used 271-273
E-mail message button 272
endBlock() method 315
enhanced document service

using 292-296

working 297
enter() method 118,119
Excel file

about 254

creating 254

creating, steps 254, 255

reading 256, 258

SysExcel classes, using 254

working 255-258
executeQuery() method 115,117,118, 120
existing document service
consuming 281-283
working 284
expanding() method 91
expandTree() method 91
Export to Excel function 254
eXtensible Business Reporting Language. See
XBRL
Extensible Markup Language. See XML
external service
consuming 303-306
working 307

F

fieldid2ext() function 29
file

stored image, saving as 153-156
FileloPermission class 49, 51
fileNameLookupFilename() method 192
fileNameLookupFilter() method 192, 193
fileNameLookuplnitialPath() method 192
fileNameLookupTitle()method 192
fileNameSplit()function 192
filePathLookupTitle() method 187
file selection

lookups, building for 190-193
fillQueryTreeQueryDatasource() method 325
filterLookupPostRun() method 168
filterLookupPreRun() method 168
findChildren() method 324
findMainAccountld() method 24
find() method 104, 314
findMethod() method 315
findOrCreateRange() method 117
findTableFields() method 266
findValue() method 183
finished() method 104
finish() method 144
firstOnly keyword 337
fixed assets journal 207
folder browsing lookups

about 185

Make New Folder button, adding 188, 189

352

www.it-ebooks.info

http://www.it-ebooks.info/

folder lookup

browse, building for 185, 187
form

about 57

used, for building lookup 163-168
form behavior 57
FormHelp property 169
FormRowDisplayOption object 147
formRunClass() method 184
form splitter

about 72

adding 72-77
form tree controls 169

G

general journal

about 207

creating 208-214

posting 215, 216
getCallerStringControl() method 168, 172
getChangedKeys() method 297
getCheckListCaption() method 104
getCheckListGroup() method 104
getCurrencyOperation operation 307
getExpression() method 37
getFormDialog() method 62
getHelpLink() method 104
getHtmlHeader() method 104
getinterfaceld() method 104
getLedgerDimension() method 207, 209, 211
getMenultemName() method 104
getMenultemType() method 104
GetTableMetadataByName() 281
getTickCount() method 334, 335
getTransactionText() method 226, 227
global lookup functions

about 174

pickClass() 175

pickDataArea() 174

pickField() 175

pickTable() 175

pickUser() 174

pickUserGroups() 174
Grid control 122

images
about 127
adding, to records 147-150
displaying, as part of form 150-152
imagesCompanylmage table 150
preloading 128-133
indent() method 315
info() function 51
initFromJournalName() method 211
initFromJournalTable() method 211, 219
init() method 122, 124,126, 339
initParmDefault()method 84
initValue() method 230
insert() method 22,211
interfaceName() method 250
isApplicableMethod() method 313, 315
isStartupProject() helper method 322

J

journal posting 215
journals 207
JournalTransData class 211
jourPost object 216
jourTable object 211
jourTransData object 211
jumpRef() method 107, 205

L

last form values

saving 82-85
lastValueDataAreald() method 85
lastValueDesignName() method 85
lastValueElementName() method 85
lastValueType() method 85
lastValueUserld() method 85
Ledger account control 202
LedgerJournalCheckPost class 216
LedgerJournalStatic class 209, 211
LedgerJournalTransData class 211
LedgerParameters form 202

353

www.it-ebooks.info

http://www.it-ebooks.info/

LedgerParameters table 202
ledger voucher

about 221

creating 221-225

posting 221-225
linkActive() method 112
LinkPredecessors() method 270
list

displaying, of custom options 173, 174
loadAll() method 13
loadAutoCompleteData() method 204
loadModule() method 8,12
loadSegments() method 204
lookupBudgetModel() method 171
LookupButton property 196
lookup() method 162, 163, 182, 188
lookups

about 157

building, based on record description 179-

184

building, for file selection 190-193

creating, dynamically 161-163

creating, for pre-defined options 173, 174
lookupValue() method 183

macro
using, in SQL statement 30, 31
MainAccountWizard class 138
main() method 48, 66, 310
Make New Folder button
adding 188, 189
manual folder browsing lookup 187
merge() method 18
metadata service 279
Microsoft Office Excel. See Excel file
Microsoft Project file
about 266
creating 266-268
creating, steps 268-270
working 270
modal form
about 77
creating 78, 79
MorphX 309
mouseDbIClick() method 170, 173

354

mouseUp() method 170, 173
move() method 96
multiple forms
modifying, dynamically 79-81
multiple records
preprocessing 144-146

newBlank() method 44
newFile() function 46
newForm() constructor 124
newForm() method 131
newlournalTransData() constructor 211
newlJournalTransData() method 209
newlLedgerJournalTable() constructor 216
newParameters() constructor 163
next() method 35
nextNode() function 46
non-customizable built-in system services
275

normal table

using, as temporary table 21, 22
NumberSeqApplicationModule class 13
NumberSeqApplicationModule derivative

classes 8

NumberSeq class 230
NumberSeqFormHandler 110
numberSeqFormHandler() method 110,113
numberSeqFormHandler object 113
NumberSeqModuleCustomer class 8, 12
number sequence

about 8

creating 8-13
number sequence handler

about 110

using 110-113
number sequence wizard 8
numRefCustGroupld() method 113

0

OdbcConnection class 35
ODBC databases 35
OnlyFetchActive property 168, 337
open() method 251, 258
OR operator

using 28

www.it-ebooks.info

http://www.it-ebooks.info/

outFieldDelimiter() method 251
Outlook

used, for sending email 271-273
outRecordDelimiter() method 251

P

pack() method 62, 66, 85
pageActivated() method 123
parmimagelList() method 131
parm() method 310
parmQuery() method 163
paymAccountName() method 160
payment journal 207
PaymTerm table 340
performance bottlenecks 336
performFormLookup() method 163
performTypeLookup() method 182
Personalization form

modifying 325-328

working 329
pickClass() function 175
pickDataArea() function 174
pickField() function 175
pickList() function 174, 175
pickTable() function 175
pickUser() function 174,175
pickUserGroups() function 174
pre-defined options

lookups, creating for 173, 174
primary key

renaming 13-17
project journal

about 217

processing 217-220
Project management module 217
purchase order

about 228

creating 229, 230

posting 231-235
PurchFormLetter object 233

Q

QueryBuildDataSource 278
QueryBuildFieldList 278
QueryBuildRange object 117

QueryDataSourceMetadata class 278

QueryMetadata class 278
querynotvalue() function 27
query object

about 25

building 26, 27
query service

consuming 276
queryValue() function 117

read() method 51
record description based

lookups, building 179-184
records

coloring 146, 147

copying 22-24

images, adding to 147-150

merging 17, 18
ReferenceGroup control 165
relations() method 27
Rename function 13
renamePrimaryKey() method 17
repeating elements

used, for creating Word document 262-266
resolveReference() method 205
right-click context menu

modifying 317-321

working 322
RunBase framework class 58
runCheckListSpecific() method 104
run() method 138

S

sales order

about 236

creating 236-238

posting 239-243
savelmage() method 154
save() method 104
segmented entry control

about 202

using 202-207
segmentedValueChanged() method 204
selecteditems() method 131
selected list

building 120-127

355

www.it-ebooks.info

http://www.it-ebooks.info/

selectForUpdate() method 337
selectionChanged() event method 327
selectionChanged() method 152
selectMultiple() function 177
selectSingle() function 175, 177
select statement 31
sendEMail() method 274
setNext() method 144
setSelection() method 119
setTmp() method 22
setupNavigation() method 138, 144
simple lookups 158
singleSelect() function 177
SQLBuilder classes 35
SQLBuilderSelectExpression class 37
SQL Server Database Engine Tuning Advisor

about 345

using 346, 347

working 347
SQL statement

executing, directly 31-35

macro, using in 30, 31
SQL statements

writing 336-338
SqlISystem object 34
start method 345
stateDropHilite() method 96
StaticText control 139
stop method 345
stored image

saving, as file 153-156
strFmt() function 28
StringEdit control 118, 139, 164
strPoke() function 250
substr() function 250
super() method 62,163
SysCheckList class 103, 104
SysCheckListltem class 103
SysClientCacheDataMethodAttribute attribute

341

SysContextMenu class 319
SysEntryPointAttribute attribute 301
SysExcelCells class 256
SysExcel classes 256
SysExcelWorkbooks class 255, 258
SysFormTreeControl class 91

356

SysINetMail class 274

SysListPanelRelationTableCallback class

125,131
SysListPanelRelationTable class 124
SysQuery class 117
SysTableLookup class 163, 168
system metadata service

consuming 279, 280
working 281
system query service
consuming 276-278
working 278
SysWizard class 144

T

Tab control 121
TableMetadata class 281
TabPage control 121
template
Word document, creating 259-261
template_method_find() method 315
temporary table
normal table, using as 21, 22
textChange() method 118, 119, 144
Tools menu
DevelopmentTools menu 315
GlobalToolsMenu menu 315
MainMenu menu 315
modifying 315, 316
working 317
TransactionTxt class 227
tree control
about 85
drag-and-drop functionality 92-95
performance 91
using 86-91
tree lookup
building 169-173
TreeNode object 324

U

unpack() method 62, 66, 85
update() method 233
UserConnection class 35

www.it-ebooks.info

http://www.it-ebooks.info/

'}

validate() method 138, 205, 250
validateWrite() method 111, 144, 230, 238
value() method 117, 258
valueNot() method 117
valueUnlimited() method 117
variantType() method 258
VendTableSqlBuilder class 35
VendTable table 161
verifyltem() method 319, 322
View details link

about 105

adding 105-107
visible() method 256

W

where clause 31

while loop 51

WinAPI class 334
windowType() method 79

WindowType property 79

wizard
about 134
creating 135-144
working 143

Word document
creating, from template 259-261
creating, repeating elements used 262-266
working 262

writeExp() method 48

write() method 111

X

XBRL 41
X++ code 7,58
XML 41
XML file
data, exporting to 42-44
data, importing from 44-46
xppSource class 310

357

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

enterprise &

professional expertise distilled

PUBLISHING
Thank you for buying

Microsoft Dynamics AX 2012
Development Cookbook

About Packt Publishing

Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www . PacktPub .com.

About Packt Enterprise

In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order
to continue its focus on specialization. This book is part of the Packt Enterprise brand, home
to books published on enterprise software - software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

. o0
enterprise
professional expertise distilled

PUBLISHING

Microsoft Dynamics AX 2009
Development Cookbook

ISBN: 978-1-847199-42-3 Paperback: 352 pages
k } i : : Solve real-world Dynamics AX development problems
/\ ~ _.' b ; with over 60 simple but incredibly effective recipes
. é ‘"-‘ : s 1. Develop powerful, successful Dynamics AX

' LA projects with efficient X++ code

Microsoft Dynamics AX 2009 2
Development Cookbook ’

Proven AX recipes that can be implemented in
various successful Dynamics AX projects

3. Covers general ledger, accounts payable, accounts
receivable, project, CRM modules and general
functionality of Dynamics AX

Microsoft Dynamics AX 2009
Programming: Getting Started
ISBN: 978-1-847197-30-6 Paperback: 348 pages

Get to grips with Dynamics AX 2009 development
quickly to build reliable and robust business applications

1. Develop and maintain high performance
applications with Microsoft Dynamics AX 2009

Microsoft Dynamics AX 2009 . .
Programming: Getting Started 2. Create comprehensive management solutions to
meet your customer's needs

3. Best-practices for customizing and extending your
own high-performance solutions

4. Thoroughly covers the new features in AX 2009
and focuses on the most common tasks and
issues

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

. ".
enterprise
professional expertise distilled
"PUBLISHING

Microsoft Dynamics NAV
2009: Professional Reporting
ISBN: 978-1-84968-244-2 Paperback: 352 pages

Discover all the tips and tricks for Dynamics NAV report
building

1. Get an overview of all the reporting possibilities, in
and out of the box

Microsoft Dynamics NAV 2009: 2.

Professional Reporting

Understand the new architecture and reporting
features in Microsoft Dynamics NAV 2009

3. Full of illustrations, diagrams, and tips with clear
step-by-step instructions and real-world examples

Steven Renders

Microsoft Dynamics Sure
Step 2010

ISBN: 978-1-84968-110-0 Paperback: 360 pages

The smart guide to the successful delivery of Microsoft
Dynamics Business Solutions

1. Learn how to effectively use Microsoft Dynamics

Sure Step to implement the right Dynamics
Microsoft Dynamics Sure business solution with quality, on-time and on-
Step 2010 budget results

2. Leverage the Decision Accelerator offerings
in Microsoft Dynamics Sure Step to create
consistent selling motions while helping your
customer ascertain the best solution to fit their
requirements

Chandru Shankar Vincent Bellefroid

3. Understand the review and optimization offerings
available from Microsoft Dynamics Sure Step to
further enhance your business solution delivery
during and after go-live

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1:
Processing Data
	Introduction
	Creating a new number sequence
	Renaming the primary key
	Merging two records
	Adding a document handling note
	Using a normal table as a temporary table
	Copying a record
	Building a query object
	Using a macro in an SQL statement
	Executing a direct SQL statement
	Enhancing the data consistency check
	Exporting data to an XML file
	Importing data from an XML file
	Creating a comma separated value file
	Reading a comma-separated value file
	Using the date effectiveness feature

	Chapter 2:
Working with Forms
	Introduction
	Creating a dialog
	Handling a dialog event
	Building a dynamic form
	Adding a form splitter
	Creating a modal form
	Modifying multiple forms dynamically
	Storing last form values
	Using a tree control
	Building a checklist
	Adding the View details link

	Chapter 3:
Working with Data in Forms
	Introduction
	Using a number sequence handler
	Creating a custom filter
	Creating a custom instant search filter
	Building a selected/available list
	Preloading images
	Creating a wizard
	Processing multiple records
	Coloring records
	Adding an image to records

	Chapter 4:
Building Lookups
	Introduction
	Creating an automatic lookup
	Creating a lookup dynamically
	Using a form for building a lookup
	Building a tree lookup
	Displaying a list of custom options
	Another way of displaying custom options
	Building a lookup based on record description
	Building the Browse for Folder lookup
	Building a lookup for selecting a file
	Creating a color picker lookup

	Chapter 5:
Processing Business Tasks
	Introduction
	Using a segmented entry control
	Creating a general journal
	Posting a general journal
	Processing a project journal
	Creating and posting a ledger voucher
	Changing an automatic transaction text
	Creating a purchase order
	Posting a purchase order
	Creating a sales order
	Posting a sales order
	Creating an electronic payment format

	Chapter 6:
Integration with Microsoft Office
	Introduction
	Creating an Excel file
	Reading an Excel file
	Creating a Word document from a template
	Creating a Word document with repeating elements
	Creating a Microsoft Project file
	Sending an e-mail using Outlook

	Chapter 7:
Using Services
	Introduction
	Consuming the system query service
	Consuming the system metadata service
	Consuming an existing document service
	Creating a document service
	Consuming a document service
	Using an enhanced document service
	Creating a custom service
	Consuming a custom service
	Consuming an external service

	Chapter 8:
Improving Development Efficiency
	Introduction
	Creating an editor template
	Modifying the Tools menu
	Modifying the right-click context menu
	Searching for an object in a development project
	Modifying the Personalization form
	Modifying the application version

	Chapter 9:
Improving Dynamics AX Performance
	Introduction
	Calculating code execution time
	Writing efficient SQL statements
	Caching a display method
	Using Dynamics AX Trace Parser
	Using SQL Server Database Engine Tuning Advisor

	Index

