
www.allitebooks.com

http://www.allitebooks.org

Microsoft Dynamics AX 2012
R2 Services

Harness the power of Microsoft Dynamics AX 2012 R2
to create and use your own services effectively

Klaas Deforche

Kenny Saelen

P U B L I S H I N G

professional expert ise dist i l led

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Microsoft Dynamics AX 2012 R2 Services

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2014

Production Reference: 1190314

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78217-672-5

www.packtpub.com

Cover Image by Klaas Deforche (klaasdeforche@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Authors
Klaas Deforche

Kenny Saelen

Reviewers
Palle Agermark

Janet E. Blake

Tom Van Dyck

Mohit Rajvanshy

Acquisition Editor
Joanne Fitzpatrick

Content Development Editor
Arun Nadar

Technical Editors
Ankita Jha

Gaurav Thingalaya

Dennis John

Copy Editors
Gladson Monteiro

Aditya Nair

Shambhavi Pai

Stuti Srivastava

Project Coordinator
Akash Poojary

Proofreaders
Simran Bhogal

Ameesha Green

Maria Gould

Paul Hindle

Indexer
Monica Ajmera Mehta

Graphics
Ronak Dhruv

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

www.allitebooks.com

http://www.allitebooks.org

About the Authors

Klaas Deforche started working as a developer on Microsoft Dynamics AX in 2007
for the Belgian ICT company RealDolmen, primarily working with Dynamics AX 4.0.
He gained experience with AX 2009 while working on projects for some well-known
Belgian fashion retailers, especially on the integration side of things. He is currently
working on AX 2012 projects for customers in the healthcare sector. Klaas likes to
share his knowledge with the community, which is why he started his AX-oriented
blog artofcreation.be in 2009. This is also why, in 2012, Klaas co-authored the
book Microsoft Dynamics AX 2012 Services, Packt Publishing, to help spread knowledge
on the subject.

Writing this book is a team effort, so I would like to thank
everyone involved—co-author Kenny, everyone at Packt Publishing,
and the reviewers. Without all of you, this book would not have
been possible.

I would also like to thank the readers of the previous edition
for supporting us and providing feedback. It has been a great
motivation and inspiration for this book. Also, a big thanks to the
readers of my blog, fellow bloggers, and the Dynamics community.

Last but not least, thank you my family, colleagues, friends, and
girlfriend for their support. The time spent on this book could not
have been spent with you, so thanks for your patience.

www.allitebooks.com

http://www.allitebooks.org

Kenny Saelen is a Dynamics AX MVP who works for the Belgian ICT company
RealDolmen. He started as a developer on Microsoft Dynamics AX in 2004, primarily
working on a European customer implementation with Dynamics AX 3.0. At
RealDolmen, he gained experience with Dynamics AX 2009 while implementing AX
internally, followed by an implementation at a book wholesale company. Currently,
he is working as a technical architect for a worldwide customer implementation with
Microsoft Dynamics AX 2012 R2, mainly working towards integrating Dynamics
AX with other technologies such as SharePoint, BizTalk, and AgilePoint. He can be
reached through his blog ksaelen.be.

I would like to thank everyone involved in making this book happen,
starting with my co-author Klaas, for all the hours we've spent
together writing it. Many thanks to everyone at Packt Publishing for
the opportunity they have given us, and to the technical reviewers for
providing us with the right alternative insights.

Special thanks to my girlfriend and my little son. Writing this book
has proven to be much harder than I initially thought, but they have
been patiently supporting me all the way.

www.allitebooks.com

http://www.ksaelen.be
http://www.allitebooks.org

About the Reviewers

Palle Agermark has worked as a developer and technical consultant with
Concorde XAL and Microsoft Dynamics AX for more than 20 years. Palle has
worked for a number of years at Microsoft Development Center Copenhagen,
primarily developing the financial, accounts payable, and accounts receivable
modules; he has also worked on other things such as the unit test framework.

In 2006, Palle wrote a chapter named Extending Microsoft Dynamics AX for Inside
Microsoft Dynamics AX 4.0, Microsoft Press.

Currently, Palle works for one of Scandinavia's largest Microsoft Dynamics AX
partners—EG.

Palle lives in Copenhagen, Denmark, with his wife Rikke and daughter Andrea.

Janet E. Blake was introduced to Axapta 3.0 in 2006 by a friend who promised
her that she "would never get bored" and kept that promise. She is now a Technical
Solutions Architect on the mcaConnect team. She has two degrees from New York
University and spends her free time blogging at http://janeteblake.wordpress.
com, searching for AX books, and pondering over her next certification.

Janet was a reviewer for Microsoft Dynamics AX 2012 R2 Administration Cookbook,
Packt Publishing, which was published in November 2013.

I'd like to thank the authors and publishers for the opportunity to
review this terrific book. Also, endless thanks to my colleagues and
clients for keeping it interesting and fun!

www.allitebooks.com

http://www.allitebooks.org

Mohit Rajvanshy has spent nearly 10 years working on Microsoft Dynamics AX.
He started his career working with Microsoft Axapta 3.0 in 2004 and since then, he
has continued his professional journey working with various Microsoft Dynamics
AX releases. He worked as technical lead and developer, delivering various
customizations, upgrades, and integration projects in Microsoft Dynamics AX. He
is certified in Microsoft Dynamics AX 4.0 and AX 2012. More details about him can
be found at https://www.mcpvirtualbusinesscard.com/VBCServer/mohit.
rajvanshy/profile.

Currently, Mohit is working for Avanade Inc. and is based in Seattle, USA. Avanade
is Microsoft's largest Dynamics AX delivery partner.

Mohit has a passion for photography (http://www.flickr.com/photos/
mohitrajvanshy/) and likes to travel. Mohit also contributes to the Microsoft
Dynamics Community via his blog at http://daxer-dynamicsax.blogspot.com/.

Tom Van Dyck is a software engineer and technical consultant for Dynamics AX
and is currently working with an MS partner in Belgium. After completing a degree
in Computer Science and a few years of Visual Basic, ASP, and SQL programming,
he began working with AX in 2004.

Being part of different project teams and building a variety of solutions based on AX
Versions 3, 4, 2009, and 2012, he has built wide practical experience for himself.

Tom is a certified professional for AX with expertise in X++ development and a
special interest in performance issues and optimization.

I've been privileged to work closely with both Kenny and Klaas and
have got to know them as dedicated and experienced professionals.

To me, the two new and excellent chapters added complete the
picture. The one on tracing and debugging is my favorite by far. My
sincere congratulations on the added value you guys created in this
second edition!

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Instant Updates on New Packt Books
Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter, or the Packt Enterprise Facebook page.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Getting Started with Microsoft Dynamics AX 2012
Services 7

Introducing services and SOA 8
Example implementations 8

Bing API 9
Mobile application 9
Business Process Modeling (BPM) 9

Architectural overview 9
New and enhanced features 11

The AOS WCF service host 11
WCF adapters 11
Integration ports 12
IIS hosting without Business Connector 13
Non-XML support 14

AIF change tracking 14
Custom services 15
The SysOperation framework 15
Types of services 16

Document services 16
Custom services 17
System services 17

The query service 18
The metadata service 18
The user session service 18
The OData query service 19

Choosing the right service for the job 19
Complexity 19
Flexibility 20

Summary 21

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 2: Service Architecture and Deployment 23
Introducing WCF 23

Existing technologies 24
The ABC of WCF 24

Service deployment 25
Service operations 26
Inbound versus outbound ports 26

Inbound ports 26
Outbound ports 26

Basic versus enhanced ports 27
Basic ports 27
Enhanced ports 28

Bindings 33
Adapters 35

The NetTcp adapter 35
The HTTP adapter 35
The filesystem adapter 36
The MSMQ adapter 36
The Windows Azure Service Bus adapter 36
Custom adapters 37

Service generation - under the hood 37
Generated artifacts 37

Service contract and implementation 38
Message contracts 39

WCF configuration storage 40
The power of CIL 42

CIL output 43
Summary 45

Chapter 3: AIF Document Services 47
Introducing document services 48
Key components 48

The document query 48
The document class 50

Responsibilities of a document class 50
AxBC classes 53

Responsibilities of an AxBC class 54
The service class 57
The service node 58

Creating a document service 58
Setting the compiler level 59
Creating the query 60

Table of Contents

[iii]

Running the AIF Document Service Wizard 61
Selecting document parameters 62
Selecting code generation parameters 62
Generating code 64

Finishing up 65
Fixing compiler errors 65
Fixing tasks 66
Updating the service contract 68
Fixing best practice errors 68
Privileges 68
Setting mandatory fields 69

Updating an existing document service 70
Adding service operations 70
Updating supporting classes 71

Deploying a document service 71
Consuming a document service 71

Create 73
Find 75

Creating query criteria 75
Using Find 76

Read 77
FindKeys 78
Update 80
Delete 81
GetKeys 82

Document filter 82
Using GetKeys 83

GetChangedKeys 84
Asynchronous communication 85
The send service framework 87
Batch processing 88
Summary 89

Chapter 4: Custom Services 91
Key components 92

Attributes 92
Custom services attributes 92

Data contracts 93
Service contracts 94
Collection types 94

Creating custom services 95
The Title service 95

Creating the Title data contract 95
Creating the Title list data contract 98

Table of Contents

[iv]

Creating the Title service class 99
Creating the Title service operation 100
Creating the Title list service operation 100
Creating the Title service contract 101

Deploying services 101
The rental service 102

Rental header and line tables 102
Rental service operations 103
Rental data contracts 103
The createRental service operation 104

Consuming services 106
Example 1 – retrieving titles 106

Adding the service reference 106
Consuming the service 107

Example 2 – registering a rental 108
Creating the service reference – advanced 108

Summary 113
Chapter 5: The SysOperation Framework 115

SysOperation versus RunBaseBatch 116
Creating a SysOperation service 118

The data contract 118
Declaration and members 119
Query helper methods 120

Service and service operation 120
Menu item 122
Testing 123
Validation 123
Defaulting 125

Running a SysOperation service 126
Service and service operation 126
Execution modes 126

Synchronous 127
Asynchronous 127
ReliableAsynchronous 127
ScheduledBatch 127

Custom controllers 128
Usage scenarios 128

Initializing the data contract 128
Dialog overrides 128

Creating a controller 130
Declaration 130
The main() method 130

Table of Contents

[v]

Constructor 131
Menu item 133
Testing 134

Custom UI Builders 134
Creating a UI Builder 135

Declaration 135
The override method 136
The postBuild() method 136
Linking the UI Builder to the data contract 138
Testing 139

Multithreading 139
The individual task approach 140
The helper approach 141
Enabling multithreading 143

Summary 147
Chapter 6: Web Services 149

Installing Visual Studio tools 150
Visual Studio development 150

Introducing the USA zip code service 150
Creating the Visual Studio proxy library 151
Adding a service reference 152

X++ development 153
Deploying managed code 154

Deploy to Server 154
Deploy to Client 154

Consuming the web service 155
First attempt 155
Fixing configuration issues 157
Deploying between environments 158
Final result 159

Summary 161
Chapter 7: System Services 163

Introducing system services 164
Presenting a demo application 164

The metadata service 166
Filling the combobox 166

The query service 167
Fetching data for the grid 168
Paging the results 170

The user session service 172
Retrieving user information 173

Table of Contents

[vi]

The OData query service 175
Creating and publishing a data source 175

Creating a query 175
Setting up document data sources 176

Consuming the OData query service using Internet Explorer 178
Consuming the OData query service using Visual Studio 181

Adding a service reference 181
Fetching data for the grid 181

Consuming the OData query service using other applications 183
Limitations 184

Summary 184
Chapter 8: High Availability 185

Introducing high availability 186
Adding redundancy 186
Disaster recovery 187

Putting high availability into practice 187
The basic architecture 187
Application-level load balancing 188

Configuring the cluster 188
Adding a dedicated load balancer 191

Network Load Balancing 194
NLB for AX load balancers 195
NLB for services 197

Summary 201
Chapter 9: Tracing and Debugging 203

Installing development tools 204
Using the Microsoft Dynamics AX 2012 debugger 205

Debugging the SysOperation framework 205
Testing service operations 206

Using the Visual Studio debugger 208
Launching Visual Studio 208
Attaching the debugger to the AOS 209
Setting breakpoints 212
Debugging a service call 212

Using the Tracing cockpit 214
Collecting a trace 215

Using the integration port logging mode 219
Configuring the logging mode 220
Consulting the log 220

Using WCF message logging and tracing 223
Configuring message logging and tracing 223

Table of Contents

[vii]

Analyzing service traces 226
Analyzing message logging 226
Analyzing tracing 227

Summary 228
Appendix: Installing the Demo Application 229

Prerequisites 229
Dynamics AX 2012 models 229

Using PowerShell 230
Using AxUtil 230

Dynamics AX XPO file 230
Code snippets 231
Initializing number sequences 231
Visual Studio code 231

Opening the samples 231
Modifying the service references 232

Sample data 233
Index 235

Preface
Enterprise Resource Planning (ERP) systems such as Microsoft Dynamics AX 2012
play a central role in an organization, and therefore, there will always be the need to
integrate them with other applications. In many cases, services are the preferred way
to do this, and Microsoft Dynamics AX 2012 is now more flexible than ever when it
comes to the creation and use of these services. Understanding these services will
help you effectively identify where they can be used.

Microsoft Dynamics AX 2012 R2 Services is a hands-on guide that provides you with
all the knowledge that you need to implement services with Microsoft Dynamics
AX 2012 and 2012 R2. The step-by-step examples will walk you through many of the
tasks that you need to frequently perform when creating and using services. This
book has been updated to include features of the R2 release while staying relevant to
other versions of Microsoft Dynamics AX 2012.

What this book covers
Chapter 1, Getting Started with Microsoft Dynamics AX 2012 Services, introduces the
concept of services and explores the new features and enhancements made to
services in Microsoft Dynamics AX 2012.

Chapter 2, Service Architecture and Deployment, dives deeper into the service architecture
and explores the different options that are available when deploying services.

Chapter 3, AIF Document Services, focuses on the creation, deployment, and
consumption of the AIF document services.

Preface

[2]

Chapter 4, Custom Services, shows you how to create and deploy custom services and
consume them using a Windows Communication Foundation (WCF) application
using new concepts such as attributes.

Chapter 5, The SysOperation Framework, builds upon the knowledge gained from
developing custom services to demonstrate how you can run the business logic in
Microsoft Dynamics AX 2012 using services and the SysOperation framework.

Chapter 6, Web Services, walks you through all the steps that are needed to
consume an external web service in Microsoft Dynamics AX 2012 using the
Visual Studio integration.

Chapter 7, System Services, demonstrates how powerful the system services that are
provided out of the box can be and how they allow you to build applications faster.

Chapter 8, High Availability, shows you how you can go from a very basic architecture
to one that allows for the high availability of services.

Chapter 9, Tracing and Debugging, guides you through the many different debugging
and tracing options that are available to troubleshoot services.

Appendix, Installing the Demo Application, describes how to install and use the demo
application that you need to perform most of the examples in this book.

What you need for this book
• Microsoft Dynamics AX 2012 R2 CU7 is used in this book, but almost all the

content applies to all versions of Microsoft Dynamics AX 2012
• Microsoft Visual Studio 2010
• WCF Service Configuration Editor and Microsoft Service Trace Viewer,

which you can download as part of the Windows SDK and comes with
some versions of Visual Studio

A full list of software requirements can be found in the Microsoft Dynamics AX 2012
System Requirements document available for download at http://www.microsoft.
com/en-us/download/details.aspx?id=11094.

Preface

[3]

Who this book is for
When you are developing for Microsoft Dynamics AX 2012, you will certainly
come in contact with services, even when you are not doing integration scenarios.
Because of that, this book is aimed at all Microsoft Dynamics AX developers, both
new and experienced.

This book assumes no other knowledge than a basic understanding of MorphX
and X++. Even beginners will be able to understand and complete the examples
in this book. Those new to services will get the most out of this book by doing a
complete read-through, but those who are experienced can jump right in. The idea
is that this book can be used both to educate yourself and as a resource that can be
consulted during development.

Some examples use C#.NET, so experience with Visual Studio is a plus but not a
must. This book is not aimed at .NET developers.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"The service contract is a reflection of the DocumentHandlingService class that can
be found in the AOT."

A block of code is set as follows:

public static void main(Args args)
{
 SysOperationServiceController controller;
 controller = new SysOperationServiceController();
 controller.initializeFromArgs(args);
 controller.startOperation();
}

www.allitebooks.com

http://www.allitebooks.org

Preface

[4]

Any command-line input or output is written as follows:

T000000007 The Dark Knight 119

T000000008 The Lord of the Rings: The Return of the King 112

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Go to the
Service Groups node, right-click on it, and click on New Service Group".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Getting Started with Microsoft
Dynamics AX 2012 Services

Microsoft Dynamics AX 2012 introduces a lot of new features that are related to
the Application Integration Framework (AIF) and services in general. Many of
the existing concepts have been radically changed. This chapter unveils these new
features and enhancements made to the services in Microsoft Dynamics AX 2012.

At the end of this chapter, you will have a clear picture of what services mean in the
context of Microsoft Dynamics AX 2012. This should enable you to identify where
and when to use services in your solution and what type of service to use.

The following topics are covered in this chapter:

• Introducing services and SOA: We will start by defining what services are
and what SOA has to offer, and derive from that the scenarios in which they
can be used.

• Architecture overview: We will look at an overview of the services and
AIF architecture and familiarize ourselves with the key components of
the architecture.

• New and enhanced features: We will discuss the new features and
enhancements that have been made compared to Microsoft Dynamics
AX 2009. This is also an opportunity to find out why some of these
changes were made.

• Types of services and comparison: There are several types of services
available to choose from when implementing your solution. Therefore, it is
important to be able to distinguish between these different types and choose
the type that suits your needs best.

Getting Started with Microsoft Dynamics AX 2012 Services

[8]

Introducing services and SOA
So what is a service? The best way to understand what a service is, is understanding
why you would need a service. Typically, there are a lot of different applications
being used in an enterprise. Sometimes this is by design; for example, because a
specialized functionality is needed that is not implemented in the ERP system. In
other cases, legacy systems are not replaced when implementing an ERP system,
simply because they do their jobs well. Whatever the reasons, these or others, the
result is the same: a growing number of different applications.

One of the problems with these applications is that they are likely to have been built
using different technologies. Because they speak a different language, it makes them
unable to communicate with each other. This is a problem that services address by
providing a means by which applications can communicate, independent of their
technology. They achieve this by adhering to standards and protocols so that, in
essence, they start speaking the same language.

A service should have many of the same qualities as modern applications.
Applications should be modular, components should be reusable, and everything
should be loosely coupled. These principles also apply when developing services.
Your services should have a well-defined functionality and should be able to
autonomously execute that functionality without interaction with other services.

Services should also be abstract. By this we mean that other applications should not
have to know the inner workings of the provider in order to use the service. This can
be attained by hiding details such as how data is stored, what technologies are used,
and how the business logic is implemented. Abstraction is not an end goal, but a way
to achieve loose coupling and reusability.

A service is also self-describing, meaning it can provide other applications with
metadata about itself. This metadata describes what operations can be used and what
the input and output is. In the case of Microsoft Dynamics AX, this information is
published using the Web Service Description Language (WSDL).

All of these qualities make services usable in a Service-Oriented Architecture
(SOA). In an SOA, services are published and made discoverable. Services are
then composed to create loosely coupled applications.

Example implementations
To make the previous explanation about services more concrete, we will take a look
at three very different scenarios in which services can be used.

Chapter 1

[9]

Bing API
Microsoft provides an API for Bing Maps and Search that is available to developers
in various ways, including a web service. Developers can use this service for things
such as calculating a route between two addresses, locating an address on a map,
getting search results for a certain query, and so on. It's not hard to imagine this
service being used in a logistics application; for example, to calculate the most
efficient route for delivering goods to customers.

Mobile application
Let's look at a scenario where a mobile application has to be developed for Microsoft
Dynamics AX 2012. Even if your mobile application contains business logic to work
offline, data will have to be sent back to the Application Object Server (AOS) at
some point. The mobile application could use services to execute business logic and
send data to the AOS when a network is available. A mobile application can also be
built without containing business logic, in a way that it only renders a Graphical
User Interface (GUI). In this scenario, the application will have to stay connected to
the AOS over the network because the AOS will drive the application and tell it what
to do using services.

Business Process Modeling (BPM)
You can use services in an SOA to model business processes. When all
requirements for the business processes are available as services, it is possible to
compose processes entirely using services. When done right, this is very powerful
because of the great flexibility that the combination of BPM and SOA provides.

Architectural overview
Depending on the requirements of your projects, a different architectural approach
will be needed. To make the right decisions when designing your solutions, it is
important to understand the services and AIF architecture.

Compared to Microsoft Dynamics AX 2009, there have been a lot of improvements
made to the service architecture in Microsoft Dynamics AX 2012. The biggest
improvement is the native Windows Communications Foundation (WCF) support.
As a result, the proprietary Microsoft Message Queuing (MSMQ) and BizTalk
adapters that were available in Microsoft Dynamics AX 2009 have been deprecated
and replaced by adapters that use WCF. The MSMQ adapter in particular is replaced
by an adapter that uses the WCF NetMsmq binding. The filesystem adapter remains
intact and still allows you to import and export messages from and to the filesystem.

Getting Started with Microsoft Dynamics AX 2012 Services

[10]

All services are WCF services and are hosted on the AOS. When an application wants
to consume these services on the local network, no further deployment is needed
because it can connect directly to the AOS. Just like with Microsoft Dynamics AX
2009, deployment on Internet Information Services (IIS) is needed for consumers
that are not on the intranet. However, the services themselves are no longer deployed
on IIS; instead, a WCF routing service on the IIS routes everything to the AOS.

If you want to modify messages before they are received or after they are sent,
you can use pipelines and transformations. Pipelines only apply to the body of a
message and are handled by the request preprocessor and response postprocessor.
You can use transformations to transform a complete message, including the header.
This allows you to exchange messages in a non-XML format.

The following diagram depicts the architecture as it is in Microsoft Dynamics
AX 2012 and clearly shows the central role of WCF:

Chapter 1

[11]

While not displayed in the diagram, there is now load balancing support for
services using Windows Server Network Load Balancing (NLB). Combined with
NLB for IIS, which was already available, this enables high availability and load
balancing for services.

New and enhanced features
Services have been around for some time in Microsoft Dynamics AX. AIF
was initially introduced with the release of Microsoft Dynamics AX 4.0, with
Microsoft Dynamics AX 2009 continuing to build on that. But with the release
of Microsoft Dynamics AX 2012, Microsoft has really succeeded in bringing the
service functionality to a whole new level. Occasionally, even more features and
enhancements are added in new releases and cumulative updates. Let us take a walk
through the major changes that Microsoft Dynamics AX 2012 brings to the table.

The AOS WCF service host
The first major feature that has been added to this release is that the AOS is now the
host for the Microsoft Dynamics AX 2012 services. In previous releases, the exchange
of messages was either through adapters such as the filesystem, BizTalk, and MSMQ
adapter, or services that were exposed as WCF 3.5 services through IIS. With the
latter, IIS was acting as the host for the WCF services.

With this new release of Microsoft Dynamics AX, services will be exposed as WCF
4.0 services hosted directly in the AOS Windows service. As long as intranet users
and applications are consuming these services, no IIS is needed.

WCF adapters
Microsoft Dynamics AX 2012 provides a lot more support for WCF. Proprietary
adapters such as BizTalk and MSMQ that were previously available are now obsolete
and no longer available. Instead, support for MSMQ and BizTalk is provided by a
native WCF equivalent of these adapters.

This does not mean that creating custom adapters using the AIF adapter framework
is not supported anymore. Custom adapters can still be added by implementing the
AifIntegrationAdapter interface.

Getting Started with Microsoft Dynamics AX 2012 Services

[12]

Out of the box, Microsoft Dynamics AX 2012 comes with the following adapters:

• NetTcp: This is the default adapter used when creating a new integration
port. This adapter type corresponds to the WCF NetTcpBinding. It provides
synchronous message exchanges by using WS-* standards over the
Transmission Control Protocol (TCP).

• Filesystem: This can be used for asynchronous exchange of XML messages
stored in the filesystem directories.

• MSMQ: This is used when support for queuing is needed. Message exchange
is asynchronous and uses MSMQ. Note that choosing this adapter type
actually uses the WCF NetMsmq binding.

• HTTP: This supports synchronous message exchanges over the HTTP and
HTTPS protocols. This was already available in Microsoft Dynamics AX 2009,
but there is a difference in the deployment to the IIS. The business connector
is no longer used for services hosted on the IIS; instead, a WCF routing
service is used. There is more about routing services later in this chapter.

More information about the bindings that are used in these adapters
can be found on MSDN at http://msdn.microsoft.com/en-us/
library/ms733027.aspx. If you want to learn more about WS-*
standards, check out the Web Services Specification Index Page at
http://msdn.microsoft.com/en-us/library/ms951274.aspx.

Integration ports
In Microsoft Dynamics AX 2009, there was a lot of configuration required to get AIF
up and running. This included configuration of the following:

• Endpoints
• Local endpoints
• Channels
• Endpoint users
• Endpoint constraints

Chapter 1

[13]

Now, integration ports have been added and they provide a simpler way to configure
services. There are two types of integration ports: inbound and outbound. Which type
you should use for your service depends on whether the message originates from
outside or inside of Microsoft Dynamics AX.

The inbound integration ports can be divided into two types: basic and enhanced. Out
of the box, Microsoft Dynamics AX 2012 already has some services that are associated
with basic integration ports. These have been deployed and enabled by default. We
will discuss how these basic ports differ from enhanced ports in later chapters.

Instead of having Microsoft-Dynamics-AX-specific endpoints and channels,
integration ports use native WCF to deploy services and therefore endpoints,
security, behaviors, bindings, and so on. All of this is configured using the WCF
Configuration utility. By default, integration ports are hosted on the AOS using
the NetTcp binding.

IIS hosting without Business Connector
Previously, when services were deployed on IIS, they used the .NET Business
Connector to communicate with the AOS. This has been replaced by a WCF routing
service that implements the IRequestReplyRouter interface. Regardless of whether
services are consumed from the intranet or the Internet, they are always processed
by the AOS. So, when services are deployed to be used on the Internet, they will
be deployed both on the AOS and on the IIS. The AOS hosts the service using the
NetTcp binding, and the IIS has a WCF routing service that will forward service
requests to the internal services hosted on the AOS.

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Microsoft Dynamics AX 2012 Services

[14]

Non-XML support
Using transformations, Microsoft Dynamics 2012 can transform inbound messages
from a variety of formats into a format AIF can understand. Likewise, outbound
messages can be transformed from the AIF format into a format required by external
systems. There are two types of transformations that can be used: Extensible
Stylesheet Language Transformations (XSLT) and .NET assemblies.

You can create XSLT transformations by using any text editor, but tools such
as BizTalk MAPPER, Visual Studio, or Altova MapForce make it very easy.
.NET assemblies are DLL files that can be compiled using Visual Studio and do
transformations in code. This is especially convenient for transforming from or into
a non-XML format. Some of the tools available can actually generate both the XSLT
and the managed code needed to compile a .NET assembly.

AIF change tracking
In Microsoft Dynamics AX 2009, document services had a set of six operations
available for use. They are as follows:

• Create

• Delete

• Find

• FindKeys

• Read

• Update

In Microsoft Dynamics AX 2012, there are two additional operations available
for developers:

• GetKeys: This can be used in combination with a document filter to only
obtain the keys of the documents that were the result of the filter.

• GetChangedKeys: This does the same as the GetKeys operation with the
addition of a date and time being passed to the action. This way, only the
keys of documents that have actually changed since that time are returned.

Chapter 1

[15]

Custom services
One of the major changes in Microsoft Dynamics AX 2012 is the ease and flexibility
by which you can create custom services. Instead of having to provide all the
technical details on how the documents need to be serialized by implementing
AifSerializable, you can now easily attribute class instance methods. These
attributes are used to identify service operations and data contract members.

The SysOperation framework
Prior to Microsoft Dynamics AX 2012, the RunBase framework was used to provide a
generic way to create processes and batch jobs in the system.

In Microsoft Dynamics AX 2012, the SysOperation framework allows you to leverage
the power of services to execute your business logic in Microsoft Dynamics AX. When
you create a service, it encapsulates the business logic so other components within the
system can use the service instead of accessing the business logic themselves.

The SysOperation framework makes use of the Model-view-controller (MVC)
pattern by using multiple components that each have their own responsibilities.
These components separate the business logic from the code that is responsible for
rendering the GUI and the classes that represent the data model. This is a great leap
forward from Microsoft Dynamics AX 2009, where everything was written in one
class that extended Runbase.

Also important to note is that, when a service has been created for the SysOperation
framework, it requires little effort to expose the same service to the outside world.
You can simply expose it using an integration port.

So the advantages of the SysOperation framework can be summarized as follows:

• It facilitates a service-oriented approach within Microsoft Dynamics AX
• It implements the MVC pattern for more efficient client/server

communication and separation of responsibilities
• The GUI is automatically generated based on data contracts
• Less effort in exposing business functionality externally using services

Getting Started with Microsoft Dynamics AX 2012 Services

[16]

Types of services
Microsoft Dynamics AX 2012 already provides a number of services out of the box.
These services, together with additional services that can be developed, can be divided
into three types. Each of the service types has its own characteristics and a different
approach to create it.

Document services
Document services use documents to represent business objects such as purchase
and sales orders, customers, and vendors.

A document service is composed of the following components:

• Document query: This is a query that is created in the Application Object
Tree (AOT) and contains all the tables that are related to the business
object that you want to expose. Based on this query, the Document Service
Generation Wizard can be used to generate the other artifacts that make up
the document service.

• AxBC classes: This class is a wrapper for a table and contains business logic
that is needed for the Create, Read, Update, and Delete (CRUD) operations.

• Document class: The purpose of this class is to contain business logic that is
associated with the creation and modification of the business entity itself. For
example, the AxdCustomer class could contain logic to handle a customer's
party information.

• Document service class: This is the actual service implementation class and
extends the AifDocumentService class. This class implements the service
operations that are published through the service contract.

When creating document services, developers need to make sure that the business
object is mapped correctly to the document query. The document services framework
will handle all other things, such as the serialization and deserialization of XML and
date effectiveness.

Document services can be deployed using the integration ports and all available
adapters can be used.

Chapter 1

[17]

Custom services
Custom services were already available in Microsoft Dynamics AX 2009, but support
for Extended Data Types (EDTs) was limited, which resulted in developers having
to provide custom serialization and deserialization logic. Microsoft Dynamics
AX 2012 introduces the concept of attributes. Attributes provide a way to specify
metadata about classes and methods. Two of these attributes are used when creating
data contracts: the DataContractAttribute and DataMemberAttribute attributes.

The DataContractAttribute attribute is used to define that a class is a data
contract. The DataMemberAttribute attribute is added to methods of data contracts
representing data members that have to be exposed. This way of defining data
contracts is very similar to other programming languages such as C#.

Support for more complex datatypes such as collections and tables has been added
so that these types can be serialized and deserialized without developers having to
provide the logic themselves.

In a typical custom service, you will find the following components:

• Service contract: A service contract is an X++ class that contains methods
with the SysEntryPointAttribute attribute. This identifies methods that
will result in a service operation contract when the service is exposed.

• Data contracts: A data contract is an X++ class that is attributed with the
DataContractAttribute attribute. It contains parameter methods that will
be attributed as data members for each member variable that needs to be part
of the data contract.

Custom services can be deployed using the integration ports and any available
adapter can be used.

System services
These services are new since the release of Microsoft Dynamics AX 2012. The
main difference between these services and the previous two types is that they
are not customizable and are not mapped to a query or X++ code. They are not
customizable because they are written by Microsoft in managed code. One exception
is the user session service, which is written in X++ code but is generally considered
as a system service.

There are four system services available for use in Microsoft Dynamics AX 2012:
the query service, the metadata service, the user session service, and the OData
query service.

Getting Started with Microsoft Dynamics AX 2012 Services

[18]

The query service
The query service provides the means to run queries of the following three types:

• Static queries defined in the AOT.
• User-defined queries by using the QueryMetaData class in the service.
• Dynamic queries that are written in X++ classes. These classes need to extend

the AIFQueryBuilder class.

When queries are called by a service, the AOS authorization ensures that the caller
has the correct permissions to retrieve the information. This means that unpermitted
fields will be omitted from the query result. Furthermore, when joined data sources
are not allowed to be used, the query call will result in an error that can be caught by
the calling application.

The resulting rows will be returned as an ADO.NET DataSet object. This can be very
useful when you make use of controls in your application that can be bound to a
DataSet object.

The query service can be found at the following link:
net.tcp://<hostname:port>/DynamicsAX/Services/QueryService

The metadata service
This system service can be used to retrieve metadata information about the AOT.
Consumers of this service can get information such as which tables, classes, forms,
and menu items are available in the system. An example use case for this service is
when retrieving information about the AOT and using it in a dashboard application
running on the Microsoft .NET Framework. We will create an example dashboard
application in Chapter 7, System Services, where we will use this service to look up
queries in the AOT.

The metadata service can be found at net.tcp://<hostname:port>/DynamicsAX/
Services/MetaDataService.

The user session service
The third system service is the user session service. With this service, you can
retrieve information about the caller's user session. This information includes the
user's default company, language, preferred calendar, time zone, and currency.

The user session service can be found at the following link:
net.tcp://<hostname:port>/DynamicsAX/Services/UserSessionService

Chapter 1

[19]

The OData query service
The OData query service is a REST-based service that uses the OData protocol to
expose the results of a query object in the AOT in an Atom feed. Open Data Protocol
(OData) is a web protocol that allows CRUD operations, but the Microsoft Dynamics
AX 2012 implementation only supports reading data.

The OData query service can be found at the following link:
http://<hostname:port>/DynamicsAX/Services/ODataQueryService

What is a RESTful web service?
Representational State Transfer (REST) represents a set of design
principles by which web services are developed. For more details about
REST, you can go to the following link: http://www.ibm.com/
developerworks/webservices/library/ws-restful/

Choosing the right service for the job
Now that it is clear what types of services Microsoft Dynamics AX 2012 has to offer,
the question arises as to when each type of service should be used. There is no simple
answer for this due to the fact that every type has its strengths and weaknesses. Let
us take a look at two factors that may help you make the right decision.

Complexity
Both document services and custom services can handle any business entity
complexity. The document services framework parses the incoming XML and
validates it against an XML Schema Definition (XSD) document. After validation,
the framework calls the appropriate service action.

Custom services, on the other hand, use the .NET XMLSerializer class and no
validation of data is done. This means that any validations of the data in the data
contract need to be written in code. Using custom services, you not only have to
code all validation, but also all the other business logic. When working with data
from the database, this puts custom services at a disadvantage because document
services use AxBC and document classes that already contain a lot of the logic
needed for CRUD operations.

Getting Started with Microsoft Dynamics AX 2012 Services

[20]

Flexibility
Document services have service contracts that are tightly coupled with the AOT
Query object. This means that when the query changes, the schema also changes.
Data policies allow you to control which fields are exposed. When using custom
services, this cannot be done by setup, but has to be done at design time.

Custom services have flexibility towards the service contract, while document
services lack such flexibility. Here, the developer is in full control of what is in the
contract and what is not. The operations, input parameters, and return types are all
the responsibility of the developer.

Another benefit of using custom services is the ability to use shared data contracts
as parameters for your operations. Think of a company-wide software solution that
involves the use of Microsoft Dynamics AX 2012 together with SharePoint and .NET
applications that are all linked through BizTalk. You could opt to share data contracts
to make sure that entities are the same for all of the components in the architecture.

In that scenario, you're able to create a data contract in managed code and reference
it in Microsoft Dynamics AX 2012. Then you can use that .NET data contract in your
service operations as a parameter.

There will probably be more factors that you will take into consideration to choose
between the service types, but we can come to the following conclusion about when
to use which type of service:

• Custom services: These should be used when exposing entities that have
a low complexity or data contracts that need to be shared between other
applications. They are also ideal when custom logic needs to be exposed that
may have nothing to do with data structures within Microsoft Dynamics AX.

• Document services: These should be used when exposing entities that
have high complexity and when validation of the data and structure would
require a lot of work for developers to implement on their own.

• Query service: This should be used only when read operations are needed
and there is no need for updates, inserts, or delete actions. It can be used
when writing .NET Framework applications that leverage the data from
Microsoft Dynamics AX and are returned as an ADO.NET DataSet.

• Metadata service: This service should be used when metadata information
about objects in the AOT is required.

Chapter 1

[21]

• User session service: This should be used when user-session-related
information is required.

• OData query service: The OData query service can be used when you want
to expose data from AX over HTTP using the OData protocol. This allows
for compatibility with other applications that support OData, such as the
PowerPivot add-in for Microsoft Excel.

Summary
In this first chapter, we went through the major changes that Microsoft Dynamics AX
2012 brings for services architecturally and saw that a lot has changed because of the
WCF support.

Looking at the new features that were added, it is clear that Microsoft has provided
us with a lot of new tools and methods for integration. A lot of work has been
done to enable developers to expose business logic in a more intuitive way using
attributes. The setup is simplified, and the system services allow you to build entire
applications without the need for development in X++.

There are a lot of options to choose from, so it is not always easy to choose the right
approach for your implementation. In this book, you will get to know all of the
features to help you to make the best choice.

In the next chapter, we will look at the service architecture in more detail and review
the many options that are available when deploying services.

Service Architecture and
Deployment

There is always more than one solution to a problem. This is certainly true when
designing solutions for your integration scenarios with Microsoft Dynamics AX 2012.
As we learned in the previous chapter, there are a lot of options to choose from, both
for deployment and development of services. In this chapter, we will focus on the
options that are available when deploying services.

The following topics are covered in this chapter:

• WCF: Windows Communication Foundation provides the basis for building,
configuring, and deploying services with Microsoft Dynamics AX 2012, so
we will discuss the key concepts that are related to WCF.

• Service deployment: Deployment of services is enabled by integration ports.
You will learn how to create, configure, and deploy these integration ports.

• Service generation: There is a lot going on when services are deployed.
We will explore the artifacts that are generated and learn about Common
Intermediate Language.

Introducing WCF
Windows Communication Foundation (WCF) was introduced with the release of
.NET Framework 3.0. This release of the .NET framework was in essence Version 2.0
along with four additional components:

• Windows Presentation Foundation (UI graphical platform)
• Windows CardSpace (identity management platform)

www.allitebooks.com

http://www.allitebooks.org

Service Architecture and Deployment

[24]

• Windows Workflow Foundation (workflow platform)
• Windows Communication Foundation (communication platform)

Existing technologies
WCF is meant to provide a unified programming model to build, configure, and
deploy services on distributed networks. It combines well-known technologies
that have been around for some time, such as .NET remoting, Web Services
Enhancements (WSE), MSMQ, ASMX, and message-oriented programming.

The preceding diagram is provided courtesy of wcftutorial.net.
If our introduction to WCF makes you curious about WCF and its
technologies, this website does a great job of explaining it in detail.

The ABC of WCF
An elaborate explanation of all of the features that WCF has to offer is not in the scope
of this book because it would take us too long to cover them all. However, one of the
important concepts to review is the ABC of WCF. Each service has endpoints through
which communication is possible, and an endpoint has the following properties:

• Address: The endpoint address can be used to tell consumers where the
service can be found. It consists of a Unified Resource Identifier (URI).

http://www.wcftutorial.net

Chapter 2

[25]

• Binding: The binding actually defines how communication is done. It defines
the protocol, security, and encoding required for services and clients to be
able to communicate with each other.

• Contract: Contracts are used to define what can be communicated. The
following are the three types of contracts:

 ° Service contracts: These describe the service functionality that is
exposed to external systems

 ° Operation contracts: These define the actual operations that will be
available on the service

 ° Data contracts: These are used to shape the data that will be
exchanged by the operations of the service

The following diagram sums it up. On one side, you have the client, and on the
other, a service. This service has one or more endpoints that each consist of an
address, a binding, and a contract. After adding a reference to the endpoint on the
client side, the client becomes aware of the ABC, and messages can be exchanged.

Service deployment
Microsoft Dynamics AX 2012 does a lot to simplify service deployment; not so much
by reducing the number of concepts, but by gradually presenting these concepts
to users when needed. This is immediately obvious when you look at the setup
menu for services and AIF. When you navigate to System administration | Setup
| Services and Application Integration Framework, you only see four options. The
first two are the most important: inbound ports and outbound ports. These two types
of ports are known as integration ports.

Service Architecture and Deployment

[26]

Integration ports provide a way to group services and manage them together.
They have at least the following properties:

• One or more service operations
• A direction that is inbound or outbound
• A category that is either basic or enhanced
• An adapter
• The address of the port

We will discuss these properties and others in detail.

Service operations
An integration port contains one or more service operations. These must be operations
from services that all have the same type. This means that you shouldn't mix operations
from document services and custom services because this can cause problems with the
WSDL generation.

Inbound versus outbound ports
Integration ports can be thought of as destinations for messages. Services within
these ports either receive messages from external applications or send messages to
them. This gives them a direction. Microsoft Dynamics AX 2012 arranges integration
ports based on this direction into inbound and outbound ports.

Inbound ports
Inbound ports are identified as integration ports that receive messages that
originate outside of Microsoft Dynamics AX 2012. In other words, the destination
for the message is Microsoft Dynamics AX 2012. One example of when to use an
inbound port (discussed later in this book) is when we create a WCF service and
consume it in a .NET application.

Outbound ports
An outbound port is a destination for a message that originates from inside Microsoft
Dynamics AX. In other words, it is used when you want to send a message to an
external application based on an action in Microsoft Dynamics AX 2012. You can use
outbound ports with asynchronous adapters such as the MSMQ and filesystem adapter.

Chapter 2

[27]

Basic versus enhanced ports
Integration ports can exist in two categories: basic and enhanced. Outbound ports
are always enhanced ports. Inbound ports can be either basic or enhanced.

Basic ports
Basic ports can only be created by developers because they are linked to a service
group. They are created in the Service Groups node in the Application Object
Tree (AOT). Services are added to the group, and after the service group has
been deployed, a basic integration port is created, which exposes all of the service
operations from the group. All basic ports are inbound ports that are hosted on
the AOS and use the NetTcp adapter. The WCF configuration editor allows you to
change the WCF options; but apart from that, there are few options you can set up.
Although this makes basic ports somewhat limited in their functionality, it has the
advantage of getting your services up and running in no time.

There are a number of services that come with Microsoft Dynamics AX 2012 that are
deployed by default. You can find these in the Inbound Ports form.

Creating a basic port
If you were to press the New button in the Inbound Ports form, you would not
create a basic port, but an enhanced port. To create a basic port, we will have to open
a developer workspace and perform the following steps:

1. Open the AOT.
2. Go to the Service Groups node, right-click on it, and click on

New Service Group.
3. A new service group will be created. Right-click on it and select Properties.
4. In the Properties screen, change the name to SRVTestBasicServiceGroup.
5. In the Description property, you can specify a meaningful label. This won't

show up anywhere, so this is not mandatory.
6. Next, right-click on the service group and then click on New Service

Node Reference.
7. In the Properties screen, click on the Service property and select a service

you want to deploy from the list.
8. Click on Save All in the AOT to save your changes.
9. To deploy the service group, right-click on the service group and then click

on Deploy Service Group.

Service Architecture and Deployment

[28]

After a few moments, you will see an Infolog message letting you know that all
service artifacts have been generated and that your service group is deployed and
activated. Your service is now visible in the Inbound ports form and is ready to
be consumed.

An interesting property on the service group node is the
AutoDeploy property. Setting this to Yes will automatically
deploy and activate the port when the AOS is started.

Enhanced ports
As the name suggests, enhanced ports provide more options than basic ports. Unlike
basic ports, they are not tied to service groups, but can be created in the Inbound
Ports and Outbound Ports forms. Before we take a look at the options that are
available on enhanced ports, let us first create an enhanced port.

Creating an enhanced port
Almost all options that are available on outbound ports are available on inbound
ports too. Inbound ports have more options, so for this demonstration, we will
create an inbound port.

Chapter 2

[29]

Before we create the port, we need to ensure that all services are registered within
the system. Registering services will insert a record in the AifService table for
each service and insert a record in the AifAction table for each service operation.
These records are then used to populate lookups and lists on the forms while setting
up services.

To register services, perform the following steps:

1. Navigate to System administration | Setup | Checklists |
Initialization checklist.

2. Expand the Initialize system section.
3. Click on Set up Application Integration Framework to register services

and adapters.

You should register services if you are using AIF for the first time or if you've added
new services or service operations in the AOT. This process will also register all
adapters and basic ports.

Now, to create an enhanced inbound port, let's perform the following steps:

1. Navigate to System administration | Setup | Services and Application
Integration Framework | Inbound ports.

2. Click on the New button or press Ctrl + N to create a new enhanced port.
3. In the Port name field, enter SRVTestEnhancedInboundPort.
4. Enter a description in the Description field so that you can easily identify the

port later.
5. On the Service contract customizations FastTab, click on Service operations.

The Select service operations form opens.
6. From the Remaining service operations list, select the

DocumentHandlingService.create operation and click on the arrow pointing
to the left to add this operation to the Selected service operations list.

7. Close the form.
8. Click on the Activate button to deploy the port.

Service Architecture and Deployment

[30]

Your enhanced port is now successfully created and activated. You cannot modify
the configuration of activated ports. To modify the configuration, first deactivate the
port by clicking on the Deactivate button.

Now that we've created an enhanced port, let's look at the options that are available
on the form.

Adapters
While basic ports only support the NetTcp adapter, enhanced ports allow you to
specify which adapter you want to use. There are three WCF adapters to choose
from: the NetTcp, HTTP, and MSMQ adapters. To exchange messages using
filesystem directories, the filesystem adapter is also available. We will go into
more detail about these adapters later in this chapter.

Service operations
With enhanced ports, you can manually select which service operations are to be
exposed. This is unlike basic ports, where all service operations of the services within
the service group are exposed.

Data policies
For custom services, the developer defines the parameters that are exposed in the
data contract. This is reflected in WSDL when the data contract is used to generate
the XSD schema for the type definition. The only way to change this schema is by
changing the data contract in the code.

Chapter 2

[31]

While exposing document services, you can change the schema that is generated
using data policies. Enabling or disabling fields in the data policies will add or
remove fields in the schema, allowing you to manage which fields are exposed or
not. It is also possible to mark fields as required.

Transforms
Transforms allow you to transform inbound and outbound messages that are
exchanged asynchronously. This transformation applies to the complete message,
including the headers. For inbound exchanges, the transforms are applied before the
message is stored in the gateway queue. For outbound exchanges, transforms are
applied after the message has been fetched from the gateway queue. The following
are the two types of transforms that are available:

• XSL: You can use Extensible Stylesheet Language Transformations (XSLT)
to transform any XML-based document to an XML document that uses the
AIF schema or vice versa.

• .NET assembly: When a document is not based on XML, for example, a text
file with comma-separated values (CSV), you can use a .NET assembly to
convert the file into an XML message that complies with the AIF schema.
This assembly is a DLL that contains a class that implements the ITransform
interface and contains the code that transforms the message.

Pipelines
Pipelines are a lot like transforms, but there are a few differences. They allow you
to transform contents of the message instead of the full message and can be used for
both synchronous and asynchronous exchanges. They are also run before or after the
transforms, depending on the direction. The following table explains the difference
between transforms and pipelines:

Property Transforms Pipelines
What it processes The full message including

header and body
Only the body of the message

Runs for inbound Before a message is stored in
the gateway queue and before
pipelines

After a message is retrieved
from the gateway queue and
after transforms

Runs for outbound After a message is retrieved
from the gateway queue and
after pipelines

Before a message is stored in
the gateway queue and before
transforms

Mode supported Asynchronous Synchronous and asynchronous

Service Architecture and Deployment

[32]

There are two types of pipelines available; these are as follows:

• XSL: This is similar to transforms that use XSL, except that the XSL is only
applied to the body of the message.

• Value substitution: The value substitution pipeline component allows you to
replace one value with another based on a simple lookup table. For example,
when messages are sent to a vendor, you can replace your currency code
with the currency code of your vendor; for example, EUR versus EURO.
When the direction is inbound, you can substitute in the opposite manner.
The value substitution is based on Extended Data Types (EDTs). A value
substitution map must be created, which contains a mapping between the
internal and external value for a specific EDT. These maps are set up in the
following form: System administration | Setup | Services and Application
Integration Framework | Value substitution maps.

You can easily create your own pipeline components by creating an X++ class that
implements the AifPipelineComponentInterface interface.

Value mapping
Value mapping is similar to the value substitution pipelines, but it differs by
allowing you to substitute values based on business rules. For example, you can
replace your item ID with the item number that is used by a vendor.

Document filters
Document filters can be used to filter the keys that are returned while calling the
service operations getKeys and getChangedKeys based on the query you provide.
These filters will only be applied when change tracking is activated. There's more
about this when we create a document service.

Troubleshooting
On the troubleshooting FastTab, you can enable logging for messages. When
activated, the following three options are available:

• Original document: When selected, only the original document before
modification by pipeline components is stored

• All document versions: When selected, a version of the document is stored
every time a document is modified by a pipeline component

• Message header only: When selected, only the headers of the documents
are stored

To consult the log, navigate to System administration | Periodic | Services and
Application Integration Framework | History.

Chapter 2

[33]

There is also the option to provide more information about exceptions in AIF faults
and the ability to send error messages for asynchronous requests.

Security
On the security FastTab, you can limit integration ports to only process requests
for specific companies instead of for all companies. Access can also be configured to
allow access only for certain users and user groups. For added security, be sure to set
these options as strict as possible.

Bindings
When a client and service communicate, there are several aspects to the communication.

• Synchronous/asynchronous: Messages can be used in a request/response
pattern or they can be used in asynchronous communication depending on
whether the client waits for the response or not.

• Transport protocol: The protocol used for transporting the messages can
vary depending on the needs. Protocols such as HTTP, Transmission
Control Protocol (TCP), Microsoft Message Queuing (MSMQ), and
Inter-process communication (IPC) can be used.

• Encoding: You have a choice on how to encode the messages. You can
choose to use plain text if you want maximum interoperability. Alternatively,
you can use binary encoding to speed up performance, or using the Message
Transport Optimization Mechanism (MTOM) to handle larger payloads.

• Security: There are also some options that can be used to handle security
and authentication. Security can be implemented at the transport level,
at the message level, or can be skipped altogether.

As you can imagine, keeping track of all of the options can be a little difficult,
and making the right choice on how to configure the different settings is not easy.
To solve this, WCF introduces bindings. A binding is merely a grouping of choices
that deal with each aspect of the communication that we just discussed.

WCF supports several bindings out of the box. If these do not suffice, there is always
the alternative of creating a custom binding of your own. The following are the most
commonly used bindings:

• NetTcpBinding: This uses the TCP protocol and is mainly used for
cross-machine communication over an intranet. It is WCF-optimized
and thus requires both the client and the server to use WCF.

www.allitebooks.com

http://www.allitebooks.org

Service Architecture and Deployment

[34]

• BasicHttpBinding: This binding is used to expose a service as an ASMX
web service so that older clients that comply with WS-I Basic Profile 1.1
are supported.

• WsHttpBinding: This binding is used for communication over the Internet.
It uses the HTTP and HTTPS protocols and complies with WS-* standards.
So, any party that supports the WS-* standards is able to communicate with
the service.

• NetMsmqBinding: This type of binding will be used when support is
needed for MSMQ queues. The NetMsmqBinding binding is actually
a compact binding that does not provide all of the possible options to
configure MSMQ. There are other bindings that provide more options.

Now that we have elaborated on some of the out-of-the-box bindings, you are
probably asking yourself, how can I make sure I'm using the appropriate binding
for my scenario? Well, the following flowchart may help you with this choice:

Chapter 2

[35]

Adapters
Microsoft Dynamics AX 2012 allows you to exchange messages using various
transport protocols. This is enabled by the use of adapters. An adapter has an
adapter type that determines if it can be used on an inbound port, an outbound port,
or both. The standard adapter types that are used are send and receive, receive or
send, and receive and respond. The naming of these types is rather confusing, but
the following table shows how this translates to inbound or outbound ports:

Adapter name Adapter type Inbound Outbound Mode
NetTcp Send and

receive
Yes No Synchronous

HTTP Send and
receive

Yes No Synchronous

Windows Azure
Service Bus

Receive and
respond

Yes No Synchronous/
Asynchronous

Filesystem
adapter

Receive or send Yes Yes Asynchronous

MSMQ Receive or send Yes Yes Asynchronous

Adapters also have an address property. This address is a URI that refers to the
destination or source location of the port. Depending on the adapter, this is a URL,
a filesystem path, or a message queue format name.

The NetTcp adapter
The NetTcp adapter is the only adapter that can be used on basic ports. On enhanced
ports, the NetTcp adapter is only supported for inbound ports. This adapter type
corresponds to the WCF NetTcpBinding and provides synchronous message
exchanges by using WS-* standards over the TCP.

The NetTcp adapter is used for communication with other WCF applications hosted
on an intranet.

The HTTP adapter
The HTTP adapter supports synchronous message exchanges over HTTP. When an
integration port that uses this adapter is activated, a WCF routing service is deployed
on IIS. This routing service routes all requests to the WCF services that are hosted on
the AOS.

Service Architecture and Deployment

[36]

The HTTP adapter can be used for synchronous communication when the NetTcp
adapter is not an option because of interoperability issues or because the services
have to be available on the Internet.

The filesystem adapter
The filesystem adapter is used for the asynchronous exchange of messages using files
that are stored on the filesystem. The exchange is asynchronous because it uses the
AIF gateway queue to store both incoming and outgoing messages. A batch job is
needed to process this queue. Files are then read from or written to a directory on
the filesystem.

The filesystem adapter can be used when there is a need to import or export files.
The filesystem adapter supports non-XML files by using transformations. This
adapter can also be used to decrease the load on the system, improving performance.
Instead of handling requests synchronously during working hours by using the
NetTcp or HTTP adapter, messages can be processed asynchronously in batches
during the nights or over the weekends.

The MSMQ adapter
The MSMQ adapter provides support for message queuing using MSMQ. This
adapter is actually a WCF adapter that uses NetMsmqBinding. Like the filesystem
adapter, this adapter exchanges messages asynchronously and can therefore be used
to decrease the load during working hours.

The Windows Azure Service Bus adapter
A new addition to Microsoft Dynamics AX 2012 R2 CU7, Service Bus is a messaging
service that is provided by the Windows Azure platform. It provides a secure way to
create cloud applications that connect over public networks to Microsoft Dynamics
AX. When a service is deployed using this adapter, it is exposed on IIS using the
WCF routing service, as is the case with the HTTP adapter. This service then listens
to Service Bus for messages sent by clients, forwards these messages to the services
hosted on the AOS, and sends a response back to Service Bus. Security is provided
by tokens that are handed out by an identity provider such as Active Directory
Federation Services (AD FS).

Chapter 2

[37]

Custom adapters
Having all of these features available, it's hard to imagine that you would need
another adapter. When you do have a scenario that cannot be covered with the
standard adapters, consider bringing Microsoft BizTalk Server into the picture.
Among many other things, BizTalk can act as an intermediary between Microsoft
Dynamics AX 2012 and an external application using any of the adapters that we just
described. When this still doesn't fit your needs, you can always create your own
adapter. You can do this by implementing the AIFIntegrationAdapter interface.

Service generation - under the hood
While services are being deployed when activating integration ports, there is more
going on than meets the eye. A service generator written in X++ kicks in and creates
the artifacts needed by the AOS to host the WCF services. These artifacts are files
containing managed code (C#) and contain the service implementation, message
contracts, and a WCF configuration. To explain this, we will take a closer look at one
of the out-of-the-box integration ports: the DocumentHandling port.

Generated artifacts
When you take a look at the DocumentHandlingService service node in the AOT, you
will find that this service has one method called Create(). So, when we deploy this
service, we expect the following generated artifacts to be able to host the WCF service:

• A service contract that contains the service's interface
• An operation contract for the Create service operation
• Request and response message contracts for each operation used for

implementing the Create operation
• A DLL file containing all of the previous artifacts

All of these generated artifacts can be found in the filesystem directory under
%ProgramFiles%\Microsoft Dynamics AX\60\Server\<Server Name>\bin\
XppIL\AppShare\ServiceGeneration\<Integration Port Name>.

Service Architecture and Deployment

[38]

Service contract and implementation
The service contract definition and implementation can be found in the
DocumentHandlingService.cs file. The service contract is a reflection of the
DocumentHandlingService class that can be found in the AOT. The following
code shows the part of the source file that defines the interface:

[ServiceKnownType("GetKnownTypes", typeof(ServiceHelper))]
[ServiceContract(Name = "DocumentHandlingService", Namespace="http://
schemas.microsoft.com/dynamics/2011/01/services")]
public interface DocumentHandlingService
{

 [OperationContract(Name="create")]
 [FaultContract(typeof(AifFault))]
 DocumentHandlingServiceCreateResponse Create(
DocumentHandlingServiceCreateRequest createRequest);

}

Let's take a closer look at the code of the service interface:

[ServiceContract(Name = "DocumentHandlingService", Namespace="http://
schemas.microsoft.com/dynamics/2011/01/services")]

The previous line of code states that the interface that follows this attribute is the
service's contract. The name of the contract and the namespace in the WSDL are also
defined as follows:

[OperationContract(Name="create")]
[FaultContract(typeof(AifFault))]
DocumentHandlingServiceCreateResponse Create(
DocumentHandlingServiceCreateRequest createRequest);

By using the OperationContract attribute, the previous statement defines that
the Create() method is a service operation. It also attributes the type of WCF
FaultContract that will be thrown if exceptions occur when this operation
is called. For Microsoft Dynamics AX WCF services, this will always be the
AifFault fault contract.

Chapter 2

[39]

As for the Create operation itself, the Create() method has been generated to
make use of a DocumentHandlingServiceCreateRequest message contract as the
input parameter. The return type of the operation is also a message contract of the
type DocumentHandlingServiceCreateResponse. Whether this return contract
is actually used in the WCF client depends on whether the service reference is
configured to generate message contract types on the client side.

A bit further in the file, we find the actual implementation of the
DocumentHandlingService service interface as shown in the following code snippet:

public partial class DocumentHandling : ServiceGroup,
DocumentHandlingService
{
 DocumentHandlingServiceCreateResponse DocumentHandlingService.Crea
te(DocumentHandlingServiceCreateRequest createRequest)
 {
 // Implementation code omitted
 }
}

The previous code shows the class implementing the DocumentHandlingService
interface and the actual implementation of the Create() method.

Message contracts
WCF uses SOAP messages to communicate. SOAP is a protocol that sends XML
messages. It uses an envelope to define what will be put in a message and how to
process it. The SOAP envelope contains a header and a body.

In WCF, message contracts are used to provide more control to the developer over
the structure of the SOAP message. Although Microsoft Dynamics AX 2012 does
not allow developers to create message contracts, they are generated by the service
generator. This is important because a call context is included in the message contract
that allows clients to pass contextual information specific to Microsoft Dynamics AX,
such as the message ID, the calling user, the company, and the language in which the
messages are displayed.

Service Architecture and Deployment

[40]

Message contracts should not be confused with data contracts. While message
contracts determine the structure of the SOAP message by providing a mapping
between the types and the SOAP message, data contracts are used to serialize the
types that are used within the message contract.

The MessageHeader attribute is used to specify that a member is part of the SOAP
header. In the following example, this is the case for the call context member. For the
rest of the members, the MessageBodyMember attribute is used as follows to specify
that the member will be part of the body of the SOAP message:

[MessageContract]
public class DocumentHandlingServiceCreateRequest
{
 [MessageHeader(Name = "CallContext", Namespace = "http://schemas.
microsoft.com/dynamics/2010/01/datacontracts")]
 public Microsoft.Dynamics.Ax.Services.CallContext context;

 [MessageBodyMember(Order=1)]
 public DocumentFileList _documentFileList;

 [MessageBodyMember(Order=2)]
 public DocuValueType _docuValueType;

 [MessageBodyMember(Order=3)]
 public Boolean _submitToWorkflow;
}

WCF configuration storage
WCF services can be configured by using configuration files. The advantage of using
configuration files is that they can be configured at the time of deployment instead of
at the time of designing.

The configuration is done in XML by providing elements that configure details such
as the bindings, behaviors, and endpoint addresses that are used to communicate
with the service. You can also use a configuration file to specify diagnostics elements
to enable tracing and logging.

Microsoft Dynamics AX also creates a configuration file to accompany the deployed
service. Developers can modify the contents of this configuration file by using the
WCF configuration tool, which can be started by clicking on the Configure button
on the integration port form, as shown in the following screenshot. The scope of
the WCF configuration tool will not be discussed in this book as it would be far
too detailed.

Chapter 2

[41]

Once the configuration is saved, Microsoft Dynamics AX will save the XML contents
of the file in the AifWcfConfiguration table in the AOT. When the Configure
button is used the next time, this content will be opened by the configuration tool.

Service Architecture and Deployment

[42]

The power of CIL
In Microsoft Dynamics AX 2012, code can be compiled to CIL and run in the .NET
CLR. But what does CIL mean and what is it used for?

Common Intermediate Language (CIL) is in essence an object-oriented assembly
language. It complies with the Common Language Infrastructure (CLI), which
is a specification that was developed by Microsoft to describe a set of rules that
programming languages need to comply with when they are targeting the CLI. One
of the most important aspects of the CIL is that it is a platform- and CPU-independent
instruction set. This enables the code to be executed on different environments as long
as they comply with the CLI specification.

The following diagram shows that the languages are first compiled in CIL, after
which the Common Language Runtime (CLR) compiles the platform-independent
CIL code into machine-readable code:

Chapter 2

[43]

As you can see, Microsoft Dynamics AX 2012 does not compile the X++ code directly
to CIL. It is compiled to p-code, which can be interpreted by the kernel first, and this
p-code is then compiled to CIL. This is quite a step forward because CIL is much
faster than X++. We also need to keep CIL in mind when developing services later
on. Code that runs on the server, such as batch jobs and services, will run in CIL,
and therefore the X++ code needs to be compiled to CIL.

As compilation into CIL takes a long time, it is not done automatically when the
X++ code is compiled. We need to do this manually when code has been modified by
using the new CIL compilation buttons in the developer workspace, as shown in the
following screenshot:

You can either start a full CIL generation or an incremental one. The main difference
between the two is that incremental generation only regenerates the objects that were
modified since the previous generation, while full generation completely regenerates
all objects. As you can imagine, the incremental process is much faster than the full
process, but do keep in mind that incremental generation will not always be enough.
Sometimes, you will have no option than to completely regenerate CIL, for example,
when you have removed a method from a class. No matter how you look at it,
compiling CIL is not optional; without CIL, your services cannot run!

CIL output
So, now the CIL generation is done, but what has changed and where can we
find the results of the process? The answers to these questions can be found in
the server's bin directory. By default, the filesystem folder is %ProgramFiles%\
Microsoft Dynamics AX\60\Server\<Server Name>\bin\XppIL\. In this folder,
you can find the resulting Dynamics.Ax.Application.dll assembly file along with
a list of NetModule files.

www.allitebooks.com

http://www.allitebooks.org

Service Architecture and Deployment

[44]

NetModule files differ from .NET assemblies as they do not contain an assembly
manifest. They only contain type metadata and compiled code. Next to the files
containing the CIL code, this folder may also contain a subfolder named source.
In this folder, we can find files with the .xpp extension. These files contain the X++
source code, and they can be used while debugging the CIL code in Visual Studio so
that the editor and debugger can show the actual source code.

Note that the existence of the source subfolder depends on the server configuration.
When the options are set to enable debugging on the server, the source folder will
be generated at the AOS startup. Without the options enabled, you cannot debug,
and so the source folder will not be generated as it is not needed. The following
screenshot illustrates this:

Chapter 2

[45]

Summary
In this chapter, we familiarized ourselves with the service architecture.
We clearly saw that Microsoft has put a lot of effort into providing us with a
simplified administration process for services by introducing integration ports.
Because a large part of the architecture is built on WCF, at least a basic understanding
of the technologies that are used in WCF is needed.

To enable all of these technologies in combination with Microsoft Dynamics AX 2012,
compilation into CIL was introduced. This allows the X++ code to be compiled into
CIL and benefit from all of the advantages CIL has to offer.

In the next chapter, we will start digging deeper into the AIF services and get some
hands-on time by creating our own AIF services.

AIF Document Services
When we think of services, we typically think about exposing business logic or
consuming it. In many cases, though, it is business data that needs to be exchanged.
With Microsoft Dynamics AX 2012, the preferred method to exchange business
entities is using document services.

In this chapter, we will discuss the AIF document services and learn about the
components that make up a document service. By the end of this chapter, you
will be able to create, deploy, and consume such a service.

The following topics are covered in this chapter:

• Document services: We start by explaining why you would need document
services in Microsoft Dynamics AX 2012.

• Key components: There are some components that are specific to document
services. It's important to know what these components are and what their
role in the concept of services is, so we will discuss their functions in detail.

• Creating a document service: You will learn how to create a document
service and how to configure and deploy the service using an enhanced
integration port.

• Consuming a document service: After we have deployed a document
service, we will consume it using a .NET WCF application and look at
how change tracking can help us in some scenarios.

AIF Document Services

[48]

Introducing document services
If you've worked with Microsoft Dynamics AX for a while, you will know that it
contains many tables with a lot of data. These tables can be related to each other to
form logical entities such as sales orders. Tables not only contain fields, indexes, and
relations, but they also contain code that handles business logic such as initialization,
validation, and manipulation of data. When you send data from Microsoft Dynamics
AX, especially when you receive data from external systems, you want to make sure
that all of the business logic contained in the tables and entities is executed so that
the data is consistent. It would be troublesome to have to code all of this yourself
when creating a service. Fortunately, AIF solves this problem by providing a
framework and the tools to create these services.

So what are these tools and components? This is exactly what we will discuss next.

Key components
We will start by looking at the framework and its components. The key components
of a document service are as follows:

• A query that is used in the AIF Document Service Wizard to create the
document service

• A document class that represents a business entity and contains the business
logic for this entity

• One or more AxBC classes that encapsulate a table and are used by the
document class to create, modify, and delete data in tables

• A service class that contains the service's operations

Of course, there's more to these components than the few words we've used here
to describe them. We will now look at these components one by one, starting with
the query.

The document query
Each document service is based on a query defined in the AOT. Using the
AIF Document Service Wizard, a document class is generated and XML
schema definitions that are used for the XML serialization are derived from
the corresponding query. Therefore, the XML message will have a correlation
to the query object. In the following screenshot, we can see the query for the
InventItemService document service:

Chapter 3

[49]

If we look at an actual XML message, we can clearly see that it matches the structure
of the query object. The following screenshot shows us the XML content after the
serialization of the item's business object:

AIF Document Services

[50]

The document class
Document classes extend the AxdBase class and represent a business document, for
example, a sales order. They contain the business logic across all of the tables that
correspond with the document. Hence, the details about the underlying tables are
hidden from the consumer.

A document class also handles the generation of XML Schema Definition (XSD).
The XSD schema defines the document structure and the business rules that are to be
followed. Along with the generation of XSD, the document class also contains logic
to serialize the table entity's classes into XML and deserialize them from XML.

Responsibilities of a document class
Document classes have a number of responsibilities, and among them, we have
the following:

• Generating an XSD schema.
• Serializing and deserializing classes to and from XML.
• Guaranteeing the document life cycle by making sure that operations do not

violate business rules that correspond with the document.
• Containing business logic that applies to data across tables.
• Providing a means to define the document-level properties. For example,

whether a document is an original or a duplicate.
• Handling consolidation of table-level errors and returning them as a single

list to the calling code.

Let's look at an example document class and analyze it to see how some of these
responsibilities are actually handled. In this example, we will take a closer look at
the sales order document class, AxdSalesTable.

XSD generation
XSD is generated in the getSchema() and getSchemaInternal() methods of the
AxdBase class. The AxdBaseGenerationXSD class is called to generate XSD based
on this document class and its underlying table classes, as shown in the following
code snippet:

private AifDocumentSchemaXml getSchemaInternal(Boolean _includeLabels,
container _languageIds)
{
 AxdBaseGenerateXSD genXsd;
 str documentClass ;

Chapter 3

[51]

 AifDocumentSchemaXml schemaXml;
 genXsd = AxdBaseGenerateXSD::construct();
 genXsd.parmIncludeLabels(_includeLabels);
 genXsd.parmLanguageIds(_languageIds);
 documentClass = new SysDictClass(classIdGet(this)).name() ;

 genXsd.setSharedTypesSchema(sharedTypesSchema);
 schemaXml = genXsd.generate(documentClass,this.getName(),
 this.getQuery());
 sharedTypesSchema = genXsd.getSharedTypesSchema();

 return schemaXml;
}

XML serialization and deserialization
XML serialization and deserialization is performed in several places depending on
the operation that is being executed. Either the axdBaseRead, axdBaseUpdate, or
axdBaseCreate class is used to service the consumer's call. For example, take a look
at the axdBaseRead class that is used when performing a read operation. Here, you
can find the serializeDocument()method that is used to serialize the document
into XML, as shown in the following code snippet.

protected AifDocumentXml serializeDocument(AifConstraintListCollection
_constraintListCollection, boolean _calledFromRead)
{
 ClassName documentName;
 Map propertyInfoMap;
 this.init();

 this.setDocumentNameSpace();

 documentName = axdBase.getName();
 propertyInfoMap = this.getMethodInfoMap(classIdGet(axdBase));

 axdXmlWriter.writeStartDocument(documentName);

 this.serializeClass(propertyInfoMap, axdBase);

 // Omitted code

 axdXmlWriter.writeEndDocument();
 return axdXmlWriter.getXML();
}

AIF Document Services

[52]

In the preceding code, the following methods are used:

• getMethodInfoMap() fetches all of the fields for the document class
• writeStartDocument() writes the XML document's begin tag
• serializeClass() takes care of serializing all of the properties into XML
• writeEndDocument() writes the XML document's end tag

Cross-table business logic
The AxdSalesOrder document class contains logic to handle cross-table
dependencies. The prepareForSave() method is an example of this. This method is
called for every record that is saved. Let's take a look at a small piece of the code that
is used for the sales document and see how it handles logic across the SalesLine
and InventDim tables:

case classNum(AxInventDim) :
 axInventDim = _axdStack.top();
 axSalesLine = axInventDim.parentAxBC();
 axSalesLine.axInventDim().resetInternalValues();

 if (createRecord)
 {
 axSalesLine.salesLine().unLinkAgreementLine();
 }
 else
 {
 //InventDimId marked as touched in update scenarios and we need
 //new InventDimId
 axSalesLine.clearField(fieldNum(SalesLine,InventDimId),false);
 }

 axInventDim.moveAxInventDim(axSalesLine.axInventDim());
 axSalesLine.setInventDimIdDirtySaved(false);

 return true;

In the code, we can see the following:

• In the case of an insert, the link with any possible agreement lines is removed
• In the case of an update, the current InventDimId field is blanked out so a

new InventDimId can be filled in
• Lastly, the values of the InventDim table class are copied to the SalesLine

table class, and the InventDim field of SalesLine is marked as dirty to
be saved

Chapter 3

[53]

Validation and business rule enforcement
The document class is also responsible for validating the business document
and making sure that the business rules are enforced. An example of this can be
found in the checkSalesLine()method. This method is called from within the
prepareForSave()method to ensure that the SalesLine record does not contain
any values that conflict with the business rules. The following code snippet shows
us how two of the business rules are validated:

salesLineOrig = _axSalesLine.salesLine().orig();
if (salesLineOrig.LineDeliveryType == LineDeliveryType::DeliveryLine)
{
 if (_axSalesLine.parmSalesQty() != salesLineOrig.SalesQty)
 {
 // It is not allowed to change quantity on delivery schedule
 // order lines.
 error("@SYS133823");
 }
 if (_axSalesLine.parmSalesUnit() != salesLineOrig.SalesUnit)
 {
 // It is not allowed to change sales unit on delivery schedule
 // order lines.
 error("@SYS133824");
 }
}

The code checks the SalesQty and SalesUnit fields when LineDeliveryType is
DeliveryLine. If these fields do not match, an error is written to the Infolog.

AxBC classes
AxBC classes can be seen as wrapper classes for tables as they provide an
object interface to the underlying table. They manage data access from and to the
underlying table and contain business logic that is otherwise contained on forms.
They also provide a means to specify default values for fields. Another name for
AxBC classes is Ax<Table> classes.

AxBC classes are optional. It is possible to have a document service in which the
underlying tables have no corresponding AxBC classes. If so, the framework will use
the AxCommon class to perform read and write operations to the table. In this case, you
will have to place your code in the Axd<Document> class in the prepareForSave()
and prepareForSaveExtended() methods.

www.allitebooks.com

http://www.allitebooks.org

AIF Document Services

[54]

One example that shows how AxBC classes are optional is value mapping. Value
mapping can be set up in the processing options of an integration port. When this
type of value mapping suffices, it is not necessary to create an AxBC class for value
mapping purposes. In this case, an AxBC class becomes necessary only if you want
to perform more elaborate value mapping than the standard setup allows you to.

Therefore, depending on what your needs are, you can choose not to create AxBC
classes for the tables in your document service, or you can create them using the AIF
Document Service Wizard. The wizard creates the AxBC classes only if the Generate
AxBC classes option is selected.

Responsibilities of an AxBC class
The following are the responsibilities of an AxBC class:

• Performing validation: AxBC classes make sure that all of the rules and
logic contained in the underlying table are adhered to. Things such as data
integrity and business rules defined on the field level are also maintained.

• Providing field sequencing: Using AxBC classes, you can specify the order
in which fields are processed. This is particularly useful when the value of
one field depends upon the value of another.

• Performing value mapping: Values can be mapped between external
systems and Microsoft Dynamics AX 2012. Value mapping can be performed
at the AxBC level if the possibilities provided by value mapping at the
integration port are insufficient.

• Enabling value defaulting for fields: Fields that are not set by the calling
code and do not receive a default value in the initValue() method of the
table can be defaulted in the AxBC class.

Performing validation
In the AxSalesLine class, we can see that there is validation logic in the
validateWrite() method, as shown in the following code snippet:

protected void validateWrite()
{
 if (this.validateInput())
 {
 if (!salesLine.validateWrite(true))
 {
 if (continueOnError)
 {
 error("@SYS98197");
 }

Chapter 3

[55]

 else
 {
 throw error("@SYS23020");
 }
 }
 }
}

The code shows us that the AxSalesLine class also calls the validateWrite()
method on the underlying table. This is done to make sure that the validation
rules on the table are adhered to.

Providing field sequencing
In almost all AxBC classes, you will find a method called setTableFields(). In the
AxSalesLine class, this method calls all of the setter methods present for the fields of
the SalesLine table, as shown in the following code snippet:

protected void setTableFields()
{
 //<GMX>
 #ISOCountryRegionCodes
 /</GMX>
 super();
 useMapPolicy = false;
 this.setAddressRefTableId();
 [...]
 this.setCustAccount();
 this.setCustGroup();
 [...]

When you want to define the order in which the fields are set, you can modify
the code and rearrange the setter methods into the sequence that you want. In the
preceding code, you can see that the CustAccount field is set first and then the
CustGroup field is set. This is because determining the CustGroup field depends
on the value of the CustAccount field.

Performing value mapping
If we look at the valueMapDependingFields()method, we will see an example of
how value mapping can be performed, as shown in the following code snippet:

protected void valueMapDependingFields()
{
 ItemId valueMapedItemId;

AIF Document Services

[56]

 InventDim valueMapedInventDim;

 if (this.valueMappingInbound())
 {
 if (salesLine.CustAccount && item)
 {
 [valueMapedItemId,valueMapedInventDim] = this.
axSalesItemId(salesLine.CustAccount,item);
 this.parmItemId(valueMapedItemId);
 if (!InventDim::isInventDimEqualProductDim(EcoResProductDimGr
oupSetup::newItemId(salesLine.ItemId), valueMapedInventDim,InventDim::
find(InventDim::inventDimIdBlank())))
 {
 axInventDim.productDimensions(valueMapedInventDim);
 this.parmInventDimId(InventDim::
findOrCreate(axInventDim.inventDim()).InventDimId);
 }
 }
 }
}

The exact implementation of the previous code is unimportant, but you can clearly
see that the axSalesItemId()method performs the value mapping to determine the
item's number. Then, the mapped item number is used on the SalesLine record.
Apart from the value mapping of the item number, a mapping for the inventory
dimensions of the corresponding InventDim record is also performed.

Setting default values
AxBC classes can also contain logic that sets default values on fields. An example of
this is found in the setLineNum()method, as shown in the following code snippet:

protected void setLineNum()
{
 if (this.isMethodExecuted(funcName(), fieldNum(SalesLine,
 LineNum)))
 {
 return;
 }
 this.setSalesId();

 if (this.isFieldSet(fieldNum(SalesLine, SalesId)))
 {

Chapter 3

[57]

 if (!lineNum)
 {
 lineNum = SalesLine::lastLineNum(this.parmSalesId());
 }
 lineNum += 1;

 this.parmLineNum(lineNum);
 }
}

In the previous code, we can see the following:

• Firstly, the framework checks whether this method has already been executed
• The setSalesId() method makes sure that the sales order number's

value is set
• If no line number is provided, the lastLineNum() method is used to

determine the highest line number used at the time
• Lastly, the line number is incremented and set in the SalesLine record

The service class
Service classes are classes that contain the operations used in the integration port of
that document service. Only the operations needed by the business are available. All
service classes extend the AifDocumentService class and delegate their operations
to the AifDocumentService class. For example, when the Read operation is available
on a service class, the implementation of the operation will call the ReadList()
method on the AifDocumentService parent class.

The following operations are available:

• Create: This operation receives a document class and creates records as
and when required. The return value is an AifEntityKeyList object that
contains a list of key/value pairs that reference a record.

• Delete: This operation is used to delete records from the database. The IDs
of the records to be deleted are passed as a parameter.

• Find: This operation takes an AifQueryCriteria parameter and
queries the database. The return value is a document class that contains
the resulting records.

AIF Document Services

[58]

• Findkeys: This operation does the same thing as the find operation but
returns an AifEntityKeyList object, which contains only the IDs of the
resulting records instead of all of the data.

• Read: This operation takes an AifEntityKeyList object as a parameter,
reads the records from the database, and returns them in a document. This
operation is typically used in combination with the FindKeys operation that
first returns the values that are needed as an input for the Read operation.

• Update: This operation takes an AifEntityKeyList object that contains the
IDs of the records to be updated. The second parameter is the document that
contains the updated records.

• GetKeys: This operation uses a document filter and returns the resulting
document keys in an AifEntityKeyList object.

• GetChangedKeys: This operation also uses a document filter along with a
DateTime parameter to return the document keys of the documents that
have changed.

The service node
For our service operations to be available in the inbound and outbound port forms,
a service class alone is not enough. The services framework requires that you create
a service node in the AOT for the service and its service operations that you want to
expose. This is true for document services but applies equally to custom services.

A service node allows you to create service contracts based on service classes in a
flexible and customizable way. If you wish, you can create multiple service nodes for
one service class, each with a different external name and a different set of service
operations that are exposed. You can even specify the namespace for the service and
change the names of the service operations.

Creating a document service
As you've read previously, there are a lot of components that need to be created
when developing a document service. This may lead you might think that creating
a document service is a daunting task but fortunately, that is not the case.

Chapter 3

[59]

Microsoft has provided us with the AIF Document Service Wizard. This wizard
allows you to create a document service fairly quickly based on a query you provide.
In the next few pages, we will walk through all of the steps needed to create a
document service using this wizard.

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.
For information on how to install and run the code, please refer to
Appendix, Installing the Demo Application

The document service that we will build in this chapter will allow us to demonstrate
all of the service operations that are available on a document service. We will need an
entity from the demo application for this purpose and for that, we will use titles that
are stored in the CVRTitle table. At the end of this chapter, we will have built a fully
functional document service that can create, read, and modify the title information.

Setting the compiler level
Before we start, let's make sure that the compiler is set up correctly. When
developing for Microsoft Dynamics AX 2012, it is important to adhere to the best
practices that Microsoft has defined. Many of these best practices are checked by the
compiler. Depending on the compiler level, a smaller or larger set of best practices
will be checked during compilation.

We recommend that you set the compiler level to 4, the maximum, so all best practice
errors are shown to us when compiling. We also recommend setting the compiler
to check the best practices, at least on the Error level. When setting the best practice
parameters, also make sure that the layer setting is set to Check all nodes.

The layer setting is important when creating document services because it helps you
make sure that the AxBC classes that are in the lower layers are checked when new
fields are added to the corresponding tables. You will receive recommendations
about what methods should be created. This is important so that the AxBC classes
are up to date.

AIF Document Services

[60]

Best practices for Microsoft Dynamics AX development
It is worth reading through the best practices that are formulated by
Microsoft for development in Microsoft Dynamics AX 2012. This is
available on MSDN at http://msdn.microsoft.com/en-us/
library/aa658028.aspx.

Creating the query
As every document service is based on a query, we will start by creating the query.
Create a new query in the AOT, name it AxdCVRTitle, and add the CVRTitle table to
the data sources. When you're done, it will look similar to the following screenshot:

You now have the basis for the query. However, you should see a compiler error
that says that you should specify the dynamic property on the data source. To set
the property, select the Fields node of the data source, and in the properties form,
set Dynamic to No.

Setting the property to No allows you to specify the fields on the data sources
yourself. You should do this for all document queries. If you had set this property
to Yes, the number of fields in the document would change when fields are added
to the table, and that's not desirable.

Chapter 3

[61]

For this demonstration, we will add all of the fields from the table to the data source.
The easiest way to do this is by setting the Dynamic property to Yes, saving the
query, and then setting it to No again.

In a real-life scenario, you should only expose fields that are really needed. If you are
unsure, you can still add the field and use data policies to disable it.

To finish up, set the Update property to Yes on the data source. This will enable
us to perform the update operation on the document service using the previously
created query.

Running the AIF Document Service Wizard
Now that the query has been created, we can use it to run the AIF Document Service
Wizard. This wizard will guide you through a series of steps that will generate the
necessary artifacts.

There are three ways to start the AIF Document Service Wizard:

• In the Development Workspace, navigate to Tools | Wizards | AIF
Document Service Wizard.

• The same wizard can also be started by navigating to Tools | Application
Integration Framework | Create document service.

• You can also start the wizard by right-clicking on a query and then navigating
to Add-Ins | AIF Document Service Wizard. This last option takes you
immediately to the second screen of the wizard with the parameters filled in,
depending on the query that you selected.

The first screen of the wizard is the Welcome screen. It informs you that this wizard
will help you generate document services. Click on Next and the Select document
parameters screen will be displayed.

AIF Document Services

[62]

Selecting document parameters
In the Select document parameters screen, you can select the query and specify
the document name. Select the AxdCVRTitle query from the drop-down list. The
Document name field is automatically filled in. Accept the name that was generated.
In the Document label field, enter Titles. We will create a label for this text later on
in the chapter. Now, click on Next:

Selecting code generation parameters
On the Select code generation parameters screen, you can specify the class names
and the service operations that need to be generated. You can also generate AxBC
classes for tables if they don't exist yet, or update the existing AxBC classes.

In the Class names section, you should accept all the class names that are proposed
by the wizard. The following list shows us how the class names are generated:

• The service class's name is the name of the query with the Service suffix
added and the Axd prefix removed

• The document object's class name is based on the name of the query without
the Axd prefix

• The Axd class name is the same as the query name

Chapter 3

[63]

Sometimes, class names can conflict with the names of existing objects. In our case,
the CVRTitle class name will conflict with the CVRTitle table name. So, we will
have to add Document to the document object class name to fix this. In this example,
we also add Document to the service class name, so we can differentiate between it
and another service for the titles that we will create in the next chapter.

In the Service operations section, you can specify the service operation(s) that you
want to generate for the document service. For this demonstration, we will select all
of the service operations.

In the AxBC generation section, select the Generate AxBC classes option. This will
ensure that the AxBC classes are generated for the tables that we use in the data
sources of our query. Do not select Regenerate existing AxBC classes, as this may
overwrite the customizations that you've made to existing AxBC classes. Now, click
on Next:

AIF Document Services

[64]

Generating code
You are now presented with a list of artifacts that will be created. Review this list to
check for any mistakes you might have made. You can always return to the previous
screens using the Back button:

Click on Generate to continue. The wizard will generate all of the artifacts, and when
this is done, a screen titled Completed will appear, informing you about the artifacts
that have been generated. Click on Finish to close the form.

Chapter 3

[65]

Finishing up
The output of the AIF Document Service Wizard is stored in a private project that
has the same name as the query that the service is based on. You have to compile this
project because it will contain compiler errors that need fixing and the tasks that you
need to perform, as shown in the following screenshot:

Fixing compiler errors
If you have followed all of the previous steps, you should see two compiler errors for
the AxBC class that was generated. This is because two template methods that enable
caching are generated for an AxBC class: cacheObject and cacheRecordRecord.

Caching is used to speed up the performance when defaulting values for inbound
messages. Without caching, multiple methods would have to construct the same
object or select the same record multiple times, thereby decreasing the performance.

When you don't want to use object or record caching, you can simply delete these
methods to fix the compiler errors. When you delete the methods, remember to
remove the declaration of the cacheRecordIdx and cacheObjectIdx variables from
classDeclaration as well. We don't want to use caching in this example, so we will
do just that.

When you do want to use object or record caching, you should refactor the methods
to fit your needs. The explanation given in the following sections should enable you
to do that.

AIF Document Services

[66]

ClassDeclaration
Object and record caching use map variables that are declared in the
AxInternalBase class to store objects or records. As you probably know, a map
allows you to associate a key with a value. In our case, the value is either a class
or a record. As a map can only contain values of one type, we need two maps: one
to cache objects and one to cache records. This is also the reason why two cache
methods are generated to demonstrate caching for both objects and records.

As each value in the map is associated with a key that allows us to access the value,
we need some way to store that key. We do this by declaring an index for each
object or record that we want to cache. So, there's a variable for each cache method
we write. By default, cacheRecordIdx and cacheObjectIdx are generated. You
should rename them appropriately to the corresponding value. When you cache
the SalesTable records, name the variable salesTableIdx, and when you cache
axSalesTable objects, name the variable axSalesTableIdx.

The cacheObject() method
You can use the cacheObject()method as a guide when you want to cache objects.
Unfortunately, the code that is automatically generated is flawed. Instead of using
the classCacheInsert() method, it uses the the tableCacheInsert() method
at one point, which is wrong. For this reason, we recommend that you use the
AxSalesLine.axSalesTable() method to guide you. You can copy the code in
this method, replace the variables with your own, and you're all set.

The cacheRecordRecord() method
The cacheRecordRecord() method can be used as a guide when caching for
records is required. It uses the tableCacheInsert() method instead of the
classCacheInsert() method to add records to the cache. The flow is the
same as the cacheObject() method.

An example of a method that uses caching is the setCustAccount() method of the
AxSalesLine class. It uses both object and record caching using the axSalesTable()
and projTableRecord() methods to default the custAccount field.

Fixing tasks
When you are done with the compiler errors, you will still have a lot of tasks left to
perform. This is exactly what we will discuss next.

Chapter 3

[67]

Labels
When you plan on creating a document service, be ready to make some labels.
For this small example, over 10 labels have to be created. Fortunately, they are
all marked with a TODO notation in code, which makes it easy to find them in the
compiler output window. Create all labels using the label editor and remove the
TODO notations when you're done.

Generating an XSD schema
The AIF Document Service Wizard automatically generates a job that allows you to
save the document schema to a file. This schema can be used by external applications
so that they know how to generate a valid document. You can change the location of
where the XML should be saved in the job.

However, you will most likely change the schema of the document using data
policies. In that case, you will have to generate a schema for each integration port
on which the document is used. The schema can be generated from the data policies
form by clicking on the View schema button. This schema will contain only the fields
that are enabled instead of all the fields that are generated by the job.

There is no real need to generate the XSD schema when using an adapter that
supports WCF. This is because the schema for WCF services is contained in the
WSDL document that is exposed by the integration port. We will use this WSDL
document when we add a reference to the service that we've created.

Constraints
In the document class, the getConstraintList() method is generated, which
contains three tasks to be performed. This method must be implemented because it is
abstract in the parent class, AxdBase. However, constraints are a deprecated feature
because there is no way to set up constraints for endpoints anymore. Microsoft
Dynamics AX 2012 does offer a similar feature called legal values that you can
specify when setting up data policies.

To get rid of the tasks, just remove them along with all the other code in the
method that is commented out. This will make sure that no constraints are
applied to the document.

Validation
Two tasks that deal with validation are added in the prepareForSaveExtended()
method of the document class. The prepareForSaveExtended() method is the
perfect location to place the validation for the entity as a whole, so add the validation
to it, if applicable.

AIF Document Services

[68]

Our example is pretty simple, so there is no need to add an extra validation. When
you do need the validation of your entity, the prepareForSaveExtended() method
of the AxdSalesOrder class is a good example.

Updating the service contract
A very important component that is generated by the AIF Document Service Wizard
is the service node. However, you may want to update the namespace of this service.
To do this, perform the following steps:

1. Open the AOT by pressing Ctrl + D.
2. Go to the Services node and locate the CVRTitleDocumentService service.
3. Change the Namespace property to http://schemas.contoso.com/

ServiceContracts.
4. Click on the Save All button to save the changes.

Finally, after all of the objects have been created, you might have to register the new
service and its operations in one of the following ways:

• Navigate to System administration | Setup | Checklists | Initialization
checklist | Initialize system | Set up Application Integration Framework.
This is what we did in Chapter 2, Service Architecture and Deployment, when we
created an integration port.

• Or, you can right-click on the service, navigate to Add-Ins | Register service,
and then click on the Refresh button.

Fixing best practice errors
The project will contain the best practice errors. To check for errors, right-click on the
project, click on Add-Ins, and finally, click on Check best practices. The output will
be displayed in the Compiler output window.

Privileges
The Application Integration Framework uses the role-based security framework.
This means that whoever uses the service operation has to have a role that allows
them to invoke that service operation.

You will have to create a privilege for each service operation of the service. To create
a privilege for the update operation, perform the following steps:

1. Open the AOT by pressing Ctrl + D.

Chapter 3

[69]

2. Expand the Security node, right-click on the Privileges node, and then click
on New Privilege.

3. Rename the privilege using the <NameOfService><ServiceOperation>
format. For example, CVRTitleDocumentServiceUpdate.

4. Right-click on the privilege and click on Properties. In the Properties tab,
enter a label in the label field.

5. Expand the CVRTitleDocumentServiceUpdate node. This will expose the
Entry Points and Permissions nodes.

6. Drag-and-drop the Update service operation node to the Entry Points node
of the CVRTitleDocumentServiceUpdate privilege.

7. Click on the Save All button to save the changes.

Repeat these steps for all of the service operations. When all privileges have been
created, perform the following steps to add them to the ServiceOperations duty:

1. Open the AOT by pressing Ctrl + D.
2. Expand the Security and Duties nodes and locate the ServiceOperations duty.
3. Expand the node and drag-and-drop all of the new privileges to the

Privileges node.
4. Click on the Save All button to save the changes.

The ServiceOperations duty contains privileges for all of the service operations in
the system. This ensures that the system administrators have access to these service
operations. When other roles need access to a specific service operation, you should
add that privilege to an appropriate duty for that role.

Setting mandatory fields
The Id field of the CVRTtitle table is mandatory, but we want the service to use the
number sequence that is defined for the field. The initValue() method of the table
automatically generates an ID for each record, so there is no need to set the field as
mandatory in our service.

To achieve this, we will override the initMandatoryFieldsExemptionList()
method of the AxCVRTitle class so it looks like the following code:

protected void initMandatoryFieldsExemptionList()
{
 super();
 // Set the Id field as not mandatory since we are going to use a
 // number sequence for the Id
 this.setParmMethodAsNotMandatory(methodstr(AxCVRTitle, ParmId));
}

AIF Document Services

[70]

If you ever want to set a field as mandatory in your document that isn't mandatory
in the table, you can override the initMandatoryFieldsMap() method in the
document class of your service.

Updating an existing document service
In some cases, you will want to update an existing document service. For example,
when you have added a data source to an existing document query, or when you
want to add a service operation to an existing document service. To assist you with
this, you can use the Update document service form.

To open this form, open the Development Workspace and navigate to Tools |
Application Integration Framework | Update document service, as shown in
the following screenshot:

Adding service operations
As you can see in the previous screenshot, you can select new operations to add
to the document service. Click on OK to add the selected service operations to the
document service. This will update the document and service classes so that the new
operations are supported.

Chapter 3

[71]

The only thing left for the developer to do is to manually add the service operation to
the service node. To do this, go to the Services node in the AOT, expand the node of
the service that was updated, right-click on the Operations node, and click on Add
operation to add the new operations.

Updating supporting classes
When fields or data sources have been added to the query of an existing document
service, the supporting classes will have to be created or regenerated. In this case,
select the Regenerate data object classes and Update AxBC classes options.

When a field has been removed, the parm() and set() methods will not be
automatically deleted from the AxBC classes, so you'll have to do this manually
before you update the document service.

As always, after changing the services, it's a good idea to register them again.

Deploying a document service
The development phase of the document service is complete, so now it is ready
to be deployed. We need an enhanced integration port for this service because we
will demonstrate how to use the getKeys and getChangedKeys operations. These
operations require that the document filters are enabled—a feature that is only
available in enhanced ports.

The steps that need to be performed to create an enhanced port have already been
described in Chapter 2, Service Architecture and Deployment. Take a look at the section
on enhanced ports and follow the steps in it to create one. Make sure that the Port
name field is set to CVRDocumentServicesEnhanced and that all of the service
operations of the CVRTitleDocumentService service are added to the exposed
service operations.

Consuming a document service
Let's head to Visual Studio and start consuming the document service that we
created. You can open the Visual Studio project for this chapter, included in the code
files for the book, to see the service in action.

If you are a more experienced Visual Studio user, you can create a project yourself by
performing the following steps:

1. In Visual Studio, create a project for a console application by navigating to
File | New | Project….

AIF Document Services

[72]

2. In the Installed Templates section, navigate to Visual C# | Windows.
3. Choose a project of type Console Application, insert a name and location for

the project, and click on OK.

To add the service reference, perform the following steps:

1. In Solution Explorer, right-click on the name of your project and click on
Add Service Reference….

2. Enter the WSDL location in the Address field and click on Go. Of course, you'll
need to replace DYNAX01:8101 with the server and port of your installation.
You should see a form that looks similar to the following screenshot:

3. Enter TitleServiceRef in the Namespace field and click on OK.

In the following sections, we will go through all of the operations that are available
in the service by using a console application. The console application prompts the
user to select the action that needs to be executed. We will look only at the methods
that consume the service. For the complete sample application, download and install
the sample project for this chapter, which is included in the code files of the book.
Be sure to read Appendix, Installing the Demo Application, for information on how to
install and run the code.

Chapter 3

[73]

Create
The first service operation lets us insert records into Microsoft Dynamics AX. The
flow for using the Create operation is as follows:

1. Create a new record entity and fill in the field information.
2. Create a new document instance and put in the table entity array that

contains the entities that you want to insert.
3. Invoke the Create operation that returns the entity keys of the inserted records.

The following code reads an XML file that contains some sample titles to be inserted:

static void createTitles()
{
 List<MovieTitle> sampleTitles;
 int i = 0;

 // Read the XML file containing the sample data into a list
 using (var reader = new StreamReader(@"C:\Temp\TitleDemoData.
xml"))
 {
 XmlSerializer deserializer = new XmlSerializer(typeof(List<Mo
vieTitle>));
 sampleTitles = (List<MovieTitle>) deserializer.
Deserialize(reader);
 }

 // For all of the titles, create a title in the Ax database
 foreach (MovieTitle title in sampleTitles)
 {
 i++;

 // Create a title entity
 AxdEntity_CVRTitle titleEntity = new AxdEntity_CVRTitle();

 // Fill in all the fields
 titleEntity.Name = title.Name;
 titleEntity.Description = title.Description;
 titleEntity.LengthInMinutes = Convert.ToInt32(title.Length);

 // For int and real values, you must flag them as fill in
 // This is to tell Dynamics that they are not null, but the
 // default value
 titleEntity.LengthInMinutesSpecified = true;

 // Create a title document instance

AIF Document Services

[74]

 AxdCVRTitle titleDocument = new AxdCVRTitle();

 // Initialize the list of title entities in the document
 // CVRTitle is a list of title entities
 titleDocument.CVRTitle = new AxdEntity_CVRTitle[1] {
 titleEntity };

 // Create an instance of the document service client
 using (CVRTitleDocumentServiceClient client = new
 CVRTitleDocumentServiceClient())
 {
 // Insert the title in Ax
 EntityKey[] entityKeys = client.create(null,
 titleDocument);

 // Report progress to the user
 Console.WriteLine(String.Format("Title {0} created",
 titleEntity.Name));
 }
 }
}

After executing the previous code, we can see the titles within Microsoft Dynamics AX:

Chapter 3

[75]

Find
The Find operation uses a QueryCriteria object that contains the criteria to be
filtered and returns a document that contains the record entities. The flow for using
the Find operation is as follows:

1. Create a QueryCriteria object that contains the criteria's elements.
2. Invoke the Find operation to retrieve a document instance that contains the

resulting records.

Creating query criteria
For some operations, including the Find operation, you are required to pass a
QueryCriteria object. Based on this QueryCriteria object, records are queried in
Microsoft Dynamics AX. To facilitate the creation of QueryCriteria instances, a
method was created, which is shown as follows:

static QueryCriteria createSingleCriteria(string dataSource
 , string fieldName
 , Operator op
 , string value1
 , string value2)
{
 // Prepare a queryCriteria instance
 QueryCriteria criteria = new QueryCriteria();

 // Create a criteria element that represents a query range
 CriteriaElement criteriaElement = new CriteriaElement();

 criteriaElement.DataSourceName = dataSource;
 criteriaElement.FieldName = fieldName;
 criteriaElement.Operator = op;
 criteriaElement.Value1 = value1;
 criteriaElement.Value2 = value2;

 // Put the criteria element in the QueryCriteria instance
 criteria.CriteriaElement = new CriteriaElement[1]
 {
 criteriaElement
 };

 return criteria;
}

AIF Document Services

[76]

Using Find
Now that we have a way to create the query criteria that is needed for the Find
operation, we can go ahead and use the Find operation to get the data from
Microsoft Dynamics AX, as demonstrated in the following code snippet:

static void getTitles_Find()
{
 // Variable to hold the title document
 AxdCVRTitle titleDocument = new AxdCVRTitle();

 // Create a criteria element that selects titles that run over 110
 // minutes
 QueryCriteria criteria = Program.createSingleCriteria("CVRTitle" ,
"LengthInMinutes", Operator.Greater, "110", null);

 // Create a client for as long as we need to
 using (CVRTitleDocumentServiceClient client = new
CVRTitleDocumentServiceClient())
 {
 // Find the titles that match the criteria
 titleDocument = client.find(null, criteria);

 // Loop all the titles
 foreach (AxdEntity_CVRTitle title in titleDocument.CVRTitle)
 {
 // Report the results to the console window
 Console.WriteLine(title.Id + ' ' + title.Name + ' ' +
title.LengthInMinutes);
 }
 }
}

A part of the result looks as follows:

T000000006 Schindler's List 114

T000000007 The Dark Knight 119

T000000008 The Lord of the Rings: The Return of the King 112

T000000011 Fight Club 115

Chapter 3

[77]

Read
The Read operation sounds like the Find operation, but there is a difference. Find
uses the query criteria as input and returns the title document immediately with all
of the resulting rows. Read returns the same document but does not take the query
criteria as a parameter. Instead, Read uses a set of Entitykey objects as input. As
a result, the Read operation returns only one record for each entity key in the set,
because the entity keys correspond to the primary key of the record.

You could be asking yourself why you would want to use Read instead of Find if the
latter gives you the same result in one operation. Well, the answer is twofold.

The first scenario is one where you have already cached the entity keys in your
application. In other words, you already know the unique key of the records that
you want to retrieve. Then you can just construct an array of entity keys and invoke
the Read operation.

The flow for using the Read operation with the custom entity keys is as follows:

1. Create an array of the Entitykey objects that contain the keys of the records
that you want to find.

2. Invoke the Read operation to return a document that contains the
related records.

The following is the code implementation:

static void getTitle_ReadWithEntityKey()
{
 // Let the user enter an Id in the console window
 Console.WriteLine("Enter a title Id to look for :");
 string titleId = Console.ReadLine();

 // Create an instance of the keyfield containing the title id to
 // search for
 KeyField keyField = new KeyField() { Field = "Id", Value = titleId
};

 // Create an entity key instance and put in the key field data
 EntityKey entityKey = new EntityKey();

AIF Document Services

[78]

 entityKey.KeyData = new KeyField[1] { keyField };

 // Create an array of entity keys and put in the previously
created key
 EntityKey[] entityKeys = new EntityKey[1] { entityKey };

 AxdCVRTitle titleDocument = new AxdCVRTitle();

 // Create a client for as long as we need to
 using (CVRTitleDocumentServiceClient client = new
 CVRTitleDocumentServiceClient())
 {
 // Use the keys to read all of the titles
 titleDocument = client.read(null, entityKeys);
 }

 // Loop all the titles to report to the console window
 foreach (AxdEntity_CVRTitle title in titleDocument.CVRTitle)
 {
 Program.printSingleTitle(title);
 }
}

If we execute the previous code for title ID T000000007, the following result is
printed to the console window:

Title : T000000007

Name : The Dark Knight

Length in minutes : 119

Description : When Batman, […]

FindKeys
The second scenario, in which you can use the Read operation, is used in
combination with the FindKeys operation. This can enhance the performance.
Let's say that you have a .NET application that queries Microsoft Dynamics AX.
It's possible that your query will return a large number of records but you want to
use paging so that you don't have to load all of the data at once. So, you can use the
FindKeys operation to return only the keys of the records instead of all of the fields.
Once you have the keys, you can implement paging in your application and call the
Read operation with the subset of keys that are actually needed.

Chapter 3

[79]

The flow for using the Read operation with FindKeys is as follows:

1. Create a QueryCriteria instance that contains the criteria for finding
the records.

2. Invoke the FindKeys operation to retrieve the keys that match the query.
3. Using the keys, invoke the Read operation to return a document that contains

the related records.

The following is the code implementation:

static void getAllTitles_ReadWithFindKeys()
{
 // Variable to hold the title document
 AxdCVRTitle titleDocument = new AxdCVRTitle();

 // Create a criteria element that selects titles that run over 110
 // minutes
 QueryCriteria criteria = Program.createSingleCriteria("CVRTitle" ,
"LengthInMinutes", Operator.Greater, "110", null);

 // Create a client for as long as we need to
 using (CVRTitleDocumentServiceClient client = new
CVRTitleDocumentServiceClient())
 {
 // Call the findKeys operation to fetch all of the keys that
 // match the query criteria
 EntityKey[] entityKeys = client.findKeys(null, criteria);

 // Check if we had matching titles
 if (entityKeys.Length > 0)
 {
 // Use the keys to read all of the title records
 titleDocument = client.read(null, entityKeys);
 }
 }

 if (titleDocument != null)
 {
 // Loop all the titles to report to the user
 foreach (AxdEntity_CVRTitle title in titleDocument.CVRTitle)
 {
 Console.WriteLine(title.Id + ' ' + title.Name + ' ' +
 title.LengthInMinutes);
 }
 }
}

AIF Document Services

[80]

As we are using the same query criteria, we should see the same result as the Find
operation. A part of the result looks as follows:

T000000006 Schindler's List 114

T000000007 The Dark Knight 119

T000000008 The Lord of the Rings: The Return of the King 112

T000000011 Fight Club 115

Update
To update records in the Microsoft Dynamics AX database, the Update operation can
be used. First, you need to use the Read operation to get the records that you want
to update. For this, you need to specify the entity keys. Once you have the document
that contains the records that you want to update, you can edit the fields and then
call the Update operation. The basic flow for updating the records is as follows:

1. Create an array of Entitykey objects.
2. Invoke the Read operation to retrieve the data from Microsoft Dynamics AX.
3. Update the fields that you want to change.
4. Change the action property on the changed records to be updated.
5. Invoke the Update operation.

The following is the code implementation:

static void updateTitle()
{
 Console.WriteLine("Enter a title Id to look for :");
 string titleId = Console.ReadLine();

 // Create an instance of the keyfield containing a record id to
 // search for
 KeyField keyField = new KeyField() { Field = "Id", Value = titleId
};

 // Create an entity key instance and put in the key field data
 EntityKey entityKey = new EntityKey();
 entityKey.KeyData = new KeyField[1] { keyField };

 // Call the findKeys operation to fetch all of the keys that match
 // the query criteria
 EntityKey[] entityKeys = new EntityKey[1] { entityKey };

 // Create a client for as long as we need to

Chapter 3

[81]

 using (CVRTitleDocumentServiceClient client = new
 CVRTitleDocumentServiceClient())
 {
 // Use the keys to read all of the titles
 AxdCVRTitle titleDocument = client.read(null, entityKeys);

 // Get the CVRTitle record entity
 AxdEntity_CVRTitle title = titleDocument.CVRTitle.First();

 title.Description = "Updated Description";
 title.action = AxdEnum_AxdEntityAction.update;
 title.actionSpecified = true;

 // Invoke the update operation
 client.update(null, entityKeys, titleDocument);
 }
}

Delete
As you might have guessed already, the Delete operation will delete records from
Microsoft Dynamics AX. The flow for using the Delete operation is as follows:

1. Create an array of EntityKey objects.
2. Invoke the Delete operation to delete the data from Microsoft Dynamics AX.

The following code will prompt the user to enter a title ID and then delete that title
from Microsoft Dynamics AX:

static void deleteTitle()
{
 // Let the user enter an Id in the console window
 Console.WriteLine("Enter a title Id to delete :");
 string titleId = Console.ReadLine();

 // Create an instance of the keyfield containing the title id to
 // search for
 KeyField keyField = new KeyField() { Field = "Id", Value = titleId
};

 // Create an entity key instance and put in the key field data
 EntityKey entityKey = new EntityKey();

AIF Document Services

[82]

 entityKey.KeyData = new KeyField[1] { keyField };

 // Create an array of entity keys and put in the previously
 // created key
 EntityKey[] entityKeys = new EntityKey[1] { entityKey };

 using (CVRTitleDocumentServiceClient client = new
 CVRTitleDocumentServiceClient())
 {
 client.delete(null, entityKeys);
 }
}

GetKeys
The GetKeys operation will return the keys for records that match the document
filter that is configured on the integration port. Document filters are only available
on enhanced integration ports.

Document filter
For the sake of this demonstration, we assume that a document filter is added
on the port used by the CVRTitleDocumentService service, as shown in the
following screenshot:

Chapter 3

[83]

Using GetKeys
The flow for using the GetKeys operation is as follows:

1. Create a DocumentPaging object that contains the number of keys to be
returned (optional).

2. Invoke the getKeys operation that returns the entity keys that match the
document filter.

3. Use the Read operation to retrieve the data of the related records when needed.

The following code uses GetKeysoperation to fetch the records from Microsoft
Dynamics AX that match the document filter that we just discussed:

static void getKeys()
{
 AxdCVRTitle titleDocument = new AxdCVRTitle();

 // Create a client for as long as we need to
 using (CVRTitleDocumentServiceClient client = new
 CVRTitleDocumentServiceClient())
 {
 // Call the findKeys operation to fetch all of the keys that
 // match the document filter
 EntityKeyPage keyPage = client.getKeys(null, null);

 // Fetch the entity key list from the page
 EntityKey[] entityKeys = keyPage.EntityKeyList;

 // Check if we had matching titles
 if (entityKeys.Length >= 0)
 {
 // Use the keys to read all of the titles
 titleDocument = client.read(null, entityKeys);
 }
 }

 // Loop all the titles to report to the console
 foreach (AxdEntity_CVRTitle title in titleDocument.CVRTitle)
 {
 Console.WriteLine(title.Id + ' ' + title.Name + ' ' + title.
 LengthInMinutes);
 }
}

AIF Document Services

[84]

Based on the document filter that selects titles starting with The, a part of the
resulting titles looks as follows:

T000000001 The Godfather 102

T000000002 The Godfather: Part II 102

T000000004 The Good, the Bad and the Ugly 97

T000000007 The Dark Knight 119

T000000008 The Lord of the Rings: The Return of the King 112

T000000009 The Dark Knight Rises 103

GetChangedKeys
The GetChangedKeys operation also fetches the keys of records from Microsoft
Dynamics AX that match the document filter. In addition to this, it also restricts
the returned keys to records that have changed since a given date and time.

Change tracking
To be able to use getChangedKeys, SQL Server Change Tracking has to
be configured. Once change tracking has been configured, the integration
ports will need to be reactivated.
Information about change tracking can be found at the following links:

• Configuring AIF for change tracking: http://msdn.
microsoft.com/en-us/library/hh433529.aspx

• Enabling/disabling change tracking for SQL Server: http://
technet.microsoft.com/en-us/library/bb964713.aspx

• Enabling/disabling change data capturing: http://technet.
microsoft.com/en-us/library/cc627369

The flow for using the GetChangedKeys operation is the same as the one for using
the getKeys operation. The difference is that you can retrieve only the records that
have changed since a given date instead of all the records that the document filter
applies to. The following code shows us the use of the same document filter. It also
illustrates the use of change tracking to further narrow down the list to only the
records that were changed. This assumes that we have updated the records with
change tracking enabled:

static void getChangedKeys()
{
 AxdCVRTitle titleDocument = new AxdCVRTitle();

 // Create a client for as long as we need to

Chapter 3

[85]

 using (CVRTitleDocumentServiceClient client = new
 CVRTitleDocumentServiceClient())
 {
 // Call the getChangedKeys operation to fetch all of the keys
 // that were changed
 // The change date used here was 2013/12/01 15:30
 EntityKeyPage keyPage = client.getChangedKeys(null, null, new
 DateTime(2013, 12, 01, 15, 30, 00));
 // Fetch the entity key list from the page
 EntityKey[] entityKeys = keyPage.EntityKeyList;

 // Check if we had matching titles
 if (keyPage.PageStatus == EntityKeyPageStatus.Success &&
 entityKeys.Length > 0)
 {
 // Use the keys to read all of the titles
 titleDocument = client.read(null, entityKeys);
 }
 }

 // Loop all the titles to report to the console
 foreach (AxdEntity_CVRTitle title in titleDocument.CVRTitle)
 {
 Console.WriteLine(title.Id + ' ' + title.Name + ' ' +
 title.LengthInMinutes + ' ' + title.Description);
 }
}

As we updated one record for this sample, the following is the result:

T000000007 The Dark Knight 119 Updated Description for the dark knight

Asynchronous communication
So far, we have focused on synchronous communication using the NetTcp adapter.
The filesystem adapter and the MSMQ adapter work asynchronously and differently
from synchronous adapters.

Asynchronous adapters use the following two tables to store messages:

• AifGatewayQueue: The AifGatewayQueue table is used in the asynchronous
processing of both inbound and outbound messages. Inbound messages are
stored in this table after they are retrieved by the gateway receive service.
Outbound messages are stored in this table after they are processed by the
outbound processing service.

AIF Document Services

[86]

• AifOutboundProcessingQueue: The AifOutboundProcessingQueue table is
used by the send service framework to store requests for outbound messages.
These requests are then processed by the outbound processing service that
stores a message in the AifGatewayQueue table.

The following flowchart displays the relationship between the tables and the classes
that are used for asynchronous communication:

Start

Direction

Input document

AifGateWayReceive
Service

AX business data

AxdSend

AifOutboundProcessing
Service

AifGatewaySend
Service

AifGatewayQueue
table

Output document

End

AifOutbound
ProcessingQueue

table

Outbound

AifGateWayQueue
table

AifInboundProcessing
Service

AX business data

Inbound

Chapter 3

[87]

The send service framework
You can use the send service framework when you want to send outbound messages
to asynchronous adapters. The following job demonstrates how you can send
documents that contain titles to an outbound port:

static void CVRAxdSendTitles(Args _args)
{
 AxdSend axdSend = new AxdSend();
 AifConstraintList aifConstraintList = new AifConstraintList();
 AifConstraint aifConstraint = new AifConstraint();

 aifConstraint.parmType(AifConstraintType::NoConstraint);
 aifConstraintList.addConstraint(aifConstraint);

 axdSend.sendMultipleDocuments(classNum(CVRTitleDocument), classNum(
 CVRTitleDocumentService), AifSendMode::Async, aifConstraintList);
}

When you run the job, the following dialog will appear:

In this dialog, you can select an outbound port in the Port name field. In
order for this to work, you should create an outbound port and add the
CVRTitleDocumentService.find operation to the service operations that are
exposed by the port. The Find operation is the default operation used by the
AxdSend.sendMultipleDocuments() method as this method uses a query.
You can change this query by clicking on the Select button.

In a real-life scenario, you should create a new class that extends the AxdSend
class instead of creating a job. This will allow you to customize the behavior of
the AxdSend class.

When you click on OK, a record will be inserted in the AifOutboundProcessingQueue
table. To process this record, we will need to set up batch processing, which is what we
will discuss next.

AIF Document Services

[88]

Batch processing
When you use an asynchronous adapter such as the filesystem adapter or the
MSMQ adapter, you will have to schedule batch tasks to process the messages
that are exchanged.

To enable batch processing for asynchronous communication, perform the
following steps:

1. Navigate to System Administration | Inquiries | Batch jobs | Batch jobs.
2. Press Ctrl + N to create a new batch job and enter a description; for example,

AIF asynchronous processing.
3. Select the new batch job and click on View tasks.
4. Press Ctrl + N and enter AifGateWayReceiveService in the Class name

field. Also, select the appropriate company account and save the record.
5. Repeat the previous step for the AifInboundProcessingService,

AifOutboundProcessingService, and AifGatewaySendService classes.
Be sure to add them in that sequence.

6. On all but the first task, add a record in the Has conditions grid. The Task
ID field should point to the task that comes before it and the Expected status
field should be set to Ended. This will help you make sure that the tasks are
executed in the correct order.

7. Exit the screen and click on Recurrence. Enter a recurrence pattern that fits
your scenario and click on OK.

8. Finally, navigate to Functions | Change status and set the status to Waiting.

When developing, waiting for a batch to start is not very efficient. The following
job processes the asynchronous messages just as the batches do but saves you time
because it can be run manually:

static void CVRRunAsycManually(Args _args)
{
 // read the messages
 new AifGateWayReceiveService().run();

 // process inbound messages in queue
 new AifInboundProcessingService().run();

 // process outbound messages in queue
 new AifOutboundProcessingService().run();

 // send messages

Chapter 3

[89]

 new AifGateWaySendService().run();

 info('done');
}

Summary
In this chapter, we created our first document service in Microsoft Dynamics AX
2012. Document services distinguish themselves from other types of services because
they can be created using a wizard. This wizard creates components that are specific
to document services and uses them in AIF.

In doing this, the AIF Document Service Wizard allows developers to create services
that are capable of the Create, Read, Update, and Delete (CRUD) operations on
complex documents. The advantage of using document services operations over
other solutions such as creating data using SQL statements is that the business logic
that is contained in all of the components that make up the service are also executed,
such as defaulting and validation of values.

Document services are great for exposing documents, but not so much for exposing
pure business logic. In the next chapter, we will discuss a type of service that is ideal
for this purpose—custom services.

Custom Services
The ability to develop custom services in Microsoft Dynamics AX is not new,
but the way it is done in Microsoft Dynamics AX 2012 is. Developers can now
create a WCF service in a way that is similar to how they would develop a WCF
service in a language like C#. Using attributes to create data and service contracts,
development is simplified because you don't have to worry about the technical
details of serialization and deserialization. These things are all handled by WCF,
which allows you to quickly create powerful services.

By the end of this chapter, you will have learned how to use attributes to create data
and service contracts and how to use them to create custom services. You will also be
able to deploy services and consume them using a WCF client application.

The following topics will be covered in this chapter:

• Key components: Just as some components are specific to document services,
there are also components that are specific to custom services. Most of these
components use attributes, so we'll see what that is all about too.

• Creating custom services: We will create a custom service step-by-step and
deploy it. This service will focus on retrieving data from Microsoft Dynamics
AX 2012 and exposing it. In another service, we will focus on a more complex
scenario. That scenario will expose business logic that allows you to create
data in Microsoft Dynamics AX 2012.

• Consuming a custom service: Finally, you will learn how to consume
a custom service in a .NET WCF application. This is similar to how a
document service is consumed.

Custom Services

[92]

Key components
In the previous chapter, we discussed the key components of document services.
When developing custom services, there are also a few concepts you should be
familiar with, starting with attributes.

Attributes
Attributes are classes that contain data just like normal classes, but the purpose of
this data is different. Attributes contain metadata that describes targets. Targets can
be of different types such as classes, interfaces, methods, events, and so on.

Attributes can either be intrinsic or custom. Intrinsic attributes are part of Common
Language Runtime (CLR) and are contained in the .NET framework. Custom
attributes are attributes that you can create yourself.

Because attributes contain metadata, they are useful only when reflection is used.
An example of this is the DataContract attribute. The service generation process
uses reflection on the classes that the service class uses to determine which of these
classes are data contracts.

The following code shows the usage of another attribute called
SysObsoleteAttribute. It tells the compiler to generate warnings or errors, suggesting
that the class has become obsolete and should therefore not be used anymore:

[SysObsoleteAttribute("You should be using the SysOperation framework
now instead RunBase", false)]
class RunBase
{
}

Custom services attributes
When you create custom services, you will certainly encounter some attributes in
X++ that provide metadata to the service generation process. The following table
shows you the most commonly used attributes:

Attribute Description
SysEntryPointAttribute This is a mandatory attribute in methods that are

exposed as a service operation. It indicates that the
method is a service operation. Not using this attribute
will result in a service group deployment failure.
An optional parameter specifies whether the
AOSAuthorization setting on the tables will be
checked when this method is executed on the server.

Chapter 4

[93]

Attribute Description
DataContractAttribute This attribute defines that the attributed class is used

as a data contract for a service.
DataMemberAttribute This attribute indicates that a parameter method is a

data member in a data contract for a service.
AifCollectionTypeAttribute This attribute specifies the type that is used in a

collection. It contains the name of the parameter
that is targeted and the types of the objects that are
contained in the collection.

Data contracts
Because a service and client don't necessarily use the same types internally, they
must agree on the type that they will use to exchange data. This agreement, or
contract if you will, is called a data contract, and is used to describe these datatypes.
The data contract is then used to serialize and deserialize the type.

Services use data contracts to describe the parameters and return types for their
service operations. However, there are some types that can be serialized without
using data contracts. The following types serve as implicit data contracts:

• Primitive types (such as str, int, int64, real, guid, utcdatetime,
and date)

• Extended datatypes
• Base enums
• Collections in which all elements are the same type and are of a type that is a

valid data contract
• Tables and views

One noticeable exception is the X++ AnyType type, which cannot be used in data
contracts. On the other hand, any .NET type that can be serialized by WCF can be
used as a data contract, which more than makes up for that.

If you need types other than the ones that are described in the preceding table, you
can always create your own data contract in X++. A data contract can be created in the
AOT by creating a new class and by adding the DataContractAttribute attribute to
the class declaration. You will do this a lot when developing custom services.

Custom Services

[94]

Of course, a class without properties cannot hold any data; so, to complete the
data contract, you must add data members in the form of methods. You can use the
DataMemberAttribute attribute to specify that a method is a data member. The data
members themselves can use data contracts or any of the types described previously
as return types and parameters.

Service contracts
When we talked about the WCF, we saw that a service contract describes the
functionality that is exposed. In Microsoft Dynamics AX 2012, you can create a
service contract by creating a class in the AOT. This class is called a service class.
A service class does not need an attribute to specify that it is a service contract,
although it is required that this class have the RunOn property set to Server.

However, when you create such a class, all you have is just a regular class that
runs on the server when it is executed. What makes a class a true service class
is having methods that are service operations. These methods must have the
SysEntryPointAttribute attribute to indicate that they are service operations.

Collection types
X++ does not support strongly typed collections, so when we want to return or receive
a collection of data contracts, we have to use the AifCollectionTypeAttribute class.
This attribute is used to specify the type of the collection, both for parameters and
return types.

It's possible to specify the following five parameters when using the attribute:

Parameter Description
Parameter name This specifies the parameter that the attribute applies to. This is either

the name of the parameter or return for return values.
Item type This is the base type of the collection or the key value when the

collection is a map.
Extended type
name

When the type is Class, Enum, or UserType, this specifies the name
of the type.

Value type When the collection type is a map, this is the type of the value in the
map.

Value extended
type name

When the collection type is a map and the type is Class, Enum, or
UserType, this specifies the name of the type.

Chapter 4

[95]

Creating custom services
In this section, we will discuss two custom services. One service focuses on
exposing data from Microsoft Dynamics AX 2012 while the other focuses on
exposing business logic.

The Title service
We will use the CVRTitleService service as an example to demonstrate how to
create a simple yet powerful service. This service will allow an external program to
do the following two things:

• Retrieve the details of a title based on its ID
• Retrieve a list of all titles

Creating the Title data contract
Let's start by creating a new class for the data contract that will contain the data for one
title. Create a new class and name it CVRTitleContract. In the class declaration, add
DataContractAttribute to specify that the class is a data contract. Also, declare the
variable's ID, name, and description, as shown in the following code snippet:

[DataContractAttribute('Title')]
public class CVRTitleDataContract
{
 CVRTitleId id;
 CVRTitleName name;
 Description description;
}

Next, add three parameter methods, one for each of the properties of the data
contract. Use DataMemberAttribute to indicate that the methods are data contract
members, as shown in the following code snippet:

[DataMemberAttribute('Description')]
public Description parmDescription(Description _description =
description)
{
 description = _description;
 return description;
}

[DataMemberAttribute('Id')]

Custom Services

[96]

public CVRTitleId parmId(CVRTitleId _id = id)
{
 id = _id;
 return id;
}

[DataMemberAttribute('Name')]
public CVRTitleName parmName(CVRTitleName _name = name)
{
 name = _name;
 return name;
}

As you can see in the preceding code, we construct the attributes using an optional
string parameter. This parameter is the name. Because we do that, a client application
can get the value of a member using code such as title.Description. If we don't
pass a name, the client application would have to use CVRTitleDataContract.
parmDescription instead, which doesn't look as neat. It's better to not expose the
prefixes and other naming conventions that are specific to Microsoft Dynamics AX
such as the DataContract suffix and parm prefix.

Essentially, you now have a functional data contract. However, there are a few
tweaks that we can still perform when constructing the data contract. Because our
contract is tied to a record of the CVRTitle type, we can create a static new() method
that creates an instance of the data contract based on a record of this type. Note that
these steps are optional, but performing them has the following main advantages:

• In Microsoft Dynamics AX 2012, it is impossible to create an instance of the
contract in a way other than the one used by the developer who created the
intended contract, because both the new() and construct() methods are
not publicly available. This way, a developer who creates an instance of the
contract is less likely to make mistakes.

• When creating an instance of the data contract, you will have less coding to
do because the contract is filled in the static new() method. This will make
your code cleaner and easier to understand.

Start by overriding the new() method and set it as protected so only the
CVRTitleDataContract class or one of its subclasses can call the method,
shown as follows:

protected void new()
{
}

Chapter 4

[97]

Always create a construct() method for your classes, but if it doesn't return a valid
instance, set it as private. A valid instance means that when constructed, all of the
variables needed for execution have to be initialized. Creating an instance of the data
contract using the construct() method isn't valid in this case because the properties
id, name, and description are not set:

private static CVRTitleDataContract construct()
{
 return new CVRTitleDataContract();
}

Finally, create a static new() method that takes a CVRTitle record as a parameter,
uses it to construct an instance of the CVRTitleDataContract class, and returns it:

public static CVRTitleDataContract newFromTableRecord(CVRTitle
_title)
{
 CVRTitleDataContract contract = CVRTitleDataContract::
 construct();

 contract.parmId(_title.Id);
 contract.parmName(_title.Name);
 contract.parmDescription(_title.Description);

 return contract;
}

Best practices
These recommendations are based on the best practices defined
by Microsoft at http://msdn.microsoft.com/en-us/
library/aa854210.aspx.

So there you go, you have created your first data contract. That wasn't too hard, was it?
Now, let's see how we can create a list data contract, which is a little more complex.

Custom Services

[98]

Creating the Title list data contract
We will create a list data contract using the data contract that we just created by
performing the following steps:

1. Start by creating a new class and name it CVRTitleListDataContract. Add
the DataContractAttribute attribute to it to declare that the class is a data
contract and add a list variable that will store a list of titles, shown as follows:
[DataContractAttribute]
public class CVRTitleListDataContract
{
 List titleList;
}

2. Next, we add the usual constructers, new() and construct(). Also, don't
forget to initialize the list object, shown as follows:
protected void new()
{
 titleList = new List(Types::Class);
}

public static CVRTitleListDataContract construct()
{
 return new CVRTitleListDataContract();
}

3. Next, we have to provide you with a way to add titles to the list. Add a
method that takes a title data contract and adds it to the end of the list,
as shown in the following code snippet:
public void addTitleToList(CVRTitleDataContract
_titleDataContract)
{
 titleList.addEnd(_titleDataContract);
}

4. Finally, we add the data member method that will return a list of
titles. Add the DataMemberAttribute attribute as you would for
every other data member, but also add two more attributes of the type
AifCollectionTypeAttribute, as shown in the following code snippet:
[DataMemberAttribute
,AifCollectionTypeAttribute('return', Types::Class,
classstr(CVRTitleDataContract))

Chapter 4

[99]

,AifCollectionTypeAttribute('_titleList', Types::Class,
classstr(CVRTitleDataContract))]
public List parmTitleList(List _titleList = titleList)
{
 titleList = _titleList;
 return titleList;
}

As we've discussed previously, the AifCollectionTypeAttribute attribute is used
to specify the type of the list, because X++ does not support strongly typed lists. In
this case, AifCollectionTypeAttribute takes the following three parameters:

• The name of the parameter; in this example, _titleList. For the return
value, the name is return.

• The base type of the type, which is Class in this example.
• The name of the type; in our case, the class name is CVRTitleDataContract.

This concludes the creation of the two contracts that we will need for our service.
Now let's see how we can use them.

Creating the Title service class
We will create a service class that has the following two service operations:

• An operation that returns the details of a title based on its ID
• An operation that returns all of the titles

First, we create a service class. Create a new class and name it CVRTitleService, as
shown in the following code snippet. We do not need to add anything more to the
class declaration because a service class declaration does not need an attribute:

public class CVRTitleService
{
}

One thing we have to make sure is that this class runs on the server when it is
executed. To do this, right-click on the class, click on Properties, and then set the
RunOn property to Server.

Custom Services

[100]

Creating the Title service operation
OK, let's create a service operation that retrieves the details of a title based on its ID.
Start by creating a new method. You can see the source code of this method in the
following snippet. As you can see, we add the SysEntryPointAttribute attribute to
specify that the method is a service operation. We add true between brackets when
constructing the attribute to specify that the AOS authorization has to be performed
when the code runs on the server. This will help you make sure that the user who
calls the service operations has the necessary permissions on the tables that the
method uses:

[SysEntryPointAttribute(true)]
public CVRTitleDataContract getTitle(CVRTitleId _titleId)
{
 CVRTitleDataContract contract;

 contract = CVRTitleDataContract::newFromTableRecord(CVRTitle::
 find(_titleId));

 return contract;
}

As you can see, further in the method, we use the _titleId parameter to find the
record in the database and construct a new data contract with it. Then, we return
the data contract.

Creating the Title list service operation
This service operation will use the list data contract to return a list of all the titles. As
you can see in the following code, all titles in the CVRTitle table are traversed. Then,
a data contract is constructed and added to the list contract. Finally, a list contract
that contains the details of all of the titles is returned:

[SysEntryPointAttribute(true)]
public CVRTitleListDataContract getAllTitles()
{
 CVRTitleListDataContract titleListDataContract =
 CVRTitleListDataContract::construct();
 CVRTitleDataContract titleContract;
 CVRTitle titleRecord;

 while select titleRecord
 {

Chapter 4

[101]

 // Convert the record to a data contract
 titleContract = CVRTitleDataContract::newFromTableRecord(
 titleRecord);

 // Add the title data contract to the list of data contracts
 titleListDataContract.addTitleToList(titleContract);
 }

 return titleListDataContract;
}

Creating the Title service contract
The final thing we have to do before we can deploy our service is define the service
contract. To create the service contract, perform the following steps:

1. Open the AOT by pressing Ctrl + D.
2. Right-click on the Services node and then click on New Service.
3. Right-click on the newly created service and then click on Properties.
4. Change the value of the Name and Class properties to CVRTitleService.
5. Change the value of the Namespace property to http://schemas.contoso.

com/ServiceContracts.
6. Expand the CVRTitleService node, right-click on Operations, and click on

Add Operation.
7. The Add service operations form pops up. Select the Add field for the

getAllTitles and getTitle methods and then click on OK.
8. Click on the Save All button to save the changes.

Deploying services
To deploy our custom services, we will use a basic port. For this reason, we need to
add the services that we want to deploy to a service group. We will add all of them
to one service group: CVRCustomServices. Let's deploy our custom services using
the following steps:

1. Open the AOT by pressing Ctrl + D.
2. Right-click on the Service Groups node and then click on New Service Group.
3. Right-click on the newly created service group and then click on Properties.
4. Change the value of the Name property to CVRCustomServices.
5. Right-click on the service group and select New Service Node Reference.

Custom Services

[102]

6. Select the service node reference that was added and change the value of the
Service property to CVRTitleService.

7. Finally, right-click on the service group and click on Deploy Service Group
to deploy the service.

Now that you have completed these steps, navigate to System administration |
Setup | Services and Application Integration Framework | Inbound ports. The
CVRCustomServices inbound port is available there as a basic inbound port and is
now ready to be consumed.

The rental service
The contracts and service operations that we have created to retrieve titles are pretty
simple. They might be all you need in a real-life application. However, it is more
likely that you will need data contracts that are more complex. To demonstrate this,
we've added the rental service to the demo application. The rental service allows
external applications to retrieve rental information or create rentals. Creating this
service with all data contracts step-by-step would take too long, so we will discuss
the artifacts only at a high level, starting with the database schema of the tables that
we will use.

Rental header and line tables
The following is a simple schema of the tables that we will use. A rental header
contains information about the rental, such as the store and the transaction date.
A rental header is related to one or more lines that contain the details of the rental,
such as the item that was rented:

Chapter 4

[103]

Rental service operations
There are three service operations available in the rental service:

• CreateRental: This service operation takes a parameter of type
CVRRentalDocumentDataContract and uses it to register a rental
in the CVRRentalTable and CVRRentalLine tables

• GetAllRentals: This service operation returns a list of
CVRRentalDocumentDataContract data contracts by using
the CVRRentalDocumentListDataContract data contract

• GetAllRentalsForMember: This service operation does the same as the
GetAllRentals operation but returns rentals only for a specific member

Rental data contracts
There are a total of five data contracts that the rental service uses. The relationships
between these data contracts and the service operations are explained in the
following diagram:

Custom Services

[104]

From the bottom up, the following are the contracts and their functions:

• CVRRentalLineDataContract: This data contract contains the properties of a
rental line, including the title and the return date.

• CVRRentalLineListDataContract: This data contract contains a list of lines.
It uses AifCollectionTypeAttribute to describe that the list contains items
of the CVRRentalLineDataContract type.

• CVRRentalHeaderDataContract: This data contract contains the header
information about a rental, including the member ID and the transaction date.

• CVRRentalDocumentDataContract: This data contract represents a rental
document. It contains a header and a list of lines, respectively using the
CVRRentalHeaderDataContract and CVRRentalLineListDataContract
types.

• CVRRentalDocumentListDataContract: This data contract contains
a list of rental documents and is used in the getAllRentals and
getAllRentalsForMember service operations.

This demonstrates that you can use data contracts within data contracts to make
logical entities. Although it might seem complex at first glance, each class has its
own responsibilities, which makes them reusable and easier to maintain.

The createRental service operation
The following is the createRental service operation. It uses the rental document
data contract to register a rental in the database:

[SysEntryPointAttribute(true)]
public CVRRentalRefRecId createRental(CVRRentalDocumentDataContract
_rentalDocument)
{
 CVRRentalTable rentalTable;
 CVRRentalLine rentalLine;

 CVRRentalLineDataContract lineDataContract;
 CVRRentalLineListDataContract lineListDataContract;

 ListEnumerator enumerator;

 // Insert the rental header

Chapter 4

[105]

 rentalTable.clear();
 rentalTable.Id = _rentalDocument.parmHeaderContract().parmId();
 rentalTable.Member = CVRMember::find(_rentalDocument.
parmHeaderContract().parmMemberId()).RecId;
 rentalTable.Shop = CVRShop::find(_rentalDocument.
parmHeaderContract().parmShopId()).RecId;
 rentalTable.TransDate = _rentalDocument.parmHeaderContract()
 .parmTransDate();
 rentalTable.insert();

 // Get the list of rental lines
 lineListDataContract = _rentalDocument.parmLinesContract();

 // Initialize an enumerator to loop the lines
 enumerator = lineListDataContract.parmRentalLineList()
 .getEnumerator();

 // As long as we have lines
 while(enumerator.moveNext())
 {
 // Get the current line
 lineDataContract = enumerator.current();

 rentalLine.clear();
 rentalLine.Rental = rentalTable.RecId;
 rentalLine.Title = CVRTitle::find(lineDataContract.
parmTitleId()).RecId;
 rentalLine.ReturnDate = lineDataContract.parmReturnDate();
 rentalLine.insert();
 }

 return rentalTable.RecId;
}

Now, let's see how we can consume the services that we have created using a .NET
WCF application.

Custom Services

[106]

Consuming services
Now that we have created and exposed our custom services, they can be consumed
by other applications. To demonstrate this, we will use Visual Studio and write two
code samples.

Example 1 – retrieving titles
The first example of consuming a service deals with the retrieval of a title list.
We want to be able to write a list of titles to the console window.

Adding the service reference
To add the service reference, perform the following steps:

1. In Visual Studio, create a console application just like we did in the previous
chapter when testing the document service.

2. Right-click on the project node and select Add Service Reference…. The Add
Service Reference window opens.

3. In the Address drop-down box, specify http://DYNAX01:8101/
DynamicsAx/Services/CVRCustomServices as the address for the service
and then click on Go. Of course, replace DYNAX:8101 with the server and
WSDL port of your installation. The address is queried and the services and
operations that are available are listed.

4. In the Namespace box, specify the namespace that you want to use:
AxCustomServicesRef.

After performing these steps, the Add Service Reference window should look similar
to the one shown in the following screenshot. On the left-hand side of the window,
the services that were found are listed. In our case, we see that CVRCustomServices,
along with three other services, are contained in the service group. On the right-hand
side of the window, we see the operations that are available for the selected service:

Chapter 4

[107]

When you click on OK, ServiceModel Metadata Utility (SvcUtil.exe) creates a
client proxy and types according to the metadata found in the service WSDL. You
can view the types by opening the Object Browser menu.

Consuming the service
To consume the service in the console application and retrieve a list of titles, you can
use the following code:

static void Main(string[] args)
{
 // Create an instance of the proxy client

Custom Services

[108]

 CVRTitleServiceClient theClient = new CVRTitleServiceClient();

 // Create the call context
 CallContext theContext = new CallContext();
 theContext.Company = "CEU";
 theContext.Language = "EN-US";
 theContext.LogonAsUser = "UserName";

 // Invoke the getAllTitles service operation
 CVRTitleListDataContract theListContract =
 theClient.getAllTitles(theContext);

 // Loop all of the returned titles
 foreach (Title title in theListContract.parmTitleList)
 {
 Console.WriteLine(String.Format("{0} - {1} - {2}", title.Id,
 title.Name, title.Description));
 }

 // Wait for the user to press a key
 Console.Read();
}

The output should be a title list shown as follows:

T000000001 - Memento - Memento weird movie

T000000002 - Lord of the rings - Lord of the rings long movie

Example 2 – registering a rental
In this second example, we will consume a service that enables us to register a rental.
We will again take a look at creating the service reference but focus a little more on
some advanced options available to us when creating the service reference.

Creating the service reference – advanced
We added a service reference in the previous example, so first delete it. This allows
us to recreate the service reference for this example and look at it in more detail.

To create the service reference again, perform the following steps:

1. In the Solution Explorer panel in Visual Studio, right-click on the project
node and click on Add Service Reference…. The Add Service Reference
window opens.

Chapter 4

[109]

2. In the Address drop-down box, specify http://DYNAX01:8101/
DynamicsAx/Services/CVRCustomServices as the address for the service
and then click on Go. The address is queried and the services and operations
that are available are listed.

3. In the Namespace box, specify the namespace that you want to use:
AxCustomServicesRef.

4. Click on the Advanced button available on this screen. The Service
Reference Settings window opens.

Let's pause here and look at two options (as shown in the following screenshot)
that are of particular interest to us: Always generate message contracts and
Collection type:

Always generate message contracts
The Always generate message contracts option determines if the message contracts
will be generated for the client. When you do not use this, the client has service
operations that contain the same number of parameters as provided on the service
operation. When this option is checked, the message contracts are used on the service
operations instead of the parameter list. The parameters that would normally be passed
to the service operation are then wrapped in a message contract. This can be useful
when you want to make sure that all of the service operations take only one parameter.

Custom Services

[110]

If we look back at the previous sample code, it could also be modified to work with
the message contracts that were generated, as demonstrated in the following code:

// Create the request message contract
CVRTitleServiceGetAllTitlesRequest theRequest = new
CVRTitleServiceGetAllTitlesRequest(theContext);

// Invoke the getAllTitles service operation
CVRTitleServiceGetAllTitlesResponse theResponse = theClient.
getAllTitles(theRequest);

// Retrieve the list of titles
CVRTitleListDataContract theListContract = theResponse.response;

Instead of just passing the context to the service operation, we need to create a
request message contract. This contract is then passed to the service operation as the
only parameter. All of the other parameters that you would use are contained in the
message contract so that you can set them in the request message contract.

The service operation itself does not return the list in this case, but returns a response
message contract. This response message contract itself contains the list.

Collection type
The Collection type option specifies the type of collections that are used by the
proxy client when dealing with collections. Though the service implementation uses
List as the collection type, you can choose to use arrays on the client side. This is
the default option when creating a service reference. If we look back at the code that
retrieves the list of titles (as shown in the following screenshot), we can see that the
resulting collection type is an array of Title objects:

Chapter 4

[111]

If we choose a different type, for example, System.Collections.Generic.List, we
can see that the return type is now a generic list of Title objects instead of an array,
as shown in the following screenshot:

Consuming the service
The following code uses the rental service and creates a rental with two titles. First,
start by adding the using statement so that the types in the service reference are
available to you. Use the following code to do this:

using DynamicsAxServices.Chapter4.Rentals.AxCustomServiceRef;

Then, you can add the following code to consume the rental service:

CVRRentalCustomServiceClient client = new
CVRRentalCustomServiceClient();

// Create the rental header information
RentalHeader header = new RentalHeader();
header.MemberId = "M00001";
header.RentalId = "R00001";
header.ShopId = "S00002";
header.TransDate = DateTime.UtcNow;

// Create a rental line
RentalLine line = new RentalLine();
line.RentalId = "R00001";
line.Title = "T00001";
line.ReturnDate = DateTime.UtcNow;

// Create a second rental line
RentalLine secondLine = new RentalLine();
secondLine.RentalId = "R00001";
secondLine.Title = "T00003";
secondLine.ReturnDate = DateTime.UtcNow;

// Add it to the lines for the Rental
RentalLines lines = new RentalLines();

Custom Services

[112]

lines.LinesList = new List<RentalLine>();
lines.LinesList.Add(line);
lines.LinesList.Add(secondLine);

// Compose the Rental document
Rental Rental = new Rental();
Rental.RentalHeader = header;
Rental.RentalLines = lines;

// Invoke the creation of the Rental
long rentalRecId = client.createRental(null, Rental);

Console.WriteLine(String.Format("Rental created with record id {0}",
Convert.ToString(rentalRecId)));
Console.ReadLine();

To explain how this works, we will go through the code one block at a time.
The following is the first line of code:

CVRRentalCustomServiceClient client = new
CVRRentalCustomServiceClient();

Just as in the previous samples, the first thing to do is to create an instance of
the proxy client. When we have instantiated the client, we can start building the
document that is required by the service operation that we are going to call. First up
is the rental header, shown as follows:

RentalHeader header = new RentalHeader();
header.MemberId = "M00001 ";
header.RentalId = "R00001";
header.ShopId = "S00002";
header.TransDate = DateTime.UtcNow;

The header is created by creating an instance of the RentalHeader contract. Note
that this is a data contract that is generated by the SvcUtil tool and corresponds
with CVRRentalHeaderDataContract. The name RentalHeader comes from the
DataMemberAttribute attribute that we defined in X++. The following block of
code creates a rental line:

RentalLine line = new RentalLine();
line.RentalId = "R00001";
line.Title = "T00001";
line.ReturnDate = DateTime.UtcNow;

Chapter 4

[113]

In this sample, we are adding two of those lines. As with RentalHeader, the same
remark applies for the RentalLine type. This is the CVRRentalLineDataContract
contract that has been generated at the client side with the name that was specified in
the DataMemberAttribute attribute:

RentalLines lines = new RentalLines();
lines.LinesList = new List<RentalLine>();
lines.LinesList.Add(line);
lines.LinesList.Add(secondLine);

Next, the lines that we previously created need to be added to a list data contract. We
do this by creating an instance of the CVRRentalLineListDataContract contract. In
this contract, we add a list that contains the two lines that we have created:

Rental Rental = new Rental();
Rental.RentalHeader = header;
Rental.RentalLines = lines;

We have created the header, two lines, and a list that contains these lines. At this
point, we can glue these together and obtain a rental document object to pass to the
service operation. The Rental type matches the CVRRentalDocumentDataContract
contract and gets its name from the DataMemberAttribute attribute in X++.

Last but not least, we invoke the createRental service operation and pass the
document to it. The result is RecId of the created CVRRentalHeader record.

long rentalRecId = client.createRental(null, Rental);

Console.WriteLine(String.Format("Rental created with record id {0}",
Convert.ToString(rentalRecId)));

Summary
It should be clear that custom services provide a fast and powerful way to expose
data and business logic. Custom services are capable of exposing both simple and
complex entities. This makes them an alternative to document services. An aspect
that custom services are far superior in is the aspect of exposing business logic. This
will probably make custom services the preferred method of integration in many of
your implementations.

In the next chapter, we will see how we can use custom services and data contracts in
the SysOperation framework.

The SysOperation
Framework

The SysOperation framework is new in Microsoft Dynamics AX 2012 and is the
preferred way to create batch jobs. It replaces the RunBase and RunBaseBatch
frameworks, which remain available for backward compatibility. When Microsoft
Dynamics AX 2012 was released, the SysOperation framework was known as the
Business Operation Framework (BOF).

The SysOperation framework provides all of the functionality of the RunBaseBatch
framework and more. In this chapter, we will discuss the differences between these
frameworks and point out the benefits of the SysOperation framework.

The following topics are covered in this chapter:

• SysOperation versus RunBaseBatch: In the previous versions of Microsoft
Dynamics AX, the RunBaseBatch framework was the preferred way to create
business logic that should run in batches. By comparing RunBaseBatch and
SysOperation, we will show you that using SysOperation is the way to go in
Microsoft Dynamics AX 2012.

• Creating a SysOperation service: We will demonstrate how to create a
SysOperation service. Much of this will already be familiar to you as we will
be using services and data contracts. Some new elements will be introduced,
including attributes.

• Running a SysOperation service: The RunBaseBatch framework can only
run logic in two modes: synchronously on the client side or asynchronously
in the batch. The SysOperation framework has four modes; these modes are
called execution modes. This section will help you in picking the best mode
for your situation.

The SysOperation Framework

[116]

• Custom controllers: Some batches stand alone but others are started in a
specific context, for example, a form. In many cases, you want to act on the
arguments that this form passes to the SysOperation framework, such as the
record that was selected. Creating custom controllers allows you to do so,
and that's exactly what we will do.

• Custom UI Builders: When you want to modify the user interface of a
SysOperation service, UI Builder classes are the way to go. In this part, we
will create a UI Builder class and look at the various ways through which we
can change the behavior of the user interface.

• Multithreading: The SysOperation framework leverages the batch
framework for better performance. It uses multiple threads that run in
parallel to achieve a larger throughput.

At the end of this chapter, you will be able to create a SysOperation service, use
controllers, and customize the user interface of a SysOperation service. You will also
have learned how to improve the performance of your code using execution modes
and runtime tasks.

SysOperation versus RunBaseBatch
Before going into the details of using the new SysOperation framework, let's put it
next to the RunBaseBatch framework to find out what the main differences between
the two of them are.

The first difference is that the SysOperation framework uses WCF services to run
the processes and handle communication between the client and server. One of
the advantages of this is that the client/server communication is less chatty, so the
connection doesn't need to be kept alive as opposed to the RPC communication of
the RunBaseBatch framework.

The second big difference between the two is the way they implement the
Model-View-Controller (MVC) pattern. The RunBaseBatch framework uses one
class that extends from the RunBaseBatch class. All of the components contained in
the MVC pattern are contained within the same class, described as follows:

• The model is identified by the class members.
• The view is handled by the dialog(), putToDialog(), and

getFromDialog() methods. These methods present a dialog to the user and
help you put data on and get data from the dialog.

• The controller is the run() method as this is the place where you implement
the business logic.

Chapter 5

[117]

Thus, the biggest disadvantage of the RunBaseBatch framework is clear: everything
is contained in the same class.

The SysOperation framework makes better use of the MVC pattern than the
RunBaseBatch framework. All of the MVC components are separated. This is
demonstrated as follows:

• The model is handled by a class that defines the data contract.
• The view is a dialog that is now automatically generated by the UI Builder.

This UI Builder uses the data contract to determine the contents of the dialog.
• The controller is being taken care of by the service controller class.

The implementation of the MVC pattern for both the frameworks is visualized in the
following diagram:

A third notable advantage is that it is fairly easy to expose SysOperation framework
services to external consumers. The only thing that you need to do for this is add
the SysOperation framework service to a service group and deploy this using an
integration port.

So, the advantages of the SysOperation framework can be summarized as follows:

• It makes use of services
• The SysOperation framework makes correct use of the MVC pattern
• It has more efficient client/server communication
• The UI is automatically generated based on data contracts
• It involves less extra effort to externally expose the services
• It's a way to build service-oriented applications in Microsoft Dynamics AX

The SysOperation Framework

[118]

Creating a SysOperation service
In this demonstration, we will create a SysOperation service that detects members
with overdue rentals. These members will get the blocked status by setting a
checkbox on the member in the database.

The dialog for the service will look like the following screenshot:

As you can see, a query enables you to select the members for which the rentals
should be checked. By enabling the checkbox, you can override the number of
overdue days that are allowed before a member is blocked.

The SysOperation framework uses services to execute business logic; you have
already learned most of the skills needed in Chapter 4, Custom Services.

The data contract
We will now create a new data contract, but as we have already demonstrated the
creation of a data contract in the earlier chapters, we can be briefer here. The data
contract that we'll make will have the following three members:

• parmNumberOfOverdueDays: This holds the value for the number of overdue
days that are allowed.

• parmOverrideNumOfDays: This is a Boolean value that indicates that we want
to override the number of overdue days that are allowed. We will use this
later to demonstrate how to override the modifiedField() method.

• parmQuery: This holds the query as a string.

Chapter 5

[119]

Declaration and members
To start, create a new class and name it CVRRentalDueDateReminderContract. Set
the new method to protected and add a construct method in the same way as the
earlier examples. The rest of the class and its members look like the following code:

[DataContractAttribute]
public class CVRRentalDueDateReminderContract
{
 CVRNumberOverdueDays numberOverdueDays;
 CVROverrideNumberOfOverdueDays overrideNumOfDays;
 str packedQuery;
}

[DataMemberAttribute('OverdueDays')
,SysOperationDisplayOrderAttribute('2')]
public CVRNumberOverdueDays parmNumberOverdueDays(CVRNumberOverdueDays
_numberOverdueDays = numberOverdueDays)
{
 numberOverdueDays = _numberOverdueDays;
 return numberOverdueDays;
}

[DataMemberAttribute('OverrideNumOfDays')
,SysOperationDisplayOrderAttribute('1')]
public CVROverrideNumberOfOverdueDays parmOverrideNumOfDays(CVROverrid
eNumberOfOverdueDays _overrideNumOfDays = overrideNumOfDays)
{
 overrideNumOfDays = _overrideNumOfDays;
 return overrideNumOfDays;
}

[DataMemberAttribute
,AifQueryTypeAttribute('_packedQuery', querystr(CVRMember))]
public str parmQuery(str _packedQuery = packedQuery)
{
 packedQuery = _packedQuery;
 return packedQuery;
}

As you can see, the data contract uses a number of new attributes. The
SysOperationDisplayOrderAttribute attribute is used to specify the order in
which the fields are displayed on the dialog. The AifQueryTypeAttribute attribute
specifies that a member is a query. Adding this attribute will add a Select button and
query values on the dialog.

The SysOperation Framework

[120]

Query helper methods
When we want to use a query on a SysOperation service, we have to declare it using
a string variable in our data contract. You can clearly see this in the data contract that
we have described previously. The data member must have the string type to make
sure that the data contract can be serialized.

To make working with the data contract easier, we will add two helper methods
to the data contract. One method will set the query based on a query object; the
other will return a query object based on the string value in the data contract,
shown as follows:

public void setQuery(Query _query)
{
 packedQuery = SysOperationHelper::base64Encode(_query.pack());
}

public Query getQuery()
{
 return new Query(SysOperationHelper::base64Decode(packedQuery));
}

These methods are optional, but they create cleaner code for other methods such as
the service operation.

Service and service operation
A SysOperation service needs a service and a service operation. This operation will
be executed when the OK button is clicked on the dialog or when the job executes in
the batch. Logically, this is where the business logic goes.

To create the service, add a new class to the AOT and name it
CVRRentalDueDateReminderService:

public class CVRRentalDueDateReminderService
{
}

Next, add a new method. This method is the service operation and contains the
business logic for the SysOperation service. The operation contains the following code:

[SysEntryPointAttribute(true)]
public void checkDueDates(CVRRentalDueDateReminderContract
 _dueDateReminderContract)
{
 QueryRun queryRun;

Chapter 5

[121]

 CVRMember cvrMember;

 // Get the query from the data contract
 queryRun = new QueryRun(_dueDateReminderContract.getQuery());

 // Loop all the members in the query
 while (queryRun.next())
 {
 // Get the current member record
 cvrMember = queryRun.get(tableNum(CVRMember));

 // Check if the member is already blocked
 if(!cvrMember.BlockedForRental &&
 this.doesMemberHaveOverdueRentals(cvrMember.RecId,
 _dueDateReminderContract.parmNumberOverdueDays()))
 {
 ttsBegin;
 cvrMember.selectForUpdate(true);
 cvrMember.BlockedForRental = NoYes::Yes;
 cvrMember.update();
 ttsCommit;
 }
 }
}

As you can see, a new QueryRun instance is created based on the query of the data
contract. We use the helper method that we added previously to retrieve the query
object. Next, we use the queryRun object to loop all members and check if the
member has rentals that are overdue. If so, we set the BlockedForRental field to
true on the member record.

The doesMemberHaveOverdueRentals() method contains the logic that checks if the
member has rentals that are overdue:

private boolean doesMemberHaveOverdueRentals(CVRMemberRefRecId
_memberRecId
 , CVRNumberOverdueDays
_overDueDays)
{
 CVRRentalTable rentalTable;
 CVRRentalLine rentalLine;
 TransDate dateLimit = systemDateGet() - _overDueDays;

 // Check if there is a rental line that is not returned yet,
 // overdue and for the current member

The SysOperation Framework

[122]

 select firstOnly RecId from rentalLine
 join RecId, Member from rentalTable
 where rentalTable.RecId == rentalLine.Rental
 && rentalTable.Member == _memberRecId
 && !rentalLine.ReturnDate
 && dateLimit > rentalLine.DueDate;

 return rentalLine.RecId;
}

Menu item
The SysOperation framework is menu-item-driven. To start a SysOperation service
from the user interface, you click on a menu item. This menu item contains a few
properties that are related to the SysOperation framework. We will discuss these
properties in further detail later, but for now, let's just create a menu item in the
most basic way. To create the menu item, perform the following steps:

1. In the developer workspace, open the AOT.
2. Expand the Menu Items node, right-click on Action, and then click on New

Menu Item.
3. Rename the menu item to CVRRentalDueDateReminderService.
4. Right-click on the menu item and then click on Properties.
5. Set the label property to Rental due date reminders.
6. Set the ObjectType to Class and enter SysOperationServiceController in

the Object property.
7. In the Parameters field, enter CVRRentalDueDateReminderService.

checkDueDates. This corresponds to the service class and service operation
that we want to use, separated by a period.

8. Set the EnumTypeParameter property to SysOperationExecutionMode and
the EnumParameter property to Synchronous.

9. Set the RunOn property to Client.
10. Right-click on the menu item and then click on Save.

Chapter 5

[123]

Testing
Before testing, remember to compile CIL by clicking on the Generate Incremental
CIL button or by pressing Ctrl + Shift + F7. When the compilation is successfully
completed, you can run the SysOperation service. Just right-click on the
CVRRentalDueDateReminderService menu item and click on Open.
The following dialog will appear:

When the OK button is clicked on, the service operation is executed using the
parameters that appear on the screen. You can open the CVRMember table to check
that members with overdue rentals are blocked after the service has run.

Validation
When you create a SysOperation service, it is likely that you will need to validate
the values that the user inputs. In our example, it would not make sense to allow the
number of days to be an amount that is smaller than one because in that case, the
rental would not be overdue.

The SysOperation framework allows you to put validation code on the data contract.
To enable this, the data contract should implement the SysOperationValidatable
interface. The following is what the updated data contract looks like:

[DataContractAttribute]
public class CVRRentalDueDateReminderContract implements
SysOperationValidatable
{

The SysOperation Framework

[124]

 CVRNumberOverdueDays numberOverdueDays;
 CVROverrideNumberOfOverdueDays overrideNumOfDays;
 str packedQuery;
}

When you compile the data contract now, you should see one or more errors that
inform you that the class should implement the validate() method. This is because
we now implement an interface that has this method. So, add the following method:

public boolean validate()
{
 boolean ret = true;

 if(numberOverdueDays <= 0)
 {
 ret = checkFailed("The number of days overdue cannot be 0 or
 less");
 }

 return ret;
}

The method checks if the number of overdue days is smaller than or equal to 0, and
if so, it returns false to indicate that the validation has failed.

Generate Incremental CIL and then run the service again. Enter 0 or less in the Number
of Overdue days field; then, click on OK and you will see the following Infolog:

Chapter 5

[125]

Defaulting
In our example, we also want the number of overdue days to get a default value
that differs from 0, for example, 3. The best way to do this is to implement the
defaulting logic on the data contract. The data contract should implement the
SysOperationInitializable interface to enable the defaulting of values:

[DataContractAttribute]
public class CVRRentalDueDateReminderContract implements
SysOperationValidatable, SysOperationInitializable
{
 CVRNumberOverdueDays numberOverdueDays;
 CVROverrideNumberOfOverdueDays overrideNumOfDays;
 str packedQuery;
}

Then, add the initialize() method and put the initialization code in it:

public void initialize()
{
 // default the number of overdue days to 3
 this.parmNumberOverdueDays(3);
}

Initialization will only occur the first time you open the dialog; from then on,
usage data will be used. If you clear the usage data for the dialog, the initialize()
method will be executed again; so, remove your usage data before you test this. After
this, generate Incremental CIL and then run the service again. You should see that
the number of overdue days is defaulted to 3:

The SysOperation Framework

[126]

Running a SysOperation service
Because a user is able to run a service by starting it in the user interface, the menu item
is an important part of a SysOperation service. As we have seen earlier, the menu item
has the following properties that are required by the SysOperation framework:

• A parameters property that contains a reference to the service and
service operation

• An enum parameter that determines the execution mode
• An object property where the controller that will be used is specified
• A label that will be displayed on the dialog

We will look at the first two properties now and discuss the others later in the chapter.

Service and service operation
The menu item is linked to the service and the service operation in the Parameters
property. The format in which this parameter should be provided is ServiceClass.
ServiceOperation, where ServiceClass is the name of the service class and
ServiceOperation is the name of the service operation, separated by a period.

Execution modes
The SysOperation framework allows both synchronous and asynchronous
processing. In our example, we used synchronous processing by specifying the
execution mode using the EnumTypeParameter and EnumParameter properties.
The EnumTypeParameter property is set to SysOperationExecutionMode, which
is a base enum that holds a value for each execution mode. The execution mode is
specified in the EnumParameter property. There are four options to choose from:

• Synchronous
• Asynchronous
• ReliableAsynchronous
• ScheduledBatch

When the execution mode is not specified, ReliableAsynchronous will be used.
To change the execution mode of our service, simply change the EnumParameter
property on the CVRRentalDueDateReminderService menu item to the execution
mode that you want to use and run the service again. Let's look at what the results
would be.

Chapter 5

[127]

Synchronous
Synchronous execution of a SysOperation service has the same behavior as running
a RunBaseBatch class. When you execute a SysOperation service synchronously but
not in a batch, the client will be unresponsive for the time it takes for the operation
to complete. All the other execution modes are forms of an asynchronous execution,
including the execution of a synchronous service in the batch. When you enable the
Batch processing checkbox on the Batch tab, a batch job will be created, analogous to
the behavior of RunBaseBatch.

Asynchronous
When a SysOperation service uses the asynchronous execution mode, the client will
still be responsive while the operation is executed. This is useful when you want a
process to run in the background.

To run a service asynchronously, the service class must have an associated service
node in the AOT. The service node has to be part of the AxClient service group, and
the service group must be deployed again after the service is added to the group. If
this isn't the case, the service will still run synchronously instead of asynchronously.

ReliableAsynchronous
The ReliableAsynchronous execution mode differs from the regular asynchronous
mode in that it creates a batch job. This ensures that the service will be executed
completely even if the client session in which it was started was destroyed, hence it
is reliable. The service will be visible among other scheduled batch jobs, but unlike
these, it will be deleted when the execution is complete. It is still visible in the batch
job history, though.

The ReliableAsynchronous execution mode also differs from regular batches in that
the user who executes the services will receive Infolog messages from the service
when it is complete. This isn't the case with regular batches where you need to
manually check the log on the batch job.

ScheduledBatch
The ScheduledBatch execution mode will schedule a batch job for the SysOperation
service. Even when you don't check the Batch processing checkbox on the Batch tab
of the service, it will still be executed in the batch. On the same tab, you can set up
the recurrence for the batch job. This will also be used even if the Batch processing
checkbox isn't checked.

The SysOperation Framework

[128]

Custom controllers
In the earlier example, we used the SysOperationServiceController class on our
menu item to run the services. This is the base controller, but you can create your
own controller when there is the need. In this part, we will first take a look at some of
the scenarios in which custom controllers can be used, after which, we will create a
custom controller.

Usage scenarios
What follows are two of the most common scenarios in which you would use a class
that extends SysOperationServiceController. The first is using a controller to
initialize a data contract and the second is a scenario in which you override methods
of the dialog fields.

Initializing the data contract
A controller can be used to initialize the data in the data contract. This is one of the
most common scenarios in which a controller is used and is the scenario that we will
demonstrate further on in this chapter. Initializing a data contract is usually done
based on the Args object.

The Args object contains information such as the following:

• The execution mode
• The service operation that should be executed
• The menu item from which the controller is started
• The records that are selected when the menu item is executed
• The caller object

Dialog overrides
The dialog that is used by a SysOperation service is generated based on the
SysOperationTemplateForm form, the data contracts, and the menu item. In most
cases, the default dialog that is generated is sufficient, but in other cases, you'll want
to customize the dialog. There are methods on the controller that allow you to do this.

Chapter 5

[129]

The following table lists the commonly used methods:

Method Use
parmShowDialog() Set this to false if you want to avoid user interaction.

The dialog will not be shown, yet the operation will still
run.

parmDialogCaption() By default, the label of the menu item is used for the
caption of the dialog. Use this method to override the
label.

caption() When a batch task is created, this label is used for
its description. By default, it is the same as the
parmDialogCaption() method.

showQueryValues() When a query is used and this method returns true, the
fields with ranges and a Select button will be shown on
the dialog. Return false in this method to hide them.

showQuerySelectButton() This method does the same as the showQueryValues()
method but only affects the Select button.

canGoBatch() Return false in this method to hide the Batch tab.
templateForm() This method returns the form that the dialog is based on.

By default, this is the SysOperationTemplateForm
form, but you can override this method so that another
form is used.

parmExecutionMode() You can either override or set this method before starting
the operation to override the execution mode.

Obviously, there are many other methods that you can override, but discussing all
of them would take far too long. When you override methods on a controller, always
keep in mind that the controller is only part of your solution. Use it wisely and use
the other components such as service operations, data contracts, and UI Builder
classes wherever they seem appropriate.

Study the code
The SysOperationServiceController class has a
lot of documentation on its code that can help you figure
out what the methods are for. You can also use the Type
Hierarchy Browser to work out which classes extend the
SysOperationServiceController class and get ideas from them.

Without further ado, let's see how we can create a controller for our example service.

The SysOperation Framework

[130]

Creating a controller
We want our controller to do the following things:

• Set a query range when the service is started from a form with a
selected record

• Set the description of the batch tasks to reflect the record that is
being processed

This is something we cannot accomplish with the SysOperationServiceController
class, so we will have to create our own controller.

Declaration
To create a new controller, open the AOT and create a new class; name it
CVRRentalDueDateReminderController. Open the class in the X++ editor
and extend it from SysOperationServiceController. The class declaration
should look like the following code:

public class CVRRentalDueDateReminderController extends
SysOperationServiceController
{
}

The main() method
A controller is started by running a menu item. Because of this, it needs a main()
method, otherwise nothing will be executed. When creating a controller for your
SysOperation service, the main() method should be similar to the main() method of
the SysOperationServiceController class, shown as follows:

public static void main(Args args)
{
 SysOperationServiceController controller;

 controller = new SysOperationServiceController();
 controller.initializeFromArgs(args);
 controller.startOperation();
}

As you can see, a new controller is constructed and is then initialized using the
args object. This initialization will use the properties of the args object to get the
execution mode and the service operation that needs to be executed. The controller
is run using the startOperation() method. You should always use this method to
start an operation and refrain from using the run method.

Chapter 5

[131]

We will create our main() method slightly differently, because we will put the
initializeFromArgs call in a constructor, shown as follows:

public static void main(Args _args)
{
 CVRRentalDueDateReminderController
 rentalDueDateReminderController;

 rentalDueDateReminderController =
 CVRRentalDueDateReminderController::newFromArgs(_args);
 rentalDueDateReminderController.startOperation();
}

public static CVRRentalDueDateReminderController newFromArgs(Args
 _args)
{
 CVRRentalDueDateReminderController
 rentalDueDateReminderController;

 // Create a new instance of the controller
 rentalDueDateReminderController = new
 CVRRentalDueDateReminderController();

 // Initialize from args
 // One of the things this will do is read the "parameters"
 // property from the menu item
 rentalDueDateReminderController.initializeFromArgs(_args);

 // Return a new instance of this controller
 return rentalDueDateReminderController;
}

As you can see, it's similar to the first main() method and paves the way for the
additions that we will make next.

Constructor
With the previous methods created, we basically have a custom controller that has
the same functionality as the SysOperationServiceController class. We will
extend the functionality of the newFromArgs() method that we created so that the
data contract is initialized. The final method will look like the following code:

public static CVRRentalDueDateReminderController newFromArgs(Args _
args)
{

The SysOperation Framework

[132]

 CVRRentalDueDateReminderController
 rentalDueDateReminderController;
 CVRRentalDueDateReminderContract
 rentalDueDateReminderContract;
 CVRMember member;
 Query query;

 // Create a new instance of the controller
 rentalDueDateReminderController = new
 CVRRentalDueDateReminderController();

 // Initialize from args
 // One of the things this will do is read the "parameters"
 // property from the menu item
 rentalDueDateReminderController.initializeFromArgs(_args);

 // Get the data contract
 // The string should be the same as the parameter name!
 rentalDueDateReminderContract =
 rentalDueDateReminderController.getDataContractObject(
 '_dueDateReminderContract');

 // Check if we are running this from a rental member
 if(_args && _args.dataset() == tableNum(CVRMember))
 {
 // Cast the record
 member = _args.record();

 // Create new query instance
 query = new query(queryStr(CVRMember));

 // Add a range on the member id
 query.dataSourceTable(tableNum(CVRMember)).
 addRange(fieldNum(CVRMember, Id)).value(queryValue(member.Id));

 // Set the new query on the data contract
 rentalDueDateReminderContract.setQuery(query);

 // Notify the controller that we changed the query. This
 avoids a refresh problem on the dialog
 rentalDueDateReminderController.queryChanged(
 '_dueDateReminderContract.parmQuery', query);

Chapter 5

[133]

 }

 // Return a new instance of this controller
 return rentalDueDateReminderController;
}

As you can see, you can get the data contract instance using the
getDataContractObject method:

rentalDueDateReminderController.getDataContractObject(
 '_dueDateReminderContract');

The string that you pass as a parameter is the name of the data contract parameter of
the service operation that is used. It is very important to get this right. It can easily be
overlooked, because the compiler does not check the validity of this parameter.

After this, it is simply a matter of setting parameter methods on the data contract.
When the service is started from the member form, we use the Args variable to set a
range on the query.

Menu item
The last thing that we need to do is create a menu item. To create a menu item,
perform the following steps:

1. In the Development Workspace, open the AOT.
2. Expand the Menu Items node, then right-click on Action and click on New

Menu Item.
3. Rename the menu item to CVRRentalDueDateReminderServiceCustomCon.
4. Right-click on the menu item and then click on Properties.
5. Set the Label property to Rental due date reminders.
6. Set ObjectType to Class and enter CVRRentalDueDateReminderController

in the Object property.
7. In the Parameters field, enter CVRRentalDueDateReminderService.

checkDueDates. This corresponds to the service class and the service
operation that we want to use.

8. Set the EnumTypeParameter property to SysOperationExecutionMode and
the EnumParameter property to Synchronous.

9. Set the RunOn property to Client.
10. Right-click on the menu item and then click on Save.

The SysOperation Framework

[134]

Testing
Before you start testing, remember to generate CIL by clicking on the Generate
Incremental CIL button or pressing Ctrl + Shift + F7.

To test if the query range is added when the service is started from the Members
form, first add the menu item to the CVRMemberListPage form. When you click on
the button that is created, you should see that the query range is added based on the
record that was selected:

Custom UI Builders
One of the great improvements that the SysOperation framework has over the
RunBaseBatch framework is that it generates the dialog for you. Fields on the dialog,
for example, are generated based on the data contract. However, if you want to
change the dialog that is generated, you can use the UI Builder classes.

Chapter 5

[135]

When we say custom UI Builders, we mean a class that extends the
SysOperationAutomaticUIBuilder class. This is the class that generates the dialog
based on the data contract of your service operation. By extending this class, you can
add your own logic to the building process. Most commonly, this will include logic
that does the following:

• Set properties of field controls such as mandatory and enabled
• Override methods of field controls such as lookup() and modifiedField()
• Prevent controls from being added by overriding the addDialogField()

method

When you create your own UI Builder class, you will notice that the possibilities
go far beyond what we have just described. Just as with custom controllers, keep in
mind that a UI Builder is also just a part of your solution. For example, when you
feel that you are adding a lot of controls to your dialog using the UI Builder, consider
using a template form on your controller instead. When you're putting a lot of
validation code in your UI Builder, consider implementing the validation in the data
contract in order to respect the MVC philosophy.

Creating a UI Builder
In this demonstration, we will create a UI Builder for our service. The purpose of this
UI Builder is to override the modifiedField() method of the checkbox control. It
will behave in the following way:

• When the checkbox is checked, the control for the number of overdue
days is enabled

• When the checkbox is blank, the control for the number of overdue
days is disabled

Declaration
Let's start by creating the UI Builder class. Create a new class and
name it CVRRentalDueDateReminderUIBuilder. This class will extend
SysOperationAutomaticUIBuilder as follows:

public class CVRRentalDueDateReminderUIBuilder extends
SysOperationAutomaticUIBuilder
{
 DialogField dialogFieldOverrideNumOfDays;
 DialogField dialogFieldNumberOfDueDays;

 CVRRentalDueDateReminderContract reminderContract;
}

The SysOperation Framework

[136]

Note that we have also declared the following three variables that we will use later:

• A dialog field for the checkbox
• A dialog field for the number of overdue days field
• A variable that holds the data contract

The override method
The first method we add is the method that will be executed when the value of the
checkbox changes. This method will enable or disable the Number of Overdue days
field. This is a very simple method that looks like the following code:

public boolean overrideNumOfDaysModified(FormCheckBoxControl
_checkBoxControl)
{
 // Enable or disable the number of days field based on the
 // value of the checkbox
 dialogFieldNumberOfDueDays.enabled(_checkBoxControl.value());

 return true;
}

As you can see, the code uses the value of the _checkBoxControl parameter to set
the enabled property of the control that holds the number of overdue days.

In this example, the parameter is of the type FormCheckBoxControl, because we are
overriding a method on a checkbox control. When you override a method on a control
of a different type, you should use that type instead, for example, FormStringControl
for a string control. A full list of controls can be found in the system documentation.
In the AOT, navigate to System Documentation | Classes | FormControl. Right-click
on the FormControl node and then navigate to Add-Ins | Type Hierarchy browser.
When you expand the FormControl node, you will see a list of all the control types
that are available. You can look these up in the system documentation to see what
methods you can override.

The postBuild() method
The postBuild() method is called immediately after the dialog has been created, so
it is a good place to put the logic that registers override methods. The code that we
need to add to this method is shown as follows:

public void postBuild()
{

Chapter 5

[137]

 super();

 // Retrieve the data contract
 reminderContract = this.dataContractObject();

 // Retrieve the dialog fields
 dialogFieldOverrideNumOfDays =
 this.bindInfo().getDialogField(reminderContract,
 methodstr(CVRRentalDueDateReminderContract,
 parmOverrideNumOfDays));
 dialogFieldNumberOfDueDays =
 this.bindInfo().getDialogField(reminderContract,
 methodstr(CVRRentalDueDateReminderContract,
 parmNumberOverdueDays));

 // Register override methods
 dialogFieldOverrideNumOfDays.registerOverrideMethod(methodstr
 (FormCheckBoxControl, modified),
 methodstr(CVRRentalDueDateReminderUIBuilder,
 overrideNumOfDaysModified), this);

 // Call the override already once to support packed value to
 // be sync immediately
 this.overrideNumOfDaysModified(dialogFieldOverrideNumOfDays.
 control());
}

Let's go through it step-by-step. The first line retrieves the data contract:

reminderContract = this.dataContractObject();

Next, we use the data contract together with the bindInfo object to get the controls
for the checkbox and the number of the overdue field:

dialogFieldOverrideNumOfDays =
 this.bindInfo().getDialogField(reminderContract,
 methodstr(CVRRentalDueDateReminderContract,
 parmOverrideNumOfDays));
dialogFieldNumberOfDueDays =
 this.bindInfo().getDialogField(reminderContract,
 methodstr(CVRRentalDueDateReminderContract,
 parmNumberOverdueDays));

The SysOperation Framework

[138]

In the previous code, the bindInfo() method returns an object of type
SysOperationUIBindInfo. This contains information about the dialog controls that the
data members are bound to. By providing a reference to the parmOverrideNumOfDays
and parmNumberOverdueDays members when calling the getDialogField() method,
we get the dialog control that is associated with each member.

After we retrieve the dialog fields, we can register the override method. The following line does
just that:

dialogFieldOverrideNumOfDays.registerOverrideMethod(methodstr
 (FormCheckBoxControl, modified),
 methodstr(CVRRentalDueDateReminderUIBuilder,
 overrideNumOfDaysModified), this);

As you can see, we can use the registerOverrideMethod() method to override
methods on the dialog fields. We simply point to the method that we want to
override (FormCheckBoxControl.modified) and the method that needs to be
executed (CVRRentalDueDateReminderUIBuilder.overrideNumOfDaysModified).

Finally, we initialize the value of the enabled property by calling the override
method directly. This will make sure that the checkbox reflects the values of
the data contract after the dialog is built. Call the method as follows:

this.overrideNumOfDaysModified(dialogFieldOverrideNumOfDays.
 control());

Linking the UI Builder to the data contract
We have created a UI Builder class, but what remains is linking it to our data
contract. That's what we use the SysOperationContractProcessingAttribute
attribute for. To link the UI Builder class to the data contract, open the
CVRRentalDueDateReminderContract class in the X++ editor and add the
SysOperationContractProcessingAttribute to it:

[DataContractAttribute
,SysOperationContractProcessingAttribute(classstr(CVRRentalDueDate
 ReminderUIBuilder))]
public class CVRRentalDueDateReminderContract implements
 SysOperationValidatable, SysOperationInitializable
{
 CVRNumberOverdueDays numberOverdueDays;
 CVROverrideNumberOfOverdueDays overrideNumOfDays;
 str packedQuery;
}

Chapter 5

[139]

Testing
Now that you have added the UI Builder, you can test the service. But before you do
that, remember to generate CIL by clicking on the Generate Incremental CIL button
or pressing Ctrl + Shift + F7. When the CIL compilation is complete, right-click on the
CVRRentalDueDateReminderServiceCustomCon menu item to open the dialog, as
shown in the following screenshot:

When you check the checkbox, you should see that the Number of Overdue days
field is enabled. To disable the field, uncheck the checkbox.

Multithreading
Microsoft Dynamics AX 2012 has the ability to run jobs in the batch by leveraging the
abilities of the batch framework. The batch framework has two main purposes:

• Enabling the scheduling of jobs.
• Providing a mechanism to split jobs up into smaller parts and run them in

parallel. By doing so, the batch job has a larger throughput and the response
time is much better.

The SysOperation Framework

[140]

We want the service that we created earlier to use the same batch framework so that
it has better performance. There are different approaches to this, and each has its
advantages and disadvantages. The two most commonly used approaches can be
described as the following:

• The individual task approach
• The helper approach

The individual task approach
This approach will divide the batch job into a number of work units that are also
known as runtime tasks. For each work unit, a runtime task will be created. So,
you will have a one-to-one relation between work units and runtime tasks.

When your batch job is executed in batch, it is only responsible for creating the tasks
for every unit of work to be done. Once the batch job is done creating tasks, it will
be finished, and the batch framework will continue to work on the created runtime
tasks in parallel. In the following diagram, you can see that a processing task is
created for every record, which represents a unit of work:

The advantages of using this approach are:

• It scales perfectly along with the schedule of the batch framework. It is
possible to set up the batch framework to use a different number of threads
depending on a time window during the day. The batch job will scale the
number of threads depending on the number of threads that have been set
up for that time window and either use or yield resources.

• Assuming that your business logic is well designed, less effort is required to
make your batch job multithread-aware.

• You can easily create dependencies between the individual tasks.

Chapter 5

[141]

The disadvantages of using this approach are:

• As some batch jobs may create a large number of tasks, there will be a lot of
records in the batch framework's tables. This will have a negative impact on
performance as the framework needs to check dependencies and constraints
before running each of the tasks.

• Though this approach is ideal to scale the schedule of the batch framework,
you do not have control over the amount of threads that are processing your
batch job on each of the batch servers. Once your task is assigned to a batch
group picked up by an AOS, all of the free thread slots will be used for the
processing of your tasks.

The helper approach
The second approach that you can use to split up the work is by using helpers. Instead
of creating an individual task for every unit of work to be done, we create a fixed
number of threads. This resolves the issue that we faced with the individual tasks
where there were too many batch tasks being created in the batch framework tables.

After creating a fixed number of helper threads, we need to introduce a staging
table to keep track of the work to be done. The helpers themselves look into this
staging table to determine the next thing to be done when they have finished their
current task.

The steps to be followed when creating batch jobs that use this approach are as follows:

1. Create a staging table that contains the work list.
2. Create your batch job and let it be responsible for queuing the work in the

staging table.
3. Build a worker class that can deal with the processing of one staging table

record (contains business logic).
4. Create a helper class that is able to pick the next task and call the worker.
5. Add code to the batch job to spawn helper threads until the desired number

of helpers is available.

As for the staging table, you need to provide the following fields in the staging table:

• An identifier field
• A reference field that may point to a record or contain information that helps

the workers know what needs to be done
• A status field to keep track of what's done and what needs to be done

The SysOperation Framework

[142]

Also, keep in mind that helpers must use pessimistic locking to retrieve the records
from the staging table. This is to make sure that two helper threads do not select
the same record and start working on the same task. In the following diagram, you
can see that although a record is created for each unit of work, only 10 helpers are
created, independent of the amount of records to be processed in the work queue:

The advantages of using this approach are:

• You have control over the number of threads that are processing your batch
job. This can be useful when you want your tasks to leave threads open on
the AOS for other batch jobs when scaling the number of threads available
for batch processing on the AOS instance.

• The batch tables are not filled with a huge number of tasks as only a fixed
number of helper threads are created. This lowers the performance hit when
checking dependencies and constraints.

• If you put a little effort into a generic solution for this approach, you can
reuse the same staging table for different batch jobs.

The disadvantages of using this approach are:

• Because the number of threads is fixed, this approach does not scale as well
as the individual task approach. Scaling up the number of threads on the
AOS servers will not result in more working threads or higher throughput.

Chapter 5

[143]

• It is a little more work to create the staging table needed for the helper
threads to keep track of the work to be done as compared to spawning
runtime tasks.

• This approach is not suitable to process a huge number of small tasks
as maintaining the staging table would have a negative influence on the
performance and throughput.

Useful link
If you want to learn more about these two approaches, you can find a
series of blog posts on this topic on the MSDN blog of the Dynamics
AX Performance Team. The first blog post of the series can be found
at http://blogs.msdn.com/b/axperf/archive/2012/02/24/
batch-parallelism-in-ax-part-i.aspx.

Enabling multithreading
Now that we know the differences between these approaches, we can go
ahead and update our SysOperation service to provide multithreading support.
Because implementing both approaches would take too long, we will use only
the individual task approach. Firstly, we have to extend our service class from the
SysOperationServiceBase class. The declaration should look like the following code:

class CVRRentalDueDateReminderService extends SysOperationServiceBase
{
}

This is needed because the SysOperatonServiceBase class contains methods that
allow us to work with the batch header and check whether the code is running in
the batch.

Next, we add a new operation to our service. This operation differs from the existing
one because it does not do the work itself; instead, it creates runtime tasks that do the
work. The full code listing is as follows:

[SysEntryPointAttribute(true)]
public void checkDueDatesMulti(CVRRentalDueDateReminderContract
_dueDateReminderContract)
{
 QueryRun queryRun;
 CVRMember cvrMember;

 BatchHeader batchHeader;
 SysOperationServiceController runTaskController;
 CVRRentalDueDateReminderContract runTaskContract;

The SysOperation Framework

[144]

 Query taskQuery;

 // Get the query from the data contract
 queryRun = new QueryRun(_dueDateReminderContract.getQuery());

 // Loop all the members in the query
 while (queryRun.next())
 {
 // Get the current member record
 cvrMember = queryRun.get(tableNum(CVRMember));

 // Create a new controller for the runtime task
 runTaskController = new SysOperationServiceController(
 classStr(CVRRentalDueDateReminderService)
 , methodStr(CVRRentalDueDateReminderService,
 checkDueDates));

 // Get a data contract for the controller
 runTaskContract =
 runTaskController.getDataContractObject('_
dueDateReminderContract');

 // create a query for the task
 taskQuery = new Query(queryStr(CVRMember));
 taskQuery.dataSourceTable(tableNum(CVRMember)).
addRange(fieldNum(C
 VRMember, Id)).value(cvrMember.Id);

 // set variables for the data contract
 runTaskContract.setQuery(taskQuery);
 runTaskContract.parmNumberOverdueDays(
 _dueDateReminderContract.parmNumberOverdueDays());

 // If running in batch
 if(this.isExecutingInBatch())
 {
 // If we do not have a batch header yet
 if(!batchHeader)
 {
 // Get one
 batchHeader = this.getCurrentBatchHeader();
 }

 // Create a runtime task

Chapter 5

[145]

 batchHeader.addRuntimeTask(runTaskController,
 this.getCurrentBatchTask().RecId);
 }
 else
 {
 // Not in batch, just run the controller here
 runTaskController.run();
 }
 }

 // After all of the runtime tasks are created, save the
 batchheader
 if(batchHeader)
 {
 // Saving the header will create the batch records and add
 dependencies where needed
 batchHeader.save();
 }
}

Let's break up the code and take a look at it piece by piece. The top part of the
method remains roughly the same just up to the query part. We still get the query
from the data contract and loop all of the results:

 // Get the query from the data contract
 queryRun = new QueryRun(_dueDateReminderContract.getQuery());

 // Loop all the members in the query
 while (queryRun.next())
 {
 // Get the current member record
 cvrMember = queryRun.get(tableNum(CVRMember));

What follows is more interesting. Instead of running our business logic, we create
a controller for the runtime task and point to the checkDueDates() method. In this
example, we have chosen to reuse the same data contract and service operation that
we created earlier to act as the runtime task:

runTaskController = new SysOperationServiceController(
classStr(CVRRentalDueDateReminderService),
methodStr(CVRRentalDueDateReminderService, checkDueDates));

 // Get a data contract for the controller
 runTaskContract = runTaskController.getDataContractObject('
_dueDateReminderContract');

The SysOperation Framework

[146]

After creating a controller, a data contract is constructed to pass to the runtime
task. We reuse the same contract that is also used by the job service. Because of this,
we need to create a query object that contains a range on the member's Id field, as
shown in the following code snippet:

// Get a data contract for the controller
 runTaskContract =
 runTaskController.getDataContractObject('
_dueDateReminderContract'
);

 // create a query for the task
 taskQuery = new Query(queryStr(CVRMember));
 taskQuery.dataSourceTable(tableNum(CVRMember)).
 addRange(fieldNum(CVRMember, Id)).value(cvrMember.Id);

 // set variables for the data contract
 runTaskContract.setQuery(taskQuery);
 runTaskContract.parmNumberOverdueDays(
 _dueDateReminderContract.parmNumberOverdueDays());

What follows is the part that will create the runtime tasks. First, a batch header
instance will be constructed if we do not have one already. The batch header class
is used to contain the information on the runtime tasks that we add to the running
batch job. Once the batch header class is instructed to save this information, the
actual records are created in the batch table along with all of the dependencies, as
shown in the following code:

 // If running in batch
 if(this.isExecutingInBatch())
 {
 // If we do not have a batch header yet
 if(!batchHeader)
 {
 // Get one
 batchHeader = this.getCurrentBatchHeader();
 }

 // Create a runtime task
 batchHeader.addRuntimeTask(runTaskController,
 this.getCurrentBatchTask().RecId);
 }
 else
 {

Chapter 5

[147]

 // Not in batch, just run the controller here
 runTaskController.run();
 }
 }

 // After all of the runtime tasks are created, save the
 // batchheader
 if(batchHeader)
 {
 // Saving the header will create the batch records and add
 // dependencies where needed
 batchHeader.save();
 }

Summary
It should be clear that the SysOperation framework is not only a replacement for the
RunBaseBatch framework, but it also improves upon it. Many of the improvements are
due to the implementation of the MVC pattern. This allows for the reuse of many of
the components such as the data contracts, service operations, and controllers.

Reusing these components enables the batch processing for existing services and
rapid development of new services. More than that, the different execution modes
allow these services to run synchronously and asynchronously with little effort by
the developers. It is even possible to leverage the power of the batch framework to
run the processes in parallel, all in a way that is scalable. This improves the overall
performance and user experience.

Up until now, we have always created services in Microsoft Dynamics AX and
exposed them to external applications. In the next chapter, we will reverse the
roles and consume an external service in Microsoft Dynamics AX 2012.

Web Services
For the better part of this book, we have developed services in Microsoft Dynamics
AX and exposed them. However, in this chapter, we will see how to consume a web
service from Microsoft Dynamics AX 2012.

In the previous versions of Microsoft Dynamics AX, you could add a web service
reference in a reference node in the AOT. This generated proxy classes and other
artifacts that you could then use to consume the service. In Microsoft Dynamics AX
2012, we no longer have the option to add service references to the AOT. Instead,
Microsoft Visual Studio is used to generate all artifacts, which are then added to
the AOT.

How this works and how this can be done will all become clear in this chapter.

The following topics will be covered in this chapter:

• Installing Visual Studio tools: We have to install additional components
because part of the development takes place in Visual Studio 2010. You will
learn which components to install and what exactly they do.

• Visual Studio development: After introducing the demo service, we will
create a reference for the services with the help of Visual Studio. We will
take you through this process step-by-step.

• X++ development: Finally, we will demonstrate how we can use the Visual
Studio project to consume services in Microsoft Dynamics AX. You will also
gain an insight into the different deployment modes that are available to
deploy the project's output.

Web Services

[150]

Installing Visual Studio tools
Part of the coding that is needed to consume an external service is performed in
Visual Studio. This is why we must install both Visual Studio 2010 and Visual Studio
tools for Microsoft Dynamics AX 2012 before we can create Visual Studio projects
and add them to the AOT. Although you can develop applications that integrate
with Microsoft Dynamics AX 2012 using other versions of Visual Studio, such as
Visual Studio 2012, Visual Studio tools are only available for Visual Studio 2010.

To install Visual Studio tools, perform the following steps:

1. Run the Microsoft Dynamics AX 2012 setup.
2. Go to the Install section and select Microsoft Dynamics AX Components.
3. Click on the Next button to move to the next screen and select Add or

modify existing components.
4. Look under the Developer Tools node and select Visual Studio Tools.
5. Go through the rest of the setup wizard to complete the installation process.

Installing Visual Studio tools will add the following extensions to Visual Studio:

• The Application Explorer option that is available in Visual Studio by
navigating to View | Application Explorer. Enabling it will display the
AOT in Visual Studio.

• Two new templates that are available when you create a new project in
Visual Studio — Report Model and EP Web Applications.

• An option to add Visual Studio projects to the AOT. This is the option we're
interested in when consuming web services.

Visual Studio development
When consuming a service, the first thing you need to do is create a reference to the
service. As this can no longer be done in Microsoft Dynamics AX, we have to use
Visual Studio. So, we'll do that, but first we'll examine the service that we are going
to consume.

Introducing the USA zip code service
To show you how Microsoft Dynamics AX 2012 enables developers to consume web
services, we are going to use an example zip code service. This service is available
on the website of RESTful web services: http://www.restfulwebservices.net/
servicecategory.aspx.

Chapter 6

[151]

In the zip code service, we have two operations available to use when referencing the
WCF version; these are as follows:

• GetPostCodeDetailByPostCode: This operation takes a zip code as
a parameter and returns a PostalCode data contract with all of the
information about PostalCode we searched for

• GetPostCodeDetailByPlaceName: This operation takes names as parameters
and also returns a PostalCode data contract with the information needed

Creating the Visual Studio proxy library
In Microsoft Dynamics AX 2012, Visual Studio projects can be contained in the AOT.
This enables us to use Visual Studio to create a class library project and add it to the
AOT. The advantage is that Visual Studio deals with the service reference. It uses
the SvcUtil tool to create the proxy client and generate the types that are needed to
consume the service.

Perform the following steps to create a Visual Studio class library project:

1. In Visual Studio, navigate to File | New | Project....
2. In the New Project window, select Visual C# and select the Class Library

project type.
3. In the Name textbox, give the project a name and click on OK.

These steps are illustrated in the following screenshot:

Web Services

[152]

Adding a service reference
Next, we will create a service reference to the USA zip code service. To do this,
perform the following steps:

1. Locate the References node in the project.
2. Right-click on the References node and select Add Service Reference… to

open the Add Service Reference window.
3. In the Address drop-down box, specify the following address for the

service: http://www.restfulwebservices.net/wcf/USAZipCodeService.
svc?wsdl. Then, click on Go. The address is queried and the two operations
mentioned previously are listed. You can expand to the USAZipCodeService
node to view the service operations.

4. In the Namespace dialog box, specify the namespace that you want to use:
USAZipCodeServiceRef. The Add Service Reference window will look like
the following screenshot:

5. Click on OK. The service will be added to the Service References node.

Chapter 6

[153]

6. Delete the Class1.cs class as we will not need it.
7. To add the project to the AOT, right-click on the project and then click on

Add DynamicsAxServices.WebServices.ZipCode to the AOT.
8. After the project has been added to the AOT, you can specify the deployment

options. In the properties of the project, set Deploy to Client and Deploy to
Server to Yes.

9. Finally, right-click on the project and click on Deploy.

X++ development
The Visual Studio project and its output have been added to the AOT, so the first
stage of development is now complete. You can leave Visual Studio and switch
to Microsoft Dynamics AX 2012. The project has been added to the Visual Studio
Projects node in the AOT. As we have used C#, the project will be in the C Sharp
Projects node.

Look for the DynamicsAxServices.WebServices.ZipCode project and expand some
of the nodes to inspect it. It should appear as shown in the following screenshot:

As you can see in the preceding screenshot, this is divided into the following two
main components:

• The Project Content node contains the actual C# project source such as
properties of the project, the service references, an app.config file, and C#
source files

• The Project Output node contains the assemblies that will be deployed,
taking into account the deployment options

In order to use the assemblies that have been created and stored in the AOT, we'll
have to deploy them. Let's look at the options that are available.

Web Services

[154]

Deploying managed code
When we create a project in Visual Studio and add it to the AOT, the following
deployment options are available:

• Deploy to Server
• Deploy to Client
• Deploy to EP

In our earlier example, we enabled deployment on the client and to the server
because these are important in the context of services.

Deploy to Server
When you have enabled deployment to the server, the output of the Visual Studio
project will be copied to the VSAssemblies subfolder in the bin folder of the AOS
directory. The default path is C:\Program Files\Microsoft Dynamics AX\60\
Server\<AOSServer>\Bin\VSAssemblies. After you have deployed assemblies to
the server, you should restart the AOS so that they are loaded.

Hot swapping
When hot swapping is enabled on the AOS, restart is not needed after
deployment. This feature is added for the convenience of developers but is
not recommended for a production environment. For more info, check out
the following article on MSDN: How to: Enable Hot Swapping of Assemblies
(http://msdn.microsoft.com/en-us/library/gg889279.aspx).

Deploy to Client
When you have enabled deployment to the client, the output of the Visual Studio
project will be copied to the following folder on the client: %localappdata%\
Microsoft\Dynamics Ax\VSAssemblies. You may have to restart the Microsoft
Dynamics AX client after deployment, otherwise the assemblies may not get copied.

The assemblies will be deployed to a client as and when are needed. This comes
down to the following three situations:

• When you use IntelliSense
• When you compile code that uses the assembly
• When code runs on the client in which a call is made to the assembly

Obviously, you will want to have the assembly on your client as a developer,
otherwise you will not be able to use IntelliSense or compile your code.

Chapter 6

[155]

Consuming the web service
Now that we have created a service reference in our Visual Studio proxy library
and deployed it to Microsoft Dynamics AX, we can use the types in the library
from Microsoft Dynamics AX.

First attempt
Let's take a look at the following X++ code that consumes the zip code service to
retrieve a place name:

static void Consume_GetZipCodePlaceName(Args _args)
{
 DynamicsAxServices.WebServices.ZipCode.USAZipCodeServiceRef
 .PostalCodeServiceClient postalServiceClient;
 DynamicsAxServices.WebServices.ZipCode.USAZipCodeServiceRef
 .PostalCode postalCode;
 System.Exception Exception;

 try
 {
 // Create a service client proxy
 postalServiceClient = new DynamicsAxServices .WebServices.
 ZipCode.USAZipCodeServiceRef .PostalCodeServiceClient();

 // Use the zipcode to find a place name
 postalCode = postalServiceClient.
 GetPostCodeDetailByPostCode("10001"); // 10001 is New York

 // Use the getAnyTypeForObject to marshal the
 System.String to an Ax anyType
 // so that it can be used with info()
 info(strFmt('%1', CLRInterop::
 getAnyTypeForObject(postalCode.get_PlaceName())));
 }
 catch
 {
 // Get the .NET Type Exception
 exception = CLRInterop::getLastException();

 // Go through the inner exceptions
 while(exception)
 {
 // Print the exception to the infolog

Web Services

[156]

 info(CLRInterop::
 getAnyTypeForObject(exception.ToString()));

 // Get the inner exception for more details
 exception = exception.get_InnerException();
 }
 }
}

When we go through the code bit by bit, we can see that a proxy client is created
first. Note that this is the managed type that is created by the SvcUtil tool when
adding the service reference:

postalServiceClient = new DynamicsAxServices
 .WebServices.ZipCode.USAZipCodeServiceRef
 .PostalCodeServiceClient();

After that, using the following code, we immediately invoke the service operation
with a zip code:

postalCode = postalServiceClient.
 GetPostCodeDetailByPostCode("10001"); // 10001 is New York

Then, there is a simple infolog message that shows the place name using the
following code:

info(strFmt('%1', CLRInterop::
 getAnyTypeForObject(postalCode.get_PlaceName())));

Notice the CLRInterop::getAnyTypeForObject method, which is used to
marshal between the .NET type System.String and the X++ anyType type
before submitting it to the infolog.

That's it for consuming services. However, we also have some exception handling
that handles any .NET exceptions while invoking the external service, as shown in
the following code snippet:

 catch
 {
 // Get the .NET Type Exception
 exception = CLRInterop::getLastException();

 // Go through the inner exceptions
 while(exception)
 {
 // Print the exception to the infolog

Chapter 6

[157]

 info(CLRInterop:: getAnyTypeForObject(exception.
ToString()));

 // Get the inner exception for more details
 exception = exception.get_InnerException();
 }
 }

Fixing configuration issues
Although the preceding code example should suffice, you will get an error message
when running it. The error message is shown in the following screenshot:

What is going on here is that the service is trying to look for the endpoint's
configuration in the application's configuration file but does not find it. This is
because Microsoft Dynamics AX is acting as the host application here (Ax32.exe).
Therefore, the service tries to open the Ax32.exe.config file and look for the
endpoint configuration.

Web Services

[158]

It is clear that putting the configuration details of every service that we want to
consume into the Ax32.exe.config file is a bit impractical and should be avoided.
The solution to this issue is using the AifUtil class to create the service client.

Let's change the preceding code so that it uses the AifUtil class to point to the right
configuration file and see what happens then. Start off by declaring a new variable of
the System.Type type at the top of the job, as shown in the following code:

System.Type type;

Take a look at the following line of code:

postalServiceClient = new DynamicsAxServices
 .WebServices.ZipCode.USAZipCodeServiceRef
 .PostalCodeServiceClient();

Replace the preceding code with the following two lines of code that use the variable
that you just declared:

type = CLRInterop::getType('DynamicsAxServices.WebServices
 .ZipCode.USAZipCodeServiceRef.PostalCodeServiceClient');
postalServiceClient = AifUtil::createServiceClient(type);

The first line will resolve the .NET type of the service client and pass it to the
AifUtil::createServiceClient method. The AifUtil class will then resolve the
right configuration file by looking into the VSAssemblies folder for the assembly
that contains the specified type. You can see the code of the AifUtil class's
createServiceClient method in the following code snippet:

vsAssembliesPath = xApplication::getVSAssembliesPath();
configFilePath = Microsoft.Dynamics.IntegrationFramework.
 ServiceReference::GetConfigFilePath(serviceClientType,
vsAssembliesPath);
serviceClient = Microsoft.Dynamics.IntegrationFramework.
 ServiceReference::CreateServiceClient(serviceClientType,
configFilePath);

When you test these changes, the service should be called correctly and should give
you an infolog message that shows New York as the place name.

Deploying between environments
Although the previous code consumes the external service just fine, there is another
impractical issue going on when you want to deploy the code across environments.

Chapter 6

[159]

Suppose that you want to have different versions of your service running on
development, test, and production systems. Then, you will probably have three
different addresses for each environment. However, the issue here is that you only
have one address available in the proxy class library.

To solve this issue, we need to update our X++ code one more time. Start by
declaring two new variables that will hold the endpoint and endpoint address:

System.ServiceModel.Description.ServiceEndpoint endPoint;
System.ServiceModel.EndpointAddress endPointAddress;

You may have to add a reference to the System.ServiceModel assembly to the AOT.
To do that, go to the AOT, right-click on the References node, and then click on Add
Reference. Next, select System.ServiceModel in the grid, click on Select, and finally,
click on OK.

Then, add the following three lines of code just before the line that invokes the
service operation:

endPointAddress = new System.ServiceModel.EndpointAddress
 ("http://www.restfulwebservices.net/wcf/USAZipCodeService.svc");
endPoint = postalServiceClient.get_Endpoint();
endPoint.set_Address(endPointAddress);

What the preceding code does is that it creates an endpoint address for the service
client that is to be used. When the endpoint is created, it replaces the endpoint
address that is currently being used by the service client. Note that in the preceding
example, the address should be replaced by a parameter that is stored in the system.
This way, you can set the endpoint address depending on the parameter value of
that environment.

Final result
After all these changes, the code that consumes the services will look as follows:

static void Consume_GetZipCodePlaceNameWithEndPoint(Args _args)
{
 DynamicsAxServices.WebServices.ZipCode.USAZipCodeServiceRef.
 PostalCodeServiceClient postalServiceClient;
 DynamicsAxServices.WebServices.ZipCode.
 USAZipCodeServiceRef .PostalCode postalCode;
 System.ServiceModel.Description.ServiceEndpoint endPoint;
 System.ServiceModel.EndpointAddress endPointAddress;
 System.Exception exception;

Web Services

[160]

 System.Type type;

 try
 {
 // Get the .NET type of the client proxy
 type = CLRInterop::getType
 ('DynamicsAxServices.WebServices.ZipCode.
 USAZipCodeServiceRef.PostalCodeServiceClient');

 // Let AifUtil create the proxy client because
 // it uses the VSAssemblies path for the config file
 postalServiceClient = AifUtil::createServiceClient(type);

 // Create an endpoint address; this should be a
 // parameter stored in the system
 endPointAddress = new System.ServiceModel.EndpointAddress
 ("http://www.restfulwebservices.net/wcf/USAZipCodeService.svc");

 // Get the WCF endpoint
 endPoint = postalServiceClient.get_Endpoint();

 // Set the endpoint address.
 endPoint.set_Address(endPointAddress);

 // Use the zipcode to find a place name
 postalCode = postalServiceClient.
 GetPostCodeDetailByPostCode("10001"); // 10001 is New York

 // Use the getAnyTypeForObject to marshal the
 // System.String to an Ax anyType
 // so that it can be used with info()
 info(strFmt('%1', CLRInterop::getAnyTypeForObject
 (postalCode.get_PlaceName())));
 }
 catch
 {
 // Get the .NET Type Exception
 exception = CLRInterop::getLastException();

 // Go through the inner exceptions
 while(exception)
 {
 // Print the exception to the infolog

Chapter 6

[161]

 info(CLRInterop::getAnyTypeForObject(exception.
ToString()));

 // Get the inner exception for more details
 exception = exception.get_InnerException();
 }
 }
}

Summary
At first sight, the procedure to consume a service in Microsoft Dynamics AX 2012
might seem a bit complex, but once you've done it, you see how easy it really is.
Using Visual Studio, you can take advantage of having control over how you create
the reference. You can choose whether you want to use message contracts, reuse data
types, and so on.

Support for different deployment options also means that it is easier than ever to use
managed code. The assemblies are part of the model store and are deployed when
needed, so no manual actions are needed to deploy them.

In the next chapter, we will take a closer look at the system services that are available
to us. They are new to Microsoft Dynamics AX, so they are easily overlooked when
planning for integration. However, because of their flexibility, it is worth considering
using them.

System Services
With each new release of Microsoft Dynamics AX, new features for developers
are added. These features range from wizards that are used to automate repetitive
development tasks to support for new technologies such as WCF. From a developer's
perspective, you might think that Microsoft is really generous to provide us with all
these cool features. This is true to a certain extent, but providing developers with
tools can never be an end goal. In reality, these features are added to facilitate new
functionalities in Microsoft Dynamics AX.

This is also true for a new set of services that are supported in Microsoft Dynamics
AX 2012 known as system services. These services are WCF services that allow you
to access system information; for example, they are used in the Excel add-in.

This doesn't mean you can't use them in your solutions. On the contrary,
in this chapter, we will demonstrate how you can use these services to build
your applications.

The following topics will be covered in this chapter:

• Introducing system services: We will start with a general description of
the four types of system services along with an introduction of the demo
application we will build.

• Metadata service: The first service we will use is the metadata service, a
service that exposes information about the AOT. We will discuss what kind
of information can be retrieved and how it can be done.

• Query service: Next, we will look at the query service, a service that, as the
name suggests, allows you to execute queries on the Microsoft Dynamics AX
database and retrieve the results.

System Services

[164]

• User session service: Next, we will learn about the user session service, a
service that allows you to obtain a user's session-related information.

• OData query service: We will conclude with a demonstration of the OData
query service, a service that exposes queries from the AOT in the web feed
using the OData protocol.

Introducing system services
System services are automatically installed when the AOS is installed and are
available when the AOS instance is running. They are written by Microsoft in
managed code and hence they cannot be customized.

As mentioned, there are four system services as follows:

• The metadata service
• The query service
• The user session service
• The OData query service

We will have a detailed discussion of these services later in the chapter. We will
not be able to go into every detail of all service operations, but it will be more than
enough to get you started. Fortunately, for those who want to dig deeper, these
services are well documented on MSDN. For OData in particular, there is a complete
documentation available at http://www.odata.org.

Presenting a demo application
To demonstrate the usage of different system services, we start with a demo
application. The application is a Windows Forms application that contains the
following elements:

• A combobox that contains the Contoso Video Rental queries
• A DataGridView control to contain the resulting data
• Previous page and Next page buttons to provide paging of the results
• A button for retrieving titles using the OData query service
• A ListBox control that contains the session information of the calling user

Chapter 7

[165]

The design of the demo application is shown in the following screenshot:

The following Microsoft Dynamics AX services are used in the application, and for
each of them, a service reference is created:

• Metadata service: http://DYNAX01:8101/DynamicsAx/Services/
MetaDataService

• Query service: http://DYNAX01:8101/DynamicsAx/Services/
QueryService

• User session service: http://DYNAX01:8101/DynamicsAx/Services/
UserSessionService

• OData query service: http://DYNAX01:8101/DynamicsAx/Services/
ODataQueryservice

When creating the references, you should replace DYNAX01 with the name of the
server on which your AOS is installed and specify the correct port to use, which is
8101 by default. All of the service references we use in the demonstration have been
configured to use the System.Collections.Generic.List collection type.

System Services

[166]

The metadata service
The metadata service allows external consumers to obtain information about the
AOT objects within Microsoft Dynamics AX, such as tables, queries, forms, and so
on. When we take a look at the operations available in the service, we can see the
following two types of operations:

• Operations that return a list of object names, such as the GetQueryNames
operation, which returns a list of query names available in the system

• Operations that return metadata of one particular object to the consumer,
such as the GetTableMetaDataByName operation, which takes an array
of table names and returns all of the metadata information available
for these tables

You can find detailed class diagrams on MSDN describing
the metadata classes at http://msdn.microsoft.com/
en-us/library/gg845212.

Filling the combobox
Let's start by taking a look at the code that is executed when the form loads.

To fill the combobox, we need to use the GetQueryNames operation on the metadata
service and filter the results to show only the queries that start with CVR. You can use
the following code to do this:

private void MainForm_Load(object sender, EventArgs e)
{
 // Create a service client
 AxMetadataServiceClient client = new AxMetadataServiceClient();

 // Get queries from Ax that start with CVR
 IList<string> queryNames = client.GetQueryNames()
.Where(queryItem => queryItem.StartsWith("CVR")).ToList();

 // Set the results as the combobox's data source
 cboAxQueryName.DataSource = queryNames;
}

First, the service client is created:

 AxMetadataServiceClient client = new AxMetadataServiceClient();

Chapter 7

[167]

Then, the following line invokes the operation to retrieve all of the query names. We
apply a lambda expression to the IList object to filter out the queries that start with
CVR using the following line:

 IList<string> queryNames = client.GetQueryNames()
.Where(queryItem => queryItem.StartsWith("CVR")).ToList();

Lastly, we just take the result and set it as the data source of the combobox using the
following line of code:

cboAxQueryName.DataSource = queryNames;

When running your application, you should see the following result:

The query service
The query service enables us to retrieve data from Microsoft Dynamics AX
without having to use the .NET Business Connector or, even worse, access
the SQL database directly.

By using the query service, you can fetch data using any of the following query types:

• Static query: This is used to retrieve data using queries that are present in the
AOT. We will use this query in the demonstration.

• User-defined query: A query can also be created using the QueryMetadata
class. By doing this, you can create a query in the same way you create
queries in X++ code.

• Dynamic query: Another way of running a query is by creating an
X++ class that extends the AifQueryBuilder class. You can invoke the
ExecuteQuery operation by passing in the name of the query builder class.
It is also possible to pass arguments using a class that extends from the
AifQueryBuilderArgs class.

System Services

[168]

Fetching data for the grid
Now let's put some code behind the clicked event handler of the Refresh button. The
idea is to invoke the query service to retrieve the data of the selected query and then
put it into the DataGridView control.

Put the following code behind the Refresh button's clicked event handler to get the
job done:

private void cmdRefresh_Click(object sender, EventArgs e)
{
 this.refreshData();
}

Before this can work, we obviously need to add a refreshData() method that does
the refreshing part. This is put in a separate method to support the reuse of the code
when we add paging later on:

private void refreshData()
{
 try
 {
 // Determine the selected query / datamember
 string dataMember = cboAxQueryName.Text;
 string queryName = cboAxQueryName.Text;

 // Create a binding source for members
 BindingSource bindingSource = new BindingSource();

 // Set the binding source as the data source for the data grid
 dtgAxData.DataSource = bindingSource;

 // Create a service client
 QueryServiceClient queryClient = new QueryServiceClient();

 // Create an empty paging object
 Paging paging = null;

 // Call the query to retrieve the results
 DataSet dataSet = queryClient.ExecuteStaticQuery(queryName,
 ref paging);

 // Set as the data source of the binding source
 bindingSource.DataSource = dataSet;
 bindingSource.DataMember = dataMember;
 }

Chapter 7

[169]

 catch (Exception _ex)
 {
 MessageBox.Show(_ex.Message);
 }
}

The first two lines of code sets the chosen query name and the data member. This
data member is the actual list that is bound to the binding source. Here, we have the
same name as the query because the CVRMember table has the same name as the
CVRMember query object, as shown in the following code:

 // Determine the selected query / datamember
 string dataMember = cboAxQueryName.Text;
 string queryName = cboAxQueryName.Text;

Next, the binding source is created and set as the data source of the
DataGridView control:

 // Create a binding source for members
 BindingSource bindingSource = new BindingSource();

 // Set the binding source as the data source for the data grid
 dtgAxData.DataSource = bindingSource;

Now we can start to think about fetching data from Microsoft Dynamics AX. So, let's
create a service client and call the operation to execute the query. Note that for now,
we have a variable of the type Paging that is set to null, as shown in the following
code, because we add the paging functionality later in this chapter:

 // Create a service client
 QueryServiceClient queryClient = new QueryServiceClient();

 // Create an empty paging object
 Paging paging = null;

 // Call the query to retrieve the results
 DataSet dataSet = queryClient.ExecuteStaticQuery(queryName,
 ref paging);

Once the dataset containing the resulting records is returned, we can set it as the data
source for the binding source.

 // Set as the data source of the binding source
 bindingSource.DataSource = dataSet;
 bindingSource.DataMember = dataMember;

System Services

[170]

That's all there is to it. To test the code, run the application and hit the Refresh
button with the CVRMember query selected. The result should look like the
following screenshot:

Paging the results
The next thing that we want to enable in our application is paging. To handle large
data sets, we can make use of paging to retrieve only a defined number of records at
a time. In our example, we want to use pages of ten records.

The first thing to do is to add a member variable to the form that keeps track of the
starting position, as shown in the following code:

private int nextStartPosition = 1;

The code behind the paging buttons is rather simple and will just decrement or
increment the starting position for data retrieval by 10. After adjusting the starting
position, the data is refreshed by calling the refreshData() method as seen before:

private void cmdNextPage_Click(object sender, EventArgs e)
{
 nextStartPosition += 10;
 this.refreshData();
}
private void cmdPreviousPage_Click(object sender, EventArgs e)
{
 nextStartPosition -= 10;
 this.refreshData();
}

Chapter 7

[171]

The code behind the paging buttons is in place, but we still need to add some code to
the refreshData() method to actually deal with the paging of the data. So, we need
to replace the following line of code:

// Create an empty paging object
Paging paging = null;

Replace it with the following piece of code that tells the query service to only fetch
10 records starting from the currently calculated starting position:

 // Create a paging object to start at the starting offset and fetch
 // 10 records
 Paging paging = new PositionBasedPaging()
 {
 NumberOfRecordsToFetch = 10,
 StartingPosition = nextStartPosition
 };

When we now run our application, the result should be as shown in the
following screenshot:

System Services

[172]

Notice that we only have 10 records in our DataGridView control, and by clicking
on the Next page button, we get to see the next set of records, as shown in the
following screenshot:

For paging techniques such as position-based paging to work, you have
to use a query that contains at least one sorting field. This field will
be used to order the results before the paging is applied. In our demo
application, the CVRTitle query has the Id field in the Order By node
of the query data source. The CVRTitleListPage query does not have
a sorting field, which is why it will not work if you try to retrieve all
titles using that query.

The user session service
The user session service exposes information about the current user and their session.
Although this service is categorized by Microsoft as a system service, technically it
isn't. Unlike other system services, the business logic is contained in a service class in
the AOT and exposed using a basic port. Consequently, it is also possible to expose this
service using an enhanced port, allowing you to further customize the service.

The user session has the following operations:

• GetUserSessionInfo: This returns information about the current session
in the form of an instance of the UserSessionInfo class containing the
following information: language, currency, company, company time zone,
user-preferred time zone, preferred calendar, user ID, whether the user is a
system admin, and the locale name.

• GetAccessRights: This returns a collection of the type AccessRight that
contains the permissions which the user has on the items that were provided
as parameters, such as tables, fields, and menu items.

• ApplyTimeZone: This executes the DateTimeUtil::applyTimeZoneOffs
et() method and thereby offsets the utcdatetime value by the amount
specified in the timezone parameter.

Chapter 7

[173]

• RemoveTimeZone: This executes the DateTimeUtil::removeTimeZoneOf
fset() method and thereby removes the offset specified by the timezone
parameter from the utcdatetime value.

We will use the GetUserSessionInfo and GetAccessRights operations in the
following scenario to demonstrate how to use this service.

Retrieving user information
The functionalities that we will add to the form are as follows:

• A button is added to retrieve the user session information
• A ListBox control is added to display the user session information
• General user information such as the company and language is retrieved
• Permissions are retrieved for the query data source

To enable this functionality, override the cmdUserSessionInfo_Click() method
using the following code:

private void cmdUserSessionInfo_Click(object sender, EventArgs e)
{
 // Create an instance of the usersession client
 UserSessionServiceClient client = new UserSessionServiceClient();

 // Get session information
 UserSessionInfo sessionInfo = client.GetUserSessionInfo(null);

 // Put all of the information in the listbox
 lboUserSessionInfo.Items.Clear();
 lboUserSessionInfo.Items.Add("User : " + sessionInfo.UserId);
 lboUserSessionInfo.Items.Add("Company : " + sessionInfo.Company);
 lboUserSessionInfo.Items.Add("Language : " + sessionInfo.
 AXLanguage);
 lboUserSessionInfo.Items.Add("Currency : " + sessionInfo.
 CurrencyInfo.CurrencyCode);
 lboUserSessionInfo.Items.Add("Administrator : " + sessionInfo.
 IsSysAdmin);

 // Create an access control item for the main table of the
 // selected query
 AccessControlledItemKey key = new AccessControlledItemKey()
 {
 ItemType = AccessControlledType.Table,
 ItemName = cboAxQueryName.Text

System Services

[174]

 };

 // Create a list with the item in it
 List<AccessControlledItemKey> keys = new
 List<AccessControlledItemKey>();
 keys.Add(key);

 // Now request the effective access right for this user session on
 // the item
 List<AccessRight> accessRights = client.GetAccessRights(null,
 keys);

 // Get the access rights
 AccessRight accessRight = accessRights.First();

 lboUserSessionInfo.Items.Add("Query access right : " +
accessRight.ToString());
}

As you can see, we can divide the code into the following two large parts:

• First, we use the GetUserSessionInfo operation to retrieve the session
information and use it to add items to the listbox.

• Next, we create a new list object of the type AccessControlledItemKey and
add an item specifying the table name. Then, we use the GetAccessRights()
method to retrieve the permissions that the user has on this table and then
add them to the list.

To test the code, simply click on the Session Information button and the listbox
should be filled with the session information, as shown in the following screenshot:

Chapter 7

[175]

The OData query service
The last system service we will discuss is the OData query service. This service
exposes data from Microsoft Dynamics AX using the Open Data Protocol (OData).
This is a web protocol for querying and updating data, although Microsoft Dynamics
AX 2012 currently only supports querying data.

The records that result from this querying are published as entries in an Atom
feed. Atom is a web feed probably best known as being used for subscribing to
updates from websites such as blogs. Atom is similar to the better known RSS but
standardized, which makes it the obvious choice over RSS. OData also supports
JavaScript Object Notation (JSON) as an alternative to Atom, but that is not
supported by Microsoft Dynamics AX 2012.

To demonstrate this service, we will consume it using Internet Explorer and use it in
our example application.

Creating and publishing a data source
Exposing data using the OData query service is very straightforward. It consists of
the following:

• Creating a query or using an existing one
• Setting up Document data sources

Creating a query
So, the first thing to do is to create a query. If you've installed the example code
that comes with this book, you already have the query. The query we'll be using is
CVRTitle. It returns all titles by selecting all records in the CVRTitle table and is
shown in the following screenshot:

System Services

[176]

Setting up document data sources
In order to expose the data in the query as an OData feed, perform the following steps:

1. Go to Organization Administration | Setup | Document management |
Document data sources.

2. Click on the New button or press Ctrl + N to create a new document
data source.

3. Set the Module to Basic and the Data source type to Query reference;
in the Data source name field, enter CVRTitle.

4. Enter some descriptive text in the Description field, so you can easily
identify your document data source later.

5. Press Ctrl + S to save your changes and click on the Activate button.

That's all you need to do; your query is now ready to be used in the OData query
service. The newly created record is highlighted in the following screenshot:

Note that another document data source has also been created named
CVRTitle_StartsWithThe. This is so that a list of document data sources is
available, which will make the following examples easier to interpret. Try
experimenting and creating it yourself. What does selecting the document
type Custom query do? The answer follows.

Before we take a look at how we can consume this data service, let us examine
the fields and buttons on the Document data source form first. Depending on what
version of Microsoft Dynamics AX 2012 you are using, you will have the following
options to choose from:

• Module: The Module field is an informative field that provides a way to
categorize your document data sources.

Chapter 7

[177]

• Data source type: Depending on what version you are using, you will have
different options. In R2, there are three options to choose from:

 ° Service: This allows you to create a document data source using an
AIF document service. This is then visible in Microsoft Excel when
adding data using the Excel add-in.

 ° Query reference: This allows you to expose a query using the
OData query service. This query will also be available using the
Excel add-in.

 ° Custom query: This is the same as Query reference, but when
selecting a query, you will have the option to modify that query—for
example, by adding ranges—thus limiting the number of records
returned by the query. You can edit the query afterwards by clicking
on the Edit query button.

In the feature pack release, the Custom query option is not available, and the
Query reference option is named Query but its function remains the same.

• Data source name: Depending on the Document source type, this option
allows you to specify either the service or the query to use. When using the
Custom query type, you can rename the data source name after it is saved.

• Activated: This indicates whether the data source is active. Inactive
document data sources will not be available for use. You can activate or
deactivate a document data source by using this checkbox or the Activate
and Deactivate buttons.

• Description: This is only available in R2 and allows for an informative
description of the service, which is especially useful when using custom queries.

The Register default sources button registers default document data sources.
When you extend Microsoft Dynamics AX 2012 and you need to ship document
data sources as part of your solution, you can register them here by subscribing
to the delegate named insertDataSources, which is available on the
DocuDataSourceLoader class. If you do so, be sure to subscribe to this delegate
and not modify any code on existing methods. That way, multiple solutions across
different models within the same layer can extend this functionality without you
running into problems when importing models.

System Services

[178]

Consuming the OData query service using
Internet Explorer
Because the OData protocol uses technologies such as HTTP and OData, many
applications can consume the OData query service. Internet Explorer is such an
application and is ideal for us to explore the query we have just exposed.

The OData query service is available at the following URL, where DYNAX01 is the
name of the AOS server and 8101 is the service WSDL port that is defined in the
Microsoft Dynamics AX Server Configuration Utility: http://DYNAX01:8101/
DynamicsAx/Services/ODataQueryservice/.

As you can see in the following screenshot, when you type this URL in Internet
Explorer, you are presented with a list of feeds that are exposed as collections,
in this case, the CVRTitle and CVRTitle_StartsWithThe feeds.

To view the data, simply add the name of the feed after the URL of the
OData query service, for example, http://DYNAX01:8101/DynamicsAx/Services/
ODataQueryservice/CVRTitle. As you can see in the following screenshot, a
feed is shown with an entry for every one of the 248 titles that are available in the
CVRTitle table:

Chapter 7

[179]

As you can see, not much data is shown in a readable fashion. This is because
Internet Explorer tries to render the Atom feed but does not know how to interpret
the data in it. To view the Atom feed in XML format, right-click on the page on the
browser and click on View source. This will open up a text editor showing the file, as
shown in the following screenshot:

System Services

[180]

The preceding screenshot shows part of the document with a header identifying it as
an Atom feed and the first entry with the data embedded in the content tag.

Right now, all data from the table is shown, but there is a limit. The default number
of results that are returned is 1000 and is set in the ax32serv.exe.config file in the
bin directory of the AOS using the ODataQueryPageSize key, shown as follows:

<configuration>
 <appSettings>
 <add key="ODataQueryPageSize" value="1000" />
 [...]
</configuration>

If you set the value to 20, save the file and refresh the feed in Internet Explorer; you
will see that there are only 20 entries in the Atom feed.

Just as regular services expose their metadata using WSDL, the OData query service
also exposes a metadata document. Instead of using WSDL, OData uses Entity
data model (EDM), which represents its data in EDMX, an XML-based file format.
You can find this document at http://DYNAX01:8101/DynamicsAx/Services/
ODataQueryservice/$metadata. The screenshot of this document is as follows:

Chapter 7

[181]

As you can see in the screenshot, the document uses the EDMX namespace and
describes the OData service metadata. This is the document that is used when
adding a service reference to the OData query service in Visual Studio. In fact, the
content of this file is copied to a file with the extension .edmx in the subfolder for the
service reference in the project folder.

Consuming the OData query service using
Visual Studio
For this demonstration, we will expand the functionality of our demo application by
creating a button that uses the CVRTitle feed exposed by the OData query service to
display all titles in the grid. For this, we will use WCF Data Services, a component of
the .NET framework that will allow us to consume the OData query service.

More information about WCF Data Services can be found on MSDN
at http://msdn.microsoft.com/en-us/library/cc668792.
aspx. Note that many features of WCF Data Services are currently
not supported by Microsoft Dynamics AX 2012.

Adding a service reference
Before we can consume the service, we first have to add a service reference.
We've done this many times over the course of this book, so please refer to the
previous chapters on how to do this. Use the following URL when adding the
service reference, but replace the AOS name and WSDL port with the ones you
want to use: http://dynax01:8101/DynamicsAx/Services/ODataQueryservice/.

When you've installed the sample code and the existing service reference is not
working, delete that service reference and recreate it.

Fetching data for the grid
Once the service reference has been added, we can use it to fetch the data. Override
the click event of the Get titles button as follows:

using DynamicsAxServices.SystemServices.UI.ODataQueryService;

private void btnTitles_Click(object sender, EventArgs e)
{
 // Create a binding source

System Services

[182]

 BindingSource bindingSource = new BindingSource();

 // Set the binding source as the data source for the data grid
 dtgAxData.DataSource = bindingSource;

 // create a new URI (replace with the URI of your service)
 Uri uri = new Uri("http://localhost:8101/DynamicsAx/Services/
 ODataQueryService/");

 // create the data service context
 ODataQueryService.ODataQueryService context = new
 ODataQueryService.ODataQueryService(uri);

 // set the credentials, in this case pass the credentials of the
 // user that is currently logged on
 context.Credentials = System.Net.CredentialCache.
 DefaultCredentials;

 // bind the CVRTitles feed to the datasource of the grid
 bindingSource.DataSource = context.CVRTitle;
}

As you can see, we start by creating a URI object using the URL of our data service:

Uri uri = new Uri("http://localhost:8101/DynamicsAx/Services/
ODataQueryService/");

Next, we use that URI to construct the data service context:

ODataQueryService.ODataQueryService context = new ODataQueryService.
ODataQueryService(uri);

After that, we set the credentials to the user that is currently logged on. This is
sufficient for our demo, but you could also pass the credentials of a specific user
using the following code:

context.Credentials = System.Net.CredentialCache.DefaultCredentials;

Finally, we get the feed and bind it to the grid:

bindingSource.DataSource = context.CVRTitle;

Chapter 7

[183]

When we compile the project and test the button, we can see that all titles are
displayed in the grid, as shown in the following screenshot:

Consuming the OData query service using
other applications
We got to know what OData is by consuming it using a web browser, and we've
seen how to consume it in .NET, but of course, there are a lot of other applications
that can consume an OData data service. Exploring all of these would put the focus
too much on these applications. This is not part of the scope of this chapter as we are
trying to focus on services, but a few are worth mentioning:

• Microsoft Excel and PowerPivot: You can import OData feeds into
Excel in the regular grid form, or you can use PowerPivot to create
pivot tables and analyze the data. This is well documented on MSDN
on the page Walkthrough: Creating a PowerPivot Data Mash-up [AX 2012]
at http://technet.microsoft.com/en-us/library/dn198214.aspx.

• Microsoft InfoPath: When creating a form using Microsoft InfoPath, you can
use an OData service, for example, to fill lookups for fields. This is explained
in the book Extending Microsoft Dynamics AX 2012 Cookbook, Packt Publishing.

System Services

[184]

Limitations
Those who are familiar with OData may notice that the OData query service has a
few limitations. It's important to know these and not make assumptions so that you
don't run into any surprises. The limitations are as follows:

• No JSON support: The OData protocol supports Atom as well as JSON, but
Microsoft Dynamics AX 2012 only supports Atom.

• No create, update, or delete: With OData, you can also modify data
instead of only reading it, but this feature is not supported in Microsoft
Dynamics AX 2012.

• No support for query options: OData supports query options that allow you
to, for example, select only the top five records, select only a specific entry, or
sort the feed; however, this feature is not supported in Microsoft Dynamics
AX 2012 and using it will result in an error.

• No support for queries with fetch mode 1:n: Using a query that has a data
source which has its fetch mode set to 1:n will result in an error in the event
log for the Feature Pack release and a warning for the R2 release. The latter
will automatically convert the 1:n fetch mode to 1:1, which is the only fetch
mode that is supported.

• No support for views: Queries that use views are not supported, and using a
view will result in an error.

As you can see, it is quite a list as many key features of OData are not yet supported.

Summary
System services are new in this iteration of Microsoft Dynamics AX, but they are
spot on. In this chapter, we have demonstrated that system services are powerful,
especially when they are used together.

If you use system services where possible, you're using an out-of-the-box
functionality that Microsoft Dynamics AX 2012 offers. This will save you the time
that you would spend developing document or custom services, thereby allowing
you to focus on more important tasks.

In the next chapter, we will take a break from the development side of services and
focus on how to set up Microsoft Dynamics AX 2012 to achieve High Availability
for services.

High Availability
Today's enterprise applications have evolved from smaller proprietary systems
to integrated applications that are always available. In most Microsoft Dynamics
AX implementations, we see that there is a multi-company setup where there
is a difference in business critical hours between those companies. During
business critical hours, the software must be capable of handling different kinds
of loads. Outside these hours, there are often nightly processes such as inventory
replenishment that are running. These processes too can put a load on the system.
Even companies that are based in a single location cannot afford to have much
downtime because they run 24/7; for example, hospitals or factories.

All of this results in the need for a system that is available at any time.

In this chapter, we will take a look at precisely that. Starting with a very simple
setup, we will modify the architecture of Microsoft Dynamics AX so that it can
handle higher loads while avoiding single points of failure.

The first goal of this chapter is for Microsoft Dynamics AX professionals to be able to
recognize situations in which a high availability setup is desired. The second goal is
for you to be able to configure Microsoft Dynamics AX for high availability. In this
chapter, we will cover the following topics:

• Introducing high availability: We will start by defining what high
availability is and how it relates to redundancy and disaster recovery.

• Application level load balancing: Starting with a very basic architecture, we
will gradually add components until all Microsoft Dynamics AX components
are in place to achieve high availability of the services.

• Network load balancing: The final components that we will add to the
architecture are network load balancers. These are vital components,
especially if you want high availability of services, because they take
care of load balancing WCF communication.

High Availability

[186]

Introducing high availability
High availability (HA) means creating a system design for your Microsoft Dynamics
AX components in a way that ensures that the system is up and running as close to
100 percent of the time as possible at an acceptable level of performance.

For anyone working with Microsoft Dynamics AX, it is obvious that this is no
easy feat. Installing fixes in a best practice way requires restarting the AOS, which
means that many components are unavailable. Rolling out one fix per month with
a downtime of 5 minutes, for example, would mean a system that is running only
99.99 percent of the time. This, however, can be planned and should have little
impact on the business.

However, there are many occasions when the system is unavailable that can't be
foreseen, such as the following:

• Power outage
• Server crashes
• Hardware failure
• Network outage
• Security breaches

Fortunately, there are ways to deal with these problems, most of which might
already be known to you, such as using Redundant Array of Inexpensive Disks
(RAID) to protect the system against disk failures or using Uninterruptable Power
Supply (UPS) to protect the system against power outage. Such automated systems
can be complemented by defining procedures that need to be performed manually.

Adding redundancy
A chain is only as strong as its weakest link. In terms of system design, links are the
components of your system. When adding redundancy, you strengthen these links
by avoiding single points of failure.

Ironically, adding extra components might undermine your efforts to create a high
availability environment. These components might just increase the number of
points of failure, so consider each component carefully.

Adding redundancy opens the door to load balancing. Adding multiple AOS
instances to a cluster is an example of load balancing. This will balance the load over
these different instances, adding to the performance of the system. If one of the AOS
instances fails, the others will still be available, adding to the reliability of the system.

Chapter 8

[187]

Another example is a SQL Server in an active/passive mode. Only one SQL Server
instance is active at a given time in that configuration, but in case one fails, a failover
occurs and the other instance is used.

Disaster recovery
Disaster recovery (DR) comes into play when HA fails. This could happen because
of natural causes such as fire or flood, human errors, or errors that are introduced
on purpose. After a disaster occurs, DR strives to restore the system to a previously
acceptable state as soon as possible. This could mean doing simple things such
as restoring backups and restarting services, but it could also mean moving all
operations to a different physical location altogether. In the case of DR, the level
of performance is less important, as its first priority is to restore the system to an
operational state.

Putting high availability into practice
In the next sections, we will begin with the simplest architecture and point out
the flaws in the design. Gradually, we'll solve them until we have a robust high
availability design.

The basic architecture
First, let's take a look at the following diagram, which represents the most basic
Microsoft Dynamics AX 2012 design. There is a single AOS instance and the AOS
connects to a single SQL Server instance, as shown in the following figure:

AXAOS01 AXSQL01

AX Clients

AOS Cluster SQL Server AX DB

RPC

High Availability

[188]

It goes without saying that this is not a good design when it comes to HA. When
either the AOS or SQL Server instance has a failure, the whole environment will be
out of order.

We will not discuss the SQL Server issues here because we want to focus on the
architecture of the AOS instances. These are the most important when it comes
to services.

We should begin by adding redundancy for the AOS instance. We will do this by
configuring the application level load balancing.

Application-level load balancing
This type of load balancing is configurable from within Microsoft Dynamics AX
and has been around for quite some time. It is intended for load balancing Remote
Procedure Call (RPC) communication between the client and AOS.

Configuring the cluster
The following figure shows us that in order to configure application level load
balancing, we have to add multiple AOS instances to a cluster. A new AOS instance
(AXAOS02) is placed within a cluster with the existing AOS (AXAOS01):

AXAOS01 AXSQL01

AX Clients

AOS Cluster SQL Server AX DB

RPC

AXAOS02

Chapter 8

[189]

To achieve application level load balancing, perform the following steps:

1. Navigate to System administration | Setup | System | Cluster configuration.
2. By default, a non-load-balanced AOS cluster should be available. Create

a new record by pressing Ctrl + N and add a cluster named Clustered
AOS Instances. This is a cluster that will support the addition of a load
balancer later.

3. Go to the fast tab Map AOS instances to cluster.
4. Add the following entries to the grid:

AOS Instance
Name

Load
balancer

Max Concurrent
Sessions

Cluster name

AXAOS01 No 2000 Clustered AOS Instances
AXAOS02 No 2000 Clustered AOS Instances

Note that once you have created the cluster records in this form,
it does not matter which record you are on as the fast tab always
shows all of the AOS instances. To assign instances to a cluster,
use the drop-down menu on the cluster name field.

5. Restart both the AOS instances.

With both the AOS instances now becoming part of the cluster, we need to make
a modification in the client configuration. The clients should be configured to
connect to both the AOS instances. To do this, add the second AOS instance to your
configuration by performing the given steps:

1. Open Microsoft Dynamics AX Configuration Utility.
2. Go to the Connection tab.
3. Click on the Add… button and enter the AOS details.
4. Click on the OK button and verify that both the AOS instances are present.
5. Click on the Apply button at the bottom of the utility.

High Availability

[190]

The output looks like the following screenshot:

When a client starts using this configuration, the client will send a request to the
first AOS in the list. This AOS will respond with a list of active AOS instances in
the cluster, sorted by workload. The workload is determined by the number of
connected clients divided by the maximum number of allowed clients on that AOS.
Then, the client will try to connect to the AOS instances in order, starting with the
AOS that has the lowest workload.

This provides us with the following advantages:

• Scalability: You can add new instances to the cluster, after which the load is
also handled by the new instance

• Redundancy: By adding AOS instances to the cluster, more instances remain
available in case the other instances fail

Chapter 8

[191]

Although we have successfully added a second AOS instance to the cluster, there are
still some pitfalls to this approach:

• Maintenance: Removing or adding AOS instances to the cluster requires the
client configuration to be updated.

• Startup performance: On startup, the client will go through the list of AOS
instances sorted by workload. When the first AOS instance does not respond,
the next in the list will be tried, and so on. Because there is a timeout before
moving to the next instance, this may result in slower startup times for the
client. This is especially inconvenient for services because they tend to log in
and log off from Microsoft Dynamics AX more frequently.

• Overhead: Each individual AOS acts like a load balancer, which causes
overhead for the server.

Adding a dedicated load balancer
To solve the maintenance and startup performance issues, a dedicated load balancer
can be used within the cluster. When using a dedicated load balancer, clients connect
to that instance. The dedicated load balancer will then point the clients to one of the
AOS instances that are not designated as load balancers.

The process to divide the load is as follows. The load balancer maintains a list of all
the available AOS instances. To view this list in the Microsoft Dynamics AX client,
perform the following steps:

1. Navigate to System administration | Common | Users | Online users.
2. Click on the Server Instances tab.

It's important to notice the AOS Status and Number of clients columns here. These
fields are used to create a list of AOS instances sorted by workload. When a client
makes a request, the load balancer will sort the list by workload in ascending order
and use the first AOS to redirect the client.

Using a cluster with a load balancer, AOS has the following benefits:

• Maintenance: You can add new instances to the cluster without having to
modify the client configuration

• Performance: Using a dedicated load balancer frees the other AOS instances
from their task of performing load balancing themselves

High Availability

[192]

The following diagram shows us a design using a dedicated load balancing
AOS instance:

AX Clients

AOS Cluster

AXSQL01

SQL Server AX DB

RPC

AXALB01

AXAOS01

AXAOS02

To add a dedicated load balancer, follow the same steps that we used earlier to add
AXAOS02 to the cluster. Add the following to the list:

AOS Instance
Name

Load
balancer

Max Concurrent
Sessions

Cluster name

AXLB01 Yes 0 Clustered AOS Instances

Chapter 8

[193]

As you can see, the Max concurrent sessions parameter is automatically set to 0 for
dedicated load balancers. This is because dedicated load balancers do not accept
client connections but only serve the purpose of load balancing. It is also important
to note that the dedicated load balancer instance will not consume an AOS license.

Once the load balancer is in place, we need to make an adjustment to the client
configuration so that it connects to the dedicated load balancer.

High Availability

[194]

We have now solved the downsides of not using a dedicated load balancer, but we
are not out of the woods yet. We have created two new problems:

• WCF communication: When using dedicated load balancers, the WCF
communication between the client and AOS fails. This is because the WCF
client connects directly to a dedicated load balancer that does not accept
clients and because the mechanism of application level load balancing only
applies to RPC communication.

• Single point of failure: Adding only one dedicated load balancer introduces
a new single point of failure. If the load balancer fails, none of the other AOS
instances will receive clients. Therefore, we should at least add one extra
dedicated load balancing AOS instance to the cluster.

To deal with these issues, we will need some kind of load balancing that is external
to Microsoft Dynamics AX. This is what we will discuss next.

Network Load Balancing
Microsoft Network Load Balancing (NLB) is a feature that you can add in the server
versions of Windows. It also allows you to create load balancing clusters, but here, it
is on the network level.

NLB enables you to create a cluster and, among many other things, specify the
following key components:

• The full name of the cluster, so you are able to refer to the cluster later on
• A dedicated IP address for the cluster
• A list of hostnames and IP addresses that are taking part in the cluster

For more information on how to install and configure NLB clusters,
please refer to the following MSDN page: http://technet.
microsoft.com/en-us/library/cc770558.aspx.

http://technet.microsoft.com/en-us/library/cc770558.aspx
http://technet.microsoft.com/en-us/library/cc770558.aspx

Chapter 8

[195]

To further optimize our design for HA, we will need NLB for the following
two reasons:

• Load balancing the Microsoft Dynamics AX dedicated load balancer to avoid
a single point of failure

• Load balancing services (WCF communication)

NLB for AX load balancers
Let's take a look at the design that we have now. One of the remaining problems is
that although the AXLB01 AOS balances load over the AOS instances, it is the single
point of failure itself now. If the dedicated load balancer fails, none of the clients can
connect to the AOS instances anymore.

So, the first thing to do here is to add at least one extra dedicated load balancer to the
cluster. By doing so, you will avoid the system going down when the dedicated load
balancer is unavailable. Add the following load balancer to the cluster:

AOS Instance
Name

Load
balancer

Max Concurrent
Sessions

Cluster name

AXLB02 Yes 0 Clustered AOS Instances

Now that both the dedicated load balancers are in place, two options are available to
enable clients to connect to the dedicated load balancers:

• Modify client configuration: We could add AXLB02 to the list of AOS
instances within the Connection tab of the Microsoft Dynamics AX
Configuration Utility.

• Use an NLB cluster on the network level: The better option is to configure
an NLB cluster. To do that, add a cluster named AXLB in the NLB manager
and give the cluster its own dedicated IP address. Then, you can also add
two hosts within the cluster by using the names and ports of the Microsoft
Dynamics AX load balancers.

High Availability

[196]

We will go with the option of creating an NLB cluster. We will assume that an NLB
cluster has been configured as follows:

Cluster Name Cluster IP Host Name Host IP / Port

AXLB 192.168.2.100
AXLB01 192.168.2.101 / TCP 2712
AXLB02 192.168.2.102 / TCP 2712

The last thing that we need to do is point the clients to the network load balancer
instead of the dedicated load balancer.

Chapter 8

[197]

By doing so, all client requests will be made using the AXLB name. The NLB cluster
continuously monitors the hosts within the cluster to see if they still respond on
their IP address and port. When a client tries to connect to an AOS, the network load
balancer chooses a suitable host and forwards the client's request. In our case, this
means that AXLB01 or AXLB02 will receive the request.

Once either one of the dedicated load balancers receive the client's request, they will
fall back to the application level load balancing to decide which of the client AOS
instances will handle the client session.

At this point, our design should look like the following diagram:

AX Clients

AOS Cluster

AXSQL01

SQL Server AX DB

RPC

AXLB02

AXAOS01

AXAOS02

AXLB01
Network Load Balancer

AXLB

AOS NLB

RPC

RPC

NLB for services
Since the release of Microsoft Dynamics AX 2012, every AOS instance now has
two extra ports that are used for WCF services: A WSDL port (8101) and a service
endpoint port (8201).

High Availability

[198]

We have gone through several pitfalls so far, but there is actually one pitfall still
remaining in our current design. All of the clients connect to AXLB, which is fine for
RPC. Requests will be forwarded to one of the dedicated load balancers from which
point the application level load balancing takes over to redirect them to the client
AOS instance. This, however, does not apply to WCF communication.

When the WCF service clients communicate with the AOS, the request is also made
to the AXLB cluster, and it will be rerouted to either AXLB01 or AXLB02. The problem
here is that the application level load balancing does not support the load balancing
of WCF communication, which causes the service client to try to log on to the
dedicated load balancers themselves. When refreshing the service in the Microsoft
Dynamics AX Configuration Utility, for example, this will result in the following
error message:

The Microsoft Dynamics AX Configuration Utility stores the WCF configuration
within the AXC file. If you open it, you will see that the endpoints contain the name
of the NLB cluster that points to the dedicated load balancers. This needs to be
prevented so that the client does all the WCF communication with the AOS instances
directly. To do this, we need to make one last addition to our design, which is shown
in the following diagram:

Chapter 8

[199]

AX Clients

RPC

AOS Cluster

AXSQL01

SQL Server AX DB

AXLB02

AXAOS01

AXAOS02

AXLB01

Network Load Balancer
AXLB

AOS NLB

Network Load Balancer
AXSERVICES

AOS NLB

WCF

RPC WCF

We have added one NLB cluster named AXSERVICES and configured it, as shown in
the following table:

Cluster Name Cluster IP Host Name Host IP / Port

AXSERVICES 192.168.2.200
AXAOS01 192.168.2.201 / NetTcp 8201
AXAOS02 192.168.2.202 / NetTcp 8201

High Availability

[200]

This NLB cluster serves two purposes:

• It routes the service clients directly to the AOS instances (AXAOS01 and
AXAOS02) instead of routing them to the dedicated load balancers

• It allows the service communication to be load balanced over the
AOS instances

Now we just need a way to make the client connect to AXLB for RPC communication
and to AXSERVICES for WCF communication. Unfortunately, only one name can be
specified when adding AOS instances in the Microsoft Dynamics AX Configuration
Utility. To work our way around this, we need to edit the configuration in the registry
by performing the following steps:

1. Open up the registry by opening RegEdit.
2. Locate the following key for both HKEY_CURRENT_USER and

HKEY_LOCAL_MACHINE: \Software\Microsoft\Dynamics\6.0\
Configuration\<Configuration name>.

3. Add two new string values:

Name Host IP / Port
Wcflbservername AXSERVICES

Wcflbwsdlport 8101

4. Start the Microsoft AX Configuration Utility. If the utility is already open,
close and reopen it.

5. On the Connection tab, click on the Refresh Configuration button to refresh
the WCF configuration.

Now you should not get the error message anymore. If you click on the Configure
button, the configuration opens and you see that the server name within the
endpoint addresses is now replaced with the AXSERVICES NLB instead of AXLB.

<endpoint address="net.tcp://AXSERVICES:
 8201/DynamicsAx/Services/MetadataService"
 binding="netTcpBinding" bindingConfiguration=
 "MetadataServiceEndpoint" contract="Microsoft.Dynamics.
 AX.Framework.Services.Metadata.Service.IAxMetadataService"
 name="MetadataServiceEndpoint">
 <identity>
 <userPrincipalName value="s_ax_aos@AX2K12DOMAIN.local" />
 </identity>
</endpoint>

Chapter 8

[201]

Summary
At the beginning of this chapter, we started with the simplest of system designs for
Microsoft Dynamics AX 2012. We have learned why this design does not provide
what's needed for high availability of Microsoft Dynamics AX.

Step-by-step, we have adjusted the design to work our way around various issues.
This includes introducing redundancy and scaling out the AOS instances for better
load balancing.

The design that was demonstrated in this chapter can be easily implemented for
any project and will help you make sure that Microsoft Dynamics AX 2012 is not
the weakest link. This will greatly improve the overall reliability of the system.

In the next chapter, we will take a look at the tools that we can use for the tracing and
debugging of services.

Tracing and Debugging
Most Microsoft Dynamics AX developers are very familiar with debugging using
the Microsoft Dynamics AX debugger. However, because services are compiled to
CIL, you'll spend a lot more time with the Visual Studio debugger. Some find this
off-putting, but the debugging process is actually very straightforward.

Developers may be used to debugging, but tracing is another story. Probably one of
the most underused features of Microsoft Dynamics AX 2012 is the Tracing cockpit,
which is first and foremost a tool for measuring performance. This is something you
should always do when developing with Microsoft Dynamics AX, including when
using its services. You can also use it to extract tracing information about X++ code
from an environment where debugging is not an option and then study it using the
Microsoft Dynamics AX Trace parser.

In a live environment, it is better to use WCF tracing; it has less performance
overhead and provides you with a wealth of information that helps you when
troubleshooting problems.

In this chapter, we will introduce these tools and look at when and how they can
be used.

The following topics will be covered in this chapter:

• Using the Microsoft Dynamics AX debugger: We start by using the
debugger that Microsoft Dynamics AX developers are most familiar with.

• Using the Visual Studio debugger: As code running in services in Microsoft
Dynamics AX is compiled into CIL, a lot of debugging will be done in Visual
Studio. We'll see how to set this up and use the Visual Studio debugger.

• Using the Tracing cockpit: The Tracing cockpit is a tool that allows you to
collect tracing information about X++ code. We will see how it is used and
how we can interpret the output.

Tracing and Debugging

[204]

• Using the integration port logging mode: Integration ports provide a
way to log messages that are sent from and to Microsoft Dynamics AX 2012.
This can be especially helpful for troubleshooting services when you have
pipeline components that are transforming messages. We will look at how
to set this up.

• Using WCF message logging and tracing: Sometimes debugging is not an
option, and that's when message logging and tracing comes very handy.
We will set up WCF message logging and tracing and look at how we can
interpret the output.

Installing development tools
This chapter uses a number of development tools that can be installed using the
Microsoft Dynamics AX setup. These tools are listed in the setup wizard under the
Development tools node and consist of the following:

• Debugger: This is the Microsoft Dynamics AX 2012 debugger used to debug
X++ code running on the client and server.

• Visual Studio tools: As discussed in Chapter 6, Web Services, installing the
Visual Studio tools will add a number of extensions to Visual Studio. This
includes the Application Explorer, which we will use to set breakpoints to
debug code running in CIL.

• Trace Parser: This installs the Microsoft Dynamics AX 2012 Trace Parser,
which is used to analyze trace files generated by the Tracing cockpit.

If you are having trouble installing or configuring these
components, refer to the Microsoft Dynamics AX 2012
Installation Guide at http://www.microsoft.com/en-
us/download/details.aspx?id=12687.

From here on, we assume that you have successfully installed these components
and configured both client and server components to allow the debugging of code
running on the client, server, and CIL.

Chapter 9

[205]

Using the Microsoft Dynamics AX 2012
debugger
The Microsoft Dynamics AX 2012 debugger has long been the only debugging tool
available for developers and is specially designed to debug X++ code running on
both the Microsoft Dynamics AX client and the AOS. It cannot debug code running
in CIL.

If services are running in CIL and the debugger is unable to debug them, how can it
be useful? We'll take a look at two scenarios: debugging the SysOperation framework
and testing service operations.

Debugging the SysOperation framework
Although the SysOperation framework uses services running in CIL, it still has
components that run on the client. These components include:

• The controller class
• The UI builder class
• The data contract, which includes the initialization and validation of the data

All of these have to be debugged using the Dynamics AX debugger. The only
component that runs in CIL and has to be debugged using Visual Studio is the
service operation. However, there is a way around this as follows:

1. In the development workspace, go to Tools | Options.
2. On the Development tab, expand the General FastTab.
3. Uncheck the option Execute business operations in CIL.

These steps will allow you to debug your SysOperation service using the
Dynamics AX debugger. This, however, will only work when the execution mode
is synchronous or asynchronous. A SysOperation service running in the reliable
asynchronous mode or in a batch will still be executed in CIL. Don't forget to enable
this option again after you are done debugging.

Using the Microsoft AX debugger to debug SysOperation services has the
following advantages:

• The debugger provides the best support for X++ specific types, such
as container

• The debugger shows useful information, such as the current user and the
TTS level

Tracing and Debugging

[206]

• You do not have to compile your code to CIL each time you change your code
• The debugger will not cause the AOS to hang and be unresponsive until the

debugging session has ended, as is the case with the Visual Studio debugger

Testing service operations
Troubleshooting services can be quite complex due to the large number of
components involved. Sometimes, you just want to get rid of this complexity
in order to confirm that your service operation is working properly. To do this,
you can simply create a job in the AOT that calls your service operation.

When we apply this to the getAllTtitles operation of the CVRTitleService
service, it looks like the following code snippet:

static void XPPGetAllTitles(Args _args)
{
 CVRTitleService titleService;
 List titles;
 ListEnumerator enumerator;
 CVRTitleDataContract cVRTitleDataContract;

 // create new instance of the title service
 titleService = new CVRTitleService();

 // get the list of titles from te service
 titles = titleService.getAllTitles().parmTitleList();

 // create an enumerator and loop the results
 enumerator = titles.getEnumerator();

 while(enumerator.moveNext())
 {
 // get the current title from the list
 cVRTitleDataContract = enumerator.current();

 // show titleId and description in infolog
 info(strFmt("%1: %2", cVRTitleDataContract.parmId(),
 cVRTitleDataContract.parmDescription()));
 }
}

As you can see, the code is similar to what you would write in .NET; only it runs
within Microsoft Dynamics AX 2012 and not in CIL. Due to this, you will be able to
take advantage of the debugging capabilities of the Dynamics AX debugger when
debugging this code.

Chapter 9

[207]

Keep in mind that some scenarios are not supported in CIL. These include the
functions evalbuf() and runbuf(), but other code might also behave differently
when run in CIL as compared to p-code. That is why, you should not rely solely on
this method when testing and always test your code in CIL as well.

If you suspect that the code will behave differently when compiled in CIL as
opposed to p-code, you can test it easily using a class. Start by creating a new
class in the AOT as follows:

class CVRTestCodeInCIL
{
}

Then, add a method that contains the code you want to test. It should be static and
take a container as a parameter. In this case, we test whether the evalbuf() function
runs in CIL as follows:

public static void run(container _c)
{
 // assert permission
 new ExecutePermission().assert();

 // run evalbuf
 info(EvalBuf("1 + 1"));

 // revert assertion of permissions
 CodeAccessPermission::revertAssert();
}

Finally, add a main() method that runs the code both in p-code and CIL, making
sure it runs on server:

public static server void main(Args args)
{
 container con;

 // test in p-code
 CVRTestCodeInCIL::run(con);

 // test in CIL
 new XppILExecutePermission().assert();
 runClassMethodIL(classStr(CVRTestCodeInCIL), staticMethodStr(
 CVRTestCodeInCIL, run), con);
 CodeAccessPermission::revertAssert();
}

The output for the code that runs in p-code will be 2, but for the code that runs in
CIL, you'll get an error. Sometimes, the difference is more subtle, so checking your
code in this manner can prove crucial when troubleshooting these kinds of problems.

Tracing and Debugging

[208]

Using the Visual Studio debugger
When your code runs in CIL, you can only debug it using the Visual Studio
debugger. Of course, you should have Visual Studio 2010 installed, along with
the Visual Studio tools that come with the Microsoft Dynamics AX 2012 installer.

Launching Visual Studio
To start Visual Studio with the intention of debugging the CIL code, perform the
following steps:

1. Open the Microsoft Dynamics AX Configuration Utility.
2. In the Configuration Target combobox, select Local client.
3. In the Configuration combobox, select the configuration that points to the

AOS you want to debug. Then click on OK to close the utility.
4. Right-click on the Visual Studio 2010 icon and click on Run as administrator.

Visual Studio will launch, and you should see Visual Studio along with the
Application Explorer window as shown in the following screenshot:

Chapter 9

[209]

If you can't see the Application Explorer window, activate it by going to View |
Application Explorer or using the shortcut Ctrl + D + Enter.

The Application Explorer window shows you the AOT. At the top of the window,
you can see the layer and model that the user is working in. The word Default
indicates that the active client configuration was used by Visual Studio to determine
which AOS to connect to.

It is also possible to connect to other AOSes by performing the following steps:

1. Create a new shortcut to Visual Studio 2010, for example, on your desktop.
2. Right-click on the shortcut, then click on Properties.
3. Edit the Target property as follows by adding either a reference to an AXC

file or the name of the configuration you want to use:
1. When you want to use an AXC file, add the /AxConfig "C:\<locati

on>\<yourconfiguration>.axc" reference.
2. When you want to point to the configuration named AX60Debug, add

the /AxConfig AX60Debug reference.

When you start Visual Studio 2010 using the shortcut you just created, you
should see the name of the configuration instead of Default in the Application
Explorer window.

Attaching the debugger to the AOS
Starting Visual Studio with the Application Explorer window connected to the
right AOS isn't enough to start debugging. You must also point Visual Studio to the
process you want to debug. In our case, this is Ax32Serv.exe, which is the process of
the AOS.

Tracing and Debugging

[210]

You can do this in Visual Studio by going to Debug | Attach to Process.... The
following screenshot will appear:

As you can see, it lists processes that are running, including Ax32Serv.exe. If you do
not see the process, enable the Show processes from all users and Show processes
in all sessions checkboxes.

When you have more than one AOS server running, you can identify the process by
hovering your mouse cursor over the process. It will show the path of the process as
seen in the following screenshot:

Chapter 9

[211]

Alternatively, you can also look up the process ID on the Services tab of the
Windows Task Manager. As you can see in the following screenshot, the ID of the
process in the Attach to Process window is the same as the PID in the task manager,
allowing you to identify the process:

Once you have determined the correct process, click on the Attach button. This will
display the following Attach Security Warning screen:

Clicking on the Attach button will attach the Visual Studio debugger to the AOS
process, so we are now ready to set some breakpoints, which is what we will do next.

Tracing and Debugging

[212]

Setting breakpoints
Setting breakpoints in the Application Explorer is as easy as setting breakpoints in
the AOT. As an example, we will debug the Title service that we created in Chapter 4,
Custom Services. Perform the following steps to set a breakpoint for this service:

1. In the Application Explorer window, expand the Classes node.
2. Navigate to the CVRTitleService class and expand that node.
3. Double-click on the getAllTitles method; this will show you the source code

of that method.
4. To set a breakpoint for this method, position your cursor on the line where

you wish to set a breakpoint and press F9. Alternatively, click on the margin
to the left of the code to enable or disable breakpoints.

The result should look as follows:

Debugging a service call
With the debugger attached and a breakpoint set, we are ready to run our service. To
run the Title service, perform the following steps:

1. Open a new instance of Visual Studio 2010.
2. Go to File | Open | Project/Solution.

Chapter 9

[213]

3. Select the solution VisualStudio\Chapter4\DynamicsAxServices.
Custom\DynamicsAxServices.Custom.sln. This solution is part of
the code that can be downloaded for this book.

4. In the Solution Explorer, right-click on the DynamicsAxServices.Custom.
Titles project and then click on Set as StartUp Project.

5. Press F5 to run the project.

The instance of Visual Studio where we had set a breakpoint will pop up because
the breakpoint was hit. The next line of code that will be executed is indicated with
a yellow arrow, just as is the case in the Dynamics AX debugger, as seen in the
following screenshot:

Tracing and Debugging

[214]

As you can see, it shows the X++ source code, the call stack, and all the variables
with their values. The shortcuts used for debugging, such as F10 and F11, are the
same in Visual Studio as in the Dynamics AX debugger, so the experience for any
Microsoft Dynamics AX developer from here on is going to be very straightforward.

Note that during the debugging of the CIL code, the AOS server will be unresponsive.
This will cause other clients that are connected to the instance on which you are
debugging to also hang. Because of this, you should only debug CIL on a developer
machine. This is also one of the reasons why Microsoft recommends a development
topology where every developer has his own development environment.

Remote debugging
If you don't want to install Visual Studio on every AOS server that
you want to debug, you can use remote debugging with Visual Studio.
After a simple setup, the process of debugging will be the same as on
a local AOS. For information on how to set this up, visit the How to: Set
Up Remote Debugging page on MSDN at http://msdn.microsoft.
com/en-us/library/bt727f1t(v=vs.100).aspx.

Using the Tracing cockpit
Although performance is quite important, it is often not given much thought until
there are performance problems. Sometimes, efforts to improve performance are
deliberately postponed until later in the project in order to free resources for other
tasks. On the other hand, many developers may feel that performance should be
given more attention but are unsure how.

This brings us to the Tracing cockpit and the Microsoft Dynamics AX Trace Parser.
These are perhaps the most underused and underrated tools available to Microsoft
Dynamics AX developers, but they are tools that developers should be using on
a daily basis. Before you submit your code for testing, consider using the Tracing
cockpit so you can detect and fix obvious performance problems before they cause
any real problems.

Chapter 9

[215]

The Tracing cockpit is a tool used to measure the overall performance of your code.
When it is running, it collects information such as the time spent on each method,
the number of round trips made to the database, and the time it took to execute
those calls. This information is stored in an ETL (Event Trace Log) file, which can be
interpreted by the Microsoft Dynamics AX Trace Parser. Although it is not purposely
built for tracing services, it is useful to improve the performance of your services.
That's why we will take a look at it next.

Collecting a trace
We will use the Title service as an example, so open the DynamicsAxServices.
Custom.sln solution in Visual Studio. This is the same solution we used to test the
Visual Studio debugger. It is important that you set up everything to right before
the point when you want to start your trace. As you can imagine, tracing every X++
method and SQL statement that is executed could lead to a large amount of data.
This would take up a lot of hard disk space and would be too time consuming for
you to analyze.

With the Visual Studio project ready to run, open the developer workspace in the
Microsoft Dynamics AX client and go to Tools | Tracing cockpit. You should see a
screen similar to the following:

Tracing and Debugging

[216]

On the right-hand side are the different options you can configure. We won't go
over them all because the default options suffice most of the time. One option that
is very interesting is the Bind parameters option. With this parameter disabled, the
SQL statements that are traced will have the values in the where clauses replaced by
a question mark. This ensures that no sensitive data ends up in the trace file. When
you want to see the real values that were used, enable this option. This then allows
you to copy the statement from the trace and run it using a query on Microsoft SQL
Server, at which point you can examine it further using the tracing options that
Microsoft SQL Server has.

When you are done configuring the options, click on the Start trace button. Specify a
filename and click on Save. Next, go to Visual Studio and press F5 to run the project.
When it has finished running, return to the Tracing cockpit and click on Stop trace. A
new record will be created as shown in the following screenshot:

Chapter 9

[217]

To view the trace, click on the Open trace button. If this is the first time you are
opening a trace file using the Microsoft Dynamics AX Trace Parser, you will see
the following screen:

Tracing and Debugging

[218]

What happens is that the Microsoft Dynamics AX Trace Parser tries to import the
trace file into a database for analysis. Because this is the first time you are importing
a trace, no database exists yet; so, create a database by specifying the server you
want to create a database on in the Server name field. In the Select or enter a
database name field, enter the name of the database you want to use. If you specified
a nonexisting database, a new database will be created with that name, which is
AXTrace in our case. Click on the Register button to register the database. Confirm
the creation of the database when prompted.

After a short time, depending on how large the trace file is, you will be presented
with the following screen:

Chapter 9

[219]

As you can see, a summary of the most costly X++ methods and SQL queries has
been presented. From this, we can already observe the following:

• The service operation took 23.03 milliseconds to complete and retrieved all
the titles using one database call

• The database call to retrieve the titles took 0.84 milliseconds

If you want to see the details of the trace, select the appropriate session from the
Session drop-down box. This will allow you to view many more tracing details.

This demo should be enough to get you started with the Tracing
cockpit. An excellent overview of the major features of the Tracing
cockpit can be found on Dynamics Ax Performance Team Blog on
the Walk through major features of Microsoft Dynamics AX 2012
Trace Parser (Part 2) page at http://blogs.msdn.com/b/
axperf/archive/2011/09/06/walk-through-the-major-
features-in-microsoft-dynamics-ax-2012-trace-
parser-part-2.aspx.

Using the integration port logging mode
Microsoft Dynamics AX 2012 provides the out-of-the-box logging of messages by
configuring the logging mode parameter on integration ports. This is available on
both basic and enhanced, inbound and outbound ports, and for document services
as well as custom services.

Logging is disabled by default. As always, when adding logging to any process, take
a moment and think about whether adding logging is really necessary. Also consider
the level of detail that is required as this will have an impact on the performance
of your service. The Logging mode parameter on integration ports provides the
following options in the descending order of their level of detail:

• All document versions: When selected, a version of the document is stored
every time a document is modified by a pipeline component

• Original document: When selected, only the original document before it has
been modified by the pipeline components is stored

• Message header only: Select this option when you want to store only the
header of the documents

For this demonstration, we will activate logging on the
CVRDocumentServicesEnhanced inbound integration port that we created and
configured in Chapter 3, AIF Document Services. We will see which logging occurs
when the Find() method is invoked from our demo .NET application.

Tracing and Debugging

[220]

Configuring the logging mode
The first thing we need to do is activate logging on the integration port as it is
disabled by default. In this example, we will log the original document only because
we haven't configured any pipeline components anyway. Perform the following
steps to set the logging mode:

1. Go to System administration | Setup | Services and Application
Integration Framework | Inbound Ports.

2. Select the CVRDocumentServicesEnhanced port. When the port is active,
click on the Deactivate button to deactivate it.

3. On the Troubleshooting fast tab, set the Logging mode parameter to
Original document.

4. Activate the CVRDocumentServicesEnhanced port.

Consulting the log
In our demo in Chapter 3, AIF Document Services, we used the Find() method to
retrieve all the titles longer than 110 minutes. The code we used to invoke this service
looks like the following code snippet:

static void getTitles_Find()
{
 // Variable to hold the title document
 AxdCVRTitle titleDocument = new AxdCVRTitle();

 // Create a criteria element that selects titles that run over 110
 // minutes
 QueryCriteria criteria = Program.createSingleCriteria("CVRTitle" ,
"LengthInMinutes", Operator.Greater, "110", null);

 // Create a client for as long as we need to
 using (CVRTitleDocumentServiceClient client = new
CVRTitleDocumentServiceClient())
 {
 // Find the titles that match the criteria
 titleDocument = client.find(null, criteria);

 // Loop all the titles
 foreach (AxdEntity_CVRTitle title in titleDocument.CVRTitle)
 {
 // Report the results to the console window

Chapter 9

[221]

 Console.WriteLine(title.Id + ' ' + title.Name + ' ' +
 title.LengthInMinutes);
 }
 }
}

With logging enabled, let's see what information is logged after we have invoked
this code. To consult the log, go to System administration | Periodic | Services and
Application Integration Framework | History. You should see the following form:

This screen shows all the messages that were logged by the Application Integration
Framework. The ordering of this screen isn't particularly good, so it's usually best
to sort the messages by created date and time as seen in the previous screenshot.
As you can see, two records are present. This is because two messages were sent: a
request from the .NET application to the AOS and a reply from the AOS to the .NET
application. To see what data was transferred in the body of each message, click on
the Document logs button. The following screenshot will pop up:

Tracing and Debugging

[222]

In this screenshot, a record of every step that we want to log is listed. Because we
indicated that we only want the original document, only one record is listed. To
view the data from the message, click on the View XML button; we will arrive at the
following screenshot:

As you can see, it is pretty obvious that this is a request that has been sent to the AOS
to retrieve all the titles longer than 110 minutes. The QueryCriteria node in the XML
matches the object that we constructed in the .NET application perfectly. To view the
data that was returned, you can perform the same steps for the second record that is
present in the History form. In the following screenshot, you can clearly see that it
contains a list of CVRTitle records:

Chapter 9

[223]

Using WCF message logging and tracing
WCF provides a number of diagnostics features that can help you troubleshoot your
applications. We will look at two of these: message logging and tracing.

• Message logging: This enables you to log all the messages that are sent and
received by the AOS. It allows you to see what data and parameters are
in the messages being exchanged. In this way, it is similar to the logging
functionality on the integration port, but it is all handled by WCF.

• Tracing: This allows you to look at how messages flow between the client
and service. Techniques such as activity propagation and correlation of
messages allow you to keep track of the entire conversation between the
client and service both at the service and transport level.

Both of these output to the .svclog files that you can analyze using the Service
Configuration Editor.

For this demonstration, we will use the Service Configuration
Editor that is part of the Windows SDK. For more information,
visit the Configuration Editor Tool (SvcConfigEditor.exe) page on
MSDN at http://msdn.microsoft.com/en-us/library/
ms732009(v=vs.100).aspx.

Configuring message logging and tracing
Message logging and tracing are both configured in the same place, so you will
configure them both at the same time. To do this, modify the configuration file
of the AOS by performing the following steps:

1. Start the Service Configuration Editor.
2. Go to File | Open | Config File… or press Ctrl + O.
3. Select the Ax32Serv.exe.config process from the bin directory of your AOS,

for example, C:\Program Files\Microsoft Dynamics AX\60\Server\
AX60\bin\Ax32Serv.exe.config.

4. When you are prompted with a warning, click on Yes to continue with
opening the file.

5. Navigate to the Diagnostics node and highlight it.
6. On the right-hand side, click on Enable MessageLogging and Enable Tracing.
7. Select the Message Logging node located under the Diagnostics node.
8. On the right-hand side, set LogEntireMessage to True.
9. Press Ctrl + S to save the configuration.

Tracing and Debugging

[224]

The result should look like the following screenshot:

As you can see, both message logging and tracing are now active. What this did was
add the following nodes to the configuration file:

<system.diagnostics>
 <sources>
 <source propagateActivity="true" name="System.ServiceModel"
 switchValue="Warning,ActivityTracing">
 <listeners>
 <add type="System.Diagnostics.DefaultTraceListener"
 name="Default">
 <filter type="" />
 </add>
 <add name="ServiceModelTraceListener">
 <filter type="" />
 </add>
 </listeners>

Chapter 9

[225]

 </source>
 <source name="System.ServiceModel.MessageLogging"
 switchValue="Warning,ActivityTracing">
 <listeners>
 <add type="System.Diagnostics.DefaultTraceListener"
 name="Default">
 <filter type="" />
 </add>
 <add name="ServiceModelMessageLoggingListener">
 <filter type="" />
 </add>
 </listeners>
 </source>
 </sources>
 <sharedListeners>
 <add initializeData="C:\Program Files\Microsoft Dynamics AX\60\
 Server\AX60\bin\Ax32Serv_messages.svclog"
 type="System.Diagnostics.XmlWriterTraceListener, System,
 Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089"
 name="ServiceModelMessageLoggingListener"
 traceOutputOptions="Timestamp">
 <filter type="" />
 </add>
 <add initializeData="C:\Program Files\Microsoft Dynamics AX\60\
 Server\AX60\bin\Ax32Serv_tracelog.svclog"
 type="System.Diagnostics.XmlWriterTraceListener, System,
 Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089"
 name="ServiceModelTraceListener" traceOutputOptions="Timestamp">
 <filter type="" />
 </add>
 </sharedListeners>
 <switches>
 <add name="ServiceTraceLevel" value="Off" />
 </switches>
 <trace autoflush="false" indentsize="4">
 <listeners>
 <add initializeData="Dynamics AX Services"
 type="System.Diagnostics.EventLogTraceListener"
 name="AxTraceListener">
 <filter type="" />
 </add>
 </listeners>
 </trace>
</system.diagnostics>

Tracing and Debugging

[226]

Analyzing service traces
Before you can take a look at the trace files, you first have to make sure to generate
some service communication. In order to do this, execute the getAllTitles service
operation of CVRTitleService as you have done many times in this chapter.

Analyzing message logging
The WCF trace file containing the message logging is located in the bin directory
of the AOS where tracing has been enabled. The name of the file is Ax32Serv_
messages.svclog. Double-click on it and it will open using the Microsoft Service
Trace Viewer, as shown in the following screenshot:

Chapter 9

[227]

As you can see from the previous screenshot, the message that corresponds
to the reply that the AOS sent to the .NET application has been selected. You
can see the header and also the data of the message because we already set the
LogEntireMessage property to True.

Analyzing tracing
The WCF trace file containing the tracing data is located in the bin directory of the
AOS where the tracing has been enabled. The name of the file is Ax32Serv_tracing.
svclog. Double-click on it and it will open using the Microsoft Service Trace
Viewer, as shown in the following screenshot:

Tracing and Debugging

[228]

While message logging gives emphasis to the content of the messages, tracing focuses
more on the events that occur and the correlation between them. When combined with
a trace from the client side, it allows you to trace WCF from end to end.

There is much more to WCF message logging and tracing than we
can cover here. For an in-depth view on how to configure it the best
for your implementation, visit the Diagnostic Tracing and Message
Logging page on MSDN at http://msdn.microsoft.com/en-us/
library/dd788183.aspx.

Summary
Although a lot of code now runs in CIL, the Microsoft Dynamics AX debugger is still
very useful. It even has some advantages over the Visual Studio debugger.

On the other hand, you can't get around the fact that you'll be using the Visual
Studio debugger on many occasions. Although it is a bit more troublesome to get
started with the first time, compared to the Dynamics AX debugger, the procedure
will quickly become second nature to you. When compared to the previous iterations
of Microsoft Dynamics AX, the Visual Studio debugger makes debugging the
Application Integration Framework and its batches much easier.

The Tracing cockpit doesn't have features that are related to services in particular,
but nevertheless, it is very helpful for testing the performance of your services
during development. After deployment to a live environment, troubleshooting is
better facilitated using WCF message logging and tracing.

Installing the Demo
Application

In this book, we use a demo application called Contoso Video Rental (CVR).
It contains sample functionality to create movie titles, shops, rentals, and so on.
In order to run the code, you must first install the CVR model into Microsoft
Dynamics AX; the following sections will show you how to do this.

Prerequisites
To use the sample code in this book, the following prerequisites must be available:

• Microsoft Visual Studio 2010
• Microsoft Dynamics AX 2012
• Microsoft Dynamics AX 2012 Management Utilities

A full list of software requirements can be found in the Microsoft Dynamics AX 2012
system requirements document available for download at http://www.microsoft.
com/en-us/download/details.aspx?.

Dynamics AX 2012 models
There are two models available: CVR_R2.axmodel and CVR_Base_R2.axmodel. Both
these models are built on Microsoft Dynamics AX 2012 R2 with the build number
6.2.158.0, as shown in the following screenshot:

Installing the Demo Application

[230]

The CVR_Base_R2 model contains all CVR demo application objects (tables, forms,
and so on). When you install this model, you can follow all of this book's examples
step-by-step to complete the application. The CVR_R2 model contains everything the
CVR_Base_R2 model contains but also all examples already completed.

There is also a folder named old, which contains the models that were included
in the previous iteration of this book. If you are on the Feature Pack release, you
could use these models, but we recommend that you import the XPO file instead
and downgrade it.

The models are installed by using PowerShell or AxUtil. The following sections will
show you how to install the model of your choice.

Using PowerShell
1. In the Start menu, navigate to All Programs | Administrative Tools and

click on Microsoft Dynamics AX Management Shell.
2. At the PowerShell command prompt (PS C:\>), type the following

command (make sure that you pass in the full path of the model file
to avoid being in the wrong directory):
Install-AXModel –File "<Model filename>" –Details

Using AxUtil
1. Open the Command Prompt.
2. Navigate to the directory for the management utilities. Typically, the

location of this directory is %ProgramFiles%\Microsoft Dynamics AX\60\
ManagementUtilities.

3. Enter the following command to import the model:
Axutil import /file:"<Model filename>" /verbose

After importing a model file into the model store, it is important to do a full
compilation of the AOT and a full CIL generation.

Dynamics AX XPO file
There is also an XPO (SharedProject_ContosoVideoRental.xpo) that you can
use to selectively import objects. This XPO contains all objects used and created
throughout the book.

Appendix

[231]

Code snippets
Every code snippet that is mentioned in the book is also available in separate TXT
files in the CodeSnippets folder. You can use them to copy and paste code so that
you don't have to type everything yourself. Files that start with XPP contain X++
code and should be used in Microsoft Dynamics AX 2012. Files that start with CS
contain C# code and should be processed using Visual Studio.

Initializing number sequences
Before you can work with the demo application, you need to initialize the number
sequences using the following steps:

1. Go to AOT and run the job named InitializeCVRNumberReference.
2. When the job is finished, navigate to Contoso Video Rental |

Setup | Parameters.
3. Then, select a number sequence for each number sequence reference.

You can create your own number sequences first by right clicking on the Number
sequence code field and choosing View Details. Create your number sequences
there and then use them on the parameters form.

Visual Studio code
All examples in the book that are coded in Visual Studio are contained in the
VisualStudio folder.

Opening the samples
There is a folder for each of the chapters that contains the Visual Studio sample code.
You can just go ahead and open the samples by opening the solution files with Visual
Studio 2010, shown as follows:

Installing the Demo Application

[232]

Modifying the service references
Some of the Visual Studio projects contain references to services that we created
while building the samples. All of these references are created using an address that
points to localhost, so it should also be working for you. If you have an AOS that is
not installed as the first AOS on your machine, you will need to configure the service
reference address:

1. Right-click on the service reference and choose Configure Service Reference...:

2. In the Address field, enter the address that you want to use:

Appendix

[233]

If you do not need to configure the service references, you still need to perform
an update of the service references. This is to make sure that the app.config file
contains the correct settings for your system. The steps to perform the update of the
service references are as follows:

1. Right-click on the service reference and choose Update Service Reference....
2. Verify that the app.config file contains the correct settings.

Sample data
In Chapter 3, AIF Document Services, we test the Create operation of a document
service by importing an XML file that contains a number of movie titles. This
file is located at SourceCode\VisualStudio\Chapter3\DynamicsAxServices.
Document\DynamicsAxServices.Document.TitleService\Resources. Copy the
TitleDemoData.xml file to C:\temp, and you will be able to import the data using
the example console application as described in the chapter.

Index
Symbols
.NET assembly 31
.NET remoting 24

A
ABC of WCF

about 24
address 24
binding 25
contract 25
properties 24

Active Directory Federation Services
(AD FS) 36

adapters
about 35
custom adapters 37
Filesystem adapter 36
HTTP adapter 35
MSMQ adapter 36
NetTcp adapter 35
Windows Azure Service Bus adapter 36

adapters, enhanced ports 30
address 24
AIF 7
AIF change tracking 14
AifCollectionTypeAttribute attribute 93
AifCollectionTypeAttribute class 94
AifDocumentService class 16, 57
AIF Document Service Wizard

about 59
code, generating 64
code generation parameters,

selecting 62, 63

document parameters, selecting 62
running 61

AifGatewayQueue table 85
AifOutboundProcessingQueue table 86
AifUtil::createServiceClient method 158
AOS, Visual Studio debugger

debugger, attaching to 209-211
AOS WCF service host 11
Application Explorer window 209
Application Integration Framework. See

AIF
application level load balancing

about 188
achieving 189
advantages 190, 191
cluster, configuring 188-191
dedicated load balancer, adding 191-194
disadvantages 191

Application Object Server (AOS) 9
Application Object Tree (AOT) 27, 149
ApplyTimeZone 172
Args object

about 128
information 128

ASMX 24
asynchronous adapters

about 85
AifGatewayQueue 85
AifOutboundProcessingQueue 86

asynchronous communication
about 85
batch processing 88
send service framework 87

asynchronous execution mode 127
attributes 17

[236]

attributes, custom services
about 92
custom attributes 92
intrinsic attributes 92

AxBC classes
about 53
default values, enabling 56
field sequencing 55
responsibilities 54
validation, performing 54
value mapping, performing 55

AxCVRTitle class 69
AxdBase class 50
axdBaseCreate class 51
AxdBaseGenerationXSD class 50
axdBaseRead class 51
axdBaseUpdate class 51
AxdSalesOrder document class 52
AxdSalesTable document class 50
AxdSend.sendMultipleDocuments()

method 87
AX load balancers

NLB for 195, 197
axSalesItemId method 56
AxSalesLine.axSalesTable() method 66
AxSalesLine class 54
Ax<Table> classes 53
AxUtil

using 230

B
BasicHttpBinding 34
basic ports

about 27
creating 27

batch framework 139
batch jobs

creating 141
batch processing

enabling, for asynchronous
communication 88

bindings
about 25, 33
BasicHttpBinding 34
NetMsmqBinding 34
NetTcpBinding 33

WsHttpBinding 34
Bind parameters option 216
Bing API 9
BPM 9
breakpoints, Visual Studio debugger

setting 212
business connectorless IIS hosting 13
business document

validating 53
Business Process Modeling. See BPM
business rules

enforcing 53

C
cacheObjectIdx 66
cacheObject() method 66
cacheRecordIdx 66
cacheRecordRecord() method 66
canGoBatch() method 129
caption() method 129
change tracking

URL 84
checkDueDates method 145
checkSalesLine() method 53
CIL

about 42
features 43
output 43, 44

CLI 42
CLR 42, 92
collection types 94
comma-separated values (CSV) 31
Common Intermediate Language. See CIL
Common Language Infrastructure. See CLI
Common Language Runtime. See CLR
communication, aspects

security 33
synchronous/asynchronous 33
transport protocol 33

compiler errors troubleshooting, document
service

about 65
cacheObject() method 66
cacheRecordRecord() method 66
ClassDeclaration 66

[237]

compiler level, document service
setting 59

construct() method 97
Contoso Video Rental (CVR)

about 229
code snippet 231
Dynamics AX 2012 models 229, 230
Dynamics AX XPO file 230
number sequences, initializing 231
prerequisites 229
Visual Studio, code 231

contract
about 25
data contracts 25
operation contracts 25
service contracts 25

controller
constructor 131, 133
creating 130
declaration 130
main() method 130, 131
menu item, creating 133
testing 134

Create() method 37, 38
Create operation 57, 73
CreateRental service operation 103-105
cross-table business logic 52
custom controllers. See also controller
custom controllers 116, 128
custom controllers, usage scenarios

about 128
data contract, initializing 128
dialog overrides 128, 129

custom services
about 15, 17, 20, 91, 95
attributes 92, 93
components 17
consuming 91, 106
data contracts 17
deploying 101
key components 92
service contract 17
Title service 95

custom services, consuming
about 106
rental registering, example 108
titles, retrieving 106

custom services deployment
about 101
rental service 102

custom UI Builders. See UI Builder
CVR_Base_R2 model 230
CVR_R2 model 230
CVRRentalDocumentDataContract 104
CVRRentalDocumentListDataContract 104
CVRRentalHeaderDataContract 104
CVRRentalLineDataContract 104
CVRRentalLineListDataContract 104, 113
CVRTitleDocumentService.find

operation 87

D
data contract

about 17, 25, 93, 94
UI builder, linking to 138

DataContractAttribute 17, 92, 93
data contract, SysOperation service

CVRRentalDueDateReminderContract 119
members 118
parmNumberOfOverdueDays 118
parmOverrideNumOfDays 118
parmQuery 118
query helper methods 120

DataMemberAttribute 17, 93, 94
data policies, enhanced ports 30
debugger. See Microsoft Dynamics AX 2012

debugger
dedicated load balancer

adding 191-194
defaulting, SysOperation service

implementing 125
default values, AxBC class

enabling 56
Delete operation 57, 81
demo application, Contoso Video Rental

(CVR)
code snippets 231
Dynamics AX 2012 models 229, 230
Dynamics AX XPO file 230
prerequisites 229
sample data 233
Visual Studio code 231

[238]

development tools
installing 204

Disaster recovery. See DR
document class

about 16, 50
business document, validating 53
cross-table business logic 52
responsibilities 50
XSD generation 50

document filters, enhanced ports
value 32

DocumentHandling port 37
document query 16, 48, 49
document service

about 16, 20, 48
components 16
creating 58
deploying 71
document class 16
document query 16
Document service class 16
existing document service, updating 70
key components 48
Table AxBC classes 16

document service, building
about 59
AIF Document Service Wizard, running 61
best practice errors, fixing 68
compiler errors, fixing 65
compiler level, setting 59
mandatory fields, setting 69
privileges, building 68, 69
query, creating 60
service contract, updating 68
tasks, fixing 66

document service class 16
document service, consuming

about 71
Create operation 73, 74
Delete operation 81
FindKeys operation 78, 80
Find operation 75
GetChangedKeys operation 84, 85
GetKeys operation 82
Read operation 77, 78
update operation 80

doesMemberHaveOverdueRentals()
method 121

DR 187
dynamic query 167
Dynamics AX XPO file 230

E
encoding 33
enhanced inbound port

creating 29
enhanced ports

about 27, 28
adapters 30
creating 28, 30
data policies 30
document filters 32
pipelines 31
security 33
service operations 30
transforms 31
troubleshooting 32
value mapping 32

enum parameter 126
EnumParameter property 126
ETL (Event Trace Log) file 215
execution modes, SysOperation service

about 126
asynchronous 127
reliable asynchronous 127
scheduled batch 127
synchronous 127

existing document service
service operations, adding 70
supporting classes, updating 71
updating 70

Extended Data Types (EDTs) 17, 32
Extensible Stylesheet Language

Transformations (XSLT) 14, 31

F
field sequencing, AxBC class

providing 55
Filesystem adapter 12, 36
FindKeys operation 58, 78, 80

[239]

Find operation
about 57, 75
query criteria, creating 75
using 76

G
GetAccessRights 172
GetAllRentalsForMember service

operation 103
GetAllRentals service operation 103
GetChangedKeys operation 14, 58, 84, 85
GetKeys operation

about 14, 58, 82
document filter 82
using 83

getMethodInfoMap() 52
GetPostCodeDetailByPlaceName 151
GetPostCodeDetailByPostCode 151
getSchemaInternal() method 50
getSchema() method 50
GetUserSessionInfo 172
Graphical User Interface (GUI) 9

H
HA. See High Availability
helper approach

about 141
advantages 142
disadvantages 142, 143

helpers 141
High Availability

about 186
architecture 187, 188
Disaster recovery (DR) 187
practising 187
redundancy, adding 186, 187

HTTP adapter 12, 35

I
IIS hosting

without Business Connector 13
inbound integration ports

about 13
basic 13

enhanced 13
inbound ports 25, 26
individual task approach

about 140
advantages 140
disadvantages 141

initMandatoryFieldsExemptionList
method 69

initValue() method 69
integration port logging mode

about 219
configuring 220
consulting 220-222

integration ports
about 12, 26
inbound 13
outbound 13

Internet Explorer
used, for consuming OData query

service 178-180
Internet Information Services (IIS) 10
InventDimId field 52

K
key components, custom services

about 92
attributes 92
collection types 94
data contracts 93
service contracts 94

key components, document service
AxBC classes 53
document class 50
document query 48, 49
service classes 57
service node 58

L
label 126
legal values 67
Logging mode parameter 219

M
main() method 207

[240]

managed code deployment, X++
development

about 154
deploying, to client 154
deploying, to server 154

mandatory fields, document service
setting 69

menu item
about 122
creating 122

message contracts 39
message logging

about 223
analyzing 226, 227
and tracing, configuring 223, 224

message-oriented programming 24
Message Transport Optimization

Mechanism (MTOM) 33
metadata service

about 18, 20, 163-166
combobox,filling 166, 167

Microsoft Dynamics AX 2012
adapters 12
AIF change tracking 14
AOS WCF service host 11
custom services 15
document service 48
GetChangedKeys 14
GetKeys 14
operations 14
services 16
system requisites 229
Tracing cockpit 203
WCF adapters 11

Microsoft Dynamics AX debugger
about 205
service operations, testing 206, 207
SysOperation framework, debugging 205

Microsoft Dynamics AX Trace parser 203
Microsoft Excel and PowerPivot

used, for consuming OData query
service 183

Microsoft InfoPath
used, for consuming OData query

service 183
Microsoft Message Queuing (MSMQ) 9

models
AxUtil using 230
Dynamics AX 2012 229, 230
PowerShell using 230

models, Dynamics AX 2012 229, 230
Model-View-Controller (MVC)

pattern 15, 116
modifiedField() method 135
MSDN

URL 228
MSMQ 12, 24, 36
multithreading

about 116, 139
approaches 140
enabling 143-146
helper approach 141
individual task approach 140

N
NetMsmqBinding 34
NetTcp adapter 12, 35
NetTcpBinding 33
Network Load Balancing. See NLB
new() method 96
NLB

about 194
for AX load balancers 195-197
for services 197-200

non-XML format 14
number sequences

initializing 231

O
object property 126
OData query service

about 19, 21, 164, 165, 175
consuming, Internet Explorer used 178, 179
consuming, Microsoft Excel and

PowerPivot used 183
consuming, Microsoft InfoPath used 183
consuming, other applications used 183
consuming, Visual Studio used 181
data, fetching for grid 181, 182
data source, creating 175
document data sources, creating 176, 177

[241]

limitations 184
query, creating 175
service reference, adding 181

Open Data Protocol (OData) 175
Open trace button 217
OperationContract attribute 38
operation contracts 25
operations, service classes

create 57
delete 57
find 57
findkeys 58
GetChangedKeys 58
GetKeys 58
read 58
update 58

outbound integration ports 13
outbound ports 25, 26
override method 136

P
parameters property 126
parmDialogCaption() method 129
parmExecutionMode() method 129
parmNumberOfOverdueDays 118
parmOverrideNumOfDays 118
parmQuery 118
parmShowDialog() method 129
pipelines 10
pipelines, enhanced ports

about 31
value substitution 32
XSL 32

postBuild() method 136-138
PowerShell

using 230
prepareForSave() method 52, 53
Project Content node 153
Project Output node 153

Q
query, document service

creating 60, 61
query helper methods 120
QueryRun instance 121

query service
about 18, 20, 163, 165, 167
data, fetching for grid 168-171
dynamic query 167
results, paging 170-172
static query 167
user-defined query 167

R
Read operation 58, 77, 78
redundancy

adding 186, 187
Redundant Array of Inexpensive Disks

(RAID) 186
reliable asynchronous execution mode 127
RemoveTimeZone 173
rental data contracts

about 103
CVRRentalDocumentDataContract 104
CVRRentalDocumentListDataContract 104
CVRRentalHeaderDataContract 104
CVRRentalLineDataContract 104
CVRRentalLineListDataContract 104

rental header 102
rental registering, custom service example

about 108
Always generate message contracts

option 110
collection type 110, 111
message contracts, generating 109, 110
service, consuming 111-113
service reference, creating 108

rental service 102
rental service, custom services deployment

createRental service operation 104, 105
data contracts 103, 104
line tables 102
operations 103
rental header 102

rental service operations
CreateRental 103
GetAllRentals 103
GetAllRentalsForMember 103

Representational State Transfer (REST) 19
request preprocessor 10
response postprocessor 10

[242]

RESTful web service 19
RunBaseBatch

versus SysOperation 116, 117
RunOn property 94
runtime tasks 140

S
scheduled batch execution mode 127
security, enhanced ports

value 33
serializeClass() 52
serializeDocument method 51
service and service operation 120, 121
service call, Visual Studio debugger

debugging 212, 214
service classes 25, 57, 94
service contract 17, 25, 94
service contract, document service

updating 68
service deployment

about 23, 25
basic versus enhanced ports 27
inbound, versus outbound ports 26

service generation
about 23, 37
artifacts 37
message contracts 39
service contract, definition 38
service contract, implementation 38
WCF configuration storage 40

service node 58
service operations

about 26
testing 206, 207

service operations, enhanced ports 30
Service-Oriented Architecture (SOA) 8
service reference

adding, to USA zip code service 152, 153
services

about 8
complexity, handling 19
custom service 17
document services 16
flexibility 20
NLB for 198-200
OData query service 19

selecting 19
system services 17
types 16
user session service 18

service traces
analyzing 226

setLineNum method 56
showQuerySelectButton() method 129
showQueryValues() method 129
SOA

architecture overview 9, 10
example implementations 8

SOA, example implementations
about 8
Bing API 9
Business Process Modeling (BPM) 9
Mobile application 9

static query 167
synchronous execution mode 127
SysEntryPointAttribute attribute 92
SysObsoleteAttribute attribute 92
SysOperationAutomaticUIBuilder class 135
SysOperation framework

about 15, 115
advantages 15, 115, 117
debugging 205
versus RunBaseBatch 116, 117

SysOperation service
creating 115, 118
data contract, creating 118
defaulting 125
enum parameter 126
execution modes 126
label 126
menu item 122
object property 126
parameters property 126
running 115, 126
service and service operation 120, 121, 126
testing 123
validation 123

SysOperationServiceBase class 143
SysOperationServiceController 128
SysOperationServiceController class 131
SysOperatonServiceBase class 143
system services

about 17, 163, 164

[243]

demo application 164, 165
metadata service 18, 164
OData query service 19, 164
query service 18, 164
user session service 18, 164

T
Table AxBC classes 16
tasks troubleshooting, document service

about 66
constraints 67
labels 67
validation 68
XSD schema, generating 67

technologies, WCF 24
templateForm() method 129
Title data contract

creating 95-97
Title list data contract

creating 98, 99
Title list service operation

creating 100
Title service

about 95
Title data contract, creating 95-97
Title list data contract, creating 98
Title list service operation, creating 100
Title service class, creating 99
Title service contract, creating 101
Title service operation, creating 100

Title service class
creating 99

Title service contract
creating 101

Title service operation
creating 100

titles retrieving, custom service example
about 106
service, consuming 107
service reference, adding 106, 107

tracing
about 223
analyzing 227, 228
and message logging, configuring 223, 224

Tracing cockpit
about 203, 214

trace, collecting 215-219
transformations 10
transforms, enhanced ports

.NET assembly 31
about 31
XSL 31

Transmission Control Protocol (TCP) 12
transport protocol 33

U
UI Builder

about 116, 134, 135
creating 135
declaration 135
linking, to data contract 138
override method 136
postBuild method 136-138
testing 139

Unified Resource Identifier (URI) 24
Uninterruptable Power Supply (UPS) 186
Update operation 58, 80
USA zip code service

about 150
GetPostCodeDetailByPlaceName 151
GetPostCodeDetailByPostCode 151
service reference, adding 152, 153

user-defined query 167
user session service

about 18, 21, 164, 165, 172
ApplyTimeZone 172
GetAccessRights 172
GetUserSessionInfo 172
RemoveTimeZone 173
user information, retrieving 173, 174

V
validateWrite method 54
validation, AxBC class

performing 54
validation, SysOperation service 123, 124
valueMapDependingFields method 55
value mapping 54
value mapping, AxBC class

performing 55
value mapping, enhanced ports

value 32

[244]

value substitution pipeline component 32
Visual Studio

code 231
used, for consuming OData query

service 181
Visual Studio code

sample files, opening 231
service references, modifying 232, 233

Visual Studio debugger
about 208
attaching, to AOS 209-211
breakpoints, setting 212
service call, debugging 212-214
Visual Studio, launching 208, 209

Visual Studio development
about 150
service reference, adding to USA zip code

service 152, 153
USA zip code service 150, 151
Visual Studio proxy library 151

Visual Studio tools
installing 150

W
WCF

ABC 24
about 23
components 23, 24
message logging 223
technologies 24
tracing 223

WCF adapters
about 11
Filesystem 12
MSMQ adapter 12
NetTcp adapter 12

WCF configuration storage 40
WCF technologies. See technologies, WCF
Web Service Description

Language (WSDL) 8
Web Services Enhancements (WSE) 24
web service, X++ development

configuration issues, fixing 157, 158
consuming 155, 156
environments, deploying between 158, 159
results 159

Windows Azure Service Bus adapter 36
Windows CardSpace 23
Windows Communication Foundation. See

WCF
Windows Communications Foundation

(WCF) support 9
Windows Workflow Foundation 24
writeEndDocument() 52
writeStartDocument() 52
WsHttpBinding 34

X
X++ development

about 153
managed code deployment 154
web service, consuming 155

XML Schema Definition (XSD) 50
XML Schema Definition (XSD)

document 19
XPO. See Dynamics AX XPO file
XSD generation 50
XSD schema

generating 67
XSL, transforms 31

Thank you for buying
Microsoft Dynamics AX 2012 R2 Services

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books give
you the knowledge and power to customize the software and technologies you're using to get
the job done. Packt books are more specific and less general than the IT books you have seen in
the past. Our unique business model allows us to bring you more focused information, giving
you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order to
continue its focus on specialization. This book is part of the Packt Enterprise brand, home to
books published on enterprise software – software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Extending Microsoft Dynamics
AX 2012 Cookbook
ISBN: 978-1-78216-833-1 Paperback: 314 pages

A practical guide to extending and maximizing the
potential of Dynamics AX using common Microsoft
technologies

1. Extend Dynamics in a cost-effective manner by
using tools you already have.

2. Solve common business problems with the
valuable features of Dynamics AX.

3. Follow practical and easy-to-grasp examples,
illustrations, and coding to make the most out
of Dynamics AX in your business scenario.

Microsoft Dynamics AX 2012
Financial Management
ISBN: 978-1-78217-720-3 Paperback: 168 pages

Get to grips with how to successfully use Microsoft
Dynamics AX 2012 for financial management with
this concise and practical reference guide

1. Understand the financial management aspects
in Microsoft Dynamics AX.

2. Successfully configure and set up your
software.

3. Learn about real-life business requirements and
their solutions.

4. Get to know the tips and tricks you can utilize
during analysis, design, deployment, and
operation phases in a project lifecycle.

Please check www.PacktPub.com for information on our titles

Microsoft Dynamics AX 2012
Reporting Cookbook
ISBN: 978-1-84968-772-0 Paperback: 314 pages

Over 50 recipes to help you build Dynamics AX
reports faster by simplifying your understanding of
the report model

1. Practical recipes for creating and managing
reports.

2. Illustrated step-by-step examples that can be
adopted in real time.

3. Complete explanations of the report model and
program model for reports.

Implementing Microsoft
Dynamics AX 2012 with
Sure Step 2012
ISBN: 978-1-84968-704-1 Paperback: 234 pages

Get to grips with AX 2012 and learn a whole host of
tips and tricks to ensure project success

1. Get the confidence to implement AX 2012
projects effectively using the Sure Step 2012
Methodology.

2. Packed with practical real-world examples as
well as helpful diagrams and images that make
learning easier for you.

3. Dive deep into AX 2012 to learn key technical
concepts to implement and manage a project.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with Microsoft Dynamics AX 2012 Services
	Introducing services and SOA
	Example implementations
	Bing API
	Mobile application
	Business Process Modeling (BPM)

	Architectural overview
	New and enhanced features
	The AOS WCF service host
	WCF adapters
	Integration ports
	IIS hosting without Business Connector
	Non-XML support

	AIF change tracking
	Custom services
	The SysOperation framework
	Types of services
	Document services
	Custom services
	System services
	The query service
	The metadata service
	The user session service
	The OData query service

	Choosing the right service for the job
	Complexity
	Flexibility

	Summary

	Chapter 2: Service Architecture and Deployment
	Introducing WCF
	Existing technologies
	The ABC of WCF

	Service deployment
	Service operations
	Inbound versus outbound ports
	Inbound ports
	Outbound ports

	Basic versus enhanced ports
	Basic ports
	Enhanced ports

	Bindings
	Adapters
	The NetTcp adapter
	The HTTP adapter
	The filesystem adapter
	The MSMQ adapter
	The Windows Azure Service Bus adapter
	Custom adapters

	Service generation - under the hood
	Generated artifacts
	Service contract and implementation
	Message contracts

	WCF configuration storage

	The power of CIL
	CIL output

	Summary

	Chapter 3: AIF Document Services
	Introducing document services
	Key components
	The document query
	The document class
	Responsibilities of a document class

	AxBC classes
	Responsibilities of an AxBC class

	The service class
	The service node

	Creating a document service
	Setting the compiler level
	Creating the query
	Running the AIF Document Service Wizard
	Selecting document parameters
	Selecting code generation parameters
	Generating code

	Finishing up
	Fixing compiler errors
	Fixing tasks
	Updating the service contract
	Fixing best practice errors
	Privileges
	Setting mandatory fields

	Updating an existing document service
	Adding service operations
	Updating supporting classes

	Deploying a document service
	Consuming a document service
	Create
	Find
	Creating query criteria
	Using Find

	Read
	FindKeys
	Update
	Delete
	GetKeys
	Document filter
	Using GetKeys

	GetChangedKeys

	Asynchronous communication
	The send service framework
	Batch processing
	Summary

	Chapter 4: Custom Services
	Key components
	Attributes
	Custom services attributes

	Data contracts
	Service contracts
	Collection types

	Creating custom services
	The Title service
	Creating the Title data contract
	Creating the Title list data contract
	Creating the Title service class
	Creating the Title service operation
	Creating the Title list service operation
	Creating the Title service contract

	Deploying services
	The rental service
	Rental header and line tables
	Rental service operations
	Rental data contracts
	The createRental service operation

	Consuming services
	Example 1 – retrieving titles
	Adding the service reference
	Consuming the service

	Example 2 – registering a rental
	Creating the service reference – advanced

	Summary

	Chapter 5: The SysOperation Framework
	SysOperation versus RunBaseBatch
	Creating a SysOperation service
	The data contract
	Declaration and members
	Query helper methods

	Service and service operation
	Menu item
	Testing
	Validation
	Defaulting

	Running a SysOperation service
	Service and service operation
	Execution modes
	Synchronous
	Asynchronous
	ReliableAsynchronous
	ScheduledBatch

	Custom controllers
	Usage scenarios
	Initializing the data contract
	Dialog overrides

	Creating a controller
	Declaration
	The main() method
	Constructor
	Menu item
	Testing

	Custom UI Builders
	Creating a UI Builder
	Declaration
	The override method
	The postBuild() method
	Linking the UI Builder to the data contract
	Testing

	Multithreading
	The individual task approach
	The helper approach
	Enabling multithreading

	Summary

	Chapter 6: Web Services
	Installing Visual Studio tools
	Visual Studio development
	Introducing the USA zip code service
	Creating the Visual Studio proxy library
	Adding a service reference

	X++ development
	Deploying managed code
	Deploy to Server
	Deploy to Client

	Consuming the web service
	First attempt
	Fixing configuration issues
	Deploying between environments
	Final result

	Summary

	Chapter 7: System Services
	Introducing system services
	Presenting a demo application

	The metadata service
	Filling the combobox

	The query service
	Fetching data for the grid
	Paging the results

	The user session service
	Retrieving user information

	The OData query service
	Creating and publishing a data source
	Creating a query
	Setting up document data sources

	Consuming the OData query service using Internet Explorer
	Consuming the OData query service using Visual Studio
	Adding a service reference
	Fetching data for the grid

	Consuming the OData query service using other applications
	Limitations

	Summary

	Chapter 8: High Availability
	Introducing high availability
	Adding redundancy
	Disaster recovery

	Putting high availability into practice
	The basic architecture
	Application-level load balancing
	Configuring the cluster
	Adding a dedicated load balancer

	Network Load Balancing
	NLB for AX load balancers
	NLB for services

	Summary

	Chapter 9: Tracing and Debugging
	Installing development tools
	Using the Microsoft Dynamics AX 2012 debugger
	Debugging the SysOperation framework
	Testing service operations

	Using the Visual Studio debugger
	Launching Visual Studio
	Attaching the debugger to the AOS
	Setting breakpoints
	Debugging a service call

	Using the Tracing cockpit
	Collecting a trace

	Using the integration port logging mode
	Configuring the logging mode
	Consulting the log

	Using WCF message logging and tracing
	Configuring message logging and tracing
	Analyzing service traces
	Analyzing message logging
	Analyzing tracing

	Summary

	Appendix: Installing the Demo Application
	Prerequisites
	Dynamics AX 2012 models
	Using PowerShell
	Using AxUtil

	Dynamics AX XPO file
	Code snippets
	Initializing number sequences
	Visual Studio code
	Opening the samples
	Modifying the service references

	Sample data

	Index

