
www.allitebooks.com

http://www.allitebooks.org

Microsoft Dynamics AX

2012 Services

Effectively use services with Dynamics AX 2012

and create your own services

Klaas Deforche

Kenny Saelen

P U B L I S H I N G

professional expert ise dist i l led

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Microsoft Dynamics AX 2012 Services

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2012

Production Reference: 1181212

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84968-754-6

www.packtpub.com

Cover Image by Artie Ng (artherng@yahoo.com.au)

www.allitebooks.com

http://www.allitebooks.org

Credits

Authors

Klaas Deforche

Kenny Saelen

Reviewers

Palle Agermark

José Antonio Estevan

Tom Van Dyck

Acquisition Editor

Mary Jasmine Nadar

Commissioning Editor

Meeta Rajani

Technical Editors

Manmeet Singh Vasir

Dominic Pereira

Project Coordinator

Shraddha Bagadia

Proofreaders

Aaron Nash

Stephen Silk

Indexer

Hemangini Bari

Graphics

Valentina D'silva

Aditi Gajjar

Production Coordinator

Prachali Bhiwandkar

Cover Work

Prachali Bhiwandkar

www.allitebooks.com

http://www.allitebooks.org

About the Authors

Klaas Deforche started working as a developer on Microsoft Dynamics AX in 2007
for the Belgian ICT company RealDolmen, primarily working with Dynamics AX 4.0.
He gained experience with AX 2009 while working on projects for some well-known
Belgian fashion retailers, especially on the integration side of things. He is currently
working on AX 2012 projects for customers in the healthcare sector. Klaas likes to
share his knowledge with the community, which is why in 2009 he started his
AX-oriented blog artofcreation.be.

I would like to thank everyone involved in the making of this book;
coauthor Kenny, everyone at Packt Publishing for the opportunity
they have given us, and especially the reviewers for their efforts.

Also, I want to acknowledge that writing a book is really hard, not
just for the author, but also for the people around them. I always
thought that authors were overdoing their thanking, but I can assure
you it's quite the opposite. In that respect, thanks to my family,
colleagues, friends, and girlfriend for their patience and support.

Also, a big thanks to the readers of my blog, fellow bloggers, and the
Dynamics community.

www.allitebooks.com

http://www.allitebooks.org

Kenny Saelen works for the Belgian ICT company RealDolmen. He started as
a developer on Microsoft Dynamics AX in 2004 primarily working on a European
customer implementation with Dynamics AX 3.0. At RealDolmen, he gained
experience with Dynamics AX 2009 while implementing AX internally, followed
by a project for a books wholesale company. Currently, he is working as a technical
architect for a worldwide customer implementation with Microsoft Dynamics AX
2012, mainly working towards integrating Dynamics AX with other technologies
such as Sharepoint, Biztalk, and AgilePoint. He can be reached through his blog
ksaelen.be.

I would like to thank everyone involved in making this book
happen, starting with my coauthor Klaas for all the hours we've
spent together writing it. Many thanks to everyone at Packt
Publishing for the opportunity they have given us, and to
the technical reviewers for providing us with the right
alternative insights.

Special thanks to my girlfriend and my little son. Writing this
book has proven to be much harder than I initially thought,
but they have been patiently supporting me all the way.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Palle Agermark has spent nearly 20 years in the ERP industry, specializing in
Microsoft Dynamics AX, and before that was released in 1998, its predecessor
Concorde XAL. Palle has worked for many years at Microsoft Development
Center Copenhagen in Denmark, primarily with development on the inancial,
accounts payable, and accounts receivable modules.

In 2006, Palle wrote the chapter Extending Microsoft Dynamics AX in Inside
Microsoft Dynamics AX 4.0, Microsoft Press.

Currently, Palle works for one of Denmark's largest Microsoft Dynamics AX
partners; Logica, now part of CGI.

Palle lives in Denmark, in the Copenhagen area, with his wife Rikke and
daughter Andrea.

José Antonio Estevan has been a technical consultant and developer on Dynamics
AX since 2008. He has more than 10 years of experience in software development,
the last 6 on Dynamics AX since version 4.0. José Antonio is certiied in Dynamics
AX 2009 and 2012, and has worked on many projects in different sectors with very
different requirements, delivering solutions in the form of new developments and
integration with all kind of external systems. He has recently been awarded the MVP
award from Microsoft.

José Antonio is from Alicante, Spain, but is now living and working in Madrid. He
likes to read books, ride his motorbike, and write for the Dynamics AX community
on his blog www.jaestevan.com.

www.allitebooks.com

http://www.allitebooks.org

Tom Van Dyck is a software engineer and technical consultant for Dynamics
AX and currently works for a Microsoft partner in Belgium.

After completing a degree in Computer Science and a few years of Visual Basic,
ASP, and SQL programming, he began working with AX in 2004.

Being part of different project teams building a variety of solutions based on AX
versions 3.0, 4.0, 2009, and 2012, he has built up a wide practical experience.

Tom is a certiied professional for AX with expertise in X++ development, and has
a special interest in performance issues and optimization.

I've had the privilege to work with both Kenny and Klaas, and know
them as devoted and experienced professionals.

To me this book conirms what I already knew; these guys have
a well-thought-out opinion that deserves to be heard. My sincere
congrats for the effort and passion they've put into the writing of
this book!

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support iles, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support iles and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
iles available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?

• Fully searchable across every book published by Packt

• Copy and paste, print and bookmark content

• On demand and accessible via web browser

Free Access for Packt account holders

If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Instant Updates on New Packt Books
Get notiied! Find out when new books are published by following @PacktEnterprise on
Twitter, or the Packt Enterprise Facebook page.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

Preface 1

Chapter 1: Getting Started with Microsoft Dynamics

AX 2012 Services 5

What are services and SOA? 6

Example implementations 6
Bing API 7

Mobile application 7

Business Process Modeling (BPM) 7

Architecture overview 7

What's new? 10

AOS WCF service host 10

WCF adapters 10

Integration ports 11

IIS hosting without Business Connector 12

Non-XML support 13

AIF change tracking 13

Custom services 14

The SysOperation framework 14

Types of services 14

Document services 15

Custom services 15

System services 16
Query service 16

Metadata service 17

User session service 17

The right service for the right job 17
Complexity 18

Flexibility 18

Summary 19

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 2: Service Architecture and Deployment 21

What is WCF? 21

Existing technologies 22

The ABC of WCF 22

Service deployment 23

Service operations 24

Inbound versus outbound ports 24
Inbound ports 24

Outbound ports 24

Basic versus enhanced ports 24
Basic ports 25

Enhanced ports 26

Bindings 31
Adapters 33

NetTcp adapter 34

HTTP adapter 34

File system adapter 34

MSMQ adapter 35

Custom adapters 35

Service generation – under the hood 35

Generated artifacts 35
Service contract and implementation 36

Message contracts 37

WCF coniguration storage 38
The power of CIL 40

CIL output 41

Summary 43

Chapter 3: AIF Document Services 45

What are document services? 46

Key components 46

Document query 46

Document class 48
Responsibilities of a document class 48

AxBC classes 51
Responsibilities of an AxBC class 52

Service class 55

Service node 56

Creating a document service 56

Setting the compiler level 57

Creating the query 58

Running the AIF Document Service Wizard 58
Selecting document parameters 59

Selecting code generation parameters 60

Table of Contents

[iii]

Generating code 61

Finishing up 62
Fixing compiler errors 62

Fixing tasks 63

Updating the service contract 65

Fixing best practice errors 65

Setting mandatory ields 66
Updating an existing document service 67

Adding service operations 67

Updating supporting classes 68

Deploying a document service 68

Consuming a document service 68

Create 69

Find 71
Creating query criteria 72

Using Find 72

Read 73

FindKeys 75

Update 76

Delete 77

GetKeys 78
Document ilter 78
Using GetKeys 79

GetChangedKeys 80

Asynchronous communication 82

Send service framework 84

Batch processing 85

Summary 86

Chapter 4: Custom Services 87

Key components 88

Attributes 88
Custom services attributes 88

Data contracts 89

Service contracts 90

Collection types 90

Creating custom services 91

The Title service 91
The Title data contract 91

The Title list data contract 94

The Title service class 95

The Title list service operation 96

The Title list service operation 96

The Title service contract 97

Table of Contents

[iv]

Deploy the service 97
The rental service 98

Consuming the service 101

Example 1 – Retrieving titles 101
Adding the service reference 101

Consuming the service 103

Example 2 – Register a rental 103
Creating the service reference – Advanced 104

Consuming the service 106

Summary 108

Chapter 5: The SysOperation Framework 109

SysOperation versus RunBaseBatch 110
Creating a SysOperation service 112

Data contract 112
Declaration and members 113

Query helper methods 114

Service and service operation 114

Menu item 116

Testing 117

Validation 117

Defaulting 119

Running a SysOperation service 120

Service and service operation 120

Execution modes 121
Synchronous 121

Asynchronous 121

Reliable asynchronous 122

Scheduled batch 122

Custom controllers 122

Usage scenarios 122
Initializing the data contract 122

Dialog overrides 123

Creating a controller 124
Declaration 124

The main method 125

Constructor 126

Menu item 128

Testing 128

Custom UI Builders 129
Creating a UI Builder 130

Declaration 130

The override method 131

The postBuild method 131

One more attribute 133

Testing 134

Table of Contents

[v]

Multithreading 134

Individual task approach 135

Helper approach 136

Enabling multithreading 138

Summary 142

Chapter 6: Web Services 143

Installing the Visual Studio Tools 144

Visual Studio development 144

Introducing the USA zip code service 144

Creating the Visual Studio proxy library 145

Adding the service reference 146

X++ development 147

Managed code deployment 148
Deploy to Server 148

Deploy to Client 149

Consuming the web service 149
First attempt 149

Fixing coniguration issues 152
Deploying between environments 153

Final result 154

Summary 156

Chapter 7: System Services 157

What are system services? 158

A demo application 158

Metadata service 159

Filling the combobox 159

Query service 160

Fetching data for the grid 161

Paging the results 164

User session service 165

Retrieving user information 166

Summary 168

Index 169

Preface
Since an ERP system like Microsoft Dynamics AX 2012 plays such a central role in
an organization, there will always be the need to integrate it with other applications.
In many cases, services are the preferred way of doing this, and Microsoft Dynamics
AX 2012 is now more lexible than ever when it comes to the creation and use of
these services. Understanding these services will help you identify where they
can be used, and do so effectively.

Microsoft Dynamics AX 2012 Services is a hands-on guide that provides you with all
of the knowledge you will need to implement services with Microsoft Dynamics AX
2012. The step-by-step examples will walk you through many of the tasks you need
to perform frequently when creating and using services.

What this book covers
Chapter 1, Getting Started with Microsoft Dynamics AX 2012 Services, introduces the
concept of services and explores the new features and enhancements made to them
in Microsoft Dynamics AX 2012.

Chapter 2, Service Architecture and Deployment, dives deeper into the service architecture
and explores the different options that are available when deploying services.

Chapter 3, AIF Document Services, focuses on the creation, deployment, and
consumption of AIF document services.

Chapter 4, Custom Services, will show you how to create and deploy custom services
and consume them using a WCF application using new concepts such as attributes.

Chapter 5, The SysOperation Framework, builds upon the knowledge gained from
developing custom services to demonstrate how you can run business logic in
Microsoft Dynamics AX 2012 using services and the SysOperation framework.

Preface

[2]

Chapter 6, Web Services, walks you through the steps needed to consume an external
web service in Microsoft Dynamics AX 2012 using Visual Studio integration.

Chapter 7, System Services, demonstrates how powerful system services that are
provided out-of-the-box can be, and how they allow you to build applications faster.

What you need for this book
To use the example code iles provided with this book, the following prerequisites
must be available.

• Microsoft Visual Studio 2010

• Microsoft Dynamics AX 2012

• Microsoft Dynamics AX 2012 Management Utilities

A full list of software requirements can be found in the Microsoft Dynamics
AX 2012 System Requirements document available for download at
http://www.microsoft.com/en-us/download/details.aspx?id=11094.

Who this book is for
When you are developing for Microsoft Dynamics AX 2012, you will certainly come
into contact with services, even outside of integration scenarios. Because of that,
this book is aimed at all Microsoft Dynamics AX developers, both new and those
experienced with services and Microsoft Dynamics AX 2012.

This book assumes no other knowledge than a basic understanding of MorphX and
X++. Even beginners will be able to understand and complete the examples in this
book. Those new to services will get the most out of this book by doing a complete
read-through, but those who are experienced can jump right in. The idea is that this
book can be used both to educate yourself and as a resource that can be consulted
during development.

Some examples use C#.NET, so experience with Visual Studio is a plus but not a
must. This book is not aimed at .NET developers.

Conventions
In this book, you will ind a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Preface

[3]

Code words in text are shown as follows: "The service contract is a relection of the
DocumentHandlingService class that can be found in the AOT."

A block of code is set as follows:

public static void main(Args args)

{

 SysOperationServiceController controller;

 controller = new SysOperationServiceController();

 controller.initializeFromArgs(args);

 controller.startOperation();

}

Any command-line input or output is written as follows:

T-000505 The Dark Knight 119

T-000506 The Lord of the Rings: The Return of the King 112

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Go to
the Service Groups node, right-click on it, and click on New Service Group."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Preface

[4]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code iles for all Packt books you have purchased
from your account at http://www.PacktPub.com. If you purchased this book
elsewhere, you can visit http://www.PacktPub.com/support and register to
have the iles e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you ind a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you ind any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are veriied, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Getting Started with Microsoft

Dynamics AX 2012 Services
Microsoft Dynamics AX 2012 introduces a lot of new features that are related to
the Application Integration Framework (AIF) and services in general. Many of
the existing concepts have been radically changed. This chapter unveils these new
features and enhancements made to services in Microsoft Dynamics AX 2012.

At the end of this chapter, you will have a clear picture of what services are all about
in the context of Microsoft Dynamics AX 2012. This should enable you to identify
where and when to use services in your solution, and what type of service to use.

The following topics are covered in this chapter:

• What are services and SOA?: We will start by deining what services are and
what SOA has to offer, and derive from that the scenarios in which they can
be used.

• Architecture overview: We will look at an overview of the services and
AIF architecture, and familiarize ourselves with the key components of
the architecture.

• What's new?: We will discuss the new features and enhancements that
have been made compared to Microsoft Dynamics AX 2009. This is also
an opportunity to ind out why some of these changes were made.

• Types of services and comparison: There are several types of services
available to choose from when implementing your solution. Therefore
it is important to be able to distinguish between these different types
and choose the type that suits your needs best.

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Microsoft Dynamics AX 2012 Services

[6]

What are services and SOA?
So what is a service? The best way of understanding what a service is, is by
understanding why you would need a service. Typically, there are a lot of different
applications being used in an enterprise. Sometimes this is by design, for example,
because a specialized functionality is needed that is not implemented in the ERP
system. In other cases legacy systems are not replaced when implementing an ERP
system, simply because they do their jobs well. Whatever the reasons, these or
others, the result is the same: a growing number of different applications.

One of the problems with these applications is that they are likely to have been
built using different technologies. Because they speak a different language, it
makes them unable to communicate with each other. This is a problem that
services address by providing a means by which applications can communicate,
independent of their technology. They achieve this by adhering to standards and
protocols so that in essence they start speaking the same language.

A service should have many of the same qualities as modern applications.
Applications should be modular, components should be reusable, and everything
should be loosely coupled. These principles also apply when developing services.
Your services should have a well-deined functionality, and should be able to
autonomously execute that functionality without interaction with other services.

Services should also be abstract. By this we mean that other applications should not
have to know the inner workings of the provider in order to use the service.

A service is also self-describing, meaning it can provide other applications with
metadata about itself. This metadata describes what operations can be used, and
what the input and output is. In the case of Microsoft Dynamics AX, this information
is published using the Web Service Description Language (WSDL).

All of these qualities make services usable in a Service-Oriented Architecture
(SOA). In an SOA, services are published and made discoverable. Services are then
composed to create loosely coupled applications.

Example implementations
To make the previous explanation about services more concrete, we will take a look
at three very different scenarios in which services can be used.

Chapter 1

[7]

Bing API
Microsoft provides an API for Bing Maps and Search that is available to developers
in various ways, including a web service. Developers can use this service for things
such as calculating a route between two addresses, locating an address on a map,
getting search result for a certain query, and so on.

It's not hard to imagine this service being used in a logistics application, for example,
to calculate the most eficient route for delivering goods to customers.

Mobile application
Let's look at a scenario where a mobile application has to be developed for Microsoft
Dynamics AX 2012. Even if your mobile application contains business logic to work
ofline, data will have to be sent back to the Application Object Server (AOS) at
some time. The mobile application could use services to execute business logic and
send data to the AOS when a network is available.

A mobile application can also be built without containing business logic, in a
way that it only renders a Graphical User Interface (GUI). In this scenario, the
application will have to stay connected to the AOS over the network because the
AOS will drive the application and tell it what to do using services.

Business Process Modeling (BPM)
You can use services in an SOA to model business processes. When all requirements
for the business processes are available as services, it is possible to compose
processes entirely using services. When done right, this is very powerful because of
the great lexibility that the combination of BPM and SOA provides.

Architecture overview
Depending on the requirements of your projects, a different architectural approach
will be needed. To make the right decisions when designing your solutions, it is
important to understand the services and AIF architecture.

Getting Started with Microsoft Dynamics AX 2012 Services

[8]

Compared to Microsoft Dynamics AX 2009, there have been a lot of improvements
made to the service architecture in Microsoft Dynamics AX 2012. The biggest
improvement is the native Windows Communications Foundation (WCF) support.
As a result the proprietary Microsoft Message Queuing (MSMQ) and BizTalk
adapters that were available in Microsoft Dynamics AX 2009 have been deprecated
and replaced by adapters that use WCF. The ile system adapter remains intact, and
still allows you to import and export messages from and to the ile system.

All services are WCF services and are hosted on the AOS. When an application
wants to consume these services on the local network, no further deployment
is needed, because it can connect directly to the AOS. Just like with Microsoft
Dynamics AX 2009, deployment on Internet Information Services (IIS) is needed
for consumers that are not on the intranet. However, the services themselves are
no longer deployed on IIS; instead a WCF routing service on the IIS routes
everything to the AOS.

If you want to modify messages before they are received or after they are sent,
you can use pipelines and transformations. Pipelines only apply to the body of a
message, and are handled by the request preprocessor and response postprocessor.
You can use transformations to transform a complete message including the header.
This allows you to exchange messages in non-XML format.

While not displayed in the diagram, there is now load balancing support for
services using Windows Server Network Load Balancing (NLB). Combined
with NLB for IIS that was already available, this enables high availability and
load balancing for services.

Chapter 1

[9]

Services on Windows Communication Foundation (WCF) runtime

Microsoft Dynamics 2012 business logic and metadata

Application Object Server (AOS)

Clients

Microsoft Message

Queueing

(MSMQ)
Files

Internet

clients
Applications

Microsoft

Dynamics AX

client

Enterprise

Portal
Office Add-in BizTalk Server

Transforms

Internet Infomation Services(IIS)

WCF routing service

(IRequestReplyRouter interface)

Pipeline processing

Message gateway

File system adapter

Request

preprocessor

Response

preprocessor

WCF

WCF

Getting Started with Microsoft Dynamics AX 2012 Services

[10]

What's new?
Services have been around for some time in Microsoft Dynamics AX. AIF was
initially introduced with the release of Microsoft Dynamics AX 4.0 and Microsoft
Dynamics AX 2009 continued to build on that. But now with the latest release of
Microsoft Dynamics AX 2012, Microsoft has really succeeded in bringing the service
functionality to a whole new level. Let us take a walk through the major changes that
Microsoft Dynamics AX 2012 brings to the table.

AOS WCF service host
The irst major feature that has been added to this release is that the AOS is now the
host for the Microsoft Dynamics AX 2012 services. In previous releases, the exchange
of messages was either through adapters such as the ile system, BizTalk, and MSMQ
adapter, or services that were exposed as WCF 3.5 services through IIS. With the
latter, IIS was acting as the host for the WCF services.

With this new release of Microsoft Dynamics AX, services will be exposed as WCF
4.0 services hosted directly in the AOS Windows service. As long as intranet users
and applications are consuming these services, no IIS is needed.

WCF adapters
Microsoft Dynamics AX 2012 provides a lot more support for WCF. Proprietary
adapters such as the BizTalk adapter and the MSMQ adapter that were previously
available, are now obsolete and no longer available. Instead, support for MSMQ and
BizTalk is provided by a native WCF equivalent of these adapters.

This does not mean that creating custom adapters using the AIF adapter framework
is not supported anymore. Custom adapters can still be added by implementing the
AifIntegrationAdapter interface.

Out-of-the-box, Microsoft Dynamics AX 2012 comes with the following adapters:

• NetTcp adapter: The NetTcp adapter is the default adapter used when
creating a new integration port. This adapter type corresponds to the WCF
NetTcpBinding. It provides synchronous message exchanges by using WS-*
standards over the Transmission Control Protocol (TCP).

• File system adapter: The ile system adapter can be used for asynchronous
exchange of XML messages stored in ile system directories.

Chapter 1

[11]

• MSMQ adapter: The MSMQ adapter is used when support for queuing
is needed. Message exchange is asynchronous and uses MSMQ. Note that
choosing this adapter type actually uses the WCF NetMsmq binding.

• HTTP adapter: The HTTP adapter supports synchronous message
exchanges over the HTTP and HTTPS protocols. This was already available
in Microsoft Dynamics AX 2009, but there is a difference in the deployment
to the IIS. The business connector is no longer used for services hosted on
the IIS; instead a WCF routing service is used. There is more about routing
services later in this chapter.

More information about the bindings that are used in these adapters
can be found on MSDN at http://msdn.microsoft.com/en-us/
library/ms733027.aspx. If you want to learn more about WS-*
standards, check out the Web Services Speciication Index Page at
http://msdn.microsoft.com/en-us/library/ms951274.aspx.

Integration ports
In Microsoft Dynamics AX 2009, there was a lot of coniguration required to get AIF
up and running. This included coniguration of the following:

• Endpoints

• Local endpoints

• Channels

• Endpoint users

• Endpoint constraints

Getting Started with Microsoft Dynamics AX 2012 Services

[12]

Now, integration ports have been added and they provide a simpler way of
coniguring services. There are two types of integration ports: inbound and
outbound, depending on whether the message originates from outside or inside
Microsoft Dynamics AX.

The inbound integration ports can be divided into two types: basic or enhanced.
Out-of-the-box, Microsoft Dynamics AX 2012 already has some services that are
associated with basic integration ports. These have been deployed and enabled
by default. We will discuss how these basic ports differ from enhanced ports in
later chapters.

Instead of having Microsoft Dynamics AX speciic endpoints and channels,
integration ports use native WCF to deploy services and therefore endpoints,
security, behaviors, bindings, and so on. All of this is conigured using the WCF
Coniguration utility. By default, integration ports are hosted on the AOS using
the NetTcp binding.

IIS hosting without Business Connector
Previously, when services were deployed on IIS, they used the .NET Business
Connector to communicate to the AOS. This has been replaced by a WCF routing
service that implements the IRequestReplyRouter interface. Regardless of whether
services are consumed from the intranet or the Internet, they are always processed
by the AOS. So when services are deployed to be used on the Internet, they will
be deployed both on the AOS and on the IIS. The AOS hosts the service using the
NetTcp binding and the IIS has a WCF routing service that will forward service
requests to the internal services hosted on the AOS.

Chapter 1

[13]

Non-XML support
Using transformations, Microsoft Dynamics 2012 can transform inbound messages
from a variety of formats into the format AIF can understand. Likewise, outbound
messages can be transformed from the AIF format into the format required by
external systems. There are two types of transformations that can be used: Extensible
Stylesheet Language Transformations (XSLT) and .NET assemblies.

You can create XSLT transformations by using any text editor, but tools such
as BizTalk MAPPER, Visual Studio, or Altova MapForce make it very easy.
.NET assemblies are DLL iles that can be compiled using Visual Studio and do
transformations in code. This is especially convenient for transforming from or into
a non-XML format. Some of the tools available can actually generate both the XSLT
and the managed code needed to compile a .NET assembly.

AIF change tracking
In Microsoft Dynamics AX 2009, document services had a set of six operations
available for use:

• Create

• Delete

• Find

• FindKeys

• Read

• Update

In Microsoft Dynamics AX 2012, there are two additional operations available
for developers:

• GetKeys: The GetKeys action can be used in combination with a document
ilter to only obtain the keys of the documents that were the result of the ilter.

• GetChangedKeys: The GetChangedKeys action does the same as the GetKeys
operation with the addition of a date and time being passed to the action.
This way only the keys of documents that have actually changed since that
time are returned.

Getting Started with Microsoft Dynamics AX 2012 Services

[14]

Custom services
One of the major changes in Microsoft Dynamics AX 2012 is the ease and lexibility
by which you can create custom services. Instead of having to provide all the
technical details on how the documents need to be serialized by implementing
AifSerializable, you can now easily attribute class instance methods. These
attributes are used to identify service operations and data contract members.

The SysOperation framework
Prior to Microsoft Dynamics AX 2012, the RunBase framework was used to provide a
generic way of creating processes and batch jobs in the system.

In Microsoft Dynamics AX 2012, the SysOperation framework allows you to leverage
the power of services to execute your business logic in Microsoft Dynamics AX. When
you create a service, it encapsulates the business logic so other components within the
system can use the service instead of accessing the business logic themselves.

The SysOperation framework makes use of the Model-View-Controller (MVC)
pattern by using multiple components that each have their own responsibilities.
These components separate the business logic from the code that is responsible for
rendering the GUI and the classes that represent the data model. This is a great leap
forward from Microsoft Dynamics AX 2009, where everything was written in one
class that extended Runbase.

Also important to note is that when a service has been created for the SysOperation
framework, it requires little effort to expose the same service to the outside world.
You can simply expose it using an integration port.

So the advantages of the SysOperation framework can be summarized as follows:

• It facilitates a service-oriented approach within Microsoft Dynamics AX

• It implements the MVC pattern for more eficient client/server
communication and separation of responsibilities

• The GUI is automatically generated based on data contracts

• Less extra effort in exposing business functionality externally using services

Types of services
Microsoft Dynamics AX 2012 already provides a number of services out-of-the-box.
These services together with additional services that can be developed can be divided
into three types. Each of the service types has its own characteristics and a different
approach to create them.

Chapter 1

[15]

Document services
Document services use documents to represent business objects such as purchase
and sales orders, customers, vendors, and so on.

A document service is composed of the following components:

• Document query: This is a query that is created in the Application Object
Tree (AOT) and contains all the tables that are related to the business
object that you want to expose. Based on this query, the Document Service
Generation Wizard can be used to generate the other artifacts that make up
the document service.

• Table AxBC classes: An AxBC class is a wrapper for a table and contains
business logic that is needed for Create, Read, Update, Delete (CRUD)
operations.

• Document class: The purpose of the document class is to contain business
logic that is associated with the creation and modiication of the business
entity itself. For example, the AxdCustomer class could contain logic to
handle party information of a customer.

• Document service class: This is the actual service implementation class and
extends the AifDocumentService class. This class implements the service
operations that are published through the service contract.

When creating document services, developers need to make sure that the business
object is mapped correctly to the document query. The document services framework
will handle all other things such as the serialization and deserialization of XML, date
effectiveness, and so on.

Document services can be deployed using the integration ports and all available
adapters can be used.

Custom services
Custom services were already available in Microsoft Dynamics AX 2009, but support
for Extended Data Types (EDTs) was limited, which resulted in developers having
to provide custom serialization and deserialization logic.

Microsoft Dynamics AX 2012 introduces the concept of attributes. Attributes
provide a way to specify metadata about classes and methods. Two of these
attributes are used when creating data contracts: the DataContractAttribute and
DataMemberAttribute attributes.

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Microsoft Dynamics AX 2012 Services

[16]

The DataContractAttribute attribute is used to deine that a class is a data
contract. The DataMemberAttribute attribute is added to methods of data contracts
that represent data members that have to be exposed. This way of deining data
contracts is very similar to other programming languages such as C#.

Support for more complex data types such as collections and tables has been added
so that these types can be serialized and deserialized without developers having to
provide the logic themselves.

In a typical custom service you will ind the following components:

• Service contract: A service contract is an X++ class that contains methods
with the SysEntryPointAttribute attribute. This identiies methods that
will result in a service operation contract when the service is exposed.

• Data contracts: A data contract is an X++ class that is attributed with the
DataContractAttribute attribute. It contains parameter methods that
will be attributed as data members for each member variable that needs
to be part of the data contract.

Custom services can be deployed using the integration ports and any available
adapter can be used.

System services
These services are new since the release of Microsoft Dynamics AX 2012. The
main difference between these services and the previous two types is that they
are not customizable and are not mapped to a query or X++ code. They are
not customizable because they are written by Microsoft in managed code. One
exception is the user session service, which is written in X++ code but is generally
considered as a system service.

There are three system services available for use in Microsoft Dynamics AX 2012:
the query service, the metadata service, and the user session service.

Query service
The query service provides the means to run queries of the following three types:

• Static queries deined in the AOT.
• User-deined queries by using the QueryMetaData class in the service.

• Dynamic queries that are written in X++ classes. These classes need to
extend the AIFQueryBuilder class.

Chapter 1

[17]

When queries are called by a service, the AOS authorization ensures that the caller
has the correct permissions to retrieve the information. This means that unpermitted
ields will be omitted from the query result. Furthermore, when joined data sources
are not allowed to be used, the query call will result in an error that can be caught by
the calling application.

The resulting rows will be returned as an ADO.NET DataSet object. This can be very
useful when you make use of controls in your application that can be bound to a
DataSet object.

The query service can be found at the following address:
net.tcp://<hostname:port>/DynamicsAX/Services/QueryService

Metadata service
This system service can be used to retrieve metadata information about the AOT.
Consumers of this service can get information such as which tables, classes, forms,
and menu items are available in the system. An example usage of this service could
be retrieving information about the AOT and using it in a dashboard application
running on the Microsoft .NET Framework. We will create an example dashboard
application in Chapter 7, System Services.

The metadata service can be found at the following address:
net.tcp://<hostname:port>/DynamicsAX/Services/MetaDataService

User session service
The third system service is the user session service. With this service you can retrieve
information about the caller's user session. This information includes the user's
default company, language, preferred calendar, time zone, and currency.

The user session service can be found at the following address:
net.tcp://<hostname:port>/DynamicsAX/Services/UserSessionService

The right service for the right job
Now that it is clear what types of services Microsoft Dynamics AX 2012 has to offer,
the question arises as to when each type of service should be used. There is no simple
answer for this due to the fact that every type has its strengths and weaknesses. Let
us take a look at two factors that may help you make the right decision.

Getting Started with Microsoft Dynamics AX 2012 Services

[18]

Complexity
Both document services and custom services can handle any business entity
complexity. The document services framework parses the incoming XML and
validates it against an XML Schema Deinition (XSD) document. After validation,
the framework calls the appropriate service action. Custom services on the other
hand use the .NET XML Serializer and no validation of data is done. This means that
any validations of the data in the data contract need to be written in code. Another
advantage of document services over custom services is that the AxBC classes
already contain a lot of the logic that is needed for CRUD operations.

Flexibility
Document services have service contracts that are tightly coupled with the
AOT Query object. This means that when the query changes, the schema also
changes. Data policies allow you to control which ields are exposed. When
using custom services, this cannot be done by setup, but has to be done by
attributing at design time.

Custom services have the lexibility towards the service contract that the document
services are lacking. Here the developer is in full control about what is in the contract
and what is not. The operations, input parameters, and return types are all the
responsibility of the developer.

Another beneit in using custom services is the ability to use shared data contracts
as parameters for your operations. Think of a company-wide software solution that
involves the use of Microsoft Dynamics AX 2012 together with SharePoint and .NET
applications that are all linked through BizTalk. You could opt to share data contracts
to make sure that entities are the same for all of the components in the architecture.

In that scenario, you're able to create a data contract in managed code and reference
it in Microsoft Dynamics AX 2012. Then you can use that .NET data contract in your
service operations as a parameter.

There will probably be more factors that you will take into consideration to choose
between the service types. But we can come to the following conclusion about when
to use what type of service:

• Custom services: Custom services should be used when exposing entities
that have a low complexity or data contracts that need to be shared between
other applications.

They are also ideal when custom logic needs to be exposed that may have
nothing to do with data structures within Microsoft Dynamics AX.

Chapter 1

[19]

• Document services: Document services should be used when exposing entities
that have a high complexity and when validation of the data and structure
would require a lot of work for developers to implement on their own.

• Query service: The query service should be used when only read operations
are needed and there is no need for updates, inserts, or delete actions.

It can be used when writing .NET Framework applications that leverage
the data from Microsoft Dynamics AX returned as an ADO.NET DataSet.

• Metadata service: Use the metadata service when metadata information
about objects in the AOT is required.

• User session service: The user session service should be used when user
session-related information is required.

Summary
In this irst chapter, we went through the major changes that Microsoft Dynamics
AX 2012 brings for services architecturally and saw that a lot has changed because
of the WCF support.

Looking at the new features that were added, it is clear that Microsoft has provided
us with a lot of new tools and methods for integration. A lot of work has been
done to enable developers to expose business logic in a more intuitive way using
attributes. The setup is simpliied and the system services allow you to build entire
applications without the need for development in X++.

There are a lot of options to choose from, so it is not always easy to choose the right
approach for your implementation. In this book, you will get to know all of the
features to help you do that.

Service Architecture

and Deployment
There is always more than one solution for a problem. This is certainly true when
designing solutions for your integration scenarios with Microsoft Dynamics AX 2012.
As we learned in the previous chapter, there are a lot of options to choose from, both
for deployment and development of services. In this chapter, we will focus on the
options that are available when deploying services.

The following topics are covered in this chapter:

• What is WCF?: WCF provides the basis for building, coniguring, and
deploying services with Microsoft Dynamics AX 2012, so we will discuss the
key concepts that are related to WCF.

• Service deployment: Deployment of services is enabled by integration ports.
You will learn how to create, conigure, and deploy these integration ports.

• Service generation: There is a lot going on when services are deployed. We
will explore the artifacts that are generated, and learn what CIL is.

What is WCF?
Windows Communication Foundation (WCF) was introduced with the release of
.NET Framework 3.0. This release of the framework was in essence the 2.0 version
together with four additional components:

• Windows Presentation Foundation (UI graphical platform)

• Windows CardSpace (Identity management platform)

• Windows Worklow Foundation (Worklow platform)
• Windows Communication Foundation (Communication platform)

Service Architecture and Deployment

[22]

Existing technologies
WCF is meant to provide a uniied programming model to build, conigure, and
deploy services on distributed networks. It combines well known technologies that
have been around for some time such as .NET remoting, Web Services Enhancements
(WSE), MSMQ, ASMX, and message-oriented programming.

Interop with

other platforms

ASMX

WCF

Attribute-based

programming

Enterprise

Services

.NET

remoting

Extensibility

Location

transparency

Messaging

Message-oriented

programming

WS*-Protocol

support

WSE

The previous diagram is kindly provided by wcftutorial.net.
If our introduction to WCF makes you curious about WCF and its
technologies, this website does a great job explaining it in detail.

The ABC of WCF
An elaborate explanation of all the features that WCF has to offer is not in the scope of
this book as it would take us way too long. However, one of the important concepts
to take a look at is called the ABC of WCF. Each service has endpoints through which
communication is possible and an endpoint has the following properties:

• Address: The endpoint address can be used to tell consumers where the
service can be found. It consists of a Uniied Resource Identiier (URI).

• Binding: The binding actually deines how communication is done. It deines
the protocol, security, and encoding required for services and clients to be
able to communicate with each other.

Chapter 2

[23]

• Contract: Contracts are used to deine what can be communicated. There are
three types of contracts:

 ° Service contracts describe the service functionality that is exposed to
external systems.

 ° Operation contracts define the actual operations that will be
available on the service.

 ° Data contracts are used to shape the data that will be exchanged by
the operations of the service.

The following diagram sums it up. On one side you have the client, on the other a
service. This service has one or more endpoints that each consist of an address, a
binding, and a contract. After adding a reference to this endpoint on the client side,
the client becomes aware of the ABC, and messages can be exchanged.

SOAP

message

ServiceClient

ABC A B C

Service deployment
Microsoft Dynamics AX 2012 does a lot to simplify service deployment. Not so much
by reducing the number of concepts, but by gradually presenting those concepts to
users as they are needed. This is immediately obvious when you look at the setup
menu for services and AIF. When you go to System administration | Setup |
Services and Application Integration Framework, you only see four options. The
irst two are the most important: inbound ports and outbound ports. These two
types of ports are known as integration ports.

Integration ports provide a way to group services and manage them together. They
have at least the following properties:

• One or more service operations

• A direction that is inbound or outbound

Service Architecture and Deployment

[24]

• A category that is either basic or enhanced

• An adapter

• The address of the port

We will discuss these properties and others in greater detail.

Service operations
An integration port contains one or more service operations. These must be
operations from services that all have the same type. You shouldn't mix operations
from document services and custom services, because this can cause problems with
the WSDL generation.

Inbound versus outbound ports
Integration ports can be thought of as destinations for messages. Services within
these ports either receive messages from or send messages to external applications.
This gives them a direction. Microsoft Dynamics AX 2012 groups the integration
ports based on this direction in inbound ports and outbound ports.

Inbound ports
Inbound ports are identiied as integration ports that receive messages that originate
from outside Microsoft Dynamics AX. In other words, the destination for the
message is Microsoft Dynamics AX 2012. One example of when to use an inbound
port (discussed later in this book) is when we create a WCF service and consume it in
a .NET application.

Outbound ports
An outbound port is a destination for a message that originates from inside
Microsoft Dynamics AX. In other words, it is used when you want to send a
message to an external application based on an action in Microsoft Dynamics AX.
You can use outbound ports with asynchronous adapters such as the MSMQ and
ile system adapter.

Basic versus enhanced ports
Integration ports can exist in two categories: basic ports and enhanced ports.
Outbound ports are always enhanced ports. Inbound ports can be either basic
or enhanced.

Chapter 2

[25]

Basic ports
Basic ports can only be created by developers as they are linked to a service group.
They are created in the Service Groups node in the Application Object Tree (AOT).
Services are added to the group, and all service operations are exposed when
deploying this service group. All basic ports are inbound ports that are hosted on
the AOS and use the NetTcp adapter. The WCF coniguration editor allows you
to change WCF options, but apart from that, there are few options you can set up.
Although this makes basic ports somewhat limited in their functionality, it has the
advantage that your services are up and running in no time.

There are a number of services that come with Microsoft Dynamics AX 2012 that are
deployed by default. You can ind these in the Inbound Ports form.

Creating a basic port
If you were to press the New button in the Inbound Ports form, you would not
create a basic port but an enhanced port. To create a basic port we will have to open
a developer workspace and perform the following steps:

1. Open the AOT.

2. Go to the Service Groups node, right-click on it, and click on New
Service Group.

3. A new service group will have been created. Right-click on it and
click on Properties.

4. In the properties screen, change the name to SRVTestBasicServiceGroup.

5. In the Description property, you can specify a meaningful label. This won't
show up anywhere, so this is not mandatory.

6. Next, right-click on the service group, and then click on New Service
Node Reference.

7. In the properties, click on the Service property and select a service you want
to deploy from the list.

8. Click on Save All in the AOT to save your changes.

9. To deploy the service group, right-click on the service group, and then click
on Deploy Service Group.

www.allitebooks.com

http://www.allitebooks.org

Service Architecture and Deployment

[26]

After a few moments you will see an Infolog message letting you know that all
service artifacts have been generated, and that your service group was deployed
and activated. Your service is now visible in the Inbound ports form and is ready
to be consumed.

An interesting property on the service group node is the AutoDeploy property. Setting
this to Yes will automatically deploy and activate the port when the AOS is started.

Enhanced ports
As the name suggests, enhanced ports provide more options than basic ports.
Unlike basic ports, they are not tied to service groups, but can be created in the
inbound ports and outbound ports form. Before we take a look at the options
that are available on enhanced ports, let us irst create an enhanced port.

Creating an enhanced port
Almost all options that are available on outbound ports are available on inbound
ports too. The inbound ports have more options, so for this demonstration we will
create an inbound port.

Chapter 2

[27]

Before we create the port, we irst have to be sure that all services are registered
within the system. Registering services will insert a record in the AifService
table for each service, and insert a record in the AifAction table for each service
operation. These records are then used to populate lookups and lists on the forms
when setting up services.

To register services, perform the following steps:

1. Go to System administration | Setup | Checklists | Initialization
checklist.

2. Expand the Initialize system section.

3. Click on Set up Application Integration Framework to register services
and adapters.

You should register services if you are using AIF for the irst time, or if you've added
new services or service operations in the AOT. This process will also register all
adapters and basic ports.

Now, to create an enhanced inbound port, let's perform the following steps:

1. Go to System administration | Setup | Services and Application
Integration Framework | Inbound ports.

2. Click on the New button or press Ctrl + N to create a new enhanced port.

3. In the Port name ield, enter SRVTestEnhancedInboundPort.

4. Enter a description in the Description ield so you can easily identify
the port later.

5. On the Service contract customizations Fast Tab, click on Service
operations. The Select service operations form opens.

6. From the Remaining service operations list, select the
DocumentHandlingService.create operation, and click on the arrow
pointing to the left to add it to the Selected service operations list.

7. Close the form.

8. Click on the Activate button to deploy the port.

Service Architecture and Deployment

[28]

Your enhanced port is now successfully created and activated. You cannot modify
the coniguration of activated ports. To modify the coniguration, irst deactivate
the port by clicking on the Deactivate button.

Now that we've created an enhanced port, let's look at the options that are available
on the form.

Adapters
Whereas basic ports only support the NetTcp adapter, enhanced ports allow you to
specify what adapter you want to use. There are three WCF adapters to choose from:
the NetTcp, HTTP, and MSMQ adapters. To exchange messages using ile system
directories, the ile system adapter is available. We will go into more detail about
these adapters later in this chapter.

Service operations
With enhanced ports, you can manually select which service operations are exposed.
This is unlike basic ports, where all service operations of the services within the
service group are exposed.

Chapter 2

[29]

Data policies
For custom services, the developer deines the parameters that are exposed in the
data contract. This is relected in WSDL when the data contract is used to generate
the XSD schema for the type deinition. The only way to change this schema is by
changing the data contract in code.

When exposing document services, you can change the schema that is generated
using data policies. Enabling or disabling ields in the data policies will add or
remove ields in the schema, allowing you to manage what ields are exposed or not.
It is also possible to mark ields as required.

Transforms
Transforms allow you to transform inbound and outbound messages that are
exchanged asynchronously. This transformation applies to the complete message,
including the headers. For inbound exchanges, the transforms are applied before the
message is stored in the gateway queue. For outbound exchanges, transforms are
applied after the message has been fetched from the gateway queue. There are two
types of transforms available, XSL and .NET assembly:

• XSL: You can use Extensible Stylesheet Language Transformations (XSLT) to
transform any XML-based document to an XML document that uses the AIF
schema or vice versa.

• .NET assembly: When a document is not based on XML, for example a text
ile with comma-separated values (CSV), you can use a .NET assembly to
convert the ile into an XML message that complies with the AIF schema.
This assembly is a DLL that contains a class that implements the ITransform
interface and contains the code that transforms the message.

Pipelines
Pipelines are a lot like transform, but there are a few differences. They allow you to
transform the content of the message instead of the full message, and can be used for
both synchronous and asynchronous exchanges. They are also run before or after the
transforms, depending on the direction. The following table explains the difference
between transforms and pipelines:

Property Transforms Pipelines

What it processes The full message including
header and body

Only the body of the
message

Runs for inbound Before a message is stored
in the gateway queue and
before pipelines

After a message is retrieved
from the gateway queue and
after transforms

Service Architecture and Deployment

[30]

Property Transforms Pipelines

Runs for outbound After a message is retrieved
from the gateway queue and
after pipelines

Before a message is stored
in the gateway queue and
before transforms

Mode supported Asynchronous Synchronous and
asynchronous

There are two types of pipelines available:

• XSL: This is similar to transforms that use XSL, with the difference that the
XSL is only applied to the body of the message.

• Value substitution: The value substitution pipeline component allows
you to replace one value with another based on a simple lookup table.
For example, when messages are sent to a vendor, you can replace your
currency code with the currency code of your vendor, such as EUR versus
EURO. When the direction is inbound, you can do the opposite substitution.
The value substitution is based on Extended Data Types (EDTs). A value
substitution map must be created that contains a mapping between the
internal and external value for a speciic EDT. These maps are set up in the
following form:

System administration | Setup | Services and Application Integration
Framework | Value substitution maps

You can easily create your own pipeline components by creating an X++ class that
implements the AifPipelineComponentInterface interface.

Value mapping
Value mapping is similar to the value substitution pipelines, but it differs in the way
that it allows you to substitute values based on business rules. For example, you can
replace your item ID with the item number that is used by a vendor.

Document ilters
Document ilters can be used to ilter the keys that are returned when calling the
service operations getKeys and getChangedKeys based on a query you provide.
These ilters will only be applied when change tracking is activated. There's more
about this when we create a document service.

Chapter 2

[31]

Troubleshooting
On the troubleshooting Fast Tab, you can enable logging for messages. When
activated, three options are available:

• Original document: When selected, only the original document before it has
been modiied by pipeline components is stored.

• All document versions: When selected, a version of the document is stored
every time a document is modiied by a pipeline component.

• Message header only: Select this option when you only want to store the
header of the documents.

To consult the log, click on System administration | Periodic | Services and
Application Integration Framework | History.

There is also the option to provide more information about exceptions in AIF faults,
and the ability to send error messages for asynchronous requests.

Security
On the security Fast Tab, you can limit integration ports to only process requests
for speciic companies instead of for all companies. Access can also be conigured to
allow access only for certain users and user groups. For added security, be sure to set
these options as strict as possible.

Bindings
When client and service communicate, there are several aspects of the communication:

• Synchronous/asynchronous: Messages can be used in a request/reply
pattern or they can be used in asynchronous communication depending on
whether the client waits for the response or not.

• Transport protocol: The protocol used for transporting the messages can
vary depending on the needs. Protocols such as HTTP, Transmission Control
Protocol (TCP), Microsoft Message Queuing (MSMQ), and Inter-process
communication (IPC) can be used.

Service Architecture and Deployment

[32]

• Encoding: You have the choice on how to encode the messages. You
can choose either not to use or use plain text when you want more
interoperability. Alternatives are binary encoding to speed up performance
or using Message Transport Optimization Mechanism (MTOM) for handling
larger payloads.

• Security: There are also some options that can be used to handle security and
authentication. Security can be done not at all, at the transport level, or at the
message level.

As you can imagine, keeping track of all the options can be a little dificult and
making the right choice as to how to conigure the different settings is not easy. To
solve this, WCF introduces bindings. A binding merely is a grouping of choices that
deal with each aspect of the communication that we just discussed.

WCF supports several bindings out-of-the-box. If these do not sufice there is always
the alternative of creating a custom binding of your own. The following bindings are
the most commonly used:

• NetTcpBinding: This uses the TCP protocol and is mainly used for cross-
machine communication on the intranet. It is WCF optimized and thus
requires both the client and server to use WCF.

• BasicHttpBinding: This binding is used to expose a service as an ASMX
web service so that older clients that comply to the WS-I Basic Proile 1.1
are supported.

• WsHttpBinding: This binding is used for communication over the Internet.
It uses the HTTP and HTTPS protocols and complies with WS-* standards.
So any party that supports the WS-* standards is able to communicate with
the service.

• NetMsmqBinding: This type of binding will be used when support is needed
for MSMQ queues. The NetMsmqBinding binding is actually a compact
binding which does not provide all the possible options to conigure MSMQ.
There are other bindings that provide more options.

Now that we have elaborated on some of the out-of-the-box bindings, you might
be asking yourself: How can I make sure I'm using the appropriate binding for my
scenario? Well, the following lowchart may help you with this choice:

Chapter 2

[33]

Start

MSMQ adapter

using

NetMSmqBinding

Using MSMQ? File based?

Need

deploment on

IIS?

HTTP adapter

WS-*support?

BasicHttpBindingWsHttpBinding

NetTcp Adapter

using NetTcpBinding

Using BizTalk? File system adapter

Yes

No

Yes

NoYes

Yes

NoYes

No

No

Adapters
Microsoft Dynamics AX 2012 allows for exchange of messages using various
transport protocols. This is enabled by the use of adapters. An adapter has an
adapter type that determines if it can be used on an inbound port, an outbound port,
or both. The standard adapter types that are used are send and receive and receive or
send. The naming of these types is rather confusing, but the following table shows
how this translates to inbound or outbound ports:

Adapter name Adapter type Inbound Outbound Mode

NetTcp Send and receive Yes No Synchronous

HTTP Send and receive Yes No Synchronous

File system
adapter

Receive or send Yes Yes Asynchronous

MSMQ Receive or send Yes Yes Asynchronous

Service Architecture and Deployment

[34]

Adapters also have an address property. This address is a Uniform Resource
Identiier (URI) that refers to the destination or source location of the port.
Depending on the adapter, this is a URL, a ile system path, or a message queue
format name.

NetTcp adapter
The NetTcp adapter is the only adapter that can be used on basic ports. On enhanced
ports, the NetTcp adapter is only supported for inbound ports. This adapter type
corresponds to the WCF NetTcpBinding and provides synchronous message
exchanges by using WS-* standards over the TCP.

The NetTcp adapter is used for communication with other WCF applications hosted
on the intranet.

HTTP adapter
The HTTP adapter supports synchronous message exchanges over the HTTP. When
an integration port that uses this adapter is activated, a WCF routing service is
deployed on IIS. This routing service routes all requests to the WCF services that are
hosted on the AOS.

The HTTP adapter can be used for synchronous communication when the NetTcp
adapter is not an option because of interoperability issues or because the services
have to be available on the Internet.

File system adapter
The ile system adapter is used for asynchronous exchange of messages using iles
that are stored on the ile system. The exchange is asynchronous because it uses the
AIF gateway queue to store both incoming and outgoing messages. A batch job is
needed to process this queue. Files are then read from or written to a directory on
the ile system.

The ile system adapter can be used when there is a need to import or export iles.
The ile system adapter has support for non-XML iles by using transformations. This
adapter can also be used to decrease the load on the system, improving performance.
Instead of handling requests synchronously during working hours using the NetTcp
or HTTP adapter, messages can be processed asynchronously in batches during the
night or in the weekends.

Chapter 2

[35]

MSMQ adapter
The MSMQ adapter provides support for message queuing using MSMQ. This
adapter is actually a WCF adapter that uses NetMsmqBinding. Like the ile system
adapter, this adapter exchanges messages asynchronously and can therefore be used
to decrease the load during working hours.

Custom adapters
Having all these features available, it's hard to imagine you would need another
adapter. When you do have a scenario that cannot be covered with the standard
adapters, consider bringing Microsoft BizTalk Server into the picture. Among many
other things, BizTalk can act as an intermediary between Microsoft Dynamics AX
2012 and an external application using any of the adapters that we just described.
When this still doesn't it your needs, you can always create your own adapter. You
can do this by implementing the AIFIntegrationAdapter interface.

Service generation – under the hood
While services are being deployed when activating integration ports, there is more
going on than meets the eye. A service generator written in X++ kicks in and creates
the artifacts needed by the AOS to host the WCF services. These artifacts are iles
containing managed code (C#) and contain the service implementation, message
contracts, and a WCF coniguration. To explain this, we will take a closer look at
one of the out-of-the-box integration ports: the DocumentHandling port.

Generated artifacts
When you take a look at the DocumentHandlingService service node in the AOT,
you will ind that this service has one method called Create. So when we deploy
this service, we expect the following generated artifacts to be able to host the
WCF service:

• A service contract which contains the service's interface

• An operation contract for the Create service operation

• Request and response message contracts for each operation used in the
implementation of the Create operation

• A DLL ile containing all of the previous artifacts

www.allitebooks.com

http://www.allitebooks.org

Service Architecture and Deployment

[36]

All of these generated artifacts can be found in the following ile system directory:
%ProgramFiles%\Microsoft Dynamics AX\60\Server\<Server Name>\bin\
XppIL\AppShare\ServiceGeneration\<Integration Port Name>

Service contract and implementation
The service contract deinition and implementation can be found in the
DocumentHandlingService.cs ile. The service contract is a relection of the
DocumentHandlingService class that can be found in the AOT.

[ServiceKnownType("GetKnownTypes", typeof(ServiceHelper))]

[ServiceContract(Name = "DocumentHandlingService",
Namespace="http://schemas.microsoft.com/dynamics/2011/01/services"
)]

public interface DocumentHandlingService

{

 [OperationContract(Name="create")]

 [FaultContract(typeof(AifFault))]

 DocumentHandlingServiceCreateResponse Create(
 DocumentHandlingServiceCreateRequest createRequest);

}

Let's take a closer look at the code of the service interface:

[ServiceContract(Name = "DocumentHandlingService",

Namespace="http://schemas.microsoft.com/dynamics/2011/01/services"

)]

The previous line of code deines that the interface followed after this attribute is
the service's contract. The name of the contract and the namespace in the WSDL
are also deined.

[OperationContract(Name="create")]

[FaultContract(typeof(AifFault))]

DocumentHandlingServiceCreateResponse Create(
DocumentHandlingServiceCreateRequest createRequest);

The previous statement deines that the Create method is a service operation
by using the OperationContract attribute. It also attributes the type of WCF
FaultContract that will be thrown if exceptions occur when this operation is
called. For Microsoft Dynamics AX WCF services, this will always be the AifFault
fault contract.

Chapter 2

[37]

As for the Create operation itself, the Create method has been generated to make
use of a DocumentHandlingServiceCreateRequest message contract as the
input parameter. The return type of the operation is also a message contract of the
type DocumentHandlingServiceCreateResponse. Whether this return contract
is actually used in the WCF client depends on whether the service reference is
conigured to generate message contract types at the client side.

A bit further in the ile we ind the actual implementation of the
DocumentHandlingService service interface:

public partial class DocumentHandling : ServiceGroup,
DocumentHandlingService

{

 DocumentHandlingServiceCreateResponse
 DocumentHandlingService.Create
 (DocumentHandlingServiceCreateRequest createRequest)

 {

 // Implementation code omitted

 }

}

The previous code shows the class implementing the DocumentHandlingService
interface and the actual implementation of the Create method.

Message contracts
WCF uses SOAP messages to communicate. SOAP is a protocol that sends XML
messages. It uses an envelope to deine what will be put in a message and how to
process it. The SOAP envelope contains a header and a body.

In WCF, message contracts are used to provide more control to the developer over
the structure of the SOAP message. Although Microsoft Dynamics AX 2012 does
not allow developers to create message contracts, they are generated by the service
generator. This is important because a call context is included in the message contract
that allows clients to pass context information speciic to Microsoft Dynamics AX
such as the message ID, the calling user, the company, and the language in which
messages are displayed.

Message contracts should not be confused with data contracts. While message
contracts determine the structure of the SOAP message by providing a mapping
between the types and the SOAP message, data contracts are used to serialize the
types that are used within the message contract.

Service Architecture and Deployment

[38]

The MessageHeader attribute is used to specify that a member is part of the SOAP
header. In the following example, this is the case for the call context member. For
the rest of the members, the MessageBodyMember attribute is used to specify that the
member will be part of the body of the SOAP message:

[MessageContract]

public class DocumentHandlingServiceCreateRequest

{

 [MessageHeader(Name = "CallContext", Namespace =
 "http://schemas.microsoft.com/dynamics/2010/01/datacontracts")]
 public Microsoft.Dynamics.Ax.Services.CallContext context;

 [MessageBodyMember(Order=1)]

 public DocumentFileList _documentFileList;

 [MessageBodyMember(Order=2)]

 public DocuValueType _docuValueType;

 [MessageBodyMember(Order=3)]

 public Boolean _submitToWorkflow;

}

WCF coniguration storage
WCF services can be conigured by using coniguration iles. The advantage of using
coniguration iles is that they can be conigured at deployment time instead of at
design time.

The coniguration is done in XML by providing elements that conigure details such
as the bindings, behaviors, and endpoint addresses that are used to communicate
with the service. You can also use the coniguration ile to specify diagnostics
elements to enable tracing and logging.

Microsoft Dynamics AX also creates a coniguration ile to accompany the deployed
service. Developers can modify the contents of this coniguration ile by using the
WCF coniguration tool, which can be started from the integration port form. The
various possibilities of the WCF coniguration tool will not be discussed in this book
as it would take us too long.

Chapter 2

[39]

Once the coniguration is saved, Microsoft Dynamics AX will save the XML contents
of the ile in the AifWcfConfiguration table in the AOT. When the conigure button
is used the next time, this content will be opened by the coniguration tool.

Service Architecture and Deployment

[40]

The power of CIL
In Microsoft Dynamics AX 2012, code can be compiled to CIL and run in the .NET
CLR. But what does CIL mean and what is it used for?

CIL stands for Common Intermediate Language and is in essence an object-oriented
assembly language. It complies with the Common Language Infrastructure (CLI),
which is a speciication that was developed by Microsoft to describe a set of rules
which programming languages need to comply with when they are targeting
the CLI. One of the most important aspects of the CIL is that it is a platform- and
CPU-independent instruction set. This enables the code to be executed on different
environments as long as they comply with the CLI speciication.

The following diagram shows that the languages are irst compiled in CIL, after
which the Common Language Runtime (CLR) compiles the platform-independent
CIL code into machine readable code:

C#

code

VB.NET

code

J#

code

Common

Intermediate

Language

Common

Language

Runtime

.NET compatible languages compile to a

second platform-neutral language called

Common Intermediate Language(CIL).

Compiler Compiler Compiler

01001100101011

11010101100110

The platform-specific Common language

Runtime(CLR) compiles CIL to machine-

readable code that can be executed

on the current platform.

Common Language Infrastructure

Chapter 2

[41]

Microsoft Dynamics AX 2012 now has the ability to transform the X++ compiler's
P-Code to CIL code and therefore is able to run X++ code in CIL. This is quite a step
forward as CIL is faster than X++. We also need to keep CIL in mind when developing
services later on. Code that runs on the server, such as batch jobs and services, will be
running in CIL and therefore X++ code needs to be compiled into CIL.

As compilation into CIL takes a long time, it is not done automatically when X++
code is compiled. We need to do this manually when code has been modiied by
using the new CIL compilation buttons in the developer workspace:

You can either start a full or an incremental CIL generation. The main difference
between the two is that the incremental generation only regenerates the objects that
were modiied since the previous generation, and the full generation completely
regenerates all objects. As you can imagine, the incremental process is much faster
than the full process, but do keep in mind that incremental generation will not
always be enough. Sometimes you will have no option than to completely regenerate
CIL. No matter how you look at it, compiling CIL is not optional. Without CIL, your
services cannot run!

CIL output
So the CIL generation is done. But what has changed and where can we ind the
results of the process? The answer to that question can be found in the server's
bin directory. By default, the ile system folder is : %ProgramFiles%\Microsoft
Dynamics AX\60\Server\<Server Name>\bin\XppIL\. In this folder, you can
ind the resulting Dynamics.Ax.Application.dll assembly ile along with a list
of NetModule iles.

Service Architecture and Deployment

[42]

NetModule iles differ from .NET assemblies in the fact that they do not contain an
assembly manifest. They only contain type metadata and compiled code. Next to
these iles containing the CIL code, this folder may also contain a subfolder named
source. In this folder we can ind iles with the .xpp extension. These iles contain
the X++ source code and can be used when debugging CIL code in Visual Studio so
that the editor and debugger can show the actual source code.

Note that the existence of the source subfolder depends on the server coniguration.
When the options are set to enable debugging on the server, the source folder will
be generated at AOS startup. Without the options enabled you cannot debug, so the
source folder will not be generated as this is not needed.

Chapter 2

[43]

Summary
In this chapter, we familiarized ourselves with the service architecture. We clearly
saw that Microsoft has put a lot of effort into providing us with a simpliied
administration process for services by introducing integration ports. Because a large
part of the architecture is built upon WCF, at least a basic understanding of the
technologies that are used in WCF is needed.

To enable all these technologies in combination with Microsoft Dynamics AX 2012,
compilation into CIL was introduced. This will allow X++ code to be compiled into
CIL and beneit from all the advantages the CIL has.

In the next chapter, we will start digging deeper into the AIF services and get some
hands-on time by creating our own AIF services.

AIF Document Services
When we think of services, we typically think about exposing business logic or
consuming it. In many cases though, it's business data that needs to be exchanged.
With Microsoft Dynamics AX 2012, the preferred method of exchanging business
entities is by using document services.

In this chapter, we will discuss the AIF document services and learn about the
components that make up a document service. By the end of this chapter, you
will be able to create, deploy, and consume such a service.

The following topics are covered in this chapter:

• What are document services?: We start by explaining why you would need
document services in Microsoft Dynamics AX 2012.

• Key components: There are some components that are speciic to document
services. It's important to know what these components are and what their
role is in the concept of services, so we will discuss their function in detail.

• Creating a document service: You will learn how to create a document
service and how to conigure and deploy the service using an enhanced
integration port.

• Consuming a document service: After we have deployed a document
service, we will consume it using a .NET WCF application, and look at
how change tracking can help us in some scenarios.

www.allitebooks.com

http://www.allitebooks.org

AIF Document Services

[46]

What are document services?
If you've worked with Microsoft Dynamics AX for a while, you will know that it
contains many tables with a lot of data. These tables can be related to each other to
form logical entities such as sales orders. Tables not only contain ields, indexes,
and relations, but they also contain code that handles initialization, validation,
and manipulation of data. When you send data from Microsoft Dynamics AX
but especially when you receive data from external systems, you want all of the
business logic that is contained in these tables and entities to be executed for data
to be consistent. It would be troublesome to have to code all of this yourself when
creating a service. Fortunately, AIF solves this by providing a framework and
the tools to create these services.

So what are these tools and components? That's exactly what we will discuss next.

Key components
We will start by looking at the framework and its components. The key components
of a document service are:

• A query that is used in the AIF Document Service Wizard to create the
document service

• A document class that represents a business entity and contains the business
logic for this entity

• One or more AxBC classes that encapsulate a table and are used by the
document class to create, modify, and delete data in tables

• A service class that contains the service operations

Of course, there's more to these components than the few words we've used here
to describe them. We will now look at these components one by one, starting with
the query.

Document query
Each document service is based on a query deined in the AOT. By using the
AIF Document Service Wizard, a document class is generated and XML schema
deinitions used for XML serialization are derived from the corresponding query.
So the XML message will have a correlation to the query object. In the following
screenshot, we can see the query for the InventItemService document service:

Chapter 3

[47]

If we look at an actual XML message, we can clearly see that it matches the structure
of the query object. The following screenshot shows the XML content after the
serialization of the item business object:

AIF Document Services

[48]

Document class
Document classes extend the AxdBase class and represent a business document, for
example, a sales order. They contain the business logic across all of the tables that
correspond with the document. Hence, the details about the underlying tables are
hidden from the consumer.

A document class also handles the generation of the XML Schema Deinition
(XSD). The XSD schema deines the document structure and the business rules to
be followed. As well as the generation of the XSD, the document class also contains
logic to serialize the table entity classes into XML and deserialize them from XML.

Responsibilities of a document class
The document classes have a number of responsibilities and amongst those, we have:

• Generation of XSD schema.

• Serialize and deserialize classes to and from XML.

• Guarantee the document lifecycle by making sure operations do not violate
business rules that correspond with the document.

• Contain business logic that applies to data across tables.

• Providing a means of deining document-level properties. For example,
whether a document is an original or a duplicate.

• Handle consolidation of table-level errors and return them as a single list
to the calling code.

Let's look at an example document class and analyze it to see how some of these
responsibilities are actually handled. In this example, we will take a closer look at
the sales order document class: AxdSalesTable.

XSD generation
The XSD is generated in the getSchema and getSchemaInternal methods of the
AxdBase class. The AxdBaseGenerationXSD class is called to generate the XSD based
on this document class and its underlying table classes.

private AifDocumentSchemaXml getSchemaInternal(boolean
_includeLabels, container _languageIds)

{

 AxdBaseGenerateXSD genXsd;

 str documentClass ;

 AifDocumentSchemaXml schemaXml;

 ;

Chapter 3

[49]

 genXsd = AxdBaseGenerateXSD::construct();

 genXsd.parmIncludeLabels(_includeLabels);

 genXsd.parmLanguageIds(_languageIds);

 documentClass = new SysDictClass(classIdGet(this)).name() ;

 genXsd.setSharedTypesSchema(sharedTypesSchema);

 schemaXml = genXsd.generate(documentClass,this.getName(),
this.getQuery());

 sharedTypesSchema = genXsd.getSharedTypesSchema();

 return schemaXml;

}

XML serialization and deserialization
XML serialization and deserialization is performed in several places depending
on the operation being executed. Either the axdBaseRead, axdBaseUpdate, or
axdBaseCreate class is used to service the consumer's call. For example, take a look at
the axdBaseRead class that is used when performing a read operation. There you can
ind the serializeDocument method that is used to serialize the document into XML.

protected AifDocumentXml
serializeDocument(AifConstraintListCollection
_constraintListCollection, boolean _calledFromRead)

{

 ClassName documentName;

 Map propertyInfoMap;

 ;

 this.init();

 this.setDocumentNameSpace();

 documentName = axdBase.getName();

 propertyInfoMap = this.getMethodInfoMap(classIdGet(axdBase));

 axdXmlWriter.writeStartDocument(documentName);

 this.serializeClass(propertyInfoMap, axdBase);

 // Omitted code

 axdXmlWriter.writeEndDocument();

 return axdXmlWriter.getXML();

}

AIF Document Services

[50]

In the previous code, the following methods are used:

• getMethodInfoMap fetches all the ields for the document class
• writeStartDocument writes the XML document's begin tag

• serializeClass takes care of serializing all of the properties into XML

• writeEndDocument writes the XML document's end tag

Cross-table business logic
The AxdSalesOrder document class contains logic to handle cross-table
dependencies. The prepareForSave method is an example of this. This method is
called for every record that is saved. Let's take a look at a small piece of the code that
is used for the sales document, and see how it handles logic across the SalesLine
and InventDim tables:

case classNum(AxInventDim) :

 axInventDim = _axdStack.top();

 axSalesLine = axInventDim.parentAxBC();

 axSalesLine.axInventDim().resetInternalValues();

 if (createRecord)

 {

 axSalesLine.salesLine().unLinkAgreementLine();

 }

 else

 {

//InventDimId marked as touched in update scenarios and we need
new InventDimId

 axSalesLine.clearField(fieldNum(SalesLine,InventDimId),false);

 }

 axInventDim.moveAxInventDim(axSalesLine.axInventDim());

 axSalesLine.setInventDimIdDirtySaved(false);

 return true;

In the code, we can see the following:

• In the case of an insert, the link with any possible agreement lines is removed

• In the case of an update, the current InventDimId ield is blanked out so a
new InventDimId can be illed in

• Lastly, the values of the InventDim table class are copied to the SalesLine
table class, and the InventDim ield of the SalesLine is marked as dirty to
be saved

Chapter 3

[51]

Validation and business rule enforcement
The document class is also responsible for validating the business document
and making sure that the business rules are enforced. An example of this can be
found in the checkSalesLine method. This method is called from within the
prepareForSave method to ensure that the SalesLine record does not contain any
values conlicting with the business rules. The following code snippet shows how
two of the business rules are validated:

salesLineOrig = _axSalesLine.salesLine().orig();

if (salesLineOrig.LineDeliveryType == LineDeliveryType::DeliveryLine)

{

 if (_axSalesLine.parmSalesQty() != salesLineOrig.SalesQty)

 {

 // It is not allowed to change quantity on delivery schedule
order lines.

 error("@SYS133823");

 }

 if (_axSalesLine.parmSalesUnit() != salesLineOrig.SalesUnit)

 {

 // It is not allowed to change sales unit on delivery schedule
order lines.

 error("@SYS133824");

 }

}

The code checks the SalesQty and SalesUnit ields when the LineDeliveryType is
DeliveryLine. If these ields do not match, an error is written to the Infolog.

AxBC classes
AxBC classes can be seen as wrapper classes for tables as they provide an object
interface to the underlying table. They manage data access from and to the
underlying table and contain business logic that is otherwise contained on forms.
They also provide a means to specify default values for ields. Another name for
AxBC classes is Ax<Table> classes.

AxBC classes are optional. It is possible to have a document service in which the
underlying tables have no corresponding AxBC classes. If so, the framework will use
the AxCommon class to perform read and write operations to the table. In this case you
will have to place your code in the Axd<Document> class in the prepareForSave and
prepareForSaveExtended methods.

AIF Document Services

[52]

One example that shows how AxBC classes are optional is value mapping. Value
mapping can be set up in the processing options of an integration port. When this
type of value mapping sufices, it is not necessary to create an AxBC class for value
mapping purposes. In this case an AxBC class only becomes necessary if you want to
do more elaborate value mapping than the standard setup allows you to.

So, depending on what your needs are, you can choose not to create AxBC classes for
the tables in your document service. You can do this in the AIF Document Service
Wizard. The wizard only creates the AxBC classes if the option Generate AxBC
classes is selected.

Responsibilities of an AxBC class
The following are the responsibilities of an AxBC class:

• Performing validation: AxBC classes make sure that all of the rules and logic
contained in the underlying table are adhered to. Things like data integrity
and business rules deined on the ield level are also maintained.

• Providing ield sequencing: Using AxBC classes, you can specify the order
in which ields are processed. This is particularly useful when the value of
one ield depends upon the value of another.

• Performing value mapping: Values can be mapped between external
systems and Microsoft Dynamics AX 2012. Value mapping can be done at the
AxBC level if the possibilities provided by value mapping at the integration
port are insuficient.

• Enable value defaulting for ields: Fields that are not set by the calling code
and do not receive a default value in the initValue method of the table can
be defaulted in the AxBC class.

Validation
In the AxSalesLine class, we can see that there is validation logic in the
validateWrite method:

protected void validateWrite()

{

 if (this.validateInput())

 {

 if (!salesLine.validateWrite(true))

 {

 if (continueOnError)

 {

 error("@SYS98197");

 }

Chapter 3

[53]

 else

 {

 throw error("@SYS23020");

 }

 }

 }

}

The code shows that the AxSalesLine class also calls the validateWrite method on
the underlying table. This is done to make sure that the validation rules on the table
are adhered to.

Field sequencing
In almost all AxBC classes, you will ind a method called setTableFields. In the
AxSalesLine class, this method calls all of the setter methods present for the ields
of the SalesLine table.

protected void setTableFields()

{

 //<GMX>

 #ISOCountryRegionCodes

 //</GMX>

 super();

 useMapPolicy = false;

 this.setAddressRefTableId();

 [...]

 this.setCustAccount();

 this.setCustGroup();

 [...]

When you want to deine the order in which the ields are set, you can modify
the code and rearrange the setter methods into the sequence that you want. In
the previous code, you can see that the CustAccount ield is set irst and then the
CustGroup ield. This is because determining the CustGroup ield depends on the
value of the CustAccount ield.

AIF Document Services

[54]

Value mapping
If we look at the valueMapDependingFields method, we can see an example of how
value mapping can be done:

protected void valueMapDependingFields()

{

 ItemId valueMapedItemId;

 InventDim valueMapedInventDim;

 if (this.valueMappingInbound())

 {

 if (salesLine.CustAccount && item)

 {

 [valueMapedItemId,valueMapedInventDim] =
this.axSalesItemId(salesLine.CustAccount,item);

 this.parmItemId(valueMapedItemId);

 if (!InventDim::isInventDimEqualProductDim
(EcoResProductDimGroupSetup::newItemId(salesLine.ItemId),
valueMapedInventDim,InventDim::find(InventDim::inventDimIdBlank())))

 {

 axInventDim.productDimensions(valueMapedInventDim);

 this.parmInventDimId
(InventDim::findOrCreate(axInventDim.inventDim()).InventDimId);

 }

 }

 }

}

The exact implementation of the previous code is unimportant, but you can clearly
see that the axSalesItemId method does the value mapping to determine the
item number. Then the mapped item number is used on the SalesLine record.
Apart from the value mapping of the item number, there is also a mapping for the
inventory dimensions of the corresponding InventDim record.

Default values
AxBC classes can also contain logic that sets default values on ields. An example of
this is found in the setLineNum method:

protected void setLineNum()

{

 if (this.isMethodExecuted(funcName(), fieldNum(SalesLine,
LineNum)))

Chapter 3

[55]

 {

 return;

 }

 this.setSalesId();

 if (this.isFieldSet(fieldNum(SalesLine, SalesId)))

 {

 if (!lineNum)

 {

 lineNum = SalesLine::lastLineNum(this.parmSalesId());

 }

 lineNum += 1;

 this.parmLineNum(lineNum);

 }

}

In the previous code, we can see the following:

• Firstly, the framework checks if this method has already been executed

• The setSalesId method makes sure the sales order number value is set

• If there is no line number yet, the lastLineNum method is used to determine
the highest line number used at the time

• Lastly, the line number is incremented and set in the SalesLine record

Service class
Service classes are classes that contain the operations used in the integration port for
that document service. Only the operations needed by the business are available. All
service classes extend the AifDocumentService class and delegate their operations
to the AifDocumentService class. For example, when the Read operation is available
on a service class, the implementation of the operation will call the ReadList method
on the AifDocumentService parent class.

The following operations are available:

• Create: This operation receives a document class and creates records as
necessary. The return value is an AifEntityKeyList object containing a list
of key/value pairs that reference a record.

• Delete: This operation is used to delete records from the database. The IDs
of the records to delete are passed as a parameter.

www.allitebooks.com

http://www.allitebooks.org

AIF Document Services

[56]

• Find: This operation takes an AifQueryCriteria parameter and
queries the database. The return value is a document class containing
the resulting records.

• Findkeys: This operation does the same thing as the ind operation but
returns an AifEntityKeyList object, which contains only the IDs of the
resulting records instead of all the data.

• Read: This operation takes an AifEntityKeyList object as a parameter,
reads the records from the database, and returns them in a document. This
operation is typically used in combination with the FindKeys operation that
irst returns the values needed as an input for the Read operation.

• Update: This operation takes an AifEntityKeyList object containing the IDs
of the records to update. The second parameter is the document containing
the updated records.

• GetKeys: This operation uses a document ilter and returns the resulting
document keys in an AifEntityKeyList object.

• GetChangedKeys: This operation also uses a document ilter together with a
DateTime parameter to return the document keys of the documents that have
changed since then.

Service node
For our service operations to be available in the inbound and outbound port forms,
a service class alone is not enough. The services framework requires that you create
a service node in the AOT for the service and its service operations that you want to
expose. This is true for document services, but applies equally to custom services.

A service node allows you to create service contracts based on service classes in a
lexible and customizable way. If you wish, you can create multiple service nodes for
one service class, each with a different external name and a different set of service
operations that are exposed. You can even specify the namespace for the service and
change the names of the service operations.

Creating a document service
As you've read, there are a lot of components that have to be created when
developing a document service. You might think that creating a document service is
a daunting task because of that, but fortunately that is not the case.

Chapter 3

[57]

Microsoft has provided us with the AIF Document Service Wizard. This wizard
allows you to create a document service fairly quickly based on a query you
provide. In the next few pages, we will walk through all of the steps needed to
create a document service using this wizard.

Downloading the example code

You can download the example code iles for all Packt books you
have purchased from your account at http://www.packtpub.
com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have
the iles e-mailed directly to you.

The document service we will build in this chapter will allow us to demonstrate
all of the service operations that are available on a document service. We will need
an entity from the demo application for this purpose, and for that we will use titles
which are stored in the CVRTitle table. At the end of this chapter, we will have
built a fully functional document service that can create, read, and modify
title information.

Setting the compiler level
Before we start, let's make sure the compiler is set up correctly. When developing
for Microsoft Dynamics AX 2012, it is important to adhere to the best practices
that Microsoft has deined. These best practices are checked by the compiler.
Depending on the compiler level, a smaller or larger set of best practices will be
checked during compilation.

We recommend you set the compiler level to 4, the maximum, so all best practice
errors are shown when compiling. We also recommend setting the compiler to check
the best practices at least on level Error. When setting the best practice parameters,
also make sure that the layer setting is set to Check all nodes.

The layer setting is important when creating document services because it makes
sure that AxBC classes that are in lower layers are checked when new ields are
added to the corresponding tables. You will receive recommendations about what
methods should be created. This is important so that the AxBC classes are up to date.

AIF Document Services

[58]

Creating the query
As every document service is based on a query, we will start by creating the query.
Create a new query in the AOT, name it AxdCVRTitle, and add the CVRTitle table
to the data sources. When you're done, it will look like the following screenshot:

You now have the basis of the query. However, you should see a compiler error
saying you should specify the dynamic property on the data source. To set the
property, select the Fields node of the data source and in the properties form set
Dynamic to No.

Setting the property to No allows you to specify the ields on the data sources
yourself. You should do this for all document queries. If you had set this property
to Yes, the number of ields in the document would change when ields are added
to the table, and that's not desirable.

For this demonstration, we will add all of the ields from the table to the data source.
The easiest way to do this is by setting the Dynamic property to Yes, saving the
query, and then setting it to No again.

In a real-life scenario, you should only expose ields that are really needed. If you are
unsure, you can still add the ield and use data policies to disable it.

To inish up, set the Update property to Yes on the data source. This will enable
us to perform the update operation on the document service using the previously
created query.

Running the AIF Document Service Wizard
Now that the query is created, we can use it to run the AIF Document Service
Wizard. This wizard will guide you through a series of steps that will generate
the necessary artifacts.

Chapter 3

[59]

There are three ways to start the AIF Document Service Wizard:

1. In the Development Workspace, click on Tools | Wizards | AIF Document
Service Wizard.

2. The same wizard can also be started by clicking on Tools | Application
Integration Framework | Create document service.

3. Finally, you can start the wizard by right-clicking on a query, then clicking
on Add-Ins | AIF Document Service Wizard. This last way takes you
immediately to the second screen of the wizard with the parameters illed in
depending on the query you selected.

The irst screen of the wizard is the Welcome screen. It informs you that this wizard
will help you generate document services. Click on Next and the Select document
parameters screen is shown.

Selecting document parameters
On the Select document parameters screen, you can select the query and specify
the document name. Select the AxdCVRTitle query from the drop-down list. The
Document name ield is automatically illed in. Accept the name that was generated.
In the Document label ield, enter Titles. We will create a label for this text later on
in the chapter. Now, click on Next:

AIF Document Services

[60]

Selecting code generation parameters
On the Select code generation parameters screen, you can specify the class names
and the service operations that need to be generated. You can also generate AxBC
classes for tables if they don't exist yet, or update existing AxBC classes.

In the Class names section, you should accept all class names that are proposed by
the wizard. The following is how the class names are generated:

• The service class name is the name of the query with the sufix "Service"
added and the preix "Axd" removed

• The document object class name is based on the name of the query without
the preix "Axd"

• The Axd class name is the same as the query name

Sometimes names can conlict with the names of existing objects. In our case the
CVRTitle class name will conlict with the CVRTitle table name. So we will have to
add "Document" to the document object class name to ix this. In this example, we
also add "Document" to the service class name, so we can differentiate between it
and another service for titles that we will create in the next chapter.

In the Service operations section, you can specify the service operation(s) that you
want to generate for the document service. For this demonstration, we will select all
of the service operations.

In the AxBC generation section, select the Generate AxBC classes option. This will
ensure that the AxBC classes are generated for the tables we use in the data sources
of our query. Do not select Regenerate existing AxBC classes, as this may overwrite
customizations you've made to existing AxBC classes. Now, click on Next:

Chapter 3

[61]

Generating code
You are now presented with a list of artifacts that will be created. Review this list to
check for any mistakes you may have made. You can always return to the previous
screens using the Back button:

AIF Document Services

[62]

Click on Generate to continue. The wizard will generate all of the artifacts and when
it is done, a screen titled Completed appears informing you which artifacts have
been generated. Click on Finish to close the form.

Finishing up
The output of the AIF Document Service Wizard is stored in a private project that
has the same name as the query that the service is based on. You have to compile
this project because it will contain compiler errors that need ixing and tasks that
you need to perform.

Fixing compiler errors
If you have followed all of the previous steps, you should see two compiler errors for
the AxBC class that was generated. This is because two template methods that enable
caching are generated for an AxBC class: cacheObject and cacheRecordRecord.

Caching is used to speed up performance when defaulting values for inbound
messages. Without caching, multiple methods would have to construct the same
object or select the same record multiple times, thereby decreasing performance.

When you don't want to use object or record caching, you can simply delete these
methods to ix the compiler errors. When you delete the methods, remember to
remove the declaration of the cacheRecordIdx and cacheObjectIdx variables from
the classDeclaration as well. We don't want to use caching in this example, so we
will do just that.

When you do want to use object or record caching, you should refactor the methods
to it your needs. The following explanation should enable you to do that.

Chapter 3

[63]

ClassDeclaration
Object and record caching use map variables that are declared in the
AxInternalBase class to store objects or records. As you probably know, a map
allows you to associate a key with a value. In our case, the value is either a class
or a record. As a map can only contain values of one type, we need two maps, one
to cache objects, and one to cache records. This is also the reason why two cache
methods are generated, to demonstrate caching for both objects and records.

As each value in the map is associated with a key that allows us to access the value,
we need some way to store that key. We do this by declaring an index for each object
or record we want to cache. So that's a variable for each cache method we write. By
default, cacheRecordIdx and cacheObjectIdx were generated. You should rename
them appropriately to the corresponding value. When you cache SalesTable
records, name the variable salesTableIdx and when you cache axSalesTable
objects, name the variable axSalesTableIdx.

The cacheObject method
You can use the cacheObject method as a guide when you want to cache objects.
Unfortunately, the code that is automatically generated is lawed. Instead of
using the classCacheInsert method, it uses the the tableCacheInsert method
at one point, which is wrong. For that reason, we recommend that you use the
AxSalesLine.axSalesTable method to guide you. You can copy the code in
this method, replace the variables with your own, and you're all set.

The cacheRecordRecord method
The cacheRecordRecord method can be used as a guide when caching for records is
required. It uses the tableCacheInsert method instead of the classCacheInsert
method to add records to the cache. The low is the same as the cacheObject method.

An example of a method that uses caching is the setCustAccount method
of the AxSalesLine class. It uses both object and record caching by using the
axSalesTable and projTableRecord methods to default the custAccount ield.

Fixing tasks
When you are done with the compiler errors, you will still have a lot of tasks left
to perform. That's exactly what we will discuss next.

AIF Document Services

[64]

Labels
When you plan on creating a document service, be ready to make some labels.
For this small example, over 10 labels have to be created. Fortunately, they are
all marked with a TODO in code, which makes it easy to ind them in the compiler
output window. Create all labels using the label editor and remove the TODOs
when you're done.

Generating an XSD job
The AIF Document Service Wizard automatically generates a job that allows you to
save the document schema to a ile. This schema can be used by external applications
so that they know how to generate a valid document. You can change the location of
where the XML should be saved in the job.

However, you will most likely change the schema of the document using data
policies. In that case, you will have to generate a schema for each integration port
on which the document is used. The schema can be generated from the data policies
form by clicking on the View schema button. This schema will contain only the ields
that are enabled instead of all the ields that are generated by the job.

There is no real need to generate the XSD schema when using an adapter that
supports WCF.

Constraints
On the document class, the getConstraintList method is generated containing
three tasks to perform. This method must be implemented because it is abstract on
the parent class, AxdBase. However, constraints are a deprecated feature as there is
no way to set up constraints for endpoints anymore. Microsoft Dynamics AX 2012
does offer a similar feature called legal values that you can specify when setting up
data policies.

To get rid of the tasks, just remove them and all code in the method that is
commented out. This will make sure no constraints are applied to the document.

Validation
Two tasks that deal with validation are added in the prepareForSaveExtended
method of the document class. The prepareForSaveExtended method is the
perfect location to place the validation for the entity as a whole, so add the
validation to it if applicable.

Our example is pretty simple so there is no need to add extra validation. When you
do need validation of your entity, a good example is the prepareForSaveExtended
method of the AxdSalesOrder class.

Chapter 3

[65]

Updating the service contract
A very important component that is generated by the AIF Document Service Wizard
is the service node. However, you may want to update the namespace of this service.
To do this, perform the following steps:

1. Open the AOT by pressing Ctrl + D.

2. Go to the Services node, and locate the CVRTitleDocumentService service.

3. Change the Namespace property to http://schemas.contoso.com/
ServiceContracts.

4. Click on the Save All button to save the changes.

Finally, after all of the objects have been created, you might have to register the new
service and its operations in one of the following ways:

1. Either go to System administration | Setup | Checklists | Initialization
checklist | Initialize system | Set up Application Integration Framework.
This is what we did in Chapter 2, Service Architecture and Deployment, when
we created an integration port.

2. Or else you can right-click on the service, then click on Add-Ins | Register
service, and click on the Refresh button.

Fixing best practice errors
The project will contain best practice errors. To check for errors, right-click on the
project, then click on Add-Ins, and inally click on Check best practices. The output
will be displayed in the Compiler output window.

Privileges
The Application Integration Framework uses the role-based security framework.
This means that whoever uses the service operation has to have a role that allows
them to invoke that service operation.

You will have to create a privilege for each service operation of the service. To create
a privilege for the update operation, perform the following steps:

1. Open the AOT by pressing Crtl + D.

2. Expand the Security node and right-click on the Privileges node, then click
on New Privilege.

3. Rename the privilege using the <NameOfService><ServiceOperation>
format. For example, CVRTitleDocumentServiceUpdate.

AIF Document Services

[66]

4. Right-click on the privilege and click on Properties. In the properties, enter a
label in the label ield.

5. Click on the Save All button to save the changes.

Repeat these steps for all of the service operations. When all privileges have been
created, perform the following steps to add them to the ServiceOperations duty:

1. Open the AOT by pressing Ctrl + D.

2. Expand the Security and Duties node and locate the ServiceOperations duty.

3. Expand the node, then drag-and-drop all of the new privileges to the
Privileges node.

4. Click on the Save All button to save the changes.

The ServiceOperations duty contains privileges for all of the service operations in
the system. This ensures that the system administrators have access to these service
operations. When other roles need access to a speciic service operation, you
should add that privilege to an appropriate duty for that role.

Setting mandatory ields
The Id ield of the CVRTtitle table is mandatory, but we want the service to use the
number sequence that is deined for the ield. The initValue method of the table
automatically generates an ID for each record so there is no need to set the ield as
mandatory in our service.

To achieve this, we will override the initMandatoryFieldsExemptionList method
of the AxCVRTitle class so it looks like the following code:

protected void initMandatoryFieldsExemptionList()

{

 super();

 // Set the Id field as not mandatory since we are going to use a
number sequence for the Id

 this.setParmMethodAsNotMandatory(methodstr(AxCVRTitle, ParmId));

}

If you ever want to set a ield as mandatory on your document that isn't mandatory
on the table, you can override the initMandatoryFieldsMap method on the
document class of your service.

Chapter 3

[67]

Updating an existing document service
In some cases you will want to update an existing document service. For example,
when you have added a data source to an existing document query, or when you
want to add a service operation to an existing document service. To assist you with
that, you can use the Update document service form.

To open this form, open the Development Workspace and click on Tools |
Application Integration Framework | Update document service:

Adding service operations
As you can see in the previous screenshot, you can select new operations to add
to the document service. Click on OK to add the selected service operations to the
document service. This will update the document and service classes so that the
new operations are supported.

The only thing left for the developer to do is to manually add the service operation
to the service node. To do this, go to the Services node in the AOT, expand the node
of the service that was updated, then right-click on the Operations node and click on
Add operation to add the new operations.

AIF Document Services

[68]

Updating supporting classes
When ields or data sources have been added to the query of an existing document
service, supporting classes will have to be created or regenerated. In this case, select
the Regenerate data object classes and Update AxBC classes options.

When a ield has been removed, the parm and set methods will not automatically be
deleted from the AxBC classes so you'll have to do this manually before you update
the document service.

As always, after changing the services, it's a good idea to register them again.

Deploying a document service
The development phase of the document service is complete, so now it is ready
to be deployed. We need an enhanced integration port for this service because we
will demonstrate how to use the getKeys and getChangedKeys operations. These
operations require that document ilters are enabled, a feature that is only available
on enhanced ports.

The steps that need to be performed to create an enhanced port have already been
described in Chapter 2, Service Architecture and Deployment. Look for the section on
Enhanced ports and follow the steps in it to create one. Make sure the Port name ield
is set to CVRDocumentServicesEnhanced and that all of the service operations of
the CVRTitleDocumentService service are added to the exposed service operations.

Consuming a document service
Let's head to Visual Studio and start consuming the document service that we
created. You can open the Visual Studio project for this chapter, which is included in
the code iles for the book, to see the service in action.

If you are a more experienced Visual Studio user, you can create a project yourself.
In Visual Studio, create a project for a console application by going to File | New |
Project…. In the Installed Templates section, select Visual C# | Windows. Choose
a project of type Console Application, insert a name and location for the project, and
click on OK.

To add the service reference, in the Solution Explorer right-click on the Service
References node of your project and click on Add Service Reference…. Enter the
WSDL location in the address ield and click on Go. Of course, you'll need to replace
DYNAX01:8101 with the server and port of your installation. You should see a form
similar to the following screenshot. Enter TitleServiceRef in the Namespace ield
and click on OK:

Chapter 3

[69]

In the following sections, we will go through all of the operations available on the
service by using a console application. The console application prompts the user to
select the action that needs to be executed. We will only look at the methods that
consume the service. For the complete sample application, download and install
the sample project for this chapter, which is included in the code iles for the book.

Create
The irst service operation lets us insert records into Microsoft Dynamics AX. The
low for using the Create operation is as follows:

• Create a new record entity and ill in the ield information
• Create a new document instance and put in the table entity array containing

the entities you want to insert

• Invoke the Create operation returning the entity keys of the inserted records

AIF Document Services

[70]

The following code reads an XML ile containing some sample titles to insert:

static void createTitles()

{

 List<MovieTitle> sampleTitles;

 int i = 0;

 // Read the XML file containing the sample data into a list

 using (var reader = new StreamReader
(@"C:\Temp\TitleDemoData.xml"))

 {

 XmlSerializer deserializer = new
XmlSerializer(typeof(List<MovieTitle>));

 sampleTitles = (List<MovieTitle>)
deserializer.Deserialize(reader);

 }

 // For all of the titles, create a title in the Ax database

 foreach (MovieTitle title in sampleTitles)

 {

 i++;

 // Create a title entity

 AxdEntity_CVRTitle titleEntity = new AxdEntity_CVRTitle();

 // Fill in all the fields

 titleEntity.Name = title.Name;

 titleEntity.Description = title.Description;

 titleEntity.LengthInMinutes = Convert.ToInt32(title.Length);

 // For int and real values, you must flag them as fill in

 // This is to tell Dynamics that they are not null, but the
default value

 titleEntity.LengthInMinutesSpecified = true;

 // Create a title document instance

 AxdCVRTitle titleDocument = new AxdCVRTitle();

 // Initialize the list of title entities in the document

 // CVRTitle is a list of title entities

 titleDocument.CVRTitle = new AxdEntity_CVRTitle[1] {
titleEntity };

 // Create an instance of the document service client

Chapter 3

[71]

 using (CVRTitleDocumentServiceClient client = new
CVRTitleDocumentServiceClient())

 {

 // Insert the title in Ax

 EntityKey[] entityKeys = client.create(null, titleDocument);

 // Report progress to the user

 Console.WriteLine(String.Format("Title {0} created",
titleEntity.Name));

 }

 }

}

After executing the previous code, we can see the titles within Microsoft
Dynamics AX:

Find
The Find operation uses a QueryCriteria object containing the criteria to ilter
on and returns a document containing record entities. The low for using the Find
operation is as follows:

• Create a QueryCriteria object containing criteria elements

• Invoke the Find operation to retrieve a document instance containing the
resulting records

AIF Document Services

[72]

Creating query criteria
For some operations, including the Find operation, it is required to pass a
QueryCriteria object. Based on this QueryCriteria object, records are queried
in Microsoft Dynamics AX. To facilitate the creation of QueryCriteria instances,
a method was created, as follows:

static QueryCriteria createSingleCriteria(string dataSource

 , string fieldName

 , Operator op

 , string value1

 , string value2)

{

 // Prepare a queryCriteria instance

 QueryCriteria criteria = new QueryCriteria();

 // Create a criteria element that represents a query range

 CriteriaElement criteriaElement = new CriteriaElement();

 criteriaElement.DataSourceName = dataSource;

 criteriaElement.FieldName = fieldName;

 criteriaElement.Operator = op;

 criteriaElement.Value1 = value1;

 criteriaElement.Value2 = value2;

 // Put the criteria element in the QueryCriteria instance

 criteria.CriteriaElement = new CriteriaElement[1]

 {

 criteriaElement

 };

 return criteria;

}

Using Find
Now that we have a way to create the query criteria needed for the Find operation,
we can go ahead and use the Find operation to get the data from Microsoft
Dynamics AX.

static void getTitles_Find()

{

 // Variable to hold the title document

 AxdCVRTitle titleDocument = new AxdCVRTitle();

Chapter 3

[73]

 // Create a criteria element that selects titles that run over
110 minutes

 QueryCriteria criteria = Program.createSingleCriteria("CVRTitle"
, "LengthInMinutes", Operator.Greater, "110", null);

 // Create a client for as long as we need to

 using (CVRTitleDocumentServiceClient client = new
CVRTitleDocumentServiceClient())

 {

 // Find the titles that match the criteria

 titleDocument = client.find(null, criteria);

 // Loop all the titles

 foreach (AxdEntity_CVRTitle title in titleDocument.CVRTitle)

 {

 // Report the results to the console window

 Console.WriteLine(title.Id + ' ' + title.Name + ' ' +
title.LengthInMinutes);

 }

 }

}

A part of the result looks as follows:

T-000504 Schindler's List 114

T-000505 The Dark Knight 119

T-000506 The Lord of the Rings: The Return of the King 112

T-000509 Fight Club 115

Read
The Read operation sounds like the Find operation, but there is a difference. Find
uses query criteria as input and returns the title document immediately with all of
the resulting rows. Read returns the same document, but does not take query criteria
as a parameter. Instead, Read uses a set of Entitykey objects as input. As a result,
the Read operation only returns one record for each entity key in the set, because the
entity keys correspond to the primary key of the record.

You could be asking yourself why you would want to use Read instead of Find if
the latter gives you the same result in one operation. Well the answer is twofold.

The irst scenario is one where you have already cached the entity keys in your
application. In other words, you already know the unique key of the records you
want to retrieve. Then you can just construct an array of entity keys and invoke
the Read operation.

AIF Document Services

[74]

The low for using the Read operation with custom entity keys is as follows:

• Create an array of Entitykey objects containing the keys of records
you want to ind

• Invoke the Read operation to return a document containing the
related records

The following is the code implementation:

static void getTitle_ReadWithEntityKey()

{

 // Let the user enter an Id in the console window

 Console.WriteLine("Enter a title Id to look for :");

 string titleId = Console.ReadLine();

 // Create an instance of the keyfield containing the title id to
search for

 KeyField keyField = new KeyField() { Field = "Id", Value =
titleId };

 // Create an entity key instance and put in the key field data

 EntityKey entityKey = new EntityKey();

 entityKey.KeyData = new KeyField[1] { keyField };

 // Create an array of entity keys and put in the previously
created key

 EntityKey[] entityKeys = new EntityKey[1] { entityKey };

 AxdCVRTitle titleDocument = new AxdCVRTitle();

 // Create a client for as long as we need to

 using
(CVRTitleDocumentServiceClient client = new
CVRTitleDocumentServiceClient())

 {

 // Use the keys to read all of the titles

 titleDocument = client.read(null, entityKeys);

 }

 // Loop all the titles to report to the console window

 foreach (AxdEntity_CVRTitle title in titleDocument.CVRTitle)

 {

 Program.printSingleTitle(title);

 }

}

Chapter 3

[75]

If we execute the previous code for title ID T-000505, the following result is printed
to the console window:

T-000505 The Dark Knight 119

FindKeys
A second scenario in which you can use the Read operation is in combination with
the FindKeys operation. This can enhance performance. Let's say that you have a
.NET application that queries Microsoft Dynamics AX. It's possible that your query
will return a large number of records, but you want to use paging so you don't have
to load all of the data at once. So you can use the FindKeys operation to return only
the keys of the records instead of all of the ields. Once you have the keys, you can
implement paging in your application and call the Read operation with the subset
of keys that are actually needed.

The low for using the Read operation with FindKeys is as follows:

• Create a QueryCriteria instance containing the criteria for inding records
• Invoke the FindKeys operation to retrieve the keys that match the query

• Using the keys, invoke the Read operation to return a document containing
the related records

The following is the code implementation:

static void getAllTitles_ReadWithFindKeys()

{

 // Variable to hold the title document

 AxdCVRTitle titleDocument = new AxdCVRTitle();

 // Create a criteria element that selects titles that run over
110 minutes

 QueryCriteria criteria = Program.createSingleCriteria("CVRTitle"
, "LengthInMinutes", Operator.Greater, "110", null);

 // Create a client for as long as we need to

 using (CVRTitleDocumentServiceClient client = new
CVRTitleDocumentServiceClient())

 {

 // Call the findKeys operation to fetch all of the keys that
match the query criteria

 EntityKey[] entityKeys = client.findKeys(null, criteria);

 // Check if we had matching titles

AIF Document Services

[76]

 if (entityKeys.Length > 0)

 {

 // Use the keys to read all of the title records

 titleDocument = client.read(null, entityKeys);

 }

 }

 if (titleDocument != null)

 {

 // Loop all the titles to report to the user

 foreach (AxdEntity_CVRTitle title in titleDocument.CVRTitle)

 {

 Console.WriteLine(title.Id + ' ' + title.Name + ' ' +
title.LengthInMinutes);

 }

 }

}

As we are using the same query criteria, we should see the same result as the Find
operation. A part of the result looks as follows:

T-000504 Schindler's List 114

T-000505 The Dark Knight 119

T-000506 The Lord of the Rings: The Return of the King 112

T-000509 Fight Club 115

Update
To update records in the Microsoft Dynamics AX database, the Update operation
can be used. First you need to use the Read operation to get the records that you
want to update. For that, you need to specify the entity keys. Once you have the
document containing the records that you want to update, you can edit the ields
and then call the Update operation. The basic low for updating records is
as follows:

• Create an array of Entitykey objects

• Invoke the Read operation to retrieve the data from Microsoft Dynamics AX

• Update the ields that you want to change
• Change the action property on the changed records to update

• Invoke the Update operation

Chapter 3

[77]

The following is the code implementation:

static void updateTitle()

{

 Console.WriteLine("Enter a title Id to look for :");

 string titleId = Console.ReadLine();

 // Create an instance of the keyfield containing a record id to
search for

 KeyField keyField = new KeyField() { Field = "Id", Value =
titleId };

 // Create an entity key instance and put in the key field data

 EntityKey entityKey = new EntityKey();

 entityKey.KeyData = new KeyField[1] { keyField };

 // Call the findKeys operation to fetch all of the keys that
match the query criteria

 EntityKey[] entityKeys = new EntityKey[1] { entityKey };

 // Create a client for as long as we need to

 using (CVRTitleDocumentServiceClient client = new
CVRTitleDocumentServiceClient())

 {

 // Use the keys to read all of the titles

 AxdCVRTitle titleDocument = client.read(null, entityKeys);

 // Get the CVRTitle record entity

 AxdEntity_CVRTitle title = titleDocument.CVRTitle.First();

 title.Description = "Updated Description";

 title.action = AxdEnum_AxdEntityAction.update;

 title.actionSpecified = true;

 // Invoke the update operation

 client.update(null, entityKeys, titleDocument);

 }

}

Delete
As you might have already guessed, the Delete operation will delete records from
Microsoft Dynamics AX. The low for using the Delete operation is as follows:

• Create an array of EntityKey objects

• Invoke the Delete operation to delete the data from Microsoft Dynamics AX

AIF Document Services

[78]

The following code will prompt the user to enter a title ID and then delete that title
from Microsoft Dynamics AX:

static void deleteTitle()

{

 // Let the user enter an Id in the console window

 Console.WriteLine("Enter a title Id to delete :");

 string titleId = Console.ReadLine();

 // Create an instance of the keyfield containing the title id to
search for

 KeyField keyField = new KeyField() { Field = "Id", Value =
titleId };

 // Create an entity key instance and put in the key field data

 EntityKey entityKey = new EntityKey();

 entityKey.KeyData = new KeyField[1] { keyField };

 // Create an array of entity keys and put in the previously
created key

 EntityKey[] entityKeys = new EntityKey[1] { entityKey };

 using (CVRTitleDocumentServiceClient client = new
CVRTitleDocumentServiceClient())

 {

 client.delete(null, entityKeys);

 }

}

GetKeys
The GetKeys operation will return the keys for records that match the document
ilters conigured on the integration port. Each document ilter that is conigured
for the integration port returns a set of keys and these will be combined into the
resulting set. Document ilters are only available on enhanced integration ports.

Document ilter
For the sake of this demonstration, we assume that on the port used by the
CVRTitleDocumentService service, the following document ilter is added:

Chapter 3

[79]

Using GetKeys
The low for using the GetKeys operation is as follows:

• Create a DocumentPaging object containing the number of keys to
return (optional)

• Invoke the getKeys operation that returns the entity keys that match the
document ilter

• Use the Read operation to retrieve the data of the related records
when needed

The following code uses the GetKeys operation to fetch the records from Microsoft
Dynamics AX that match the document ilter we just discussed:

static void getKeys()

{

 AxdCVRTitle titleDocument = new AxdCVRTitle();

 // Create a client for as long as we need to

AIF Document Services

[80]

 using (CVRTitleDocumentServiceClient client = new
CVRTitleDocumentServiceClient())

 {

 // Call the findKeys operation to fetch all of the keys that
match the document filter

 EntityKeyPage keyPage = client.getKeys(null, null);

 // Fetch the entity key list from the page

 EntityKey[] entityKeys = keyPage.EntityKeyList;

 // Check if we had matching titles

 if (entityKeys.Length >= 0)

 {

 // Use the keys to read all of the titles

 titleDocument = client.read(null, entityKeys);

 }

 }

 // Loop all the titles to report to the console

 foreach (AxdEntity_CVRTitle title in titleDocument.CVRTitle)

 {

 Console.WriteLine(title.Id + ' ' + title.Name + ' ' +
title.LengthInMinutes);

 }

}

Based on the document ilter that selects titles starting with "The", a part of the
resulting titles looks as follows:

T-000499 The Godfather 102

T-000500 The Godfather: Part II 102

T-000502 The Good, the Bad and the Ugly 97

T-000505 The Dark Knight 119

T-000506 The Lord of the Rings: The Return of the King 112

T-000507 The Dark Knight Rises 103

GetChangedKeys
The GetChangedKeys operation also fetches the keys of records from Microsoft
Dynamics AX that match the document ilter. But in addition to this, it also restricts
the returned keys to records that have changed since a given date and time.

Chapter 3

[81]

Change tracking

To be able to use getChangedKeys, SQL Server Change Tracking has to
be conigured. Once change tracking has been conigured, the integration
ports will need to be reactivated.

Information about change tracking can be found at the following links:

• Configuring AIF for change tracking: http://msdn.
microsoft.com/en-us/library/hh433529.aspx

• Enabling/disabling change tracking for SQL Server: http://
technet.microsoft.com/en-us/library/bb964713.aspx

• Enabling/disabling change data capturing: http://technet.
microsoft.com/en-us/library/cc627369

The low for using the GetChangedKeys operation is the same as the one for using
the getKeys operation. The difference is that you can retrieve only the records
that have changed since a given date instead of all records that the document
ilter applies to.

The following code shows the use of the same document ilter, but with change
tracking to further narrow the list down to only the records that were changed.
This assumes that we have updated records with change tracking enabled.

static void getChangedKeys()

{

 AxdCVRTitle titleDocument = new AxdCVRTitle();

 // Create a client as long we only need to

 using (CVRTitleDocumentServiceClient client = new
CVRTitleDocumentServiceClient())

 {

 // Call the getChangedKeys operation to fetch all of the keys
that were changed

 // The change date used here was 2012/07/29 20:30

 EntityKeyPage keyPage = client.getChangedKeys(null, null, new
DateTime(2012, 08, 01, 00, 25, 00));

 // Fetch the entity key list from the page

 EntityKey[] entityKeys = keyPage.EntityKeyList;

 // Check if we had matching titles

 if (keyPage.PageStatus == EntityKeyPageStatus.Success &&
entityKeys.Length > 0)

AIF Document Services

[82]

 {

 // Use the keys to read all of the titles

 titleDocument = client.read(null, entityKeys);

 }

 }

 // Loop all the titles to report to the console

 foreach (AxdEntity_CVRTitle title in titleDocument.CVRTitle)

 {

 Console.WriteLine(title.Id + ' ' + title.Name + ' ' +
title.LengthInMinutes + ' ' + title.Description);

 }

}

As we have updated one record for this sample, the result was:

T-000505 The Dark Knight 119 Updated Description for the dark knight

Asynchronous communication
So far in this chapter we have focused on synchronous communication using
the NetTcp adapter. The ile system adapter and the MSMQ adapter work
asynchronously and differently to synchronous adapters.

Asynchronous adapters use two tables to store messages:

• AifGatewayQueue: The AifGatewayQueue table is used in asynchronous
processing of both inbound and outbound messages. Inbound messages are
stored in this table after they are retrieved by the gateway receive service.
Outbound messages are stored in this table after they are processed by the
outbound processing service.

• AifOutboundProcessingQueue: The AifOutboundProcessingQueue table is
used by the send service framework to store requests for outbound messages.
These requests are then processed by the outbound processing service that
stores a message in the AifGatewayQueue table.

Chapter 3

[83]

The following lowchart displays the relationship between the tables and the classes
that are used for asynchronous communication:

Start

Direction

OutboundInbound

AX business data

AxdSend

AifOutboundPro

cessingQueue

table

AifOutboundProces

singService

AifGetwayQueue

table

AifGatewaySend

Service

Output document

Input document

AifGateWayReceive

Service

AifInboundProcess

ingService

AifGetwayQueue

table

AX business data

END

AIF Document Services

[84]

Send service framework
You can use the send service framework when you want to send outbound messages
to asynchronous adapters. The following job demonstrates how you can send
documents containing titles to an outbound port:

static void CVRAxdSendTitles(Args _args)

{

 AxdSend axdSend = new AxdSend();

 AifConstraintList aifConstraintList = new AifConstraintList();

 AifConstraint aifConstraint = new AifConstraint();

 aifConstraint.parmType(AifConstraintType::NoConstraint);

 aifConstraintList.addConstraint(aifConstraint);

 axdSend.sendMultipleDocuments(classNum(CVRTitleDocument),
classNum(CVRTitleDocumentService), AifSendMode::Async,
aifConstraintList);

}

When you run the job, the following dialog will appear:

In this dialog you can select an outbound port in the Port name ield. In
order for this to work, you should create an outbound port and add the
CVRTitleDocumentService.find operation to the service operations that are
exposed by the port. The Find operation is the default operation used by the
AxdSend.sendMultipleDocuments method, as this method uses a query.
You can change this query by clicking on the Select button.

In a real-life scenario, you should create a new class that extends the AxdSend
class instead of creating a job. This will allow you to customize the behavior
of the AxdSend class.

When you click on OK, a record will be inserted in the AifOutboundProcessingQueue
table. To process this record we will need to set up batch processing, which is what we
will discuss next.

Chapter 3

[85]

Batch processing
When you use an asynchronous adapter such as the ile system adapter or the
MSMQ adapter, you will have to schedule batch tasks to process the messages
that are exchanged.

To enable batch processing for asynchronous communication, perform the
following steps:

1. Go to System Administration | Inquiries | Batch jobs.

2. Press Ctrl + N to create a new batch job and enter a description, for example
AIF asynchronous processing.

3. Select the new batch job and click on View tasks.

4. Press Ctrl + N and enter AifGateWayReceiveService in the Class name
ield. Also select the appropriate company account and save the record.

5. Repeat the previous step for these classes: AifInboundProcessingService,
AifOutboundProcessingService, and AifGatewaySendService. Be sure to
add them in that sequence.

6. On all but the irst task, add a record in the Has conditions grid. The Task
ID ield should point to the task that comes before it and the Expected status
ield should be set to Ended. This will make sure the tasks are executed in the
correct order.

7. Exit the screen and click on Recurrence. Enter a recurrence pattern that its
your scenario and click on OK.

8. Finally, click on Functions | Change status, and set the status to Waiting.

When developing, waiting for a batch to start is not very eficient. The following job
processes the asynchronous messages just as the batches do, but saves your time
because it can be run manually:

static void CVRRunAsycManually(Args _args)

{

 // read the messages

 new AifGateWayReceiveService().run();

 // process inbound messages in queue

 new AifInboundProcessingService().run();

 // process outbound messages in queue

 new AifOutboundProcessingService().run();

 // send messages

 new AifGateWaySendService().run();

 info('done');

}

AIF Document Services

[86]

Summary
In this chapter we created our irst document service in Microsoft Dynamics AX
2012. Document services distinguish themselves from other types of services
because they can be created using a wizard. This wizard creates components
that are speciic to document services and uses them in AIF.

In doing this, the AIF Document Service Wizard allows developers to create services
that are capable of CRUD (Create, Read, Update, Delete) operations on complex
documents. The advantage of using document services operations over other
solutions such as creating data using SQL statements is that the business logic that
is contained in all of the components that make up the service are also executed,
such as defaulting and validation of values.

Document services are great for exposing documents, but not so much for exposing
pure business logic. In the next chapter, we will discuss a type of service that is ideal
for this purpose: custom services.

Custom Services
The ability to develop custom services in Microsoft Dynamics AX is not new, but the
way it is done in Microsoft Dynamics AX 2012 is. Developers can now create a WCF
service in a way similar to how they would develop a WCF service in a language
like C#. By using attributes to create data and service contracts, development is
simpliied as you don't have to worry about the technical details of serialization and
deserialization. These things are all handled by WCF, which allows you to create
powerful services, fast.

At the end of this chapter, you will have learned how to use attributes to create data
and service contracts and how to use them to create custom services. You will also be
able to deploy the service and consume it using a WCF application.

The following topics will be covered in this chapter:

• Key components: Just as some components are speciic to document services,
there are also components that are speciic to custom services. Most of these
components use attributes, so we'll see what that is all about too.

• Creating custom services: We will create a custom service step-by-step and
deploy it. This service will focus on retrieving data from Microsoft Dynamics
AX 2012 and exposing it. In another service, we will focus on a more complex
scenario. That scenario exposes business logic that allows you to create data
in Microsoft Dynamics AX 2012.

• Consuming a custom service: Finally, you will learn how to consume a
custom service in a .NET WCF application. This is similar to how a document
service is consumed.

Custom Services

[88]

Key components
In the previous chapter, we discussed the key components of document services.
When developing custom services, there are also a few concepts you should be
familiar with, starting with attributes.

Attributes
Attributes are classes that contain data just like normal classes, but the purpose of
this data is different. Attributes contain metadata that describes targets. Targets can
be of different types such as classes, interfaces, method, events, and so on.

Attributes can either be intrinsic or custom. Intrinsic attributes are part of the CLR
(Common Language Runtime) and are contained in the .NET framework. Custom
attributes are attributes that you can create yourself.

Because attributes contains metadata, they are only useful when relection is used.
An example of this is a DataContract attribute. The service generation process uses
relection on the classes that the service class uses to determine which of these classes
are data contracts.

The following code shows the usage of another attribute called the
SysObsoleteAttribute. It tells the compiler to generate warnings or errors
suggesting that the class has become obsolete and should therefore not be
used anymore:

[SysObsoleteAttribute("You should be using the SysOperation framework
now instead RunBase", false)]

class RunBase

{

}

Custom services attributes
When you create custom services, you will certainly encounter some attributes in
X++ that provide metadata to the service generation process. The following table
shows the most commonly used attributes:

Chapter 4

[89]

Attribute Description

SysEntryPointAttribute This is a mandatory attribute in methods that
are exposed as a service operation. It indicates
that the method is a service operation. Not
using this attribute will result in a service
group deployment failure.

An optional parameter specifies whether the
AOSAutorization setting on the tables will
be checked when this method is executed on
the server.

DataContractAttribute Defines that the attributed class is used as a
data contract for a service.

DataMemberAttribute Indicates that a parameter method is a data
member in a data contract for a service.

AifCollectionTypeAttribute This attributes specifies the type that is used
in a collection. It contains the name of the
parameter that is targeted and the types of the
objects that are contained in the collection.

Data contracts
Because a service and client don't necessarily use the same types internally, they
must agree on the type they will use to exchange data. This agreement, or contract if
you will, is called a data contract, and is used to describe these data types. The data
contract is then used to serialize and deserialize the type.

Services use data contracts to describe the parameters and the return types for their
service operations. However, there are some types that can be serialized without
using data contracts. The following types serve as implicit data contracts:

• Primitive types (such as str, int, int64, real, guid, utcdatetime,
and date)

• Extended data types

• Base enums

• Collections in which all elements are the same type and are of a type
that is a valid data contract

• Tables and views

One noticeable exception is the X++ AnyType type, which cannot be used in data
contracts. On the other hand, any .NET type that can be serialized by WCF can be
used as a data contract, which more than makes up for that.

Custom Services

[90]

If you need types other than the ones that are described in the preceding table, you
can always create your own data contract in X++. A data contract can be created in the
AOT by creating a new class, and by adding the DataContractAttribute attribute to
the class declaration. You will do this a lot when developing custom services.

Of course, a class without properties cannot hold any data, so to complete the data
contract you must add data members in the form of methods. You can use the
DataMemberAttribute attribute to specify that a method is a data member. The data
members themselves can use data contracts or any of the types described previously
as return types and parameters.

Service contracts
When we talked about the WCF, we saw that a service contract describes the
functionality that is exposed. In Microsoft Dynamics AX 2012, you can create a
service contract by creating a class in the AOT. This class is called a service class.
A service class does not need an attribute to specify that it is a service contract,
although it is required that this class has the RunOn property set to Server.

But when you create such a class, all you have is just a regular class that runs on the
server when it is executed. What makes a class a true service class is having methods
that are service operations. These methods must have the SysEntryPointAttribute
attribute to indicate that they are service operations.

Collection types
X++ does not know strongly-typed collections, so when we want
to return or receive a collection of data contracts, we have to use
AifCollectionTypeAttribute. This attribute is used to specify the type of the
collection, both for parameters and return types.

It's possible to specify the following ive parameters when using the attribute:

Parameter Description

Parameter name Specifies for which parameter the attribute applies. This is either
the name of the parameter, or return for return values.

Item type The base type of the collection, or key value when the collection
is a map.

Extended type
name

When the type is Class, Enum, or UserType, this specifies the
name of the type.

Chapter 4

[91]

Parameter Description

Value type When the collection type is a map, this is the type of the value in
the map.

Value extended
type name

When the collection type is a map, and the type is Class, Enum,
or UserType, this specifies the name of the type.

Creating custom services
In this section, we will discuss two custom services. One service focuses on exposing
data from Microsoft Dynamics AX 2012, the other on exposing business logic.

The Title service
We will use the CVRTitleService service as an example to demonstrate how to
create a simple yet powerful service. The service will allow an external program
to do the following two things:

• Retrieve details of a title based on its ID

• Retrieve a list of all titles

The Title data contract
Let's start by creating a new class for the data contract that will contain the data for
one title. Create a new class and name it CVRTitleContract. In the class declaration,
add DataContractAttribute to specify that the class is a data contract. Also declare
the variable's ID, name, and description as shown in the following code snippet:

[DataContractAttribute('Title')]

public class CVRTitleDataContract

{

 CVRTitleId id;

 CVRTitleName name;

 Description description;

}

Next, add three parameter methods, one for each of the properties of the data
contract. Use DataMemberAttribute to indicate that the methods are data
contract members:

[DataMemberAttribute('Description')]

public Description parmDescription(Description _description =
description)

{

Custom Services

[92]

 ;

 description = _description;

 return description;

}

[DataMemberAttribute('Id')]

public CVRTitleId parmId(CVRTitleId _id = id)

{

 ;

 id = _id;

 return id;

}

[DataMemberAttribute('Name')]

public CVRTitleName parmName(CVRTitleName _name = name)

{

 ;

 name = _name;

 return name;

}

As you can see in the preceding code, we construct the attributes using an optional
string parameter. This parameter is the name. Because we do that, a client application
can get the value of a member using code such as title.Description. If we didn't
pass a name, the client application would have to use CVRTitleDataContract.
parmDescription instead, which doesn't look as neat. It's better not to expose the
preixes and other naming conventions speciic to Microsoft Dynamics AX such as
the DataContract sufix and parm preix.

Essentially, you now have a functional data contract. However, there are a few
tweaks that we can still perform when constructing the data contract. Because our
contract is tied to a record of the type CVRTitle, we can create a static new method
that creates an instance of the data contract based on a record of this type. Note,
these steps are optional, but performing them has the following main advantages:

• In Microsoft Dynamics AX 2012, it is impossible to create an instance of the
contract in a way other than that the developer intended, because both the
new and construct method are not publicly available. This way a developer
is less likely to make mistakes.

• When creating an instance of the data contract, you will have less coding
to do because the contract is illed in the static new method. This will make
your code cleaner and easier to understand.

Chapter 4

[93]

Start by overriding the new method, and set it as protected so only the
CVRTitleDataContract class or one of its subclasses can call the method:

protected void new()

{

}

Always create a construct method for your classes, but if it doesn't return a valid
instance, set it as private. A valid instance means that when constructed, all of the
variables needed for execution have to be initialized. Creating an instance of the data
contract using the construct method isn't valid in this case because the properties
id, name, and description are not set.

private static CVRTitleDataContract construct()

{

 return new CVRTitleDataContract();

}

Finally, create a static new method that takes a CVRTitle record as a parameter, uses
it to construct an instance of the CVRTitleDataContract class, and returns it:

public static CVRTitleDataContract newFromTableRecord(CVRTitle _
title)

{

 CVRTitleDataContract contract = CVRTitleDataContract::construct();

 ;

 contract.parmId(_title.Id);

 contract.parmName(_title.Name);

 contract.parmDescription(_title.Description);

 return contract;

}

Best practices

These recommendations are based on the best practices deined by
Microsoft at http://msdn.microsoft.com/en-us/library/
aa854210.aspx.

So there you go, you have created your irst data contract. That wasn't too hard, was it?
Now let's see how we can create a list data contract, which is a little more complex.

Custom Services

[94]

The Title list data contract
We will create a list data contract using the data contract that we just created.
Start by creating a new class, and name it CVRTitleListDataContract. Add the
DataContractAttribute attribute to it to declare that the class is a data contract,
and add a list variable that will store a list of titles:

[DataContractAttribute]

public class CVRTitleListDataContract

{

 List titleList;

}

Next, we add the usual constructers, new and construct. Also, don't forget to
initialize the list object:

protected void new()

{

 titleList = new List(Types::Class);

}

public static CVRTitleListDataContract construct()

{

 return new CVRTitleListDataContract();

}

Next, we have to provide a way to add titles to the list. Add a method that takes
a title data contract and adds it to the end of the list, as shown in the following
code snippet:

public void addTitleToList(CVRTitleDataContract _titleDataContract)

{

 titleList.addEnd(_titleDataContract);

}

Finally, we add the data member method that will return a list of titles. Add the
DataMemberAttribute attribute as you would for every other data member, but also
add two more attributes of the type AifCollectionTypeAttribute, as shown here:

[DataMemberAttribute

,AifCollectionTypeAttribute('return', Types::Class,
classstr(CVRTitleDataContract))

,AifCollectionTypeAttribute('_titleList', Types::Class, classstr(CVRTi
tleDataContract))]

public List parmTitleList(List _titleList = titleList)

Chapter 4

[95]

{

 titleList = _titleList;

 return titleList;

}

As we've discussed before, the AifCollectionTypeAttribute attribute is used
to specify the type of the list, because X++ does not support strongly-typed lists.
In this case, AifCollectionTypeAttribute takes the following three parameters:

• The name of the parameter, in this example _titleList. For the return
value, the name is return.

• The base type of the type, which is Class in this example.

• The name of the type, in our case the class name is CVRTitleDataContract.

This concludes the creation of the two contracts that we will need for our service.
Now let's see how we can use them.

The Title service class
We will create a service class that has the following two service operations:

• An operation that returns the details of a title based on its ID

• An operation that returns all of the titles

First, we create a service class. Create a new class and name it CVRTitleService.
We do not need to add anything more to the class declaration, because a service
class declaration does not need an attribute.

public class CVRTitleService

{

}

One thing we have to make sure is that this class runs on the server when it is
executed. To do this, right-click on the class, then click Properties, and set the
RunOn property to Server.

Custom Services

[96]

The Title list service operation
Ok, let's create a service operation that retrieves the details of a title based on its ID.
Start by creating a new method. You can see the source code of this method in the
following snippet. As you can see, we add the SysEntryPointAttribute attribute to
specify that the method is a service operation. We add true between brackets when
constructing the attribute to specify that AOS authorization has to be performed
when the code runs on the server. This will make sure that the user that calls the
service operations has the necessary permissions on the tables that the method uses.

[SysEntryPointAttribute(true)]

public CVRTitleDataContract getTitle(CVRTitleId _titleId)

{

 CVRTitleDataContract contract;

 ;

 contract = CVRTitleDataContract::newFromTableRecord
(CVRTitle::find(_titleId));

 return contract;

}

As you can see further in the method, we use the _titleId parameter to ind the
record in the database, and construct a new data contract with it. Then we return
the data contract.

The Title list service operation
This service operation will use the list data contract to return a list of all titles. As you
can see in the following code, all titles in the CVRTitle table are traversed. Then a
data contract is constructed, and is added to the list contract. Finally, a list contract
containing the details of all of the titles is returned:

[SysEntryPointAttribute(true)]

public CVRTitleListDataContract getAllTitles()

{

 CVRTitleListDataContract titleListDataContract =
CVRTitleListDataContract::construct();

 CVRTitleDataContract titleContract;

 CVRTitle titleRecord;

 ;

 while select titleRecord

 {

Chapter 4

[97]

 // Convert the record to a data contract

 titleContract = CVRTitleDataContract::newFromTableRecord
(titleRecord);

 // Add the title data contract to the list of data contracts

 titleListDataContract.addTitleToList(titleContract);

 }

 return titleListDataContract;

}

The Title service contract
The inal thing we have to do before we can deploy our service, is deine the service
contract. To create the service contract, follow these steps:

1. Open the AOT by pressing Crtl + D.

2. Right-click on the Services node, and then click New Service.

3. Right-click on the newly created service, and then click Properties.

4. Change the Name and Class properties to CVRTitleService.

5. Change the Namespace property to http://schemas.contoso.com/
ServiceContracts.

6. Expand the CVRTitleService node, right-click on Operations, and click
Add Operation.

7. The Add service operations form pops up. Select the Add ield for the
getAllTitles and getTitle methods, then Click OK.

8. Click on the Save All button to save the changes.

Deploy the service
To deploy our custom services, we will use a basic port. For this reason, we need to
add the services that we want to deploy to a service group. We will add all of them
to one service group: CVRCustomServices. Let us deploy our custom service by
following these steps:

1. Open the AOT by pressing Crtl + D.

2. Right-click on the Service Groups node, and then click New Service Group.

3. Right-click on the newly created service group, and then select Properties.

4. Change the value of the Name property to CVRCustomServices.

5. Right-click on the service group and select New Service Node Reference.

Custom Services

[98]

6. Select the service node reference that was added and change the Service
property to CVRTitleService.

7. And inally, right-click the service group and click Deploy Service Group to
deploy the service.

Now that you have completed these steps, go to System administration | Setup
| Services and Application Integration Framework | Inbound ports. The
CVRCustomServices inbound port is available there as a basic inbound port,
and is now ready to be consumed.

The rental service
The contracts and service operations that we have made for retrieving titles are
pretty simple. That might be all you need in a real life application. However, it is
more likely that you will need data contracts that are more complex. To demonstrate
this, we've added the rental service to the demo application. The rental service
allows external applications to retrieve rental information, or create rentals.

Creating this service with all data contracts step-by-step would take too long, so we
will only discuss the artifacts at a high level, starting with the database schema of the
tables that we will use.

Rental header and line tables
The following is a simple schema of the tables that we will use. A rental header
contains information about the rental such as the store and the transaction date.
A rental header is related to one or more lines that contain the details of the rental,
such as the item that was rented.

Rental service operations
There are three service operations available in the rental service:

• CreateRental: This service operation takes a parameter of type
CVRRentalDocumentDataContract and uses it to register a rental
in the CVRRentalTable and CVRRental line tables

Chapter 4

[99]

• GetAllRentals: Returns a list of CVRRentalDocumentDataContract data
contracts by using the CVRRentalDocumentListDataContract data contract

• GetAllRentalsForMember: This service operation does the same as the
GetAllRentals operation, but only returns rentals for a speciic member

Rental data contracts
There are a total of ive data contracts that the rental service uses. The relationships
between these data contracts and the service operations are explained in the
following diagram:

From the bottom up, these are the contracts and their function:

• CVRRentalLineDataContract: This data contract contains the properties of a
rental line, including the title and the return date.

• CVRRentalLineListDataContract: This data contract contains a list of lines.
It uses AifCollectionTypeAttribute to describe that the list contains items
of the CVRRentalLineDataContract type.

• CVRRentalHeaderDataContract: This data contract contains the header
information about a rental, including the member ID and the transaction date.

Custom Services

[100]

• CVRRentalDocumentDataContract: This data contract represents a rental
document. It contains a header and a list of lines, respectively using the
CVRRentalHeaderDataContract and CVRRentalLineListDataContract
types.

• CVRRentalDocumentListDataContract: This data contract contains
a list of rental documents and is used in the getAllRentals and
getAllRentalsForMember service operations.

This demonstrates that you can use data contracts within data contracts to make
logical entities. Although at irst glance it might seem complex, each class has its
own responsibilities, which makes them re-usable and easier to maintain.

The createRental service operation
Following is the createRental service operation. It uses the rental document data
contract to register a rental in the database:

[SysEntryPointAttribute(true)]

public CVRRentalRefRecId createRental(CVRRentalDocumentDataContract
_rentalDocument)

{

 CVRRentalTable rentalTable;

 CVRRentalLine rentalLine;

 CVRRentalLineDataContract lineDataContract;

 CVRRentalLineListDataContract lineListDataContract;

 ListEnumerator enumerator;

 ;

 // Insert the rental header

 rentalTable.clear();

 rentalTable.Id = _rentalDocument.parmHeaderContract().parmId();

 rentalTable.Member = CVRMember::find(_rentalDocument.
parmHeaderContract().parmMemberId()).RecId;

 rentalTable.Shop = CVRShop::find(_rentalDocument.
parmHeaderContract().parmShopId()).RecId;

 rentalTable.TransDate = _rentalDocument.parmHeaderContract().
parmTransDate();

 rentalTable.insert();

 // Get the list of rental lines

Chapter 4

[101]

 lineListDataContract = _rentalDocument.parmLinesContract();

 // Initialize an enumerator to loop the lines

 enumerator = lineListDataContract.parmRentalLineList().
getEnumerator();

 // As long as we have lines

 while(enumerator.moveNext())

 {

 // Get the current line

 lineDataContract = enumerator.current();

 rentalLine.clear();

 rentalLine.Rental = rentalTable.RecId;

 rentalLine.Title = CVRTitle::find(lineDataContract.parmTitleId()).
RecId;

 rentalLine.ReturnDate = lineDataContract.parmReturnDate();

 rentalLine.insert();

 }

 return rentalTable.RecId;

}

Now, let's see how we can consume the services that we have made using a .NET
WCF application.

Consuming the service
Now that we have created and exposed our custom services, they are ready to be
consumed. To do this, we use Visual Studio and write two code samples.

Example 1 – Retrieving titles
This irst example of consuming the service deals with the retrieval of a title list.
We want to be able to write a list of titles to the console window.

Adding the service reference
To add the service reference, perform the following steps:

1. In Visual Studio, create a console application.

2. Right-click on the Service References node and select the Add Service
Reference… button. The Add Service Reference window opens.

Custom Services

[102]

3. In the Address drop-down box, specify http://DYNAX01:8101/DynamicsAx/
Services/CVRCustomServices as the address for the service and then press
Go. The address is queried and the services and operations that are available
are listed.

4. In the Namespace dialog box, specify the namespace that you want to use:
AxCustomServicesRef.

After performing these steps, the Add Service Reference window should
look similar to the one shown in the following screenshot. On the left-hand
side of the window, the services that were found are listed. In our case, we see
CVRCustomServices along with the three other services that are contained in the
service group. On the right-hand side of the window, we see the operations that are
available for the selected service:

When you press OK, the ServiceModel Metadata Utility (SvcUtil.exe) creates a
client proxy and types according to the metadata found in the service WSDL. You
can view the types by opening the Object Browser menu.

Chapter 4

[103]

Consuming the service
To consume the service and retrieve a list of titles, you can use the following code:

static void Main(string[] args)

{

 // Create an instance of the proxy client

 CVRTitleServiceClient theClient = new CVRTitleServiceClient();

 // Create the call context

 CallContext theContext = new CallContext();

 theContext.Company = "CEU";

 theContext.Language = "EN-US";

 theContext.LogonAsUser = "UserName";

 // Invoke the getAllTitles service operation

 CVRTitleListDataContract theListContract = theClient.
getAllTitles(theContext);

 // Loop all of the returned titles

 foreach (Title title in theListContract.parmTitleList)

 {

 Console.WriteLine(String.Format("{0} - {1} - {2}", title.Id,
title.Name, title.Description));

 }

 // Wait for the user to press a key

 Console.Read();

}

The output should be a title list as seen here:

Title 001 – Memento – Memento weird movie

Title 002 – Lord of the rings – Lord of the rings long movie

Example 2 – Register a rental
In this second example, we will consume a service that enables us to register a rental.
We will again take a look at creating the service reference but focus a little more on
some advanced options available to us when creating the service reference.

Custom Services

[104]

Creating the service reference – Advanced
We added a service reference in the previous sample, so irst delete it. This allows us to
recreate the service reference for this sample and look at it in more detail.

To create the service reference again, follow these steps:

1. In the Solution Explorer panel, right-click on the Service References node and
click Add Service Reference…. The Add Service Reference window opens.

2. In the Address drop-down box, specify http://DYNAX01:8101/DynamicsAx/
Services/CVRCustomServices as the address for the service and then click
Go. The address is queried and the services and operations that are available
are listed.

3. In the Namespace dialog box, specify the namespace that you want to use:
AxCustomServicesRef.

4. Click on the Advanced button available on this screen. The Service
Reference Settings window opens.

Let's pause here and look at two options that are of particular interest to us—Always
generate message contracts and Collection type.

Chapter 4

[105]

Always generate message contracts
The Always generate message contracts option determines if message contracts will
be generated for the client. When you do not use this, the client has service operations
that contain the same number of parameters as provided on the service operation.
When this option is checked, message contracts are used on the service operations
instead of the parameter list. The parameters that would normally be passed to the
service operation are then wrapped in a message contract. This can be useful when
you want to assure that all of the service operations take only one parameter.

If we look back at the previous sample code, this could also be modiied to work with
the message contracts that were generated, as demonstrated in the following code:

// Create the request message contract

CVRTitleServiceGetAllTitlesRequest theRequest = new CVRTitleServiceGet
AllTitlesRequest(theContext);

// Invoke the getAllTitles service operation

CVRTitleServiceGetAllTitlesResponse theResponse = theClient.
getAllTitles(theRequest);

// Retrieve the list of titles

CVRTitleListDataContract theListContract = theResponse.response;

Instead of just passing the context to the service operation, we need to create a
request message contract. This contract is then passed to the service operation as the
only parameter. All of the other parameters that you would use are contained in the
message contract so that you can set them in the request message contract.

The service operation itself does not return the list in this case, but returns a response
message contract. This response message contract itself contains the list.

Collection type
The collection type speciies the type of the collections that are used by the proxy
client when dealing with collections. Though the service implementation uses a List
as the collection type, you can choose to use arrays on the client side. This is the
default option when creating a service reference. If we take a look back at the code
that retrieves the list of titles, we can see that the resulting collection type is an array
of Title objects.

Custom Services

[106]

If we choose a different type, for example, System.Collections.Generic.List, we
can see that the return type is now a generic list of Title objects instead of an array.

Consuming the service
The following code uses the rental service and creates a rental with two titles. First,
start by adding the using statement so that the types in the service reference are
available to you. Use the following code to do this:

using DynamicsAxServices.Chapter4.Rentals.AxCustomServiceRef;

Then you can add the following code to consume the rental service:

CVRRentalCustomServiceClient client = new
CVRRentalCustomServiceClient();

// Create the rental header information

RentalHeader header = new RentalHeader();

header.MemberId = "M00001";

header.RentalId = "R00001";

header.ShopId = "S00002";

header.TransDate = DateTime.UtcNow;

// Create a rental line

RentalLine line = new RentalLine();

line.RentalId = "R00001";

line.Title = "T00001";

line.ReturnDate = DateTime.UtcNow;

// Create a second rental line

RentalLine secondLine = new RentalLine();

secondLine.RentalId = "R00001";

secondLine.Title = "T00003";

secondLine.ReturnDate = DateTime.UtcNow;

// Add it to the lines for the Rental

RentalLines lines = new RentalLines();

Chapter 4

[107]

lines.LinesList = new List<RentalLine>();

lines.LinesList.Add(line);

lines.LinesList.Add(secondLine);

// Compose the Rental document

Rental Rental = new Rental();

Rental.RentalHeader = header;

Rental.RentalLines = lines;

// Invoke the creation of the Rental

long rentalRecId = client.createRental(null, Rental);

Console.WriteLine(String.Format("Rental created with record id {0}",
Convert.ToString(rentalRecId)));

Console.ReadLine();

To explain how it works, we will go through the code one block at a time. The irst
line of code is the following:

CVRRentalCustomServiceClient client = new
CVRRentalCustomServiceClient();

Just as in the previous samples, the irst thing to do is to create an instance of
the proxy client. When we have instantiated the client, we can start building the
document that is required by the service operation that we are going to call. First up
is the rental header.

RentalHeader header = new RentalHeader();

header.MemberId = "M00001";

header.RentalId = "R00001";

header.ShopId = "S00002";

header.TransDate = DateTime.UtcNow;

The header is created by creating an instance of the RentalHeader contract. Note
that this is a data contract that is generated by the SvcUtil tool and corresponds
with CVRRentalHeaderDataContract. The name RentalHeader comes from the
DataMemberAttribute attribute that we deined in X++.

RentalLine line = new RentalLine();

line.RentalId = "R00001";

line.Title = "T00001";

line.ReturnDate = DateTime.UtcNow;

Custom Services

[108]

The previous block of code creates a rental line. In this sample, we are adding two of
those lines. As with RentalHeader, the same remark applies for the RentalLine type.
This is the CVRRentalLineDataContract contract that has been generated at the client
side with the name that was speciied in the DataMemberAttribute attribute:

RentalLines lines = new RentalLines();

lines.LinesList = new List<RentalLine>();

lines.LinesList.Add(line);

lines.LinesList.Add(secondLine);

Next, the lines that we have created previously need to be added to a list data contract.
We do this by creating an instance of the CVRRentalLineListDataContract contract.
In this contract, we add a list containing the two lines that we have created:

Rental Rental = new Rental();

Rental.RentalHeader = header;

Rental.RentalLines = lines;

We have created the header, two lines, and a list containing these lines. At this point,
we can glue these together and obtain a rental document object to pass to the service
operation. The Rental type matches the CVRRentalDocumentDataContract contract
and gets its name from the DataMemberAttribute attribute in X++.

long rentalRecId = client.createRental(null, Rental);

Console.WriteLine(String.Format("Rental created with record id
{0}",Convert.ToString(rentalRecId)));

Last but not least, we invoke the createRental service operation and pass the
document to it. The result is RecId of the created CVRRentalHeader record.

Summary
It should be clear that custom services provide a fast and powerful way of exposing
data and business logic. Custom services are capable of exposing both simple
and complex entities. This makes them an alternative to document services. One
aspect custom services are far superior in, is in exposing business logic. This will
probably make custom services the preferred method of integration in many of your
implementations.

In the next chapter, we will see how we can use custom service and data contracts in
the SysOperation framework.

The SysOperation

Framework
The SysOperation framework is new in Microsoft Dynamics AX 2012, and is the
preferred way of creating batch jobs. It replaces the RunBaseBatch framework, which
remains available for backwards compatibility. When Microsoft Dynamics AX 2012
was released, the SysOperation framework was known as the Business Operation
Framework or BOF.

The SysOperation framework provides all the functionality of the RunBaseBatch
framework and more. In this chapter, we will discuss the differences between these
frameworks, and point out the beneits of the SysOperation framework.

The following topics are covered in this chapter:

• SysOperation versus RunBaseBatch: In previous versions of Microsoft
Dynamics AX, the RunBaseBatch framework was the preferred way of
creating business logic that should run in batch. By comparing RunBaseBatch
and SysOperation, we will show you that using SysOperation is the way to
go in Microsoft Dynamics AX 2012.

• Creating a SysOperation service: We will demonstrate how to create a
SysOperation service. Much of it will already be familiar to you as we will
be using services and data contracts. Some new elements will be introduced,
including attributes.

• Running a SysOperation service: The RunBaseBatch framework can only
run logic in two modes: synchronously in the client or asynchronously in
batch. The SysOperation framework has four modes; these modes are called
execution modes. This section will help you in picking the best mode for
your situation.

The SysOperation Framework

[110]

• Custom controllers: Some batches stand alone, but others are started in a
speciic context, for example a form. In many cases you want to act on the
arguments this form passes to the SysOperation framework, such as the
record that was selected. Creating custom controllers allows you to do so,
and that's exactly what we will do.

• Custom UI Builders: When you want to modify the user interface of a
SysOperation service, UI Builder classes are the way to go. In this part we
will create a UI Builder class and look at the various ways we can change
the behavior of the user interface.

• Multithreading: The SysOperation framework leverages the batch
framework for better performance. It uses multiple threads that run in
parallel to achieve a larger throughput.

At the end of this chapter, you will be able to create a SysOperation service, use
controllers, and customize the user interface of a SysOperation service. You will
also have learned how to improve the performance of your code using execution
modes and runtime tasks.

SysOperation versus RunBaseBatch
Before going into the details on using the new SysOperation framework, let's put it
next to the RunBaseBatch framework to ind out what the main differences between
the two of them are.

The irst difference is that the SysOperation framework uses WCF services to run
the processes and handle communication between the client and server. One of the
advantages is that the client/server communication is less chatty so the connection
doesn't need to be kept alive as opposed to the RPC communication of the
RunBaseBatch framework.

The second big difference between the two is how they implement the Model-View-
Controller (MVC) pattern. The RunBaseBatch framework uses one class that extends
from the RunBaseBatch class. All of the components contained in the MVC pattern
are contained within the same class.

• The model is identiied by the class members.

• The view is handled by the dialog, putToDialog, and getFromDialog
methods. These methods present a dialog to the user and help you to put
data on and get data from the dialog.

• The controller is the run method as this is the place where you implement
the business logic.

Chapter 5

[111]

And with that said, the biggest disadvantage of the RunBaseBatch framework is
clear: everything is contained in the same class.

The SysOperation framework makes better use of the MVC pattern than the
RunBaseBatch framework does. All of the MVC components are separated.

• The model is handled by a class that deines the data contract.

• The view is a dialog that is now automatically generated by the UI Builder.
This UI Builder uses the data contract to determine the contents of the dialog.

• The controller is being taken care of by the service controller class.

The implementation of the MVC pattern for both the frameworks is visualized in the
following diagram:

RunBase class

Model

View

Controller

Run method

SysOperation service

Model

Controller class

Controller

UIBuilder class

View

Class members

Dialog method

PutToDialog method

GetFromDialog method

DataContract class

A third notable advantage is that it is fairly easy to expose SysOperation framework
services to external consumers. The only thing that you need to do for this is add
the SysOperation framework service to a service group and deploy this using an
integration port.

So the advantages of the SysOperation framework can be summarized as follows:

• It makes use of services

• The SysOperation framework makes correct use of the MVC pattern

• More eficient client/server communication
• UI automatically generated based on data contracts

• Less extra effort in exposing the services externally

• It's a way to build service-oriented applications in Microsoft Dynamics AX

The SysOperation Framework

[112]

Creating a SysOperation service
In this demonstration, we will create a SysOperation service that detects members
with overdue rentals. These members will get the status "blocked" by setting a
checkbox on the member in the database.

The dialog for the service will look like the following screenshot:

As you can see, a query enables you to select the members for which the rentals
should be checked. By enabling the checkbox, you can override the number of
overdue days that are allowed before a member is blocked.

The SysOperation framework uses services to execute business logic, so you have
already learned most of the skills needed in Chapter 4, Custom Services.

Data contract
We will create a new data contract, but because we have already demonstrated the
creation of a data contract in the earlier chapters, we can be briefer here. The data
contract that we'll make will have three members:

• parmNumberOfOverdueDays: Holds the value for the number of overdue
days that are allowed.

• parmOverrideNumOfDays: A Boolean that indicates that we want to override
the number of overdue days allowed. We will use this later to demonstrate
how to override the modifiedField method.

• parmQuery: Holds the query as a string.

Chapter 5

[113]

Declaration and members
To start with, create a new class and name it CVRRentalDueDateReminderContract.
Set the new method to protected and add a construct method in the same way as
we did in the earlier examples. The rest of the class and its members look like the
following code:

[DataContractAttribute]

public class CVRRentalDueDateReminderContract

{

 CVRNumberOverdueDays numberOverdueDays;

 CVROverrideNumberOfOverdueDays overrideNumOfDays;

 str packedQuery;

}

[DataMemberAttribute('OverdueDays'),
SysOperationDisplayOrderAttribute('2')]

public CVRNumberOverdueDays
parmNumberOverdueDays(CVRNumberOverdueDays _numberOverdueDays =
numberOverdueDays)

{

 ;

 numberOverdueDays = _numberOverdueDays;

 return numberOverdueDays;

}

[DataMemberAttribute('OverrideNumOfDays'),
SysOperationDisplayOrderAttribute('1')]

public CVROverrideNumberOfOverdueDays
parmOverrideNumOfDays(CVROverrideNumberOfOverdueDays
_overrideNumOfDays = overrideNumOfDays)

{

 ;

 overrideNumOfDays = _overrideNumOfDays;

 return overrideNumOfDays;

}

[DataMemberAttribute,
AifQueryTypeAttribute('_packedQuery', querystr(CVRMember))]

public str parmQuery(str _packedQuery = packedQuery)

{

 ;

 packedQuery = _packedQuery;

 return packedQuery;

}

The SysOperation Framework

[114]

As you can see, the data contract uses a number of new attributes. The
SysOperationDisplayOrderAttribute attribute is used to specify the order
in which the ields are displayed on the dialog. The AifQueryTypeAttribute
attribute speciies that a member is a query. Adding this attribute will add a
Select button and query values on the dialog.

Query helper methods
When we want to use a query on a SysOperation service, we have to declare it using
a string variable in our data contract. You can clearly see this in the data contract we
described previously. The data member must have the string type to make sure the
data contract can be serialized.

To make working with the data contract easier, we will add two helper methods to
the data contract. One method will set the query based on a query object, the other
will return a query object based on the string value in the data contract.

public void setQuery(Query _query)

{

 packedQuery = SysOperationHelper::base64Encode(_query.pack());

}

public Query getQuery()

{

 return new Query(SysOperationHelper::base64Decode(packedQuery));

}

These methods are optional, but they make the code of other methods like the service
operation cleaner.

Service and service operation
A SysOperation service needs a service and a service operation. This operation will
be executed when the OK button is pressed on the dialog, or when the job executes
in batch. Logically, this is where the business logic goes.

To create the service, add a new class to the AOT and name it
CVRRentalDueDateReminderService:

public class CVRRentalDueDateReminderService

{

}

Chapter 5

[115]

Next, add a new method. This method is the service operation and contains
the business logic for the SysOperation service. The operation contains the
following code:

[SysEntryPointAttribute(true)]

public void checkDueDates(CVRRentalDueDateReminderContract
_dueDateReminderContract)

{

 QueryRun queryRun;

 CVRMember cvrMember;

 ;

 // Get the query from the data contract

 queryRun = new QueryRun(_dueDateReminderContract.getQuery());

 // Loop all the members in the query

 while (queryRun.next())

 {

 // Get the current member record

 cvrMember = queryRun.get(tableNum(CVRMember));

 // Check if the member is already blocked

 if(!cvrMember.BlockedForRental &&
 this.doesMemberHaveOverdueRentals(cvrMember.RecId,
 _dueDateReminderContract.parmNumberOverdueDays()))

 {

 ttsBegin;

 cvrMember.selectForUpdate(true);

 cvrMember.BlockedForRental = NoYes::Yes;

 cvrMember.update();

 ttsCommit;

 }

 }

}

As you can see, a new QueryRun instance is created based on the query of the data
contract. We use the helper method we added previously to retrieve the query object.
Next, we use the queryRun object to loop all members, and check if the member has
rentals that are overdue. If so, we set the BlockedForRental ield to true on the
member record.

The SysOperation Framework

[116]

The doesMemberHaveOverdueRentals method contains the logic that checks if the
member has rentals that are overdue:

private boolean doesMemberHaveOverdueRentals(CVRMemberRefRecId
_memberRecId, CVRNumberOverdueDays _overDueDays)

{

 CVRRentalTable rentalTable;

 CVRRentalLine rentalLine;

 TransDate dateLimit = systemDateGet() - _overDueDays;

 ;

 // Check if there is a rental line that is not returned yet,
overdue and for the current member

 select firstOnly RecId from rentalLine

 join RecId, Member from rentalTable

 where rentalTable.RecId == rentalLine.Rental

 && rentalTable.Member == _memberRecId

 && !rentalLine.ReturnDate

 && dateLimit > (rentalLine.DueDate);

 return rentalLine.RecId;

}

Menu item
The SysOperation framework is menu item-driven. To start a SysOperation service
from the user interface, you click on a menu item. This menu item contains a few
properties that are related to the SysOperation framework. We will discuss these
properties in further detail later, but for now, let's just create a menu item in the
most basic way. To create the menu item, perform the following steps:

1. In the developer workspace, open the AOT.

2. Expand the Menu Items node, then right-click on Action and click on
New Menu Item.

3. Rename the menu item to CVRRentalDueDateReminderService.

4. Right-click on the menu item, then click on Properties.

5. Set the Label property to Rental due date reminders.

6. Set the ObjectType to Class, and enter SysOperationServiceController
in the Object property.

7. In the Parameters ield, enter
CVRRentalDueDateReminderService.checkDueDates. This corresponds to
the service class and service operation we want to use, seperated by a period.

Chapter 5

[117]

8. Set the EnumTypeParameter property to SysOperationExecutionMode and
the EnumParameter property to Synchronous.

9. Set the RunOn property to Client.

10. Right-click on the menu item, then click on Save.

Testing
Before testing, remember to compile CIL by clicking on the Generate Incremental
CIL button or by pressing Ctrl + Shift + F7. When the compilation is successfully
completed, you can run the SysOperation service. Just right-click on the
CVRRentalDueDateReminderService menu item and click on Open. The
following dialog will appear:

When the OK button is clicked, the service operation is executed using the
parameters on the screen. You can open the CVRMember table to check that members
with overdue rentals are blocked after the service has run.

Validation
When you create a SysOperation service, it is likely that you will need to validate
the values that the user inputs. In our example, it would not make sense to allow the
number of days to be an amount smaller than 1, because in that case the rental would
not be overdue.

The SysOperation Framework

[118]

The SysOperation framework allows you to put validation code on the data contract.
To enable this, the data contract should implement the SysOperationValidatable
interface. The following is what the updated data contract looks like:

[DataContractAttribute]

public class CVRRentalDueDateReminderContract implements
SysOperationValidatable

{

 CVRNumberOverdueDays numberOverdueDays;

 CVROverrideNumberOfOverdueDays overrideNumOfDays;

 str packedQuery;

}

When you compile the data contract now, you should see one or more errors
informing you that the class should implement the method validate. This is because
we now implement an interface that has this method. So, add the following method:

public boolean validate()

{

 boolean ret = true;

 ;

 if(numberOverdueDays <= 0)

 {

 ret = checkFailed("The number of days overdue cannot be 0 or
 less");

 }

 return ret;

}

The method checks if the number of overdue days is smaller than or equal to 0, and
if so, it returns false to indicate that the validation has failed.

Chapter 5

[119]

Generate Incremental CIL and then run the service again. Enter 0 or less in the number
of overdue days ield, then click on OK, and you will see the following Infolog:

Defaulting
In our example, we also want the number of overdue days to get a default value
that differs from 0, for example 3. The best way of doing this is by implementing
the defaulting logic on the data contract. The data contract should implement the
SysOperationInitializable interface to enable this:

[DataContractAttribute]

public class CVRRentalDueDateReminderContract implements
SysOperationValidatable, SysOperationInitializable

{

 CVRNumberOverdueDays numberOverdueDays;

 CVROverrideNumberOfOverdueDays overrideNumOfDays;

 str packedQuery;

}

Then add the initialize method and put the initialization code in it:

public void initialize()

{

 // default the number of overdue days to 3

 this.parmNumberOverdueDays(3);

}

The SysOperation Framework

[120]

Initialization will only occur the irst time you open the dialog, from then on, usage
data will be used. Before you test this, irst remove your usage data. After that,
generate Incremental CIL and then run the service again. You should see that the
number of overdue days is defaulted to 3:

Running a SysOperation service
When a user has to be able to run a service by starting it in the user interface, the
menu item becomes an important part of a SysOperation service. As we have
seen earlier, the menu item has the following properties that the SysOperation
framework needs:

• A parameters property that contains a reference to the service and
service operation

• An enum parameter that determines the execution mode

• An object property where the controller that will be used is speciied
• A label that will be displayed on the dialog

We will look at the irst two properties now, and discuss the others later in
this chapter.

Service and service operation
The menu item is linked to the service and service operation in the Parameters
property. The format in which this parameter should be provided is ServiceClass.
ServiceOperation, where ServiceClass is the name of the service class, and
ServiceOperation is the name of the service operation, separated by a period.

Chapter 5

[121]

Execution modes
The SysOperation framework allows both synchronous and asynchronous
processing. In our example, we used synchronous processing by specifying the
execution mode using the EnumTypeParameter and EnumParameter property. The
EnumTypeParameter is set to SysOperationExecutionMode, which is a base enum
that holds a value for each execution mode. The execution mode is speciied in the
EnumParameter property. There are four options to choose from:

• Synchronous

• Asynchronous

• ReliableAsynchronous

• ScheduledBatch

When the executing mode is not speciied, ReliableAsynchronous will be used.
To change the execution mode of our service, simply change the EnumParameter
property on the CVRRentalDueDateReminderService menu item to the execution
mode you want to use and run the service again. Let's look at what the results
would be.

Synchronous
Synchronous execution of a SysOperation service has the same behavior as running
a RunBaseBatch class. When you execute a SysOperation service synchronously, but
not in batch, then the client will be unresponsive for the time it takes the operation to
complete. All other execution modes are forms of asynchronous execution, including
execution of a synchronous service in batch. When you enable the Batch processing
checkbox on the Batch tab, then a batch job will be created, analogous to the behavior
of RunBaseBatch.

Asynchronous
When a SysOperation service uses the asynchronous execution mode, the client will
still be responsive while the operation executes. This is useful when you want a
process to run in the background.

To run a service asynchronously, the service class must have an associated service
node in the AOT. The service node has to be part of the AxClient service group, and
the service group must be deployed again after the service is added to the group. If
this isn't the case, the service will still run synchronously instead of asynchronously.

The SysOperation Framework

[122]

Reliable asynchronous
The reliable asynchronous execution mode differs from the regular asynchronous
mode in that it creates a batch job. This ensures that the service will be executed
completely, even if the client session in which it was started was destroyed, hence
"reliable". The service will be visible among other scheduled batch jobs but, unlike
these, it will be deleted when the execution has completed. It is still visible in the
batch job history though.

The reliable asynchronous execution mode also differs from regular batches in that
the user that executes the services will receive Infolog messages from the service
when it has completed. This isn't the case with regular batches, where you need to
check the log on the batch job manually.

Scheduled batch
The scheduled batch execution mode will schedule a batch job for the SysOperation
service. Even when you don't check the Batch processing checkbox on the Batch
tab of the service, it will still be executed in batch. On the same tab, you can set up
the recurrence for the batch job. This will also be used even if the Batch processing
checkbox isn't checked.

Custom controllers
In the earlier example, we used the SysOperationServiceController class on
our menu item to run the services. This is the base controller, but you can create
your own when you have the need. In this part, we will irst take a look at some of
the scenarios in which custom controllers can be used, after which we will create a
custom controller.

Usage scenarios
What follows are two of the most common scenarios in which you would use a class
that extends SysOperationServiceController. The irst is using a controller to
initialize a data contract, the second is a scenario in which you override methods of
dialog ields.

Initializing the data contract
The controller can be used to initialize the data in the data contract. This is one of
the most common scenarios in which a controller is used, and is the scenario we will
demonstrate further on in this chapter. Initializing a data contract is usually done
based on the Args object.

Chapter 5

[123]

The Args object contains information such as:

• The execution mode

• The service operation that should be executed

• The menu item from which the controller is started

• The records that are selected when the menu item is executed

• The caller object

Dialog overrides
The dialog that is used by a SysOperation service is generated based on the
SysOperationTemplateForm form, the data contracts, and the menu item. In most
cases the default dialog that is generated is suficient, but in other cases you'll want
to customize the dialog. There are methods on the controller that allow you to do
this. The following table lists the commonly used methods:

Method Use

parmShowDialog Set this to false if you want to avoid user interaction.
The dialog will not be shown, yet the operation will still
run.

parmDialogCaption By default, the label of the menu item is used for the
caption of the dialog. Use this method to override this.

caption When a batch task is created, this label is used for
its description. By default, it is the same as the
parmDialogCaption method.

showQueryValues When a query is used and this method returns true,
then the fields with ranges and a Select button will be
shown on the dialog. Return false in this method to
hide them.

showQuerySelectButton This method does the same as the showQueryValues
method, but only affects the Select button.

canGoBatch Return false in this method to hide the Batch tab.

templateForm This method returns the form that the dialog is based on.
By default, this is the SysOperationTemplateForm
form, but you can override this method so that another
form is used.

parmExecutionMode You can either override or set this method before
starting the operation to override the execution mode.

The SysOperation Framework

[124]

Obviously there are many other methods you can override, but discussing all of
them would take far too long. When you override methods on the controller, always
keep in mind that the controller is only part of your solution. Use it wisely and use
the other components such as service operations, data contracts, and UI Builder
classes where it is appropriate.

Study the code

The SysOperationServiceController class has a lot of
documentation in its code that can help you igure out what the
methods are for. You can also use the Type Hierarchy Browser to work
out which classes extend the SysOperationServiceController
class and get ideas from those.

Without further ado, let's see how we can create a controller for our example service.

Creating a controller
We want our controller to do the following things:

• Set a query range when the service is started from a form with a
record selected

• Set the description of the batch tasks to relect the record that is
being processed

This is something we cannot accomplish with the SysOperationServiceController
class, so we will have to create our own controller.

Declaration
To create a new controller, open the AOT and create a new class. Name it
CVRRentalDueDateReminderController. Open the class in the X++ editor,
and extend it from SysOperationServiceController. The classDeclaration
should look like the following code:

public class CVRRentalDueDateReminderController extends
SysOperationServiceController

{

}

Chapter 5

[125]

The main method
A controller is started by running a menu item. Because of this, it needs a main
method, otherwise nothing will be executed. When creating a controller for your
SysOperation service, the main method should be similar to the main method of the
SysOperationServiceController class, shown as follows:

public static void main(Args args)

{

 SysOperationServiceController controller;

 controller = new SysOperationServiceController();

 controller.initializeFromArgs(args);

 controller.startOperation();

}

As you can see, a new controller is constructed, and is then initialized using the
args object. This initialization will use the properties of the args object to get the
execution mode and the service operation that needs to be executed. The controller
is run using the startOperation method. You should always use this method to
start an operation and refrain from using the run method.

We will create our main method slightly differently because we will put the
initializeFromArgs call in a constructor, shown as follows:

public static void main(Args _args)

{

 CVRRentalDueDateReminderController
rentalDueDateReminderController;

 ;

 rentalDueDateReminderController =
CVRRentalDueDateReminderController::newFromArgs(_args);

 rentalDueDateReminderController.startOperation();

}

public static CVRRentalDueDateReminderController newFromArgs(Args
_args)

{

 CVRRentalDueDateReminderController
rentalDueDateReminderController;

 ;

 // Create a new instance of the controller

The SysOperation Framework

[126]

 rentalDueDateReminderController = new
CVRRentalDueDateReminderController();

 // Initialize from args

 // One of the things this will do is read the "parameters"
property from the menu item

 rentalDueDateReminderController.initializeFromArgs(_args);

 // Return a new instance of this controller

 return rentalDueDateReminderController;

}

As you can see, it's similar to the irst main method and it paves the way for the
additions we will make next.

Constructor
With the previous methods done, we basically have a custom controller that has
the same functionality as the SysOperationServiceController class. We will
extend the functionality of the newFromArgs method that we created so that the
data contract is initialized. The inal method will look like the following code:

public static CVRRentalDueDateReminderController newFromArgs(Args
_args)

{

 CVRRentalDueDateReminderController
rentalDueDateReminderController;

 CVRRentalDueDateReminderContract
rentalDueDateReminderContract;

 CVRMember member;

 Query query;

 ;

 // Create a new instance of the controller

 rentalDueDateReminderController = new
CVRRentalDueDateReminderController();

 // Initialize from args

 // One of the things this will do is read the "parameters" property
from the menu item

 rentalDueDateReminderController.initializeFromArgs(_args);

 // Get the data contract

 // The string should be the same as the parameter name!

Chapter 5

[127]

 rentalDueDateReminderContract =
rentalDueDateReminderController.getDataContractObject('_dueDateRem
inderContract');

 // Check if we are running this from a rental member

 if(_args && _args.dataset() == tableNum(CVRMember))

 {

 // Cast the record

 member = _args.record();

 // Create new query instance

 query = new query(queryStr(CVRMember));

 // Add a range on the member id

 query.dataSourceTable(tableNum(CVRMember)).addRange
(fieldNum(CVRMember, Id)).value(queryValue(member.Id));

 // Set the new query on the data contract

 rentalDueDateReminderContract.setQuery(query);

 // Notify the controller that we changed the query. This
avoids a refresh problem on the dialog

 rentalDueDateReminderController.queryChanged
('_dueDateReminderContract.parmQuery', query);

 }

 // Return a new instance of this controller

 return rentalDueDateReminderController;

}

As you can see, you can get the data contract instance using the
getDataContractObject method:

rentalDueDateReminderController.getDataContractObject('_dueDateRem
inderContract');

The string you pass as a parameter is the name of the data contract parameter of
the service operation that is used. It is very important to get this right. It can easily
be overlooked because the compiler does not check the validity of this parameter.

After that, it is simply a matter of setting parameter methods on the data contract.
When the service is started from the member form, we use the Args variable to set
a range on the query.

The SysOperation Framework

[128]

Menu item
The last thing we need to do is to create a menu item. To create a menu item, perform
the following steps:

1. In the Development Workspace, open the AOT.

2. Expand the Menu Items node, then right-click on Action and click on
New Menu Item.

3. Rename the menu item to CVRRentalDueDateReminderServiceCustomCon.

4. Right-click on the menu item, then click on Properties.

5. Set the Label property to Rental due date reminders.

6. Set the ObjectType to Class, and enter
CVRRentalDueDateReminderController in the Object property.

7. In the Parameters ield, enter CVRRentalDueDateReminderService.
checkDueDates. This corresponds to the service class and the service
operation we want to use.

8. Set the EnumTypeParameter property to SysOperationExecutionMode, and
the EnumParameter property to Synchronous.

9. Set the RunOn property to Client.

10. Right-click on the menu item, then click on Save.

Testing
Before you start testing, remember to generate CIL by clicking the Generate
Incremental CIL button or by pressing Ctrl + Shift + F7.

To test if the query range is added when the service is started from the members
form, irst add the menu item to the CVRMemberListPage form. When you click on
the button that is created, you should see that the query range is added based on the
record that was selected:

Chapter 5

[129]

Custom UI Builders
One of the great improvements that the SysOperation framework has over the
RunBaseBatch framework is that it generates the dialog for you. Fields on the dialog,
for example, are generated based on the data contract. But if you want to change the
dialog that is generated, you can use the UI Builder classes.

When we say custom UI Builders, we mean a class that extends the
SysOperationAutomaticUIBuilder class. This is the class that generates the
dialog based on the data contract of your service operation. By extending this
class, you can add your own logic to the building process. Most commonly this
will include logic that:

• Sets properties of ield controls such as mandatory and enabled

• Overrides methods of ield controls such as lookup and modifiedField

• Prevents controls from being added by overriding the addDialogField
method

The SysOperation Framework

[130]

When you create your own UI Builder class, you will notice that the possibilities go
far beyond what we have just described. Just as with the custom controllers, keep in
mind that a UI Builder too is just a part of your solution. For example: when you feel
that you are adding a lot of controls to your dialog using the UI Builder, consider
using a template form on your controller instead. When you're putting a lot of
validation code in your UI Builder, consider implementing the validation in the data
contract in order to respect the MVC philosophy.

Creating a UI Builder
In this demonstration, we will create a UI Builder for our service. The purpose of this
UI Builder is to override the modifiedField method of the checkbox control. It will
behave in the following way:

• When the checkbox is checked, the control for the number of overdue
days is enabled

• When the checkbox is blank, the control for the number of overdue days
is disabled

Declaration
Let's start by creating the UI Builder class. Create a new class and
name it CVRRentalDueDateReminderUIBuilder. This class will extend
SysOperationAutomaticUIBuilder, as follows:

public class CVRRentalDueDateReminderUIBuilder extends
SysOperationAutomaticUIBuilder

{

 DialogField dialogFieldOverrideNumOfDays;

 DialogField dialogFieldNumberOfDueDays;

 CVRRentalDueDateReminderContract reminderContract;

}

Note that we have also declared three variables that we will use later:

• A dialog ield for the checkbox
• A dialog ield for the number of overdue days ield
• A variable that holds the data contract

Chapter 5

[131]

The override method
The irst method we add is the method that will be executed when the value of the
checkbox changes. This method will enable or disable the number of overdue days
ield. This is a very simple method that looks like the following code:

public boolean overrideNumOfDaysModified(FormCheckBoxControl
_checkBoxControl)

{

 ;

 // Enable or disable the number of days field based on the value
of the checkbox

 dialogFieldNumberOfDueDays.enabled(_checkBoxControl.value());

 return true;

}

As you can see, it uses the value of the _checkBoxControl parameter to set the
enabled property of the control that holds the number of overdue days.

In this example, the parameter is of the type FormCheckBoxControl because we
are overriding a method on a checkbox control. When you override a method
on a control of a different type, you should use that type instead, for example
FormStringControl for a string control. A full list of controls can be found in the
system documentation. In the AOT, go to System Documentation | Classes |
FormControl. Right-click on the FormControl node, then go to Add-Ins | Type
Hierarchy browser. When you expand the FormControl node, you will see a
list of all control types that are available. You can look these up in the system
documentation to see what methods you can override.

The postBuild method
The postBuild method is called immediately after the dialog has been created, so it
is a good place to put the logic that registers override methods. The code we need to
add to this method is shown as follows:

public void postBuild()

{

 ;

 super();

 // Retrieve the data contract

 reminderContract = this.dataContractObject();

 // Retrieve the dialog fields

The SysOperation Framework

[132]

 dialogFieldOverrideNumOfDays =
this.bindInfo().getDialogField(reminderContract,
methodstr(CVRRentalDueDateReminderContract,
parmOverrideNumOfDays));

 dialogFieldNumberOfDueDays =
this.bindInfo().getDialogField(reminderContract,
methodstr(CVRRentalDueDateReminderContract,
parmNumberOverdueDays));

 // Register override methods

 dialogFieldOverrideNumOfDays.registerOverrideMethod
(methodstr(FormCheckBoxControl, modified),
methodstr(CVRRentalDueDateReminderUIBuilder,
overrideNumOfDaysModified), this);

 // Call the override already once to support packed value to be
sync immediately

 this.overrideNumOfDaysModified
(dialogFieldOverrideNumOfDays.control());

}

Let's go through it step-by-step. The irst line retrieves the data contract:

reminderContract = this.dataContractObject();

Next, we use the data contract together with the bindInfo object to get the
controls for the checkbox and the number of overdue ield:

dialogFieldOverrideNumOfDays =
this.bindInfo().getDialogField(reminderContract,
methodstr(CVRRentalDueDateReminderContract,
parmOverrideNumOfDays));

dialogFieldNumberOfDueDays =
this.bindInfo().getDialogField(reminderContract,
methodstr(CVRRentalDueDateReminderContract,
parmNumberOverdueDays));

In the previous code, the bindInfo() method returns an object of type
SysOperationUIBindInfo. This contains information about which dialog
controls the data members are bound to. By providing a reference to the
parmOverrideNumOfDays and parmNumberOverdueDays members when
calling the getDialogField() method, we get the dialog control that is
associated with each member.

Chapter 5

[133]

After we retrieve the dialog ields, we can register the override method. The
following line does just that:

dialogFieldOverrideNumOfDays.registerOverrideMethod(methodstr(Form
CheckBoxControl, modified),
methodstr(CVRRentalDueDateReminderUIBuilder,
overrideNumOfDaysModified), this);

As you can see, we can use the registerOverrideMethod() method to override
methods on the dialog ields. We simply point to the method we want to override
(FormCheckBoxControl.modified), and the method that needs to be executed
(CVRRentalDueDateReminderUIBuilder.overrideNumOfDaysModified).

Finally, we initialize the value of the enabled property by calling the override
method directly. This will make sure that the checkbox relects the values of the
data contract after the dialog is built.

this.overrideNumOfDaysModified(dialogFieldOverrideNumOfDays.contro
l());

One more attribute
We have created a UI Builder class, but what remains is linking it to our data
contract. That's what we use the SysOperationContractProcessingAttribute
attribute for. To link the UI Builder class to the data contract, open the
CVRRentalDueDateReminderContract class in the X++ editor, and add the
SysOperationContractProcessingAttribute to it:

[DataContractAttribute

,SysOperationContractProcessingAttribute(classstr(CVRRentalDueDate
ReminderUIBuilder))]

public class CVRRentalDueDateReminderContract implements
SysOperationValidatable, SysOperationInitializable

{

 CVRNumberOverdueDays numberOverdueDays;

 CVROverrideNumberOfOverdueDays overrideNumOfDays;

 str packedQuery;

}

The SysOperation Framework

[134]

Testing
Now that you have added the UI Builder, you can test the service. But before you
do, remember to generate CIL by clicking the Generate Incremental CIL button or
pressing Ctrl + Shift + F7. When the CIL compilation is complete, right-click on the
CVRRentalDueDateReminderServiceCustomCon menu item to open the dialog:

When you check the checkbox, you should see that the number of overdue days
ield is enabled. To disable the ield, uncheck the checkbox.

Multithreading
Microsoft Dynamics AX 2012 has the ability to run jobs in batch by leveraging the
abilities of the batch framework. The batch framework has two main purposes:

• Enable jobs to be scheduled.

• Provide a mechanism to split jobs up into smaller parts and run them
in parallel. By doing so, the batch job has a larger throughput and the
response time is much better.

We want the service that we created earlier to use the same batch framework so
that it has better performance. There are different approaches to this and each has
its advantages and disadvantages. The two most commonly used approaches can
be described as:

• Individual task approach

• Helper approach

Chapter 5

[135]

Individual task approach
This approach will divide the batch job into a number of work units also known as
runtime tasks. For each work unit, a runtime task will be created. So you will have
a one-to-one relation between work units and runtime tasks.

When your batch job is executing in batch, it is only responsible for creating the
tasks for every unit of work to be done. Once the batch job is done creating tasks,
it will be inished and the batch framework continues to work on the created
runtime tasks in parallel.

Base Class

While select records

{

CreateBatchTask();

}

Processor task 1

Processor task 2

Processor task 3

Processor task N

...

The advantages of using this approach are:

• Scales perfectly along with the schedule of the batch framework. It is
possible to set up the batch framework to use a different number of threads
depending on a time window during the day. The batch job will scale the
number of threads depending on the number of threads set up for that time
window and either use or yield resources.

• Assuming that your business logic is well designed, less effort is required to
make your batch job multithread aware.

• You can easily create dependencies between the individual tasks.

The disadvantages of using this approach are:

• As some batch jobs may create a huge amount of tasks, there will be a lot
of records in the batch framework's tables. This will have a negative impact
on the performance as the framework needs to check dependencies and
constraints before running each of the tasks.

• Though this approach is ideal to scale the schedule of the batch framework,
you do not have control over the amount of threads processing your batch
job on each of the batch servers. Once your task is assigned to a batch group
picked up by an AOS, all of the free thread slots will be used for processing
of your tasks.

The SysOperation Framework

[136]

Helper approach
The second approach that you can use to split up the work is by using helpers.
Instead of creating an individual task for every unit of work to be done, we create a
ixed number of threads. This resolves the issue we faced with the individual tasks
where there were too many batch tasks being created in the batch framework tables.

Next to creating a ixed number of helper threads, we need to introduce a staging
table to keep track of the work to be done. The helpers themselves look into this
staging table to determine the next thing to be done when they have inished their
current task.

The steps to follow when creating batch jobs that use this approach are as follows:

1. Create a staging table to contain the work list.

2. Create your batch job and let it be responsible for queuing the work in the
staging table.

3. Build a worker class that can deal with the processing of one staging table
record (contains business logic).

4. Create a helper class that is able to pick the next task and call the worker.

5. Add code to the batch job to spawn helper threads until the desired number
of helpers are available.

As for the staging table, you need to provide the following ields in the staging table:

• An identiier ield
• A reference ield that may point to a record or contain information that helps

the workers to know what needs to be done

• A status ield to keep track of what's done and what needs to be done

Also keep in mind that helpers must use pessimistic locking to retrieve the records
from the staging table. This is to make sure that two helper threads do not select the
same record and start working on the same task.

Chapter 5

[137]

Helper 1

Helper 2

Helper 3

Helper 4

Helper 5

Base Class

While select records

{

FillQueueRecord();

}

For(i=1;i<=10;i++)

{

SpawnHelperClass();

}

Processor class

00001 567000222

567222344

567342553

567849321

567432112

00002

00003

00004

00005

ID Reference Status

Processed

Processing

Not Processed

Not Processed

Processing

WorkQueue

The advantages of using this approach are:

• You have control over how many threads are processing your batch job. This
can be useful when you want your tasks to leave threads open on the AOS
for other batch jobs when scaling the number of threads available for batch
processing on the AOS instance.

• The batch tables are not illed with a huge number of tasks as only a ixed
number of helper threads are created. This lowers the performance hit when
checking dependencies and constraints.

• If you put a little effort into a generic solution for this approach, you can
re-use the same staging table for different batch jobs.

The disadvantages of using this approach are:

• Because the number of threads is ixed, this approach does not scale as well
as the individual task approach. Scaling up the number of threads on the
AOS servers will not result in more working threads and higher throughput.

• It is slightly more work to create the staging table needed for the helper
threads to keep track of the work to be done than it is to spawn runtime tasks.

• This approach is not suitable to process a huge number of small tasks
as maintaining the staging table would have a negative inluence on the
performance and throughput.

The SysOperation Framework

[138]

Useful link

If you want to learn more about these two approaches, you can ind a
series of blog posts on this topic on the MSDN blog of the Dynamics
AX Performance Team. The irst blog post of the series can be found
at http://blogs.msdn.com/b/axperf/archive/2012/02/24/
batch-parallelism-in-ax-part-i.aspx.

Enabling multithreading
Now that we know the differences between these approaches, we can go ahead
and update our SysOperation service to provide multithreading support. Because
implementing both approaches would take too long, we will use the individual
task approach only. Firstly, we have to extend our service class from the
SysOperationServiceBase class. The declaration should look like the following code:

public class CVRRentalDueDateReminderService extends
SysOperationServiceBase

{

}

This is needed because the SysOperatonServiceBase class contains methods
that allow us to work with the batch header and check whether the code is
running in batch.

Next, we add a new operation to our service. The operation differs from the
existing one because it does not do the work itself. Instead it creates runtime
tasks that do the work. The full code listing is as follows:

[SysEntryPointAttribute(true)]

public void checkDueDatesMulti(CVRRentalDueDateReminderContract
_dueDateReminderContract)

{

 QueryRun queryRun;

 CVRMember cvrMember;

 BatchHeader batchHeader;

 SysOperationServiceController runTaskController;

 CVRRentalDueDateReminderContract runTaskContract;

 Query taskQuery;

 ;

 // Get the query from the data contract

 queryRun = new QueryRun(_dueDateReminderContract.getQuery());

Chapter 5

[139]

 // Loop all the members in the query

 while (queryRun.next())

 {

 // Get the current member record

 cvrMember = queryRun.get(tableNum(CVRMember));

 // Create new controller for the runtime task

 runTaskController = new SysOperationServiceController
(classStr(CVRRentalDueDateReminderService),
methodStr(CVRRentalDueDateReminderService, checkDueDates));

 // Get a data contract for the controller

 runTaskContract = runTaskController.getDataContractObject
('_dueDateReminderContract');

 // create query for task

 taskQuery = new Query(queryStr(CVRMember));

 taskQuery.dataSourceTable(tableNum(CVRMember)).
addRange(fieldNum(CVRMember, Id)).value(cvrMember.Id);

 // set variables for the data contract

 runTaskContract.setQuery(taskQuery);

 runTaskContract.parmNumberOverdueDays
(_dueDateReminderContract.parmNumberOverdueDays());

 // If running in batch

 if(this.isExecutingInBatch())

 {

 // If we do not have a batch header yet

 if(!batchHeader)

 {

 // Get one

 batchHeader = this.getCurrentBatchHeader();

 }

 // Create a runtime task

 batchHeader.addRuntimeTask(runTaskController,
this.getCurrentBatchTask().RecId);

 }

 else

 {

 // Not in batch, just run the controller here

 runTaskController.run();

 }

 }

The SysOperation Framework

[140]

 // After all of the runtime tasks are created, save the
batchheader

 if(batchHeader)

 {

 // Saving the header will create the batch records and add
dependencies where needed

 batchHeader.save();

 }

}

Let us break up the code and take a look at it piece by piece. The top part of the
method remains roughly the same just up to the query part. We still get the query
from the data contract and loop all of the results.

// Get the query from the data contract

queryRun = new QueryRun(_dueDateReminderContract.getQuery());

// Loop all the members in the query

while (queryRun.next())

{

 // Get the current member record

 cvrMember = queryRun.get(tableNum(CVRMember));

What follows is more interesting. Instead of running our business logic, we create
a controller for the runtime task and point to the checkDueDates method. In this
example, we have chosen to re-use the same data contract and service operation that
we created earlier to act as the runtime task.

 runTaskController = new SysOperationServiceController
(classStr(CVRRentalDueDateReminderService),
methodStr(CVRRentalDueDateReminderService, checkDueDates));

 // Get a data contract for the controller

 runTaskContract = runTaskController.
getDataContractObject('_dueDateReminderContract');

After creating a controller, a data contract is constructed to pass to the runtime task.
We re-use the same contract that is also used by the job service. Because of that, we
need to create a query object that contains a range on the member's Id ield.

 // Get a data contract for the controller

 runTaskContract = runTaskController.
getDataContractObject('_dueDateReminderContract');

 // create query for task

 taskQuery = new Query(queryStr(CVRMember));

Chapter 5

[141]

 taskQuery.dataSourceTable(tableNum(CVRMember)).addRange
(fieldNum(CVRMember, Id)).value(cvrMember.Id);

 // set variables for the data contract

 runTaskContract.setQuery(taskQuery);

 runTaskContract.parmNumberOverdueDays
(_dueDateReminderContract.parmNumberOverdueDays());

What follows is the part that will create the runtime tasks. First a batch header
instance is constructed if we do not have one already. The batch header class is used
to contain the information on runtime tasks that we add to the running batch job.
Once the batch header class is instructed to save that information, the actual records
are created in the batch table along with all of the dependencies.

 // If running in batch

 if(this.isExecutingInBatch())

 {

 // If we do not have a batch header yet

 if(!batchHeader)

 {

 // Get one

 batchHeader = this.getCurrentBatchHeader();

 }

 // Create a runtime task

 batchHeader.addRuntimeTask(runTaskController,
this.getCurrentBatchTask().RecId);

 }

 else

 {

 // Not in batch, just run the controller here

 runTaskController.run();

 }

 // After all of the runtime tasks are created, save the
batchheader

 if(batchHeader)

 {

 // Saving the header will create the batch records and add
dependencies where needed

 batchHeader.save();

 }

The SysOperation Framework

[142]

Summary
It should be clear that the SysOperation framework is not only a replacement for the
RunBaseBatch framework, it also improves upon it. Many of the improvements are
due to the implementation of the MVC pattern. This allows for re-use of many of the
components such as the data contracts, service operations, and controllers.

Reusing these components enables batch processing for existing services, and
rapid development of new services. More than that, the different execution modes
allow these services to run synchronously and asynchronously with little effort
by developers. It is even possible to leverage the power of the batch framework
to run processes in parallel, all in a way that is scalable. This improves the overall
performance and user experience.

Up until now, we have always created services in Microsoft Dynamics AX and
exposed them to external applications. In the next chapter, we will reverse the
roles and consume an external service in Microsoft Dynamics AX 2012.

Web Services
For the better part of this book, we have developed services in Microsoft Dynamics
AX and exposed them. But in this chapter, we will show how to consume a web
service from Microsoft Dynamics AX 2012.

In previous versions of Microsoft Dynamics AX, you could add a web service
reference in a reference node in the AOT. This generated proxy classes and other
artifacts you could then use to consume the service. In Microsoft Dynamics AX 2012,
there is no longer an option to add a service reference to the AOT. Instead Microsoft
Visual Studio is used to generate all artifacts, which are then added to the AOT.

How this works and how this can be done will all become clear in this chapter.

The following topics will be covered in this chapter:

• Installing prerequisites: Because part of the development takes place in
Visual Studio, we have to install additional components. You will learn
what components to install and what they do.

• Visual Studio development: After introducing the demo service, we will
create a reference to the service with the aid of Visual Studio. We will take
you through this process step-by-step.

• X++ development: Finally, we will demonstrate how we can use the Visual
Studio project to consume the service in Microsoft Dynamics AX. You will
also gain insight into the different deployment modes that are available to
deploy the project's output.

Web Services

[144]

Installing the Visual Studio Tools
Part of the coding that is needed to consume an external service is done in Visual
Studio. That is why we must install both Visual Studio 2010 and the Visual Studio
Tools for Microsoft Dynamics AX 2012 before we can create Visual Studio projects
and add them to the AOT.

To do this, follow these steps:

1. Run the Microsoft Dynamics AX 2012 setup.

2. Go to the Install section and choose Microsoft Dynamics AX Components.

3. Click on the Next button to move to the next screen and choose Add or
modify existing components.

4. Look under the Developer Tools node and select Visual Studio Tools.

5. Go through the rest of the setup wizard to complete the installation process.

Installing Visual Studio Tools will add the following extensions to Visual Studio:

• The Application Explorer option that is available in Visual Studio
under View | Application Explorer. Enabling it will display the AOT
in Visual Studio.

• Two new templates that are available when you create a new project in
Visual Studio—Report Model and EP Web Applications.

• An option to add Visual Studio projects to the AOT. This is the option
we're interested in when consuming web services.

Visual Studio development
When consuming a service, the irst thing you need to do is create a reference to
the service. Since this can no longer be done in Microsoft Dynamics AX, we have
to use Visual Studio. So, we'll do that, but irst we'll examine the service we are
going to consume.

Introducing the USA zip code service
To show you how Microsoft Dynamics AX 2012 enables developers to consume web
services, we are going to use an example zip code service. This service is available on
the website of RESTful web services.

Chapter 6

[145]

What is a RESTful web service?

REST stands for Representational State Transfer and it represents
a set of design principles by which web services are developed. For
more details about REST, you can go to http://www.ibm.com/
developerworks/webservices/library/ws-restful/.

You can ind lots of other example services on the website of RESTful
web services at http://www.restfulwebservices.net/
servicecategory.aspx. When creating references to the services
available there, always remember to use the WCF version of the
service you want to use.

In the zip code service, we have two operations available to use when referencing the
WCF version; these are as follows:

• GetPostCodeDetailByPostCode: This operation takes a zip code a
parameter and returns a PostalCode data contract with all of the
information about the PostalCode info we searched for.

• GetPostCodeDetailByPlaceName: This operation takes place names
as parameters and also returns a PostalCode data contract with the
needed information.

Creating the Visual Studio proxy library
In Microsoft Dynamics AX 2012, Visual Studio projects can be contained in the
AOT. This enables us to use Visual Studio to create a class library project and add
it to the AOT. The advantage is that Visual Studio deals with the service reference.
It uses the SvcUtil tool to create the proxy client and generate the types needed to
consume the service.

Perform the following steps to create a Visual Studio class library project:

1. In Visual Studio, select File | New | Project.

2. In the New Project window, select Visual C# and select the Class Library
project type.

Web Services

[146]

3. In the Name textbox, give the project a name and click OK. These steps are
illustrated in the following screenshot:

Adding the service reference
Next, we will create a service reference to the USA zip code service. To do this,
follow these steps:

1. Locate the References node in the project.

2. Right-click on the References node and select Add Service Reference….
The Add Service Reference window opens.

3. In the Address drop-down box, specify the following address for the service:
http://www.restfulwebservices.net/wcf/USAZipCodeService.svc?wsdl and
then press Go. The address is queried and the two operations mentioned
above are listed.

4. In the Namespace dialog box, specify the namespace that you want to use:
USAZipCodeServiceRef. The Add Service Reference window should look
like this:

Chapter 6

[147]

5. Click OK. The service will be added to the Service References node.

6. Delete the Class1.cs class, as we will not need it.

7. To add the project to the AOT, right-click the project, then click Add
RestfulServiceNet.PostalService to the AOT.

8. After the project has been added to the AOT, you can specify the deployment
options. In the properties of the project, set Deploy to Client and Deploy to
Server to Yes.

9. Finally, right-click the project and click Deploy.

X++ development
The Visual Studio project and its output have been added to the AOT, so the irst
stage of development is now complete. You can leave Visual Studio and turn back
to Microsoft Dynamics AX 2012. The project has been added to the Visual Studio
Projects node in the AOT. Because we have used C#, the project will be in the C
Sharp Projects node.

Web Services

[148]

Look for the DynamicsAxServices.WebServices.ZipCode project and expand some
of the nodes to inspect it. It should look like this:

As you can see, this is divided into the following two main components:

• The Project Content node contains the actual C# project source, such as
properties of the project, the service references, an app.config ile, and
C# source iles

• The Project Output node contains the assemblies that will be deployed,
taking into account the deployment options.

In order to use the assemblies that have been created and are stored in the AOT,
we'll have to deploy them. Let's look at the options that are available.

Managed code deployment
When we create a project in Visual Studio and add it to the AOT, the following
deployment options are available:

• Deploy to Client

• Deploy to Server

• Deploy to EP

In our example earlier, we have enabled deployment on the client and to server,
because these are important in the context of services.

Deploy to Server
When you have enabled deployment to server, the output of the Visual Studio
project will be copied to the VSAssemblies subfolder in the bin folder of the
AOS. The default path is C:\Program Files\Microsoft Dynamics AX\60\
Server\<AOSServer>\Bin\VSAssemblies. After you have deployed assemblies
to the server, you should restart the AOS so that they are loaded.

Chapter 6

[149]

Hot swapping

When hot swapping is enabled on the AOS, no restart is needed after
deployment. This feature is added for the convenience of developers,
but is not recommended for a production environment. For more info,
check the following article on MSDN: How to: Enable Hot Swapping
of Assemblies (http://msdn.microsoft.com/en-us/library/
gg889279.aspx).

Deploy to Client
When you have enabled deployment to client, then the output of the Visual Studio
project will be copied to the following folder on the client: %localappdata%\
Microsoft\Dynamics Ax\VSAssemblies. You may have to restart the Microsoft
Dynamics AX client after deployment, otherwise the assemblies may not be copied.

The assemblies will be deployed to a client as they are needed. This comes down to
the following three situations:

• When you use IntelliSense

• When you compile code that uses the assembly

• When code runs on the client in which a call is made to the assembly

Obviously, as a developer you will want to have the assembly on your client,
otherwise you will not be able to use IntelliSense or compile your code.

Consuming the web service
Now that we have created a service reference in our Visual Studio proxy library
and deployed it to Microsoft Dynamics AX, we can use the types in the library
from within Microsoft Dynamics AX.

First attempt
Let us take a look at the X++ code that consumes the zip code service to retrieve
a place name. To do just that, we have the following code:

static void Consume_GetZipCodePlaceName(Args _args)

{

 DynamicsAxServices.WebServices.ZipCode.USAZipCodeServiceRef.
PostalCodeServiceClientpostalServiceClient;

 DynamicsAxServices.WebServices.ZipCode.USAZipCodeServiceRef.
PostalCodepostalCode;

Web Services

[150]

 System.ExceptionException;

 ;

 try

 {

 // Create a service client proxy

 postalServiceClient = new DynamicsAxServices.WebServices.ZipCode.
USAZipCodeServiceRef.PostalCodeServiceClient();

 // Use the zipcode to find a place name

 postalCode= postalServiceClient.
GetPostCodeDetailByPostCode("10001"); // 10001 is New York

 // Use the getAnyTypeForObject to marshal the System.String to an
Ax anyType

 // so that it can be used with info()

 info(strFmt('%1', CLRInterop::getAnyTypeForObject(postalCode.get_
PlaceName())));

 }

 catch

 {

 // Get the .NET Type Exception

 exception = CLRInterop::getLastException();

 // Go through the inner exceptions

 while(exception)

 {

 // Print the exception to the infolog

 info(CLRInterop::getAnyTypeForObject(exception.ToString()));

 // Get the inner exception for more details

 exception = exception.get_InnerException();

 }

 }

}

When we go through the code bit by bit, we can see that a proxy client is created
irst. Note that this is the managed type created by the SvcUtil tool when adding
the service reference.

postalServiceClient = new DynamicsAxServices.WebServices.ZipCode.
USAZipCodeServiceRef.PostalCodeServiceClient();

Chapter 6

[151]

After that, using the following code we immediately invoke the service operation
with a zip code:

postalCode= postalServiceClient.GetPostCodeDetailByPostCode("10001");
// 10001 is New York

Then, there is a simple infolog message showing the place name.

info(strFmt('%1', CLRInterop::getAnyTypeForObject(postalCode.get_
PlaceName())));

Notice the CLRInterop::getAnyTypeForObject method, which is used to marshal
between the .NET type System.String and the X++ anyType type before submitting
it to the infolog.

That's it for consuming the service. But we also have some exception handling going
on in there to handle any .NET exceptions while invoking the external service, as
shown in the following code snippet:

catch

{

 // Get the .NET Type Exception

 exception = CLRInterop::getLastException();

 // Go through the inner exceptions

 while(exception)

 {

 // Print the exception to the infolog

 info(CLRInterop::getAnyTypeForObject(exception.ToString()));

 // Get the inner exception for more details

 exception = exception.get_InnerException();

 }

}

Web Services

[152]

Fixing coniguration issues
Although the previous example code should sufice, you will get an error message
when running it. The error message is shown in the following screenshot:

What is going on here is that the service is trying to look for the endpoint
coniguration in the application's coniguration ile, but doesn't seem to ind it.
This is because Microsoft Dynamics AX is acting as the host application here
(Ax32.exe). Therefore, the service tries to open the Ax32.exe.config ile and
look for the endpoint coniguration.

It is clear that putting the coniguration details of every service that we want to
consume into the Ax32.exe.config ile is a bit impractical and should be avoided.
The solution to this issue is using the AifUtil class to create the service client.

Let us change the previous code so that it uses the AifUtil class to point to the
right coniguration ile and see what happens then. Start off by declaring a new
variable of the type System.Type at the top of the job, as shown here:

System.Type type;

Then replace the following line of code:

postalServiceClient = new DynamicsAxServices.WebServices.ZipCode.
USAZipCodeServiceRef.PostalCodeServiceClient();

Chapter 6

[153]

With the following two lines of code that use the variable you just declared:

type= CLRInterop::getType('DynamicsAxServices.WebServices.ZipCode.
USAZipCodeServiceRef.PostalCodeServiceClient');

postalServiceClient = AifUtil::createServiceClient(type);

The irst line will resolve the .NET type of the service client and pass it to the
AifUtil::createServiceClient method. The AifUtil class will then resolve
the right coniguration ile by looking into the VSAssemblies folder for the
assembly that contains the speciied type. You can see the code of the AifUtil class'
screateServiceClient method in the following code snippet:

vsAssembliesPath = xApplication::getVSAssembliesPath();

configFilePath = Microsoft.Dynamics.IntegrationFramework.ServiceRefere
nce::GetConfigFilePath(serviceClientType, vsAssembliesPath);

serviceClient = Microsoft.Dynamics.IntegrationFramework.ServiceReferen
ce::CreateServiceClient(serviceClientType, configFilePath);

When you test these changes, the service should be called correctly and give an
infolog message showing New York as the place name.

Deploying between environments
Although the previous code consumes the external service just ine, there is another
impractical issue going on when you want to deploy the code across environments.

Suppose that you want to have different versions of your service running on
development, test, and production systems. Then you will probably have three
different addresses for each environment. But the issue here is that you only have
one address available in the proxy class library.

To solve this issue, we need to update our X++ code one more time. Start by
declaring two new variables that will hold the endpoint and endpoint address:

System.ServiceModel.Description.ServiceEndpointendPoint;

System.ServiceModel.EndpointAddressendPointAddress;

You may have to add a reference to the System.ServiceModel assembly to the AOT.
To do that, go to the AOT, right-click on the References node, and then click Add
Reference. Next, select System.ServiceModel in the grid, click Select, and inally OK.

Web Services

[154]

Then add the following three lines of code just before the line that invokes the
service operation:

endPointAddress = new System.ServiceModel.EndpointAddress("http://www.
restfulwebservices.net/wcf/USAZipCodeService.svc");

endPoint = postalServiceClient.get_Endpoint();

endPoint.set_Address(endPointAddress);

What the preceding code does is create an endpoint address for the service client to
use. When the endpoint is created, it replaces the endpoint address currently used by
the service client. Note that in the previous example, the address should be replaced
by a parameter stored in the system. That way you can set the endpoint address
depending on the parameter value of that environment.

Final result
After all these changes, the code that consumes the services looks like this:

static void Consume_GetZipCodePlaceNameWithEndPoint(Args _args)

{

 DynamicsAxServices.WebServices.ZipCode.USAZipCodeServiceRef.
PostalCodeServiceClient postalServiceClient;

 DynamicsAxServices.WebServices.ZipCode.USAZipCodeServiceRef.
PostalCodepostalCode;

 System.ServiceModel.Description.ServiceEndpointendPoint;

 System.ServiceModel.EndpointAddressendPointAddress;

 System.Exceptionexception;

 System.Typetype;

 ;

 try

 {

 // Get the .NET type of the client proxy

 type = CLRInterop::getType('DynamicsAxServices.WebServices.
ZipCode.USAZipCodeServiceRef.PostalCodeServiceClient');

 // Let AifUtil create the proxy client because it uses the
VSAssemblies path for the config file

 postalServiceClient = AifUtil::createServiceClient(type);

 // Create and endpoint address, This should be a parameter stored
in the system

Chapter 6

[155]

 endPointAddress = new System.ServiceModel.EndpointAddress
("http://www.restfulwebservices.net/wcf/USAZipCodeService.svc");

 // Get the WCF endpoint

 endPoint = postalServiceClient.get_Endpoint();

 // Set the endpoint address.

 endPoint.set_Address(endPointAddress);

 // Use the zipcode to find a place name

 postalCode = postalServiceClient.
GetPostCodeDetailByPostCode("10001"); // 10001 is New York

 // Use the getAnyTypeForObject to marshal the System.String to an
Ax anyType

 // so that it can be used with info()

 info(strFmt('%1', CLRInterop::getAnyTypeForObject(postalCode.get_
PlaceName())));

 }

 catch(Exception::CLRError)

 {

 // Get the .NET Type Exception

 exception = CLRInterop::getLastException();

 // Go through the inner exceptions

 while(exception)

 {

 // Print the exception to the infolog

 info(CLRInterop::getAnyTypeForObject(exception.ToString()));

 // Get the inner exception for more details

 exception = exception.get_InnerException();

 }

 }

}

Web Services

[156]

Summary
At irst sight the procedure to consume a service in Microsoft Dynamics AX 2012
might seem a bit complex, but once you've done it you see how easy it really is. By
using Visual Studio you can take advantage of having control over how you create
the reference. You can choose whether you want to use message contracts, re-use
data types, and so on.

Support for different deployment options also means that it is easier than ever to
use managed code. The assemblies are part of the model store and are deployed
when needed, so no manual actions are needed to deploy them.

In the next chapter, we will take a closer look at the system services that are
available. They are new to Microsoft Dynamics AX, so they are easily overlooked
when planning for integration. Because of their lexibility, it is worth considering
using them.

System Services
With each new release of Microsoft Dynamics AX, new features for developers
are added. These range from wizards that are used to automate certain repetitive
development tasks to support for new technologies such as WCF. From a developer's
perspective you might think that Microsoft is really generous to provide us with all
these cool features. This is true to a certain extent, but providing developers with
tools can never be an end goal. In reality, these features are added to facilitate new
functionality in Microsoft Dynamics AX.

This is also true for a new set of services that are supported in Microsoft Dynamics
AX 2012 known as system services. These services are WCF services that allow you
to access system information. For example, they are used in the Excel add-in.

This doesn't mean you can't use them in your solutions. On the contrary, in this
chapter we will demonstrate how you can use these services to build your applications.

The following topics will be covered in this chapter:

• System services: We will start with a general description of the three
types of system services along with the introduction of the demo
application we will build.

• Metadata service: The irst service we will use is the metadata service,
a service that exposes information about the AOT. We will discuss what
information can be retrieved and how it can be done.

• Query service: Next, we will look at the query service, a service that,
as the name suggests, allows you to execute queries on the Microsoft
Dynamics AX database and retrieve the results.

• User session service: We will conclude with an explanation of
the user session service, a service that allows you to obtain user
session-related information.

System Services

[158]

What are system services?
System services are automatically installed when the Application Object Server is
installed and are available when the AOS instance is running. They are written by
Microsoft in managed code and hence they cannot be customized.

As mentioned, there are three system services, as follows:

• Metadata service

• Query service

• User session service

We will have a detailed discussion of these later in the chapter. We will not be able
to go into every detail of all service operations, but it will be more than enough to get
you started. Fortunately, for those who want to dig deeper, these services are well
documented on MSDN.

A demo application
To demonstrate the usage of the different system services, we start with a demo
application. The application is a Windows Forms application that contains the
following elements:

• A combobox containing the Contoso Video Rental queries

• A DataGridView control to contain the resulting data

• Previous page and Next page buttons to provide paging of the result

• A ListBox control containing session information of the calling user

The design of the demo application is shown in the following screenshot:

Chapter 7

[159]

The following Microsoft Dynamics AX services are used in the application and for
each of them a service reference is created:

• Metadata service: http://DYNAX01:8101/DynamicsAx/Services/
MetaDataService

• Query service: http://DYNAX01:8101/DynamicsAx/Services/
QueryService

• User session service: http://DYNAX01:8101/DynamicsAx/Services/
UserSessionService

When creating the references, you should replace DYNAX01 with the name of the
server on which your AOS is installed, and specify the correct port to use, which is
8101 by default. All of the service references we use in the demonstration have been
conigured to use the System.Collections.Generic.List collection type.

Metadata service
The metadata service allows external consumers to obtain information about the
AOT objects within Microsoft Dynamics AX, such as tables, queries, forms, and so
on. When we take a look at the operations available on the service, we can see the
following two types of operations:

• Operations that return a list of object names, such as the GetQueryNames
operation which returns a list of query names available in the system

• Operations that return metadata of one particular object to the consumer,
such as the GetTableMetaData operation which takes a list of table names
and returns all of the metadata information available for these tables

You can find detailed class diagrams on MSDN describing the
metadata classes at http://msdn.microsoft.com/en-us/
library/gg845212.

Filling the combobox
Let's start by taking a look at the code that is executed when the form loads.

To ill the combobox, we need to use the GetQueryNames operation on the metadata
service and ilter the results to show only the queries that start with CVR. You can use
the following code to do this:

private void MainForm_Load(object sender, EventArgs e)

{

 // Create a service client

System Services

[160]

 AxMetadataServiceClient client = new AxMetadataServiceClient();

 // Get queries from Ax that start with CVR

 IList<string> queryNames = client.GetQueryNames() .Where(queryItem
=> queryItem.StartsWith("CVR")).ToList();

 // Set the results as the combobox's data source

 cboAxQueryName.DataSource = queryNames;

}

First, the service client is created:

AxMetadataServiceClient client = new AxMetadataServiceClient();

Next, the following line invokes the operation to retrieve all of the query names.
We apply a little lambda expression to the IList object to ilter out the queries
that start with CVR by using the following line:

IList<string> queryNames = client.GetQueryNames() .Where(queryItem
=> queryItem.StartsWith("CVR")).ToList();

Lastly, we just take the result and set it as the data source of the combobox by using
the following line of code

cboAxQueryName.DataSource = queryNames;

When running your application, you should see the following result:

Query service
The query service enables us to retrieve data from Microsoft Dynamics AX
without having to use the .NET Business Connector or, even worse, access
the SQL database directly.

Chapter 7

[161]

By using the query service, you can fetch data using any of the following query types:

• Static query: This is used to retrieve data by using queries that are present in
the AOT. We will use this type in the demonstration.

• User-deined query: A query can also be created by using the
QueryMetadata class. By doing this, you can create a query in the same way
as you create queries in X++ code.

• Dynamic query: Another way of running a query is by creating an
X++ class that extends the AifQueryBuilder class. You can invoke the
ExecuteQuery operation by passing in the name of the query builder class.
It is also possible to pass arguments by using a class that extends from the
AifQueryBuilderArgs class.

Fetching data for the grid
Now let's put some code behind the clicked event handler of the Refresh button. The
idea is to invoke the query service to retrieve the data of the selected query and put it
into the DataGridView control.

Put the following code behind the Refresh button's clicked event handler to get the
job done:

private void cmdRefresh_Click(object sender, EventArgs e)

{

 this.refreshData();

}

Before this can work, we obviously need to add a refreshData method that does the
refreshing part. This is put in a separate method to support re-use of the code when
we add paging later on:

private void refreshData()

{

 try

 {

 // Determine the selected query / datamember

 string dataMember = cboAxQueryName.Text;

 string queryName = cboAxQueryName.Text;

 // Create a binding source for members

 BindingSource bindingSource = new BindingSource();

System Services

[162]

 // Set the binding source as the data source for the data grid

 dtgAxData.DataSource = bindingSource;

 // Create a service client

 QueryServiceClient queryClient = new QueryServiceClient();

 // Create an empty paging object

 Paging paging = null;

 // Call the query to retrieve the results

 DataSet dataSet = queryClient.ExecuteStaticQuery(queryName,
ref paging);

 // Set as the data source of the binding source

 bindingSource.DataSource = dataSet;

 bindingSource.DataMember = dataMember;

 }

 catch (Exception _ex)

 {

 MessageBox.Show(_ex.Message);

 }

}

The irst two lines of code set the chosen query name and the data member.
This data member is the actual list that is bound to the binding source. Here,
we have the same name as the query because the CVRMember table has the
same name as the CVRMember query object, as shown in the following code:

// Determine the selected query / datamember

string dataMember = cboAxQueryName.Text;

string queryName = cboAxQueryName.Text;

Next, the binding source is created and set as the data source of the
DataGridView control:

// Create a binding source for members

BindingSource bindingSource = new BindingSource();

// Set the binding source as the data source for the data grid

dtgAxData.DataSource = bindingSource;

Chapter 7

[163]

Now we can start to think about fetching data from Microsoft Dynamics AX.
So let's create a service client and call the operation to execute the query. Note
that for now we have a variable of type Paging that is set to null because we
add paging functionality later in this chapter.

// Create a service client

QueryServiceClient queryClient = new QueryServiceClient();

// Create an empty paging object

Paging paging = null;

// Call the query to retrieve the results

DataSet dataSet = queryClient.ExecuteStaticQuery(queryName, ref
paging);

Once the dataset containing the resulting records is returned, we can set it as the
data source for the binding source.

// Set as the data source of the binding source

bindingSource.DataSource = dataSet;

bindingSource.DataMember = dataMember;

That's all there is to it. To test the code, run the application and hit the Refresh
button with the CVRMember query selected. The result should look like this:

System Services

[164]

Paging the results
The next thing that we want to enable in our application is paging. To handle large
data sets we can make use of paging to retrieve only a deined number of records at
a time. In our example, we want to use pages of ten records.

The irst thing to do is to add a member variable to the form that keeps track of the
starting position:

private int nextStartPosition = 1;

The code behind the paging buttons is rather simple and will just decrement or
increment the starting position for data retrieval by 10. After adjusting the starting
position, data is refreshed by calling the refreshData method as seen before:

private void cmdNextPage_Click(object sender, EventArgs e)

{

 nextStartPosition += 10;

 this.refreshData();

}

private void cmdPreviousPage_Click(object sender, EventArgs e)

{

 nextStartPosition -= 10;

 this.refreshData();

}

The code behind the paging buttons is in place, but we still need to add some code to
the refreshData method to actually deal with the paging of the data. So we need to
replace the following line of code:

// Create an empty paging object

Paging paging = null;

Replace it with the following piece of code that tells the query service to only fetch 10
records starting from the currently calculated starting position:

// Create a paging object to start at the starting offset and fetch 10
records

Paging paging = new PositionBasedPaging()

{

 NumberOfRecordsToFetch = 10,

 StartingPosition = nextStartPosition

};

Chapter 7

[165]

When we now run our application, the result should be as shown in the
following screenshot:

Notice that we only have ten records in our DataGridView control and by
clicking the Next page button we get to see the next set of records, as shown
in the following screenshot:

For paging techniques like position-based paging to work, you
have to use a query that contains a sorting ield. This ield will
be used to order the results before the paging is applied.

User session service
The last system service that we will discuss is the user session service. This service
exposes information about the current user and its session. Although this service is
categorized by Microsoft as a system service, technically it isn't. Unlike other system
services, the business logic is contained in a service class in the AOT and exposed
using a basic port. Consequently, it is also possible to expose this service using an
enhanced port, allowing you to further customize the service.

System Services

[166]

The user session has the following operations:

• GetUserSessionInfo: This returns information about the current session
in the form of an instance of the UserSessionInfo class containing the
following information: language, currency, company, company time zone,
user-preferred time zone, preferred calendar, user ID, whether the user is
a system admin, and the locale name.

• GetAccessRights: Returns a collection of the type AccessRight that
contains the permissions that the user has on the items that were provided
as parameters such as tables, ields, and menu items.

• ApplyTimeZone: Executes the DateTimeUtil::applyTimeZoneOffset
method and thereby offsets the utcdatetime value by the amount speciied
in the timezone parameter.

• RemoveTimeZone: Executes the DateTimeUtil::removeTimeZoneOffset
method and thereby removes the offset speciied by the timezone parameter
from the utcdatetime value.

We will use the GetUserSessionInfo and GetAccesRights operations in the
following scenario to demonstrate how to use this service.

Retrieving user information
The functionalities that we will add to the form are as follows:

• A button is added to retrieve the user session information

• A ListBox control is added to display the user session information

• General user information is retrieved such as the company and language

• Permissions are retrieved for the query data source

To enable this functionality, override the cmdUserSessionInfo_Click method using
the following code:

private void cmdUserSessionInfo_Click(object sender, EventArgs e)

{

 // Create an instance of the usersession client

 UserSessionServiceClient client = new UserSessionServiceClient();

 // Get session information

 UserSessionInfo sessionInfo = client.GetUserSessionInfo(null);

 // Put all of the information in the listbox

 lboUserSessionInfo.Items.Clear();

Chapter 7

[167]

 lboUserSessionInfo.Items.Add("User : " + sessionInfo.UserId);

 lboUserSessionInfo.Items.Add("Company : " + sessionInfo.Company);

 lboUserSessionInfo.Items.Add("Language : " + sessionInfo.
AXLanguage);

 lboUserSessionInfo.Items.Add("Currency : " + sessionInfo.
CurrencyInfo.CurrencyCode);

 lboUserSessionInfo.Items.Add("Administrator : " + sessionInfo.
IsSysAdmin);

 // Create a access control item for the main table of the selected
query

 AccessControlledItemKey key = new AccessControlledItemKey()

 {

 ItemType = AccessControlledType.Table,

 ItemName = cboAxQueryName.Text

 };

 // Create a list with the item in it

 List<AccessControlledItemKey> keys =
new List<AccessControlledItemKey>();

 keys.Add(key);

 // Now request the effective access right for this user session on
the item

 List<AccessRight> accessRights = client.GetAccessRights(null, keys);

 // Get the access rights

 AccessRight accessRight = accessRights.First();

 lboUserSessionInfo.Items.Add("Query access right : " + accessRight.
ToString());

}

As you can see, we can divide the code into the following two large parts:

• First, we use the GetUserSessionInfo operation to retrieve the session
information, and use it to add items to the listbox.

• Next, we create a new list object of type AccessControlledItemKey and
add an item specifying the table name. Then we use the GetAccessRights
method to retrieve the permissions that the user has on this table and add
them to the list.

System Services

[168]

To test the code, simply click the Session Information button and the listbox should
be illed with the session information, as shown in the following screenshot:

Summary
System services are new in this iteration of Microsoft Dynamics AX, but they are
spot on. In this chapter, we have demonstrated that system services are powerful,
especially when they are used together.

If you use system services where possible, you're using out-of-the-box functionality
that Microsoft Dynamics AX 2012 offers. This will save you the time that you would
spend developing document or custom services, thereby allowing you to focus on
more important tasks.

Index

Symbols

_checkBoxControl parameter 131
.NET assembly, transforms 29
.NET remoting 22

A

ABC of WCF
about 22
address 22
binding 22
contract 23
properties 22

adapters
about 33
custom adapters 35
ile system adapter 34
HTTP adapter 34
MSMQ adapter 35
NetTcp adapter 34

adapters, enhanced ports 28
address 22
AifAction table 27
AIF change tracking 13
AifCollectionTypeAttribute 89, 90
AifDocumentService class 15, 55
AIF Document Service Wizard

about 57
code, generating 61, 62
code generation parameters, selecting 60
document parameters, selecting 59
running 58

AifGatewayQueue table 82
AIFIntegrationAdapter interface 35
AifOutboundProcessingQueue table 82, 84

AifUtil class 153
AOS WCF service host 10
Application Integration Framework (AIF) 5
Application Object Server (AOS) 7
ApplyTimeZone operation 166
Args object

about 122
information 123

ASMX 22
aspects, communication

encoding 32
security 32
synchronous/asynchronous 31
transport protocol 31

asynchronous adapters
about 82
AifGatewayQueue 82
AifOutboundProcessingQueue 82

asynchronous communication
about 82
batch processing 85
lowchart 83
service framework, sending 84

asynchronous execution mode 121
attributes 15
attributes, custom services

about 88
custom 88
intrinsic 88

AxBC classes
about 51
default values, enabling 54
ield sequencing 53
responsibilities 52
validation, performing 52
value mapping, performing 54

[170]

AxCVRTitle class 66
AxdBase class 48
axdBaseCreate class 49
AxdBaseGenerationXSD class 48
axdBaseRead class 49
axdBaseUpdate class 49
AxdCustomer class 15
AxdSalesOrder document class 50
AxdSalesTable document class 48
AxdSend.sendMultipleDocuments

method 84
axSalesItemId method 54
AxSalesLine class 52
Ax<Table> classes 51

B
BasicHttpBinding 32
basic ports

about 25
creating 25

batch framework
about 134
purposes 134

batch jobs
creating 136

bindInfo() method 132
bindings

about 22
BasicHttpBinding 32
NetMsmqBinding 32
NetTcpBinding 32
WsHttpBinding 32

Bing API 7
BPM 7
business connectorless IIS hosting 12
business document

validating 51

Business Process Modeling. See BPM
business rules

enforcing 51

C

cacheObjectIdx 63
cacheObject method 63
cacheRecordIdx 63
cacheRecordRecord method 63

canGoBatch method 123
caption method 123
checkDueDates method 140
checkSalesLine method 51
CIL

about 40
features 40, 41
output 41, 42

collection types
about 90
parameters 90

comma-separated values (CSV) 29

Common Intermediate Language. See CIL
Common Language Infrastructure (CLI) 40
Common Language Runtime (CLR) 40
compiler errors troubleshooting, document

service
about 62
cacheObject method 63
cacheRecordRecord method 63
ClassDeclaration 63

compiler level, document service
setting 57

contracts
about 23
data contracts 23
operation contracts 23
service contracts 23

controller
constructor 126, 127
creating 124
declaration 124
main method 125
menu item, creating 128
testing 128

Create operation 69-71
CreateRental 98
createRental service operation 100, 101
cross-table business logic 50
CustAccount ield 53
CustGroup ield 53
custom adapters 35
custom attributes 88
custom controllers

about 122
creating 124
usage scenarios 122

[171]

custom services
about 15, 87
components 16
consuming 101
creating 91
data contracts 16
deploying 97
key components 88
service contract 16
Title service 91

custom services attributes
about 88
AifCollectionTypeAttribute 89
DataContractAttribute 89
DataMemberAttribute 89
SysEntryPointAttribute 89

custom services, consuming
rental registering, example 103
titles retrieving, example 101

custom services deployment
about 97
rental service 98

custom UI builders 129
CVRRentalDocumentDataContract 100
CVRRentalDocumentDataContract

contract 108
CVRRentalDocumentListDataContract 100
CVRRentalDueDateReminderContract

class 133
CVRRentalHeaderDataContract 99
CVRRentalLineDataContract 99
CVRRentalLineListDataContract 99
CVRTitleService service

using 91

D

data contract 89, 90
DataContractAttribute 15, 88, 89
data contracts 16, 23
data contract, SysOperation service

AifQueryTypeAttribute attribute 114
CVRRentalDueDateReminderContract 113
members 112
parmNumberOfOverdueDays 112
parmOverrideNumOfDays 112

parmQuery 112
query helper methods 114
SysOperationDisplayOrderAttribute

attribute 114
DataMemberAttribute 15, 89
data policies, enhanced ports 29
defaulting, SysOperation service

implementing 119
default values, AxBC class

enabling 54
Delete operation 77
deserialization 87
dialog overrides 123
document class

about 48
business document, validating 51
business rules, enforcing 51
cross-table business logic 50
responsibilities 48
XML serialization and deserialization 49
XSD generation 48

document ilters, enhanced ports 30
DocumentHandling port 35
DocumentHandlingService class 36
DocumentHandlingServiceCreateRequest

message contract 37
DocumentHandlingService service

interface 37
DocumentHandlingService service node 35
document query 46, 47
document service

about 46
creating 56
deploying 68
key components 46

document service, building
about 57
AIF Document Service Wizard, running 58
best practice errors, ixing 65
compiler errors, ixing 62
compiler level, setting 57
mandatory ields, setting 66
privileges, building 65, 66
query, creating 58
service contract, updating 65
tasks, ixing 63

[172]

document service, consuming
about 68, 69
Create operation 69-71
Delete operation 77
FindKeys operation 75, 76
Find operation 71
GetChangedKeys operation 80, 82
GetKeys operation 78
Read operation 73, 75
update operation 76, 77

document services
about 15
components 15
Document class 15
document query 15
Document service class 15
Table AxBC classes 15

doesMemberHaveOverdueRentals
method 116

dynamic query 161

E

enhanced ports
about 26
adapters 28
creating 26, 28
data policies 29
document ilters 30
pipelines 29
security 31
service operations 28
transforms 29
troubleshooting 31
value mapping 30

example implementations, SOA
about 6
Bing API 7
BPM 7
mobile application 7

execution modes, SysOperation service
about 121
asynchronous 121
reliable asynchronous 122
scheduled batch 122
synchronous 121

existing document service
service operations, adding 67
supporting classes, updating 68
updating 67

Extended Data Types (EDTs) 15

F

ield sequencing, AxBC class
providing 53

ile system adapter 10, 34
FindKeys operation 75, 76
Find operation

about 71
query criteria, creating 72
using 72

G

GetAccessRights operation 166
GetAllRentals 99
GetAllRentalsForMember 99
GetChangedKeys operation 80-82
getDialogField() method 132
GetKeys operation

about 78
document ilter 78
using 79

getMethodInfoMap method 50
GetPostCodeDetailByPlaceName

operation 145
GetPostCodeDetailByPostCode operation

145
getSchemaInternal method 48
getSchema method 48
GetUserSessionInfo operation 166
Graphical User Interface (GUI) 7

H

helper approach
about 136
advantages 137
disadvantages 137

helpers 136
HTTP adapter 11, 34

[173]

I

inbound integration ports
about 12
basic 12
enhanced 12

inbound ports 23, 24
individual task approach

about 135
advantages 135
disadvantages 135

initMandatoryFieldsExemptionList
method 66

initMandatoryFieldsMap method 66
integration ports

about 11, 23
inbound 12
outbound 12

Internet Information Services (IIS) 8
intrinsic attributes 88
InventDimId ield 50
InventItemService document service 46

K

key components, custom services
attributes 88
collection types 90
data contract 89
service contracts 90

key components, document service
AxBC classes 51
document class 48
document query 46
service classes 55
service node 56

M

managed code deployment, X++ develop-
ment

about 148
deploying, to client 149
deploying, to server 148

mandatory ields, document service
setting 66

menu item
creating 116

MessageBodyMember attribute 38
message contracts 37
MessageHeader attribute 38
message-oriented programming 22
metadata service

about 17, 159
combobox, illing 159, 160
operations 159
URL 159

Microsoft Dynamics AX 2012
AIF change tracking 13
AOS WCF service host 10
bindings 31
business connectorless IIS hosting 12
custom services 14, 87
document service 46
features 10
integration ports 11, 12
multithreading 134
non-XML support 13
service deployment 23
service generation 35
SysOperation framework 14
system services 158
Visual Studio Tools, installing 144
WCF 21
WCF adapters 10

Microsoft Message Queuing. See MSMQ
Model-View-Controller (MVC) pattern 14
modiiedField method 130
MSMQ 8, 22
MSMQ adapter 11, 35
multithreading

about 134
approaches 134
enabling 138-141
helper approach 136
individual task approach 135

N

NetMsmqBinding 32
NetTcp adapter 10, 34
Network Load Balancing (NLB) 8
non-XML format 13

[174]

O

OperationContract attribute 36
operation contracts 23
operations, service classes

about 55
create 55
delete 55
ind 56
indkeys 56
GetChangedKeys 56
GetKeys 56
read 56
update 56

operations, user session service
ApplyTimeZone 166
GetAccessRights 166
GetUserSessionInfo 166
RemoveTimeZone 166

outbound integration ports 12
outbound ports 23, 24

P

parmDialogCaption method 123
parmExecutionMode method 123
parmNumberOfOverdueDays 112
parmOverrideNumOfDays 112
parmQuery 112
parmShowDialog method 123
pipelines 8
pipelines, enhanced ports

about 29
value substitution 30
XSL 30

prepareForSave method 50, 51

Q

query, document service
creating 58

query helper methods 114
QueryRun instance 115
query service

about 16, 160
data, fetching for grid 161, 162
query types 161

results, paging 164
URL 159

query types, query service
dynamic query 161
static query 161
user-deined query 161

R

ReadList method 55
Read operation 73, 75
registerOverrideMethod() method 133
reliable asynchronous execution mode 122
RemoveTimeZone operation 166
rental data contracts

about 99
CVRRentalDocumentDataContract 100
CVRRentalDocumentListDataContract 100
CVRRentalHeaderDataContract 99
CVRRentalLineDataContract 99
CVRRentalLineListDataContract 99
diagrammatic representation 99

rental header 98, 108
rental registering, custom service example

about 103
Always generate message contracts

option 105
collection type 105, 106
message contracts, generating 105
service, consuming 106-108
service reference, creating 104

rental service, custom services deployment
about 98
createRental service operation 100, 101
line tables 98
rental data contracts 99, 100
rental header 98
service operations 98

rental service operations
about 98
CreateRental 98
GetAllRentals 99
GetAllRentalsForMember 99

Representational State Transfer. See REST
request preprocessor 8
response postprocessor 8

[175]

REST 145
results, query service

paging 164
runtime tasks 135

S

scheduled batch execution mode 122
security, enhanced ports 31
serialization 87
serializeClass method 50
serializeDocument method 49
service class

about 55, 90
operations 55

service contract, document service
updating 65

service contracts 16, 23, 90
service deployment

about 23
basic, versus enhanced ports 24
inbound, versus outbound ports 24
service operations 24

service generation
about 35
CIL 40
generated artifacts 35
service contract deinition 36
service contract, implementing 36, 37
WCF coniguration storage 38, 39

service group 25
service node 56
service operations 24
service operations, enhanced ports 28
service reference

adding, to USA zip code service 146
services

about 6
complexity, handling 18
custom service 15, 16
document services 15
lexibility 18
selecting 17
system services 16
types 14
user session service 17

service types
selecting 18

setLineNum method 54
showQuerySelectButton method 123
showQueryValues method 123
SOA

about 6
architecture overview 7, 8
example implementations 6

SOAP 37
static query 161
SvcUtil tool 107
synchronous execution mode 121
SysEntryPointAttribute 89
SysObsoleteAttribute 88
SysOperation framework

about 14, 109
advantages 14, 109, 111
versus, RunBaseBatch 110

SysOperation service
creating 112
data contract, creating 112
defaulting 119
enum parameter 120
execution modes 121
menu item 116
parameters property 120
running 120
service and service operation 114, 115, 120
testing 117
validation 117, 118

SysOperationServiceController 122
SysOperatonServiceBase class 138
system services

about 16, 158
demo application 158, 159
metadata service 17, 159
query service 16, 160
user session service 17, 165

T

tasks troubleshooting, document service
about 63
constraints 64
labels 64

[176]

validation 64
XSD job, generating 64

technologies, WCF
.NET remoting 22
about 22
ASMX 22
message-oriented programming 22
MSMQ 22
Web Services Enhancements (WSE) 22

templateForm method 123
Title data contract, Title service

creating 91-93
Title list data contract, Title service

creating 94, 95
Title list service operation, Title service

creating 96
Title service class, Title service

creating 95
Title service contract, Title service

creating 97
Title service, custom services

creating 91
Title data contract, creating 91-93
Title list data contract, creating 94, 95
Title list service operation, creating 96
Title service class, creating 95
Title service contract, creating 97

titles retrieving, custom service example
about 101
service, consuming 103
service reference, adding 101, 102

transformations 8
transforms, enhanced ports

.NET assembly 29
about 29
transforms, enhanced portsXSL 29

troubleshooting, enhanced ports 31

U

UI Builder
creating 130
declaration 130
override method 131
postBuild method 131, 132

SysOperationContractProcessing
Attribute 133

testing 134
Uniied Resource Identiier (URI) 22
update operation 76, 77
usage scenarios, custom controllers

about 122
data contract, initializing 122
dialog overrides 123

USA zip code service
about 144, 145
GetPostCodeDetailByPlaceName

operation 145
GetPostCodeDetailByPostCode

operation 145
service reference, adding 146, 147

user-deined query 161
user session service

about 17, 165
operations 166
URL 17, 159
user information, retrieving 166, 167

V

validateWrite method 52
validation, AxBC class

performing 52
validation, SysOperation service 117, 118
valueMapDependingFields method 54
value mapping 52
value mapping, AxBC class

performing 54
value mapping, enhanced ports 30
value substitution pipeline component 30
Visual Studio development

about 144
USA zip code service, introducing 144, 145
Visual Studio proxy library, creating 145

Visual Studio proxy library
creating 145

Visual Studio Tools
installing 144

[177]

W

WCF
ABC 22
about 21
components 21
technologies 22

WCF adapters
about 10
ile system adapter 10
HTTP adapter 11
MSMQ adapter 11
NetTcp adapter 10

WCF coniguration storage 38, 39
WCF support 8

WCF technologies. See technologies, WCF
Web Service Description Language

(WSDL) 6
Web Services Enhancements (WSE) 22
web service, X++ development

coniguration issues, ixing 152, 153
consuming 149, 150

environments, deploying between 153, 154
results, for consuming 154

Windows CardSpace 21
Windows Communication Foundation.

See WCF 21
Windows Presentation Foundation 21
Windows Worklow Foundation 21
writeEndDocument method 50
writeStartDocument method 50
WsHtppBinding 32

X

X++ anyType type 151
X++ development

about 147, 148
managed code deployment 148
web service, consuming 149

XML Schema Deinition (XSD)
document 18

XSD generation 48
XSL, pipelines 30
XSL, transforms 29

Thank you for buying

Microsoft Dynamics AX 2012 Services

About Packt Publishing
Packt, pronounced 'packed', published its irst book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on speciic technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books give
you the knowledge and power to customize the software and technologies you're using to get
the job done. Packt books are more speciic and less general than the IT books you have seen in
the past. Our unique business model allows us to bring you more focused information, giving
you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order to
continue its focus on specialization. This book is part of the Packt Enterprise brand, home to
books published on enterprise software – software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it irst before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Microsoft Dynamics AX 2012

Development Cookbook
ISBN: 978-1-84968-464-4 Paperback: 372 pages

Solve real-world Microsoft Dynamics AX development
problems with over 80 practical recipes

1. Develop powerful, successful Dynamics AX
projects with eficient X++ code with this book
and eBook.

2. Proven recipes that can be re-used in numerous
successful Dynamics AX projects.

3. Covers general ledger, accounts payable,
accounts receivable, project modules and
general functionality of Dynamics AX.

Microsoft Dynamics CRM 2011

New Features
ISBN: 978-1-84968-206-0 Paperback: 288 pages

Get up to speed with the new features of Microsoft
Dynamics CRM 2011

1. Master the new features of Microsoft
Dynamics 2011.

2. Use client-side programming to perform
data validation, automation, and process
enhancement.

3. Learn powerful event driven server-side
programming methods: Plug-Ins and Processes
(Formerly Worklows).

4. Extend Microsoft Dynamics CRM 2011 in
the Cloud.

Please check www.PacktPub.com for information on our titles

Microsoft Dynamics NAV 2009:

Professional Reporting
ISBN: 978-1-84968-244-2 Paperback: 352 pages

Discover all the tips and tricks for Dynamics NAV
report building

1. Get an overview of all the reporting possibilities,
in and out of the box.

2. Understand the new architecture and reporting
features in Microsoft Dynamics NAV 2009 with
this book and e-book.

3. Full of illustrations, diagrams, and tips with
clear step-by-step instructions and real-world
examples.

Microsoft Dynamics CRM 2011:

Dashboards Cookbook
ISBN: 978-1-84968-440-8 Paperback: 266 pages

Over 50 simple but incredibly effective recipes for
creating, customizing, and interacting with rich
dashboards and charts

1. Take advantage of all of the latest Dynamics
CRM dashboard features for visualizing your
most important data at a glance.

2. Understand how iFrames, chart customizations,
advanced WebResources, and more can
improve your dashboards in Dynamics CRM
by using this book and eBook.

3. A highly practical cookbook bursting with
a range of exciting task-based recipes for
mastering Microsoft Dynamics CRM 2011
Dashboards.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with Microsoft Dynamics AX 2012 Services
	What are services and SOA?
	Example implementations
	Bing API
	Mobile application
	Business Process Modeling (BPM)

	Architecture overview

	What's new?
	AOS WCF service host
	WCF adapters
	Integration ports
	IIS hosting without Business Connector
	Non-XML support
	AIF change tracking
	Custom services
	The SysOperation framework

	Types of services
	Document services
	Custom services
	System services
	Query service
	Metadata service
	User session service

	The right service for the right job
	Complexity
	Flexibility

	Summary

	Chapter 2: Service Architecture
and Deployment
	What is WCF?
	Existing technologies
	The ABC of WCF

	Service deployment
	Service operations
	Inbound versus outbound ports
	Inbound ports
	Outbound ports

	Basic versus enhanced ports
	Basic ports
	Enhanced ports

	Bindings
	Adapters
	NetTcp adapter
	HTTP adapter
	File system adapter
	MSMQ adapter
	Custom adapters

	Service generation – under the hood
	Generated artifacts
	Service contract and implementation
	Message contracts

	WCF configuration storage
	The power of CIL
	CIL output

	Summary

	Chapter 3: AIF Document Services
	What are document services?
	Key components
	Document query
	Document class
	Responsibilities of a document class

	AxBC classes
	Responsibilities of an AxBC class

	Service class
	Service node

	Creating a document service
	Setting the compiler level
	Creating the query
	Running the AIF Document Service Wizard
	Selecting document parameters
	Selecting code generation parameters
	Generating code

	Finishing up
	Fixing compiler errors
	Fixing tasks
	Updating the service contract
	Fixing best practice errors
	Setting mandatory fields

	Updating an existing document service
	Adding service operations
	Updating supporting classes

	Deploying a document service
	Consuming a document service
	Create
	Find
	Creating query criteria
	Using Find

	Read
	FindKeys
	Update
	Delete
	GetKeys
	Document filter
	Using GetKeys

	GetChangedKeys

	Asynchronous communication
	Send service framework
	Batch processing

	Summary

	Chapter 4: Custom Services
	Key components
	Attributes
	Custom services attributes

	Data contracts
	Service contracts
	Collection types

	Creating custom services
	The Title service
	The Title data contract
	The Title list data contract
	The Title service class
	The Title list service operation
	The Title list service operation
	The Title service contract

	Deploy the service
	The rental service

	Consuming the service
	Example 1 – Retrieving titles
	Adding the service reference
	Consuming the service

	Example 2 – Register a rental
	Creating the service reference – Advanced
	Consuming the service

	Summary

	Chapter 5: The SysOperation Framework
	SysOperation versus RunBaseBatch
	Creating a SysOperation service
	Data contract
	Declaration and members
	Query helper methods

	Service and service operation
	Menu item
	Testing
	Validation
	Defaulting

	Running a SysOperation service
	Service and service operation
	Execution modes
	Synchronous
	Asynchronous
	Reliable asynchronous
	Scheduled batch

	Custom controllers
	Usage scenarios
	Initializing the data contract
	Dialog overrides

	Creating a controller
	Declaration
	The main method
	Constructor
	Menu item
	Testing

	Custom UI Builders
	Creating a UI Builder
	Declaration
	The override method
	The postBuild method
	One more attribute
	Testing

	Multithreading
	Individual task approach
	Helper approach
	Enabling multithreading

	Summary

	Chapter 6: Web Services
	Installing the Visual Studio Tools
	Visual Studio development
	Introducing the USA zip code service
	Creating the Visual Studio proxy library
	Adding the service reference

	X++ development
	Managed code deployment
	Deploy to Server
	Deploy to Client

	Consuming the web service
	First attempt
	Fixing configuration issues
	Deploying between environments
	Final result

	Summary

	Chapter 7: System Services
	What are system services?
	A demo application

	Metadata service
	Filling the combobox

	Query service
	Fetching data for the grid
	Paging the results

	User session service
	Retrieving user information

	Summary

	Index

