
www.allitebooks.com

http://www.allitebooks.org

Microsoft Dynamics
CRM 2011 Scripting
Cookbook

Over 50 recipes to extend system customization in
Dynamics CRM 2011 through client-side scripting

Nicolae Tarla

P U B L I S H I N G

professional expert ise dist i l led

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Microsoft Dynamics CRM 2011 Scripting
Cookbook

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: March 2013

Production Reference: 1150313

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84968-882-6

www.packtpub.com

Cover Image by Artie Ng (artherng@yahoo.com.au)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Nicolae Tarla

Reviewers
Michael G. Ferreira

Sandor Schellenberg

Tanguy TOUZARD

Acquisition Editor
Mary Nadar

Lead Technical Editor
Susmita Panda

Technical Editors
Sharvari Baet

Devdutt Kulkarni

Dennis John

Project Coordinator
Esha Thakker

Proofreaders
Sandra Hopper

Samantha Lyon

Lydia May Morris

Indexer
Tejal R. Soni

Graphics
Aparna Bhagat

Production Coordinators
Aparna Bhagat

Prachali Bhiwandkar

Cover Work
Aparna Bhagat

www.allitebooks.com

http://www.allitebooks.org

About the Author

Nicolae Tarla is a Senior Consultant in a Solutions Architect role. He has worked on various
mid-size to enterprise-level Dynamics CRM and SharePoint solutions for both the private and
public sectors. He has been delivering Microsoft Dynamics CRM solutions since the version
3.0 of the product. Nicolae also participated as a technical reviewer on the book Microsoft
Dynamics CRM 2011: Dashboards Cookbook.

I would like to thank my wife and daughter, who put up with the hectic
schedule and the long nights and weekends consumed over the last few
months on this project. They both fully supported me from start to finish.
I want to give an additional thank you to Mark for introducing me to the
writing process and asking me the dreaded question: When are you writing
yours? That was the starting point.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Michael G. Ferreira, is a diverse "hands on" leader, entrepreneur, and executive
consultant with 20 years of widely diverse business and technology leadership experience.
He has crafted client/vendor/partner relationships, advisory services, managed large project
portfolios, directed product development, implemented transformation change, and pioneered
new service delivery techniques.

Since 2003 (Microsoft Dynamics CRM 1.0 beta), Michael has been working with a diverse
range of customers and partner organizations (start-up to enterprise; across industries). He
has proposed, lead, architected, and deployed over 100+ Microsoft CRM-based technology
solutions ranging from out-of-the-box configurations to product upgrades to very complex
integrated multi-channel service delivery platforms (CRM, ERP, Portal, Mobile, Social, BI/DW
with integration).

Beyond implementation, Michael has played a key role in building the Microsoft CRM
partner and consultant community, having helped launch seven organizational practices/
delivery teams as well as building and selling his own uniquely positioned Microsoft-based
technology solutions provider offering professional and managed services, vertical software/
platform-as-a-service products, and hardware and software sales.

I'd like to thank Packt Publishing for letting me participate and my wife for
her support throughout the process.

www.allitebooks.com

http://www.allitebooks.org

Sandor Schellenberg is the owner and founder of friendlyITsolutions (http://www.
friendlyitsolutions.nl/), which mainly focuses on Microsoft Dynamics CRM and
related software in the Microsoft stack. He is a Senior Microsoft Dynamics CRM Consultant/
Solution Architect and specializes in data migrations and integrations.

In autumn of 2009 his work was recognized and rewarded with an invitation to the Scribe
Software MVP Program. In 2013 he was rewarded for a fifth time for the program.

His roots in Microsoft-based Internet technologies go back more than 15 years, and since
2005 he has specialized in Microsoft Dynamics CRM. Starting with his first guest post on
the blog of Menno te Koppele, he then decided to start his own blog, Friendly Microsoft
CRM Monster (http://www.friendlycrmonster.com/), a blog with a wink. The blog
is widely read in the Dynamics CRM community and focused mainly on Microsoft Dynamics
CRM technical and integration/migration topics. He is also the author of several "musings"
at msdynamics.com, where he writes about common topics that have to be faced during
implementations of Dynamics CRM.

He has experience with implementing Dynamics CRM in several branches and companies in
the small to midsize segment, but also in the enterprise segment. Migrations and integrations
are not only within the Microsoft stack, but also with widely used software of other vendors
including SalesForce, Oracle, and SAP.

Tanguy TOUZARD is a technical consultant and expert on the Microsoft Dynamics CRM
application. Since the first version of the application, Tanguy works on integration projects as
a developer, consultant, and trainer.

He has expertise in all areas of development and integration around Microsoft Dynamics
CRM (JavaScript, Plugins and workflow activities, Reports) and shares his knowledge through
Microsoft forums and his blog. He also developed many tools available to the community
Dynamics CRM, which made him a Microsoft MVP in the category Dynamics CRM.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www.PacktPub.com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@
packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library.
Here, you can access, read, and search across Packt's entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print, and bookmark content

ff On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

Instant Updates on New Packt Books
Get notified! Find out when new books are published by following @PacktEnterprise on Twitter,
or the Packt Enterprise Facebook page.

www.allitebooks.com

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Overview of Dynamics CRM 2011 Customization	 7

Introduction	 7
Opening a free 30-day trial of Dynamics CRM 2011 Online	 8
Using solutions to package our work	 10
Creating and managing entities	 12
Creating and managing fields	 16
Creating and managing forms	 23
Creating and managing scripts	 26
Creating and managing other resources	 28
Creating and managing workflows	 30
Creating and managing dialogs	 33
Starting a workflow from a dialog	 37
Working with security roles and permissions	 40

Chapter 2: Scripting Form Fields	 43
Introduction	 43
Working with text fields	 43
Working with number fields	 50
Working with currency	 52
Working with date and time	 54
Working with option sets	 56
Working with lookups	 58

Chapter 3: Field Validation	 65
Introduction	 65
Custom e-mail field validation	 65
Custom web address field validation	 69
Validating the ticker symbol field	 72

www.allitebooks.com

http://www.allitebooks.org

ii

Table of Contents

Formatting phone numbers	 74
Formatting postal codes	 77
Replacing the Country and Province fields with lookups	 78

Chapter 4: Rules and Events	 85
Introduction	 85
Form load event usage	 86
Form save event usage	 91
Field change event usage	 94
Working with tabs and sections	 96
Combining events	 99
Enforcing business rules	 102

Chapter 5: Error Handling	 109
Introduction	 109
Handling unexpected user input	 109
Handling unexpected processing	 112
Blocking events	 118
Handling UI events	 120
Advanced error handling	 124
Adding a new account and contact with validation	 126

Chapter 6: Debugging	 135
Introduction	 135
Debug messages	 136
Using IE for tracing and debugging	 140
Debugging using Visual Studio	 142
Error logging	 144
Using Fiddler with CRM	 150

Chapter 7: Extended UI Manipulation	 157
Introduction	 157
Showing or hiding form elements	 158
Formatting fields	 160
Creating a rating gauge field	 161
Flagging a section for the user	 165
Adding a contact picture	 167
Adding an account logo	 168
Marking accounts for review	 172
Dynamic form elements	 175

iii

Table of Contents

Chapter 8: Working with Ribbon Elements	 181
Introduction	 181
Adding a new ribbon button	 182
Removing ribbon artefacts	 185
Starting a dialog/workflow from a ribbon button	 187
Pre-populating form elements with a button click	 190
Creating other ribbon artefacts	 194
Security trimmed ribbon elements	 198
Using the ribbon for displaying information	 200

Chapter 9: Extending CRM Using Community JavaScript Libraries	 209
Introduction	 209
Using jQuery with Dynamics CRM for page element selection	 210
Using jQuery and CSS	 213
Animating form elements with jQuery	 215
Using jQuery UI for user interaction	 217
Using jQuery UI for customizations	 219
Integrating jQuery UI widgets	 222
Using LiveValidation for input validation as you type	 223
Using Datejs for date manipulation	 225

Chapter 10: Light Social Media Integration	 229
Introduction	 229
Integrating with Facebook	 230
Integrating accounts with LinkedIn	 233
Integrating contacts with LinkedIn	 236
Adding Twitter feeds	 239
Working with Del.icio.us data	 243

Index	 247

Preface
This cookbook presents practical and quick solutions that will teach the reader how to
customize Dynamics CRM 2011 with minimal effort. The client-side customizations presented
in this book work in conjunction with the system customizations to cover a large scale of
customizations available for your environment.

The book moves on to more advanced topics as you progress through the various recipes.
While the beginning focuses on the basics of working with client side scripting, the later
chapters present various solutions you can implement in your environment to help the user
see the collected data in new ways.

Taking advantage of various additional client-side libraries, the customizations presented
show new ways to extend your Dynamics CRM environment and achieve new levels of
customization otherwise not available.

While some of these customizations do have a counterpart in using plugins, the approach
presented here is targeted at system customizers and developers that look to achieve the
expected results with the minimal effort and in the shortest period of time. In addition,
these customizations will add minimal load to the server side, if any.

What this book covers
Each of the chapters in this book adds incremental information, and is based on the
prior knowledge gained from previous chapters. For a user that has already knowledge of
customizing Dynamics CRM through scripting, you can skip to the recipes of interest, or
follow along and see if there is anything new.

Chapter 1, Overview of Dynamics CRM 2011 Customization, introduces the concept
of solution packages, and presents the scripting model used for Dynamics CRM 2011.
In addition, basic system configuration and settings that work in conjunction with your
customizations are presented.

Preface

2

Chapter 2, Scripting Form Fields, covers the most common scripting customizations used
when working with various basic form elements. We look at the various field types and how
to work with these values.

Chapter 3, Field Validation, includes various validation approaches to enhance the out-of the-
box validation rules. In addition, this chapter presents various approaches to presenting and
collecting user input to minimize errors.

Chapter 4, Rules and Events, introduces the reader to the various events presented by
Dynamics CRM 2011, as well as working with other form elements available for customization.

Chapter 5, Error Handling, introduces the concept of handling user errors, processing errors,
and explains how to prevent the default system behaviors. The advanced topic shows ways to
override the default system behavior with custom processing and capturing of user input.

Chapter 6, Debugging, delves into details of working with the scripts and using the available
tools to handle various situations where your script misbehaves.

Chapter 7, Extended UI Manipulation, demonstrates ways to introduce visual elements to
your forms to highlight form elements and also demonstrates how to handle presenting only
the relevant information to a system user.

Chapter 8, Working with Ribbon Elements, is focused on working exclusively with the Ribbon.
From adding and removing Ribbon elements, working with events attached to Ribbon
elements, and presenting additional information on the Ribbon, most aspect of client-side
Ribbon customizations are presented in an easy-to-follow way.

Chapter 9, Extending CRM Using Community JavaScript Libraries, tackles the use of external
prebuilt libraries in conjunction with Dynamics CRM 2011. Some of the most popular
JavaScript libraries are presented in the context on Dynamics CRM. They will either help
you in writing shorter, more efficient scripts, or handle specific form actions.

Chapter 10, Light Social Media Integration, presents a few approaches to bringing information
from various social media resources into your Dynamics CRM 2011 environment, with no
additional load to server resources. The ways presented here are exclusively client side,
and require the system user to have access to these social networks directly.

What you need for this book
In order to complete these short recipes, you will need access to a Dynamics CRM 2011
environment, either Online or On Premise. In addition, you will need a Windows PC with the
latest version of Internet Explorer.

For most of these recipes, a text editor such as Notepad is good enough. Of course, using an
editor such as Visual Studio will greatly enhance your experience.

Preface

3

Who this book is for
This book targets the new Dynamics CRM 2011 system customizers, the system
administrators, as well as the developers. Whether you are new to Dynamics CRM 2011, or
a seasoned system customizer or developer, some of these recipes could provide you with
additional ways of solving a specific requirement, or give you an alternate approach to more
extensive customizations. For developers, these recipes are aimed at showing ways in which
some of the plugins can potentially be replaced by light client-side scripts.

This book can also be of value to end users, power users, and business analysts designing a
new system. It will provide details on what is necessary with regards to system customization
in order to achieve a specific result.

You should be comfortable with generic functionality of Dynamics CRM 2011, or a previous
version. While the first chapters introduce you to some of the basic concepts around
customization, you should be aware of what the application does out of the box to
understand why certain customizations are necessary.

In addition, this book also caters to web designers familiar with standard JavaScript and
additional libraries such as jQuery. It presents how these skills can easily be transferred
to customizing Dynamics CRM 2011.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "Generate a
new JScript resource in your solution, named new_JSUserInput."

A block of code is set as follows:

function checkEmail(emailField)
{
 var email=/^([a-zA-Z0-9_.-])+@([a-zA-Z0-9_.-])+\.([a-zA-Z])+([a-
zA-Z])+/;
 if(email.test(emailField))
 {
 // alert("true");
 return true;
 }
}

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: " Add the Contact entity to
your solution if not already added."

Preface

4

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on
the errata submission form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded on our website, or
added to any list of existing errata, under the Errata section of that title. Any existing errata can
be viewed by selecting your title from http://www.packtpub.com/support.

http://www.PacktPub.com
http://www.PacktPub.com/support

Preface

5

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

1
Overview of Dynamics

CRM 2011 Customization

In this chapter, we will cover:

ff Opening a free 30-day trial of Dynamics CRM 2011 Online

ff Using solutions to package our work

ff Creating and managing entities

ff Creating and managing fields

ff Creating and managing forms

ff Creating and managing scripts

ff Creating and managing other resources

ff Creating and managing workflows

ff Creating and managing dialogs

ff Starting a workflow from a dialog

ff Working with security roles and permissions

Introduction
One of the most useful features of Dynamics CRM is the use of scripting. Version 2011 brings
a new object model that is much clearer and concise. Using this object model guarantees that
future cumulative updates will not break your scripts, thus it is highly recommended that you
convert your old scripts that are using Dynamics CRM 4.0 or standard JavaScript to the new
object model as much as possible.

www.allitebooks.com

http://www.allitebooks.org

Overview of Dynamics CRM 2011 Customization

8

The new object model revolves around the Xrm.Page object hierarchy, and brings capabilities
to manipulate user interface elements, user forms, and navigational elements. While at
first glance the new syntax might seem overwhelming, with some practice it can prove easy
to learn.

The object hierarchy of Xrm.Page is described in detail on TechNet, at http://technet.
microsoft.com/en-us/library/gg328474.

Opening a free 30-day trial of Dynamics CRM
2011 Online

In order to follow along with the recipes described in this book, you should sign up for a
30-day trial of Dynamics CRM 2011 Online rather than using an existing production server.
This way, all customizations implemented in this environment will not affect your production
environment, but they can all be packaged and moved to any other environment once you
feel comfortable to do so.

Getting ready
Dynamics CRM Online has now been packaged with Office 365. In order to sign up for a new
online instance, you will need to provide a few details as described in the following section.

How to do it…
Creating a new instance of Microsoft Dynamics 2011 Online is a quick and painless task. All
you need to figure out is what URL you want to use, and fill in the wizard-driven configuration.

1.	 Navigate to http://crm.dynamics.com.

2.	 On the GET STARTED tile, click on the Free trial icon.

3.	 On the following page click on the Start your CRM trial button.

4.	 The next screen presents you with a form where you provide your personal
information as well as the new domain you want to use. This sign-up creates
your Office 365 trial account of which Dynamics CRM 2011 is a part.

5.	 When choosing your domain name, check its availability by clicking on the Check
availability button. If the selected name is already taken, you will be prompted to
select a different one.

6.	 Pay close attention to the Country or region field. This selection cannot be modified
once the instance is created, as it sets global parameters for your environment. Note
that this will not stop you from configuring additional currencies and territories.

http://technet.microsoft.com/en-us/library/gg328474
http://technet.microsoft.com/en-us/library/gg328474
http://crm.dynamics.com

Chapter 1

9

7.	 Once you confirm the domain name availability, you are prompted to create a user ID.
As part of the validation process, your mobile number is required and a text message
with a confirmation code is sent.

8.	 Once all the fields are completed, click on the create your account button. You are
being directed to the Administrative page for your organization. You will observe here
the message about the remaining trial period, as well as the navigation to set up and
manage your subscription services.

9.	 The Microsoft Dynamics configuration usually takes a little while longer, and you will
see a status of "complete" when done.

10.	 From here on you are ready to add new users and to navigate to your newly created
Dynamics CRM 2011 Online instance by clicking on the CRM link.

How it works...
Dynamics CRM 2011 Online is a cloud-based solution offered on the SaaS model. A new
instance is provisioned every time a new user goes through this process. With the new
model, CRM Online is now part of the Office 365 offering, thus the common familiar
account creation process.

Overview of Dynamics CRM 2011 Customization

10

There's more...
As mentioned before, certain instance information cannot be modified after they are
provisioned during the wizard. These include the organization's name, country, currency, and
language. While the default values cannot be modified, additional languages and currencies
can be customized, and additional territories can be configured.

Using solutions to package our work
A new concept introduced with Dynamics CRM 2011 is that of solution packages. This allows
for code separation, ease of deployment, and cleans up the mess sometimes created in
previous version by the large number of possibly unorganized customizations.

Getting ready
In order to follow through with this recipe, log in to your instance of Dynamics CRM 2011 with
an account that has either an administrator or system customizer role. These roles have the
necessary out-of-the-box permission to allow you to work with solutions.

How to do it...
A solution package is a collection of customizations and configurations that can be
generated in an environment and relocated to an additional environment. Creating a new
solution is a process that a system administrator or a system customizer can achieve with
the following steps:

1.	 Navigate to Settings.

2.	 Under Customization, click on Solutions.

3.	 In the All Solutions view, select New to create a new solution package.

Chapter 1

11

4.	 Fill in the mandatory fields, create a new Publisher or use the default value, and click
on the Save icon.

When developing a solution for the Marketplace (as an ISV) you will
need to fill in most of the provider information.

Removing a solution is also a very simple process. Select the solution to be removed, and
click on the Delete icon.

If this is a managed solution, all solution configurations are cleanly
removed from the environment. For an unmanaged solution,
the process is not as straight-forward, as the removal of an
unmanaged solution will leave behind customizations and trailing
components. For additional details on solution see the Solution
model section of this recipe.

Overview of Dynamics CRM 2011 Customization

12

How it works...
Creating a new solution requires you to assign a publisher. By default, each instance of
Dynamics CRM 2011 includes a default publisher for the instance. For environments where
a solution is to be published to production, create a publisher that includes the organization
details of the customizer.

There's more...
Solutions offer additional features such as versioning, which can be essential in tracking
progress and deploying to the production environment.

Solution model
Also, with solutions, we have two very important models, a managed and unmanaged solution
model. A managed solution is a restrictive package, which can only be edited by specific
users, and can be cleanly rolled back. An unmanaged solution on the other hand is a type of
package used mostly for development environments, and it allows various developers to move
customizations from one environment to another, while keeping all customizations editable
by all users with the proper permissions. Unmanaged solutions, when removed, will not be
removed cleanly, and will leave behind traces of customizations. For this reason, they are not
the recommended way of deploying to the production environment.

See also
ff For additional details on working with solutions, consult the TechNet library at

http://technet.microsoft.com/en-us/library/gg334530.aspx.

Creating and managing entities
In this recipe, we'll go through the process of creating a new entity, look at how to
configure such an entity, and in the end, how to clean up an entity that's not required
in our solution package.

All customizations in this book are created as part of a solution. As such, we will be reusing
the previously created solution.

Getting ready
In order to proceed, log in to your existing Dynamics CRM 2011 instance and navigate to the
solution we created previously.

http://technet.microsoft.com/en-us/library/gg334530.aspx
http://technet.microsoft.com/en-us/library/gg334530.aspx

Chapter 1

13

How to do it...
In the created solution package, we will be adding a new entity to store a list of all countries.
We want this listing to be manageable by a user with proper permissions, so that it can be
updated as they do business with new countries.

1.	 Open the solution, and navigate to the Entities tab.

2.	 Click on New to add a new entity to the solution.

3.	 Fill in the mandatory fields, and define where this entity will be visible. In our case, we
will make this entity visible only in the Settings area. We are setting the Ownership of
this entity to Organization, thus making it available across the environment.

Overview of Dynamics CRM 2011 Customization

14

4.	 Additionally, the Options for Entity section allows you to define some of the standard
elements and behaviors that can be included with the entity. These are comprised of
behavioral settings, data settings, and configurations for mobile and Outlook. These
settings give you a granular access to configure how an entity can interact with the
system and other entities, what processes can be run against this entity, and storage
options for related files.

5.	 Before clicking on the Save icon, direct your attention to the second tab named
Primary Field. All entities will need to have a primary field, and we can define the
properties of such fields on this tab. We will define the display name as Country,
leave the Requirement Level with the default value Business Required, and the
Type as Single Line of Text.

Chapter 1

15

6.	 Now we click on Save.

7.	 Once the entity is created, additional options to edit Forms, Views, Fields, and
Relationships become available.

8.	 Great job! Now we have the entity created and we can start working with it.

Removing an entity that is not being used by our customization is again a relatively
simple task.

1.	 In our solution package, select the entity.

2.	 Click on the Delete button.

If the entity does not have any remaining associations with other
entities in the system, it will be removed. Otherwise, a message will
prompt you, and additional information is provided to help in identifying
what relationships are preventing you from deleting this entity.

How it works...
Each entity is stored in the database as a set of two tables. The first one stores the base entity,
while the second one stores the customizations to the entity. Creating a new entity in fact
creates this set of tables, one that stores the entity generic properties, and another that stores
each data fields defined. So, in our case, we will have a table called new_countryBase, and
another called new_countryExtensionBase, as seen in the following two images:

Overview of Dynamics CRM 2011 Customization

16

The extended table has the following definition:

This information is only available while working On-Premise. With a Dynamics CRM 2011
Online instance, there is no direct access to the database.

Making modifications directly to the database in Dynamics CRM 2011 is not supported. This
can cause various issues. All data access should go through web services. When creating
custom reports, use the views. They also present the trimmed data security.

See also
ff Additional information related to entities can be found on TechNet at

http://technet.microsoft.com/en-us/library/gg309396.aspx.

Creating and managing fields
Once we have an entity ready to work with, whether it's a new custom entity or an existing
out-of-the-box entity, we can start managing the information to be captured.

Getting ready
In this recipe, we will be building on the custom Country entity we created in the previous
recipe. Open the created solution and navigate to the created Country entity. We will be
adding two more fields to capture the country code and display sequence.

http://technet.microsoft.com/en-us/library/gg309396.aspx
http://technet.microsoft.com/en-us/library/gg309396.aspx

Chapter 1

17

How to do it...
In order to add the additional fields to capture information, we will follow these steps:

1.	 Expand the Entities section in the solution, and expand the Country custom entity
that we created:

2.	 Select the Forms option, and look at the view of forms associated with this entity.

3.	 By default, we will be presented with two views, one that we will customize, and
another mobile form. We will open the first form, of type Main.

www.allitebooks.com

http://www.allitebooks.org

Overview of Dynamics CRM 2011 Customization

18

4.	 From the bottom-right of the screen, we will click on the New Field button.

5.	 We will create a field with the display name of Country Code, no requirements
constraint, and of type text, single line, with a maximum length of 3. We will be using
this field to capture country codes such as CA, USA, and UK.

Chapter 1

19

6.	 Once complete, we'll click on Save and Close. The new field will show in the listing of
All Fields in Field Explorer.

7.	 Now we can simply drag this field on the form, under our Country field.

Overview of Dynamics CRM 2011 Customization

20

8.	 With this field already added to the form, we can add a new field called Display
Sequence, of type Whole Number, as described by the following screenshot:

9.	 We will be adding this field to the same form. This entity will be used in the next
recipe. The end result should look like the following image:

Chapter 1

21

10.	 Now we can click Save on the form screen, and then Publish. All customizations must
be published before they are visible to all users.

11.	 Once all customizations are published, we can verify the form by navigating to the
Settings area, and looking under Extensions. We will find our custom Countries
entity there.

Overview of Dynamics CRM 2011 Customization

22

12.	 Clicking on Countries will show us a view of all Active Countries (default view). We
can click on New to see how the customized form will look.

13.	 If we are not satisfied with the way the form looks, we can go back to the solution and
tweak the look of it again, or else we can proceed further.

How it works...
Because we have configured the new entity to be visible only in the Settings section, we will
have to navigate to Settings to get access to the listing of countries we will be adding to the
system. We have customized it as such so that when we build a more complex solution later
in the book, we can make sure that only authorized users will be able to see and modify the
listing of all countries in such a way.

There's more...
Dynamics CRM 2011 allows us to define a large number of field types. We have only covered
two simple examples here, one of text and one of whole numbers. Additional field types will be
described in the following recipes, when we start looking at how to script these fields.

Chapter 1

23

See also
ff For additional information on creating fields and adding them to forms, see the

TechNet documentation at http://technet.microsoft.com/en-us/library/
gg334527.

Creating and managing forms
In certain instances, we will require additional forms for the same entity. One obvious example
is when we need to implement role-based forms. In such instances, a specific role could have
access to only a subset of fields, while a different role could have access to other fields. We
could have an overlap of fields available to all roles too.

Getting ready
Open the previously created solution, and navigate to the Countries entity we created. In the
view of All Forms, by default, we only have the two forms, one for the normal use and one
for mobile.

How to do it...
Adding a new form can be achieved as follows:

1.	 From the All Forms view, select New | Main Form, or simply click on New.

http://technet.microsoft.com/en-us/library/gg334527
http://technet.microsoft.com/en-us/library/gg334527

Overview of Dynamics CRM 2011 Customization

24

2.	 On this new form, we can remove the Country Code and Display Sequence fields,
by selecting each field and clicking on Remove on the ribbon.

3.	 Click on the Form Properties button on the ribbon, and on the Display tab
(second from the left) to define a new name for our form.

Chapter 1

25

4.	 Once the fields are removed and the form renamed, we can save and publish the
new form.

5.	 With the form published, we can verify the listing of All Forms to make sure the form
is saved.

6.	 To verify how this form is presented to users, we can navigate to Country created in
the system, and select from the available forms.

7.	 Now, both forms are available to be selected for users that have permissions to view
both. We will be covering role-based forms later in a different recipe.

Overview of Dynamics CRM 2011 Customization

26

Removing a form is also a relatively simple process.

1.	 Navigate in the solution package to the All Forms view and select the form
to be removed.

2.	 Click on the Delete button.

3.	 Publish all customizations.

How it works...
Creating various forms for entities can help reduce the amount of scripting required to hide/
show fields. We can assign specific forms to specific user roles, and thus reduce the amount
of client-side processing on the form.

Creating and managing scripts
JavaScript scripts are added to a solution package just like any other resource. They are
becoming part of the package, and thus are easily portable to other environments, along
with the solution.

Chapter 1

27

Getting ready
Using the existing solution package we have created, we will be adding a new
JavaScript resource.

How to do it...
To add a new JavaScript resource, navigate to Settings, and open your existing solution
package. Follow these steps to add a script resource:

1.	 In the package, navigate to Web Resources.

2.	 In the Web Resources view, select New to add a new script resource.

3.	 Give the resource a name, and select the Script (Jscript) option from the Type
drop-down list. The Display Name should be in a readable format. It is good practice
to always add a Description for other developers that will follow in your foot steps to
easily identify the content of the library without having to open the file.

www.allitebooks.com

http://www.allitebooks.org

Overview of Dynamics CRM 2011 Customization

28

4.	 Click on Save, and then on Publish. Now you have a JavaScript resource added to
your solution package. There is no actual script added yet, so let's do that.

5.	 Click on the Text Editor button. A new form will open allowing you to type in
your script.

6.	 Click OK, then Save and Publish your resource again.

7.	 Now we have a script added as part of the solution package. It is not related to any
action, but we will cover that in one of the later recipes.

Sometimes a script resource can become obsolete, and we would want to remove it. In order
to remove a script resource that is not associated with any other system entities, perform the
following steps:

1.	 From the Web Resources view, select the script.

2.	 Click on Delete.

3.	 Make sure to click on Publish all Customizations for the changes to take effect. Now
your script resource has been removed.

Creating and managing other resources
JavaScript resources are not the only available resource that can be added to your solution
package. Other file types can be also associated in a similar manner, including HTML pages,
stylesheets, image files, as well as Silverlight controls.

Chapter 1

29

Getting ready
Navigate to your solution package, and expand the Web Resources section.

How to do it...
On the Web Resources view, follow these steps:

1.	 Click on New to add a new resource.

2.	 In the new window, give the resource a name, a display name, and add a description
if necessary.

3.	 Select JPG for Type as we will be adding an image resource.

4.	 Click on Browse to retrieve a locally-stored image.

Overview of Dynamics CRM 2011 Customization

30

5.	 Once the picture is selected, click on Save and then on Publish. Now your resource is
added to the solution package.

The URL field shows a reference to how you access the resource
image directly. We will be using part of that URL in scripts where
we work with image resources.

Creating and managing workflows
Workflows, along with the newly introduced concept of dialogs have all been grouped as
Process in Dynamics CRM 2011. The workflow concept remains similar to that of previous
versions, with some additional functionality.

Getting ready
We will be adding a very basic workflow to our existing solution package. Open the already
created solution package to work with.

How to do it...
In order to add a new workflow using the wizard, perform the following steps:

1.	 In the solution package, navigate to Processes and open the Processes view.

Chapter 1

31

2.	 Click on New to create a new workflow.

3.	 On the Process: New page, give the new workflow a name, select an entity it will work
against, and from the Category drop-down, select Workflow.

4.	 Leave default the selection for New blank process, and click on the OK button.

5.	 The process wizard starts, and it allows us to configure the workflow properties
and parameters.

6.	 In the Options for Automatic Processes section, I will select the scope to be
Organization, and the start to be generated by the Record is created event.

7.	 Next, we will add a simple e-mail notification step to be executed. Click on Add Step,
and select Send E-mail. This will add the Send e-mail step, and allows us to configure
the properties.

Overview of Dynamics CRM 2011 Customization

32

8.	 Click on Set Properties, and start customizing the e-mail properties. We can add the
From to be the current user that creates the record, and the To field to be the owner
of the record. Also, we can create a subject and body.

9.	 Click on Save and Close to complete the message configuration.

10.	 Additionally, you can define a step description in the workflow step wizard window.

11.	 With our step created and configured properly, now we can save the workflow.
Click on Save. In order to enable this workflow, we have to activate it. Click next
on Activate.

Chapter 1

33

12.	 Click OK on the Process Activation Confirmation window. If there is no error in
the workflow, it will become active.

13.	 Once the workflow is activated, we can create a new record and verify that it performs
as expected.

How it works...
This sample workflow we created sends an e-mail confirmation once a new Contact record
is created. As long as the workflow stays active in the system, it will execute on each record
creation, as configured. Other configuration options include the capture of field value
changes, new assignment of record to another user, or on record deletion. The record deletion
event captured can also be used to validate record deletion, and stop the process if certain
conditions are not met.

See also
ff For additional information on Processes, including workflows and dialogs, as well

as a comparison between the two, see the TechNet articles at http://technet.
microsoft.com/en-us/library/gg309471.aspx.

Creating and managing dialogs
A dialog differs from a workflow through the fact that it is an interactive process, where user
input is required. The addition of dialogs offers new possibilities with Dynamics CRM 2011.

Getting ready
We will be using the same solution package we created earlier.

http://technet.microsoft.com/en-us/library/gg309471.aspx
http://technet.microsoft.com/en-us/library/gg309471.aspx

Overview of Dynamics CRM 2011 Customization

34

How to do it...
Adding a dialog is done by performing the following steps:

1.	 Open the existing solution package, and navigate to Processes.

2.	 In the Processes view, click on New to add a new process.

3.	 On the Process: New window, select Dialog this time.

4.	 Keep New blank process selected and click on OK.

5.	 The dialog configuration window allows us configure the dialog details. A dialog can
be started as either an on-demand process, or as a child of another process. This
allows us to create smaller dialogs, and chain them together as required to achieve
our final result. We will mark this dialog as an on-demand process, so we can see the
very basic functionality available.

Chapter 1

35

6.	 To capture user interaction, we will first add a page to the dialog, and then a Prompt
and Response on that page.

7.	 Click on Set Properties to define the prompt and available answers.

8.	 Click on Save and Close to finish defining this step.

9.	 In the process builder, add a new Update step that will fill in the captured details
within the form field.

Overview of Dynamics CRM 2011 Customization

36

10.	 Click on Set Properties to define which value gets assigned to what field. We are
being presented with the standard Contact form. Click into the First Name field, and
from the Form Assistant, select New contact first name under Local Values in the
Look for drop-down list, and Response Text. Click on Add and then OK.

11.	 Save and Close this form. Save the dialog and activate it.

12.	 To test this newly created dialog, create a new Contact record, and from the ribbon,
click on the Start Dialog button.

13.	 From the selection window that opens up, select the dialog we created earlier.

14.	 Click on OK and answer the prompt question.

Chapter 1

37

15.	 Click on Next. When the dialog finishes, an end of dialog window is displayed. Click
on Finish.

16.	 Once the dialog completes execution, you will see the value captured during the
dialog populated into the contact's first name field.

How it works...
For demonstration purposes we have only captured the contact's first name and populated
the first name field. More steps can be added to a dialog to capture additional information and
guide a system user in capturing all required details through a dialog rather than by using a free
form. This way a "script" can be created for the user to capture information in a specific order,
thus enforcing a clean, repeatable process in dealing with customers in a Call Centre scenario.

Starting a workflow from a dialog
We have looked at workflows and dialogs. But they can function together to achieve a result.
For example, we can start from a dialog, capture specific information, and then kick off a
workflow as part of the same process to process the information and generate a result.

www.allitebooks.com

http://www.allitebooks.org

Overview of Dynamics CRM 2011 Customization

38

Getting ready
Using the same solution package, we will be creating two new processes. One is a workflow
that sends an e-mail when a field value changes, which we will mark as a child process. The
other is a dialog that will call this workflow.

How to do it...
Create the child workflow by performing the following steps:

1.	 Create a new workflow, on the Account entity this time. Mark it to run as a
child process.

2.	 Add a send e-mail step to the workflow, and configure the email properties as
described in a previous recipe.

3.	 Activate the workflow.

Create the parent dialog that will kick-of this workflow by performing the following steps:

1.	 Create the parent dialog on the same entity, as a dialog.

Chapter 1

39

2.	 Create a new page, then a question with a Yes/No option set. Create a new check
condition step, in which if the value selected in the dialog is Yes, then create a Start
Child Workflow step. Look up the child workflow we created earlier and select it.

3.	 Save and activate this dialog.

How it works...
The dialog we have created, as simple as it is, prompts the user to decide whether they want
to run a workflow or not. When the user selects Yes, the workflow is started.

We can easily test this functionality by going to a new account, and selecting from the ribbon
the Start Dialog button. A window prompts us to select the dialog we will run.

We can easily check the execution status of both the dialog and the workflow by navigating on
the account to the Processes section.

These two views will give us details about the processes that run against the current account,
and the status of each.

Overview of Dynamics CRM 2011 Customization

40

Working with security roles and permissions
Security roles and permission can be configured as part of the same solution package. This
allows us to port these configurations from one environment to another. Be aware though that
there are some limitations in the use of security roles as part of a solution. One of the most
important is a limitation where roles can only be configured at a top business unit when they
are saved as part of a solution package.

Getting ready
We will be working within the same solution package we created earlier.

How to do it...
In order to add a new security role we must perform the following steps:

1.	 Open the existing solution package.

2.	 Navigate to the Security Roles view.

Chapter 1

41

3.	 To create a completely new role, select New. A better approach is to modify one of
the existing roles by selecting Add Existing, but for the purpose of this recipe we will
create a new role. Click on New.

4.	 Give the role a name and make the necessary modifications. Click Save and Close.
The new role is added as part of the solution.

5.	 With this new role created, we can go back to the custom Country form we previously
created. Open the form and click on Assign Security Roles.

6.	 Deselect the selected security roles, and select the newly created security role.

7.	 Click on OK, save changes, and publish all customizations.

Overview of Dynamics CRM 2011 Customization

42

How it works...
At this point we have a new security role added to the solution package. Additionally, we have
configured the custom Country form to be visible only by users that are assigned the newly
created security role.

See also
ff For additional details on working with security roles, read the TechNet articles at

http://technet.microsoft.com/en-us/library/gg334717.aspx.

http://technet.microsoft.com/en-us/library/gg334717.aspx
http://technet.microsoft.com/en-us/library/gg334717.aspx

2
Scripting Form Fields

In this chapter, we will cover the following:

ff Working with text fields
ff Working with number fields
ff Working with currency fields
ff Working with date and time fields
ff Working with option sets
ff Working with lookups

Introduction
In this chapter, we will focus on a few short examples of using JavaScript to interact with
various types of form fields.

The recipes will be using the same environment that we provisioned in the previous chapter,
but you can use any environment you have available, presuming you have permissions to
customize forms. None of the recipes in this chapter are based on the configuration built in
Chapter 1, Overview of Dynamics CRM 2011 Customization.

Working with text fields
In this recipe, we will be retrieving information from the Phone field of a Contact entity. We
can work in the same fashion with any other default text fields on any entity form, or with
custom fields.

Getting ready
If you have a solution created from the previous chapter, open that solution. If not, create a
new solution package. We will be saving all configurations as part of a solution package.

Scripting Form Fields

44

How to do it...
In order to associate our script with a field on the Contact form, we will follow these steps:

1.	 Navigate to Settings | Solutions.

2.	 Open the previously created solution package or create a new one.

3.	 Select Entities, and click on Add Existing to add the Contact entity, as shown in the
following screenshot:

4.	 Scroll down until you find Contact and select it. Then, click on OK, as shown in the
following screenshot:

Chapter 2

45

5.	 Now your solution will include customization options for Contact:

6.	 Click on Web Resources and add a new JScript resource. We will name it JSContact,
as shown in the following screenshot:

7.	 Save and publish, then close the window.

Scripting Form Fields

46

8.	 Expand Contact and select Forms. Open the default Information main form by
double-clicking on it.

9.	 Double-click on the business phone field. We will be adding a script to the OnChange
event of this field. The script will execute when the focus is moved off this field. This
functionality is similar to capturing the OnBlur standard JavaScript form event.

10.	 On the Field Properties window, select the Events tab at the top.

11.	 In the Event List section, expand Form Libraries, and add the previously added
JavaScript resource, as shown in the following screenshot:

Chapter 2

47

12.	 In the Event Handlers section, make sure the selected event is OnChange, and add
a new function named ReadBusinessPhone. Make sure the enabled checkbox is
selected, then click on OK

13.	 Click on OK again to close the Field Properties window.

14.	 Save and publish the Contact form, and then close it.

15.	 Before we can test this, we have to add the JavaScript function that will be executed
to our web resource we have referenced. Let's go back to our solution package, to
Web Resource, and double-click on the JSContact resource.

www.allitebooks.com

http://www.allitebooks.org

Scripting Form Fields

48

16.	 In the window that opens, click on the Text Editor button. Alternatively, if we have
created the JavaScript resource in another text editor, we can just browse to it and
load it. It will override the existing file, so be careful not override other functions in
the same resource.

17.	 Add the following code to your resource. Pay close attention to the casing, as
JavaScript is case sensitive.
function ReadBusinessPhone()
{
 var myBusinessPhone;
 myBusinessPhone = Xrm.Page.getAttribute("telephone1").
 getValue();
 alert("You have entered: " + myBusinessPhone);
}

18.	 Save and publish your resource, then close the Edit Content window.

19.	 Save the solution, and then close it.

20.	 Now you can test your script. The end result should be similar to the following
screenshot:

Chapter 2

49

How it works...
While our sample script does not really do much other than retrieve the input and return it
in a pop-up window, from here on you can do more complex things, such as formatting and
validation. Those are standard JavaScript string operations in most cases.

There's more...
Once you have the value of the text field captured in your script, you can do more interesting
processing. The following examples describe some of the common actions I use on
regular basis.

Retrieving the field name to be used in the script
Looking at the Field properties, as described in step 10, if we open the Details tab, the Name
field holds the actual field name we have to use in JavaScript:

Formatting phone numbers
One common formatting I implement on all phone number fields is the formatting of the
number. In order to make it readable and user friendly, we can check to make sure the length
is either 10 or 11 characters, and then format it for North America in the following way:

+1-XXX-XXX-XXXX

Remove "-" before the count to make sure you are getting the correct length, and also check
that all input is numeric.

Validating Country/Region against State/Province relationship
Another common validation that can be implemented is the validation of Country/Region
versus State/Province. Out of the box, the State/Province field comes before the Country/
Region field, so we can read the value in State/Province, and based on that prepopulate the
Country value.

Scripting Form Fields

50

Writing information back to the text field
Once we have processed the value retrieved from the text field, we can write it back to the
same or another text field. The line of code to do so is as follows:

Xrm.Page.getAttribute("telephone1").setValue(myBusinessPhone);

This assumes that we will be writing the information to a field named telephone1, and the
variable that stores the processed string is named myBusinessPhone.

Working with number fields
In this chapter, we will be working with a variation of the text field, and the number fields.
By default, Dynamics CRM allows us a few fields with various number formats and data
types associated.

The following field types are standard in Dynamics CRM:

ff Whole Number – this format includes values from -2,147,483,648 to 2,147,483,647
on the default format of None. Additional formats include the following:

�� Duration – this is a drop-down list box with values in minutes, hours
and days

�� Time Zone – this is a drop-down list box with time zone options

�� Language – this is a drop-down list box of available languages for the user

ff Floating Point Number – this format includes values from 0 to 1,000,000,000 and
the precision can be configured anywhere from 0 to 5 decimal places.

ff Decimal Number – while this format includes the same range of values as the
floating point number, the precision can be configured from 0 to 10 decimal places.

Addressing these field types in script uses the same syntax, but we have to be aware of how
we initially define them, as the data type cannot be changed after creation.

The only way to change the data type defined for a field is to remove
the field from the form, publish the form, and then remove the field
from the entity and republish it. Afterwards we can recreate the
required field with the updated data type. Pay close attention when
taking this approach, as trying to re-import the managed solution
after this change will fail. The reason for this is that you are trying to
do exactly what you were prevented from doing in the first place.

Chapter 2

51

Getting ready
Open the solution from the previous recipe if not already opened. We will use the same
solution package to store this new customization.

The client-side scripting is the same for these field types, and JavaScript will handle
automatically the data type of the value we are reading.

How to do it...
In order to work with a number field follow these steps:

1.	 Create a new form field, named new_number of type Whole Number, of default
format None. Add it to the form.

2.	 Add a new JScript resource named JSNumbers.js.

3.	 Insert the following code:
function ReadNumberField()
{
 var myNumber;
 myNumber = Xrm.Page.getAttribute("new_number").getValue();
 alert("The number in the field is: " + myNumber);
}

4.	 Save and publish the resource.

5.	 Attach the function to the OnChange event of the field. Save and publish the
form again.

6.	 Run the form and change the value in the field to 100. You should be getting the
following popup:

Reading a value from a number field is identical to reading a value from any other regular
text field.

Scripting Form Fields

52

There's more...
The difference between these fields is in the data that we can push back in this field, for
example, if we try the following code to add a text value to a field defined as a Whole Number:

 try
 {
 Xrm.Page.getAtribute("new_number").setValue("AAA");
 }
 catch(err)
 {
 alert("Error: " + err.message);
 }

Working with currency
Defining fields as currency allows proper visual formatting for a better user experience. Adding
the field give us an option to define the currency precision, as well as maximum and minimum
values to delimit the range.

Getting ready
We will reuse the solution from the Working with number fields recipe. Open it, if not already
opened.

How to do it...
1.	 Open up the Contact form we have used previously, and add a new field named

Currency Field (new_currencyfield) to that form. Let's define our currency
field with a precision of 2, and set minimum value to 0.00 and maximum value
to 1,000,000.00.

2.	 Add a new JScript resource named new_JSCurrency.

3.	 First off, we will create a function to retrieve the value of the current field, once we
change it. We attach our function to the OnChange event of the field. The function
will look as follows:
function ReadCurrency()
{
 var myCurrencyField;
 myCurrencyField = Xrm.Page.getAttribute("new_
currencyfield").getValue();
 alert("The value of this Currency field is: " +
myCurrencyField);
}

Chapter 2

53

Here we are basically reading the field value into our variable myCurrencyField,
and displaying it in a popup as follows:

How it works...
A few things are important to note here. First off, the currency is visually formatted on the
screen, adding the "$" symbol, while the database end only stores the actual float value.

Additionally, if you look at the fields generated on the form, all currency fields are
accompanied by a base currency field in the system.

The base currency is a conversion to the default system currency. Users are allowed to use
their own region's currency as long as it is made available in the system, but the system
converts the currency based on the conversion rate of this value to the base currency (the
default system currency).

Be careful which currency field you use when generating reports. You
have a choice to use the either the regular currency field, or the base
currency field, depending on the scope of the report.

There's more...
While we can write back to a field defined as Currency the same way we write to a regular
text field, a little bit of validation goes a long way. Using the standard JavaScript parsing
function adds another check point. The following block of code describes the process to
populate our currency field with a value of 1.25:

function WriteCurrency()
{
 var myCurrencyValue = 6.25;
 Xrm.Page.getAttribute("new_currencyfield").setValue(parseFloat(myC
urrencyValue));
}

Scripting Form Fields

54

This time let's add this function to the form OnLoad event. Now every time we open a Contact
form the value of our Currency field will get updated to 6.25, and we will get a popup when
we change it.

Working with date and time
Defining a field as Date and Time allows an optimized data input, by presenting a floating
calendar and capturing the user selection.

When creating a Date and Time field, you have a choice to specify whether to capture the
date and time, or just the date.

Getting ready
For the purpose of this recipe, we will be building within the scope of the previously created
solution. We will use the existing Birthday field on the Contact form, and target our scripts to
this field. This field is defined as Date Only.

How to do it...
We will be building a new function to read the value from this field first. Follow these steps:

1.	 Add a new JScript web resource, named JSDateTime (new_JSDateTime).

2.	 Insert the following function which reads the current field value and pops up an alert
with the value:
function ReadBirthday()
{
 var myContactBirthday;
 myContactBirthday = Xrm.Page.getAttribute("birthdate").
getValue();
 alert("Contact birthday is: " + myContactBirthday);
}

Chapter 2

55

3.	 Associate this function with the OnChange event of the Birthday field on the
Contact form.

4.	 Save and Publish.

5.	 Open a contact and change the Birthday field value. A popup will come up looking
as follows:

How it works...
One thing to note about the Date and Time fields in Dynamics CRM is that, even though we
define a field as Date Only, the full date and time is stored, with a time defaulted to 0. If we
want to retrieve only the date, we can either use the standard JavaScript functions to extract
the year, month and day from the Date object as follows:

 var year = myContactBirthday.getFullYear();
 var month = myContactBirthday.getMonth(); // from 0 to 11
 var day = myContactBirthday.getDate(); // from 1 to 31
 month = month + 1;
 alert("Year: " + year + ", Month: " + month + ", Day: " + day);

There's more...
On a new field defined as either Date Only or Date and Time, the following code will add the
current date:

function SetBirthday()
{
 var currentDateTime = new Date();
 Xrm.Page.getAttribute("new_myDate").setValue(currentDateTime);
}

Additionally, if a specific date value has to be added, it can be defined with standard
JavaScript functionality in the variable that is being passed on to the setValue function.

Scripting Form Fields

56

Working with option sets
Starting with option sets, things get a little bit more interesting. Now we are talking about a
set of values stored in a structure similar to a dictionary's collection of name/value pairs.

Getting ready
We will be using the previously created solution. Open the solution if not already opened.
Alternatively, you can create a brand new solution and add the Contact entity to your solution.

How to do it...
In order to work with an option set, let's follow these steps:

1.	 Open the Contact entity added to the solution package.

2.	 Open the main form.

3.	 Add a new field defined as option set. We will define this field as not using an existing
option set, and no default value.

4.	 Let's add the following values:

�� Example A, Value 100,000,000

�� Example B, Value 100,000,001

�� Example C, Value 100,000,002

5.	 Add a new JScript resource named JSOptionSet (new_JSOptionSet)

6.	 Add the following function that reads the selected value of the option set and displays
it in an alert window:
function GetOSValue()
{
 var sval = Xrm.Page.getAttribute("new_optionset").
getSelectedOption().text;
 alert("Selected value: " + sval);
}

7.	 Back on the form, associate the function with the OnChange event of the newly
created option set field.

8.	 Save and publish.

Chapter 2

57

9.	 Open a contact and change the option set value. The following alert should be seen:

How it works...
Our function selects the option set element on the form, retrieves the selected value, and
pulls the label property of the selected option. Alternatively the value can be retrieved if
necessary by using the following line of code:

 var sval = Xrm.Page.getAttribute("new_optionset").
getSelectedOption().value;

There's more...
Reading the selected value of an option set and acting on it is only the first part. How do
you set a value of an option set programmatically as a result of another element on the
form changing?

Assigning a value programmatically
When we need to assign a value to an option set programmatically, we need to use the Value
defined, not the Label. So what do we do, start memorizing and hardcoding these numbers?

One alternative is to build a small helper function that allows us to loop through the values
of the option set, and identify the value based on the label we are providing. Such a function
could look as follows:

function SetOSValue(osName, osLabel)
{
 var options = Xrm.Page.getAttribute(osName).getOptions();
 for(i = 0; i < options.length; i++)
 {
 if (options[i].text == osLabel)
 Xrm.Page.getAttribute(osName).setValue(options[i].value);
 }
}

www.allitebooks.com

http://www.allitebooks.org

Scripting Form Fields

58

Once we find a match on the label we can assign the value retrieved directly from the system.
This will also handle cases where certain values could be updated accidentally.

We can use this helper function in the context of our recipe by creating a new function, and
associating it to the OnLoad event of the form. All we do here is call the helper function,
passing as parameters the name of the option set, and the value we want to set as default.

function SetMe()
{
 SetOSValue("new_optionset","Example C");
}

Working with lookups
Working with lookups presents a new set of challenges. In a lookup we are basically
pointing to existing values populated in another entity. We are looking for the ID of the
target selected entity.

Be aware that once values are loaded into an environment, ID's
are automatically associated. If you move your solution to another
environment and reload the source entity data, new ID's are being
generated, and you will have to update your script as such.

Getting ready
For the purpose of this recipe we will be using the existing solution we have already created. If
you have not created a solution already, now is a good time to do so.

Add to your solution the Contact entity. We've been focusing on making changes to this entity,
and this recipe will follow that same pattern. Note that you can do this with any system entity,
whether out of the box or custom.

How to do it...
In order to read the selected value in a lookup, follow these steps:

1.	 Create a new custom entity called State.

2.	 Configure the Ownership to Organization so it is readily available to all users.

3.	 For Areas that display this entity, select Settings only. We do not want any users
having direct access to this entity, but we want them to reference it only on the
Contact forms.

Chapter 2

59

4.	 In the Options for Entity area, uncheck Notes as we do not want to have a Notes
field associated. Your entity definition form should look as follows:

5.	 Save your new entity.

6.	 Once saved, open up the main form to configure it.

7.	 Change the label of the Name field to State by double-clicking on the field and
changing the Label on the Display tab.

8.	 Add a new State Code text field to the form.

9.	 Add a new Order field of type Whole Number to the form, with no format and a start
value of 0.

10.	 Save and publish your new entity. Once you refresh the browser window, in the
Settings area your new entity should display as follows:

Scripting Form Fields

60

11.	 Open up the States extensions and let's start adding some sample data. The form
looks as follows:

12.	 Once we have a few sample data records, we are ready to create our lookups.

13.	 On the Contact form add a new lookup field. We will be pointing to the previously
created States entity. Select the Type to be Lookup, and the Target Record Type
to be State. Add the field to the form.

14.	 Save and publish.

15.	 Create a new JScript resource in your solution, named JSLookup (new_JSLookup).

16.	 Add a function that reads the selected value in our newly created State field, and
displays it in an alert. The script could look as follows:
function ReadState()
{
 var state = new Array();
 state = Xrm.Page.getAttribute("new_state").getValue();
 if(state != null)
 {
 var stateText = state[0].name;
 var stateId = state[0].id;
 var stateType = state[0].entityType;

 alert("State is: " + stateText + ", ID: " + stateId + "
of type: " + stateType);
 }
}

17.	 Do note that in our code we always check to make sure a value was indeed selected
before we retrieve the properties.

18.	 The name returns the actual text we see in the lookup, the ID returns the internal ID
of the selection and the entityType returns the type used. Note that the ID is what
we will need later on when I show you how to programmatically populate this field.

Chapter 2

61

19.	 Once we open the Contact form and we change the State field value, a popup will
give us all the details about the selection we have made.

How it works...
In order to retrieve the selection in a lookup, we create an array to store the returned values.
As a lookup only holds a single selection value, the result will be a single element array, with
the element at index 0.

One important aspect is, we always have to check and make sure that we have indeed a
value returned in the array, otherwise we will get an error when trying to read the value at that
index and there is nothing there. For this reason we are checking if the array is not null before
reading the value.

There's more...
While reading the value selected in a lookup constitutes one step, many times we need to
push a value back into a lookup, either to clear it or to define a new selection on the form.

Clearing a lookup selection
For us to clear a lookup, all we need to do is set its value to null. The following script does
just that:

function ClearState()
{
 var state = Xrm.Page.getAttribute("new_state");
 if (state != null)
 {
 Xrm.Page.getAttribute("new_state").setValue(null);
 }
}

Associate this function with the OnLoad event of the form, so that every time we open a
contact, the State field gets cleared.

Scripting Form Fields

62

Changing a lookup selection
There are circumstances when you want a certain lookup value to be programmatically
assigned based on some other action on the form. This is relatively easy to achieve once
you have identified the IDs of the values available.

Instead of assigning a null value like we did in the previous example, we have to build our
input as demonstrated in the following function:

function SetStateToNY()
{
 var state = new Array();
 state[0] = new Object();
 state[0].id = "{BA0762E4-64D2-E111-909E-00155D6C871A}";
 state[0].name = "New York";
 state[0].entityType = "new_state";

 Xrm.Page.getAttribute("new_state").setValue(state);
}

Be aware that if your ID assigned does not map to the ID in the system, it will appear to
process correctly, adding the value to the lookup, but when you try to save your form, the
following message appears:

Downloading the example code

You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com . If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Expanding on the State example
Out of the box, Dynamics CRM allows the users to type any values in both the Country/Region
and the State/Province fields. But oftentimes, we do not want to users to type and possibly
misspell. For this reason we can implement filtered lookups in such way that once a Country
is selected, the State/Province shows a trimmed-down list of only values relevant to that
particular country.

Chapter 2

63

In order not to break any internal functionality of CRM, including any pre-existing reports,
we can still use the out of the box fields, but we'll put a different spin on it. Once a value is
selected in the lookup, we can programmatically read that value, and assign it to the default
text field. Also, we hide these default text fields so they don't overcrowd our form.

To take one step further, we can add an "Other" option to both Country and State lookups.
When this value is selected, we can display the hidden fields allowing the user to type a value
that is not already in the system.

The code could look similar to the following:

function setOTBState()
{
 var state = new Array();
 state = Xrm.Page.getAttribute("new_state").getValue();
 if(state != null)
 {
 var stateText = state[0].name;

 if(stateText != "Other")
 {
 Xrm.Page.getAttribute("address1_stateorprovince").
setValue(stateText);
 Xrm.Page.ui.controls.get("address1_
stateorprovince").setVisible(false);
 }
 else
 {
 Xrm.Page.getAttribute("address1_stateorprovince").
setValue("");
 Xrm.Page.ui.controls.get("address1_
stateorprovince").setVisible(true);
 }
 }
}

The new lines of code added in this example show you how to set a field as visible or hide it
on a form.

3
Field Validation

In this chapter, we will cover:

ff Custom e-mail field validation

ff Custom web address field validation

ff Validating the ticker symbol field

ff Formatting phone numbers

ff Formatting postal codes

ff Replacing the Country and Province fields with lookups

Introduction
In this chapter, we will delve deeper into standard field formatting and validation. We will be
looking at some of the most common scenarios.

Custom e-mail field validation
Working with e-mail fields has been greatly simplified. For the most part, we can just define
the field as e-mail and, lo and behold, we need no customization and formatting.

There are exceptional cases to this. We might want to capture multiple e-mail fields, or
validate other types of fields that are not defined as e-mail. For this purpose, we still need to
pull out our JavaScript toolbox and draft some quick snippets of script. So let's get started.

Field Validation

66

Getting ready
By now we should have an environment created and proper permissions to tinker around with
some customizations. Ideally we should have the permissions of a system customizer or a
system administrator, or a similar custom role.

How to do it...
Generating a new e-mail field on a form using the simplistic UI wizard can easily be achieved
by performing the following steps:

1.	 Open an existing solution, or create a new one.

2.	 Add the Contact entity to the solution, if not already added.

3.	 Open the main information form for editing.

4.	 Click on New Field to add a new e-mail field.

5.	 Name the field Other e-Mail, set the Type as Single Line of Text, and for Format
select E-mail.

6.	 Add the field to the form, Save and Publish your form.

This approach adds an e-mail field to your form with the required validation. On change, the
input is verified to map to a valid e-mail address format. Additionally, once a correct e-mail is
entered, it is presented back to the user as a mailto hyperlink.

Chapter 3

67

One disadvantage of the e-mail field validation built is the actual
format validation. While the validation formula does check for a
valid block of letters, followed by the @ symbol and another block
of letters, it fails to check for an extension. Thus, we can easily end
up with e-mail addresses formatted like demo@demo instead of a
proper demo@demo.com.

For cases where we need to validate a proper e-mail address with a Fully Qualified Domain
Name (FQDN) or if we need to accept only e-mail addresses from a specific domain, the
following block of JavaScript code can come to the rescue:

function checkEmail(emailField)
{
 var email=/^([a-zA-Z0-9_.-])+@([a-zA-Z0-9_.-])+\.([a-zA-Z])+([a-
zA-Z])+/;
 if(email.test(emailField))
 {
 // alert("true");
 return true;
 }
}

We are using regular expressions to define the mapping format for an e-mail address.

How it works...
The checkEmail() function we have just presented is meant to be used as a generic
function we can call for any field we need to validate as e-mail. In order to validate the field we
have just created we can create a new function, retrieve the value of the field, and pass it into
our function. For reading from a single-line text field, refer to the respective recipe earlier in
this book.

Once we define the regular expression, we can test the string from the user input against the
expressions. If we have a match, we can raise an alert (commented out in our script with the
// symbol, and then we can return true. The calling function can then process based on the
return value.

There's more...
One other case when dealing with e-mail addresses is a situation where either a single or
multiline text field is meant to capture a listing of e-mail addresses separated by a key symbol.
Let's define the separation symbol as a comma.

Field Validation

68

The way to validate the input in such a case is by reading the whole input, separating the
individual e-mail addresses, loading them in an array, then running our check against each
one using the same checkEmail() function.

Assuming inputField is a string holding the user input, the following function will split the
string, load the array, and run the check.

function checkInput(inputField)
{
 var flag = true;
 var emailArray = inputField.split(",");
 for(var i = 0; i < emailArray.length; i++)
 {
 if(!checkEmail(emailArray[i]))
 {
 flag = false;
 break;
 }
 }
 return flag;
}

Handling erroneous input
There are a few tricks that enable us to handle erroneous input from the user. First off, we
want to display a message back to the user, to let him/her know what is wrong with the input
they provided and why we are rejecting it. This can be easily achieved using a simple alert.

alert("You have entered an incorrect email address!");

Of course, you can be as creative as you want with the message you are passing back to the
application user.

The other thing you might want to do is set the focus back on the field. You can achieve this
with the following lines of code:

var field = Xrm.Page.ui.controls.get("fieldName");
field.setFocus();

While the first line gets a reference to the control, the second line actually sets the focus on it.

Chapter 3

69

See also
ff For more details on the Xrm.Page object model, refer to the MSDN documentation

at http://msdn.microsoft.com/en-us/library/gg328474.aspx.

ff For field datatype descriptions, check out the Dynamics CRM documentation at
http://rc.crm.dynamics.com/rc/2011/en-us/online/5.0/Help/ug_
cust_entity_fields.htm.

Custom web address field validation
URL fields are simply glorified text fields. Formatting is applied to these to generate the URL
into a link format. Additionally, some minimal validation is applied, and the prefix "http://"
is applied automatically if missing.

From a customization point of view, there isn't really that much that can be done with these
fields, other than use them, as such.

In some circumstances we will want to make sure that the URL captured follows a specific set
of business rules. As one example, we may expect to capture a link to a specific social network
in which we can validate that input, and reject it if it does not conform.

Getting ready
Let's use for this example the same environment we created earlier. If you have jumped
straight to this recipe, you can use any environment you have available, assuming you have
the proper permissions to apply customizations, or you can create a new environment as
described in the first chapter.

How to do it...
Perform the following steps to customize your solution:

1.	 Open an existing solution, or create a new one if one is not available.

2.	 Add the Contact entity to your solution, if not already added.

Field Validation

70

3.	 Add a new Single Line of Text field, name it LinkedIn, and set it to the Format
of URL.

4.	 Add it to your form.

5.	 Generate a new JScript web resource file, named new_JSLinkedIn.

Chapter 3

71

6.	 Add the following function:
function ValidateLinkedIn()
{
 var _url = Xrm.Page.getAttribute("new_linkedin").getValue();
 var _regex = /^http:\/\/www.linkedin.com\/profile\/view\?.*/;

 if(!_url.match(_regex))
 {
 alert("The URL entered is not a LinkedIn profile!");
 }
}

7.	 Save and Publish your resource.

8.	 Add the ValidateLinkedIn() function to the OnChange event of the newly
created form field.

9.	 Save and Publish your solution.

10.	 Test your solution by navigating to the Contact form and entering a generic URL to
any page. You should be prompted with the following message from the alert line.

11.	 Then enter a URL to a LinkedIn user profile. You should not be getting any
more prompts.

How it works...
The script example provided reads the user input in the same way we read any regular text
field, and then it compares it against a defined regular expression. For any non-mapping
values, we prompt the users.

There's more...
While this is all nice, there are some limitations of the URL formatted text field.

Field Validation

72

This formatting is not supported in the header and footer of a form. As seen in the following
screenshot, the Other URL field showing in the header of a Contact form is not formatted as a
link, but rather as simple text:

See also
ff For additional details on using the formatted URL field, see the documentation in

the resource center http://rc.crm.dynamics.com/rc/2011/en-us/on-
prem/5.0/help/ug_cust_entity_fields.htm.

Validating the ticker symbol field
The default ticker symbol field in Dynamics CRM 2011 is integrated with MSN Money to bring
up information about the entered symbol. When this symbol is not found, the user is faced
with an Information Not Available page. Unfortunately, only the website will validate the user
input, not your CRM application. For us to validate the symbols, we need to implement an
additional piece of functionality. We can thus prompt the user once they have entered the
symbol if the input is not valid.

Getting ready
In order to work through the steps of creating a ticker symbol field, use an existing solution or
create a new one.

How to do it...
Perform the following steps to customize a ticker symbol field on an Account form:

1.	 Add the Account entity to your solution, if not already added.

2.	 Open the main form to customize it.

3.	 Create a new field, name it Ticker, and set the Type to Single Line of Text and the
Format to Ticker Symbol.

Chapter 3

73

4.	 Add this new field to the form.

5.	 Test the form to make sure the new field appears and observe the default behavior.
By default, the Ticker Symbol formatting adds a link to the text entered, and forwards
the user to Microsoft Money on a click.

Please note that out of the box there is no ticker symbol validation.
Only when you click on the link, the resulting page will look up the
symbol entered, and will bring back the Search page.

6.	 Add a new JScript web resource to your project, and add the following function to
validate a ticker symbol. Add this function to the OnChange form field event.
function CheckTicker()
{
 var tickerValue = Xrm.Page.getAttribute("new_ticker").
getValue();
 if(!CheckTicker(tickerValue))
 {
 alert("The Ticker symbol provided does not exist!");
 }
}

7.	 Save and Publish your solution.

Field Validation

74

How it works...
The function we just presented does nothing more than to read the user input value, and
pass it to a custom CheckTicker() function. We are expecting this function to return true
if the value is a valid value, or false if not. Please customize this function according to the
requirements of your environment. You can use some of the free web services available on
the web for this validation, or use an internal application.

There's more...

Re-routing your request to another provider:
For an on-premise deployment, if you want to re-route your request to an internal application
that provides ticker information, the configuration for the ticker symbol is located in an HTC
file at the following location:

C:\Program Files\Microsoft Dynamics CRM\CRMWeb_static_form\
controls\INPUT.text.ticker.htc

You can override the JScript function in that file, and replace the line with
safeWindowOpen(Mscrm.CrmUri.create(… to point to the URL of your custom application.
This way, for an internal deployment where users are blocked from accessing the internet, the
ticker link will forward them to your other internal application that provides stock information.

Please note that this customization is not supported, as it works using standard JavaScript
and not the Dynamics CRM script API.

See also
ff There are a few available APIs that will allow you to work with ticker symbols. Yahoo

has a pretty good API for various financial web services. For additional details see
http://developer.yahoo.com/finance/company.html.

Formatting phone numbers
Working with phone numbers and fax numbers is probably one of the most common tasks
users will perform. As such, the system is flexible enough to allow you as a developer to
customize these fields to your heart's content.

Getting ready
In order to follow through the steps of this example you need a solution created in your
development environment.

Chapter 3

75

How to do it...
The following steps will guide you through adding a JScript web resource that holds your
phone number validation and formatting script, as well as associating it with one of the
phone number fields on a form.

1.	 Open your solution, and create a new JScript resource.

2.	 Add the following function to your resource:
// call this function to format any north american phone number
(10 digit)
// in the following format: (xxx) xxx-xxxx
// pass context to the function
function FormatPhoneNo(context) {
 try {
 var nvsField = context.getEventSource().getValue();
 var nvsTmp = nvsField;

 if (typeof (nvsField) != "undefined" && nvsField != null)
{
 nvsTmp = nvsField.replace(/[^0-9]/g, "");
 switch (nvsTmp.length) {
 case 10:
 nvsTmp = "(" + nvsTmp.substr(0, 3) + ") " +
nvsTmp.substr(3, 3) + "-" + nvsTmp.substr(6, 4);
 break;

 default:
 alert("Phone must contain 10 numeric
digits.");
 break;
 }
 }
 context.getEventSource().setValue(nvsTmp);
 }
 catch (err) {
 }
}

3.	 Associate this function with the OnChange event of one of the phone fields on a
Contact entity. Make sure that you pass the context to this function by selecting the
context check-box.

Field Validation

76

How it works...
One thing you will observe us doing differently in this function is the fact that we are using
the context rather than going straight to a specific field. What this allows us to do is reuse
this same function for multiple phone and fax fields. We are retrieving the value of the field
through the context, using the following expression:

 var nvsField = context.getEventSource().getValue();

Next, we are checking that we have a valid value in the variable, cleaning all characters that
are not numbers, and checking the length. As the comment states at the beginning of the
function, we are using this format for standard North-American phone number formats, with a
length of 10 digits.

You might want to work in conjunction with the Country field and format the phone numbers
according to the country they belong to. This way you can handle formats for any country your
system users will work with.

There's more...
Formatting phone numbers should be handled differently for regular browsers versus mobile
devices. While on a browser, you have all the real estate of a large screen, on a mobile device
you have to be mindful of the screen size and the lack of ability to tab between applications
easily. For this reason, when developing mobile forms, we have to take into consideration all
the available tricks in our bag to make a user's life as easy as possible.

Formatting for mobile forms
You will observe that in many instances you need to collect an extension for a telephone
number. While this is easily done by adding an additional text field, when using mobile devices
you might want to take a slightly different approach.

The mobile pages can be customized independently of the regular forms. This allows us to
customize the telephone field, and add the extension properly, so a user with a smart phone
can dial directly. Remember the old "pause" character? It is none other than the "," character.
Knowing this, we can set the phone number on the mobile pages to include the extension, by
formatting it such as +XXX-XXX-XXXX,XXXX.

Using such a format allows a user to tap on the phone number and dial directly. The users
don't need to remember what extension he/she needs to dial. They will love you for making
their life easier, and adoption will increase dramatically.

Chapter 3

77

Formatting postal codes
Working with postal codes is again left to the latitude of developers. With the wide range of
countries supported, it would be unrealistic to try to provide the functionality out of the box.

Getting ready
Using the previously created solution or a new solution, we will add postal code formatting for
the Account entity.

How to do it...
Take the following steps to format a postal code:

1.	 Add a JScript web resource to hold your script.

2.	 Add the following script to the resource:
// Function to format postal code
 // for both Canadian and US postal codes
 function FormatPostalCode(context)
 {
 var oField = context.getEventSource().getValue();
 var sTmp;

 if(typeof(oField) != "undefined" && oField != null)
 {
 // check for US ZIP code
 if(oField.match(/^[0-9]{5}$/))
 {
 context.getEventSource().setValue(oField);
 return true;
 }

 // check for Canadian postal code
 sTmp = oField.toUpperCase();
 if (sTmp.match(/^[A-Z][0-9][A-Z][0-9][A-Z][0-9]$/))
 {
 sTmp = sTmp.substr(0,3) + " " + sTmp.substr(3,3);
 context.getEventSource().setValue(sTmp);
 return true;
 }
 if (sTmp.match(/^[A-Z][0-9][A-Z].[0-9][A-Z][0-9]$/))

Field Validation

78

 {
 context.getEventSource().setValue(sTmp);
 return true;
 }

 // code is invalid
 // alert("Incorrect ZIP/Postal Code format.");
 // code could be any other country, so leave as is
 }
 }

3.	 Add your function to the OnChange event of the postal code field you want to validate
and format.

4.	 Save and Publish your customizations.

How it works...
As with our previous example, we are reading the value based on the context we are passing,
so we can reuse this function across multiple postal code fields on various forms.

Using regular expressions, we are validating that the format of the user input is either
five numeric characters or a combination of six alternating characters as required for the
Canadian postal code. This piece can easily be changed to map to any other country's postal
code format.

The section commented out at the end allows us to notify the user if the postal code entered
does not correspond to any of the required formats. We can take additional actions here,
by either clearing the field using context.getEventSource().setValue(""); or just
simply leaving the input as it is.

Alternatively you can use a web service to validate postal codes and addresses. Most
international postal services will provide, for a price, a listing of all postal codes and
associated addresses.

Replacing the Country and Province fields
with lookups

Even though we touched on bits and pieces of this recipe earlier in the previous chapters,
I will be presenting here a top-to-bottom approach of replacing the standard out-of-the-box
Country and Province fields with lookups. This solution will allow users to select these values
from pre-defined available options, and eliminate the issues resulting from typical user
input errors.

Chapter 3

79

Getting ready
For this recipe, use one of the solutions created in earlier chapters, or create a new one. Add to
your solution the Account and Contact entities where we will replace the fields with lookups.

How to do it...
Follow the same steps on both the Account and the Contact entities. I will only describe
the process once. You can follow the same process if you create a custom Address entity,
or anywhere else where you need to capture address information.

The end result will be a transformation of the following field set:

To the following:

1.	 Open your existing solution.

2.	 Add a new entity named Country, with an internal name of new_country.

3.	 Make it visible only on the Settings area:

4.	 Save your new entity.

Field Validation

80

5.	 Open the main form of the entity, and modify the form as follows:

1.	 Add a field named Country Code, with an internal name of new_
countrycode. Format it as text, with a maximum length of 3. This field will
hold an abbreviated version such as USA, CA, and UK.

2.	 Add a field named Display Sequence, with an internal name of new_
displaysequence. Format it as a whole number, with a minimum value of
0. I have set the maximum to 500, but you could set it to the total number of
countries, which at the time of this writing stands at 196.

3.	 Add these fields to your form for an end result as follows:

6.	 Add a new entity named State, with an internal name of new_state.

7.	 Make it visible only on the Settings area.

8.	 Save your new entity.

9.	 Open the main form of the entity, and customize it as follows:

1.	 Add a new field named State Code, with an internal name of new_
statecode. Format it as text, with a maximum length of 5, or enough
to capture a short name for the state. Usually for US and Canada two
characters are enough.

2.	 Add a new field name Display Sequence, with an internal name of new_
displaysequence. Format it as a whole number, with a minimum value
of 0. Set the maximum depending on the number of provinces/states you
intend to capture in the system. If unsure, set it to a value high enough for
your initial phase. You can always change the maximum value at a later time.

Chapter 3

81

3.	 Add a new field named Country, with an internal name of
new_country. Format it as type lookup, with a target record type pointing
back to the Country entity we have just created.

4.	 Add these new fields to your form, for an end result as follows:

10.	 Save your new entity.

11.	 Publish all changes to this solution.

12.	 Open your Account entity or the entity where we will replace the standard text fields
with our new lookups. Open the main form for editing.

Field Validation

82

13.	 Add a new field named State, with an internal name of new_state. Make the field
type lookup, with a target record type of State (the entity we created earlier). Add this
field to our form right underneath our existing State/Province field.

14.	 Similarly, add a new field named Country, with an internal name of new_country.
Make the field type lookup, with a target record type of Country (the entity we
created earlier). Add this field to our form.

15.	 Double-click the State field we just added, and on the Display tab, in the Related
Records Filtering area, check the box next to Only show records where:.

16.	 Configure as in the following image:

17.	 Turn off the check box on Allow users to turn off filter, so that users will always get a
listing of the provinces related to the country selected.

18.	 In order to make the input work, move the country selection above the State. This
allows the users to select a country first, and then get a listing of all state/provinces
related to the country they already selected.

19.	 Make the default fields for State/Province and Country/Region not visible, by
opening the field properties window, and unchecking the Visible by default checkbox.

Chapter 3

83

20.	 I have arranged the fields on the form as follows:

21.	 Save and Publish your entire solution.

22.	 Refresh your browser window to see the two new entities we have just created.
Navigate to the Settings section. You should see them listed as follows in the
Extensions area.

23.	 Open first the Countries, and add a few sample records.

24.	 Open next the States and add a few states/provinces for each of the added countries.

25.	 Once you have some sample data, check the Account form to make sure the filtering
indeed takes place.

The Display Sequence field can be used to order the views.

Field Validation

84

26.	 In order to keep the out-of-the-box functionality in place, and to allow some of the
standard reports and views to function as expected, we will add two functions that
will help us copy the values selected by the user in the lookup fields to the standard
text fields that we have just marked as hidden.

27.	 Add a JScript web resource, and insert the following two functions:
function UpdateCountry()
{
 var _country = new Array();
 _country = Xrm.Page.getAttribute("new_country").getValue();
 if(_country != null)
 {
 Xrm.Page.getAttribute("address1_country").setValue(
 _country[0].name);
 }
}

function UpdateState()
{
 var _state = new Array();
 _state = Xrm.Page.getAttribute("new_state").getValue();
 if(_state != null)
 {
 Xrm.Page.getAttribute("address1_stateorprovince").setValue
 (_state[0].name);
 }
}

28.	 Associate the UpdateCountry() function with the OnChange event of the new
country lookup we created, and the UpdateState() function to the OnChange
event of the new State lookup.

29.	 Update a few records, and check using Advanced Find to make sure that the original
fields are being also populated.

How it works...
The process I am following in this recipe is relatively simple. We are creating the related
lookups, and populating the selected values into the original fields using the JavaScript
functions. We could have done this without copying the values into the original fields, but the
reason I chose to do so is because now I can use all the views and reports as defined out of
the box, and any future upgrades or other solutions that are referencing those fields will find
them also populated with the current values.

4
Rules and Events

In this chapter, we will cover the following topics:

ff Form load event usage

ff Form save event usage

ff Field change event usage

ff Working with tabs and sections

ff Combining events

ff Enforcing business rules

Introduction
Handling specific events is something everybody expects from an application. While JavaScript
has its own event handling model, working with Dynamics CRM offers a different set of events
that we can take advantage of.

The JavaScript event model, while it might work, is not supported, and
definitely not the approach you want to take when working within the
context of Dynamics CRM.

Rules and Events

86

Some of the most notable events and their counterparts in JavaScript are described in the
following table:

Dynamics CRM 2011 JavaScript Description

OnLoad onload This is a form event. Executes when
a form is loaded. Most common use
is to filter and hide elements on the
form.

OnSave onsubmit This is a form event. It executes
when a form is saved. Most common
use is to stop an operation from
executing, as a result of a failed
validation procedure.

TabStateChange n/a This is a form event. It executes
when the DisplayState of the
tab changes.

OnChange onchange This is a field specific event. It
executes when tabbing out of a
field where you've changed the
value. Please note that there is
no equivalent for onfocus and
onblur.

OnReadyStateComplete n/a This event indicates that the content
of an IFrame has completed loading.

Additional details on Dynamics CRM 2011 specific events can be found on MSDN at

http://msdn.microsoft.com/en-us/library/gg334481.aspx.

Form load event usage
In this recipe, we will focus on executing a few operations triggered by the form load event. We
can check the value of a specific field on the form, and based on that we can decide to hide a
tab, hide a field, and prepopulate a text field with a predefined value.

Getting ready...
Just as with any of the previous recipes, you will need access to an environment, and
permissions to make customizations. You should be a system administrator, a system
customizer, or a custom role configured to allow you to perform the following operations.

Chapter 4

87

How to do it...
For the purpose of this exercise, we will add to the Contact entity a new tab called "Special
Customer", with some additional custom fields. We will also add an option set that we will
check to determine if we hide or not the fields, as well as two new fields: one text field and
one lookup field. So let's get started!

1.	 Open the contact's main form for editing.

2.	 Add a new tab by going to Insert | Tab | One Column.

3.	 Double-click on the newly added tab to open the Tab Properties window.

4.	 Change the Label field of the tab to Special Customer.

5.	 Make sure the show label is expanded by default and visible checkboxes are
checked. Click on OK.

6.	 Add a few additional text fields on this tab. We will be hiding the tab along with the
content within the tab.

7.	 Add a new field, named Is Special Customer (new_IsSpecialCustomer). Leave the
default yes/no values.

8.	 Add the newly created field to the general form for the contact.

Rules and Events

88

9.	 Add another new text field, named Customer Classification (new_
CustomerClassification). Leave the Format as Text, and the default Maximum
Length to 100, as shown in the following screenshot:

10.	 Add the newly created text field to the general form, under the previously added field.

11.	 Add a new lookup field, called Partner (new_Partner). Make it a lookup for a contact,
as shown in the following screenshot:

Chapter 4

89

12.	 Add this new field to the general form, under the other two fields.

13.	 Save and Publish the Contact form.

14.	 Your form should look similar to the following screenshot:

Observe the fact that I have ordered the three fields one on top of
the other. The reason for this is because the default tab order in
CRM is vertical and across. This way, when all the fields are visible,
I can tab right from one to another.

15.	 In your solution where you made the previous changes, add a new web resource
named FormLoader (new_FormLoader). Set the Type to JScript.

16.	 Click on the Text Editor button and insert the following function:
function IsSpecialCustomer()
{
 var _isSpecialSelection = null;
 var _isSpecial = Xrm.Page.getAttribute("new_isspecialcustomer");
 if(_isSpecial != null)
 {
 _isSpecialSelection = _isSpecial.getValue();

Rules and Events

90

 }

 if(_isSpecialSelection == false)
 {
 // hide the Special Customer tab
 Xrm.Page.ui.tabs.get("tab_5").setVisible(false);
 // hide the Customer Classification field
 Xrm.Page.ui.controls.get("new_customerclassification").
 setVisible(false);
 // hide the Partner field
 Xrm.Page.ui.controls.get("new_partner").setVisible(false);
 }
}

17.	 Save and Publish the web resource.

18.	 Go back to the Contact form, and on the ribbon select Form Properties.

19.	 On the Events tab, add the library created as web resource in the Forms Libraries
section, and in the Event Handlers area, on the Form OnLoad add the function
we created:

Chapter 4

91

20.	 Click on OK, then click on Save and Publish the form.

21.	 Test your configuration by opening a new contact, setting the Is Special Customer
field to No. Save and close the contact. Open it again, and the tab and fields should
be hidden.

How it works...
The whole idea of this script is not much different from what we have demonstrated in some
of the previous recipes. Based on a set form value, we hide a tab and some fields. Where we
capture the difference is where we set the script to execute. Working with scripts executing
when the form loads gives us a whole new way of handling various scenarios.

There's more...
In many scenarios, working with the form load events in conjunction with the other field events
can potentially result in a very complex solution.

When debugging, always pay close attention to the type of event
you associate your script function with.

See also
See the Combining events recipe towards the end of this chapter for a more complex recipe
detailing how to work with multiple events to achieve the expected result.

Form save event usage
While working with the Form OnLoad event can help us format and arrange the user
interface, working with the Form OnSave opens up a new door towards validation of user
input and execution of business process amongst others.

Getting ready
Using the same solution we have worked on in the previous recipe, we will continue to
demonstrate a few other aspects of working with the forms in Dynamics CRM 2011. In this
recipe the focus is on the handling the Form OnSave event.

Rules and Events

92

How to do it...
First off, in order to kick off this, we might want to verify a set of fields for a condition, or
perform a calculation based on a formula. In order to simplify this process, we can just check
a simple yes/no condition on a form.

How it works...
Using the previously customized solution, we will be taking advantage of the Contact entity
and the fields that we have already customized on that form. If you are starting with this
recipe fresh, take the following step before delving into this recipe:

1.	 Add a new two-options field, named Is Special Customer (new_IsSpecialCustomer).
Leave the default yes/no values.

Using this field, if the answer is No, we will stop the save process.

2.	 In your solution add a new web resource. I have named it new_ch4rcp2. Set its type
to JScript.

3.	 Enter the following function in your resource:
function StopSave(context)
{
 var _isSpecialSelection = null;

Chapter 4

93

 var _isSpecial = Xrm.Page.getAttribute("new_isspecialcustomer");

 if(_isSpecial != null)
 {
 _isSpecialSelection = _isSpecial.getValue();
 }

 if(_isSpecialSelection == false)
 {
 alert("You cannot save your record while the Customer is not a
 friend!");
 context.getEventArgs().preventDefault();
 }
}

4.	 The function basically checks for the value in our Is Special Customer. If a value
is retrieved, and that value is No, we can bring up an alert and stop the Save and
Close event.

5.	 Now, back on to the contact's main form, we attach this new function to the form's
OnSave event.

6.	 Save and Publish your solution.

7.	 In order to test this functionality, we will create a new contact, populate all the
required fields, and set the Is Special Customer field to No.

8.	 Now try to click on Save and Close.

9.	 You will get an alert as seen in the following screenshot, and the form will not close
nor be saved.

10.	 Changing the Is Special Customer selection to Yes and saving the form will now save
and close the form.

Rules and Events

94

There's more...
While this recipe only describes in a very simplistic manner the way to stop a form from saving
and closing, the possibilities here are immense. Think about what you can do on form save,
and what you can achieve if a condition should be met in order to allow the form to be saved.

Starting a process instead of saving the form
Another good use for blocking the save and close form is to take a different path. Let's say
we want to kick off a workflow when we block the save form. We can call from the previous
function a new function as follows:

function launchWorkflow(dialogID, typeName, recordId)
{
var serverUri = Mscrm.CrmUri.create('/cs/dialog/rundialog.aspx');
 window.showModalDialog(serverUri + '?DialogId=' + dialogID +
'&EntityName=' + typeName +
'&ObjectId=' + recordId, null, 'width=615,height=480,resizable=1,statu
s=1,scrollbars=1');
// Reload form
window.location.reload(true);
}

We pass to this function the following three parameters:

ff GUID of the Workflow or Dialog

ff The type name of the entity

ff The ID of the record

See also
ff For more details on parameters see the following article on MSDN:

http://msdn.microsoft.com/en-us/library/gg309332.aspx

Field change event usage
In this recipe we will drill down to a lower level. We have handled form events, and now it is
time to handle field events. The following recipe will show you how to bring all these together
and achieve exactly the result you need.

Chapter 4

95

Getting ready
For the purpose of this recipe, let's focus on reusing the previous solution. We will check the
value of a field, and act upon it.

How to do it...
In order to walkthrough this recipe, follow these steps:

1.	 Create a new form field called new_changeevent, with a label of Change Event, and
a Type of Two Options. Leave the default values of No and Yes. Leave the Default
Value as No.

2.	 Add this field to your main Contact form.

3.	 Add the following script to a new JScript web resource:
function ChangeEvent()
{
 var _changeEventSelection = null;
 var _isChanged = Xrm.Page.getAttribute("new_changeevent");

 if(_isChanged != null)
 {
 _changeEventSelection = _isChanged.getValue();

Rules and Events

96

 }

 if(_changeEventSelection == true)
 {
 alert("Change event is set to True");
 // perform other actions here
 }
 else
 {
 alert("Change event is set to False");
 }
}

4.	 This function, as seen in the previous recipes, checks the value of the Two Options
field, and performs and action based on the user selection. The action in this
example is simply bringing an alert message up.

5.	 Add the new web resource to the form libraries.

6.	 Associate this new function to the OnChange event of the field we have just created.

7.	 Save and Publish your solution.

8.	 Create a new contact, and try changing the Change Event value from No to Yes and
back. Every time the selection is changed, a different message comes up in the alert.

How it works...
Handling events at the field level, specifically the OnSave event, allows us to dynamically
execute various other functions. We can easily take advantage of this functionality to modify
the form displayed to a user dynamically, based on a selection. Based on a field value, we
can define areas or field on the form to be hidden and shown.

Working with tabs and sections
This recipe will show you how to work with tabs and sections on a form. You might have
observed some bits of code in other recipes that allow you to hide a specific tab if a condition
is not met. Here, we will analyze how to hide and show these form elements.

Getting ready
For the purpose of this demonstration, we will be looking at the Contact form we have been
working on until now. Reuse the same solution you have used already, or if you want to start a
new one, create a new solution.

Chapter 4

97

How to do it...
First off, let's focus on working with the tabs. These form elements have the advantage of
generating a link on the navigation, allowing a user to browse directly to a specific tab. They
come in handy when you have a long entity form, and you don't want the user to scroll for
too long.

On the top-left side of the Contact form, right underneath the ribbon, your will see the tab as
shown in the following screenshot:

Observe the four tabs displayed by default on the contact.

Note that hiding a tab will not only hide the tab on the form,
but will also remove the link in the tabs area.

We can show and hide tabs based on either a form event, such as the OnLoad or OnSave
events, or based on a field event, such as the OnChange event. The code is the same, the
only difference is what event we associate with our function.

For the purpose of this example, I want to hide a tab when the form loads, no matter what.

1.	 Add a new web resource of type JScript, and insert the following function:
function HideTab()
{
 Xrm.Page.ui.tabs.get("notes and activities").setVisible(false);
}

2.	 Add the new web resource to the form libraries.

3.	 Associate your function with the form OnLoad event.

4.	 Save and Publish your solution.

5.	 Test by creating a new contact. The Notes & Activities tab will be hidden.

6.	 Also, the form section is hidden from the user.

Rules and Events

98

In order to revert this action, check for a form condition and run another function to display
this tab again. You can define the condition to be either a value populated in a text field, or
maybe a new "Notes Required" two-options field on the form. Check the value as described in
the previous recipes, and call the following function to show the tab:

function ShowTab()
{
 Xrm.Page.ui.tabs.get("notes and activities").setVisible(true);
}

Similarly with tabs, a form section is an area of the form situated within a tab. You can choose
to leave the tab visible at all times, but hide or show only a section.

The following function hides a section on the Contact form on form load. For this case, I will
be leaving the Notes & Activities tab visible, but I want to hide only the Activities section.

function HideSection()
{
 Xrm.Page.ui.tabs.get("notes and activities").sections.
get("activities").setVisible(false);
}

Observe that, in order to get to a section, we have to retrieve the tab on which the section
lives.

On the flip side, in order to show a section back on the form, the following function does
the job:

function ShowSection()
{
 Xrm.Page.ui.tabs.get("notes and activities").sections.
get("activities").setVisible(true);
}

Note that these functions assume that the tabs and/or section are
already created on the form, and are only dealing with hiding and/or
showing these form elements.

How it works...
The demonstration in this recipe revolves around the concept of defining what the user needs
to see on an entity form, based on either a form event or a predefined rule. We do count on
all these tabs and sections being generated ahead of time. All we are doing is showing and/or
hiding them according to our business rules.

Chapter 4

99

Getting to a tab in order to perform an action on it is achieved using the following line of code:

Xrm.Page.ui.tabs.get("tabName")

Once we have a reference to the tab, we can perform the required actions on it, such as show
or hide the tab by setting the SetVisible property.

Additionally, getting to a section on the form is done through the tab it lives on. The following
code gets a reference to the section:

Xrm.Page.ui.tabs.get("tabName").sections.get("sectionName")

From here on, we can perform other actions.

Combining events
In the previous recipes of this chapter we have seen some examples on working with the
form UI based on either a predefined rule on form load, or on a field's onchange event. This
example will focus on putting it all together in order to achieve a comprehensive result that
actually can satisfy a realistic business rule.

Getting ready
Let's go back to the solution that we have worked with in the previous recipe. We will be using
the same Contact form to implement this example. Following the Form load event usage
recipe described earlier in this chapter, we can easily realize that it only works first time
when the user loads a contact. How about if the user changes a value on the form? We have
touched on the functionality a little bit in the following recipes, but let's put it all together now.

How to do it...
The following is what we want to achieve:

ff When a user opens a contact, if the contact is marked as special customer, we want
to collect additional information about him/her.

ff When a user opens a contact that is not marked as special customer, we want to hide
the additional fields.

ff When a user changes a contact from special to not special or back, we want the form
to dynamically show or hide the fields.

Up until now, the first two conditions are met by the recipe described earlier. Now let's focus
on the third requirements.

1.	 Open your existing solution from the first recipe in this chapter.

2.	 Open your JScript web resource in which you added the other functions.

Rules and Events

100

3.	 Add the following new function to this resource:
function ChangeCustomer()
{
 var _isSpecialSelection = null;
 var _isSpecial = Xrm.Page.getAttribute("new_isspecialcustomer");

 if(_isSpecial != null)
 {
 _isSpecialSelection = _isSpecial.getValue();
 }

 if(_isSpecialSelection == false)
 {
 // hide the Special Customer tab
 Xrm.Page.ui.tabs.get("tab_5").setVisible(false);
 // hide the Customer Classification field
 Xrm.Page.ui.controls.get("new_customerclassification").
setVisible(false);
 // hide the Partner field
 Xrm.Page.ui.controls.get("new_partner").setVisible(false);
 }
 else if(_isSpecialSelection == true)
 {
 // show the Special Customer tab
 Xrm.Page.ui.tabs.get("tab_5").setVisible(true);
 // show the Customer Classification field
 Xrm.Page.ui.controls.get("new_customerclassification").
setVisible(true);
 // show the Partner field
 Xrm.Page.ui.controls.get("new_partner").setVisible(true);
 }
}

4.	 Associate this function with the OnChange event of the Is Special Customer field, as
shown in the following screenshot:

5.	 Save and Publish your solution.

Chapter 4

101

6.	 Test your script by opening a contact, and changing the Is Special Customer value
from Yes to No and back. You will observe the Special Customer tab being shown
and hidden as you change the value, as well as the other two fields.

How it works...
Taking a closer look at the function presented earlier, there are really a handful of actions
we take.

1.	 First off, we begin by declaring our temporary variable that will store the value of
the Is Special Customer field. This being a two-options field, we expect back a True/
False value. We set this to null, note that if it does not get assigned we
can skip execution of any other code:
var _isSpecialSelection = null;

2.	 On the next line, we get a reference to the form field:
var _isSpecial = Xrm.Page.getAttribute("new_isspecialcustomer");

3.	 In the next section, we check to make sure that our form field reference indeed
found a field on the form, and we get the value of that field into the first variable
we declared:
 if(_isSpecial != null)
 {
 _isSpecialSelection = _isSpecial.getValue();
 }

4.	 Based on the value retrieved from the form field, we can start to act on other form
elements. Observe that first we check if the value is false, and then we hide the
Form tab and fields:
 if(_isSpecialSelection == false)
 {
 // hide the Special Customer tab
 Xrm.Page.ui.tabs.get("tab_5").setVisible(false);
 // hide the Customer Classification field
 Xrm.Page.ui.controls.get("new_customerclassification").
setVisible(false);
 // hide the Partner field
 Xrm.Page.ui.controls.get("new_partner").setVisible(false);
 }

5.	 Then we check if the value is true so we can show these elements back to the user:
 else if(_isSpecialSelection == true)
 {
 // show the Special Customer tab

Rules and Events

102

 Xrm.Page.ui.tabs.get("tab_5").setVisible(true);
 // show the Customer Classification field
 Xrm.Page.ui.controls.get("new_customerclassification").
setVisible(true);
 // show the Partner field
 Xrm.Page.ui.controls.get("new_partner").setVisible(true);
 }

If the value is not assigned, and it remains null as we defined it at the beginning, we do not
execute any code. If there is a requirement to execute an action for that case, you can easily
add another else if block at the end.

There's more...
A few things we have to be aware of when designing our forms include the following aspects:

You cannot add new fields dynamically
Working with form elements in Dynamics CRM assumes that all these fields are precreated
and added to the forms. You cannot dynamically create new form fields and add them.

Be mindful of form layout
While this might not catch your attention right away, depending on where you drop your field
on the form, after a while you will observe that when you hide a field, the remaining fields
underneath do not rearrange automatically. This is because, while you have your field hidden,
it still exists on the page at that specified location.

When designing your page, arrange your individual fields that you will hide in such a way so
that when you hide one, it does not leave an obvious gap on the form. Either place them at
the bottom of a section or tab, or place them in such an order that while you start showing
them, they get added at the bottom of the previous one. This works in a case where you have
a business progression expected, and you display items on the form as you progress through
phases predefined.

See also
ff For additional references on using form programming, see the following MSDN article:

http://msdn.microsoft.com/en-us/library/gg328261.aspx

Enforcing business rules
For this recipe, we will focus on a different entity. Let's have a look at Opportunity. The
Opportunity is the result of a qualified lead in many cases, but Dynamics CRM allows you to
also add opportunities directly.

Chapter 4

103

With opportunities, one of the fields we will focus on is the pipeline phase. For specific
scenarios, a pipeline phase is tracked, customized, and enforced. Business rules can define
the stages that define each pipeline phase, and specific rules that have to be met for an
opportunity to progress to the next pipeline phase.

Getting ready
We can start by either reusing one of the previously created solutions or creating a new one. If
you do not have a solution created, start by creating one.

How to do it...
We assume the following business rules

ff An Opportunity begins at 10 percent

ff An Opportunity progresses to 25 percent if the Rating field is set to Hot

ff An Opportunity progresses to 50 percent if a currency and price list are defined

ff An Opportunity progresses to 75 percent if a freight amount is defined

We will achieve this by using a combination of scripting and workflows. So let's get to it.

1.	 Open your solution and add the Opportunity entity if not already added.

2.	 Go to processes and add a new process. Configure it as described in the
following screenshot:

3.	 Once you click on OK, the process information window opens up. Set the following
items on this window:

1.	 Set the Scope to Organization

2.	 Set the Start when to Record is created

3.	 Add an Update Record step

4.	 In the Update make sure Opportunity is selected

5.	 Click on Set Properties

Rules and Events

104

4.	 In the new form that opens find the Pipeline Phase field, and type in 10%, as shown
in the following screenshot:

5.	 Click on Save and Close.

6.	 Your form now should look similar to the following screenshot:

7.	 Click on Save and then Activate to activate your process.

8.	 Click on Close.

9.	 Now your processes window will show you the newly added process along with other
processes previously added. Make sure that the Status shows Activated.

Chapter 4

105

10.	 Once we have this process, let's open a new Opportunity, fill in the required fields,
and click on Save and Close. Give it a moment for the workflow to execute.

11.	 Reopening the opportunity you just created should show you the customized 10%
value added in the footer of the page, as seen in the following screenshot:

Rules and Events

106

12.	 Add a new workflow that updates the pipeline phase to 25 percent. Configure it to
kick off when the rating field changes value. We check if the rating value is Hot, and
then we update the pipeline phase to 25 percent.

13.	 Now we have to check if the Currency and Price List are defined. We will
perform this check in JScript, and update a temporary field with a true/false value.
Add a two-options field to the form, named new_progressto50.

14.	 Insert the following script in a JScript resource, and associate it to the OnChange
event of both the Currency (transactioncurrencyid) and Price List
(pricelevelid) fields:
function HasCurrencyAndPriceList()
{
 var _currency = false;
 var _priceList = false;

 var currency = new Array();
 currency = Xrm.Page.getAttribute("transactioncurrencyid").
getValue();
 if(currency != null)
 {
 _currency = true;
 }

 var priceList = new Array();
 priceList = Xrm.Page.getAttribute("").getValue();

Chapter 4

107

 if(priceList != null)
 {
 _priceList = true;
 }

 if(_currency == true && _priceList == true)
 {
 // set temp field to true
 Xrm.Page.getAttribute("new_progressto50").setValue(true);
 }
}

15.	 Create a new workflow similar to the previous one, that starts when the Progress to
50% field is changed, checks the field value, and if set to True, updates the pipeline
phase to 50%.

16.	 Finally, add a new workflow that starts when the Freight Amount field is changed,
checks if the pipeline phase is at 50% and if the amount contains a value greater or
equal to 0.00, and updates the pipeline phase to 75%.

17.	 Save and Publish your solution.

18.	 Test your solution by filling in progressively the required fields and follow how the
pipeline phase updates automatically.

Rules and Events

108

How it works...
The solution presented here enforces business rules through the use of workflows, and
shows an example where working with JScript in conjunction with workflows can achieve the
expected result.

For the sake of simplicity, I have demonstrated the creation of four different workflows, one
for each phase progression. In real life, you would build all these rules in a single workflow.
Additionally, you would probably build a reversed process that would downgrade the pipeline
phase if a system value is changed to a value that does not allow the opportunity to pass a
lower threshold.

5
Error Handling

In this chapter we will cover:

ff Handling unexpected user input

ff Handling unexpected processing

ff Blocking events

ff Handling UI events

ff Advanced error handling

ff Adding a new account and contact with validation

Introduction
After focusing on working with standard elements of Dynamics CRM previously, we now turn
our attention to unexpected situations in your scripts including a focus on input validation
techniques, handling unexpected results, blocking events from taking place, and complex
error handling.

All scripting should include error handling. Previous examples did not
include error handling to allow for clarity. However, in production, your
code should always handle unexpected situations.

Handling unexpected user input
In this recipe we will be looking at how to handle unexpected user input. While this is already
in place for some specific field types, we can easily enhance the system functionality through
very simple validation scripts and user feedback messages.

Error Handling

110

Getting ready
Using one of the previously created solutions or creating a new solution, add the Contact
entity to the solution. We will focus our attention on the Contact fields, but the same code can
be applied to any standard or custom entities created in Dynamics CRM.

Some standard field formats in CRM include elements of user input validation. Upon data
entry, users are prompted if their input is invalid, and the focus returns to the field, while the
incorrect input is cleared. Take the date field as an example. Enter in a date field a string of
abc123 to observe the behavior. The following prompt gets displayed:

Once you click on OK, your input is cleared, and the focus is returned to the field you were
trying to modify. But let's see how we can achieve the same result on a standard text field.
We want to check that the input starts with a capital letter, is longer than three characters,
and does not contain spaces. If these requirements are not met, we'll bring up a notification
message, clear the field, and return the focus to it.

How to do it...
In order to test our script, we'll create a new text field. Perform the following steps to do so:

1.	 Create a new field named Single Name (new_SingleName). Set it to type single line
of text, format of text, and a maximum length of 100.

2.	 Add your new field to the form.

3.	 Generate a new JScript resource in your solution, named new_JSUserInput.

4.	 Add the following function to your resource:
function CheckUserInput()
{
 var _userInput = Xrm.Page.getAttribute("new_singlename").
getValue();
 var _isValid = false;
 if(_userInput != null && _userInput != "")
 {
 if(_userInput.match(/^[A-Z][a-z]+$/))
 {

Chapter 5

111

 _isValid = true;
 }
 }

 if(_isValid == false)
 {
 // clear the field
 _userInput = "";
 Xrm.Page.getAttribute("new_singlename").
 setValue(_userInput);
 // alert
 alert("The input is not valid!");
 // set focus
 Xrm.Page.getControl("firstname").setFocus(true);
 Xrm.Page.getControl("new_singlename").setFocus(true);
 }
}

5.	 Associate this function to the OnChange event of the Single Name field we created.

6.	 Save and publish.

How it works...
There are two parts of this function, as follows:

ff In the first part, we retrieve the user input, we check to make sure that there is in fact
some input, and we run it against a regular expression.

ff In the second part, once we have determined that there is no match, we execute our
script to clear the field, bring up the notification alert for the user, and set the focus
back to the same field.

You have probably observed that I have set the focus twice, first to the
First Name field, and second time back to our field. The first time when
you set the focus, you can use any field on the form. The reason for
doing that is, if you set the focus directly on your custom field, it will not
work. Back in Dynamics CRM Version 4 a hotfix was released to address
this issue. You can find out more information at the following URL:
http://support.microsoft.com/?scid=kb;en-
us;953291&x=10&y=4

Error Handling

112

There's more...
Using regular expressions is a very handy way of validating user input. I suggest you pay close
attention to the regular expression syntax. For additional details, a good starting point is
w3schools at http://www.w3schools.com/jsref/jsref_obj_regexp.asp.

See also
The following URLs can be referred to for further information:

ff Hotfix for the SetFocus functionality in Dynamics CRM 4.0 available at
http://support.microsoft.com/?scid=kb;en-us;953291&x=10&y=4

ff Additional regular expressions details at http://www.w3schools.com/jsref/
jsref_obj_regexp.asp

Handling unexpected processing
While this recipe will most likely not introduce you to anything specific to Dynamics CRM, the
error-handling procedures described here are specific to the JavaScript language and can
easily be applied in the context of Dynamics CRM. Full support of the JavaScript try/catch
exception-handler block was introduced around the release of Internet Explorer Version 6.

JavaScript defines six standard and one custom error type to allow you to throw your own
customized exceptions. They are given in the following table:

Error Details

URIError This error occurs while encoding or decoding an URI. It is not a common
occurrence in Dynamics CRM.

RangeError This error occurs when the number is out of range. It has a quite
common occurrence when performing calculations, especially when
overriding the standard taxation in Dynamics CRM.

ReferenceError This error is caused by an illegal reference; this is returned in Internet
Explorer as a TypeError.

EvalError This error can be generated while using the eval() function. This is
also returned in Internet Explorer as a TypeError.

TypeError This error is not as common anymore when defining most of your variables
as var, but you will encounter this in the case of incorrect casting.

SyntaxError Working in conjunction with EvalError, this error is thrown when there
is a syntax error within the eval() function. This does not catch the
standard syntax errors.

Chapter 5

113

In addition to these error types, catching default syntax errors can be done by using the
standard onerror event of the window. The syntax for that is as follows:

window.onerror = function(parameters){
 // processing
}

Add this to the script section of the head.

Getting ready
Either open any one of the previously created solutions, or create a new one. We will be
focusing again on the Contact entity.

How to do it...
To handle unexpected processing, perform the following steps:

1.	 Open the Contact entity's main form for editing.

2.	 Add a new option set named Errors (new_errors), with options such as URIError,
RangeError, ReferenceError, EvalError, TypeError, SyntaxError, and
CustomError.

3.	 Add the field to your form.

4.	 Save and publish the form.

5.	 Create a new JScript web resource in your solution. Name it JS Errors
(new_jserrors).

6.	 Add the following function to your resource:
function ErrorHandler()
{
 var _error = Xrm.Page.getAttribute("new_errors").
 getSelectedOption().text;
 // alert("Selected option is: " + _error);

 switch(_error)
 {
 case "URIError":
 try
 {
 decodeURIComponent("%");
 }
 catch(err)
 {

Error Handling

114

 alert(err.name + " || " + err.message);
 }
 break;
 case "RangeError":
 var _age = 120;
 try
 {
 if(_age > 100)
 {
 throw new RangeError("Age cannot be over 100");
 }
 }
 catch(err)
 {
 alert(err.name + " || " + err.message);
 }
 break;
 case "ReferenceError":
 try
 {
 // use an undeclared variable
 trying.thisone;
 // TypeError due to browser
 }
 catch(err)
 {
 alert(err.name + " || " + err.message);
 }
 break;
 case "EvalError":
 // not used in recent versions, but supported
 try
 {
 var y = new eval();
 // TypeError due to browser
 }
 catch(err)
 {
 alert(err.name + " || " + err.message);
 }
 break;
 case "TypeError":
 try

Chapter 5

115

 {
 var _obj = {};
 // call undefined method
 _obj.execute();
 }
 catch(err)
 {
 alert(err.name + " || " + err.message);
 }
 break;
 case "SyntaxError":
 try
 {
 var _x = "some string";
 var _y = 10;
 var _total = eval(_x + _y);
 }
 catch(err)
 {
 alert(err.name + " || " + err.message);
 }
 break;
 case "CustomError":
 try
 {
 throw new Error("Custom Error message");
 }
 catch(err)
 {
 alert(err.name + " || " + err.message);
 }
 break;
 default:
 // do nothing
 }
}

7.	 Associate the ErrorHandler function to the OnChange event of the field we
created.

8.	 Save and publish your solution.

9.	 Test the function by changing the values in the option set.

Error Handling

116

How it works...
Selecting each of the option set values will generate the specific error. The following events
take place:

1.	 Generating a URIError: We are decoding a string that is not a valid URL, resulting in
the following type of error:
try
 {
 decodeURIComponent("%");
 }

2.	 Generating a RangeError: In this example we are checking that a defined age is
lower than 100, and we throw a new RangeError with our own custom message:
var _age = 120;
try
 {
 if(_age > 100)
 {
 throw new RangeError("Age cannot be over 100");
 }
 }

3.	 Generating a ReferenceError: A reference error is the result of, in this case, trying to
access a variable or method that is not defined. Observe though that when running
this code, you will see a TypeError instead. That is the default browser behavior,
as follows:
try
{
 // use an undeclared variable
 trying.thisone;
 // TypeError due to browser
}

4.	 Generating an EvalError: An EvalError, while not a common one, is the result
of using the eval function in an unsupported manner. In this case, we use it as a
declaration. Again, due to browser-specific interpretation, the actual error returned is
a TypeError:
try
{
 var y = new eval();
 // TypeError due to browser
}

Chapter 5

117

5.	 Generating a TypeError: Aside from the previously mentioned cases, a TypeError is
the result of a call to an undefined function as per our example:
try
{
 var _obj = {};
 // call undefined method
 _obj.execute();
}

6.	 Generating a SyntaxError: Contrary to the name of this error, it does not have
anything to do with improper syntax. When encountering improper syntax, the error
you will see will be more along the lines of the following screenshot:

A SyntaxError is the result of improper use of the eval() function. In our example
we are evaluating the sum of a string with an integer, thus resulting in a syntax error:

try
{
 var _x = "some string";
 var _y = 10;
 var _total = eval(_x + _y);
}

7.	 Generating a custom error: Aside from throwing any of the standard errors, we can
throw a generic error as described in our example. In such a situation we can define
our custom error message:

try
{
 throw new Error("Custom Error message");
}

Error Handling

118

There's more...
As mentioned before, there are certain standard JavaScript errors that are returned by IE
as a different error type. These are EvalError and the ReferenceError. They both are
returned in IE 8 and 9 as a TypeError. This is not a script problem, but rather it is a browser-
specific interpretation.

Throwing custom errors
In certain situations you will want to throw your own custom errors in the code. You can use
this approach to satisfy various failure points at different stages in the code. In order to
determine which error was thrown, check the message or include a custom error ID in
your message.

See also
ff Error object reference at http://msdn.microsoft.com/en-us/library/

dww52sbt(v=vs.94)

ff JavaScript Syntax errors at http://msdn.microsoft.com/en-us/
library/6bby3x2e(v=vs.94).aspx

Blocking events
One of the most common requirements that you will eventually encounter is to block a form
from getting saved if a certain condition is not met.

Getting ready
Use any of the previously created solutions, or if starting at this recipe create a new solution
for this exercise. Add the Contact entity to your solution.

How to do it...
To block events, perform the following steps:

1.	 Within your solution, navigate to Entities | Contact | Forms and open the Contact
main form for editing. Add a new field of type Two Options. Name it Can Save (new_
cansave) and leave the default Yes and No values.

2.	 Add the field to your form.

3.	 Save and publish the form.

4.	 Add a new web resource named JS Event Blocking (new_JSEventBlocking).

Chapter 5

119

5.	 Insert the following code:
function BlockSave(context)
{
 var _canSave = Xrm.Page.getAttribute("new_cansave").
 getSelectedOption().text;
 if(_canSave == "No")
 {
 Xrm.Page.context.getEventArgs().preventDefault();
 }
}

6.	 Save and publish the resource.

7.	 Associate the BlockSave function to the form OnSave event. Make sure you check
the checkbox for Pass execution context as first parameter.

8.	 Save and publish your solution.

9.	 Open a contact or create a new one. Set the Can Save field to No, and click on Save
or Save and Close. Your form will not get saved anymore.

10.	 Return the Can Save to Yes, and click on Save or Save and Close. Now your form
gets saved as expected.

It's usually a good idea to notify the user that you've blocked the form
save, and provide a reason why. Also, for usability, consider setting
the focus back on the field where the input value is not within the
expected parameters.

How it works...
In this example the rule is as simplistic as it can get. We read the value of Can Save, and
if the value is No, then we block the form from getting saved. In a real-life situation your
condition will definitely be more complex than that. It could be driven by a set of fields, a
complex calculation, or any other business rule. For simplicity, you can always create a hidden
field similar to our Can Save field, and based on the business rules set the value accordingly.
Then your script to prevent a save is kept clear of your main logic.

There's more...
The opposite of stopping a form from getting saved has a few variations. We can look at either
the simple straightforward Save, Save and New, or Save and Close.

Error Handling

120

Forcing a Save
In order to force a save in JavaScript, incorporate the following line of code in a function that
you can call when needed:

Xrm.Page.data.entity.save();

Save and New
To execute the same functionality from the Save and New button, incorporate the following
line in your function:

Xrm.Page.data.entity.save('saveandnew');

Save and Close
Just like Save and New, we can call the same line of code, and pass a different parameter in
order to achieve the Save and Close functionality:

Xrm.Page.data.entity.save('saveandclose');

See also
In Update Rollup 8 for Dynamics CRM 2011, an issue was fixed that was preventing using
scripting to cancel the OnSave event in a recurring appointment. This is documented with
the release notes. Additional details are found on the Update Rollup 8 page at http://
support.microsoft.com/kb/2600644.

Handling UI events
For the instances where you need to block the form from getting saved due to a user input
error I have mentioned briefly, it's always a good idea to return a message to the user and
notify them of the reason for such a decision. The option specified results in returning an
alert message to the user.

In other situations, you will find that posting a message on the form itself can be much more
efficient. For one, it does not require an additional click of the mouse. Also, you can create a
tally of all the messages, and display them all in one single spot, formatted to stand out.

This recipe describes a customization approach that is not officially
supported. The reason for this is that referencing the form elements
is done outside of the standard Dynamics CRM object model. We are
using the HTML/JavaScript page object model. Even though it's not
officially supported, this type of customization has been available
and functional since version 4.0.

Chapter 5

121

Getting ready
For the purpose of this recipe, we will be either reusing any one of the previous solutions or
creating a new one. We will be making our changes on the Contact form. For simplicity, we
will only validate a single field, and return an error message on the form. You can later expand
that functionality to incorporate validation of multiple fields, and return all the custom error
messages in the same dialogue box on the form.

How to do it...
To handle UI events perform the following steps:

1.	 Open the Contact main form for editing.

2.	 Create a new custom field named Message (new_message) of the type Two Options.

3.	 Add it to the form.

4.	 Create a new single line of text field named Placeholder (new_placeholder).

5.	 Place it on the form all the way at the top of the Name section of the General tab. Set
its Formatting to Two Columns.

6.	 Modify the field's properties. Uncheck the Display label on the form checkbox, as
shown in the following screenshot:

7.	 Save and publish the form.

8.	 Add a new JScript web resource, named JS Message Box (new_JSMessageBox).

9.	 Add a function that will launch on the form's load, named contactLoad. This
function will hide the Placeholder field we have created. The purpose of the
Placeholder field is to define the location where our custom message will be
displayed on the form:
function contactLoad()
{
 var _placeholder = document.
 getElementById("new_placeholder");
 _placeholder.style.display = "none";
}

Error Handling

122

10.	 Add the following function, which sets the display message:
function ShowMessage()
{
 var _placeholder = document.getElementById("new_placeholder");

 if(_placeholder != null)
 {
 var _newDiv = document.createElement("div"); //
 style='overflow-y:auto; height:80px; border:1px
 #6699cc solid; background-color:#ffffff;' />");
 _newDiv.id = 'divMessage';
 _newDiv.innerHTML = "<label style='font-family:
 arial;color:red;font-size:20px'>Field Message must
 be set to No to be able to save the form!</label>";
 _placeholder.style.display = "none";
 var _previous = _placeholder.firstChild;
 if(_previous == null)
 {
 if(_placeholder.childNodes.length == 0)
 {
 _placeholder.parentNode.appendChild(_newDiv);
 }
 else
 {
 _placeholder.insertBefore(_newDiv, _previous);
 }
 }
 else
 {
 _placeholder.replaceChild(_newDiv, _previous);
 }
 }
}

11.	 Add a base function that does the processing and determines when to show the
message, and possibly, other logic:
function message(context)
{
 var _isMessage = Xrm.Page.getAttribute
 ("new_message").getValue();
 if(_isMessage)
 {
 ShowMessage();
 // other logic here
 }
}

Chapter 5

123

12.	 Save and publish your web resource.

13.	 In the Contact main form properties, associate the contactLoad function to the
form OnOpen event.

14.	 Also on the Contact main form associate the function message to the OnSave event.
You can alternatively associate this function at a field level if you want to do field
validation and bring a message for invalid field value.

15.	 Save and publish your solution.

16.	 Test your solution. The result will look similar to the following screenshot:

How it works...
As mentioned previously, this customization falls in the unsupported category. The reason
is that objects are accessed using standard HTML/JavaScript DOM and not the Dynamics
CRM API. Although unsupported, this kind of customization has been used since previous
versions of Dynamics CRM, and as long as the HMTL/JavaScript standards are being
supported, it will work.

There's more...
Message location is something you can easily determine by positioning your Placeholder
field on the form at any location. For the purpose of this example, we have positioned the
message at the top of the form, but that is not a mandatory location. Also, we have defined
the placeholder to span the whole width of the page. You can decide to show the message
only in one column if you desire so.

See also
ff Additional information on Document Object Model can be found by starting from

the wiki page located at http://en.wikipedia.org/wiki/Document_
Object_Model.

Error Handling

124

ff w3schools has a good tutorial on using JavaScript to navigate the DOM in an XML
file at http://www.w3schools.com/dom/dom_nodes_navigate.asp. For all
intended purposes, HTML is following the standard XML format, thus making these
same scenarios available when working with HMTL, XHTLM, and XML.

ff Additional information on traversing the DOM can be found in W3C located at
http://www.w3.org/wiki/Traversing_the_DOM.

Advanced error handling
While the basics of any good development practice include error trapping and handling, when
using JavaScript with Dynamics CRM 2011 your options revolve around using the try/catch
block in a creative way. But the standard catch block has some additional features you should
be taking advantage of when needed.

Getting ready
For this exercise we will be either using an existing solution or creating a new one. We will be
creating a script that shows all available error-handling options available to us when using
JavaScript with Dynamics CRM.

How to do it...
For advanced error handling perform the following steps:

1.	 Open your existing solution or create a new one.

2.	 Add the Contact entity to your solution.

3.	 Create a new Two Options field named Error Handling (new_errorhandling).
Leave the standard Yes and No options.

4.	 Add the field to the form.

5.	 Save and publish the form.

6.	 Create a new JScript web resource named JS Error Handling (new_
JSErrorHandling).

7.	 Add the following function to your script resource:
function myErrorHandling()
{
 // put in code that generates an error
 // change this code to throw various error types
 // and see how the errors are being captured
 try
 {
 throw new URIError("This is a URIError thrown...");

Chapter 5

125

 // throw new RangeError("This is a RangeError thrown...");
 // throw new TypeError("This is a TypeError thrown...");
 // throw new SyntaxError("This is a SyntaxError thrown...");
 // throw new Error("This is a Custom Error thrown...");
 }
 catch(err)
 {
 switch(err.name)
 {
 case "URIError":
 alert(err.name + " || " + err.message);
 break;
 case "RangeError":
 alert(err.name + " || " + err.message);
 case "TypeError":
 alert(err.name + " || " + err.message);
 break;
 case "SyntaxError":
 alert(err.name + " || " + err.message);
 break;
 case "CustomError":
 alert(err.name + " || " + err.message);
 break;
 }
 }
 finally
 {
 alert("This block executes at all times");
 }
}

8.	 Save and publish the resource.

9.	 Associate the function we just created to the OnChange event of our JS Error
Handling form field.

10.	 Save and publish your solution.

11.	 Test the solution by setting the value of JS Error Handling to Yes. The script will
execute, and will prompt alerts based on the type of error encountered, as well
as a final message generated by the block.

12.	 Change the main block of code to generate other type of errors as described in a
previous recipe, and observe the various errors handled in this function.

Error Handling

126

How it works...
This function processes a block of code that is meant to throw an error. The type of error in
our example is the standard-type error, but you can change the kind of error thrown by looking
at the Handling unexpected processing recipe. We are catching various types of errors that
JavaScript can return, and performing various functions based on that. For this example, we
are only returning different alert messages, but you can decide to build additional code to
massage the form or process additional calculations as needed. In the end, we add a final
block, which will execute no matter what kind of error we captured. This demonstrates ways
of identifying the type of error generated by your code, and decide which way to handle it.

For the sake of simplicity our function does not check the value of the field that generates the
OnChange event.

Adding a new account and contact with
validation

In this recipe, while the use of scripting is suppressed, we are implementing logic to perform
a duplicate detection validation when inserting a new account. The purpose of this recipe
is to demonstrate that we can force a user to choose if he/she wants to create a duplicate
or not from the get go, rather than relying on a duplicate detection job to run. This approach
still uses the system-defined duplicate detection rules, but makes the process dynamic and
interactive for the user.

You can easily implement the same functionality for contacts, or you can merge both checks
in the same process.

Getting ready
Either create a new solution or use the previously created solution. This recipe will work with
dialog processes, and will create a more detailed process to qualify a lead.

How to do it...
To add a new account and contact with validation perform the following steps:

1.	 In your solution, add a new process of type Dialog. The associated entity is Lead.
Give this process a name of Qualify Lead. Make it available to run on demand.

Chapter 5

127

2.	 Add a first stage named Choose Entity Stage, by going to Add Step and then
selecting Stage, as shown in the following screenshot:

3.	 Inside this stage add a new page named Select Entities to create.

4.	 Inside this page, add a prompt and response. Name it Contact.

5.	 Set its properties, as described in the following screenshot:

6.	 Add another prompt and response. Name it Account.

Error Handling

128

7.	 Set its properties, as described in the following screenshot:

8.	 Add a new stage. Name it Check Create Contact Stage.

9.	 Add a Check Condition step. Set the rule, as follows:

10.	 Within this condition, add a Query CRM Data step. Name it Query CRM for Contacts
with email matching the Lead.

Chapter 5

129

11.	 Set the query properties, as follows:

12.	 Add a Check Condition step. Label it No matching Contact records. Set the
condition, as follows:

13.	 Add within this condition a Create Record step to create a new contact.

14.	 Also add within this same condition an Update Record step to update the
Lead customer.

15.	 Add a Conditional Branch step to step 12.

16.	 Add a new page; label it One or more duplicate Contacts found.

Error Handling

130

17.	 Add on this page a prompt and response, as follows:

18.	 Add another prompt and response to this page, and define them as follows:

Chapter 5

131

19.	 At the same level with the last page added in step 16 add a new Check Condition
step. Set the condition, as follows:

20.	 Within this condition defined previously add a new Create step to create a new contact.

21.	 Also create an Update step to update the Lead customer.

22.	 For the condition in step 19 add a conditional branch.

23.	 Within the branch add a new Update step to update the Lead customer.

24.	 Create a similar process we used from steps 8 to 23 to create the contact. This time
we will apply it to the Account entity.

If you want to create only a contact from a Lead, you can
skip steps 6 and 7.

25.	 Lastly, create a new stage to finalize our process. In this stage we will create the
opportunity, mark Lead as Qualified, and add a Stop Dialog step. It should all look
like the following screenshot:

26.	 Save and activate this process. If any errors are returned, fix those errors and
activate again.

27.	 Create a new Lead and run this dialog manually. Eventually, you can create a ribbon
button to start this process, but we will demonstrate that in another chapter.

Error Handling

132

How it works...
The process itself does not have a complex logic. Instead of running the standard Lead
qualification process, we start this dialog. It prompts the user if he/she wants to create
Account and Contact based on the lead information.

The user selects none, one, or both and clicks on Next. For each entity to be created it then
checks if other contacts or accounts exists in the system with similar properties. If they don't,
it creates new ones. If they do, it brings a list of possible matches to choose from, as shown in
the following screenshots:

Chapter 5

133

Once you have defined new or existing Account and Contact details, the process marks Lead
as Qualified and opens an opportunity.

6
Debugging

In this chapter, we will cover:

ff Debug messages

ff Using IE for tracing and debugging

ff Debugging using Visual Studio

ff Error logging

ff Using Fiddler with CRM

Introduction
As we start working with various scripts to customize our Dynamics CRM 2011 environment,
we soon realize that we're not perfect, and we make mistakes. We've looked at handling
errors dynamically in previous chapters. This time we will take a closer look at debugging. We
are faced with various options for debugging. Each person is different, and each will have a
different style of working with code. One thing is for sure though, at some point or another we
all need to debug our code.

This chapter presents various ways of debugging. For some of the scenarios,
we don't need anything more than a browser. For other scenarios we present
tools that might come with a price tag. Most developers will have access to
these, but if you don't, it's safe to skip those particular sections.

Debugging

136

Debug messages
All modern browsers will prompt you when your scripts are not correct. The problem is,
sometimes, these messages are not necessarily the most accurate or correct. For that reason
we create debug messages at certain key points in our code that can be returned. This way we
can easily identify what part of our code has executed, and where we are getting stuck.

JavaScript makes a few methods available to us, some more helpful than the others in certain
situations, to insert our own custom debug messages.

One option we have seen before in some of the scripts we worked on already is using an alert.
This brings up a pop-up message for the user. This approach, while easy to follow, is quite
disruptive if we are testing a longer script, as we will have to click on OK on each message
individually. By the time we have our fifteenth message up, we can safely say it's not the
preferred approach. Especially if we run the same script multiple times until we can finally
figure out what causes our error.

Another approach, a little less disruptive one, is to use an assert statement. In order for us to
trace the messages returned that way, we can easily take advantage of the built-in browser's
JavaScript console.

Finally, we can create our custom function to log all the messages. In conjunction with a
try… catch… finally block, we can display all the processed messages in a single
alert. This is a more desirable approach when working with long loops or when a multitude
of messages are returned.

So now, let's explore these options in a short script.

Getting ready
We can either use one of the previously created solution packages, or we can create a new
one for this chapter.

How to do it...
For the purpose of this recipe, we'll be focusing again on the Contact entity, so let's add it to
our solution.

1.	 Add the Contact entity to your solution.

2.	 Create a new JScript resource and name it JS Debug Messages
(new_jsdebugmessages).

Chapter 6

137

3.	 Add a function that we will execute when the form is saved. Name it
DebugSelector. This function looks at the selected value in an option set, and
decides what other functions to call.
function DebugSelector()
{
 var sval = Xrm.Page.getAttribute("new_debugoptions").
getSelectedOption().text;
 var message = "Selected option is: " + sval;

 switch(sval)
 {
 case "Alert":
 CallAlert(message);
 break;
 case "Assert":
 CallAssert(message);
 break;
 case "Custom":
 CallCustom(message);
 break;
 }
}

4.	 Add the following function to work with alert messages:
function CallAlert(msg)
{
 alert(msg);
}

5.	 Also, add the following function to work with assert statements:
function CallAssert(msg)
{
 console.assert(false, msg);
}

6.	 And finally, add the following function to work with a custom way of collecting all
messages into a single alert message:
function CallCustom(msg)
{
 var _message = msg;
 // some code
 _message = _message + "Another generated message. ";
 // additional code

Debugging

138

 _message = _message + "Yet another message. ";
 // finally at the end of the script
 alert(_message);
}

7.	 Save and Publish our JScript web resource.

8.	 Now that we have our scripts together, let's add a new option set to the Contact
entity. Name it Debug Options (new_debugoptions) and add the following
three values:

�� Alert

�� Assert

�� Custom

9.	 On the field's OnChange event, associate the DebugSelector() function.

10.	 Save and Publish your customizations.

11.	 Open up a Contact and select Alert on the Debug Options option set. You will be
presented with a regular pop-up message as shown in the following screenshot:

12.	 Next, open up the developer tools by pressing the F12 key in Internet Explorer
and navigate to the Console tab. Then go and change the Debug Options selection
to Assert. You will get the messages in the Console windows as shown in the
following screenshot:

13.	 Finally, select the Custom option in the Debug Options option set. You will get a single
pop up including all messages collected throughout the script. This might be the
preferred approach if you are only collecting a small number of messages on iteration.

Chapter 6

139

How it works...
When selecting the Alert option, the result is obvious to the user. Each alert statement returns
a new pop-up message to the user.

When working with the Custom option, all messages are stored in a temporary variable, thus
composing a single message to be presented to the user. At the end, this message is shown in
a single pop up. While less intrusive, this approach can become non-desirable if the amount
of messages or the length forces the pop-up message to be too large or trim content.

The last option is using the Assert option. While being the least intrusive, it does require a
little bit of browser configuration. First off, in Internet Explorer, navigate to Tools | Internet
Options. On the Advanced tab, make sure the Display a notification about every script error
checkbox is selected. Also uncheck the Disable script debugging options.

Then, open the Developer Tools in IE by either clicking on the F12 key, or navigating to
Tools | F12 developer tools. Select the Script tab and look at the console while executing
your page scripts.

There's more...
In addition to using the assert statement to log messages to the console, you can also use
any of the following statements:

console.log("your message");
console.info("your message");
console.warn("your message");
console.error("your message");

Debugging

140

Using IE for tracing and debugging
While writing our JScript code, it is highly unlikely that we will always get it right. We could,
of course, start throwing alerts and any other type of notifications. The disadvantage to that
is the fact that, once we fix the problem, we have to spend the time to go back and clean up
the code.

In this recipe we'll be looking at alternative ways to trace our small mistakes.

Getting ready
For the purpose of this recipe, we will not be writing any new code. We'll be using the solution
created in the Handling unexpected processing recipe in Chapter 5, Error Handling, and
we will be tracing through the execution of those scripts using Internet Explorer and the
Developer Tools.

How to do it...
First off, in order to use the Developer Tools in Internet Explorer, we need to make sure that
script debugging is enabled. As mentioned at the end of the previous recipe, in Internet
Options, on the Advanced tab, make sure that Disable script debugging (Internet Explorer)
and Disable script debugging (Other) are not checked.

To open the Developer Toolbar, hit the F12 key or go to Tools | Developer Tools on the page
you want to debug.

Chapter 6

141

For script debugging, go to the Script tab. Select the new_JSErrors script from the scripts
dropdown. Click on the Start debugging button and place a breakpoint at the line you want to
start your debugging from. Now that you have your debug point set, execute a form action that
will kick off the script you are debugging. For example, if you have an action that is performed
as a result of changing a lookup value, put your breakpoint at the beginning of that script, and
then change the lookup value to kick off your script.

Once your script execution reached the breakpoint, you can start debugging from there
in the same way you would debug any application on Visual Studio.

Another way to set breakpoints on specific scripts is by selecting the dropdown to the
left-hand side of the Start debugging button, and selecting a specific script source.

Another aspect of debugging using the Developer Tools in Internet Explorer involves the
Console. Here you can watch for error messages. If the page generates an error message,
in the Console window you will see the message. Clicking on the message link will put the
focus in the script window on the line that generates the error.

The other tabs present additional functionality.

Debugging

142

The Breakpoints tab includes a listing of all the breakpoints you have set up in your scripts.

The Watch window allows you to define specific variables used during your script, and to see
the allocated value at a certain point during execution. When using the Watch window, you
can add the watched variables one by one, manually.

As you work and become more familiar with using this tool, you will see the added value and
the speed benefits when debugging this way rather than using simple alerts.

How it works...
The Developer Tools in Internet Explorer, while not specific for Dynamics CRM, adds additional
value to your toolbox. This tool is intended to be used in debugging any web application. We
have only looked at the script portion of this tool, but it can add more value using the full
range of options. You can easily debug all kinds of web resources you add to the pages, all
scripts, and it provides additional help when investigating performance issues.

See also
ff For additional details on getting started and using the Developer Tools in Internet

Explorer, see the MSDN documentation at http://msdn.microsoft.com/en-
us/library/ie/gg589500(v=vs.85).aspx.

Debugging using Visual Studio
While debugging using the Internet Explorer Developer Tool provides additional features for
our efforts, developers have another option too. We can use Visual Studio for debugging in
the same manner used for any other custom application. You will find this approach preferred
when debugging custom plugins, but it is not limited to that.

Chapter 6

143

Getting ready
In order to provide an example of using Visual Studio for debugging, we'll be using one of
the existing solutions we created earlier in our recipes. In addition, in order to capture actual
errors, add some intentional errors to your scripts.

How to do it...
The process of setting up Visual Studio for debugging is as follows:

1.	 Insert the following debugger line in your JScript code where you want to
start debugging:
 debugger;

Please note that using this also works in debugging using
Internet Explorer.

2.	 Make sure the Disable script debugging option is unchecked in Internet Options as
described previously.

3.	 When Internet Explorer hits the debug point, it will ask you how you want to debug
your code.

Debugging

144

4.	 Once you click Yes, Visual Studio opens at the line where you inserted your
debugger statement.

From here on you can debug using the same principles of Visual Studio
you use on any other application, using the F11 key to step into the code,
and the F10 key to step over specific blocks. Please note that using this
works also in debugging using Internet Explorer.

The advantage of using this approach sits primarily with developers that are familiar with
Visual Studio. You get a dynamic view of script variables and breakpoint sets.

How it works...
This debugging technique is not unique to Dynamics CRM. You can use Visual Studio to debug
any kind of web application in this manner.

Error logging
Dynamics CRM 2011 does not provide a direct way to add and track your own custom error
messages. While the default logs will track and log errors as they occur, sometimes it's not the
easiest way to debug. In order for us simplify the task of debugging and logging your specific
error messages, we can take a different approach.

Getting ready
For the purpose of this recipe we will create a new solution. Using your current environment,
or a new online instance, create a solution called Chapter6. This solution will use the latest
version of JSON and jQuery libraries.

Chapter 6

145

How to do it...
Within the newly created solution, let's focus our attention on the Account entity. We will
capture our debug and error messages generated by a script in this solution.

1.	 Add the Account entity to your solution.

2.	 When you add the Account entity, you will be prompted to include additional required
components. Add those too.

3.	 Add the most recent version of JSON 2 and jQuery libraries as web resource. Load the
files by uploading them.

4.	 Add a new web resource of type JScript. Name it Chapter 6 Error Logging
(new_ch6errlog).

5.	 Add the following two functions to it:
function LogOnLoadMessage()
{
 LogMessage("OnLoad Message", "This message is generated on
load", "Account");
}

Debugging

146

function LogOnChangeNameMessage()
{
 LogMessage("OnChange Message - Name", "The Account Name has
changed", "Account");
}

6.	 Associate the LogOnLoadMessage() function with the OnLoad event of the
Account form.

7.	 Associate the LogOnChangeNameMessage() function with the OnChange event
of the Name field on the Account form.

8.	 On the Account form load, in the form libraries add the JSON 2 and jQuery
libraries also.

9.	 In your solution add a new entity called ErrorLog. Set its ownership to Organization.
Remove the checks on all the Communication & Collaboration options.

10.	 On the main form, in addition to the default Name field, add another two fields. One
is named Content (new_content) as a multi-line text field, the other is Entity
(new_entity) as a text field.

Chapter 6

147

11.	 In your original web resource, add a function to be called on form load. This function
calls another that builds the content of the message that will be logged in the
new entity.
function LogOnLoadMessage()
{
 LogMessage("OnLoad Message", "This message is generated on
load", "Account");
}

12.	 In the same web resource, add another function that will be called when the name of
the account changes.
function LogOnChangeNameMessage()
{
 LogMessage("OnChange Message - Name", "The Account Name has
changed", "Account");
}

13.	 Next, add a function that builds all these messages into an object that can be passed
for writing.
function LogMessage(name, content, entity)
{
 var _message = new Object();
 _message.Name = name;
 _message.Content = content;
 _message.Entity = entity;
 createRecordAsync(_message);
}

14.	 On the last line of the previous function we call a new function that will do the actual
writing using a SOAP message. The function looks as follows:
function createRecordAsync(message)
{
 var authenticationHeader = GenerateAuthenticationHeader();

Debugging

148

 // prepare the SOAP message
 var xml = "<?xml version='1.0' encoding='utf-8'?>" +
 "<soap:Envelope xmlns:soap='http://schemas.xmlsoap.
org/soap/envelope/'" +
 " xmlns:xsi='http://www.w3.org/2001/XMLSchema-
instance'" +
 " xmlns:xsd='http://www.w3.org/2001/XMLSchema'>" +
 authenticationHeader +
 "<soap:Body>" +
 "<Create xmlns='http://schemas.microsoft.com/crm/2007/
WebServices'>" +
 "<entity xsi:type='new_errorlog'>" +
 "<new_name>" + message.Name + "</new_name>" +
 "<new_content>" + message.Content + "</new_content>" +
 "<new_entity>" + message.Entity + "</new_entity>" +
 "</entity>" +
 "</Create>" +
 "</soap:Body>" +
 "</soap:Envelope>";
 //Prepare the xmlHttpObject and send the request
 var xHReq = new ActiveXObject("Msxml2.XMLHTTP");
 xHReq.Open("POST", "/mscrmservices/2007/CrmService.asmx",
false);
 xHReq.setRequestHeader("SOAPAction","http://schemas.microsoft.
com/crm/2007/WebServices/Create");
 xHReq.setRequestHeader("Content-Type", "text/xml;
charset=utf-8");
 xHReq.setRequestHeader("Content-Length", xml.length);
 xHReq.send(xml);
 // Capture the result
 var resultXml = xHReq.responseXML;

 // Check for errors.
 var errorCount = resultXml.selectNodes('//error').length;
 if (errorCount != 0)
 {
 var msg = resultXml.selectSingleNode('//description').
nodeTypedValue;
 alert(msg);
 }
 // Open new record if needed
 //else
 //{
 // var contactid = resultXml.selectSingleNode("//
CreateResult");

Chapter 6

149

 // window.open("/sfa/conts/edit.aspx?id={"+contactid.
nodeTypedValue+"}");
 //}
}

15.	 Now go back to the Account form and associate the LogOnLoadMessage()function
described in step 11 with the form OnLoad event.

16.	 In addition, associate the LogOnChangeNameMessage function with the OnChange
event of the Name field on the Account form.

17.	 Save and Publish your solution.

18.	 Test your code by first loading an account.

19.	 Next, test the function by changing the name of the account.

20.	 In order to see the logged messages, either navigate to the ErrorLog view,
or access the feed at http://your_server_name/instance_name/
XrmServices/2011/OrganizationData.svc/new_errorlogSet.

21.	 If you are using an online instance use http://your_instance_name.crm.
dynamics.com/XrmServices/2011/OrganizationData.svc/new_
errorlogSet. What you will see is similar to the following screenshot:

22.	 You will see all the messages logged along with the time when each message
was generated.

http://your_server_name/instance_name/XrmServices/2011/OrganizationData.svc/new_errorlogSet
http://your_server_name/instance_name/XrmServices/2011/OrganizationData.svc/new_errorlogSet
http://your_server_name/instance_name/XrmServices/2011/OrganizationData.svc/new_errorlogSet
http://your_instance_name.crm.dynamics.com/XrmServices/2011/OrganizationData.svc/new_errorlogSet
http://your_instance_name.crm.dynamics.com/XrmServices/2011/OrganizationData.svc/new_errorlogSet
http://your_instance_name.crm.dynamics.com/XrmServices/2011/OrganizationData.svc/new_errorlogSet

Debugging

150

How it works...
The previous approach presents the ability to use Microsoft CRM customizations through
functional messages or new custom error entities. While this approach should not
necessarily be used for any kind of generic error logging, as the number of messages
can become quite large and hard to track, it shows you a different way of logging specific
messages from your customization.

This approach can also be used in conjunction with the audit log, to allow you to capture
specific actions of the user. It also provides great flexibility when it comes to implementing
specific business rules and tracking when they are not strictly followed.

There's more...
While we have been investigating this approach for message logging, the same approach
described in the function on step 14 can be used to add new records programmatically in any
other system entity. This approach can be taken when you need to generate new addresses
for Account or Contact, but do not want to have the user navigate to another screen to
achieve that. Additionally, your business rule can potentially require the creation of new
records in related entities. This function will work with both custom and out-of-the-box entities.

See also
ff For additional details on using SOAP to create new entities in Dynamics CRM,

look at the documentation on MSDN at http://msdn.microsoft.com/en-us/
library/cc677070.aspx.

ff In addition to that, Dynamics CRM allows you to perform other actions
programmatically as well. See the additional documentation on MSDN at
http://msdn.microsoft.com/en-us/library/cc150864.aspx.

Using Fiddler with CRM
Fiddler is a web debugger tool. It logs all web traffic (http and https) between your browser
and a server. You can use it to inspect the requests and responses between your browser and
any web application. For the purpose of this recipe, we will be focusing our attention on the
communication between Internet Explorer and our Dynamics CRM server. You can use Fiddler
even when using a development machine running Dynamics CRM.

Other advantages of using Fiddler include the ability to set breakpoints and obtain details
surrounding performance issues.

Chapter 6

151

Getting ready
To begin this recipe, we need a Dynamics CRM server, a user account on Dynamics CRM, as
well as Fiddler installed.

You can download Fiddler from the web for free at http://www.fiddler2.com.

How to do it...
1.	 Once you have Fiddler installed, let's launch the application. The main screen looks

like the following screenshot:

2.	 You will observe on the main screen, on the left-hand side, the captured requests or
responses, while the right-hand side includes the standard welcome message.

3.	 On the ribbon, click on Browse to open Internet Explorer.

4.	 Navigate to your Dynamics CRM environment.

http://www.fiddler2.com

Debugging

152

5.	 Once the page loads, let's go back to Fiddler and see what was captured.

6.	 What we have here is a listing of the calls to our host machine, and the Dynamics
CRM application pages and scripts requested.

7.	 Click on each one of the lines. Observe additional details displayed on the right-hand
side window in the Statistics tab. These include performance counters.

Chapter 6

153

This view will give you pretty detailed indications as to how much data is being
sent both ways with a page request, as well as how long it takes to render a page
requested from the server. This is fairly important information when you are trying
to debug performance issues.

8.	 The Inspectors tab allows you to analyze the Request and Response headers.

9.	 This ability to inspect web service requests and responses helps us to actually track
requests like the one presented in the previous recipe. The example we just looked at
will present the following information:

Debugging

154

10.	 From here we can see the data we are sending to create a new error log record. The
response is also presented as follows:

11.	 From here we can see the ID of the record that was just created.

12.	 In order to see the request and the result, make sure the XML button is clicked.

13.	 In addition, we can also inspect the JScript functions we have created. We can look
at any of the calls referencing a web resource, and at the response we see the script
called for.

Chapter 6

155

How it works...
Fiddler allows us to investigate different aspects of the communication from the browser to
the web application and back. From inspecting scripts to looking at SOAP calls, as well as
investigating performance issues, this tool should not be missing from your toolbox.

Please note that when using Fiddler you cannot trace calls made to
"localhost". You would have to connect from a remote machine.

See also
ff To download Fiddler, and to find additional information and tutorials, head to the

Fiddler site at http://www.fiddler2.com/fiddler2/.

http://www.fiddler2.com/fiddler2/
http://www.fiddler2.com/fiddler2/

7
Extended UI
Manipulation

In this chapter, we will cover:

ff Showing or hiding form elements

ff Formatting fields

ff Creating a rating gauge field

ff Flagging a section for the user

ff Adding a contact picture

ff Adding an account logo

ff Marking accounts for review

ff Dynamic form elements

Introduction
This chapter will review some of the concepts covered previously, and introduce you to
some advanced ways of manipulating the user interface. We will be focusing mostly on
user experience by creating a few recipes in which we will hide and show various parts
of the form; we will work with pictures and other ways of presenting and flagging specific
information to the users.

This chapter assumes that the reader has a prior knowledge of customizing Dynamics CRM,
yet is completely independent of the previous recipes in this book.

Extended UI Manipulation

158

Showing or hiding form elements
In this recipe, we will focus on making the form as user friendly as possible. We can achieve
this by showing specific fields only when required, and hiding irrelevant form elements when
they are not required. We can work at various levels, where we can affect an individual field,
a whole section, or a tab. Attention should be paid to how we group elements on the form,
as this could potentially result in unexpected results, and a form layout that is not appealing
to users.

Getting ready
For this recipe, make sure you have access to a Dynamics CRM 2011 environment. You
must have a system customizer or system administrator permission in that environment to
implement these customizations. Do not do these exercises in a production environment.

How to do it...
As we have previously seen in the recipes of Chapter 2, Scripting Form Fields, working with
a specific field is probably the easiest way to begin this. This recipe will help you create the
following scenario: on the Contact entity, we will capture a contact type of staff, member, or
non-member. If the selection is staff, we will show a Staff Details tab. If the selection is
non-member, we will show a Non-Member Details section, and if the selection is member,
we will show only a Member Number field on the form. So, let's begin!

1.	 Create a new solution.

2.	 Add the Contact entity to your solution if not already added.

3.	 Open the main Contact form for editing.

4.	 Add a new field called Contact Type. Make it an Option Set. Add the following
three values:

�� Staff

�� Member

�� Non-Member

5.	 Add the field to the Contact form.

6.	 Add a new tab to the form. Change its label to Staff Details and its name to
tab_staff_details.

7.	 On the General tab, add a new two-column section. Change its name to
non_member_section. Change its label to Non-Member Section and
check the Show a line at top of the section checkbox.

Chapter 7

159

8.	 In the General section, add a new field called Member Number. Make it a single-line
text field.

9.	 Save and Publish the form. We will return to it once we have the script completed.

10.	 In your solution, add a new web resource. Name it JS Membership
(new_jsmembership) and make it of type Script (JScript).

11.	 Add the following script to your resource:
function MembershipUI()
{
 var _selectedOption = "";

 try
 {
 _selectedOption = Xrm.Page.getAttribute("new_contacttype").
getSelectedOption().text;
 }
 catch(err)
 {}

 switch (_selectedOption)
 {
 case "Staff":
 // show Staff Details tab
 Xrm.Page.ui.tabs.get("tab_staff_details").setVisible(true);
 Xrm.Page.ui.tabs.get(1).sections.get(4).setVisible(false);
 Xrm.Page.ui.controls.get("new_membernumber").
 setVisible(false);
 break;
 case "Member":
 // show Member Number field
 Xrm.Page.ui.tabs.get("tab_staff_details").setVisible(false);
 Xrm.Page.ui.tabs.get(1).sections.get(4).setVisible(false);
 Xrm.Page.ui.controls.get("new_membernumber").
 setVisible(true);
 break;
 case "Non-Member":

Extended UI Manipulation

160

 // show Non-Member Details section
 Xrm.Page.ui.tabs.get("tab_staff_details").setVisible(false);
 Xrm.Page.ui.tabs.get(1).sections.get(4).setVisible(true);
 Xrm.Page.ui.controls.get("new_membernumber").
 setVisible(false);
 break;
 default:
 // hide all
 Xrm.Page.ui.tabs.get("tab_staff_details").setVisible(false);
 Xrm.Page.ui.tabs.get(1).sections.get(4).setVisible(false);
 Xrm.Page.ui.controls.get("new_membernumber").
 setVisible(false);
 }
}

12.	 Associate this function to the OnChange event of the Contact Type field.

13.	 Save and Publish your solution.

14.	 Test by selecting different values for the Contact Type option set.

How it works...
The preceding function reads first the selected option on the Contact Type field. Once this
value is retrieved, it checks to see which of the three values is selected, and shows or hides
the relevant form element/elements. We are demonstrating the process to hide/show a form
tab, a form section, and a single field in this recipe.

See also
ff Additional information on working with tabs can be found in MSDN at

http://msdn.microsoft.com/en-us/library/gg328067.aspx.

ff Additional details on working with sections is on MSDN at
http://msdn.microsoft.com/en-us/library/gg328489.aspx.

Formatting fields
This recipe will show you how to format a text field in the xxx-xxx-xxx format. We have seen
in previous recipes how to format phone numbers, or postal codes; this process is similar.

Getting ready
In the previously used solution, we will format the Member Number field to show as the
previously mentioned format.

Chapter 7

161

How to do it...
1.	 In the previously created web resource called JS Membership (new_jsmembership),

add the following script:
function FormatMemberNumber()
{
 var _mNumber = Xrm.Page.getAttribute("new_membernumber").
getValue();
 _mNumber = _mNumber.replace("-","");
 if(_mNumber.length == 9)
 {
 var _formattedNumber = _mNumber.substring(0,3) + "-" +
 _mNumber.substring(3,6) + "-" +
 _mNumber.substring(6,9);
 Xrm.Page.getAttribute("new_membernumber").setValue(_
 formattedNumber.toString());
 }
 else
 {
Xrm.Page.getAttribute("new_membernumber").setValue("");
 }
}

2.	 Associate this function to the OnChange event of the Member Number field.

3.	 Test by inserting various strings in that field. Make sure that the field re-formats your
input to respect the standard format, or clears your field if the input is incorrect.

How it works...
This function reads the user input when the focus is lost, and parses this input trying to format
it as per the requirement. It removes any dashes in the string, and checks to make sure the
remaining length is 9 characters. If the length is anything but 9, it clears the field. If it is 9,
then it formats the string by adding dashes back where required and populates the text field
with the formatted value.

Creating a rating gauge field
In this recipe, we will be looking at presenting the status of a record in a pleasant and visual
way. We are looking to provide instant feedback on the record based on a calculated or form-
defined value. You could be using such an approach when marking accounts based on annual
revenue or any other type of status. You could also use a more complex formula to determine
an account worth and display that in a rating gauge on the Account form.

Extended UI Manipulation

162

Getting ready
For this recipe, we can either reuse the previously created solution in the first two recipes
of this chapter, or create a new one. Make sure you have the system customizer or system
administrator permissions to the environment.

How to do it...
Let's follow these steps to add a rating gauge to the Account form:

1.	 Create three images. Depending on your graphics skills, you could go with something
really complex, or just a simple colored dot, like I did in this example.

2.	 Load your three images as web resources in your solution. I have called them red,
yellow, and green, all in the PNG format. Make a note of the URL.
https://<ServerUrl>/WebResources/new_red
https://<ServerUrl>/WebResources/new_yellow
https://<ServerUrl>/WebResources/new_green

3.	 Open the main Account form for editing.

4.	 Select a location where you want the image displayed. You might want to move form
elements around the page so that your image aligns nicely with the rest of the fields.

5.	 Insert a web resource on the form. On the Add Web Resource form, in the Web
resource field, look-up the new_green image we have loaded previously. Your
settings should look like the following screenshot:

6.	 On the Formatting tab, in the Row Layout area, select the number of rows
you want the image will occupy. I will change the default value to 7. Leave the
remaining settings as they are.

Chapter 7

163

7.	 Add a new form field of type Option Set with three values of Red, Yellow, and
Green. Name this field new_ratinggaugesource. Set the default value to Green.

8.	 Add the following script to your form, and attach it to the OnChange event of the
new_ratinggaugesource field:
function RatingGaugeUpdate()
{
 var _selectedOption = "";

 try
 {
 selectedOption = Xrm.Page.getAttribute("new
ratinggaugesource").getSelectedOption().text;
 }
 catch(err)
 {}

 switch (_selectedOption)
 {

Extended UI Manipulation

164

 case "Red":
 Xrm.Page.getControl("WebResource_gauge").setSrc (Xrm.Page.
context.getServerUrl() + "/WebResources/new_red");
 break;
 case "Yellow":
 Xrm.Page.getControl("WebResource_gauge").setSrc Xrm.Page.
context.getServerUrl() + "/WebResources/new_yellow");
 break;
 case "Green":
 Xrm.Page.getControl("WebResource_gauge").setSrc Xrm.Page.
context.getServerUrl() + "/WebResources/new_green");
 break;
 }
}

9.	 Save and Publish the solution.

10.	 Test your customization by opening a new account and changing the option set to any
of the three values provided. Then try the others. The end result should be similar to
the following screenshot:

How it works...
The previous example shows us two important things. First off, we can add images to forms
if the images are stored as a web resource. This will be helpful when we need a few status
indicators. Next, it shows us how to replace that default image using JavaScript. For the
purpose of this example, we only take the user-selected value of a form option set and change
the image according to the selection. One of the following recipes will demonstrate how we
can extend this functionality to pull images dynamically from other external sources.

Chapter 7

165

Flagging a section for the user
In this recipe, we will take a look at how to bring a section of the form to the attention of the
user. We can do this for various reasons, whether we want to let the user know that a section
is more important than the others, or simply to decorate our form.

Getting ready
We can either use one of the previously created solutions, or create a new solution. We will
need to be either a system administrator or a system customizer.

How to do it...
Perform the following steps to highlight a section to the user by changing the background
color of that section. We will be using the Account entity for this customization, and we will
create a new section. We could do the same on an existing section.

1.	 Open the solution, or create a new one.

2.	 Add the Account entity to the solution if not already added.

3.	 Open the main Account form for editing.

4.	 Add a new section to the form. Configure it as per the following screenshot:

5.	 Add some fields to this section.

6.	 Save and Publish this form.

Extended UI Manipulation

166

7.	 Add to your solution a new web resource named new_JSAccount. Make it of type
Script (JScript).

8.	 Add the following function to your web resource:
function HighlightSection()
{
 document.getElementById("{be295314-4459-5e75-68de-
81921170754b}").style.backgroundColor = '#CD0000';
}

9.	 Save and Publish the web resource.

10.	 On the main form of the account, attach the function to the OnLoad event of
the form.

11.	 Save and Publish your solution.

12.	 Test it by opening a new account. You should see the section highlighted with a
background colored in red as shown in the following screenshot:

How it works...
While this is an unsupported customization, it's been available since previous versions of
Dynamics CRM, and it's still an easy and comfortable way of handling user-interface changes.

The line of code in our function gets a reference to the section, and applies a background-color
style formatting. We can easily get the internal ID of the section by using the Internet Explorer
Developer Tools console. We have focused on using the Developer Tools in our debugging
section in Chapter 6, Debugging.

There's more...
There are some additional ways to interact with the user interface. Some of them involve
the use of other external libraries, such as jQuery. We will be looking at how to use jQuery in
Chapter 9, Extending CRM Using Community JavaScript Libraries.

Chapter 7

167

Adding a contact picture
Based on some of the previous examples, this recipe shows a very basic way to reference
a contact picture from an external source. This source could be anything from an internal
repository to any public image hosting site. Also, you can use the same approach to load
images to any entity. In the following recipes, we will delve deeper into referencing images
from within the system.

Getting ready
For this example, we will be using an existing solution. Alternatively, we can create a new
solution. We will customize the Contact entity.

How to do it...
1.	 Add the Contact entity to your solution if not already added.

2.	 Add a new web resource of type JScript.

3.	 Add the following function to your entity:
function AddContactPicture()
{
 var _imageURL = Xrm.Page.getAttribute("new_profileimage").
getValue();
 Xrm.Page.getControl("WebResource_ContactPicture").setSrc(_
imageURL);
}

4.	 Open the main Contact form for editing.

5.	 Add a new Web Resource element to your form. Name it WebResource_
ContactPicture.

6.	 In the Web resource lookup, point to a generic image as a base, in case no user
image is provided.

7.	 Format it, so it looks right on the Contact form, by using the configurations on the
Formatting tab.

8.	 Add a new Text field to the form, and format it as a URL. Name it new_
profileimage.

9.	 Attach the AddContactPicture() function to the OnChange event of the
previously created text field, as well as to the OnLoad event of the form.

10.	 Save and Close the form.

11.	 Publish your solution.

Extended UI Manipulation

168

12.	 Test it by opening a new contact. On the first load, since no image URL is defined, the
default image will be shown.

13.	 Add a URL to an image hosted on a public site.

14.	 Save the form. This will cause a form refresh. The image we've defined in the URL will
now show in the image form element.

How it works...
The defined script loads a URL to an image and places that image in our form-defined web
control. Formatting the text field as URL adds the necessary validation on the field, so we
don't end up with unexpected user input.

There's more...
While using an image from an external source is quite easy using this approach, it's not
necessarily a good idea to take this approach. You could consider keeping the image with
the record. Take a look at the next recipe for an example on how to do that.

Adding an account logo
In this recipe, we will be looking at a simple way to allow users to add an account picture. We
will create the form elements, and will load the picture from an attachment to the Account
in the Notes area. For the purpose of this recipe, we will be expecting the logo to be named
account_logo.jpg.

Getting ready
For this recipe, we can either create a new solution, or reuse one of the existing ones. Make
sure you have the proper permissions to customize the system you work on. Add the Account
entity to your solution.

Chapter 7

169

How to do it...
1.	 Open the main Account form for editing.

2.	 Add a new Web Resource element to your form. Name it WebResource_
AccountLogo. Add a label of Account Logo.

3.	 In the Web resource lookup, point to a generic image loaded as a web resource. This
can be a generic default logo image.

4.	 The final screen should look like the following screenshot:

5.	 On the Formatting tab, set its properties such that it has one column, two rows, a
vertical alignment of top, horizontal alignment of right, and of the original size. If you
select original size, make sure that you parse the logos you are loading through an
application that resizes them to a standard maximum width or height.

6.	 Save and Publish the form.

7.	 Create a new web resource within the solution, of type JScript.

8.	 Add the following functions:
function ShowContactPicture()
{
 var _contactId = Xrm.Page.data.entity.getId();
 if(_contactId)
 {
 var _pictureControl = Xrm.Page.getControl("WebResource_
AccountLogo");
 var _query = getServerUrl() + "/XRMServices/2011/
OrganizationData.svc/" +
"AnnotationSet?$top=1&$select=AnnotationId,DocumentBody,MimeType&"
+
 "$orderby=ModifiedOn desc&$filter=ObjectId/Id eq
guid'" + _contactId +

Extended UI Manipulation

170

 "' and IsDocument eq true and Subject eq 'Logo'" +
 " and startswith(MimeType,'image/') ";

$.ajax({
 type: "GET",
 contentType: "application/json; charset=utf-8",
 datatype: "json",
 url: _query,
 beforeSend: function (request) { request.
setRequestHeader("Accept", "application/json"); },
 success: function (data, textStatus, request) {
 if (data.d.results.length > 0) {
 var mimeType = data.d.results[0].MimeType;
 var body = data.d.results[0].DocumentBody;
 _pictureControl.setSrc("data:" + mimeType +
";base64," + body);
 }
 },
 error: function (request, status, exception) { }
 });
 }
}

function getServerUrl()
{
 var serverUrl = Xrm.Page.context.getServerUrl();
 return serverUrl.replace(/\/*$/, "");
}

9.	 Associate the ShowContactPicture() function to the form OnLoad event.

10.	 Open a new account, and add a new note by navigating to Add and then clicking on
Add Note.

Chapter 7

171

11.	 In the window that opens, fill in the title as Logo, and browse to a logo file.

12.	 Click on Attach.

13.	 Click on Save and Close.

14.	 Now your logo file will be added to the account in the Notes area.

15.	 Refresh the page to force the script to execute. You should see something similar to
the following screenshot:

Extended UI Manipulation

172

How it works...
The function presented first retrieves the ID of the current account. Once a valid non-null
value is retrieved, it takes a reference to the picture control, it queries Notes for a note with
the Title of Logo, and it retrieves the image field attached. It then parses the image and
associates it to the web resource control we have already added to the page, thus making it
render on the form.

There's more...
There is a large variety of sources you can use for images. You can either store the image in
Notes as this example demonstrates, or you can store images as web resources if the users
maintaining accounts have permission to add new web resources. Alternatively, you can use
any of the public online photo services, and link to the images at those locations. There is also
the option of leveraging any of the current social networking services, but we will look at that
in a later chapter.

See also
ff This recipe has shown you code that leverages two very popular libraries: jQuery

and JSON (json2.js). Chapter 9, Extending CRM Using Community JavaScript
Libraries, will delve deeper into this topic, but for now, you can find the libraries
at the following URLs:

�� http://jquery.com/download/

�� http://www.json.org/

Marking accounts for review
Sometimes we need to flag an account to make it obvious to the user that some action needs
to take place. This recipe will show you two ways to do that. First off, we will put a different
border color around the form. Secondly, we will add a colored title to the form, including a
message to the user.

Getting ready
For the purpose of this exercise, we can reuse an existing solution. If none exists, create one.
Make sure that you have at least the system customizer permission.

Chapter 7

173

How to do it...
Open the solution and perform the following tasks:

1.	 Add the Account entity to your solution if not already added.

2.	 If asked to add related entities, click on Yes.

3.	 Open the main Account form for editing.

4.	 Add a new text field named new_opencases with a label of Open Cases. Place the
field on the form.

5.	 Save and Publish the form.

6.	 Add the jQuery resource as described in previous recipes.

7.	 Add a new web resource of type JScript. Name it new_JSAccount.

8.	 Add the following script to your resource:
function ChangeBorderColor()
{
 var _cases;
 try
 {
 _cases = parseInt(Xrm.Page.getAttribute("new_opencases").
getValue());
 }
 catch(err)
 {
 _cases = 9999;
 }

 if(_cases < 10)
 {
 // set border green
 $(".ms-crm-Form-Page-Main-cell").css("background-
color","#00FF00");
 }
 elseif(_cases < 20 && _cases >= 10)
 {
 // set border yellow
 $(".ms-crm-Form-Page-Main-cell").css("background-
color","#FFFF00");
 }
 else
 {
 // set border red

Extended UI Manipulation

174

 $(".ms-crm-Form-Page-Main-cell").css("background-
color","#FF0000");
 }
}

9.	 Associate the script to the form's OnLoad and the new_opencases field's OnChange
events.

10.	 Save and Publish the solution.

11.	 Test your customization by loading an account. Modify the value of open cases in
the field.

In Chapter 9, Extending CRM Using Community JavaScript Libraries, we
will demonstrate how to populate the Open Cases field automatically,
taking advantage of external libraries.

How it works...
Based on the value stored in our Open Cases field, we determine specific thresholds on
number of open cases per account. This way we flag an account status to the user by
providing a different color to the form border. In this example we are taking advantage of the
jQuery library to select the form border, and to set the background-colour CSS property.

The following chapter will delve deeper into using the jQuery library for various form element
selections, as well as other nifty tricks.

Chapter 7

175

See also
ff Additional details on the jQuery library can be found in Chapter 8, Working with

Ribbon Elements, as well as on the jQuery page, at http://jquery.com/.The
documentation is located at http://docs.jquery.com/.

Dynamic form elements
There comes a time when the standard controls offered by Dynamics CRM are not enough to
satisfy the user's requirements. One such example is if they need to select multiple items in
a field. While this can be done by generating a section with multiple checkboxes, what if the
user wants a more elegant solution? Something along the lines of a multi-select dropdown?

In addition, the solution presented here allows, in a very easy way, to report on those
selections in an easy-to-read format.

In this recipe, we will be looking at a way to create a control that allows the multi-select
functionality to the user. While this is an unsupported customization, it's been the de facto
way of doing this for the last few years, and it's been working flawlessly.

Getting ready
For this recipe, we can either reuse an existing solution or create a new one. Please make
sure you have at least the system customizer permission in the environment you will be using.
This code works in both Online and On-Premise environments of Dynamics CRM 2011.

How to do it...
In order to prepare our work area, let's start by creating a few basic elements on the form. In
this example I want to capture food preferences for a contact.

1.	 Create a new solution.

2.	 Add the Contact entity to your solution.

3.	 Open the main Contact form for editing.

4.	 Add a new section on the form to host your control. Alternatively, you could add a new
tab with a default section if you want a shortcut on the navigation tree.

5.	 Within this new section, add an option set. Name it new_optionset and set a
display name of Preferred Food. This display name will show on the form in front
of the new multi-select field we'll create.

6.	 Since I am capturing food preferences in this example, add to the option set a list of
food choices.

Extended UI Manipulation

176

7.	 Also within this section, add a new text field. Name it new_selectedvalues. Set a
display name of Preferred Food also. This field will be hidden on the form, but we
will display it in a summary view.

8.	 Place your fields on the form in the section created. Your form should now look like
the following:

9.	 Save and Publish your form. We will come back to it later to attach the scripts, but for
now we have all we need here.

10.	 Close the form and return to the solution.

11.	 Add a new web resource of type JScript. Name it new_multiselect with a display
name of Multi Select. Try to keep descriptive names so it's easier to find them
later when you have many web resources.

12.	 We will need to add three functions to this resource. First off, let's add the function
that will be called when the form is loaded. This function prepares the form elements
for the user, and looks up previously selected values.
function FormLoad()
{
 var _optionSet = document.all.new_optionset;
 var _optionSetValues = document.all.new_selectedvalues;
 Xrm.Page.ui.controls.get('new_selectedvalues').
setVisible(false);
 document.all.item("new_optionset").style.display = "none";

 var addDiv = document.createElement("<div style='overflow-
y:inherit;'/>");
 _optionSet.parentNode.appendChild(addDiv);
 for(var i = 0; i < _optionSet.length; i++)
 {
 var _option = _optionSet.options[i];
 if(_option.text != "") {
 // create the checkbox

Chapter 7

177

 var _style = " style='border:none; width:30px;
align:left;'";
 if(!IsOptionChecked(_option.text, _optionSetValues))
 {
 var _checkBox = document.createElement("<input
type='checkbox'" + _style + " />");
 }
 else
 {
 var _checkBox = document.createElement("<input
type='checkbox' checked='checked'" + _style + " />");
 }
 // create the checkbox label
 var _label = document.createElement("<label>" + _option.text
+ "</label>");
 _label.innerText = _option.text;

 _optionSet.nextSibling.appendChild(_checkBox);
 _optionSet.nextSibling.appendChild(_label);
_optionSet.nextSibling.appendChild(document.createElement(
"
"));
 }
 }
}

13.	 Next, let's add the function that executes when the form is saved. This function reads
the user-populated checkboxes and adds the values to the hidden text field we've
created.
function FormSave()
{
 var _optionSet = document.all.new_optionset;
 var getInput = _optionSet.nextSibling.
getElementsByTagName("input");
 var result = "";
 for(var i = 0; i < getInput.length; i++)
 {
 if(getInput[i].checked)
 {
 result = result + getInput[i].nextSibling.innerText + ";";
 }
 }
Xrm.Page.getControl("new_selectedvalues").getAttribute().
setValue(result);
}

Extended UI Manipulation

178

14.	 And lastly, we need a small helper function that looks through the values stored in
the text field and compares them against the value we are checking.
function IsOptionChecked(_optionText, _optionSetValues)
{
 var _string = _optionSetValues.defaultValue;
 if(_string != "")
 {
 var _arr = _string.split(";");
 for(var i = 0; i < _arr.length; i++)
 {
 if(_arr[i] == _optionText)
 return true;
 }
 }
 return false;
}

15.	 With our three functions added, let's Save and Publish the web resource, then close
it.

16.	 Now let's return to the form we customized in step 7. Open the form for edit again.
This time go to Form Properties on the Events tab and load your form library. Next, in
the Event Handlers section, add the FormLoad() function to the OnLoad event of
the form, and the FormSave() function to the OnSave event of the form.

17.	 Save the form, and Publish your solution.

18.	 Now we can test our customization. Open a new contact. On your form you will see
something similar to the following:

19.	 Initially, no options will be selected. Select a few choices, and click on the Save and
Close button. Reopen it, and your choices are all saved.

Chapter 7

179

20.	 The beauty of this solution also stretches beyond the simple form customization. You
can easily create a simple view that will show you the food preferences of any contact
in the system. It can look like the following:

How it works...
The principle is twofold here:

When we open the form, we look into the hidden text field to see if there are any saved values.
If present, then we check the boxes accordingly.

When we close the form, we read all the selections on the screen, we clear the hidden text
field, and we repopulate it with the currently selected values. Remember, use the labels, then
populate the text field and you will see them nicely in the view.

The reason this type of customization is not supported is because it steps outside of the
recommended object model, and it uses the standard JavaScript and HTML DOM.

8
Working with

Ribbon Elements

In this chapter, we will cover:

ff Adding a new ribbon button

ff Removing ribbon artefacts

ff Starting a dialog/workflow from a ribbon button

ff Pre-populating form elements with a button click

ff Creating other ribbon artefacts

ff Security trimmed ribbon elements

ff Using the ribbon for displaying information

Introduction
This chapter focuses on working with the ribbon and elements contained within it. We will
start with small steps in adding a simple button and proceed into more advanced topics
around actions and customizations. We will close this chapter with an example of using the
ribbon as a container for elements other than buttons.

Working with the ribbon elements involves working with a lot of XML. For references on XML
see the See Also section of the first recipe.

Errors in customizing the ribbon elements can result in the element to
be added being not displaying at all, or even making the whole ribbon
non-functional. Please do your testing in an environment where you
are not affecting any other processes, and most importantly, do not
try to do this directly in a production environment.

Working with Ribbon Elements

182

Adding a new ribbon button
This recipe will start you with the basics. We'll be looking at adding a new ribbon button. Be
aware that you can add a ribbon button across all entities or to a specific entity only. Read
through the steps, as there are points identifying which action has to be taken and when.

The ribbon is comprised of the following elements:

ff Tabs

ff Groups

ff Controls

Each of these elements are stacked one inside the other. Tabs contain Groups that
contain Controls.

In order to customize the ribbon, please be aware that there are various levels at which this
customization can be implemented. These levels are as follows:

ff Ribbon at the web application level

ff Ribbon at the form level

ff Ribbon at the grid level

ff Ribbon at the entity level

In addition to these levels, we can also customize the Outlook ribbon.

Getting ready
Use an existing instance of Dynamics CRM, or create a new one if one is not available. Make
sure you have at least the system customizer permission in order to be able to perform the
following customizations.

How to do it...
Perform the following steps to add a new ribbon button at the web application level.

1.	 Create a new solution. Name it RibbonCustomization. Select a Publisher or
create a new one and add a version number.

2.	 Save the newly created solution.

3.	 Once saved, click on Components.

4.	 Click on Add Existing and select Application Ribbons.

5.	 Save and Publish your solution.

6.	 Export the solution and create a backup of it.

Chapter 8

183

7.	 Extract the files from the solution. The solution is a ZIP file.

8.	 Open customizations.xml for editing.

9.	 Find the <RibbonDiffXml> section.

10.	 Find the <CustomActions> tag inside.

11.	 Add a new <CustomAction> tag, give it an Id, a Location and a Sequence. The
Id has to be unique, the Location defines the ribbon section, and the Sequence
defines the order in that specific ribbon section. More details about each attribute
can be found in MSDN at the link in the See also section at the bottom of this recipe.

12.	 Add a new <CommandUIDefinition> tag.

13.	 Now go to the CRM SDK and find the applicationribbon.xml. It is located in the
/sdk/resources/exportedribbonxml/ folder.

14.	 Find a <Button> definition and copy it. Replace Mscrm with CRMScripting.

15.	 Paste it in the <CommandUIDefinition> tag.

16.	 The following is a sample of how this section could look like:
 <CustomActions>
 <CustomAction Id="CRMScripting.MyCRM.MainTab.LaunchURL.
CustomAction"
Location="Mscrm.HomepageGrid.MyCRM.MainTab.Actions.Controls._
children"
 Sequence="80">
 <CommandUIDefinition>
 <Button Id="CRMScripting.MyCRM.MainTab.LaunchURL.Button"
Command="CRMScripting.all.MainTab.LauchURL.Command"
 LabelText="Qualify"
 ToolTipTitle="Qualify Button"
 ToolTipDescription="Click to see the Demo Button
functionality"
 TemplateAlias="o1"
Image16by16="$webresource:new_/my16Button.png"
Image32by32="$webresource:new_/my32Button.png" />
 </CommandUIDefinition>
 </CustomAction>
 </CustomActions>

17.	 Next, find the <CommandDefinitions> tag.

18.	 Add a <CommandDefinition> tag to it.

19.	 Then add the following code:
 <CommandDefinitions>
 <CommandDefinition>
 <EnableRules />
 <DisplayRules />

Working with Ribbon Elements

184

 <JavaScriptFunction Library="$webresource:jsbook.js"
 FunctionName="LaunchNew" />
 </CommandDefinition>
 </CommandDefinitions>

20.	 Save and re-package the solution.

21.	 Add a new JScript web resource and add the following function to it:
function launchNew()
{
alert("From within launchNew JS function!");
}

22.	 Create two new images of 16 x 16 pixels and 32 x 32 pixels.

23.	 Load them as web resources. Name them my16Button.png and my32Button.
png.

24.	 Now re-load the original solution you have pulled out.

25.	 Save and Publish your customizations.

26.	 You will now see a new button added to the ribbon as shown in the following
screenshot:

How it works...
There are two steps to this customization. First off, we modify the XML definition by adding the
button to the customizations.xml file. There we have the references to the images and
the JavaScript function that is called when the button is clicked.

Second, we add the JavaScript function to open a pop-up window when the button is clicked. A
variety of actions can be taken from here.

There's more...
This generic example showed how to add a new ribbon button to the application ribbon which
is displayed in all entities, but as we mentioned at the beginning, we have more choices here.

Chapter 8

185

Adding a ribbon button to a specific entity
For the purpose of this example, let's focus on the Lead entity.

1.	 Find in the SDK the leadribbon.xml file at …\sdk\resources\
exportedribbonxml.

2.	 Find the <Ribbon> tag within this file.

3.	 Find the MainTab section.

4.	 Identify the group you want to place your new button into and copy the control ID for
one of the other controls in that group. In this case, I want to place the new Qualify
button in the Actions group.
Mscrm.Form.lead.MainTab.Actions.Controls

5.	 Add a new button definition, as described previously, and re-package and publish
the solution.

6.	 Add the related JavaScript functions and the images as described.

7.	 Save and Publish all changes.

8.	 Test your changes by opening a new Lead entity. Your new button should show on
the Lead ribbon.

See also
ff For additional details on the XML elements, see the MSDN documentation at

http://msdn.microsoft.com/en-us/library/gg327915.aspx.

Removing ribbon artefacts
Now that we have seen how to add a new ribbon button, how about we look at how to remove
buttons? There will be instances where you will want to replace a standard out-of-the box
button with a new custom one, or hide functionality from the user.

Getting ready
For this recipe, use the solution created in the Adding a new ribbon button recipe, or create a
new one. Make sure you have the proper permissions to make these kind of customizations.
You need to be a system administrator or a system customizer.

http://msdn.microsoft.com/en-us/library/gg327915.aspx
http://msdn.microsoft.com/en-us/library/gg327915.aspx

Working with Ribbon Elements

186

How to do it...
Perform the following steps to hide the Qualify button on the Lead entity:

1.	 Make sure you have the CRM SDK downloaded. If you don't have it, get the
latest version.

2.	 Create a new solution package, or open the previously created one.

3.	 Add the Lead entity to your solution.

4.	 Export the solution and save it locally.

5.	 Unzip the solution package and remember the location.

6.	 Open the customizations.xml file for editing. Find the Lead section in the XML
file.

7.	 Find the <RibbonDiffXml> tag within the Lead definition.

8.	 Change the <CustomActions> tag to read as the following:
<CustomActions >
<HideCustomAction Location="Mscrm.HomepageGrid.lead.ConvertLead"
HideActionId="Mscrm.HomepageGrid.lead.ConvertLead.HideAction" />
<HideCustomAction Location="Mscrm.Form.lead.ConvertLead"
HideActionId="Mscrm.Form.lead.ConvertLead.HideAction" />
</CustomActions>

9.	 Re-package your solution (zip it) and import it.

10.	 Save and Publish all customizations.

11.	 Refresh the browser to see the changes. You will observe the button disappear in the
following places:

1.	 Lead home page (before and after your customizations are applied).

Chapter 8

187

2.	 Lead entity (before and after your customizations are applied).

How it works...
The approach in this example is pretty simplistic. All we are doing is adding a
HideCustomAction property to the button. Observe on the two lines declared that we are, in
fact, hiding the same button from the ribbon on both the Lead homepage and the Lead form.

See also
ff For a description of all the ribbon elements see the documentation on MSDN at

http://msdn.microsoft.com/en-us/library/gg327947.aspx.

Starting a dialog/workflow from a ribbon
button

Now that we know how to hide a ribbon button and how to add our custom buttons to the
forms, the next step is to make these buttons do something a little more intelligent than just
bring up a pop-up message.

Getting ready
For the purpose of this recipe, we can either continue on the customizations started in the
Adding a new ribbon button recipe at the beginning of this chapter, or re-create the button
and the action as described there.

http://msdn.microsoft.com/en-us/library/gg327947.aspx
http://msdn.microsoft.com/en-us/library/gg327947.aspx

Working with Ribbon Elements

188

How to do it...
In order to kick off a workflow using a ribbon button, perform the following steps:

1.	 Add your new form button as described in the first recipe of this chapter.

2.	 Create your custom workflow as part of the same solution.

We will require the workflow ID in our function. For the sake of simplicity,
I will show you how to find out this ID manually and hard code it into your
JavaScript function.

3.	 Start the workflow manually.

4.	 Go to System Jobs and find the job running the workflow.

5.	 Do a copy link. Paste that link into Notepad. You will see the following at the end of
the link:
id=%7b[GUID]%7d

Where [GUID] is of the format XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX.

6.	 Copy that GUID, as we will need it as a parameter in our JScript function.

7.	 Add a new JScript web resource that contains our function.

8.	 Add the following JScript function to our web resource:
function launchWorkflow(dialogID, typeName, recordId)
{
// Load modal
var serverUri = Xrm.Page.context.getServerUrl() + "/cs/dialog/
rundialog.aspx";
 window.showModalDialog(serverUri + '?DialogId=' + dialogID +
'&EntityName=' + typeName +
'&ObjectId=' + recordId, null, 'width=615,height=480,resizable=1,s
tatus=1,scrollbars=1');
// Reload form
 window.location.reload(true);
}

9.	 Export your solution to a location on your machine.

10.	 Unzip the solution file and remember the location.

11.	 Edit the customizations.xml file within the unzipped solution.

12.	 Find the Lead entity section.

13.	 Find the RibbonDiffXml section within the Lead tag.

14.	 Find the ribbon button definition, and within it find the Actions segment.

Chapter 8

189

15.	 Replace the Actions with the following XML code:
<Actions>
 <JavaScriptFunction Library="$webresource:Nav_JS_Common_Lib"
FunctionName="launchWorkflow">
<!– workflowId, entityName, entityId –>
 <StringParameter Value="{e1037cac-756c-46e7-96d0-cdc572eafc65}"
/>
 <StringParameter Value="lead" />
 <CrmParameter Value="FirstPrimaryItemId" />
 </JavaScriptFunction>
</Actions>

16.	 Save and Publish your solution.

17.	 Test it by creating a new Lead and clicking the new ribbon button.

How it works...
The solution presented is comprised of the following main actions:

1.	 Create a system workflow.

2.	 Add a new ribbon button.

3.	 Define the ribbon button action through JScript to point it to the custom
workflow created.

Within the customizations.xml file, the following tags are important:

ff CustomActions: It allows us to define the location of where the ribbon button
appears.

ff CommandUIDefinition: It is a container control that defines user interface
elements along with properties such as label, tooltip, and icon.

ff CommandDefinition: It defines the command to be executed.

ff Actions: It allows us to customize the JScript function to execute or the URL to
forward to. In this section we can also define parameters.

ff CrmParameter: It permits us to pass information directly from the calling form. In
our example we passed the GUID of the Lead record.

In order to process a workflow rather than a dialogue, we can use a similar approach, and
point to the workflow ID. In addition, for more complex situations, we can launch workflows
from a dialogue, or vice versa.

Working with Ribbon Elements

190

See also
ff For additional details on parameters, see the MSDN documentation at

http://msdn.microsoft.com/en-us/library/gg309332.aspx.

Pre-populating form elements with a
button click

For this example, we will look at using a button click to populate form fields. We can use such
a scenario when we need a calculation to take place on the form, or when we need to bring
data from a related record. For example, we have a sub-account, and we need to bring and
populate the address of the parent account. Automating this task will save the user a few
minutes per record and will create a much better user experience.

Getting ready
For the purpose of this recipe, we can either use one of the pre-existing solutions, or create a
new one. Make sure you have the proper permissions to allow you to customize the system as
required. This example will work in both Online and On-Premise environments.

How to do it...
In order to create this functionality, perform the following steps:

1.	 Create a solution package in your environment or open an existing one.

2.	 Add the Account entity to your solution, if not already added.

3.	 Make sure you have a custom button image, or create a new one. Alternatively, you
can use the default system image. For this example, I will use the default image.

4.	 Add a new web resource, of type JScript, and name it new_getaddress.

5.	 Within your web resource, add a function placeholder named
GetAddressFromParent. We will come back to the function content after the
button is added to the ribbon.

6.	 Export your solution from CRM.

7.	 Unzip the solution and remember the location.

8.	 Open the customizations.xml file for editing.

9.	 Find the Account entity section in the XML file.

10.	 Open up the SDK and find the Account XML file as described in the previous recipes
(accountribbon.xml).

http://msdn.microsoft.com/en-us/library/gg309332.aspx
http://msdn.microsoft.com/en-us/library/gg309332.aspx

Chapter 8

191

11.	 Find the section where you want to place your button. In this case, I want to place my
custom button in the Actions section of the Main tab. So look for the tab defined
with the following:
<Tab Id="Mscrm.Form.account.MainTab …

12.	 Next, look for the following group definition:
Mscrm.Form.account.MainTab.Actions.Control

13.	 Back in our solution's customizations.xml file change the CustomActions
section to look as follows:
<CustomActions>
 <CustomAction Id="OC.account.Form.Main.CustomAction"
Location="Mscrm.Form.account.MainTab.Actions.Controls._children"
Sequence="15" >
 <CommandUIDefinition>
 <Button Id="OC.account.Form.Main.Button"
 Command="OC.account.Form.Main.Command"
 LabelText="Copy Address"
 ToolTipTitle="Copy from Parent"
 ToolTipDescription="Copy Address from Parent Account"
 TemplateAlias="o1" />
 </CommandUIDefinition>
 </CustomAction>
</CustomActions>

14.	 If you were to add the button images, you would add the following two lines after
TemplateAlias. You would add the two images to the solution as well.
Image16by16="$webresource:new_btn_16.png"
Image32by32="$webresource:new_btn_32.png"

15.	 Next, add the corresponding command definitions. Find the CommandDefinitions
section, and change it to look as follows:
<CommandDefinitions>
 <CommandDefinition Id="OC.account.Form.Main.Command">
 <EnableRules>
 </EnableRules>
 <DisplayRules>
 </DisplayRules>
 <Actions>
 <JavaScriptFunction
 Library="$webresource:new_getaddress"
 FunctionName="GetAddressFromParent" />
 </Actions>
 </CommandDefinition>
</CommandDefinitions>

Working with Ribbon Elements

192

16.	 Save your changes and close the file.

17.	 Repack the solution as a ZIP file.

18.	 Reload the solution onto your environment.

19.	 If there are no errors on the import, then your customized package is correct.

If you did not create the function placeholder beforehand, you will get
an error on the import stating that your ribbon item is dependent on
the web resource that holds your function.

20.	 You can now check and make sure that your button appears on the ribbon by opening
a new or existing account record. Your button will show as follows if the images were
not defined:

21.	 Next, open your function placeholder you have created earlier. At this point, create
your function that retrieves the parent account's address, and populates the current
address with that information. Your function could look like the following:
function GetAddressFromParent()
{
 try
 {
 var ParentAccount = Xrm.Page.getAttribute("parentaccountid");
 if(ParentAccount != null)
 {
 var ParentAccountValue = ParentAccount.getValue();
 if(ParentAccountValue != null)
 {
 var ParentAccountId = ParentAccountValue[0].id;

 var serverUrl = Xrm.Page.context.getServerUrl();
 var odataSelect = serverUrl + "/XRMServices/2011/
OrganizationData.svc/AccountSet(guid'" + ParentAccountId +
"')?$select=Name,Address1_Line1,Address1_Line2,Address1_
Line3,Address1_City,Address1_PostalCode";

Chapter 8

193

 $.ajax({
 type: "GET",
 contentType: "application/json;
charset=utf-8",
 datatype: "json",
 url: odataSelect,
 beforeSend: function (XMLHttpRequest) {
XMLHttpRequest.setRequestHeader("Accept", "application/json"); },
 success: function (data, textStatus,
XmlHttpRequest) {
 var org = data.d;
 //Change form data
 // alert("TEST: Country: " + org.
Address1_Country[0].name + "; Province: " + org.Address1_
StateOrProvince[0].name);
 Xrm.Page.data.entity.attributes.
get("address1_name").setValue(org.Name);
 Xrm.Page.data.entity.attributes.
get("address1_line1").setValue(org.Address1_Line1);
 Xrm.Page.data.entity.attributes.
get("address1_line2").setValue(org.Address1_Line2);
 Xrm.Page.data.entity.attributes.
get("address1_line3").setValue(org.Address1_Line3);
 Xrm.Page.data.entity.attributes.
get("address1_city").setValue(org.Address1_City);
 Xrm.Page.data.entity.attributes.
get("address1_postalcode").setValue(org.Address1_PostalCode);
 },
 error: function (XmlHttpRequest, textStatus,
errorThrown) {
 alert('OData Select Failed: ' +
odataSelect);
 }
 }
);
 }
 }
 }
 catch()
 {}
}

22.	 Save and Publish your solution.

23.	 Test it by opening an account, assigning a parent account, saving the record, and
then clicking on your new custom button. You should see the address populated
from the parent account.

Working with Ribbon Elements

194

How it works...
There are two major steps in this recipe we followed. First off, we add a ribbon button. While
adding the button, we define the button properties as well as the associated function that
is called when the button is clicked. Secondly, we define a custom function. This function
requires the OData and JSON libraries. Do make sure that these libraries are added to your
solution. The function presented retrieves the ID of the parent account, and makes a call to
get some of the address properties of the parent account. Once this information is retrieved,
it is populated into the current account address fields.

See also
ff More information on the OData protocol can be found at

http://www.odata.org/.

ff OData JSON details are found at
http://www.odata.org/developers/protocols/json-format.

Creating other ribbon artefacts
In this example, we will be looking at the flyout anchor ribbon element in Dynamics CRM
2011. This allows us to nest multiple ribbon buttons under a single header, thus saving
space on the ribbon and grouping common elements together.

Getting ready
For this recipe, we can either use an existing solution, or create a new one. Make sure you
have permissions to make customizations in the system.

How to do it...
Perform the following steps to generate a ribbon flyout that contains other buttons:

1.	 Create a new solution. Alternatively you can use any existing solution.
2.	 Add the Account entity if not already added. We will place the flyout on the

Account ribbon.
3.	 Create and add two images for the flyout buttons of 16 x 16 and 32 x 32 pixels.

Name them flyout16.png and flyout32.png respectively.
4.	 Alternatively, you can create additional images for the other submenu buttons.

This example will reuse the same image for all buttons.
5.	 Load the images as web resources into your solution.
6.	 Add a new web resource of type JScript. Name it new_flyoutfunction.

http://www.odata.org/
http://www.odata.org/
http://www.odata.org/developers/protocols/json-format
http://www.odata.org/developers/protocols/json-format

Chapter 8

195

7.	 Add the following function to your resource. This is the function that is called from the
second ribbon button:
function flyoutaction()
{
 alert("You have run a function from a custom flyout ribbon
button...");
}

8.	 Save and Publish your solution.

9.	 Export your solution.

10.	 Unzip the solution.

11.	 Open the customizations.xml file for edit.

12.	 In the Account form ribbon add a new custom action.

If we want to add this to the home page grid to display it on the listing of
all accounts, we can change in the Location definition from Mscrm.
Form to Mscrm.HomePageGrid.

The code could look as follows:

<CustomAction Id="OC.account.Button1.Button.CustomAction"
Location="Mscrm.Form.account.MainTab.Actions.Controls._children"
Sequence="29" >
 <CommandUIDefinition>
 <FlyoutAnchor Id="MyFlyout"
 ToolTipTitle="My Flyout"
 LabelText="My Flyout"
 Sequence="80"
 Image16by16="$webresource:new_flyout16.png"
 Image32by32="$webresource:new_flyout32.png"
 TemplateAlias="o1">
 <Menu Id="MyMenu">
 <MenuSection Id="MyMenuSection"
 Title="My Custom Flyout"
 Sequence="15"
 DisplayMode="Menu32">
 <Controls Id="MyControls">
 <Button Id="MyButton1"
 ToolTipTitle="MyButton1"
 ToolTipDescription="MyButton1"
 LabelText="Open Bing"
 Alt="My Button 1"
 Image16by16="$webresource:new_flyout16.png"

Working with Ribbon Elements

196

 Image32by32="$webresource:new_flyout32.png"
 TemplateAlias="isv"
 Sequence="10"
 Command="OC.Button1"
 />
 <Button Id="MyButton2"
 ToolTipTitle="MyButton2"
 ToolTipDescription="MyButton2"
 LabelText="Run Function"
 Alt="My Button 2"
 Image16by16="$webresource:new_flyout16.png"
 Image32by32="$webresource:new_flyout32.png"
 TemplateAlias="isv"
 Sequence="11"
 Command="OC.Button2"
 />
 </Controls>
 </MenuSection>
 </Menu>
 </FlyoutAnchor>
 </CommandUIDefinition>
</CustomAction>

13.	 Next step, we need to define the commands. One of these two commands
will contain a reference to a JScript to be run, the other simply opens a URL.

14.	 Add the first command definition for the first button. This button will only
open a new browser window and navigate to the predefined URL.
<CommandDefinition Id="OC.Button1">
 <EnableRules />
 <DisplayRules />
 <Actions>
 <Url Address="http://www.bing.com"
 PassParams="false"
 WinParams="height=200, width=400, toolbar=no,
menubar=no, location=no" />
 </Actions>
</CommandDefinition>

15.	 Now add the second command definition for the next button. This definition
calls our JavaScript function when the button is clicked.
<CommandDefinition Id="OC.Button2">
 <EnableRules />
 <DisplayRules />
 <Actions>

Chapter 8

197

 <JavaScriptFunction Library="$webresource:new_flyoutfunction"
 FunctionName="flyoutaction" />
 </Actions>
</CommandDefinition>

16.	 Once the command definitions are added, package your solution again.

17.	 Import your solution. If all is ok, your solution should update the system with
no errors.

18.	 Publish all the changes.

19.	 Now test your customization by opening a new or an existing account. You should see
on the ribbon a new flyout with two buttons underneath. Click on both and observe
the result.

How it works...
There are three major steps to achieve this functionality.

First off, we need to define the parent control, the flyout anchor that will hold all the buttons
on the ribbon.

Next step, we define the command definitions. We use two definitions; one for the first button
demonstrating a standard way to open a pre-defined URL, and one for calling a function. With
these two definitions we can further create more complex logic.

Finally, the script contains the function that is called when clicking the Run Function button.

See also
ff For additional reference on the FlyoutAnchor see the MSDN documentation at

http://msdn.microsoft.com/en-us/library/gg309511.aspx.

http://msdn.microsoft.com/en-us/library/gg309511.aspx
http://msdn.microsoft.com/en-us/library/gg309511.aspx

Working with Ribbon Elements

198

Security trimmed ribbon elements
In this recipe, we will be looking at dynamically removing a ribbon button when a certain
condition is met. First off, we'll create a function to check for the condition. If the condition is
met, a second function is called that hides an existing button. So let's get started.

Getting ready
For this recipe we can either use an existing solution, or create a new one. Make sure you
have permissions to make customizations in the system.

How to do it...
For the sake of simplicity, we check to see if the current user is the owner of a contact, and if
not, we hide the Save button. You can do the same with the Save and Close button, as well as
any other ribbon buttons.

1.	 Create a new solution or open an existing one.

2.	 Add the Contact entity to your solution of not already added.

3.	 Add a new web resource of type Jscript.

4.	 Add the following function to check if the current user is the owner of the
record:
function HideButtonIfNotOwner(context)
{
 var _currentUser = Xrm.Page.context.getUserId();
 var _formOwner;
 var _owner = Xrm.Page.getAttribute("ownerid");
 if(_owner != null)
 {
 var _ownerValue = _owner.getValue();
 if(_ownerValue != null)
 {
 var _formOwner = _ownerValue[0].id;
 }
 }
 if(_currentUser != _formOwner)
 {
 // hide ribbon button
HideButton("contact|NoRelationship|Form|Mscrm.Form.contact.Save-
Large"); // Save
}
}

Chapter 8

199

5.	 Observe the button name that is being passed to the HideButton() function. In
order to retrieve the names of the buttons, use the Internet Explorer's Developer
Tools. You can open it by pressing the F12 key.

6.	 Next, add a new function that hides the button using the HTML DOM. Please
note that while this is not an officially supported scenario, as long as the HTML DOM
does not change, it's a simple way of doing this.
function HideButton(name)
{
 if(top.document.getElementById(name) != null)
 {
 var btn = top.document.getElementById(name);
 btn.style.display = 'none';
 }
}

7.	 Open the Contact form, and in the form properties, add the
HidebuttonIfNotOwner() function to the OnLoad event.

8.	 Save and Publish your solution.

9.	 Test your customization by opening a record you own. You should see a Save button.

10.	 Next test it by opening a record where the owner is another system user. You should
not see the Save button anymore.

Working with Ribbon Elements

200

How it works...
Our first function retrieves the ID of the current user, as well as the ID of the form owner.
Comparing these values, it defines whether to call the next function or not. In our case, if the
owner is not the same as the current user, we are calling the next function to hide the Save
button. In order to make this functional, you should also hide the save & Close button, as well
as the Save & New button. Alternatively, you can hide the whole Save ribbon tab.

Our next function takes advantage of the standard HTML DOM to find the document elements
described by the passed IDs and defines the style properties to hide them.

There's more...
Same approach can be taken to hide ribbon tabs, not just buttons. Using the Developer Tools
provided with Internet Explorer, you can find the ID of any form element, and hide it that way.

Enhancing the progression process of a record
While this example only looked at the owner of a record versus the current user, you can
easily extend this kind of functionality to enhance the process of progressing a certain record
through various phases. A combination of a new custom ribbon tab with buttons to progress
from one stage to another, along with form validation that defines the current stage, and
what buttons become available next is something relatively easy to accomplish now using the
previous examples provided.

See also
ff Information on HTLM DOM can be found at w3schools http://www.w3schools.

com/htmldom/default.asp.

ff Using JavaScript with HTML DOM is described also at w3schools http://www.
w3schools.com/jsref/default.asp.

Using the ribbon for displaying information
In the Creating a rating gauge field recipe of Chapter 7, Extended UI Manipulation, we
described a simple method to place a rating gauge on a form and changing the image based
on a business rule. Similar to that, this time we will look at placing that rating gauge in the
ribbon. The advantage to putting this kind of information on the ribbon is that it's always
visible to the user no matter what section of the form you scroll to. So let's see how we can
achieve this.

http://www.w3schools.com/htmldom/default.asp
http://www.w3schools.com/htmldom/default.asp
http://www.w3schools.com/jsref/default.asp
http://www.w3schools.com/jsref/default.asp

Chapter 8

201

Getting ready
For this example we can use either an existing solution, or we can create a new one. Make
sure you have permissions to make customizations to the system. We will add this to the
Account entity.

How to do it...
Perform the following steps to add this functionality:

1.	 Create a new solution if one is not already available.

2.	 Add the Account entity to your solution if not already added.

3.	 Create three images to be used on the ribbon. I've made three circles, one red,
one yellow, and one green.

4.	 Scale the three images at 16 x 16 pixels, as well as at 32 x 32 pixels.

5.	 Add your six images as web resources to your solution.

6.	 Add a new JScript web resource. Add a function placeholder as follows:
function RibbonPlaceholder()
{
 // empty placeholder
}

7.	 Your listing of web resources should look like the following screenshot:

8.	 Export your solution as Unmanaged.

9.	 Unzip your solution.

10.	 Open the customizations.xml file for editing.

11.	 Find the RibbonDiffXml area within.

Working with Ribbon Elements

202

12.	 Add the following custom actions:
 <CustomActions>
 <CustomAction Id="OC.account.Form.Red.CustomAction"
Location="Mscrm.Form.account.MainTab.Actions.Controls._children"
Sequence="33">
 <CommandUIDefinition>
 <Button Id="OC.account.form.Red.Button" Command="OC.
account.form.Red.Command"
 LabelText=" " ToolTipTitle=" " ToolTipDescription=" "
TemplateAlias="o3"
 Image16by16="$webresource:new_red16"
Image32by32="$webresource:new_red32" />
 </CommandUIDefinition>
 </CustomAction>
 <CustomAction Id="OC.account.Form.Yellow.CustomAction"
Location="Mscrm.Form.account.MainTab.Actions.Controls._children"
Sequence="34">
 <CommandUIDefinition>
 <Button Id="OC.account.form.Yellow.Button" Command="OC.
account.form.Yellow.Command"
 LabelText=" " ToolTipTitle=" " ToolTipDescription=" "
TemplateAlias="o3"
 Image16by16="$webresourcenew_yellow16"
Image32by32="$webresource:new_yellow32" />
 </CommandUIDefinition>
 </CustomAction>
 <CustomAction Id="OC.account.Form.Green.CustomAction"
Location="Mscrm.Form.account.MainTab.Actions.Controls._children"
Sequence="35">
 <CommandUIDefinition>
 <Button Id="OC.account.form.Green.Button" Command="OC.
account.form.Green.Command"
 LabelText=" " ToolTipTitle=" " ToolTipDescription=" "
TemplateAlias="o3"
 Image16by16="$webresource:new_green16"
Image32by32="$webresource:new_green32" />
 </CommandUIDefinition>
 </CustomAction>
 </CustomActions>

13.	 Next, find the command definitions and add the following code:
 <CommandDefinition Id="OC.account.Form.Red.Command">
 <EnableRules></EnableRules>
 <DisplayRules></DisplayRules>
 <Actions>

Chapter 8

203

 <JavaScriptFunction Library="$webresource:new_
ribbongauge" FunctionName="RibbonPlaceholder" />
 </Actions>
 </CommandDefinition>
 <CommandDefinition Id="OC.account.Form.Yellow.Command">
 <EnableRules></EnableRules>
 <DisplayRules></DisplayRules>
 <Actions>
 <JavaScriptFunction Library="$webresource:new_
ribbongauge" FunctionName="RibbonPlaceholder" />
 </Actions>
 </CommandDefinition>
 <CommandDefinition Id="OC.account.Form.Green.Command">
 <EnableRules></EnableRules>
 <DisplayRules></DisplayRules>
 <Actions>
 <JavaScriptFunction Library="$webresource:new_
ribbongauge" FunctionName="RibbonPlaceholder" />
 </Actions>
 </CommandDefinition>

14.	 With that in place, re-package your solution.

15.	 Import your solution.

16.	 If all is correct, you will get a confirmation window. Click on Publish All
Customizations.

17.	 Once you have your customized ribbon buttons published, open up an account to
make sure all three buttons appear as expected in the ribbon. We will have a red
circle, a yellow circle, and a green circle in our Actions section.

18.	 Observe that we have not defined a button name. While we placed the buttons in the
Actions tab for this example, you can create your own custom tab or place them in
any other available tab as needed.

Working with Ribbon Elements

204

19.	 Clicking any of the buttons on the ribbon will not result in any action. This is by design
in this case, but the example shows a function associated with these buttons. You
can add logic in that function to re-calculate the total that generates the field value
that determines which flag is presented to the user.

20.	 In order so simplify this example, we will create an option set which will drive
the ribbon-selection value. You can do this by adding more complex logic based on
multiple form elements.

21.	 Add an option set named new_ratinggauge. Add three values to it, Red,
Yellow, and Green.

22.	 Add the field to the Account form.

23.	 Add a new web resource named new_jsratinggauge. Set it of type Script.

24.	 Add the following function to your web resource to read the selection text:
function jsratinggauge()
{
 var _fieldValue = "";
 try
 {
 var _fieldValue = Xrm.Page.getAttribute("new_ratinggauge").
getSelectedOption().text;
 }
 catch(err)
 {
 }

 if(_fieldValue == "Red")
 {
 HideButtons("Red");
 }
 else if(_fieldValue == "Yellow")
 {
 HideButtons("Yellow");
 }
 else if(_fieldValue == "Green")
 {
 HideButtons("Green");
 }
 else
 {
 HideButtons("None");
 }
}

Chapter 8

205

25.	 Once we have the selection text and we identify which action takes place, we call the
following function, which hides the unnecessary ribbon buttons and only leaves the
relevant one:
function HideButtons(validButton)
{
 if(validButton == "Red")
 {
 var btnRed = top.document.getElementById("account|NoRelationsh
ip|Form|OC.account.form.Red.Button-Large");
 btnRed.style.display = 'inline';
 var btnYellow = top.document.getElementById("account|NoRelatio
nship|Form|OC.account.form.Yellow.Button-Large");
 btnYellow.style.display = 'none';
 var btnGreen = top.document.getElementById("account|NoRelation
ship|Form|OC.account.form.Green.Button-Large");
 btnGreen.style.display = 'none';

 }
 else if(validButton == "Yellow")
 {
 var btnRed = top.document.getElementById("account|NoRelationsh
ip|Form|OC.account.form.Red.Button-Large");
 btnRed.style.display = 'none';
 var btnYellow = top.document.getElementById("account|NoRelations
hip|Form|OC.account.form.Yellow.Button-Large");
 btnYellow.style.display = 'inline';
 var btnGreen = top.document.getElementById("account|NoRelation
ship|Form|OC.account.form.Green.Button-Large");
 btnGreen.style.display = 'none';

 }
 else if(validButton == "Green")

 var btnRed = top.document.getElementById("account|NoRelationsh
ip|Form|OC.account.form.Red.Button-Large");
 btnRed.style.display = 'none';
 var btnYellow = top.document.getElementById("account|NoRelatio
nship|Form|OC.account.form.Yellow.Button-Large");
 btnYellow.style.display = 'none';
 var btnGreen = top.document.getElementById("account|NoRelation
ship|Form|OC.account.form.Green.Button-Large");
 btnGreen.style.display = 'inline';
 }
 else

Working with Ribbon Elements

206

 {
 var btnRed = top.document.getElementById("account|NoRelationsh
ip|Form|OC.account.form.Red.Button-Large");
 btnRed.style.display = 'none';
 var btnYellow = top.document.getElementById("account|NoRelatio
nship|Form|OC.account.form.Yellow.Button-Large");
 btnYellow.style.display = 'none';
 var btnGreen = top.document.getElementById("account|NoRelation
ship|Form|OC.account.form.Green.Button-Large");
 btnGreen.style.display = 'none';
 }
}

26.	 Associate the jsratinggauge() function to the OnChange event of the option
set we created earlier. This will cause the ribbon to update dynamically once the
selection changes.

27.	 Also associate the jsratinggauge() function to the form's OnLoad event.
This way, when we open a new record, the gauge updates.

28.	 Save and Publish your solution.

29.	 To test the functionality, open an Account record. If no value is selected on
the option set, no button is displayed on the ribbon.

30.	 Change the option set selection from one option to another and observe the ribbon
getting updated to reflect the selected color. Your ribbon will look like the images
shown in the following screenshot:

How it works...
The approach of this solution is similar to the way we customize a form. We add to the ribbon
all the elements we use, and then, based on a specified value or business rule result, we hide
or show specific ribbon buttons.

The reason I have split the execution onto two functions is because the first function called is
using the CRM API, while the second function called from the previous one is done using the
HTML DOM.

Chapter 8

207

See also
ff Information on HTLM DOM can be found at w3schools http://www.w3schools.

com/htmldom/default.asp.

ff Using JavaScript with the HTML DOM is described also at w3schools http://www.
w3schools.com/jsref/default.asp.

ff Additional details on ribbon customization can be found on MSDN at http://msdn.
microsoft.com/en-us/library/gg309639.aspx.

http://www.w3schools.com/htmldom/default.asp
http://www.w3schools.com/htmldom/default.asp
http://www.w3schools.com/jsref/default.asp
http://www.w3schools.com/jsref/default.asp
http://msdn.microsoft.com/en-us/library/gg309639.aspx
http://msdn.microsoft.com/en-us/library/gg309639.aspx

9
Extending CRM

Using Community
JavaScript Libraries

In this chapter, we will cover the following:

ff Using jQuery with Dynamics CRM for page element selection

ff Using jQuery and CSS

ff Animating form elements with jQuery

ff Using jQuery UI for user interaction

ff Using jQuery UI for customizations

ff Integrating jQuery UI widgets

ff Using LiveValidation for input validation as you type

ff Using Datejs for date manipulation

Introduction
This chapter focuses on using additional JavaScript libraries or frameworks to extend your CRM
environment. While they are not officially supported they do work just fine. The reason they are
not supported is because the onus is on the group maintaining these libraries to produce code
that does not behave unexpectedly. These libraries are doing nothing more than manipulating
standard HTML on a page, and thus they can be used with any other web application.

Extending CRM Using Community JavaScript Libraries

210

JQuery is one of the most common, popular, and used JavaScript libraries in web development.
A large number of sites are implementing it in one form or another. The support is excellent,
and there is a lot of documentation and examples online and in various books. This chapter
will not teach you how to use jQuery, but rather it will focus on a few examples of the most
basic and common elements from the library that interacts really well and easily with your
CRM environment.

The other libraries presented in this chapter, while not as well known and commonly used,
give you a few additional options to enhance the user experience within your CRM application.
The focus is mostly on using CRM through the browser, and not all of these examples will work
when using the Outlook client. Please test all your code in both models if you intend to release
CRM as such.

Some of these examples will work only when using Dynamics CRM from
the browser. The support when using the Outlook client is more restrictive.
You should always test your code in both models if you intend to release it
as such, and design your forms so that the lack of some of these features
when using the Outlook client does not affect the business functionality of
your customizations.

A lot of the examples in this chapter focus mostly on the user experience. As such, the fact
that they might not run at all when using the Outlook client should not affect the business
functionality of your application.

Using jQuery with Dynamics CRM for page
element selection

In this recipe we will focus our attention on the most basic action that we do on a form. We
will be looking at how to select a form element in Dynamics CRM using the jQuery library.

Getting ready
First off, we need to get a hold of the jQuery library and load it on our solution as a web
resource. Go to http://www.jquery.com and grab the latest version of the library. When
navigating to the that site, on the right-hand side of the home page you will see a box that
gives you the options for downloading the library. Select the production version, and click on
the Download(jQuery); button:

Chapter 9

211

A lot of resources on how to use this library are available starting from that page. If you are
interested in using this library in your projects I strongly suggest you start from this location to
learn more about how to use jQuery.

How to do it...
For this recipe you need access to a Dynamics CRM instance. Make sure you have at least the
system customizer permission in this instance.

1.	 Create a new blank solution

2.	 Add the jQuery library to your solution as a web resource. I have set up the Provider
with a prefix of crm, and gave the library a name of crm_jquery. Upload the library
file using the Upload File field on the web resource form.

3.	 Add a new web resource of type JScript. Name it crm_jQuerySelect.

Extending CRM Using Community JavaScript Libraries

212

4.	 Add a function named jQuerySelect. For this example we want to select the form
border for all contacts and change its color to yellow. The function will look similar to
the following:
function jQuerySelect()
{
 $(".ms-crm-Form-Page-Main-cell").css("background-
color","#FFFF00");
}

5.	 Open the Contact form for edit.

6.	 In the form's properties, add to the Form Libraries the jQuery library and the web
resource containing your function.

7.	 On the OnLoad event of the form add the jQuerySelect function.

8.	 Save and Publish the form.

9.	 Open a contact and observe the border color changed to yellow, as shown in the
following screenshot:

How it works...
While we have shown this functionality in a previous recipe, the purpose of this recipe is to
demonstrate the fact that form elements are being selected using jQuery. The syntax used
in the following line selects a specific html tag based on its class:

$(".ms-crm-Form-Page-Main-cell")

You can easily determine the ID of a form element by using the developer tools in
Internet Explorer.

Chapter 9

213

Be careful when performing these selections, as not all elements can be visually modified
in such way. The standard Dynamics CRM CSS definitions override in some instances your
selection, or overlay an image over the element background, thus blocking you from seeing
your customization. Using the developer tools, you can determine where such scenarios occur
on a form.

See also
ff For additional details on jQuery syntax for form element selection see the Selectors

section of the jQuery API at http://api.jquery.com/category/selectors/.

Using jQuery and CSS
While the previous recipe is delved into the CSS definition already, in order to actually show
you some visible changes generated by your custom function, in this section we will be looking
at some additional CSS changes we can implement using an external predefined CSS file that
overrides the default CSS.

The most basic change, as demonstrated by the previous example, involved changing the
border background color. In addition to that we can push a lot of other visual changes on to
our forms. For this recipe we can take a look as using CSS to reformat the labels on the form
fields that are marked as business required.

Getting ready
For this recipe we can either create a new solution, or use the one we previously created. I will
be using the previous solution. The changes we will implement pertain again to the Contact
entity, and we can reuse the same web resource to drop in an additional function.

How to do it...
So let's take a look at how we can change the label properties.

1.	 Open the previous solution.

2.	 Create a new web resource, of type CSS. Name it crm_css.

3.	 Add the following content to your web resource:
.ms-crm-Field-Required
{
 font-style: italic;
}

Extending CRM Using Community JavaScript Libraries

214

TD.ms-crm-Field-Required
{
 color: red;
}

4.	 Save and close your resource.

5.	 Open the web resource that stores our custom function.

6.	 Add a new function. This time our function will load our CSS web resource using jQuery:
function HighlightRequired()
{
 var _css = "/WebResources/crm_css";
 var cssref = document.createElement("link");
 cssref.setAttribute("rel", "stylesheet");
 cssref.setAttribute("type", "text/css");
 cssref.setAttribute("href", _css);
 $("head").append(cssref);
}

7.	 Save and close your web resource.

8.	 Open the contact's main form for editing.

9.	 Associate the HighlightRequired function with the OnLoad event of the form.

10.	 In addition, mark the First Name field as required also. By default is it business
recommended.

11.	 Save and close the form.

12.	 Publish your solution.

13.	 Now open a contact and look at the two required fields on this form. The labels marked
with asterisks should now be red and in italic, as shown in the following screenshot:

How it works...
There are two steps to this solution.

The first step involves creating a CSS resource that overrides the default out-of-the-box CSS
definitions. In order to determine the CSS that you need to override, the Internet Explorer
developer tools is your best friend. Use the selector to highlight the business required field
label. On the right-hand side of the screen you will see the definition for the font.

Chapter 9

215

Next, we use a JavaScript function to read the CSS resource and append it to the head area of
the page. We use jQuery to do this simply because it's a single line of code.

There's more...
As mentioned in the previous recipe, using jQuery directly in a JavaScript function might not
yield the expected result. That is because the default CSS could override your change. This
recipe shows you how to go to the source and override the default CSS directly.

See also
ff For additional information on formatting CSS have a look at the MSDN

documentation on CSS at http://msdn.microsoft.com/en-us/library/ie/
ms531209(v=vs.85).aspx.

Animating form elements with jQuery
Have you ever had a situation where, based on business rules, a field must become required
of certain form values aligned to the rule? Let's say for example, if you select a ship to P.O.
box, but there is no P.O. box information filled, then you must act and warn the user.

For the purpose of this recipe I will largely simplify this example. I will assume that we have
the validation in place, and the field that needs to be filled is the Middle Name field. My
validation will mark this field as Business Required on the form, but with a large number of
fields, and especially when a lot of them are marked as Business Required, a small red star
next to the name might not capture the user's attention that easily.

I could just bring up a pop-up window and let the user know that the field needs to be filled in.
But that's so intrusive and so old school. With the new interactive sites nowadays, people are
starting to get used to other ways of highlighting form elements.

So, my approach now is to stop the form's OnSave event, and to call a function that makes
the required field blink once on the form.

Getting ready
For this recipe, we will continue to use the solution we have created at the beginning of the
chapter. If you are starting fresh now, create a new solution. Make sure you have at least the
system customizer permissions in the instance you are working in.

Extending CRM Using Community JavaScript Libraries

216

How to do it...
Follow these steps to make a field flash once:

1.	 Open the existing solution package, or create a new one. If you create a new one, add
the Contact entity to your solution.

2.	 If this is a new solution package, add the jQuery library to your solution and to the
form libraries.

3.	 Open the web resource that holds your JavaScript functions. If starting a new
solution, create this web resource.

4.	 Add the following function to make a field blink:
function BlinkMiddleName()
{
 $("#middlename").fadeOut(3000).fadeIn(3000);}

5.	 Associate this function to a form event. In my case, I am associating it with the form's
OnLoad event for the purpose of demonstration. This should, in fact, be a part of a
more complex validation logic, possibly as described in the beginning of this recipe.

6.	 Save and Publish your solution.

7.	 Open a contact and observe the behavior of the field. The value is set high enough for
the effect to be visible. Your animation will look as similar to the following screenshot
(Middle Name text field fading out and back in):

How it works...
This example uses exclusively the jQuery functionality to first select the field, and then perform
the animation on it. The fadeOut and fadeIn functions take as a first parameter the time
for the transition. Optionally, you can also pass as a second parameter a function delegate,
thus allowing you to perform additional actions when your condition is met.

See also
ff For additional animation and effect you can incorporate using jQuery see the API at

http://api.jquery.com/category/effects/.

Chapter 9

217

Using jQuery UI for user interaction
JQuery UI is an additional library based on jQuery. When using the jQuery UI, always load
and reference the base jQuery library. The jQuery UI adds user interface interactions and
effects to the standard jQuery library, along other features.

In order to use the jQuery UI library, proceed to the following URL and download the
stable release:

http://jqueryui.com/

At the time of writing, Version v1.9.1 was the most current version, and it required jQuery
version 1.6 or above. Always make sure your jQuery library is in conformance with the
requirements for jQuery UI.

One of the most used widget in this library is the tooltip widget. In this recipe we will look at
how to use it in the context of Dynamics CRM.

Getting ready
For this recipe we will continue to use the previously created solution package. If you are
starting fresh you can create a new solution package. We will implement our customization on
the Contact entity.

How to do it...
If we are using the previously created solution, we already have the jQuery library loaded as a
web resource. Otherwise, you have to load it.

1.	 Open your existing solution.
2.	 Add a new web resource. Name it crm_jqueryui. Browse to the jQuery UI script file

and load it.
3.	 Save and Publish your web resource.
4.	 Add a new web resource of type CSS. The jQuery UI comes with an associated CSS file

you need to also load. Name this web resource as crm_jqueryuicss.
5.	 Save and Publish the web resource.
6.	 In the same web resource where we added all the previous functions, add a new

function as follows:
function MiddleNameTooltip()
{
 var _css = "/WebResources/crm_jqueryuicss";
 var cssref = document.createElement("link");
 cssref.setAttribute("rel", "stylesheet");

Extending CRM Using Community JavaScript Libraries

218

 cssref.setAttribute("type", "text/css");
 cssref.setAttribute("href", _css);
 $("head").append(cssref);
 var _obj = document.getElementById("middlename_d").children[0];
 _obj.title = "";
 $("#middlename_d").tooltip({ content: "Enter your Middle Name"
});
 $("#middlename_d").tooltip({ position: {my: "left+15 center",
at: "left center"} });
 $("#middlename_d").tooltip("option", "content", "Enter your
Middle Name");
 $("#middlename_d").tooltip("option", "position", {my: "left+15
center", at: "left center"});
}

7.	 Add the jQuery and jQuery UI resources to the form library.

8.	 Associate the MiddleNameTooltip function with the form's OnLoad event of the
main contact form.

9.	 Save the form and close it.

10.	 Save and Publish your solution.

11.	 Now test your changes by opening a contact and pointing your mouse at the Middle
Name field. You should see a result as shown in the following screenshot:

How it works...
First off, our function adds the reference to the CSS file that comes with the jQuery UI library.
We load it in the head section of the form.

Next, using the standard HTML DOM we define a blank title to the field where we want to show
a tooltip.

Chapter 9

219

Note that defining a title with text content for a field is sufficient to
make it show a tooltip using the default Dynamics CRM formatting.
We are using jQuery UI in this example to take advantage of the
advanced formatting of tooltip.

The following lines initialize and set the tooltip content and position. You can play around with
the position to locate the tooltip at various locations relative to the page or the control with
which you are associating the tooltip.

See also
ff For information on jQuery UI see the documentation at

http://api.jqueryui.com/.

ff For additional information on the tooltip widget see the detailed description at
http://api.jqueryui.com/tooltip/#option-position.

Using jQuery UI for customizations
In this recipe we will be focusing on using jQuery UI to alter the page CSS definition. I
sometimes see requests for branding or customizing the color scheme of Dynamics CRM.
By default this is not a supported customization. Using the jQuery library we can do some
nice things with the standard look of CRM.

Getting ready
For this recipe you can either use one of the existing solutions you have previously created, or
create a new one. Make sure you have at least the system customizer permission.

How to do it...
Follow these steps to add your own contact icon to the Contact form:

1.	 Open your existing solution, or create a new one.

2.	 Make sure the Contact entity is added to your solution.

Extending CRM Using Community JavaScript Libraries

220

3.	 Add a new web resource of type png, and upload your contact icon or an image. If you
want to replace the default logo of Microsoft Dynamics CRM, make sure your image is
32 x 32 px. Name it crm_mylogo.

While you can achieve this in an on-premise deployment by swapping
the image file on the filesystem, this type of customization will work in
both online and on-premise deployments.

4.	 Add a new JScript web resource. Name it crm_logoswap.

5.	 Add the following function to your web resource:
function LogoSwap()
{
 var _css = "/WebResources/crm_jqueryuicss";
 var cssref = document.createElement("link");
 cssref.setAttribute("rel", "stylesheet");
 cssref.setAttribute("type", "text/css");
 cssref.setAttribute("href", _css);
 $("head").append(cssref);

 var _csscustom = "/WebResources/crm_logoswapcss";
 var _cssrefcustom = document.createElement("link");
 _cssrefcustom.setAttribute("rel", "stylesheet");
 _cssrefcustom.setAttribute("type", "text/css");
 _cssrefcustom.setAttribute("href", _csscustom);
 $("head").append(_cssrefcustom);

 $("#ico_fhe_2").switchClass("ms-crm-ImageStrip-ico_fhe_2", "my-
crm-ImageStrip-ico_fhe_2");
}

Chapter 9

221

6.	 Save your web resource.

7.	 Add a new web resource of type CSS. Name it crm_logoswapcss.

8.	 Add the following CSS definition:
.my-crm-ImageStrip-ico_fhe_2
{
 width: 32px;
 height: 32px;
 overflow: hidden;
 background-image: url("/WebResources/crm_mylogo");
 background-repeat: no-repeat;
 background-position-x: 0px;
 background-position-y: 0px;
 background-color: #FF0000;
}

9.	 Associate your function to the OnLoad event of the Contact form.

10.	 Save and Publish your solution.

11.	 Open a contact record and observe your change:

How it works...
In this example, we take advantage of jQuery UI to swap a CRM CSS class with our own
custom class. We need to add to our solution three elements:

ff Our logo image that we want to use for all contacts

ff A CSS definition that will replace the default Dynamics CRM definition

ff A function to load our new CSS file and using the jQuery UI switchClass effect to
replace the image

If you want to expand on this code, see the section where we
demonstrate reading a file attached to the notes, and modify
your code to automatically load a different image based on
what is defined individually for each contact.

Extending CRM Using Community JavaScript Libraries

222

Integrating jQuery UI widgets
One of the most useful jQuery UI widgets that I have been using is the autocomplete widget.
Some common scenarios for this include predefining values for both country and province in
the address. Taking this approach we can minimize the risk of user input error, but also allow
the user to input other values.

Getting ready
For this scenario we can use one of the previously created solutions. If one is not available,
create a new solution package.

Make sure you have at least system customizer permissions to be able to perform the
following operations.

How to do it...
For this example, we will predefine values for a few Canadian provinces, but we will only fill
in the ones with whom we do the business. Using this approach we allow the user to add the
remaining provinces for the odd times when we do something outside of the usual area.

1.	 Open your solution package.

2.	 If this is a new solution, make sure to add the jQuery, jQuery UI, and the related
jQuery UI CSS files to your solution as web references.

3.	 Add a new web resource of type JScript to your solution. Name it crm_
provinceAutocomplete.

4.	 Add the following function:
function ProvinceAutocomplete()
{
 var availableTags = [
 "Quebec",
 "Ontario",
 "Alberta",
 "British Columbia"
];
 $("#address1_stateorprovince").autocomplete({
 source: availableTags
 });
}

5.	 Save and close your web resource.

6.	 Add the Contact entity if not already part of your solution.

Chapter 9

223

7.	 Open the contact's main form for editing.

8.	 In the form's properties, associate your custom function to the OnLoad event of the
form.

9.	 Save and close the form.

10.	 Save and Publish your solution.

11.	 Test your customization by opening a contact record, and starting to type in the
Province form field. Your results should look as shown in the following screenshot:

See also
ff For additional details on the autocomplete widget see the documentation at

http://jqueryui.com/autocomplete/.

Using LiveValidation for input validation as
you type

Live Validation is a simple and efficient JavaScript library that simplifies the effort of
writing your own validation routines. With simple syntax, it allows you to add multiple sets
of rules to a field.

This library is open source, and is being released in two versions. For the purpose of Dynamics
CRM customizations I am using the standalone version of this library.

Getting ready
For this recipe you can either create a new solution package or use one of the ones you
have previously created. Make sure you have at least system customizer permissions in the
environment where you will be implementing these customizations.

Extending CRM Using Community JavaScript Libraries

224

How to do it...
Follow these steps to add e-mail validation to an e-mail field.

When defining a field as e-mail in Dynamics CRM, the standard e-mail
validation is incomplete. While it does validate for the "@" symbol, it does
not also check for an extension. For this reason it makes sense to use
your own custom validation, or to use a custom library that does that.

1.	 Open your solution package, or create a new one if one does not exist already.
2.	 Add the Contact entity to your solution if not already added.
3.	 Add your jQuery web resource. We will be using this for field selection.
4.	 Add a new JScript web resource. Name it crm_emailvalidation.
5.	 Add the following function to your web resource:

function EmailLiveValidation(context)
{
 var _emailField = new LiveValidation($("#emailaddress1"));
 _emailField.add(Validate.Email);
 _emailField.add(Validate.Length, {minimum:10, maximum: 20});
}

6.	 Save and close your web resource.
7.	 Add a new JScript web resource. Name it crm_livevalidation. Add the Live

Validation library.
8.	 Save and close this web resource.
9.	 Open the main contact form for editing.
10.	 Go to the form's properties.
11.	 Add in the form libraries the references to your jQuery, Live Validation, and your

E-mail Validation web resource.
12.	 Add in the event handlers your EmailLiveValidation function to the OnLoad

event of the form.
13.	 Save and close the form.
14.	 Save and Publish your solution.
15.	 To test your customization, open a Contact record, and try entering an incorrect email

address in the format me@demo. You will observe that the standard Dynamics CRM
validation allows this format to go through, but your custom validation prompts you
that the format is incorrect.

Chapter 9

225

How it works...
Our script example creates a new LiveValidation object in the first line of code. It passes
the field name as a parameter on creation.

The following lines allow us to add multiple independent rules, thus creating more complex
validation scenarios. You can add as many rules as required. For example, our second rule
adds a validation to check the length of the e-mail. Thus, the e-mail entered must be between
10 and 20 characters.

There's more...
This library supports all types of validations. Check the documentation available. For most of
these validation rules CRM does have a counterpart. Setting up the field with a defined data
type, for example, makes a lot of this library's functions unnecessary.

Some of the instances where this library becomes useful include rules around a minimum and
maximum value expected in a field and matching of values.

See also
ff To download the LiveValidation library use the following link:

http://livevalidation.com/download

ff For additional documentation on use and features of this library see the
documentation at http://livevalidation.com/documentation.

Using Datejs for date manipulation
Datejs is another example of an open source library. It is a simple and fast library for
manipulating dates.

This library is released under the MIT License. For additional details about this license
limitations see the Open Source Initiative at http://opensource.org/licenses/
mit-license.php.

The source code for this library is hosted at Google Code, and it can be found at the
following URL:

http://code.google.com/p/datejs/downloads/list

http://livevalidation.com/download
http://livevalidation.com/download
http://opensource.org/licenses/mit-license.php
http://opensource.org/licenses/mit-license.php
http://code.google.com/p/datejs/downloads/list
http://code.google.com/p/datejs/downloads/list

Extending CRM Using Community JavaScript Libraries

226

Getting ready
First off, in order to work with this library, we need to download a copy to include in our solution
package. Currently there are two versions of the library. The simple date.js is the en-US locale.
The additional Alpha1 version includes additional locales and a few other goodies.

How to do it...
Imagine an SLA around opened cases, where all new cases have to have a response by the
end of Friday of the week they were opened in. Using this library we can achieve this in almost
no time at all. So let's get started.

1.	 Create a new solution package, or use an existing one if one is available.

2.	 Add a new web resource of type JScript. Name it crm_datejs. Browse to the date.
js library and load it.

3.	 Save and close your web resource.

4.	 Add a new web resource of type JScript. Name it crm_mydateprocess.

5.	 Add the following function to this web resource:
function FindFriday()
{
 var _actDate = Xrm.Page.getAttribute("crm_actdate").getValue();
 if(_actDate == null || _actDate == "")
 {
 Xrm.Page.getAttribute("crm_actdate").setValue(Date.today().
next().friday());
 }
}

6.	 Save and close your web resource.

7.	 Add the Case entity to your solution.

8.	 Open the Case main form for editing.

9.	 Add a new field of type Date and Time to your form. Format it as Date Only, and
name it crm_actdate.

10.	 Save your form.

11.	 In form's properties, in the Form Libraries add your crm_datejs reference and a
reference to the crm_mydateprocess web resources.

12.	 In the event handlers associate to the OnLoad form event your FindFriday
function.

13.	 Save and close your Case form.

14.	 Publish all your solution package customizations.

Chapter 9

227

15.	 Now test your customizations by opening a case form. You will see the Act Date field
populated with the date of the next Friday.

How it works...
Our function simply checks when a case form is opened if the Act Date is filled in, and if not it
populates the date of next coming Friday.

The date.js library simplifies all the logic of finding specific days and working with dates.
For additional details on the features of this library look at the documentation and examples
provided on their website.

There's more...
Using the date.js library will greatly reduce the time you spend working with dates. From
finding a specific day in the week, to navigating a specific number of days back and forth in
time, all you need in most cases is a single line of code. The syntax is simple and easy to
remember, and in the context of Dynamics CRM the library behaves well.

See also
ff To download the date.js library go to http://code.google.com/p/datejs/

downloads/list.

ff For additional instructions on how to use this library see the getting started guide at
http://www.datejs.com/2007/11/27/getting-started-with-datejs/.

ff For additional details on the MIT license model see OSI site at
http://opensource.org/licenses/mit-license.php.

http://code.google.com/p/datejs/downloads/list
http://www.datejs.com/2007/11/27/getting-started-with-datejs/
http://www.datejs.com/2007/11/27/getting-started-with-datejs/
http://opensource.org/licenses/mit-license.php
http://opensource.org/licenses/mit-license.php

10
Light Social Media

Integration

In this chapter, we will cover the following topics:

ff Integrating with Facebook

ff Integrating accounts with LinkedIn

ff Integrating contacts with LinkedIn

ff Adding Twitter feeds

ff Working with Del.icio.us data

Introduction
While the focus of the previous chapters has been mostly on customizing Dynamics CRM and
using data internal to the application, this chapter will focus on bringing various other data
feeds into the application.

This chapter is a light approach to integrating various social media sources into Dynamics
CRM 2011. We will only focus on the client-side scripting aspect. You can do a lot more by
using plugins, but the value brought by integrating other sources on the client side is, in many
instances, more than enough. It also shifts the load from the server to the client, which in
some instances is a desirable outcome.

Light Social Media Integration

230

In order for all of these recipes to work, the machine you are developing on, as well as the
client machines need to have direct access to the internet. No caching takes place, and all
data is retrieved dynamically from external sources.

When taking this approach to customization, make sure that the
client machines have access to the internet, as well as to the
development/test machine.

Integrating with Facebook
In this recipe, we will be looking at the most simplistic way to bring Facebook information into
your CRM. We are doing this exclusively on the client side, thus adding no additional load on
server resource. For this reason, the client machine will need to have internet access, and the
access to Facebook should not be blocked by the corporate firewall.

We will be taking advantage of the Facebook Badge feature. If you go to http://www.
facebook.com/badges/, you will find the available badge options. For this example, I will
focus on using the Profile badge. We will capture the contact information as it relates to
Facebook from the system user, and we will display a Profile badge on the Contact form.

Getting ready
You will need access to a Dynamics CRM 2011 instance. In addition, you will need the system
customizer or system administrator permissions.

If you do not have a solution package already created, you should create one for this chapter.

You can use either a CRM Online instance or an On-Premise deployment for this solution.
If you are using On-Premise, make sure that the user machines have direct access to the
internet, and that the Facebook site is not being blocked or filtered by the corporate firewall.

Also, if you are accessing the corporate CRM instance through a VPN connection and if the
connection drops your internet connection while the VPN is active, then this recipe will not
work. Please work with the network infrastructure team supporting your final production
deployment to make sure this is a supported scenario.

How to do it...
In order to add a Profile badge on the Contact entity, perform the following steps:

1.	 Open any existing solution you might have, or create a new one.

2.	 Add the Contact entity to your solution.

http://www.facebook.com/badges/
http://www.facebook.com/badges/

Chapter 10

231

3.	 Add a new web resource of type JScript. Name it FacebookScript (new_
facebookscript).

4.	 Add the following function to this resource:
function getFacebookBadge()
{
 var _fbURL = Xrm.Page.getAttribute("new_facebookurl").
getValue();

 if(_fbURL != null && _fbURL != "")
 {
 var _fbuser = _fbURL.substring(_fbURL.indexOf("facebook.com/")
+ 13);

 $("#new_facebookurl_d").append("<a href='"+_fbURL+"'
target='_blank'><img src='http://graph.facebook.com/"+_fbuser+"/
picture?type=normal'/>");
 }
}

5.	 Save and Close this web resource.

6.	 Add a new web resource of type JScript. Name it jQuery and load the latest jQuery
library available at http://jquery.com/.

7.	 Save and Close this web resource.

8.	 Open the Contact main form for editing.

9.	 In Form Properties add the jQuery resource to the Form Libraries.

10.	 Click on OK to close Form Properties.

11.	 Add a new section to your form. Label it Facebook Badge and check the Show the
label of this section on the Form and Show a line at top of the section checkboxes.

12.	 On the Formatting tab, set the properties to Two Columns. You will want to adjust
this based on the size of the badge created.

You can pull the profile image in various sizes from Facebook.
The options to pass are square, small, normal, and large.

13.	 Click on OK to close the Section Properties.

14.	 In this section add a new Single Line of Text field. Set its format to URL and name it
Facebook URL (new_facebookurl).

15.	 Add the field to the form and in the Formatting tab set the layout to Two Columns.

16.	 Click on OK to close the Field Properties window.

Light Social Media Integration

232

17.	 Add your function to the OnChange event of the new_facebookurl field.

18.	 Also add your function to the form's OnLoad event.

19.	 Save and Close the form.

20.	 Publish your solution.

21.	 In order to test this customization, open an existing contact or add a new one.

22.	 Retrieve the URL of the contact's profile from Facebook. This URL is in the
http://www.facebook.com/username format.

23.	 Put this URL in the new_facebookurl field. Once you tab out of the field, the script will
execute and will bring the contact's image over.

24.	 This method works with both Contacts and Accounts. The standard URL used for
both is of the same format.

How it works...
This integration method brings over the profile picture of the contact or account, as presented
and maintained on Facebook by the owner. While for companies (accounts), it's almost
guaranteed to get a logo or a relevant image, when using this approach with contacts be
aware that since Facebook is not really a professional network, some images retrieved might
not present the person in a professional way.

There's more...
In addition to retrieving the logo image of a contact or account, using the Graph API you can
retrieve additional information. For details on using the Graph API, see the Facebook Developers
documentation at http://developers.facebook.com/docs/reference/api/.

See also
ff jQuery library and documentation at http://jquery.com/.

http://jquery.com/

Chapter 10

233

Integrating accounts with LinkedIn
Pulling a company profile from the data they maintain is always a better idea than having to
maintain that information yourself. While we won't be able to have all customers update all
the profile information we need to track, bringing in some information from their public profiles
will always make things easier on our team.

In this recipe we will look at a simple way of bringing a customer's LinkedIn card information
on their profile page. In addition, this pull of data happens exclusively on the client side.

Always check with the data provider to determine if the terms of use allow
you to implement this kind of customization in your specific scenario.

Getting ready
In order to test this solution, you will need access to a Dynamics CRM instance and be a part
of system customizer or system administrator permission.

You can create a new solution package or reuse an existing one.

How to do it...
Perform the following steps to add the LinkedIn company card to your CRM Account form:

1.	 Create a new solution package if one is not already available.

2.	 Add the Account entity to your solution.

3.	 Open the Account main form to edit.

4.	 Make the Account Name field span two columns. This way the full card width can be
displayed right underneath the account name.

5.	 Save and Close the form.

6.	 Add a new web resource of type JScript. Name it LinkedIn Company Profile
(new_LinkedInCompanyProfile).

7.	 Add the following function to your web resource:
function LinkedInCompanyProfile()
{
 var _companyName = Xrm.Page.getAttribute("name").getValue();

 if(_companyName != null && _companyName != "")
 {
 while(_companyName.indexOf(" ") != -1)

Light Social Media Integration

234

 {
 _companyName = _companyName.replace(" ", "-");
 }
 _companyName = _companyName.toLowerCase();
 $("#name").after(function(){
 var script = '<script src="http://platform.linkedin.com/
in.js" type="text/javascript"></script>' +
 '<script type="IN/CompanyProfile" data-id="' + _companyName
+
 '" data-format="inline" data-related="false"></script>';
 return script;
 });
 }
}

8.	 Save and Close your web resource.

9.	 Add a new web resource of type JScript. Name it jQuery (new_jquery).

10.	 Load the jQuery library in this web resource.

11.	 Save and Close the web resource.

12.	 Return to the Account main form.

13.	 Add to the Form Properties a reference to the jQuery resource.

14.	 Also add a reference to the LinkedIn Company Profile web resource.

15.	 In the form's OnLoad event handler, add a reference to your
LinkedInCompanyProfile() function.

16.	 Click on OK to close the Form Properties.

17.	 On the account name's Field Properties, add a new event handler for the
OnChange event, and reference your LinkedInCompanyProfile() function.

18.	 Click on OK to close the Field Properties window.

19.	 Save and Close the Account form.

20.	 Save and Publish your solution.

21.	 Open an account record. If no account record is in there in the system,
create a new one.

Chapter 10

235

22.	 Once a record is retrieved, the company LinkedIn profile card is displayed if the
company profile is found on LinkedIn.

How it works...
Using the value of Account Name defined as the name of the company, this script retrieves
the company card from LinkedIn and displays it on the form, right under the Account Name
field. With it, you get a link back to the company profile in LinkedIn, along with the company
name, the logo, and a short description.

Please be aware that this functionality does not perform a search of
companies on LinkedIn, but rather it looks-up a company by its exact
name defined in the Account Name field. For situations where the
stored account name is different than the company name defined in
the LinkedIn profile, a new custom field can be created to capture the
publicly available company name.

There's more...
This example uses jQuery only for page location and to insert the actual card after the account
name. You could easily change the location of the company card by selecting any other tag on
the page.

See also
ff For additional information on the jQuery functions used in this script see the

following links:

�� http://api.jquery.com/category/selectors/

�� http://api.jquery.com/append/

ff For information on the LinkedIn JavaScript API see the developer resources at
https://developer.linkedin.com/javascript.

Light Social Media Integration

236

Integrating contacts with LinkedIn
Similar to the approach we took in pulling account information from LinkedIn, we can handle
the contacts. The difference is, due to the higher probability of having identical names, we can
handle this by asking the system user for some additional information.

You could build a more complex solution that queries based on the first, middle, and last
names, and returns all matches for the user to select the correct contact; but that would be a
next-level solution, and I would probably consider doing it in something other than JavaScript.

In this solution, I will only ask the system user to input the URL to LinkedIn user profile. From
there, I will retrieve the required information and bring in a user profile card.

Always check with the data provider to determine if the terms of use allow
you to implement this kind of customization in your specific scenario.

Getting ready
In order to build this recipe you will need access to a Dynamics CRM instance, as well as have
a system customizer or system administrator permission.

In addition, you should create a solution package if one is not already available.

How to do it...
Within your solution package, take the following steps to customize this:

1.	 Add the Contact entity to your solution, if not already added.

2.	 Create a new web resource of type JScript. Name it LinkedIn Contact Profile
(new_linkedincontactprofile).

3.	 Add the following function to your script file:
function LinkedInGetContactProfile()
{
 var _contactProfile = Xrm.Page.getAttribute("new_linkedinurl").
getValue();

 if(_contactProfile != null && _contactProfile != "")
 {
 _contactProfile = _contactProfile.substring(_contactProfile.
indexOf("linkedin.com/in/")+16, _contactProfile.length+1);

 $("#new_linkedinurl").after(function(){

Chapter 10

237

 var script = '<script src="http://platform.linkedin.com/
in.js" type="text/javascript"></script>' +
 '<script type="IN/MemberProfile" data-id="www.linkedin.com/
in/' + _contactProfile +
 '" data-format="inline" data-related="false"></script>';
 return script;
 });
 }
}

4.	 Save and Close the web resource.

5.	 Create a new web resource of type JScript. Name it jQuery (new_jquery).

6.	 Load the most recent jQuery library you have available.

7.	 Save and Close the web resource.

8.	 Open the Contact main form for editing.

9.	 Add a new one-column section. Label it LinkedIn Profile.

10.	 Check the Show the label of this section on the Form and the Show a line at top of
the section checkboxes as shown in the following screenshot:.

11.	 Leave the Formatting to One Column.

12.	 Click on OK to close this window.

13.	 Add a new Text field. Name it LinkedIn URL (new_linkedinurl). Set the Format
to URL.

14.	 Add the field to the section we created previously.

15.	 On the Form Properties, in Form Libraries, add first a reference to the jQuery library.

16.	 Then add a reference to the LinkedIn Contact Profile library that contains
our function.

17.	 In the Event Handlers section, add a reference to your
LinkedInGetContactProfile() function to the form OnLoad event.

Light Social Media Integration

238

18.	 Click on OK to close the Form Properties window.

19.	 In the LinkedIn URL field properties, on the Events tab, add a reference to the same
function to the OnChange field event.

20.	 Click on OK to close the Field Properties window.

21.	 Save and Close the Account form.

22.	 In your solution package, click on Publish All Customizations.

23.	 In order to test this, first off, let's open a new browser window and run a search for
linkedin firstname lastname where firstname and lastname are the names of a
contact you are looking for. This will return their public LinkedIn profile page.

24.	 The URL format of this page is in the following format:
http://www.linkedin.com/in/nicolaetarla

25.	 Copy this URL into the Contact page in the LinkedIn URL field we created.

26.	 Once you tab out of this field, the script will run and the following information card will
be displayed on the Contact form:

How it works...
As mentioned at the beginning of this recipe, in this instance we will have the system user do
a little bit of leg work. They have to retrieve the contact's public profile. That is an easy enough
task using any search engine available and also greatly simplifies the process of sifting
through possible multiple users with the same name.

The first part of the script strips out the member name, which could potentially be used
in other scenarios. The second part is the standard code presented in the member profile
plugin generator.

See also
ff For additional details on the plugins provided by LinkedIn see the documentation at

https://developer.linkedin.com/plugins.

ff For the member profile plugin generator, see the link https://developer.
linkedin.com/plugins/member-profile-plugin-generator.

Chapter 10

239

Adding Twitter feeds
Associating your customers' or contacts' Twitter information to your CRM can sometimes bring
valuable information to the fingertips of your sales staff. While there are more advanced
solutions that can process the tweet feeds on the server and provide caching, the very light
solution I am going to demonstrate is client-side only, and does not add any additional load to
the server. Furthermore, it could be the preferred approach for IFD deployments, where the
majority of users access CRM remotely, whether from home, office, or on the road. This way,
you are pushing all that transfer off your network.

We will be using the twitterjs library to assist in the call to retrieve the recent tweets.

Getting ready
For this recipe, you must have access to a Dynamics CRM instance, and have either a system
customizer or system administrator permission.

If you do not have a solution package already created, create a new one as described in the
initial chapters of this book.

We will capture the Twitter handle of a customer on the Account form, and using that, we will
retrieve the last ten tweets of that customer.

How to do it...
In order to implement this customization, we should be working within a solution package. You
can either create a new one or use an existing one.

1.	 Add the Account entity to your solution if not already added.

2.	 Open the Account main form for editing.

3.	 Add a new section to your form. I formatted it as One Column and labeled it
Twitter. Select the Show the label of this section on the Form and the Show a
line at top of the section checkboxes.

Light Social Media Integration

240

4.	 Add a new Text field named Twitter Handle (new_twitter).

5.	 Add your field to the form, in the previously section created.

6.	 Save and Close the form.

7.	 Create a web resource of type JScript. Name it jQuery (new_jquery).

8.	 Load the jQuery library.

9.	 Save and Close the form.

10.	 Create a new web resource of type JScript. Name it TwitterJS (new_twitterjs)
and load the twitterjs library.

11.	 Save and Close the form.

12.	 Create another web resource of type JScript. Name it Twitter (new_twitter).

13.	 Load the following function:
function getTweets()
{
 var _twitterHandle = Xrm.Page.getAttribute("new_twitter").
getValue();

 if(_twitterHandle != null && _twitterHandle != "")
 {
 JQTWEET = {
 user: _twitterHandle,
 numTweets: 10,

 loadTweets: function() {
 $.ajax({
 url: 'http://api.twitter.com/1/statuses/user_timeline.
json/',
 type: 'GET',
 dataType: 'jsonp',
 data: {
 screen_name: JQTWEET.user,
 include_rts: true,
 count: JQTWEET.numTweets,
 include_entities: true
 },
 success: function(data, textStatus, xhr) {
 var _myhtml = "";
 for (var i = 0; i < data.length; i++) {
 _myhtml += "<div class='tweet'>" + data[i].text + "</
div>
";
 }
 $('#new_twitter_d').append(_myhtml);

Chapter 10

241

 }
 });
 }
 };

 JQTWEET.loadTweets();

 }
 else
 {
 return;
 }
}

14.	 Save and Close the page.

15.	 Go back to editing the Account main form.

16.	 In the Form Properties window, on the Events tab, in the Form Libraries section, add
the jQuery, TwitterJS, and the Twitter web resources in this order.

17.	 In the Event Handlers section, on the Form OnLoad, add your getTweets function.

Light Social Media Integration

242

18.	 Click on OK to close the Form Properties window.

19.	 On the Twitter Handle text field you have created and added to the form, add the
same getTweets function to the OnChange event handler.

20.	 Click on OK to close the Field Properties window.

21.	 Save and Close the Account form.

22.	 Save and Publish your solution package.

23.	 To test the customization, open an account. If no Twitter handle is present, add one in
the Twitter Handle field. Once you leave this field, the last ten messages in the feed
are retrieved and displayed on the form, as seen in the following screenshot:

24.	 Next time when you open this account, the query will run again and retrieve ten new
messages if any new ones have been posted since you last opened it.

How it works...
Using the tweet.js library simplifies our call to retrieve the tweeter feed. The syntax is
customizable, and you can even configure a generic system-wide setting to define the number
of most recent tweets to be retrieved by populating the numTweets: 10 with a different
value store in a settings area.

On a successful call, we are looping through the ten tweets retrieved and generating our HTML
to arrange the tweets in the page.

Chapter 10

243

There's more...
Of course, this is only a pretty simplistic example on how to retrieve the tweet feed and how to
display it on the form. From here on we can do additional work with the HTML formatting and
make the result look much better.

Adding CSS
One thing we can do to make it more visually appealing is we can define a CSS resource to
format our feed. We can color the background of each feed or highlight certain terms. For
examples on referencing a CSS resource, see the Using jQuery and CSS recipe in Chapter 9,
Extending CRM using Community JavaScript Libraries.

Parsing URLs
Another example of increased usability is to parse the formatted HTML and to turn URLs
into proper hyperlinks. We will not delve any deeper into this example as this is standard
JavaScript and HTML functionality, independent of Dynamics CRM.

Parsing Tweeter handles
Yet another way to increase usability is to parse the actual handles that appear in tweets, and
to pre-define an action. For example, you can turn each handle into a hyperlink pointing you
to that handle owner's feed. Again, the code for this is independent of Dynamics CRM, and it's
only JavaScript and HTML.

See also
ff For additional details and to get the twitterjs library, go to Google Project at

http://code.google.com/p/twitterjs/.

Working with Del.icio.us data
In this recipe, we will have a quick look at leveraging a tagging site such as Del.icio.us to
determine the popularity of an account. If you intend to use this in a production environment
I would suggest relying on a combination of multiple sources. Take this result with a grain of
salt, unless your business revolves around this. This example is only to show you how you can
get data from Del.icio.us and use it within Dynamics CRM. You can expand on this example and
retrieve the actual tags of a specific account or any other information stored on Del.icio.us.

The updated URL now for Del.icio.us is www.delicious.com, but for most
of us who have used it since the inception, del.icio.us still rings the bell.

Light Social Media Integration

244

Getting ready
For this recipe you will need the jQuery library. Head over to http://jquery.com/ and grab
the latest version from there.

Make sure you have the system customizer or system administrator permission in the
environment you will be developing in.

You can re-use a previously created solution package, or create a new one.

How to do it...
As previously described in other recipes, you will need the jQuery library. Assuming you have
downloaded it already, perform the following steps:

1.	 Open your solution package, or create a new one if one doesn't already exist.

2.	 Add a new web resource of type JScript. Name it jQuery and load the jQuery library.

3.	 Save and Publish your resource.

4.	 Add the Account entity to your solution package if not already added.

5.	 Open the Account main form for editing.

6.	 Add a new text field to store the popularity index value returned by our function. Make
this a read-only field and name it Del.icio.us index (new_popularity).

http://jquery.com/

Chapter 10

245

7.	 Save and add this field to the form.

8.	 Add to the form properties on the OnLoad, a reference to your getDelicious function.

9.	 Also, on the OnChange event of the Web Site (websiteurl) field, add a reference to
the same getDelicious function.

10.	 Save and Publish your form.

11.	 Add a new web resource of type JScript. Name it new_delicious.

12.	 Add the following function to your web resource:
function getDelicious()
{
 var _deliciousURL = Xrm.Page.getAttribute("websiteurl").
getValue();
 if(_deliciousURL != null && _deliciousURL != "")
 {
 $.ajax({
 type: "GET",
 dataType: "json",
 url: "http://feeds.delicious.com/v2/json/urlinfo/
data?url="+_deliciousURL+"&callback=?",
 success: function(data){			
 var count = 0;
 if (data.length > 0) {
 count = data[0].total_posts;
 }
Xrm.Page.getAttribute("new_popularity").setValue(count.tString());
 }
 });
 }
}

13.	 Save and Publish your web resource.

14.	 In order to test, open an account and make sure that it has a website
populated. If not, add a website.

15.	 Your De.icio.us index field will populate with the bookmark count of that URL from
Del.icio.us.

Light Social Media Integration

246

How it works...
We are calling our function in two places in this example, to make sure we bring an updated
bookmark count every time the URL changes or when a user opens an existing account.

Our function queries the Del.icio.us API and retrieves the total number of bookmarks for the
specified URL. We are using jQuery Ajax for the call.

There's more...
Using a similar approach, you can query for additional information from Del.icio.us. You might
want to query specific tags or even all the posts of an account or contact if they have an
account on that system.

See also
ff For additional details on working with Del.icio.us see the developer documentation at

http://delicious.com/developers.

Index
Symbols
<CustomActions> tag 186
<RibbonDiffXml> tag 186

A
account

adding, with validation 126-133
account logo

adding 168-171
accounts

integrating, with LinkedIn 233-235
making, for review 172, 174

AddContactPicture() function 167
administrator 10
advanced error handling 124-126
alert 136
assert statement 136, 139
audit log 150

B
business rules

enforcing 103-108
button click

form elements, pre-populating with 190-194

C
checkEmail() function 67, 68
CheckTicker() function 74
child workflow

creating 38
contact

adding, with validation 126-133

Contact entity
Profile badge, adding to 230-232

contactLoad function 123
contact picture

referencing, from external source 167
contacts

integrating, with LinkedIn 236-238
Country and Province fields

replacing, with lookups 78- 84
Country/Region relationship

versus State/Province relationship 49
CRM

Fiddler, using with 151-155
CSS

using 213, 214
currency field

about 52
updating 53
working with 52, 53

custom error
generating 117
throwing 118

customizations
jQuery UI, using for 219-221

D
date and time field

working with 54, 55
Datejs

about 225
using, for date manipulation 226, 227

date manipulation
Datejs, using for 226, 227

248

debugging
IE, using for 140-142
Visual Studio, setting up for 142-144

DebugSelector() function 137, 138
Del.icio.us

URL 243
Del.icio.us data

working with 243-246
dialogs

about 33
creating 34-37
managing 34-37
workflow, starting from 38, 39

dynamic form elements 175-179
Dynamics CRM

integrating, with Facebook 230-232
Dynamics CRM 2011 Online

free 30-day trial, opening 8, 9

E
e-mail field

e-mail validation, adding to 224, 225
validating 66, 67

e-mail validation
adding, to e-mail field 224, 225

entities
about 12
creating 12-16
managing 12-16
removing 15

entity
ribbon button, adding to 185

erroneous input
handling 68

error logging 144-150
EvalError 112

generating 116
eval() function 112
events

blocking 118, 119
combining 99-101

external source
contact picture, referencing from 167

F
Facebook

Dynamics CRM, integrating with 230-232
Facebook Badge feature 230
Fiddler

about 150
URL, for downloading 151
using, with CRM 151-155

field change event
usage 94-96

field name
retrieving 49

fields
about 16
creating 17-22
formatting 160, 161
managing 17-22

field types, Dynamics CRM
decimal number 50
floating point number 50
whole number 50

form elements
animating, with jQuery 215, 216
displaying 158-160
hiding 158-160
pre-populating, with button click 190-194

form load event
usage 86-91

FormLoad() function 178
forms

about 23
creating 23-25
deleting 26
managing 23-26

form save event
usage 91-94

FormSave() function 178
free 30-day trial

opening, of Dynamics CRM 2011 Online 8, 9
Fully Qualified Domain Name (FQDN) 67

H
HideButton() function 199
HidebuttonIfNotOwner() function 199
HideCustomAction 187

249

I
IE

used, for debugging 140-142
used, for tracing 140-142

information
displaying, ribbon used 200-206
writing back, to text field 50

input validations
Live Validation, using for 224, 225

J
JavaScript

events 86
JavaScript event model 85
jQuery

about 210
form elements, animating with 215, 216
URL, for documentation 232
using 213, 214
using with Dynamics CRM, for page element

selection 210-212
jQuery UI

about 217
using, for customizations 219-221
using, for user interaction 217-219

jQuery UI widgets
integrating 222

jsratinggauge() function 206

L
label property 57
Lead entity

Qualify Lead button, hiding on 186, 187
LinkedIn

accounts, integrating with 233-235
contacts, integrating with 236-238

LinkedInCompanyProfile() function 234
LinkedInGetContactProfile() function 237
LiveValidation

about 223
using, for input validations 224, 225

LogOnChangeNameMessage() function 146,
149

LogOnLoadMessage() function 146, 149

lookups
about 58
Country and Province fields, replacing with

78-84
working with 58-61

lookup selection
clearing 61
modifying 62

M
managed solution 12
messages

debugging 136-139
myCurrencyField variable 53

N
number fields

working with 51

O
Office 365 8
OnBlur event 46
OnChange event 46, 47, 71, 86
onerror event 113
OnLoad event 58, 86
OnOpen event 123
OnReadyStateComplete event 86
OnSave event 86, 120
onsubmit event 86
Opportunity 102
option sets

about 56
value, assigning to 57
working with 56, 57

P
page element selection

jQuery, using with Dynamics CRM 210-212
permissions 40
phone numbers

formatting 49, 74, 76
postal codes

formatting 77, 78

250

Process in Dynamics CRM 2011 30
Profile badge

about 230
adding, to Contact entity 230-232

provider
request, re-routing to 74

Q
Qualify Lead button

hiding, on Lead entity 186, 187

R
RangeError 112

generating 116
rating gauge field

creating 162-164
record

progression process, enhancing 200
ReferenceError 112

generating 116
request

re-routing, to provider 74
resources

creating 29
managing 29

review
accounts, making for 172, 174

ribbon
about 182
elements 182
used, for displaying information 200-206

ribbon artefacts
creating 194-197
removing 185-187

ribbon button
adding, at web application level 182-184
adding, to entity 185
removing, dynamically 198-200
workflow, starting from 188, 189

RibbonCustomization 182

S
SaaS model 9
Save and Close functionality 120

Save and New button 120
Save functionality 120
scripting 7
scripts

about 26
creating 27, 28
managing 27, 28

sections
flagging, for user 165, 166
working with 96-98

security roles
about 40
adding, steps 40, 41

ShowContactPicture() function 170
solution model

managed solution 12
unmanaged solution 12

solution package 10
solutions

creating 10, 11
removing 11
URL 12
used, for packaging 10, 11

State example
expanding 62

State/Province relationship
versus Country/Region relationship 49

SyntaxError 112
generating 117

system customizer role 10

T
tabs

working with 96-98
TabStateChange event 86
text fields

about 43
information, writing back to 50
working with 44-49

ticker symbol field
about 72
validating 72-74

tracing
IE, using for 140-142

try� catch� finally block 136

251

Tweeter handles
parsing 243

Twitter feeds
adding 239-242

twitterjs library 239
TypeError 112

generating 117

U
UI events

handling 120-123
unexpected processing

handling 112-117
unexpected user input

handling 109-111
unmanaged solution 12
UpdateCountry() function 84
Update Rollup 8 120
UpdateState() function 84
URIError 112

generating 116
URL fields 69
URLs

parsing 243
user

account logo, adding 168-171
section, flagging for 165, 166

user interaction
jQuery UI, using for 217-219

V
ValidateLinkedIn() function 71
validation

account, adding with 126-133
contact, adding with 126-133

value
assigning, to option sets 57

Visual Studio
setting up, for debugging 142-144

W
web address field

validating 69-71
web application level

ribbon button, adding at 182-184
workflow

about 30
creating 30-33
managing 30-33
starting, from dialog 38, 39
starting, from ribbon button 188, 189

X
Xrm.Page object hierarchy

about 8
URL 8

Thank you for buying
Microsoft Dynamics CRM 2011 Scripting Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.PacktPub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order
to continue its focus on specialization. This book is part of the Packt Enterprise brand, home
to books published on enterprise software – software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Microsoft Dynamics AX 2012
Development Cookbook
ISBN: 978-1-849684-64-4 Paperback: 372 pages

Solve real-world Microsoft Dynamics AX development
problems with over 80 practical recipes

1.	 Develop powerful, successful Dynamics AX
projects with efficient X++ code with this book and
eBook

2.	 Proven recipes that can be reused in numerous
successful Dynamics AX projects

3.	 Covers general ledger, accounts payable,
accounts receivable, project modules and general
functionality of Dynamics AX

(MCTS): Microsoft BizTalk
Server 2010 (70-595)
Certification Guide
ISBN: 978-1-849684-92-7 Paperback: 476 pages

A compact certification guide to help you prepare for
the pass exam 70-595: TS Developing Business Process
and Integration Solutions by using Microsoft Biz Talk
Server 2010

1.	 This book and e-book will provide all that you need
to know in order to pass the (70-595) Developing
Business Process and Integration Solutions exam
by Using Microsoft BizTalk Server 2010 book

2.	 The layout and content of the book closely
matches that of the skills measured by the exam,
which makes it easy to focus your learning and
maximize your study time in areas where you need
improvement.

Please check www.PacktPub.com for information on our titles

Microsoft Dynamics CRM
2011 New Features
ISBN: 978-1-849682-06-0 Paperback: 288 pages

Get up to speed with the new features of Microsoft
Dynamics CRM 2011

1.	 Master the new features of Microsoft Dynamics
2011

2.	 Use client-side programming to perform data
validation, automation, and process enhancement

3.	 Learn powerful event driven server-side
programming methods: Plug-Ins and Processes
(Formerly Workflows)

Microsoft Dynamics CRM
2011 Customization &
Configuration (MB2-866)
Certification Guide
ISBN: 978-1-849685-80-1 Paperback: 306 pages

A partical guide to customizing and configuring Microsoft
Dynamics CRM 2011 focused on helping you pass the
certification exam

1.	 Based on the official syllabus for course 80294B
to help prepare you for the MB2-866 exam

2.	 Filled with all the procedures you need to know to
pass the exam including screenshots

3.	 Take the practice exam with 75 sample questions
to assess your knowledge before you sit the real
exam

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Overview of Dynamics CRM 2011 Customization
	Introduction
	Opening a free 30-day trial of Dynamics CRM 2011 Online
	Using solutions to package our work
	Creating and managing entities
	Creating and managing fields
	Creating and managing forms
	Creating and managing scripts
	Creating and managing other resources
	Creating and managing workflows
	Creating and managing dialogs
	Starting a workflow from a dialog
	Working with security roles and permissions

	Chapter 2: Scripting Form Fields
	Introduction
	Working with text fields
	Working with number fields
	Working with currency
	Working with date and time
	Working with option sets
	Working with lookups

	Chapter 3: Field Validation
	Introduction
	Custom e-mail field validation
	Custom web address field validation
	Validating the ticker symbol field
	Formatting phone numbers
	Formatting postal codes
	Replacing the Country and Province fields with lookups

	Chapter 4: Rules and Events
	Introduction
	Form load event usage
	Form save event usage
	Field change event usage
	Working with tabs and sections
	Combining events
	Enforcing business rules

	Chapter 5: Error Handling
	Introduction
	Handling unexpected user input
	Handling unexpected processing
	Blocking events
	Handling UI events
	Advanced error handling
	Adding a new account and contact with validation

	Chapter 6: Debugging
	Introduction
	Debug messages
	Using IE for tracing and debugging
	Debugging using Visual Studio
	Error logging
	Using Fiddler with CRM

	Chapter 7: Extended UI Manipulation
	Introduction
	Showing or hiding form elements
	Formatting fields
	Creating a rating gauge field
	Flagging a section for the user
	Adding a contact picture
	Adding an account logo
	Marking accounts for review
	Dynamic form elements

	Chapter 8: Working with Ribbon Elements
	Introduction
	Adding a new ribbon button
	Removing ribbon artefacts
	Starting a dialog/workflow from a ribbon button
	Pre-populating form elements with a
button click
	Creating other ribbon artefacts
	Security trimmed ribbon elements
	Using the ribbon for displaying information

	Chapter 9: Extending CRM Using Community JavaScript Libraries
	Introduction
	Using jQuery with Dynamics CRM for page element selection
	Using jQuery and CSS
	Animating form elements with jQuery
	Using jQuery UI for user interaction
	Using jQuery UI for customizations
	Integrating jQuery UI widgets
	Using LiveValidation for input validation as you type
	Using Datejs for date manipulation

	Chapter 10: Light Social Media Integration
	Introduction
	Integrating with Facebook
	Integrating accounts with LinkedIn
	Integrating contacts with LinkedIn
	Adding Twitter feeds
	Working with Del.icio.us data

	Index

