
www.allitebooks.com

http://www.allitebooks.org

Microsoft Dynamics
NAV 2009 Programming
Cookbook

Build better business applications with NAV

Over 110 simple but incredibly effective recipes for taking
control of Microsoft Dynamics NAV 2009

Matt Traxinger

P U B L I S H I N G

professional expert ise dist i l led

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Microsoft Dynamics NAV 2009 Programming Cookbook
Build better business applications with NAV

Copyright © 2010 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, Packt Publishing, nor its dealers
or distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2010

Production Reference: 141010

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-849680-94-3

www.packtpub.com

Cover Image by Sandeep Babu (sandyjb@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Matt Traxinger

Reviewer
David Roys

Acquisition Editor
Rashmi Phadnis

Development Editor
Mayuri Kokate

Technical Editor
Alina Lewis

Indexer
Rekha Nair

Editorial Team Leader
Gagandeep Singh

Project Team Leader
Priya Mukherji

Project Coordinator
Sneha Harkut

Proofreader
Lesley Harrison

Graphics
Geetanjali Sawant

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

www.allitebooks.com

http://www.allitebooks.org

About the author

Matt Traxinger graduated from the Georgia Institute of Technology in 2005 with a B.S.
in Computer Science, specializing in Human Computer Interaction and Cognitive Science.
After college, he took a job as an add-on developer using a language he was unfamiliar
with and for a product he had never heard of: Navision. It turned out to be a great decision.

In the years following, Matt learned all areas of the product and earned Microsoft
Certified Business Solutions Professional certifications in both technical and functional
areas of NAV. He continues to stay current with new releases of the product and is
certified in multiple areas for versions 4.0, 5.0, and 2009.

Currently, Matt works in Norcross, GA, for Canvas Systems—one of the largest resellers of
new and refurbished computer equipment—as an in-house NAV Developer and Business
Analyst. He supports multiple offices in the United States as well as locations in the
United Kingdom and the Netherlands.

In his spare time you can find him on the online communities Mibuso.com and
DynamicsUser.net under the name MattTrax, helping others learn more about the
Dynamics NAV software.

I would like to thank my mom, Norma, not just for buying me my first
computer, but for everything that I cannot put into words. Your decisions
have put me down the path I am on and I would not trade it for anything.

Thank you to my sister, Alex. Your hard work inspires me. I could not imagine
having a better sister than you.

For my wife, Kim. Watching you chase your dreams for the past six years
has motivated me to keep going after mine. Thank you for everything you do
for me.

Finally, thank you to Mibuso and the Millenium Club. Without your help
over the past five years, my knowledge of NAV would be nowhere near what
it is today.

www.allitebooks.com

http://www.allitebooks.org

About the reviewer

David Roys is a Microsoft Most Valuable Professional (MVP) for the Microsoft Dynamics
NAV product and is a co-author of the first book on NAV 2009–Implementing Microsoft
Dynamics NAV 2009–which was published by Packt Publishing in December 2008.

He works for Intergen Ltd., a bunch of fun-loving, incredibly smart people who are
guided by the BHAG (Big Hairy Audacious Goal): "Everyone, every day is touched
positively by the things we do". To learn more about Intergen and to read their blog,
visit www.intergen.co.nz.

David created www.teachmenav.com, a website that allows readers to access
programming samples that accompany the book he wrote with Vjeko Babić and
regularly blogs on the subject of NAV at http://www.teachmenav.com/blogs/dave/
default.aspx.

I would like to thank Matt for giving me the opportunity to make my
comments on the early drafts of his book. He has taught me many things
along the way and I am sure there is something in this book for everyone.

www.allitebooks.com

http://www.intergen.co.nz
http://www.teachmenav.com
http://www.teachmenav.com/blogs/dave/default.aspx
http://www.teachmenav.com/blogs/dave/default.aspx
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Strings, Dates, and Other Data Types	 7

Introduction	 7
Retrieving the system date and time	 8
Retrieving the work date	 10
Determining the day, month, and year from a given date	 12
Converting a value to a formatted string	 14
Creating an array	 16
Creating an Option variable	 19
Converting a string to another data type	 21
Manipulating string contents	 23
Using date formulas to calculate dates	 26

Chapter 2: General Development	 29
Introduction	 29
Repeating code using a loop	 30
Displaying a Progress Bar	 33
Checking for conditions using an IF statement	 35
Using a CASE statement to test multiple conditions	 38
Creating a function	 40
Passing parameters by reference	 41
Referencing dynamic tables and fields	 44
Using recursion	 46

Chapter 3: Working with Tables and Records	 49
Introduction	 50
Creating a table	 51
Adding a key to a table	 53
Creating transactions to alter data	 54
Validating data	 57

www.allitebooks.com

http://www.allitebooks.org

ii

Table of Contents

Retrieving a single record from the database	 59
Using advanced filtering	 60
Retrieving data using FIND	 63
Adding a FlowField to a table	 65
Creating a SumIndex field	 68
Marking records for future use	 70
Clearing filters, keys, and values	 72
Using temporary tables to store data	 73
Retrieving data from another company	 76
Merging records	 77
Writing your own rollback routine	 79

Chapter 4: Designing Forms	 87
Introduction	 87
Obtaining input without a form	 88
Using the Form Generation Wizard	 89
Changing text appearance	 92
Preventing editable lookup forms	 93
Adding an editable field to a non-editable form	 94
Creating a matrix form	 95
Creating a wizard-style form	 100
Designing a form based on a temporary table	 105
Updating a subform from a parent form	 106
Updating a parent form from a subform	 110

Chapter 5: Report Design	 115
Introduction	 115
Using the Report Generation Wizard	 116
Adding custom filters to the request form	 119
Setting filters when a report is loaded	 122
Creating a report to process data	 123
Displaying a check mark on a report	 125
Dynamically showing Sections on reports	 127
Grouping data to display totals	 129
Adding page totals to reports	 131
Display page X of Y	 133
Using virtual tables to loop through data	 140
Adding a watermark to a page	 144

Chapter 6: Diagnosing Code Problems	 151
Introduction	 151
Using the debugger	 152
Setting breakpoints	 156

www.allitebooks.com

http://www.allitebooks.org

iii

Table of Contents

Using Code Coverage	 158
Handling runtime errors	 160
Using Client Monitor to diagnose problems	 162
Finding errors when using NAS	 165
Implementing Try / Catch / Finally	 167

Chapter 7: Roles and Security	 173
Introduction	 173
Adding roles through the User Setup table	 174
Creating and assigning a security role	 176
Using FILTERGROUP to restrict data	 178
Checking for user-assigned roles	 180
Checking Active Directory groups	 184
Using security filters	 189
Field-level security	 191
Assigning menu suites based on company	 197
Ending an idle session	 201
Automatically adding users to NAV	 202
Hiding values in Zoom	 205

Chapter 8: Leveraging Microsoft Office	 209
Introduction	 209
Using the style sheet tool	 210
Sending data to Microsoft Word	 213
Sending an e-mail from NAV through Outlook	 216
Exporting data using the Excel buffer	 218
Creating a data connection from Excel to NAV	 222
Creating an InfoPath form with NAV data	 224
Instant messaging using Office Communicator	 227
Creating charts with Visio	 231

Chapter 9: OS Interaction	 237
Introduction	 237
Using HYPERLINK to open external files	 238
Working with environment variables	 240
Using SHELL to run external applications	 243
Browsing for a file	 244
Browsing for a folder	 245
Checking file and folder access permissions	 247
Querying the registry	 249
Zipping folders and files within NAV	 252

www.allitebooks.com

http://www.allitebooks.org

iv

Table of Contents

Chapter 10: Integration	 255
Introduction	 255
Flat file exchange using dataports	 256
Sharing information through XMLports	 259
Manually writing to and reading from files	 261
Creating a web service	 264
Consuming web services	 265
Sending data through FTP	 267
Printing reports to PDF	 269
Creating a custom NAS handler	 273
Writing your own automation using C#	 275
Using ADO to access outside data	 277

Chapter 11: Working with SQL Server	 281
Introduction	 281
Creating a basic SQL query	 282
Adding the xp_ stored procedures	 284
Understanding SIFT tables	 286
Using SQL Profiler	 290
Displaying data from a SQL view in NAV	 293
Figuring out who is blocking whom	 295
Setting up a backup plan	 297
Scheduling NAV tasks from SQL Server	 300

Chapter 12: The RoleTailored Client	 307
Introduction	 307
Creating a page using the Page Generation Wizard	 308
Building a Role Center	 311
Changing default filter columns	 316
Building the report layout	 318
Interactive sorting for reports	 321
Displaying a graph on a report	 324
Displaying a .NET add-in on a page	 327

Index	 333

Preface
Microsoft Dynamics NAV 2009 is a business management solution that helps simplify and
streamline highly specialized business processes such as finance, manufacturing, customer
relationship management, supply chains, analytics, and electronic commerce for small and
medium-sized enterprises. ERP systems like NAV thus become the center of a company's day-
to-day operations. When you learn to program in an environment like this, it opens up doors to
many other exciting areas such as .NET programming, SQL Server, and Web Services.

Microsoft Dynamics NAV 2009 Programming Cookbook will take you through interesting
topics that span a wide range of areas such as integrating the NAV system with other software
applications like Microsoft Office, creating reports to present information from multiple areas
of the system, and so on. You will not only learn the basics of NAV programming, but you will
also be exposed to the technologies that surround the NAV system such as .NET programming,
SQL Server, and Web Services.

The first half of the cookbook will help programmers using NAV for the first time by walking
them through the building blocks of writing code and creating objects such as tables, forms,
and reports.

The second half focuses on using the technologies surrounding NAV to build better solutions.
You will learn how to write .NET code that works with the NAV system and how to integrate the
system with other software applications such as Microsoft Office or even custom programs.
You will also discover some of the features of the RoleTailored client including creating pages
and custom add-ins.

What this book covers
Chapter 1, Strings, Dates, and Other Data Types, covers the processes involved in working
with most common, simple data types. You will learn how to convert data into different data
types as well as some of the basic NAV functions that can be used to control the data stored
in those variables. Each recipe is accompanied by base NAV code so that you can see how
these building blocks are used to create the full application.

Preface

2

Chapter 2, General Development, focuses on the traditional code structures native to most
programming languages. These structures include loops, conditional statements, functions,
and so on. You will also learn some commands that are found exclusively in C/AL including
ones that allow you to create your own progress bars and how to reference dynamic data.

Chapter 3, Working with Tables and Records, discusses the many things that can be done with
the database in NAV. You will learn how to create table structures to hold business data, such
as fields and keys, and how to filter that data to return only what you wish to see. Additionally,
you will find out how to retrieve data from other companies and rollback any data changes
that may have been committed to the database.

Chapter 4, Designing Forms, shows you how to create displays that will allow your users to
interact with the data. You will learn how to create several different types of forms including
matrixes and wizards and to customize its look and feel.

Chapter 5, Report Design, focuses on displaying data from multiple sources to your users.
You will learn how to group data and display totals, and create reports that only process data.
There are also recipes that will teach you how to make reports look more professional with
tools such as watermarks and page counts.

Chapter 6, Diagnosing Code Problems, explains how to use built-in NAV tools such as
Debugger and Client Monitor to find problems in your code. You will also learn techniques for
structuring your code so that you can bypass any errors that might occur.

Chapter 7, Roles and Security, covers setting up user roles and permissions. You will learn
several methods that will let you interact with the NAV security system and different ways
to restrict user access to data such as field-level security and overriding the Zoom window.
Integration with Active Directory is also discussed.

Chapter 8, Leveraging Microsoft Office, describes different methods to integrate with the
Microsoft Office suite of products. These include Word, Excel, InfoPath, Communicator (instant
messenger), and Visio. Many of these recipes require you to build .NET automation classes
that will be used within the NAV client.

Chapter 9, OS Interaction, focuses on different ways to integrate with the Windows operating
system. There are several recipes to replace deprecated functions from versions prior to
NAV 2009. You will learn how to search the file system as well as how to directly query the
system registry.

Chapter 10, Integration, explains different methods by which NAV can interact with outside
applications. You will learn how to exchange flat files with Dataports and XMLports, write your
own .NET classes which can be used in NAV, and access data directly from other systems. The
new Web Services features in NAV 2009 are also discussed.

Chapter 11, Working with SQL Server, provides an introduction to the SQL Server
environment. There recipes will help you understand SIFT (Sum Index Field Technology),
to use SQL Views as data in NAV, and to call NAV code from a SQL Job.

Preface

3

Chapter 12, The RoleTailored Client, covers many of the new features found in NAV 2009. You
will learn the basics of creating pages, Role Centers, and report layouts. In addition, you will
learn how to write your own .NET add-in to display data from outside sources directly in the
NAV client.

What you need for this book
Used in the recipes: NAV 2009 SP1, Visual Studio 2008, SQL Server 2008.

Most recipes will work with: NAV 5.0, Visual Studio 2005, SQL Server 2005.

Who this book is for
If you are a junior/entry level NAV developer then the first half of the book is designed
primarily for you. You may or may not have any programming experience. This book focuses on
the basics of NAV programming. It would be best if you have gone through a brief introduction
to the NAV client.

If you are a mid-level NAV developer, you will find the second half more useful. These chapters
explain how to think outside the NAV box when building solutions. Senior developers will find
these recipes useful too.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "The sp_who command queries the sys.
sysprocesses system table in SQL."

A block of code is set as follows:

Window.OPEN('Customer No: #1####################');
Window.INPUT(1, CustomerNo);
Window.CLOSE;

IF Customer.GET(CustomerNo) THEN
 MESSAGE('Customer Name: %1', Customer.Name)
ELSE
 MESSAGE('No customer found!);

Any command-line input or output is written as follows:

"Path to Application Server\nassql" debug, appservername="NAS",
servername="Your Server Name", database="Your Database
Name",company="Your Company Name", startupparameter="NEP-", object-
cache=32000, nettype=tcp

Preface

4

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "From the NAV client menu,
click on Tools | Debugger | Code Coverage."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in the
SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code for this book
You can download the example code files for all Packt books you have
purchased from your account at http://www.PacktPub.com. If you
purchased this book elsewhere, you can visit http://www.PacktPub.com/
support and register to have the files e-mailed directly to you.

http://www.packtpub.com/authors
http://www.PacktPub.com
http://www.PacktPub.com/support
http://www.PacktPub.com/support

Preface

5

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report
them by visiting http://www.packtpub.com/support, selecting your book, clicking on
the errata submission form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded on our website, or
added to any list of existing errata, under the Errata section of that title. Any existing errata can
be viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

http://www.packtpub.com/support
mailto:copyright@packtpub.com

1
Strings, Dates, and

Other Data Types

In this chapter, we will cover:

ff Retrieving the system date and time
ff Retrieving the work date
ff Determining the day, month, and year from a given date
ff Converting a value to a formatted string
ff Creating an array
ff Creating an Option variable
ff Converting a string to another data type
ff Manipulating string contents
ff Using date formulas to calculate dates

Introduction
Simple data types are building blocks for everything you will program. C/AL contains the
same data types that you will find in most other programming languages: Booleans, integers,
decimals, dates, and strings. There are of course more than just these five, but majority of
your programming will revolve around using these types of variables.

As a developer, your job is to build business logic that will manipulate the data that is input by
users. This ensures that the data stored in tables is meaningful. Most of this data will be of
one of the following data types. NAV is, after all, a financial system at heart. At its most basic
level, it cares about three things: "How much money?" (decimal), "What was it for?" (string),
and "When did it happen?" (date).

Strings, Dates, and Other Data Types

8

The recipes you will find in this section may not be the most interesting, but are valuable. The
functionality described here is used throughout the system. As such, each example in this
chapter is accompanied by actual code from base NAV objects in order to better illustrate
how they can be used.

Retrieving the system date and time
There are many instances when it is necessary to obtain the current date and time from the
user's system. This recipe will show you how to get that information.

How to do it...
1.	 Create a new codeunit from Object Designer.

2.	 Write the following code in the OnRun trigger of the codeunit:
	 MESSAGE('Todays Date: %1\Current Time: %2', TODAY, TIME);

3.	 Save and close the codeunit.

4.	 When you run the codeunit you should see a window similar to the
following screenshot:

How it works...
The TODAY keyword returns the date from the system clock on the client computer. In
Windows, the current system time is usually located at the bottom-right corner of the
task bar. The same holds true for the system time which is returned by the TIME keyword.

There's more...
The actual date and time returned depends on which version of the NAV client you are using.
In the RoleTailored client, the date and time come from the NAV server. In the Classic client,
the date and time come directly from the client computer and users will be able to manipulate
the system clock to their advantage if they need to. An example could be a time clock
application where a user can clock in, change the system time to eight hours later, clock out,
and change it back to the original time.

Chapter 1

9

You can also retrieve the system date and time, all at once, using the CURRENTDATETIME
function. The date and time can be extracted using the DT2DATE and DT2TIME
functions respectively.

For a complete list of date functions, search the C/SIDE Reference Guide
under the Help menu for date and time functions.

Logging changes and events
The ChangeLog is a base NAV module that allows you to track changes to specific fields in
tables. The following code can be found in Codeunit 423, Change Log Management, in the
InsertLogEntry() method.

ChangeLogEntry.INIT;
ChangeLogEntry."Date and Time" := CURRENTDATETIME;
ChangeLogEntry.Time := DT2TIME(ChangeLogEntry."Date and Time");

Here, instead of using the WORKDATE function, we use the CURRENTDATETIME function and
then extract the time using the DT2TIME function. The system designers could have just done
the following setup:

ChangeLogEntry.Date := TODAY;
ChangeLogEntry.Time := TIME;

The advantage of using CURRENTDATETIME over TODAY and TIME is minimal.
CURRENTDATETIME makes one request to the system, while the second method makes two.
It is possible that another operation or thread on the client machine could take over between
retrieving the date and time from the computer, however, this is very unlikely. The operations
could also take place right before and after midnight, generating some very strange data. The
requirements for your modification will determine which method is suits best, but generally
CURRENTDATETIME is the correct method to use.

See also
ff Retrieving the work date

ff Determining the day, month, and year from a date

ff Converting a value to a formatted string

ff Writing your own rollback routine

www.allitebooks.com

http://www.allitebooks.org

Strings, Dates, and Other Data Types

10

Retrieving the work date
The work date is an essential part of the NAV system. This recipe will show you how to
determine what that date is, as well as when and where you should use it.

Getting ready
1.	 Click on Tools | Workdate from the NAV client.

2.	 Set the work date to 01/01/2010.

How to do it...
1.	 Create a new codeunit from Object Designer.

2.	 Write the following code in the OnRun trigger of the codeunit:
MESSAGE('Work Date: %1\Todays Date: %2\Current Time: %3',
 WORKDATE, TODAY, TIME);

3.	 Save and close the codeunit.

4.	 When you run the codeunit you should see a window like the following screenshot:

How it works...
The work date is a date internal to the NAV system. This date is returned using the WORKDATE
keyword. It can be changed at any time by going to Tools | Work Date.

Chapter 1

11

There's more...
It is important to understand the difference between the NAV work date and the computer
system date. They should be used in specific circumstances. When performing general work in
the system, you should almost always use the WORKDATE keyword. In cases where you need
to log information and the exact date or time when an action occurred, you should use TODAY
and TIME or CURRENTDATETIME.

Populating date fields when a document is created
The following code can be found in table 36, Sales Header, in the InitRecord() method:

IF "Document Type" IN ["Document Type"::Order,"Document
 Type"::Invoice,"Document Type"::Quote] THEN BEGIN
 "Shipment Date" := WORKDATE;
 "Order Date" := WORKDATE;
END;

IF "Document Type" = "Document Type"::"Return Order" THEN
 "Order Date" := WORKDATE;
IF NOT ("Document Type" IN ["Document Type"::"Blanket
 Order","Document Type"::Quote]) AND ("Posting Date" = 0D) THEN
 "Posting Date" := WORKDATE;
IF SalesSetup."Default Posting Date" = SalesSetup."Default
 Posting Date"::"No Date" THEN
 "Posting Date" := 0D;
"Document Date" := WORKDATE;

It is common to create and call an InitRecord() method from a table's OnInsert trigger
especially for document-style tables. Unlike with the InitValue property for fields in a
table, fields here are filled in based on conditional logic. More importantly, validation can be
performed to ensure data integrity.

Looking at this snippet of code, we can see that every date is filled in using the WORKDATE
keyword, and not using TODAY. This is so that a user can easily create records that are pre-
dated or post-dated.

See also
ff Retrieving the system date and time

ff Determining the day, month, and year from a date

ff Converting a value to a formatted string

ff Checking for conditions using an IF statement

ff Using a CASE statement to test multiple conditions

Strings, Dates, and Other Data Types

12

Determining the day, month, and year from a
given date

Sometimes it is necessary to retrieve only a part of a date. NAV has built-in functions to do just
that. We will show you how to use it in this recipe.

How to do it...
1.	 Create a new codeunit from Object Designer.

2.	 Add the following global variables:

Name Type
Day Integer
Month Integer
Year Integer

3.	 Write the following code in the OnRun trigger of the codeunit:
Day := Date2DMY(TODAY, 1);
Month := Date2DMY(TODAY, 2);
Year := Date2DMY(TODAY, 3);
MESSAGE('Day: %1\Month: %2\Year: %3', Day, Month, Year);

4.	 Save and close the codeunit.

5.	 When you run the codeunit you should see a window like the following screenshot:

How it works...
The Date2DMY function is a basic feature of NAV. The first parameter is a date variable. This
parameter can be retrieved from the system using TODAY or WORKDATE, a hard-coded date
such as 01312010D, or a field from a table such as Sales Header or Order Date.

Chapter 1

13

The second parameter is an integer that tells the function which part of the date to return. This
number can be 1, 2, or 3 and corresponds to the day, month, and year (DMY) respectively.

There's more...
NAV has a similar function called Date2DWY. It will return the week of the year instead of the
month if 2 is passed as the second parameter.

Determining depreciation
Codeunit 5616, Depreciation Calculation, contains functions to calculate depreciation
based on start and end dates. In order to correctly calculate these values, you must know
some details such as the number of days between two dates and whether or not any of those
days is a leap day. It is with these types of operations that date functions like DATE2DMY are
extremely useful. Have a look at the function DeprDays365 in this codeunit.

StartingYear := DATE2DMY(StartingDate,3);
EndingYear := DATE2DMY(EndingDate,3);
LeapDays := 0;
IF (DATE2DMY(StartingDate,1) = 29) AND
 (DATE2DMY(StartingDate,2) = 2) AND (DATE2DMY(EndingDate,1) = 29)
 AND (DATE2DMY(EndingDate,2) = 2) THEN
 LeapDays := -1;
 ActualYear := StartingYear;
 WHILE ActualYear <= EndingYear DO BEGIN
 LeapDate := (DMY2DATE(28,2,ActualYear) + 1);
 IF DATE2DMY(LeapDate,1) = 29 THEN BEGIN
 IF (LeapDate >= StartingDate) AND (LeapDate <= EndingDate) THEN
 LeapDays := LeapDays + 1;
 END;
 ActualYear := ActualYear + 1;
 END;
 EXIT((EndingDate - StartingDate) + 1 - LeapDays);

See also
ff Retrieving the system date and time

ff Retrieving the work date

ff Converting a value to a formatted string

ff Repeating code using a loop

ff Checking for conditions using an IF statement

Strings, Dates, and Other Data Types

14

Converting a value to a formatted string
There will be many occasions when you will need to display information in a certain way or
display multiple variable types on a single line. The FORMAT function will help you change
almost any data type into a string that can be manipulated in any way you see fit.

How to do it...
1.	 Create a new codeunit from Object Designer.

2.	 Add the following global variables:

Name Type Length
FormattedDate Text 30

3.	 Add the following code to the OnRun trigger:
FormattedDate := FORMAT(TODAY, 0, '<Month Text> <Day,2>,
 <Year4>');
MESSAGE('Today is %1', FormattedDate);

4.	 Save and close the codeunit.

5.	 When you run the codeunit you should see a window similar to the following :

How it works...
The FORMAT function takes one to three parameters. The first parameter is required and can
be of almost any type: date, time, integer, decimal, and so on. This parameter is returned as
a string.

The second parameter is the length of the string to be returned. A default zero means that the
entire string will be returned. A positive number tells the function to return a string of exactly
that length, and a negative number returns a string no larger than that length.

Chapter 1

15

There are two options for the third and final parameter. One is a number, representing
a predefined format you want to use for the string and the other is a literal string. In the
example, we used the actual format string. The text contained in brackets (< >) will be parsed
and replaced with the data in the first parameter.

There's more...
There are many predefined formats for dates. The examples listed in the following table
are taken from the C/SIDE Reference Guide in the Help menu of the NAV client. Search for
"Format Property" to find more information.

Date Format Example
<Closing><Day,2>-<Month,2>-<Year> 0 05-04-03
<Closing><Day,2>-<Month,2>-<Year> 1 05-04-03
<Day,2><Month,2><Year><Closing>D 2 050403D
<Closing><Year>-<Month,2>-<Day,2> 3 03-04-05
<Closing><Day>. <Month Text> <Year4> 4 5. April 2003
<Closing><Day,2><Month,2><Year> 5 050403
<Closing><Year><Month,2><Day,2> 6 030405
<Day,2><Filler Character,
 >. <Month Text,3> <Year4>

7 5. Apr 2003

XML format 9 2003-04-05

Creating filters using other variable types
You will often need to create filters on dates or other simple data types. Usually these filters
are not just for a single value. For example, a date filter for all values between January 1st,
2010 and January 31st, 2010 would look like 010110..013110. Because ".." is a string,
and you cannot concatenate it with two date variables. Instead, you will have to convert those
dates into strings and then place the filters together.

Take the CreateAccountingDateFilter function from codeunit 358, DateFilter-Calc. It
creates date filters based on accounting periods for the exact scenario we are describing.

AccountingPeriod.RESET;
IF FiscalYear THEN
 AccountingPeriod.SETRANGE("New Fiscal Year",TRUE);
 AccountingPeriod."Starting Date" := Date;
 AccountingPeriod.FIND('=<>');
 IF AccountingPeriod."Starting Date" > Date THEN
 NextStep := NextStep - 1;
 IF NextStep <> 0 THEN
 IF AccountingPeriod.NEXT(NextStep) <> NextStep THEN BEGIN
 IF NextStep < 0 THEN

Strings, Dates, and Other Data Types

16

 Filter := '..' + FORMAT(
 AccountingPeriod."Starting Date" - 1)
 ELSE
 Filter := FORMAT(AccountingPeriod."Starting Date") +
 '..' + FORMAT(12319999D);
 Name := '...';
 EXIT;
END;
StartDate := AccountingPeriod."Starting Date";
IF FiscalYear THEN
 Name := STRSUBSTNO(Text000,FORMAT(DATE2DMY(StartDate,3)))
ELSE
 Name := AccountingPeriod.Name;
IF AccountingPeriod.NEXT <> 0 THEN
 Filter := FORMAT(StartDate) + '..' +
 FORMAT(AccountingPeriod."Starting Date" - 1)
ELSE BEGIN
 Filter := FORMAT(StartDate) + '..' + FORMAT(12319999D);
 Name := Name + '...';
END;

See also
ff Retrieving the system date and time

ff Retrieving the work date

ff Determining the day, month, and year from a given date

ff Converting a string to another data type

ff Checking for conditions using an IF statement

ff Using advanced filtering

ff Retrieving data using FIND

Creating an array
Creating multiple variables to store related information can be time consuming. It leads
to more code and hence, more work. Using an array to store related and similar type of
information can speed up development and lead to much more manageable code. This recipe
will show you how to create and access array elements.

How to do it...
1.	 Create a new codeunit in Object Designer.

Chapter 1

17

2.	 Add the following global variables:

Name Type
i Integer
IntArray Integer

3.	 With the cursor on that variable, click on View | Properties (Shift + F4).

4.	 Set the following property:

Property Value
Dimensions 10

5.	 In the OnRun trigger add the following code:
FOR i := 1 TO ARRAYLEN(IntArray) DO BEGIN
 IntArray[i] := i;
 MESSAGE('IntArray[%1] = %2', i, IntArray[i]);
END;

6.	 When you run the codeunit you will see ten windows, one after the other, similar to
the following screenshot:

How it works...
An array is a single variable that holds multiple values. The values are accessed using an
integer index. The index is passed within square brackets ([]).

There's more...
NAV provides several functions to work with arrays. ARRAYLEN returns the number of
dimensions of the array. COPYARRAY will copy all of the values from one array into a new array
variable. For a complete list of functions, search the C/SIDE Reference Guide under the Help
menu for "Array Functions".

Strings, Dates, and Other Data Types

18

Creating an address using the format address codeunit
Open codeunit 365, Format Address. Notice the first function, FormatAddr, has a
parameter which is an array. This is the basic function that all of the address formats use.
It is rather long, so we will discuss only a few parts of it here.

This first section determines how the address should be presented based on the country
of the user. Variables are initialized depending on which line of the address should certain
information appear. The variables will be the indexes of our array.

CASE Country."Contact Address Format" OF
 Country."Contact Address Format"::First:
 BEGIN
 NameLineNo := 2;
 Name2LineNo := 3;
 ContLineNo := 1;
 AddrLineNo := 4;
 Addr2LineNo := 5;
 PostCodeCityLineNo := 6;
 CountyLineNo := 7;
 CountryLineNo := 8;
END;

Then we will fill in the array values in the following manner:

AddrArray[NameLineNo] := Name;
AddrArray[Name2LineNo] := Name2;
AddrArray[AddrLineNo] := Addr;
AddrArray[Addr2LineNo] := Addr2;

Scroll down and take a look at all the other functions. You'll see that they all take in an array
as the first parameter. It is always a text array of length 90 with 8 dimensions. These are the
functions you will call when you want to format an address. To use this codeunit correctly,
you will need to create an empty array with the specifications listed before and pass it to the
correct function. Your array will be populated with the appropriately formatted address data.

See also
ff Manipulating string contents

ff Using a CASE statement to test multiple conditions

Chapter 1

19

Creating an Option variable
If you need to force the user to select a value from a pre-defined list then an Option is the way
to go. This recipe explains how to create an Option variable and access each of its values.

How to do it...
1.	 Create a new codeunit from Object Designer.

2.	 Add the following global variables:

Name Type
ColorOption Option

3.	 Set the following property on the variable:

Property Value
OptionString None,Red,Green,Blue

4.	 Add the following code to the OnRun trigger of your codeunit:
ColorOption := ColorOption::Red;
CASE ColorOption OF
 ColorOption::None: MESSAGE('No Color Selected');
 ColorOption::Red: MESSAGE('Red');
 ColorOption::Green: MESSAGE('Green');
 ColorOption::Blue: MESSAGE('Blue');
END;

5.	 When you run the codeunit you should see a window similar to the following
screenshot:

www.allitebooks.com

http://www.allitebooks.org

Strings, Dates, and Other Data Types

20

How it works...
An Option is a field or variable that stores one value from a selectable list. In a form, this list
will appear as a drop-down from which the user can select a value. The list of options is stored
as a comma-separated string in the OptionString property.

These values are accessed using the variable_name::option_name syntax. The first line
of the example assigns one of the possible values (Red) to the variable. Then we use a CASE
statement to determine which of the values was selected.

There's more...
You can also access possible options in other ways. In a database, an Option is stored as an
integer. Each Option corresponds to a specific number, starting with the number 1. In this case
None=1, Red=2, Green=3, and Blue=4. You could write this code to perform the safe actions:

ColorOption := ColorOption::"1";
CASE ColorOption OF
 ColorOption::None: MESSAGE('No Color Selected');
 ColorOption::Red: MESSAGE('Red');
 ColorOption::Green: MESSAGE('Green');
 ColorOption::Blue: MESSAGE('Blue');
END;

To reduce your development time, you can also use a shorthand notation to access the Option
values. Again, the following code is exactly the same as that above:

ColorOption := ColorOption::R;
CASE ColorOption OF
 ColorOption::None: MESSAGE('No Color Selected');
 ColorOption::Red: MESSAGE('Red');
 ColorOption::Green: MESSAGE('Green');
 ColorOption::Blue: MESSAGE('Blue');
END;

When you close, save, and reopen the codeunit, the Option values will automatically be filled
in for you. That is, both of these examples will look exactly like the first example once it has
been saved and reopened. It is always best to write the code exactly as you want it to appear.

Using Options in documents
Option fields are prevalent throughout the NAV system, but most commonly on documents.
In NAV, many documents share the same table. For example, sales quotes, orders, invoices,
and return orders are all based on the Sales Header table. In order to distinguish between the
types, there is an Option field called Document Type. Design table 36, Sales Header, to see
the available options for this field.

Chapter 1

21

Now, design codeunit 80, Sales-Post. Examine the OnRun trigger. Early in the function, you
will see the following code:

CASE "Document Type" OF
 "Document Type"::Order:
 Receive := FALSE;
 "Document Type"::Invoice:
 BEGIN
 Ship := TRUE;
 Invoice := TRUE;
 Receive := FALSE;
 END;
 "Document Type"::"Return Order":
 Ship := FALSE;
 "Document Type"::"Credit Memo":
 BEGIN
 Ship := FALSE;
 Invoice := TRUE;
 Receive := TRUE;
 END;
END;

This is a common example of how Options are used in NAV. You can scroll through the
codeunit to find more examples.

See also
ff Using a CASE statement to test multiple conditions

Converting a string to another data type
Sometimes a string representation isn't enough. In order to perform certain actions, you need
your data to be in a certain format. This recipe will show you how to change that data into a
format that you can use.

How to do it...
1.	 Create a new codeunit from Object Designer.

2.	 Add the following global variables:

Name Type Length
DateText Text 30
DateValue Date

Strings, Dates, and Other Data Types

22

3.	 Write the following code in the OnRun trigger:
DateText := '01/01/2010';
EVALUATE(DateValue, DateText);
MESSAGE('Date: %1', DateValue);

4.	 Save and close the codeunit.

5.	 When you run the codeunit you should see a window similar to the
following screenshot:

How it works...
The EVALUATE() function takes in two parameters. The first is a variable of the type that
you want your value to be converted into. This could be date, time, boolean, integer, or any
other simple data type. This parameter is passed by reference, meaning that the result of the
function is stored in that variable. There is no need to do a manual assign using the
:= syntax.

The second parameter is the string which you need to convert. This text is usually stored in a
field or variable, but can also be hard coded.

For a list of all of the functions related to text variables, search for "Text Data Type" in the C/
SIDE Reference Guide under the Help menu.

There's more...
EVALUATE() returns a boolean value when executed. If the conversion is successful, it
returns TRUE or 1; otherwise, it returns FALSE or 0. If the function returns FALSE, an error will
be generated. If you wish to display the standard system error, you can leave the code as it is,
but if you want to handle the error yourself, you must make the following changes:

DateText := '01/01/2010';
IF NOT EVALUATE(DateValue, DateText) THEN
 ERROR('Custom Error Message');
MESSAGE('Date: %1', DateValue);

Chapter 1

23

Incrementing a number series
Number series are used throughout the NAV system. Every document has a unique identifier
that is usually retrieved from the No. Series table. This table keeps a track of the last number
used so that it knows what the next number should be.

However, this identifier is not just a number. A purchase order, for example, might have an
identifier of PO123456, which means that it is actually a string. As you can't add a number to
a string, you will have to figure out what the number part is, convert it to an actual number,
and then increment it. This code from the IncrementNoText() function in codeunit 396,
NoSeriesManagement, does exactly that. As this code calls several other functions, it may be
beneficial for you to look through the entire codeunit.

GetIntegerPos(No,StartPos,EndPos);
EVALUATE(DecimalNo,COPYSTR(No,StartPos,EndPos - StartPos + 1));
NewNo := FORMAT(DecimalNo + IncrementByNo,0,1);
ReplaceNoText(No,NewNo,0,StartPos,EndPos);

See also
ff Converting a value to a formatted string

ff Checking for conditions using an IF statement

ff Passing parameters by reference

Manipulating string contents
It can be very useful to parse a string and retrieve certain values. This recipe will show you
how to examine the contents of a string and manipulate that data.

How to do it...
1.	 Create a new codeunit from Object Designer.

2.	 Add a function called RemoveNonNumeric(). It should return a text variable
named NewString.

3.	 The function should take in the following parameter:

Name Type Length
String Text 30

Strings, Dates, and Other Data Types

24

4.	 Add the following global variable:

Name Type
I Integer

5.	 Add the following global variables:

Name Type Length
OldPhoneNumber Text 30
NewPhoneNumber Text 30

6.	 Add the following code to the RemoveNonNumeric() function:
FOR i := 1 TO STRLEN(String) DO BEGIN
 IF String[i] IN ['0', '1', '2', '3', '4', '5', '6', '7', '8',
 '9'] THEN
 NewString := NewString + FORMAT(String[i]);
END;

7.	 Add the following code to the OnRun trigger:
OldPhoneNumber := '(404) 555-1234';
NewPhoneNumber := RemoveNonNumeric(OldPhoneNumber);
MESSAGE('Old Phone Number: %1\New Phone Number: %2',
 OldPhoneNumber, NewPhoneNumber);

8.	 When you run the codeunit you will see a window similar to the following screenshot:

How it works...
A string is actually an array of characters. The same array syntax will be used to access the
individual characters of the string.

We start with a FOR loop that begins at the first character, with index 1, and goes until we
reach the end of our string. This is determined using the STRLEN() function which stands for
STRing LENgth. As the first index is 1 the last index will be N, or the number of characters in
the string.

Chapter 1

25

Next, we access the character at that index using square brackets. If the character is a
number, meaning we want to keep it because it is numeric, we add it to our resulting string.

We can only add strings to other strings so we must convert this character
using the FORMAT() function. If the character is not a number, we ignore it.

There's more...
NAV comes with plenty of built-in string manipulation functions to remove characters, return
substrings, find characters within string, and many more. A search in the C/SIDE Reference
Guide from the NAV client help menu for string functions will give you a complete list.

Parsing strings has several uses in NAV. Some easy-to-implement examples include checking/
converting a phone number to a proper format based on country code, properly capitalizing
names, and removing illegal characters.

Linking records with strings
Using the Object Designer run table 6508, Value Entry Relation. You should see a column
named Source RowId that contains some strange looking text. A careful examination reveals
that these are not as strange as they appear. It is simply a string containing six values, each
separated by a semicolon and enclosed within quotes. For example: "123";"0";"123456";"";
"0";"10000".

In a typical installation involving shipments and receipts, the value of the current inventory is
adjusted every time an item comes in or goes out of stock. This amount is stored in the Value
Entry table. In order to know which document created which value entry, a subsidiary table
was created: Value Entry Relation. In this basic scenario, the first field refers to the table that
the value entry came from. The most common are: 113 for shipments and 123 for receipts.
The third value stores the document number and the sixth contains the line number. Take a
look at the function DecomposeRowID() in codeunit 6500, Item Tracking Management.

FOR ArrayIndex := 1 TO 6 DO
 StrArray[ArrayIndex] := '';
Len := STRLEN(IDtext);
Pos := 1;
ArrayIndex := 1;
WHILE NOT (Pos > Len) DO BEGIN
 Char := COPYSTR(IDtext,Pos,1);
 IF (Char = '"') THEN BEGIN
 Write := FALSE;
 Count += 1;
 END ELSE BEGIN
 IF Count = 0 THEN
 Write := TRUE

Strings, Dates, and Other Data Types

26

 ELSE BEGIN
 IF Count MOD 2 = 1 THEN BEGIN
 Next := (Char = ';');
 Count -= 1;
 END ELSE
 IF NoWriteSinceLastNext AND (Char = ';') THEN BEGIN
 Count -= 2;
 Next := TRUE;
 END;
 Count /= 2;
 WHILE Count > 0 DO BEGIN
 StrArray[ArrayIndex] += '"';
 Count -= 1;
 END;
 Write := NOT Next;
 END;
 NoWriteSinceLastNext := Next;
END;
IF Next THEN BEGIN
 ArrayIndex += 1;
 Next := FALSE;
END;
IF Write THEN
 StrArray[ArrayIndex] += Char;
 Pos += 1;
END;

This is an amazing example of how you can manipulate strings to your advantage. The code is
fairly complex and may take some time to understand, but it can give you a basis to write your
own code. You should be able to see the code that looks for semicolons, or field separators,
as well as the code that finds quotes, or field identifiers. The code separates out those fields
and stores them in a string array for later use.

See also
ff Converting a value to a formatted string

ff Creating an array

ff Repeating code using a loop

ff Checking for conditions using an IF statement

Using date formulas to calculate dates
Date formulas allow you to determine a new date based on a reference date. This recipe will
show you how to use the built-in NAV function called CALCDATE to calculate them.

Chapter 1

27

How to do it...
1.	 Create a new codeunit from Object Designer.
2.	 Add the following global variable:

Name Type
CalculatedDate Date

3.	 In the OnRun trigger write the following code:
CalculatedDate := CALCDATE('CM+1D', 01012010D);
MESSAGE('Calculated Date: %1', CalculatedDate);

4.	 Save and close the codeunit.
5.	 When you run the codeunit you should see a window like the following screenshot:

How it works...
The CALCDATE() function takes in two parameters, a calculation formula and a starting date.
The calculation formula is a string that tells the function how to calculate the new date. The
second parameter tells the function which date it should start with. A new date is returned by
this function, so the value must be assigned to a variable using standard := syntax.

There's more...
The following units can be used in the calculation formula:

Unit Description
D Day
WD Weekday
W Week
M Month
Q Quarter
Y Year

Strings, Dates, and Other Data Types

28

These units may be different depending on what language your version of NAV is
running under.

You have two options for the number to place before the unit. This can either be a standard
number ranging between 1 and 9, or the letter C, which stands for Current. These units can be
added and subtracted to determine a new date based on any starting date.

Calculation formulas can become very complex. The best way to fully understand them is to
write your own formulas to see the results. Start out with basic formulas like 1M+2W-1D and
move on to more complex ones like –CY+2Q-1W.

Calculating reminder terms using date formulas
NAV has the ability to issue a reminder whenever a customer goes past due on their balance.
These reminders are issued at specific times based on date formulas entered by the user
during setup.

Look at the MakeReminder() method in codeunit 392, Reminder-Make. This function has
a large amount of code so only a small section is shown here. The date formula is stored in a
field called Grace Period and is used to determine if those many days have passed since the
due date of the document.

IF (CALCDATE(ReminderLevel."Grace Period",ReminderDueDate) <
 ReminderHeaderReq."Document Date") AND
 ((LineLevel <= ReminderTerms."Max. No. of Reminders") OR
 (ReminderTerms."Max. No. of Reminders" = 0))
THEN BEGIN

See also
ff Retrieving the system date and time

ff Retrieving the work date

ff Determining the day, month, and year from a given date

ff Checking for conditions using an IF statement

2
General Development

In this chapter, we will cover:

ff Repeating code using a loop

ff Displaying a Progress Bar

ff Checking for conditions using an IF statement

ff Using a CASE statement to test multiple conditions

ff Creating a function

ff Passing parameters by reference

ff Referencing dynamic tables and fields

ff Using recursion

Introduction
Generally developers are not the ones who generate data for their company. Programmers are
not employees entering sales orders or new contacts into the system. As a developer, you give
users the ability to enter that data, but your main job is to build business logic to manipulate
data for the company's benefit.

C/AL, the development language for NAV, is similar to other languages out there. It provides
similar commands and functions that other programming languages do. It may not have all
of the libraries that .NET does, but C/AL provides all the necessary functions to control data
in any way you see fit. The development environment, C/SIDE, is also not very attractive. It
does not have all the bells and whistles of Visual Studio, but it has everything you need to get
your job done easily. There will be times when you will have to think a little harder about your
solution and take a little longer to plan it out, but there is no problem that cannot be solved
within NAV.

www.allitebooks.com

http://www.allitebooks.org

General Development

30

If you have programmed in other languages you will notice obvious similarities in syntax.
It's the logic behind the program, and not the way you code it that makes the difference.
After all, there are so many ways to assign values to variables, check for conditions, and
create functions. These basic commands and functions are building blocks for any program
world. NAV is no different. Once you've mastered the nuts and bolts, you can begin to put
them together to perform any function your company needs. This chapter will serve as a
brief introduction to these parts, but for a more in-depth study you can read "Programming
Microsoft Dynamics NAV 2009" by David Studebaker or "Implementing Microsoft Dynamics
NAV 2009" by David Roys and Vjekoslav Babic.

Repeating code using a loop
Looping is an essential part of dealing with records in NAV. Using a FOR loop is a common way
to iterate over multiple lines of code. This recipe will show you how to construct a FOR loop
and use it.

How to do it...
1.	 Create a new codeunit from Object Designer.

2.	 Add the following global variables:

Name Type
n Integer
i Integer
Factorial Integer

3.	 Add the following code to the OnRun trigger of the codeunit:
Factorial := 1;
n := 4;
FOR i := 1 TO n DO
 Factorial := Factorial * i;

MESSAGE('Factorial of %1 = %2', n, Factorial);

4.	 Save and close the codeunit.

Chapter 2

31

5.	 When you run the codeunit you will see a window similar to the following screenshot:

How it works...
A FOR loop has four parts: a counter, a starting value, the step to be taken, and an ending
value. In this code, our counter variable is "i". The starting value is 1 and the ending value is
"n", which in this case has been assigned to the value 4.

Each time the loop iterates, the value of "i" is increased by one (the step). The code indented
under the FOR loop will be executed four times. It is exactly the same as:

Factorial := Factorial * 1;
Factorial := Factorial * 2;
Factorial := Factorial * 3;
Factorial := Factorial * 4;

If you want to use a step other than one or negative one you will need to use a WHILE loop or
REPEAT..UNTIL loop.

There's more...
You can also use a FOR loop by decreasing the counter. To do this, instead of a TO you use
DOWNTO. The structure for this type of loop is as follows:

Factorial := 1;
n := 4;
FOR i := n DOWNTO 1 DO
 Factorial := Factorial * i;

MESSAGE('Factorial of %1 = %2', n, Factorial);

General Development

32

Using a WHILE loop
A WHILE loop is similar to a FOR loop. The main difference is that you have to take control of
the counter.

Factorial := 1;
n := 4;
i := 1;
WHILE i <= n DO BEGIN
 Factorial := Factorial * i;
 i += 1;
END;

MESSAGE('Factorial of %1 = %2', n, Factorial);

First we have to initialize our starting value, which is accomplished by the third line i := 1.

Then in the WHILE line, we have to give a stop condition. As long as i <= n (4), we want the
statements to execute.

Finally, we have added the i += 1; command to the code inside our loop. A FOR loop does
this behind the scenes, but a WHILE loop doesn't. Here we can increment our counter by any
value we want. This basic line is perhaps the most important. Without it we will never reach
our stop condition and be stuck in an infinite loop.

Using a REPEAT..UNTIL loop
If you have programmed in other languages you know this loop by another name: DO..WHILE.
The difference between this type of loop and a standard WHILE loop is that the code is
guaranteed to execute at least once. You will use this type of loop often to go access records
through tables.

Factorial := 1;
n := 4;
i := 1;
REPEAT
 Factorial := Factorial * i;
 i += 1;
UNTIL i > n;

MESSAGE('Factorial of %1 = %2', n, Factorial);

See also
ff Creating an array

ff Using recursion

ff Retrieving data using FIND

ff Marking records for future use

Chapter 2

33

Displaying a Progress Bar
There's nothing more frustrating for a user than wondering if the system is done with
processing something or not. Displaying an indicator to show the user the system's
progress, is an easy way to make the system more user-friendly.

How to do it...
1.	 Create a new codeunit from Object Designer.

2.	 Add the following global variables:

Name Type
ProgressBar Dialog
AmountProcessed Integer
AmountToProcess Integer
PercentComplete Integer

3.	 Add the following code to the OnRun trigger of your Codeunit:
AmountToProcess := 50000;

ProgressBar.OPEN('@1@@@@@@@@@@@@@@@@@@@@');
REPEAT
 AmountProcessed += 1;
 PercentComplete := ROUND(AmountProcessed / AmountToProcess *
 10000, 1);
 ProgressBar.UPDATE(1, PercentComplete);
UNTIL AmountProcessed = AmountToProcess;

4.	 Save and close the codeunit.

5.	 When you run the codeunit you will see a progress bar like this:

General Development

34

How it works...
In order to track the progress of something, you need to know two things: how much you
have to do and how much you have already done. We create two variables for this data,
AmountToProcess and AmountProcessed. In our code shown in step 3, we have set the
AmountToProcess equal to 50,000. Depending on the speed of your computer, this may
make the progress bar advance either too quickly or too slowly. You might need to adjust it.

Basic information such as this is displayed to the user using what is called a Dialog. The
dialog is given a string as an input parameter. The @ sign tells it to display as a progress
indicator and the 1 identifies the indicator for later updates. The rest of the @ signs specify
the length of the progress bar.

The minimum and maximum values for the progress bar are not 0 and 100 as you might
expect. Instead, they are 0 and 10,000 respectively. This is why we multiply by 10,000 when
we are calculating our PercentComplete value. As the percentage is an integer, we must
also round up our result to the nearest digit.

There's more...
Updating the screen dramatically slows down the process. When dealing with so many items
to process the percent processed does not change with every item. You can rather update the
screen periodically by adding a single line of code:

AmountToProcess := 50000;

ProgressBar.OPEN('@1@@@@@@@@@@@@@@@@@@@@');
REPEAT
 AmountProcessed += 1;
 PercentComplete := ROUND(AmountProcessed / AmountToProcess *
 10000, 1);
 IF AmountProcessed MOD 100 = 0 THEN
 ProgressBar.UPDATE(1, PercentComplete);
UNTIL AmountProcessed = AmountToProcess;

We have added a conditional statement so that the screen updates only after every 100 items
are processed. You should notice a huge decrease in processing if you run the codeunit with
this new line.

Chapter 2

35

Processing only reports
A common way to process large amounts of data is to create a "processing only" report. In this
situation, your AmountToProcess would be the number of records in the table. This would
be calculated in the OnPreDataItem trigger. You would also open the dialog here. In the
OnAfterGetRecord trigger, you would update your AmountProcessed variable and update
the progress bar as necessary.

Some examples of processing only reports in the base system are: number 296, Batch Post
Sales Orders, and 299, Delete Invoiced Sales Orders.

See also
ff Checking for conditions using an IF statement

ff Creating a report to process data

Checking for conditions using an IF
statement

Some code should only be executed when certain conditions occur. This recipe will show you
how to write code to make that decision.

How to do it...
1.	 Create a new codeunit from Object Designer.

2.	 Add the following global variables:

Name Type Subtype
SalesHeader Record Sales Header
RecordsProcessed Integer

3.	 Write the following code in the OnRun trigger:
IF SalesHeader.FINDSET THEN BEGIN
 REPEAT
 RecordsProcessed += 1;
 UNTIL SalesHeader.NEXT = 0;
 MESSAGE('Processed %1 records.', RecordsProcessed);
END ELSE
 MESSAGE('No records to process.');

4.	 Save and close the codeunit.

General Development

36

5.	 When you run the codeunit you will see a window like the one shown in the
following screenshot:

How it works...
In order to execute the code that processes the records, there must be records in the table.
That's exactly what the first line does. It tells the code that IF you find some records THEN
it should do these actions. In this case, the action is to count the records in the table and
display a message to the user.

It could be discouraging for the user to try to process something and have nothing happen,
though. That's where the ELSE part comes in. When the condition in the IF statement does
not evaluate to true, control falls to the next ELSE statement. So IF we find some records
THEN the code must do something OTHERWISE (ELSE) it should do something else. Our
"something else" is to inform the user that no records were found. The ELSE part is by no
means required, but you should always consider what should happen if the condition is false.

There's more...
IF statements can be chained together to form complex conditionals.

IF DATE2DMY(WORKDATE,1) = 1 THEN
 MESSAGE('Monday')
ELSE IF DATE2DMY(WORKDATE,1) = 2 THEN
 MESSAGE('Tuesday')
ELSE IF DATE2DMY(WORKDATE,1) = 3 THEN
 MESSAGE('Wednesday')
ELSE IF DATE2DMY(WORKDATE,1) = 4 THEN
 MESSAGE('Thursday')
ELSE IF DATE2DMY(WORKDATE,1) = 5 THEN
 MESSAGE('Friday')
ELSE
 MESSAGE('Its the weekend!');

Chapter 2

37

The next IF is simply a new statement inside the ELSE clause within the previous
IF statement.

Generally, if you have more than three possibilities you should not use an IF statement, but a
CASE statement instead. This example simply illustrates the possibilities with conditionals.

Testing multiple conditions
You may need to execute code only when multiple conditions are true. The following syntax
can be used to test for conditions in a single statement:

IF (condition1) AND (condtion2) THEN

IF (condition1) OR (condition2) THEN

IF (NOT condition1) AND (condition2) THEN

The first will only execute when both conditions are true, the second when either of the
conditions are true, and the third when the first condition is not true and the second is true.
You can combine these operators (AND, OR, NOT) to form very complex conditionals and test
as many conditions as necessary.

One thing you need to remember is that the entire clause before the AND or OR has to
evaluate to a Boolean value. That means you have to surround your entire condition with
parentheses. The following line of code will not work:

IF DATE2DMY(WORKDATE,1) >= 5 AND DATE2DMY(WORKDATE,1) <= 6 THEN

NAV sees the AND as applying like this: 5 AND DATE2DMY(WORKDATE, 1). The 5 doesn't
evaluate to a Boolean value and neither does the DATE2DMY function. You have to write it
like this:

IF (DATE2DMY(WORKDATE,1) >= 5) AND (DATE2DMY(WORKDATE,1) <= 6)
 THEN

Here, the AND applies to everything in the parentheses, before and after it, each of which
evaluates to a boolean value.

See also
ff Using a CASE statement to test multiple conditions

General Development

38

Using a CASE statement to test multiple
conditions

When you have more than two conditions to test, it can often be beneficial to use a CASE
statement for better code readability.

How to do it...
1.	 Create a new codeunit from Object Designer.

2.	 Add the following global variables:

Name Type
I Integer

3.	 Add the following code to the OnRun trigger of your codeunit:
i := 2;

CASE i OF
 1:
 MESSAGE('Your number is %1.', i);
 2:
 MESSAGE('Your number is %1.', i);
 ELSE
 MESSAGE('Your number is not 1 or 2.');
END;

4.	 When you run the codeunit you will see a window like the following screenshot:

Chapter 2

39

How it works...
A CASE statement compares the value given, in this case "i", to various conditions contained
within that statement. Each condition, other than the default ELSE, is followed by a colon.
Here it checks if "i" is equal to 1, if "i" is equal to 2, and if "i" is neither 1 nor 2. You would get
the same result if you wrote the following code:

IF i = 1 THEN
 MESSAGE('Your number is %1.', i)
ELSE IF i = 2 THEN
 MESSAGE('Your number is %1.', i)
ELSE
 MESSAGE('Your number is not 1 or 2.');

There's more...
This example just checks very basic conditions and only conditions where the variable is equal
to a specific value. You can do more advanced condition checking like the following example:

CASE TRUE OF
 i > 1:
 MESSAGE('i > 1');
 i = 1:
 MESSAGE('i = 1');
 i < 1:
 MESSAGE('i < 1');
 ELSE
 MESSAGE('What kind of number is this?');
END;

Or something like :

CASE TRUE OF
 i > 1, i < 1:
 MESSAGE('i is not one');
 i = 1:
 MESSAGE('i = 1');
 ELSE
 MESSAGE('What kind of number is this?');
END;

See also
ff Checking for conditions using an IF statement

www.allitebooks.com

http://www.allitebooks.org

General Development

40

Creating a function
Most programs will need to execute code from different NAV objects. This code is contained in
functions. This recipe will show you how to create a function and explain what functions are in
more detail.

How to do it...
1.	 Create a new codeunit from Object Designer.

2.	 Add a function called CountToN that takes an integer parameter, n.

3.	 Add the following local variables

Name Type
I Integer

4.	 Add the following code to your function:
FOR i := 1 TO n DO
 MESSAGE('%1', i);

5.	 Add the following code to the OnRun trigger of the codeunit:
CountToN(3);

6.	 Save and close the codeunit.
7.	 When you run the codeunit you will see several windows like the following screenshot:

How it works...
By creating a function we can reference multiple lines of code using one easy-to-understand
name. Our function is called CountToN and takes an integer "n" as a parameter. This function
will display a message box for every number ranging between one and the number that is
passed to the function.

Chapter 2

41

There's more...
Proper use of functions is essential to good software development. You will have difficulty
finding any objects in NAV that don't contain even a single function.

The main use of functions is to divide complex tasks into manageable chunks of code. This
makes debugging a lot easier. Other developers who may add to your code later, will be able
to better understand what you were trying to accomplish. By encapsulating code in functions
you also reduce the number of places where changes need to be made when you find faulty
business logic.

Once written, these functions can then be called from other objects. A great practice is
to keep a codeunit with common utility functions in it. You can load this codeunit into any
database you happen to be working on and have instant access to your code from any object
in the system.

Creating local or private functions
By default, all functions are created as global functions, which means that they can be
accessed from any object in the system. Sometimes, though, you may only want a function
to be accessed from within the object in which it resides.

It may seem counter-intuitive, but you still define these functions in the same way you
define global functions. If you view the properties of the function (Shift + F4 or click on View
| Properties from the menu), you will see one called Local. Set this property to yes and it will
only be available in the current object.

See also
ff Passing parameters by reference

Passing parameters by reference
You may want your function to modify multiple values. As you can't return more than one value
from a function (unless you use an array), it can be beneficial to pass your parameters by
reference to the function.

General Development

42

How to do it...
1.	 Create a new codeunit from Object Designer.

2.	 Add the following global variables:

Name Type Subtype Length
CustomerRec Record Customer
OldName Text 50
NewName Text 50

3.	 Add a function called ChangeCustomerName.

4.	 The function should take in the following parameter:

Name Type Subtype

Customer Record Customer

5.	 Write the following code in the ChangeCustomerName function:
Customer.Name := 'Changed Name';

6.	 Add a function called ChangeCustomerNameRef.

7.	 The function should take in the following parameter:

Name Type Subtype
Customer Record Customer

8.	 Place a check-mark in the Var column for the parameter.

9.	 Write the following code in the ChangeCustomerName function:
Customer.Name := 'Changed Name';

10.	 Write the following code in the OnRun trigger of your codeunit:
IF CustomerRec.FINDFIRST THEN BEGIN
 OldName := CustomerRec.Name;
 ChangeCustomerName(CustomerRec);
 NewName := CustomerRec.Name;
 MESSAGE('Pass by value:\Old Name: %1\New Name: %2', OldName,
 NewName);
 OldName := CustomerRec.Name;
 ChangeCustomerNameRef(CustomerRec);
 NewName := CustomerRec.Name;
 MESSAGE('Pass by reference:\Old Name: %1\New Name: %2',
 OldName, NewName);
END;

Chapter 2

43

11.	 Save and close your codeunit.

12.	 When you run the codeunit, you will see the following two windows:

How it works...
The first function, ChangeCustomerName, passes the parameter by value, which means
that a copy of the variable is created and the function uses that copy. So even though the
customer name is changed in the function, only its copy is changed. The original stays
the same.

The second function, ChangeCustomerNameRef, passes the parameter by reference. When
you pass a parameter by reference, the parameter refers to the same location in memory that
the actual variable is stored. No copy is made. Any changes made to the parameter will be
reflected in the original variable.

There's more...
Reference parameters are common throughout NAV, especially in codeunits. Codeunits such
as 12 (General Journal Lines), 80 (Sales), and 90 (Purchases) are all written to work with a
specific type of record. This is defined under the TableNo property in codeunit properties.
When you set a value here, the OnRun trigger will automatically have a reference parameter
name Rec added to it. Any changes made to the Rec variable will change the actual value
in that record. Also, if you only pass a record by value to a function, you do not get any of the
filters applied to the record set.

General Development

44

See also
ff Creating a function

Referencing dynamic tables and fields
You may, on occasion, need to retrieve data from the system, but not know in advance where
that data should come from. NAV accommodates this by allowing you to reference tables and
fields dynamically.

How to do it...
1.	 Create a new codeunit from Object Designer.

2.	 Add a global function, GetFirstRecord.

3.	 The function should take in the following parameter:

Name Type
TableNo Integer

4.	 Add the following local variables:

Name Type
RecRef RecordRef
FieldRef FieldRef

5.	 Write the following code in your GetFirstRecord function:
RecRef.OPEN(TableNo);
IF RecRef.FINDFIRST THEN BEGIN
 IF RecRef.FIELDEXIST(1) THEN
 FieldRef[1] := RecRef.FIELDINDEX(1);
 IF RecRef.FIELDEXIST(2) THEN
 FieldRef[2] := RecRef.FIELDINDEX(2);

 IF FieldRef[1].ACTIVE AND FieldRef[2].ACTIVE THEN
 MESSAGE('Table: %1\%2: %3\%4: %5', RecRef.NAME,
 FieldRef[1].NAME, FieldRef[1].VALUE,
 FieldRef[2].NAME, FieldRef[2].VALUE)
 ELSE
 MESSAGE('You cannot retrieve an inactive field.');
END ELSE
 MESSAGE('No records found!');

Chapter 2

45

6.	 Write the following code in your OnRun trigger:
GetFirstRecord(DATABASE::Customer);
GetFirstRecord(DATABASE::Vendor);

7.	 Save and close your codeunit.

8.	 When you run the codeunit you will see the following windows:

How it works...
We are creating a function, GetFirstRecord, that will return information about the first
record found in an unknown table. The TableNo parameter will tell the function which table
in the database to find the data.

When you don't know the table until runtime, you must use a RecordRef variable, which
stands for record reference and can refer to any record/table in the database. To point it to
the right table, you use the OPEN command. Here we tell the RecordRef variable to open any
table we pass into the function. If a record is found in that table we continue on, otherwise we
display the message "No records found!"

To store references to the fields we care about, we have created an array of FieldRef variables
called FieldRef. In this function, we have hard-coded a lookup for fields one and two, but
you could just as easily pass another parameter with the ID of the field you need. If that field
exists, we assign its value into our FieldRef variable to an appropriate index.

Finally, we have to determine whether the fields are active or in use and available for use by
the system. If they were not, we would not have been able to retrieve their values and would
instead display a message to the user. But if they are active, we display the name and value of
each field using the properties of the same name.

General Development

46

The code in the OnRun trigger runs the function with two different tables. The DATABASE::"Table
Name" syntax resolves to an integer. You could also pass the actual ID of the tables.

There's more...
Record references act just like their record counterparts. You can use them to insert, modify,
or delete records. You can set filters on them and use them to find records. For a complete
list of functions and properties, you can use the Symbol menu and investigate the C/SIDE
Reference Guide from the Help menu in the client.

The data migration codeunits in NAV are full of functions that use record and field references.
I recommend you start with the functions in codeunit 8611, Migration Management. This is
a great place to see real examples of how this type of code can be used.

See also
ff Checking for conditions using an IF statement

ff Writing your own rollback routine

Using recursion
Recursion is not used often in NAV, but the option is available and can shorten your code.
Recursion is the process by which a function calls itself.

How to do it...
1.	 Create a new codeunit from Object Designer.

2.	 Add a global function, Fibonacci, that returns an integer with no name.

3.	 The function should take the following parameter:

Name Type
i Integer

4.	 Write the following code in your Fibonacci function.
IF (i <= 2) THEN
 EXIT(1);
EXIT (Fibonacci(i-1) + Fibonacci(i-2));

Chapter 2

47

5.	 Write the following code in your OnRun trigger:
MESSAGE('Fibonacci(%1) = %2', 4, Fibonacci(4));

6.	 When you run the codeunit you will see a window like the one shown in the
following screenshot:

How it works...
The Fibonacci sequence is a series of numbers where the value in a certain position is the
sum of the number in the previous two positions.

That is: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55...

A recursive function has two parts. The first is a stopping condition. In our Fibonacci function,
the stopping condition is when the variable i is less than or equal to two. In that case, the
function will return 1 as the output.

The second part is where the function calls itself with a different parameter. Recursion can be
confusing so let's step through the code to get a better understanding. We'll use the following
diagram to explain this more clearly:

General Development

48

We start by passing the number four as a parameter to our function, which means that
the variable i is equal to four. As four is not less than or equal to two, we move to the last
line of the function. The function will exit the loop with the value Fibonacci(4 – 1) +
Fibonacci(4 – 2), but we don't know what those values are. Now we evaluate each
of those function calls separately.

Fibonacci(3) has a parameter that is also not less than two. Again, we move to the last line of
the function and exit with Fibonacci(3 – 1) + Fibonacci(3 – 2). This time it gets easier.

Fibonacci(2) exits with the value 1. Fibonacci(1) also exits with the value 1. Hence,
Fibonacci(2) = 1 and Fibonacci(1) = 1. Substituting them back in, we know that Fibonacci(3) =
Fibonacci(2) + Fibonacci(1) = 1 + 1 = 2.

But we're not done. We still have the original Fibonacci(4 – 2) to evaluate.

Fibonacci(2) = 1. So let's sum it all up.

Fibonacci(4) =[Fibonacci(3)] + [Fibonacci(2)] =

[Fibonacci(2) + Fibonacci(1)] + [Fibonacci(2)] =[1 + 1] + [1] = 3.

There's more...
Recursion can be extremely useful under the right circumstances, most notably performing
calculations, processing XML documents with nested nodes, or any sort of tree structure such
as a bill of materials. You should be aware, though, that it is not a replacement for loops.
Recursion can quickly eat through your available memory. Each function call has to be stored
in memory until the entire operation is complete. As a result, there is a limit to the number of
recursive calls that can be made.

See also
ff Repeating code using a loop

ff Sharing information using XMLports

3
Working with Tables

and Records

In this chapter, we will cover:

ff Creating a table

ff Adding a key to a table

ff Creating transactions to alter data

ff Validating data

ff Retrieving a single record from the database

ff Using advanced filtering

ff Retrieving data using FIND

ff Adding a FlowField to a table

ff Creating a SumIndex field

ff Marking records for future use

ff Clearing filters, keys, and values

ff Using temporary tables to store data

ff Retrieving data from another company

ff Merging records

ff Writing your own rollback routine

www.allitebooks.com

http://www.allitebooks.org

Working with Tables and Records

50

Introduction
If the simple data types we reviewed in Chapter 1, Strings, Dates, and Other Data Types, are
the nuts and bolts of NAV, then records are the assembled parts that make everything work.
A record is, to put it simply, a collection of related data. Together, this data gives the business
a better idea of what is going on with the company. When you view a list of customers, for
example, there are certain things you expect to see, which include name, address, phone
number, company, and so on. You can view the records in any table by clicking on Run from
Object Designer.

Be careful, though! You should avoid editing the data in tables directly as it
is easy to accidentally change something.

These records are stored in tables. A table acts as a blueprint for the records. It tells NAV what
kind of data can be stored in which fields and what should happen when certain actions are
performed on data. These blueprints are set up in the Table Designer, which is accessed by
clicking on New or Design from the Object Designer.

Chapter 3

51

Tables are the foundation of the entire NAV system. Every other object type, that is forms,
pages, reports, dataports, XMLports, and codeunits, depend on tables to work. It is critical
to understand the basic concepts involved in table design. Although we will not get anywhere
near showing you everything that can be done with a table, we will show you what you will
need to successfully design and use them. For more information it is recommended that you
explore the C/SIDE Reference Guide from the Help menu and the Development coursework
and training classes.

Creating a table
Tables are the building blocks for all other NAV objects. They store the data that the
business needs to access. This recipe will show you how to create a basic table and
save it in the system.

Working with Tables and Records

52

How to do it...
1.	 Create a new table object from Object Designer.

2.	 Add the following fields in the Table Designer window:

Field No. Field Name Data Type Length
1 Entry No. Integer
2 Document No. Code 20
3 Description Text 30
4 Value Decimal
5 Posting Date Date

3.	 It should look like the following window:

4.	 Save and close the Table.

How it works...
Each field is just like a variable. These variables, however, are grouped together to form a
new type of variable called a Record. The field definitions provide the structure for all of the
tables, as well as the data in them, inside the system. The data type of your fields can be
almost anything. In this example, we have created five fields of the most common types.

There's more...
If you do not specify a key manually, the field you have placed in Field No. 1 will act as the
primary key for your table.

Chapter 3

53

After completing the initial draft of your object, it is a good practice to add a few notes,
such as mentioning your initials and a date or a version number in the Description column
whenever you add a new field. This allows future developers know precisely when the change
was made and what other modifications were made. An example description could be "MT
01/01/2010 MOD001".

See also
ff Adding a key to a table

ff Validating data

ff Adding a FlowField to a table

ff Creating a SumIndex field

Adding a key to a table
Keys are used to make sure every record in the table is unique. They are often also referred to
as indexes and used to sort your data in ways that are most beneficial to the user.

How to do it...
1.	 Follow the steps from the Creating a table recipe to create a table.

2.	 Click on Design from Object Designer to open the Table Designer for that table.

3.	 Click on View | Keys (Alt + V, K).

4.	 On an empty line, add a new key for Document No., Posting Date.

5.	 Your keys should look like the following window:

Working with Tables and Records

54

ff Close the Keys window.

ff Save and close the table.

How it works...
Keys allow you to sort data in a way that will increase your application's performance. There is
a trade-off, though. Increased application performance later, costs you some effort earlier.

When we insert data into a table it is automatically sorted based on the primary key of that
table, but what about the other keys? The database engine doesn't just magically know how
records should be sorted. For every key, the database keeps some sort of information about
how the data will be ordered. More number of keys take more time to insert and to track all
of that information. This time is usually not noticeable by users, but you should be aware that
there is a trade-off. One common technique for database optimization is to remove the keys
that are not being used, especially on tables that have a high volume of transactions like Item
Ledger Entry or G/L Entry.

See also
ff Creating a table

ff Validating data

ff Adding a FlowField to a table

ff Creating a SumIndex field

ff Understanding SIFT tables

Creating transactions to alter data
The purpose of NAV is to help you use business data to improve the way your company
operates; that data needs to be saved in the database. This recipe will show you how to add,
change, and remove data or records from the tables in the NAV system.

How to do it...
1.	 Create a new codeunit from Object Designer.

2.	 Add the following global variable:

Name Type Subtype
Customer Record Customer

Chapter 3

55

3.	 Add the following code to the OnRun trigger of your codeunit:
Customer.Name := 'Matt Traxinger';
Customer.INSERT(TRUE);

Customer.SETCURRENTKEY(Name);
Customer.SETRANGE(Name, 'Matt Traxinger');
IF Customer.FINDFIRST THEN BEGIN
 Customer.Name := 'Alex Traxinger';
 Customer.MODIFY;
END;

4.	 Save and close your codeunit.

How it works...
First we fill out the field in our customer record. In this case, it's the Name field and we set it to
the value Matt Traxinger. The next line actually inserts the value into the database.

The first three lines of the next section retrieve the data we just inserted into the database.
We then change the name on the record to Alex Traxinger, but we still have to save that
value. You can't just insert the record because there is already one with the same customer
number—Instead you have to modify the existing record.

After running the codeunit you will find a Customer Card with the following information:

The No. field may be different depending on what the next number is currently set to in the
customer number series. It is automatically assigned by calling INSERT(TRUE).

Working with Tables and Records

56

There's more...
There are four types of operations you can perform on records in the database. They are
insert, modify, delete, and rename. Each does exactly what it sounds like. They add, change,
remove, and rename the primary key of the record in question.

Calling code when performing a transaction
Every table has triggers associated with it. They can be viewed by examining the C/AL
code when in the Table Designer (F9). You'll see triggers named OnInsert, OnModify,
OnDelete, and OnRename, as well as a few others. You can add code in these triggers to
check for conditions, fill in other fields, or anything else you might wish to do.

You call this code by passing an optional boolean parameter to the command. By default, this
code is not called (FALSE is passed), but in the INSERT command of our example, we pass
the value TRUE.

Catching errors when performing a transaction
Insert, modify, delete, and rename, all return a boolean value upon completion of a
transaction. When successful, it returns True; when not, it returns False and displays
an error message.

It is not always helpful to display this error. Sometimes, you might want to continue with what
you were doing. You can trap the error in the following manner:

IF Customer.INSERT THEN
// Do Something
IF Customer.MODIFY THEN
// Do Something

See also
ff Checking for conditions using an IF statement

ff Using temporary tables to store data

ff Merging records

ff Writing your own rollback routine

ff Handling runtime errors

Chapter 3

57

Validating data
It is important to make sure that the data being placed into the fields is correct. Many of the
checks done to the data can be performed using the field's properties, but in some instances
you will need to write code to do very specific data validation. Here we will show you where
that code should go and what can be done there.

Getting ready
You will need the customer card from the Creating transactions to alter data recipe.

How to do it...
1.	 Create a new codeunit from Object Designer.

2.	 Add the following global variable:

Name Type Subtype
Customer Record Customer

3.	 Add the following code to the OnRun trigger:
Customer.SETCURRENTKEY(Name);
Customer.SETRANGE(Name, 'Alex Traxinger');
IF Customer.FINDFIRST THEN BEGIN
 Customer."Search Name" := '';
 Customer.VALIDATE(Name, 'Matt Traxinger');
 Customer.MODIFY;
END;

4.	 Save and close the codeunit.

How it works...
Most of the code in our example is to find and save a record. We're going to look at the
following lines:

Customer."Search Name" := '';
Customer.VALIDATE(Name, 'Matt Traxinger');

First we set the "Search Name" field to be blank. This is so that we know our code will put
something in that field and that there wasn't some value already there.

Working with Tables and Records

58

The second line is the one we are more interested in. The VALIDATE command can be called
on any field in a table. It takes the syntax Record.VALIDATE(Field, Value). So here we
are validating the Name field on the customer table with the value 'Matt Traxinger'. Notice how
we never fill the "Search Name" field with an actual value. But when we look at the customer
card for our record we see:

This is because there is some code that was run that you haven't seen yet. Open the Table
Designer for the Customer table (Table 18). Click on field number two, Name, and then hit F9
to view the C/AL code within it. You'll be taken to a function called Name – OnValidate(),
which contains the following code:

IF ("Search Name" = UPPERCASE(xRec.Name)) OR
 ("Search Name" = '') THEN
 "Search Name" := Name;

It says that if some condition ends up being true that the "Search Name" field should be filled
in with whatever value is in the Name field. That's how it got filled in!

There's more...
Data validation is one of the most important topics in NAV development. Its main purpose is to
check that the value is allowed and to automatically fill into other fields.

When the validate function is called on a field, the program first checks the TableRelation
property of that field. If that is ok, it goes on to execute the code in the OnValidate trigger.
This trigger is just like any other in NAV. It can have local variables, call other functions, and do
everything that you would expect it to.

Chapter 3

59

Remember, though, that the purpose of VALIDATE is to ensure data integrity. This code could
be running anywhere, like a NAS server or in a web service, so you don't want to do things
such as asking the user for input.

See also
ff Creating a table

ff Adding a key to a table

ff Adding a FlowField to a table

ff Creating a SumIndex field

Retrieving a single record from the database
It's easy enough to put data into the database, but how do you write code to get it back out?
There are several ways and this recipe will discuss the first and easiest.

How to do it...
1.	 Create a new codeunit from Object Designer.

2.	 Add the following global variable:

Name Type Subtype
Customer Record Customer

3.	 Add the following code to the OnRun trigger of your codeunit:
Customer.GET('10000');
MESSAGE('No: %1\Name: %2', Customer."No.", Customer.Name);

4.	 Save and close the codeunit.

5.	 When you run the codeunit you should see a window like the following:

www.allitebooks.com

http://www.allitebooks.org

Working with Tables and Records

60

How it works...
The GET command works in conjunction with the primary key of the record. For the customer
table, the primary key is No.. If you are unsure of the primary key for the table you are using,
you can view the keys for the table and check the first entry.

We first tell the database to go to the customer table and GET the record that has a No. field
equal to 10000. We then display the number and name of the customer to make sure we
retrieved the correct entry.

See also
ff Checking for conditions using an IF statement

ff Using advanced filtering

ff Retrieving data using FIND

ff Clearing filters, keys, and values

Using advanced filtering
When dealing with data you usually do not want to have to look at all of it. Most of the time
you have a specific set of data from a table that you want to operate on. In NAV you can set
filters on the records so that only the data that you want is returned.

Chapter 3

61

How to do it...
1.	 Create a new codeunit from Object Designer.

2.	 Create a new function called CheckForCustomer. This function should take in the
following parameter:

Name Type Subtype
Cust Record Customer

3.	 Add the following code to this function:
IF Cust.FINDFIRST THEN
 MESSAGE('Found!\No.: %1\Name: %2\Filters: %3', Cust."No.",
 Cust.Name, Cust.GETFILTER(Name))
ELSE
 MESSAGE('Not Found!\Filters: %1', Cust.GETFILTER(Name));

4.	 Add the following local variable to the OnRun trigger:

Name Type Subtype
Customer Record Customer

5.	 Add the following code to the OnRun trigger of your codeunit:
Customer.SETCURRENTKEY(Name);

Customer.SETFILTER(Name, '%1', 'The Cannon Group PLC');
CheckForCustomer(Customer);

Customer.SETFILTER(Name, '%1', 'THE CANNON GROUP PLC);
CheckForCustomer(Customer);

Customer.SETFILTER(Name, '%1', '@THE CANNON GROUP PLC');
CheckForCustomer(Customer);

Customer.SETFILTER(Name, '%1', '*Cannon*');
CheckForCustomer(Customer);

6.	 Save and close the codeunit.

Working with Tables and Records

62

7.	 When you run the codeunit you will see a window similar to the following screenshot:

How it works...
First we create a function, CheckForCustomer, that will look for a filtered record. This is
not necessary every time you want to filter, but it makes this codeunit cleaner and easier to
understand. This function will display an appropriate message depending on whether or not
it finds a record. We have to pass the record parameter by reference instead of passing it
by value in order to pass through the filters that have been set. If you try without passing by
reference you'll see that the function will always find a record.

Now to the more interesting part: filters. The first function call passes the name of the
customer exactly as it appears in the record. Filtering in this method gives us our expected
result and returns the record.

The next call is slightly different, but changes the results completely. It is the same name, but
everything is capitalized. This does not match any records and the function returns a "Not
Found!" message. It doesn't matter if one letters is off, if you add an extra space, or write ",
LLC" instead of "LLC". If it doesn't match exactly it will not find the record.

Of course that's not very practical and NAV makes accommodations for the user. That's where
the at-sign (@) comes in to play. If you add an @ to the beginning of your filter string, as we
do in the next call, the filter will ignore capitalization. It doesn't matter if the record you are
looking for says Cannon, CANNON, or CaNNoN. They will all fall within the filter if the @ is used.

What about instances where we know that the name has Cannon in it somewhere, but we
cannot remember the whole name of the customer? NAV has the ability to handle wild-card
filtering as well using the asterisk/star (*). So a filter of "*Cannon" would return anything that
ends with Cannon. A filter of "Cannon*" would return everything that starts with the word
"Cannon". "*Cannon*" would return anything which contained the text "Cannon".

There's more...
There are many ways to filter your data. From within the C/SIDE Client, click on Help,
Microsoft Dynamics NAV Classic Help. Search for the help topic titled "Field Filters and Table
Filters". Microsoft provides wonderful examples of all of the available filtering options, both
individually and combined.

Chapter 3

63

See also
ff Creating a function

ff Passing parameters by reference

ff Retrieving a single record from the database

ff Retrieving data using FIND

ff Clearing filters, keys, and values

Retrieving data using FIND
Once you have determined the data that you want to operate on, you must retrieve it from the
database. Most of the time the action to be performed must be performed on more than one
record. This recipe will show you the best ways to get that data and when certain methods
should be used.

How to do it...
1.	 Create a new codeunit from Object Manager.

2.	 Add the following local variable to the OnRun trigger:

Name Type Subtype
Customer Record Customer

3.	 Add the following code to your OnRun trigger:
IF Customer.FINDFIRST THEN
 MESSAGE('The first customer in the database is:\No.: %1\Name:
 %2', Customer."No.", Customer.Name);

IF Customer.FINDLAST THEN
 MESSAGE('The last customer in the database is:\No.: %1\Name:
 %2', Customer."No.", Customer.Name);

IF Customer.FINDSET THEN BEGIN
 MESSAGE('There are %1 customers in the database',
 Customer.COUNT);
END;

4.	 Save and close the codeunit.

Working with Tables and Records

64

5.	 When you run the codeunit you will see windows that look like the following:

How it works...
There are three types of FIND commands, each of which will be discussed. The first two are
very similar and do exactly what you would expect. FINDFIRST returns the first record in the
data set while FINDLAST returns the last record. These commands should only be used when
you want to retrieve a single record from the database. They have been optimized for this
task. If you want to retrieve multiple records and process them individually, you should use the
FINDSET command.

There's more...
These commands were not introduced until version 5.0 of NAV. Previously, you would use
FIND('-') for FINDFIRST and FIND('+') for FINDLAST.

See also
ff Repeating code using a loop

ff Checking for conditions using an IF statement

ff Retrieving a single record from the database

ff Using advanced filtering

ff Clearing filters, keys, and values

Chapter 3

65

Adding a FlowField to a table
FlowFields are fields that are not actually stored in the database. They are calculated fields
that the user can call upon instead of performing the calculation themselves. This recipe will
show you how to add a FlowField to your tables.

How to do it...
1.	 Follow the steps from the Creating a Table recipe to create a table.

2.	 Add the following field to the table:

Field No. Field Name Data Type Length
10 Sell-to Customer No. Code 20

3.	 View the Properties for this field (Shift + F4).

4.	 Set the following properties:

Property Value
FieldClass FlowField

CalcFormula Lookup("Sales Invoice Header"."Sell-to
Customer No." WHERE (No.=FIELD(Document No.)))

Editable No

5.	 Close the Properties Window.

6.	 Save and close your table.

How it works...
To start, we create a field like any other field. It should have an ID number, name, and type. In
order to make it a FlowField, we have to change the property named FieldClass. This tells
the system whether or not this is an actual field to be stored in the database (Normal) or a
field that should be calculated or used to calculate a value on the fly (FlowField or FlowFilter).

Working with Tables and Records

66

When defining a FlowField you must tell the database how to calculate its value. This is done
with the CalcFormula property. Our field is a lookup, meaning we just want to pull a value
from another table that matches some criteria. We also have to tell it which table to pull the
value from and which filters should be used to determine the value.

There's more...
A FlowField is not actually stored in the database, which means it can't be used outside the
NAV client in other applications. It can't even be used in a SQL procedure. So what exactly is
its use?

FlowFields can be used to display related information more easily. A great example is the
Cost fields from the Item Ledger Entry table. The actual cost of an item is the sum of all of the
associated records from the Value Entry table. You wouldn't want to manually check its value
every time you required that information. You also wouldn't want to calculate them using code
(this method of calculating and storing in a global variable does not allow you to filter on the
values). That's where the FlowField comes in. Not only does it allow you to compile information
about related entries, but the database keeps a track of it all for you, allowing for faster
reporting and viewing of data.

Chapter 3

67

Determining the value of a FlowField
Remember, the value of a FlowField is not stored in the database. We have to tell the system
to calculate the value. Here is a quick example of how to use FlowFields in your own code.

The variable FlowFieldRec is a record variable that refers to the table you created in this
example. The large conditional block at the start of the code is just to make sure we have data
in the table.

IF NOT FlowFieldRec.GET(1) THEN BEGIN
 FlowFieldRec."Entry No." := 1;
 FlowFieldRec."Document No." := '103006';
 FlowFieldRec.INSERT;
END;

BeforeValue := FlowFieldRec."Sell-to Customer No.";
FlowFieldRec.CALCFIELDS("Sell-to Customer No.");
AfterValue := FlowFieldRec."Sell-to Customer No.";

MESSAGE('Value before: %1\Value after: %2', BeforeValue, AfterValue);

BeforeValue and AfterValue are code variables. First we assign the uncalculated value
to the BeforeValue variable. In this case, the value will be an empty string. The next line
uses the CALCFIELDS command to tell the system to figure out what the value of that
FlowField is. Once it has been calculated, we assign its value to the AfterValue variable
and display a message like the one shown in the following screenshot:

See also
ff Creating a table

ff Adding a key to a table

ff Validating data

ff Creating a SumIndex field

ff Understanding SIFT tables

Working with Tables and Records

68

Creating a SumIndex field
A SumIndex is like a running total of certain fields in your table. Instead of calculating these
sums manually you can tell NAV to do it for you. Here we'll tell you how to add a SumIndex field
to your table and show you how to use it.

How to do it...
1.	 Follow the steps from Creating a Table recipe to create a table.

2.	 View the keys for the table by clicking View | Keys from the Menu.

3.	 Add a key for the Posting Date and a SumIndexFields for Value.

4.	 Close the Keys window.

5.	 Save and close your table.

How it works...
This recipe, unlike a few others, is very straightforward. By adding fields to list in the
SumIndexFields column of a key, you tell the database to keep a track of the totals for
those fields for every combination of filters in the key.

Chapter 3

69

There's more...
Why use SumIndexFields? Why not just calculate these totals manually? The answer is that
it is much faster to let the database do it. We won't get into the details behind the scenes
regarding SumIndexFields, but will demonstrate how it works using a short example.

Entry No. Value Total
1 10 10
2 20 30
3 30 60
4 40 100
5 50 150
6 60 210
7 70 280
8 80 360
9 90 450
10 100 550

In the background, NAV keeps a running total or sum of the values defined as
SumIndexFields. If you were to calculate the total manually, you would have to sum
up all ten entries individually.

With SIFT(Sum Index Field Technology), NAV can do this with only two entries. Let's try and
find the sum of entries four through eight. By manually adding this up we have five entries
and the total is 300. SIFT will take the sum of the values up until our first entry (so the total
of entries one through three, that is 60) and subtract that from the total of our last entry,
number eight, which is equal to 360. 360 – 60 = 300, the same result.

In C/AL code, you will need to use the CALCSUMS function to calculate this value.

For a detailed explanation of how SumIndexFields work with SQL and SIFT Indexes, do take a
look at "The NAV/SQL Performance Guide" by Jorg A. Stryk.

See also
ff Creating a table

ff Adding a key to a table

ff Validating data

ff Adding a FlowField to a table

ff Understanding SIFT tables

Working with Tables and Records

70

Marking records for future use
Sometimes you need to work with records that just don't fall into an easily filterable data
set. The most common is when you need Field A to equal one value or Field B to equal some
other value. This recipe will show you how to mark the individual records that you need to
operate on.

How to do it...
1.	 Create a new codeunit from Object Designer.

2.	 Add the following global variable:

Name Type Subtype
Customer Record Customer

3.	 Add the following code to the OnRun trigger:
Customer.SETFILTER(Name, 'C*');
IF Customer.FINDSET THEN
 REPEAT
 Customer.MARK(TRUE);
 UNTIL Customer.NEXT = 0;

Customer.SETRANGE(Name);
Customer.SETRANGE("Location Code", 'YELLOW');
IF Customer.FINDSET THEN
 REPEAT
 Customer.MARK(TRUE);
 UNTIL Customer.NEXT = 0;

Customer.MARKEDONLY(TRUE);
MESSAGE('%1 records marked', Customer.COUNT);

4.	 Save and close the codeunit.

5.	 When you run this codeunit you will see a message like this one:

Chapter 3

71

How it works...
Sometimes the records you want to work with don't fit easily into specific filters. One option is
to mark the records you need and then perform operations on them. In our simple case, we
retrieve records from the database that start with the letter "C" and use the MARK command to
mark them for later use. We then do the same thing for all customers that belong to Location
Code "YELLOW". In most cases you would have some sort of conditional statement that would
determine whether or not to mark the record.

Marking a record is essentially the same as setting a flag on the record. Later, you still need to
filter on that flag. That's what the MARKEDONLY function does. Just like the MARK function, it
takes in a boolean value that tells the system what to do.

There's more...

You can also mark records from the client using Ctrl + F1. When you do this, you'll notice that
a small dot is placed to the left of the record as in the following screenshot:

See also
ff Using advanced filtering

ff Using temporary tables to store data

Working with Tables and Records

72

Clearing filters, keys, and values
Once you have applied filters to a variable and performed your operations, you may want
reuse that variable. Here we will show you how to remove any actions you may have done to it.

How to do it...
1.	 Create a new codeunit from Object Designer.

2.	 Add the following global variable:

Name Type Subtype
Customer Record Customer

3.	 Add the following code to the OnRun trigger of the codeunit:
Customer.SETCURRENTKEY(Name);
Customer.SETFILTER(Name, 'Matt');
Customer."No." := 'Num';
Customer.RESET;

MESSAGE('Current Key: %1\Name Filter: %2\Customer No.: %3',
 Customer.CURRENTKEY, Customer.GETFILTER(Name), Customer."No.");

Customer.SETCURRENTKEY(Name);
Customer.SETFILTER(Name, 'Matt');
Customer."No." := 'Num';
CLEAR(Customer);

MESSAGE('Current Key: %1\Name Filter: %2\Customer No.: %3',
 Customer.CURRENTKEY, Customer.GETFILTER(Name), Customer."No.");

4.	 Save and close the codeunit.

5.	 When you run the codeunit you will see windows like the following:

Chapter 3

73

How it works...
When using a simple variable type, you can set its value to zero or to an empty string
whenever you want to reuse them. Record variables are made up of a lot of these simple
variable types. You don't need to set each of the fields individually. NAV offers two functions
for this, and it is important to understand the differences between them.

The first is the RESET function. This will remove any filters you have set on the variable. It will
also set the key back to the primary key if you have changed it. It will NOT clear any values
from the fields.

The second is the CLEAR command. This does everything that RESET does, but takes it a step
further by clearing individual fields of the record.

In the example code, we set a key, some filters, and the value of a field, then perform each of
the functions. The message displayed will show you what gets changed in the record.

See also
ff Retrieving a single record from the database

ff Using advanced filtering

ff Retrieving data using FIND

Using temporary tables to store data
Temporary tables can be useful when you need to insert data into a table to perform
calculations, but don't want it saved to the database. This recipe will show you how to mark
your records as temporary and what to watch out for when you do.

Working with Tables and Records

74

How to do it...
1.	 Create a new codeunit from Object Designer.

2.	 Add the following global variable:

Name Type Subtype
Customer Record Customer
TempCustomer Record Customer

3.	 View the properties of the TempCustomer variable.

4.	 Set the following property:

Property Value
Temporary Yes

5.	 Close the Properties window.

6.	 Add the following code to the OnRun trigger of the codeunit:
MESSAGE('Customer Count: %1\TempCustomer Count: %2',
 Customer.COUNT, TempCustomer.COUNT);

7.	 Save and close the codeunit.

8.	 When you run the codeunit you will see a window like the one shown in the
following screenshot:

How it works...
Declaring a record variable as temporary is as easy as setting the Temporary property to Yes.
But what is the purpose of setting a temporary table? A temporary table has all the code and
properties of a normal table. It functions in exactly the same way. The only difference is that
when you perform a transaction (insert, modify, delete, or rename) with a temporary table, the
data is not stored in the database. Instead it is held in memory just like any other variable.

Chapter 3

75

There's more...
It may sound obvious, but when planning to work with a temporary table, don't forget to
mark it as Temporary! There's nothing worse than running TempGLEntry.DELETEALL and
realizing that all of your real data is gone. This is a perfect example of why you should always
do your development in a test system and have a recent backup before performing any
changes. Also, if you run a DELETEALL(TRUE) on a temporary record variable, the code that
is called in the OnDelete trigger will run with variables that are NOT temporary, which means
that actual data will be deleted. Again, be careful!

Storing records to process
Just as you can mark records that have to be processed using the MARK function, you can also
create a temporary table to store them. Instead of MARK, the following code can be used:

TempCustomer := Customer;
TempCustomer.INSERT;

You assign the value of the actual data to a temporary record and the insert into the
temporary table. The data will be stored in memory, but not in the database, and you
can use it for later operations.

See also
ff Retrieving a single record from the database

ff Marking records for future use

ff Creating a form based on a temporary table

Working with Tables and Records

76

Retrieving data from another company
NAV can hold data for many companies under your corporate umbrella. Many times, users will
want consolidated reports that show them data from all of the companies in the system. This
recipe will show you how to retrieve that data from anywhere in the system.

Getting ready
Make sure you have at least two companies in your database like Cronus USA and
Cronus Canada.

How to do it...
1.	 Create a new codeunit from Object Designer.

2.	 Add the following global variables:

Name Type Subtype
Customer Record Customer
Company Record Company

3.	 Add the following code to the OnRun trigger of the codeunit:
IF Company.FINDSET THEN
 REPEAT
 Customer.CHANGECOMPANY(Company.Name);
 MESSAGE('Company Name: %1\Customer Count: %2',
 Company.Name,Customer.COUNT);
 UNTIL Company.NEXT = 0;

4.	 Save and close the codeunit.

5.	 When you run the codeunit you will see a window like the one shown in the
following screenshot:

Chapter 3

77

How it works...
In order to get data from another company within NAV, we have to tell it which company we
want access to. Records have a built-in function called CHANGECOMPANY. This function takes
in a text value that represents the name of the company as a parameter.

In our example, we are going to show the number of customers in every company in NAV.
That's why we have the company record variable. Looping through each record in the dataset,
we pass the name of the company through the CHANGECOMPANY command and display
the customer count. We could just as easily have stored our other company name in a text
constant and passed that value instead. In most cases, though, it is good to store the name
of the company you want to access in a setup table. This way if the company is renamed, your
code will not break.

Remember, just because you are running code on a temporary variable, doesn't mean that the
code defined in that object uses temporary variables. For example, you may define a record
variable as temporary and call the OnDelete trigger using DELETE(TRUE). If there are
record variables in the trigger that are not defined as temporary, they will delete actual data.

See also
ff Retrieving a single record from the database

ff Retrieving data using FIND

Merging records
Many times users will unintentionally enter duplicate data into the system. NAV doesn't offer a
built-in way to merge this data, but here we will show you how you can do it yourself.

Getting ready
If you do not have two customer records that you would like to merge together, you must
create them. It is best if these customers have some related entries in other tables, for
example the Contact or Cust. Ledger Entry tables.

Working with Tables and Records

78

How to do it...
1.	 Create a new codeunit from Object Designer.

2.	 Add the following global variables:

Name Type Subtype Length
CustToKeep Record Customer
CustToRemove Record Customer
CustNoToKeep Code 20
CustNoToRemove Code 20

3.	 Add the following code to the OnRun trigger of your codeunit:
CustNoToKeep := 'C00010';
CustNoToRemove := 'C00020';

CustToKeep.GET(CustNoToKeep);
CustToKeep.DELETE;

CustToRemove.GET(CustNoToRemove);
CustToRemove.RENAME(CustNoToKeep);

4.	 Save and close the codeunit.

How it works...
First, you have to determine the two customer records that you want to merge. The customer
number that you want to keep is stored in the CustNoToKeep code variable. The customer
number that will be removed from the system is stored in the CustNoToRemove variable.

Now for the part that may seem counter-intuitive at first, we retrieve one customer record from
the database using GET and the number in the CustNoToKeep variable and then delete it!
It is important that we do a DELETE and not a DELETE(TRUE) in this case. By passing the
default value of FALSE to the DELETE command, we only delete this record. This means that
any related records, such as customer ledger entries, remain in the database. They just aren't
tied to an actual customer anymore.

If that part was confusing, this next set of code will make things clearer. Now we get the
customer that we want to remove from the database. Instead of deleting it, we rename it
to the customer number that we wanted to keep. So the record we wanted to get rid of is
"removed" and it takes the place of the one we are keeping. In this case all of the related
records are also renamed, thus merging them with the records that were not removed when
we executed our DELETE statement.

Chapter 3

79

The following diagram may help in further illustrating what the records in the database will
look like at each step along the way:

See also
ff Creating transactions to alter data

Writing your own rollback routine
NAV does some rollback automatically. But if there is a COMMIT statement in the code, only
the changes after the COMMIT statement is executed will be reversed by the system. This
recipe will show you how to leverage a built-in NAV feature called the Change Log to build your
own rollback routine for those cases.

Getting ready
Turn on the Change Log for table 36, Sales Header.

Working with Tables and Records

80

How to do it...
1.	 Create a new codeunit from Object Designer.

2.	 Add a function named FilterRecord that takes in the following parameters:

Name Type Subtype
ChangeLogEntry Record Change Log Entry
PrimaryKeyIndex Integer
RecRef RecordRef

3.	 Add the following local variables to the function:

Name Type Length
FieldRef FieldRef
TypeNumber Decimal
PrimaryKeyFieldNo Integer
PrimaryKeyValue c 250

4.	 Add the following code to the function:
WITH ChangeLogEntry DO BEGIN
 CASE PrimaryKeyIndex OF
 1: BEGIN
 PrimaryKeyFieldNo := "Primary Key Field 1 No.";
 PrimaryKeyValue := "Primary Key Field 1 Value";
 END;
 2: BEGIN
 PrimaryKeyFieldNo := "Primary Key Field 2 No.";
 PrimaryKeyValue := "Primary Key Field 2 Value";
 END;
 3: BEGIN
 PrimaryKeyFieldNo := "Primary Key Field 3 No.";
 PrimaryKeyValue := "Primary Key Field 3 Value";
 END;
 ELSE EXIT;
 END;

 IF PrimaryKeyFieldNo = 0 THEN
 EXIT;

Chapter 3

81

 IF RecRef.FIELDEXIST(PrimaryKeyFieldNo) THEN BEGIN
 FieldRef := RecRef.FIELD(PrimaryKeyFieldNo);
 CASE FORMAT(FieldRef.TYPE) OF
 'Option': BEGIN
 FieldRef.SETRANGE(MatchOptionToInteger(FieldRef.OPTIONSTRING,
 PrimaryKeyValue));
 END;
 'Code', 'Text': BEGIN
 FieldRef.SETRANGE(PrimaryKeyValue);
 END;
 'Integer', 'Decimal': BEGIN
 EVALUATE(TypeNumber, PrimaryKeyValue);
 FieldRef.SETRANGE(TypeNumber);
 END;
 'Boolean': BEGIN
 IF PrimaryKeyValue = 'No' THEN
 FieldRef.SETRANGE(FALSE)
 ELSE
 FieldRef.SETRANGE(TRUE);
 END;
 END;
 END;
END;

5.	 Add a function named MatchOptionToInteger with the following parameters:

Name Type Length
OptionStringIn Text 250
Option Text 250

6.	 Add the following local variables to the function:

Name Type Length
OptionIndex Integer
OptionEndPosition Integer
OptionValue Text 250
OptionString Text 250

7.	 Set the return value of the function to be an integer.

Working with Tables and Records

82

8.	 Add the following code to the function:
REPEAT
 OptionEndPosition := STRPOS(OptionStringIn, ',');
 IF OptionEndPosition = 0 THEN
 OptionEndPosition := STRLEN(OptionStringIn);
 OptionValue := COPYSTR(OptionStringIn, 1,
 OptionEndPosition - 1);

 IF OptionValue = Option THEN
 EXIT(OptionIndex)
 ELSE
 OptionStringIn := COPYSTR(OptionStringIn,
 OptionEndPosition + 1);

 OptionIndex += 1;
UNTIL OptionStringIn = '';

EXIT(-1);

9.	 Add a function named ReverseEntry with the following parameters:

Name Type Subtype
ChangeLogEntry Record Change Log Entry

10.	 Add the following local variables to the function:

Name Type
RecRef RecordRef
FieldRef FieldRef
TypeNumber Integer

11.	 Add the following code to the function:
WITH ChangeLogEntry DO BEGIN

 RecRef.OPEN("Table No.");
 FilterRecord(ChangeLogEntry, 1, RecRef);
 FilterRecord(ChangeLogEntry, 2, RecRef);
 FilterRecord(ChangeLogEntry, 3, RecRef);

 IF RecRef.FINDFIRST THEN

Chapter 3

83

 IF "Type of Change" = "Type of Change"::Modification THEN
 BEGIN
 FieldRef := RecRef.FIELD("Field No.");

 CASE FORMAT(FieldRef.TYPE) OF
 'Code', 'Text': BEGIN
 FieldRef.VALUE := "Old Value";
 END;
 'Option', 'Integer', 'Decimal': BEGIN
 EVALUATE(TypeNumber, "Old Value");
 FieldRef.VALUE := TypeNumber;
 END;
 'Boolean': BEGIN
 IF "Old Value" = 'No' THEN
 FieldRef.SETRANGE(FALSE)
 ELSE
 FieldRef.SETRANGE(TRUE);
 END;
 END;
 RecRef.MODIFY;
 END;
 ELSE
 ERROR('No record found!');
 END;
END;

12.	 Add a function named Rollback that takes the following parameters:

Name Type
EntryStart Integer
EntryEnd Integer

13.	 Add the following local variables to the function:

Name Type Subtype
ChangeLogEntry Record Change Log Entry

Working with Tables and Records

84

14.	 Add the following code to the function:
ChangeLogEntry.SETRANGE("Entry No.", EntryStart, EntryEnd);
ChangeLogEntry.ASCENDING := FALSE;
IF ChangeLogEntry.FINDFIRST THEN
 REPEAT
 ReverseEntry(ChangeLogEntry);
 UNTIL ChangeLogEntry.NEXT = 0;

15.	 Add the following code to the OnRun trigger:
Rollback(149, 199);

16.	 Save and close the codeunit.

How it works...

NAV has a built-in functionality to track changes to records called a Change Log. It must be
turned on for tracking specific tables and fields. We can build on this functionality to create
our own rollback routine. Each entry in the Change Log Entry table represents a change to a
record. It stores the first three fields of the primary key, the field that was changed, the original
value, and the new value. As we do not know what table or field was changed before we look
at the record, we will rely heavily on Record References and Field References. This example
is very basic and does not cover every possible field type or change that can be made,
but it will get you started in developing your own. Let's look at each function to get a
better understanding.

We'll start with the FilterRecord function. We tell this function which of the primary key
fields to filter on. The first CASE statement pulls the primary key value from the Change Log
Entry and stores it in a temp variable. If that field exists we then take appropriate actions
based on what type of field it is. For example, in the Change Log, option values are stored as
strings so we must match that string to the actual integer value of the OptionString.

That brings us to our next function, MatchOptionToInteger. This is a simple helper
function. An OptionString is a comma-separated list. In this function, we parse the
OptionString that removes all the text in it until we find a comma. The text we find
represents a single option. We continue this process until we find the option we want, that is
the one stored in the Change Log Entry.

Now that we have these helper functions, we need to use them to actually reverse an entry.
Using the ReverseEntry function we tell the codeunit to filter for the record described by the
primary key fields in the Change Log Entry. We do this three times to account for each of the
primary key fields. After these filters are applied, we attempt to find the record and change its
value. Again, because all of the values are stored as text we have to convert the data to the
appropriate data type in order to change the value.

Our final function, Rollback, simply loops through all of the Change Log entries we tell it to
and calls the ReverseEntry function on each of those records.

Chapter 3

85

See also
ff Repeating code using a loop

ff Checking for conditions using an IF statement

ff Creating a function

ff Referencing dynamic fields and tables

ff Creating transactions to alter data

ff Retrieving a single record from the database

ff Using advanced filtering

ff Retrieving data using FIND

4
Designing Forms

In this chapter, we will cover:

ff Obtaining input without a form

ff Using the Form Generation Wizard

ff Changing text appearance

ff Preventing editable lookup forms

ff Adding an editable field to a non-editable form

ff Creating a matrix form

ff Creating a wizard-style form

ff Designing a form based on a temporary table

ff Updating a subform from a parent form

ff Updating a parent form from a subform

Introduction
Forms are a predominant visual element in Dynamics NAV. They allow the user to view, insert,
modify, and delete data from the tables in the database. Forms also allow the user to initiate
events that perform actions on that data.

There are 937 tables in the base NAV software and 1,820 forms that display information
from those tables. Apart from learning how to create a form using the wizard, this chapter will
not discuss the basic elements of form design. That information can be found in the C/SIDE
Reference Guide and Development Coursework from Microsoft.

Designing Forms

88

If you have not designed a form before, it is highly recommended
that you go through the chapters based on forms first.

With NAV 2009, Microsoft released the RoleTailored client, or RTC. This was a huge change
from the existing NAV product. In this release, Microsoft introduced the RTC as a second client
or interface in addition to what is called the Classic client, or more traditional interface. While
the future of NAV is definitely with the RTC, it is still important to understand what forms are
and how they work, in order to support customers who might not upgrade to the latest version
of the product.

Obtaining input without a form
Sometimes you don't want to use an entire form to get user input. Dialog boxes are not a
substitute for forms, but they work just fine for quick input.

How to do it...
1.	 Create a new codeunit from Object Designer.

2.	 Add the following global variables:

Name Type Subtype Length
Customer Record Customer
CustomerNo Code 20
Window Dialog

3.	 Add the following code to the OnRun trigger of the codeunit:
Window.OPEN('Customer No: #1####################');
Window.INPUT(1, CustomerNo);
Window.CLOSE;

IF Customer.GET(CustomerNo) THEN
 MESSAGE('Customer Name: %1', Customer.Name)
ELSE
 MESSAGE('No customer found!);

4.	 Save and close the codeunit.

Chapter 4

89

How it works...
The first line of code opens an input dialog window that looks like one shown in the
following screenshot:

The next line lets the user input a value and stores it in the CustomerNo variable. The dialog
window then closes and the result can be used later in code.

There's more...
As you can tell from the input window, dialogs are much weaker than forms when it comes
to functionality. You can't do lookups, data validation, or anything other than basic text input.
From a licensing aspect, forms are one of the cheapest objects to buy. They also don't match
the look and feel for the rest of the system. For these reasons it is almost always better to use
a form than an input dialog, but it is important to know what you can do using dialogs.

See also
ff Displaying a Progress Bar

Using the Form Generation Wizard
You can always create a form manually, but using the Form Generation Wizard is a quick and
painless way to create the skeleton.

Designing Forms

90

How to do it...
1.	 With the form selected in Object Designer click the New button.

2.	 Choose the Customer table.

3.	 Select Create a form using a wizard.

4.	 Select Tabular-Type Form.

5.	 Click OK.

Chapter 4

91

6.	 Use the arrow buttons between the two lists to add the No. and Name fields.

7.	 Click on Finish.

How it works...
The Form Generation Wizard allows you to tell the system what fields you want on the form
and the format or order in which you want them to appear. NAV will then automatically place
the fields on the form for you. There is no manual positioning of labels or textboxes; no
creating tabs or list boxes. It is all done automatically.

There's more...
The wizard will only create a basic form for you. If you need to create special functions or do
any specific data validation, you will have to code that manually. A wizard is only designed to
get you started, not to do anything advanced.

See also
ff Creating a matrix form

ff Creating a wizard-style form

Designing Forms

92

Changing text appearance
A great way to improve the user experience is to change the way text appears on the screen.
This recipe will explore several options that are available to you.

Getting ready
Design the Customer List form and save it as a new object.

How to do it...
1.	 Design the copy of the Customer List form.

2.	 Create a function named GetColor that returns an integer.

3.	 Add the following code to the function:
IF "Location Code" = 'BLUE' THEN
 EXIT(16711680)
ELSE IF "Location Code" = 'GREEN' THEN
 EXIT(65280)
ELSE IF "Location Code" = 'RED' THEN
 EXIT(255)
ELSE IF "Location Code" = 'YELLOW' THEN
 EXIT(65535)

4.	 Create a function named GetBold that returns a boolean value.

5.	 Add the following code to the function:
EXIT("Credit Limit (LCY)" > 1000);

6.	 In the OnFormat trigger for the name column, add the following code:
CurrForm.Name.UPDATEFORECOLOR(GetColor);
CurrForm.Name.UPDATEFONTBOLD(GetBold);

7.	 Save and close the form.

How it works...
The trigger that controls the appearance of text is the OnFormat trigger. The first function
we use is UPDATEFORECOLOR. This method is found on every text field in a form. It takes
one parameter—the color we want the text to be. In our example, we pass a function as the
parameter and that function returns the color we should use.

UPDATEFONTBOLD works in a similar way. It takes a boolean parameter that tells the form
whether or not to emphasize the text.

Chapter 4

93

The resulting form will look similar to the one shown in the following screenshot:

There's more...
The look and feel of a system is important for user satisfaction. Finding ways to make the
information easier to understand, such as displaying the text in the same color as the
warehouse location, can improve user understanding and decrease the time it takes to look
up information.

That said, don't go overboard. Having a form with multiple colors that have no direct
relation to the data can be confusing. You don't want to the user to have a "cheat sheet" of
what everything means. If it takes longer than a couple of minutes to explain what certain
characteristics mean and you can't remember them an hour later, then you probably have
gone too far. It also makes your upgrade-time to the RoleTailored client longer because display
colors only have limited support.

See also
ff Converting a value to a formatted string

Preventing editable lookup forms
You may want users to only add records when running a form from a setup location. This
example will show you how to prevent users from adding or modifying values when only trying
to look up a record.

Designing Forms

94

Getting ready
This example will use the Salesperson/Purchasers form (14).

How to do it...
1.	 Design the Salesperson/Purchasers form from Object Designer.

2.	 In the OnOpen trigger for the form, add the following code:
IF CurrForm.LOOKUPMODE THEN
 CurrForm.EDITABLE := FALSE;

3.	 Save and close the form.

How it works...
The code here is pretty self-explanatory. If the form is in lookup mode, it will not be editable.

There's more...
The Lookup mode is a special mode in which forms can run. Essentially, when in lookup
mode, the OK and Cancel buttons are displayed; when not in lookup mode, they are hidden.
When using these buttons you can retrieve the selected value from the form. It is often a good
idea to make forms uneditable in lookup mode, although you will find many forms in base NAV
where this is not the case. When the purpose of running a form is only to retrieve a value, it
is a good idea to make sure that the form is not editable to make sure those values are not
accidentally changed.

See also
ff Checking for conditions using an IF Statement

ff Adding an editable field to a non-editable form

Adding an editable field to a non-editable
form

Have you ever needed to make a form uneditable rather than just one field? This recipe will
show you a quick and easy way to do it.

Chapter 4

95

Getting ready
Create a list form based on the Customer table that displays the number and name of the
customer. The Editable property of the form should be set to No.

How to do it...
1.	 View the code for the Name column in the list form.

2.	 In the OnActivate trigger, add the following code:
CurrForm.EDITABLE := TRUE;

3.	 In the OnDeactivate trigger add the following code:
CurrForm.EDITABLE := FALSE;

4.	 Save and close the form.

How it works...
When you click on a textbox its OnActivate trigger is executed. In our form, we have told the
system to override the default Editable property when we click on the textbox. We set it to
true so that the field becomes editable. In fact, the entire form becomes editable. We must
make the entire form editable because that overrides the editable property of the controls on
the form.

But when we click-off or tab-off of the field the OnDeactivate trigger fires. We then reset the
form back to uneditable. Whenever the field is activated you can edit it, otherwise you cannot
edit anything.

In the RoleTailored client there is no OnActivate or
OnDeactivate trigger. You will have to do it the hard way,
that is, by setting the Editable property on every field.

See also
ff Preventing editable lookup forms

Creating a matrix form
A matrix shows information from multiple tables at the same time. This recipe will show you
how to create a matrix that shows the amount a customer has spent on specific items.

Designing Forms

96

How to do it...
1.	 Add a global function CalculateData that returns a text variable.

2.	 Add a global function ColumnHeader that returns a text variable.

3.	 Add a matrix box to the form.

4.	 Set the following properties on the matrix box control:

Property Value
Name MatrixBox

Editable No

MatrixSourceTable Item

Chapter 4

97

5.	 Set the following property on the form:

Property Value
SourceExpr Customer

6.	 Add the No. and Name fields to the left-hand side of the matrix box using the
Field menu.

7.	 Add a textbox to the right-hand side of the matrix box.

8.	 Set the following property on the textbox:

Property Value
SourceExpr CalculateData

9.	 Add a textbox as a column header above that textbox.

Designing Forms

98

10.	 Set the following property on the textbox:

Property Value
SourceExpr ColumnHeader

11.	 Add the following code to the ColumnHeader function
EXIT(CurrForm.MatrixBox.MatrixRec."No.");

12.	 Add the following local variables to the CalculateData function:

Name Type Subtype
ItemLedgerEntry Record Item Ledger Entry
TotalSales Decimal

13.	 Add the following code to the CalculateData function
ItemLedgerEntry.RESET;
ItemLedgerEntry.SETCURRENTKEY("Source Type", "Source No.",
 "Item No.", "Variant Code", "Posting Date");
ItemLedgerEntry.SETRANGE("Source Type", ItemLedgerEntry."Source
 Type"::Customer);
ItemLedgerEntry.SETRANGE("Source No.", "No.");
ItemLedgerEntry.SETRANGE("Item No.",
 CurrForm.MatrixBox.MatrixRec."No.");
ItemLedgerEntry.SETRANGE("Entry Type", ItemLedgerEntry."Entry
 Type"::Sale);

IF ItemLedgerEntry.FINDSET THEN

Chapter 4

99

 REPEAT
 ItemLedgerEntry.CALCFIELDS("Sales Amount (Actual)");
 TotalSales := TotalSales + ItemLedgerEntry."Sales Amount
 (Actual)";
 UNTIL ItemLedgerEntry.NEXT = 0;
EXIT(FORMAT(TotalSales));

14.	 After running the resulting form, you should see something similar to the
following screenshot:

How it works...
A matrix form consists of two tables and some calculation based on those two tables. One set
of records runs vertically along the left-hand side of the matrix box while the other set runs
horizontally across the top. A grid is displayed on the rest of the form displaying a calculated
value. We'll examine each of these pieces individually.

We begin by creating a normal form that is bound to the Customer table. For this special form
we add a matrix box control. The left-hand side operates exactly the same as a standard list
form. It will display all of the customers and there will be a scrollbar to look through the list.
As we don't want the user to change anything on this form, we set the Editable property of
the matrix box to No. We will also have to write code that refers to this control so we must give
it a name.

Designing Forms

100

Also, the matrix box itself operates on a table. In this case it is the Item table. As there is
so much data stored in a table, we have to tell the control what we want to see. That's why
we add a textbox as a column header to the top of the form. The source expression for that
textbox is the ColumnHeader method. Let's take a look at the code there.

EXIT(CurrForm.MatrixBox.MatrixRec."No.");

CurrForm is the current form. MatrixBox is the value in the name property of our matrix
box control. MatrixRec is the record in the matrix box that we are referring to (just like rec
on a normal form). Finally, No. is the field from the MatrixSourceTable property(in this
case the Item No). So our column headers will just be the Item Number from the Item table.

Lastly, we have to tell the form how to calculate the data we want to see. We add another
textbox to the form and give it a source expression of CalculateData, which is a function on
our form. This function could return anything, but in our case it returns the amount a customer
has spent on a specific item. Let's take a look at the important code that combines the data
from both tables.

ItemLedgerEntry.SETRANGE("Source No.", "No.");
ItemLedgerEntry.SETRANGE("Item No.",
 CurrForm.MatrixBox.MatrixRec."No.");

The Item Ledger Entry table already has fields that refer to the Customer table and to the
Item table. The first filter uses the No. field from the source table (Customer). The second
filter determines the current Item Number from the matrix box and uses it. Later in the
function, a number is calculated and returned as a text variable.

See also
ff Using the Form Generation Wizard

ff Creating a function

Creating a wizard-style form
A wizard is a form that steps you through specific sections using Next and Back buttons. Here
we will show you how to design a form which will do exactly that.

Chapter 4

101

How to do it...
1.	 Add a frame to the form.

2.	 Set the following properties on the textbox:

Property Value
ShowCaption No

Name Frame1

3.	 Add a label to the frame with the caption "Frame 1".

4.	 Set the following properties on the Label:

Property Value
Caption Frame 1

5.	 Copy the frame and paste two copies of it on the form.

6.	 Change the labels in the new frames to be Frame 2 and Frame 3.

7.	 Change the Name properties of the frames to Frame2 and Frame3 respectively.

Designing Forms

102

8.	 Your form should look like the one shown in the following screenshot:

9.	 Add four buttons to the form beneath Frame 1. The name and caption properties on
each should be Back, Next, Finish, and Cancel respectively.

Chapter 4

103

10.	 Add the following code to the OnOpenForm trigger:
CurrForm.Frame1.XPOS := 0;
CurrForm.Frame1.YPOS := 0;
CurrForm.Frame2.XPOS := 0;
CurrForm.Frame2.YPOS := 0;
CurrForm.Frame3.XPOS := 0;
CurrForm.Frame3.YPOS := 0;

CurrForm.HEIGHT := CurrForm.Cancel.YPOS +
 CurrForm.Cancel.HEIGHT + 220;
CurrForm.WIDTH := CurrForm.Cancel.XPOS + CurrForm.Cancel.WIDTH
 + 220;

WizardStep := 1;
ShowStep(TRUE);

11.	 Add a function named ShowStep that takes in a boolean value named Show as
a parameter.

12.	 Add the following code to the function:
CASE WizardStep OF
 1: BEGIN
 CurrForm.Frame1.VISIBLE := Show;
 CurrForm.Frame2.VISIBLE := NOT Show;
 CurrForm.Frame3.VISIBLE := NOT Show;
 CurrForm.Back.ENABLED := NOT Show;
 CurrForm.Next.ENABLED := Show;
 CurrForm.Finish.ENABLED := NOT Show;
 END;

 2: BEGIN
 CurrForm.Frame1.VISIBLE := NOT Show;
 CurrForm.Frame2.VISIBLE := Show;
 CurrForm.Frame3.VISIBLE := NOT Show;
 CurrForm.Back.ENABLED := Show;
 CurrForm.Next.ENABLED := Show;
 CurrForm.Finish.ENABLED := NOT Show;
 END;

 3: BEGIN
 CurrForm.Frame1.VISIBLE := NOT Show;
 CurrForm.Frame2.VISIBLE := NOT Show;

Designing Forms

104

 CurrForm.Frame3.VISIBLE := Show;
 CurrForm.Back.ENABLED := Show;
 CurrForm.Next.ENABLED := NOT Show;
 CurrForm.Finish.ENABLED := Show;
 END;
END;

13.	 Add the following code to the OnPush trigger of the Back button:
ShowStep(FALSE);
WizardStep -= 1;
ShowStep(TRUE);

14.	 Add the following code to the OnPush trigger of the Next button:
ShowStep(FALSE);
WizardStep -= 1;
ShowStep(TRUE);

15.	 Add the following code to the OnPush trigger of the Finish button:
CurrForm.CLOSE;

16.	 Add the following code to the OnPush trigger of the Cancel button:
CurrForm.CLOSE;

17.	 Save and close the form.

How it works...
The form contains three frames, only one of which is visible at any given time. In the design
view, you can see that our form is quite wide and tall, but that would not look right when
displaying a wizard form. That's why we place code in the OnOpenForm trigger.

The first set of lines places all of the frames on top of each other. The middle set changes the
width and height of the form. Finally, the third sets the appropriate frames to be visible or not
and enables the correct buttons.

Our custom method ShowStep decides what should be visible and what should not. It is just
a large CASE statement based on the WizardStep variable. On the first frame for example,
we can't move backwards to disable the Back button. We can't finish until we get to the last
frame so that the Finish button is disabled until that point.

On the Back and Next buttons we decrement and increment the WizardStep variable so
that the ShowStep method knows what to do. Other than the initial opening of the form we
always call the function with FALSE as a parameter to "undo" what is currently displayed,
change the WizardStep variable, and call the function with parameter TRUE to display
new information.

Chapter 4

105

See also
ff Using the Form Generation Wizard

ff Creating a function

Designing a form based on a temporary
table

You may not always have the luxury of being able to save all of the information you need to the
database. At other times you may want to calculate data on the fly and present it to the user in
a form. Temporary tables come into play here and there is a special way to show their data on
a form.

How to do it...
1.	 Follow the steps from the Using the Form Generation Wizard recipe in this chapter.

2.	 View the form properties by pressing Shift + F4.

3.	 Set the following properties on the form:

Property Value
SourceTableTemporary Yes

4.	 Add a global function named LoadData.

5.	 Add the following local parameters to the function:

Name Type Length
NoParam Code 20
NameParam Text 50

6.	 Add the following code to the function:
"No." := NoParam;
Name := NameParam;
INSERT;

7.	 Add the following code to the OnOpenForm trigger:
AddCustomer('1', FIELDCAPTION(Name) + '1');
AddCustomer('2', FIELDCAPTION(Name) + '2');
AddCustomer('3', FIELDCAPTION(Name) + '3');

8.	 Save and close the form.

Designing Forms

106

How it works...
By setting the SourceTableTemporary property to Yes we tell the form not to check the
database for data when it loads. Just as with a normal record variable marked as temporary,
there is no data to begin with. We have to tell the form what kind of data we want to see.

That's where the AddCustomer function comes in. When we open the form (OnOpenForm
trigger) we load three customers into the temporary table. These customers will never be
stored to the actual database. You can modify, delete, rename, or even add more customers,
but these changes will be temporary.

See also
ff Creating a function

ff Creating transactions to alter data

ff Using temporary tables to store data

Updating a subform from a parent form
Subforms only reload data when they know they need to. Unfortunately they are not very
smart. This recipe will show you how to force a subform to refresh itself.

How to do it...
1.	 Create a new form from Object Designer.

2.	 Add the following global variables:

Name Type
A Integer
B Integer

3.	 dd a global function named SetValues.

4.	 Add the following parameters to the function:

Name Type
Aparam Integer
Bparam Integer

Chapter 4

107

5.	 Add the following code to the function:
A := Aparam;
B := Bparam;

6.	 Add a global function called UpdateSelf.

7.	 Add the following code to the function:
CurrForm.UPDATE;

8.	 Set the following properties on the form:

Property Value
Width 5720

Height 1430

9.	 Your form should look like the following screenshot:

10.	 Save and close the form (for later use, remember the ID it is saved under).

11.	 Create a new form using the Object Designer.

12.	 Add the following global variables:

Name Type
A Integer
B Integer

13.	 Add two textboxes with labels for each variable.

14.	 In the OnAfterValidate trigger for each textbox add the following code:
CurrForm.ChildForm.FORM.SetValues(A,B);
CurrForm.ChildForm.FORM.UpdateSelf;

15.	 Add a Subform control to the form.

16.	 View the properties for the Subform control.

Designing Forms

108

17.	 Set the following properties on the form:

Property Value
SubFormID The ID of the form you just created
Name ChildForm

Width 5720

Height 1430

18.	 Your form should look like the one shown in the following screenshot:

19.	 Save and close the form.

How it works...
To understand the concepts behind this recipe we use the following image:

Chapter 4

109

The main form knows only about things that are directly on itself; that is, two integer variables
and a subform. The main form can request the subform to return some values and can also
tell the subform to set values if it needs to, but it cannot do it directly.

The subform also only knows about things on its own form. Those are the two integer
variables (completely different and separate than the two integer variables on the main form),
the SetValues function, and the UpdateSelf function. While the main form can request
information from the subform, the opposite does not hold true. The subform knows nothing
about the main form.

That explains why we add code where we do. For the subform to display the sum of A and B,
we have to tell it what the values of A and B are. Remember that just changing the values
on the main form is not enough. That's why we have the SetValues function. We call this
function every time the values are changed (OnAfterValidate) in the main form.

That again is not enough, though. Just because the values have changed in the subform
doesn't mean the subform is smart enough to understand that it must display the new
information. Ordinarily you would have to click on the subform (or select it; anything that
makes it the active control on the page) for it to refresh. You can also do this with code, using
the CurrForm.UPDATE command. There is a problem, though, when using it on a subform.
Using the suggested code would generate the following error:

CurrForm.ChildForm.FORM.SetValues(A,B);
CurrForm.ChildForm.FORM.UPDATE;

Hence, we have to create a wrapper function on the subform that can be called outside the
subform. That's the UpdateSelf function.

See also
ff Creating a function

ff Updating a parent form from a subform

Designing Forms

110

Updating a parent form from a subform
Subforms do not know about their parent form and there is no way to pass a reference of the
parent form to a subform to "link" the two. Instead we have to go an unconventional route
which is described in this recipe.

How to do it...
1.	 Create a new form using the Object Designer.

2.	 Add the following global variables:

Name Type Subtype
A Integer
B Integer
XMLDoc Automation 'Microsoft XML, v6.0'.DOMDocument60

3.	 Add a global function named SendMessage with the following code:
XMLDoc.loadXML('<root></root>');

4.	 Add a global function named GetA that returns an integer with the following code:
EXIT(A);

5.	 Add a global function named GetB that returns an integer with the following code:
EXIT(B);

6.	 Add a global function named SetXMLDoc that takes in the following parameter:

Name Type Subtype
XMLDocParam Automation 'Microsoft XML, v6.0'.

DOMDocument60

7.	 Add the following code to the function:
XMLDoc := XMLDocParam;

8.	 Add two textboxes to the form.

9.	 Set the SourceExpr property on each of them:

Property Value
SourceExpr A (for textbox A)
SourceExpr B (for textbox B)

Chapter 4

111

10.	 Add the following code to the OnAfterValidate trigger for each textbox:
SendMessage;

11.	 Your form should look similar to the one shown in the following screenshot:

12.	 Save and close the form. Remember the ID for the next form.

13.	 Create a new form using the Object Designer.

14.	 Add the following global variables:

Name Type Subtype
XMLDoc Automation 'Microsoft XML, v6.0'.DOMDocument60
A Integer
B Integer

15.	 Set the following property on the variable:

Property Value
WithEvents Yes

16.	 Add the following code to the OnOpenForm trigger:
CREATE(XMLDoc);
CurrForm.Subform.FORM.SetXMLDoc(XMLDoc);

17.	 Add the following code to the OnCloseForm trigger:
CLEAR(XMLDoc);

18.	 Add the following code to the XMLDoc::OnReadyStateChange event:
IF (XMLDoc.readyState = 4) THEN BEGIN
 A := CurrForm.Subform.FORM.GetA();
 B := CurrForm.Subform.FORM.GetB();
 CurrForm.UPDATE;
END;

19.	 Add a textbox to the form.

Designing Forms

112

20.	 Set the following properties on the textbox:

Property Value
SourceExpr A+B

Editable No

21.	 Add a subform control to the form.

22.	 Set the following property on the textbox:

Property Value
SubFormID The id of the form you just created

23.	 Make sure the width and height of the subform control match the width and height of
the actual subform.

24.	 Your form will look similar to the one shown in the following screenshot:

25.	 Save and close the form.

How it works...
Let's understand how these steps allow us to complete the task or solve the problem.

When we open the form we have to create an instance of our Automation variable. We then
copy the XMLDoc to the subform to make sure that each form refers to the same automation.

By setting the WithEvents property on the XMLDoc in the parent form we get two "functions"
added to our object. These cannot be called directly, but instead are called when certain
things happen. In this case, we are concerned about the OnReadyStateChange event. First
we check to see if the ReadyState is equal to 4, which stands for complete. When that
happens we get the new values from the subform and call an UPDATE.

Chapter 4

113

But how do we fire that event? After we validate the number that is input by the user, we call
our custom SendMessage function. This calls the LoadXML function on our XMLDoc variable.
Every time you load a new value (even if it is the same value as before) the state changes and
the OnReadyStateChange event is executed.

See also
ff Creating a function

ff Updating a subform from a parent form

5
Report Design

In this chapter, we will cover:

ff Using the Report Generation Wizard

ff Adding custom filters to the request form

ff Setting filters when a report is loaded

ff Creating a report to process data

ff Displaying a check mark on a report

ff Dynamically showing sections on reports

ff Grouping data to display totals

ff Adding page totals to reports

ff Display page X of Y

ff Using virtual tables to loop through data

ff Adding a watermark to a report

Introduction
Although reports are similar to forms, they serve a different purpose in NAV. Forms exist
primarily for data entry while reports show a higher level view of what is going on in the
database. Reports can be customer-facing documents such as order confirmations and
invoices, or used for internal analysis like Aged Accounts Receivables and Aged Accounts
Payable. They can also be used to process large amounts of data.

Report Design

116

As a developer, it is your job to design the layout and business logic of these reports.
Development of reports builds upon the same principles of development for other object
types. Just as with every other object type, you can define variables and functions and add
code to triggers. The layout design is just like building a form. You use the toolbox to add
textboxes, labels, and other controls.

It is important to note that the report designer for the Classic client is significantly weaker
than the one for the RoleTailored client. In this chapter, we'll show you how to build different
types of reports as well as how to perform some advanced integration with PDF documents.
Many of the advanced recipes in this chapter are done trivially with the report designer in
Visual Studio for the RTC, but you will not always have the luxury of supporting clients that are
only on the latest version of the software. We will note in many of the recipes how to perform
them in the RoleTailored client, but for more on the subject you can read Chapter 12, The
RoleTailored Client.

Using the Report Generation Wizard
When you need to create a quick report, the Report Generation Wizard can help. Instead of
adding fields manually, you can make a useful report in a matter of minutes.

How to do it...
1.	 Create a new report using the Object Designer.

2.	 In the Table field, select the Customer table.

3.	 Select Create a report using wizard.

Chapter 5

117

4.	 Click OK.

5.	 Select the No. and Name fields using the buttons in the middle of the screen.

6.	 Click Next.

Report Design

118

7.	 Select No. from the list of sort options.

8.	 Click Finish. You will be presented with a report that looks like the one shown in
following screenshot:

How it works...
The report generation wizard starts in a way similar to the Form Generation Wizard. You
must select the table that you want to base the report on and what type of report you want to
create. In this example, we'll generate a form-type report.

On the next page, you select the fields that you want to see on the report. You are only
creating a basic report so you may choose to add only the No. and Name fields. If you want to
add more fields after the wizard is complete you can easily do so. The section designer works
exactly like the form designer. You can use the Toolbox to add labels and textboxes or the
Field Menu to add fields from the data item.

The third and final page lets you select how you want to order the data. You can choose any
of the keys defined on the table to sort data. If you want to change this later you can view the
properties of the data item and change the DataItemTableView property.

When you click Finish you will be presented with the final report. You can use the Ctrl+R
shortcut key and then click on Preview to see what the report will look like.

Chapter 5

119

There's more...
Although the wizard is limited in functionality, it is a very useful tool. You can quickly and easily
create reports that conform to NAV standards and contains a lot of useful information such as
the company name, page numbers, and user ID of the person running it.

See also
ff Using the form generation wizard

ff Exporting data using the Excel buffer

ff Building the report layout

Adding custom filters to the request form
Sometimes you want the user to be able to filter on something that is not a field in a table.
This recipe will show you how to add a filter to the request form for such a purpose.

How to do it...
1.	 Create a report by following the Using the Report Generation Wizard recipe.

2.	 Add the following global variable:

Name Type Length
CustomerNoFilter Code 250

3.	 Click on View | Request Form (Alt + V, Q).

4.	 Add a textbox with a label for the Request Form.

5.	 Set the following property on the textbox control:

Property Value
SourceExpr CustomerNoFilter

6.	 Set the following property on the label control:

Property Value
Caption Customer No. Filter

Report Design

120

7.	 Your request form should look like the following screenshot:

8.	 Add the following code to the OnPreDataItem trigger for the customer data item:
IF CustomerNoFilter <> '' THEN
 SETFILTER("No.", '%1', CustomerNoFilter);

9.	 Save and close the report.

How it works...
The Request Form is just a normal form. You design it in the same way you would for any
other form.

Our example is basic. We could just as easily add the No. field to the filters on the data item.
Instead we store the filter in a global text variable and then use that text variable to properly
set the filter before loading the data by adding the code to the OnPreDataItem trigger. The
trick is to set the filter only if the user has filled something in. If the filter was left blank, and
we filtered for blank, we would get an empty recordset.

Ordinarily when you run a report assuming you have added fields to the ReqFilterFields
property and nothing has been added to the request form, you would see a window similar to
the following screenshot:

Chapter 5

121

When you run this report you'll notice a new tab called Options. This is the tab that holds the
request form, but it only appears when you have added something to it.

There's more...
Textboxes on the request form have the same triggers and properties as textboxes on normal
forms. This means that you don't have to rely on the user to remember the customer number.
We can add the lookup functionality as shown:

Add the following local variables to the OnLookup trigger for the textbox:

Name Type Subtype
Customer Record Customer
CustomerLookupForm Form Customer List

Report Design

122

Add the following code to the OnLookup trigger:

CustomerLookupForm.LOOKUPMODE := TRUE;
IF CustomerLookupForm.RUNMODAL = ACTION::LookupOK THEN BEGIN
 CustomerNoFilter := CustomerLookupForm.GetSelectionFilter;
END;

This code enables the lookup arrow on the textbox. When you use it, it runs the Customer
List form in lookup mode and retrieves the records that you selected. That value is assigned
to the CustomerNoFilter variable which is what the textbox displays.

See also
ff Using advanced filtering

ff Setting filters when a report is loaded

ff Dynamically showing sections a report

Setting filters when a report is loaded
You will often want to run a report on a specific record. This recipe will show you how to set the
record that the report will use to execute.

How to do it...
1.	 Create a new report by following the Using the Report Generation Wizard recipe.

2.	 Save and close the report.

3.	 Create a new codeunit from Object Manager.

4.	 Add the following global variable:

Name Type Subtype
Customer Record Customer

5.	 Add the following code to the OnRun trigger:
Customer.FINDFIRST;

Customer.SETRANGE("No.", Customer."No.");
REPORT.RUN(REPORT::"Report on Record", TRUE, FALSE, Customer);

6.	 Save and close the codeunit.

Chapter 5

123

How it works...
The FINDFIRST in this example is used here just so we have some data to work with. It is
not necessary for you to implement this example. We use this data to apply a filter for the first
customer number in the table.

Next comes the important part. NAV has a built-in variable named REPORT that has several
methods associated with it. One of these is the RUN() method which takes four parameters.
The first parameter is the ID of the report to run. It is best to reference the report using the
same syntax as an Option variable, REPORT::"Name of Report".

The second and third parameters are Booleans. The second tells the system whether or not
to display the request form. We definitely want to display it because we want to see how it
looks when we run it on a specific record. The third parameter tells it whether or not to use the
system printer.

Our final parameter is a record variable that matches the first data item of the report. This
parameter holds all of the filters that have been previously applied.

When you run the codeunit, the report request form will be shown and the No. filter will
be filled in.

There's more...
The most common place in NAV to see this being used is when printing reports from specific
documents such as an invoice. You can take a look at the flow of data between the actual
forms and the document-print codeunit to get a better understanding.

See also
ff Using advanced filtering

ff Adding custom filters to the request form

Creating a report to process data
Reports are very useful for performing an operation on multiple records. Here we will see how
to build a report to process changes to data.

Report Design

124

How to do it...
1.	 Create a new blank report from Object Designer.

2.	 Set the following property on the report:

Property Value
ProcessingOnly Yes

3.	 Add a data item for the Customer table.

4.	 In the OnAfterGetRecord trigger for the customer data item add the
following code:
"Last Date Modified" := TODAY;
MODIFY;

5.	 Save and close the report.

How it works...
A Data Item is a record variable. However, instead of us writing our own code to loop through
each record, this functionality is built into a report. That makes a report a great place to
perform a mass processing of records. For this type of report we don't want any pages to
be displayed. This slows down the processing speed dramatically. To do this we set the
ProcessingOnly property of the report to Yes.

The OnAfterGetRecord trigger is fired after each record is retrieved from the database. This
is where we need to place our code. Here we are just changing the Last Modified Date field,
but you could do any sort of change you want.

When you run the report you will see different buttons on the button of the request form.
Instead of the normal print and preview buttons there is an OK button in its place.

Chapter 5

125

There's more...
When a normal report is running you can see the Generating Page X on the bottom right
corner of the preview pane. This lets the user know the system is still doing something and
has not stopped. Processing Only reports don't have sections, and hence they don't tell the
user what is going on. That means it is your responsibility to keep the user informed. The
best way to do this is by displaying a Progress Bar. You can assign the variables and open the
dialog in the OnPreDataItem trigger. The OnAfterGetRecord trigger is used to update the
progress bar while the OnPostDataItem trigger can be used to close the dialog.

See also
ff Displaying a Progress Bar

ff Creating transactions to alter data

Displaying a check mark on a report
Small visual changes to reports can make them easier to use. This recipe will show you how to
represent a Boolean value with a check mark.

How to do it...
1.	 Create a new report by following the Using the Report Generation Wizard recipe and

add one additional column for the Tax Liable field.

2.	 View the Sections for the report.

3.	 Click on the header and press F3 to add a new header section below the current one.

4.	 Move the column headers to this new header section.

5.	 Add the following global variable:

Name Type
TaxLiableCheckMark Char

6.	 Add the following code to the OnAfterGetRecord trigger for the customer
data item:
IF "Tax Liable" THEN
 TaxLiableCheckMark := 129
ELSE
 TaxLiableCheckMark := 0;

7.	 Add a textbox to the body section of the customer data item.

Report Design

126

8.	 Set the following properties on the textbox control:

Property Value
SourceExpr TaxLiableCheckMark

FontName WingDings

9.	 Your sections should look like the following screenshot when you are finished:

10.	 Save and close the report.

How it works...
The default font for every textbox is Helvetica. This font does not have a check-mark symbol.
Luckily, we can change the font style that the textbox uses. It has a property called FontName
and here we want to change it to Wingdings. If you are unfamiliar with the Wingdings font you
can run the CharMap utility from Windows to see all of the available symbols. Notice how the
text becomes illegible when you change the font.

The check-mark symbol is number 129 in the Wingdings set of characters. As a char variable
is an integer, we can assign this value to our TaxLiableCheckMark variable, but only when
tax liable is true; otherwise we set it to 0.

The resulting report will look like the following screenshot:

Chapter 5

127

See also
ff Changing text appearance

Dynamically showing Sections on reports
NAV does not limit you to one section of each type. You can have as many of each section type
as you want, but you usually do not want to show every section on every report. This recipe will
show you how to choose which sections to display.

How to do it...
1.	 Create a new report by following the Using the Report Generation Wizard recipe.

2.	 View the Sections for the report.

3.	 Add two headers below the current header and a body below the existing body
section. The report should have five sections in total.

4.	 Move the column labels for the existing fields to the Header (2) section.

5.	 Add the following fields to the Body (5) section using the field menu: No., Name,
Address, City, Country/Region Code, Post Code.

6.	 Move the column labels to the Header (3) section.

7.	 Your sections should be as shown in the following screenshot:

8.	 Add the following global variable:

Name Type
ShowDetail Boolean

Report Design

128

9.	 Add a checkbox and a label to the report request form.

10.	 Set the following property on the Check box control:

Property Value
SourceExpr ShowDetail

11.	 Set the following property on the Label control:

Property Value
Caption Show Detail

12.	 Add the following code to the OnPreSection trigger for the Header (2) section:
CurrReport.SHOWOUTPUT(NOT ShowDetail);

13.	 Add the following code to the OnPreSection trigger for the Header (3) section:
CurrReport.SHOWOUTPUT(ShowDetail);

14.	 Add the following code to the OnPreSection trigger for the Body (4) section:
CurrReport.SHOWOUTPUT(NOT ShowDetail);

15.	 Add the following code to the OnPreSection trigger for the Body (5) section:
CurrReport.SHOWOUTPUT(ShowDetail);

16.	 Save and close the report.

17.	 The resulting reports will look similar to the following screenshots:

Chapter 5

129

How it works...
Here we create one header and body for each type of report, standard and detailed. Unlike
with a form, we can't control the visibility of specific textboxes from the code. We can, however,
control the visibility of an entire section using the CurrReport.SHOWOUTPUT command. This
function takes in a single Boolean variable, which when FALSE tells the system to hide the
section. It is always placed in the OnPreDataItem trigger for a section.

There's more...
This is just a basic example of how to dynamically show sections on reports. If you want to see
a more advanced report take a look at Aged Accounts Receivable (10040).

Section triggers should only be used to show or hide sections, and not to perform calculations.
In the RoleTailored client, these section triggers are not executed so any calculations placed
in these triggers will not function properly. Calculations should almost always be performed
inside their own function and are usually called from the OnAfterGetRecord trigger.

See also
ff Adding custom filters to the request form

Grouping data to display totals
The easiest way to display totals in a report is to group records under specific criteria. This
recipe will show you how to specify what fields to total and what criteria to use.

How to do it...
1.	 Create a new report using the Report Generation Wizard on table 21,

Cust. Ledger Entry.

2.	 On the second wizard window, add the Customer No., Posting Date, and
Amount fields.

3.	 On the third wizard window, set the sorting order to Customer No., Posting Date,
Currency Code.

4.	 Click Finish.

5.	 View the sections for the report.

6.	 Add a second Header section.

7.	 Move the column labels to the Header section.

Report Design

130

8.	 Add a GroupFooter section.

9.	 Move the textboxes from the Body section to the GroupFooter section.

10.	 Delete the Body.

11.	 Your sections should be as shown in the following screenshot:

12.	 Add the following code to the GroupFooter section:
CurrReport.SHOWOUTPUT(CurrReport.TOTALSCAUSEDBY =
 FIELDNO("Posting Date"));

13.	 View the properties of the Cust. Ledger Entry data item.

14.	 Set the following properties on the data item:

Property Value
TotalFields Amount

GroupTotalFields Customer No.,Posting Date

15.	 The properties window should look like the following screenshot:

16.	 Save and close the report.

Chapter 5

131

How it works...
In order to group records together we have to tell the system which fields we want to group
on. This is where the GroupTotalFields property comes into picture. Here we are going
to group records by their Customer No. and Posting Date fields, which means that for every
combination of Customer No. and Posting Date we will have one line on the report.

When we group records it is usually because we want to total the values of some field on those
records. Here we want to sum the Amount field so we add it to the TotalFields property.

An important fact to remember is that the fields we are grouping on must be contained in
the key being used by the data item. The field you want to sum must be contained in the
SumIndexFields for that key.

With grouping, we don't use the standard Body section. Instead we use a GroupFooter. This
trigger is displayed every time we reach the end of grouping records. Remember, though, that
we are grouping by Customer No. and Posting Date. That means every time the Customer
No. or Posting Date changes, the GroupFooter is displayed. This can cause duplication
of lines. We only want to display the section when the last field in our GroupTotalFields
changes. We use the TOTALSCAUSEDBY function, which returns an integer, to determine
which field has changed.

There's more...
You can manually create the totals in your code by using the CREATETOTALS function. This
function has an advantage over the TotalFields property in which one can create totals on
variables as well as fields.

See also
ff Adding a key to a table

ff Creating a SumIndex field

ff Adding page totals to reports

Adding page totals to reports
Listings can often span multiple pages making it easy to lose track of the totals. NAV allows
you to easily add a textbox to the bottom or top of a page to show these subtotals to the user.

Report Design

132

How to do it...
1.	 Create a new report using the Report Generation Wizard on table 21,

Cust. Ledger Entry.

2.	 On the second wizard window, add the Customer No., Posting Date, and
Amount fields.

3.	 On the third wizard window, set the Sorting Order to Customer No., Posting Date,
Currency Code.

4.	 Click Finish.

5.	 View the sections for the report.

6.	 Add a second Header section.

7.	 Move the column labels to the Header section.

8.	 Add a TransHeader section.

9.	 Add a TransFooter section.

10.	 Add a textbox to both sections.

11.	 Set the following property on each textbox control:

Property Value
SourceExpr Amount

12.	 Add a textbox to the TransHeader section.

13.	 Set the following property on the textbox control:

Property Value
SourceExpr 'Transferred from previous page'

14.	 Add a textbox to the TransFooter section.

15.	 Set the following property on the textbox control:

Property Value
SourceExpr 'Transferred to next page'

15.	 View the properties of the Cust. Ledger Entry data item.

16.	 Set the following property on the data item:

Property Value
TotalFields Amount

Chapter 5

133

17.	 Save and close the report.

18.	 A portion of the resulting report is shown in the following screenshot:

How it works...
In addition to the GroupHeader and GroupFooter sections, NAV Reports have sections called
TransHeader and TransFooter. These sections are displayed every time the page number
changes. The TransFooter is displayed on the bottom of the page right before the change and
the TransHeader is displayed on the top of the next page.

In this report, we add the Amount field to these sections with a label so that the subtotals are
not mistakenly added into the main total.

There's more...
ff Adding a key to a table

ff Creating a SumIndex field

ff Grouping data to display totals

Display page X of Y
What sounds like a simple task is actually quite complicated in NAV. This recipe will show you
how to print the total number of pages on every page of a report.

Getting ready
You must have PDFCreator installed on your machine. This recipe was tested with version
0.9.8 and 0.9.9, and is not guaranteed to work with future or previous releases of PDFCreator.

You must also have Visual Studio 2005 or later installed on your machine in order to write the
C# code for this recipe.

Report Design

134

How to do it...
1.	 Create a new class library project named NAVUtilities in Visual Studio.

2.	 Add a new file called PDFPageCounter with the following code:
using System.IO;
using System.Text.RegularExpressions;
using System.Runtime.InteropServices;

namespace NAVUtilities
{
 [ClassInterface(ClassInterfaceType.AutoDual)]
 [ProgId("PDFPageCounter")]
 [ComVisible(true)]
 public class PDFPageCounter
 {
 public int GetNoOfPagesPDF(string FileName)
 {
 int result = 0;
 FileStream fs = new FileStream(FileName, FileMode.Open,
 FileAccess.Read);
 StreamReader r = new StreamReader(fs);
 string pdfText = r.ReadToEnd();

 System.Text.RegularExpressions.Regex regx = new
 Regex(@"/Type\s*/Page[^s]");
 System.Text.RegularExpressions.MatchCollection matches =
 regx.Matches(pdfText);
 result = matches.Count;

 r.Close();
 fs.Close();

 return result;
 }
 }
}

3.	 View the Properties of the project.

4.	 On the Application tab set the Assembly Name to Packt-PDFWatermark.

Chapter 5

135

5.	 On the Build tab set the Register for COM interop property to True (checked).

6.	 Save and compile your objects.

7.	 Create a new report by following the Using the report generation wizard recipe.

8.	 Add the following global variable:

Name Type
NoOfPages Integer

9.	 Add a global function named SetNoOfPages.

10.	 The function should take the following parameter:

Name Type
NoOfPagesIn Integer

11.	 Add the following code to the function:
NoOfPages := NoOfPagesIn;

12.	 Delete the Page No. label and textbox from the Header section.

13.	 Replace them with a single textbox.

Report Design

136

14.	 Set the following property on the textbox control:

Property Value
SourceExpr 'Page ' + FORMAT(CurrReport.PAGENO)

+ ' of ' + FORMAT(NoOfPages)

15.	 Save and close the report.

16.	 Create a new codeunit from Object Designer.

17.	 Add the following global variables:

Name Type Subtype Length
PrintToPDF Codeunit (See Printing Reports to PDF recipe)
FileName Text 1024
FileDir Text 1024
FullFileName Text 1024
NoOfPages Integer

18.	 Add a global function named GetNumberOfPages.

19.	 The function should take the following parameter:

Name Type Length
FileNameIn Text 1024

20	 It should return an integer named NoOfPagesOut.

21.	 Add the following local variable:

Name Type Subtype
PDFUtil Automation 'Packt-PDFPageCounter'.PDFPageCounter

22.	 Add the following code to the function:
IF ISCLEAR(PDFUtil) THEN
 CREATE(PDFUtil);

IF EXISTS(FileNameIn) THEN
 NoOfPagesOut := PDFUtil.GetNoOfPagesPDF(FileNameIn);

CLEAR(PDFUtil);

EXIT(NoOfPagesOut);

Chapter 5

137

23.	 Add a global function named PrintReportToPDF.

24.	 Add the following code to the function:
IF EXISTS(FullFileName) THEN
 ERASE(FullFileName);
PrintToPDF.SetupPDFCreator(FileDir, FileName);
RunReport;
PrintToPDF.ClearPDFCreator;

25.	 Add a global function named RunReport.

26.	 Add the following global variable:

Name Type Subtype
ReportToRun Report Page X of Y

27.	 Add the following code to the function:
CLEAR(ReportToRun);
ReportToRun.USEREQUESTFORM := FALSE;
ReportToRun.SetNumberOfPages(NoOfPages);
ReportToRun.RUNMODAL;

IF NOT PrintToPDF.WaitUntilFileExists(FullFileName) THEN
 ERROR(Text001, FullFileName);

28.	 Add a global function named SetupFile.

29.	 The function should take in the following parameters:

Name Type Length
FileDir Text 1024
FileNameIn Text 1024

30.	 Add the following code to the function:
FileDir := FileDirIn;
FileName := FileNameIn;
FullFileName := COPYSTR(FileDirIn + '\' + FileName, 1,
 MAXSTRLEN(FullFileName));

31.	 Add the following code to the OnRun trigger:
SetupFile(ENVIRON('Temp'), 'TempPDF.pdf');

PrintReportToPDF;
NoOfPages := GetNumberOfPages(FullFileName);
PrintReportToPDF;

HYPERLINK(FullFileName);

32.	 Save and close the codeunit.

Report Design

138

How it works...
The problem with knowing how many pages will there be in a printed report is that it's
something you won't know until the report has finished printing! There's no way around this so,
unfortunately, we will have to process our report twice. That means double the execution time.
This is not recommended for large or process-intensive reports.

There is a lot going on in this recipe, but don't worry. We will take it step-by-step. In order to
use the code from this recipe, you will need to import the print to PDF codeunit explained in
Chapter 10, Integration. We will not see how that code works in this recipe. Just know that it
takes the report you are running and saves it to a temporary PDF file.

To start, we need to create an Automation control to count the number of pages in our PDF
document. NAV doesn't have built-in support for analyzing PDF files so we have to build this
part of our solution in another programming language. In this case we are going to use C#
which we can compile and use inside NAV.

Let's take a look at the libraries we will be using. System.IO is used for reading and
writing to files. The System.Text.RegularExpressions library is used to find
patterns of characters in strings or text variables. The last library, System.RunTime.
InteropServices is used to register the program on the computer so that it can be seen
and used by other applications like NAV.

Now we need to examine the attributes of our class. The first attribute is called
ClassInterface. By setting the value to ClassInterfaceType.AutoDual we tell the
program to automatically register itself on the system, if we choose to register it at all (which
we will). The second attribute is called ProgId and is the name that our program will be
referenced by. The last is called COMVisible, which tells the system that this class can be
registered on the computer.

For more information on libraries and attributes
you can go to msdn.microsoft.com.

Alright, now we get to the meat of the program. It is a function called GetNoOfPages that
takes in a file name and returns an integer named result. The first two lines about streams
are fairly standard for opening a file. The text of the file is stored in the PDFText variable by
doing a ReadToEnd on the stream.

This part will be confusing if you have never encountered a Regular Expression before.
Basically, we are looking for a pattern like this:

/Type + "some optional, unknown amount of whitespace" + /Page (but
not /Pages)

If you open a PDF file in Notepad and search for bits and pieces of this text you'll find that it
appears as metadata on every page in the file.

Chapter 5

139

Finally we have to close our streams. If we fail to do this the PDF file will be locked and we
won't be able to use it.

That's the coding part for the automation. But there are some properties that need to be set,
specifically the Register COM for interop. Remember those attributes that we set so that if
we ever registered this program, it would work? Well now we have to register it. Check the box,
compile it, and you are ready to go.

For the report, we need to create a function to tell it how many pages will print in all. We pass
it an integer variable and it stores it in a global integer variable called NoOfPages. We also
have to change the page number in the header to display the total number of pages.

Lastly, we need to create a codeunit to manage the printing of this report. This codeunit will
consist of four functions. The first is a helper function called SetupFile. This function just
sets some global text variables that point to the path or folder of the PDF file, the name of the
PDF file, and the combined path plus name of the file.

We also need a wrapper function for our Automation class. This function will be called
GetNumberOfPages. It creates a new instance of the Automation class, checks to make
sure that the file exists, and counts the number of pages using the GetNoOfPagesPDF
function from the C# code. This value is then returned from the function.

Our third function is used to actually run our report. This function takes in the number of
pages we found by using the GetNumberOfPages function. It passes that value to the report
and runs it.

The last function is called PrintReportToPDF. The details of how this works can be found in
Chapter 10, Integration, in the Printing reports to PDF recipe. To give you a quick overview, we
delete any files that have the same name, set up PDFCreator, print the report, and then clear
any changes that were made.

So how does all of that work together? Let's step through it. In the OnRun trigger, we set up
our file to go to the local Temp directory on the computer. We then print our report to that
PDF file. At this point we don't know how many pages will be printed, so the upper right-hand
corner of the report would look like "Page 1 of 0". Next, we determine how many pages are in
the PDF file. We then call the same function to print the report to PDF, but this time we pass
the real number of pages instead of zero. Finally, we use the HYPERLINK command to open
the file and display it to the user.

There's more...
This is a huge pain to do in the Classic client. Not only is there a lot of code, but it also
requires you to run the report twice. That means double the execution time just to get the
total number of pages on the report. On large, calculation-heavy reports' benefits just do not
outweigh the lost productivity time.

Report Design

140

Fortunately for RoleTailored client users this is incredibly easy to do. In the design layout in
Visual Studio you can add a new textbox and set the expression on it like this:

See also
ff Creating a function

ff Adding a watermark to a report

Using virtual tables to loop through data
Just as you can repeat code using a loop, you can also repeat data items in a report using a
virtual table. This recipe will show you how to use the most common virtual table, Integer.

Chapter 5

141

How to do it...
1.	 Create a new report by following the Using the Report Generation Wizard recipe.

2.	 Add the following global variable:

Name Type
NoOfCopies Integer

3.	 Add a label and textbox control to the request form.

4.	 Set the following property on the textbox control:

Property Value
SourceExpr NoOfCopies

5.	 Set the following property on the label control:

Property Value
Caption No. of Copies

6.	 Insert an Integer data item above the Customer data item.

7.	 Change the Name field for the Integer data item to CopyLoop.

8.	 Indent the Customer data item by using the right arrow button on the bottom of
the form.

9.	 Delete the CopyLoop Body section from the Section Designer.

10.	 Add the following code to the OnPreDataItem trigger for CopyLoop:
SETRANGE(Number, 0, NoOfCopies);

11.	 Save and close the report.

How it works...
Think of the Customer data item, including all of the code and sections, as a function called
DisplayCustomerData. If you were to write code for it, it would look similar to this:

IF Customer.FINDSET THEN
 REPEAT
 DisplayCustomerData;
 UNTIL Customer.NEXT = 0;

Report Design

142

If you want to repeat this code multiple times you would have to add another loop to it, like the
following:

FOR i := 0 TO NoOfCopies DO BEGIN
 IF Customer.FINDSET THEN
 REPEAT
 DisplayCustomerData;
 UNTIL Customer.NEXT = 0;
END;

Our report is already handling the REPEAT..UNTIL part of the code. There is no reason for
it to not handle the FOR loop as well. The main purpose of a FOR loop is to iterate through a
set of numbers. For that we can use the virtual table called Integer. The Integer table has a
single field called Number that we can filter on.

Just as the code indented beneath the FOR loop will be executed a number of times, the data
items indented under other data items will also be executed a number of times depending on
the filters that are set.

There's more...
There are plenty of virtual tables in NAV. You won't find these tables in Object Designer and
you might not even know they were there. The following report has been included, which lists
all of the virtual tables and their fields.

Chapter 5

143

List of virtual tables in NAV

Object Type Object ID Object Name

Table 2000000001 Object
Table 2000000007 Date
Table 2000000009 Session
Table 2000000010 Database File
Table 2000000020 Drive
Table 2000000022 File
Table 2000000024 Monitor
Table 2000000026 Integer
Table 2000000028 Table Information
Table 2000000029 System Object
Table 2000000037 Performance
Table 2000000038 AllObj
Table 2000000039 Printer
Table 2000000040 License Information
Table 2000000041 Field
Table 2000000042 OLE Control
Table 2000000043 License Permission
Table 2000000044 Permission Range
Table 2000000045 Windows Language
Table 2000000046 Automation Server
Table 2000000049 Code Coverage
Table 2000000050 Windows Object
Table 2000000051 Service Connection Point
Table 2000000052 Windows Group Member
Table 2000000055 SID - Account ID
Table 2000000056 User SID
Table 2000000058 AllObjWithCaption
Table 2000000059 Breakpoint
Table 2000000063 Key
Table 2000000070 Error List

Report Design

144

See also
ff Repeating code using a loop

Adding a watermark to a page
Watermarks can be used in a variety of ways to make reports stand out. This recipe will show
you how to add a "draft" watermark to the background of a report.

Getting ready
You must have PDFCreator installed on your machine. This recipe was tested with version
0.9.8 and 0.9.9 and is not guaranteed to work with future or previous releases of PDFCreator.
PDFCreator requires the .NET Framework 1.1 to install the dll files used with this example.

You must also have Visual Studio 2005 or later installed on your machine in order to write the
C# code for this recipe.

You should understand the Printing reports to PDF recipe from Chapter 10, Integration. This
recipe builds on that one and the details will not be explained here. The codeunit for printing
to PDF from the Integration chapter is included in this chapter as well.

How to do it...
1.	 Open a new text file.

2.	 Add the following code:
Option Explicit

Dim Arguments
Dim pdfforge
Dim tools
Dim fso
Dim FilePath
Dim ImagePath
Dim WatermarkImage
Dim OriginalFile
Dim StampedFile

Set Arguments = WScript.Arguments

Set fso = CreateObject("Scripting.FileSystemObject")

Set pdfforge = Wscript.CreateObject("pdfforge.pdf.pdf")

Chapter 5

145

Set tools = Wscript.CreateObject("pdfforge.tools")

OriginalFile = Arguments(0)
FilePath = fso.GetParentFolderName (Arguments(0))
if FilePath = "" then
 if FilePath = "" then FilePath = fso.GetParentFolderName
 (Wscript.ScriptFullname)
 if Right(FilePath,1) <> "\" then FilePath = FilePath & "\"
 OriginalFile = FilePath & OriginalFile
End if

WatermarkImage = Arguments(1)
ImagePath = fso.GetParentFolderName (Arguments(1))
if ImagePath = "" then
 ImagePath = fso.GetParentFolderName (Wscript.ScriptFullname)
 if Right(ImagePath,1) <> "\" then ImagePath = ImagePath & "\"
 WatermarkImage = ImagePath & WatermarkImage
End if

StampedFile = Left(OriginalFile, Len(OriginalFile) - 4) & " -
 Watermark" + Right(OriginalFile, 4)

pdfforge.StampPDFFileWithImage OriginalFile, StampedFile,
 WatermarkImage, 1, 0, true, 1, 9

set Arguments = Nothing

WScript.Echo StampedFile

3.	 Save the file as AddWatermark.vbs.

4.	 Create a new class library project named NAVUtilities in Visual Studio.

5.	 Add a new file called PDFPageCounter with the following code:
using System.Runtime.InteropServices;
using System.Diagnostics;

namespace NAVUtilities
{
 [ClassInterface(ClassInterfaceType.AutoDual)]
 [ProgId("PDFWatermark")]
 [ComVisible(true)]
 public class PDFWatermark
 {
 private string Script;
 private string PDFFile;

Report Design

146

 private string WatermarkImageFile;
 private string WatermarkedPDFFile;

 public void SetScript(string newScript)
 {
 Script = newScript;
 }

 public void SetPDFFile(string newPDFFile)
 {
 PDFFile = newPDFFile;
 }

 public void SetWatermarkImage(string
 newWatermarkImageFile)
 {
 WatermarkImageFile = newWatermarkImageFile;
 }

 public string GetWatermarkedPDFFile()
 {
 return WatermarkedPDFFile;
 }

 public void CreateWatermark()
 {
 Process p = new Process();
 p.StartInfo.FileName = @"cscript";

 p.StartInfo.Arguments = Script + " " + PDFFile + " "
 + WatermarkImageFile;
 p.StartInfo.UseShellExecute = false;
 p.StartInfo.RedirectStandardOutput = true;
 p.Start();

 p.StandardOutput.ReadLine();
 p.StandardOutput.ReadLine();
 p.StandardOutput.ReadLine();
 WatermarkedPDFFile = p.StandardOutput.ReadLine();
 }
 }
}

6.	 View the Properties of the project.

7.	 On the Application tab set the Assembly Name to Packt-PDFWatermark.

Chapter 5

147

8.	 On the Build tab check the Register for COM interop checkbox.

9.	 Save and compile the objects.

10.	 Create a new report by following the Using the report generation wizard recipe.

11.	 Save and close the report (remember the ID for later use).

12.	 Create a new codeunit from Object Designer.

13.	 Add the following global variables:

Name Type Subtype Length
Customer Record Customer
PrintToPDF Codeunit (See Printing Reports to PDF

Recipe)
FileName Text 1024
FileDir Text 1024
FullFileName Text 1024
WatermarkedFile Text 1024
ReportToRun Report Watermark Report
PDFWatermark Automation 'Packt-PDFWatermark'.

PDFWatermark

14.	 Add a global function named SetupFile.

15.	 The function should take in the following parameters:

Name Type Length
FileDirIn Text 1024
FileNameIn Text 1024

16.	 Add the following code to the function:
FileDir := FileDirIn;
FileName := FileNameIn;
FullFileName := COPYSTR(FileDirIn + '\' + FileName, 1,
 MAXSTRLEN(FullFileName));

17.	 Add the following code to the OnRun trigger (change the path to the vbs and
watermark images based on your system):
IF ISCLEAR(PDFWatermark) THEN
 CREATE(PDFWatermark);

SetupFile(ENVIRON('Temp'), 'TempPDF.pdf');
PrintToPDF.SetupPDFCreator(FileDir, FileName);
ReportToRun.USEREQUESTFORM := FALSE;
ReportToRun.RUNMODAL;

Report Design

148

PrintToPDF.WaitUntilFileExists(FileDir + '\' + FileName);
PrintToPDF.ClearPDFCreator;

PDFWatermark.SetScript('"C:\Packt\AddWatermark.vbs"');

PDFWatermark.SetWatermarkImage(
 '"C:\Packt\DraftWatermark.png"');

PDFWatermark.SetPDFFile(FileDir + '\' + FileName);

SLEEP(1000); //Need to make sure the file isn't locked
PDFWatermark.CreateWatermark;

WatermarkedFile := PDFWatermark.GetWatermarkedPDFFile;

IF WatermarkedFile = '' THEN
 ERROR(Text001);
HYPERLINK(WatermarkedFile);

CLEAR(PDFWatermark);

18.	 Save and close the codeunit.

19.	 An example report is shown in the following screenshot:

Chapter 5

149

How it works...
As you can see, much of the code in this recipe is complicated. It involves development in
three different languages, VBScript, C#, and C/AL. We will tackle each one separately in order
to understand how they all work together.

Take a look at the VBScript file first. Remember, this is not a VBScript book. We will only
explain how the file works in general terms. This file works similar to a batch file and takes in
two arguments. The first is the PDF File to which we want to add a watermark and the second
is the watermark image.

To start we set up all of our variables using the Dim keyword. We then instantiate our more
complex variables using the Set function. The important variable here is pdfforge. This is
installed with PDFCreator (as long as you have the .NET Framework 1.1).

The next two sections of code deal with each of the arguments passed to the script. The code
here makes sure that there is a complete path and filename stored in the variables and sets
them up if it is not.

Next we have to set up a new filename (the old filename + " – Watermark") and
use the pdfforge variable to stamp the file. The key parameters to use with the
StampPDFFileWithImage function are the first two integers. These represent the page
range to watermark. A zero as the second parameter means "watermark everything".

Finally we perform some cleanup on our variables and echo the watermarked file to the
command window.

Now let's examine the C# code. Let's take a look at the libraries we will be using. System.
IO is used for reading and writing to files. System.Diagnostics provides classes that allow
you to interact with system processes (such as launching a VBScript file).

Now we need to examine the attributes of our class. The first attribute is called
ClassInterface. By setting the value to ClassInterfaceType.AutoDual, we tell the
program to automatically register itself on the system. The second attribute is called ProgId
and is the name that our program will be referenced by. The last is called COMVisible and
tells the system that this class can be registered on the computer.

Our class is composed of three setter functions: one getter function, and one function to call
the VBScript. We will focus on the latter.

First we create a new Process instance and tell it that we will be running a script file. We then
set the arguments to the script which are the script name, PDF file, and image file that we set
using our setter methods. As we need to use the output of our script file (remember that it is
going to tell us the location of the watermarked file) we have to set the UseShellExecute
property to False and the RedirectStandardOutput property to True. We then start
the process.

Report Design

150

The redirected output returns four lines of text. We don't care about the first three lines so
we just read them and let them fall off somewhere in the memory. The fourth and last line,
though, is the path to our watermarked PDF document. We store that in a variable that can be
retrieved with our getter method.

Now we can look at the final piece of code in NAV. The codeunit contains one function called
SetupFile. This function just sets some global text variables that point to the path or folder
of the PDF file, the name of the PDF file, and the combined path plus the name of the file.

The OnRun trigger is where the bulk of the code is placed. First we instantiate our
PDFWatermark Automation variable. We then create pointers to our temporary PDF file in the
Temp folder and set up PDFCreator.

In this case we do not want to use the request form so we set the USEREQUESTFORM property
to False before running the report. As this report will be output to a PDF file we have to wait
until that file is created before clearing our PDFCreator setup.

Now we can begin to use our C# code. We set the script, PDF File, and watermark image
using the setter methods in the C# class. Before adding the watermark to the file we issue
a SLEEP(1000) command. This pauses the system for one second in order to make sure
the locks on the PDF file are removed. If there are locks on the file the CreateWatermark
function would fail because that would make it impossible to access and modify the file.

Finally, we retrieve the watermarked file name and if it is not empty (meaning an error
occurred) we open it for the user to see.

There's more...
There are many other things you can do using pdfforge and PDFCreator. The VBScript code
files can be found in the PDFCreator install directory under the Plugins folder. In that
folder, you'll find scripts to merge and split files, copy files, and even convert images to PDF.

See also
ff Creating a function

ff Display page X of Y

ff Displaying a graph on a report

6
Diagnosing Code

Problems

In this chapter, we will cover:

ff Using the debugger

ff Setting breakpoints

ff Using Code Coverage

ff Handling runtime errors

ff Using Client Monitor to diagnose problems

ff Finding errors when using NAS

ff Implementing Try / Catch / Finally

Introduction
No one writes perfect code on their first attempt. When running hundreds or even thousands
of lines of code at a time, it can be extremely difficult to determine exactly where an error
occurred and what caused it. That's why we have tools like the Debugger, Code Coverage, and
Client Monitor in Microsoft Dynamics NAV.

For the most part the recipes in this chapter will not deal with writing your own code or writing
better code. Instead we will focus more on how you can determine what is happening with
code you have already written.

Diagnosing Code Problems

152

Using the debugger
This recipe will show you how to use the debugger to examine the code that is currently
executing. We will demonstrate how to go through the code line-by-line and watch how values
and objects change.

How to do it...
1.	 Create a new codeunit from Object Designer.

2.	 Add the following global variable:

Name Type Subtype
Customer Record Customer

3.	 Add the following global text constant:

Name ConstValue
Text001 Matt Traxinger

4.	 Add a global function called ChangeCustomerName.

5.	 The function should take in the following parameter:

Name Type Length
NewName Text 50

6.	 Add the following code to the function:
Customer.Name := NewName;

7.	 Add the following code to the OnRun trigger:
Customer.FINDFIRST;
ChangeCustomerName(Text001);
Customer.VALIDATE("Post Code");

8.	 Save and close the codeunit.

9.	 From the Tools menu in the NAV client select Debugger | Active (Shift + Ctrl + F11).

10.	 From the Tools menu in the NAV client select Debugger | Breakpoint on Triggers
(Shift + Ctrl + F12).

11.	 Run the codeunit.

Chapter 6

153

How it works...
When you run the codeunit, the Microsoft Dynamics NAV Debugger window will appear just
like the one shown in the following screenshot:

Before we get into the details of this window, we need to understand what caused it to appear.
Setting the debugger to Active from the Tools | Debugger menu means that the debugger
window will open every time the system encounters an error. In this case, though, we know our
code doesn't produce any errors. We want to look at it anyway so we turn on the Breakpoint
on Triggers option as well.

There are five components to the debugger window. The first is the menu and toolbar at the
very top. They function just like any other toolbars you've seen. You can mouse over each
button to get a tool tip of what it does.

The second component sits right below and contains the actual code from the current object.
Here you can see a small yellow arrow pointing to the first line of our codeunit in the OnRun
trigger. This is the line that is about to execute. Note that it has NOT executed yet. We'll explore
each of the other three components as we move through our code.

Diagnosing Code Problems

154

Use the F8 key or click the Step Into button on the toolbar. The window will now look like the
one shown in following screenshot:

The yellow arrow has moved to the second line of code and the first line has executed. Notice
the red text in the bottom left-hand corner. This is the Variables window (bottom left window).
It lists all the variables and their values from the current object. At first, our customer variable
was uninitialized because we had not executed the Customer.FINDFIRST line. That line
retrieved a record from the database causing the value of the variable to change. This text will
only remain red until you take another step into the program.

The next line of code that will execute is:

ChangeCustomerName(Text001);

What is this Text001 variable? If you're unsure of the value of a text constant, or you don't
want to scroll through a possibly long list of variables in the Context window, you can add
a shortcut to the Watch List (bottom right window). Right-click on Text001 and go to Add
Watch. The variable will be added to the Watch List along with its current value. Go ahead
and hit F8 to step into the next line.

Chapter 6

155

The yellow arrow jumps to the function that we just called. That brings us to our last window,
the Call Stack (bottom middle window). It is important to know how you got to the code you
are currently viewing. By looking at the Call Stack you can see that we were in the OnRun
trigger of the codeunit and then jumped to the ChangeCustomerName function. You can click
on each level of the stack to see the code for that object.

Diagnosing Code Problems

156

You may not always want to go through your code line-by-line, though. Try hitting the F5 key
or the Go command from the Debug menu. This will cause you to jump to the next function
which is called instead of the next line. You will find yourself in a complete new object, the
Customer table. Notice how the Context menu completely changes because the old variables
are no longer in scope. They do not belong to the current object being examined.

There's more...
One common annoyance is trying to stop the debugger. You will find yourself in the middle of
debugging your code and have that "Aha! I know what's wrong!" moment. You will click on the
"X" to close the window only to have the debugger pop right back up at you.

From the Debug menu click on Stop Debugging (Shift + F5). This will stop the debugger until
you turn it on again and, more importantly, allow you to continue with your development. Stop
Debugging also performs a rollback of the changes that have happened to the database
since you started the debugger.

See also
ff Setting breakpoints

Setting breakpoints
Stepping through code line-by-line or function-by-function can take forever. Luckily there is an
easy way to tell the debugger to stop right where we want it to.

How to do it...
1.	 Create and save the same codeunit discussed in the Using the debugger recipe in

this chapter.

2.	 Design the codeunit.

3.	 Go to the following line of code in the OnRun trigger:
ChangeCustomerName(Text001);

4.	 Press F9 twice.

5.	 Go to the following line of code in the OnRun trigger:
VALIDATE("Post Code");

6.	 Press F9 once.

Chapter 6

157

7.	 Your window should look like the following screenshot:

8.	 Save and close the codeunit.

9.	 From the Tools menu in the NAV client select Debugger | Active (Shift + Ctrl + F11).

10.	 Run the codeunit.

How it works...
When running the debugger on this codeunit, it should stop on Customer.VALIDATE("Post
Code") line of code. This is because we have set a breakpoint here, which was the filled-
in red circle at the left of that line. The debugger stops right where we tell it to, that is right
before that line of code executes.

You will notice another mark. It is a red circle that is not filled. This is used to mark old
breakpoints that you are not currently using. This is useful when you are trying to debug large
amounts of code and want to temporarily remove a breakpoint or remember where you had one.

There's more...
The debugger is not perfect by any means. Some might even say it has a mind of its own
sometimes. It doesn't always stop exactly where you want it to. It is common practice to
set a breakpoint on a few successive lines of code in order to ensure that you stop in the
general area.

Diagnosing Code Problems

158

See also
ff Using the debugger

Using Code Coverage
In some scenarios, it may be useful to see a high-level overview of which objects are used
when running a process and what code is executed in those objects. This recipe will show you
how to use the Code Coverage tool for exactly that purpose.

How to do it...
1.	 From the NAV client menu, click on Tools | Debugger | Code Coverage. This will

open the Code Coverage window.

2.	 Click the Start button.

3.	 Navigate to the Customer Card in the menu suite by clicking on Sales and Marketing
| Order Processing | Customers.

4.	 Press F3 to insert a new record followed by Tab or Enter to save that record to
the database.

5.	 Close the Customer Card.

6.	 Click the Stop button on the Code Coverage window.

7.	 You should now see a form similar to the one shown in the following screenshot:

Chapter 6

159

How it works...
The Code Coverage tool logs every line of code that is executed during a process. In this
window, you can see every object that was used during the insertion process as well as the
percentage of code (coverage ratio) that was executed in each object.

To view the details of the exact code that was executed in an object, select it in the list and
click the Code button. The Code Overview window will open.

Unfortunately, this window is not as straightforward as it might first appear. The lines of code
that have been executed are shown in black. The lines of code that are not executed are
shown in red.

The lines that are marked with the small diamond to the left of the line are executable lines
of code. These lines are the only lines for which you can be sure that the information
displayed is correct.

There's more...
One great use of Code Coverage is to determine all of the possible places where a value may
have changed. For example, the Description field on a Sales Line.

Diagnosing Code Problems

160

You can use Code Coverage to log all of the code that is executed and then view it in the Code
Overview window. This window actually shows all the code that has been logged, but applies a
filter for the selected object. This filter can be removed like any other in order to view every line
of code.

From there you can set a filter like "*Description*" or "*Description :=*" to find every
line of code where the Description field is used or assigned a value. Using the Zoom feature
(Ctrl + F8), you can select a line and quickly view which object it is in.

Running Code Coverage from code
You can also turn on Code Coverage from within your own code.

CodeCoverage.DELETEALL;

CODECOVERAGELOG := TRUE;

CODECOVERAGELOG := FALSE;
FORM.RUN(FORM::"Code Coverage");

You will first need to define a record variable named CodeCoverage of subtype Code
Coverage and delete all records from it.

You can then turn Code Coverage on/off using the CODECOVERAGELOG function. To see what
was logged, run the Code Coverage form (565).

Handling runtime errors
Runtime errors happen when you are actually executing code. Most of these errors present
error messages that users cannot easily understand. This recipe will show you how to handle
these errors as well as some of the most common ones.

How to do it...
1.	 Create a new codeunit from Object Designer.

2.	 Add the following global variables:

Name Type Subtype
Customer Record Customer
Selection Integer

3.	 Add the following code to the OnRun trigger:
Selection := STRMENU('Show Error,Handle Error', 1);
IF Selection = 1 THEN

Chapter 6

161

 Customer.GET
ELSE
 IF NOT Customer.GET THEN
 ERROR(' Unable to find a customer with a blank number.
 \Are you sure you have selected a customer?');

4.	 Save and close the codeunit.

How it works...
This codeunit allows you to select between having NAV handle an error for you or handling it
with custom code. If you choose to let NAV handle the error for you, you will be presented with
this error message:

This message can be confusing for new users. Its interpretation can be different depending on
the user. The following is not a stretch:

Customer No.. Double quote does not exist.

For those who have been using NAV for a while, this message is obvious. Those users know
that two single quotes represents something blank and that this message is saying that a
customer record with a blank number does not exist.

Now look at the message that is displayed when we handle the error:

Diagnosing Code Problems

162

This error message was "trapped" by surrounding the function call with a conditional. The GET
function, and many others, returns a Boolean value. If this value is not used by the developer
and it is false, an error is thrown. We still want to throw an error, but we want one that makes
sense to everyone. Here we tell the user what went wrong and a possible solution.

See also
ff Creating transactions to alter data

Using Client Monitor to diagnose problems
Client Monitor is a tool that collects statistics about client/server communication. It will let you
find out where your code is slow and show you every line of code that executes from start to
finish. This recipe will show you how to use it.

How to do it...
1.	 Create a new codeunit from Object Designer.

2.	 Add the following global variable:

Name Type Subtype
Customer Record Customer

3.	 Add the following code to the OnRun trigger:
Customer.FINDFIRST;
SLEEP(5000);
Customer.FINDLAST;

4.	 Save and close the codeunit.

5.	 From the Tools menu in the NAV client click on Client Monitor.

6.	 Click the Start button in the window that then appears.

7.	 Run the codeunit you created.

8.	 Click the Stop Button on the Client Monitor window.

9.	 You should now see a form similar to the following screenshot:

Chapter 6

163

How it works...
It can be difficult to parse through all of the data that programs like this collect. We will not
begin to cover everything that the Client Monitor reports on, but instead will examine our very
short codeunit.

Let's look at the output from the Client Monitor to see if we can match it up to what our
codeunit did.

Please note that some output that deal with selecting the Object from
Object Designer have been removed from the following result set shown.

Date Time Entry
No.

Function
Name

Parameter
No

Parameter Number Data

3/10/2010 8:55:08.712
AM

4 FIND/
NEXT

1 Table 18 Customer

3/10/2010 8:55:08.712
AM

4 FIND/
NEXT

2 Search
Method

-

3/10/2010 8:55:08.712
AM

4 FIND/
NEXT

3 Key No.

3/10/2010 8:55:08.712
AM

4 FIND/
NEXT

14 Source
Object

Codeunit
50605 Client
Monitor

Diagnosing Code Problems

164

Date Time Entry
No.

Function
Name

Parameter
No

Parameter Number Data

3/10/2010 8:55:08.712
AM

4 FIND/
NEXT

15 Source
Trigger/
Function

OnRun()

3/10/2010 8:55:08.712
AM

4 FIND/
NEXT

16 Source
Line No.

2

3/10/2010 8:55:08.712
AM

4 FIND/
NEXT

17 Source Text Customer.
FINDFIRST;

3/10/2010 8:55:08.712
AM

4 FIND/
NEXT

50 Search
Result

-

3/10/2010 8:55:08.712
AM

4 FIND/
NEXT

51 Record
Found

No.='10000'

3/10/2010 8:55:08.712
AM

4 FIND/
NEXT

55 Records
Read

2

3/10/2010 8:55:08.712
AM

4 FIND/
NEXT

60 Reads 2

3/10/2010 8:55:08.712
AM

4 FIND/
NEXT

100 Elapsed
Time (ms)

3/10/2010 8:55:13.712
AM

5 FIND/
NEXT

1 Table 18 Customer

3/10/2010 8:55:13.712
AM

5 FIND/
NEXT

2 Search
Method

+

3/10/2010 8:55:13.712
AM

5 FIND/
NEXT

3 Key No.

3/10/2010 8:55:13.712
AM

5 FIND/
NEXT

14 Source
Object

Codeunit
50605 Client
Monitor

3/10/2010 8:55:13.712
AM

5 FIND/
NEXT

15 Source
Trigger/
Function

OnRun()

3/10/2010 8:55:13.712
AM

5 FIND/
NEXT

16 Source
Line No.

4

3/10/2010 8:55:13.712
AM

5 FIND/
NEXT

17 Source Text Customer.
FINDLAST;

3/10/2010 8:55:13.712
AM

5 FIND/
NEXT

50 Search
Result

+

3/10/2010 8:55:13.712
AM

5 FIND/
NEXT

51 Record
Found

No.='IC1030'

3/10/2010 8:55:13.712
AM

5 FIND/
NEXT

55 Records
Read

2

Chapter 6

165

Date Time Entry
No.

Function
Name

Parameter
No

Parameter Number Data

3/10/2010 8:55:13.712
AM

5 FIND/
NEXT

60 Reads 1

3/10/2010 8:55:13.712
AM

5 FIND/
NEXT

100 Elapsed
Time (ms)

Each action corresponds to an Entry No. in the table. Each entry number has multiple
parameters. We will begin with entry number 4.

Parameters 1 and 3 tell us that we are dealing with the Customer table and have it sorted on
the Parameter No. key, which in this case is the primary key. That means we probably did not
use the SETCURRENTKEY command. Parameter 2, Search Method, has a value of "-". From
older versions of NAV we know that this is a FIND('-'), or what is now a FINDFIRST (the
actual code is shown in Parameter No. 17, but it is nice to be able to understand the output).

Parameter numbers 14 and 15 tell us that this code is being called from the OnRun trigger of
our Client Monitor codeunit. Parameter 16 gives more specifics about the exact line number
of the code. Note that this is based on the entire object, not the line number of the trigger or
function. Trigger definitions (gray bars is Code View) also count as lines. This is important to
know because we could have multiple Customer.FINDFIRST commands and we will need
to know which one we are dealing with.

The remaining parameters show us the record that was returned and the number of database
reads (or writes if this was an INSERT/MODIFY/RENAME command).

Note that this code executed at 8:55:08 AM. Entry No. 5 did not execute until 8:55:13 AM.
This tells us that we have some sort of network problem. In reality, this is an artificial problem
created by the SLEEP(5000) command. We introduced a five second delay to show what the
output would look like if there were actual network issues.

See also
ff Using SQL Profiler

Finding errors when using NAS
The Navision Application Server, or NAS, does everything a normal NAV client can do, except
that it doesn't show anything on the screen. This can present challenges to figuring out what
has gone wrong when running your code using NAS. This recipe will show you how to debug
this type of code.

Diagnosing Code Problems

166

Getting ready
You must already have the NAV Application Server installed on the machine on which you
are working.

How to do it...
1.	 Copy your developer license into the install directory for the application server. On a

typical install this is C:\Program Files (x86)\Microsoft Dynamics NAV\60\
Application Server. The license file should be named fin.flf.

2.	 Open a command prompt.

3.	 Run the following command:

"Path to Application Server\nassql" debug, appservername="NAS",
servername="Your Server Name", database="Your Database
Name",company="Your Company Name", startupparameter="NEP-",
objectcache=32000, nettype=tcp

How it works...
The NAS Snap-in Console does not allow you to start an NAS service in debug mode, so
we have to start it manually from the command line. This command is designed to error-out
quickly by passing a start up parameter of NEP- instead of NEP-1.

When the command is run, the normal NAV debugger window will open with Codeunit 1
loaded. From here you can use the normal debugger commands to step through the code.

There's more...
You can also create your own codeunit that calls the NASHandler function in Codeunit 1,
ApplicationManagement to get similar results.

See also
ff Using the debugger

ff Setting breakpoints

Chapter 6

167

Implementing Try / Catch / Finally
The Try / Catch / Finally syntax has been around in languages like C# .NET for a very
long time. Unfortunately, it has never made it into C/AL. This recipe will show you how to
implement this type of control structure so that you can display error messages and still have
your code continue to execute.

How to do it...
1.	 In Visual Studio create a new Class Library Project.

2.	 Add a file named ITryCatchFinally.cs with the following code:
using System.Runtime.InteropServices;

namespace TryCatchFinally
{
 [ComVisible(false)]
 public delegate void OnTry();

 [ComVisible(false)]
 public delegate void OnCatch(string errMessage);

 [ComVisible(false)]
 public delegate void OnFinally();

 [InterfaceType(ComInterfaceType.InterfaceIsIDispatch)]
 [ComVisible(true)]
 public interface ITryCatchFinally
 {
 event OnTry NAVTry;
 event OnCatch NAVCatch;
 event OnFinally NAVFinally;

 void Execute();
 }
}

3.	 Add a file named ITryCatchFinallyEvents.cs with the following code:
using System.Runtime.InteropServices;

namespace TryCatchFinally
{
 [InterfaceType(ComInterfaceType.InterfaceIsIDispatch)]
 [ComVisible(true)]

Diagnosing Code Problems

168

 public interface ITryCatchFinallyEvents
 {
 [DispId(0x60020001)]
 void NAVTry();

 [DispId(0x60020002)]
 void NAVCatch(string errMessage);

 [DispId(0x60020003)]
 void NAVFinally();
 }
}

4.	 Add a file named TryCatchFinally.cs with the following code:
using System;
using System.Runtime.InteropServices;

namespace TryCatchFinally
{
 [ComSourceInterfaces(typeof(ITryCatchFinallyEvents))]
 [ProgId("TryCatchFinally")]
 [ComVisible(true)]
 [ClassInterface(ClassInterfaceType.None)]
 public class TryCatchFinally : ITryCatchFinally
 {
 public event OnTry NAVTry;
 public event OnCatch NAVCatch;
 public event OnFinally NAVFinally;

 public TryCatchFinally()
 {
 }

 public void Execute()
 {
 OnTry();
 }

 private void OnTry()
 {
 try
 {
 NAVTry();
 }
 catch (Exception e)

Chapter 6

169

 {
 try { OnCatch(e); } catch { }
 }
 finally
 {
 try { OnFinally(); } catch { }
 }
 }

 private void OnCatch(Exception exception)
 {
 if (exception != null)
 {
 NAVCatch(exception.Message);
 }
 }

 private void OnFinally()
 {
 NAVFinally();
 }
 }
}

5.	 View the Properties of the project.

6.	 On the Build tab check the Register for COM interop checkbox.

7.	 Save and compile the objects.

8.	 Create a new codeunit from Object Designer.

9.	 Add a global Automation variable named TCF of subtype 'TryCatchFinally'.
TryCatchFinally

10.	 Add the following global variable:

Name Type Subtype
TCF Automation 'TryCatchFinally'.TryCatchFinally

11.	 Set the following property on the variable:

Property Value
WithEvents Yes

Diagnosing Code Problems

170

12.	 Add the following code to the OnRun trigger:
CREATE(TCF);
TCF.Execute();

13.	 Add the following code to the TCF::NAVTry event:
ERROR('NAV has encountered an error.');
MESSAGE('This message should never be displayed.');

14.	 Add the following code to the TCF::NAVCatch event:
MESSAGE('The following error was caught:\%1', errMessage);

15.	 Add the following code to the TCF::NAVFinally event:
MESSAGE('NAV will now perform some cleanup.');

16.	 Save and close the codeunit.

How it works...
We will not go into the details about how the C# .NET code works. For that you should refer
related articles on msdn.microsoft.com/.

The ITryCatchFinally.cs file is a basic interface. Any class that implements this interface
will need to define three events (NAVTry, NAVCatch, and NAVFinally) and a method called
Execute.

We also need to implement an interface that will expose the events in our NAV object. This is
the ITryCatchFinallyEvents.cs file. We again define our three events, but give each of
them a special attribute called DispId. This ID allows the code that will be written in the NAV
events to be linked back to these functions.

The last file is a class named TryCatchFinally. Our Execute method, which will be called
from NAV, is simply a wrapper for our OnTry method. OnTry executes the code we have added
in the NAVTry method in our NAV object. If an error is found, it is caught and execution moves
to the OnCatch event. Lastly, no matter what happens, the OnFinally event is called.

When we add the Automation control to our NAV object and set the WithEvents property to
Yes, our three events appear. In our NAVTry event we intentionally throw an error. A message
action has been placed under that error to show that execution of the event does in fact
stop when the error is encountered. In the other events, OnCatch and OnFinally, we add
messages to show that although we have encountered an error, NAV code will continue
to execute.

There's more...
The downside to this solution is that you must declare an Automation variable for every try /
catch / finally block you want to execute. This can cause your code to become difficult to read
and follow.

Chapter 6

171

You can also mimic this behavior using the IF CODEUNIT.RUN THEN syntax. This is easier,
but you have to buy a codeunit (admittedly, a cheap thing to buy) for every line of code you
need to do this on.

Most errors can be caught using simple conditionals and this form of error trapping should be
used only when absolutely necessary.

See also
ff Checking for conditions using an IF Statement

ff Using a CASE statement to test multiple conditions

7
Roles and Security

In this chapter, we will cover:

ff Adding roles through the User Setup table

ff Creating and assigning a security role

ff Using FILTERGROUP to restrict data

ff Checking for user-assigned roles

ff Checking Active Directory groups

ff Using security filters

ff Field-level security

ff Assigning menu suites based on company

ff Ending an idle session

ff Automatically adding users to NAV

ff Hiding values in Zoom

Introduction
ERP systems like Dynamics NAV need a built-in security model to make sure that
appropriate people have access to appropriate information. NAV supports two forms of user
authentication: Database and Windows. Each login is assigned roles, which in turn have
permissions, which the system checks every time data is accessed or an object is run.

NAV security is somewhat limited and difficult to maintain. However, as system-security data
is stored in tables of the NAV database, we can write custom code to handle permissions in
any way we like. We can even make calls to the Active Directory to examine user groups and
other Windows properties. As you will see in this chapter, the boundaries of NAV security are
limitless, but there will be a large amount of work involved for certain tasks.

Roles and Security

174

Adding roles through the User Setup table
A common way to give permissions to users is by adding a field to the User Setup table.
Although not the best practice, this recipe will show you how this common type of
permission works.

How to do it...
1.	 Design the User Setup table (91) from Object Designer.

2.	 Add a Boolean field named Sample Permission with ID as 50000.

3.	 Save and close the table.

4.	 Design the User Setup form (119).

5.	 Use the Field Menu to add a column for the Sample Permission field.

Chapter 7

175

6.	 Save and close the form.

7.	 Create a new codeunit from Object Designer.

8.	 Add the following global variable:

Name Type Subtype
UserSetup Record User Setup

9.	 Add the following code to the OnRun trigger:
IF NOT UserSetup.GET(USERID) THEN
 ERROR('You do not have permission to perform this action.');

IF UserSetup."Sample Permission" THEN
 MESSAGE('Permission granted.')
ELSE
 ERROR('You do not have permission to perform this action.');

10.	 Save and close the codeunit.

How it works...
We start by adding a field that will give or deny permission for a specific action. That field is
then added to the form so that the permission can be assigned.

In our codeunit we first make sure that a user setup record exists for our ID. If it does not, we
throw an error stating that we do not have the correct permissions. If a record is found we
check the value of the Sample Permission field using a standard conditional statement and
take an appropriate action.

There's more...
This method of assigning permissions is not the best practice. NAV already has a working
security system, so if you need to modify the database, you might as well build that modification
on top of the existing functionality. Although this method works just fine, it can get confusing
when there are multiple places to check for user permissions.

See also
ff Creating and assigning a security role

ff Checking for user-assigned roles

Roles and Security

176

Creating and assigning a security role
NAV has its own built-in methods for controlling access to certain parts of the system. This
recipe will show you how to create roles to limit that access.

How to do it...
1.	 From the NAV client click Tools | Security | Roles.

2.	 Use the F3 key to enter a new role called SAMPLE with a Description of "PACKT –
Sample Role".

3.	 With your cursor on the SAMPLE line, click on the Role button, then Permissions.

4.	 Add a permission for Object Type = TableData, Object Type = 18.

5.	 Close the Permissions window.

6.	 Close the Role window.

7.	 From the NAV client click on Tools | Security | Windows Logins (or Database Logins
depending on the system).

8.	 Select a user from the list and click on Roles.

9.	 Add the sample role to the user.

10.	 Close the Roles window.

11.	 Close the Logins window.

Chapter 7

177

How it works...
The security system in NAV is maintained using roles and permissions. A role is made up of
permissions to access specific objects in the database such as tables, forms, reports, and
even system objects such as items in the NAV client menu. These roles are then assigned to
database users, Windows users, or Windows groups.

Everything related to security in NAV can be found under the Tools | Security menu in the NAV
client. Roles are inserted into the system using the same shortcuts as in every other record,
the F3 key. These roles have a short name called the Role ID and a longer Description field.

Our role contains a permission that will allow the user full access to customer records. For
Table Data object types, there are four permission levels that can be combined in any order.
They include the ability to read, insert, modify, and delete records from this table. The fifth
permission level is run or execute and is used for the other object types. The options for each
of these permission levels are blank (No), Yes, and Indirect.

In order to test this you will need to assign the role to a user who does not already have
permission to the Customer table. Once that role is assigned, the user will need to close the
NAV client and reopen it in order to gain their new permissions.

Roles and Security

178

For more information about roles and security, search for Security in
Microsoft Dynamics NAV Help from the NAV client Help menu.

There's more...
If you are using SQL Server you may need to take an additional step in order to make sure the
permissions in the NAV system are the same as those in SQL. This depends on the security
model you are using. You can check this by going to File | Database | Alter in the NAV client.
Click on the Advanced tab and check the security model.

If you are using Standard security then no further action is required. However, if you are using
Enhanced security then you need to selet Tools | Security | Synchronize All Logins. This will
make sure everything between the NAV Client and SQL Server matches.

Leveraging the User Rights tool
Microsoft provides a great product with the NAV software called the User Rights tool. This
code examines records produced by the Client Monitor tool and automatically creates a role
with the permissions you need. You can find it on the NAV product CD.

See also
ff Adding roles through the User Setup table

ff Checking for user-assigned roles

Using FILTERGROUP to restrict data
Filter groups are used to apply filters that cannot be removed by the user. This recipe will show
you how to write code to utilize them and what to watch out for.

How to do it...
1.	 Create a new codeunit from Object Designer.

2.	 Add the following global variables:

Name Type Subtype
CurrFilterGroup Integer
Customer Record Customer

Chapter 7

179

3.	 Add the following code to the OnRun trigger of the codeunit:
CurrFilterGroup := Customer.FILTERGROUP;

Customer.FILTERGROUP(255);
Customer.SETRANGE("No.", '50000');
Customer.FILTERGROUP(CurrFilterGroup);

Customer.FINDFIRST;
MESSAGE('Filters: %1\First Customer: %2', Customer.GETFILTERS,
 Customer.Name);

4.	 Save and close the codeunit.

How it works...
A FILTERGROUP is used to set filters on a Record variable that cannot be removed by the
user. This function takes in a single integer as a parameter between the numbers 0 and 255.
Although you can use numbers one to six, they are reserved by the system and manually
assigning filters to those groups can override default functionality. For example, NAV uses
FILTERGROUP number four to apply the link between header and line values on forms such as
Sales Order and Purchase Order.

In our short code segment, we first need to determine the FILTERGROUP that is currently
assigned to the user so that we can set it back when we are finished. Like other functions in
NAV, when the optional parameter is not used the function returns the current value. Next we
set the FILTERGROUP to 255, assign a filter, and then reset the FILTERGROUP. Finally, we find
the first record in the table and display a message with the filters applied and the record that
was found.

As you can see from the expected output, we cannot see that we have applied any filters to
the record. However, if we look at the Customer List from the standard form, we can see that
Guildford Water Department is not the first customer in the list.

Roles and Security

180

See also
ff Using advanced filtering

Checking for user-assigned roles
The NAV system checks permissions every time you look at data or run an object, but what if
you need to check permissions manually? This recipe will show you how to examine a user ID
to check for a specific role.

How to do it...
1.	 Create a new codeunit from Object Designer.

2.	 Add a global function called VerifySecurity that returns a Boolean value named
HasPermission.

3.	 This function should take in three parameters:

Name Type Length
RoleID Code 20
CompanyRequired Boolean
SuperAllowed Boolean

4.	 Add the following code to the function:
HasPermission := CheckUserId(RoleID, CompanyRequired,
 SuperAllowed);

5.	 Add a global function called CheckUserID that returns a Boolean value.

6.	 This function should take in the same three parameters as the
VerifySecurity function.

7.	 Add the following local variable to the function:

Name Type Subtype
Session Record Session

8.	 Add the following code to the function:
Session.SETRANGE("My Session", TRUE);
IF NOT Session.FINDFIRST THEN
 EXIT(FALSE);

Chapter 7

181

IF Session."Login Type" = Session."Login Type"::Database THEN
BEGIN
 EXIT(CheckDatabaseLogin(USERID, RoleID, CompanyRequired,
 SuperAllowed))
END ELSE BEGIN
 EXIT(CheckWindowsLogin(USERID, RoleID, CompanyRequired,
 SuperAllowed));
END;

9.	 Add a global function named CheckDatabaseLogin that returns a Boolean value
named HasPermission.

10.	 The function should take in the following parameters:

Name Type Length
UserIDIn Code 20
RoleID Code 20
CompanyRequired Boolean
SuperAllowed Boolean

11.	 Add the following local variable:

Name Type Subtype
DatabaseUserRoles Record Member Of

12.	 Add the following code to the function:
DatabaseUserRoles.SETRANGE("User ID", UserIDIn);
IF NOT SuperAllowed THEN
 DatabaseUserRoles.SETRANGE("Role ID", RoleID)
ELSE
 DatabaseUserRoles.SETFILTER("Role ID", '%1|%2', RoleID,
 'SUPER');
IF CompanyRequired THEN BEGIN
 DatabaseUserRoles.SETFILTER(Company, '%1|%2', COMPANYNAME, '');
END;
IF DatabaseUserRoles.FINDFIRST THEN
 HasPermission := TRUE;

13.	 Add a global function named CheckWindowsLogin that returns a Boolean value
named HasPermission.

14.	 The function should take in the same parameters as the
CheckDatabaseLogin function.

Roles and Security

182

15.	 Add the following local variable to the function:

Name Type Subtype
WindowsUserRoles Record Windows Access Control

16.	 Add the following code to the function:
IF NOT SuperAllowed THEN
 WindowsUserRoles.SETRANGE("Role ID", RoleID)
ELSE
 WindowsUserRoles.SETFILTER("Role ID",'%1|%2', RoleID, 'SUPER');
IF CompanyRequired THEN
 WindowsUserRoles.SETFILTER("Company Name",'%1|%2',
 COMPANYNAME, '');
IF WindowsUserRoles.FINDSET THEN
 REPEAT
 WindowsUserRoles.CALCFIELDS("Login ID") ;
 IF UPPERCASE(ShortUserID(WindowsUserRoles."Login ID")) =
 UPPERCASE(UserIDIn) THEN
 HasPermission := TRUE;
 UNTIL (WindowsUserRoles.NEXT = 0) OR (HasPermission);

17.	 Add a global function named ShortUserID that returns a code variable of
length 20.

18.	 The function should take in the following parameter:

Name Type Length
UserIDIn Code 132

19.	 Add the following code to the function:
IF STRPOS(UserIdIn,'\') IN [0,STRLEN(UserIdIn)] THEN
 EXIT(COPYSTR(UserIdIn,1,MAXSTRLEN(UserIdIn)));
EXIT(COPYSTR(UserIdIn,STRPOS(UserIdIn,'\') +
 1,MAXSTRLEN(UserIdIn)));

20.	 Add the following code to the OnRun trigger:
IF VerifySecurity('S&R-CUSTOMER', FALSE, FALSE) THEN
 MESSAGE('Security Check Passed')
ELSE
 MESSAGE('Security Check Failed');

21.	 Save and close the codeunit.

Chapter 7

183

How it works...
NAV security can be quite complex, but this codeunit breaks out the process of checking it.
Our OnRun trigger calls the VerifySecurity function so we will start there.

This function takes in three parameters which are used throughout the codeunit. The first
is the Role ID. This identifies the role that we want to check for in the system. Usually you
will want to store this value in a setup table so that it can be changed by the customer, but
here we have hard coded it into the business logic. The second parameter tells the function
whether or not the user must have permission specifically for the company they are in (TRUE)
or if they can have it for any company in the database (FALSE). The last is whether or not
the user is allowed to have SUPER access which overrides any lower-level permission. This
function will call the CheckUserID function and pass the same parameters to it.

In the CheckUserID function we take a look at the Session table, a virtual table in NAV. This
table contains all of the users currently logged into NAV. There is a field in this table called
My Session which identifies the session of the user running the code. The other important
field in this table is the Login Type. This field tells us whether the user is connected through a
database login or a Windows login. Security-related data is stored in different tables for each
type so we have to know in which order to do a correct check.

Security-related data for database users is stored in the Member Of table. In order to check
the security we apply three filters. The first is for the user we are looking for. The next two
depend on the values of our parameters. If we want it to be the company name then we must
set a filter for the current company name; if not, we will leave the filter blank. The last filter is
applied if SUPER is an allowed role. If it is then we filter for either the Role ID or SUPER. If not,
we only filter for the Role ID. If a record is found, the function returns TRUE.

Checking Windows logins is a little different. In Windows, the logins actually map to a SID, or
security identifier. The security identifier is stored in the Windows Access Control table. Based
on this SID and the actual username is a FlowField. Here we will set the same filters as the
database-login check, other than the User ID. This will give us a recordset containing everyone
who has the correct role. We will then loop through that set, calculating the value of the
FlowField, and comparing it to the ID we are looking for.

In order to properly perform this comparison we have to implement one final function. The
User Name field contains the user's full name; that is the domain and/or user ID. The
USERID function in NAV only returns the ID of the current user. The ShortUserId function
removes the domain part of the name, if it exists, and returns a value in-line with what
NAV is expecting.

Roles and Security

184

When you run the codeunit you will see a message depending on the security validation:

See also
ff Checking conditions using an IF statement

ff Adding roles through the User Setup table

ff Creating and assigning a security role

ff Checking Active Directory groups

ff Automatically adding users to NAV

Checking Active Directory groups
A common practice is to assign security through Active Directory groups. NAV supports this
out-of-the-box, but does not give a way to manually check those groups from code. For that
you will need to implement a .NET class.

Getting ready
The codeunit from the Checking for user-assigned roles recipe should be created.

Chapter 7

185

How to do it...
1.	 Create the following class in Visual Studio. You will need to add a reference to

System.DirectoryServices.
using System;
using System.Collections;
using System.DirectoryServices;
using System.DirectoryServices.ActiveDirectory;
using System.Runtime.InteropServices;
using System.Security.Principal;

namespace NAV_ActiveDirectory
{
 [ProgId("NAV_ActiveDirectory")]
 [ComVisible(true)]
 [ClassInterface(ClassInterfaceType.AutoDual)]
 public class NAV_ActiveDirectory
 {
 private ArrayList properties;
 private string userdn;
 private int propertiesIndex;

 public NAV_ActiveDirectory()
 {
 properties = new ArrayList();
 propertiesIndex = 0;
 }

 public void SetConnectionString(string userid, string userdn)
 {
 this.userdn = userdn;
 this.userdn = userdn.Replace("%1", userid);
 }

 public bool MorePropertiesExist()
 {
 return (propertiesIndex < properties.Count);
 }

 public string GetNextProperty()
 {
 string dnstring = properties[propertiesIndex].ToString();
 dnstring = dnstring.Substring(dnstring.IndexOf("CN=") + 3,
 dnstring.IndexOf(",") - 3);

Roles and Security

186

 propertiesIndex++;
 return dnstring;
 }

 public void LoadADGroups(bool recursive)
 {
 LoadProperty("memberof");
 }

 private void LoadProperty(string property)
 {
 DirectoryEntry ent = new DirectoryEntry(userdn);
 PropertyValueCollection ValueCollection =
 ent.Properties[property];
 IEnumerator en = ValueCollection.GetEnumerator();

 while (en.MoveNext())
 {
 if (en.Current != null)
 {
 if (!properties.Contains(en.Current.ToString()))
 {
 properties.Add(en.Current.ToString());
 }
 }
 }
 ent.Close();
 ent.Dispose();
 }
 }
}

2.	 Add a function to your codeunit called CheckADGroups.

3.	 This function should take three parameters:

Name Type Length
RoleID Code 20
CompanyRequired Boolean
SuperAllowed Boolean

Chapter 7

187

4.	 Add the following global variable to the codeunit:

Name Type Subtype
ADGroups Automation 'NAV_ActiveDirectory'.NAV_ActiveDirectory

CREATE(ADGroups);
ADGroups.SetConnectionString(USERID,
 'LDAP://DomainName/CN=%1,OU=your_organizational_unit,
 DC=your_domain');
ADGroups.LoadADGroups(TRUE);
WHILE (ADGroups.MorePropertiesExist()) AND (NOT HasPermission) DO
BEGIN
 GroupName := ADGroups.GetNextProperty();
 HasPermission := CheckWindowsLogin(GroupName, RoleID,
 CompanyRequired, SuperAllowed);
END;
CLEAR(ADGroups);

5.	 Add the following code to the VerifySecurity function:
IF NOT HasPermission THEN
 HasPermission := CheckADGroups(RoleID, CompanyRequired,
 SuperAllowed);

6.	 When you run the codeunit you will see a message depending on the
security validation:

Roles and Security

188

How it works...
Our Visual Studio class creates an LDAP (Lightweight Directory Access Protocol) to a
domain controller on your network using a string like this:

LDAP://DomainName/CN=%1,OU=your_organizational_unit,DC=your_domain

You can find the domain name using Active Directory Users and Computers.

The objects within the domain are grouped into Organizational Units, or OUs. Examples in
the preceding image include Computers and Users. If the object you are looking for resides
deep down in the hierarchy you must pass each OU to the LDAP query and you have to do it
in a specific way. For example, if a User object was found in Users\Company1\Service
Accounts, you would pass an LDAP string like this:

LDAP://DomainName/CN=%1,OU=Service Accounts,OU=Company1,
 OU=Users,DC=your_domain

That is, you have to pass them in order, from the bottom up, to the query.

You should be able to find your domain very easily. It is displayed every time you log into your
system. You can also find it in Control Panel under System and Maintenance.

Chapter 7

189

Once the LDAP connection has been established, the program then loads all of the values
found in the MemberOf property for the user into an ArrayList object. As NAV cannot
handle these types of objects, code is included to loop through the values and return them
one-by-one. As these AD groups are listed in the Windows Login table, just like a normal user,
we can use our CheckWindowsLogin function to see what permissions have been assigned
to it.

See also
ff Checking conditions using an IF statement

ff Adding roles through the User Setup table

ff Creating and assigning a security role

ff Checking for user-assigned roles

ff Automatically adding users to NAV

Using security filters
The SQL Server option for Microsoft Dynamics NAV allows you to specify record-level security
using the Security Filters field on Permissions. Here we will discuss how to set up these
filters and some pitfalls to watch out for when using them.

Getting ready
You must be using a SQL database in order to use this recipe.

How to do it...
1.	 If you have not done so, create the SAMPLE role as described in the Creating and

assigning a security role recipe.

2.	 View the permissions for this role.

3.	 Using the assist button, set the Security Filter field to filter based on a Service Zone
Code equal to the letter 'M'.

4.	 Close the Security windows.

5.	 Create a new codeunit from Object Designer.

6.	 Add the following global variable:

Name Type Subtype
Customer Record Customer

Roles and Security

190

7.	 Add the following code to the OnRun trigger:
Customer.SETPERMISSIONFILTER;
FORM.RUNMODAL(0, Customer);

8.	 Save and close the codeunit.

9.	 The resulting form will only list a single customer:

How it works...
With SQL Server, you can limit the records the user can see in a table using the Security
Filter option. This attribute is assigned in a way similar to the read / insert / modify / delete
attributes in the Permissions window for a Role.

If the user opens a form these filters will automatically be applied. This is not the
case, though, when the form is opened through code. In these cases you must call the
SETPERMISSIONFILTER function on the Record variable that is passed to the form.

There's more...
When used correctly, security filters can be of great use when setting up permissions. They
can also cause a lot of headaches.

For example, let's imagine a manager who needs to view the General Ledger entries to make
sure his department is not going over budget. He should be able to view entries only in the
accounts that relate directly to his department. This seems like a great use for security filters.
But what about all of those other General Ledger Entries that are created when he posts
documents? Tax and VAT are great examples. That security filter will not allow him to post to
those accounts and he will receive errors during posting.

Chapter 7

191

Be careful when and how you use this type of security. If you apply a security filter to a
Customer permission, don't just open the Custom List form to test it out. As with all forms of
security you will want to test your code extensively to make sure that you do not introduce any
problems into the system.

See also
ff Using advanced filtering

Field-level security
Field-level security does not exist out-of-the-box in NAV and is not easy to implement. In fact,
real field-level security is impossible to implement. This recipe will show you an example of
how to quickly create a work around for this type of security model in your system.

Getting ready
Part of the code in this recipe relies on code from the codeunit created in the Checking for
user-assigned roles recipe in this chapter.

How to do it...
1.	 Create a new table in Object Manager named Field Level Security.

2.	 Add the following fields:

Name Type Length
Table No. Integer
Field No. Integer
Security Type Option
Applies To Text 119
Editable Boolean
Visible Boolean
Show Text Boolean

Roles and Security

192

3.	 Set the following properties for these fields:

Field Name Property Value
Table No. TableRelation Object.ID WHERE (Type=CONST(Table))

Field No. TableRelation Field.No. WHERE (TableNo=FIELD(Table
No.))

Security Type OptionString Database User, Windows User
Applies To Text IF (Security Type=CONST(Database User))

User

ELSE IF (Security Type=CONST(Windows
User)) "Windows Login"

4.	 Set the primary key for the table to Table No., Field No., Security Type, Applies To.

5.	 Save and close the table.

6.	 Using the Form Generation Wizard, create a form that displays all of the fields from
this table.

7.	 Add the following local variables to the OnFormat trigger of the Applies To field:

Name Type Subtype
WindowsLogin Record Windows Login
SecurityCheck Codeunit Security Check (or the name you gave your codeunit in

the "Checking for user-assigned roles" recipe)

8.	 In the OnFormat trigger for the Applies To field add the following code:
IF "Security Type" = "Security Type"::"Windows User" THEN BEGIN
 WindowsLogin.GET("Applies To");
 WindowsLogin.CALCFIELDS(ID);
 Text := SecurityCheck.ShortUserID(WindowsLogin.ID);
END;

9.	 Save and close the form.

Chapter 7

193

10.	 A sample form with data might look like this:

11.	 Create a new codeunit from Object Designer.

12.	 Create a global function named CheckSecurity.

13.	 This function should take in the following parameters:

Name Type Length
UserIDIn Code 119
TableID Integer
FieldID Integer
CurrentStatus Boolean
PropertyToCheck Option

14.	 Set the following property for these fields:

Field Name Property Value
PropertyToCheck OptionString Editable,Visible,ShowText

15.	 The function should return a Boolean value.

16.	 Define the following local variables in the function:

Name Type Subtype
FieldLevelSecurity Record Field Level Security
Session Record Session

Roles and Security

194

17.	 Add the following code to the CheckSecurity function:
Session.SETRANGE("My Session", TRUE);
IF NOT Session.FINDFIRST THEN
 EXIT(FALSE);

FieldLevelSecurity.SETRANGE("Table No.", TableID);
FieldLevelSecurity.SETRANGE("Field No.", FieldID);
CASE Session."Login Type" OF
 Session."Login Type"::Database: BEGIN
 FieldLevelSecurity.SETRANGE("Security Type",
 FieldLevelSecurity."Security Type"::"Database User");
 FieldLevelSecurity.SETRANGE("Applies To", USERID);
 END;
 Session."Login Type"::Windows: BEGIN
 FieldLevelSecurity.SETRANGE("Security Type",
 FieldLevelSecurity."Security Type"::"Windows User");
 FieldLevelSecurity.SETRANGE("Applies To",
 GetSIDFromLogin(USERID));
 END;
END;

IF FieldLevelSecurity.FINDFIRST THEN
 CASE PropertyToCheck OF
 PropertyToCheck::Editable:
 EXIT(FieldLevelSecurity.Editable AND CurrentStatus);
 PropertyToCheck::Visible:
 EXIT(FieldLevelSecurity.Visible AND CurrentStatus);
 PropertyToCheck::Show:
 EXIT(FieldLevelSecurity."Show Text" AND CurrentStatus);
 END;

EXIT(CurrentStatus);

18.	 Add a function named GetSIDFromLogin that takes in the following parameter:

Name Type Length
Login Text 119

19.	 It should return a Text value of length 132.

Chapter 7

195

20.	 Add the following local variables to the function:

Name Type Subtype
WindowsLogin Record Windows Login
SecurityCheck Codeunit Security Check (or the name you gave your codeunit

in the "Checking for user-assigned roles" recipe)

21.	 Add the following code to the function:
IF WindowsLogin.FINDSET THEN
 REPEAT
 WindowsLogin.CALCFIELDS(ID);
 IF UPPERCASE(USERID) =
 UPPERCASE(SecurityCheck.ShortUserID(WindowsLogin.ID)) THEN
 EXIT(WindowsLogin.SID);
 UNTIL WindowsLogin.NEXT = 0;

EXIT('');

22.	 Create a form as described in the Using the Form Generation Wizard recipe. You
should have a form displaying the No. and Name fields from the Customer table.

23.	 Add the following global variable:

Name Type Subtype
FieldLevelSecurity Codeunit Field Level Security

24.	 Add the following code to the OnOpenForm trigger:
CurrForm."No.".EDITABLE := FieldLevelSecurity.CheckSecurity(
 USERID, DATABASE::Customer, Rec.FIELDNO("No."),
 CurrForm."No.".EDITABLE, 0);
CurrForm."No.".VISIBLE := FieldLevelSecurity.CheckSecurity(
 USERID, DATABASE::Customer, Rec.FIELDNO("No."),
 CurrForm."No.".VISIBLE, 1);

25.	 Add the following code to the OnFormat trigger for the No. field:
IF NOT FieldLevelSecurity.CheckSecurity(
 USERID, DATABASE::Customer, Rec.FIELDNO("No."), TRUE, 2) THEN
 Text := '***';

26.	 Save and close the form.

Roles and Security

196

27.	 The resulting form might look something like the one shown in the following
screenshot, depending on the security assigned:

How it works...
NAV does not have a place to store security settings on a field level so we need to create
our own table and form to hold this information. This table will hold the user, table, and
field number that security needs to be tracked for. Similar to the read/insert/modify/delete
permissions, we will track the Editable/Visible/ShowText properties.

We also need a codeunit to check the permissions when the fields are accessed. This function
will take in the table and field to check, the ID of the user, the current status of the property,
and the property to check. We check the Session table to determine how we have logged into
the database and then set appropriate filters on the Field Level Security table based on our
parameters. If a record is found, we return the value in the table and the current status. This
is so that we do not change the default value of the form to allow more access. For example,
if a field is not editable on a form we do not want to allow our code to make the field editable.
It would be fine if it was the other way around. If no value is found, we return the current value
of the property.

Finally we need a test form. When the form opens we need to set the properties of the fields
based on the Field Level Security table. We will be setting security for the No. field in the
customer table so we add the appropriate code to the OnOpenForm trigger.

As this is a list form we also need to take into account the fact that hiding a column wont
really hide a column. The user can still right-click on the column heading and show the field.
We need to add code to the OnFormat trigger for the field to change the display value if the
user is not allowed to see it.

Note that the value can still be viewed using the Zoom feature. To
change that refer to the Hiding values in Zoom recipe in this chapter.

Chapter 7

197

There's more...
The concept of Field-level security is neither difficult to understand nor something you will
need to write code for. The problem is that in order to do it properly we have to add code to
every form in the database. For this to work on a large scale, you would need to build your own
parser to analyze NAV objects in their text form. The code would then be added to the correct
areas and the objects imported into the system.

Adding so much of code to forms before they open can also cause some slowness. The
Customer Card, for example, has 68 fields on it. That is, 136 checks (68 for Editable, 68
for Visible) that need to be made before the form can appear on the screen. Of course
many of these fields will never have security set up for them, but you would need to determine
that before making modifications. You would also need to keep a documentation of the fields
whose security you wont be checking, as those fields could still be added to the permissions
table, but never utilized.

See also
ff Checking conditions using an IF statement

ff Creating a table

ff Using the Form Generation Wizard

ff Changing text appearance

ff Checking for user-assigned roles

Assigning menu suites based on company
Unfortunately, NAV only supports assigning one menu suite to a user. This recipe will show you
how to set a user's menu suite at runtime based on the current company.

How to do it...
1.	 Design the User Menu Level table (2000000061).

2.	 Save the table as User Menu Level by Company with a new object ID.

3.	 Add the following field to the table:

Name Type Length
Company Text 30

Roles and Security

198

4.	 Set the following properties for the field:

Field Name Property Name Value
Company TableRelation Company

Company NotBlank Yes

5.	 Add the Company field as the first field under Primary Key.

6.	 Save and close the table.

7.	 Create a new codeunit from Object Designer.

8.	 Add a global function named LoadMenusuite.

9.	 Add the following local variables to the function:

Name Type Subtype
UserMenuLevelComp Record User Menu Level by Company
UserMenuLevel Record User Menu Level
Session Record Session

10.	 Add the following code to the function:
Session.SETRANGE("My Session", TRUE);
IF NOT Session.FINDFIRST THEN
 EXIT;

UserMenuLevelComp.SETRANGE(Company, COMPANYNAME);
UserMenuLevelComp.SETRANGE(ID, USERID);
IF Session."Login Type" = Session."Login Type"::Database THEN
 UserMenuLevelComp.SETRANGE("ID Type", UserMenuLevelComp."ID
 Type"::Database)
ELSE IF Session."Login Type" = Session."Login Type"::Windows THEN
 UserMenuLevelComp.SETRANGE("ID Type", UserMenuLevelComp."ID
 Type"::Windows);

IF UserMenuLevelComp.FINDFIRST THEN BEGIN
 UserMenuLevel.GET(UserMenuLevelComp.ID, UserMenuLevelComp."ID
 Type", UserMenuLevelComp.Level);
 UserMenuLevel.DELETE;
END;

UserMenuLevelComp.CALCFIELDS(Object);
UserMenuLevel.TRANSFERFIELDS(UserMenuLevelComp);
UserMenuLevel.INSERT;

11.	 Add a global function named LoadMenusuite.

Chapter 7

199

12.	 Add the following local variables to the function:

Name Type Subtype
UserMenuLevelComp Record User Menu Level by Company
UserMenuLevel Record User Menu Level
Session Record Session

13.	 Add the following code to the function:
Session.SETRANGE("My Session", TRUE);
IF NOT Session.FINDFIRST THEN
 EXIT;

UserMenuLevel.SETRANGE(ID, USERID);
IF Session."Login Type" = Session."Login Type"::Database THEN
 UserMenuLevel.SETRANGE("ID Type", UserMenuLevel."ID
 Type"::Database)
ELSE IF Session."Login Type" = Session."Login Type"::Windows
 THEN
 UserMenuLevel.SETRANGE("ID Type", UserMenuLevel.
 "ID Type"::Windows);

IF UserMenuLevel.FINDFIRST THEN BEGIN
 IF UserMenuLevelComp.GET(COMPANYNAME, UserMenuLevel.ID,
 UserMenuLevel."ID Type", UserMenuLevel.Level) THEN BEGIN
 UserMenuLevel.CALCFIELDS(Object);
 UserMenuLevelComp.Object := UserMenuLevel.Object;
 UserMenuLevelComp.MODIFY;
 END ELSE BEGIN
 UserMenuLevel.CALCFIELDS(Object);
 UserMenuLevelComp.TRANSFERFIELDS(UserMenuLevel);
 UserMenuLevelComp.Company := COMPANYNAME;
 UserMenuLevelComp.INSERT;
 END;
END;

14.	 Save and close the codeunit.

15.	 Design Codeunit 1, Application Management.

Name Type Subtype
MenusuiteMgt Codeunit Menusuite Management (our custom codeunit)

Roles and Security

200

16.	 Add the end of the LoginStart function add the following code:
MenusuiteMgt.LoadMenusuite;

17.	 Add the end of the LoginEnd function add the following code:
MenusuiteMgt.SaveMenusuite;

18.	 Save and close the codeunit.

How it works...
MenuSuites allow the user to navigate to different parts of the NAV system. Users can
customize their menus by hiding links or adding shortcuts. These changes are stored as a
BLOB field in the User Menu Level table. The problem is that each user is only allowed one
entry in this table. This is also a system table used by the NAV executables so we want to
avoid modifying it if possible. We may not be able to change how the system loads a menu
suite, but we can definitely change what it loads.

First we need to create a wrapper for the User Menu Level table. We will call this table User
Menu Level by Company. It is a duplicate of the User Menu Level table, but it also has a
Company field which is part of the primary key. This will allow each user to have one entry
per company.

Next we should create a codeunit to manage our new table. We will need a way to load a
menu suite into the real User Menu Level table as well as a way to save the menusuite into
the User Menu Level by Company table.

In order to load the correct record containing the menu suite, you need to determine the
current session type (Database or Windows login) and set appropriate filters like the user
ID and company. We then delete the record from the User Menu Level system table. In
order to properly copy the BLOB field, we must do a CALCFIELDS on it before we use the
TRANSFERFIELDS function. The copy is then saved to the system table, which changes what
it loads.

Our Save function works the opposite way. We first find the menu suite in the system table. If
a copy already exists we replace the BLOB field, but if there is no copy we insert a new record.
Once this is done the load function will pick up on it.

Lastly, we need to tell NAV to use these functions. This involves modifying Codeunit 1,
Application Management. This should be done with extreme caution. You do not want to
introduce any errors into this codeunit as it could potentially cause you to be unable to log into
the database. When someone changes companies or opens the database, the LoginStart
or LoginEnd methods are called. It is in these methods that we tell NAV to load or save the
menu suite.

Chapter 7

201

See also
ff Creating a table

Ending an idle session
Idle users utilize sessions in the system and also leave the application available to people
who should not be using it. This recipe will show you how to create a small program to end
these sessions.

How to do it...
1.	 Create a new codeunit from Object Designer.

2.	 Add the following global variable:

Name Type Subtype
Session Record Session

3.	 Add the following code to the OnRun trigger:
Session.SETFILTER("Idle Time", '>%1', 1800000);
Session.DELETEALL;

4.	 Save and close the codeunit.

How it works...
The session table contains a field called Idle Time. This field is a Duration data type which is
similar to an integer. The value in the field represents the number of milliseconds that have
elapsed since the user was active. In our example, we use the number 1,800,000 which is
equal to 30 minutes. If we find any sessions that have been idle for longer than that, we delete
them from the Session table which kills their connection to the database.

There's more...
This code is obviously more beneficial if it runs periodically throughout the day. You can
schedule this code to run through several methods including the OnTimer property of forms, a
custom NAS process, or through SQL Server. There is an example of the latter in Chapter 11,
SQL Server and Performance Tuning.

Roles and Security

202

Automatically adding users to NAV
Adding users to groups in Active Directory and Windows Groups is not enough to give access
to NAV. Here we will show a way to automatically add a user to NAV Windows Logins when they
are added to a specific group.

Getting ready
You will need to create the .NET project described in the Checking Active Directory groups
section of the Checking for user-assigned roles recipe in this chapter.

How to do it...
1.	 Add the following functions to your .NET class:

public string RetrieveSID(string user, string domain)
{
 string connectionPrefix = "LDAP://" + domain;
 byte[] userSID;
 DirectorySearcher ADSearcher = new DirectorySearcher(new
 DirectoryEntry(connectionPrefix));

 ADSearcher.Filter = @"(&(objectClass=user) (cn=" + user + "))";
 SearchResult result = ADSearcher.FindOne();

 if (result == null)
 {
 throw new NullReferenceException
 ("Could not find " + user + " in the " + domain + "
 domain");
 }

 DirectoryEntry ADUser = result.GetDirectoryEntry();
 ADUser = new DirectoryEntry(connectionPrefix + "/" +
 ADUser.Properties["distinguishedName"].Value);

 userSID = (byte[])ADUser.Properties["objectSid"][0];

 ADUser.Close();
 ADUser.Dispose();
 ADSearcher.Dispose();

 return (new SecurityIdentifier(userSID, 0).Value);
}

public void LoadADGroupMembers()
{
 LoadProperty("member");
}

Chapter 7

203

2.	 Save and compile your class.

3.	 Create a new codeunit from Object Designer.

4.	 Add the following global variables to the codeunit:

Name Type Subtype Length
ADGroupMembers Automation 'NAV_ActiveDirectory'.NAV_

ActiveDirectory
IDtoSID Automation 'NAV_ActiveDirectory'.NAV_

ActiveDirectory
WindowsLogin Record Windows Login
GroupMember Text 119
GroupMemberSID Text 119

5.	 Add the following code to the OnRun trigger:
CREATE(ADGroupMembers);
CREATE(IDtoSID);
ADGroupMembers.SetConnectionString('NAV_ACCESS_GROUP',
 'LDAP://your_domain/CN=%1,OU=your_groups,DC=your_domain');
ADGroupMembers.LoadADGroupMembers();
WHILE (ADGroupMembers.MorePropertiesExist()) DO BEGIN
 GroupMember := ADGroupMembers.GetNextProperty();
 GroupMemberSID := IDtoSID.RetrieveSID(GroupMember,
 'corp.local');

 IF GroupMemberSID <> '' THEN BEGIN
 WindowsLogin.VALIDATE(SID, GroupMemberSID);
 IF WindowsLogin.INSERT THEN;
 END;
END;

6.	 Save and close the codeunit.

How it works...
For reference here is the LoadProperty function from a previous recipe.

private void LoadProperty(string property)
{
 DirectoryEntry ent = new DirectoryEntry(userdn);
 PropertyValueCollection ValueCollection = ent.Properties[property];
 IEnumerator en = ValueCollection.GetEnumerator();

 while (en.MoveNext())
 {

Roles and Security

204

 if (en.Current != null)
 {
 if (!properties.Contains(en.Current.ToString()))
 {
 properties.Add(en.Current.ToString());
 }
 }
 }
 ent.Close();
 ent.Dispose();
}

In order to know which users to load into NAV, we need a way to determine which users are
assigned to a specific group. For that we need to create an LDAP connection to the group in
question. With this type of connection a property called "member" is exposed. We can load the
members of the group into a ListArray so that we can iterate through them in NAV.

As we move through the list using the MorePropertiesExist and GetNextProperty
function, we need to retrieve the SID for the group member. Remember, Windows Security in
NAV is based completely off of the SID. As the group member could be stored anywhere in the
Active Directory, we cannot create a hard coded LDAP string to get this information. Instead,
we have to search the entire domain for them.

In order to search Active Directory we need to create a DirectorySearcher object. This
is not unlike a Record variable in NAV. We apply filters for the user we are looking for and
execute the FindOne() method. The distinguishedName property in Active Directory tells
us exactly where to look to find the user. Essentially, the property is an LDAP string that points
to the user. Using this connection we can get the user record and retrieve the ObjectSid for
them. This SID is not in the correct format, however, and we need to convert it to a standard
Security Identifier before returning the value.

From here, NAV can use the returned value to validate the SID and insert the record into the
Windows Login table. Assuming NAV permissions are done through Active Directory groups
and users are correctly assigned, there is no more setup to perform. The only exception would
be if you are using SQL Server and the Enhanced Security Model which would require you to
do a synchronization of the users.

There's more...
You can easily expand this recipe to remove users from the Windows Login table if they are
removed from the Active Directory group or their accounts are disabled. The entirety of Active
Directory is available for changes from NAV using .NET. You should be careful with your code,
though. It can be very easy to accidentally delete something you did not mean to. If you do
not catch the change before it replicates across all of the domain controllers or do not have a
recent backup you are in serious trouble.

Chapter 7

205

See also
ff Adding roles through the User Setup table

ff Creating and assigning a security role

Hiding values in Zoom
Users with the Zoom ability can see the values of fields that are hidden on forms. This recipe
will show you how to hide these fields from the Zoom window.

How to do it...
1.	 Create a new table from Object Designer.

2.	 Add the following fields to the table:

Name Type Length
Field No. Integer
Field Text 250
Value Text 250
Table Text 50
Table No. Integer

3.	 Save and close the table.

4.	 Create a new list form using the Form Generation Wizard.

5.	 Add the Field and Value fields from the table.

6.	 Set the following properties on the form:

Property Name Value
Caption Zoom

SourceTableTemporary Yes

Editable No

InsertAllowed No

ModifyAllowed No

DeleteAllowed No

SourceTablePlacement First

7.	 Add a global function named LoadValues.

Roles and Security

206

8.	 The function should take in two parameters:

Name Type
TableNo Integer
RecRef RecordRef

9.	 The RecRef parameter should be passed by reference.

10.	 Add the following local variables to the function:

Name Type Subtype
Field Record Field
FieldRef FieldRef

11.	 Add the following code to the LoadValues function:
Field.SETRANGE(TableNo, TableNo);
Field.SETRANGE(Enabled, TRUE);
IF Field.FINDSET THEN
 REPEAT
 FieldRef := RecRef.FIELD(Field."No.");

 Rec."Field No." := Field."No.";
 Rec.Field := Field.FieldName;
 Rec.Value := FORMAT(FieldRef.VALUE);
 Rec.Table := Field.TableName;
 Rec."Table No." := TableNo;
 Rec.INSERT;
 UNTIL Field.NEXT = 0;

12.	 Add the following local variable to the OnFormat trigger for the Value field:

Name Type Subtype
FieldLevelSecurity Codeunit Field Level Security (from previous recipe)

13.	 Add the following code to the OnFormat trigger of the Value field:
IF NOT FieldLevelSecurity.CheckSecurity(
 USERID, "Table No.", "Field No.", TRUE, 2) THEN
 Text := '***';

14.	 Save and close the form.

15.	 Create the test form as described in the Field level security recipe in this chapter.

16.	 Add a Menu button to the form with the Caption property set to Custom Zoom.

Chapter 7

207

17.	 Add a menu item named Custom Zoom with a shortcut key of Ctrl+F8.

18.	 Add the following local variables to the OnPush trigger of the menu item:

Name Type Subtype
RecRef RecRef
CustomZoomForm Form Custom Zoom

19.	 Add the following code to the OnPush trigger for the menu item:
RecRef.GETTABLE(Rec);
CustomZoomForm.LoadValues(DATABASE::Customer, RecRef);
CustomZoomForm.RUNMODAL;

20.	 Save and close the form.

The folowing is an example of our Custom Zoom form run from our test form.

How it works...
There's no way to override what NAV chooses to display in the Zoom window. With some work,
though, we can display another window in its place. First we need a table to store our Zoom
data. We need to know the field number and the name, table number and name, and the
Value of the field.

We also need a form to display our data. We want this form to look and function exactly like
the Zoom form in base NAV. The form should only be used to display data (Editable = No,
insertion, modification, and deletion are not allowed). Also, the form should focus on the first
record when it loads (SourceTablePlacement = Yes). Finally we do not need this data to
actually be stored in the database (SourceTableTemporary = Yes).

Roles and Security

208

This form needs to know what data to display. As there is never any data in the table, we must
tell it how to load this data. In order to do this we loop through all of the enabled fields for the
table specified. We then create a field reference to that field based on the record reference,
we pass to the LoadData function. From there we create a Custom Zoom record and insert
into the temporary table on which our form works.

At this point, we have only duplicated the Zoom functionality. We now want to integrate that
functionality with the Field Level Security table we developed in a previous recipe. That
involves changing the display value using the OnFormat trigger.

Now we have to override the base Zoom functionality on the form. Adding a menu button with
the same shortcut as Zoom will take care of that. We add our own code to the OnPush trigger
of that Custom Zoom menu item that loads the values for the selected record and displays
the form.

There's more...
Like other recipes in this chapter, this recipe is useful only under specific circumstances such
as displaying social security numbers or credit card numbers. In order to implement it properly
it would need to be added to every form in the system and the Zoom permission would need
to be taken away from all users. If it is left assigned to a user they can still get to the base NAV
feature by using the menu in the NAV Client.

The Custom Zoom menu button would also be resized so that it is nearly invisible on the
screen. Better yet, it could be hidden behind another control on the form. This allows for a
seamless integration of the code and the user will not see any change to the forms they have
been using, but it is not so great for new developers trying to figure out what is going on with
the form.

See also
ff Referencing dynamic tables and fields

ff Creating a table

ff Using the Form Generation Wizard

ff Changing text appearance

ff Designing a form based on a temporary table

ff Field-level security

8
Leveraging Microsoft

Office

In this chapter, we will cover:

ff Using the style sheet tool

ff Sending data to Microsoft Word

ff Sending an e-mail from NAV through Outlook

ff Exporting data using the Excel buffer

ff Creating a data connection from Excel to NAV

ff Creating an InfoPath form with NAV data

ff Instant messaging using Office Communicator

ff Creating charts with Visio

Introduction
Microsoft Office is a related suite of applications. Just as the Dynamics platform encompasses
multiple products, so does the Office product line. The three most popular programs are Word,
Excel, and Outlook which serve as a word processor, spreadsheet application, and e-mail
manager respectively. NAV does not offer the same functionality that these applications provide
and integrating with them can open many new possibilities for the users of the software.

Office also comes with other, lesser known, programs that are used by many companies.
We will also examine three of such products. The first is InfoPath which is used to generate
XML-based forms for users to enter and view data. We will learn about Office Communicator,
an enterprise instant messaging and meeting utility. Finally, we will take a look at Visio which
is used for diagrams and flowcharts. With all of these products working together as one, you
will easily be able to see how to get your data to the people who need it.

Leveraging Microsoft Office

210

Using the style sheet tool
NAV has built-in functionality to send data to outside applications like Word and Excel.
They allow you to view data on a style sheet which can make it look much better than just a
black-and-white report. This recipe will show you how to create these style sheets using a tool
within NAV.

Getting ready
Download and install the Style Sheet Tool version 2.0 (links can be found in the There's
More section). Run the Style Sheet setup and form and if you are using the RTC, fill out the
RoleTailored Client tab.

How to do it...
1.	 Run the Style Sheet Card form from Object Designer.

2.	 Create a new record and fill in these fields with the following values:

Field Value
Code CUSTLIST
Description Customer List Style Sheet
Form No. 22
Page No. 22

3.	 Add a line with the following values:

Field Value
Table No. 18
Base Record Yes
Multiple Lines Yes

4.	 Click on the Style Sheet button, then Select Fields.

5.	 Add lines with the following values:

Field No. Field Name Include Caption Currency
1 No. Yes No
2 Name Yes No
58 Balance Yes Yes

Chapter 8

211

6.	 Close the Select Fields window. You should now have a form that looks like the
following screenshot:

7.	 Click on Style Sheet | Create Mail Merge.

8.	 In the Microsoft Word window that opens, click on the Mailings menu.

9.	 Click Insert Merge Field.

10.	 Add a MULTILINE_BEGIN_<Item> and a MULTILINE_END_<Item> to
the document.

Leveraging Microsoft Office

212

11.	 In between, add a table with the following captions and field values. The resulting
document should look like this:

12.	 Close the document and click on Yes to each of the messages that are presented.

13.	 The document will be converted to a style sheet and saved in the database.

How it works...
1.	 Note that this recipe is not compatible with the RoleTailored client. The Classic client

calls the code found in Codeunit 403, Application Launch Management, but the RTC
does not. You can still export to Word and Excel, but not with a custom style sheet.

2.	 With the Customer List form open, click on the Send Options button from the
NAV toolbar.

3.	 You will be presented with a send options window.

Chapter 8

213

4.	 Notice that the style sheet has automatically changed from default to the one we just
created. You could still switch back to the default if you so desired.

5.	 Click the Send button and the Customer List will be loaded into a Word Document.

There's more...
The style sheet tool can be used to generate a lot more complex documents than the one is
this example. For a complete walkthrough of what can be done you can download the Style
Sheet Tool User Guide, along with the tool itself, from one of the following addresses:

Customers:

https://mbs.microsoft.com/customersource/downloads/servicepacks/
navstylesheettool.htm?printpage=false&stext=nav%20style%20sheet%20
tool

Partners:

https://mbs.microsoft.com/partnersource/deployment/resources/
supplements/navstylesheettool.htm?printpage=false&stext=nav%20
style%20sheet%20tool

See also
ff Sending data to Microsoft Word

Sending data to Microsoft Word
Creating attractive Word documents from NAV is a challenging task. This recipe will not show
you how to create a document that looks exactly like your report from NAV, but it will introduce
you to the basics of sending data to the application.

Getting ready
Microsoft Word must be installed on the client system.

https://mbs.microsoft.com/customersource/downloads/servicepacks/navstylesheettool.htm?printpage=false&stext=nav style sheet tool
https://mbs.microsoft.com/customersource/downloads/servicepacks/navstylesheettool.htm?printpage=false&stext=nav style sheet tool
https://mbs.microsoft.com/customersource/downloads/servicepacks/navstylesheettool.htm?printpage=false&stext=nav style sheet tool
https://mbs.microsoft.com/partnersource/deployment/resources/supplements/navstylesheettool.htm?printpage=false&stext=nav style sheet tool
https://mbs.microsoft.com/partnersource/deployment/resources/supplements/navstylesheettool.htm?printpage=false&stext=nav style sheet tool
https://mbs.microsoft.com/partnersource/deployment/resources/supplements/navstylesheettool.htm?printpage=false&stext=nav style sheet tool
https://mbs.microsoft.com/partnersource/deployment/resources/supplements/navstylesheettool.htm?printpage=false&stext=nav style sheet tool

Leveraging Microsoft Office

214

How to do it...
1.	 Create a new codeunit from Object Designer.

2.	 Add the following global variables:

Name Type Subtype Length
WordApp Automation 'Microsoft Word 12.0 Object

Library'.Application
WordDoc Automation 'Microsoft Word 12.0 Object

Library'.Document
WordAppSelection Automation 'Microsoft Word 12.0 Object

Library'.Selection
WordFont Automation 'Microsoft Word 12.0 Object

Library'.Font
CompanyInformation Record Company Information
ExportedPicture Text 250
NewLine Char

3.	 Save an uncompiled version of the codeunit and close it.

4.	 Export the codeunit to a text file.

5.	 Open the file and remove all of the events that were added by the
Automation variables.

6.	 Save and close the text file.

7.	 Import the text file into NAV and compile the object.

8.	 Add the following code to the OnRun trigger:
NewLine := 13;
ExportedPicture := ENVIRON('TEMP') +
 '\CompanyInformationPicture.bmp';

CompanyInformation.GET;
CompanyInformation.CALCFIELDS(Picture);
CompanyInformation.Picture.EXPORT(ExportedPicture);

CREATE(WordApp);

WordDoc := WordApp.Documents.Add;
WordDoc.Activate;

WordAppSelection := WordApp.Selection;

Chapter 8

215

WordDoc.Shapes.AddPicture(ExportedPicture);

WordFont := WordAppSelection.Font;
WordFont.Size(40);
WordFont.Name('Arial');
WordAppSelection.TypeText('Big Text' + FORMAT(NewLine));

WordFont.Size(20);
WordFont.Name('Courier New');
WordAppSelection.TypeText('Medium Text' + FORMAT(NewLine));

WordFont.Size(10);
WordFont.Name('Times New Roman');
WordAppSelection.TypeText('Small Text' + FORMAT(NewLine));

WordApp.Visible := TRUE;

9.	 Save and close the codeunit.

How it works...
This recipe requires an odd step in which you have to manipulate the object from a text
file and not within Object Designer. When you add Automation variables to your object,
regardless of whether or not you set the WithEvents property, the events are added to
the code. The WithEvents property just lets you see them when you are coding.

Unfortunately, NAV has a limit on just how long these event names can be and many of them
are similarly named. When they are added to NAV, the application truncates the end of the
event name which can result in duplicate events being defined. This throws an error when you
compile the object. If you want to use these events in your NAV code you will have to write your
own .NET wrapper class with names that are not as long.

Now we can move to the actual code. To start, we export the logo from Company Information.
Ideally, we would place this on a shared drive, or use an image that is not stored in NAV,
because the ENVIRON command is no longer supported in the RTC.

Next we create an instance of the Microsoft Word application. We then create a new blank
document and activate it. Using the Shape.AddPicture method from the Word Document
object we can insert the logo that we exported from Company Information.

We can also manipulate text just as we would if we were using the application manually. By
changing the font size and name, the TypeText method will alter the way it displays the text
on the screen. If you were trying to duplicate a NAV report you could set the font name to
Helvetica and the font size to seven, for example.

Leveraging Microsoft Office

216

There's more...
For detailed reading on the Microsoft Word Object Model you can visit the following
MSDN site:

http://msdn.microsoft.com/en-us/library/kw65a0we%28VS.80%29.aspx

See also
ff Using the style sheet tool

Sending an e-mail from NAV through Outlook
Dynamics NAV has code that will integrate with your Outlook client to send an e-mail. This
recipe will show you how to leverage that code.

Getting ready
You must have Outlook, or some other e-mail client, installed on the machine.

How to do it...
1.	 Create a new codeunit from Object Designer.

2.	 Add the following global variables:

Name Type Subtype
SMTPMailSetup Record SMTP Mail Setup
SMTPMail Record SMTP Mail
Mail Record Mail
Selection Integer

3.	 Add the following code to the OnRun trigger of your codeunit:
Selection := STRMENU('SMTP,Standard);

IF Selection = 1 THEN BEGIN
 IF SMTPMailSetup.GET THEN BEGIN
 SMTPMail.CreateMessage('Matt Traxinger',
 'YourE-mail@microsoft.com', 'Someone@somewhere.com',
 'E-mail Subject', 'E-mail Body', FALSE);
 SMTPMail.Send;
 END;

http://msdn.microsoft.com/en-us/library/kw65a0we%28VS.80%29.aspx
http://msdn.microsoft.com/en-us/library/kw65a0we%28VS.80%29.aspx

Chapter 8

217

END ELSE BEGIN
 Mail.NewMessage('Navision.Programmer@gmail.com',
 '','E-mail Subject','E-mail Body','',TRUE);
END;

4.	 Save and close the codeunit.

How it works...
When you run the codeunit you will be presented with the option to send the e-mail through
SMTP (Simple Mail Transfer Protocol) or Outlook.

SMTP is the preferred way of sending e-mail with NAV. The code behind this functionality, and
more specifically the CreateMessage function, is located in Codeunit 400, SMTP Mail. This
function uses the 'Microsoft Navision Mail'.SmtpMessage Automation to create
a message for us based on the input parameters. These parameters are Sender Name,
Sender E-mail Address, Recipient E-mail Addresses, Subject, Body, and HTML
Formatted. We must manually call the Send function in the Codeunit if we want to actually
send the message.

As a backup, you can use the NewMessage from Codeunit 397, Mail. This function also takes
in six parameters, but they are not the same as the SMTP CreateMessage function. These
inputs are Recipient E-mail, CC E-mail, Subject, Body, Attachment Filename, and
Open Dialog. This function will automatically try to send the e-mail for you if you set the
Open Dialog parameter to FALSE.

There's more...
For more details on the Microsoft Outlook object model you can visit the following MSDN site:

http://msdn.microsoft.com/en-us/library/ms268893%28VS.80%29.aspx

Sending an HTML formatted e-mail
Many CRM applications or other programs send e-mails out automatically. Anything that is
customer-facing should look professional. That is not to say that simple text e-mails are
bad, just that HTML formatted e-mails are more dynamic and more likely to get the
customer's attention.

http://msdn.microsoft.com/en-us/library/ms268893%28VS.80%29.aspx
http://msdn.microsoft.com/en-us/library/ms268893%28VS.80%29.aspx

Leveraging Microsoft Office

218

Here is some sample code which can be used to send an HTML formatted e-mail:

IF SMTPMailSetup.GET THEN BEGIN
 SMTPMail.CreateMessage('Matt Traxinger',
 YourE-mail@YourCompany.com', 'Someone@Somewhere.com',
 'E-mail Subject', '', TRUE);
 SMTPMail.AppendBody('<h2>Thank You!</h2>

');
 SMTPMail.AppendBody('Your message has been received,

');
 SMTPMail.AppendBody('Administrator');
 SMTPMail.Send;
END;

By passing a value of TRUE as the last parameter to the CreateMessage function, we tell the
system to format the e-mail for HTML. We can then use the AppendBody function to add lines
to our message. These could be read from an external file, stored in NAV, or hard coded as we
have done here.

Exporting data using the Excel buffer
NAV contains a wrapper object that allows you to export data to Microsoft Excel. This recipe
will show you how to use it in its most common form—exporting a report to Excel.

Getting ready
Microsoft Excel must be installed on the client machine.

How to do it...
1.	 Create a new report based on the Customer table using the Report

Generation Wizard.

2.	 Add the No., Name, and Balance fields.

3.	 Add the following global variables:

Name Type Subtype
ExcelBuf Record Excel Buffer
PrintToExcel Boolean

4.	 The ExcelBuf variable should be Temporary.

5.	 Add a function named MakeExcelInfo.

Chapter 8

219

6.	 Add the following code the function:
ExcelBuf.SetUseInfoSheed;
ExcelBuf.AddInfoColumn(FORMAT('Company Name'),
 FALSE,'',TRUE,FALSE,FALSE,'');
ExcelBuf.AddInfoColumn(COMPANYNAME,FALSE,'',FALSE,FALSE,
 FALSE,'');
ExcelBuf.NewRow;
ExcelBuf.AddInfoColumn(FORMAT('Report Name'),
 FALSE,'',TRUE,FALSE,FALSE,'');
ExcelBuf.AddInfoColumn(FORMAT('Print Report to Excel'),
 FALSE,'',FALSE,FALSE,FALSE,'');
ExcelBuf.NewRow;
ExcelBuf.AddInfoColumn(FORMAT('Report No.'),
 FALSE,'',TRUE,FALSE,FALSE,'');
ExcelBuf.AddInfoColumn(REPORT::"Print Report to Excel",
 FALSE,'',FALSE,FALSE,FALSE,'');
ExcelBuf.NewRow;
ExcelBuf.AddInfoColumn(FORMAT('User Id'),
 FALSE,'',TRUE,FALSE,FALSE,'');
ExcelBuf.AddInfoColumn(USERID,FALSE,'',FALSE,FALSE,FALSE,'');
ExcelBuf.NewRow;
ExcelBuf.AddInfoColumn(FORMAT('Date / Time'),
 FALSE,'',TRUE,FALSE,FALSE,'');
ExcelBuf.AddInfoColumn(TODAY,FALSE,'',FALSE,FALSE,FALSE,'');
ExcelBuf.AddInfoColumn(TIME,FALSE,'',FALSE,FALSE,FALSE,'');
ExcelBuf.NewRow;
ExcelBuf.AddInfoColumn(FORMAT('Filters'),FALSE,'',
 TRUE,FALSE,FALSE,'');
ExcelBuf.AddInfoColumn(Customer.GETFILTERS,FALSE,'',
 FALSE,FALSE,FALSE,'');
ExcelBuf.ClearNewRow;
MakeExcelDataHeader;

7.	 Add a function called MakeExcelDataHeader.

8.	 Add the following code to the function:
ExcelBuf.NewRow;
ExcelBuf.AddColumn(Customer.FIELDCAPTION("No."),FALSE,'',
 TRUE,FALSE,TRUE,'@');
ExcelBuf.AddColumn(Customer.FIELDCAPTION(Name),FALSE,'',
 TRUE,FALSE,TRUE,'');
ExcelBuf.AddColumn(Customer.FIELDCAPTION(Balance),FALSE,
 '',TRUE,FALSE,TRUE,'');

9.	 Add a function called MakeExcelDataBody.

Leveraging Microsoft Office

220

10.	 Add the following code to the function:
ExcelBuf.NewRow;
ExcelBuf.AddColumn(Customer."No.",FALSE,'',FALSE,
 FALSE,FALSE,'');
ExcelBuf.AddColumn(Customer.Name,FALSE,'',FALSE,
 FALSE,FALSE,'');
ExcelBuf.AddColumn(Customer.Balance,FALSE,'',FALSE,
 FALSE,FALSE,'#,##0');

11.	 Add a function called CreateExcelBook.

12.	 Add the following code to the function:
ExcelBuf.CreateBook;
ExcelBuf.CreateSheet('Data','',COMPANYNAME,USERID);
ExcelBuf.GiveUserControl;
ERROR('');

13.	 Add the following code to the OnPreDataItem trigger for the customer data item:
IF PrintToExcel THEN
 MakeExcelInfo;

14.	 Add the following code to the OnAfterGetRecord trigger for the customer
data item:
IF PrintToExcel THEN
 MakeExcelDataBody;

15.	 Add the following code to the OnPostReport trigger:
IF PrintToExcel THEN
 CreateExcelbook;

16.	 Add a checkbox control and label to the Request form of the report.

17.	 Set the following properties on the control:

Property Value
SourceExpr PrintToExcel

Caption "Print to Excel"

18.	 Save and close the report.

How it works...
Printing a report to Excel requires two variables. The first is a record variable that refers to the
Excel Buffer table. This table contains several functions that we will use throughout our report
to communicate with the Excel program. The second is Boolean, named PrintToExcel.
There may be instances when we just want to see the report in its normal display so we need
a flag to tell the report what to do.

Chapter 8

221

We will use four functions in this report and go through each of them one-by-one. The first
function is named MakeExcelInfo and contains a series of calls to the AddInfoColumn
and NewRow functions in the Excel Buffer table. This function replicates what you see in the
Header section of most reports, that is the name of the report, the date and time when it was
created, whom was it created by, and any filters that may have been used.

The AddInfoColumn parameters deal with formatting of the text that will be entered in the
cell. In order, the parameters are: Value, IsFormula, CommentText, IsBold, IsItalics,
IsUnderline, and NumFormat.

At the end of our function, we make a call to MakeExcelDataHeader, which adds our
column headings to the first row of a new sheet in the Excel Workbook.

There is a similar function, MakeExcelDataBody, which adds our actual data to the sheet.

Finally, we have a function called CreateExcelBook, which loads the data from the Excel
Buffer and displays the Excel worksheet.

Now that we have these functions, we need to use them in our report. When thinking about
what each one does and how the report flows from start to finish, it becomes obvious when we
should use them. The header information about the report is displayed in a Header section for
the Customer record, so we can use the MakeExcelInfo function in the OnPreDataItem
trigger. We retrieve data from the database in the OnAfterGetRecord trigger, so here is
where we should add the data to the Excel file. Lastly, we don't want to view the Excel file until
the report is completely generated, so we place the call to the CreateExcelBook function in
the OnPostReport trigger.

When you run the report and print to Excel, you should see a document like the one shown in
the following screenshot:

Leveraging Microsoft Office

222

There's more...
Although the Excel Buffer will provide for most of your needs, you can also write your own
Excel Automations.

For more information on the Microsoft Excel Object Model visit the following
MSDN site:
http://msdn.microsoft.com/en-us/library/
wss56bz7%28VS.80%29.aspx

See also
ff Using temporary tables to store data

ff Using the report generation wizard

ff Creating a data connection from Excel to NAV

Creating a data connection from Excel to
NAV

Instead of copying and pasting data from NAV into Excel, you can easily create an external
connection to the NAV database.

Getting ready
Microsoft Excel must be installed on the client machine.

How to do it...
1.	 In Microsoft Excel select the Data tab.

2.	 From the Get External Data section of the menu select From Other Sources | From
SQL Server.

http://msdn.microsoft.com/en-us/library/wss56bz7%28VS.80%29.aspx
http://msdn.microsoft.com/en-us/library/wss56bz7%28VS.80%29.aspx
http://msdn.microsoft.com/en-us/library/wss56bz7%28VS.80%29.aspx

Chapter 8

223

3.	 In the data connection wizard, enter the name of the SQL Server and your
Log on credentials.

4.	 Click Next.

5.	 In the next window select the database and table you wish to view in Excel.

6.	 Click Finish.

7.	 It may take a moment for the data to load into the workbook.

How it works...
Microsoft Excel maintains an active connection to the database when you setup an
external data connection. When you save and close a file with a connection in it the data is
automatically reloaded the next time you open the document. This eliminates the need to log
in to NAV to copy and paste data. For users that only need this basic level of access to the
data a company can save thousands of dollars by licensing users for this type of connection to
the database, known as DCO or Dynamics Client for Office.

There's more...
The following MSDN article provides more information about managing your connections in
Microsoft Excel:

http://msdn.microsoft.com/en-us/library/bb545041%28office.11%29.aspx

http://msdn.microsoft.com/en-us/library/bb545041%28office.11%29.aspx
http://msdn.microsoft.com/en-us/library/bb545041%28office.11%29.aspx

Leveraging Microsoft Office

224

See also
ff Exporting data using the Excel Buffer

Creating an InfoPath form with NAV data
Microsoft InfoPath allows you to create forms to view and enter data outside of the NAV
application. There is no programming involved, other than having an existing NAV Page
exposed as a web service.

Getting ready
Microsoft InfoPath must be installed on the client machine.

How to do it...
1.	 Create a web service as described in the Creating a web service recipe in

Chapter 10, Integration.

2.	 From the Getting Started window in InfoPath, select Design a Form Template.

3.	 Select Web Service as the source that the form should be based on.

4.	 Click OK.

5.	 Select Receive Data.

Chapter 8

225

6.	 From the Dynamics NAV Web Server go to the following address and find the web
service: http://localhost:7047/DynamicsNAV/WS/services

7.	 In this case we will be using http://localhost:7047/DynamicsNAV/WS/Page/
CustomerExample, but this could be different on your system.

8.	 Enter this address in the Data Connection Wizard window.

9.	 Click Next.

10.	 Select Read Multiple.

11.	 Click Next and finally Finish.

12.	 You should now have a Design Template that looks like the following screenshot:

13.	 Change the title to Customer List.

14.	 From the queryFields node in the data source tree view on the right-hand side of the
screen, drag the Field node into the Drag query fields here box on the form.

15.	 Select Drop Down List Box.

16.	 Drag the Criteria and Set Size nodes to the same area on the form.

17.	 Click on the box labeled Drag data fields here.

18.	 From the menu, select Insert | Repeating Table.

19.	 Drill down in the Data Fields node and select CustomerExample.

http://localhost:7047/DynamicsNAV/WS/services
http://localhost:7047/DynamicsNAV/WS/services
http://localhost:7047/DynamicsNAV/WS/Page/CustomerExample
http://localhost:7047/DynamicsNAV/WS/Page/CustomerExample

Leveraging Microsoft Office

226

20.	 Click Next.

21.	 Add the No., Name, and Balance fields.

22.	 Click Finish.

23.	 Your completed InfoPath form should look like the following screenshot:

Chapter 8

227

How it works...
To view the form click Preview in the InfoPath toolbar. Just like NAV, you can select your filter
fields, but you must select Run Query in order to retrieve the data. The data will be presented
in a list format at the bottom of the page.

There's more...
The most common use of InfoPath forms is to add them to a Forms Library in SharePoint.
Although this example is used only for viewing data, you can also create forms to enter and
modify data in NAV. The licensing costs for these type of users are significantly less than
those for users of the Classic and RoleTailored clients; depending on the type of work these
users will perform, however, the development costs to create the forms may outweigh the
licensing costs.

See also
ff Displaying NAV Data in SharePoint

ff Consuming web services

Instant messaging using Office
Communicator

Office Communicator is an instant messenger client for businesses, similar to AOL Instant
Messenger or MSN Messenger. This recipe will show you how to integrate with Office
Communicator and send a message to someone through NAV.

Getting ready
Office Communicator must be installed and configured on the client machine.

How to do it...
1.	 Create a new C# Class Library project from Visual Studio.

2.	 Add the following code to the project:
using System;

using CommunicatorAPI;
using System.Threading;
using System.Runtime.InteropServices;

namespace NAVCommunicator

Leveraging Microsoft Office

228

{
 [ClassInterface(ClassInterfaceType.AutoDual)]
 [ProgId("NAVCommunicator")]
 [ComVisible(true)]
 public class NAVCommunicator
 {
 CommunicatorAPI.MessengerClass communicator;
 bool connected = false;

 public NAVCommunicator()
 {
 connected = false;
 }

 public bool IsConnected()
 {
 return connected;
 }

 public void Signin()
 {
 if (connected)
 return;

 if (communicator == null)
 {
 communicator = new
 CommunicatorAPI.MessengerClass();
 communicator.OnSignin += new
 DMessengerEvents_OnSigninEventHandler(
 communicator_OnSignin);
 }
 communicator.AutoSignin();
 }

 void communicator_OnSignin(int hr)
 {
 if (hr != 0)
 {
 throw new Exception("Unable to sign in!");
 }

 connected = true;
 }

 public void SendIM(string sendTo)
 {
 object[] sipUris = new object[1];
 sipUris[0] = sendTo;

 long windowHandle;
 CommunicatorAPI.IMessengerAdvanced msgrAdv =
 communicator as CommunicatorAPI.IMessengerAdvanced;

Chapter 8

229

 if (msgrAdv != null)
 {
 try
 {
 object obj = msgrAdv.StartConversation(
 CONVERSATION_TYPE.CONVERSATION_TYPE_IM,
 sipUris,null,"Testing","1",null);
 windowHandle = long.Parse(obj.ToString());
 }
 catch (Exception ex)
 {
 throw new Exception(
 "Unable to launch Communicator Window!");
 }
 }
 }
 }
}

3.	 Save, compile, and close the project.

4.	 Create a new form using the Form Generation Wizard based on the User Setup table.

5.	 Add the User ID and E-Mail fields to the form.

6.	 Add a button to the form and set the following properties:

Property Value
Caption Send IM

HorzGlue Right

VertGlue Bottom

7.	 Your form should look like the one shown in the following screenshot:

Leveraging Microsoft Office

230

8.	 Add the following local variables to the OnPush trigger for the new button:

Name Type Subtype
NAVCommunicator Automation 'NAVCommunicator'.NAVCommunicator
I Integer

9.	 Add the following code to the OnPush trigger:
IF ISCLEAR(NAVCommunicator) THEN
 CREATE(NAVCommunicator);

NAVCommunicator.Signin();
i := 0;
WHILE((i < 10) AND (NOT NAVCommunicator.IsConnected()))
 DO BEGIN
 i+=1;
 SLEEP(1000);
END;
NAVCommunicator.SendIM("E-Mail");

10.	 Save and close the form.

How it works...
Our .NET Class is composed of three main functions. The first is named Signin, and as you
might guess, handles the authentication part between our client and Office Communicator. It
does so by calling the AutoSignin method in the Communicator automation. We also add
a delegate to our main Communicator variable which will be triggered every time we sign in.
This method, communicator_OnSignin, sets our connected variable when we successfully
connect to the server.

Once we know that we are connected, we can call our third function, SendIM. This function
relies on a method called StartConversation to start the instant message (although it can
also start phone calls, meetings, and other conversation types).

So how can this be used in NAV? Well, Communicator works off of an e-mail address, which is
frequently stored in the User Setup table. As long as we can establish a link between a piece
of data, like Salesperson Code, we can determine whom to send the message to. Our SendIM
function creates an instance of our .NET Class, waits to make sure we connect successfully,
and opens a message window with the selected user as shown in the following screenshot:

Chapter 8

231

There's more...
For more information on the Office Communicator Object Model you can visit the following
MSDN site:

http://msdn.microsoft.com/en-us/library/bb758727.aspx

See also
ff Using the Form Generation Wizard

ff Writing your own automation using C#

Creating charts with Visio
Microsoft Visio is a product used for creating charts and diagrams. Here we will show an
example of how to create a simple flowchart with two connected shapes.

http://msdn.microsoft.com/en-us/library/bb758727.aspx
http://msdn.microsoft.com/en-us/library/bb758727.aspx

Leveraging Microsoft Office

232

Getting ready
Microsoft Visio must be installed on the client machine.

You may also need to download the Microsoft Office Interop
Assemblies from Microsoft here:
http://www.microsoft.com/downloads/details.
aspx?FamilyID=59daebaa-bed4-4282-a28c-
b864d8bfa513&displaylang=en

How to do it...
1.	 Create a new C# Class Library project in Visual Studio.

2.	 Add the following code to the project:
using System;
using System.Collections.Generic;

using System.Runtime.InteropServices;

using Microsoft.Office.Interop.Visio;

namespace VisioSample
{
 [ClassInterface(ClassInterfaceType.AutoDual)]
 [ProgId("VisioNAV")]
 [ComVisible(true)]
 public class VisioNAV
 {
 Application VisioApp;
 Documents VisioDocs;
 Document visioStencil;
 List<Shape> shapes;

 public VisioNAV()
 {
 try
 {
 shapes = new List<Shape>();
 VisioApp = new Application();
 VisioDocs = VisioApp.Documents;
 }
 catch (Exception e)
 {
 throw new Exception("Unable to open Visio!");
 }
 }

 public void CreateFile()

http://www.microsoft.com/downloads/details.aspx?FamilyID=59daebaa-bed4-4282-a28c-b864d8bfa513&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=59daebaa-bed4-4282-a28c-b864d8bfa513&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=59daebaa-bed4-4282-a28c-b864d8bfa513&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=59daebaa-bed4-4282-a28c-b864d8bfa513&displaylang=en

Chapter 8

233

 {
 try
 {
 VisioApp.Documents.Add("");
 }
 catch (Exception e)
 {
 throw new Exception("Unable to create Visio file!");
 }
 }

 public void OpenTemplate(String templateName)
 {
 visioStencil = VisioDocs.OpenEx(templateName,
 (short) VisOpenSaveArgs.visOpenDocked);
 }

 public void AddTable(float x, float y, String text)
 {
 Page visioPage = VisioApp.ActivePage;
 Master visioMaster =
 visioStencil.Masters.get_ItemU(@"Class");
 Shape visioShape = visioPage.Drop(visioMaster, x, y);
 visioShape.Text = @text;

 shapes.Add(visioShape);
 }

 public void ConnectShapes(int s1, int s2)
 {
 Page visioPage = VisioApp.ActivePage;
 Master visioMaster =
 visioStencil.Masters.get_ItemU(@"Link");
 Shape connector = visioPage.Drop(visioMaster, 1f, 1f);
 Shape shape1 = shapes[s1];
 Shape shape2 = shapes[s2];

 Cell beginXCell = connector.get_CellsSRC(
 (short)VisSectionIndices.visSectionObject,
 (short)VisRowIndices.visRowXForm1D,
 (short)VisCellIndices.vis1DBeginX);

 beginXCell.GlueTo(shape1.get_CellsSRC(
 (short)VisSectionIndices.visSectionObject,
 (short)VisRowIndices.visRowXFormOut,
 (short)VisCellIndices.visXFormPinX));

 Cell endXCell = connector.get_CellsSRC(
 (short)VisSectionIndices.visSectionObject,
 (short)VisRowIndices.visRowXForm1D,
 (short)VisCellIndices.vis1DEndX);

Leveraging Microsoft Office

234

 endXCell.GlueTo(shape2.get_CellsSRC(
 (short)VisSectionIndices.visSectionObject,
 (short)VisRowIndices.visRowXFormOut,
 (short)VisCellIndices.visXFormPinX));
 }

 public void Zoom(double zoomFactor)
 {
 VisioApp.ActiveWindow.Zoom = zoomFactor;
 }
 }
}

3.	 Save, compile, and close the project.

4.	 Create a new codeunit from Object Designer.

5.	 Add the following global variable:

Name Type Subtype
VisioNAV Automation 'VisioNAV'.VisioNAV

6.	 Add the following code to the OnRun trigger:
IF ISCLEAR(VisioNAV) THEN
 CREATE(VisioNAV);

VisioNAV.CreateFile();
VisioNAV.OpenTemplate('UML Static Structure.vss');
VisioNAV.AddTable(4.25, 5.5, 'G/L Entry');
VisioNAV.AddTable(2.25, 5.5, 'G/L Register');
VisioNAV.ConnectShapes(0, 1);
VisioNAV.Zoom(1.5);

7.	 Save and close the codeunit.

How it works...
Our C# project has several important functions that we will go through. The first is the
CreateFile method. This adds a blank document to the VisioApp variable, which was
instantiated in the constructor. If for some reason the system is unable to create a file, it will
display an error message for the user.

Next is the OpenTemplate function. This opens the available shapes for a given template.
When viewing a Visio document you will find them on the left-hand side of the application.

Chapter 8

235

The AddTable function could just have easily been called AddShape and accepted a third
parameter to tell Visio which shape it should add. In this case, we add a Class shape to our
diagram. By retrieving the active page from the document, and the current template or
stencil that is open on that page, we can drop a selected shape into the document at a
specified position.

Our final C# function, ConnectShapes, places a link or connector between two shapes on
the page. A connector is just a specialized shape so we add it to the page the same way. We
can then set the start and end points for the link and attach it to the desired shapes.

In NAV we use each of the functions in the order described. First we create a new Visio
document and open the UML Static Structure template. We then add two tables to the open
document and connect them. Finally, we zoom in on the document so you have a better idea
of what we have actually done. The following output is shown.

Leveraging Microsoft Office

236

There's more...
To learn more about the Microsoft Visio Object Model you can visit the following MSDN site:

http://msdn.microsoft.com/en-us/library/cc160740.aspx

See also
ff Using code coverage

ff Using Client Monitor to diagnose problems

http://msdn.microsoft.com/en-us/library/cc160740.aspx
http://msdn.microsoft.com/en-us/library/cc160740.aspx

9
OS Interaction

In this chapter, we will cover:

ff Using HYPERLINK to open external files

ff Working with environment variables

ff Using SHELL to run external applications

ff Browsing for a file

ff Browsing for a folder

ff Checking file and folder access permissions

ff Querying the registry

ff Zipping folders and files within NAV

Introduction
If you have programmed with Windows or used a Windows-based operating system for any
length of time you will see that it is really an all-encompassing OS. Unlike with other types
of software development, we don't need to interact with device drivers or create three
dimensional graphics for our users. Most of what we need to do involves integrating with the
file system; that is searching for files or folders and running external applications.

Occasionally, we may need to go a little deeper than that. There may be instances where we
need to check the user's environment, query the registry, or check for specific administrator
permissions. These can all be performed within NAV, although many require a little outside
help from a built-in or custom automation control.

OS Interaction

238

As Windows is such a large piece of software, it already contains ways for us to do these
things. As a result, the recipes in this chapter are not very lengthy or complicated, but that
does not make them any less useful. They explore the basics of what you can do with the OS
and it is up to you to decide when and how to make the best use of them.

It is important to note that many of these recipes will require
additional coding to make them work with the RoleTailored client.
This is because the code is actually executing on a server, not
your own computer as it does with the Classic client.

Using HYPERLINK to open external files
Many times you may need to open files external to the NAV program. NAV has a built-in
function that interacts with the file system to open the file with the appropriate application.

How to do it...
1.	 Create a new codeunit from Object Designer.

2.	 Add the following global variable:

Name Type
Selection Integer

3.	 Add the following code to the OnRun trigger:
Selection := STRMENU('Image,Website');
IF Selection = 1 THEN
 HYPERLINK('C:\Users\Public\
 Pictures\Sample Pictures\Penguins.jpg')
ELSE
 HYPERLINK('HTTP://www.mibuso.com');

4.	 Save and close the codeunit.

How it works...
When you run the codeunit you will be presented with a simple selection menu that asks
you to choose between an image and a website. Depending on your choice we will use the
HYPERLINK command to load a specific file. This command takes in a single string which
points to a location and loads that pointer using the default program on the current machine.

Chapter 9

239

If you choose Image then the Penguins image that ships with Microsoft Windows 7 will load in
the default program you have set to open pictures, usually Windows Photo Viewer.

If you choose Website then the Mibuso website will open in your default internet browser,
typically Internet Explorer.

There's more...
With the RoleTailored client, it is best to use HYPERLINK with shared drives and folders. This
is because the actual HYPERLINK command is running on the NAV service tier, not on the
local computer or client. It has no idea about the user's system. This example is for the Classic
client (thus the link to a file on the C: drive), but changing the parameter to a shared file on
your network should work just fine.

See also
ff Using SHELL to run external applications

ff Browsing for a file

ff Checking file and folder access permissions

OS Interaction

240

Working with environment variables
Environment variables are a set of named values that can affect the way processes and
applications run on a computer. NAV has a built-in function to reference these variables and
lets you change the way it functions.

How to do it...
1.	 Create a new codeunit from Object Designer.

2.	 Add the following code to the OnRun trigger:
MESSAGE(' OS: %1\Temp: %2\WinDir: %3', ENVIRON('OS'),
 ENVIRON('TEMP'), ENVIRON('WINDIR'));

3.	 Save and close the codeunit.

How it works...
The ENVIRON function takes in a single string and returns a string. Our codeunit uses the
ENVIRON function to return three common environment variables: the name of the operating
system, the path to the temporary folder for the current user, and the path to the Windows
installation directory.

In Windows 7, in order to see all of the options available to the ENVIRON command, simply
right-click on My Computer and go to Properties.

Chapter 9

241

Click on Advanced system settings, the Advanced tab, and then on the Environment
Variables button. You will find them in the System variables section of the window.

There's more...
This recipe is not compatible with the RoleTailored client. The code running on the NAV service
tier does not know anything about the client operating system. There is, however,
a way around this. We need a way to force code to be executed on the client-side instead of
the server-side.

ENVIRON for the RoleTailored client
We can force our code to execute on the client-side by creating an Automation. Start by
creating a new project in Visual Studio with the following code.

using System.Management;
using System.Runtime.InteropServices;

namespace RemoteSystemInfo
{
 [ClassInterface(ClassInterfaceType.AutoDual)]
 [ProgId("RemoteSystemInfo")]
 [ComVisible(true)]
 public class RemoteSystemInfo
 {

OS Interaction

242

 public string GetSysInfo(string domain, string machine,
 string username, string password, string variable)
 {
 ManagementObjectSearcher query = null;
 ManagementObjectCollection queryCollection = null;

 ConnectionOptions opt = new ConnectionOptions();
 opt.Impersonation = ImpersonationLevel.Impersonate;
 opt.EnablePrivileges = true;
 opt.Username = username;
 opt.Password = password;

 try
 {
 ManagementPath p = new ManagementPath(@"\\" +
 machine + @"\root\cimv2");
 ManagementScope msc = new ManagementScope(p, opt);
 SelectQuery q = new SelectQuery("Win32_Environment");
 query = new ManagementObjectSearcher(msc, q, null);
 queryCollection = query.Get();

 foreach (ManagementBaseObject envVar in queryCollection)
 {
 if (envVar["Name"].ToString() == variable)
 {
 return envVar["VariableValue"].ToString();
 }
 }
 }
 catch (ManagementException e)
 {
 throw new ManagementException("Management Exception:
 " + e.Message);
 }
 catch (System.UnauthorizedAccessException e)
 {
 throw new ManagementException("Access Exception:
 " + e.Message);
 }
 return "";
 }
 }
}

Chapter 9

243

Set the properties of the program according to the Creating your own Automation using C#
recipe from chapter 10, Integration. When using the Automation in your NAV objects you
must do the following:

CREATE(MyAutomation, FALSE, TRUE);

The third parameter tells the system to create the instance of the Automation on the client
(TRUE) and not the server (FALSE). As the code executes on the client machine it can query
the environment variables and easily return the correct result. Just pass the appropriate
values to the GetSysInfo function.

See also
ff Using SHELL

Using SHELL to run external applications
Just as external files can be opened from within NAV, so can external programs. This recipe
will show you how to launch one of such applications.

How to do it...
1.	 Create a new codeunit from Object Designer.

2.	 Add the following code to the OnRun trigger:
SHELL(ENVIRON('WINDIR') + '\notepad.exe');

3.	 Save and close the codeunit.

How it works...
The SHELL command takes in a required string parameter representing the application to
launch. There is an optional second parameter that will be passed as an argument to the
application to be launched (not used here). This argument could represent a file to open or
other flags incorporated into the program.

See also
ff Querying the registry

OS Interaction

244

Browsing for a file
You will perform many modifications that require input from a file on the Windows file system.
Instead of requiring the user to remember the full path and name of the file, we will show you
how to use an out-of-the-box codeunit to let them select the file using a dialog box.

How to do it...
1.	 Create a new codeunit from Object Designer.

2.	 Add the following global variables:

Name Type Subtype Length
CommonDialogMgt Codeunit Common Dialog Management
SelectedFile Text 255

3.	 Add the following code to the OnRun trigger:
SelectedFile := CommonDialogMgt.OpenFile('NAV File Browser',
 SelectedFile,1,'Filter',0);

MESSAGE('You selected %1', SelectedFile);

4.	 Save and close the codeunit.

How it works...
NAV provides a codeunit, number 412, named Common Dialog Management. It uses an OCX
that references to the Microsoft Common Dialog Control. This codeunit provides a function
that allows you to open a simple dialog box in either Open or Save mode. This function,
OpenFile, takes five parameters.

The first is the title of the dialog box or Window. Next is the default file name to look for. The
third and fourth parameters work together. The third is the default file type. When this is set to
Custom the function uses the filter string passed in parameter four. The final argument tells
the dialog box which mode to open in, that is Open or Save.

Chapter 9

245

Should you choose to open the dialog box with a custom file type, you will have to enter a filter.
You can see how these filters are formed by examining the global text constants, but we have
also provided an example here:

Text Files (*.txt)|*.txt|All Files (*.*)|*.*

See also
ff Using HYPERLINK to open external files

ff Checking file and folder access permissions

ff Browsing for a folder

Browsing for a folder
NAV provides us with a way to browse for a file right out-of-the-box, but it does not let us
browse for a folder. This recipe will show you a work around using automation controls that
should already be installed on your system.

OS Interaction

246

How to do it...
1.	 Create a new codeunit from Object Designer.

2.	 Add the following global variables:

Name Type Subtype Length
MSShell Automation 'Microsoft Shell Controls

And Automation'.Shell
Folder Automation 'Microsoft Shell Controls

And Automation'.Folder3
FilesInFolder Automation 'Microsoft Shell Controls

And Automation'.
FolderItems3

CurrentFile Automation 'Microsoft Shell Controls
And Automation'.
FolderItem2

SelectedFolder Text 1024

3.	 Add the following code to the OnRun trigger:
CREATE(MSShell, FALSE, TRUE);
Folder := MSShell.BrowseForFolder(0, 'NAV Folder Browser', 0);
FilesInFolder := Folder.Items();
CurrentFile := FilesInFolder.Item();
SelectedFolder := FORMAT(CurrentFile.Path);

MESSAGE('Selected Folder: %1\Contains %2 files',
 SelectedFolder, FilesInFolder.Count());

4.	 Save and close the codeunit.

How it works...
This recipe depends entirely on the classes found in the Microsoft Shell Controls and
Automation package.

For a list of the objects found in this package you can search
MSDN or go to http://msdn.microsoft.com/en-us/
library/bb776890%28VS.85%29.aspx.

http://msdn.microsoft.com/en-us/library/bb776890%28VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/bb776890%28VS.85%29.aspx

Chapter 9

247

The code may seem like a lot just to get a folder name, but let's go through it line-by-line
and explain why we are doing what we are doing. First we create or instantiate our MSShell
variable, just as we do with every Automation variable. This one has a function called
BrowseForFolder that launches the dialog box.

Unfortunately, this function returns a Folder object, which does not have text representation.
So we have to take it a step further. We then retrieve a list of the files contained in that folder.
This list is stored in our FilesInFolder variable. We can access the first item in this list.
This file has a path and we can store that as our selected folder.

See also
ff Browsing for a file

ff Checking file and folder access permissions

Checking file and folder access permissions
Many systems have batch processes which read and write files to folders on the file system. In
order to avoid some of the standard Windows error messages and prevent errors in the middle
of the process you may want to check access permissions.

How to do it...
1.	 Create a new Class Library project in Visual Studio.

2.	 Create a new file with the following code:
using System;
using System.Security.Permissions;

OS Interaction

248

using System.Runtime.InteropServices;

namespace FolderAccess
{
 [ClassInterface(ClassInterfaceType.AutoDual)]
 [ProgId("RegistryQuery")]
 [ComVisible(true)]
 public class FolderAccess
 {
 public bool TestFolderAccess(string folder, string access)
 {
 System.Security.Permissions.FileIOPermissionAccess
 accessLevel;
 switch (access.ToUpper())
 {
 case "NOACCESS": accessLevel =
 FileIOPermissionAccess.NoAccess; break;
 case "READ": accessLevel =
 FileIOPermissionAccess.Read; break;
 case "WRITE": accessLevel =
 FileIOPermissionAccess.Write; break;
 case "APPEND": accessLevel =
 FileIOPermissionAccess.Append; break;
 case "PATHDISCOVERY": accessLevel =
 FileIOPermissionAccess.PathDiscovery; break;
 case "ALLACCESS": accessLevel =
 FileIOPermissionAccess.AllAccess; break;
 default: return false;
 }

 FileIOPermission permission = new
 FileIOPermission(accessLevel, folder);
 try
 {
 permission.Demand();
 }
 catch (Exception ex)
 {
 return false;
 }

 return true;
 }
 }
}

3.	 Set the properties of the program according to the Creating your own Automation
using C# recipe from the integration chapter.

4.	 Save, compile, and close the project.

Chapter 9

249

5.	 Create a new codeunit from Object Designer.

6.	 Add the following global variable:

Name Type Subtype
FolderAccess Automation 'FolderAccess'.FolderAccess

7.	 Add the following code to the OnRun trigger:
CREATE(FolderAccess, FALSE, TRUE);

MESSAGE('Access: %1',
 FolderAccess.TestFolderAccess('C:\', 'WRITE'));

8.	 Save and close the codeunit.

How it works...
Our custom C# function, TestFolderAccess, takes in two parameters: the path or folder to
check and the type of permission to check for. Using the FileIOPermission class we set
these values and demand the access level. The Demand function will throw an exception if we
do not currently have access to the folder. In that case we return false, but in all other cases
we return true.

See also
ff Browsing for a file

ff Browsing for a folder

Querying the registry
You may never need to query the registry on the computer when creating a NAV modification,
but you should consider it as an option.

How to do it...
1.	 Create a new Class Library project in Visual Studio.

2.	 Create a new file with the following code:
using System;
using System.Runtime.InteropServices;
using Microsoft.Win32;

namespace RegistryQuery
{

OS Interaction

250

 [ClassInterface(ClassInterfaceType.AutoDual)]
 [ProgId("RegistryQuery")]
 [ComVisible(true)]
 public class RegistryQuery
 {
 public string GetKeyValue(string key, string name)
 {
 RegistryKey regKey = Registry.Users.OpenSubKey(key);
 if (regKey == null)
 {
 return "Key not found!";
 }
 else
 {
 object value = regKey.GetValue(name);
 if (value != null)
 {
 return value.ToString();
 }
 else
 {
 return "Name not found!";
 }
 }
 }
 }
}

3.	 Set the properties of the program according to the Creating your own Automation
using C# recipe from the integration chapter.

4.	 Save, compile, and close the project.

5.	 Create a new codeunit from Object Designer.

6.	 Add the following global variable:

Name Type Subtype
RegistryQuery Automation 'RegistryQuery'.RegistryQuery

7.	 Add the following code to the OnRun trigger:
CREATE(RegistryQuery, FALSE, TRUE);

MESSAGE('%1', RegistryQuery.GetKeyValue('.DEFAULT\Environment',
 'TEMP'));

8.	 Save and close the codeunit.

Chapter 9

251

How it works...
You may never have an instance where you need to examine registry values in your NAV code.
In most instances, it will be easier to add a column to User Setup or store the information in
a custom table. As a NAV developer, and less specifically, a business applications developer,
you may encounter a situation that warrants this type of development. Let's take a look at
the code.

Our C# code works for a specific root in the registry, HKEY_USERS. We access the subkey
passed in the first parameter to our function using the Registry.Users.OpenSubKey
function. If the key is not found, or null, we return an appropriate message. You could modify
the code to access the other root folders by passing an additional parameter.

Next, we try to access the names stored in the key. Again, if we are unable to find the key
equal to the second parameter of our function, we return null. If we do find it, we return
its value.

Our NAV code looks for the temporary folder assigned to the user, similar to what
ENVIRON('TEMP') returns. Do not think that this is only limited to things that can also be
found using the ENVIRON function, though. You can query any value in the registry.

OS Interaction

252

There's more...
You can also perform other actions on the registry using the CreateSubKey and
DeleteSubKey functions. Be warned, though. You should not play with the registry unless
you know what you are doing. You can easily corrupt the entire system if you are not careful.

For more information about the registry you can view this MSDN article:
http://msdn.microsoft.com/en-us/library/h5e7chcf.aspx

See also
ff Working with environment variables

Zipping folders and files within NAV
This might not be a common task, but creating files and e-mailing them from within NAV is.
You can combine this with those recipes to send large groups of files at once.

How to do it...
1.	 Create a new codeunit from Object Designer.

2.	 Add the following global variables:

Name Type Subtype
ZipFile File
MSShell Automation 'Microsoft Shell Controls And Automation'.Shell
ZipFolder Automation 'Microsoft Shell Controls And Automation'.Folder

3.	 Add the following code to the OnRun trigger:
ZipFile.CREATE(
 'C:\Users\Public\Pictures\Sample Pictures\Pictures.zip');

CREATE(MSShell, FALSE, TRUE);
ZipFolder := MSShell.NameSpace(
 'C:\Users\Public\Pictures\Sample Pictures\Pictures.zip');
ZipFolder.CopyHere(
 'C:\Users\Public\Pictures\Sample Pictures\Desert.jpg');

4.	 Save and close the codeunit.

http://msdn.microsoft.com/en-us/library/h5e7chcf.aspx
http://msdn.microsoft.com/en-us/library/h5e7chcf.aspx

Chapter 9

253

How it works...
A ZIP file is really just a folder that happens to have its contents compressed. We can create
this file or folder just as we would create a text file, using the CREATE command.

Next, we assign the namespace of our MSShell object to this ZIP file. This means that
whatever we do with our MSShell variable we will be doing to this file.

As the ZIP file is really just a folder, we can perform any file system action on it. In this case,
we want to copy files into the folder. We achieve this by using the CopyHere function where
the "Here" refers to our namespace and the parameter passed tells the function which file
to copy.

See also
ff Sending an e-mail from NAV through Outlook

10
Integration

In this chapter, we will cover:

ff Flat file exchange using dataports

ff Sharing information using XMLports

ff Manually writing to and reading from files

ff Creating a web service

ff Consuming web services

ff Sending data through FTP

ff Printing reports to PDF

ff Creating a custom NAS handler

ff Writing your own automation using C#

ff Using ADO to access outside data

Introduction
Microsoft Dynamics NAV does a lot of things really well. It has areas for sales, purchases,
inventory, manufacturing, and financials just to name a few. It has the ability to do just about
anything a company needs it to do, but that doesn't mean it will.

Businesses rely on multiple applications to run their operations. In the past, most of these
applications have been housed on-site on the company's own servers. Integration between
them was limited to flat file exchange or talking directly to the other database. Over the past
few years there has been a major paradigm shift from the traditional client-server architecture
towards a hosted model, often referred to as The Cloud. With the introduction of Web Services
in NAV 2009, Microsoft has made sure that Dynamics NAV will continue to meet its customers'
integration needs for this new type of infrastructure.

Integration

256

In this chapter, we will go over the old and the new. We will discuss how to do simple
integrations using text and XML files and how to send those files to other locations using
e-mail and FTP. We will also talk about ways to make our database talk to other applications
and write our own code outside of NAV to integrate our systems. These recipes will serve as
the foundation for all of your future integration efforts.

Flat file exchange using dataports
Although dataports have been dropped in favor of the more useful XMLport, there are still
plenty of customers that are on versions where XMLports are not available. This recipe will
show you how to create a basic dataport for importing and exporting data.

How to do it...
1.	 Create a new dataport from Object Designer.

2.	 Add a data item for the Customer table.

3.	 With the Customer Data Item selected, click on View |Dataport Fields (Alt + V, D).

4.	 Add the following fields to the Field Designer window.

Enabled SourceExpr StartPos Width
Yes "No." 0 0
Yes Name 0 0

5.	 Your dataport should look similar to the following screenshot:

6.	 With a new, blank line selected in the dataport click on View | Properties
(Shift + F4).

Chapter 10

257

7.	 Set the following properties for the dataport:

Property Value
FieldStartDelimeter <None>
FieldEndDelimeter <None>
FieldSeparator <TAB>

8.	 Save and close the dataport.

How it works...
In many programming languages you have to manually write code to export data from the
system. NAV allows you to do this, but it also provides a much simpler way using a dataport.

First we tell the dataport which table we want to export from by creating a DataItem for
the Customer table. Next, we tell it which fields we need by adding them to the Dataport
Fields area.

As far as development goes this is all we have to do, but we can also change the format of the
output file. We can tell the dataport to add characters to the beginning and end of a field as
well as which character to use to separate fields. By default, fields are surrounded by double
quotes and a comma is used to separate them. Unfortunately, double quotes and commas are
often typed as data into fields which can throw off the dataport. Here we choose to separate
the fields with a Tab character and to not surround them with any special characters.

Integration

258

When running the dataport you will be presented with two tabs.

The first will let you specify any filters you want to apply to your data. The second allows you to
choose the name of the file and whether or not you are importing or exporting data. When you
click OK a progress bar will appear showing you how much of the file has been processed.

There's more...
Just like other objects you can add variables and code to dataports. One of the downsides,
though, is that they cannot be run from the NAV Application Server (NAS). In these instances it
is best to do your own file output using Output Streams.

See also
ff Browsing for a file

ff Sharing information using XMLports

ff Sending data through FTP

Chapter 10

259

Sharing information through XMLports
XML stands for Extensible Markup Language and is a text format for creating structured
computer documents. NAV provides objects called XMLports that allow you to create these
types of documents.

How to do it...
1.	 Create a new XMLport from Object Designer.

2.	 Add the following lines to the XMLport Designer:

Node Name Node Type Source Type Data Source
Root Element Text <Root>
Customer Element Table <Customer>(Customer)
No Element Field <Customer>::No.
Name Element Field <Customer>::Name

3.	 Your XMLport should look like this:

4.	 Save and close the XMLport.

5.	 Create a new codeunit from Object Designer.

Integration

260

6.	 Add the following global variables:

Name DataType Length
OutputFile File
OutputStream OutStream
FileName Text 255

7.	 Add the following code to the OnRun trigger:
FileName := ENVIRON('TEMP') + 'Customers.xml';
OutputFile.CREATE(FileName);
OutputFile.CREATEOUTSTREAM(OutputStream);
XMLPORT.EXPORT(51001, OutputStream);
OutputFile.CLOSE;

HYPERLINK(FileName);

8.	 Save and close the codeunit.

How it works...
XMLports are similar to dataports, but their structure and creation is done a little differently.
Understanding what XML output looks like can help you to better understand how to
create these types of objects. A portion of the output from this XMLport is shown in the
following image:

Chapter 10

261

XML is a tree-like structure made of nodes. Every file has to start with some sort of parent
node which is usually called the Root node. Once we have created the Root node we can tell
the XMLport which table we want to use (in this case the Customer table). Next, we tell it
which fields we want to use from that table. Notice in the output how each value is surrounded
by a node with the name of that field, and each collection of fields is surrounded by a
Customer node.

XMLports cannot be run directly from Object Designer. Instead, you have to create a codeunit
to run them. Our codeunit creates a new export file along with an OutStream object that will
be used to write the XML to that file. From here we run our XMLport and pass the OutStream
object to it. While this may seem annoying, it has its benefits. This allows XMLports to be run
through web services or run as scheduled tasks within NAV.

When developing XMLports for use with the RoleTailored client there is no need to create
these codeunits to run them; they will run perfectly well from the RTC on their own.

There's more...
In NAV2009, XMLports have replaced dataports. But that does not mean you can only
export data in XML. You can replicate this single line type of output by changing the
Format property of the XMLport to Fixed Text or Variable Text. It also has the same
FieldStartDelimiter, FieldEndDelimiter, and FieldSeparator properties as
the dataport.

For a complete explanation on XMLports, read Chapter 9 of the book
Programming Microsoft Dynamics NAV 2009, by David Studebaker,.

See also
ff Browsing for a file

ff Flat file exchange using dataports

ff Sending data through FTP

Manually writing to and reading from files
Apart from the built-in object types for creating text files and XML files, you can also create
them manually. This recipe will show you how to write your own code to do this.

Integration

262

How to do it...
1.	 Create a new codeunit from Object Designer.

2.	 Add the following global variables:

Name DataType
StreamOut OutStream
FileOut File
StreamIn InStream
FileIn File

3.	 Add the following code to the OnRun trigger:
IF NOT FileOut.CREATE('C:\NAVFile.txt') THEN
 IF NOT FileOut.OPEN('C:\NAVFile.txt') THEN
 ERROR('Unable to write to file!');

FileOut.CREATEOUTSTREAM(StreamOut);
StreamOut.WRITETEXT('Line 1');
StreamOut.WRITETEXT();
StreamOut.WRITETEXT('Line 2');
StreamOut.WRITETEXT();
FileOut.CLOSE;

IF NOT FileIn.OPEN('C:\NAVFile.txt') THEN
 ERROR('Unable to read file!');

FileIn.CREATEINSTREAM(StreamIn);
WHILE NOT StreamIn.EOS DO BEGIN
 StreamIn.READTEXT(TextLine);
 MESSAGE('%1', TextLine);
END;
FileIn.CLOSE;

4.	 Save and close the codeunit.

How it works...
First we try to create a new file using the CREATE function with the File data type. If we are
unable to create that file, we try to open a file of the same name. If that does not work we
throw an error because we do not have a file to work with.

Chapter 10

263

From there we have to create a stream to the file. In this case, we use an OutStream
because we are writing data to the file. The stream object has a function called WRITETEXT
that actually sends the data to the file. Unfortunately it does not send a carriage return, so to
create a new line we have to use the WRITETEXT method with an empty parameter. Once we
are done with writing text to the file we need to close it.

We follow a similar process for reading information from the file. Instead of using an
OutStream variable we use an InStream variable. This stream has a function called EOS
which stands for End of Stream. It returns the value TRUE when we reach the end of the file.
As long as we have not reached the end of that file we can use the READTEXT function to
retrieve a line of text from the file. It takes a text variable as a parameter and stores that line
of text there. Our code displays it in a message window.

There's more...
This example creates a simple text file, but you can also create XML files. NAV provides
functions for this in Codeunit 6224, XML DOM Management. Here is a short example:

Add the following global variables to a codeunit:

Name DataType SubType
XMLMgt Codeunit XML DOM Management
XMLDoc Automation 'Microsoft XML, v6.0'.DOMDocument
XMLNode Automation 'Microsoft XML, v6.0'.IXMLDOMNode
XMLNode2 Automation 'Microsoft XML, v6.0'.IXMLDOMNode
XMLNode3 Automation 'Microsoft XML, v6.0'.IXMLDOMNode

Add the following code:

CREATE(XMLDoc);
XMLDoc.async := FALSE;
XMLMgt.SetNormalCase;
XMLNode := XMLDoc.createNode('1','Root','');
XMLDoc.appendChild(XMLNode);
XMLMgt.AddElement(XMLNode,'Tag1','1','',XMLNode2);
XMLMgt.AddElement(XMLNode,'Tag2','2','',XMLNode2);
XMLMgt.AddElement(XMLNode,'Tag3','','',XMLNode2);
XMLMgt.AddElement(XMLNode2,'Tag3.1','3.1','',XMLNode3);
XMLDoc.save('C:\NAVXML.txt');

Integration

264

In order to start the document, you must create a node and append it to the document. This
root node will be used throughout the file creation. The AddElement function takes in several
parameters. The first is the parent node of the node being added. The tag name and value are
also passed. The last parameter will hold the node that is being added. A sample output from
this code is shown:

<Root>
 <Tag1>1</Tag1>
 <Tag2>2</Tag2>
 <Tag3>
 <Tag3.1>3.1</Tag3.1>
 </Tag3>
</Root>

See also
ff Flat file exchange using dataports

ff Sharing information through XMLports

Creating a web service
Web services are a standardized way of integrating applications that share business logic and
data. With NAV 2009 you can easily create a web service in a matter of minutes.

How to do it...

1.	 Create a new page as described in the Creating a list page recipe in Chapter 12,
RoleTailored Client.

2.	 From Object Designer run form 810, Web Services.

3.	 Add the following record to the table:

Object Type Object ID Service Name Published
Page 51003 (or the ID of your Page object) Web Service Example Yes

4.	 Close the form.

How it works...
With NAV 2009, creating a web service is easy. Any code exposed through a page or codeunit
object can be exposed as a web service. There is no need to create your own .NET class or
write code outside NAV to access the database. All that is required is to add the object to the
web service table and check the Published field.

Chapter 10

265

See also
ff Creating an InfoPath form with NAV data

ff Consuming a web service

Consuming web services
It is great that you can create web services in NAV, but you should be able to use them in
outside applications. This recipe will show you how to create a basic program to use these
web services.

How to do it...
1.	 Create a new codeunit from Object Designer.

2.	 Add a function named GetCustomer.

3.	 The function should take in the following parameter:

Name DataType Length
CustNo Code 20

4.	 Add the following local variable to the function:

Name DataType SubType
Customer Record Customer

5.	 The function should return a text variable of length 50.

6.	 Add the following code to the function:
IF Customer.GET(CustNo) THEN
 EXIT(Customer.Name)
ELSE
 EXIT('Not Found!');

7.	 Save and close the codeunit.

8.	 Add the codeunit as a web service as described in the Creating a web service recipe.

9.	 Create a new Console Application project in Visual Studio.

10.	 Right-click the References link and click on Add Web Reference.

11.	 Enter http://localhost:7047/DynamicsNAV/WS/Cronus_International_
Ltd/Services (this may be different depending on the web server, service name,
and NAV company name).

http://localhost:7047/DynamicsNAV/WS/Cronus_International_Ltd/Services
http://localhost:7047/DynamicsNAV/WS/Cronus_International_Ltd/Services

Integration

266

12.	 Select the web service corresponding to our codeunit and click on Add Service.

13.	 Add the following code to the program:
using System;
using System.Text;

using localhost;

namespace ConsumeWebService
{
 public class ConsumeWebService
 {
 public static void Main(string[] args)
 {
 ConsumeWS service = new ConsumeWS();
 ws.UseDefaultCredentials = true;
 Console.WriteLine(ws.GetCustomer("10000"));
 Console.ReadLine();
 }
 }
}

14.	 Compile, save, and close the program.

How it works...
In this example, we have created a simple codeunit that returns the name of a customer or
the text as "Not Found". This codeunit has been published as a web service as is available to
be used by our .NET program.

In order to use the web service in the application we have to add it as a reference. In our
code we tell this class that it can use the functions from the web service by adding the using
localhost line. We then create an instance of our service and tell it to use the default
credentials to connect. From there we can call any of the available functions in our page
or codeunit.

For a more in depth example you can read Chapter 9 of Programming
Microsoft Dynamics NAV 2009, by David Studebaker, or Chapter 7
of Implementing Microsoft Dynamics NAV 2009, by David Roys and
Vjekoslav Babic. The latter is available from Packt here for free:
http://www.packtpub.com/article/extending-
application-using-microsoft-dynamics-nav-2009-part1

http://www.packtpub.com/article/extending-application-using-microsoft-dynamics-nav-2009-part1
http://www.packtpub.com/article/extending-application-using-microsoft-dynamics-nav-2009-part1
http://www.packtpub.com/article/extending-application-using-microsoft-dynamics-nav-2009-part1

Chapter 10

267

See also
ff Creating an InfoPath form with NAV data

ff Creating a web service

Sending data through FTP
Many external applications still accept files and submissions through FTP. Windows has a
built-in FTP client that we can leverage to perform this type of transmission.

Getting ready
You will need a working FTP server and valid logon credentials in order to run this recipe.

How to do it...
1.	 Create a new codeunit from Object Designer.

2.	 Add a function named FTP that takes in the following parameters:

Name DataType Length
UserName Text 50
Password Text 50
ServerName Text 50
FileToMove Text 255

3.	 Add the following local variables to the function:

Name DataType Length
BatchFileName Text 250
BatchFile File
BatchFileStream OutStream
BatchFileData Text 250

4.	 Add the following code to the function:
BatchFileData := 'c:\navFTP.dat';
BatchFileName := 'c:\navFTP.bat';
BatchFile.CREATE(BatchFileName);
BatchFile.CREATEOUTSTREAM(BatchFileStream);

BatchFileStream.WRITETEXT('@echo off');

Integration

268

BatchFileStream.WRITETEXT;
BatchFileStream.WRITETEXT('echo user ' +
 UserName + ' >> ' + BatchFileData);
BatchFileStream.WRITETEXT;
BatchFileStream.WRITETEXT('echo ' +
 Password + ' >> ' + BatchFileData);
BatchFileStream.WRITETEXT;
BatchFileStream.WRITETEXT('echo bin >> ' +
 BatchFileData);
BatchFileStream.WRITETEXT;
BatchFileStream.WRITETEXT('echo put ' +
 FileToMove + ' >> ' + BatchFileData);
BatchFileStream.WRITETEXT;
BatchFileStream.WRITETEXT('echo quit >> ' +
 BatchFileData);
BatchFileStream.WRITETEXT;
BatchFileStream.WRITETEXT('FTP -n -s:' +
 BatchFileData + ' ' + ServerName);
BatchFileStream.WRITETEXT;
BatchFileStream.WRITETEXT('del ' + BatchFileData);
BatchFileStream.WRITETEXT;
BatchFile.CLOSE;

SHELL(BatchFileName);

5.	 Add the following code to the OnRun trigger:
FTP('YourUserName', 'YourPassword', 'YourServer', 'YourFile');

6.	 Save and close the codeunit.

How it works...
FTP stands for File Transfer Protocol and is a method for sending files from one file system to
another. Although very basic, the Windows OS comes with a built-in FTP program. It is a simple
command-line utility (no graphical interface), so it is not the easiest program to use, but for
integration it works great.

For a list of the available options or parameters that can be used
with the FTP program type ftp ? at a command prompt.

Our program works by creating two files: a batch file and a data file. The data file will be
used within the batch file to tell the FTP program how to act. Let's examine each line of the
batch file.

Chapter 10

269

The first line, @echo off, is for security purposes. By turning off the echo command we
prevent the commands in our batch file from being displayed on the screen. This is extremely
important to prevent the users of this program from learning the username and password
that are echoed on the next two lines. You will notice that each of these lines ends with a >>
BatchFileData. This tells the batch file to send the text to an actual file on the file system.
Next we tell the FTP program to set the transfer-type to binary and to put, or send, a specific
file. Finally, we quit and return to the command prompt.

Now we actually need to connect to the FTP program. We do this by adding the FTP command
to our batch file followed by two parameters. The first, -n, tells the system not to automatically
log in. The second, -s, tells it to issue the commands in the specified file when the program
starts. Lastly, we must tell it the server to which we want to connect.

Once the file has been uploaded we delete the data file so that our credentials are not saved
anywhere on the machine.

There's more...
This is a basic example that only uploads a single file, but you could easily script it so that
it issues multiple PUT commands. This would most likely be used with some type of NAS
Scheduler along with an XMLport to send and retrieve information.

See also
ff Flat file exchange using dataports

ff Sharing information through XMLports

Printing reports to PDF
Printing reports to PDF is extremely valuable for many companies. These documents can
easily be saved and e-mailed for a variety of tasks like electronic invoicing. This recipe will
show you how to develop this functionality.

Getting ready
PDFCreator must be installed on the system on which the code will be run. You can download
it here:

http://sourceforge.net/projects/pdfcreator/

When installing, be sure not to install the ad-ware / spy-ware toolbar that comes with it. You
may also want to turn-off the automatic updates for PDFCreator so that users do not end up
on different versions of the software.

http://sourceforge.net/projects/pdfcreator/
http://sourceforge.net/projects/pdfcreator/

Integration

270

How to do it...
1.	 Create a new codeunit from Object Designer.

2.	 Add the following global variables:

Name DataType SubType Length
PDFCreator Automation 'PDFCreator'.clsPDFCreator
PDFCreatorError Automation 'PDFCreator'.clsPDFCreatorError
PDFCreatorOption Automation 'PDFCreator'.clsPDFCreatorOptions
DefaultPrinter Text 100

3.	 Add a function named SetupPDFCreator. This function should take in the
following parameters:

Name DataType Length
FileDir Text 1024
FileName Text 1024

4.	 Add the following code to the function:
IF ISCLEAR(PDFCreator) THEN
 CREATE(PDFCreator, TRUE, TRUE);

IF ISCLEAR(PDFCreatorError) THEN
 CREATE(PDFCreatorError, TRUE, TRUE);

PDFCreatorError := PDFCreator.cError;

IF PDFCreator.cStart('/NoProcessingAtStartup', TRUE) = FALSE
 THEN
 ERROR('Status: Error[' + FORMAT(PDFCreatorError.Number) + ']:
 ' + PDFCreatorError.Description);

PDFCreatorOption := PDFCreator.cOptions;
PDFCreatorOption.UseAutosave := 1;
PDFCreatorOption.UseAutosaveDirectory := 1;
PDFCreatorOption.AutosaveDirectory := FileDir;
PDFCreatorOption.AutosaveFormat := 0;
PDFCreatorOption.AutosaveFilename := FileName;

PDFCreator.cOptions := PDFCreatorOption;
PDFCreator.cClearCache();
DefaultPrinter := PDFCreator.cDefaultPrinter;
PDFCreator.cDefaultPrinter := 'PDFCreator';
PDFCreator.cPrinterStop := FALSE;

Chapter 10

271

5.	 Add a function named WaitUntilFileExists. It should take in the
following parameter:

Name DataType Length
FileName Text 1024

6.	 The function should return a Boolean value.

7.	 Add the following local variables to the function:

Name DataType
i Integer
maxi Integer
FileFound Boolean

8.	 Add the following code to the function:
i := 0;
maxi := 10;

WHILE (i < maxi) DO BEGIN
 IF FILE.EXISTS(FileName) THEN BEGIN
 i := maxi;
 FileFound := TRUE;
 END ELSE BEGIN
 i += 1;
 SLEEP(1000);
 END;
END;

EXIT(FileFound);

9.	 Add a function named ClearPDFCreator with the following code:
PDFCreator.cDefaultPrinter := DefaultPrinter;
CLEAR(PDFCreatorError);
CLEAR(PDFCreator);

10.	 Add the following code to the OnRun trigger:
SetupPDFCreator(ENVIRON('TEMP'), 'Test.pdf');
REPORT.RUNMODAL(REPORT::"Customer Listing", FALSE, FALSE);
IF WaitUntilFileExists(ENVIRON('Temp') + '\Test.pdf') THEN
 HYPERLINK(ENVIRON('Temp') + '\Test.pdf');
ClearPDFCreator;

11.	 Save and close the codeunit.

Integration

272

How it works...
Our code depends on several libraries that come with the PDFCreator software. We can
reference these libraries using Automation variables in NAV.

Let's start by examining our first function, SetupPDFCreator. This function should be called
right before you print your document. We start by instantiating our Automation variables. Once
we know that we can start the PDFCreator application, we set some options. Specifically,
we want to automatically save our file without prompting the user, so we set the path,
filename, and file type (PDFCreator can save in more formats than just PDF). The last part of
the function determines the current default printer and saves it to a temp variable. This is
because we are going to set the default printer to PDFCreator and we want to be able to reset
it after we finish printing the reports.

Our next function is called WaitUntilFileExists. This file checks once per second for
ten seconds to make sure the PDF file has been created. Sometimes it takes some time for
it to register with the file system and even though PDFCreator has completed working on the
report, the file is not yet available.

The final function, ClearPDFCreator, clears up our variables and resets the default printer.

As long as you have run the SetupPDFCreator function, any report you run will be printed
to PDF. When you do run the report, though, you will want to pass a FALSE value to the
UseDefaultPrinter and ShowRequestForm parameters.

There's more...
In the RoleTailored client you can use the SAVEASPDF function. You can then use the
DOWNLOAD command to move that PDF file to the client computer and display it. These
functions should always be surrounded with a conditional that determines which client you
are using, in the following manner:

IF ISSERVICETIER THEN BEGIN
 Report.SAVEASPDF;
 DOWNLOAD('Report.pdf','Download File',
 'C:\','PDF file(*.pdf)|*.pdf',ToFile);
END;

See also
ff Display page X of Y

ff Adding a watermark to a report

ff Sending an e-mail from NAV through Outlook

Chapter 10

273

Creating a custom NAS handler
The NAV Application Server is essentially a NAV client without a graphical interface. It can be
used to automate exports or run any sort of code you might need for integration with software
outside of the NAV system. This recipe will show you how to write the code to handle a custom
application server.

Getting ready
You must have the NAV Application Server installed either on your machine or another server
on your network.

How to do it...
1.	 Create a new codeunit from Object Designer.

2.	 Set the following properties on the codeunit:

Property Value
SingleInstance Yes

3.	 Add the following global variables to the codeunit:

Name DataType SubType
Timer Automation 'Navision Timer 1.0'.Timer
Seconds Integer

4.	 Add the following code to the OnRun trigger:
IF ISCLEAR(Timer) THEN
 CREATE(Timer);

Seconds := 60;
Timer.Enabled := FALSE;
Timer.Interval := Seconds * 1000;
Timer.Enabled := TRUE;

5.	 Add the following code to the Timer::Timer event:
MESSAGE('Processed');

6.	 Save and close the codeunit.

7.	 Design codeunit 1, Application Management, from Object Designer.

Integration

274

8.	 Add the following global variable:

Name DataType SubType
CustomNASHandler Codeunit Custom NAS Handler (or the name of the

Codeunit you just created)

9.	 Find the NasHandler function.

10.	 Towards the end, you should see this line of code:
IF CGNASStartedinLoop = FALSE THEN

11.	 Directly above that line add the following code:
IF COPYSTR(Parameter,1,6) = 'CUSTOM' THEN BEGIN
 CustomNASHandler.RUN;
END;

12.	 Save and close the codeunit.

13.	 Start the Application Server Manager from the server where the NAV Application
Server is installed.

14.	 Set the start-up parameter of a new or existing application server to CUSTOM.

15.	 Restart the NAV Application Service.

Chapter 10

275

How it works...
First we create a single-instance codeunit. We add an instance of the Navision timer
Automation to our program. This DLL file is shipped with the Navision product and you should
be able to find it in the installation directory. We set our timer to run once in a minute. This will
fire the Timer::Timer event so we place a simple MESSAGE command here. You could add
a call to another codeunit or any other code you want to use. Just be aware that you can't use
any request forms or confirmation dialogs because there is no user to click anything.

Now that we have the codeunit to run we need to tell the application server how to access
it. This is done in codeunit 1, specifically by the NASHandler function. Here we check the
startup parameter and call the appropriate code, in this case, our custom codeunit.

See also
ff Ending an idle session

ff Automatically adding users to NAV

ff Sending an e-mail in NAV through Outlook

Writing your own automation using C#
C/AL is a solid programming language, and NAV is a great system, but it cannot always exactly do
what we want it to. Luckily, we can write our own code in .NET and use it in NAV. This recipe will
show you how to set up a Visual Studio project so that it can be seen from within the NAV client.

How to do it...
1.	 Create a new Class Library Project in Visual Studio.

2.	 Add the following code to the project:
using System.Runtime.InteropServices;

namespace NAVAdd
{
 [ClassInterface(ClassInterfaceType.AutoDual)]
 [ProgId("NAVAdd")]
 [ComVisible(true)]
 public class NAVAdd
 {
 public int Add(int a, int b)
 {
 return a + b;
 }
 }
}

Integration

276

3.	 View the Properties for the project.

4.	 On the Application tab set the Assembly name to NAVAdd.

5.	 On the Build tab set the Register for COM interop property to true (checked).

6.	 Save and compile your objects.

7.	 Create a new codeunit in Object Designer.

8.	 Add the following global variable:

Name DataType SubType
NAVAdd Automation 'NAVAdd'.NAVAdd

9.	 Add the following code to the OnRun trigger:
CREATE(NAVAdd);
MESSAGE('%1', NAVAdd.Add(2, 3));

10.	 Save and close the codeunit.

How it works...
Let's examine the attributes of our class. The first attribute is called ClassInterface. By
setting the value to ClassInterfaceType.AutoDual we tell the program to automatically
register itself on the system, if we choose to register it at all (which we will later). The second
attribute is called ProgId and is the name that our program will be referenced by. The last is
called COMVisible and tells the system that this class can be registered on the computer.

Chapter 10

277

For more information on the libraries and attributes you
can go to msdn.microsoft.com.

In order to actually register the class as an Automation you must check the Register for COM
interop option in the Project Properties window. Once you compile the program it will be
available in the list of available Automation variables in NAV.

See also
ff Display page X of Y

ff Adding a watermark to a report

ff Implementing Try / Catch / Finally

ff Automatically adding users to NAV

ff Instant messaging with Office Communicator

ff Querying the registry

Using ADO to access outside data
ADO stands for ActiveX Data Object and is used to access data regardless of its structure.
Here we will show how you can use an ADO Automation in NAV to access data from an
outer database.

How to do it...
1.	 Create a new codeunit in Object Designer.

2.	 Add a function named CreateConnectionString that takes in the
following parameters:

Name DataType Length
ServerName Text 50
DatabaseName Text 50
UserName Text 50
Password Text 50

3.	 The function should return a text value of length 1024.

Integration

278

4.	 Add the following code to the function:
EXIT(
 'Driver={SQL Server};' + 'Server=' + ServerName + ';' +
 'Database=' + DatabaseName + ';' + 'Uid=' + UserName +
 ';' + 'Pwd=' + Password + ';');

5.	 Add the following local variables to the OnRun trigger:

Name DataType SubType
ADOConnection Automation 'Microsoft ActiveX Data Objects 6.0

Library'.Connection	
ActiveADOConnection Variant
ADOCommand Automation 'Microsoft ActiveX Data Objects 6.0

Library'.Command
ADORecordSet Automation 'Microsoft ActiveX Data Objects 6.0

Library'.Recordset

6.	 Add the following code to the trigger:
CREATE(ADOConnection);
ADOConnection.ConnectionString := CreateConnectionString(
 'MyServer', 'MyDatabase', 'MyUserID', 'MyPassword');
ADOConnection.Open;

CREATE(ADOCommand);
ActiveADOConnection := ADOConnection;
ADOCommand.ActiveConnection := ActiveADOConnection;

ADOCommand.CommandText := 'SELECT [Name] FROM
 [Company$Customer] WHERE [No_] = ''10000''';
ADOCommand.Execute;

CREATE(ADORecordSet);
ADORecordSet.ActiveConnection := ActiveADOConnection;
ADORecordSet.Open(ADOCommand);
WHILE NOT ADORecordSet.EOF DO BEGIN
 MESSAGE(FORMAT(ADORecordSet.Fields.Item('No_').Value));
END;

ADOConnection.Close;

7.	 Save and close the codeunit.

Chapter 10

279

How it works...
First we need to connect to the database we need information from. We do this by setting up a
new connection string and assigning the value to our ADO connection variable.

Once we open our connection we are ready to issue queries or commands against the
external database. In this example, we want to select a customer from the Customer table in
another NAV database.

In order to view the results of the query, we have to open the RecordSet that was returned
by the command. We add a simple WHILE loop to process until we get to the end of the set.
Each field can be accessed with the .Fields.Item(FieldName) syntax.

There's more...
This is a basic example, but it opens up a lot of possibilities. Everything that you can do using
SQL you can now do in NAV. That includes executing stored procedures, creating views, and
setting up SQL security. Your options are only limited by your knowledge of T-SQL.

11
Working with SQL

Server

In this chapter, we will cover:

ff Creating a basic SQL query

ff Adding the xp_ stored procedures

ff Understanding SIFT tables

ff Using SQL Profiler

ff Displaying data from a SQL view in NAV

ff Figuring out who is blocking whom

ff Setting up a backup plan

ff Scheduling NAV tasks from SQL server

Introduction
When Navision was introduced, the database option was a proprietary engine. Everything
was stored in an FDB (Financial Database) file. The newer versions of the product added a
second option: SQL Server. Unfortunately for some of these older customers, NAV 2009 is the
last version to support the proprietary database; in the next version, SQL Server will be the
only option.

SQL Server is becoming an integral part of the software. NAV partners must be certified in
SQL Server Implementation and Maintenance to maintain their partnership. Even the NAV
Installation and Configuration exams ask many questions about Windows and database
servers. As NAV evolves, so must the people who work with it.

Working with SQL Server

282

In this chapter, we will explore everything from writing a basic SQL query to some of the
inner-workings of the NAV client. For those developers who have been resistant to change, or
those who don't know from where to start, the recipes in this chapter will help "bring you out
of your NAV shell" so to speak. For those of you who have been involved with SQL for some
time, there are several recipes for you as well.

Creating a basic SQL query
It all starts with a query. This recipe will show you how to retrieve data from tables in
the database.

How to do it...
1.	 Open SQL Server Management Studio and connect to the server that holds your

NAV database.

2.	 Click on the New Query button.

3.	 Select your NAV database in the database dropdown.

4.	 Enter the following code in the window:
SELECT [No_], [Name], [Address], [City], [County], [Post Code]
 FROM [CRONUS USA, Inc_$Customer]
 WHERE [No_] = '10000'

5.	 Press F5 to run the query.

6.	 You should see the following results:

Chapter 11

283

How it works...
This is a basic SQL query made up of three basic parts. The first is the SELECT line, which
tells the system the names of the fields we want to retrieve. We surround the field names
with brackets, [], because a lot of times the name of the field is also a reserved keyword or
a space. The brackets are not mandatory for every field, but it makes it simpler to add them
every time. Notice also that in NAV the customer number is stored in a field named "No.", but
in SQL Server we reference it by "No_".

The second line tells the table where we want to get the fields from, in this case the Customer
table. Here you can see that we do not just enter FROM [Customer]. In SQL Server, the
tables are actually named in a format like Company$Table. There are exceptions to this,
though. Any table that has the DataPerCompany property set to No will not contain the
Company$ prefix on the table name.

Last is the WHERE clause. This is the same as filtering in NAV. In this case, we only want to
retrieve customer number 10000.

This query would be equivalent to the following NAV code:

CustomerRec.SETRANGE("No.", '10000');
IF CustomerRec.FINDFIRST THEN;

The book, The NAV/SQL Performance Field Guide, by Jörg A. Stryk
contains a great list of translations between C/AL code and SQL
statements in the Querying SQL Server section.

There's more...
SQL queries can be much more complicated. They can perform calculations, query multiple
tables at the same time, and manipulate data in just about any way imaginable. Not only can
you retrieve data through a SQL query, you can also insert, modify, and delete data.

Entire books have been written on the subject of SQL. A great place to start
is Beginning SQL Queries: From Novice to Professional by Clare Churcher.

Working with SQL Server

284

Other Types of SQL queries
The following SQL queries are commonly used:

Adding data:

INSERT INTO [CRONUS USA, Inc_$Customer]
 ([No_],[Name],[Address],[City],[Post Code],[County])
 VALUES ('101382','Matt Traxinger','123 Main Street',
 'Atlanta','30324','GA')

Editing data:

UPDATE [CRONUS USA, Inc_$Customer]
 SET [Name] = 'Matt Traxinger'
 WHERE [No_] = '10000'

Deleting Data:

DELETE [CRONUS USA, Inc_$Customer]
 WHERE [No_] = '10000'

Please note that you should not use SQL to do things that can be done within NAV or to
correct issues that can be corrected on the NAV frontend. SQL does not execute business logic
that is built into NAV. There is almost always a way to accomplish what you are trying to do
using existing NAV functionality or NAV code.

See also
ff Creating transactions to alter data
ff Retrieving a single record from the database
ff Using advanced filtering
ff Retrieving data using FIND
ff Displaying data from a SQL view in NAV

Adding the xp_ stored procedures
In order to enable Single Sign-On (SSO) through Windows logins, you must install two
extended stored procedures on the SQL Server. This recipe will show you how to do that.

How to do it...
1.	 Copy the file named xp_ndo_x64.dll from the SQL_esp\x64 folder on the product

CD (if you are using a 64 bit server). The default location to move it to is C:\Program
Files (x86)\Microsoft Dynamics NAV\60\Database on the SQL Server, but
you can copy it to any location.

Chapter 11

285

2.	 Open SQL Server Management Studio and connect to your server. In the Object
Explorer pane on the left-hand side, expand the tree to Databases, System
Databases, master, Programmability, Extended Stored Procedures.

3.	 Right-click the Extended Stored Procedures folder and select New Extended
Stored Procedure.

4.	 Enter xp_ndo_enumusergroups for the name and point it to the xp_ndo_x64.
dll file you copied to the server.

Working with SQL Server

286

5.	 Go to the Permissions page from the left-hand pane.

6.	 Click the Add button.

7.	 Add the public account and grant it the Execute permission.

8.	 Click OK.

9.	 Repeat the same steps for the xp_ndo_enumusersids extended stored procedure.

See also
ff Setting up a backup plan

ff Scheduling NAV tasks from SQL Server

Understanding SIFT tables
SIFT stands for Sum Index Field Technology and is used by NAV to keep track of data to
quickly perform complex calculations. This recipe will show you how they work.

Chapter 11

287

How to do it...
1.	 Design Table 379, Detailed Cust. Ledg. Entry.

2.	 Click on View | Keys from the menu.

3.	 View the Properties for some of the enabled keys. You will notice one property called
MaintainSIFTIndex. This is the property that tells SQL Server to store the totals of
the SumIndexFields.

How it works...
Prior to NAV 5.0 SP1, SIFT values were stored in actual tables. In later versions, they earned
the nickname VSIFT because they are stored as views. This explanation will focus on VSIFT,
but for a deeper description of SIFT and how it works, check out Jörg A. Stryk's book, The NAV/
SQL Performance Field Guide.

Working with SQL Server

288

We will take a look at the key Customer No., Initial Entry Due Date, Posting Date. This is the
fourth key in the list (if you start with 0 as the first key). The view that will be created for this
key will be in the format of Company$Table$VSIFT$Key_Number. Right-click on the dbo.
CRONUS USA, Inc_$Detailed Cust_ Ledg_ Entry$VSIFT$4 view and go to Script View
As | CREATE To | New Query Editor Window. You will see the following code:

CREATE VIEW [CRONUS USA, Inc_$Detailed Cust_ Ledg_ Entry$VSIFT$4]
WITH SCHEMABINDING AS
 SELECT "Customer No_","Initial Entry Due Date","Posting Date",
 COUNT_BIG(*) "$Cnt",SUM("Amount") "SUM$Amount",
 SUM("Amount (LCY)") "SUM$Amount (LCY)"
 FROM "CRONUS USA, Inc_$Detailed Cust_ Ledg_ Entry"
 GROUP BY "Customer No_","Initial Entry Due Date","Posting Date"

A view is just a SELECT statement that is linked to specific tables. If any one of those tables
gets updated, the view is also updated. Do not be confused by this, though. Views do not
store any data. In the older versions of NAV, SIFT tables were updated through triggers. These
triggers slowed down functions like posting routines. The views, however, are optimized by
SQL Server in order to provide faster transactions and better user experience.

As you can see, in this SELECT statement we are retrieving the same fields that are found
in our key; that is Customer No., Initial Entry Due Date, and Posting Date. We are also
retrieving the sum of the fields in our SumIndexFields along with the number of records that
make up that sum.

You can retrieve records from the view just like you would from a table. If you select the
records from this view you would see the following table:

Let us take a look at row number ten and the values from the detailed Cust_ Ledg_ Entry
table. If you execute the following query you can see the records that make up this entry
in the view.

SELECT [Customer No_],[Initial Entry Due Date],[Posting Date],
 [Amount],[Amount (LCY)]
 FROM [CRONUS USA, Inc_$Detailed Cust_ Ledg_ Entry]

Chapter 11

289

 WHERE [Customer No_] = '10000' AND
 [Initial Entry Due Date] = '2010-01-31' AND
 [Posting Date] = '2009-12-31'

This produces the following results:

We have three records which match the count from the view. They all have the same
Customer No., Initial Entry Due Date, and Posting Date. If we sum the Amount or Amount
(LCY) fields from the three records we get the same total found in the view.

We can run the following code to calculate the sum of the Amount field from NAV:

DtlCustLedgEntry.SETCURRENTKEY(
 "Customer No.", "Initial Entry Due Date", "Posting Date");
DtlCustLedgEntry.SETRANGE("Customer No.", '10000');
DtlCustLedgEntry.SETRANGE("Initial Entry Due Date", 013110D);
DtlCustLedgEntry.SETRANGE("Posting Date", 123109D);
DtlCustLedgEntry.CALCSUMS(Amount);

If we run Client Monitor while executing this code we can see that it actually queries the view
we have been talking about instead of going record-by-record and adding up the value.

Entry No. Function Name Parameter Data

20 CALCSUMS Table Detailed Cust. Ledg. Entry
20 CALCSUMS SumIndexFields Amount
20 CALCSUMS Order Customer No.,Initial Entry Due

Date,Posting Date,Currency
Code,Entry No.

20 CALCSUMS Filter Customer No.:10000, Initial Entry
Due Date:01/31/10, Posting
Date:12/31/09

20 CALCSUMS Source Object Codeunit 50001 CALCSUMS Example
20 CALCSUMS Source Trigger/Function OnRun()

20 CALCSUMS Source Line No.
20 CALCSUMS Source Text DtlCustLedgEntry.

CALCSUMS(Amount);

20 CALCSUMS SQL Statement SELECT SUM("SUM$Amount")
FROM dbo."CRONUS USA,
Inc_$Detailed Cust_ Ledg_
Entry$VSIFT$4"

Working with SQL Server

290

Entry No. Function Name Parameter Data

20 CALCSUMS Sum 228,242.39
20 CALCSUMS Elapsed Time (ms)

See also
ff Adding a FlowField to a table

ff Creating a SumIndex field

ff Displaying data from a SQL view in NAV

Using SQL Profiler
SQL Profiler is a tool similar to the Client Monitor in NAV. It allows you to create a trace of the
T-SQL commands between NAV and SQL issued by a specific user. This recipe will show you
the basics of setting up a SQL trace and what to do with the data afterwards.

How to do it...
1.	 Go to Start | All Programs | Microsoft SQL Server 2008 | Performance Tools | SQL

Server Profiler.

Chapter 11

291

2.	 Click on File | New Trace. This will prompt you to connect to a SQL Server.

3.	 Once you have connected to the server, you will be presented with the Trace
Properties screen.

Working with SQL Server

292

4.	 Here you can set the name of the trace and how you would like to save it. You can
also click on the Events Selection tab to choose exactly what types of events and
fields you want to record.

5.	 When you are satisfied with the setup you can click the Run button. This will begin
the trace and you will see an output similar to the following:

Chapter 11

293

6.	 You can see the username, reads and writes on the database, execution time, and
even the actual query being run. In this case, we were selecting the count of the total
number of records in the Sales Header table.

How it works...
So what do you do with all of this data?

You can find processes that are taking too long to run using the Duration column. An example
might be a posting routine or load time on a form. You could order the data by the number of
reads and writes. This would tell you if you were maintaining too many indexes on a key during
an insert or if you had a particularly CPU-intensive process.

What you do with it is really up to you. As you become more proficient in SQL Server and
understand the basics, I highly recommend that you pick up some advanced books like SQL
Server 2008 Query Performance Tuning Distilled by Grant Fritchey and Sajal Dam. These
advanced discussions on the inner working of SQL Server are beyond the scope of this book,
but I have no doubt that you will find them useful as you dive deeper into this area of NAV.

See also
ff Using Client Monitor to diagnose problems

ff Figuring out who is blocking whom

Displaying data from a SQL view in NAV
Most of the data in NAV is stored in tables, but you can also display data from other sources.
This recipe will explain how to show data from a SQL View in NAV.

How to do it...
1.	 Open SQL Server Management Studio.

2.	 Select your database and open a new query window.

3.	 Execute the following code:
CREATE VIEW [Customer Ledger View] AS
 SELECT "Customer No_","Initial Entry Due Date","Posting Date",
 COUNT_BIG(*) "$Cnt", SUM("Amount") "SUM$Amount",
 SUM("Amount (LCY)") "SUM$Amount (LCY)"
 FROM "CRONUS USA, Inc_$Detailed Cust_ Ledg_ Entry"
 GROUP BY "Customer No_", "Initial Entry Due Date",
 "Posting Date"

4.	 Create a new table from Object Designer.

Working with SQL Server

294

5.	 Add the following fields to the table:

Field Name Data Type Length
Customer No_ Code 20
Initial Entry Due Date Date
Posting Date Date
$Cnt BigInteger
SUM$Amount Decimal
SUM$Amount (LCY)

6.	 Set the following properties on the table.

Property Value
DataPerCompany No
LinkedObject Yes
LinkedInTransaction No

7.	 Save the table as Customer Ledger View.

8.	 When you run the table you will see the following data:

Chapter 11

295

How it works...
First we create a view that we want to display in NAV. This view is actually a copy of a VSIFT
view from the Customer Ledger Entry table.

Next we create a table in NAV with the exact same name and the exact same field names.

At this point, we have two separate objects with the same structure, a table and a view. Now we
need to link the two together. The table has a property called LinkedObject that we need to
set to Yes. This makes the LinkedInTransaction property available which should be set to
No. We also need to set the DataPerCompany property to No. With these properties set, the
server knows that these objects refer to each other because they have the same name.

There's more...
Be careful when displaying this data in a NAV form or page. You can inadvertently allow users
to modify or delete records that they do not have permission to. The View is not the same as
the table. That means a user could have no permissions to do anything with the G/L Entry
table, but could do anything they wanted with a view on that data. NAV permissions do not
apply to linked objects.

See also
ff Creating a table

ff Creating a basic SQL query

Figuring out who is blocking whom
Deadlocking can be a common occurrence in NAV. Unfortunately, users cannot work in the
system when their actions are being blocked by another user. This recipe will show you how to
determine who is blocking other users and resolve the situation.

How to do it...
1.	 Open SQL Server Management Studio.

2.	 Open a new query window.

3.	 Execute the following code:
sp_who

Working with SQL Server

296

4.	 You will see results similar to this:

How it works...
The sp_who command queries the sys.sysprocesses system table in SQL. It returns a list
of all connections to the server and if they are being blocked by anyone, the column labeled
blk will be filled in with the spid of the user doing the blocking.

This provides similar information to what can be found in NAV. If you go to File | Database |
Information, and drill down into the Current Sessions number, you can see the users who are
being blocked.

Chapter 11

297

There's more...
You can also write your own query to find the deadlocks.

Another way to find deadlocks
The following query will pull all of the user IDs that are blocked as well as the root cause
of the block.

SELECT
 SP.[spid] AS [SPID],
 CASE WHEN SP.[blocked] > 0 THEN 'Yes' ELSE '' END AS [Blocked],
 SP.[blocked] AS [Blocked by SPID],
 SP.[nt_username] AS [User ID],
 SD.[name] AS [Database],
 SP.[waittime],
 SP.[status] as [Current Status],
 SP.cmd AS [Current Command]

 FROM
 [master].[dbo].[sysprocesses] AS SP JOIN
 [master].[dbo].[sysdatabases] AS SD ON
 (SP.dbid = SD.dbid) LEFT OUTER JOIN
 [master].[dbo].[sysprocesses] AS SP2 ON (SP.[blocked] =
 SP2.[spid])

 WHERE SP.[program_name] Like '%Dynamics NAV%'
 ORDER BY SP.[waittime] DESC, SP.cmd DESC

From there you can issue a KILL spid command where spid is the ID of the user doing
the blocking.

See also
ff Using SQL Profiler

Setting up a backup plan
Not all customers have an IT department, much less a full-time DBA on staff. It is
extremely important that you know how to set up an automatic backup plan for your
customers' databases.

Working with SQL Server

298

How to do it...
1.	 Open SQL Server Management Studio and connect to your server. In the

Object Explorer pane on the left-hand side, expand the tree to Management,
Maintenance Plans.

2.	 Right-click on the Maintenance Plans folder and select Maintenance Plan Wizard.

3.	 Click Next.

4.	 In the following window, you can set the name of your backup plan as well as the
basic schedule.

Chapter 11

299

5.	 Click the Change... button.

Working with SQL Server

300

6.	 Here we have chosen to run our backup every midnight.

7.	 Click Next.

8.	 Check the Database Backup (Full) checkbox.

9.	 Click Next.

10.	 Click Next again.

11.	 Select the database(s) that you want to backup.

12.	 Keep clicking Next until you finish the wizard.

How it works...
When you have completed the Wizard you will see new items in the Object Explorer tree.

Here we can see two separate maintenance plans and the Jobs that they have created. These
jobs will execute at the time we specified in the wizard and backup our database.

See also
ff Adding the xp_ stored procedures

ff Scheduling NAV tasks from SQL Server

Scheduling NAV tasks from SQL Server
You cannot call NAV code directly from outside the database, but you can create a .NET
program that can be used by SQL to issue commands through a NAV web service. This recipe
will show you exactly what to do.

Chapter 11

301

How to do it...
1.	 Create a new SQL CLR project in Visual Studio. When creating this project you will

have to add a reference to your NAV database.

2.	 Right-click on your project in Solution Explorer and add a new stored procedure
named NAVJobScheduler.

3.	 Add the following code to the project:
using System;
using System.Net;
using System.IO;
using System.Xml;

public partial class StoredProcedures
{
 [Microsoft.SqlServer.Server.SqlProcedure]
 public static void NAVJobScheduler(
 string ObjectType, int ObjectID, string Login,
 string Password,string Domain,string WebServiceURL)
 {
 string Body =
 @"<soapenv:Envelope xmlns:soapenv=
 ""http://schemas.xmlsoap.org/soap/envelope/""xmlns:run=
 ""urn:microsoft-dynamics-schemas/codeunit/RunObject"">"
 + "<soapenv:Header/>" + "<soapenv:Body>" + "<run:RunJob>"
 + "<run:objectType>" + ObjectType + "</run:objectType>" +
 "<run:objectID>" + ObjectID + "</run:objectID>" +
 "</run:RunJob>" + "</soapenv:Body>" +
 "</soapenv:Envelope>";

 WebRequest request = HttpWebRequest.Create(WebServiceURL);
 request.Headers.Add("SOAPAction", @"""urn:microsoft-
 dynamics-schemas/codeunit/RunObject:RunJob""");
 request.ContentType = "application/xml; charset=utf-8";
 request.ContentLength = Body.Length;
 request.Method = "POST";

 System.Net.CredentialCache myCredentials = new
 System.Net.CredentialCache();
 NetworkCredential netCred = new NetworkCredential(
 Login, Password, Domain);
 myCredentials.Add(new Uri(WebServiceURL), "NTLM", netCred);
 request.Credentials = myCredentials;
 Stream strWrite = request.GetRequestStream();
 StreamWriter sw = new StreamWriter(strWrite);

Working with SQL Server

302

 sw.Write(Body.ToString());
 sw.Close();

 WebResponse wr = request.GetResponse();
 HttpWebResponse httpRes = (HttpWebResponse)wr;
 Stream s = httpRes.GetResponseStream();
 StreamReader sr = new StreamReader(s);
 XmlDocument xmlDoc = new XmlDocument();
 xmlDoc.Load(sr);

 if (xmlDoc.FirstChild.FirstChild.FirstChild.FirstChild.
 FirstChild.Value != "SUCCESS")
 {
 throw new Exception(
 "ObjectType " + ObjectType + " ObjectID " +
 ObjectID.ToString() + " failed with Error: " +
 xmlDoc.FirstChild.FirstChild.FirstChild.
 FirstChild.FirstChild.Value);
 }
 }
};

4.	 Save, compile, and close the project.

5.	 Create a new codeunit in Object Designer.

6.	 Add a function named RunObject. This function should return a text value.

7.	 Add the following code to the function:
EXIT('SUCCESS');
//EXIT(GETLASTERRORTEXT);

8.	 Compile and save the object.

9.	 Run Form 810, Web Services.

10.	 Add the codeunit and check the Published column.

11.	 Open SQL Server Management Studio.

12.	 Expand the SQL Server Agent, Jobs folder from Object Explorer.

13.	 Right-click the Jobs folder and select New Job.

Chapter 11

303

14.	 Click on the Steps option on the left-hand side.

15.	 Click New.

16.	 Enter the information as shown in the following screenshot:

Working with SQL Server

304

17.	 Click OK.

18.	 Save the job.

How it works...
First off, let me give credit where credit is due. This recipe is based on a blog entry by Rashed
Amini, or ara3n as you may know him from the forums. It can be found here:

http://mibuso.com/blogs/ara3n/2009/11/14/replacing-nas-with-sql-jobs-
and-nav-web-service/

This program is built on SQLCLR, or SQL Common Language Runtime. . It allows .NET code to
be executed within the SQL Server environment. Our function takes in six parameters. The first
two are the object type and object ID of the object that should be run in NAV. The next three
are the login information that is used to connect to the database. The last is the web service
address that is published by NAV.

Our code starts by creating a SOAP message. SOAP stands for Simple Object Access
Protocol and is a way to exchange information across web services. This message is stored in
our string variable named Body.

Next, we need to initiate a request to our web service. We create our credentials using the
domain, login ID, and password that we passed to the function. The value stored in the body
variable, the SOAP message, is then sent to the Request Stream of the web service. Once
the web service is done processing our request we retrieve the response that it sends back
to us. This response is sent back to us in the form of an XML document. We can parse that
document to find a Success error message, or possibly the error message generated by NAV.

For more information about creating your own CLR code have a
look at the following website: http://www.codeproject.
com/KB/cs/CLR_Stored_Procedure.aspx

Our NAV codeunit is extremely simple. It always returns the word SUCCESS. You are most likely
to execute your own code and return this value if it completed, otherwise you would return the
last error message generated.

This codeunit must be published as a web service so that external applications can access it.
This is easily accomplished with NAV 2009 through the Web Serviced form.

Finally, we create a SQL job to call our .NET code. You could just as easily execute that code in
a query window.

For more on creating SQL jobs check out MSDN here: http://msdn.
microsoft.com/en-us/library/ms187910.aspx

http://mibuso.com/blogs/ara3n/2009/11/14/replacing-nas-with-sql-jobs-and-nav-web-service/
http://mibuso.com/blogs/ara3n/2009/11/14/replacing-nas-with-sql-jobs-and-nav-web-service/
http://www.codeproject.com/KB/cs/CLR_Stored_Procedure.aspx
http://www.codeproject.com/KB/cs/CLR_Stored_Procedure.aspx
http://msdn.microsoft.com/en-us/library/ms187910.aspx
http://msdn.microsoft.com/en-us/library/ms187910.aspx

Chapter 11

305

There's more...
With this type of program, you can get rid of the NAV Application Server. As NAV moves
completely to SQL Server for database management, as well as for converting all C/AL code to
be managed .NET code in NAV 2009, this type of coding will become more common. C/AL will
not be going away any time soon, but NAV cannot reach its full potential with C/AL alone.

See also
ff Creating a web service

ff Consuming a web service

ff Creating a custom NAS handler

ff Writing your own Automation using C#

ff Using ADO to access outside data

ff Adding the xp_ stored procedures

ff Setting up a backup plan

12
The RoleTailored

Client

In this chapter, we will cover:

ff Creating a page using the Page Generation Wizard

ff Building a Role Center

ff Changing default filter columns

ff Building the report layout

ff Interactive sorting for reports

ff Displaying a graph on a report

ff Displaying a .NET add-in on a page

Introduction
The RoleTailored client represents a major paradigm shift for NAV developers. It was introduced
with NAV 2009 as a new way for users to access the data they use in their day-to-day tasks.
This version of NAV represents the transition phase between the Classic and RoleTailored
approaches to the system; NAV 2009 is the last version where the Classic client is available
and the first where the RoleTailored client is available.

As a developer you will find yourself performing the same types of tasks, but in different ways.
For example, you are will still be building on ways to show data to the user, but where forms
had a visual design component, pages will now be designed primarily through an interface
similar to XMLports. You still build reports in C/AL, but they have to be converted for use with
the RoleTailored client. This chapter will show you how to perform some of the basic tasks
associated with developing for this new interface style.

The RoleTailored Client

308

Creating a page using the Page Generation
Wizard

Pages are the objects that display data in the RoleTailored client. They are similar to forms in
the Classic client. This recipe will show you how to design a basic page.

How to do it...
1.	 Create a new page from Object Designer.

2.	 Enter Customer for Table.

3.	 Select Create a page using a wizard.

4.	 Select Card.

5.	 Click OK.

6.	 Add a line for a new FastTab called Communication.

Chapter 12

309

7.	 Click on Next.

8.	 Add the No., Name, Address, City, and County fields to the General tab.

9.	 Add the Phone No. and E-mail fields to the Communication tab.

10.	 Click Finish.

11.	 The source of your page will look like the following screenshot:

12.	 Compile, save, and close the page.

The RoleTailored Client

310

13.	 In NAV 2009 SP1 you can run the page directly from Object Designer. It will look like
the following screenshot:

How it works...
Pages are the way the new RoleTailored client displays data. They are similar to forms in
functionality, but different in their design. Currently, there is no visual page designer. Until one
becomes available, the quickest way to build a page is by using the wizard.

The Page Generation Wizard is very similar to the Form Generation Wizard. We start by
selecting the table to which the page will be bound along with the type of page to create.

In the NAV Classic client, the tabs were spaced horizontally across the screen. In the
RoleTailored client they are called FastTabs and are spaced vertically. These tabs can be
minimized on the screen or expanded to show all the data at once. Just as we do in the Form
Generation Wizard, here we specify the names of our tabs: General and Communication.

Now we must choose the fields that will be displayed within each tab. This is exactly the same
as the Form Generation Wizard. The fields can be selected in the panel on the left-hand side
and moved to the panel on the right-hand side to add them.

When you click on Finish you may be surprised at what you see. It is not at all like the Form
Designer you may be used to, but instead it is a list of page elements. Let's take a look at
each of these lines and how they relate to what we have just done.

Every page begins with a container element. In this case, our container is a ContentArea.
All of the lines indented beneath this container will be displayed within it. This container has
two group elements that represent the FastTabs. Each group is made up of multiple field
elements, similar to the textboxes on forms.

Chapter 12

311

It is difficult to visualize how the page will look like in this form, so you may find yourself
previewing it much more often than you would when designing a form object.

There's more...
For a more comprehensive look at pages and how to build them, I encourage you to read
Programming Microsoft Dynamics NAV 2009, by David Studebaker. You will find examples of
how one can position elements on the page, add elements to the toolbar, and many others.

See also
ff Using the Form Generation Wizard

ff Changing default filter columns

ff Displaying a .NET control on a page

Building a Role Center
The Role Center is like a dashboard that displays data and functionality related to a
specific user role. This recipe will show you how to create a Role Center page for the new
RoleTailored client.

How to do it...
1.	 Create a new page from Object Designer.

2.	 Set the properties of the page as follows:

Property Value
Caption Activities

PageType CardPart

SourceTable Sales Cue

3.	 Add the following lines in the Page Designer:

Name Caption Type SubType SourceExpr
MainContainer <Main Container> Container ContentArea
ForReleaseGroup For Release Group CueGroup
OpenQuotes Open Sales Quotes Field "Sales

Quotes – Open"
OpenOrders Open Sales Orders Field "Sales

Orders – Open"

The RoleTailored Client

312

4.	 Set the following property on the OpenQuotes line:

Property Value
DrillDownFormID Sales Quotes

5.	 Set the following property on the OpenOrders line:

Property Value
DrillDownFormID Sales List

6.	 It should look like the following screenshot:

7.	 With your cursor on the ForReleaseGroup line click on View | Actions.

8.	 Add the following lines:

Name Caption Type
Action1 New Sales Quote Action
Action2 New Sales Order Action

9.	 Set the following property on the New Sales Quote line:

Property Value
RunObject Page Sales Quote

10.	 Set the following property on the New Sales Order line:

Property Value
RunObject Page Sales Order

Chapter 12

313

11.	 Compile, save, and close the page.

12.	 Create a new page from Object Designer with the following lines.

Name Caption Type SubType
Content <Content> Container RoleCenterArea
LeftSide <LeftSide> Group Group
Activities <Activities> Part
Outlook <Outlook> Part
RightSide <RightSide> Group Group
MyCustomers <MyCustomers> Part
MyItems <MyItems> Part
MyNotes <MyNotes> Part

13.	 They should be indented as shown in the following screenshot:

14.	 Set the following property on the Activities line:

Property Value
PartType Page

PagePartID The ID of the activities page that we just created

15.	 Set the following property on the Outlook line:

Property Value
PartType System

SystemPartID Outlook

The RoleTailored Client

314

16.	 Set the following property on the MyCustomers line:

Property Value
PartType Page

PagePartID My Customers

17.	 Set the following property on the MyItems line:

Property Value
PartType Page

PagePartID My Items

18.	 Set the following property on the MyNotes line:

Property Value
PartType System

SystemPartID Notes

19.	 Compile, save, and close the page. The resulting Role Center should look like the one
shown in the following screenshot:

Chapter 12

315

How it works...
The Role Center works as a one-stop shop for the user's most important tasks. It displays
tasks that the user needs to perform along with data that relates specifically to them.

The first part of the Role Center is known as Activities. This is where the user looks to know
what actions they need to do. The activities are built on top of special tables known as Cues.
These Cue tables are made mostly of FlowFields and FlowFilters. We are going to build our
activities part on the Sales Cue table. It should display any Open Sales documents we are
working on.

By adding the Group line to our page and specifying the SubType as a CueGroup, we tell the
RoleTailored client to display the fields indented beneath it in a specific way. Activities are
displayed as stacks of paper that grow and shrink based on the numbers returned by the
FlowFields in the Cue table. Additionally, in order to provide the same type of data access
that you would gain on a form, we specify the DrillDownFormID for each of the fields or
activities. We can also define actions on our group lines. In this example, we have created
simple links to create new sales quotes and sales orders.

This is just a part of the Role Center, though. Now we need to build the actual page that will
display the activities part. Like all pages, we begin with a container, but this time we set the
SubType to RoleCenterArea. This essentially divides the page vertically into a left and right
section. We add groups for each of these sections and then choose what to display.

Deciding what to display is fairly straightforward. Instead of adding fields to our group, we add
Parts. First we choose what type of part will be shown. For our activities, this will be a Page
object, so we set the PartType property to Page and the PagePartID to the object ID of the
page. Directly beneath that part, we are displaying the built-in Outlook part. For this we set the
PartType to System, because it comes with NAV, and the SystemPartID to Outlook. The
right-hand side is made up of similar parts.

There's more...
Role Centers are not easy to build from scratch. One easy way to build them is to design an
existing one and then save it under a new ID. From there you can edit it to fit to your needs.

For a more comprehensive look at Role Centers you should check out Programming Microsoft
Dynamics NAV 2009, by David Studebaker or Chapter 3 of Implementing Microsoft Dynamics
NAV, by David Roys and Vjekoslav Babic.

The RoleTailored Client

316

See also
ff Creating a table

ff Adding a FlowField to a table

ff Using the Form Generation Wizard

ff Creating a page using the Page Generation Wizard

ff Displaying a .NET control on a page

Changing default filter columns
Some fields in the RoleTailored client allow filter-as-you-type functionality, meaning that as you
type into the textbox a drop-down menu will display all the available options. This recipe will
show you how to customize such a drop-down menu.

How to do it...
1.	 Design the Customer table from Object Designer.

2.	 Select the last line in the table and click on View | Field Groups.

3.	 Enter (or replace) the following line in the window:

Chapter 12

317

4.	 When you begin to type in any field with a table relation to the Customer table you will
see a drop-down menu as shown in the following screenshot:

5.	 As you type, the list will automatically filter with the possible values.

How it works...
In the RoleTailored client, some data is displayed as you type in the field. This keeps the user
from having to open a list and finding the record. All the information needed is provided in
one place.

Fortunately, this is easy to customize. NAV provides a functionality called Field Groups.
Specifically, a Field Group called DropDown, controls which fields are displayed in the view.
When the system sees a group with this name it shows the fields specified in the Group column.

There's more...
If you want to learn more about Field Groups you can search the NAV C/SIDE help or read NAV
Development course books.

The RoleTailored Client

318

See also
ff Creating a page using the Page Generation Wizard

ff Creating a table

ff Using advanced filtering

Building the report layout
In the RoleTailored client reports are based on SQL Reporting Services. These reports are
still built within NAV, but they are translated into a layout that can be read by Visual Studio.
This recipe will show you how to build and change this layout.

How to do it...
1.	 Create a report as described in the Using the report generation wizard recipe.

2.	 Click on Tools | Create Layout Suggestion.

3.	 After a few seconds it will open in Visual Studio.

4.	 We could change things around here, but we will leave it as is. Compile, save, and
close the report layout.

Chapter 12

319

5.	 When running the report you will be presented with the request page.

6.	 After you click on Preview you will see the report generate. It should look similar to
the one shown in the following screenshot:

The RoleTailored Client

320

How it works...
NAV will do its best to automatically translate your report layout to one that is compatible with
SQL Reporting Services and Visual Studio. This is done using the Create Layout Suggestion
command under the Tools menu.

From Visual Studio you can click on View | Toolbox to see the available controls you can add
to your report.

There's more...
In NAV 2009, you have to think about data items a little differently. In the older versions of the
product, data items were indented to show the relationship between the two. For example, you
would indent a Customer Ledger Entry data item under a Customer data item and link them
with the customer number. You can probably visualize it with the following structure:

ff Customer No. 1

�� Ledger Entry 1

�� Ledger Entry 2

ff Customer No. 2

�� Ledger Entry 3

In SQL Reporting Services, the data is flattened out using a SQL JOIN statement. In other
words, each combination of Customer and Customer Ledger Entry is combined into a single
record like this:

Customer No. 1	 : Ledger Entry 1

Customer No. 1	 : Ledger Entry 2

Customer No. 2: Ledger Entry 3

It may not make a difference to how you design your reports, but it is important to know what
is happening in the background.

See also
ff Using the Report Generation Wizard

ff Interactive sorting for reports

ff Displaying a graph on a report

Chapter 12

321

Interactive sorting for reports
With the NAV Classic client you can sort data only based on keys that currently exist in the
database. The RoleTailored client allows you to sort on any column that is displayed on
the report.

How to do it...
1.	 Build the report layout as described in the Building the report layout recipe.

2.	 Click on View | Layout.

3.	 Change the layout so that the data is presented in columns. You can do this by deleting
the existing table and dragging a new one from the toolbox to the Body section.

4.	 The result should look similar to the following screenshot:

5.	 Right-click on the Table Header cell for the Customer No. field and go to Properties.

6.	 Click on the Interactive Sort tab.

7.	 Check the box for Add an interactive sort action to this textbox.

8.	 In the Sort expression: select the Customer No. field.

The RoleTailored Client

322

9.	 The properties should be set as follows:

10.	 Repeat for the Customer Name textbox.

11.	 Compile, save, and close the report layout.

12.	 Compile, save, and close the report.

13.	 When you run the report you will notice two small arrows next to the column headers:

Chapter 12

323

14.	 You can use them to sort the data.

How it works...
SQL Reporting Services allows for a lot of functionality that were just not possible in base
NAV reporting. One of them is interactive sorting of columns. You can set columns to be
sortable by setting a property on the textbox in Visual Studio. On the Interactive Sort tab for
the properties of the textbox, you simply check a box to allow sorting and then tell it how you
want to sort.

The next time you run the report you will see small arrows next to each column header. An
arrow in a circle means that the report is currently sorted by that column, while two small
arrows mean that it is a sortable column.

There's more...
I recommend reading the book Programming Microsoft Dynamics NAV 2009, by David
Studebaker or the NAV 2009 Development Courseware/Application Designer's Guide that
ships with the product.

The RoleTailored Client

324

See also
ff Building the report layout

ff Displaying a graph on a report

Displaying a graph on a report
Graphs and other data visualization techniques make for more interesting and sometimes
more useful reports. Until NAV 2009, these types of reports were missing. This recipe will
show you how to leverage these options in the RoleTailored client.

How to do it...
1.	 Create a new Tabular style report using the Report Generation Wizard. It should be

based on the Customer table and display the No., Name, and Location Code fields.
2.	 Click on Tools | Suggest Report Layout. After a few seconds the report will open in

Visual Studio.
3.	 In Visual Studio, click on View | Toolbox.
4.	 Drag a Chart Report Item to the body of the report.
5.	 Right-click on the chart and go to Properties.
6.	 On the General tab change the Title to Customers by Location.
7.	 Change the Chart type to a Pie chart.

Chapter 12

325

8.	 On the Data tab click on the Add button in the Values area.

9.	 Clear the Series label textbox.

10.	 In the Value textbox enter the following formula: =Count(Fields!Customer__
Location_Code_.Value)

11.	 Click OK.

12.	 Click OK to close the Chart Properties window. Your layout should now look like the
following screenshot:

The RoleTailored Client

326

13.	 Compile, save, and close the layout.

14.	 Compile, save, and close your NAV report.

15.	 When you run the report you should see a graph on the last page similar to the
following screenshot:

How it works...
With NAV 2009, we are no longer bound to the boring black and white reports of the past.
Not only can you display your text in beautiful, vibrant color, but you can also show data
visualizations in the form of built-in graphs.

To start, we drag a graph control from the Visual Studio toolbox to the Body section of the
report. We have a variety of graphs to choose from, but in this case we will show a pie chart.

Setting up the data for the graph is very similar to setting up a graph or chart in Microsoft
Excel. The Data tab on the graph properties allows you to set up the Series names as well as
the actual values to display. Here we are displaying the total number of customers by location
code. Just as we would in a NAV FlowField, we enter a COUNT formula. Notice how the series
name in the legend defaults to the value "Point" and the index number if the display name
is blank.

That is all there is to it. There are of course many more options, but as you can see, adding
graphs to a report requires only a few clicks.

Chapter 12

327

There's more...
For more information about reporting in NAV 2009 you can search the NAV C/SIDE Help
or MSDN.

See also
ff Building the report layout

ff Interactive sorting for reports

Displaying a .NET add-in on a page
The NAV Page Designer is limited in what it can do and what data it can display. By creating
a visual .NET add-in and adding it to a page, you can display your data in the same formats
available in .NET Windows Forms.

Getting ready
Download and install the client add-in tool from Christian Abeln.

http://www.cooldudette.net/BlogFiles/AddInImporter.zip

How to do it...
1.	 Create a new class library project in Visual Studio.

2.	 Add the following references to the project:
System.Windows.Forms
Microsoft.Dynamics.Framework.UI.Extensibility

3.	 The latter can be found in the NAV installation directory under the RoleTailored
client folder.

4.	 Add the following code to the program:
using System.Xml;
using System.Data;
using System.Windows.Forms;
using Microsoft.Dynamics.Framework.UI.Extensibility;
using Microsoft.Dynamics.Framework.UI.Extensibility.WinForms;

namespace RSSReader
{
 [ControlAddInExport("NAV_RSS")]
 public class RSSReaderAddIn : WinFormsControlAddInBase

http://www.cooldudette.net/BlogFiles/AddInImporter.zip
http://www.cooldudette.net/BlogFiles/AddInImporter.zip

The RoleTailored Client

328

 {
 private DataGridView grid;

 public void LoadRSS(string URL)
 {
 System.Net.WebRequest myRequest =
 System.Net.WebRequest.Create(URL);
 System.Net.WebResponse myResponse = myRequest.GetResponse();
 System.IO.Stream rssStream = myResponse.GetResponseStream();
 System.Xml.XmlDocument rssDoc = new
 System.Xml.XmlDocument();
 rssDoc.Load(rssStream);
 System.Xml.XmlNodeList rssItems =
 rssDoc.SelectNodes("rss/channel/item");

 XmlNode attribute;
 int i = 0;

 foreach (XmlNode node in rssItems)
 {
 attribute = node.SelectSingleNode("title");
 string[] rowArray = new string[] { attribute.InnerText };
 grid.Rows.Add(rowArray);
 i++;
 }
 }

 public override bool AllowCaptionControl
 {
 get
 {
 return false;
 }
 }

 protected override Control CreateControl()
 {
 grid = new DataGridView();
 grid.Columns.Add("Title", "Title");
 grid.Columns["Title"].Width = 600;
 grid.Height = 500;
 LoadRSS(
 "http://mibuso.com/forum/smartfeed.php?u=
7776&e=dGmFiU150Nty0rhD8WG9KPwqlx38DiyvBH0tybeha8xNIA6Pr4x6EA..&
lastvisit=1&filter_foes=1&forum=32&limit=NO_LIMIT&count_limit=10&
sort_by=postdate_desc&feed_type=RSS2.0&feed_style=HTML");
 return grid;
 }
 }
}

Chapter 12

329

5.	 Go to the project properties and click on the Signing tab. Check the Sign the
assembly checkbox.

6.	 Compile, save, and close the project.

7.	 Copy the NAV_RSS.dll file from your default project folder, usually under C:\
Users\Your Username\Documents\Visual Studio 2008\Projects\
RSSReader\RSSReader\bin\Debug to the Add-Ins folder for the RoleTailored
client, usually under C:\Program Files (x86)\Microsoft Dynamics NAV\60\
RoleTailored Client\Add-ins.

8.	 Run form 100000, Client Add-In, from Object Designer in the Classic client. This
object is found in the Client Add-In tool referenced in the Getting started section.

9.	 Click on Register Add-Ins and navigate to the NAV_RSS.dll file.

10.	 Click Open.

11.	 The add-in should be registered.

12.	 Create a new page from Object Designer.

13.	 Add the following lines:

Name Caption Type SubType
MainContainer <MainContainer> Container ContentArea
NAV_RSS <NAV_RSS> Field

14.	 Set the following property on the NAV_RSS line:

Property Value
ControlAddIn NAV_RSS;PublicKeyToken=f98e6a98efc50c05

The RoleTailored Client

330

15.	 Your value may not be exactly the same. Use the lookup arrow to select the add-in.
Your page should look similar to the following screenshot:

16.	 When you run the page it should similar to the following screenshot:

How it works...
In NAV 2009 SP1 you can create your own .NET objects to display in RoleTailored client
pages. This is done by using the functionality in the Microsoft.Dynamics.Framework.
UI.Extensibility dll.

For a complete list of Control classes you can search MSDN, but here we
will display a simple GridView that contains the last 10 posts from the
NAV 2009 Forum on one of my favorite websites, www.Mibuso.com.

http://www.Mibuso.com

Chapter 12

331

The LoadRSS function is the bulk of our class, but it is not important to the recipe, so we
will only discuss it in brief. Many sites publish data from their site in a format called RSS, or
Really Simple Syndication. This RSS format is just a form of XML which can be parsed and
used for our own use, in this case to fill in our GridView.

We have two functions that allow us to control the way we interact with pages in NAV 2009.
The first is AllowCaptionControl. By overriding the function in the extensibility DLL file, we
can force our control not to display a label.

The second function is the most important: CreateControl. It returns a control object
which tells the RoleTailored client what to display. Our function sets up a simple grid with one
column called Title. We then call our LoadRSS function to fill in the actual data.

In order to use this new DLL in NAV 2009 we also have to make sure it is a signed assembly.

With the Client Add-in tool, registering the new control in NAV is easy. When we select the file
to register, it automatically determines the Public Key Token which is used to identify the DLL.

Finally, it is time to use our control in a page. We create a new page and add a field line.
There is a property on field lines called ControlAddIn which we can point to our newly
registered add-in.

Although it may not be the prettiest add-in, that is all there is to it. Our control is now ready to
be used anywhere in the RoleTailored client.

See also
ff Writing your own automation using C#

ff Creating a page using the Page Generation Wizard

ff Building a Role Center

Index
Symbols
.NET add-in

displaying, on page 327-330
working 330

A
Active Directory groups

about 184
checking 185, 186
working 188, 189

ActiveX Data Object. See ADO
AddCustomer function 106
AddElement function 264
AddTable function 235
ADO

about 277
using, to access outside data 277, 278
working 279

advanced filtering
about 60
using 62
ways 62
working 62

AppendBody function 218
array

address creating, Format Address used 18
ARRAYLEN 17
creating 16, 17
working 17

AutoSignin method 230

B
backup plan

setting up 298-300

working 300
basic SQL query

creating 282
types 284
working 283

basic SQL query, types
data, adding 284
data, deleting 284
data, editing 284

breakpoints
setting 156, 157
working 157

C
CALCDATE() function

units, using 27
working 27

CALCFIELDS command 67
CalcFormula property 65, 66
CALCSUMS function 69
CalculateData function 98
Caption property 119
CASE statement

multiple conditions, testing 38
working 39

CHANGECOMPANY command 77
ChangeLog 9
check mark, displaying on report

steps 125
working 126

CheckUserID function 183
class

FileIOPermission 249
Classic client 8
CLEAR command 73
ClearPDFCreator function 271, 272

334

Client Monitor
about 162
using, for problem diagnosis 162
working 163-165

Code Coverage
about 158
running, from code 160
use 159
using 158
working 159

CODECOVERAGELOG function 160
code repetition

loop used, working 31
loop, using 30
loop using, steps 30, 31

ColumnHeader method 100
Common Dialog Management 244
communicator_OnSignin method 230
company-based menu suites

assigning 197, 199
working 200

ContentArea 310
CopyHere function 253
CreateAccountingDateFilter function 15
CREATE command 253
CreateExcelBook function 221
CreateFile method 234
CREATE function 262
CreateMessage function 218
CreateSubKey function 252
CreateWatermark function 150
CURRENTDATETIME function 9
CurrForm.UPDATE command 109
CurrReport.SHOWOUTPUT command 129
custom filters

adding, to request form 119, 120
custom NAS handler

about 273
creating 273, 274
working 275

Custom Zoom menu button 208

D
data

altering, transactions created 54, 55
criteria, selecting 129, 130

fields, totalling 129, 130
retrieving, from another company 76
sending, through FTP 267

database
GET command, working 60
single record, retrieving from 59

data export
Excel buffer, using 218, 219

DataItemTableView property 118
DataPerCompany property 295
dataports

creating 256
Output Streams, using 258
properties, setting 257
working 257, 258

data, retrieving
FIND, using 63
from another company, steps 76
steps 63, 64
working 77

data, sending, through FTP
steps 267, 268
working 268, 269

data types 7
data validation

about 57, 58
starting with 57
steps 57
working 57, 58

date
depreciation, calculating 13
details, determining 12

Date2DMY function 12
DateFilter-Calc 15
date formulas

CALCDATE() function, working 27
date, calculating 26

deadlocking
determining 295
finding, ways 297
sp_who command, working 296

debugger
about 156
limitations 157
using 152
working 153-156

DecomposeRowID() function 25

335

default filter columns
changing 316, 317
working 317

DeleteSubKey function 252
Demand function 249
Dialog 34
distinguishedName property 204
DOWNLOAD command 272
dynamic tables

referencing 44, 45
working 45, 46

E
editable field

adding to non-editable form 94, 95
working 95

editable lookup forms
Lookup mode 94
preventing 93
working 94

Editable property 65, 95
ELSE statement 36
e-mail sending, from NAV

HTML formatted e-mail, sending 217
Outlook, using 216, 217
working 217

ENVIRON command 215
ENVIRON function

about 240
for Role Tailored client 241, 243

environment variables
working with 240, 241

EVALUATE() function
about 22
working 22

event
OnReadyStateChange event 112
XMLDoc::OnReadyStateChange 111

Excel buffer
data, exporting 218, 219
working 220, 221

Excel to NAV data connection
creating 222, 223
working 223

Extensible Markup Language. See XML ports

F
FastTabs 310
FDB (Financial Database) 281
FieldClass property 65
Field Groups functionality 317
field-level security

about 191
using 191-195
working 196, 197

fields
referencing 44, 45
working 45, 46

file access permissions
checking 247, 249
working 249

file browsing
about 244
steps 244
working 244

FileIOPermission class 249
files

code, writing manually 262
CREATE function, using 262
reading from 262
XML files, creating 263

File Transfer Protocol. See FTP
filter

creating, variable types, used 15, 16
removing 72
setting, when report is loaded 122

FILTERGROUP
data, restricting 178, 179
working 179, 180

FilterRecord function 84
filter setup, on report loading

steps 122
working 123

FIND command
data, retrieving 63
working 64

FindOne() method 204
FINDSET command 64
FlowField

adding, to table 65
lookup field 66

336

using 66
value, determining 67
working 65, 66

folder access permissions
checking 247, 249
working 249

folder browsing
about 245
steps 246
working 246, 247

FOR loop
using 31

FORMAT function 14
form based temporary table

about 105
designing 105
working 106

Form Generation Wizard
about 89
using 90, 91
working 91

forms 87
FTP

about 268
data, sending 267

function
CountToN 40
creating 40
creating, steps 40
local private function, creating 41
working 40

G
GET command 60
GET function 162
GetNoOfPagesPDF function 139
GetNumberOfPages function 136
GetSysInfo function 243
graph, displaying on report

steps 324-326
working 326

GridView 331
GroupTotalFields property 131

H
Height property 108
HYPERLINK

about 139
using, for opening external files 238, 239
working 238, 239

I
idle session

about 201
ending 201
working 201

IF CODEUNIT.RUN THEN syntax 171
IF statement

condition, checking 35
multiple conditions, checking 37, 38
working 36

InfoPath form
creating, NAV data used 224-226
use 227
working 227

InitRecord() method 11
InitValue property 11
input

obtaining, without form 88, 89
INSERT command 56
InsertLogEntry() method 9
instant messaging

Office Communicator, using 227-230
Item Tracking Management 25

K
key

adding to, tables 53
adding, to tables 54
removing 72
working 54

KILL spid command 297

L
LinkedInTransaction property 295

337

LoadRSS function 331
LoadXML function 113
lookup arrow 122
Lookup mode 94

M
MakeExcelDataBody function 221
MakeExcelInfo function 221
MakeReminder() method 28
MARK command 71
MARKEDONLY function 71
MARK function 71, 75
MatchOptionToInteger 84
matrix box 99
matrix form

about 95
creating 96-99
working 99, 100

MatrixSourceTable property 100
menu suites

working 200
method

AutoSignin 230
ColumnHeader 100
CreateFile method 234
FindOne() 204
InitRecord() 11
InsertLogEntry() 9
MakeReminder() 28
Shape.AddPicture 215
ShowStep 104
TypeText 215
WRITETEXT 263

Microsoft Common Dialog Control 244
Microsoft Office

about 209
InfoPath 209
Office Communicator 209

Microsoft Visio. See Visio
Microsoft Word

data, sending 213, 215
working 215

N
Name property 108

NAS
about 165
errors, finding 166
NAS Snap-in Console, working 166

NASHandler function 275
NAV

Change Log 84
data validation 58
deadlocking 295
files, zipping 252
folders, zipping 252
security 173
security roles, working 177
style sheet tool, using 210
users, automatic addition 202, 203
virtual tables 142
Zip file, working 253

Navision Application Server. See NAS
NAV tasks, SQL Server

scheduling 300-304
working 304

NoSeriesManagement 23

O
Object Designer

code, creating 33
Office Communicator

instant messaging 227-230
SendIM function 230
SignIn function 230
working 230

OnRun trigger 30, 35
OpenTemplate function 234
OptionString property 20, 84
option variable

about 19
creating 19
using, in documents 20, 21
working 20

Organizational Units. See OUs
OUs 188

P
Page Generation Wizard

page, creating 308-310

338

pages, working 310, 311
page totals

adding, to reports 131, 132
parameters by reference

ChangeCustomerName function 43
hangeCustomerNameRef function 43
passing 41
passing, steps 42, 43
working 43

parent form
updating, from subform 110-112

PartType property 315
PDFCreator 133
PrintReportToPDF function 139
Progress Bar

displaying 33
displaying, steps 33
reports, processing 35
working 34

property
Caption 119
DataItemTableView 118
DataPerCompany 295
distinguishedName 204
GroupTotalFields 131
LinkedInTransaction 295
MatrixSourceTable 100
propertyCalcFormula 65, 66
propertyEditable 65
propertyFieldClass 65
RedirectStandardOutput 149
ReqFilterFields 120
SourceExpr 119
SourceTableTemporary 106
TotalFields 131
USEREQUESTFORM 150
WithEvents 112

R
Really Simple Syndication. See RSS
records

about 50
MARK command, using 71
marking 70
merging 77
storing 50

viewing 50
working 71

records, merging
starting with 77
steps 78
working 78

recursion
about 46
using 46
working 47, 48

RedirectStandardOutput property 149
registry

querying 249, 250
working 251

RemoveNonNumeric() function 24
REPEAT..UNTIL loop

using 32
report

building, to process data 123
check mark, displaying 125
columns, sorting 321-323
graph, displaying 324
page totals, adding 131, 132
printing, to PDF 269
sections, choosing to dispaly 127, 128
SQL Reporting Services, working 323
total page number, printing on every

page 133-139
working 129

report, building to process data
Data Item, working 124
steps 124, 125

report generation wizard
about 116
features 119
using 116-118
working 118

report layout
about 318
building 318, 319
working 320

report, printing to PDF
starting with 269
steps 270, 271
working 272

ReqFilterFields property 120

339

request form
custom filters, adding to 119, 120
textboxes 121
working 120, 121

RESET function 73
ReverseEntry function 84
Role Center

about 311
activities 315
building 311-314
cues 315
sales cues 315
working 315

roles, adding
User Setup table, using 174, 175

Role Tailored client. See RTC
rollback routine

working 84
writing, steps 80-83

RSS 331
RTC

about 88, 307
ENVIRON 241, 243
Page Generation Wizard 308

RUN() method 123
runtime errors

about 160
handling 160
working 161

S
SAVEASPDF function 272
security filters

about 189
features 190
using 189, 190
working 190

security, NAV
field-level security 191
FILTERGROUP, using 178
role, creating 176
security filters, using 189

security role
assigning 176
creating 176
working 177, 178

security tools
User Rights Tool, leveraging 178

SendMessage function 113
SETCURRENTKEY command 165
SetupPDFCreator function 270
SetValues function 109
Shape.AddPicture method 215
SHELL

external applications, using 243
working 243

ShortUserId function 183
ShowStep method 104
SIFT tables

about 69, 286
working 287-289

Simple Mail Transfer Protocol. See SMTP
Simple Object Access Protocol. See SOAP
Single Sign-On (SSO) 284
SMTP 217
SOAP 304
SourceExpr property 98, 119
SourceTableTemporary property 106
sp_who command 296
SQLCLR 304
SQL Common Language Runtime. See

SQLCLR
SQLCLR 304
SQL Profiler

about 290
using 290-293
working 293

SQL Server
NAV tasks, scheduling 300-304

SQL view, NAV
data, displaying from 293-295
working 295

StampPDFFileWithImage function 149
string

contents, manipulating 23
converting, into another data type 21
EVALUATE() function, working 22
number series, incrementing 23

string contents
manipulating 23, 24
records, linking with 25, 26
working 24, 25

340

STRLEN() function 24
style sheet tool

about 213
installing 210
using 210-212
working 212, 213

subform from
updating, from parent form 106, 107
working 108, 109, 112

SubFormID property 108
SumIndex field

about 68
creating, steps 68
need for 69
working 68

Sum Index Field Technology. See SIFT tables
system date

retrieving 8
system time

changes, logging 9
CURRENTDATETIME, advantage 9
events, logging 9
retrieving 8
TODAY keyword 8

T
table

about 52
creating 52
key, adding to 53
FlowField, adding 65
working 52

TableNo property 43
TableRelation property 58
TCF::NAVTry event 170
Temporary property 74
temporary tables

data, storing 73, 74
records, storing 75
working 74

text appearance
changing 92
importance 93
working 92

Timer::Timer event 275
TotalFields property 131

TOTALSCAUSEDBY function 131
transactions

code, calling 56
creating, by data altering 54, 55
errors, catching 56
working 55

TRANSFERFIELDS function 200
TransFooter

working 133
TransHeader

working 133
Try / Catch / Finally syntax

about 167
implementing 167-170
working 170, 171

TypeText method 215

U
UpdateSelf function 107, 109
user-assigned roles

checking 180-182
working 183

USEREQUESTFORM property 150
User Rights Tool

leveraging 178
users

adding, automatically to NAV 202, 203
LoadProperty function 203, 204

User Setup table
roles, adding 174, 175
working 175

V
VALIDATE command 58
value

converting, into formatted string 14
FORMAT function, working 14
predefined date formats 15
removing 72

Value Entry Relation 25
VerifySecurity function 183
virtual tables

in NAV 143
using, to loop through data 140, 141
working 141, 142

341

Visio
about 231
charts, creating 232-234
installation 232
working 234, 235

Visual Studio project creating , C# used
steps 275
working 276, 277

VSIFT 287

W
WaitUntilFileExists function 271, 272
watermark

adding, to page 144-148
working 149, 150

web service
about 264
consuming 265, 266
creating 264
working 264, 266

WHILE loop
using 32

Width property 108
WithEvents property 112
wizard-style form

about 100
adding 101-104
working 104

work date
about 10
date fields, populating 11
retrieving 10
WORKDATE keyword, using 11
working 10

WRITETEXT method 263

X
XMLDoc::OnReadyStateChange event 111
XMLports

about 259, 261
information, sharing 259
working 260, 261

xp_ stored procedures
adding 284-286

Z
Zoom

field values, hiding 205, 206
working 207, 208

Thank you for buying
Microsoft Dynamics NAV 2009 Programming Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.PacktPub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order
to continue its focus on specialization. This book is part of the Packt Enterprise brand, home
to books published on enterprise software – software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Microsoft Dynamics NAV
2009 Application Design
ISBN: 978-1-849680-96-7 Paperback: 496 pages

A focused tutorial for Microsoft Dynamics NAV
application development

1.	 Learn how Dynamics NAV ERP suite is set up and
customized for various industries

2.	 Integrate numerous parts of a company's
operations including financial reporting, sales,
order management, inventory, and forecasting

3.	 Develop complete applications and not just
skeleton systems

4.	 Covers the design and implementation of two new
add-on services: The Squash application and the
Storage & Logistics application

Implementing Microsoft
Dynamics NAV 2009
ISBN: 978-1-847195-82-1 Paperback: 552 pages

Explore the new features of Microsoft Dynamics NAV
2009, and implement the solution your business needs

1.	 First book to show you how to implement
Microsoft Dynamics NAV 2009 in your business

2.	 Meet the new features in Dynamics NAV 2009
that give your business the flexibility to adapt to
new opportunities and growth

3.	 Easy-to-read style, packed with hard-won practical
advice

4.	 Real-world examples with step-by-step
explanations

Please check www.PacktPub.com for information on our titles

Programming Microsoft
Dynamics NAV 2009
ISBN: 978-1-847196-52-1 Paperback: 620 pages

Develop and maintain high performance NAV
applications to meet changing business needs with
improved agility and enhanced flexibility

1.	 Create, modify, and maintain smart NAV
applications to meet your client's business needs

2.	 Thoroughly covers the new features of NAV 2009,
including Service Pack 1

3.	 Focused on development for the three-tier
environment and the Role Tailored Client

4.	 For experienced programmers with little or no
previous knowledge of NAV development

Programming Microsoft®
Dynamics™ NAV
ISBN: 978-1-904811-74-9 Paperback: 480 pages

Create, modify, and maintain applications in NAV 5.0,
the latest version of the ERP application formerly known
as Navision

1.	 For experienced programmers with little or no
previous knowledge of NAV development

2.	 Learn as quickly as possible to create, modify, and
maintain NAV applications

3.	 Written for version 5.0 of NAV; applicable for all
versions

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the author
	About the reviewer
	Table of Contents
	Preface
	Chapter 1:
Strings, Dates, and Other Data Types
	Introduction
	Retrieving the system date and time
	Retrieving the work date
	Determining the day, month, and year from a given date
	Converting a value to a formatted string
	Creating an array
	Creating an Option variable
	Converting a string to another data type
	Manipulating string contents
	Using date formulas to calculate dates

	Chapter 2:
General Development
	Introduction
	Repeating code using a loop
	Displaying a Progress Bar
	Checking for conditions using an IF
statement
	Using a CASE statement to test multiple conditions
	Creating a function
	Passing parameters by reference
	Referencing dynamic tables and fields
	Using recursion

	Chapter 3:
Working with Tables and Records
	Introduction
	Creating a table
	Adding a key to a table
	Creating transactions to alter data
	Validating data
	Retrieving a single record from the database
	Using advanced filtering
	Retrieving data using FIND
	Adding a FlowField to a table
	Creating a SumIndex field
	Marking records for future use
	Clearing filters, keys, and values
	Using temporary tables to store data
	Retrieving data from another company
	Merging records
	Writing your own rollback routine

	Chapter 4:
Designing Forms
	Introduction
	Obtaining input without a form
	Using the Form Generation Wizard
	Changing text appearance
	Preventing editable lookup forms
	Adding an editable field to a non-editable
	form
	Creating a matrix form
	Creating a wizard-style form
	Designing a form based on a temporary
	table
	Updating a subform from a parent form
	Updating a parent form from a subform

	Chapter 5:
Report Design
	Introduction
	Using the Report Generation Wizard
	Adding custom filters to the request form
	Setting filters when a report is loaded
	Creating a report to process data
	Displaying a check mark on a report
	Dynamically showing Sections on reports
	Grouping data to display totals
	Adding page totals to reports
	Display page of X of Y
	Using virtual tables to loop through data
	Adding a watermark to a page

	Chapter 6:
Diagnosing Code Problems
	Introduction
	Using the debugger
	Setting breakpoints
	Using Code Coverage
	Handling runtime errors
	Using Client Monitor to diagnose problems
	Finding errors when using NAS
	Implementing Try / Catch / Finally

	Chapter 7:
Roles and Security
	Introduction
	Adding roles through the User Setup table
	Creating and assigning a security role
	Using FILTERGROUP to restrict data
	Checking for user-assigned roles
	Checking Active Directory groups
	Using security filters
	Field-level security
	Assigning menu suites based on company
	Ending an idle session
	Automatically adding users to NAV
	Hiding values in Zoom

	Chapter 8:
Leveraging Microsoft Office
	Introduction
	Using the style sheet tool
	Sending data to Microsoft Word
	Sending an e-mail from NAV through Outlook
	Exporting data using the Excel buffer
	Creating a data connection from Excel to
	NAV
	Creating an InfoPath form with NAV data
	Instant messaging using Office
	Communicator
	Creating charts with Visio

	Chapter 9:
OS Interaction
	Introduction
	Using HYPERLINK to open external files
	Working with environment variables
	Using SHELL to run external applications
	Browsing for a file
	Browsing for a folder
	Checking file and folder access permissions
	Querying the registry
	Zipping folders and files within NAV

	Chapter 10:
Integration
	Introduction
	Flat file exchange using dataports
	Sharing information through XMLports
	Manually writing to and reading from files
	Creating a web service
	Consuming web services
	Sending data through FTP
	Printing reports to PDF
	Creating a custom NAS handler
	Writing your own automation using C#
	Using ADO to access outside data

	Chapter 11:
Working with SQL Server
	Introduction
	Creating a basic SQL query
	Adding the xp_ stored procedures
	Understanding SIFT tables
	Using SQL Profiler
	Displaying data from a SQL view in NAV
	Figuring out who is blocking whom
	Setting up a backup plan
	Scheduling NAV tasks from SQL Server

	Chapter 12:
The RoleTailored Client
	Introduction
	Creating a page using the Page Generation
	Wizard
	Building a Role Center
	Changing default filter columns
	Building the report layout
	Interactive sorting for reports
	Displaying a graph on a report
	Displaying a .NET add-in on a page

	Index

