vww allitebooks.conl

http://www.allitebooks.org

Microsoft Dynamics
NAV 2009 Programming
Cookbook

Build better business applications with NAV

Over 110 simple but incredibly effective recipes for taking
control of Microsoft Dynamics NAV 2009

Matt Traxinger

enterprise &

PUBLISHING

BIRMINGHAM - MUMBAI

[vww allitebooks.cond

http://www.allitebooks.org

Microsoft Dynamics NAV 2009 Programming Cookbook

Build better business applications with NAV

Copyright © 2010 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, Packt Publishing, nor its dealers
or distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2010

Production Reference: 141010

Published by Packt Publishing Ltd.
32 Lincoln Road

Olton

Birmingham, B27 6PA, UK.

ISBN 978-1-849680-94-3
www . packtpub.com

Cover Image by Sandeep Babu (sandyjb@gmail . com)

[vww allitebooks.cond

http://www.allitebooks.org

Author
Matt Traxinger

Reviewer
David Roys

Acquisition Editor
Rashmi Phadnis

Development Editor
Mayuri Kokate

Technical Editor
Alina Lewis

Indexer
Rekha Nair

Credits

Editorial Team Leader
Gagandeep Singh

Project Team Leader
Priya Mukherji

Project Coordinator
Sneha Harkut

Proofreader
Lesley Harrison

Graphics
Geetanjali Sawant

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

[vww allitebooks.cond

http://www.allitebooks.org

About the author

Matt Traxinger graduated from the Georgia Institute of Technology in 2005 with a B.S.
in Computer Science, specializing in Human Computer Interaction and Cognitive Science.
After college, he took a job as an add-on developer using a language he was unfamiliar
with and for a product he had never heard of: Navision. It turned out to be a great decision.

In the years following, Matt learned all areas of the product and earned Microsoft
Certified Business Solutions Professional certifications in both technical and functional
areas of NAV. He continues to stay current with new releases of the product and is
certified in multiple areas for versions 4.0, 5.0, and 2009.

Currently, Matt works in Norcross, GA, for Canvas Systems—one of the largest resellers of
new and refurbished computer equipment—as an in-house NAV Developer and Business
Analyst. He supports multiple offices in the United States as well as locations in the
United Kingdom and the Netherlands.

In his spare time you can find him on the online communities Mibuso.com and
DynamicsUser.net under the name MattTrax, helping others learn more about the
Dynamics NAV software.

I would like to thank my mom, Norma, not just for buying me my first
computer, but for everything that | cannot put into words. Your decisions
have put me down the path | am on and | would not trade it for anything.

Thank you to my sister, Alex. Your hard work inspires me. | could not imagine
having a better sister than you.

For my wife, Kim. Watching you chase your dreams for the past six years
has motivated me to keep going after mine. Thank you for everything you do
for me.

Finally, thank you to Mibuso and the Millenium Club. Without your help
over the past five years, my knowledge of NAV would be nowhere near what
it is today.

[vww allitebooks.cond

http://www.allitebooks.org

About the reviewer

David Roys is a Microsoft Most Valuable Professional (MVP) for the Microsoft Dynamics
NAV product and is a co-author of the first book on NAV 2009 -Implementing Microsoft
Dynamics NAV 2009-which was published by Packt Publishing in December 2008.

He works for Intergen Ltd., a bunch of fun-loving, incredibly smart people who are
guided by the BHAG (Big Hairy Audacious Goal): "Everyone, every day is touched
positively by the things we do". To learn more about Intergen and to read their blog,
visit www.intergen.co.nz.

David created www . teachmenav . com, a website that allows readers to access
programming samples that accompany the book he wrote with Vjeko Babi¢ and
regularly blogs on the subject of NAV at http: //www.teachmenav.com/blogs/dave/
default.aspx.

I would like to thank Matt for giving me the opportunity to make my
comments on the early drafts of his book. He has taught me many things
along the way and | am sure there is something in this book for everyone.

[vww allitebooks.cond

http://www.intergen.co.nz
http://www.teachmenav.com
http://www.teachmenav.com/blogs/dave/default.aspx
http://www.teachmenav.com/blogs/dave/default.aspx
http://www.allitebooks.org

vww allitebooks.conl

http://www.allitebooks.org

Table of Contents

Preface 1
Chapter 1: Strings, Dates, and Other Data Types 7
Introduction 7
Retrieving the system date and time 8
Retrieving the work date 10
Determining the day, month, and year from a given date 12
Converting a value to a formatted string 14
Creating an array 16
Creating an Option variable 19
Converting a string to another data type 21
Manipulating string contents 23
Using date formulas to calculate dates 26
Chapter 2: General Development 29
Introduction 29
Repeating code using a loop 30
Displaying a Progress Bar 33
Checking for conditions using an IF statement 35
Using a CASE statement to test multiple conditions 38
Creating a function 40
Passing parameters by reference 41
Referencing dynamic tables and fields 44
Using recursion 46
Chapter 3: Working with Tables and Records 49
Introduction 50
Creating a table 51
Adding a key to a table 53
Creating transactions to alter data 54
Validating data 57

[vww allitebooks.cond

http://www.allitebooks.org

Table of Contents

Retrieving a single record from the database 59
Using advanced filtering 60
Retrieving data using FIND 63
Adding a FlowField to a table 65
Creating a Sumindex field 68
Marking records for future use 70
Clearing filters, keys, and values 72
Using temporary tables to store data 73
Retrieving data from another company 76
Merging records 77
Writing your own rollback routine 79
Chapter 4: Designhing Forms 87
Introduction 87
Obtaining input without a form 88
Using the Form Generation Wizard 89
Changing text appearance 92
Preventing editable lookup forms 93
Adding an editable field to a non-editable form 94
Creating a matrix form 95
Creating a wizard-style form 100
Designing a form based on a temporary table 105
Updating a subform from a parent form 106
Updating a parent form from a subform 110
Chapter 5: Report Design 115
Introduction 115
Using the Report Generation Wizard 116
Adding custom filters to the request form 119
Setting filters when a report is loaded 122
Creating a report to process data 123
Displaying a check mark on a report 125
Dynamically showing Sections on reports 127
Grouping data to display totals 129
Adding page totals to reports 131
Display page X of Y 133
Using virtual tables to loop through data 140
Adding a watermark to a page 144
Chapter 6: Diagnosing Code Problems 151
Introduction 151
Using the debugger 152
Setting breakpoints 156

[vww allitebooks.cond

http://www.allitebooks.org

Table of Contents

Using Code Coverage 158
Handling runtime errors 160
Using Client Monitor to diagnose problems 162
Finding errors when using NAS 165
Implementing Try / Catch / Finally 167
Chapter 7: Roles and Security 173
Introduction 173
Adding roles through the User Setup table 174
Creating and assigning a security role 176
Using FILTERGROUP to restrict data 178
Checking for user-assigned roles 180
Checking Active Directory groups 184
Using security filters 189
Field-level security 191
Assigning menu suites based on company 197
Ending an idle session 201
Automatically adding users to NAV 202
Hiding values in Zoom 205
Chapter 8: Leveraging Microsoft Office 209
Introduction 209
Using the style sheet tool 210
Sending data to Microsoft Word 213
Sending an e-mail from NAV through Outlook 216
Exporting data using the Excel buffer 218
Creating a data connection from Excel to NAV 222
Creating an InfoPath form with NAV data 224
Instant messaging using Office Communicator 227
Creating charts with Visio 231
Chapter 9: OS Interaction 237
Introduction 237
Using HYPERLINK to open external files 238
Working with environment variables 240
Using SHELL to run external applications 243
Browsing for a file 244
Browsing for a folder 245
Checking file and folder access permissions 247
Querying the registry 249
Zipping folders and files within NAV 252

[vww allitebooks.cond

http://www.allitebooks.org

Table of Contents

Chapter 10: Integration 255
Introduction 255
Flat file exchange using dataports 256
Sharing information through XMLports 259
Manually writing to and reading from files 261
Creating a web service 264
Consuming web services 265
Sending data through FTP 267
Printing reports to PDF 269
Creating a custom NAS handler 273
Writing your own automation using C# 275
Using ADO to access outside data 277

Chapter 11: Working with SQL Server 281
Introduction 281
Creating a basic SQL query 282
Adding the xp_ stored procedures 284
Understanding SIFT tables 286
Using SQL Profiler 290
Displaying data from a SQL view in NAV 293
Figuring out who is blocking whom 295
Setting up a backup plan 297
Scheduling NAV tasks from SQL Server 300

Chapter 12: The RoleTailored Client 307
Introduction 307
Creating a page using the Page Generation Wizard 308
Building a Role Center 311
Changing default filter columns 316
Building the report layout 318
Interactive sorting for reports 321
Displaying a graph on a report 324
Displaying a .NET add-in on a page 327

Index 333

Preface

Microsoft Dynamics NAV 2009 is a business management solution that helps simplify and
streamline highly specialized business processes such as finance, manufacturing, customer
relationship management, supply chains, analytics, and electronic commerce for small and
medium-sized enterprises. ERP systems like NAV thus become the center of a company's day-
to-day operations. When you learn to program in an environment like this, it opens up doors to
many other exciting areas such as .NET programming, SQL Server, and Web Services.

Microsoft Dynamics NAV 2009 Programming Cookbook will take you through interesting
topics that span a wide range of areas such as integrating the NAV system with other software
applications like Microsoft Office, creating reports to present information from multiple areas
of the system, and so on. You will not only learn the basics of NAV programming, but you will
also be exposed to the technologies that surround the NAV system such as .NET programming,
SQL Server, and Web Services.

The first half of the cookbook will help programmers using NAV for the first time by walking
them through the building blocks of writing code and creating objects such as tables, forms,
and reports.

The second half focuses on using the technologies surrounding NAV to build better solutions.
You will learn how to write .NET code that works with the NAV system and how to integrate the
system with other software applications such as Microsoft Office or even custom programs.
You will also discover some of the features of the RoleTailored client including creating pages
and custom add-ins.

What this book covers

Chapter 1, Strings, Dates, and Other Data Types, covers the processes involved in working
with most common, simple data types. You will learn how to convert data into different data
types as well as some of the basic NAV functions that can be used to control the data stored
in those variables. Each recipe is accompanied by base NAV code so that you can see how
these building blocks are used to create the full application.

Preface

Chapter 2, General Development, focuses on the traditional code structures native to most
programming languages. These structures include loops, conditional statements, functions,
and so on. You will also learn some commands that are found exclusively in C/AL including
ones that allow you to create your own progress bars and how to reference dynamic data.

Chapter 3, Working with Tables and Records, discusses the many things that can be done with
the database in NAV. You will learn how to create table structures to hold business data, such
as fields and keys, and how to filter that data to return only what you wish to see. Additionally,
you will find out how to retrieve data from other companies and rollback any data changes
that may have been committed to the database.

Chapter 4, Designing Forms, shows you how to create displays that will allow your users to
interact with the data. You will learn how to create several different types of forms including
matrixes and wizards and to customize its look and feel.

Chapter 5, Report Design, focuses on displaying data from multiple sources to your users.
You will learn how to group data and display totals, and create reports that only process data.
There are also recipes that will teach you how to make reports look more professional with
tools such as watermarks and page counts.

Chapter 6, Diagnosing Code Problems, explains how to use built-in NAV tools such as
Debugger and Client Monitor to find problems in your code. You will also learn techniques for
structuring your code so that you can bypass any errors that might occur.

Chapter 7, Roles and Security, covers setting up user roles and permissions. You will learn
several methods that will let you interact with the NAV security system and different ways
to restrict user access to data such as field-level security and overriding the Zoom window.
Integration with Active Directory is also discussed.

Chapter 8, Leveraging Microsoft Office, describes different methods to integrate with the
Microsoft Office suite of products. These include Word, Excel, InfoPath, Communicator (instant
messenger), and Visio. Many of these recipes require you to build .NET automation classes
that will be used within the NAV client.

Chapter 9, OS Interaction, focuses on different ways to integrate with the Windows operating
system. There are several recipes to replace deprecated functions from versions prior to
NAV 2009. You will learn how to search the file system as well as how to directly query the
system registry.

Chapter 10, Integration, explains different methods by which NAV can interact with outside
applications. You will learn how to exchange flat files with Dataports and XMLports, write your
own .NET classes which can be used in NAV, and access data directly from other systems. The
new Web Services features in NAV 2009 are also discussed.

Chapter 11, Working with SQL Server, provides an introduction to the SQL Server
environment. There recipes will help you understand SIFT (Sum Index Field Technology),
to use SQL Views as data in NAV, and to call NAV code from a SQL Job.

—21

Preface

Chapter 12, The RoleTailored Client, covers many of the new features found in NAV 2009. You
will learn the basics of creating pages, Role Centers, and report layouts. In addition, you will
learn how to write your own .NET add-in to display data from outside sources directly in the
NAV client.

What you need for this book

Used in the recipes: NAV 2009 SP1, Visual Studio 2008, SQL Server 2008.

Most recipes will work with: NAV 5.0, Visual Studio 2005, SQL Server 2005.

Who this book is for

If you are a junior/entry level NAV developer then the first half of the book is designed
primarily for you. You may or may not have any programming experience. This book focuses on
the basics of NAV programming. It would be best if you have gone through a brief introduction
to the NAV client.

If you are a mid-level NAV developer, you will find the second half more useful. These chapters
explain how to think outside the NAV box when building solutions. Senior developers will find
these recipes useful too.

Conventions

In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "The sp_who command queries the sys.
sysprocesses system table in SQL."

A block of code is set as follows:

Window.OPEN ('Customer No: #I1######H#H4H#HSSSHIHEH#HES") ;
Window.INPUT (1, CustomerNo) ;
Window.CLOSE;

IF Customer.GET (CustomerNo) THEN

MESSAGE ('Customer Name: %1', Customer.Name)
ELSE

MESSAGE ('No customer found!) ;

Any command-line input or output is written as follows:

"Path to Application Server\nassql" debug, appservername="NAS",
servername="Your Server Name", database="Your Database

Name", company="Your Company Name", startupparameter="NEP-", object-
cache=32000, nettype=tcp

(3 |-

Preface

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "From the NAV client menu,
click on Tools | Debugger | Code Coverage."

Warnings or important notes appear in a box like this.

~\l
Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbackepacktpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in the
SUGGEST A TITLE form on www . packtpub. com or e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www . packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code for this book

* You can download the example code files for all Packt books you have
% purchased from your account at http://www.PacktPub. com. If you
purchased this book elsewhere, you can visit http://www.PacktPub.com/
support and register to have the files e-mailed directly to you.

http://www.packtpub.com/authors
http://www.PacktPub.com
http://www.PacktPub.com/support
http://www.PacktPub.com/support

Preface

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report
them by visiting http: //www.packtpub.com/support, selecting your book, clicking on

the errata submission form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded on our website, or
added to any list of existing errata, under the Errata section of that title. Any existing errata can
be viewed by selecting your title from http://www.packtpub.com/support.

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyrightepacktpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions

You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

http://www.packtpub.com/support
mailto:copyright@packtpub.com

Strings, Dates, and
Other Data Types

In this chapter, we will cover:

» Retrieving the system date and time

» Retrieving the work date

» Determining the day, month, and year from a given date
» Converting a value to a formatted string

» Creating an array

» Creating an Option variable

» Converting a string to another data type

» Manipulating string contents

» Using date formulas to calculate dates

Introduction

Simple data types are building blocks for everything you will program. C/AL contains the
same data types that you will find in most other programming languages: Booleans, integers,
decimals, dates, and strings. There are of course more than just these five, but majority of
your programming will revolve around using these types of variables.

As a developer, your job is to build business logic that will manipulate the data that is input by
users. This ensures that the data stored in tables is meaningful. Most of this data will be of
one of the following data types. NAV is, after all, a financial system at heart. At its most basic
level, it cares about three things: "How much money?" (decimal), "What was it for?" (string),
and "When did it happen?" (date).

Strings, Dates, and Other Data Types

The recipes you will find in this section may not be the most interesting, but are valuable. The
functionality described here is used throughout the system. As such, each example in this
chapter is accompanied by actual code from base NAV objects in order to better illustrate
how they can be used.

Retrieving the system date and time

There are many instances when it is necessary to obtain the current date and time from the
user's system. This recipe will show you how to get that information.

How to do it...

Create a new codeunit from Object Designer.
Write the following code in the OnRun trigger of the codeunit:

MESSAGE ('Todays Date: %$1\Current Time: %2', TODAY, TIME) ;

3. Save and close the codeunit.

4. When you run the codeunit you should see a window similar to the
following screenshot:

Microsoft Dynamics NAV Classic (B

' 0 | Today's Date: 08/07/10
" Current Time: 1:47:37 PM

The TODAY keyword returns the date from the system clock on the client computer. In
Windows, the current system time is usually located at the bottom-right corner of the
task bar. The same holds true for the system time which is returned by the TIME keyword.

There's more...

The actual date and time returned depends on which version of the NAV client you are using.
In the RoleTailored client, the date and time come from the NAV server. In the Classic client,
the date and time come directly from the client computer and users will be able to manipulate
the system clock to their advantage if they need to. An example could be a time clock
application where a user can clock in, change the system time to eight hours later, clock out,
and change it back to the original time.

—e1]

Chapter 1

You can also retrieve the system date and time, all at once, using the CURRENTDATETIME
function. The date and time can be extracted using the DT2DATE and DT2TIME
functions respectively.

For a complete list of date functions, search the C/SIDE Reference Guide
s under the Help menu for date and time functions.

Logging changes and events

The ChangeLog is a base NAV module that allows you to track changes to specific fields in
tables. The following code can be found in Codeunit 423, Change Log Management, in the
InsertLogEntry () method.

ChangeLogEntry.INIT;
ChangeLogEntry."Date and Time" := CURRENTDATETIME;
ChangeLogEntry.Time := DT2TIME (ChangeLogEntry."Date and Time") ;

Here, instead of using the WORKDATE function, we use the CURRENTDATETIME function and
then extract the time using the DT2TIME function. The system designers could have just done
the following setup:

ChangeLogEntry.Date := TODAY;
ChangeLogEntry.Time := TIME;

The advantage of using CURRENTDATETIME over TODAY and TIME is minimal.
CURRENTDATETIME makes one request to the system, while the second method makes two.
It is possible that another operation or thread on the client machine could take over between
retrieving the date and time from the computer, however, this is very unlikely. The operations
could also take place right before and after midnight, generating some very strange data. The
requirements for your modification will determine which method is suits best, but generally
CURRENTDATETIME is the correct method to use.

» Retrieving the work date
» Determining the day, month, and year from a date
» Converting a value to a formatted string

» Writing your own rollback routine

vww allitebooks.conl

http://www.allitebooks.org

Strings, Dates, and Other Data Types

Retrieving the work date

The work date is an essential part of the NAV system. This recipe will show you how to
determine what that date is, as well as when and where you should use it.

Getting ready

1. Click on Tools | Workdate from the NAV client.
2. Setthe work dateto 01/01/2010.

How to do it...

1. Create a new codeunit from Object Designer.
2. Write the following code in the OnRun trigger of the codeunit:

MESSAGE ('Work Date: %1\Todays Date: %2\Current Time: %3',
WORKDATE, TODAY, TIME) ;

3. Save and close the codeunit.
4. When you run the codeunit you should see a window like the following screenshot:

Microsoft Dynamics MAV Classic &]

@3 Work Date: 01/01/10
‘W Today's Date: 08/07/10

Current Time: 2:03:10 PM

The work date is a date internal to the NAV system. This date is returned using the WORKDATE
keyword. It can be changed at any time by going to Tools | Work Date.

Chapter 1

There's more...

It is important to understand the difference between the NAV work date and the computer
system date. They should be used in specific circumstances. When performing general work in
the system, you should almost always use the WORKDATE keyword. In cases where you need
to log information and the exact date or time when an action occurred, you should use TODAY
and TIME or CURRENTDATETIME.

Populating date fields when a document is created
The following code can be found in table 36, Sales Header, in the InitRecord () method:

IF "Document Type" IN ["Document Type"::0Order, "Document
Type"::Invoice, "Document Type"::Quote] THEN BEGIN

"Shipment Date" := WORKDATE;
"Order Date" := WORKDATE;
END;
IF "Document Type" = "Document Type'"::"Return Order" THEN
"Order Date" := WORKDATE;
IF NOT ("Document Type" IN ["Document Type"::"Blanket
Order", "Document Type"::Quote]) AND ("Posting Date" = 0D) THEN
"Posting Date" := WORKDATE;
IF SalesSetup."Default Posting Date" = SalesSetup.'"Default
Posting Date"::"No Date" THEN
"Posting Date" := 0D;
"Document Date" := WORKDATE;

It is common to create and call an InitRecord () method from a table's OnInsert trigger
especially for document-style tables. Unlike with the InitVvalue property for fields in a
table, fields here are filled in based on conditional logic. More importantly, validation can be
performed to ensure data integrity.

Looking at this snippet of code, we can see that every date is filled in using the WORKDATE
keyword, and not using TODAY. This is so that a user can easily create records that are pre-
dated or post-dated.

See also

» Retrieving the system date and time

» Determining the day, month, and year from a date
» Converting a value to a formatted string

» Checking for conditions using an IF statement

» Using a CASE statement to test multiple conditions

Strings, Dates, and Other Data Types

Determining the day, month, and year from a

given date

Sometimes it is necessary to retrieve only a part of a date. NAV has built-in functions to do just
that. We will show you how to use it in this recipe.

How to do it...

Create a new codeunit from Object Designer.

2. Add the following global variables:

Name Type

Day Integer
Month Integer
Year Integer

3. Write the following code in the OnRun trigger of the codeunit:

Day := Date2DMY (TODAY, 1);
Month := Date2DMY (TODAY, 2);
Year := Date2DMY (TODAY, 3);

MESSAGE ('Day: %$1\Month: %2\Year: %3', Day, Month, Year);
Save and close the codeunit.

5. When you run the codeunit you should see a window like the following screenshot:

Microsoft Dynamics NAY Clas...l&J

. . \ Day:7
W Menth: 8

Year: 2010

The Date2DMY function is a basic feature of NAV. The first parameter is a date variable. This
parameter can be retrieved from the system using TODAY or WORKDATE, a hard-coded date
such as 01312010D, or a field from a table such as Sales Header or Order Date.

Sk

Chapter 1

The second parameter is an integer that tells the function which part of the date to return. This
number can be 1, 2, or 3 and corresponds to the day, month, and year (DMY) respectively.

NAV has a similar function called Date2DwWY. It will return the week of the year instead of the
month if 2 is passed as the second parameter.

Determining depreciation

Codeunit 5616, Depreciation Calculation, contains functions to calculate depreciation
based on start and end dates. In order to correctly calculate these values, you must know
some details such as the number of days between two dates and whether or not any of those
days is a leap day. It is with these types of operations that date functions like DATE2DMY are
extremely useful. Have a look at the function DeprDays365 in this codeunit.

StartingYear := DATE2DMY (StartingDate,3);
EndingYear := DATE2DMY (EndingDate, 3) ;
LeapDays := 0;
IF (DATE2DMY (StartingDate,1l) = 29) AND
(DATE2DMY (StartingDate,2) = 2) AND (DATE2DMY (EndingDate,l) = 29)
AND (DATE2DMY (EndingDate,2) = 2) THEN
LeapDays := -1;
ActualYear := StartingYear;
WHILE ActualYear <= EndingYear DO BEGIN
LeapDate := (DMY2DATE (28,2,ActualYear) + 1);
IF DATE2DMY (LeapDate,l) = 29 THEN BEGIN
IF (LeapDate >= StartingDate) AND (LeapDate <= EndingDate) THEN
LeapDays := LeapDays + 1;
END;
ActualYear := ActualYear + 1;
END;
EXIT((EndingDate - StartingDate) + 1 - LeapDays);

» Retrieving the system date and time

» Retrieving the work date

» Converting a value to a formatted string

» Repeating code using a loop

» Checking for conditions using an IF statement

Strings, Dates, and Other Data Types

Converting a value to a formatted string

There will be many occasions when you will need to display information in a certain way or
display multiple variable types on a single line. The FORMAT function will help you change
almost any data type into a string that can be manipulated in any way you see fit.

How to do it...

Create a new codeunit from Object Designer.

Add the following global variables:

Name Type Length
FormattedDate Text 30

3. Add the following code to the OnRun trigger:

FormattedDate := FORMAT (TODAY, 0, '<Month Text> <Day, 2>,
<Yeard4s>"') ;
MESSAGE ('Today is %1', FormattedDate) ;

Save and close the codeunit.

5. When you run the codeunit you should see a window similar to the following :

Microsoft Dynamics NAV Classic [ﬁ,l

':0:' Today is August 07, 2010

The FORMAT function takes one to three parameters. The first parameter is required and can
be of almost any type: date, time, integer, decimal, and so on. This parameter is returned as
a string.

The second parameter is the length of the string to be returned. A default zero means that the
entire string will be returned. A positive number tells the function to return a string of exactly
that length, and a negative number returns a string no larger than that length.

Sz

Chapter 1

There are two options for the third and final parameter. One is a number, representing

a predefined format you want to use for the string and the other is a literal string. In the
example, we used the actual format string. The text contained in brackets (< >) will be parsed
and replaced with the data in the first parameter.

There are many predefined formats for dates. The examples listed in the following table
are taken from the C/SIDE Reference Guide in the Help menu of the NAV client. Search for
"Format Property" to find more information.

Date Format Example
<Closing><Day, 2>-<Month, 2>-<Year> 0 05-04-03
<Closing><Day, 2>-<Month, 2>-<Year> 1 05-04-03
<Day, 2><Month, 2><Year><Closing>D 2 050403D
<Closing><Year>-<Month, 2>-<Day, 2> 3 03-04-05
<Closing><Day>. <Month Text> <Year4> 4 5. April 2003
<Closing><Day, 2><Month, 2><Year> 5 050403
<Closing><Year><Month, 2><Day, 2> 6 030405
ey BicFilier aacter, s
XML format 9 2003-04-05

Creating filters using other variable types

You will often need to create filters on dates or other simple data types. Usually these filters
are not just for a single value. For example, a date filter for all values between January 1st,
2010 and January 31st, 2010 would look like 010110..013110. Because ". ." is a string,
and you cannot concatenate it with two date variables. Instead, you will have to convert those
dates into strings and then place the filters together.

Take the CreateAccountingDateFilter function from codeunit 358, DateFilter-Calc. It
creates date filters based on accounting periods for the exact scenario we are describing.

AccountingPeriod.RESET;
IF FiscalYear THEN
AccountingPeriod.SETRANGE ("New Fiscal Year", TRUE) ;
AccountingPeriod."Starting Date" := Date;
AccountingPeriod.FIND ('=<>") ;
IF AccountingPeriod."Starting Date" > Date THEN
NextStep := NextStep - 1;
IF NextStep <> 0 THEN
IF AccountingPeriod.NEXT (NextStep) <> NextStep THEN BEGIN
IF NextStep < 0 THEN

]

Strings, Dates, and Other Data Types

Filter := '..' + FORMAT (
AccountingPeriod."Starting Date" - 1)
ELSE
Filter := FORMAT (AccountingPeriod."Starting Date") +
'..'" + FORMAT (12319999D) ;
Name := '...';
EXIT;
END;
StartDate := AccountingPeriod."Starting Date";
IF FiscalYear THEN
Name := STRSUBSTNO (Text000, FORMAT (DATE2DMY (StartDate,3)))
ELSE
Name := AccountingPeriod.Name;
IF AccountingPeriod.NEXT <> 0 THEN
Filter := FORMAT (StartDate) + '..' +
FORMAT (AccountingPeriod."Starting Date" - 1)
ELSE BEGIN
Filter := FORMAT (StartDate) + '..' + FORMAT(12319999D) ;
Name := Name + '...';
END;

See also

» Retrieving the system date and time

» Retrieving the work date

» Determining the day, month, and year from a given date
» Converting a string to another data type

» Checking for conditions using an IF statement

» Using advanced filtering

» Retrieving data using FIND

Creating an array

Creating multiple variables to store related information can be time consuming. It leads

to more code and hence, more work. Using an array to store related and similar type of
information can speed up development and lead to much more manageable code. This recipe
will show you how to create and access array elements.

How to do it...

1. Create a new codeunit in Object Designer.

6]

Chapter 1

2. Add the following global variables:

Name Type
i Integer
IntArray Integer

3. With the cursor on that variable, click on View | Properties (Shift + F4).
4. Set the following property:

Property Value

Dimensions 10

5. Inthe OnRun trigger add the following code:

FOR i1 := 1 TO ARRAYLEN (IntArray) DO BEGIN
IntArray[i] := 1;
MESSAGE ('IntArray[%1] = %2', i, IntArrayl[i]);
END;

6. When you run the codeunit you will see ten windows, one after the other, similar to
the following screenshot:

Microsoft Dynamics NAY Clas...[ﬂ

An array is a single variable that holds multiple values. The values are accessed using an
integer index. The index is passed within square brackets ([]).

NAV provides several functions to work with arrays. ARRAYLEN returns the number of
dimensions of the array. COPYARRAY will copy all of the values from one array into a new array
variable. For a complete list of functions, search the C/SIDE Reference Guide under the Help
menu for "Array Functions".

[}

Strings, Dates, and Other Data Types

Creating an address using the format address codeunit

Open codeunit 365, Format Address. Notice the first function, FormatAddr, has a
parameter which is an array. This is the basic function that all of the address formats use.
It is rather long, so we will discuss only a few parts of it here.

This first section determines how the address should be presented based on the country
of the user. Variables are initialized depending on which line of the address should certain
information appear. The variables will be the indexes of our array.

CASE Country."Contact Address Format" OF
Country."Contact Address Format"::First:
BEGIN

NameLineNo := 2;
Name2LineNo := 3;
ContLineNo := 1;
AddrLineNo := 4;
Addr2LineNo := 5;
PostCodeCityLineNo := 6;
CountyLineNo := 7;
CountryLineNo := 8;

END;

Then we will fill in the array values in the following manner:

AddrArray [NameLineNo] := Name;
AddrArray [Name2LineNo] := Name2;
AddrArray [AddrLineNo] = Addr;
AddrArray [Addr2LineNo] := Addr2;

Scroll down and take a look at all the other functions. You'll see that they all take in an array
as the first parameter. It is always a text array of length 90 with 8 dimensions. These are the
functions you will call when you want to format an address. To use this codeunit correctly,

you will need to create an empty array with the specifications listed before and pass it to the
correct function. Your array will be populated with the appropriately formatted address data.

» Manipulating string contents

» Using a CASE statement to test multiple conditions

Chapter 1

Creating an Option variable

If you need to force the user to select a value from a pre-defined list then an Option is the way
to go. This recipe explains how to create an Option variable and access each of its values.

How to do it...

1. Create a new codeunit from Object Designer.

2. Add the following global variables:

Name Type

ColorOption Option

3. Set the following property on the variable:

Property Value

OptionString None, Red, Green, Blue

4. Add the following code to the onRun trigger of your codeunit:

ColorOption :

ColorOption: :Red;

CASE ColorOption OF

ColorOption:
ColorOption:
ColorOption:
ColorOption:

END;

:None: MESSAGE ('No Color Selected');
:Red: MESSAGE ('Red') ;

:Green: MESSAGE ('Green') ;

:Blue: MESSAGE ('Blue') ;

5. When you run the codeunit you should see a window similar to the following

screenshot:

Microsoft Dynamics NAV Clas...[ﬁj

0~

vww allitebooks.conl

http://www.allitebooks.org

Strings, Dates, and Other Data Types

An Option is a field or variable that stores one value from a selectable list. In a form, this list
will appear as a drop-down from which the user can select a value. The list of options is stored
as a comma-separated string in the OptionString property.

These values are accessed using the variable name::option_ name syntax. The first line
of the example assigns one of the possible values (Red) to the variable. Then we use a CASE
statement to determine which of the values was selected.

There's more...

You can also access possible options in other ways. In a database, an Option is stored as an
integer. Each Option corresponds to a specific number, starting with the number 1. In this case
None=1, Red=2, Green=3, and Blue=4. You could write this code to perform the safe actions:

ColorOption := ColorOption::"1";

CASE ColorOption OF
ColorOption: :None: MESSAGE ('No Color Selected');
ColorOption: :Red: MESSAGE ('Red') ;
ColorOption: :Green: MESSAGE ('Green') ;
ColorOption: :Blue: MESSAGE ('Blue') ;

END;

To reduce your development time, you can also use a shorthand notation to access the Option
values. Again, the following code is exactly the same as that above:

ColorOption := ColorOption::R;

CASE ColorOption OF
ColorOption: :None: MESSAGE ('No Color Selected');
ColorOption: :Red: MESSAGE ('Red') ;
ColorOption: :Green: MESSAGE ('Green') ;
ColorOption: :Blue: MESSAGE ('Blue') ;

END;

When you close, save, and reopen the codeunit, the Option values will automatically be filled
in for you. That is, both of these examples will look exactly like the first example once it has
been saved and reopened. It is always best to write the code exactly as you want it to appear.

Using Options in documents

Option fields are prevalent throughout the NAV system, but most commonly on documents.

In NAV, many documents share the same table. For example, sales quotes, orders, invoices,
and return orders are all based on the Sales Header table. In order to distinguish between the
types, there is an Option field called Document Type. Design table 36, Sales Header, to see
the available options for this field.

=]

Chapter 1

Now, design codeunit 80, Sales-Post. Examine the onRun trigger. Early in the function, you
will see the following code:

CASE "Document Type" OF
"Document Type"::0rder:

Receive := FALSE;
"Document Type"::Invoice:
BEGIN
Ship := TRUE;
Invoice := TRUE;
Receive := FALSE;
END;
"Document Type"::"Return Order":
Ship := FALSE;
"Document Type"::"Credit Memo":
BEGIN
Ship := FALSE;
Invoice := TRUE;
Receive := TRUE;
END;
END;

This is a common example of how Options are used in NAV. You can scroll through the
codeunit to find more examples.

» Using a CASE statement to test multiple conditions

Converting a string to another data type

Sometimes a string representation isn't enough. In order to perform certain actions, you need
your data to be in a certain format. This recipe will show you how to change that data into a
format that you can use.

How to do it...

1. Create a new codeunit from Object Designer.
2. Add the following global variables:

Name Type Length
DateText Text 30
DateValue Date

Strings, Dates, and Other Data Types

3. Write the following code in the OnRun trigger:

DateText := '01/01/2010';
EVALUATE (DateValue, DateText) ;
MESSAGE ('Date: %1', DateValue) ;

Save and close the codeunit.

5. When you run the codeunit you should see a window similar to the
following screenshot:

Microsoft Dynamics NAV Clas.. SRES)

| Date: 01/01/10

The EVALUATE () function takes in two parameters. The first is a variable of the type that
you want your value to be converted into. This could be date, time, boolean, integer, or any
other simple data type. This parameter is passed by reference, meaning that the result of the
function is stored in that variable. There is no need to do a manual assign using the

: = syntax.

The second parameter is the string which you need to convert. This text is usually stored in a
field or variable, but can also be hard coded.

For a list of all of the functions related to text variables, search for "Text Data Type" in the C/
SIDE Reference Guide under the Help menu.

EVALUATE () returns a boolean value when executed. If the conversion is successful, it
returns TRUE or 1; otherwise, it returns FALSE or 0. If the function returns FALSE, an error will
be generated. If you wish to display the standard system error, you can leave the code as it is,
but if you want to handle the error yourself, you must make the following changes:

DateText := '01/01/2010';

IF NOT EVALUATE (DateValue, DateText) THEN
ERROR ('Custom Error Message') ;

MESSAGE ('Date: %1', DateValue) ;

=

Chapter 1

Incrementing a number series

Number series are used throughout the NAV system. Every document has a unique identifier
that is usually retrieved from the No. Series table. This table keeps a track of the last number
used so that it knows what the next number should be.

However, this identifier is not just a number. A purchase order, for example, might have an
identifier of P0123456, which means that it is actually a string. As you can't add a number to
a string, you will have to figure out what the number part is, convert it to an actual number,
and then increment it. This code from the IncrementNoText () function in codeunit 396,
NoSeriesManagement, does exactly that. As this code calls several other functions, it may be
beneficial for you to look through the entire codeunit.

GetIntegerPos (No, StartPos, EndPos) ;

EVALUATE (DecimalNo, COPYSTR (No, StartPos, EndPos - StartPos + 1)) ;
NewNo := FORMAT (DecimalNo + IncrementByNo,0,1);

ReplaceNoText (No,NewNo, 0, StartPos, EndPos) ;

» Converting a value to a formatted string

» Checking for conditions using an IF statement

» Passing parameters by reference

Manipulating string contents

It can be very useful to parse a string and retrieve certain values. This recipe will show you
how to examine the contents of a string and manipulate that data.

How to do it...

1. Create a new codeunit from Object Designer.

Add a function called RemoveNonNumeric (). It should return a text variable
named NewString.

3. The function should take in the following parameter:

Name Type Length
String Text 30

Strings, Dates, and Other Data Types

4. Add the following global variable:

Name Type

I Integer

5. Add the following global variables:

Name Type Length
OldPhoneNumber Text 30
NewPhoneNumber Text 30

6. Add the following code to the RemoveNonNumeric () function:

FOR i := 1 TO STRLEN (String) DO BEGIN
IF String[i] IN ['O', '1', '2', '3', '4', 5 gt r7rorgny
'9'] THEN
NewString := NewString + FORMAT (Stringl[i]) ;
END;

7. Add the following code to the OnRun trigger:

OldPhoneNumber := '(404) 555-1234"';

NewPhoneNumber := RemoveNonNumeric (OldPhoneNumber) ;

MESSAGE ('0ld Phone Number: %$1\New Phone Number: $%2',
OldPhoneNumber, NewPhoneNumber) ;

8. When you run the codeunit you will see a window similar to the following screenshot:

Micrasoft Dynamics NAV Classic Iﬁ

Old Phone Mumber: (404) 555-1234
W' New Phone Number: 4045551234

A string is actually an array of characters. The same array syntax will be used to access the
individual characters of the string.

We start with a FOR loop that begins at the first character, with index 1, and goes until we
reach the end of our string. This is determined using the STRLEN () function which stands for
STRing LENgth. As the first index is 1 the last index will be N, or the number of characters in
the string.

=

Chapter 1

Next, we access the character at that index using square brackets. If the character is a
number, meaning we want to keep it because it is numeric, we add it to our resulting string.

We can only add strings to other strings so we must convert this character
s using the FORMAT () function. If the character is not a number, we ignore it.

There's more...

NAV comes with plenty of built-in string manipulation functions to remove characters, return
substrings, find characters within string, and many more. A search in the C/SIDE Reference
Guide from the NAV client help menu for string functions will give you a complete list.

Parsing strings has several uses in NAV. Some easy-to-implement examples include checking/
converting a phone number to a proper format based on country code, properly capitalizing
names, and removing illegal characters.

Linking records with strings

Using the Object Designer run table 6508, Value Entry Relation. You should see a column
named Source Rowld that contains some strange looking text. A careful examination reveals
that these are not as strange as they appear. It is simply a string containing six values, each
separated by a semicolon and enclosed within quotes. For example: "123";,"0";"123456";"";
"0";"10000".

In a typical installation involving shipments and receipts, the value of the current inventory is
adjusted every time an item comes in or goes out of stock. This amount is stored in the Value
Entry table. In order to know which document created which value entry, a subsidiary table
was created: Value Entry Relation. In this basic scenario, the first field refers to the table that
the value entry came from. The most common are: 113 for shipments and 123 for receipts.
The third value stores the document number and the sixth contains the line number. Take a
look at the function DecomposeRowID () in codeunit 6500, ltem Tracking Management.

FOR ArrayIndex := 1 TO 6 DO
StrArray [ArrayIndex] := '';

Len := STRLEN (IDtext) ;

Pos := 1;

ArrayIndex := 1;

WHILE NOT (Pos > Len) DO BEGIN
Char := COPYSTR (IDtext,Pos,1);
IF (Char = '"') THEN BEGIN

Write := FALSE;
Count += 1;
END ELSE BEGIN
IF Count = 0 THEN
Write := TRUE

Strings, Dates, and Other Data Types

ELSE BEGIN
IF Count MOD 2 = 1 THEN BEGIN
Next := (Char = ';');
Count -= 1;
END ELSE
IF NoWriteSinceLastNext AND (Char = ';') THEN BEGIN
Count -= 2;
Next := TRUE;
END;
Count /= 2;

WHILE Count > 0 DO BEGIN
StrArray [ArrayIndex] += '"!';
Count -= 1;
END;
Write := NOT Next;
END;
NoWriteSinceLastNext := Next;
END;
IF Next THEN BEGIN
ArrayIndex += 1;
Next := FALSE;
END;
IF Write THEN
StrArray [ArrayIndex] += Char;
Pos += 1;
END;

This is an amazing example of how you can manipulate strings to your advantage. The code is
fairly complex and may take some time to understand, but it can give you a basis to write your
own code. You should be able to see the code that looks for semicolons, or field separators,
as well as the code that finds quotes, or field identifiers. The code separates out those fields
and stores them in a string array for later use.

» Converting a value to a formatted string

» Creating an array

» Repeating code using a loop

» Checking for conditions using an IF statement

Using date formulas to calculate dates

Date formulas allow you to determine a new date based on a reference date. This recipe will
show you how to use the built-in NAV function called CALCDATE to calculate them.

=]

Chapter 1

How to do it...

1. Create a new codeunit from Object Designer.
2. Add the following global variable:

Name Type
CalculatedDate Date

3. Inthe OnRun trigger write the following code:

CalculatedDate := CALCDATE('CM+1D', 01012010D) ;
MESSAGE ('Calculated Date: %1', CalculatedDate) ;

4. Save and close the codeunit.
5. When you run the codeunit you should see a window like the following screenshot:

Microsoft Dynamics NAV Classic M

| Calculated Date: 02/01/10

The CALCDATE () function takes in two parameters, a calculation formula and a starting date.
The calculation formula is a string that tells the function how to calculate the new date. The
second parameter tells the function which date it should start with. A new date is returned by
this function, so the value must be assigned to a variable using standard : = syntax.

There's more...

The following units can be used in the calculation formula:

Unit Description
D Day

WD Weekday

W Week

M Month

Q Quarter

Y Year

Strings, Dates, and Other Data Types

These units may be different depending on what language your version of NAV is
running under.

You have two options for the number to place before the unit. This can either be a standard
number ranging between 1 and 9, or the letter C, which stands for Current. These units can be
added and subtracted to determine a new date based on any starting date.

Calculation formulas can become very complex. The best way to fully understand them is to
write your own formulas to see the results. Start out with basic formulas like 1M+2W-1D and
move on to more complex ones like —-CY+2Q-1W.

Calculating reminder terms using date formulas

NAV has the ability to issue a reminder whenever a customer goes past due on their balance.
These reminders are issued at specific times based on date formulas entered by the user
during setup.

Look at the MakeReminder () method in codeunit 392, Reminder-Make. This function has
a large amount of code so only a small section is shown here. The date formula is stored in a
field called Grace Period and is used to determine if those many days have passed since the
due date of the document.

IF (CALCDATE (ReminderLevel."Grace Period",ReminderDueDate) <

ReminderHeaderReq. "Document Date") AND
((LineLevel <= ReminderTerms."Max. No. of Reminders") OR
(ReminderTerms. "Max. No. of Reminders" = 0))
THEN BEGIN

» Retrieving the system date and time
» Retrieving the work date
» Determining the day, month, and year from a given date

» Checking for conditions using an IF statement

=]

General Development

In this chapter, we will cover:

» Repeating code using a loop

» Displaying a Progress Bar

» Checking for conditions using an IF statement

» Using a CASE statement to test multiple conditions
» Creating a function

» Passing parameters by reference

» Referencing dynamic tables and fields

» Using recursion

Introduction

Generally developers are not the ones who generate data for their company. Programmers are
not employees entering sales orders or new contacts into the system. As a developer, you give
users the ability to enter that data, but your main job is to build business logic to manipulate
data for the company's benefit.

C/AL, the development language for NAV, is similar to other languages out there. It provides
similar commands and functions that other programming languages do. It may not have all
of the libraries that .NET does, but C/AL provides all the necessary functions to control data
in any way you see fit. The development environment, C/SIDE, is also not very attractive. It
does not have all the bells and whistles of Visual Studio, but it has everything you need to get
your job done easily. There will be times when you will have to think a little harder about your
solution and take a little longer to plan it out, but there is no problem that cannot be solved
within NAV.

[vww allitebooks.cond

http://www.allitebooks.org

General Development

If you have programmed in other languages you will notice obvious similarities in syntax.
It's the logic behind the program, and not the way you code it that makes the difference.
After all, there are so many ways to assign values to variables, check for conditions, and
create functions. These basic commands and functions are building blocks for any program
world. NAV is no different. Once you've mastered the nuts and bolts, you can begin to put
them together to perform any function your company needs. This chapter will serve as a
brief introduction to these parts, but for a more in-depth study you can read "Programming
Microsoft Dynamics NAV 2009" by David Studebaker or "Implementing Microsoft Dynamics
NAV 2009" by David Roys and Vjekoslav Babic.

Repeating code using a loop

Looping is an essential part of dealing with records in NAV. Using a FOR loop is a common way
to iterate over multiple lines of code. This recipe will show you how to construct a FOR loop
and use it.

How to do it...

1. Create a new codeunit from Object Designer.
2. Add the following global variables:

Name Type

n Integer
i Integer
Factorial Integer

3. Add the following code to the OnRun trigger of the codeunit:

Factorial := 1;

n := 4;

FOR 1 := 1 TO n DO
Factorial := Factorial * 1i;

MESSAGE ('Factorial of %1 = %2', n, Factorial);

4. Save and close the codeunit.

Chapter 2

5. When you run the codeunit you will see a window similar to the following screenshot:

Microsoft Dynamics NAV Clas,. SSESa

| Factorial of 4 = 24

A FOR loop has four parts: a counter, a starting value, the step to be taken, and an ending
value. In this code, our counter variable is "i". The starting value is 1 and the ending value is
"n", which in this case has been assigned to the value 4.

Each time the loop iterates, the value of "i" is increased by one (the step). The code indented

Factorial := Factorial * 1;
Factorial := Factorial * 2;
Factorial := Factorial * 3;
Factorial := Factorial * 4;

under the FOR loop will be executed four times. It is exactly the same as:

If you want to use a step other than one or negative one you will need to use a WHILE loop or

REPEAT. .UNTIL loop.

You can also use a FOR loop by decreasing the counter. To do this, instead of a TO you use
DOWNTO. The structure for this type of loop is as follows:

Factorial := 1;

n := 4;

FOR 1 := n DOWNTO 1 DO
Factorial := Factorial * i;

MESSAGE ('Factorial of %1 = %2°',

n, Factorial);

Es

General Development

Using a WHILE loop

AWHILE loop is similar to a FOR loop. The main difference is that you have to take control of
the counter.

Factorial := 1;

n := 4;

i :=1;

WHILE i <= n DO BEGIN
Factorial := Factorial * i;
i +=1;

END;

MESSAGE ('Factorial of %1 = %2', n, Factorial);
First we have to initialize our starting value, which is accomplished by the third line 1 := 1.

Then in the WHILE line, we have to give a stop condition. As long as i <= n (4), we want the
statements to execute.

Finally, we have added the 1 += 1; command to the code inside our loop. A FOR loop does
this behind the scenes, but a WHILE loop doesn't. Here we can increment our counter by any
value we want. This basic line is perhaps the most important. Without it we will never reach
our stop condition and be stuck in an infinite loop.

Using a REPEAT..UNTIL loop

If you have programmed in other languages you know this loop by another name: DO. . WHILE.
The difference between this type of loop and a standard WHILE loop is that the code is
guaranteed to execute at least once. You will use this type of loop often to go access records
through tables.

Factorial := 1;

n := 4;

i :=1;

REPEAT
Factorial := Factorial * i;
i +=1;

UNTIL i > n;

MESSAGE ('Factorial of %1 = %2', n, Factorial);

» Creating an array
» Using recursion
» Retrieving data using FIND

» Marking records for future use

=

Chapter 2

Displaying a Progress Bar

There's nothing more frustrating for a user than wondering if the system is done with
processing something or not. Displaying an indicator to show the user the system's
progress, is an easy way to make the system more user-friendly.

How to do it...

1. Create a new codeunit from Object Designer.
2. Add the following global variables:

Name Type
ProgressBar Dialog
AmountProcessed Integer
AmountToProcess Integer
PercentComplete Integer

3. Add the following code to the OnRun trigger of your Codeunit:

AmountToProcess := 50000;

ProgressBar.OPEN (' 212eRRREQCRAAACRARAEAQRAAQAR ") ;

REPEAT
AmountProcessed += 1;
PercentComplete := ROUND (AmountProcessed / AmountToProcess *

10000, 1);
ProgressBar.UPDATE (1, PercentComplete) ;
UNTIL AmountProcessed = AmountToProcess;

Save and close the codeunit.

5. When you run the codeunit you will see a progress bar like this:

Microsoft Dynamics NAV Classic

cancel |

General Development

In order to track the progress of something, you need to know two things: how much you
have to do and how much you have already done. We create two variables for this data,
AmountToProcess and AmountProcessed. In our code shown in step 3, we have set the
AmountToProcess equal to 50,000. Depending on the speed of your computer, this may
make the progress bar advance either too quickly or too slowly. You might need to adjust it.

Basic information such as this is displayed to the user using what is called a Dialog. The
dialog is given a string as an input parameter. The @ sign tells it to display as a progress
indicator and the 1 identifies the indicator for later updates. The rest of the @ signs specify
the length of the progress bar.

The minimum and maximum values for the progress bar are not 0 and 100 as you might
expect. Instead, they are 0 and 10,000 respectively. This is why we multiply by 10,000 when
we are calculating our PercentComplete value. As the percentage is an integer, we must
also round up our result to the nearest digit.

There's more...

Updating the screen dramatically slows down the process. When dealing with so many items
to process the percent processed does not change with every item. You can rather update the
screen periodically by adding a single line of code:

AmountToProcess := 50000;

ProgressBar.OPEN (' 2120QRRAEQCRAACRARAEARAAAR ") ;
REPEAT
AmountProcessed += 1;

PercentComplete := ROUND (AmountProcessed / AmountToProcess *
10000, 1);

IF AmountProcessed MOD 100 = 0 THEN
ProgressBar.UPDATE (1, PercentComplete) ;
UNTIL AmountProcessed = AmountToProcess;

We have added a conditional statement so that the screen updates only after every 100 items
are processed. You should notice a huge decrease in processing if you run the codeunit with
this new line.

S E

Chapter 2

Processing only reports

A common way to process large amounts of data is to create a "processing only" report. In this
situation, your Amount ToProcess would be the number of records in the table. This would
be calculated in the OnPreDatalItem trigger. You would also open the dialog here. In the
OnAfterGetRecord trigger, you would update your Amount Processed variable and update
the progress bar as necessary.

Some examples of processing only reports in the base system are: number 296, Batch Post
Sales Orders, and 299, Delete Invoiced Sales Orders.

» Checking for conditions using an IF statement

» Creating a report to process data

Checking for conditions using an IF

statement

Some code should only be executed when certain conditions occur. This recipe will show you
how to write code to make that decision.

How to do it...

1. Create a new codeunit from Object Designer.

2. Add the following global variables:

Name Type Subtype
SalesHeader Record Sales Header
RecordsProcessed Integer

3. Write the following code in the OnRun trigger:

IF SalesHeader.FINDSET THEN BEGIN

REPEAT

RecordsProcessed += 1;

UNTIL SalesHeader.NEXT = 0;

MESSAGE (' Processed %1 records.', RecordsProcessed) ;
END ELSE

MESSAGE ('No records to process.');

4. Save and close the codeunit.

General Development

5. When you run the codeunit you will see a window like the one shown in the
following screenshot:

Microsoft Dynamics NAV Clas... SRES)

In order to execute the code that processes the records, there must be records in the table.
That's exactly what the first line does. It tells the code that IF you find some records THEN

it should do these actions. In this case, the action is to count the records in the table and
display a message to the user.

It could be discouraging for the user to try to process something and have nothing happen,
though. That's where the ELSE part comes in. When the condition in the IF statement does
not evaluate to true, control falls to the next ELSE statement. So IF we find some records
THEN the code must do something OTHERWISE (ELSE) it should do something else. Our
"something else" is to inform the user that no records were found. The ELSE part is by no
means required, but you should always consider what should happen if the condition is false.

IF statements can be chained together to form complex conditionals.

IF DATE2DMY (WORKDATE, 1) = 1 THEN
MESSAGE ('Monday"')

ELSE IF DATE2DMY (WORKDATE, 1) = 2 THEN
MESSAGE ('Tuesday"')

ELSE IF DATE2DMY (WORKDATE, 1) = 3 THEN
MESSAGE ('Wednesday')

ELSE IF DATE2DMY (WORKDATE, 1) = 4 THEN
MESSAGE (' Thursday')

ELSE IF DATE2DMY (WORKDATE, 1) = 5 THEN

MESSAGE ('Friday"')
ELSE
MESSAGE ('Its the weekend!') ;

NEQ

Chapter 2

The next IF is simply a new statement inside the ELSE clause within the previous
IF statement.

Generally, if you have more than three possibilities you should not use an IF statement, but a
CASE statement instead. This example simply illustrates the possibilities with conditionals.

Testing multiple conditions

You may need to execute code only when multiple conditions are true. The following syntax
can be used to test for conditions in a single statement:

IF (conditionl) AND (condtion2) THEN

IF (conditionl) OR (condition2) THEN

IF (NOT conditionl) AND (condition2) THEN

The first will only execute when both conditions are true, the second when either of the
conditions are true, and the third when the first condition is not true and the second is true.

You can combine these operators (AND, OR, NOT) to form very complex conditionals and test
as many conditions as necessary.

One thing you need to remember is that the entire clause before the AND or OR has to
evaluate to a Boolean value. That means you have to surround your entire condition with
parentheses. The following line of code will not work:

IF DATE2DMY (WORKDATE, 1) >= 5 AND DATE2DMY (WORKDATE,1l) <= 6 THEN

NAV sees the AND as applying like this: 5 AND DATE2DMY (WORKDATE, 1).The 5 doesn't
evaluate to a Boolean value and neither does the DATE2DMY function. You have to write it
like this:

IF (DATE2DMY (WORKDATE,1l) >= 5) AND (DATE2DMY (WORKDATE,1l) <= 6)
THEN

Here, the AND applies to everything in the parentheses, before and after it, each of which
evaluates to a boolean value.

» Using a CASE statement to test multiple conditions

Eis

General Development

Using a CASE statement to test multiple

conditions

When you have more than two conditions to test, it can often be beneficial to use a CASE
statement for better code readability.

How to do it...

Create a new codeunit from Object Designer.

Add the following global variables:

Name Type

I Integer

3. Add the following code to the OnRun trigger of your codeunit:

i := 2;
CASE 1 OF
1:
MESSAGE ('Your number is %1.', 1);
2:
MESSAGE ('Your number is %1.', 1);
ELSE

MESSAGE ('Your number is not 1 or 2.');
END;

4. When you run the codeunit you will see a window like the following screenshot:

Microsoft Dynamics NAV Clas...lﬁJ

[0} Your number is 2.
0K

NED

Chapter 2

A CASE statement compares the value given, in this case "i", to various conditions contained
within that statement. Each condition, other than the default ELSE, is followed by a colon.
Here it checks if "i" is equal to 1, if "i" is equal to 2, and if "i" is neither 1 nor 2. You would get
the same result if you wrote the following code:

IF i = 1 THEN

MESSAGE ('Your number is %1.', 1)
ELSE IF i = 2 THEN

MESSAGE ('Your number is %1.', 1)
ELSE

MESSAGE ('Your number is not 1 or 2.');

There's more...

This example just checks very basic conditions and only conditions where the variable is equal
to a specific value. You can do more advanced condition checking like the following example:

CASE TRUE OF
i > 1:
MESSAGE('1 > 1');
i=1:
MESSAGE ('i = 1');
i< 1:
MESSAGE('1 < 1');
ELSE
MESSAGE ('What kind of number is this?');
END;

Or something like :

CASE TRUE OF
i>1, 1 < 1:
MESSAGE ('i is not one');
i =1:
MESSAGE('i = 1');
ELSE
MESSAGE ('What kind of number is this?');
END;

See also

» Checking for conditions using an IF statement

s

vww allitebooks.conl

http://www.allitebooks.org

General Development

Creating a function

Most programs will need to execute code from different NAV objects. This code is contained in
functions. This recipe will show you how to create a function and explain what functions are in
more detail.

How to do it...

Create a new codeunit from Object Designer.

Add a function called CountToN that takes an integer parameter, n.
Add the following local variables

Name Type

I Integer

4. Add the following code to your function:

FOR i := 1 TO n DO
MESSAGE ('%1', 1i);

5. Add the following code to the OnRun trigger of the codeunit:
CountToN (3) ;
6. Save and close the codeunit.
7. When you run the codeunit you will see several windows like the following screenshot:

Microsoft Dynamics NAV Clas...[&,l

0 2

By creating a function we can reference multiple lines of code using one easy-to-understand
name. Our function is called CountToN and takes an integer "n" as a parameter. This function
will display a message box for every number ranging between one and the number that is
passed to the function.

=)

Chapter 2

There's more...

Proper use of functions is essential to good software development. You will have difficulty
finding any objects in NAV that don't contain even a single function.

The main use of functions is to divide complex tasks into manageable chunks of code. This
makes debugging a lot easier. Other developers who may add to your code later, will be able
to better understand what you were trying to accomplish. By encapsulating code in functions
you also reduce the number of places where changes need to be made when you find faulty
business logic.

Once written, these functions can then be called from other objects. A great practice is

to keep a codeunit with common utility functions in it. You can load this codeunit into any
database you happen to be working on and have instant access to your code from any object
in the system.

Creating local or private functions

By default, all functions are created as global functions, which means that they can be
accessed from any object in the system. Sometimes, though, you may only want a function
to be accessed from within the object in which it resides.

It may seem counter-intuitive, but you still define these functions in the same way you

define global functions. If you view the properties of the function (Shift + F4 or click on View
| Properties from the menu), you will see one called Local. Set this property to yes and it will
only be available in the current object.

» Passing parameters by reference

Passing parameters by reference

You may want your function to modify multiple values. As you can't return more than one value
from a function (unless you use an array), it can be beneficial to pass your parameters by
reference to the function.

@l

General Development

How to do it...

1.
2.

10.

Create a new codeunit from Object Designer.
Add the following global variables:

Name Type Subtype Length
CustomerRec Record Customer

OldName Text 50
NewName Text 50

Add a function called ChangeCustomerName.

The function should take in the following parameter:

Name Type Subtype

Customer Record Customer

Write the following code in the ChangeCustomerName function:
Customer.Name := 'Changed Name';

Add a function called ChangeCustomerNameRef.

The function should take in the following parameter:

Name Type Subtype

Customer Record Customer

Place a check-mark in the var column for the parameter.

Write the following code in the ChangeCustomerName function:
Customer.Name := 'Changed Name';

Write the following code in the onRun trigger of your codeunit:
IF CustomerRec.FINDFIRST THEN BEGIN

NewName) ;

OldName := CustomerRec.Name;

ChangeCustomerName (CustomerRec) ;

NewName := CustomerRec.Name;
MESSAGE ('Pass by value:\0ld Name: %1\New Name: %2', OldName,
OldName := CustomerRec.Name;

ChangeCustomerNameRef (CustomerRec) ;

NewName := CustomerRec.Name;

MESSAGE ('Pass by reference:\0ld Name: %1\New Name: %2',
OldName, NewName) ;
END ;

=

Chapter 2

11. Save and close your codeunit.
12. When you run the codeunit, you will see the following two windows:

Microsoft Dynamics NAV Classic ﬁ

I.-"'_"‘-.I Pass by Value:
"W Old Name: Spotsmeyer's Furnishings

Mew Name: Spotsmeyer's Furnishings

Microsoft Dynamics NAV Classic Iﬁ

I.-"'_"\-.I Pass by Reference:
W' Old Name: Spotsmeyer's Furnishings

New Mame: Changed Name

The first function, ChangeCustomerName, passes the parameter by value, which means
that a copy of the variable is created and the function uses that copy. So even though the
customer name is changed in the function, only its copy is changed. The original stays
the same.

The second function, ChangeCustomerNameRef, passes the parameter by reference. When
you pass a parameter by reference, the parameter refers to the same location in memory that
the actual variable is stored. No copy is made. Any changes made to the parameter will be
reflected in the original variable.

Reference parameters are common throughout NAV, especially in codeunits. Codeunits such
as 12 (General Journal Lines), 80 (Sales), and 90 (Purchases) are all written to work with a
specific type of record. This is defined under the TableNo property in codeunit properties.
When you set a value here, the OnRun trigger will automatically have a reference parameter
name Rec added to it. Any changes made to the Rec variable will change the actual value

in that record. Also, if you only pass a record by value to a function, you do not get any of the
filters applied to the record set.

&1

General Development

See also

» Creating a function

Referencing dynamic tables and fields

You may, on occasion, need to retrieve data from the system, but not know in advance where
that data should come from. NAV accommodates this by allowing you to reference tables and
fields dynamically.

How to do it...

Create a new codeunit from Object Designer.
Add a global function, GetFirstRecord.
The function should take in the following parameter:

Name Type
TableNo Integer

4. Add the following local variables:

Name Type
RecRef RecordRef
FieldRef FieldRef

5. Write the following code in your GetFirstRecord function:

RecRef .OPEN (TableNo) ;
IF RecRef.FINDFIRST THEN BEGIN
IF RecRef.FIELDEXIST (1) THEN

FieldRef [1] := RecRef.FIELDINDEX (1) ;
IF RecRef.FIELDEXIST (2) THEN
FieldRef [2] := RecRef.FIELDINDEX (2) ;

IF FieldRef [1] .ACTIVE AND FieldRef [2] .ACTIVE THEN

MESSAGE ('Table: %1\%2: %3\%4: %5', RecRef.NAME,
FieldRef [1] .NAME, FieldRef [1] .VALUE,
FieldRef [2] .NAME, FieldRef [2] .VALUE)

ELSE

MESSAGE ('You cannot retrieve an inactive field.');
END ELSE
MESSAGE ('No records found!') ;

Chapter 2

6. Write the following code in your OnRun trigger:

GetFirstRecord (DATABASE: : Customer) ;
GetFirstRecord (DATABASE: :Vendor) ;

7. Save and close your codeunit.
When you run the codeunit you will see the following windows:

Microsoft Dynamics NAV Classic Ié]

f B Table: Customer

WY Ne: 01121212
~ Mame: Spotsmeyer's Furnishings

Microsoft Dynamics NAV Classic &J

I B Table: Vendor

WY o 01254796
~ Name Progressive Home Furnishings

We are creating a function, GetFirstRecord, that will return information about the first
record found in an unknown table. The TableNo parameter will tell the function which table
in the database to find the data.

When you don't know the table until runtime, you must use a RecordRef variable, which
stands for record reference and can refer to any record/table in the database. To point it to
the right table, you use the OPEN command. Here we tell the RecordRef variable to open any
table we pass into the function. If a record is found in that table we continue on, otherwise we
display the message "No records found!"

To store references to the fields we care about, we have created an array of FieldRef variables
called FieldRef. In this function, we have hard-coded a lookup for fields one and two, but
you could just as easily pass another parameter with the ID of the field you need. If that field
exists, we assign its value into our FieldRef variable to an appropriate index.

Finally, we have to determine whether the fields are active or in use and available for use by
the system. If they were not, we would not have been able to retrieve their values and would
instead display a message to the user. But if they are active, we display the name and value of
each field using the properties of the same name.

=]

General Development

The code in the OnRun trigger runs the function with two different tables. The DATABASE::"Table
Name" syntax resolves to an integer. You could also pass the actual ID of the tables.

There's more...

Record references act just like their record counterparts. You can use them to insert, modify,
or delete records. You can set filters on them and use them to find records. For a complete
list of functions and properties, you can use the Symbol menu and investigate the C/SIDE
Reference Guide from the Help menu in the client.

The data migration codeunits in NAV are full of functions that use record and field references.
| recommend you start with the functions in codeunit 8611, Migration Management. This is
a great place to see real examples of how this type of code can be used.

See also

» Checking for conditions using an IF statement

» Writing your own rollback routine

Using recursion

Recursion is not used often in NAV, but the option is available and can shorten your code.
Recursion is the process by which a function calls itself.

How to do it...

Create a new codeunit from Object Designer.
Add a global function, Fibonacci, that returns an integer with no name.
The function should take the following parameter:

Name Type

i Integer

4. Write the following code in your Fibonacci function.

IF (i <= 2) THEN
EXIT (1) ;
EXIT (Fibonacci(i-1) + Fibonacci(i-2));

=)

Chapter 2

5. Write the following code in your OnRun trigger:
MESSAGE ('Fibonacci (%1) = %2', 4, Fibonacci(4));

6. When you run the codeunit you will see a window like the one shown in the
following screenshot:

Microsoft Dynamics NAV Clas... SEESS

) Fibonacei(d) = 3

The Fibonacci sequence is a series of numbers where the value in a certain position is the
sum of the number in the previous two positions.

Thatis: 1,1, 2, 3,5, 8, 13, 21, 34, 55...

A recursive function has two parts. The first is a stopping condition. In our Fibonacci function,
the stopping condition is when the variable i is less than or equal to two. In that case, the
function will return 1 as the output.

The second part is where the function calls itself with a different parameter. Recursion can be
confusing so let's step through the code to get a better understanding. We'll use the following
diagram to explain this more clearly:

Fibonacci(4)
[
v v
Fibonacci(3) + Fibonacci(2)
[
v v
Fibonacci(2) + Fibonacci(1)

General Development

We start by passing the number four as a parameter to our function, which means that
the variable i is equal to four. As four is not less than or equal to two, we move to the last
line of the function. The function will exit the loop with the value Fibonacci(4 - 1) +
Fibonacci(4 - 2), but we don't know what those values are. Now we evaluate each

of those function calls separately.

Fibonacci(3) has a parameter that is also not less than two. Again, we move to the last line of
the function and exit with Fibonacci(3 - 1) + Fibonacci(3 - 2). This time it gets easier.

Fibonacci(2) exits with the value 1. Fibonacci(1) also exits with the value 1. Hence,
Fibonacci(2) = 1 and Fibonacci(1) = 1. Substituting them back in, we know that Fibonacci(3) =
Fibonacci(2) + Fibonacci(1) =1+ 1 = 2.

But we're not done. We still have the original Fibonacci(4 - 2) to evaluate.
Fibonacci(2) = 1. So let's sum it all up.
Fibonacci(4) =[Fibonacci(3)] + [Fibonacci(2)] =

[Fibonacci(2) + Fibonacci(1)] + [Fibonacci(2) 1 =[1 + 1] + [1] = 3.

Recursion can be extremely useful under the right circumstances, most notably performing
calculations, processing XML documents with nested nodes, or any sort of tree structure such
as a bill of materials. You should be aware, though, that it is not a replacement for loops.
Recursion can quickly eat through your available memory. Each function call has to be stored
in memory until the entire operation is complete. As a result, there is a limit to the number of
recursive calls that can be made.

See also

» Repeating code using a loop
» Sharing information using XMLports

Working with Tables
and Records

In this chapter, we will cover:

» Creating a table

» Adding a key to a table

» Creating transactions to alter data

» Validating data

» Retrieving a single record from the database
» Using advanced filtering

» Retrieving data using FIND

» Adding a FlowField to a table

» Creating a Sumindex field

» Marking records for future use

» Clearing filters, keys, and values

» Using temporary tables to store data

» Retrieving data from another company
» Merging records

» Writing your own rollback routine

[vww allitebooks.cond

http://www.allitebooks.org

Working with Tables and Records

Introduction

If the simple data types we reviewed in Chapter 1, Strings, Dates, and Other Data Types, are
the nuts and bolts of NAV, then records are the assembled parts that make everything work.
A record is, to put it simply, a collection of related data. Together, this data gives the business
a better idea of what is going on with the company. When you view a list of customers, for
example, there are certain things you expect to see, which include name, address, phone
number, company, and so on. You can view the records in any table by clicking on Run from
Object Designer.

Be careful, though! You should avoid editing the data in tables directly as it
s is easy to accidentally change something.

E= Customer - Table @@E

Mo, Iame Search N... Mame 2 Address
3 10000 The Cannon Group PLC THE CAM... | 192 Market Square
20000 Selangaorian Lkd. SELAMG. ., 153 Thomas Drive
30000 John Haddock Insurance Co. JOHM HA. .. 10 High Tower Green
40000 Deerfield Graphics Company DEERFIE... 10 Deerfield Road
50000 Guildford Water Department; GUILDFO, ., 25 Water Way
60000 Elanemark Hifi Shop ELAMEM, .. 28 Baker Street
61000 Fairway Sound FAIRWA, ., 159 Fairway
62000 The Device Shop THE DEYI... 273 Basin Strect
01121212 Spotsmever's Furnishings SPOTSM.., 612 South Sunset Dri
01445544 Progressive Home Furnishings PROGRE. .. 3000 Roosevelr Bled, w
£ >

These records are stored in tables. A table acts as a blueprint for the records. It tells NAV what
kind of data can be stored in which fields and what should happen when certain actions are
performed on data. These blueprints are set up in the Table Designer, which is accessed by
clicking on New or Design from the Object Designer.

Chapter 3

EE Tahle 1B Customer - Tahle Designer, g@@

E. Field Mo, ' Field Mame Data Twpe Length Description

b 1 Mo. Code 20 -
v 2 Mame Text 50
v 3 Search Mame Code 50
v 4 Mame 2 Text 50
v 5 Address Text 50
v 6 Address 2 Text 50
v 7 Cikby Text a0
v g Contact Text 50
v 9 Phone Mo, Text 30
v 10 Telex Ma. Text 20
v 14 Qur Account Mo, Text 20 A

Tables are the foundation of the entire NAV system. Every other object type, that is forms,
pages, reports, dataports, XMLports, and codeunits, depend on tables to work. It is critical
to understand the basic concepts involved in table design. Although we will not get anywhere
near showing you everything that can be done with a table, we will show you what you will
need to successfully design and use them. For more information it is recommended that you
explore the C/SIDE Reference Guide from the Help menu and the Development coursework
and training classes.

Creating a table

Tables are the building blocks for all other NAV objects. They store the data that the
business needs to access. This recipe will show you how to create a basic table and
save it in the system.

i

Working with Tables and Records

How to do it...

1. Create a new table object from Object Designer.
2. Add the following fields in the Table Designer window:

Field No. Field Name Data Type Length
1 Entry No. Integer

2 Document No. Code 20

3 Description Text 30

4 Value Decimal

5 Posting Date Date

3. It should look like the following window:

E= Table 50301 Example Table - Table Designer [=0[EI]
E. FieldMo. | Field Mame Data Twpe | Length Description
v 1 Entry Mo, Integer
v 2 Document Mo, Code 20
v 3 Descripkion Text 30
v 4 Yalue Ceecimal
v 5 Posting Date| Date

LT

4. Save and close the Table.

Each field is just like a variable. These variables, however, are grouped together to form a
new type of variable called a Record. The field definitions provide the structure for all of the
tables, as well as the data in them, inside the system. The data type of your fields can be
almost anything. In this example, we have created five fields of the most common types.

There's more...

If you do not specify a key manually, the field you have placed in Field No. 1 will act as the
primary key for your table.

=

Chapter 3

After completing the initial draft of your object, it is a good practice to add a few notes,

such as mentioning your initials and a date or a version number in the Description column
whenever you add a new field. This allows future developers know precisely when the change
was made and what other modifications were made. An example description could be "MT
01/01/2010 MODOO1".

» Adding a key to a table

» Validating data

» Adding a FlowField to a table
» Creating a Sumindex field

Adding a key to a table

Keys are used to make sure every record in the table is unique. They are often also referred to
as indexes and used to sort your data in ways that are most beneficial to the user.

How to do it...

Follow the steps from the Creating a table recipe to create a table.
Click on Design from Object Designer to open the Table Designer for that table.
Click on View | Keys (Alt + V, K).

On an empty line, add a new key for Document No., Posting Date.

ok W d R

Your keys should look like the following window:

= - O]

E. Figld Mo, | Figld Mame Data Type Length Description
v 1 Entry No. Integer

v 2 Document Ko ode f
v BN & Table 50302 Example Table Plus Keys - Keys
v 4 Yalue

v 5 Posting E. Key SumlIndexFields

¥ Entry Mo,
p ¥ Document No.,Posting Datel E]E]

Working with Tables and Records

» Close the Keys window.
» Save and close the table.

Keys allow you to sort data in a way that will increase your application's performance. There is
a trade-off, though. Increased application performance later, costs you some effort earlier.

When we insert data into a table it is automatically sorted based on the primary key of that
table, but what about the other keys? The database engine doesn't just magically know how
records should be sorted. For every key, the database keeps some sort of information about
how the data will be ordered. More number of keys take more time to insert and to track all
of that information. This time is usually not noticeable by users, but you should be aware that
there is a trade-off. One common technique for database optimization is to remove the keys
that are not being used, especially on tables that have a high volume of transactions like Iltem
Ledger Entry or G/L Entry.

» Creating a table

» Validating data

» Adding a FlowField to a table
» Creating a Sumindex field

» Understanding SIFT tables

Creating transactions to alter data

The purpose of NAV is to help you use business data to improve the way your company
operates; that data needs to be saved in the database. This recipe will show you how to add,
change, and remove data or records from the tables in the NAV system.

How to do it...

1. Create a new codeunit from Object Designer.
2. Add the following global variable:

Name Type Subtype

Customer Record Customer

Chapter 3

3. Add the following code to the OnRun trigger of your codeunit:

Customer.Name := 'Matt Traxinger';
Customer.INSERT (TRUE) ;

Customer .SETCURRENTKEY (Name) ;

Customer.SETRANGE (Name, 'Matt Traxinger') ;

IF Customer.FINDFIRST THEN BEGIN
Customer.Name := 'Alex Traxinger';
Customer .MODIFY;

END;

4. Save and close your codeunit.

First we fill out the field in our customer record. In this case, it's the Name field and we set it to
the value Matt Traxinger. The next line actually inserts the value into the database.

The first three lines of the next section retrieve the data we just inserted into the database.
We then change the name on the record to Alex Traxinger, but we still have to save that
value. You can't just insert the record because there is already one with the same customer
number—Instead you have to modify the existing record.

After running the codeunit you will find a Customer Card with the following information:

C00010 Alex Traxinger - Custormer Card [= =]

General |Communication Invoicing | Payments | Shipping | Fareign Trade | Kitting |
Moo e 00010) & SearchMame
MEME. « v v v v s Alex Traxinger Balance () 0.00
Address CreditLimit (&) 0.00
Address 2. Salesperson Code., . . . [+
Gty oo 6] Responsibility Center]
State / ZIP Code

/ ooe (#) Service Zone Code . . . [+
Country/Region Code . .

¥/Reg @ Blocked. =
Phome Mo, A

= Last Date Modified . . . 01/30/10
Primary ContactNa.. . . (4]
Contact,
Eustomer v] Sales v] @ncﬁons v] [Help]

The No. field may be different depending on what the next number is currently set to in the
customer number series. It is automatically assigned by calling INSERT (TRUE) .

s

Working with Tables and Records

There's more...

There are four types of operations you can perform on records in the database. They are
insert, modify, delete, and rename. Each does exactly what it sounds like. They add, change,
remove, and rename the primary key of the record in question.

Calling code when performing a transaction

Every table has triggers associated with it. They can be viewed by examining the C/AL
code when in the Table Designer (F9). You'll see triggers named OnInsert, OnModify,
OnDelete, and OnRename, as well as a few others. You can add code in these triggers to
check for conditions, fill in other fields, or anything else you might wish to do.

You call this code by passing an optional boolean parameter to the command. By default, this
code is not called (FALSE is passed), but in the INSERT command of our example, we pass
the value TRUE.

Catching errors when performing a transaction

Insert, modify, delete, and rename, all return a boolean value upon completion of a
transaction. When successful, it returns True; when not, it returns False and displays
an error message.

It is not always helpful to display this error. Sometimes, you might want to continue with what
you were doing. You can trap the error in the following manner:

IF Customer.INSERT THEN
// Do Something
IF Customer.MODIFY THEN
// Do Something

» Checking for conditions using an IF statement
» Using temporary tables to store data

» Merging records

» Writing your own rollback routine

» Handling runtime errors

5]

Chapter 3

Validating data

It is important to make sure that the data being placed into the fields is correct. Many of the
checks done to the data can be performed using the field's properties, but in some instances
you will need to write code to do very specific data validation. Here we will show you where
that code should go and what can be done there.

Getting ready

You will need the customer card from the Creating transactions to alter data recipe.

How to do it...

1. Create a new codeunit from Object Designer.
2. Add the following global variable:

Name Type Subtype
Customer Record Customer

3. Add the following code to the OnRun trigger:

Customer .SETCURRENTKEY (Name) ;

Customer.SETRANGE (Name, 'Alex Traxinger') ;

IF Customer.FINDFIRST THEN BEGIN
Customer."Search Name" := '';
Customer.VALIDATE (Name, 'Matt Traxinger') ;
Customer .MODIFY;

END;

4. Save and close the codeunit.

Most of the code in our example is to find and save a record. We're going to look at the
following lines:

Customer."Search Name" := '';
Customer.VALIDATE (Name, 'Matt Traxinger') ;

First we set the "Search Name" field to be blank. This is so that we know our code will put
something in that field and that there wasn't some value already there.

Working with Tables and Records

The second line is the one we are more interested in. The VALIDATE command can be called
on any field in a table. It takes the syntax Record.VALIDATE (Field, Value). So here we
are validating the Name field on the customer table with the value 'Matt Traxinger'. Notice how
we never fill the "Search Name" field with an actual value. But when we look at the customer
card for our record we see:

&

£ C00010 Matt Traxinger, - Customer, Card

General | Communication | Invoicing | Pavments | Shipping | Foreign Trade || Kitting
MO o 0010 =l & SearchMame MATT TRAXIMGER, |
Mame. Matt Traxinger Balance (3 0.00
Address Credit Limit ($) 0.00
Address2. Salesperson Code, . . . E3]
Gy e (%] Responsibility Center [+
e 3] Service Zone Code . . . E3]
Country/Reqgion Code . . [+ Bocked . « =
=

Phone b, e & Last Date Modfied . . . 013010
Primary Contack No,. . . [+
Conkack, . . .o oo

[Cuskomer v] [Sales v] [Functions v] [Help]

This is because there is some code that was run that you haven't seen yet. Open the Table
Designer for the Customer table (Table 18). Click on field number two, Name, and then hit F9
to view the C/AL code within it. You'll be taken to a function called Name - Onvalidate (),
which contains the following code:

IF ("Search Name" = UPPERCASE (xRec.Name)) OR
("Search Name" = '') THEN
"Search Name" := Name;

It says that if some condition ends up being true that the "Search Name" field should be filled
in with whatever value is in the Name field. That's how it got filled in!

There's more...

Data validation is one of the most important topics in NAV development. Its main purpose is to
check that the value is allowed and to automatically fill into other fields.

When the validate function is called on a field, the program first checks the TableRelation
property of that field. If that is ok, it goes on to execute the code in the Onvalidate trigger.
This trigger is just like any other in NAV. It can have local variables, call other functions, and do
everything that you would expect it to.

NED

Chapter 3

Remember, though, that the purpose of VALIDATE is to ensure data integrity. This code could
be running anywhere, like a NAS server or in a web service, so you don't want to do things
such as asking the user for input.

» Creating a table
» Adding a key to a table
» Adding a FlowField to a table

» Creating a Sumindex field

Retrieving a single record from the database

It's easy enough to put data into the database, but how do you write code to get it back out?
There are several ways and this recipe will discuss the first and easiest.

How to do it...

1. Create a new codeunit from Object Designer.
2. Add the following global variable:

Name Type Subtype

Customer Record Customer

3. Add the following code to the OnRun trigger of your codeunit:

Customer.GET('10000"') ;
MESSAGE ('No: %$1\Name: %2', Customer."No.", Customer.Name) ;

Save and close the codeunit.
5. When you run the codeunit you should see a window like the following:

Microsoft Dynamics NAV Classic X

@ Mo.: 10000
"' Name: The Cannon Group PLC

vww allitebooks.conl

http://www.allitebooks.org

Working with Tables and Records

The GET command works in conjunction with the primary key of the record. For the customer
table, the primary key is No.. If you are unsure of the primary key for the table you are using,
you can view the keys for the table and check the first entry.

AEE
E. FigldMo. Field Name Data Type | Length Diescription
b v 2 Mame Text =0 v
v 3 Searchp o :
v 5 Addred
v & Addred E. Key SurnIndexFields
v 7 City b|¥ Mo |) A
v & Contad ¥ Search Mame
v 9 Phone ¥ Customer Posting Group
v 10 Telex ¥ Currency Code
v 14 Our fc v Counkry/Region Code
v 15 Territo ¥ Gen, Bus. Posting Group
¥ Marme, Address, City
¥ WAT Feqistration Mo,
¥ Nlame
¥ ity
¥ Post Code 3z

We first tell the database to go to the customer table and GET the record that has a No. field
equal to 10000. We then display the number and name of the customer to make sure we
retrieved the correct entry.

» Checking for conditions using an IF statement
» Using advanced filtering
» Retrieving data using FIND

» Clearing filters, keys, and values

Using advanced filtering

When dealing with data you usually do not want to have to look at all of it. Most of the time
you have a specific set of data from a table that you want to operate on. In NAV you can set
filters on the records so that only the data that you want is returned.

&)

Chapter 3

How to do it...

Create a new codeunit from Object Designer.

Create a new function called CheckForCustomer. This function should take in the
following parameter:

Name Type Subtype

Cust Record Customer

3. Add the following code to this function:

IF Cust.FINDFIRST THEN
MESSAGE ('Found!\No.: %1\Name: %2\Filters: %3', Cust."No.",
Cust.Name, Cust.GETFILTER (Name))

ELSE
MESSAGE ('Not Found!\Filters: %1', Cust.GETFILTER (Name)) ;

4. Add the following local variable to the OnRun trigger:

Name Type Subtype

Customer Record Customer

5. Add the following code to the OnRun trigger of your codeunit:
Customer .SETCURRENTKEY (Name) ;

Customer.SETFILTER (Name, '%1', 'The Cannon Group PLC');
CheckForCustomer (Customer) ;

Customer.SETFILTER (Name, '%1', 'THE CANNON GROUP PLC) ;
CheckForCustomer (Customer) ;

Customer.SETFILTER (Name, '%1', '@THE CANNON GROUP PLC') ;
CheckForCustomer (Customer) ;

Customer.SETFILTER (Name, '%1', '*Cannon*') ;
CheckForCustomer (Customer) ;

6. Save and close the codeunit.

Working with Tables and Records

7. When you run the codeunit you will see a window similar to the following screenshot:

Microsoft Dynamics NAV Classic @
. , Found!
LW No.: 10000
Mame: The Cannon Group PLC
Filters: The Cannon Group PLC

First we create a function, CheckForCustomer, that will look for a filtered record. This is
not necessary every time you want to filter, but it makes this codeunit cleaner and easier to
understand. This function will display an appropriate message depending on whether or not
it finds a record. We have to pass the record parameter by reference instead of passing it
by value in order to pass through the filters that have been set. If you try without passing by
reference you'll see that the function will always find a record.

Now to the more interesting part: filters. The first function call passes the name of the
customer exactly as it appears in the record. Filtering in this method gives us our expected
result and returns the record.

The next call is slightly different, but changes the results completely. It is the same name, but
everything is capitalized. This does not match any records and the function returns a "Not
Found!" message. It doesn't matter if one letters is off, if you add an extra space, or write ",
LLC" instead of "LLC". If it doesn't match exactly it will not find the record.

Of course that's not very practical and NAV makes accommodations for the user. That's where
the at-sign (@) comes in to play. If you add an @ to the beginning of your filter string, as we
do in the next call, the filter will ignore capitalization. It doesn't matter if the record you are
looking for says Cannon, CANNON, or CaNNoN. They will all fall within the filter if the @ is used.

What about instances where we know that the name has Cannon in it somewhere, but we
cannot remember the whole name of the customer? NAV has the ability to handle wild-card
filtering as well using the asterisk/star (*). So a filter of "*Cannon" would return anything that
ends with Cannon. A filter of "Cannon*" would return everything that starts with the word
"Cannon". "*Cannon*" would return anything which contained the text "Cannon".

There are many ways to filter your data. From within the C/SIDE Client, click on Help,
Microsoft Dynamics NAV Classic Help. Search for the help topic titled "Field Filters and Table
Filters". Microsoft provides wonderful examples of all of the available filtering options, both
individually and combined.

&

Chapter 3

See also

>

>

>

>

>

Creating a function

Passing parameters by reference

Retrieving a single record from the database
Retrieving data using FIND

Clearing filters, keys, and values

Retrieving data using FIND

Once you have determined the data that you want to operate on, you must retrieve it from the
database. Most of the time the action to be performed must be performed on more than one
record. This recipe will show you the best ways to get that data and when certain methods
should be used.

How to do it...

1.

Create a new codeunit from Object Manager.
Add the following local variable to the OnRun trigger:

Name Type Subtype
Customer Record Customer

Add the following code to your OnRun trigger:

IF Customer.FINDFIRST THEN

MESSAGE ('The first customer in the database is:\No.: %1\Name:
%2', Customer."No.", Customer.Name) ;

IF Customer.FINDLAST THEN

MESSAGE ('The last customer in the database is:\No.: %$1\Name:
%$2', Customer."No.", Customer.Name) ;

IF Customer.FINDSET THEN BEGIN
MESSAGE ('There are %1 customers in the database’',
Customer.COUNT) ;
END;

Save and close the codeunit.

(&5}

Working with Tables and Records

5. When you run the codeunit you will see windows that look like the following:

Microsoft Dynamics NAV Classic ﬂ

I.-"'_"\-.I The first customer in the database is:
WY Mo 01121212
Mame: Spotsmeyer's Furnishings

Microsoft Dynamics NAV Classic ﬂ

p "\-.I The last customer in the database is:
WY MNo.1C1030
Mame: Cronus Cardoxy Procurement

There are three types of FIND commands, each of which will be discussed. The first two are
very similar and do exactly what you would expect. FINDFIRST returns the first record in the
data set while FINDLAST returns the last record. These commands should only be used when
you want to retrieve a single record from the database. They have been optimized for this
task. If you want to retrieve multiple records and process them individually, you should use the
FINDSET command.

These commands were not introduced until version 5.0 of NAV. Previously, you would use
FIND('-"') for FINDFIRST and FIND ('+"') for FINDLAST.

See also

» Repeating code using a loop

» Checking for conditions using an IF statement
» Retrieving a single record from the database

» Using advanced filtering

» Clearing filters, keys, and values

Chapter 3

Adding a FlowField to a table

FlowFields are fields that are not actually stored in the database. They are calculated fields
that the user can call upon instead of performing the calculation themselves. This recipe will
show you how to add a FlowField to your tables.

How to do it...

1. Follow the steps from the Creating a Table recipe to create a table.
2. Add the following field to the table:

Field No. Field Name Data Type Length
10 Sell-to Customer No. Code 20

3. View the Properties for this field (Shift + F4).
4. Set the following properties:

Property Value

FieldClass FlowField

CalcFormula Lookup ("Sales Invoice Header"."Sell-to
Customer No." WHERE (No.=FIELD (Document No.)))

Editable No

5. Close the Properties Window.
6. Save and close your table.

To start, we create a field like any other field. It should have an ID number, name, and type. In
order to make it a FlowField, we have to change the property named FieldClass. This tells
the system whether or not this is an actual field to be stored in the database (Normal) or a
field that should be calculated or used to calculate a value on the fly (FlowField or FlowFilter).

Working with Tables and Records

When defining a FlowField you must tell the database how to calculate its value. This is done
with the CalcFormula property. Our field is a lookup, meaning we just want to pull a value
from another table that matches some criteria. We also have to tell it which table to pull the
value from and which filters should be used to determine the value.

= able 5030 ample Table P owlield able Designe s |
E. FieldMo, Field Mame Daka Type | Length Description
v 1 Entry Mo, Inkeger
v 2 Docurment Mo, Code 20
v 3 Descripkion Text 30
v 4 Walue Decimal
v 5 Pasting Date Date
SE if b Prope = L] = Ca ation Formula |
i | Property Value Method . . o v o\ Lockup =
——{ |Field Mo, 6 M A - 0
1 Mame Bill-to Custamer ... BB 0 0 0 0 0 0
Caption <Bill-ta Custome. .. Table, |Sales Invoice Header IEH
CaptionML <Undefined: Field . .0 000 |Bi||—t0 Customner Mo, E”
:
Description == Table Fiker | Mo, =FIELD{Document No.) [l
Data Type Code
Enabled <yes [oK] [wancs] [Help]
Datalength 20
Initvalue <Undefined >
FieldClass FlowField
CalcFormula Lookup("Sale.., (])
AutoFormatType <0 FER LD Lol
= 1 .
AukoFormatExpr == m FIELD Document Mo
CaptionZlass <>
[Editatle Mo | 3 I 2
MokBlank <Mo= — —
Humeric <Moz b o4 | [cancel | [Help |

There's more...

A FlowField is not actually stored in the database, which means it can't be used outside the
NAV client in other applications. It can't even be used in a SQL procedure. So what exactly is
its use?

FlowFields can be used to display related information more easily. A great example is the

Cost fields from the Item Ledger Entry table. The actual cost of an item is the sum of all of the
associated records from the Value Entry table. You wouldn't want to manually check its value
every time you required that information. You also wouldn't want to calculate them using code
(this method of calculating and storing in a global variable does not allow you to filter on the
values). That's where the FlowField comes in. Not only does it allow you to compile information
about related entries, but the database keeps a track of it all for you, allowing for faster
reporting and viewing of data.

(&)

Chapter 3

Determining the value of a FlowField

Remember, the value of a FlowField is not stored in the database. We have to tell the system
to calculate the value. Here is a quick example of how to use FlowFields in your own code.

The variable FlowFieldRec is a record variable that refers to the table you created in this
example. The large conditional block at the start of the code is just to make sure we have data
in the table.

IF NOT FlowFieldRec.GET (1) THEN BEGIN

FlowFieldRec."Entry No." := 1;
FlowFieldRec."Document No." := '103006';
FlowFieldRec.INSERT;
END;
BeforeValue := FlowFieldRec."Sell-to Customer No.";
FlowFieldRec.CALCFIELDS ("Sell-to Customer No.") ;
AfterValue := FlowFieldRec."Sell-to Customer No.";

MESSAGE ('Value before: %1\Value after: $%2', BeforeValue, AfterValue) ;

BeforeValue and AfterValue are code variables. First we assign the uncalculated value
to the BeforeValue variable. In this case, the value will be an empty string. The next line
uses the CALCFIELDS command to tell the system to figure out what the value of that
FlowField is. Once it has been calculated, we assign its value to the Aftervalue variable
and display a message like the one shown in the following screenshot:

Microsoft Dynamics NAV Clas...[&J

I.-"'_"‘-.I Value before:
w Value after: 42147258

» Creating a table

» Adding a key to a table

» Validating data

» Creating a Sumindex field
» Understanding SIFT tables

Working with Tables and Records

Creating a Sumindex field

A SumlIndex is like a running total of certain fields in your table. Instead of calculating these
sums manually you can tell NAV to do it for you. Here we'll tell you how to add a Sumindex field
to your table and show you how to use it.

How to do it...

Follow the steps from Creating a Table recipe to create a table.
View the keys for the table by clicking View | Keys from the Menu.
Add a key for the Posting Date and a SumindexFields for Value.
Close the Keys window.

I

Save and close your table.

This recipe, unlike a few others, is very straightforward. By adding fields to list in the
SumlindexFields column of a key, you tell the database to keep a track of the totals for
those fields for every combination of filters in the key.

- B[x]|
E. Field Mo, ' Figld Mame Daka Type Length Description
(24 1 Entry Mo, Integer
v 2 Document Mo, Code 20
v 3 Description Text 30
v 4 Walue Decimal
v 5 Posting Date Date
& Table 50304 Example Table Plus Sumindex - Keys =13
E. Key SurnIndexFields
¥ Entry Mo,
b | ¥ Posting Date Walue E]

Chapter 3

There's more...

Why use SumindexFields? Why not just calculate these totals manually? The answer is that
it is much faster to let the database do it. We won't get into the details behind the scenes
regarding SumindexFields, but will demonstrate how it works using a short example.

Entry No. Value Total
1 10 10
2 20 30
3 30 60
4 40 100
5 50 150
6 60 210
7 70 280
8 80 360
9 90 450
10 100 550

In the background, NAV keeps a running total or sum of the values defined as
SumindexFields. If you were to calculate the total manually, you would have to sum
up all ten entries individually.

With SIFT(Sum Index Field Technology), NAV can do this with only two entries. Let's try and
find the sum of entries four through eight. By manually adding this up we have five entries
and the total is 300. SIFT will take the sum of the values up until our first entry (so the total
of entries one through three, that is 60) and subtract that from the total of our last entry,
number eight, which is equal to 360. 360 - 60 = 300, the same result.

In C/AL code, you will need to use the CALCSUMS function to calculate this value.

For a detailed explanation of how SumindexFields work with SQL and SIFT Indexes, do take a
look at "The NAV/SQL Performance Guide" by Jorg A. Stryk.

See also

» Creating a table

» Adding a key to a table

» Validating data

» Adding a FlowField to a table
» Understanding SIFT tables

Working with Tables and Records

Marking records for future use

Sometimes you need to work with records that just don't fall into an easily filterable data
set. The most common is when you need Field A to equal one value or Field B to equal some
other value. This recipe will show you how to mark the individual records that you need to
operate on.

How to do it...

Create a new codeunit from Object Designer.
Add the following global variable:

Name Type Subtype

Customer Record Customer

3. Add the following code to the OnRun trigger:

Customer.SETFILTER (Name, 'C*');
IF Customer.FINDSET THEN
REPEAT
Customer .MARK (TRUE) ;
UNTIL Customer.NEXT = 0;

Customer . SETRANGE (Name) ;

Customer.SETRANGE ("Location Code", 'YELLOW') ;
IF Customer.FINDSET THEN
REPEAT

Customer .MARK (TRUE) ;
UNTIL Customer.NEXT = 0;

Customer . MARKEDONLY (TRUE) ;
MESSAGE ('%1 records marked', Customer.COUNT) ;
Save and close the codeunit.

5. When you run this codeunit you will see a message like this one:

Microsoft Dynamics NAY Clas...[&J

':0:' 34 records marked

[

Chapter 3

Sometimes the records you want to work with don't fit easily into specific filters. One option is
to mark the records you need and then perform operations on them. In our simple case, we
retrieve records from the database that start with the letter "C" and use the MARK command to
mark them for later use. We then do the same thing for all customers that belong to Location
Code "YELLOW". In most cases you would have some sort of conditional statement that would
determine whether or not to mark the record.

Marking a record is essentially the same as setting a flag on the record. Later, you still need to
filter on that flag. That's what the MARKEDONLY function does. Just like the MARK function, it
takes in a boolean value that tells the system what to do.

You can also mark records from the client using Ctrl + F1. When you do this, you'll notice that
a small dot is placed to the left of the record as in the following screenshot:

&= Customer List

Mo, [Marne Responsi,.. | Locakion ... Phone Mo, iZonkack
E 10000 The Cannon Group PLC | BIRMING... BLUE fr. Andy Teal ad
] 20000 Selangarian Lkd, tr, Mark Mcarthur
[+ | 30000 John Haddock Insurance Co. Miss Patricia Dovle 0
(+ | 40000 Deerfield Graphics Company YELLO M, Kewin Wright
50000 Guildford Waker Department MEW YORE Tr, Jirn Skewart

Z 60000 Blanemark Hifi Shop MEW YORE WHITE
Al 61000 Fairway Sound MEW YORE AWHITE
|+ | 62000 The Device Shop MEW YOREK WHITE
| otz Spotsmeyer's Furnishings YELLO M, Mike Mash

01445544 Progressive Home Furnishings YELLOW M, Scotk Mitchell bt
£ | >

(0K, | [cancel | [[Customer] [Sales w| | Help |

» Using advanced filtering
» Using temporary tables to store data

7}

Working with Tables and Records

Clearing filters, keys, and values

Once you have applied filters to a variable and performed your operations, you may want
reuse that variable. Here we will show you how to remove any actions you may have done to it.

How to do it...

Create a new codeunit from Object Designer.

Add the following global variable:

Name Type Subtype

Customer Record Customer

3. Add the following code to the OnRun trigger of the codeunit:

Customer.SETCURRENTKEY (Name) ;
Customer.SETFILTER (Name, 'Matt');
Customer."No." := 'Num';

Customer .RESET;

MESSAGE ('Current Key: %1\Name Filter: %2\Customer No.: %3',
Customer.CURRENTKEY, Customer.GETFILTER (Name), Customer."No.");

Customer.SETCURRENTKEY (Name) ;
Customer.SETFILTER (Name, 'Matt');
Customer."No." := 'Num';

CLEAR (Customer) ;

MESSAGE ('Current Key: %1\Name Filter: %2\Customer No.: %3',
Customer.CURRENTKEY, Customer.GETFILTER (Name), Customer."No.");
Save and close the codeunit.

5. When you run the codeunit you will see windows like the following:

Microsoft Dynamics NAV Clas...[ﬁj

. . j Current Key: Na.
W Name Filter:
Customer No.: NUM

=

Chapter 3

-
Microsoft Dynamics NAV Cla s[iz-,l

. . | Current Key: Ne.
W' MName Filter
Customer Mo.:

When using a simple variable type, you can set its value to zero or to an empty string
whenever you want to reuse them. Record variables are made up of a lot of these simple
variable types. You don't need to set each of the fields individually. NAV offers two functions
for this, and it is important to understand the differences between them.

The first is the RESET function. This will remove any filters you have set on the variable. It will
also set the key back to the primary key if you have changed it. It will NOT clear any values
from the fields.

The second is the CLEAR command. This does everything that RESET does, but takes it a step
further by clearing individual fields of the record.

In the example code, we set a key, some filters, and the value of a field, then perform each of
the functions. The message displayed will show you what gets changed in the record.

» Retrieving a single record from the database
» Using advanced filtering
» Retrieving data using FIND

Using temporary tables to store data

Temporary tables can be useful when you need to insert data into a table to perform
calculations, but don't want it saved to the database. This recipe will show you how to mark
your records as temporary and what to watch out for when you do.

(75}

Working with Tables and Records

How to do it...

Create a new codeunit from Object Designer.
Add the following global variable:

Name Type Subtype
Customer Record Customer
TempCustomer Record Customer

3. View the properties of the TempCustomer variable.
4. Set the following property:

Property Value

Temporary Yes

5. Close the Properties window.
6. Add the following code to the onRun trigger of the codeunit:

MESSAGE ('Customer Count: %1\TempCustomer Count: %2',
Customer.COUNT, TempCustomer.COUNT) ;

7. Save and close the codeunit.

When you run the codeunit you will see a window like the one shown in the
following screenshot:

Microsoft Dynamics MAV Classic ﬁ

& Customer Count: 68
V' Temp Custermer Count: 0

Declaring a record variable as temporary is as easy as setting the Temporary property to Yes.
But what is the purpose of setting a temporary table? A temporary table has all the code and
properties of a normal table. It functions in exactly the same way. The only difference is that
when you perform a transaction (insert, modify, delete, or rename) with a temporary table, the
data is not stored in the database. Instead it is held in memory just like any other variable.

7

Chapter 3

I 0308 Ng lempora able : 0 Da !E

Yariables | Text Conskanks | Functions
Marne DataTvpe Subkype Length
» | TempCuskomer Record Zustomer
&= TempCustomer - Properties |._|E]
0 | Property Walue
—f ID 1000000000
1 Dimensions <ndefined }|
L ITempnrary Yes
[] |

There's more...

It may sound obvious, but when planning to work with a temporary table, don't forget to

mark it as Temporary! There's nothing worse than running TempGLEntry . DELETEALL and
realizing that all of your real data is gone. This is a perfect example of why you should always
do your development in a test system and have a recent backup before performing any
changes. Also, if you run a DELETEALL (TRUE) on a temporary record variable, the code that
is called in the onDelete trigger will run with variables that are NOT temporary, which means
that actual data will be deleted. Again, be careful!

Storing records to process

Just as you can mark records that have to be processed using the MARK function, you can also
create a temporary table to store them. Instead of MARK, the following code can be used:

TempCustomer := Customer;
TempCustomer.INSERT;

You assign the value of the actual data to a temporary record and the insert into the
temporary table. The data will be stored in memory, but not in the database, and you
can use it for later operations.

See also

» Retrieving a single record from the database
» Marking records for future use
» Creating a form based on a temporary table

Working with Tables and Records

Retrieving data from another company

NAV can hold data for many companies under your corporate umbrella. Many times, users will
want consolidated reports that show them data from all of the companies in the system. This
recipe will show you how to retrieve that data from anywhere in the system.

Getting ready

Make sure you have at least two companies in your database like Cronus USA and
Cronus Canada.

How to do it...

1. Create a new codeunit from Object Designer.
2. Add the following global variables:

Name Type Subtype
Customer Record Customer
Company Record Company

3. Add the following code to the OnRun trigger of the codeunit:

IF Company.FINDSET THEN
REPEAT
Customer . CHANGECOMPANY (Company . Name) ;
MESSAGE (' Company Name: %1\Customer Count: %2',
Company .Name, Customer.COUNT) ;

UNTIL Company.NEXT = O;
Save and close the codeunit.

5. When you run the codeunit you will see a window like the one shown in the
following screenshot:

Micrasoft Dynamics NAV Classic liE-J

f 0 1 Company Mame: CRONUS International Lid.
W' Customer Count: 63

7@

Chapter 3

In order to get data from another company within NAV, we have to tell it which company we
want access to0. Records have a built-in function called CHANGECOMPANY. This function takes
in a text value that represents the name of the company as a parameter.

In our example, we are going to show the number of customers in every company in NAV.
That's why we have the company record variable. Looping through each record in the dataset,
we pass the name of the company through the CHANGECOMPANY command and display

the customer count. We could just as easily have stored our other company name in a text
constant and passed that value instead. In most cases, though, it is good to store the name
of the company you want to access in a setup table. This way if the company is renamed, your
code will not break.

Remember, just because you are running code on a temporary variable, doesn't mean that the
code defined in that object uses temporary variables. For example, you may define a record
variable as temporary and call the OnDelete trigger using DELETE (TRUE) . If there are
record variables in the trigger that are not defined as temporary, they will delete actual data.

» Retrieving a single record from the database
» Retrieving data using FIND

Merging records

Many times users will unintentionally enter duplicate data into the system. NAV doesn't offer a
built-in way to merge this data, but here we will show you how you can do it yourself.

Getting ready

If you do not have two customer records that you would like to merge together, you must
create them. It is best if these customers have some related entries in other tables, for
example the Contact or Cust. Ledger Entry tables.

(77}

Working with Tables and Records

How to do it...

1. Create a new codeunit from Object Designer.
2. Add the following global variables:

Name Type Subtype Length
CustToKeep Record Customer

CustToRemove Record Customer

CustNoToKeep Code 20
CustNoToRemove Code 20

3. Add the following code to the OnRun trigger of your codeunit:

CustNoToKeep := 'C00010';
CustNoToRemove := 'C00020"';

CustToKeep.GET (CustNoToKeep) ;
CustToKeep.DELETE;

CustToRemove.GET (CustNoToRemove) ;
CustToRemove .RENAME (CustNoToKeep) ;

4. Save and close the codeunit.

First, you have to determine the two customer records that you want to merge. The customer
number that you want to keep is stored in the CustNoToKeep code variable. The customer
number that will be removed from the system is stored in the CustNoToRemove variable.

Now for the part that may seem counter-intuitive at first, we retrieve one customer record from
the database using GET and the number in the CustNoToKeep variable and then delete it!

It is important that we do a DELETE and not a DELETE (TRUE) in this case. By passing the
default value of FALSE to the DELETE command, we only delete this record. This means that
any related records, such as customer ledger entries, remain in the database. They just aren't
tied to an actual customer anymore.

If that part was confusing, this next set of code will make things clearer. Now we get the
customer that we want to remove from the database. Instead of deleting it, we rename it

to the customer number that we wanted to keep. So the record we wanted to get rid of is
"removed" and it takes the place of the one we are keeping. In this case all of the related
records are also renamed, thus merging them with the records that were not removed when
we executed our DELETE statement.

@

Chapter 3

The following diagram may help in further illustrating what the records in the database will
look like at each step along the way:

Customer 1 Customer 2

[

Start ¢

<Ledger Entry <<Ledger Entry <<Ledger Entry < <Ledger Entry<< Ledger Entry<
h R
Orphaned Records Customer 2
DELETE

v v

<Ledger Entry <<Ledger Entry <<Ledger Entry < < Ledger Entry << Ledger Entry <

Customer 1

RENAME ¢ ¢ ¢ I ¢ ¢

<Ledger Entry <<Ledger Entry <<Ledger Entry < <Ledger Entry<< Ledger Entry<
See also

» Creating transactions to alter data

Writing your own rollback routine

NAV does some rollback automatically. But if there is a COMMIT statement in the code, only
the changes after the COMMIT statement is executed will be reversed by the system. This
recipe will show you how to leverage a built-in NAV feature called the Change Log to build your
own rollback routine for those cases.

Getting ready

Turn on the Change Log for table 36, Sales Header.

(7]

Working with Tables and Records

How to do it...

1. Create a new codeunit from Object Designer.

2. Add a function named FilterRecord that takes in the following parameters:

Name Type Subtype
ChangelLogEntry Record Change Log Entry
PrimaryKeylndex Integer

RecRef RecordRef

3. Add the following local variables to the function:

Name Type Length
FieldRef FieldRef

TypeNumber Decimal

PrimaryKeyFieldNo Integer

PrimaryKeyValue c 250

4. Add the following code to the function:

WITH ChangeLogEntry DO BEGIN
CASE PrimaryKeyIndex OF

1: BEGIN
PrimaryKeyFieldNo := "Primary Key Field 1 No.";
PrimaryKeyValue := "Primary Key Field 1 Value";
END;
2: BEGIN
PrimaryKeyFieldNo := "Primary Key Field 2 No.";
PrimaryKeyValue := "Primary Key Field 2 Value";
END;
3: BEGIN
PrimaryKeyFieldNo := "Primary Key Field 3 No.";
PrimaryKeyValue := "Primary Key Field 3 Value";
END;
ELSE EXIT;
END;

IF PrimaryKeyFieldNo 0 THEN

EXIT;

(&)

Chapter 3

IF RecRef.FIELDEXIST (PrimaryKeyFieldNo) THEN BEGIN
FieldRef := RecRef.FIELD (PrimaryKeyFieldNo) ;
CASE FORMAT (FieldRef.TYPE) OF
'Option': BEGIN
FieldRef .SETRANGE (MatchOptionToInteger (FieldRef .OPTIONSTRING,
PrimaryKeyValue)) ;
END;
'Code', 'Text': BEGIN
FieldRef .SETRANGE (PrimaryKeyValue) ;
END;
'Integer', 'Decimal': BEGIN
EVALUATE (TypeNumber, PrimaryKeyValue) ;
FieldRef .SETRANGE (TypeNumber) ;

END;
'Boolean': BEGIN
IF PrimaryKeyValue = 'No' THEN
FieldRef.SETRANGE (FALSE)
ELSE
FieldRef .SETRANGE (TRUE) ;
END;
END;
END;

END;

5. Add a function named MatchOpt ionToInteger with the following parameters:

Name Type Length
OptionStringln Text 250
Option Text 250

6. Add the following local variables to the function:

Name Type Length
Optionindex Integer
OptionEndPosition Integer
OptionValue Text 250
OptionString Text 250

7. Setthe return value of the function to be an integer.

s

Working with Tables and Records

8. Add the following code to the function:
REPEAT
OptionEndPosition := STRPOS (OptionStringIn, ',');
IF OptionEndPosition = 0 THEN
OptionEndPosition STRLEN (OptionStringIn) ;
OptionValue := COPYSTR (OptionStringIn, 1,
OptionEndPosition - 1);

IF OptionValue = Option THEN
EXIT (OptionIndex)
ELSE
OptionStringIn := COPYSTR(OptionStringlIn,
OptionEndPosition + 1);

OptionIndex += 1;
UNTIL OptionStringIn = '';

I

EXIT(-1) ;

9. Add a function named ReverseEntry with the following parameters:

Name Type Subtype
ChangelLogEntry Record Change Log Entry

10. Add the following local variables to the function:

Name Type
RecRef RecordRef
FieldRef FieldRef
TypeNumber Integer

11. Add the following code to the function:
WITH ChangeLogEntry DO BEGIN
RecRef .OPEN ("Table No.") ;
FilterRecord (ChangeLogEntry, 1, RecRef);
FilterRecord (ChangeLogEntry, 2, RecRef);
FilterRecord (ChangeLogEntry, 3, RecRef);

IF RecRef.FINDFIRST THEN

[

Chapter 3

IF "Type of Change" = "Type of Change"::Modification THEN

BEGIN
FieldRef := RecRef.FIELD("Field No.");

CASE FORMAT (FieldRef.TYPE) OF

'Code', 'Text': BEGIN
FieldRef.VALUE := "Old Value";
END;
'Option', 'Integer', 'Decimal': BEGIN
EVALUATE (TypeNumber, "Old Value");
FieldRef .VALUE := TypeNumber;
END;
'Boolean': BEGIN
IF "Old Value" = 'No' THEN
FieldRef .SETRANGE (FALSE)
ELSE
FieldRef .SETRANGE (TRUE) ;
END;
END;
RecRef .MODIFY;
END;
ELSE
ERROR ('No record found!') ;
END;
END;

12. Add a function named Rol lback that takes the following parameters:

Name Type
EntryStart Integer
EntryEnd Integer

13. Add the following local variables to the function:

Name Type
ChangelLogEntry Record

Subtype
Change Log Entry

&)

Working with Tables and Records

14. Add the following code to the function:

ChangeLogEntry.SETRANGE ("Entry No.", EntryStart, EntryEnd);
ChangeLogEntry.ASCENDING := FALSE;
IF ChangeLogEntry.FINDFIRST THEN

REPEAT

ReverseEntry (ChangeLogEntry) ;

UNTIL ChangeLogEntry.NEXT = 0;

15. Add the following code to the OnRun trigger:
Rollback (149, 199);

16. Save and close the codeunit.

NAV has a built-in functionality to track changes to records called a Change Log. It must be
turned on for tracking specific tables and fields. We can build on this functionality to create
our own rollback routine. Each entry in the Change Log Entry table represents a change to a
record. It stores the first three fields of the primary key, the field that was changed, the original
value, and the new value. As we do not know what table or field was changed before we look
at the record, we will rely heavily on Record References and Field References. This example
is very basic and does not cover every possible field type or change that can be made,

but it will get you started in developing your own. Let's look at each function to get a

better understanding.

We'll start with the FilterRecord function. We tell this function which of the primary key
fields to filter on. The first CASE statement pulls the primary key value from the Change Log
Entry and stores it in a temp variable. If that field exists we then take appropriate actions
based on what type of field it is. For example, in the Change Log, option values are stored as
strings so we must match that string to the actual integer value of the OptionString.

That brings us to our next function, MatchOptionToInteger. This is a simple helper
function. An OptionString is a comma-separated list. In this function, we parse the
OptionString that removes all the text in it until we find a comma. The text we find
represents a single option. We continue this process until we find the option we want, that is
the one stored in the Change Log Entry.

Now that we have these helper functions, we need to use them to actually reverse an entry.
Using the ReverseEntry function we tell the codeunit to filter for the record described by the
primary key fields in the Change Log Entry. We do this three times to account for each of the
primary key fields. After these filters are applied, we attempt to find the record and change its
value. Again, because all of the values are stored as text we have to convert the data to the
appropriate data type in order to change the value.

Our final function, Rol1back, simply loops through all of the Change Log entries we tell it to
and calls the ReverseEntry function on each of those records.

=

See also

>

>

>

Repeating code using a loop

Checking for conditions using an IF statement
Creating a function

Referencing dynamic fields and tables
Creating transactions to alter data

Retrieving a single record from the database
Using advanced filtering

Retrieving data using FIND

Chapter 3

&1

Designing Forms

In this chapter, we will cover:

» Obtaining input without a form

» Using the Form Generation Wizard

» Changing text appearance

» Preventing editable lookup forms

» Adding an editable field to a non-editable form
» Creating a matrix form

» Creating a wizard-style form

» Designing a form based on a temporary table
» Updating a subform from a parent form

» Updating a parent form from a subform

Introduction

Forms are a predominant visual element in Dynamics NAV. They allow the user to view, insert,
modify, and delete data from the tables in the database. Forms also allow the user to initiate
events that perform actions on that data.

There are 937 tables in the base NAV software and 1,820 forms that display information
from those tables. Apart from learning how to create a form using the wizard, this chapter will
not discuss the basic elements of form design. That information can be found in the C/SIDE
Reference Guide and Development Coursework from Microsoft.

Designing Forms

If you have not designed a form before, it is highly recommended
s that you go through the chapters based on forms first.

With NAV 2009, Microsoft released the RoleTailored client, or RTC. This was a huge change
from the existing NAV product. In this release, Microsoft introduced the RTC as a second client
or interface in addition to what is called the Classic client, or more traditional interface. While
the future of NAV is definitely with the RTC, it is still important to understand what forms are
and how they work, in order to support customers who might not upgrade to the latest version
of the product.

Obtaining input without a form

Sometimes you don't want to use an entire form to get user input. Dialog boxes are not a
substitute for forms, but they work just fine for quick input.

How to do it...

Create a new codeunit from Object Designer.

Add the following global variables:

Name Type Subtype Length
Customer Record Customer

CustomerNo Code 20
Window Dialog

3. Add the following code to the OnRun trigger of the codeunit:

Window.OPEN ('Customer No: #1##H##H#HH#H#H#HEHIHIAHEHS") ;
Window.INPUT (1, CustomerNo) ;
Window.CLOSE;

IF Customer.GET (CustomerNo) THEN

MESSAGE ('Customer Name: %1', Customer.Name)
ELSE

MESSAGE ('No customer found!) ;

4. Save and close the codeunit.

(e

Chapter 4

The first line of code opens an input dialog window that looks like one shown in the
following screenshot:

Micrasoft Dynamics NAV Classic

Customer Mo:. . . .

Cancel

The next line lets the user input a value and stores it in the CustomerNo variable. The dialog
window then closes and the result can be used later in code.

There's more...

As you can tell from the input window, dialogs are much weaker than forms when it comes

to functionality. You can't do lookups, data validation, or anything other than basic text input.
From a licensing aspect, forms are one of the cheapest objects to buy. They also don't match
the look and feel for the rest of the system. For these reasons it is almost always better to use
a form than an input dialog, but it is important to know what you can do using dialogs.

See also

» Displaying a Progress Bar

Using the Form Generation Wizard

You can always create a form manually, but using the Form Generation Wizard is a quick and
painless way to create the skeleton.

]

Designing Forms

How to do it...

1. With the form selected in Object Designer click the New button.

MNew Form E\ @
Table.]
Form

(@) Create a blank form
(") Create a form using a wizard:

Card-Type Form -

Tabular-Type Farm

[QK] [Cancel] [Help

2. Choose the Customer table.
3. Select Create a form using a wizard.
4. Select Tabular-Type Form.
5. Click OK.
Tabular-Type Form Wizard = =R ==
a“’ Which fields from table Customer do you want on your form?
Available Fields Field Crder
. -
Name | T
i =
Search Name A
Mame 2 3
Address
L
Address 2 B
City - -
< Back MNext = Preview] [Finish] [Cancel] [Help

5]

Chapter 4

6. Use the arrow buttons between the two lists to add the No. and Name fields.

Form O - Form Designer E\@
Ma. Mame : 1
=<MNo."> =<Name™> -l bl

o . E——

< [b

7. Click on Finish.

The Form Generation Wizard allows you to tell the system what fields you want on the form
and the format or order in which you want them to appear. NAV will then automatically place
the fields on the form for you. There is no manual positioning of labels or textboxes; no
creating tabs or list boxes. It is all done automatically.

There's more...

The wizard will only create a basic form for you. If you need to create special functions or do
any specific data validation, you will have to code that manually. A wizard is only designed to
get you started, not to do anything advanced.

See also

» Creating a matrix form

» Creating a wizard-style form

i

Designing Forms

Changing text appearance

A great way to improve the user experience is to change the way text appears on the screen.
This recipe will explore several options that are available to you.

Getting ready

Design the Customer List form and save it as a new object.

How to do it...

1. Design the copy of the Customer List form.
2. Create a function named GetColor that returns an integer.
3. Add the following code to the function:

IF "Location Code" = 'BLUE' THEN
EXIT(16711680)

ELSE IF "Location Code" = 'GREEN' THEN
EXIT (65280)

ELSE IF "Location Code" = 'RED' THEN
EXIT(255)

ELSE IF "Location Code" = 'YELLOW' THEN
EXIT(65535)

4. Create a function named GetBold that returns a boolean value.
5. Add the following code to the function:
EXIT ("Credit Limit (LCY)" > 1000);
6. Inthe OnFormat trigger for the name column, add the following code:

CurrForm.Name .UPDATEFORECOLOR (GetColor) ;
CurrForm.Name . UPDATEFONTBOLD (GetBold) ;

7. Save and close the form.

The trigger that controls the appearance of text is the OnFormat trigger. The first function
we use is UPDATEFORECOLOR. This method is found on every text field in a form. It takes
one parameter—the color we want the text to be. In our example, we pass a function as the
parameter and that function returns the color we should use.

UPDATEFONTBOLD works in a similar way. It takes a boolean parameter that tells the form
whether or not to emphasize the text.

[

Chapter 4

The resulting form will look similar to the one shown in the following screenshot:

Customer List EI@
Mo. Mame Responsi... Location ... Phone No. Contact
41597332 MEbel Scherrer AG BLUE Herrn Stefan Delmarco -
42147258 EYT-KOMPLET s.r.o. RED Milas Silhan
42253258 1 &V v.0.5, RED Petr Karasek
42369147 PLECHKOMSTRUKT a.s. RED Michal Relich
43687129 Designstudio Gmunden RED Fr. Birgitte Vestphael
43852147 Michael Feit - Mébelhaus RED Hr. Carl Langharn
43571144 Mdbel Sieafried RED Hr. Dr. Danigl Weisman |=
44171511 Zuni Home Crafts Ltd. BLIUE Mr. James R. Hamilton
44180220 Afrifield Corporation BLUE Mrs. Ariane Peeters
] : London Light Company BLUE Mr, Mathew Charles -
Fi 10 3
Customer v| | Sales vl | Help

There's more...

The look and feel of a system is important for user satisfaction. Finding ways to make the
information easier to understand, such as displaying the text in the same color as the
warehouse location, can improve user understanding and decrease the time it takes to look
up information.

That said, don't go overboard. Having a form with multiple colors that have no direct

relation to the data can be confusing. You don't want to the user to have a "cheat sheet" of
what everything means. If it takes longer than a couple of minutes to explain what certain
characteristics mean and you can't remember them an hour later, then you probably have
gone too far. It also makes your upgrade-time to the RoleTailored client longer because display
colors only have limited support.

See also

» Converting a value to a formatted string

Preventing editable lookup forms

You may want users to only add records when running a form from a setup location. This
example will show you how to prevent users from adding or modifying values when only trying
to look up a record.

55}

Designing Forms

Getting ready

This example will use the Salesperson/Purchasers form (14).

How to do it...

1. Design the Salesperson/Purchasers form from Object Designer.
2. Inthe onOpen trigger for the form, add the following code:

IF CurrForm.LOOKUPMODE THEN
CurrForm.EDITABLE := FALSE;

3. Save and close the form.

The code here is pretty self-explanatory. If the form is in lookup mode, it will not be editable.

There's more...

The Lookup mode is a special mode in which forms can run. Essentially, when in lookup
mode, the OK and Cancel buttons are displayed; when not in lookup mode, they are hidden.
When using these buttons you can retrieve the selected value from the form. It is often a good
idea to make forms uneditable in lookup mode, although you will find many forms in base NAV
where this is not the case. When the purpose of running a form is only to retrieve a value, it

is a good idea to make sure that the form is not editable to make sure those values are not
accidentally changed.

See also

» Checking for conditions using an IF Statement
» Adding an editable field to a non-editable form

Adding an editable field to a non-editable

form

Have you ever needed to make a form uneditable rather than just one field? This recipe will
show you a quick and easy way to do it.

Chapter 4

Getting ready

Create a list form based on the Customer table that displays the number and name of the
customer. The Editable property of the form should be set to No.

How to do it...

View the code for the Name column in the list form.
In the onActivate trigger, add the following code:
CurrForm.EDITABLE := TRUE;

3. Inthe onDeactivate trigger add the following code:
CurrForm.EDITABLE := FALSE;

4. Save and close the form.

When you click on a textbox its OnActivate trigger is executed. In our form, we have told the
system to override the default Editable property when we click on the textbox. We set it to
true so that the field becomes editable. In fact, the entire form becomes editable. We must
make the entire form editable because that overrides the editable property of the controls on
the form.

But when we click-off or tab-off of the field the OnDeactivate trigger fires. We then reset the
form back to uneditable. Whenever the field is activated you can edit it, otherwise you cannot
edit anything.

In the RoleTailored client there is no OnActivate or
OnDeactivate trigger. You will have to do it the hard way,
’ that is, by setting the Editable property on every field.

» Preventing editable lookup forms

Creating a matrix form

A matrix shows information from multiple tables at the same time. This recipe will show you
how to create a matrix that shows the amount a customer has spent on specific items.

[55]-

Designing Forms

How to do it...

1. Add a global function cCalculateData that returns a text variable.
2. Add a global function ColumnHeader that returns a text variable.

Toal... @
k
A sl

3. Add a matrix box to the form.
4. Set the following properties on the matrix box control:

Property Value

Name MatrixBox
Editable No
MatrixSourceTable Item

Form 50408 Matrix Form - Form Designer EI@

< [l b

5]

Chapter 4

5. Set the following property on the form:

Property Value
SourceExpr Customer
Form 50408 Matrix Formn - Form Designer EI@
Mo, Name o i
=<Mo."> =<MName"> ey |
|
-
Field Menu -]
Field Caption Data Type
. v [code2o |
pMame Name [Textso |
Search Name Search Mame Code50
Mame 2 Mame 2 Text50
Address Address Text50 |
Address 2 Address 2 Texts0 3
< [l City City Test30
Contact Contact Texti0
Phone No. Phane Mo, Text30
Telex Mo, Telex Mo, Text20 il
Our Account Ma. Our Account Na., Text20 -
L OK Cancel Apply
. T

6. Add the No. and Name fields to the left-hand side of the matrix box using the
Field menu.

7. Add a textbox to the right-hand side of the matrix box.
Set the following property on the textbox:

Property Value

SourceExpr CalculateData

9. Add a textbox as a column header above that textbox.

o7}

Designing Forms

10. Set the following property on the textbox:

Property Value
SourceExpr ColumnHeader
Tool... =] Forrn 50408 Matrix Form - Form Designer
Mo, Name !
A =<Mo."> ==Name:> . -
B i
R
7 [} [
v - |
= [
H i e i
4 3
o A

11. Add the following code to the ColumnHeader function

EXIT (CurrForm.MatrixBox.MatrixRec."No.") ;

12. Add the following local variables to the CalculateData function:

Name Type Subtype
ltemLedgerEntry Record Iltem Ledger Entry
TotalSales Decimal

13. Add the following code to the CalculateData function

ItemLedgerEntry.RESET;

ItemLedgerEntry.SETCURRENTKEY ("Source Type", "Source No.",
"Item No.", "Variant Code", "Posting Date");

ItemLedgerEntry.SETRANGE ("Source Type", ItemLedgerEntry."Source
Type"::Customer) ;
ItemLedgerEntry.SETRANGE ("Source No.", "No.");

ItemLedgerEntry.SETRANGE ("Item No.",
CurrForm.MatrixBox.MatrixRec."No.") ;

ItemLedgerEntry.SETRANGE ("Entry Type", ItemLedgerEntry."Entry
Type"::Sale) ;

IF ItemLedgerEntry.FINDSET THEN

Chapter 4

REPEAT
ItemLedgerEntry.CALCFIELDS ("Sales Amount (Actual)");
TotalSales := TotalSales + ItemLedgerEntry."Sales Amount

(Actual) ";
UNTIL ItemLedgerEntry.NEXT = O;
EXIT (FORMAT (TotalSales)) ;

14. After running the resulting form, you should see something similar to the
following screenshot:

[Z5 10000 The Cannon Group PLC - Matrix Form EI@

Mo, Mame 1964-W 1968-5 1968-W 19725 1972-W
» 10000 The Cannon Group PLC 4,500 541.73
20000 Selangorian Lid, 0
30000 John Haddock Insurance Co.
40000 Deerfield Graphics Company
50000 Guildford Water Department
60000 Blanemark Hifi Shop
61000 Fairway Sound
62000 The Device Shop
01121212 Spotsmeyer's Furnishings
01445544 Progressive Home Furnishings
01454545 Mew Concepts Furniture
01905893 Candoxy Canada Inc.
01905899 Elkhorn Airport
01905902 London Candoxy Storage Campus
20309920 Metatorad Malaysia Sdn Bhd
20312912 Highlights Electronics Sdn Bhd
20339921 TraxTonic Sdn Bhd
21233572 Somadis

m

[e R o o [o O O R |

0
0
0
0
0
0
0
0
0
0 190.1
0
0
0
0
0
0
0
0

[[y o R [o R e Y o Y o [o o O e Y o R Y R]

a
0
a
a
a
a
a
0
a
a
a
a
a
0
a
a
a

o o o o o o o o oo oo oo oo
o o o o o o oo

&

10 3

A matrix form consists of two tables and some calculation based on those two tables. One set
of records runs vertically along the left-hand side of the matrix box while the other set runs
horizontally across the top. A grid is displayed on the rest of the form displaying a calculated
value. We'll examine each of these pieces individually.

We begin by creating a normal form that is bound to the Customer table. For this special form
we add a matrix box control. The left-hand side operates exactly the same as a standard list
form. It will display all of the customers and there will be a scrollbar to look through the list.
As we don't want the user to change anything on this form, we set the Editable property of
the matrix box to No. We will also have to write code that refers to this control so we must give
it a name.

s

Designing Forms

Also, the matrix box itself operates on a table. In this case it is the Item table. As there is
so much data stored in a table, we have to tell the control what we want to see. That's why
we add a textbox as a column header to the top of the form. The source expression for that
textbox is the ColumnHeader method. Let's take a look at the code there.

EXIT (CurrForm.MatrixBox.MatrixRec."No.") ;

CurrForm is the current form. MatrixBox is the value in the name property of our matrix
box control. MatrixRec is the record in the matrix box that we are referring to (just like rec
on a normal form). Finally, No. is the field from the MatrixSourceTable property(in this
case the Iltem No). So our column headers will just be the ltem Number from the Item table.

Lastly, we have to tell the form how to calculate the data we want to see. We add another
textbox to the form and give it a source expression of CalculateData, which is a function on
our form. This function could return anything, but in our case it returns the amount a customer
has spent on a specific item. Let's take a look at the important code that combines the data
from both tables.

ItemLedgerEntry.SETRANGE ("Source No.", "No.");

ItemLedgerEntry.SETRANGE ("Item No.",
CurrForm.MatrixBox.MatrixRec."No.") ;

The Item Ledger Entry table already has fields that refer to the Customer table and to the
Item table. The first filter uses the No. field from the source table (Customer). The second
filter determines the current Item Number from the matrix box and uses it. Later in the
function, a number is calculated and returned as a text variable.

» Using the Form Generation Wizard
» Creating a function

Creating a wizard-style form

A wizard is a form that steps you through specific sections using Next and Back buttons. Here
we will show you how to design a form which will do exactly that.

100

How to do it...

1. Add a frame to the form.

Toal... @

>

Form 0 - Form Designer

(= [@][=]

I Control 1000000000

4

2. Set the following properties on the textbox:

Property Value
ShowCaption No
Name Framel

3. Add a label to the frame with the caption "Frame 1".

4. Set the following properties on the Label:

5. Copy the frame and paste two copies of it on the form.

Property Value

Caption Frame 1

Change the labels in the new frames to be Frame 2 and Frame 3.

Chapter 4

7. Change the Name properties of the frames to Frame2 and Frame3 respectively.

Designing Forms

8. Your form should look like the one shown in the following screenshot:

Formn 50409 Wizard Form - Form Designer EI@
2 _— e
4

Frame1. ...) o Frame2

4 L} 3

9. Add four buttons to the form beneath Frame 1. The name and caption properties on
each should be Back, Next, Finish, and Cancel respectively.

Form 50409 Wizard Form - Form Designer EI@
4
et e

4 m 2

102

Chapter 4

10. Add the following code to the OnOpenForm trigger:

11.

12.

CurrForm.
CurrForm.
CurrForm.
CurrForm.
CurrForm.
CurrForm.

CurrForm.

CurrForm.

Framel.
Framel.
Frame2.
Frame2.
Frame3.
Frame3.

HEIGHT

WIDTH

WizardStep := 1;
ShowStep (TRUE) ;

XPOS
YPOS
XPOS
YPOS
XPOS
YPOS

:= CurrForm.Cancel.YPOS +
CurrForm.Cancel .HEIGHT + 220;

:= CurrForm.Cancel .XPOS + CurrForm.Cancel.WIDTH

+ 220;

Add a function named ShowStep that takes in a boolean value named Show as
a parameter.

Add the following code to the function:

CASE WizardStep OF
1: BEGIN

CurrForm.
CurrForm.
CurrForm.
CurrForm.
CurrForm.
CurrForm.

END;

2: BEGIN

Framel.VISIBLE
Frame2 .VISIBLE
Frame3 .VISIBLE
Back.ENABLED :=
Next .ENABLED :=
Finish.ENABLED

CurrForm.
CurrForm.
CurrForm.
CurrForm.
CurrForm.
CurrForm.

END;

3: BEGIN

CurrForm.
CurrForm.

Framel.VISIBLE
Frame2 .VISIBLE
Frame3 .VISIBLE
Back.ENABLED
Next .ENABLED
Finish.ENABLED

Framel.VISIBLE
Frame2 .VISIBLE

Show;

:= NOT Show;
:= NOT Show;

NOT Show;
Show;
NOT Show;

NOT Show;
Show;

NOT Show;
Show;

Show;

NOT Show;

NOT Show;
NOT Show;

Designing Forms

CurrForm.Frame3.VISIBLE := Show;

CurrForm.Back.ENABLED := Show;

CurrForm.Next .ENABLED := NOT Show;

CurrForm.Finish.ENABLED := Show;
END;

END;

13. Add the following code to the onPush trigger of the Back button:
ShowStep (FALSE) ;
WizardStep -= 1;
ShowStep (TRUE) ;

14. Add the following code to the onPush trigger of the Next button:
ShowStep (FALSE) ;
WizardStep -= 1;
ShowStep (TRUE) ;

15. Add the following code to the onPush trigger of the Finish button:
CurrForm.CLOSE;

16. Add the following code to the onPush trigger of the Cancel button:
CurrForm.CLOSE;

17. Save and close the form.

The form contains three frames, only one of which is visible at any given time. In the design
view, you can see that our form is quite wide and tall, but that would not look right when
displaying a wizard form. That's why we place code in the OnOpenForm trigger.

The first set of lines places all of the frames on top of each other. The middle set changes the
width and height of the form. Finally, the third sets the appropriate frames to be visible or not
and enables the correct buttons.

Our custom method ShowStep decides what should be visible and what should not. It is just
a large CASE statement based on the WizardStep variable. On the first frame for example,
we can't move backwards to disable the Back button. We can't finish until we get to the last
frame so that the Finish button is disabled until that point.

On the Back and Next buttons we decrement and increment the WizardStep variable so
that the showStep method knows what to do. Other than the initial opening of the form we
always call the function with FALSE as a parameter to "undo" what is currently displayed,
change the WwizardStep variable, and call the function with parameter TRUE to display
new information.

Chapter 4

» Using the Form Generation Wizard

» Creating a function

Designing a form based on a temporary

table

You may not always have the luxury of being able to save all of the information you need to the
database. At other times you may want to calculate data on the fly and present it to the user in
a form. Temporary tables come into play here and there is a special way to show their data on
a form.

How to do it...

Follow the steps from the Using the Form Generation Wizard recipe in this chapter.

View the form properties by pressing Shift + F4.
Set the following properties on the form:

Property Value

SourceTableTemporary Yes

Add a global function named LoadData.
5. Add the following local parameters to the function:

Name Type Length
NoParam Code 20
NameParam Text 50

6. Add the following code to the function:

"No." := NoParam;
Name := NameParam;
INSERT;

7. Add the following code to the OnOpenForm trigger:

AddCustomer ('l', FIELDCAPTION (Name) + '1');
AddCustomer ('2', FIELDCAPTION (Name) + '2');
AddCustomer ('3', FIELDCAPTION (Name) + '3');

8. Save and close the form.

Designing Forms

By setting the SourceTableTemporary property to Yes we tell the form not to check the
database for data when it loads. Just as with a normal record variable marked as temporary,
there is no data to begin with. We have to tell the form what kind of data we want to see.

That's where the AddCustomer function comes in. When we open the form (OnOpenForm
trigger) we load three customers into the temporary table. These customers will never be
stored to the actual database. You can modify, delete, rename, or even add more customers,
but these changes will be temporary.

See also

» Creating a function
» Creating transactions to alter data
» Using temporary tables to store data

Updating a subform from a parent form

Subforms only reload data when they know they need to. Unfortunately they are not very
smart. This recipe will show you how to force a subform to refresh itself.

How to do it...

1. Create a new form from Object Designer.
2. Add the following global variables:

Name Type
A Integer
B Integer

3. dd a global function named Setvalues.
4. Add the following parameters to the function:

Name Type
Aparam Integer
Bparam Integer

106

10.
11.
12.

13.
14.

15.
16.

Add the following code to the function:

A := Aparam;
B := Bparam;

Add a global function called UpdateSelf.
Add the following code to the function:
CurrForm.UPDATE;

Set the following properties on the form:

Property Value
Width 5720
Height 1430

Your form should look like the following screenshot:

& Form 50404 Child Form.... [)(B)[X).
~

Save and close the form (for later use, remember the ID it is saved under).

Create a new form using the Object Designer.
Add the following global variables:

Name Type
A Integer
B Integer

Add two textboxes with labels for each variable.

In the onAftervalidate trigger for each textbox add the following code:
CurrForm.ChildForm.FORM. SetValues (A, B) ;

CurrForm.ChildForm.FORM.UpdateSelf;
Add a Subform control to the form.

View the properties for the Subform control.

Chapter 4

Designing Forms

17. Set the following properties on the form:

Property Value

SubFormID The ID of the form you just created
Name ChildForm

wWidth 5720

Height 1430

18. Your form should look like the one shown in the following screenshot:

@

&= Form 50403 Parent For... |Z||E|E

T | T
Bro s e |-

19. Save and close the form.

To understand the concepts behind this recipe we use the following image:

Main Form

Integer A Integer B

L OnAftervalidate ————

e Subform 0
Integer A ¢ SetValues(Aparam, Bparam) [«
Integer B
UpdateSelf <
. J
. J

108

Chapter 4

The main form knows only about things that are directly on itself; that is, two integer variables
and a subform. The main form can request the subform to return some values and can also
tell the subform to set values if it needs to, but it cannot do it directly.

The subform also only knows about things on its own form. Those are the two integer
variables (completely different and separate than the two integer variables on the main form),
the setvalues function, and the UpdatesSelf function. While the main form can request
information from the subform, the opposite does not hold true. The subform knows nothing
about the main form.

That explains why we add code where we do. For the subform to display the sum of A and B,
we have to tell it what the values of A and B are. Remember that just changing the values
on the main form is not enough. That's why we have the setvalues function. We call this
function every time the values are changed (OnAftervalidate) in the main form.

That again is not enough, though. Just because the values have changed in the subform
doesn't mean the subform is smart enough to understand that it must display the new
information. Ordinarily you would have to click on the subform (or select it; anything that
makes it the active control on the page) for it to refresh. You can also do this with code, using
the CurrForm.UPDATE command. There is a problem, though, when using it on a subform.
Using the suggested code would generate the following error:

CurrForm.ChildForm.FORM.SetValues (A, B) ;
CurrForm.ChildForm.FORM.UPDATE;

@

Microsoft Dynamics NAY Classic

L E Afn) subFormControl cannot be updated {only data controls can be updated).
*

Hence, we have to create a wrapper function on the subform that can be called outside the
subform. That's the UpdateSelf function.

» Creating a function

» Updating a parent form from a subform

Designing Forms

Updating a parent form from a subform

Subforms do not know about their parent form and there is no way to pass a reference of the
parent form to a subform to "link" the two. Instead we have to go an unconventional route
which is described in this recipe.

How to do it...

Create a new form using the Object Designer.

Add the following global variables:

Name Type Subtype

A Integer

B Integer

XMLDoc Automation 'Microsoft XML, v6.0'.DOMDocument60

3. Add a global function named SendMessage with the following code:
XMLDoc . loadXML ('<root></root>"') ;

4. Add a global function named GetAa that returns an integer with the following code:
EXIT(A) ;

5. Add a global function named GetB that returns an integer with the following code:
EXIT(B) ;

6. Add a global function named setXMLDoc that takes in the following parameter:

Name Type Subtype
XMLDocParam Automation 'Microsoft XML, v6.0'".
DOMDocument60

7. Add the following code to the function:
XMLDoc := XMLDocParam;
Add two textboxes to the form.
9. Setthe SourceExpr property on each of them:

Property Value
SourceExpr A (for textbox A)
SourceExpr B (for textbox B)

Chapter 4

10.

11.

12.
13.
14.

15.

16.

17.

18.

19.

Add the following code to the OnAftervalidate trigger for each textbox:
SendMessage;

Your form should look similar to the one shown in the following screenshot:

Form 50408 Main Form U...| = |[& [[s25s]
a~

|.q e | —ch

Save and close the form. Remember the ID for the next form.
Create a new form using the Object Designer.
Add the following global variables:

Name Type Subtype

XMLDoc Automation 'Microsoft XML, v6.0'.DOMDocument60
A Integer

B Integer

Set the following property on the variable:

Property Value
WithEvents Yes

Add the following code to the OnOpenForm trigger:

CREATE (XMLDoc) ;
CurrForm. Subform.FORM. SetXMLDoc (XMLDoc) ;

Add the following code to the OnCloseForm trigger:

CLEAR (XMLDoc) ;

Add the following code to the XMLDoc : : OnReadyStateChange event:
IF (XMLDoc.readyState = 4) THEN BEGIN

A := CurrForm.Subform.FORM.GetA() ;
B := CurrForm.Subform.FORM.GetB() ;
CurrForm.UPDATE;

END;

Add a textbox to the form.

Designing Forms

20. Set the following properties on the textbox:

Property Value
SourceExpr A+B
Editable No

21. Add a subform control to the form.
22. Set the following property on the textbox:

Property Value

SubFormID The id of the form you just created

23. Make sure the width and height of the subform control match the width and height of
the actual subform.

24. Your form will look similar to the one shown in the following screenshot:

Form 50407 Main Form Up... | = || & |[s23]

Bum e e s [=<AdB>

25. Save and close the form.

Let's understand how these steps allow us to complete the task or solve the problem.

When we open the form we have to create an instance of our Automation variable. We then
copy the XMLDoc to the subform to make sure that each form refers to the same automation.

By setting the withEvents property on the XMLDoc in the parent form we get two "functions"
added to our object. These cannot be called directly, but instead are called when certain
things happen. In this case, we are concerned about the OnReadyStateChange event. First
we check to see if the ReadyState is equal to 4, which stands for complete. When that
happens we get the new values from the subform and call an UPDATE.

Chapter 4

But how do we fire that event? After we validate the number that is input by the user, we call
our custom SendMessage function. This calls the LoadXML function on our XMLDoc variable.
Every time you load a new value (even if it is the same value as before) the state changes and
the onReadyStateChange event is executed.

See also

» Creating a function
» Updating a subform from a parent form

Report Design

In this chapter, we will cover:

>

Using the Report Generation Wizard
Adding custom filters to the request form
Setting filters when a report is loaded
Creating a report to process data
Displaying a check mark on a report
Dynamically showing sections on reports
Grouping data to display totals

Adding page totals to reports

Display page X of Y

Using virtual tables to loop through data

Adding a watermark to a report

Introduction

Although reports are similar to forms, they serve a different purpose in NAV. Forms exist
primarily for data entry while reports show a higher level view of what is going on in the
database. Reports can be customer-facing documents such as order confirmations and
invoices, or used for internal analysis like Aged Accounts Receivables and Aged Accounts
Payable. They can also be used to process large amounts of data.

Report Design

As a developer, it is your job to design the layout and business logic of these reports.
Development of reports builds upon the same principles of development for other object
types. Just as with every other object type, you can define variables and functions and add
code to triggers. The layout design is just like building a form. You use the toolbox to add
textboxes, labels, and other controls.

It is important to note that the report designer for the Classic client is significantly weaker
than the one for the RoleTailored client. In this chapter, we'll show you how to build different
types of reports as well as how to perform some advanced integration with PDF documents.
Many of the advanced recipes in this chapter are done trivially with the report designer in
Visual Studio for the RTC, but you will not always have the luxury of supporting clients that are
only on the latest version of the software. We will note in many of the recipes how to perform
them in the RoleTailored client, but for more on the subject you can read Chapter 12, The
RoleTailored Client.

Using the Report Generation Wizard

When you need to create a quick report, the Report Generation Wizard can help. Instead of
adding fields manually, you can make a useful report in a matter of minutes.

How to do it...

1. Create a new report using the Object Designer.

EE Mew Report g@@

@

Repart

lff)‘f:realze a blank report

lC)Create a report using wizard:

Form-Type Report Wizard
Tabular-Tvpe Report wWizard
Label-Type Report Wizard

2. Inthe Table field, select the Customer table.

3. Select Create a report using wizard.

Chapter 5

4. Click OK.

&

& Form-Type Report Wizard

QM ‘hich Fields from the Customer kable do you want in wour repork?
Available Figlds Field Order

~
Colurnn Break.

[ame W

Search Mame

Mare 2

Address
Address 2 B
ity i il
[et =] [Prewjew] [Finizh] [Cancel] [Help

5. Select the No. and Name fields using the buttons in the middle of the screen.
6. Click Next.

2 Form-Type Report Wizand

QM Do wou wank a special sorting of vour data?

{(®)¥es, T want ry data sorted according bo the Following:

[, ~
Search Mame =
Custormer Posting Group i

{#) Ascending
{_iDescending

{IMo, I don't wank a special sorting of my data.

Prewvigw] [Finish] [Cancel] [Help]

Report Design

7. Select No. from the list of sort options.

8. Click Finish. You will be presented with a report that looks like the one shown in
following screenshot:

Mame
<iCuskomer =

&= Report 0 - Section Designer, |Z||E|fz|
-~

Customer, Header (1)
ustomer =<FORMATTODAY 04—
<COMPANY NAWIE

=<USERID*

Customer, Body (2)
Mo =Mo"

MNarme =<"Name"r

The Report Generation Wizard starts in a way similar to the Form Generation Wizard. You
must select the table that you want to base the report on and what type of report you want to
create. In this example, we'll generate a form-type report.

On the next page, you select the fields that you want to see on the report. You are only
creating a basic report so you may choose to add only the No. and Name fields. If you want to
add more fields after the wizard is complete you can easily do so. The section designer works
exactly like the form designer. You can use the Toolbox to add labels and textboxes or the
Field Menu to add fields from the data item.

The third and final page lets you select how you want to order the data. You can choose any
of the keys defined on the table to sort data. If you want to change this later you can view the
properties of the data item and change the DataItemTableView property.

When you click Finish you will be presented with the final report. You can use the Ctri+R
shortcut key and then click on Preview to see what the report will look like.

Chapter 5

There's more...

Although the wizard is limited in functionality, it is a very useful tool. You can quickly and easily
create reports that conform to NAV standards and contains a lot of useful information such as
the company name, page numbers, and user ID of the person running it.

See also

» Using the Form Generation Wizard
» Exporting data using the Excel buffer

» Building the report layout

Adding custom filters to the request form

Sometimes you want the user to be able to filter on something that is not a field in a table.
This recipe will show you how to add a filter to the request form for such a purpose.

How to do it...

1. Create a report by following the Using the Report Generation Wizard recipe.

2. Add the following global variable:

Name Type Length
CustomerNofFilter Code 250

3. Click on View | Request Form (Alt +V, Q).
Add a textbox with a label for the Request Form.
5. Set the following property on the textbox control:

Property Value

SourceExpr CustomerNoFilter

6. Set the following property on the label control:

Property Value

Caption Customer No. Filter

Report Design

7. Your request form should look like the following screenshot:

F_E B Report 50501 Request Form Filters - Request Options Form Designer E|@|E|

|_5J kuﬂumetNo,FMer. l]|=iCuﬂDmerNoFMer}[

8. Add the following code to the OnPreDataItem trigger for the customer data item:

IF CustomerNoFilter <> '' THEN
SETFILTER("No.", '%1', CustomerNoFilter) ;

9. Save and close the report.

The Request Form is just a normal form. You design it in the same way you would for any
other form.

Our example is basic. We could just as easily add the No. field to the filters on the data item.
Instead we store the filter in a global text variable and then use that text variable to properly
set the filter before loading the data by adding the code to the OnPreDataItem trigger. The
trick is to set the filter only if the user has filled something in. If the filter was left blank, and

we filtered for blank, we would get an empty recordset.

Ordinarily when you run a report assuming you have added fields to the ReqFilterFields
property and nothing has been added to the request form, you would see a window similar to
the following screenshot:

120

r

Request Form Filters |Z”E|El
Cuskamer |
Field Filker
@ND E]
[Print. ..] [Prewiew] [Cancel l [Help

|

Chapter 5

When you run this report you'll notice a new tab called Options. This is the tab that holds the
request form, but it only appears when you have added something to it.

r

8 Request Form Filters |Z”E|El

Customer | Opkians |

Customer Mo, Filker . . . ||

[Prink...] [Prewview] [Cancel] [Help

J

There's more...

Textboxes on the request form have the same triggers and properties as textboxes on normal
forms. This means that you don't have to rely on the user to remember the customer number.
We can add the lookup functionality as shown:

Add the following local variables to the OnLookup trigger for the textbox:

Name Type Subtype
Customer Record Customer
CustomerLookupForm Form Customer List

Report Design

Add the following code to the OnLookup trigger:

CustomerLookupForm.LOOKUPMODE := TRUE;

IF CustomerLookupForm.RUNMODAL = ACTION: :LookupOK THEN BEGIN
CustomerNoFilter := CustomerLookupForm.GetSelectionFilter;

END;

This code enables the lookup arrow on the textbox. When you use it, it runs the Customer
List form in lookup mode and retrieves the records that you selected. That value is assigned
to the CustomerNoFilter variable which is what the textbox displays.

» Using advanced filtering
» Setting filters when a report is loaded
» Dynamically showing sections a report

Setting filters when a report is loaded

You will often want to run a report on a specific record. This recipe will show you how to set the
record that the report will use to execute.

How to do it...

Create a new report by following the Using the Report Generation Wizard recipe.
Save and close the report.
Create a new codeunit from Object Manager.

P NP

Add the following global variable:

Name Type Subtype

Customer Record Customer

5. Add the following code to the OnRun trigger:

Customer.FINDFIRST;

Customer.SETRANGE ("No.", Customer."No.");
REPORT .RUN (REPORT: : "Report on Record", TRUE, FALSE, Customer) ;

6. Save and close the codeunit.

122

Chapter 5

The FINDFIRST in this example is used here just so we have some data to work with. It is
not necessary for you to implement this example. We use this data to apply a filter for the first
customer number in the table.

Next comes the important part. NAV has a built-in variable named REPORT that has several
methods associated with it. One of these is the RUN () method which takes four parameters.
The first parameter is the ID of the report to run. It is best to reference the report using the
same syntax as an Option variable, REPORT : : "Name of Report".

The second and third parameters are Booleans. The second tells the system whether or not

to display the request form. We definitely want to display it because we want to see how it
looks when we run it on a specific record. The third parameter tells it whether or not to use the
system printer.

Our final parameter is a record variable that matches the first data item of the report. This
parameter holds all of the filters that have been previously applied.

When you run the codeunit, the report request form will be shown and the No. filter will
be filled in.

There's more...

The most common place in NAV to see this being used is when printing reports from specific
documents such as an invoice. You can take a look at the flow of data between the actual
forms and the document-print codeunit to get a better understanding.

See also

» Using advanced filtering
» Adding custom filters to the request form

Creating a report to process data

Reports are very useful for performing an operation on multiple records. Here we will see how
to build a report to process changes to data.

Report Design

How to do it...

1. Create a new blank report from Object Designer.
2. Set the following property on the report:

Property Value

ProcessingOnly Yes

3. Add a data item for the Customer table.

4. Inthe OnAfterGetRecord trigger for the customer data item add the
following code:

"Last Date Modified" := TODAY;
MODIFY;

5. Save and close the report.

A Data Item is a record variable. However, instead of us writing our own code to loop through
each record, this functionality is built into a report. That makes a report a great place to
perform a mass processing of records. For this type of report we don't want any pages to

be displayed. This slows down the processing speed dramatically. To do this we set the
ProcessingOnly property of the report to Yes.

The onAfterGetRecord trigger is fired after each record is retrieved from the database. This
is where we need to place our code. Here we are just changing the Last Modified Date field,
but you could do any sort of change you want.

When you run the report you will see different buttons on the button of the request form.
Instead of the normal print and preview buttons there is an OK button in its place.

' Tk Processing Report El El fg |

Cuskomer |

Field Filker

Ma. E]

® 1T

OF,] [Cancel] [Help]

Chapter 5

There's more...

When a normal report is running you can see the Generating Page X on the bottom right
corner of the preview pane. This lets the user know the system is still doing something and
has not stopped. Processing Only reports don't have sections, and hence they don't tell the
user what is going on. That means it is your responsibility to keep the user informed. The
best way to do this is by displaying a Progress Bar. You can assign the variables and open the
dialog in the OnPreDataltem trigger. The OnAfterGetRecord trigger is used to update the
progress bar while the OnPostDataItem trigger can be used to close the dialog.

See also

» Displaying a Progress Bar
» Creating transactions to alter data

Displaying a check mark on a report

Small visual changes to reports can make them easier to use. This recipe will show you how to
represent a Boolean value with a check mark.

How to do it...

1. Create a new report by following the Using the Report Generation Wizard recipe and
add one additional column for the Tax Liable field.

2. View the Sections for the report.
3. Click on the header and press F3 to add a new header section below the current one.
4. Move the column headers to this new header section.
5. Add the following global variable:
Name Type
TaxLiableCheckMark Char

6. Add the following code to the OnAfterGetRecord trigger for the customer

data item:
IF "Tax Liable" THEN
TaxLiableCheckMark := 129
ELSE
TaxLiableCheckMark := 0;

7. Add a textbox to the body section of the customer data item.

Report Design

8. Set the following properties on the textbox control:

Property Value

SourceExpr TaxLiableCheckMark

FontName WingDings

9. Your sections should look like the following screenshot when you are finished:

Customer, Header (1) -~
ustomer =<FORMATTODAY 0,4 —
< OMPAN Y NAWE: Page |=...

=<USERID*

Customer, Header (2)

M. | |Name | I‘I’ax Liable | '

Customer, Body (3}
<"No." | EeName: | o Tax La...| [@araratz

“
< | >

10. Save and close the report.

The default font for every textbox is Helvetica. This font does not have a check-mark symbol.
Luckily, we can change the font style that the textbox uses. It has a property called FontName
and here we want to change it to Wingdings. If you are unfamiliar with the Wingdings font you
can run the CharMap utility from Windows to see all of the available symbols. Notice how the
text becomes illegible when you change the font.

The check-mark symbol is number 129 in the Wingdings set of characters. As a char variable
is an integer, we can assign this value to our TaxLiableCheckMark variable, but only when
tax liable is true; otherwise we set it to 0.

The resulting report will look like the following screenshot:

Customer Mayy 13, 2010

CRONUS USA, Inc. Page 1
MATT TRAX

Mo. MName Tax Liable

10000 The Cannon Group PLC Yes ¥

20000 Selangorian Ltd. Yes ¥

30000 John Haddock Insurance es ¥

40000 Deerfield Graphics Comp Yes ¥

20000 Guildford Water Departm Mo

G0000 Blanemark Hifi Shop Mo

1000 Fairway Sound Mo

126

Chapter 5

See also

» Changing text appearance

Dynamically showing Sections on reports

NAV does not limit you to one section of each type. You can have as many of each section type
as you want, but you usually do not want to show every section on every report. This recipe will
show you how to choose which sections to display.

How to do it...

Create a new report by following the Using the Report Generation Wizard recipe.
View the Sections for the report.

Add two headers below the current header and a body below the existing body
section. The report should have five sections in total.

Move the column labels for the existing fields to the Header (2) section.

5. Add the following fields to the Body (5) section using the field menu: No., Name,
Address, City, Country/Region Code, Post Code.

6. Move the column labels to the Header (3) section.
Your sections should be as shown in the following screenshot:

Report 50505 Dynamic Sections - Section Designer EI@
Customer, Header (1] -
Customer =<FORMAT{TODAY 0, 4)

Page |=...

[=<COMPANYNAME> - .
=<USERIL:

Customer, Header (2)

- - |

|
Customer, Header (3)

...........Entr‘n’mL..
Mo. Mame deress City Code Post Code
Customer, Body (4)
=<"No."> | [FeName= | |
Customer, Body (5)

E<Nor> | FeName> | Feagdrase> | =ity | FeCountr... | < Post C. | il
« [Lm 3
8. Add the following global variable:
Name Type
ShowDetail Boolean

Report

Design

9. Add a checkbox and a label to the report request form.
10. Set the following property on the Check box control:
Property Value
SourceExpr ShowDetail
11. Set the following property on the Label control:
Property Value
Caption Show Detail
12. Add the following code to the OnPreSection trigger for the Header (2) section:
CurrReport . SHOWOUTPUT (NOT ShowDetail) ;
13. Add the following code to the OnPreSection trigger for the Header (3) section:
CurrReport . SHOWOUTPUT (ShowDetail) ;
14. Add the following code to the OnPreSection trigger for the Body (4) section:
CurrReport . SHOWOUTPUT (NOT ShowDetail) ;
15. Add the following code to the OnPreSection trigger for the Body (5) section:
CurrReport . SHOWOUTPUT (ShowDetail) ;
16. Save and close the report.
17. The resulting reports will look similar to the following screenshots:
Customer Mary 13, 2010
CRONUS USA, Inc. Fage 1
MATT TRAX
MNo. MName
10000 The Cannon Group PLC
20000 Selangorian Ltd.
30000 John Haddock Insurance
40000 Deerfield Graphics Comp
0000 Guildford Water Departm
BO000 Blanemark Hifi Shaop
£1000 Fairway Sound
Customer May 13, 2010
CRONUS USA, Inc. Fage 1
MATTTRAX
No. Name Address City ZIP Code
10000 The Cannon Group PLC 192 Market Sguare Atlanta 31772
20000 Selangorian Ltd. 153 Thomas Drive Chicano 61236
30000 John Haddock Insurance & 10 High Tower Green Miami 37124
40000 Deerfield Graphics Compan 10 Deerfield Road Atlanta 31772
20000 Guildford Water Departmen 25 Water Way Atlanta 31772
B0000 Blanemark Hifi Shop 28 Baker Street London GB-wW1 3AL
1000 Fairway Sound 158 Fairway Atlanta 31772

128

Chapter 5

Here we create one header and body for each type of report, standard and detailed. Unlike
with a form, we can't control the visibility of specific textboxes from the code. We can, however,
control the visibility of an entire section using the CurrReport . SHOWOUTPUT command. This
function takes in a single Boolean variable, which when FALSE tells the system to hide the
section. It is always placed in the OnPreDataItem trigger for a section.

There's more...

This is just a basic example of how to dynamically show sections on reports. If you want to see
a more advanced report take a look at Aged Accounts Receivable (10040).

Section triggers should only be used to show or hide sections, and not to perform calculations.
In the RoleTailored client, these section triggers are not executed so any calculations placed

in these triggers will not function properly. Calculations should almost always be performed
inside their own function and are usually called from the OnAfterGetRecord trigger.

See also

» Adding custom filters to the request form

Grouping data to display totals

The easiest way to display totals in a report is to group records under specific criteria. This
recipe will show you how to specify what fields to total and what criteria to use.

How to do it...

1. Create a new report using the Report Generation Wizard on table 21,
Cust. Ledger Entry.

2. On the second wizard window, add the Customer No., Posting Date, and
Amount fields.

3. On the third wizard window, set the sorting order to Customer No., Posting Date,
Currency Code.

Click Finish.
View the sections for the report.
Add a second Header section.

N o oo s

Move the column labels to the Header section.

Report Design

8. Add a GroupFooter section.
9. Move the textboxes from the Body section to the GroupFooter section.
10. Delete the Body.

11. Your sections should be as shown in the following screenshot:

Report 50506 Grouping Records - Section Designer EI@
-

Customer =<FORMAT{TODAY 0,4
[=<COMPANYNAME= |

=<|JSERID:

Cust, Ledger Entry, Header (2)

Customer - J .

MNo. Posting Dty Amoun

Cust. Ledger Entry, GroupFooter (3)

|=<'C|.sto... | |=<'Postir-; Data">| |=<'Arro|.rt"> | |

[b

12. Add the following code to the GroupFooter section:

CurrReport . SHOWOUTPUT (CurrReport . TOTALSCAUSEDBY =
FIELDNO ("Posting Date")) ;

13. View the properties of the Cust. Ledger Entry data item.
14. Set the following properties on the data item:

Property Value
TotalFields Amount

GroupTotalFields Customer No.,Posting Date

15. The properties window should look like the following screenshot:

Report 50506 Grouping Records - Report Designer |E||EHE|
Dataltem MName
F | Cust, Ledger Entry <Cust. Ledger Entry> -
Cust. Ledger Entry - Properties '?'@
Property Value
DataltemLink <Undefined:> -
NewPagePerGroup <Moo=
NewPagePerRecord <No»
RegFilterHeading <=
ReqFilterHeadingML <= B
RegFilterFields <Undefined »
TotalFields Amount =
GroupTotalFields Customer No.,Posting Date
CalcFields <Undefined:> | 4
MaxIteration <0> -

16. Save and close the report.

Chapter 5

In order to group records together we have to tell the system which fields we want to group
on. This is where the GroupTotalFields property comes into picture. Here we are going
to group records by their Customer No. and Posting Date fields, which means that for every
combination of Customer No. and Posting Date we will have one line on the report.

When we group records it is usually because we want to total the values of some field on those
records. Here we want to sum the Amount field so we add it to the TotalFields property.

An important fact to remember is that the fields we are grouping on must be contained in
the key being used by the data item. The field you want to sum must be contained in the
SumIndexFields for that key.

With grouping, we don't use the standard Body section. Instead we use a GroupFooter. This
trigger is displayed every time we reach the end of grouping records. Remember, though, that
we are grouping by Customer No. and Posting Date. That means every time the Customer
No. or Posting Date changes, the GroupFooter is displayed. This can cause duplication

of lines. We only want to display the section when the last field in our GroupTotalFields
changes. We use the TOTALSCAUSEDBY function, which returns an integer, to determine
which field has changed.

There's more...

You can manually create the totals in your code by using the CREATETOTALS function. This
function has an advantage over the TotalFields property in which one can create totals on
variables as well as fields.

See also

» Adding a key to a table
» Creating a SumIndex field

» Adding page totals to reports

Adding page totals to reports

Listings can often span multiple pages making it easy to lose track of the totals. NAV allows
you to easily add a textbox to the bottom or top of a page to show these subtotals to the user.

Report Design

How to do it...

1. Create a new report using the Report Generation Wizard on table 21,
Cust. Ledger Entry.

2. On the second wizard window, add the Customer No., Posting Date, and
Amount fields.

3. On the third wizard window, set the Sorting Order to Customer No., Posting Date,
Currency Code.

Click Finish.

View the sections for the report.

4
5

6. Add asecond Header section.

7. Move the column labels to the Header section.
8. Add a TransHeader section.

9. Add a TransFooter section.

10. Add a textbox to both sections.

11. Set the following property on each textbox control:

Property Value

SourceExpr Amount

12. Add a textbox to the TransHeader section.

13. Set the following property on the textbox control:

Property Value

SourceExpr ‘Transferred from previous page'

14. Add a textbox to the TransFooter section.
15. Set the following property on the textbox control:

Property Value

SourceExpr ‘Transferred to next page'

15. View the properties of the Cust. Ledger Entry data item.
16. Set the following property on the data item:

Property Value
TotalFields Amount

132

Chapter 5

17. Save and close the report.

18. A portion of the resulting report is shown in the following screenshot:

4F897889 014231 T.841.00
47563218 014258411 115,5966.31
49525252 01071 3,852 74
49525252 01/08:1 3.082.20
49525252 0141041 5,393 84

Transferred To Mext Page 1,434 592 86

In addition to the GroupHeader and GroupFooter sections, NAV Reports have sections called
TransHeader and TransFooter. These sections are displayed every time the page number
changes. The TransFooter is displayed on the bottom of the page right before the change and
the TransHeader is displayed on the top of the next page.

In this report, we add the Amount field to these sections with a label so that the subtotals are
not mistakenly added into the main total.

There's more...

» Adding a key to a table
» Creating a Sumindex field
» Grouping data to display totals

Display page X of Y

What sounds like a simple task is actually quite complicated in NAV. This recipe will show you
how to print the total number of pages on every page of a report.

Getting ready

You must have PDFCreator installed on your machine. This recipe was tested with version
0.9.8 and 0.9.9, and is not guaranteed to work with future or previous releases of PDFCreator.

You must also have Visual Studio 2005 or later installed on your machine in order to write the
C# code for this recipe.

Report Design

How to do it...

Create a new class library project named NAVUtilities in Visual Studio.
Add a new file called PDFPageCounter with the following code:

using System.IO;
using System.Text.RegularExpressions;
using System.Runtime.InteropServices;

namespace NAVUtilities
{
[ClassInterface (ClassInterfaceType.AutoDual)]
[ProgId ("PDFPageCounter")]
[ComVisible (true)]
public class PDFPageCounter

{

public int GetNoOfPagesPDF (string FileName)
{
int result = 0;
FileStream fs = new FileStream(FileName, FileMode.Open,
FileAccess.Read) ;
StreamReader r = new StreamReader (fs);
string pdfText = r.ReadToEnd() ;

System.Text .RegularExpressions.Regex regx = new
Regex (@"/Type\s*/Page["s]") ;
System.Text .RegularExpressions.MatchCollection matches =
regx.Matches (pdfText) ;
result = matches.Count;

r.Close () ;
fs.Close() ;

return result;

}

3. View the Properties of the project.
4. On the Application tab set the Assembly Name to Packt - PDFWatermark.

Chapter 5

5. On the Build tab set the Register for COM interop property to True (checked).

PDFPageCounter

Application

Build

Build Events
Debug
Resources
Settings
Reference Paths

Signing

PDFYatermark.cs PDFPageCounter.cs

Configuration: | Active {Debug) v

Treat warnings as errars
®) None
C' Specific warnings:
Ol
Cutput
Output path: biniDebug)
[#ML document ation fils:

Register for COM interop

Generate serialization assembly; | A

* X
Platform: | Active (Any CPL) v
-~
L
v

Save and compile your objects.

7. Create a new report by following the Using the Report Generation Wizard recipe.

Add the following global variable:

Name

Type

NoOfPages

Integer

9. Add a global function named SetNoOfPages.

10. The function should take the following parameter:

11. Add the following code to the function:

Name

Type

NoOfPagesin

Integer

NoOfPages := NoOfPagesIn;

12. Delete the Page No. label and textbox from the Header section.

13. Replace them with a single textbox.

Report Design

14. Set the following property on the textbox control:

Property Value

+ ' of ' + FORMAT (NoOfPages)

SourceExpr 'Page ' + FORMAT (CurrReport.PAGENO)

15. Save and close the report.
16. Create a new codeunit from Object Designer.
17. Add the following global variables:

Name Type Subtype Length
PrintToPDF Codeunit (See Printing Reports to PDF recipe)
FileName Text 1024
FileDir Text 1024
FullFileName Text 1024
NoOfPages Integer
18. Add a global function named GetNumberOfPages.
19. The function should take the following parameter:
Name Type Length
FileNameln Text 1024
20 It should return an integer named NoOf PagesOut.
21. Add the following local variable:
Name Type Subtype
PDFULtil Automation 'Packt-PDFPageCounter'.PDFPageCounter

22. Add the following code to the function:

IF ISCLEAR(PDFUtil) THEN
CREATE (PDFUtil) ;

IF EXISTS(FileNameIn) THEN

NoOfPagesOut := PDFUtil.GetNoOfPagesPDF (FileNameln) ;

CLEAR (PDFUt1il) ;

EXIT (NoOfPagesOut) ;

136

23.
24.

25.
26.

27.

28.
29.

30.

31.

32.

Add a global function named PrintReportToPDF.

Add the following code to the function:

IF EXISTS (FullFileName) THEN

ERASE (FullFileName) ;
PrintToPDF.SetupPDFCreator (FileDir, FileName) ;
RunReport;
PrintToPDF.ClearPDFCreator;

Add a global function named RunReport.
Add the following global variable:

Name Type Subtype

ReportToRun Report Page X of Y

Add the following code to the function:

CLEAR (ReportToRun) ;
ReportToRun.USEREQUESTFORM := FALSE;
ReportToRun. SetNumberOfPages (NoOfPages) ;
ReportToRun.RUNMODAL;

IF NOT PrintToPDF.WaitUntilFileExists (FullFileName)
ERROR (Text001, FullFileName) ;

Add a global function named SetupFile.

The function should take in the following parameters:

Name Type Length
FileDir Text 1024
FileNameln Text 1024

Add the following code to the function:

FileDir := FileDirIn;
FileName := FileNameln;
FullFileName := COPYSTR(FileDirIn + '\' + FileName,

THEN

1

MAXSTRLEN (FullFileName)) ;

Add the following code to the onRun trigger:

SetupFile (ENVIRON ('Temp'), 'TempPDF.pdf');
PrintReportToPDF;

NoOfPages := GetNumberOfPages (FullFileName) ;
PrintReportToPDF;

HYPERLINK (FullFileName) ;

Save and close the codeunit.

Chapter 5

Report Design

The problem with knowing how many pages will there be in a printed report is that it's
something you won't know until the report has finished printing! There's no way around this so,
unfortunately, we will have to process our report twice. That means double the execution time.
This is not recommended for large or process-intensive reports.

There is a lot going on in this recipe, but don't worry. We will take it step-by-step. In order to
use the code from this recipe, you will need to import the print to PDF codeunit explained in
Chapter 10, Integration. We will not see how that code works in this recipe. Just know that it
takes the report you are running and saves it to a temporary PDF file.

To start, we need to create an Automation control to count the number of pages in our PDF
document. NAV doesn't have built-in support for analyzing PDF files so we have to build this
part of our solution in another programming language. In this case we are going to use C#
which we can compile and use inside NAV.

Let's take a look at the libraries we will be using. System. IO is used for reading and
writing to files. The System. Text .RegularExpressions library is used to find

patterns of characters in strings or text variables. The last library, System.RunTime.
InteropServices is used to register the program on the computer so that it can be seen
and used by other applications like NAV.

Now we need to examine the attributes of our class. The first attribute is called
ClassInterface. By setting the value to ClassInterfaceType.AutoDual we tell the
program to automatically register itself on the system, if we choose to register it at all (which
we will). The second attribute is called ProgId and is the name that our program will be
referenced by. The last is called cOMVisible, which tells the system that this class can be
registered on the computer.

For more information on libraries and attributes
i you can go to msdn.microsoft.com.

Alright, now we get to the meat of the program. It is a function called GetNoOfPages that
takes in a file name and returns an integer named result. The first two lines about streams
are fairly standard for opening a file. The text of the file is stored in the PDFText variable by
doing a ReadToEnd on the stream.

This part will be confusing if you have never encountered a Regular Expression before.
Basically, we are looking for a pattern like this:

/Type + "some optional, unknown amount of whitespace" + /Page (but
not /Pages)

If you open a PDF file in Notepad and search for bits and pieces of this text you'll find that it
appears as metadata on every page in the file.

138

Chapter 5

Finally we have to close our streams. If we fail to do this the PDF file will be locked and we
won't be able to use it.

That's the coding part for the automation. But there are some properties that need to be set,
specifically the Register COM for interop. Remember those attributes that we set so that if
we ever registered this program, it would work? Well now we have to register it. Check the box,
compile it, and you are ready to go.

For the report, we need to create a function to tell it how many pages will print in all. We pass
it an integer variable and it stores it in a global integer variable called NoOfPages. We also
have to change the page number in the header to display the total number of pages.

Lastly, we need to create a codeunit to manage the printing of this report. This codeunit will
consist of four functions. The first is a helper function called SetupFile. This function just
sets some global text variables that point to the path or folder of the PDF file, the name of the
PDF file, and the combined path plus name of the file.

We also need a wrapper function for our Automation class. This function will be called
GetNumberOfPages. It creates a new instance of the Automation class, checks to make
sure that the file exists, and counts the number of pages using the GetNoOfPagesPDF
function from the C# code. This value is then returned from the function.

Our third function is used to actually run our report. This function takes in the number of
pages we found by using the GetNumberOf Pages function. It passes that value to the report
and runs it.

The last function is called PrintReportToPDF. The details of how this works can be found in
Chapter 10, Integration, in the Printing reports to PDF recipe. To give you a quick overview, we
delete any files that have the same name, set up PDFCreator, print the report, and then clear
any changes that were made.

So how does all of that work together? Let's step through it. In the OnRun trigger, we set up
our file to go to the local Temp directory on the computer. We then print our report to that
PDF file. At this point we don't know how many pages will be printed, so the upper right-hand
corner of the report would look like "Page 1 of 0". Next, we determine how many pages are in
the PDF file. We then call the same function to print the report to PDF, but this time we pass
the real number of pages instead of zero. Finally, we use the HYPERLINK command to open
the file and display it to the user.

There's more...

This is a huge pain to do in the Classic client. Not only is there a lot of code, but it also
requires you to run the report twice. That means double the execution time just to get the
total number of pages on the report. On large, calculation-heavy reports' benefits just do not
outweigh the lost productivity time.

Report Design

Fortunately for RoleTailored client users this is incredibly easy to do. In the design layout in
Visual Studio you can add a new textbox and set the expression on it like this:

il Expression

Build an expression using Visual Basic language syntax:

=Globals!PageNumber & " of "™ & Globals!TotalPages -
] 1 b
Category: Ttern: Description

;- Constants ExecutionTime The total number of pages in the

{ .\ Globals PageMumber report. Can be used only in page

i ReportFolder header and footer.

- Parameters ReportName

- Fields Reportserverlrl
iﬁ Pages |

- Datasets UserlD

+- Operators Language

+- Common Functions

Examnple
OK l ‘ Cancel | | Help

» Creating a function

» Adding a watermark to a report

Using virtual tables to loop through data

Just as you can repeat code using a loop, you can also repeat data items in a report using a
virtual table. This recipe will show you how to use the most common virtual table, Integer.

140

Chapter 5

How to do it...

Create a new report by following the Using the Report Generation Wizard recipe.
Add the following global variable:

Name Type

NoOfCopies Integer

3. Add a label and textbox control to the request form.
4. Set the following property on the textbox control:

Property Value

SourceExpr NoOfCopies

5. Set the following property on the label control:

Property Value

Caption No. of Copies

Insert an Integer data item above the Customer data item.
7. Change the Name field for the Integer data item to CopyLoop.

Indent the Customer data item by using the right arrow button on the bottom of
the form.

9. Delete the CopyLoop Body section from the Section Designer.
10. Add the following code to the OnPreDataItem trigger for CopyLoop:
SETRANGE (Number, 0, NoOfCopies) ;

11. Save and close the report.

Think of the Customer data item, including all of the code and sections, as a function called
DisplayCustomerData. If you were to write code for it, it would look similar to this:

IF Customer.FINDSET THEN
REPEAT
DisplayCustomerData;
UNTIL Customer.NEXT = 0;

Report Design

If you want to repeat this code multiple times you would have to add another loop to it, like the
following:

FOR i := 0 TO NoOfCopies DO BEGIN
IF Customer.FINDSET THEN
REPEAT
DisplayCustomerData;
UNTIL Customer.NEXT = 0;
END;

Our report is already handling the REPEAT. . UNTIL part of the code. There is no reason for
it to not handle the FOR loop as well. The main purpose of a FOR loop is to iterate through a
set of numbers. For that we can use the virtual table called Integer. The Integer table has a
single field called Number that we can filter on.

& Report 50509 Using Virtual Tables - Repori De... EJ[E|E|

[Datalkem Marne
Integer CopyLoop
Cuskamer <Cuskamer =
|

Just as the code indented beneath the FOR loop will be executed a number of times, the data
items indented under other data items will also be executed a number of times depending on
the filters that are set.

There are plenty of virtual tables in NAV. You won't find these tables in Object Designer and
you might not even know they were there. The following report has been included, which lists
all of the virtual tables and their fields.

142

List of virtual tables in NAV

Object Type Object ID Object Name
Table 2000000001 Object

Table 2000000007 Date

Table 2000000009 Session

Table 2000000010 Database File
Table 2000000020 Drive

Table 2000000022 File

Table 2000000024 Monitor

Table 2000000026 Integer

Table 2000000028 Table Information
Table 2000000029 System Object
Table 2000000037 Performance

Table 2000000038 AllObj

Table 2000000039 Printer

Table 2000000040 License Information
Table 2000000041 Field

Table 2000000042 OLE Control

Table 2000000043 License Permission
Table 2000000044 Permission Range
Table 2000000045 Windows Language
Table 2000000046 Automation Server
Table 2000000049 Code Coverage
Table 2000000050 Windows Object
Table 2000000051 Service Connection Point
Table 2000000052 Windows Group Member
Table 2000000055 SID - Account ID
Table 2000000056 User SID

Table 2000000058 AllObjWithCaption
Table 2000000059 Breakpoint

Table 2000000063 Key

Table 2000000070 Error List

Chapter 5

Report Design

» Repeating code using a loop

Adding a watermark to a page

Watermarks can be used in a variety of ways to make reports stand out. This recipe will show
you how to add a "draft" watermark to the background of a report.

Getting ready

You must have PDFCreator installed on your machine. This recipe was tested with version
0.9.8 and 0.9.9 and is not guaranteed to work with future or previous releases of PDFCreator.
PDFCreator requires the .NET Framework 1.1 to install the dll files used with this example.

You must also have Visual Studio 2005 or later installed on your machine in order to write the
C# code for this recipe.

You should understand the Printing reports to PDF recipe from Chapter 10, Integration. This
recipe builds on that one and the details will not be explained here. The codeunit for printing
to PDF from the Integration chapter is included in this chapter as well.

How to do it...

Open a new text file.
2. Add the following code:
Option Explicit

Dim Arguments

Dim pdfforge

Dim tools

Dim fso

Dim FilePath

Dim ImagePath

Dim WatermarkImage
Dim OriginalFile
Dim StampedFile

Set Arguments = WScript.Arguments
Set fso = CreateObject ("Scripting.FileSystemObject")

Set pdfforge = Wscript.CreateObject ("pdfforge.pdf.pdf")

Chapter 5

Set tools = Wscript.CreateObject ("pdfforge.tools")

OriginalFile = Arguments (0)
FilePath = fso.GetParentFolderName (Arguments(0))
if FilePath = "" then

if FilePath = "" then FilePath = fso.GetParentFolderName
(Wscript.ScriptFullname)

if Right (FilePath,1) <> "\" then FilePath = FilePath & "\"
OriginalFile = FilePath & OriginalFile
End if

WatermarkImage = Arguments (1)

ImagePath = fso.GetParentFolderName (Arguments (1))

if ImagePath = "" then
ImagePath = fso.GetParentFolderName (Wscript.ScriptFullname)
if Right (ImagePath,1l) <> "\" then ImagePath = ImagePath & "\"

WatermarkImage = ImagePath & WatermarkImage
End if
StampedFile = Left(OriginalFile, Len(OriginalFile) - 4) & " -

Watermark" + Right (OriginalFile, 4)

pdfforge.StampPDFFileWithImage OriginalFile, StampedFile,
WatermarkImage, 1, 0, true, 1, 9

set Arguments = Nothing

WScript.Echo StampedFile

Save the file as AddWatermark.vbs.

Create a new class library project named NAVUtilities in Visual Studio.
Add a new file called PDFPageCounter with the following code:

using System.Runtime.InteropServices;
using System.Diagnostics;

namespace NAVUtilities
{
[ClassInterface (ClassInterfaceType.AutoDual)]
[ProgId ("PDFWatermark")]
[ComVisible (true)]
public class PDFWatermark
{

private string Script;
private string PDFFile;

Report Design

private string WatermarkImageFile;
private string WatermarkedPDFFile;

public void SetScript (string newScript)

{

Script = newScript;

public void SetPDFFile(string newPDFFile)

{

PDFFile = newPDFFile;

public void SetWatermarkImage (string
newWatermarkImageFile)

WatermarkImageFile = newWatermarkImageFile;

public string GetWatermarkedPDFFile ()

{

return WatermarkedPDFFile;

public void CreateWatermark ()
Process p = new Process();
p.StartInfo.FileName = @"cscript";

p.StartInfo.Arguments = Script + " " + PDFFile + " "

+ WatermarkImageFile;
p.StartInfo.UseShellExecute = false;
p.StartInfo.RedirectStandardOutput = true;
p.Start () ;

p.StandardOutput .ReadLine () ;
p.StandardOutput .ReadLine () ;
p.StandardOutput .ReadLine () ;
WatermarkedPDFFile = p.StandardOutput.ReadLine() ;

}

6. View the Properties of the project.

7. On the Application tab set the Assembly Name to Packt - PDFWatermark.

146

Chapter 5

8. On the Build tab check the Register for COM interop checkbox.

9. Save and compile the objects.

10. Create a new report by following the Using the Report Generation Wizard recipe.
11. Save and close the report (remember the ID for later use).

12. Create a new codeunit from Object Designer.

13. Add the following global variables:

Name Type Subtype Length
Customer Record Customer
PrintToPDF Codeunit (See Printing Reports to PDF

Recipe)
FileName Text 1024
FileDir Text 1024
FullFileName Text 1024
WatermarkedFile Text 1024
ReportToRun Report Watermark Report
PDFWatermark Automation 'Packt-PDFWatermark'.

PDFWatermark

14. Add a global function named SetupFile.

15. The function should take in the following parameters:

Name Type Length
FileDirln Text 1024
FileNameln Text 1024

16. Add the following code to the function:

FileDir := FileDirIn;
FileName := FileNameln;
FullFileName := COPYSTR(FileDirIn + '\' + FileName, 1,

MAXSTRLEN (FullFileName)) ;

17. Add the following code to the OnRun trigger (change the path to the vbs and
watermark images based on your system):

IF ISCLEAR (PDFWatermark) THEN
CREATE (PDFWatermark) ;

SetupFile (ENVIRON('Temp'), 'TempPDF.pdf');
PrintToPDF.SetupPDFCreator (FileDir, FileName) ;
ReportToRun.USEREQUESTFORM := FALSE;

ReportToRun.RUNMODAL;

Report Design

PrintToPDF.WaitUntilFileExists (FileDir + '\' + FileName) ;
PrintToPDF.ClearPDFCreator;

PDFWatermark.SetScript ('"C:\Packt\AddWatermark.vbs""') ;

PDFWatermark.SetWatermarkImage (
'nC:\Packt\DraftWatermark.png"') ;

PDFWatermark.SetPDFFile (FileDir + '\' + FileName) ;
SLEEP (1000); //Need to make sure the file isn't locked
PDFWatermark.CreateWatermark;

WatermarkedFile := PDFWatermark.GetWatermarkedPDFFile;

IF WatermarkedFile = '' THEN
ERROR (Text001) ;
HYPERLINK (WatermarkedFile) ;

CLEAR (PDFWatermark) ;
18. Save and close the codeunit.
19. An example report is shown in the following screenshot:

No. 30000

Name John Haddock Insurance
No. 40000

Name Deerfield Graphics Comp
No. 50000

Name Guildford Water Departm
No. 60000

Name Blanemark Hifi Shop

MNo. 61000

Name Fairway Sound

No. 62000

Name The Device Shop

No. 011212

Name Spotsmeyer's Furnishings
No. 014455

Name Progressive Home Furnis
No. 014545

Name New Concepts Furniture
No. 019058

Name Candoxy Canada Inc.

148

Chapter 5

As you can see, much of the code in this recipe is complicated. It involves development in
three different languages, VBScript, C#, and C/AL. We will tackle each one separately in order
to understand how they all work together.

Take a look at the VBScript file first. Remember, this is not a VBScript book. We will only
explain how the file works in general terms. This file works similar to a batch file and takes in
two arguments. The first is the PDF File to which we want to add a watermark and the second
is the watermark image.

To start we set up all of our variables using the Dim keyword. We then instantiate our more
complex variables using the Set function. The important variable here is pdf forge. This is
installed with PDFCreator (as long as you have the .NET Framework 1.1).

The next two sections of code deal with each of the arguments passed to the script. The code
here makes sure that there is a complete path and filename stored in the variables and sets
them up if it is not.

Next we have to set up a new filename (the old filename + " - Watermark") and

use the pdf forge variable to stamp the file. The key parameters to use with the
StampPDFFileWithImage function are the first two integers. These represent the page
range to watermark. A zero as the second parameter means "watermark everything".

Finally we perform some cleanup on our variables and echo the watermarked file to the
command window.

Now let's examine the C# code. Let's take a look at the libraries we will be using. System.
I0 is used for reading and writing to files. System.Diagnostics provides classes that allow
you to interact with system processes (such as launching a VBScript file).

Now we need to examine the attributes of our class. The first attribute is called
ClassInterface. By setting the value to ClassInterfaceType.AutoDual, we tell the
program to automatically register itself on the system. The second attribute is called ProgId
and is the name that our program will be referenced by. The last is called coMvVisible and
tells the system that this class can be registered on the computer.

Our class is composed of three setter functions: one getter function, and one function to call
the VBScript. We will focus on the latter.

First we create a new Process instance and tell it that we will be running a script file. We then
set the arguments to the script which are the script name, PDF file, and image file that we set
using our setter methods. As we need to use the output of our script file (remember that it is
going to tell us the location of the watermarked file) we have to set the UseshellExecute
property to False and the RedirectStandardOutput property to True. We then start

the process.

Report Design

The redirected output returns four lines of text. We don't care about the first three lines so

we just read them and let them fall off somewhere in the memory. The fourth and last line,
though, is the path to our watermarked PDF document. We store that in a variable that can be
retrieved with our getter method.

Now we can look at the final piece of code in NAV. The codeunit contains one function called
SetupFile. This function just sets some global text variables that point to the path or folder
of the PDF file, the name of the PDF file, and the combined path plus the name of the file.

The OnRun trigger is where the bulk of the code is placed. First we instantiate our
PDFWatermark Automation variable. We then create pointers to our temporary PDF file in the
Temp folder and set up PDFCreator.

In this case we do not want to use the request form so we set the USEREQUESTFORM property
to False before running the report. As this report will be output to a PDF file we have to wait
until that file is created before clearing our PDFCreator setup.

Now we can begin to use our C# code. We set the script, PDF File, and watermark image
using the setter methods in the C# class. Before adding the watermark to the file we issue
a SLEEP (1000) command. This pauses the system for one second in order to make sure
the locks on the PDF file are removed. If there are locks on the file the CreateWatermark
function would fail because that would make it impossible to access and modify the file.

Finally, we retrieve the watermarked file name and if it is not empty (meaning an error
occurred) we open it for the user to see.

There are many other things you can do using pdf forge and PDFCreator. The VBScript code
files can be found in the PDFCreator install directory under the Plugins folder. In that
folder, you'll find scripts to merge and spilit files, copy files, and even convert images to PDF.

See also

» Creating a function
» Display page X of Y
» Displaying a graph on a report

150

Diagnosing Code
Problems

In this chapter, we will cover:

» Using the debugger

» Setting breakpoints

» Using Code Coverage

» Handling runtime errors

» Using Client Monitor to diagnose problems
» Finding errors when using NAS

» Implementing Try / Catch/ Finally

Introduction

No one writes perfect code on their first attempt. When running hundreds or even thousands
of lines of code at a time, it can be extremely difficult to determine exactly where an error
occurred and what caused it. That's why we have tools like the Debugger, Code Coverage, and
Client Monitor in Microsoft Dynamics NAV.

For the most part the recipes in this chapter will not deal with writing your own code or writing
better code. Instead we will focus more on how you can determine what is happening with
code you have already written.

Diagnosing Code Problems

Using the debugger

This recipe will show you how to use the debugger to examine the code that is currently
executing. We will demonstrate how to go through the code line-by-line and watch how values
and objects change.

How to do it...

1. Create a new codeunit from Object Designer.
2. Add the following global variable:

Name Type Subtype

Customer Record Customer

3. Add the following global text constant:

Name ConstValue
Text0O01 Matt Traxinger

Add a global function called ChangeCustomerName.

5. The function should take in the following parameter:

Name Type Length
NewName Text 50

6. Add the following code to the function:
Customer.Name := NewName;
7. Add the following code to the OnRun trigger:

Customer.FINDFIRST;
ChangeCustomerName (Text001) ;
Customer .VALIDATE ("Post Code") ;

Save and close the codeunit.
9. From the Tools menu in the NAV client select Debugger | Active (Shift + Ctrl + F11).

10. From the Tools menu in the NAV client select Debugger | Breakpoint on Triggers
(Shift + Ctrl + F12).

11. Run the codeunit.

152

Chapter 6

When you run the codeunit, the Microsoft Dynamics NAV Debugger window will appear just
like the one shown in the following screenshot:

4 Micrasoft Dynamics NAV Debugger [break] - [Codeunit 50801 Using the Debugger] [E=SEN
) File Edit View Debug Window Help =le| x|
G- AlEE As8ore Be|

ChangeCus tomerNane (NewNane) j
Customer.Name := HewName;
OnRun ()
& Customer . FINDFIRST:
ChangeCustomerame t‘l‘ex:blj‘_] H
Customer.VALIDATE ("Post Code");

| i
ﬁ Contest: |Cudeunl 50801 Using the Debugger'OnRun{) LI ﬂ o Codeunic 50601 Using the Debugger\CnBun() = :IJ Name Value | Type |
[[Name [vake [Tyee] Text00l "Matt TextCon:

o Custom "<Uninitialiseds>” Recerd Zesxinger,
= Zoom "<Uninitialisged>"
Tabl ""
Filt
@ Sort ""
| L I\J\IIALocaIs } Globals }|, Text Constants [114 C | L Watch 1/(Watch 2 E\'Jatch% 7
Ready Ln5, Col 24 y:

Before we get into the details of this window, we need to understand what caused it to appear.
Setting the debugger to Active from the Tools | Debugger menu means that the debugger
window will open every time the system encounters an error. In this case, though, we know our
code doesn't produce any errors. We want to look at it anyway so we turn on the Breakpoint

on Triggers option as well.

There are five components to the debugger window. The first is the menu and toolbar at the
very top. They function just like any other toolbars you've seen. You can mouse over each
button to get a tool tip of what it does.

The second component sits right below and contains the actual code from the current object.
Here you can see a small yellow arrow pointing to the first line of our codeunit in the OnRun
trigger. This is the line that is about to execute. Note that it has NOT executed yet. We'll explore
each of the other three components as we move through our code.

Diagnosing Code Problems

Use the F8 key or click the Step Into button on the toolbar. The window will now look like the
one shown in following screenshot:

s Micrasnft Dynamics NAY Debugaer [reak] - [Cadeunit SORY 1<ng the Debunger] e
I Fle Eeit Visw Lebug Windew kelp _|l=| x
= | B G E(ELE M o

ChangcCastemeriams (Nowianc) ﬂ
Cuscomer.Hame ;= Wewlame:
CuiRun ()

Custoner. FINDTIRST:
oy CnangeCustcmeriame (TeXcU0l) ;
Cussomer. VALIDATE ("Pcet Ccde™) s

JEY — i
ﬂ Contexd: |Cackaonit 50301 Llsirg *he: Dehugger\InFung) j LJ o> Codeunit 50601 Using the DebuggeriOnRuni) = :‘_ Nane Vae Type |
= . G .
Nane [Value [Tyee [«] TextoDl - "Matt TextCons
= Traxinger
=] Customex n Fcocord
5 Zoon
"Hu. ™ "100C0"™ Code [20]
Hanme "The Canncn ; Tex: [50]
Group FLC™
Seaxrch ; "THE CANNCN ; Codc [EO]
Hame GROUE PLC™
PR ES 2 o Jex= (01 T s
I Al § Locals J, Glokals , Text Constants / i b [T\ Watch 1 j Wetch2 J, Watch3 /
Ready Ln 3, Coll

The yellow arrow has moved to the second line of code and the first line has executed. Notice
the red text in the bottom left-hand corner. This is the Variables window (bottom left window).
It lists all the variables and their values from the current object. At first, our customer variable
was uninitialized because we had not executed the Customer . FINDFIRST line. That line
retrieved a record from the database causing the value of the variable to change. This text will
only remain red until you take another step into the program.

The next line of code that will execute is:
ChangeCustomerName (Text001) ;

What is this Text 001 variable? If you're unsure of the value of a text constant, or you don't
want to scroll through a possibly long list of variables in the Context window, you can add

a shortcut to the Watch List (bottom right window). Right-click on Text001 and go to Add
Watch. The variable will be added to the Watch List along with its current value. Go ahead
and hit F8 to step into the next line.

Chapter 6

% Microsoft Dynamics NAY Debugger [brezk] - [Codeunit 50601 Using the Debugger] EM
| S Eie Edt View Debug Window Help -5 x
|& | -n PaEE == are BE|

ChangeCus tome rilame (i1l j
o fustomsr.Nams := Newlame:

OnRan ()

Customer.FINDFIRST:
ChangeCustomerNams (Texc001) ;
Customer.VALIDATE ("Post Code”™);

KT [+
";“I Context: |Cudeunt 50601 Using the Debugqa‘ihangel‘uﬂcll :’:l-] o Codeunit 50601 Using the Debugger\ChangeCu - ":‘-[Mame | Vaue | Type ‘
- Codeunit 50601 Using the Debugger\OnRun () T s
Name |Value Type I; Text001 "Hatc. TextCon:
| Traxinger
[Customer "Customer" | Record
= 2oom "10000,The
Cannen
Group
PLC, THE
THo. " Ti0000" Code[20]
Name "The Cannon | Text[50]
Group PLC®
Search | "THE CANNON ; Code[50]
Hame GROUP PLC"
Mam n Texr(501 ¥ i
I K] » T\ All { Locals }, Globals j, Text Constants | |1} & b | AT Watch 1 Watch 2 % Watch3 7
Ready n2,Coll

The yellow arrow jumps to the function that we just called. That brings us to our last window,
the Call Stack (bottom middle window). It is important to know how you got to the code you
are currently viewing. By looking at the Call Stack you can see that we were in the OnRun
trigger of the codeunit and then jumped to the ChangeCustomerName function. You can click
on each level of the stack to see the code for that object.

4 Microsaft Dynamics NAV Debugger [break] - [Teble 225 7IP Code] [ESRE)

|l Edt Yiew Debug Window Help = x
& -a IDREE 20T e B
City := PostCodeRec.City:
County := PostCodeRec.County;
ENC;
ValidatePostCode (City,PostCode, County)
IF PostCode <> '' THEN BEGIN
o IF STRFOS(PostCode,'*') = STRLEN (PostCode) THEN
PostCodeRec . SETFILTER (Code, PostCode)
ELSE
PostCodeRec. SETRANGE (Code, PostCode) ;
IF NOT PoscCodeRec.FIND('-') THEN
EXIT;

PnarlndeRen? (COPY (Pnsnfnd=8ec) =
[" >

.’;‘J Contexd: |Tabie 225 ZIP Code'ValidatePostCode(Cry FostCe ¥ | jl o> Table 225 ZIP Code\ValidateBostCode (City,E « l:l Mame [vaue [Type |
o Table 185 Customer\Post Code - OnValidate () Texro0l Error:

Name [velue [Tipe | Codeunit 50601 Using the Debugger\CnRun() Symbol
Rec "Poat Code" Recozrd -

"Texco0l"
xRec "Post Code" Record WAS not

CurrFieldNc: 0 Integer found
City "Arlanta™ Text[30]
PostCode "31772" Code [20]
County "GA™ Text [30]
[PostCodeRec| "<Uninitialis¢ Record
PostCodeRec "<Uninitialis¢ Record

|/ [ATFT An {Locels }, Globals J, Text Constants | I E r | [Z1 2T Watch 1 £ Watch2 J, Watch3 |

|Ready Ln23, Coll

Diagnosing Code Problems

You may not always want to go through your code line-by-line, though. Try hitting the F5 key

or the Go command from the Debug menu. This will cause you to jump to the next function
which is called instead of the next line. You will find yourself in a complete new object, the
Customer table. Notice how the Context menu completely changes because the old variables
are no longer in scope. They do not belong to the current object being examined.

There's more...

One common annoyance is trying to stop the debugger. You will find yourself in the middle of
debugging your code and have that "Aha! | know what's wrong!" moment. You will click on the
"X" to close the window only to have the debugger pop right back up at you.

From the Debug menu click on Stop Debugging (Shift + F5). This will stop the debugger until
you turn it on again and, more importantly, allow you to continue with your development. Stop
Debugging also performs a rollback of the changes that have happened to the database
since you started the debugger.

See also

» Setting breakpoints

Setting breakpoints

Stepping through code line-by-line or function-by-function can take forever. Luckily there is an
easy way to tell the debugger to stop right where we want it to.

How to do it...

1. Create and save the same codeunit discussed in the Using the debugger recipe in
this chapter.

2. Design the codeunit.
Go to the following line of code in the OnRun trigger:
ChangeCustomerName (Text001) ;
Press F9 twice.

5. Go to the following line of code in the OnRun trigger:
VALIDATE ("Post Code") ;

6. Press F9 once.

156

Chapter 6

7. Your window should look like the following screenshot:

Codeunit 50602 Setting Breakpoints - C/AL Editor =N R
Documentation{) -
OnRun{}

Customer .FINDFIRST;
¢ ChangeCustomerHame (TextB8081) ;
@ Customer _UALIDATE('Fost Code™);

ChangeCustomerHame{HewHame : Text[581)
Customer .Hame := HewHame;

8. Save and close the codeunit.
9. From the Tools menu in the NAV client select Debugger | Active (Shift + Ctrl + F11).
10. Run the codeunit.

When running the debugger on this codeunit, it should stop on Customer.VALIDATE ("Post
Code") line of code. This is because we have set a breakpoint here, which was the filled-

in red circle at the left of that line. The debugger stops right where we tell it to, that is right
before that line of code executes.

You will notice another mark. It is a red circle that is not filled. This is used to mark old
breakpoints that you are not currently using. This is useful when you are trying to debug large
amounts of code and want to temporarily remove a breakpoint or remember where you had one.

The debugger is not perfect by any means. Some might even say it has a mind of its own
sometimes. It doesn't always stop exactly where you want it to. It is common practice to
set a breakpoint on a few successive lines of code in order to ensure that you stop in the
general area.

Diagnosing Code Problems

See also

» Using the debugger

Using Code Coverage

In some scenarios, it may be useful to see a high-level overview of which objects are used
when running a process and what code is executed in those objects. This recipe will show you
how to use the Code Coverage tool for exactly that purpose.

How to do it...

1. From the NAV client menu, click on Tools | Debugger | Code Coverage. This will
open the Code Coverage window.

2. Click the Start button.

Navigate to the Customer Card in the menu suite by clicking on Sales and Marketing
| Order Processing | Customers.

4. Press F3toinsert a new record followed by Tab or Enter to save that record to
the database.

5. Close the Customer Card.
Click the Stop button on the Code Coverage window.
7. You should now see a form similar to the one shown in the following screenshot:

Code Coverage EI@
Object Type Object ID Cbject Name Coverage...

» | Table 0.04 =+
Table 309 Mo. Series Line 0.08
Table 5050 Contact 0.08
Table 5054 Contact Business Relation 0.47
Form 21 Customer Card 0.21
Form 565 Code Coverage 0.76
Codeunit 1 ApplicationManagement 0.02
Codeunit 396 MoSeriesManagement 0.39
Codeunit 408 DimensionManagement 0.01
Codeunit 423 Change Log Management 0.05
Codeunit 802 Online Map Management 0.05
Codeunit 5056 CustCont-Update 0.35
Codeunit 5067 SearchManagement 0.01

Stop | Code | | Help

158

Chapter 6

The Code Coverage tool logs every line of code that is executed during a process. In this
window, you can see every object that was used during the insertion process as well as the
percentage of code (coverage ratio) that was executed in each object.

To view the details of the exact code that was executed in an object, select it in the list and
click the Code button. The Code Overview window will open.

fE Code Coverage o ||= | &=
Object Type Object ID Object Name Coverage...
} | Table 18 Customer 0.04 »
Table 309 Mo, Series Line 0.09
Table _ .
Table Table 18 Customer - Code Overview EI@
Form Code
(F:”dm . o e TueEntry SETEILTER "Giobal Dinension 2 Code® GEIEILIER] Global. .«
odeuni

+ ValueEntry SETRAHGE(Adju=stment , TRUE) ;

Cadeunit + | WValusEntry.SETRANGE("Expected Cost®, FALSE):

Codeunit + | FORM.RUNMODAL(D.ValusEntry):
Codeun?t DisplayHap()
Codeunit . IF HapPoint FIND('-'} THEN
Codeunit . MapMgt MakeSelection(DATABASE: :Customer, GETFOSITION)
Codeunit . FLSE

+ HESSAGE(Text014);

OnInsert()
+ IF "Ho." = '' THEN BEGIHN
SalesSetup. GET:
. Sale=sSetup. TESTFIELD{ "Customer Hos=. "):
C + HoSeriesHgt InitSeries(SalesSetup. "Custoner Hos. " . ®Rec. "Ho. Se=. ..
END: i

Unfortunately, this window is not as straightforward as it might first appear. The lines of code
that have been executed are shown in black. The lines of code that are not executed are
shown in red.

The lines that are marked with the small diamond to the left of the line are executable lines
of code. These lines are the only lines for which you can be sure that the information
displayed is correct.

One great use of Code Coverage is to determine all of the possible places where a value may
have changed. For example, the Description field on a Sales Line.

Diagnosing Code Problems

You can use Code Coverage to log all of the code that is executed and then view it in the Code
Overview window. This window actually shows all the code that has been logged, but applies a
filter for the selected object. This filter can be removed like any other in order to view every line
of code.

From there you can set a filter like "*Description*" or "*Description :=*"to find every
line of code where the Description field is used or assigned a value. Using the Zoom feature
(Ctrl + F8), you can select a line and quickly view which object it is in.

Running Code Coverage from code
You can also turn on Code Coverage from within your own code.

CodeCoverage .DELETEALL;
CODECOVERAGELOG := TRUE;

CODECOVERAGELOG := FALSE;
FORM.RUN (FORM: : "Code Coverage") ;

You will first need to define a record variable named CodeCoverage of subtype Code
Coverage and delete all records from it.

You can then turn Code Coverage on/off using the CODECOVERAGELOG function. To see what
was logged, run the Code Coverage form (565).

Handling runtime errors

Runtime errors happen when you are actually executing code. Most of these errors present
error messages that users cannot easily understand. This recipe will show you how to handle
these errors as well as some of the most common ones.

How to do it...

1. Create a new codeunit from Object Designer.

2. Add the following global variables:

Name Type Subtype
Customer Record Customer
Selection Integer

3. Add the following code to the OnRun trigger:

Selection := STRMENU('Show Error,Handle Error',6 1);
IF Selection = 1 THEN

160

Chapter 6

Customer.GET
ELSE
IF NOT Customer.GET THEN
ERROR (' Unable to find a customer with a blank number.
\Are you sure you have selected a customer?');

4. Save and close the codeunit.

This codeunit allows you to select between having NAV handle an error for you or handling it
with custom code. If you choose to let NAV handle the error for you, you will be presented with
this error message:

Microsoft Dynamics MAY Classic E|

L] "-\ Customer Mo, " does not exist,
-

This message can be confusing for new users. Its interpretation can be different depending on
the user. The following is not a stretch:

Customer No.. Double quote does not exist.

For those who have been using NAV for a while, this message is obvious. Those users know
that two single quotes represents something blank and that this message is saying that a
customer record with a blank number does not exist.

Now look at the message that is displayed when we handle the error:

Microsoft Dynamics NAY Classic E|

] Unable to find a customer with a blank number,
] Are you sure you have selected a customer?

Diagnosing Code Problems

This error message was "trapped" by surrounding the function call with a conditional. The GET
function, and many others, returns a Boolean value. If this value is not used by the developer

and it is false, an error is thrown. We still want to throw an error, but we want one that makes

sense to everyone. Here we tell the user what went wrong and a possible solution.

» Creating transactions to alter data

Using Client Monitor to diagnose problems

Client Monitor is a tool that collects statistics about client/server communication. It will let you
find out where your code is slow and show you every line of code that executes from start to
finish. This recipe will show you how to use it.

How to do it...

Create a new codeunit from Object Designer.
2. Add the following global variable:

Name Type Subtype

Customer Record Customer

3. Add the following code to the OnRun trigger:

Customer.FINDFIRST;
SLEEP (5000) ;
Customer.FINDLAST;

Save and close the codeunit.

From the Tools menu in the NAV client click on Client Monitor.
Click the Start button in the window that then appears.

Run the codeunit you created.

Click the Stop Button on the Client Monitor window.

© N o

You should now see a form similar to the following screenshot:

162

Chapter 6

&8 Client Monitor

General | Options
Dake Time Entry Mo, Funckion Marme Parameter Mo | Parameter Data
p | O03M10f10 8:55:07.009 AM 1 FINDJMERT 1 Table i i Obj

03/10/10 8:55:07.009 AM 1 FIMNDJMERT 2 Search Method =<
03/10/10 5:55:07.009 &M 1 FIMDYMEST 3 key Type:
03/10/10 8:55:07.009 AM 1 FINDJMERT & Filker Type
03/10/10 §:55:07.009 AM 1 FIMDYMEXT 50 Seatch Resulk =
03/10/10 8:55:07.009 AM 1 FIMD/MERT 51 Record Found Type:
03/10/10 §:55:07.009 AM 1 FIMDJMERT 55 Records Read 1
03/10/10 5:55:07.009 &M 1 FIMDYMEST 100 Elapsed Time (ms)
03/10/10 8:55:08.712 AM 2 FIMNDJMERT 1 Table 2000000001 Objer
03/10/10 5:55:08.712 AM 2 FIMDYMEXT 2 Seatch Method =
03/10/10 §:55:05.712 AM 2 FINDJMERT 3 key Type:
03/10/10 5:55:08.712 AM 2 FIMD{MERT 50 Search Resulk = &

< >

It can be difficult to parse through all of the data that programs like this collect. We will not
begin to cover everything that the Client Monitor reports on, but instead will examine our very
short codeunit.

Let's look at the output from the Client Monitor to see if we can match it up to what our
codeunit did.

Please note that some output that deal with selecting the Object from
s Object Designer have been removed from the following result set shown.
Date Time Entry Function Parameter Parameter Number Data
No. Name No

3/10/2010 8:55:08.712 4 FIND/ 1 Table 18 Customer

AM NEXT
3/10/2010 8:55:08.712 4 FIND/ 2 Search -

AM NEXT Method
3/10/2010 8:55:08.712 4 FIND/ 3 Key No.

AM NEXT
3/10/2010 8:55:08.712 4 FIND/ 14 Source Codeunit

AM NEXT Object 50605 Client

Monitor

Diagnosing Code Problems

Date Time Entry Function Parameter Parameter Number Data
No. Name No
3/10/2010 8:55:08.712 4 FIND/ 15 Source OnRun()
AM NEXT Trigger/
Function
3/10/2010 8:55:08.712 4 FIND/ 16 Source 2
AM NEXT Line No.
3/10/2010 8:55:08.712 4 FIND/ 17 Source Text Customer.
AM NEXT FINDFIRST;
3/10/2010 8:55:08.712 4 FIND/ 50 Search -
AM NEXT Result
3/10/2010 8:55:08.712 4 FIND/ 51 Record No.='10000'
AM NEXT Found
3/10/2010 8:55:08.712 4 FIND/ 55 Records 2
AM NEXT Read
3/10/2010 8:55:08.712 4 FIND/ 60 Reads 2
AM NEXT
3/10/2010 8:55:08.712 4 FIND/ 100 Elapsed
AM NEXT Time (ms)
3/10/2010 8:55:13.712 5 FIND/ 1 Table 18 Customer
AM NEXT
3/10/2010 8:55:13.712 5 FIND/ 2 Search +
AM NEXT Method
3/10/2010 8:55:13.712 5 FIND/ 3 Key No.
AM NEXT
3/10/2010 8:55:13.712 5 FIND/ 14 Source Codeunit
AM NEXT Object 50605 Client
Monitor
3/10/2010 8:55:13.712 5 FIND/ 15 Source OnRun()
AM NEXT Trigger/
Function
3/10/2010 8:55:13.712 5 FIND/ 16 Source 4
AM NEXT Line No.
3/10/2010 8:55:13.712 5 FIND/ 17 Source Text Customer.
AM NEXT FINDLAST;
3/10/2010 8:55:13.712 5 FIND/ 50 Search +
AM NEXT Result
3/10/2010 8:55:13.712 5 FIND/ 51 Record No.='1C1030"
AM NEXT Found
3/10/2010 8:55:13.712 5 FIND/ 55 Records 2
AM NEXT Read

164

Chapter 6

Date Time Entry Function Parameter Parameter Number Data
No. Name No
3/10/2010 8:55:13.712 5 FIND/ 60 Reads 1
AM NEXT
3/10/2010 8:55:13.712 5 FIND/ 100 Elapsed
AM NEXT Time (ms)

Each action corresponds to an Entry No. in the table. Each entry number has multiple
parameters. We will begin with entry number 4.

Parameters 1 and 3 tell us that we are dealing with the Customer table and have it sorted on
the Parameter No. key, which in this case is the primary key. That means we probably did not
use the SETCURRENTKEY command. Parameter 2, Search Method, has a value of "-". From
older versions of NAV we know that thisisa FIND (' - '), or what is now a FINDFIRST (the
actual code is shown in Parameter No. 17, but it is nice to be able to understand the output).

Parameter numbers 14 and 15 tell us that this code is being called from the OnRun trigger of
our Client Monitor codeunit. Parameter 16 gives more specifics about the exact line number
of the code. Note that this is based on the entire object, not the line number of the trigger or
function. Trigger definitions (gray bars is Code View) also count as lines. This is important to
know because we could have multiple Customer . FINDFIRST commands and we will need
to know which one we are dealing with.

The remaining parameters show us the record that was returned and the number of database
reads (or writes if this was an INSERT/MODIFY/RENAME command).

Note that this code executed at 8:55:08 AM. Entry No. 5 did not execute until 8:55:13 AM.
This tells us that we have some sort of network problem. In reality, this is an artificial problem
created by the SLEEP (5000) command. We introduced a five second delay to show what the
output would look like if there were actual network issues.

» Using SQL Profiler

Finding errors when using NAS

The Navision Application Server, or NAS, does everything a normal NAV client can do, except
that it doesn't show anything on the screen. This can present challenges to figuring out what
has gone wrong when running your code using NAS. This recipe will show you how to debug
this type of code.

Diagnosing Code Problems

Getting ready

You must already have the NAV Application Server installed on the machine on which you
are working.

How to do it...

1. Copy your developer license into the install directory for the application server. On a
typical install this is C: \Program Files (x86) \Microsoft Dynamics NAV\60\
Application Server. The license file should be named £fin.f1f.

2. Open a command prompt.
3. Run the following command:

"Path to Application Server\nassqgl" debug, appservername="NAS",
servername="Your Server Name", database="Your Database

Name", company="Your Company Name", startupparameter="NEP-",
objectcache=32000, nettype=tcp

The NAS Snap-in Console does not allow you to start an NAS service in debug mode, so
we have to start it manually from the command line. This command is designed to error-out
quickly by passing a start up parameter of NEP- instead of NEP-1.

When the command is run, the normal NAV debugger window will open with Codeunit 1
loaded. From here you can use the normal debugger commands to step through the code.

There's more...

You can also create your own codeunit that calls the NASHand1ler function in Codeunit 1,
ApplicationManagement to get similar results.

See also

» Using the debugger
» Setting breakpoints

166

Chapter 6

Implementing Try / Catch / Finally

The Try / Catch / Finally syntax has been around in languages like C# .NET for a very
long time. Unfortunately, it has never made it into C/AL. This recipe will show you how to
implement this type of control structure so that you can display error messages and still have
your code continue to execute.

How to do it...

In Visual Studio create a new Class Library Project.
Add a file named ITryCatchFinally.cs with the following code:

using System.Runtime.InteropServices;

namespace TryCatchFinally

{

[ComVisible (false)]
public delegate void OnTry() ;

[ComVisible (false)]
public delegate void OnCatch(string errMessage) ;

[ComVisible (false)]
public delegate void OnFinally() ;

[InterfaceType (ComInterfaceType.InterfaceIsIDispatch)]
[ComVisible (true)]
public interface ITryCatchFinally

{

event OnTry NAVTry;
event OnCatch NAVCatch;
event OnFinally NAVFinally;

void Execute() ;

}

3. Add a file named ITryCatchFinallyEvents.cs with the following code:

using System.Runtime.InteropServices;

namespace TryCatchFinally

{

[InterfaceType (ComInterfaceType.InterfaceIsIDispatch)]
[ComVisible (true)]

Diagnosing Code Problems

public interface ITryCatchFinallyEvents

{

[DispId (0x60020001)]
void NAVTry () ;

[DispId (0x60020002)]
void NAVCatch(string errMessage) ;

[DispId (0x60020003)]
void NAVFinally () ;

}
}

4. Add a file named TryCatchFinally.cs with the following code:

using System;

using System.Runtime.InteropServices;

namespace TryCatchFinally

{

ComSourcelInterfaces (typeof (ITryCatchFinallyEvents))]
ProgId ("TryCatchFinally")]
ComVisible (true)]

ClassInterface (ClassInterfaceType.None)]

[
[
[
[
public class TryCatchFinally : ITryCatchFinally
{

public
public
public

public
{
}

public

{

event OnTry NAVTry;
event OnCatch NAVCatch;
event OnFinally NAVFinally;

TryCatchFinally ()

void Execute ()

OonTry () ;

}

private void OnTry ()

{

try
{
NAVTry () ;
}
catch (Exception e)

168

Chapter 6

{

try { OnCatch(e); } catch { }

}

finally

{

try { OnFinally(); } catch { }

}
}

private void OnCatch (Exception exception)

{

if (exception != null)

{

NAVCatch (exception.Message) ;

}
}

private void OnFinally ()

{

NAVFinally () ;

}
}
}

View the Properties of the project.
On the Build tab check the Register for COM interop checkbox.
Save and compile the objects.

Create a new codeunit from Object Designer.

© ® N o O

Add a global Automation variable named TCF of subtype ' TryCatchFinally"'.
TryCatchFinally

10. Add the following global variable:

Name Type Subtype
TCF Automation 'TryCatchFinally'.TryCatchFinally

11. Set the following property on the variable:

Property Value
WithEvents Yes

Diagnosing Code Problems

12. Add the following code to the OnRun trigger:
CREATE (TCF) ;
TCF.Execute () ;
13. Add the following code to the TCF: : NAVTry event:
ERROR ('NAV has encountered an error.');
MESSAGE ('This message should never be displayed.');
14. Add the following code to the TCF: : NAVCatch event:
MESSAGE ('The following error was caught:\%1l',6 errMessage);
15. Add the following code to the TCF: :NAVFinally event:
MESSAGE ('NAV will now perform some cleanup.') ;

16. Save and close the codeunit.

We will not go into the details about how the C# .NET code works. For that you should refer
related articles on msdn.microsoft.com/.

The ITryCatchFinally.cs file is a basic interface. Any class that implements this interface
will need to define three events (NAVTry, NAVCatch, and NAVFinally) and a method called
Execute.

We also need to implement an interface that will expose the events in our NAV object. This is
the ITryCatchFinallyEvents.cs file. We again define our three events, but give each of
them a special attribute called DispId. This ID allows the code that will be written in the NAV
events to be linked back to these functions.

The last file is a class named TryCatchFinally. Our Execute method, which will be called
from NAV, is simply a wrapper for our OnTry method. OnTry executes the code we have added
in the NAVTry method in our NAV object. If an error is found, it is caught and execution moves
to the OnCatch event. Lastly, no matter what happens, the OnFinally event is called.

When we add the Automation control to our NAV object and set the WithEvents property to
Yes, our three events appear. In our NAVTry event we intentionally throw an error. A message
action has been placed under that error to show that execution of the event does in fact

stop when the error is encountered. In the other events, OnCatch and OnFinally, we add
messages to show that although we have encountered an error, NAV code will continue

to execute.

The downside to this solution is that you must declare an Automation variable for every try /
catch / finally block you want to execute. This can cause your code to become difficult to read
and follow.

170

Chapter 6

You can also mimic this behavior using the IF CODEUNIT.RUN THEN syntax. This is easier,

but you have to buy a codeunit (admittedly, a cheap thing to buy) for every line of code you
need to do this on.

Most errors can be caught using simple conditionals and this form of error trapping should be
used only when absolutely necessary.

See also

» Checking for conditions using an IF Statement

» Using a CASE statement to test multiple conditions

Roles and Security

In this chapter, we will cover:

» Adding roles through the User Setup table
» Creating and assigning a security role

» Using FILTERGROUP to restrict data

» Checking for user-assigned roles

» Checking Active Directory groups

» Using security filters

» Field-level security

» Assigning menu suites based on company
» Ending an idle session

» Automatically adding users to NAV

» Hiding values in Zoom

Introduction

ERP systems like Dynamics NAV need a built-in security model to make sure that
appropriate people have access to appropriate information. NAV supports two forms of user
authentication: Database and Windows. Each login is assigned roles, which in turn have
permissions, which the system checks every time data is accessed or an object is run.

NAV security is somewhat limited and difficult to maintain. However, as system-security data
is stored in tables of the NAV database, we can write custom code to handle permissions in

any way we like. We can even make calls to the Active Directory to examine user groups and
other Windows properties. As you will see in this chapter, the boundaries of NAV security are
limitless, but there will be a large amount of work involved for certain tasks.

Roles and Security

Adding roles through the User Setup table

A common way to give permissions to users is by adding a field to the User Setup table.
Although not the best practice, this recipe will show you how this common type of
permission works.

How to do it...

Design the User Setup table (91) from Object Designer.
2. Add a Boolean field named Sample Permission with ID as 50000.

B8 Table 91 User Setup - Table Designer, [:J[EJE|

E. Field Mo, Field Mame Data Type Lenagth Description
v 16 Substitute Code 20 ”~
v 17 E-Mail Texk 100
v 19 Request Amount Approval Limit Integer
v 20 Unlimited Request Approval Boolean
v 5600 Allow F& Posting From Date
v 5601 Allow FA Posting To Date
v 5700 Sales Resp, Ctr, Filker Code 10
v 5701 Purchase Resp, Ctr, Filker Code 10
v 5900 Service Resp. Ctr, Filker Code 10
o n
w

3. Save and close the table.
Design the User Setup form (119).
5. Use the Field Menu to add a column for the Sample Permission field.

User ID Allow Pa... | Allow Po... | Register ... SalesRe... Purchas... Service ...
=<"User,., =<"allo... =<«"allo... =<"Sale,,, =<"Purc... =<"Jerv...

EE Field Menu

Field Caption Data Type
Unlimited Purchase Approval Unlimited Purchase Approval Boolean -~
Substitute Substitute Codezd
E-Mail E-Mail Texk100
Request Amount Approva... Request Amount Approval Limit Inkeger
Unlimited Request Approval Unlimited Request Approval Boolean
Allove FA Posting From Allovs F& Posting From Date
Allow FA Posting To Allov F& Posting To Date
Sales Resp, Ctr, Filker Sales Resp, Ctr, Filter Codell
Purchase Resp, Ctr, Filker Purchase Resp, Chr, Filker Codell
Service Resp, Ctr, Filer Service Resp, Ctr, Filter Codell
. T

174

Chapter 7

Save and close the form.
7. Create a new codeunit from Object Designer.
Add the following global variable:

Name Type Subtype

UserSetup Record User Setup

9. Add the following code to the OnRun trigger:

IF NOT UserSetup.GET (USERID) THEN
ERROR ('You do not have permission to perform this action.');

IF UserSetup."Sample Permission" THEN

MESSAGE ('Permission granted.')

ELSE

ERROR('You do not have permission to perform this action.');

10. Save and close the codeunit.

We start by adding a field that will give or deny permission for a specific action. That field is
then added to the form so that the permission can be assigned.

In our codeunit we first make sure that a user setup record exists for our ID. If it does not, we
throw an error stating that we do not have the correct permissions. If a record is found we
check the value of the Sample Permission field using a standard conditional statement and
take an appropriate action.

This method of assigning permissions is not the best practice. NAV already has a working
security system, so if you need to modify the database, you might as well build that modification
on top of the existing functionality. Although this method works just fine, it can get confusing
when there are multiple places to check for user permissions.

» Creating and assigning a security role
» Checking for user-assigned roles

Roles and Security

Creating and assigning a security role

NAV has its own built-in methods for controlling access to certain parts of the system. This
recipe will show you how to create roles to limit that access.

How to do it...

1. From the NAV client click Tools | Security | Roles.

2. Use the F3 key to enter a new role called SAMPLE with a Description of "PACKT -
Sample Role".

With your cursor on the SAMPLE line, click on the Role button, then Permissions.
Add a permission for Object Type = TableData, Object Type = 18.

Close the Permissions window.

Close the Role window.

No o rw

From the NAV client click on Tools | Security | Windows Logins (or Database Logins
depending on the system).

Select a user from the list and click on Roles.

Add the sample role to the user.

- B[X

User IO Mame Password | Expiratio. ..
b [MATTTRAX Matt Traxinger ek

B5 MATTTRAX Matt Traxinger - Roles

Rale Mame Campany

> PACKT - Sample Role |

SUPER This role has all permissions,

10. Close the Roles window.
11. Close the Logins window.

176

Chapter 7

The security system in NAV is maintained using roles and permissions. A role is made up of
permissions to access specific objects in the database such as tables, forms, reports, and
even system objects such as items in the NAV client menu. These roles are then assigned to
database users, Windows users, or Windows groups.

Roles ?E?
Role ID MName
ADCS ALL - ADCS User -
ADCS SE... ADCS Set-up
» ALL All users
fZ ALL All users - Permissions EI@
Object Type Object ID CObject Name ReadP... Insert ... Modify ... Delete ... Run Pe... !
»|[EEEEE[*] 2000000069 Client Add-in Yes -
Table Data 2000000071 Object Metadata fes
Table Data 2000000072 Profile Yes
Table Data 2000000073 User Personalization Indirect Indirect Indirect
Table Data 2000000075 User Metadata Indirect Indirect Indirect
Table a Yes
Form 0 fes
1 Report 0 ‘Yes
Dataport o] ‘es
Codeunit a Yes
¥MLport 0 fes
MenuSuite 0 fes
Page [¥] fes =
System 2510 Edit, Find Yes Yes Yes fes Yes
System 2520 Edit, Replace fes Yes fes fesg Yes -
4 m 3
| All Objects | | Help |

Everything related to security in NAV can be found under the Tools | Security menu in the NAV
client. Roles are inserted into the system using the same shortcuts as in every other record,
the F3 key. These roles have a short name called the Role ID and a longer Description field.

Our role contains a permission that will allow the user full access to customer records. For
Table Data object types, there are four permission levels that can be combined in any order.
They include the ability to read, insert, modify, and delete records from this table. The fifth
permission level is run or execute and is used for the other object types. The options for each
of these permission levels are blank (No), Yes, and Indirect.

In order to test this you will need to assign the role to a user who does not already have
permission to the Customer table. Once that role is assigned, the user will need to close the
NAV client and reopen it in order to gain their new permissions.

Roles and Security
For more information about roles and security, search for Security in
s Microsoft Dynamics NAV Help from the NAV client Help menu.

There's more...

If you are using SQL Server you may need to take an additional step in order to make sure the
permissions in the NAV system are the same as those in SQL. This depends on the security
model you are using. You can check this by going to File | Database | Alter in the NAV client.
Click on the Advanced tab and check the security model.

If you are using Standard security then no further action is required. However, if you are using
Enhanced security then you need to selet Tools | Security | Synchronize All Logins. This will
make sure everything between the NAV Client and SQL Server matches.

Leveraging the User Rights tool

Microsoft provides a great product with the NAV software called the User Rights tool. This
code examines records produced by the Client Monitor tool and automatically creates a role
with the permissions you need. You can find it on the NAV product CD.

» Adding roles through the User Setup table
» Checking for user-assigned roles

Using FILTERGROUP to restrict data

Filter groups are used to apply filters that cannot be removed by the user. This recipe will show
you how to write code to utilize them and what to watch out for.

How to do it...

1. Create a new codeunit from Object Designer.

2. Add the following global variables:

Name Type Subtype
CurrFilterGroup Integer
Customer Record Customer

178

Chapter 7

3. Add the following code to the OnRun trigger of the codeunit:

CurrFilterGroup := Customer.FILTERGROUP;

Customer .FILTERGROUP (255) ;
Customer.SETRANGE ("No.", '50000');
Customer.FILTERGROUP (CurrFilterGroup) ;

Customer.FINDFIRST;

MESSAGE ('Filters: %1\First Customer: %2', Customer.GETFILTERS,
Customer.Name) ;

4. Save and close the codeunit.

A FILTERGROUP is used to set filters on a Record variable that cannot be removed by the
user. This function takes in a single integer as a parameter between the numbers 0 and 255.
Although you can use numbers one to six, they are reserved by the system and manually
assigning filters to those groups can override default functionality. For example, NAV uses
FILTERGROUP number four to apply the link between header and line values on forms such as
Sales Order and Purchase Order.

In our short code segment, we first need to determine the FILTERGROUP that is currently
assigned to the user so that we can set it back when we are finished. Like other functions in
NAV, when the optional parameter is not used the function returns the current value. Next we
set the FILTERGROUP to 255, assign a filter, and then reset the FILTERGROUP. Finally, we find
the first record in the table and display a message with the filters applied and the record that
was found.

&

Microsoft Dynamics NAV Classic

1 Filters:
- First Customer; Guildford Water Department

As you can see from the expected output, we cannot see that we have applied any filters to
the record. However, if we look at the Customer List from the standard form, we can see that
Guildford Water Department is not the first customer in the list.

Roles and Security

See also

» Using advanced filtering

Checking for user-assigned roles

The NAV system checks permissions every time you look at data or run an object, but what if
you need to check permissions manually? This recipe will show you how to examine a user ID
to check for a specific role.

How to do it...

1. Create a new codeunit from Object Designer.

2. Add a global function called VerifySecurity that returns a Boolean value named
HasPermission.

3. This function should take in three parameters:

Name Type Length
RolelD Code 20
CompanyRequired Boolean
SuperAllowed Boolean

4. Add the following code to the function:

HasPermission := CheckUserId(RoleID, CompanyRequired,
SuperAllowed) ;

5. Add a global function called CheckUserID that returns a Boolean value.

This function should take in the same three parameters as the
VerifySecurity function

7. Add the following local variable to the function:

Name Type Subtype

Session Record Session

8. Add the following code to the function:

Session.SETRANGE ("My Session", TRUE) ;
IF NOT Session.FINDFIRST THEN
EXIT (FALSE) ;

180

10.

11.

12.

13.

14.

Chapter 7

IF Session."Login Type" = Session."Login Type"::Database THEN
BEGIN
EXIT (CheckDatabaseLogin (USERID, RoleID, CompanyRequired,
SuperAllowed))

END ELSE BEGIN
EXIT (CheckWindowsLogin (USERID, RoleID, CompanyRequired,
SuperAllowed)) ;
END;

Add a global function named CheckDatabaseLogin that returns a Boolean value
named HasPermission.

The function should take in the following parameters:

Name Type Length
UserIDIn Code 20
RolelD Code 20
CompanyRequired Boolean
SuperAllowed Boolean

Add the following local variable:

Name Type Subtype

DatabaseUserRoles Record Member Of

Add the following code to the function:

DatabaseUserRoles.SETRANGE ("User ID", UserIDIn);

IF NOT SuperAllowed THEN
DatabaseUserRoles.SETRANGE ("Role ID", RoleID)

ELSE
DatabaseUserRoles.SETFILTER ("Role ID", '%1|%2', RolelD,

'SUPER') ;

IF CompanyRequired THEN BEGIN
DatabaseUserRoles.SETFILTER (Company, '%1|%2', COMPANYNAME, '');

END;

IF DatabaseUserRoles.FINDFIRST THEN
HasPermission := TRUE;

Add a global function named CheckWindowsLogin that returns a Boolean value
named HasPermission.

The function should take in the same parameters as the
CheckDatabaseLogin function.

Roles and Security

15. Add the following local variable to the function:

Name Type Subtype

WindowsUserRoles Record Windows Access Control

16. Add the following code to the function:

IF NOT SuperAllowed THEN
WindowsUserRoles.SETRANGE ("Role ID", RolelID)
ELSE
WindowsUserRoles.SETFILTER ("Role ID",'%1|%2', RoleID, 'SUPER') ;
IF CompanyRequired THEN
WindowsUserRoles.SETFILTER ("Company Name", '$1|%2',
COMPANYNAME, '');
IF WindowsUserRoles.FINDSET THEN
REPEAT
WindowsUserRoles.CALCFIELDS ("Login ID")
IF UPPERCASE (ShortUserID (WindowsUserRoles."Login ID")) =
UPPERCASE (UserIDIn) THEN
HasPermission := TRUE;
UNTIL (WindowsUserRoles.NEXT = 0) OR (HasPermission) ;

17. Add a global function named shortUserID that returns a code variable of
length 20.

18. The function should take in the following parameter:

Name Type Length
UserIDIn Code 132

19. Add the following code to the function:

IF STRPOS (UserIdIn,'\') IN [0,STRLEN (UserIdIn)] THEN
EXIT (COPYSTR (UserIdIn, 1,MAXSTRLEN (UserIdIn)))
EXIT (COPYSTR (UserIdIn, STRPOS (UserIdIn, '\') +
1,MAXSTRLEN (UserIdIn))) ;

7

20. Add the following code to the OnRun trigger:

IF VerifySecurity('S&R-CUSTOMER', FALSE, FALSE) THEN
MESSAGE ('Security Check Passed')

ELSE
MESSAGE ('Security Check Failed') ;

21. Save and close the codeunit.

182

Chapter 7

NAV security can be quite complex, but this codeunit breaks out the process of checking it.
Our onRun trigger calls the VerifySecurity function so we will start there.

This function takes in three parameters which are used throughout the codeunit. The first

is the Role ID. This identifies the role that we want to check for in the system. Usually you

will want to store this value in a setup table so that it can be changed by the customer, but
here we have hard coded it into the business logic. The second parameter tells the function
whether or not the user must have permission specifically for the company they are in (TRUE)
or if they can have it for any company in the database (FALSE). The last is whether or not

the user is allowed to have SUPER access which overrides any lower-level permission. This
function will call the CheckUserID function and pass the same parameters to it.

In the CheckUserID function we take a look at the Session table, a virtual table in NAV. This
table contains all of the users currently logged into NAV. There is a field in this table called
My Session which identifies the session of the user running the code. The other important
field in this table is the Login Type. This field tells us whether the user is connected through a
database login or a Windows login. Security-related data is stored in different tables for each
type so we have to know in which order to do a correct check.

Security-related data for database users is stored in the Member Of table. In order to check
the security we apply three filters. The first is for the user we are looking for. The next two
depend on the values of our parameters. If we want it to be the company name then we must
set a filter for the current company name; if not, we will leave the filter blank. The last filter is
applied if SUPER is an allowed role. If it is then we filter for either the Role ID or SUPER. If not,
we only filter for the Role ID. If a record is found, the function returns TRUE.

Checking Windows logins is a little different. In Windows, the logins actually map to a SID, or
security identifier. The security identifier is stored in the Windows Access Control table. Based
on this SID and the actual username is a FlowField. Here we will set the same filters as the
database-login check, other than the User ID. This will give us a recordset containing everyone
who has the correct role. We will then loop through that set, calculating the value of the
FlowField, and comparing it to the ID we are looking for.

In order to properly perform this comparison we have to implement one final function. The
User Name field contains the user's full name; that is the domain and/or user ID. The
USERID function in NAV only returns the ID of the current user. The ShortUserId function
removes the domain part of the name, if it exists, and returns a value in-line with what

NAV is expecting.

Roles and Security

When you run the codeunit you will see a message depending on the security validation:

Microsoft Dynamics NAV Classic @

\lf) Security Check Failad

Microsoft Dynamics NAV Classic @

L3
\!.J) Security Check Passed

See also

» Checking conditions using an IF statement
» Adding roles through the User Setup table

» Creating and assigning a security role

» Checking Active Directory groups

» Automatically adding users to NAV

Checking Active Directory groups

A common practice is to assign security through Active Directory groups. NAV supports this
out-of-the-box, but does not give a way to manually check those groups from code. For that
you will need to implement a .NET class.

Getting ready

The codeunit from the Checking for user-assigned roles recipe should be created.

184

How to do it...

1.

Chapter 7

Create the following class in Visual Studio. You will need to add a reference to
System.DirectoryServices

using System;

using System.Collections;

using System.DirectoryServices;

using System.DirectoryServices.ActiveDirectory;

using System.Runtime.InteropServices;

using System.Security.Principal;

namespace NAV ActiveDirectory

{

[ProgId ("NAV ActiveDirectory")]
[ComVisible (true)]
[ClassInterface (ClassInterfaceType.AutoDual)]

public class NAV ActiveDirectory

{

private ArraylList properties;
private string userdn;
private int propertiesIndex;

public NAV ActiveDirectory ()

{

properties = new ArrayList () ;
propertiesIndex = 0;

public void SetConnectionString(string userid,

{

this.userdn = userdn;
this.userdn = userdn.Replace("%$1", userid);

public bool MorePropertiesExist ()

{

return (propertiesIndex < properties.Count) ;

public string GetNextProperty ()

{

string userdn)

string dnstring = properties [propertiesIndex] .ToString() ;

dnstring = dnstring.Substring(dnstring.IndexOf ("CN=") + 3,
dnstring.IndexOf (",") - 3);

Roles and Security

propertiesIndex++;
return dnstring;

public void LoadADGroups (bool recursive)

{

LoadProperty ("memberof") ;

private void LoadProperty(string property)

{

DirectoryEntry ent = new DirectoryEntry (userdn) ;

PropertyValueCollection ValueCollection =
ent .Properties [property] ;

IEnumerator en = ValueCollection.GetEnumerator () ;

while (en.MoveNext ())

{

if (en.Current != null)

{

if (!properties.Contains (en.Current.ToString()))

{

properties.Add (en.Current.ToString()) ;

}
}

ent.Close () ;
ent .Dispose() ;

}

2. Add a function to your codeunit called CheckADGroups.
3. This function should take three parameters:

Name Type Length
RolelD Code 20
CompanyRequired Boolean
SuperAllowed Boolean

186

Chapter 7

Add the following global variable to the codeunit:

Name Type Subtype

ADGroups Automation 'NAV_ActiveDirectory'.NAV_ActiveDirectory

CREATE (ADGroups) ;
ADGroups.SetConnectionString(USERID,
'"LDAP://DomainName/CN=%1,0U=your_ organizational unit,
DC=your domain') ;
ADGroups . LoadADGroups (TRUE) ;

WHILE (ADGroups.MorePropertiesExist()) AND (NOT HasPermission) DO
BEGIN

GroupName := ADGroups.GetNextProperty () ;

HasPermission := CheckWindowsLogin (GroupName, RolelID,

CompanyRequired, SuperAllowed) ;
END;
CLEAR (ADGroups) ;

Add the following code to the verifySecurity function:

IF NOT HasPermission THEN
HasPermission := CheckADGroups (RoleID, CompanyRequired,
SuperAllowed) ;

When you run the codeunit you will see a message depending on the
security validation:

Microsoft Dynamics NAV Classic @

L.l
\lr) Security Check Failed

Microsoft Dynamics MAV Classic @

\ll‘) Security Check Passed

Roles and Security

Our Visual Studio class creates an LDAP (Lightweight Directory Access Protocol) to a
domain controller on your network using a string like this:

LDAP://DomainName/CN=%1,0U=your organizational unit,DC=your domain

You can find the domain name using Active Directory Users and Computers.

4% Active Directory Users and Computers =10l =|
<5 File Action View Window Help |;|i|£|
e | B@E R FRR EE REBTE @
@ Active Directory Users and Computers [vm-winZ00340.. activedirectory.jivesoftware.com
&[] Saved Queries
;% an::ti'.'r:-_n:lF-.-::tn:nr],r.n:h:-rnair| Mz 2 e DiE=El
L] Bulin [JBuiltin builtinComain
12 Computers DCnmputers Conkainer Defaull
(23] Domain Controllers Dorain Controllers Crganizational ... Defadll
27 ForeignsecurityPrincipals [JForeignSecurityPrincipals Container Deefaul
@ Groupl Groupl Qrganizational ...
(&) Groupz Gr0u|:|2 Organizational ...
@ Groups Grnups Qrganizational ...
2 LostandFound Infrastructure infrastructurel...
{1 WTDS Quatas [(LestandFound lostandFound Defaul
(€] Other Users [ANTDS GQuatas msDS-QuotaCo,., Quoka
{1 Program Data Other Users Organizational ...
: L1 system [:IProgram Data Container Defaull
- users [(D5ystem Container Buikin: |
mTestGroupl Security Group ..,
[(users Container Defa_ulllll
4] | 2l | v
| | |

The objects within the domain are grouped into Organizational Units, or OUs. Examples in
the preceding image include Computers and Users. If the object you are looking for resides
deep down in the hierarchy you must pass each OU to the LDAP query and you have to do it
in a specific way. For example, if a User object was found in Users\Companyl\Service
Accounts, you would pass an LDAP string like this:

LDAP://DomainName/CN=%1,0U=Service Accounts,OU=Companyl,
OU=Users,DC=your domain

That is, you have to pass them in order, from the bottom up, to the query.

You should be able to find your domain very easily. It is displayed every time you log into your
system. You can also find it in Control Panel under System and Maintenance.

188

Chapter 7

Once the LDAP connection has been established, the program then loads all of the values
found in the MemberOf property for the user into an ArrayList object. As NAV cannot
handle these types of objects, code is included to loop through the values and return them
one-by-one. As these AD groups are listed in the Windows Login table, just like a normal user,
we can use our CheckWindowsLogin function to see what permissions have been assigned
to it.

See also

» Checking conditions using an IF statement
» Adding roles through the User Setup table

» Creating and assigning a security role

» Checking for user-assigned roles

» Automatically adding users to NAV

Using security filters

The SQL Server option for Microsoft Dynamics NAV allows you to specify record-level security
using the Security Filters field on Permissions. Here we will discuss how to set up these
filters and some pitfalls to watch out for when using them.

Getting ready

You must be using a SQL database in order to use this recipe.

How to do it...

1. If you have not done so, create the SAMPLE role as described in the Creating and
assigning a security role recipe.
2. View the permissions for this role.

3. Using the assist button, set the Security Filter field to filter based on a Service Zone
Code equal to the letter 'M'".

4. Close the Security windows.
5. Create a new codeunit from Object Designer.
6. Add the following global variable:

Name Type Subtype

Customer Record Customer

Roles and Security

7. Add the following code to the OnRun trigger:

Customer.SETPERMISSIONFILTER;
FORM.RUNMODAL (0, Customer) ;

Save and close the codeunit.

9. The resulting form will only list a single customer:

£ Customer List

Marne Responsi... Location ... Phone Mo, Conkact
10 The Cannon Group PLC BIRMIMNG... BLLE Mr, Andy Teal
2
Customer v] [Sales v] [Help]

With SQL Server, you can limit the records the user can see in a table using the Security
Filter option. This attribute is assigned in a way similar to the read / insert / modify / delete
attributes in the Permissions window for a Role.

If the user opens a form these filters will automatically be applied. This is not the
case, though, when the form is opened through code. In these cases you must call the
SETPERMISSIONFILTER function on the Record variable that is passed to the form.

When used correctly, security filters can be of great use when setting up permissions. They
can also cause a lot of headaches.

For example, let's imagine a manager who needs to view the General Ledger entries to make
sure his department is not going over budget. He should be able to view entries only in the
accounts that relate directly to his department. This seems like a great use for security filters.
But what about all of those other General Ledger Entries that are created when he posts
documents? Tax and VAT are great examples. That security filter will not allow him to post to
those accounts and he will receive errors during posting.

190

Chapter 7

Be careful when and how you use this type of security. If you apply a security filter to a
Customer permission, don't just open the Custom List form to test it out. As with all forms of
security you will want to test your code extensively to make sure that you do not introduce any
problems into the system.

See also

» Using advanced filtering

Field-level security

Field-level security does not exist out-of-the-box in NAV and is not easy to implement. In fact,
real field-level security is impossible to implement. This recipe will show you an example of
how to quickly create a work around for this type of security model in your system.

Getting ready

Part of the code in this recipe relies on code from the codeunit created in the Checking for
user-assigned roles recipe in this chapter.

How to do it...

1. Create a new table in Object Manager named Field Level Security.

2. Add the following fields:

Name Type Length
Table No. Integer

Field No. Integer

Security Type Option

Applies To Text 119
Editable Boolean

Visible Boolean

Show Text Boolean

Roles and Security

3. Set the following properties for these fields:

Field Name Property Value

Table No. TableRelation Object.ID WHERE (Type=CONST (Table))

Field No. TableRelation Field.No. WHERE (TableNo=FIELD (Table
No.))

Security Type OptionString Database User, Windows User

Applies To Text IF (Security Type=CONST (Database User))
User

ELSE IF (Security Type=CONST (Windows
User)) "Windows Login"

Set the primary key for the table to Table No., Field No., Security Type, Applies To.
5. Save and close the table.

Using the Form Generation Wizard, create a form that displays all of the fields from
this table.

7. Add the following local variables to the OnFormat trigger of the Applies To field:

Name Type Subtype

WindowsLogin Record Windows Login

SecurityCheck Codeunit Security Check (or the name you gave your codeunit in
the "Checking for user-assigned roles" recipe)

8. Inthe onFormat trigger for the Applies To field add the following code:

IF "Security Type" = "Security Type"::"Windows User" THEN BEGIN
WindowsLogin.GET ("Applies To") ;
WindowsLogin.CALCFIELDS (ID) ;
Text := SecurityCheck.ShortUserID (WindowsLogin.ID) ;

END;

9. Save and close the form.

192

Chapter 7

10. A sample form with data might look like this:

#= Field Level Security

Table Mo, ' Table Mame Field Mo, | Field Mame Security ... Applies To | Editable Wisible Show Texk
18 Customer 1 Mo, Database... MATTTRAX v v
18 Customer 2 Mame Database.., MATTTRAR v
» 23 Wendor 1 Mo, Database,.. MATTTRAX v v
23 wendor 2 Mame Database.., MATTTRAR v
11. Create a new codeunit from Object Designer.
12. Create a global function named CheckSecurity.
13. This function should take in the following parameters:
Name Type Length
UserIDIn Code 119
TablelD Integer
FieldID Integer
CurrentStatus Boolean
PropertyToCheck Option

14. Set the following property for these fields:

Field Name Property Value

PropertyToCheck OptionString

Editable,Visible, ShowText

15. The function should return a Boolean value.
16. Define the following local variables in the function:

Name Type Subtype
FieldLevelSecurity Record Field Level Security
Session Record Session

Roles and Security

17. Add the following code to the CheckSecurity function:

Session.SETRANGE ("My Session", TRUE) ;
IF NOT Session.FINDFIRST THEN
EXIT (FALSE) ;

FieldLevelSecurity.SETRANGE ("Table No.", TableID);
FieldLevelSecurity.SETRANGE ("Field No.", FieldID) ;
CASE Session."Login Type" OF
Session."Login Type'"::Database: BEGIN
FieldLevelSecurity.SETRANGE ("Security Type",
FieldLevelSecurity."Security Type"::"Database User") ;
FieldLevelSecurity.SETRANGE ("Applies To", USERID) ;
END;
Session."Login Type"::Windows: BEGIN
FieldLevelSecurity.SETRANGE ("Security Type",
FieldLevelSecurity."Security Type"::"Windows User") ;
FieldLevelSecurity.SETRANGE ("Applies To",

GetSIDFromLogin (USERID)) ;
END;

END;

IF FieldLevelSecurity.FINDFIRST THEN
CASE PropertyToCheck OF
PropertyToCheck: :Editable:
EXIT (FieldLevelSecurity.Editable AND CurrentStatus) ;
PropertyToCheck: :Visible:
EXIT (FieldLevelSecurity.Visible AND CurrentStatus) ;
PropertyToCheck: : Show:

EXIT(FieldLevelSecurity."Show Text" AND CurrentStatus) ;
END;

EXIT (CurrentStatus) ;

18. Add a function named Get SIDFromLogin that takes in the following parameter:

Name Type Length
Login Text 119

19. It should return a Text value of length 132.

Chapter 7

20. Add the following local variables to the function:

Name Type Subtype

WindowsLogin Record Windows Login

SecurityCheck Codeunit Security Check (or the name you gave your codeunit
in the "Checking for user-assigned roles" recipe)

21. Add the following code to the function:

IF WindowsLogin.FINDSET THEN
REPEAT
WindowsLogin.CALCFIELDS (ID) ;

IF UPPERCASE (USERID) =
UPPERCASE (SecurityCheck.ShortUserID (WindowsLogin.ID)) THEN

EXIT (WindowsLogin.SID) ;
UNTIL WindowsLogin.NEXT = 0;

EXIT(''");

22. Create a form as described in the Using the Form Generation Wizard recipe. You
should have a form displaying the No. and Name fields from the Customer table.

23. Add the following global variable:

Name Type Subtype

FieldLevelSecurity Codeunit Field Level Security

24. Add the following code to the OnOpenForm trigger:

CurrForm."No." .EDITABLE := FieldLevelSecurity.CheckSecurity(
USERID, DATABASE::Customer, Rec.FIELDNO("No."),
CurrForm. "No." .EDITABLE, O0);

CurrForm."No.".VISIBLE := FieldLevelSecurity.CheckSecurity(
USERID, DATABASE::Customer, Rec.FIELDNO("No."),
CurrForm."No.".VISIBLE, 1);

25. Add the following code to the OnFormat trigger for the No. field:

IF NOT FieldLevelSecurity.CheckSecurity (
USERID, DATABASE::Customer, Rec.FIELDNO("No."), TRUE, 2) THEN

Text := '***1;

26. Save and close the form.

Roles and Security

27. The resulting form might look something like the one shown in the following
screenshot, depending on the security assigned:

E5 Field Level Security Test E@@
Ma. Marne
4 ### The Cannon Graup PLC ~

#** Sglangorian Lkd.

John Haddock Insurance Co.

#** Deerfield Graphics Company

#** Guildford Water Department

*#** Blanemark Hifi Shop

*#** Fairway Sound

#** The Device Shop

#** Spotsmeyer's Furnishings

#** progressive Home Furnishings

#** New Concepts Furniture v

NAV does not have a place to store security settings on a field level so we need to create
our own table and form to hold this information. This table will hold the user, table, and
field number that security needs to be tracked for. Similar to the read/insert/modify/delete
permissions, we will track the Editable/Visible/ShowText properties.

We also need a codeunit to check the permissions when the fields are accessed. This function
will take in the table and field to check, the ID of the user, the current status of the property,
and the property to check. We check the Session table to determine how we have logged into
the database and then set appropriate filters on the Field Level Security table based on our
parameters. If a record is found, we return the value in the table and the current status. This
is so that we do not change the default value of the form to allow more access. For example,

if a field is not editable on a form we do not want to allow our code to make the field editable.
It would be fine if it was the other way around. If no value is found, we return the current value
of the property.

Finally we need a test form. When the form opens we need to set the properties of the fields
based on the Field Level Security table. We will be setting security for the No. field in the
customer table so we add the appropriate code to the OnOpenForm trigger.

As this is a list form we also need to take into account the fact that hiding a column wont
really hide a column. The user can still right-click on the column heading and show the field.
We need to add code to the OnFormat trigger for the field to change the display value if the
user is not allowed to see it.

Note that the value can still be viewed using the Zoom feature. To
i change that refer to the Hiding values in Zoom recipe in this chapter.

196

Chapter 7

There's more...

The concept of Field-level security is neither difficult to understand nor something you will
need to write code for. The problem is that in order to do it properly we have to add code to
every form in the database. For this to work on a large scale, you would need to build your own
parser to analyze NAV objects in their text form. The code would then be added to the correct
areas and the objects imported into the system.

Adding so much of code to forms before they open can also cause some slowness. The
Customer Card, for example, has 68 fields on it. That is, 136 checks (68 for Editable, 68
for visible) that need to be made before the form can appear on the screen. Of course
many of these fields will never have security set up for them, but you would need to determine
that before making modifications. You would also need to keep a documentation of the fields
whose security you wont be checking, as those fields could still be added to the permissions
table, but never utilized.

See also

» Checking conditions using an IF statement
» Creating a table

» Using the Form Generation Wizard

» Changing text appearance

» Checking for user-assigned roles

Assigning menu suites based on company

Unfortunately, NAV only supports assigning one menu suite to a user. This recipe will show you
how to set a user's menu suite at runtime based on the current company.

How to do it...

1. Design the User Menu Level table (2000000061).

2. Save the table as User Menu Level by Company with a new object ID.
3. Add the following field to the table:

Name Type Length

Company Text 30

Roles and Security

4,

© ® N o o

10.

11.

198

Set the following properties for the field:

Field Name Property Name Value
Company TableRelation Company
Company NotBlank Yes

Add the Company field as the first field under Primary Key.
Save and close the table.

Create a new codeunit from Object Designer.

Add a global function named LoadMenusuite.

Add the following local variables to the function:

Name Type Subtype
UserMenuLevelComp Record User Menu Level by Company
UserMenulLevel Record User Menu Level

Session Record Session

Add the following code to the function:

Session.SETRANGE ("My Session", TRUE) ;
IF NOT Session.FINDFIRST THEN
EXIT;

UserMenuLevelComp . SETRANGE (Company, COMPANYNAME) ;
UserMenuLevelComp.SETRANGE (ID, USERID) ;
IF Session."Login Type" = Session."Login Type"::Database THEN
UserMenuLevelComp.SETRANGE ("ID Type", UserMenuLevelComp."ID
Type": :Database)
ELSE IF Session."Login Type" = Session."Login Type"::Windows THEN
UserMenuLevelComp.SETRANGE ("ID Type", UserMenuLevelComp."ID
Type": :Windows) ;

IF UserMenulLevelComp.FINDFIRST THEN BEGIN
UserMenuLevel .GET (UserMenuLevelComp.ID, UserMenuLevelComp."ID
Type", UserMenuLevelComp.Level) ;
UserMenuLevel .DELETE;
END;

UserMenuLevelComp.CALCFIELDS (Object) ;
UserMenuLevel . TRANSFERFIELDS (UserMenuLevelComp) ;
UserMenuLevel . INSERT;

Add a global function named LoadMenusuite.

Chapter 7

12. Add the following local variables to the function:

Name Type Subtype
UserMenuLevelComp Record User Menu Level by Company
UserMenulLevel Record User Menu Level

Session Record Session

13. Add the following code to the function:

Session.SETRANGE ("My Session", TRUE) ;
IF NOT Session.FINDFIRST THEN
EXIT;

UserMenuLevel .SETRANGE (ID, USERID) ;
IF Session."Login Type" = Session."Login Type"::Database THEN
UserMenuLevel.SETRANGE ("ID Type", UserMenuLevel."ID
Type": :Database)
ELSE IF Session."Login Type" = Session."Login Type"::Windows
THEN
UserMenuLevel.SETRANGE ("ID Type", UserMenuLevel.
"ID Type"::Windows) ;

IF UserMenuLevel .FINDFIRST THEN BEGIN
IF UserMenuLevelComp.GET (COMPANYNAME, UserMenuLevel.ID,
UserMenuLevel."ID Type", UserMenulLevel.Level) THEN BEGIN
UserMenuLevel .CALCFIELDS (Object) ;
UserMenuLevelComp.Object := UserMenuLevel.Object;
UserMenuLevelComp.MODIFY;
END ELSE BEGIN
UserMenuLevel .CALCFIELDS (Object) ;
UserMenuLevelComp . TRANSFERFIELDS (UserMenuLevel) ;
UserMenuLevelComp.Company := COMPANYNAME ;
UserMenuLevelComp. INSERT;
END;
END;

14. Save and close the codeunit.

15. Design Codeunit 1, Application Management.

Name Type Subtype
MenusuiteMgt Codeunit Menusuite Management (our custom codeunit)

Roles and Security

16. Add the end of the LoginStart function add the following code:
MenusuiteMgt .LoadMenusuite;

17. Add the end of the LoginEnd function add the following code:
MenusuiteMgt.SaveMenusuite;

18. Save and close the codeunit.

MenuSuites allow the user to navigate to different parts of the NAV system. Users can
customize their menus by hiding links or adding shortcuts. These changes are stored as a
BLOB field in the User Menu Level table. The problem is that each user is only allowed one
entry in this table. This is also a system table used by the NAV executables so we want to
avoid modifying it if possible. We may not be able to change how the system loads a menu
suite, but we can definitely change what it loads.

First we need to create a wrapper for the User Menu Level table. We will call this table User
Menu Level by Company. It is a duplicate of the User Menu Level table, but it also has a
Company field which is part of the primary key. This will allow each user to have one entry
per company.

Next we should create a codeunit to manage our new table. We will need a way to load a
menu suite into the real User Menu Level table as well as a way to save the menusuite into
the User Menu Level by Company table.

In order to load the correct record containing the menu suite, you need to determine the
current session type (Database or Windows login) and set appropriate filters like the user

ID and company. We then delete the record from the User Menu Level system table. In

order to properly copy the BLOB field, we must do a CALCFIELDS on it before we use the
TRANSFERFIELDS function. The copy is then saved to the system table, which changes what
it loads.

Our save function works the opposite way. We first find the menu suite in the system table. If
a copy already exists we replace the BLOB field, but if there is no copy we insert a new record.
Once this is done the load function will pick up on it.

Lastly, we need to tell NAV to use these functions. This involves modifying Codeunit 1,
Application Management. This should be done with extreme caution. You do not want to
introduce any errors into this codeunit as it could potentially cause you to be unable to log into
the database. When someone changes companies or opens the database, the LoginStart
or LoginEnd methods are called. It is in these methods that we tell NAV to load or save the
menu suite.

200

Chapter 7

See also

» Creating a table

Ending an idle session

Idle users utilize sessions in the system and also leave the application available to people
who should not be using it. This recipe will show you how to create a small program to end
these sessions.

How to do it...

1. Create a new codeunit from Object Designer.

2. Add the following global variable:

Name Type Subtype

Session Record Session

3. Add the following code to the OnRun trigger:

Session.SETFILTER ("Idle Time", '>%1', 1800000) ;
Session.DELETEALL;

4. Save and close the codeunit.

The session table contains a field called Idle Time. This field is a Duration data type which is
similar to an integer. The value in the field represents the number of milliseconds that have
elapsed since the user was active. In our example, we use the number 1,800,000 which is
equal to 30 minutes. If we find any sessions that have been idle for longer than that, we delete
them from the Session table which kills their connection to the database.

This code is obviously more beneficial if it runs periodically throughout the day. You can
schedule this code to run through several methods including the OnTimer property of forms, a
custom NAS process, or through SQL Server. There is an example of the latter in Chapter 11,
SQL Server and Performance Tuning.

201

Roles and Security

Automatically adding users to NAV

Adding users to groups in Active Directory and Windows Groups is not enough to give access
to NAV. Here we will show a way to automatically add a user to NAV Windows Logins when they
are added to a specific group.

Getting ready

You will need to create the .NET project described in the Checking Active Directory groups
section of the Checking for user-assigned roles recipe in this chapter.

How to do it...

1. Add the following functions to your .NET class:

public string RetrieveSID(string user, string domain)

{

string connectionPrefix = "LDAP://" + domain;

byte[] userSID;

DirectorySearcher ADSearcher = new DirectorySearcher (new
DirectoryEntry (connectionPrefix)) ;

ADSearcher.Filter = @" (& (objectClass=user) (cn=" + user + "))";
SearchResult result = ADSearcher.FindOne () ;

if (result == null)

{

throw new NullReferenceException
("Could not find " + user + " in the " + domain + "
domain") ;

}

DirectoryEntry ADUser = result.GetDirectoryEntry() ;
ADUser = new DirectoryEntry(connectionPrefix + "/" +
ADUser.Properties["distinguishedName"] .Value) ;

userSID = (bytel[])ADUser.Properties["objectSid"] [0];

ADUser.Close() ;
ADUser.Dispose () ;
ADSearcher.Dispose () ;

return (new SecurityIdentifier (userSID, 0) .Value);

}

public void LoadADGroupMembers ()

{

LoadProperty ("member") ;

}

202

Chapter 7

2. Save and compile your class.
3. Create a new codeunit from Object Designer.
4. Add the following global variables to the codeunit:

Name Type Subtype Length
ADGroupMembers Automation 'NAV_ActiveDirectory'.NAV_

ActiveDirectory
IDtoSID Automation 'NAV_ActiveDirectory'.NAV_

ActiveDirectory
WindowsLogin Record Windows Login
GroupMember Text 119
GroupMemberSID Text 119

5. Add the following code to the OnRun trigger:

CREATE (ADGroupMembers) ;

CREATE (IDtoSID) ;

ADGroupMembers .SetConnectionString ('NAV_ACCESS GROUP',
'LDAP://your_domain/CN=%1,0U=your_ groups,DC=your domain') ;

ADGroupMembers . LoadADGroupMembers () ;

WHILE (ADGroupMembers.MorePropertiesExist()) DO BEGIN
GroupMember := ADGroupMembers.GetNextProperty () ;
GroupMemberSID := IDtoSID.RetrieveSID (GroupMember,

'corp.local');

IF GroupMemberSID <> '' THEN BEGIN
WindowsLogin.VALIDATE (SID, GroupMemberSID) ;
IF WindowsLogin.INSERT THEN;
END;
END;

6. Save and close the codeunit.

For reference here is the LoadProperty function from a previous recipe.

private void LoadProperty (string property)
DirectoryEntry ent = new DirectoryEntry (userdn) ;
PropertyValueCollection ValueCollection = ent.Properties[property] ;
IEnumerator en = ValueCollection.GetEnumerator () ;

while (en.MoveNext ())

{

203

Roles and Security

if (en.Current != null)

{

if (!properties.Contains (en.Current.ToString()))

{
properties.Add (en.Current.ToString()) ;
}
}
}

ent.Close () ;
ent .Dispose () ;

}

In order to know which users to load into NAV, we need a way to determine which users are
assigned to a specific group. For that we need to create an LDAP connection to the group in
question. With this type of connection a property called "member" is exposed. We can load the
members of the group into a ListArray so that we can iterate through them in NAV.

As we move through the list using the MorePropertiesExist and GetNextProperty
function, we need to retrieve the SID for the group member. Remember, Windows Security in
NAV is based completely off of the SID. As the group member could be stored anywhere in the
Active Directory, we cannot create a hard coded LDAP string to get this information. Instead,
we have to search the entire domain for them.

In order to search Active Directory we need to create a DirectorySearcher object. This

is not unlike a Record variable in NAV. We apply filters for the user we are looking for and
execute the FindOne () method. The distinguishedName property in Active Directory tells
us exactly where to look to find the user. Essentially, the property is an LDAP string that points
to the user. Using this connection we can get the user record and retrieve the Objectsid for
them. This SID is not in the correct format, however, and we need to convert it to a standard
Security Identifier before returning the value.

From here, NAV can use the returned value to validate the SID and insert the record into the
Windows Login table. Assuming NAV permissions are done through Active Directory groups
and users are correctly assigned, there is no more setup to perform. The only exception would
be if you are using SQL Server and the Enhanced Security Model which would require you to
do a synchronization of the users.

There's more...

You can easily expand this recipe to remove users from the Windows Login table if they are
removed from the Active Directory group or their accounts are disabled. The entirety of Active
Directory is available for changes from NAV using .NET. You should be careful with your code,
though. It can be very easy to accidentally delete something you did not mean to. If you do
not catch the change before it replicates across all of the domain controllers or do not have a
recent backup you are in serious trouble.

204

Chapter 7

See also

» Adding roles through the User Setup table

» Creating and assigning a security role

Hiding values in Zoom

Users with the Zoom ability can see the values of fields that are hidden on forms. This recipe
will show you how to hide these fields from the Zoom window.

How to do it...

1. Create a new table from Object Designer.

2. Add the following fields to the table:

Name Type Length
Field No. Integer

Field Text 250
Value Text 250
Table Text 50
Table No. Integer

3. Save and close the table.
4. Create a new list form using the Form Generation Wizard.
5. Add the Field and Value fields from the table.
6. Set the following properties on the form:
Property Name Value
Caption Zoom

SourceTableTemporary Yes

Editable No
InsertAllowed No
ModifyAllowed No
DeleteAllowed No

SourceTablePlacement First

7. Add a global function named Loadvalues.

205

Roles and Security

8. The function should take in two parameters:

Name Type
TableNo Integer
RecRef RecordRef

9. The RecRef parameter should be passed by reference.
10. Add the following local variables to the function:

Name Type Subtype
Field Record Field
FieldRef FieldRef

11. Add the following code to the Loadvalues function:

Field.SETRANGE (TableNo, TableNo) ;
Field.SETRANGE (Enabled, TRUE) ;
IF Field.FINDSET THEN

REPEAT
FieldRef := RecRef.FIELD(Field."No.");
Rec."Field No." := Field."No.";
Rec.Field := Field.FieldName;
Rec.Value := FORMAT (FieldRef .VALUE) ;
Rec.Table := Field.TableName;
Rec."Table No." := TableNo;

Rec.INSERT;
UNTIL Field.NEXT = 0;

12. Add the following local variable to the OnFormat trigger for the Value field:

Name Type Subtype

FieldLevelSecurity Codeunit Field Level Security (from previous recipe)

13. Add the following code to the OnFormat trigger of the Value field:

IF NOT FieldLevelSecurity.CheckSecurity (
USERID, "Table No.", "Field No.", TRUE, 2) THEN
Text := '***1,;

14. Save and close the form.
15. Create the test form as described in the Field level security recipe in this chapter.
16. Add a Menu button to the form with the Caption property set to Custom Zoom.

206

Chapter 7

17. Add a menu item named Custom Zoom with a shortcut key of Ctr/+F8.

18. Add the following local variables to the onPush trigger of the menu item:

Name Type Subtype
RecRef RecRef
CustomZoomForm Form Custom Zoom

19. Add the following code to the OnPush trigger for the menu item:

RecRef .GETTABLE (Rec) ;
CustomZoomForm.LoadValues (DATABASE: : Customer, RecRef) ;
CustomZoomForm.RUNMODAL;

20. Save and close the form.

The folowing is an example of our Custom Zoom form run from our test form.

@

= Customer - Zoom

Y
Mame
Search Mame GUILDFORD WATER. DEPARTM. ..
Mame 2

Address 25 Waker Way

Address 2

Ciky Atlanta

Conkack Mr. Jim Stewart

Phone Mo,

Telex Mo,

Cur Account Mo, b

There's no way to override what NAV chooses to display in the Zoom window. With some work,
though, we can display another window in its place. First we need a table to store our Zoom
data. We need to know the field number and the name, table number and name, and the
Value of the field.

We also need a form to display our data. We want this form to look and function exactly like
the Zoom form in base NAV. The form should only be used to display data (Editable = No,
insertion, modification, and deletion are not allowed). Also, the form should focus on the first
record when it loads (SourceTablePlacement = Yes). Finally we do not need this data to
actually be stored in the database (SourceTableTemporary = Yes).

207

Roles and Security

This form needs to know what data to display. As there is never any data in the table, we must
tell it how to load this data. In order to do this we loop through all of the enabled fields for the
table specified. We then create a field reference to that field based on the record reference,
we pass to the Loadbata function. From there we create a Custom Zoom record and insert
into the temporary table on which our form works.

At this point, we have only duplicated the Zoom functionality. We now want to integrate that
functionality with the Field Level Security table we developed in a previous recipe. That
involves changing the display value using the OnFormat trigger.

Now we have to override the base Zoom functionality on the form. Adding a menu button with
the same shortcut as Zoom will take care of that. We add our own code to the OnPush trigger
of that Custom Zoom menu item that loads the values for the selected record and displays
the form.

Like other recipes in this chapter, this recipe is useful only under specific circumstances such
as displaying social security numbers or credit card numbers. In order to implement it properly
it would need to be added to every form in the system and the Zoom permission would need
to be taken away from all users. If it is left assigned to a user they can still get to the base NAV
feature by using the menu in the NAV Client.

The Custom Zoom menu button would also be resized so that it is nearly invisible on the
screen. Better yet, it could be hidden behind another control on the form. This allows for a
seamless integration of the code and the user will not see any change to the forms they have
been using, but it is not so great for new developers trying to figure out what is going on with
the form.

» Referencing dynamic tables and fields

» Creating a table

» Using the Form Generation Wizard

» Changing text appearance

» Designing a form based on a temporary table
» Field-level security

208

Leveraging Microsoft
Office

In this chapter, we will cover:

» Using the style sheet tool

» Sending data to Microsoft Word

» Sending an e-mail from NAV through Outlook
» Exporting data using the Excel buffer

» Creating a data connection from Excel to NAV
» Creating an InfoPath form with NAV data

» Instant messaging using Office Communicator

» Creating charts with Visio

Introduction

Microsoft Office is a related suite of applications. Just as the Dynamics platform encompasses
multiple products, so does the Office product line. The three most popular programs are Word,
Excel, and Outlook which serve as a word processor, spreadsheet application, and e-mail
manager respectively. NAV does not offer the same functionality that these applications provide
and integrating with them can open many new possibilities for the users of the software.

Office also comes with other, lesser known, programs that are used by many companies.

We will also examine three of such products. The first is InfoPath which is used to generate
XML-based forms for users to enter and view data. We will learn about Office Communicator,
an enterprise instant messaging and meeting utility. Finally, we will take a look at Visio which
is used for diagrams and flowcharts. With all of these products working together as one, you
will easily be able to see how to get your data to the people who need it.

Leveraging Microsoft Office

Using the style sheet tool

NAV has built-in functionality to send data to outside applications like Word and Excel.

They allow you to view data on a style sheet which can make it look much better than just a
black-and-white report. This recipe will show you how to create these style sheets using a tool
within NAV.

Getting ready

Download and install the Style Sheet Tool version 2.0 (links can be found in the There's
More section). Run the Style Sheet setup and form and if you are using the RTC, fill out the
RoleTailored Client tab.

How to do it...

1. Run the Style Sheet Card form from Object Designer.
2. Create a new record and fill in these fields with the following values:

Field Value

Code CUSTLIST

Description Customer List Style Sheet
Form No. 22

Page No. 22

3. Add a line with the following values:

Field Value
Table No. 18
Base Record Yes
Multiple Lines Yes

4. Click on the Style Sheet button, then Select Fields.
5. Add lines with the following values:

Field No. Field Name Include Caption Currency
1 No. Yes No
2 Name Yes No
58 Balance Yes Yes

Chapter 8

6. Close the Select Fields window. You should now have a form that looks like the
following screenshot:

& CUSTLIST - Style Sheet Card [= =][]

General | Options

FormMo, 22(+]|| Customer List
PageMo. 22 (#]|| Customer List
Mail Merge Document .

Style Sheet Document,

Table Mo. Table Mame Base Re... Multiple Li... Fields Se... Relation...
4 13 Customer v v v -

[Etyle Sheet v] [Help

7. Click on Style Sheet | Create Mail Merge.
In the Microsoft Word window that opens, click on the Mailings menu.
9. Click Insert Merge Field.

|
—/’ Home Insert Page Layout References Mailings Review View
s j j j =7 Rules ~
| - —~ < 4 Match Fields
Envelopes Labels Start Mail Select Edit Address Greeting)Insert Mergej =~ o
Merge = Recipients ~ Recipient List elds Block Line Field ~ %] Update Label
Create Start Mail Merge Write & Insert Fields

10. Add a MULTILINE BEGIN <Item>andaMULTILINE END <Items> to
the document.

Leveraging Microsoft Office

11. In between, add a table with the following captions and field values. The resulting

document should look like this:

«MULTILINE_BEGIN_Customer»

«CAPTION_Customer_No» «CAPTION_Customer_Name»

wCustomer_Nox» «Customer_Namez»

«Customer_Balance»

«MULTILINE_END_Customers»

12. Close the document and click on Yes to each of the messages that are presented.
13. The document will be converted to a style sheet and saved in the database.

1. Note that this recipe is not compatible with the RoleTailored client. The Classic client
calls the code found in Codeunit 403, Application Launch Management, but the RTC
does not. You can still export to Word and Excel, but not with a custom style sheet.

2. With the Customer List form open, click on the Send Options button from the

NAV toolbar.

File Edit View Tools Window Help

LR XBE I @EX P EEEE W 0000 0 @dEg

3. You will be presented with a send options window.

Mame
Microsoft Excel

¢ [Microsoft Word

Internet Explorer

Send Customer List to Microsoft Word - Program ... EI@
Style Sheet
Default »
i Customer List Style ...
Default
Send] [Cancel] [Help

«CAPTION_Customer_Balance»

Chapter 8

4. Notice that the style sheet has automatically changed from default to the one we just
created. You could still switch back to the default if you so desired.

5. Click the Send button and the Customer List will be loaded into a Word Document.

The style sheet tool can be used to generate a lot more complex documents than the one is
this example. For a complete walkthrough of what can be done you can download the Style
Sheet Tool User Guide, along with the tool itself, from one of the following addresses:

Customers:

https://mbs.microsoft.com/customersource/downloads/servicepacks/
navstylesheettool.htm?printpage=false&stext=nav%20style%20sheet%20
tool

Partners:

https://mbs.microsoft.com/partnersource/deployment/resources/
supplements/navstylesheettool .htm?printpage=false&stext=nav%20
style%20sheet%20tool

» Sending data to Microsoft Word

Sending data to Microsoft Word

Creating attractive Word documents from NAV is a challenging task. This recipe will not show
you how to create a document that looks exactly like your report from NAV, but it will introduce
you to the basics of sending data to the application.

Getting ready

Microsoft Word must be installed on the client system.

https://mbs.microsoft.com/customersource/downloads/servicepacks/navstylesheettool.htm?printpage=false&stext=nav style sheet tool
https://mbs.microsoft.com/customersource/downloads/servicepacks/navstylesheettool.htm?printpage=false&stext=nav style sheet tool
https://mbs.microsoft.com/customersource/downloads/servicepacks/navstylesheettool.htm?printpage=false&stext=nav style sheet tool
https://mbs.microsoft.com/partnersource/deployment/resources/supplements/navstylesheettool.htm?printpage=false&stext=nav style sheet tool
https://mbs.microsoft.com/partnersource/deployment/resources/supplements/navstylesheettool.htm?printpage=false&stext=nav style sheet tool
https://mbs.microsoft.com/partnersource/deployment/resources/supplements/navstylesheettool.htm?printpage=false&stext=nav style sheet tool
https://mbs.microsoft.com/partnersource/deployment/resources/supplements/navstylesheettool.htm?printpage=false&stext=nav style sheet tool

Leveraging Microsoft Office

How to do it...

1. Create a new codeunit from Object Designer.
2. Add the following global variables:

Name Type Subtype Length

WordApp Automation 'Microsoft Word 12.0 Object
Library'.Application

WordDoc Automation 'Microsoft Word 12.0 Object
Library'.Document

WordAppSelection Automation 'Microsoft Word 12.0 Object
Library'.Selection

WordFont Automation 'Microsoft Word 12.0 Object
Library'.Font

Companyinformation Record Company Information

ExportedPicture Text 250

NewLine Char

3. Save an uncompiled version of the codeunit and close it.
Export the codeunit to a text file.

5. Open the file and remove all of the events that were added by the
Automation variables.

Save and close the text file.
7. Import the text file into NAV and compile the object.
Add the following code to the OnRun trigger:

NewLine := 13;
ExportedPicture := ENVIRON('TEMP') +
"\ CompanyInformationPicture.bmp';

CompanyInformation.GET;
CompanyInformation.CALCFIELDS (Picture) ;
CompanyInformation.Picture.EXPORT (ExportedPicture) ;

CREATE (WordApp) ;

WordDoc := WordApp.Documents.Add;
WordDoc.Activate;

WordAppSelection := WordApp.Selection;

Chapter 8

WordDoc.Shapes .AddPicture (ExportedPicture) ;

WordFont := WordAppSelection.Font;

WordFont .Size (40) ;

WordFont .Name ('Arial') ;

WordAppSelection.TypeText ('Big Text' + FORMAT (NewLine)) ;

WordFont .Size (20) ;
WordFont .Name ('Courier New') ;
WordAppSelection.TypeText ('Medium Text' + FORMAT (NewLine)) ;

WordFont .Size (10) ;
WordFont .Name ('Times New Roman') ;
WordAppSelection.TypeText ('Small Text' + FORMAT (NewLine)) ;

WordApp.Visible := TRUE;
9. Save and close the codeunit.

This recipe requires an odd step in which you have to manipulate the object from a text
file and not within Object Designer. When you add Automation variables to your object,
regardless of whether or not you set the WithEvents property, the events are added to
the code. The WithEvents property just lets you see them when you are coding.

Unfortunately, NAV has a limit on just how long these event names can be and many of them
are similarly named. When they are added to NAV, the application truncates the end of the
event name which can result in duplicate events being defined. This throws an error when you
compile the object. If you want to use these events in your NAV code you will have to write your
own .NET wrapper class with names that are not as long.

Now we can move to the actual code. To start, we export the logo from Company Information.
Ideally, we would place this on a shared drive, or use an image that is not stored in NAV,
because the ENVIRON command is no longer supported in the RTC.

Next we create an instance of the Microsoft Word application. We then create a new blank
document and activate it. Using the Shape . AddPicture method from the Word Document
object we can insert the logo that we exported from Company Information.

We can also manipulate text just as we would if we were using the application manually. By
changing the font size and name, the TypeText method will alter the way it displays the text
on the screen. If you were trying to duplicate a NAV report you could set the font name to
Helvetica and the font size to seven, for example.

Leveraging Microsoft Office

There's more...

For detailed reading on the Microsoft Word Object Model you can visit the following
MSDN site:

http://msdn.microsoft.com/en-us/library/kw65a0we%28VS.80%29.aspx

» Using the style sheet tool

Sending an e-mail from NAV through Outlook

Dynamics NAV has code that will integrate with your Outlook client to send an e-mail. This
recipe will show you how to leverage that code.

Getting ready

You must have Outlook, or some other e-mail client, installed on the machine.

How to do it...

1. Create a new codeunit from Object Designer.
2. Add the following global variables:

Name Type Subtype
SMTPMailSetup Record SMTP Mail Setup
SMTPMail Record SMTP Mail

Mail Record Mail

Selection Integer

3. Add the following code to the OnRun trigger of your codeunit:
Selection := STRMENU ('SMTP, Standard) ;

IF Selection = 1 THEN BEGIN
IF SMTPMailSetup.GET THEN BEGIN
SMTPMail.CreateMessage ('Matt Traxinger',

'YourE-mail@microsoft.com', 'Someone@somewhere.com',
'E-mail Subject', 'E-mail Body', FALSE);
SMTPMail.Send;

END;

216

http://msdn.microsoft.com/en-us/library/kw65a0we%28VS.80%29.aspx
http://msdn.microsoft.com/en-us/library/kw65a0we%28VS.80%29.aspx

Chapter 8

END ELSE BEGIN

Mail.NewMessage ('Navision.Programmer@gmail.com',
', 'E-mail Subject', 'E-mail Body','',6 TRUE) ;
END;

4. Save and close the codeunit.

When you run the codeunit you will be presented with the option to send the e-mail through
SMTP (Simple Mail Transfer Protocol) or Outlook.

Microsoft Dynamics ... @

() Standard

[OK] [Cancel]

SMTP is the preferred way of sending e-mail with NAV. The code behind this functionality, and
more specifically the CreateMessage function, is located in Codeunit 400, SMTP Mail. This
function uses the 'Microsoft Navision Mail'.SmtpMessage Automation to create

a message for us based on the input parameters. These parameters are Sender Name,
Sender E-mail Address, Recipient E-mail Addresses, Subject, Body, and HTML
Formatted. We must manually call the send function in the Codeunit if we want to actually
send the message.

As a backup, you can use the NewMessage from Codeunit 397, Mail. This function also takes
in six parameters, but they are not the same as the SMTP CreateMessage function. These
inputs are Recipient E-mail, CC E-mail, Subject, Body, Attachment Filename, and
Open Dialog. This function will automatically try to send the e-mail for you if you set the
Open Dialog parameter to FALSE.

For more details on the Microsoft Outlook object model you can visit the following MSDN site:

http://msdn.microsoft.com/en-us/library/ms268893%28VS.80%29.aspx

Sending an HTML formatted e-mail

Many CRM applications or other programs send e-mails out automatically. Anything that is
customer-facing should look professional. That is not to say that simple text e-mails are
bad, just that HTML formatted e-mails are more dynamic and more likely to get the
customer's attention.

http://msdn.microsoft.com/en-us/library/ms268893%28VS.80%29.aspx
http://msdn.microsoft.com/en-us/library/ms268893%28VS.80%29.aspx

Leveraging Microsoft Office
Here is some sample code which can be used to send an HTML formatted e-mail:

IF SMTPMailSetup.GET THEN BEGIN
SMTPMail.CreateMessage ('Matt Traxinger',
YourE-mail@YourCompany.com', 'Someone@Somewhere.com',
'E-mail Subject', '', TRUE);
SMTPMail.AppendBody ('<h2>Thank You!</h2>

"') ;
SMTPMail .AppendBody (' Your message has been received,
<brs>');
SMTPMail.AppendBody ('Administrator') ;
SMTPMail.Send;
END;

By passing a value of TRUE as the last parameter to the CreateMessage function, we tell the
system to format the e-mail for HTML. We can then use the AppendBody function to add lines
to our message. These could be read from an external file, stored in NAV, or hard coded as we
have done here.

Exporting data using the Excel buffer

NAV contains a wrapper object that allows you to export data to Microsoft Excel. This recipe
will show you how to use it in its most common form—exporting a report to Excel.

Getting ready

Microsoft Excel must be installed on the client machine.

How to do it...

1. Create a new report based on the Customer table using the Report
Generation Wizard.

2. Add the No., Name, and Balance fields.
3. Add the following global variables:

Name Type Subtype
ExcelBuf Record Excel Buffer
PrintToExcel Boolean

4. The ExcelBuf variable should be Temporary.

5. Add a function named MakeExcelInfo.

218

Chapter 8

Add the following code the function:

ExcelBuf.
ExcelBuf.

ExcelBuf

ExcelBuf
ExcelBuf

ExcelBuf

ExcelBuf
ExcelBuf

ExcelBuf

ExcelBuf
ExcelBuf

ExcelBuf
ExcelBuf
ExcelBuf

ExcelBuf
ExcelBuf
ExcelBuf
ExcelBuf

ExcelBuf

ExcelBuf.

SetUseInfoSheed;
AddInfoColumn (FORMAT ('Company Name'),
FALSE, '', TRUE, FALSE, FALSE, '') ;

.AddInfoColumn (COMPANYNAME, FALSE, ' ', FALSE, FALSE,

FALSE, '') ;

.NewRow ;
.AddInfoColumn (FORMAT ('Report Name'),

FALSE, ' ', TRUE, FALSE, FALSE, ' ') ;

.AddInfoColumn (FORMAT ('Print Report to Excel'),

FALSE, '',FALSE, FALSE, FALSE, ' ') ;

.NewRow;
.AddInfoColumn (FORMAT ('Report No.'),

FALSE, '',TRUE, FALSE, FALSE, ' ') ;

.AddInfoColumn (REPORT: : "Print Report to Excel",

FALSE, '',FALSE, FALSE, FALSE, ' ') ;

.NewRow;
.AddInfoColumn (FORMAT ('User Id'),

FALSE, '',TRUE, FALSE, FALSE, ' ') ;

.AddInfoColumn (USERID, FALSE, '',FALSE, FALSE, FALSE, '') ;
.NewRow ;
.AddInfoColumn (FORMAT ('Date / Time'),

FALSE, ' ', TRUE, FALSE, FALSE, ' ') ;

.AddInfoColumn (TODAY, FALSE, '',FALSE, FALSE, FALSE, '') ;
.AddInfoColumn (TIME, FALSE, '',FALSE, FALSE,FALSE, '') ;
.NewRow;

.AddInfoColumn (FORMAT ('Filters') ,FALSE,'"',

TRUE, FALSE, FALSE, ' ') ;

.AddInfoColumn (Customer.GETFILTERS, FALSE, '"',

FALSE, FALSE, FALSE, '"') ;
ClearNewRow;

MakeExcelDataHeader;

Add a function called MakeExcelDataHeader.

Add the following code to the function:

ExcelBuf.
ExcelBuf.

ExcelBuf.

ExcelBuf.

NewRow;

AddColumn (Customer .FIELDCAPTION ("No.") , FALSE, '"',
TRUE, FALSE, TRUE, '@') ;

AddColumn (Customer . FIELDCAPTION (Name) , FALSE, '',

TRUE, FALSE, TRUE, ' ') ;
AddColumn (Customer . FIELDCAPTION (Balance) , FALSE,
"' TRUE, FALSE, TRUE, '") ;

Add a function called MakeExcelDataBody.

Leveraging Microsoft Office

10. Add the following code to the function:

ExcelBuf .NewRow;
ExcelBuf .AddColumn (Customer."No.",FALSE, '',FALSE,
FALSE, FALSE, '') ;
ExcelBuf .AddColumn (Customer .Name, FALSE, ' ', FALSE,
FALSE, FALSE, '') ;
ExcelBuf .AddColumn (Customer.Balance, FALSE, '', FALSE,
FALSE, FALSE, "#,##0') ;

11. Add a function called CreateExcelBook.
12. Add the following code to the function:

ExcelBuf.CreateBook;

ExcelBuf.CreateSheet ('Data','', COMPANYNAME, USERID) ;
ExcelBuf .GiveUserControl;
ERROR('') ;

13. Add the following code to the OnPreDatalItem trigger for the customer data item:

IF PrintToExcel THEN
MakeExcelInfo;

14. Add the following code to the OnAfterGetRecord trigger for the customer
data item:

IF PrintToExcel THEN
MakeExcelDataBody;

15. Add the following code to the OnPostReport trigger:

IF PrintToExcel THEN
CreateExcelbook;

16. Add a checkbox control and label to the Request form of the report.
17. Set the following properties on the control:

Property Value

SourceExpr PrintToExcel

Caption "Print to Excel"

18. Save and close the report.

Printing a report to Excel requires two variables. The first is a record variable that refers to the
Excel Buffer table. This table contains several functions that we will use throughout our report
to communicate with the Excel program. The second is Boolean, named PrintToExcel.
There may be instances when we just want to see the report in its normal display so we need
a flag to tell the report what to do.

220

Chapter 8

We will use four functions in this report and go through each of them one-by-one. The first
function is named MakeExcelInfo and contains a series of calls to the AddInfoColumn
and NewRow functions in the Excel Buffer table. This function replicates what you see in the
Header section of most reports, that is the name of the report, the date and time when it was
created, whom was it created by, and any filters that may have been used.

The AddInfoColumn parameters deal with formatting of the text that will be entered in the
cell. In order, the parameters are: Value, IsFormula, CommentText, IsBold, IsItalics,
IsUnderline, and NumFormat.

At the end of our function, we make a call to MakeExcelDataHeader, which adds our
column headings to the first row of a new sheet in the Excel Workbook.

There is a similar function, MakeExcelDataBody, which adds our actual data to the sheet.

Finally, we have a function called CreateExcelBook, which loads the data from the Excel
Buffer and displays the Excel worksheet.

Now that we have these functions, we need to use them in our report. When thinking about
what each one does and how the report flows from start to finish, it becomes obvious when we
should use them. The header information about the report is displayed in a Header section for
the Customer record, so we can use the MakeExcelInfo function in the OnPreDataItem
trigger. We retrieve data from the database in the OnAfterGetRecord trigger, so here is
where we should add the data to the Excel file. Lastly, we don't want to view the Excel file until
the report is completely generated, so we place the call to the CreateExcelBook function in
the OnPostReport trigger.

When you run the report and print to Excel, you should see a document like the one shown in
the following screenshot:

Clipboard

L}

Fant £}

Alignment

(0o K
ay) :
- Home Insert Page Layout Formulas Data Review View
= Cut S| =
LR Calibri Y (AN [F = =] | Siwrap Text
e 2 Copy — :
aste - || - - - = =i == | = 1 -
- # Format Painter B I U I RC - S = =||4E iE| = Merge & Center

L}

AL

-

ﬂ‘No.

1 [No.

A

Name

B

Balance

(VR - RN - T R SIS]

10000 The Cannon Group PLC
20000 Selangorian Ltd.
30000 John Haddock Insurance Co.
40000 Deerfield Graphics Company
50000 Guildford Water Department
60000 Blanemark Hifi Shop
61000 Fairway Sound
62000 The Device Shop
1121212 Spotsmeyer's Furnishings
1445544 Progressive Home Furnishings
1454545 New Concepts Furniture
1905893 Candoxy Canada Inc.
1905899 Elkhorn Airpart
1905902 London Candoxy Storage Campus

255,797
147,259
537,967
1,736
822

221

Leveraging Microsoft Office

There's more...

Although the Excel Buffer will provide for most of your needs, you can also write your own
Excel Automations.

For more information on the Microsoft Excel Object Model visit the following

MSDN site:
e http://msdn.microsoft.com/en-us/library/
wss56bz7%28VS.80%29.aspx

See also

» Using temporary tables to store data
» Using the report generation wizard

» Creating a data connection from Excel to NAV

Creating a data connection from Excel to

NAV

Instead of copying and pasting data from NAV into Excel, you can easily create an external
connection to the NAV database.

Getting ready

Microsoft Excel must be installed on the client machine.

How to do it...

1. In Microsoft Excel select the Data tab.

2. From the Get External Data section of the menu select From Other Sources | From
SQL Server.

_,m;l. . = -
o

— Home Insert Page Layout

‘5 From Access = =
—1 9 —1 9

- From Other Existing
([SFromText | Sgurces~ | Connections

Get External Data

g From Web

222

http://msdn.microsoft.com/en-us/library/wss56bz7%28VS.80%29.aspx
http://msdn.microsoft.com/en-us/library/wss56bz7%28VS.80%29.aspx
http://msdn.microsoft.com/en-us/library/wss56bz7%28VS.80%29.aspx

Chapter 8

3. Inthe data connection wizard, enter the name of the SQL Server and your
Log on credentials.

Data Connection Wizard

Connect to Database Server N

Enter the infarmation required to connect ta the database server,

1. Server name: ||

2. Log on credentials

(%) Use Windows Authentication

) Use the Following User Mame and Password

Cancel][< Back]

Click Next.
In the next window select the database and table you wish to view in Excel.
Click Finish.

It may take a moment for the data to load into the workbook.

Microsoft Excel maintains an active connection to the database when you setup an

external data connection. When you save and close a file with a connection in it the data is
automatically reloaded the next time you open the document. This eliminates the need to log
in to NAV to copy and paste data. For users that only need this basic level of access to the
data a company can save thousands of dollars by licensing users for this type of connection to
the database, known as DCO or Dynamics Client for Office.

The following MSDN article provides more information about managing your connections in
Microsoft Excel:

N o oo s

http://msdn.microsoft.com/en-us/library/bb545041%280ffice.11%29.aspx

223

http://msdn.microsoft.com/en-us/library/bb545041%28office.11%29.aspx
http://msdn.microsoft.com/en-us/library/bb545041%28office.11%29.aspx

Leveraging Microsoft Office

See also

» Exporting data using the Excel Buffer

Creating an InfoPath form with NAV data

Microsoft InfoPath allows you to create forms to view and enter data outside of the NAV
application. There is no programming involved, other than having an existing NAV Page
exposed as a web service.

Getting ready

Microsoft InfoPath must be installed on the client machine.

How to do it...

1. Create a web service as described in the Creating a web service recipe in
Chapter 10, Integration.

2. From the Getting Started window in InfoPath, select Design a Form Template.

3. Select Web Service as the source that the form should be based on.

e
Design a Form Template cd |
Open a form template Design a new:
| On My Computer... & Form Templake " Template Part
On & SharePoint Site... & Form template can be shared or published to gather data From users who Fill out the
) Farm.
) Custamize a Sample. .
Based on:

£ | DS am Sl @i Create a fiorm templake thak
;1_1 Impaort... i * J queries and submits data to 4
: b Weh sarvice,

Fill out a form Elank. Database

= Fill Out a Farm. ..
< g
Ej?jl g

#MLor Schema Connection
Library

Wieb Service

™ Enable browser-compatible Features only

Ok Cancel

4. Click OK.
5. Select Receive Data.

Chapter 8

6. From the Dynamics NAV Web Server go to the following address and find the web
service: http://localhost:7047/DynamicsNAV/WS/services

7. Inthis case we will be using http://localhost:7047/DynamicsNAV/WS/Page/
CustomerExample, but this could be different on your system.

8. Enter this address in the Data Connection Wizard window.

9. Click Next.

10. Select Read Multiple.

11. Click Next and finally Finish.

12. You should now have a Design Template that looks like the following screenshot:

& (Design} Template1 - Microsoft Office InfoPath

File Edit ‘iew Insert Format Tools Table Help

B [[| By preview - | i (4 F F-Y= 4 @, [&l | o Desion Tasks... | @ o
A4 verdana -0 «|B I U EEEIE' Er =022 aly.é-ﬂ
jDraﬂ Table 4 Mo border - |1 pt i Ingert ~ | B -]

ECIick to add a title

;Click to add form content

...

13. Change the title to Customer List.

14. From the queryFields node in the data source tree view on the right-hand side of the
screen, drag the Field node into the Drag query fields here box on the form.

15. Select Drop Down List Box.

16. Drag the Criteria and Set Size nodes to the same area on the form.
17. Click on the box labeled Drag data fields here.

18. From the menu, select Insert | Repeating Table.

19. Drill down in the Data Fields node and select CustomerExample.

225

http://localhost:7047/DynamicsNAV/WS/services
http://localhost:7047/DynamicsNAV/WS/services
http://localhost:7047/DynamicsNAV/WS/Page/CustomerExample
http://localhost:7047/DynamicsNAV/WS/Page/CustomerExample

Leveraging Microsoft Office

20.

21.
22.
23.

Click Next.
Repeating Table Binding e |
Choose which columns wou want to show in the table,
Data binding: Columns in table:
= |57 CustomerExample Mo
B ey Marne
= F— | Balance
‘'? Mame
& Balance
Mowve Up |
[Miawe Lo |
Cancel < Back Finish

Add the No., Name, and Balance fields.

Click Finish.

Your completed InfoPath form should look like the following screenshot:

ECustomer List

!Click to add form content

Field: | Select... ~|

Criteria:

Set Size:

& Repeating Section

226

Chapter 8

To view the form click Preview in the InfoPath toolbar. Just like NAV, you can select your filter
fields, but you must select Run Query in order to retrieve the data. The data will be presented
in a list format at the bottom of the page.

There's more...

The most common use of InfoPath forms is to add them to a Forms Library in SharePoint.
Although this example is used only for viewing data, you can also create forms to enter and
modify data in NAV. The licensing costs for these type of users are significantly less than
those for users of the Classic and RoleTailored clients; depending on the type of work these
users will perform, however, the development costs to create the forms may outweigh the
licensing costs.

See also

» Displaying NAV Data in SharePoint

» Consuming web services

Instant messaging using Office

Communicator

Office Communicator is an instant messenger client for businesses, similar to AOL Instant
Messenger or MSN Messenger. This recipe will show you how to integrate with Office
Communicator and send a message to someone through NAV.

Getting ready

Office Communicator must be installed and configured on the client machine.

How to do it...

1. Create a new C# Class Library project from Visual Studio.
2. Add the following code to the project:
using System;

using CommunicatorAPI;
using System.Threading;
using System.Runtime.InteropServices;

namespace NAVCommunicator

227

Leveraging Microsoft Office

{
[ClassInterface (ClassInterfaceType.AutoDual)]
[ProgId ("NAVCommunicator")]
[ComVisible (true)]
public class NAVCommunicator
{

CommunicatorAPI.MessengerClass communicator;
bool connected = false;

public NAVCommunicator ()

{

connected = false;

}

public bool IsConnected()

{

return connected;

}

public void Signin()
{
if (connected)
return;

if (communicator == null)

{

communicator = new

CommunicatorAPI.MessengerClass () ;
communicator.OnSignin += new

DMessengerEvents OnSigninEventHandler (
communicator OnSignin) ;

}

communicator.AutoSignin() ;

}

void communicator OnSignin (int hr)

{

if (hr != 0)

{
}

connected = true;

}

public void SendIM(string sendTo)

{
object[] sipUris = new object[1];
sipUris[0] = sendTo;

throw new Exception("Unable to sign in!");

long windowHandle;
CommunicatorAPI.IMessengerAdvanced msgrAdv =
communicator as CommunicatorAPI.IMessengerAdvanced;

228

Chapter 8

if (msgrAdv != null)
{
try
{
object obj = msgrAdv.StartConversation (

CONVERSATION TYPE.CONVERSATION TYPE IM,
sipUris,null, "Testing","1",null) ;
windowHandle = long.Parse (obj.ToString()) ;

}

catch (Exception ex)

{

throw new Exception(
"Unable to launch Communicator Window!™") ;

Save, compile, and close the project.

Create a new form using the Form Generation Wizard based on the User Setup table.
Add the User ID and E-Mail fields to the form.

Add a button to the form and set the following properties:

o o &~ W

Property Value
Caption Send IM
HorzGlue Right
VertGlue Bottom

7. Your form should look like the one shown in the following screenshot:

Form 50801 NAV Communicator - Form Designer EI@
User ID E-Mail =
=<"User ... =<"E-Mail"> -

[OK] [Cancel][Send IM] [Help] :

< ¢

229

Leveraging Microsoft Office

8. Add the following local variables to the onPush trigger for the new button:

Name Type Subtype
NAVCommunicator Automation 'NAVCommunicator'.NAVCommunicator
| Integer

9. Add the following code to the oOnPush trigger:

IF ISCLEAR (NAVCommunicator) THEN
CREATE (NAVCommunicator) ;

NAVCommunicator.Signin () ;

i := 0;
WHILE((i < 10) AND (NOT NAVCommunicator.IsConnected()))
DO BEGIN
i+=1;
SLEEP(1000) ;
END;

NAVCommunicator.SendIM("E-Mail") ;

10. Save and close the form.

Our .NET Class is composed of three main functions. The first is named Signin, and as you
might guess, handles the authentication part between our client and Office Communicator. It
does so by calling the AutoSignin method in the Communicator automation. We also add

a delegate to our main Communicator variable which will be triggered every time we sign in.
This method, communicator OnSignin, sets our connected variable when we successfully
connect to the server.

Once we know that we are connected, we can call our third function, SendIM. This function
relies on a method called SstartConversation to start the instant message (although it can
also start phone calls, meetings, and other conversation types).

So how can this be used in NAV? Well, Communicator works off of an e-mail address, which is
frequently stored in the User Setup table. As long as we can establish a link between a piece
of data, like Salesperson Code, we can determine whom to send the message to. Our SendIM
function creates an instance of our .NET Class, waits to make sure we connect successfully,
and opens a message window with the selected user as shown in the following screenshot:

230

Chapter 8

White, Jon - Testing

@ Traxinger, Matt
White, Jon

For more information on the Office Communicator Object Model you can visit the following
MSDN site:

http://msdn.microsoft.com/en-us/library/bb758727.aspx

See also

» Using the Form Generation Wizard

» Writing your own automation using C#

Creating charts with Visio

Microsoft Visio is a product used for creating charts and diagrams. Here we will show an
example of how to create a simple flowchart with two connected shapes.

231

http://msdn.microsoft.com/en-us/library/bb758727.aspx
http://msdn.microsoft.com/en-us/library/bb758727.aspx

Leveraging Microsoft Office

Getting ready

Microsoft Visio must be installed on the client machine.

You may also need to download the Microsoft Office Interop
Assemblies from Microsoft here:

http://www.microsoft.com/downloads/details.

aspx?FamilyID=59daebaa-bed4-4282-a28c-
b864d8bfas513&displaylang=en

How to do it...

1. Create a new C# Class Library project in Visual Studio.
2. Add the following code to the project:

using System;
using System.Collections.Generic;

using System.Runtime.InteropServices;
using Microsoft.Office.Interop.Visio;

namespace VisioSample
{
[ClassInterface (ClassInterfaceType.AutoDual)]
[ProgId ("VisioNAV")]
[ComVisible (true)]
public class VisioNAV
{
Application VisioApp;
Documents VisioDocs;
Document visioStencil;
List<Shape> shapes;

public VisioNAV ()

{
try
{
shapes = new List<Shapes>() ;
VisioApp = new Application() ;
VisioDocs = VisioApp.Documents;

}

catch (Exception e)

{

}
}

public void CreateFile()

throw new Exception("Unable to open Visio!");

232

http://www.microsoft.com/downloads/details.aspx?FamilyID=59daebaa-bed4-4282-a28c-b864d8bfa513&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=59daebaa-bed4-4282-a28c-b864d8bfa513&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=59daebaa-bed4-4282-a28c-b864d8bfa513&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=59daebaa-bed4-4282-a28c-b864d8bfa513&displaylang=en

Chapter 8

try

{

VisioApp.Documents.Add ("") ;

}

catch (Exception e)

{
}

throw new Exception("Unable to create Visio file!");

}

public void OpenTemplate (String templateName)
{
visioStencil = VisioDocs.OpenEx (templateName,
(short) VisOpenSaveArgs.visOpenDocked) ;

}

public void AddTable (float x, float y, String text)
{
Page visioPage = VisioApp.ActivePage;
Master visioMaster =
visioStencil.Masters.get ItemU(@"Class") ;
Shape visioShape = visioPage.Drop (visioMaster, x, Vy);
visioShape.Text = @text;

shapes.Add (visioShape) ;

}

public void ConnectShapes (int sl, int s2)
{
Page visioPage = VisioApp.ActivePage;
Master visioMaster =
visioStencil.Masters.get ItemU(@"Link") ;
Shape connector = visioPage.Drop(visioMaster, 1f, 1f);
Shape shapel = shapes([sl];
Shape shape2 = shapes[s2];

Cell beginXCell = connector.get CellsSRC(
(short)VisSectionIndices.visSectionObject,
(short) VisRowIndices.visRowXFormlD,
(short)VisCellIndices.vislDBeginX) ;

beginXCell.GlueTo (shapel.get CellsSRC(
(short)VisSectionIndices.visSectionObject,
(short) VisRowIndices.visRowXFormOut,
(short)VisCellIndices.visXFormPinX)) ;

Cell endXCell = connector.get CellsSRC(
(short)VisSectionIndices.visSectionObject,
(short) VisRowIndices.visRowXFormlD,
(short)VisCellIndices.vislDEndX) ;

233

Leveraging Microsoft Office

endXCell.GlueTo (shape2.get CellsSRC(
(short)VisSectionIndices.visSectionObject,
(short) VisRowIndices.visRowXFormOut,
(short)VisCellIndices.visXFormPinX)) ;

}

public void Zoom(double zoomFactor)

{

VisioApp.ActiveWindow.Zoom = zoomFactor;

}
}
}

3. Save, compile, and close the project.
Create a new codeunit from Object Designer.
5. Add the following global variable:

Name Type Subtype
VisioNAV Automation 'VisioNAV'.VisioNAV

6. Add the following code to the OnRun trigger:

IF ISCLEAR(VisioNAV) THEN
CREATE (VisioNAV) ;

VisioNAV.CreateFile() ;

VisioNAV.OpenTemplate ('UML Static Structure.vss');
VisioNAV.AddTable (4.25, 5.5, 'G/L Entry');
VisioNAV.AddTable (2.25, 5.5, 'G/L Register');
VisioNAV.ConnectShapes (0, 1);

VisioNAV.Zoom(1.5) ;

7. Save and close the codeunit.

Our C# project has several important functions that we will go through. The first is the
CreateFile method. This adds a blank document to the Visioapp variable, which was
instantiated in the constructor. If for some reason the system is unable to create a file, it will
display an error message for the user.

Next is the openTemplate function. This opens the available shapes for a given template.
When viewing a Visio document you will find them on the left-hand side of the application.

Chapter 8

Shapes x

Search for Shapes;
Type wour search here w ﬂ

[E UL Skatic Skruckure (Metric)

D Package % Class

=]
Cata Type @— Interface

% Intetface “— Generaliz...

Binaty ‘.L, B
Association Compositi,..

s PAESOCIAtION s et

g Clams

=] =
Ltilitwy Subsystern

The AddTable function could just have easily been called AddShape and accepted a third
parameter to tell Visio which shape it should add. In this case, we add a Class shape to our
diagram. By retrieving the active page from the document, and the current template or
stencil that is open on that page, we can drop a selected shape into the document at a
specified position.

Our final C# function, ConnectShapes, places a link or connector between two shapes on
the page. A connector is just a specialized shape so we add it to the page the same way. We
can then set the start and end points for the link and attach it to the desired shapes.

In NAV we use each of the functions in the order described. First we create a new Visio
document and open the UML Static Structure template. We then add two tables to the open
document and connect them. Finally, we zoom in on the document so you have a better idea
of what we have actually done. The following output is shown.

G/L Register GI/L Entry

235

Leveraging Microsoft Office

To learn more about the Microsoft Visio Object Model you can visit the following MSDN site:

http://msdn.microsoft.com/en-us/library/ccl60740.aspx

See also

» Using code coverage
» Using Client Monitor to diagnose problems

236

http://msdn.microsoft.com/en-us/library/cc160740.aspx
http://msdn.microsoft.com/en-us/library/cc160740.aspx

OS Interaction

In this chapter, we will cover:

» Using HYPERLINK to open external files

» Working with environment variables

» Using SHELL to run external applications

» Browsing for a file

» Browsing for a folder

» Checking file and folder access permissions
» Querying the registry

» Zipping folders and files within NAV

Introduction

If you have programmed with Windows or used a Windows-based operating system for any
length of time you will see that it is really an all-encompassing 0S. Unlike with other types

of software development, we don't need to interact with device drivers or create three
dimensional graphics for our users. Most of what we need to do involves integrating with the
file system; that is searching for files or folders and running external applications.

Occasionally, we may need to go a little deeper than that. There may be instances where we
need to check the user's environment, query the registry, or check for specific administrator
permissions. These can all be performed within NAV, although many require a little outside
help from a built-in or custom automation control.

OS Interaction

As Windows is such a large piece of software, it already contains ways for us to do these
things. As a result, the recipes in this chapter are not very lengthy or complicated, but that
does not make them any less useful. They explore the basics of what you can do with the OS
and it is up to you to decide when and how to make the best use of them.

R It is important to note that many of these recipes will require
% additional coding to make them work with the RoleTailored client.
e This is because the code is actually executing on a server, not
your own computer as it does with the Classic client.

Using HYPERLINK to open external files

Many times you may need to open files external to the NAV program. NAV has a built-in
function that interacts with the file system to open the file with the appropriate application.

How to do it...

Create a new codeunit from Object Designer.

Add the following global variable:

Name Type

Selection Integer

3. Add the following code to the OnRun trigger:

Selection := STRMENU('Image,Website');
IF Selection = 1 THEN
HYPERLINK ('C:\Users\Public\
Pictures\Sample Pictures\Penguins.jpg')
ELSE
HYPERLINK ('HTTP://www.mibuso.com') ;

4. Save and close the codeunit.

When you run the codeunit you will be presented with a simple selection menu that asks

you to choose between an image and a website. Depending on your choice we will use the
HYPERLINK command to load a specific file. This command takes in a single string which
points to a location and loads that pointer using the default program on the current machine.

238

Chapter 9

If you choose Image then the Penguins image that ships with Microsoft Windows 7 will load in
the default program you have set to open pictures, usually Windows Photo Viewer.

=] Penguins.jpg - Windows Photo Viewer

Filee ¥ Prnt ¥ E-mail Burn ¥ Open ~ @

O+ a (e i‘*“i M D ¢ | X

If you choose Website then the Mibuso website will open in your default internet browser,
typically Internet Explorer.

There's more...

With the RoleTailored client, it is best to use HYPERLINK with shared drives and folders. This
is because the actual HYPERLINK command is running on the NAV service tier, not on the
local computer or client. It has no idea about the user's system. This example is for the Classic
client (thus the link to a file on the C: drive), but changing the parameter to a shared file on
your network should work just fine.

See also

» Using SHELL to run external applications
» Browsing for a file
» Checking file and folder access permissions

239

OS Interaction

Working with environment variables

Environment variables are a set of named values that can affect the way processes and
applications run on a computer. NAV has a built-in function to reference these variables and
lets you change the way it functions.

How to do it...

Create a new codeunit from Object Designer.
Add the following code to the onRun trigger:

MESSAGE (' 0S: %1\Temp: %2\WinDir: %3', ENVIRON('0OS'),
ENVIRON ('TEMP'), ENVIRON ('WINDIR')) ;

3. Save and close the codeunit.

The ENVIRON function takes in a single string and returns a string. Our codeunit uses the
ENVIRON function to return three common environment variables: the name of the operating
system, the path to the temporary folder for the current user, and the path to the Windows
installation directory.

In Windows 7, in order to see all of the options available to the ENVIRON command, simply
right-click on My Computer and go to Properties.

|_‘ v Control Panel » System and Security » System

Control Panel Home
View basic information about your computer

¥ Device Manager Windows edition

% Remote settings Windows 7 Home Premium

%y System protection Copyright © 2009 Microsoft Corporation. All rights reserved.

g Advanced system settings I Get more features with a new edition of Windows 7

m

Systemn

240

Chapter 9

Click on Advanced system settings, the Advanced tab, and then on the Environment
Variables button. You will find them in the System variables section of the window.

System Properties B Environment Variables @

Advanced i
Copielians Sigenimtecion, \fieas User variables for Matt Traxinger

You must be logged on as an Administrator to make most of these changes. Variable Value
Peformance path %eCommonProgramFiles % \Microsoft Sh...
Visual effects, processor scheduling, memory usage, and virtual memory TEMP LUSERPROFILE % \AppDataiLocal Temp
TMP %eUSERPROFILE%:\AppData'Local {Temp
New.. || Edit. |[Delete

User Profiles
Desktop settings related to your logon

System variables

Variable Value

| »

ComSpec C:\Windows\system32\emd.exe
FP_NO_HOST_C... NO
NUMBER_OF_P... 2

Startup and Recovery
System startup, system failure, and debugging information

as Windows_NT &7
New.. || Edt. |[Deete |
Environment Variables...

There's more...

This recipe is not compatible with the RoleTailored client. The code running on the NAV service
tier does not know anything about the client operating system. There is, however,

a way around this. We need a way to force code to be executed on the client-side instead of
the server-side.

ENVIRON for the RoleTailored client

We can force our code to execute on the client-side by creating an Automation. Start by
creating a new project in Visual Studio with the following code.

using System.Management;
using System.Runtime.InteropServices;

namespace RemoteSystemInfo
{
[ClassInterface (ClassInterfaceType.AutoDual)]
[ProgId ("RemoteSystemInfo")]
[ComVisible (true)]
public class RemoteSystemInfo

{

241

OS Interaction

242

public string GetSysInfo(string domain, string machine,

string username, string password, string variable)

ManagementObjectSearcher query = null;
ManagementObjectCollection queryCollection = null;

ConnectionOptions opt = new ConnectionOptions() ;
opt.Impersonation = ImpersonationLevel.Impersonate;
opt.EnablePrivileges = true;

opt .Username = username;

opt .Password = password;

try

{

ManagementPath p = new ManagementPath(@"\\" +
machine + @"\root\cimv2") ;

ManagementScope msc = new ManagementScope (p, opt);
SelectQuery g = new SelectQuery("Win32 Environment") ;
query = new ManagementObjectSearcher (msc, g, null);
queryCollection = query.Get () ;

foreach (ManagementBaseObject envVar in queryCollection)

{

if (envVar["Name"] .ToString() == variable)

{

return envVar ["VariableValue"] .ToString() ;

}

catch (ManagementException e)

{

throw new ManagementException ("Management Exception:
" + e.Message) ;

}

catch (System.UnauthorizedAccessException e)

{

throw new ManagementException ("Access Exception:
" + e.Message) ;

}

return "";

Chapter 9

Set the properties of the program according to the Creating your own Automation using C#
recipe from chapter 10, Integration. When using the Automation in your NAV objects you
must do the following:

CREATE (MyAutomation, FALSE, TRUE) ;

The third parameter tells the system to create the instance of the Automation on the client
(TRUE) and not the server (FALSE). As the code executes on the client machine it can query
the environment variables and easily return the correct result. Just pass the appropriate
values to the GetSysInfo function.

» Using SHELL

Using SHELL to run external applications

Just as external files can be opened from within NAV, so can external programs. This recipe
will show you how to launch one of such applications.

How to do it...

Create a new codeunit from Object Designer.
Add the following code to the OnRun trigger:
SHELL (ENVIRON ('WINDIR') + '\notepad.exe');

3. Save and close the codeunit.

The SHELL command takes in a required string parameter representing the application to
launch. There is an optional second parameter that will be passed as an argument to the
application to be launched (not used here). This argument could represent a file to open or
other flags incorporated into the program.

» Querying the registry

243

OS Interaction

Browsing for a file

You will perform many modifications that require input from a file on the Windows file system.
Instead of requiring the user to remember the full path and name of the file, we will show you
how to use an out-of-the-box codeunit to let them select the file using a dialog box.

How to do it...

Create a new codeunit from Object Designer.

Add the following global variables:

Name Type Subtype Length
CommonDialogMgt Codeunit Common Dialog Management
SelectedFile Text 255

3. Add the following code to the OnRun trigger:

SelectedFile := CommonDialogMgt.OpenFile ('NAV File Browser',
SelectedFile, 1, 'Filter',0);

MESSAGE ('You selected %1', SelectedFile);

4. Save and close the codeunit.

NAV provides a codeunit, number 412, named Common Dialog Management. It uses an OCX
that references to the Microsoft Common Dialog Control. This codeunit provides a function
that allows you to open a simple dialog box in either Open or Save mode. This function,
OpenFile, takes five parameters.

The first is the title of the dialog box or Window. Next is the default file name to look for. The
third and fourth parameters work together. The third is the default file type. When this is set to
Custom the function uses the filter string passed in parameter four. The final argument tells
the dialog box which mode to open in, that is Open or Save.

Chapter 9

T4 NAV File Browser et e
LT | v Computer » O5(C) » Windows » v |44 | [Search Windows
S N | £) | 4 s
Organize New folder = 0O @
Bl Desktop “ Name Date modified Type i
&4 Downloads i _ -)
addins 7/14/20091:32 AM File folder E
| Recent Places _ - i)
AppCompat 7/13/200911:20 PM File folder
AppPatch 3/11/2010 3:18 AM File folder
PR Desktop ! o)
o E assembly 3/10/2010 9:08 PM File folder
= Libraries _ .))
- Boot 7/14/20091:32 AM File folder
£ Documents . _ -)
N] Branding 7/14/ 1:32 AM File folder
@' Music))
. Cursors 7/14,/2009 1:32 AM File folder
=| Pictures -)
. debug 2/13/201010:14 PM File folder
ﬂ Videos . . _)
diagnostics 7/14/ 1:32 AM File folder
ha Homegroup o . - .
. DigitalLocker 1/14/ 1:37 AM File folder
2 Matt Traxinger)))
= Downloaded Program Files 4/4/2010 8:54 AM File folder
"M Computer e)
— ehome 2/23/2010 8:40 PM File folder o
&M MNetwork
- 4 n (3
- - .-
Eile narme: > | Text Files () -
[Cpen |vl | Cancel |

Should you choose to open the dialog box with a custom file type, you will have to enter a filter.
You can see how these filters are formed by examining the global text constants, but we have
also provided an example here:

Text Files (*.txt) | *.txt| All Files (*.*)| *.*

» Using HYPERLINK to open external files
» Checking file and folder access permissions
» Browsing for a folder

Browsing for a folder

NAV provides us with a way to browse for a file right out-of-the-box, but it does not let us
browse for a folder. This recipe will show you a work around using automation controls that
should already be installed on your system.

245

OS Interaction

How to do it...

1. Create a new codeunit from Object Designer.
2. Add the following global variables:

Name Type Subtype Length
MSShell Automation 'Microsoft Shell Controls

And Automation'.Shell
Folder Automation 'Microsoft Shell Controls

And Automation'.Folder3
FilesInFolder Automation 'Microsoft Shell Controls

And Automation'.
Folderltems3

CurrentFile Automation 'Microsoft Shell Controls
And Automation'.
Folderltem2
SelectedFolder Text 1024

3. Add the following code to the OnRun trigger:
CREATE (MSShell, FALSE, TRUE);

Folder := MSShell.BrowseForFolder (0, 'NAV Folder Browser', 0);
FilesInFolder := Folder.Items();

CurrentFile := FilesInFolder.Item() ;

SelectedFolder := FORMAT (CurrentFile.Path) ;

MESSAGE ('Selected Folder: %1\Contains %2 files',
SelectedFolder, FilesInFolder.Count()) ;

4. Save and close the codeunit.

This recipe depends entirely on the classes found in the Microsoft Shell Controls and
Automation package.

For a list of the objects found in this package you can search

MSDN or goto http://msdn.microsoft.com/en-us/
’ library/bb776890%28VS.85%29.aspx.

246

http://msdn.microsoft.com/en-us/library/bb776890%28VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/bb776890%28VS.85%29.aspx

Chapter 9

The code may seem like a lot just to get a folder name, but let's go through it line-by-line
and explain why we are doing what we are doing. First we create or instantiate our MSShell
variable, just as we do with every Automation variable. This one has a function called
BrowseForFolder that launches the dialog box.

Browse For Folder [ﬁ,l

MAV Folder Browser

Ml Desktop —
* 7 Libraries

- Homegroup

» A Matt Traxinger

m

- 1M Computer

iz"u Metwork

- [E3 Control Panel
£ Recycle Bin

Neveloners Tonlkit Tnstall

| Make New Folder | [oK] | Cancel

Unfortunately, this function returns a Folder object, which does not have text representation.
So we have to take it a step further. We then retrieve a list of the files contained in that folder.
This list is stored in our FilesInFolder variable. We can access the first item in this list.
This file has a path and we can store that as our selected folder.

» Browsing for a file
» Checking file and folder access permissions

Checking file and folder access permissions

Many systems have batch processes which read and write files to folders on the file system. In
order to avoid some of the standard Windows error messages and prevent errors in the middle
of the process you may want to check access permissions.

How to do it...

Create a new Class Library project in Visual Studio.
Create a new file with the following code:

using System;
using System.Security.Permissions;

247

OS Interaction

using System.Runtime.InteropServices;

namespace FolderAccess
{
[ClassInterface (ClassInterfaceType.AutoDual)]
[ProgId ("RegistryQuery")]
[ComVisible (true)]
public class FolderAccess
{

public bool TestFolderAccess (string folder, string access)
{
System.Security.Permissions.FileIOPermissionAccess
accessLevel;
switch (access.ToUpper())
{
case "NOACCESS": accessLevel =
FileIOPermissionAccess.NoAccess; break;
case "READ": accessLevel =
FileIOPermissionAccess.Read; break;
case "WRITE": accessLevel =
FileIOPermissionAccess.Write; break;
case "APPEND": accessLevel =
FileIOPermissionAccess.Append; break;
case "PATHDISCOVERY": accessLevel =
FileIOPermissionAccess.PathDiscovery; break;
case "ALLACCESS": accessLevel =
FileIOPermissionAccess.AllAccess; break;
default: return false;

FileIOPermission permission = new
FileIOPermission (accessLevel, folder);
try

{
}
catch (Exception ex)

{
}

permission.Demand () ;

return false;

return true;

}
}
}

3. Set the properties of the program according to the Creating your own Automation
using C# recipe from the integration chapter.

4. Save, compile, and close the project.

248

Chapter 9

5. Create a new codeunit from Object Designer.
Add the following global variable:

Name Type Subtype

FolderAccess Automation 'FolderAccess'.FolderAccess

7. Add the following code to the OnRun trigger:

CREATE (FolderAccess, FALSE, TRUE) ;

MESSAGE ('Access: %1°',
FolderAccess.TestFolderAccess ('C:\', 'WRITE')) ;

8. Save and close the codeunit.

Our custom C# function, TestFolderAccess, takes in two parameters: the path or folder to
check and the type of permission to check for. Using the FileIOPermission class we set
these values and demand the access level. The Demand function will throw an exception if we
do not currently have access to the folder. In that case we return false, but in all other cases
we return true.

See also

» Browsing for a file
» Browsing for a folder

Querying the registry

You may never need to query the registry on the computer when creating a NAV modification,
but you should consider it as an option.

How to do it...

Create a new Class Library project in Visual Studio.
Create a new file with the following code:

using System;
using System.Runtime.InteropServices;
using Microsoft.Win32;

namespace RegistryQuery

{

249

OS Interaction

[ClassInterface (ClassInterfaceType.AutoDual)]
[ProgId ("RegistryQuery")]

[ComVisible (true)]

public class RegistryQuery

{

public string GetKeyValue (string key, string name)

{
RegistryKey regKey = Registry.Users.OpenSubKey (key) ;
if (regKey == null)
{

return "Key not found!";

}

else

{
object value = regKey.GetValue (name) ;
if (value != null)

{
}

else

{

return "Name not found!";

return value.ToString() ;

3. Set the properties of the program according to the Creating your own Automation
using C# recipe from the integration chapter.

Save, compile, and close the project.
5. Create a new codeunit from Object Designer.
6. Add the following global variable:

Name Type Subtype
RegistryQuery Automation 'RegistryQuery'.RegistryQuery

7. Add the following code to the OnRun trigger:
CREATE (RegistryQuery, FALSE, TRUE) ;

MESSAGE ('%1', RegistryQuery.GetKeyValue ('.DEFAULT\Environment',

'"TEMP')) ;
8. Save and close the codeunit.

250

Chapter 9

You may never have an instance where you need to examine registry values in your NAV code.
In most instances, it will be easier to add a column to User Setup or store the information in
a custom table. As a NAV developer, and less specifically, a business applications developer,
you may encounter a situation that warrants this type of development. Let's take a look at
the code.

Our C# code works for a specific root in the registry, HKEY USERS. We access the subkey
passed in the first parameter to our function using the Registry.Users.OpenSubKey
function. If the key is not found, or null, we return an appropriate message. You could modify
the code to access the other root folders by passing an additional parameter.

Next, we try to access the names stored in the key. Again, if we are unable to find the key
equal to the second parameter of our function, we return null. If we do find it, we return
its value.

& Registry Editor [ESRIE)

File Edit View Favorites Help

a8 Computer

Mame Type Data
- . HKEY_CLASSES_ROOT o5 (Defeut) REG.5Z (value not set]
:EE:_ESE.':%N;:;JCSE?NE ab] TEMP REG_EXPAND_SZ FUSERPROFILESS\AppData'Local\ Temp
" X - ab]TMP REG_EXPAMD_SZ “USERPROFILESS Data'\Local\T
4 - HKEY_USERS) | - e \AppDataiLocal\ Temp

4~ DEFAULT
> . AppEvents
Control Panel
~1 |, Environment
-1 EUDC
Keyboard Layout
- L. Printers
Software
>+ Ly SYSTEM
. 5-1-5-18
5-1-5-19
. 5-1-5-20
. 5-1-5-21-3299508630-2750373041-3249473260-1000
>~ 0 5-1-5-21-3299508630-2750378041-3249473260-1000_Classes
- . HKEY_CURRENT_CONFIG

Computer\HKEY_USERS\. DEFAULT\Environment

Our NAV code looks for the temporary folder assigned to the user, similar to what
ENVIRON ('TEMP') returns. Do not think that this is only limited to things that can also be
found using the ENVIRON function, though. You can query any value in the registry.

251

OS Interaction

There's more...

You can also perform other actions on the registry using the CreateSubKey and
DeleteSubKey functions. Be warned, though. You should not play with the registry unless
you know what you are doing. You can easily corrupt the entire system if you are not careful.

For more information about the registry you can view this MSDN article:
i http://msdn.microsoft.com/en-us/library/hS5e7chcf.aspx

See also

» Working with environment variables

Zipping folders and files within NAV

This might not be a common task, but creating files and e-mailing them from within NAV is.
You can combine this with those recipes to send large groups of files at once.

How to do it...

1. Create a new codeunit from Object Designer.

2. Add the following global variables:

Name Type Subtype

ZipFile File

MSShell Automation 'Microsoft Shell Controls And Automation'.Shell
ZipFolder Automation 'Microsoft Shell Controls And Automation'.Folder

3. Add the following code to the OnRun trigger:

ZipFile.CREATE (
'C:\Users\Public\Pictures\Sample Pictures\Pictures.zip');

CREATE (MSShell, FALSE, TRUE);

ZipFolder := MSShell.NameSpace (
'C:\Users\Public\Pictures\Sample Pictures\Pictures.zip');

ZipFolder.CopyHere (
'C:\Users\Public\Pictures\Sample Pictures\Desert.jpg') ;

4. Save and close the codeunit.

252

http://msdn.microsoft.com/en-us/library/h5e7chcf.aspx
http://msdn.microsoft.com/en-us/library/h5e7chcf.aspx

Chapter 9

A ZIP file is really just a folder that happens to have its contents compressed. We can create
this file or folder just as we would create a text file, using the CREATE command.

Next, we assign the namespace of our MSShell object to this ZIP file. This means that
whatever we do with our MSShel1 variable we will be doing to this file.

As the ZIP file is really just a folder, we can perform any file system action on it. In this case,
we want to copy files into the folder. We achieve this by using the CopyHere function where
the "Here" refers to our namespace and the parameter passed tells the function which file
to copy.

See also

» Sending an e-mail from NAV through Outlook

253

10

Integration

In this chapter, we will cover:

» Flat file exchange using dataports

» Sharing information using XMLports

» Manually writing to and reading from files
» Creating a web service

» Consuming web services

» Sending data through FTP

» Printing reports to PDF

» Creating a custom NAS handler

» Writing your own automation using C#

» Using ADO to access outside data

Introduction

Microsoft Dynamics NAV does a lot of things really well. It has areas for sales, purchases,
inventory, manufacturing, and financials just to name a few. It has the ability to do just about
anything a company needs it to do, but that doesn't mean it will.

Businesses rely on multiple applications to run their operations. In the past, most of these
applications have been housed on-site on the company's own servers. Integration between
them was limited to flat file exchange or talking directly to the other database. Over the past
few years there has been a major paradigm shift from the traditional client-server architecture
towards a hosted model, often referred to as The Cloud. With the introduction of Web Services
in NAV 2009, Microsoft has made sure that Dynamics NAV will continue to meet its customers'
integration needs for this new type of infrastructure.

Integration

In this chapter, we will go over the old and the new. We will discuss how to do simple
integrations using text and XML files and how to send those files to other locations using
e-mail and FTP. We will also talk about ways to make our database talk to other applications
and write our own code outside of NAV to integrate our systems. These recipes will serve as
the foundation for all of your future integration efforts.

Flat file exchange using dataports

Although dataports have been dropped in favor of the more useful XMLport, there are still
plenty of customers that are on versions where XMLports are not available. This recipe will
show you how to create a basic dataport for importing and exporting data.

How to do it...

Create a new dataport from Object Designer.

Add a data item for the Customer table.

With the Customer Data Item selected, click on View | Dataport Fields (Alt + V, D).
Add the following fields to the Field Designer window.

PN PR

Enabled SourceExpr StartPos Width
Yes "No." 0 0
Yes Name 0 0

5. Your dataport should look similar to the following screenshot:

ﬂ @ E &8 Customer, - Field Designer, E@@
Dataltem MName StartPos | wWidth
| Custamer <Customer > a a
1] 0

6. With a new, blank line selected in the dataport click on View | Properties
(Shift + F4).

256

7. Set the following properties for the dataport:

Property Value
FieldStartDelimeter <None>
FieldEndDelimeter <None>
FieldSeparator <TAB>

Dataltem
Customer
*p

Mame
<Customer =

&= Dataport - Properties

Propetky
jin}

Marme
Caption
CaptionML
Irmpork
FileMamne
FileFormat

Chapter 10

Walue
51001 A
Flak File Exchange - Datapaort
=Flat File Exchange - Dataport =
“Undefined=
=Vess
=
<Yariable=

ieldStartDelimiter
ieldEndDelimiter
ieldSeparator

=MNone:=
=Mone=
=TAB >

RecordSeparator

Help

DataltemSeparator

=<MewLine=>
< <Mewline<MNewline > w

8. Save and close the dataport.

In many programming languages you have to manually write code to export data from the
system. NAV allows you to do this, but it also provides a much simpler way using a dataport.

First we tell the dataport which table we want to export from by creating a Dataltem for
the Customer table. Next, we tell it which fields we need by adding them to the Dataport

Fields area.

As far as development goes this is all we have to do, but we can also change the format of the
output file. We can tell the dataport to add characters to the beginning and end of a field as
well as which character to use to separate fields. By default, fields are surrounded by double
quotes and a comma is used to separate them. Unfortunately, double quotes and commas are
often typed as data into fields which can throw off the dataport. Here we choose to separate
the fields with a Tab character and to not surround them with any special characters.

257

Integration

When running the dataport you will be presented with two tabs.

+3+ Flat File Exchange - Dataport

Customer | Options

=N EON ==

Field Filter

|| (+]

ok ||

Cancel

] [Help]

+3+ Flat File Exchange - Dataport

File Mame |
Direction (@) Import
(2 Export

ok ||

Cancel

] [Help

The first will let you specify any filters you want to apply to your data. The second allows you to
choose the name of the file and whether or not you are importing or exporting data. When you
click OK a progress bar will appear showing you how much of the file has been processed.

There's more...

Just like other objects you can add variables and code to dataports. One of the downsides,
though, is that they cannot be run from the NAV Application Server (NAS). In these instances it

is best to do your own file output using Output Streams.

See also

» Browsing for a file

» Sharing information using XMLports
» Sending data through FTP

258

Chapter 10

Sharing information through XMLports

XML stands for Extensible Markup Language and is a text format for creating structured
computer documents. NAV provides objects called XMLports that allow you to create these
types of documents.

How to do it...

1. Create a new XMLport from Object Designer.
2. Add the following lines to the XIMLport Designer:

Node Name Node Type Source Type Data Source

Root Element Text <Root>

Customer Element Table <Customer>(Customer)
No Element Field <Customer>::No.

Name Element Field <Customer>:Name

3. Your XMLport should look like this:

-

B XMLport 51001 Flat File Exchange - XMLPort - XMLport Designer =13
Mode Mame Mode Type Source Type Daka Source
b |Rook Element Texk <Foot=
Cuskormer Element Table <iZuskormer ={Customer)
Mo Element: Field <iZustomer =;: Mo,
Mame Element: Field <Custormer =;:Mame
£ >

4. Save and close the XMLport.
5. Create a new codeunit from Object Designer.

259

Integration

6. Add the following global variables:

Name DataType Length
OutputFile File

OutputStream OutStream

FileName Text 255

7. Add the following code to the onRun trigger:

FileName := ENVIRON('TEMP') + 'Customers.xml';
OutputFile.CREATE (FileName) ;
OutputFile.CREATEOUTSTREAM (OutputStream) ;
XMLPORT .EXPORT (51001, OutputStream) ;
OutputFile.CLOSE;

HYPERLINK (FileName) ;

8. Save and close the codeunit.

XMLports are similar to dataports, but their structure and creation is done a little differently.
Understanding what XML output looks like can help you to better understand how to

create these types of objects. A portion of the output from this XMLport is shown in the
following image:

<?xml version="1.0" encoding="UTF- 16" standalone="no" ?=
- <Root>
- =Customerz
<MNo=10000</Noz=
<MName=The Cannon Group PLC</Name=
</Customerz
- =Customerz
<MN0o=20000</No=
<Name=Selangorian Ltd. </Name>
</Customer:
- =Customer:z
<No»30000</No =
<Mame=John Haddock Insurance Co.</Name=
</Customer:
- «Customer=
<MNo=>40000</No=
<Name=Deerfield Graphics Company </Name =
</Customer:
- «Customerz
<MNo=50000</MNo>
<Name=Guildford Water Department</Name:=
</Customer:

260

Chapter 10

XML is a tree-like structure made of nodes. Every file has to start with some sort of parent
node which is usually called the Root node. Once we have created the Root node we can tell
the XMLport which table we want to use (in this case the Customer table). Next, we tell it
which fields we want to use from that table. Notice in the output how each value is surrounded
by a node with the name of that field, and each collection of fields is surrounded by a
Customer node.

XMLports cannot be run directly from Object Designer. Instead, you have to create a codeunit
to run them. Our codeunit creates a new export file along with an out St ream object that will
be used to write the XML to that file. From here we run our XMLport and pass the OutStream
object to it. While this may seem annoying, it has its benefits. This allows XMLports to be run
through web services or run as scheduled tasks within NAV.

When developing XMLports for use with the RoleTailored client there is no need to create
these codeunits to run them; they will run perfectly well from the RTC on their own.

There's more...

In NAV2009, XMLports have replaced dataports. But that does not mean you can only
export data in XML. You can replicate this single line type of output by changing the
Format property of the XMLport to Fixed Text or Variable Text. It also has the same
FieldStartDelimiter, FieldEndDelimiter, and FieldSeparator properties as
the dataport.

For a complete explanation on XMLports, read Chapter 9 of the book
i Programming Microsoft Dynamics NAV 2009, by David Studebaker,.

See also

» Browsing for a file
» Flat file exchange using dataports
» Sending data through FTP

Manually writing to and reading from files

Apart from the built-in object types for creating text files and XML files, you can also create
them manually. This recipe will show you how to write your own code to do this.

261

Integration

How to do it...

1. Create a new codeunit from Object Designer.
2. Add the following global variables:

Name DataType
StreamOut OutStream
FileOut File
Streamin InStream
Fileln File

3. Add the following code to the OnRun trigger:

IF NOT FileOut.CREATE ('C:\NAVFile.txt') THEN
IF NOT FileOut.OPEN('C:\NAVFile.txt') THEN
ERROR ('Unable to write to file!');

FileOut.CREATEOUTSTREAM (StreamOut) ;
StreamOut .WRITETEXT ('Line 1');
StreamOut .WRITETEXT () ;

StreamOut .WRITETEXT ('Line 2') ;
StreamOut .WRITETEXT () ;
FileOut.CLOSE;

)

IF NOT FileIn.OPEN('C:\NAVFile.txt') THEN
ERROR ('Unable to read file!');

FileIn.CREATEINSTREAM (StreamlIn) ;
WHILE NOT StreamIn.EOS DO BEGIN
StreamIn.READTEXT (TextLine) ;

MESSAGE ('%1', TextLine) ;
END;
FileIn.CLOSE;

4. Save and close the codeunit.

First we try to create a new file using the CREATE function with the File data type. If we are
unable to create that file, we try to open a file of the same name. If that does not work we
throw an error because we do not have a file to work with.

262

Chapter 10

From there we have to create a stream to the file. In this case, we use an OutStream
because we are writing data to the file. The stream object has a function called WRITETEXT
that actually sends the data to the file. Unfortunately it does not send a carriage return, so to
create a new line we have to use the WRITETEXT method with an empty parameter. Once we
are done with writing text to the file we need to close it.

We follow a similar process for reading information from the file. Instead of using an
OutStream variable we use an InStream variable. This stream has a function called E0OS
which stands for End of Stream. It returns the value TRUE when we reach the end of the file.
As long as we have not reached the end of that file we can use the READTEXT function to
retrieve a line of text from the file. It takes a text variable as a parameter and stores that line
of text there. Our code displays it in a message window.

There's more...

This example creates a simple text file, but you can also create XML files. NAV provides
functions for this in Codeunit 6224, XML DOM Management. Here is a short example:

Add the following global variables to a codeunit:

Name DataType SubType

XMLMgt Codeunit XML DOM Management

XMLDoc Automation 'Microsoft XML, v6.0'.DOMDocument
XMLNode Automation 'Microsoft XML, v6.0".IXMLDOMNode

XMLNode2 Automation 'Microsoft XML, v6.0".IXMLDOMNode
XMLNode3 Automation 'Microsoft XML, v6.0".IXMLDOMNode

Add the following code:

CREATE (XMLDoc) ;

XMLDoc.async := FALSE;

XMLMgt . SetNormalCase;

XMLNode := XMLDoc.createNode('l','Root','"');

XMLDoc . appendChild (XMLNode) ;

XMLMgt .AddElement (XMLNode, 'Tagl', '1','',XMLNode2) ;
XMLMgt .AddElement (XMLNode, 'Tag2','2','',XMLNode2) ;
XMLMgt .AddElement (XMLNode, 'Tag3','','',XMLNode2) ;
XMLMgt .AddElement (XMLNode2, 'Tag3.1','3.1',"'',XMLNode3) ;

XMLDoc.save ('C:\NAVXML. txt"') ;

263

Integration

In order to start the document, you must create a node and append it to the document. This
root node will be used throughout the file creation. The AddElement function takes in several
parameters. The first is the parent node of the node being added. The tag name and value are
also passed. The last parameter will hold the node that is being added. A sample output from
this code is shown:

<Root >
<Tagl>1l</Tagl>
<Tag2>2</Tag2>
<Tag3>
<Tag3.1>3.1</Tag3.1l>
</Tag3>
</Root >

» Flat file exchange using dataports

» Sharing information through XMLports

Creating a web service

Web services are a standardized way of integrating applications that share business logic and
data. With NAV 2009 you can easily create a web service in a matter of minutes.

How to do it...

1. Create a new page as described in the Creating a list page recipe in Chapter 12,
RoleTailored Client.

From Object Designer run form 810, Web Services.
Add the following record to the table:

Object Type Object ID Service Name Published

Page 51003 (or the ID of your Page object) Web Service Example Yes

4. Close the form.

With NAV 2009, creating a web service is easy. Any code exposed through a page or codeunit
object can be exposed as a web service. There is no need to create your own .NET class or
write code outside NAV to access the database. All that is required is to add the object to the
web service table and check the Published field.

264

Chapter 10

See also

» Creating an InfoPath form with NAV data
» Consuming a web service

Consuming web services

It is great that you can create web services in NAV, but you should be able to use them in
outside applications. This recipe will show you how to create a basic program to use these
web services.

How to do it...

Create a new codeunit from Object Designer.
Add a function named GetCustomer.
The function should take in the following parameter:

Name DataType Length
CustNo Code 20

4. Add the following local variable to the function:

Name DataType SubType

Customer Record Customer

5. The function should return a text variable of length 50.

Add the following code to the function:

IF Customer.GET (CustNo) THEN
EXIT (Customer.Name)

ELSE
EXIT('Not Found!');

7. Save and close the codeunit.

Add the codeunit as a web service as described in the Creating a web service recipe.
9. Create a new Console Application project in Visual Studio.
10. Right-click the References link and click on Add Web Reference.

11. Enter http://localhost:7047/DynamicsNAV/WS/Cronus_International
Ltd/Services (this may be different depending on the web server, service name,
and NAV company hame).

265

http://localhost:7047/DynamicsNAV/WS/Cronus_International_Ltd/Services
http://localhost:7047/DynamicsNAV/WS/Cronus_International_Ltd/Services

Integration

12. Select the web service corresponding to our codeunit and click on Add Service.
13. Add the following code to the program:

using System;
using System.Text;

using localhost;

namespace ConsumeWebService

{

public class ConsumeWebService

{
public static void Main(string[] args)
{
ConsumeWS service = new ConsumeWS () ;
ws .UseDefaultCredentials = true;
Console.WriteLine (ws.GetCustomer ("10000")) ;
Console.ReadLine () ;

}
}
}

14. Compile, save, and close the program.

In this example, we have created a simple codeunit that returns the name of a customer or
the text as "Not Found". This codeunit has been published as a web service as is available to
be used by our .NET program.

In order to use the web service in the application we have to add it as a reference. In our
code we tell this class that it can use the functions from the web service by adding the using
localhost line. We then create an instance of our service and tell it to use the default
credentials to connect. From there we can call any of the available functions in our page

or codeunit.

For a more in depth example you can read Chapter 9 of Programming
Microsoft Dynamics NAV 2009, by David Studebaker, or Chapter 7
of Implementing Microsoft Dynamics NAV 2009, by David Roys and
L Vjekoslav Babic. The latter is available from Packt here for free:

http://www.packtpub.com/article/extending-
application-using-microsoft-dynamics-nav-2009-partl

266

http://www.packtpub.com/article/extending-application-using-microsoft-dynamics-nav-2009-part1
http://www.packtpub.com/article/extending-application-using-microsoft-dynamics-nav-2009-part1
http://www.packtpub.com/article/extending-application-using-microsoft-dynamics-nav-2009-part1

Chapter 10

See also

» Creating an InfoPath form with NAV data
» Creating a web service

Sending data through FTP

Many external applications still accept files and submissions through FTP. Windows has a
built-in FTP client that we can leverage to perform this type of transmission.

Getting ready

You will need a working FTP server and valid logon credentials in order to run this recipe.

How to do it...

1. Create a new codeunit from Object Designer.

2. Add a function named FTP that takes in the following parameters:

Name DataType Length
UserName Text 50
Password Text 50
ServerName Text 50
FileToMove Text 255

3. Add the following local variables to the function:

Name DataType Length
BatchFileName Text 250
BatchFile File

BatchFileStream OutStream
BatchFileData Text 250

4. Add the following code to the function:

BatchFileData := 'c:\navFTP.dat';
BatchFileName := 'c:\navFTP.bat';
BatchFile.CREATE (BatchFileName) ;
BatchFile.CREATEOUTSTREAM (BatchFileStream) ;

BatchFileStream.WRITETEXT ('@echo off');

267

Integration

BatchFileStream.WRITETEXT;
BatchFileStream.WRITETEXT ('echo user ' +

UserName + ' >> ' + BatchFileData) ;
BatchFileStream.WRITETEXT;

BatchFileStream.WRITETEXT ('echo ' +
Password + ' >> ' + BatchFileData) ;
BatchFileStream.WRITETEXT;
BatchFileStream.WRITETEXT ('echo bin >> ' +
BatchFileData) ;
BatchFileStream.WRITETEXT;

BatchFileStream.WRITETEXT ('echo put ' +
FileToMove + ' >> ' + BatchFileData) ;
BatchFileStream.WRITETEXT;
BatchFileStream.WRITETEXT ('echo quit >> ' +
BatchFileData) ;
BatchFileStream.WRITETEXT;
BatchFileStream.WRITETEXT ('FTP -n -s:' +
BatchFileData + ' ' + ServerName) ;
BatchFileStream.WRITETEXT;
BatchFileStream.WRITETEXT ('del ' + BatchFileData) ;
BatchFileStream.WRITETEXT;
BatchFile.CLOSE;

SHELL (BatchFileName) ;
5. Add the following code to the OnRun trigger:
FTP ('YourUserName', 'YourPassword', 'YourServer',6 'YourFile');

6. Save and close the codeunit.

FTP stands for File Transfer Protocol and is a method for sending files from one file system to
another. Although very basic, the Windows OS comes with a built-in FTP program. It is a simple
command-line utility (no graphical interface), so it is not the easiest program to use, but for
integration it works great.

For a list of the available options or parameters that can be used
i with the FTP program type ftp ? ata command prompt.

Our program works by creating two files: a batch file and a data file. The data file will be
used within the batch file to tell the FTP program how to act. Let's examine each line of the
batch file.

268

Chapter 10

The first line, @echo of £, is for security purposes. By turning off the echo command we
prevent the commands in our batch file from being displayed on the screen. This is extremely
important to prevent the users of this program from learning the username and password
that are echoed on the next two lines. You will notice that each of these lines ends with a >>
BatchFileData. This tells the batch file to send the text to an actual file on the file system.
Next we tell the FTP program to set the transfer-type to binary and to put, or send, a specific
file. Finally, we quit and return to the command prompt.

Now we actually need to connect to the FTP program. We do this by adding the FTP command
to our batch file followed by two parameters. The first, -n, tells the system not to automatically
log in. The second, -s, tells it to issue the commands in the specified file when the program
starts. Lastly, we must tell it the server to which we want to connect.

Once the file has been uploaded we delete the data file so that our credentials are not saved
anywhere on the machine.

There's more...

This is a basic example that only uploads a single file, but you could easily script it so that
it issues multiple PUT commands. This would most likely be used with some type of NAS
Scheduler along with an XMLport to send and retrieve information.

See also

» Flat file exchange using dataports
» Sharing information through XMLports

Printing reports to PDF

Printing reports to PDF is extremely valuable for many companies. These documents can
easily be saved and e-mailed for a variety of tasks like electronic invoicing. This recipe will
show you how to develop this functionality.

Getting ready

PDFCreator must be installed on the system on which the code will be run. You can download
it here:

http://sourceforge.net/projects/pdfcreator/

When installing, be sure not to install the ad-ware / spy-ware toolbar that comes with it. You
may also want to turn-off the automatic updates for PDFCreator so that users do not end up
on different versions of the software.

269

http://sourceforge.net/projects/pdfcreator/
http://sourceforge.net/projects/pdfcreator/

Integration

How to do it...

1. Create a new codeunit from Object Designer.
2. Add the following global variables:

Name DataType SubType Length
PDFCreator Automation 'PDFCreator'.clsPDFCreator

PDFCreatorError Automation 'PDFCreator'.clsPDFCreatorError
PDFCreatorOption Automation 'PDFCreator'.clsPDFCreatorOptions
DefaultPrinter Text 100

3. Add a function named SetupPDFCreator. This function should take in the

following parameters:

Name DataType Length
FileDir Text 1024
FileName Text 1024

4. Add the following code to the function:

IF ISCLEAR (PDFCreator) THEN
CREATE (PDFCreator, TRUE, TRUE);

IF ISCLEAR (PDFCreatorError) THEN
CREATE (PDFCreatorError, TRUE, TRUE) ;

PDFCreatorError := PDFCreator.cError;

IF PDFCreator.cStart ('/NoProcessingAtStartup', TRUE) = FALSE

ERROR ('Status: Error[' + FORMAT (PDFCreatorError.Number)

THEN
+ ']

' + PDFCreatorError.Description) ;

PDFCreatorOption := PDFCreator.cOptions;
PDFCreatorOption.UseAutosave := 1;
PDFCreatorOption.UseAutosaveDirectory := 1;
PDFCreatorOption.AutosaveDirectory := FileDir;
PDFCreatorOption.AutosaveFormat := 0;
PDFCreatorOption.AutosaveFilename := FileName;

PDFCreator.cOptions := PDFCreatorOption;
PDFCreator.cClearCache() ;

DefaultPrinter := PDFCreator.cDefaultPrinter;
PDFCreator.cDefaultPrinter := 'PDFCreator';
PDFCreator.cPrinterStop := FALSE;

270

Chapter 10

5. Add a function named WaitUntilFileExists. It should take in the
following parameter:

Name DataType Length
FileName Text 1024

The function should return a Boolean value.
Add the following local variables to the function:

Name DataType
i Integer
maxi Integer
FileFound Boolean

8. Add the following code to the function:
i := 0;
maxi := 10;

WHILE (i < maxi) DO BEGIN
IF FILE.EXISTS (FileName) THEN BEGIN
1 := maxi;
FileFound := TRUE;
END ELSE BEGIN
i +=1;
SLEEP(1000) ;
END;
END;

EXIT (FileFound) ;

9. Add a function named ClearPDFCreator with the following code:

PDFCreator.cDefaultPrinter := DefaultPrinter;
CLEAR (PDFCreatorError) ;
CLEAR (PDFCreator) ;

10. Add the following code to the onRun trigger:

SetupPDFCreator (ENVIRON('TEMP'), 'Test.pdf');
REPORT.RUNMODAL (REPORT: : "Customer Listing", FALSE, FALSE);
IF WaitUntilFileExists (ENVIRON('Temp') + '\Test.pdf') THEN

HYPERLINK (ENVIRON ('Temp') + '\Test.pdf');
ClearPDFCreator;

11. Save and close the codeunit.

271

Integration

Our code depends on several libraries that come with the PDFCreator software. We can
reference these libraries using Automation variables in NAV.

Let's start by examining our first function, SetupPDFCreator. This function should be called
right before you print your document. We start by instantiating our Automation variables. Once
we know that we can start the PDFCreator application, we set some options. Specifically,

we want to automatically save our file without prompting the user, so we set the path,
filename, and file type (PDFCreator can save in more formats than just PDF). The last part of
the function determines the current default printer and saves it to a temp variable. This is
because we are going to set the default printer to PDFCreator and we want to be able to reset
it after we finish printing the reports.

Our next function is called WaitUntilFileExists. This file checks once per second for
ten seconds to make sure the PDF file has been created. Sometimes it takes some time for
it to register with the file system and even though PDFCreator has completed working on the
report, the file is not yet available.

The final function, ClearPDFCreator, clears up our variables and resets the default printer.

As long as you have run the SetupPDFCreator function, any report you run will be printed
to PDF. When you do run the report, though, you will want to pass a FALSE value to the
UseDefaultPrinter and ShowRequestForm parameters.

There's more...

In the RoleTailored client you can use the SAVEASPDF function. You can then use the
DOWNLOAD command to move that PDF file to the client computer and display it. These
functions should always be surrounded with a conditional that determines which client you
are using, in the following manner:

IF ISSERVICETIER THEN BEGIN
Report .SAVEASPDF;

DOWNLOAD ('Report.pdf ', 'Download File',
'C:\','PDF file(*.pdf) |*.pdf', ToFile) ;
END;

See also

» Display page X of Y
» Adding a watermark to a report
» Sending an e-mail from NAV through Outlook

272

Chapter 10

Creating a custom NAS handler

The NAV Application Server is essentially a NAV client without a graphical interface. It can be
used to automate exports or run any sort of code you might need for integration with software
outside of the NAV system. This recipe will show you how to write the code to handle a custom
application server.

Getting ready

You must have the NAV Application Server installed either on your machine or another server
on your network.

How to do it...

1. Create a new codeunit from Object Designer.
2. Set the following properties on the codeunit:

Property Value

SingleInstance Yes

3. Add the following global variables to the codeunit:

Name DataType SubType
Timer Automation 'Navision Timer 1.0".Timer
Seconds Integer

4. Add the following code to the OnRun trigger:

IF ISCLEAR (Timer) THEN
CREATE (Timer) ;

Seconds := 60;

Timer.Enabled := FALSE;
Timer.Interval := Seconds * 1000;
Timer.Enabled := TRUE;

5. Add the following code to the Timer: : Timer event:
MESSAGE (' Processed') ;
Save and close the codeunit.

7. Design codeunit 1, Application Management, from Object Designer.

273

Integration

8. Add the following global variable:

Name DataType SubType

CustomNASHandler Codeunit Custom NAS Handler (or the name of the
Codeunit you just created)

9. Find the NasHandler function.

10. Towards the end, you should see this line of code:
IF CGNASStartedinLoop = FALSE THEN

11. Directly above that line add the following code:

IF COPYSTR (Parameter,1,6) = 'CUSTOM' THEN BEGIN
CustomNASHandler .RUN;
END;

12. Save and close the codeunit.

13. Start the Application Server Manager from the server where the NAV Application
Server is installed.

M

Database Server Mame I Your Database Server
Database I Your Database Name
Company Mame I MAY Cormpany Mame
Start-Up Pararmeter I CUSTOM

MNek Type Im
Object Cache Size (KE) | 8000

Service Stakus I

Skart Service | Stop Service | Apply these sektings | Refresh Stakus

14. Set the start-up parameter of a new or existing application server to CUSTOM.
15. Restart the NAV Application Service.

274

Chapter 10

First we create a single-instance codeunit. We add an instance of the Navision timer
Automation to our program. This DLL file is shipped with the Navision product and you should
be able to find it in the installation directory. We set our timer to run once in a minute. This will
fire the Timer: : Timer event so we place a simple MESSAGE command here. You could add
a call to another codeunit or any other code you want to use. Just be aware that you can't use
any request forms or confirmation dialogs because there is no user to click anything.

Now that we have the codeunit to run we need to tell the application server how to access
it. This is done in codeunit 1, specifically by the NASHandler function. Here we check the
startup parameter and call the appropriate code, in this case, our custom codeunit.

See also

» Ending an idle session
» Automatically adding users to NAV
» Sending an e-mail in NAV through Outlook

Writing your own automation using C#

C/AL is a solid programming language, and NAV is a great system, but it cannot always exactly do
what we want it to. Luckily, we can write our own code in .NET and use it in NAV. This recipe will
show you how to set up a Visual Studio project so that it can be seen from within the NAV client.

How to do it...

Create a new Class Library Project in Visual Studio.
Add the following code to the project:

using System.Runtime.InteropServices;

namespace NAVAdd
{
[ClassInterface (ClassInterfaceType.AutoDual)]
[ProgId ("NAVAdAA")]
[ComVisible (true)]
public class NAVAdd
{
public int Add(int a, int b)
{
return a + b;
}
}
}

275

Integration

3. View the Properties for the project.

4. On the Application tab set the Assembly name to NAVAdd.
5. On the Build tab set the Register for COM interop property to true (checked).

NAVAdd™| NAVAdd.cs| Start Page

- Platform: | Active (Any CPLU)

Application
Configuration: | Active (Debug)
Build™
@ Mone
Build Events
) Specific warnings:
Debug
Al
Resources
Output
Services
Output path:
Settings

[7] ¥ML documentation file:

Reference Paths
Register for COM interop

bin\Debug\

Signing
Generate serialization assembly:

Auto -

Browse...

Save and compile your objects.

7. Create a new codeunit in Object Designer.

Add the following global variable:

Name DataType

SubType

NAVAdd Automation

'NAVAdd'.NAVAdd

9. Add the following code to the OnRun trigger:

CREATE (NAVAdd) ;

MESSAGE ('%1', NAVAdd.Add (2,

10. Save and close the codeunit.

3));

Let's examine the attributes of our class. The first attribute is called ClassInterface. By
setting the value to ClassInterfaceType.AutoDual we tell the program to automatically
register itself on the system, if we choose to register it at all (which we will later). The second
attribute is called ProgId and is the name that our program will be referenced by. The last is
called coMvisible and tells the system that this class can be registered on the computer.

276

Chapter 10

For more information on the libraries and attributes you
s can goto msdn.microsoft.com.

In order to actually register the class as an Automation you must check the Register for COM
interop option in the Project Properties window. Once you compile the program it will be
available in the list of available Automation variables in NAV.

» Display page X of Y

» Adding a watermark to a report

» Implementing Try / Catch/ Finally

» Automatically adding users to NAV

» Instant messaging with Office Communicator
» Querying the registry

Using ADO to access outside data

ADO stands for ActiveX Data Object and is used to access data regardless of its structure.
Here we will show how you can use an ADO Automation in NAV to access data from an
outer database.

How to do it...

1. Create a new codeunit in Object Designer.

2. Add a function named CreateConnectionString that takes in the
following parameters:

Name DataType Length
ServerName Text 50
DatabaseName Text 50
UserName Text 50
Password Text 50

3. The function should return a text value of length 1024.

277

Integration

4. Add the following code to the function:

EXIT (
'Driver={SQL Server};' + 'Server=' + ServerName + ';' +
'Database=' + DatabaseName + ';' + 'Uid=' + UserName +
';' 4+ 'Pwd=' + Password + ';');

5. Add the following local variables to the OnRun trigger:

Name DataType SubType

ADOConnection Automation 'Microsoft ActiveX Data Objects 6.0
Library'.Connection

ActiveADOConnection Variant

ADOCommand Automation 'Microsoft ActiveX Data Objects 6.0
Library'.Command

ADORecordSet Automation 'Microsoft ActiveX Data Objects 6.0

Library'.Recordset

6. Add the following code to the trigger:

CREATE (ADOConnection) ;

ADOConnection.ConnectionString := CreateConnectionString/(
'MyServer', 'MyDatabase', 'MyUserID', 'MyPassword');

ADOConnection.Open;

CREATE (ADOCommand) ;

ActiveADOConnection := ADOConnection;

ADOCommand.ActiveConnection := ActiveADOConnection;

ADOCommand . CommandText := 'SELECT [Name] FROM
[Company$Customer] WHERE [No] = ''10000''"';

ADOCommand . Execute;

CREATE (ADORecordSet) ;
ADORecordSet .ActiveConnection := ActiveADOConnection;
ADORecordSet .Open (ADOCommand) ;
WHILE NOT ADORecordSet.EOF DO BEGIN

MESSAGE (FORMAT (ADORecordSet .Fields.Item('No ') .Value)) ;
END;

ADOConnection.Close;

7. Save and close the codeunit.

278

Chapter 10

First we need to connect to the database we need information from. We do this by setting up a
new connection string and assigning the value to our ADO connection variable.

Once we open our connection we are ready to issue queries or commands against the
external database. In this example, we want to select a customer from the Customer table in
another NAV database.

In order to view the results of the query, we have to open the RecordSet that was returned
by the command. We add a simple WHILE loop to process until we get to the end of the set.
Each field can be accessed with the .Fields.Item(FieldName) syntax.

This is a basic example, but it opens up a lot of possibilities. Everything that you can do using
SQL you can now do in NAV. That includes executing stored procedures, creating views, and
setting up SQL security. Your options are only limited by your knowledge of T-SQL.

279

11

Working with SQL
Server

In this chapter, we will cover:

» Creating a basic SQL query

» Adding the xp_ stored procedures

» Understanding SIFT tables

» Using SQL Profiler

» Displaying data from a SQL view in NAV
» Figuring out who is blocking whom

» Setting up a backup plan

» Scheduling NAV tasks from SQL server

Introduction

When Navision was introduced, the database option was a proprietary engine. Everything
was stored in an FDB (Financial Database) file. The newer versions of the product added a
second option: SQL Server. Unfortunately for some of these older customers, NAV 2009 is the
last version to support the proprietary database; in the next version, SQL Server will be the
only option.

SQL Server is becoming an integral part of the software. NAV partners must be certified in
SQL Server Implementation and Maintenance to maintain their partnership. Even the NAV
Installation and Configuration exams ask many questions about Windows and database
servers. As NAV evolves, so must the people who work with it.

Working with SQL Server

In this chapter, we will explore everything from writing a basic SQL query to some of the
inner-workings of the NAV client. For those developers who have been resistant to change, or
those who don't know from where to start, the recipes in this chapter will help "bring you out
of your NAV shell" so to speak. For those of you who have been involved with SQL for some
time, there are several recipes for you as well.

Creating a basic SQL query

It all starts with a query. This recipe will show you how to retrieve data from tables in
the database.

How to do it...

1. Open SQL Server Management Studio and connect to the server that holds your
NAV database.

2. Click on the New Query button.

Select your NAV database in the database dropdown.

.-‘< Microsoft SQL Server Management Studio

File Edit View Query Project Debug Tools Window Community Help

Hhewouery | [| 0 5 |3 |5 H I &z

| teeae b W v 35 E | I° @@ S 2 EEA L
f/EQLQuerVZJqI—EANVASSQLm)ﬂ - X

pl
Connect = | g 3 J

4. Enter the following code in the window:

SELECT [No], [Name], [Address], [City], [County], [Post Codel]
FROM [CRONUS USA, Inc_s$Customer]
WHERE [No_] = '10000"

5. Press F5 to run the query.
You should see the following results:

Ma_ I M ame I Address I Clity I County I Post Code
1 [10000 The Cannon Group PFLC 192 Market Square Allanta G NEF2

282

Chapter 11

This is a basic SQL query made up of three basic parts. The first is the SELECT line, which
tells the system the names of the fields we want to retrieve. We surround the field names
with brackets, [], because a lot of times the name of the field is also a reserved keyword or
a space. The brackets are not mandatory for every field, but it makes it simpler to add them
every time. Notice also that in NAV the customer number is stored in a field named "No.", but
in SQL Server we reference it by "No_".

The second line tells the table where we want to get the fields from, in this case the Customer
table. Here you can see that we do not just enter FROM [Customer]. In SQL Server, the
tables are actually named in a format like Company$Table. There are exceptions to this,
though. Any table that has the DataPerCompany property set to No will not contain the
Company$ prefix on the table name.

Last is the WHERE clause. This is the same as filtering in NAV. In this case, we only want to
retrieve customer number 10000.

This query would be equivalent to the following NAV code:

CustomerRec.SETRANGE ("No.", '10000') ;
IF CustomerRec.FINDFIRST THEN;

The book, The NAV/SQL Performance Field Guide, by Jorg A. Stryk

contains a great list of translations between C/AL code and SQL
’ statements in the Querying SQL Server section.

SQL queries can be much more complicated. They can perform calculations, query multiple
tables at the same time, and manipulate data in just about any way imaginable. Not only can
you retrieve data through a SQL query, you can also insert, modify, and delete data.

Entire books have been written on the subject of SQL. A great place to start
i is Beginning SQL Queries: From Novice to Professional by Clare Churcher.

283

Working with SQL Server

Other Types of SQL queries

The following SQL queries are commonly used:
Adding data:

INSERT INTO [CRONUS USA, Inc_$Customer]
([No_ 1, [Name], [Address], [City], [Post Code], [County])
VALUES ('101382', 'Matt Traxinger',b '123 Main Street',
'Atlanta', '30324','GA")

Editing data:
UPDATE [CRONUS USA, Inc_$Customer]
SET [Name] = 'Matt Traxinger'
WHERE [No_] = '10000"

Deleting Data:

DELETE [CRONUS USA, Inc_$Customer]
WHERE [No_] = '10000"

Please note that you should not use SQL to do things that can be done within NAV or to
correct issues that can be corrected on the NAV frontend. SQL does not execute business logic
that is built into NAV. There is almost always a way to accomplish what you are trying to do

using existing NAV functionality or NAV code.

» Creating transactions to alter data

» Retrieving a single record from the database
» Using advanced filtering

» Retrieving data using FIND

» Displaying data from a SQL view in NAV

Adding the xp_ stored procedures

In order to enable Single Sign-On (SS0) through Windows logins, you must install two
extended stored procedures on the SQL Server. This recipe will show you how to do that.

How to do it...

1. Copy the file named xp ndo_x64.d11 from the SQL_esp\x64 folder on the product
CD (if you are using a 64 bit server). The default location to move it to is C: \Program
Files (x86) \Microsoft Dynamics NAV\60\Database on the SQL Server, but

you can copy it to any location.

Chapter 11

2. Open SQL Server Management Studio and connect to your server. In the Object
Explorer pane on the left-hand side, expand the tree to Databases, System
Databases, master, Programmability, Extended Stored Procedures.

Connect » | &7 2J 2] £

(O

2
0]
[=] [Databases
= [System Databases
= | | masker
[l Tables
[Views
[Synonyms
[=] [Programmability
[Stored Procedures
|1 Functions
= [Extended Stored Procedures
[System Extended Stored Procedures
dbo.xp_nda_enumusergroups

dbo, xp_ndo_enumusersids
[Database Triggers

3. Right-click the Extended Stored Procedures folder and select New Extended
Stored Procedure.

4. Enter xp ndo_ enumusergroups for the name and point it to the xp ndo x64.
d11 file you copied to the server.

M Extended Stored Procedure - xp_ndo_enumusergroups
Selectapage 6 Seript + LY Hel
27 Genetal
5 Pemizsions
% Estended Propesties om A :
o= £} | |
I ame RPN EnunnUSErgroUps
Servar
canvassqll sl
Connechan:
OPTIMUS \rotr awin
2 Yewo I
Progiess | DLL
Narne and location of the extended stored procadune DLL
Ready
ok | Cancal |

285

Working with SQL Server

5. Go to the Permissions page from the left-hand pane.
6. Click the Add button.

7. Add the public account and grant it the Execute permission.

M Extended Stored Procedure - xp_ndo_enumusergroups |- O] %]
:S Scapt - Lj Heln
! 13
4 Extended Properties Owner B
Estended stored procedure name; |m_nd0denunus|3|groups
Ulzess ar roles: Search,. |
| Mams | Type | I
| fl} public Database role
) Permiszions for public:
: Explicit | Effective |
Server =
canvassllliaqlil Permiszion | Grantar | [Girant | ‘it Girant | Deny |
) Ahes dbao EREET L r
Connectian: e R
OPTIMUS \rtraxin Cariral dbo r r r
27 Yiew connection properties Exscuie dbo F r r
- Take owrership dbo r — r
= Yiew defirion dba r r r
Feady
ok | Cancel |
4
8. Click OK.

9. Repeat the same steps for the xp ndo_enumusersids extended stored procedure.

See also

» Setting up a backup plan
» Scheduling NAV tasks from SQL Server

Understanding SIFT tables

SIFT stands for Sum Index Field Technology and is used by NAV to keep track of data to
quickly perform complex calculations. This recipe will show you how they work.

286

Chapter 11

How to do it...

Design Table 379, Detailed Cust. Ledg. Entry.
Click on View | Keys from the menu.

EE Table 379 Detailed Cust. Ledg. Eniry - Keys

E. Key SumIndexFields
» | ¥ Entry Mo, | (1] ~
¥ (Cust, Ledger Entry Mo.,Posting Date
v Cusk, Ledger Entry Mo, Entry Tvpe,Paosting Date Armount, Amaunt (LCY),Debik Amount, Credi, ..
¥ Customer Mo, Initial Entry Due Date,Posting Date, Currency Code Amount, Amount {LCY,Debit Amount, Credi, ..
¥ Customer No., Initial Entry Due Date,Posting Date Armount, Amount (LEY)
¥ Customer Mo.,Posting Date,Entry Type,Currency Code Amount, Amounk (LY, Debit Amount, Debit . .
¥ Document Mo.,Document Type, Posting Date
¥ Customer Mo, Initial Document Type, Document Type, Entry Ty... Amount, amounk {LCY)

Customer Mo, Initial Entry Due Date,Paosting Date, Initial Entry ... &mount, Amount (LCY,Debit Amount, Credi, ..
Customer MNo.,Posting Date, Entry Type,Initial Entry Global Dim... Armount, Amount (LY
Customer Mo, Initial Document Type, Document Type, Entry Tw... Amount, Amount (LY e

3. View the Properties for some of the enabled keys. You will notice one property called
MaintainSIFTIndex. This is the property that tells SQL Server to store the totals of
the SumindexFields.

Prior to NAV 5.0 SP1, SIFT values were stored in actual tables. In later versions, they earned
the nickname VSIFT because they are stored as views. This explanation will focus on VSIFT,
but for a deeper description of SIFT and how it works, check out Jorg A. Stryk's book, The NAV/
SQL Performance Field Guide.

(rer
Connect ~ | 4 4] B
= [Databases

[
|1 System Databases J

| Database Snapshats
| J CorusTesting
l_J MAY_2009_Dev
Bl | | Demo Database NAY (6-0)
| Database Diagrams
[Tables
= [Views
[System Yiews
(2} dbo. CRONUS Canada, Inc_faction Message EntryfYSIFTEL
[} dbo.CRONUS Canada, Inc_$action Message Entry$YSIFT$Z
[dbo.CROMUS Canada, Inc_$Analysis Yiew Budget Entry$YSIFT$0
[dbo.CROMUS Canada, Inc_fanalysis Yiew Entry$vSIFT0
dbo, CRONUS Canada, Inc_$Eank Account Ledger Entry$vSIFTSL
(2} dbo.CRONUS Canada, Inc_$Bank Account Ledager Entry$VWSIFT$3

287

Working with SQL Server

We will take a look at the key Customer No., Initial Entry Due Date, Posting Date. This is the
fourth key in the list (if you start with O as the first key). The view that will be created for this
key will be in the format of Company$TableSVSIFTSKey Number. Right-click on the dbo.
CRONUS USA, Inc_SDetailed Cust_ Ledg Entry$VSIFTS4 view and go to Script View
As | CREATE To | New Query Editor Window. You will see the following code:

CREATE VIEW [CRONUS USA,
WITH SCHEMABINDING AS
SELECT "Customer No_","Initial Entry Due Date",
COUNT_BIG(*) "sCnt",SUM("Amount") "SUM$Amount",
SUM ("Amount (LCY)") "SUM$SAmount (LCY)"
FROM "CRONUS USA, Inc_sDetailed Cust_Ledg Entry"
GROUP BY "Customer No ",

Inc_s$Detailed Cust_Ledg EntryS$VSIFTS$4]

"Posting Date",

"Initial Entry Due Date","Posting Date"

Aview is just a SELECT statement that is linked to specific tables. If any one of those tables
gets updated, the view is also updated. Do not be confused by this, though. Views do not
store any data. In the older versions of NAV, SIFT tables were updated through triggers. These
triggers slowed down functions like posting routines. The views, however, are optimized by
SQL Server in order to provide faster transactions and better user experience.

As you can see, in this SELECT statement we are retrieving the same fields that are found

in our key; that is Customer No., Initial Entry Due Date, and Posting Date. We are also
retrieving the sum of the fields in our SumindexFields along with the number of records that
make up that sum.

You can retrieve records from the view just like you would from a table. If you select the
records from this view you would see the following table:

Customer Na_ | Initial Entry Due Date | Paosting D ate | $Cnt | SUM$&mount | SUM$&mount [LCY] | -
‘I_ 01445544 i 2010-02-23 00:00:00.000 2010-01-25 00:00:00.000 1 2481.00000000000000000000 2461.00000000000000000000
2_\ 01454545 2010-01-31 00:00:00.000 20091231 00:00:00.000 1 0.00000000000000000000 0.00000000000000000000
& 10000 2010-01-01 00:00:00.000 2009-12-31 00:00:00.000 1 39127.27000000000000000000 39127.27000000000000000000
Z 10000 2010-01-01 00:00:00.000 2010-01-17 00:00:00.000 1 -39127. 27000000000000000000 -39127. 27000000000000000000
6 | 10000 2010-01-07 00:00:00.000 2009-12-31 00:00:00.000 1 78254.54000000000000000000 78254.54000000000000000000
6 | 10000 2010-01-07 00:00:00.000 2010-01-17 00:00:00.000 1 -78254.54000000000000000000 -78254.54000000000000000000
7| 10000 2010-01-11 00:00:00.000 2009-12-31 00:00:00.000 1 104339.38000000000000000000 104339.35000000000000000000
& | 10000 2010-01-11 00:00:00.000 2010-01-17 00:00:00.000 1 -104339.38000000000000000000 -104339.35000000000000000000
9 | 10000 2010-01-17 00:00:00.000 2010-01-17 00:00:00.000 7 -382.86000000000000000000 -382.86000000000000000000
10| 10000 2010-01-31 00:00:00.000 2009-12-31 00:00:00.000 3 228242.33000000000000000000 228242.39000000000000000000
11 | 10000 2010-02-07 00:00:00.000 2010-01-10 00:00:00.000 1 10806.72000000000000000000 10806.72000000000000000000 j

Let us take a look at row number ten and the values from the detailed Cust_ Ledg_ Entry
table. If you execute the following query you can see the records that make up this entry

in the view.

SELECT [Customer No], [Initial Entry Due Date], [Posting Date],

FROM [CRONUS USA,

288

[Amount] , [Amount
Inc_s$Detailed Cust_ Ledg Entryl

(Ley)]

Chapter 11

WHERE [Customer No] = '10000' AND
[Initial Entry Due Date] = '2010-01-31' AND
[Posting Date] = '2009-12-31'

This produces the following results:

Custarner Mo | Initial Entry Due D ate | Fosting D ate Arnaunt | Amaount [LCY)
1 | 10000 2010-01-31 00:00:00.000 2009-12-31 00:00:00.000 97818.17000000000000000000 9731 8.1 7000000000000000000
2 | 10000 2010-01-31 00:00:00.000 2009-12-31 00:00:00.000 52169.65000000000000000000 52169, 63000000000000000000
3 10000 2010-01-21 00:00:00.000 2003-12-31 00:00:00.000 78254.54000000000000000000 78254.54000000000000000000

We have three records which match the count from the view. They all have the same
Customer No., Initial Entry Due Date, and Posting Date. If we sum the Amount or Amount
(LCY) fields from the three records we get the same total found in the view.

We can run the following code to calculate the sum of the Amount field from NAV:

DtlCustLedgEntry.SETCURRENTKEY (

"Customer No.", "Initial Entry Due Date", "Posting Date") ;
DtlCustLedgEntry.SETRANGE ("Customer No.", '10000');
DtlCustLedgEntry.SETRANGE ("Initial Entry Due Date", 013110D) ;
DtlCustLedgEntry.SETRANGE ("Posting Date", 123109D) ;
DtlCustLedgEntry.CALCSUMS (Amount) ;

If we run Client Monitor while executing this code we can see that it actually queries the view
we have been talking about instead of going record-by-record and adding up the value.

Entry No. Function Name Parameter Data

20 CALCSUMS Table Detailed Cust. Ledg. Entry

20 CALCSUMS SumindexFields Amount

20 CALCSUMS Order Customer No.,Initial Entry Due

Date,Posting Date,Currency
Code,Entry No.

20 CALCSUMS Filter Customer No.:10000, Initial Entry
Due Date:01/31/10, Posting
Date:12/31/09

20 CALCSUMS Source Object Codeunit 50001 CALCSUMS Example
20 CALCSUMS Source Trigger/Function ~ OnRun ()
20 CALCSUMS Source Line No.
20 CALCSUMS Source Text DtlCustLedgEntry.
CALCSUMS (Amount) ;
20 CALCSUMS SQL Statement SELECT SUM ("SUMSAmount")

FROM dbo."CRONUS USA,
Inc_sDetailed Cust_ Ledg_
Entry$VSIFTS4"

289

Working with SQL Server

Entry No. Function Name Parameter Data
20 CALCSUMS Sum 228,242.39
20 CALCSUMS Elapsed Time (ms)

» Adding a FlowField to a table
» Creating a Sumindex field
» Displaying data from a SQL view in NAV

Using SQL Profiler

SQL Profiler is a tool similar to the Client Monitor in NAV. It allows you to create a trace of the
T-SQL commands between NAV and SQL issued by a specific user. This recipe will show you
the basics of setting up a SQL trace and what to do with the data afterwards.

How to do it...

1. Goto Start | All Programs | Microsoft SQL Server 2008 | Performance Tools | SQL

Server Profiler.

Microsoft 0L Server 2008
L, Impart and Export Daka (32-bit)
L Impart and Export Data {G4-hit)
Vg 0L Server Business Intelligence Develo
—'53 SQL Server Management Studio
Analysis Services
Configuration Tools
Documentation and Tukorials
Integration Services
Petformance Tools
Wl Database Engine Tuning Advisor

E SOL Server Profiler
Microsoft Wisual Studio 2008 b
Skartup ;I

1 Back
I |5earch programs and files E]J

1 A - oo
Ostar o &8 ol 230

LUt

290

Chapter 11

2. Click on File | New Trace. This will prompt you to connect to a SQL Server.

gl Connect to Server E3

Microsoft®

Z SQLServer 2008

Server tppe: IDatabase Enaine j

Server name: IYDUF Servel j

Authentication: ISGL Server Authentication j
Lagir: I j
Paszword: I

[~ Remember password

Connect I Cancel | Help

Optionz >

3. Once you have connected to the server, you will be presented with the Trace
Properties screen.

Trace Properties [x]

Ganeral | Events Setection|

Trace name:
Trace provider name:

Trace provider type:

Uze the template:

[Save ta file:

[™ Save totable:

|‘|'our Server

|Mi:rosoﬂ SOL Server 2008 wErsion:

|‘I 0.0.2531

| Standard (defaul)

Set mesimur file size (B
¥ | Erable file mliover

™ | Senver processes frace data

]

™ | Set masimum rows (i fhousands

)

[~ Enable race stop fime:

| FHAA000 ﬂ |'|'--C'|?|....r- =

Fun Cancsl Help

291

Working with SQL Server

4. Here you can set the name of the trace and how you would like to save it. You can
also click on the Events Selection tab to choose exactly what types of events and
fields you want to record.

" General Events Sedection |

Review selected events and event calumns to race. To see a complete list, select the "Show all events” and "Show all columng’' optiors.

Events | TextData | Applicationid | NTUsei | LoginName | CPU | Fieads | ‘wiites | Duration | ClientProcess
-1 Security Audit

% Audit Login W v 2 W |4

¥ Audit Logaut v v 7 v v W W ~
s Sessions

[EsislingConnection 2 v v 7 ~
= Stored Procedures

[F RPFC-Complated | v V = v =3 72 7 ¥
= T5QL

¥ S50L:BatchCompleted [v v 7 v v W W Iz

[¥ SOLBatchStarting 2 2 2 W 4
4 | 0

 ExistingConnection
Indicates propesties of existing user connections when tace was started. Server fres one ExstingConnection event per I Show al everts

user connechion.
I Show &l columns

-No data eolumn selected. -
Column Filbers. . |

Organize Columins... |

Fun Cancel | Help I

5. When you are satisfied with the setup you can click the Run button. This will begin
the trace and you will see an output similar to the following:

5 Untitled - 1 {canvassql01sql01) [_ O] x|
EventClazs Application ame MTUserMame | Reads | ‘wWites StartTime TextDat =
RPC:Completed Microsoft Dynamics Nay ... mEraxin 2 0 2010-07-11 10:27:43... BxXec.,
RPC:Completed Microsoft Dynamics Nay ... mEraxin 2 0 2010-07-11 10:27:43... BxXec.,
RPC:Completed Microsoft Dynamics Nay ... mEraxin 2 0 2010-07-11 10:27:43... BxXec.,
RPC:Completed Microsoft Dynamics Nay ... mEraxin 2 0 2010-07-11 10:27:43... BxXec.,
RPC:Completed Microsoft Dynamics Nay ... mEraxin 2 0 2010-07-11 10:27:43... BxXec.,
RPC:Completed Microsoft Dynamics Nay ... mEraxin 2 0 2010-07-11 10:27:43... BxXec.,
RPC:Completed Microsoft Dynamics Nay ... mEraxin 2 0 2010-07-11 10:27:43... BxXec.,
RPC:Completed Microsoft Dynamics Nay ... mEraxin 2 0 2010-07-11 10:27:43... BxXec.,
RPC:Completed Microsoft Dynamics Nay ... mEraxin 2 0 2010-07-11 10:27:43... BxXec.,
RPC:Completed Microsoft Dynamics Nay ... mEraxin 2 0 2010-07-11 10:27:43... exec.,
RPC:Completed Microsoft Dynamics Nay ... mEraxin 2 0 2010-07-11 10:27:43... Bxec.,

(RPC:Completed Microsoft Dwnamics WAy ... mtraxin | z 0 2010-07-11 10:27:43... exec; e

exec sp_executesql MW'SELECT COUNT(*) FROM '"Demo Database Mayw ([&-07"."dbo'"."CRONUS USA, Inc_%$Sales Header o
["sell-to Customer MWo_"=2Fz))',N'@F1 int,8Fz warchar(zo)',0,'z031z2391z2"

«| | »
Ready, Rows: 2 2

292

Chapter 11

6. You can see the username, reads and writes on the database, execution time, and
even the actual query being run. In this case, we were selecting the count of the total
number of records in the Sales Header table.

So what do you do with all of this data?

You can find processes that are taking too long to run using the Duration column. An example
might be a posting routine or load time on a form. You could order the data by the number of
reads and writes. This would tell you if you were maintaining too many indexes on a key during
an insert or if you had a particularly CPU-intensive process.

What you do with it is really up to you. As you become more proficient in SQL Server and
understand the basics, | highly recommend that you pick up some advanced books like SQL
Server 2008 Query Performance Tuning Distilled by Grant Fritchey and Sajal Dam. These
advanced discussions on the inner working of SQL Server are beyond the scope of this book,
but | have no doubt that you will find them useful as you dive deeper into this area of NAV.

» Using Client Monitor to diagnose problems
» Figuring out who is blocking whom

Displaying data from a SQL view in NAV

Most of the data in NAV is stored in tables, but you can also display data from other sources.
This recipe will explain how to show data from a SQL View in NAV.

How to do it...

Open SQL Server Management Studio.
Select your database and open a new query window.
Execute the following code:

CREATE VIEW [Customer Ledger View] AS

SELECT "Customer No ","Initial Entry Due Date","Posting Date",
COUNT BIG(*) "$Cnt", SUM("Amount") "SUMSAmount",
B SUM ("Amount (LCY)") "SUM$SAmount (LCY)"
FROM "CRONUS USA, Inc_sDetailed Cust_Ledg Entry"
GROUP BY "Customer No_ ", "Initial Entry Due Date",

"Posting Date"

4. Create a new table from Object Designer.

293

Working with SQL Server

5. Add the following fields to the table:

Field Name Data Type Length
Customer No_ Code 20
Initial Entry Due Date Date
Posting Date Date
$Cnt Biginteger
SUM$Amount Decimal
SUMS$Amount (LCY)
6. Set the following properties on the table.
Property Value
DataPerCompany No
LinkedObject Yes
LinkedInTransaction No
7. Save the table as Customer Ledger View.
8. When you run the table you will see the following data:
EE Customer Ledger Yiew - Table A=l E3
Custome. .. | Initial Ent. .. | Posting 0., | #Cnt |suMgamount | sUMEamount, . | |
N 02/23(10 01/25/10 1 2,461.00 2,461.00 -
|| o4sdses oystio 1231409 1 0,00 0.00
| 0000 01j01/l0 12)31/09 1 39,127.27 39,127.27
|| 10000 0nj0Lfio 011710 1 -39,127.27 -39,127.27 =
N 10000 03070 12)31/09 1 78,254,54 78,254.54
N 10000 01j07/10 011710 1 -78,254.54 -78,254.54
|| 0000 01ji1/l0 1203109 1 104,339.38 104,339.38
- 10000 011110 O1/17{10 1 -104,339.38 -104,339.38
|| 10000 01j17/10 01)17/10 7 -382.86 -382.86
N 10000 013110 12/31/09 3 228,242.39 226,242.39
|| 10000 02070 01/10/10 1 10,806, 72 10,806.72 hd|

Help |

Chapter 11

First we create a view that we want to display in NAV. This view is actually a copy of a VSIFT
view from the Customer Ledger Entry table.

Next we create a table in NAV with the exact same name and the exact same field names.

At this point, we have two separate objects with the same structure, a table and a view. Now we
need to link the two together. The table has a property called LinkedObject that we need to
set to Yes. This makes the LinkedInTransaction property available which should be set to
No. We also need to set the DataPerCompany property to No. With these properties set, the
server knows that these objects refer to each other because they have the same name.

There's more...

Be careful when displaying this data in a NAV form or page. You can inadvertently allow users
to modify or delete records that they do not have permission to. The View is not the same as
the table. That means a user could have no permissions to do anything with the G/L Entry
table, but could do anything they wanted with a view on that data. NAV permissions do not
apply to linked objects.

See also

» Creating a table
» Creating a basic SQL query

Figuring out who is blocking whom

Deadlocking can be a common occurrence in NAV. Unfortunately, users cannot work in the
system when their actions are being blocked by another user. This recipe will show you how to
determine who is blocking other users and resolve the situation.

How to do it...

Open SQL Server Management Studio.
Open a new query window.
Execute the following code:

sp_who

295

Working with SQL Server

4. You will see results similar to this:

pid | eu:idl shatus | loginarme | histriane | blk. | dbnarne | crd request_id
1 17 1] background sza 0 MWULL RESOURCE MOMITOR O
2 2 0 background za 0 HULL =E TIMER 0
g 3 1] background za 0 MULL HE DISPATCHER 0
4 4 I} background za 0 HULL Loy WRITER 0
i A 0 background za 0 MULL LOG WRITER 0
£ g 1] background — sza 0 MWULL LOCK. MaMITOR]
7 T I} background — za 0 master SIGHAL HAMDLER 0
a g 0 zleeping 1a 0 master TasK MAMAGER 0
9 9 I} backaground za 0 rmaster TRALCE QUELE TASE 0
|10 0 zleeping za 0 master Task MAMAGER 0
11 11 0 background za 0 master BRER TASK 0

The sp_who command queries the sys . sysprocesses system table in SQL. It returns a list
of all connections to the server and if they are being blocked by anyone, the column labeled

blk will be filled in with the spid of the user doing the blocking.

This provides similar information to what can be found in NAV. If you go to File | Database |
Information, and drill down into the Current Sessions number, you can see the users who are

being blocked.

Database | Sessions

Currenk Sessions . . L

& (i 4%

Licensed Sessions

&= Database Sessions

Idle Time Blocked

Pheysical ...

[] 2613

159

67

1]

2 45 seconds
5505 11 hours 28 minu...
176 11 days 8 hours ...

326

7 39 minukes 6 sec...

Wait Tim,., Blocking ... EBlocking User ID

ASEENEEEEE

|

Elocking Host Mame

296

Chapter 11

There's more...

You can also write your own query to find the deadlocks.

Another way to find deadlocks

The following query will pull all of the user IDs that are blocked as well as the root cause
of the block.

SELECT
SP. [spid] As [SPID],
CASE WHEN SP. [blocked] > 0 THEN 'Yes' ELSE '' END AS [Blocked],

SP. [blocked] AS [Blocked by SPID],
SP. [nt_username] AS [User ID],

SD. [name] AS [Database],

SP. [waittime],

SP. [status] as [Current Status],
SP.cmd AS [Current Command]

FROM
[master] . [dbo] . [sysprocesses] AS SP JOIN

[master] . [dbo] . [sysdatabases] AS SD ON
(SP.dbid = SD.dbid) LEFT OUTER JOIN

[master] . [dbo] . [sysprocesses] AS SP2 ON (SP. [blocked] =
SP2. [spidl])

WHERE SP. [program name] Like '%Dynamics NAVS'
ORDER BY SP. [waittime] DESC, SP.cmd DESC

From there you can issue a KILL spid command where spid is the ID of the user doing
the blocking.

See also

» Using SQL Profiler

Setting up a backup plan

Not all customers have an IT department, much less a full-time DBA on staff. It is
extremely important that you know how to set up an automatic backup plan for your
customers' databases.

297

Working with SQL Server

How to do it...

1. Open SQL Server Management Studio and connect to your server. In the
Object Explorer pane on the left-hand side, expand the tree to Management,
Maintenance Plans.

2. Right-click on the Maintenance Plans folder and select Maintenance Plan Wizard.

EﬁMaintenance Plan Wizard [_ (O] x|

SCL Server Maintenance
Plan Wizard

This wizard helps you create a maintenance plan that SGL
Server Agent can run on a regular bagis, With thiz wizard
wou can perform routine databage adminiztration tagks such

as;

< o Check database integrity
o ¥ & Perform indes maintenance
» ® Update database statistics

Perform databaze backups

This wizard will create maintenance plans that can be
edited in SOL Server Management Studio. Edit
maintenance plans to add new tasks or define wark flow
armong the tasks.

[~ Do nat show this starting page again,

Help | < Back | Meut » I Firigh Cancel |

4

3. Click Next.

4. In the following window, you can set the name of your backup plan as well as the
basic schedule.

298

Chapter 11

ﬁ]"Maintenance Plan Wizard Hi=] 3

Select Plan Properties
How do you want to schedule vour maintenance tasks?

I ame:

D escription: ;I

" Separate schedules for each task
' Single schedule for the entire plan or no scheduls

Schedule:

INot zcheduled [On Demand) Change.. |
Help | < Back | Mext » I Firizh | Cancel |

4

5. Click the Change... button.

¥ Job Schedule Properties - MaintenancePlan =1

MHame: |MaintenanceFfarI Jots ir S cheduls |

Schaduls e IHeculring ﬂ ¥ Enabled

Ohe-iime ocoumence

Y ate: I FA/2010 = Time

Frequency
Oceurs: |D iy ﬂ
Recurs every: [T = daty

D aily lrequency

& Deewrs once at fl 2:00:00 AM EC
 Dceurs every: i = |houls 7| Stating at [izonmed =
Endirg at: I 1-59:59 Piq E

Duration
Stan date: I 1/ 1/2010 - " End date: I 71142010 TI
* Mo end date:
Summary -
Descriptian: Dccurs every day at 1200:00 AM. Schedule will be used stating on 1/1./20100 ;l

’Tl Cancel | Help]

299

Working with SQL Server

6. Here we have chosen to run our backup every midnight.

7. Click Next.
8. Check the Database Backup (Full) checkbox.
9. Click Next.

10. Click Next again.
11. Select the database(s) that you want to backup.
12. Keep clicking Next until you finish the wizard.

When you have completed the Wizard you will see new items in the Object Explorer tree.

Object Explorer

Connect + | &4 4 2] 3

"‘j SystemDE MaintenancePlan
’j‘j UserDE MaintenancePlan
[S0L Server Logs
j Database Mail
Qﬁ Distribuked Transaction Coordinator
| Legacy
= ._i'b 0L Server Agent
= [Jobs
ﬂ SystemDE MaintenancePlan.Backup Databases
ﬂ SystemDE MaintenancePlan. Maintainence Cleanup
El UserDE MaintenancePlan,Backup Databases
El UserDB MaintenancePlan, Mainkainence Cleanup

Here we can see two separate maintenance plans and the Jobs that they have created. These
jobs will execute at the time we specified in the wizard and backup our database.

» Adding the xp_ stored procedures
» Scheduling NAV tasks from SQL Server

Scheduling NAV tasks from SQL Server

You cannot call NAV code directly from outside the database, but you can create a .NET
program that can be used by SQL to issue commands through a NAV web service. This recipe
will show you exactly what to do.

300

Chapter 11

How to do it...

1. Create a new SQL CLR project in Visual Studio. When creating this project you will
have to add a reference to your NAV database.

2. Right-click on your project in Solution Explorer and add a new stored procedure
named NAVJobScheduler.

3. Add the following code to the project:

using System;
using System.Net;
using System.IO;
using System.Xml;

public partial class StoredProcedures

{

[Microsoft.SglServer.Server.SglProcedure]

public static void NAVJobScheduler (
string ObjectType, int ObjectID, string Login,
string Password, string Domain, string WebServiceURL)

string Body =
@"<soapenv:Envelope xmlns:soapenv=
""http://schemas.xmlsoap.org/soap/envelope/" "xmlns: run=
""yrn:microsoft-dynamics-schemas/codeunit/RunObject"">"
+ "<soapenv:Header/>" + "<soapenv:Body>" + "<run:RunJob>"
+ "<run:objectType>" + ObjectType + "</run:objectType>" +
"<run:objectID>" + ObjectID + "</run:objectID>" +
"</run:RundJob>" + "</soapenv:Body>" +
"</soapenv:Envelopes>";

WebRequest request = HttpWebRequest.Create (WebServiceURL) ;

request .Headers.Add ("SOAPAction", @"""urn:microsoft-
dynamics-schemas/codeunit/RunObject :Rundob""") ;

request.ContentType = "application/xml; charset=utf-8";
request.ContentLength = Body.Length;
request.Method = "POST";

System.Net.CredentialCache myCredentials = new
System.Net.CredentialCache () ;
NetworkCredential netCred = new NetworkCredential (

Login, Password, Domain) ;
myCredentials.Add (new Uri (WebServiceURL), "NTLM", netCred) ;
request.Credentials = myCredentials;

Stream strWrite = request.GetRequestStream() ;
StreamWriter sw = new StreamWriter (strWrite) ;

301

Working with SQL Server

N o oo s

10.
11.
12.
13.

302

sw.Write (Body.ToString()) ;
sw.Close () ;

WebResponse wr = request.GetResponse() ;
HttpWebResponse httpRes = (HttpWebResponse)wr;
Stream s = httpRes.GetResponseStream() ;
StreamReader sr = new StreamReader(s) ;
XmlDocument xmlDoc = new XmlDocument () ;
xmlDoc.Load (sr) ;

if (xmlDoc.FirstChild.FirstChild.FirstChild.FirstChild.

FirstChild.Value != "SUCCESS")

throw new Exception(

"ObjectType " + ObjectType + " ObjectID " +
ObjectID.ToString() + " failed with Error: " +
xmlDoc.FirstChild.FirstChild.FirstChild.
FirstChild.FirstChild.Value) ;

}
}i
Save, compile, and close the project.
Create a new codeunit in Object Designer.
Add a function named RunObject. This function should return a text value.
Add the following code to the function:

EXIT('SUCCESS') ;
//EXIT (GETLASTERRORTEXT) ;

Compile and save the object.

Run Form 810, Web Services.

Add the codeunit and check the Published column.

Open SQL Server Management Studio.

Expand the SQL Server Agent, Jobs folder from Object Explorer.
Right-click the Jobs folder and select New Job.

Chapter 11

EE New Job M= E3

L5 5eipt » [Help

Hame: [ngvsaLCLR

Z"' Steps
4 Schedules
AR Meits Quner: [Matt Trainger]

A Matifications
A Tagets Categony: [Uncategarized [Local)] = _|

Description: N SOL CLR Program

Connectin |

Server
canvazzqli \zql0l J¥' Enabled

Connection:
OPTIMUS T ran

%] View connection propetties

@ Error occuned

14. Click on the Steps option on the left-hand side.
15. Click New.
16. Enter the information as shown in the following screenshot:

[Eg New Job Step

ors d-- 6 Soript + Iy Help
12 Gener.
|5 tdvanced Step name:
[5ten 1
Type:
| Transact-5GL scrpt (T-50L) =
Fun a5
Database: |Damo Database MAY (5-0) |
: EXEC MaV)obScheduler -
Command: Codeunt _I
1100,
User D,
Ui Pazaward’,
Domain',
Select All I ‘wieb Service Address]
) Copy
Conneciion
Server. LI
carwassqlllhsglll
Parse |
Cornectian;
OPTIMUS AT rain
27 Wiew conneclion properties
Progress [« o
Ready
1= Frewvious

I

Cancel y

4

303

Working with SQL Server

17. Click OK.
18. Save the job.

First off, let me give credit where credit is due. This recipe is based on a blog entry by Rashed
Amini, or ara3n as you may know him from the forums. It can be found here:

http://mibuso.com/blogs/ara3n/2009/11/14/replacing-nas-with-sgl-jobs-
and-nav-web-service/

This program is built on SQLCLR, or SQL Common Language Runtime. . It allows .NET code to
be executed within the SQL Server environment. Our function takes in six parameters. The first
two are the object type and object ID of the object that should be run in NAV. The next three
are the login information that is used to connect to the database. The last is the web service
address that is published by NAV.

Our code starts by creating a SOAP message. SOAP stands for Simple Object Access
Protocol and is a way to exchange information across web services. This message is stored in
our string variable named Body.

Next, we need to initiate a request to our web service. We create our credentials using the
domain, login ID, and password that we passed to the function. The value stored in the body
variable, the SOAP message, is then sent to the Request Stream of the web service. Once
the web service is done processing our request we retrieve the response that it sends back
to us. This response is sent back to us in the form of an XML document. We can parse that
document to find a Success error message, or possibly the error message generated by NAV.

For more information about creating your own CLR code have a

look at the following website: http://www.codeproject.
’ com/KB/cs/CLR_Stored Procedure.aspx

Our NAV codeunit is extremely simple. It always returns the word SUCCESS. You are most likely
to execute your own code and return this value if it completed, otherwise you would return the
last error message generated.

This codeunit must be published as a web service so that external applications can access it.
This is easily accomplished with NAV 2009 through the Web Serviced form.

Finally, we create a SQL job to call our .NET code. You could just as easily execute that code in
a query window.

For more on creating SQL jobs check out MSDN here: http://msdn.
L microsoft.com/en-us/library/ms187910.aspx

304

http://mibuso.com/blogs/ara3n/2009/11/14/replacing-nas-with-sql-jobs-and-nav-web-service/
http://mibuso.com/blogs/ara3n/2009/11/14/replacing-nas-with-sql-jobs-and-nav-web-service/
http://www.codeproject.com/KB/cs/CLR_Stored_Procedure.aspx
http://www.codeproject.com/KB/cs/CLR_Stored_Procedure.aspx
http://msdn.microsoft.com/en-us/library/ms187910.aspx
http://msdn.microsoft.com/en-us/library/ms187910.aspx

Chapter 11

There's more...

With this type of program, you can get rid of the NAV Application Server. As NAV moves
completely to SQL Server for database management, as well as for converting all C/AL code to
be managed .NET code in NAV 20009, this type of coding will become more common. C/AL will
not be going away any time soon, but NAV cannot reach its full potential with C/AL alone.

See also

» Creating a web service

» Consuming a web service

» Creating a custom NAS handler

» Writing your own Automation using C#
» Using ADO to access outside data

» Adding the xp_ stored procedures

» Setting up a backup plan

305

12

The RoleTailored
Client

In this chapter, we will cover:

» Creating a page using the Page Generation Wizard
» Building a Role Center

» Changing default filter columns

» Building the report layout

» Interactive sorting for reports

» Displaying a graph on a report

» Displaying a .NET add-in on a page

Introduction

The RoleTailored client represents a major paradigm shift for NAV developers. It was introduced
with NAV 2009 as a new way for users to access the data they use in their day-to-day tasks.
This version of NAV represents the transition phase between the Classic and RoleTailored
approaches to the system; NAV 2009 is the last version where the Classic client is available
and the first where the RoleTailored client is available.

As a developer you will find yourself performing the same types of tasks, but in different ways.
For example, you are will still be building on ways to show data to the user, but where forms
had a visual design component, pages will now be designed primarily through an interface
similar to XMLports. You still build reports in C/AL, but they have to be converted for use with
the RoleTailored client. This chapter will show you how to perform some of the basic tasks
associated with developing for this new interface style.

The RoleTailored Client

Creating a page using the Page Generation

Wizard

Pages are the objects that display data in the RoleTailored client. They are similar to forms in
the Classic client. This recipe will show you how to design a basic page.

How to do it...

1. Create a new page from Object Designer.
2. Enter Customer for Table.
3. Select Create a page using a wizard.
4. Select Card.
MNew Page EI@
Table. Customer €3]
Page
Create blank page
@ Create a page using a wizard:
List
RoleCenter ¥
oK | [cancel || Help |
5. Click OK.

6. Add a line for a new FastTab called Communication.

Card Page Wizard EI@

%M Which FastTabs do you want on your page?

FastTab Name

General

Communication
fid

Next = Preview Finish | [cancel | | Help |

308

7. Click on Next.
8. Add the No., Name, Address, City, and County fields to the General tab.

9. Add the Phone No. and E-mail fields to the Communication tab.

Chapter 12

Card Page Wizard

QM Which fields from the Customer table do you want on the FastTabs?

General | Communication

[E=% R =

Available Fields

Territory Code -
Global Dimension 1 Code I

=X
Global Dimension 2 Code
Chain Name
Budgeted Amount
Credit Limit (LCY)

Customer Posting Group -

Field Order

Mo, -
Mame

Address

Post Code

County

Finish] [Cancel

J |

Help

10. Click Finish.

11. The source of your page will look like the following screenshot:

Page 0 - Page Designer

Mame Caption
} | <Control 1000000000 > <Control 1000000000 >

General <General >
<Mo. > <Mo. =
<Mame = <Mame =
<Address> <Address>
<Post Code» <Post Code >
<County > <County>

Communication <Communication =
<Phone Mo, = <Phone Mo, >
<E-Mail = <E-Mail=

Type SubType
Container ContentArea
Group Group
Field

Field

Field

Field

Field

Group Group
Field

Field

SourceExpr

M™o.”
Mame™
“Address”

“Post Code”

"County™

“Phone No.”

"E-Mail”

12. Compile, save, and close the page.

309

The RoleTailored Client

13. In NAV 2009 SP1 you can run the page directly from Object Designer. It will look like
the following screenshot:

i View - Customer Page - 01121212 . Spotsmeyer's Fumnishings l e | [
f Actions ~ m- 3~
01121212 . Spotsmeyer's Furnishings
General A
Mo.: City: Miami -
Mame: Spotsmeyer's Furnishings Post Code: US-FL 37125 -
Address: 612 South Sunset Drive County:
Communication A
Phone MNo.: E-Mail: spotsmeyer's.furnishings@cronu... |4

Close

Pages are the way the new RoleTailored client displays data. They are similar to forms in
functionality, but different in their design. Currently, there is no visual page designer. Until one
becomes available, the quickest way to build a page is by using the wizard.

The Page Generation Wizard is very similar to the Form Generation Wizard. We start by
selecting the table to which the page will be bound along with the type of page to create.

In the NAV Classic client, the tabs were spaced horizontally across the screen. In the
RoleTailored client they are called FastTabs and are spaced vertically. These tabs can be
minimized on the screen or expanded to show all the data at once. Just as we do in the Form
Generation Wizard, here we specify the names of our tabs: General and Communication.

Now we must choose the fields that will be displayed within each tab. This is exactly the same
as the Form Generation Wizard. The fields can be selected in the panel on the left-hand side
and moved to the panel on the right-hand side to add them.

When you click on Finish you may be surprised at what you see. It is not at all like the Form
Designer you may be used to, but instead it is a list of page elements. Let's take a look at
each of these lines and how they relate to what we have just done.

Every page begins with a container element. In this case, our container is a ContentArea.
All of the lines indented beneath this container will be displayed within it. This container has
two group elements that represent the FastTabs. Each group is made up of multiple field
elements, similar to the textboxes on forms.

Chapter 12

It is difficult to visualize how the page will look like in this form, so you may find yourself
previewing it much more often than you would when designing a form object.

For a more comprehensive look at pages and how to build them, | encourage you to read
Programming Microsoft Dynamics NAV 2009, by David Studebaker. You will find examples of
how one can position elements on the page, add elements to the toolbar, and many others.

See also

» Using the Form Generation Wizard
» Changing default filter columns
» Displaying a .NET control on a page

Building a Role Center

The Role Center is like a dashboard that displays data and functionality related to a
specific user role. This recipe will show you how to create a Role Center page for the new
RoleTailored client.

How to do it...

1. Create a new page from Object Designer.
2. Setthe properties of the page as follows:

Property Value
Caption Activities
PageType CardPart
SourceTable Sales Cue

3. Add the following lines in the Page Designer:

Name Caption Type SubType SourceExpr
MainContainer <Main Container> Container ContentArea
ForReleaseGroup For Release Group CueGroup

OpenQuotes Open Sales Quotes Field "Sales

Quotes - Open"

OpenOrders Open Sales Orders Field "Sales
Orders — Open"

311

The RoleTailored Client

4. Set the following property on the OpenQuotes line:

Property Value
DrillDownFormID Sales Quotes

5. Set the following property on the OpenOrders line:

Property Value
DrillDownFormID Sales List

6. It should look like the following screenshot:

Page 51201 Role Center Activities - Page Designer EI@
MName Caption Type SubType SourceExpr
» MainContainer <MainContainer > Container Contentérea
ForReleaseGroup For Release Group CueGroup
OpenQuotes Open Sales Quotes Field "Sales Quotes - Open”
OpenQrders Open Sales Orders Field “Sales Orders - Open”

13 e

-

(1)
(¥
(]

-+

7. With your cursor on the ForReleaseGroup line click on View | Actions.
8. Add the following lines:

Name Caption Type
Actionl New Sales Quote Action
Action2 New Sales Order Action

9. Set the following property on the New Sales Quote line:

Property Value
RunObject Page Sales Quote

10. Set the following property on the New Sales Order line:

Property Value

RunObject Page Sales Order

Chapter 12

11. Compile, save, and close the page.

12. Create a new page from Object Designer with the following lines.

Name Caption Type SubType
Content <Content> Container RoleCenterArea
LeftSide <LeftSide> Group Group
Activities <Activities> Part

Outlook <Outlook> Part

RightSide <RightSide> Group Group
MyCustomers <MyCustomers> Part

Myltems <Myltems> Part

MyNotes <MyNotes> Part

13. They should be indented as shown in the following screenshot:

Page 51202 Custom Role Center - Page Designer

MName
» ,I‘Zontent
LeftSide
Activities
Outlook
RightSide

Caption

Type

MyCustomers

Myltems
MyMotes

<Content=

<LeftSide =
<Activities >
<Outlook>

<RightSide =
<MyCustomers =
<Myltems=
<MyMotes=

Container
Group
Part

Part
Group
Part

Part

Part

=N [EER =
SubType SourceExpr
RoleCenterArea
Group
Group
== T T Help

14. Set the following property on the Activities line:

Property Value
PartType Page
PagePartID The ID of the activities page that we just created

15. Set the following property on the Outlook line:

Property Value
PartType System
SystemPartID Outlook

313

The RoleTailored Client

16. Set the following property on the MyCustomers line:

Property Value

PartType Page
PagePartID My Customers

17. Set the following property on the Myltems line:

Property Value

PartType Page

PagePartID My Items

18. Set the following property on the MyNotes line:

Property Value

PartType System
SystemPartID Notes

19. Compile, save, and close the page. The resulting Role Center should look like the one
shown in the following screenshot:

i e Contar T T = |
actions ~ T8 Reports = e
Rale Center
Adtivities Foa My Customers &
for Release Custerner N, Phene No. Name
© Mew Sales Quote
o o Mew Sales Order
Open Open
SalecQ | SalesO..
(=1 Microsoft Outlook "
| Connection to Microseft Office Outlook fale.,
My Items -
Ttem Mo, Deseription Unit Price
& 11y notications 7
From Created Dste Mete Page

Chapter 12

The Role Center works as a one-stop shop for the user's most important tasks. It displays
tasks that the user needs to perform along with data that relates specifically to them.

The first part of the Role Center is known as Activities. This is where the user looks to know
what actions they need to do. The activities are built on top of special tables known as Cues.
These Cue tables are made mostly of FlowFields and FlowFilters. We are going to build our
activities part on the Sales Cue table. It should display any Open Sales documents we are
working on.

By adding the Group line to our page and specifying the SubType as a CueGroup, we tell the
RoleTailored client to display the fields indented beneath it in a specific way. Activities are
displayed as stacks of paper that grow and shrink based on the numbers returned by the
FlowFields in the Cue table. Additionally, in order to provide the same type of data access
that you would gain on a form, we specify the DrillDownFormID for each of the fields or
activities. We can also define actions on our group lines. In this example, we have created
simple links to create new sales quotes and sales orders.

This is just a part of the Role Center, though. Now we need to build the actual page that will
display the activities part. Like all pages, we begin with a container, but this time we set the
SubType to RoleCenterArea. This essentially divides the page vertically into a left and right
section. We add groups for each of these sections and then choose what to display.

Deciding what to display is fairly straightforward. Instead of adding fields to our group, we add
Parts. First we choose what type of part will be shown. For our activities, this will be a Page
object, so we set the PartType property to Page and the PagePartID to the object ID of the
page. Directly beneath that part, we are displaying the built-in Outlook part. For this we set the
PartType 10 System, because it comes with NAV, and the SystemPartID to Outlook. The
right-hand side is made up of similar parts.

There's more...

Role Centers are not easy to build from scratch. One easy way to build them is to design an
existing one and then save it under a new ID. From there you can edit it to fit to your needs.

For a more comprehensive look at Role Centers you should check out Programming Microsoft
Dynamics NAV 2009, by David Studebaker or Chapter 3 of Implementing Microsoft Dynamics
NAV, by David Roys and Vjekoslav Babic.

The RoleTailored Client

See also

» Creating a table

» Adding a FlowField to a table

» Using the Form Generation Wizard

» Creating a page using the Page Generation Wizard
» Displaying a .NET control on a page

Changing default filter columns

Some fields in the RoleTailored client allow filter-as-you-type functionality, meaning that as you
type into the textbox a drop-down menu will display all the available options. This recipe will
show you how to customize such a drop-down menu.

How to do it...

1. Design the Customer table from Object Designer.
2. Select the last line in the table and click on View | Field Groups.
3. Enter (or replace) the following line in the window:

Table 18 Customer - Field Groups = ||-=
ID Mame Group
|1 DropDown Mo. ,Mame
Help

Chapter 12

4. When you begin to type in any field with a table relation to the Customer table you will
see a drop-down menu as shown in the following screenshot:

bt New - Soles Order - 1002 g — O ——— (= [|
£ nction: = ([Related Information = (
E b B Copy Dacument & Reopen
Past l‘;;:nu B Creste Imventory Put-awa... m Statistics
Frint B Release
Process
1002
General ~ | = | Customer Sales Hist.. - =
Moz 1002 Docurment Date: 172872010 - Customes No.
= =L Cuertes:
Sell-ta Custamer Ma.: - Requested Delivery Date: - Blariket Oxgess:
Sell-to Contact Mo i T Mo, Marme s
Sell-to Customer Mame: | 10000 The Cannon Group PLC
i | 200 Selangorian Ltd.
20309820 Metatorad Malaysia Sdn Ghd H
Sell-to Address 2: i
| 20312912 Highlights Electronics Sdn Bhd -
Sell-ta Post Code:
0333521 TraxTonic 5dn Bhd
ey | 21233572 Somadis
Sell-to Contact: 1245278 Maranegoce -
Mo, of Archived Versians: HI5m4T ElectroMARDC =
Pasting Date: Mew Advanced T Sot as default fitter columan
Order Date: 172872010 - T T SOEsHEatE e
| Sales Prices:
Liice | Sales Line Discou...
Type Ne. Descripticn Location Code Quantity | Reserved Qua.. UnitefM = Notes #
H Click hene to creste a new nole.
] T | [
ol =

5. Asyou type, the list will automatically filter with the possible values.

In the RoleTailored client, some data is displayed as you type in the field. This keeps the user
from having to open a list and finding the record. All the information needed is provided in
one place.

Fortunately, this is easy to customize. NAV provides a functionality called Field Groups.
Specifically, a Field Group called DropDown, controls which fields are displayed in the view.
When the system sees a group with this name it shows the fields specified in the Group column.

If you want to learn more about Field Groups you can search the NAV C/SIDE help or read NAV
Development course books.

The RoleTailored Client

» Creating a page using the Page Generation Wizard
» Creating a table

» Using advanced filtering

Building the report layout

In the RoleTailored client reports are based on SQL Reporting Services. These reports are

still built within NAV, but they are translated into a layout that can be read by Visual Studio.
This recipe will show you how to build and change this layout.

How to do it...

1. Create a report as described in the Using the report generation wizard recipe.
2. Click on Tools | Create Layout Suggestion.

3. After a few seconds it will open in Visual Studio.

Report.rdic [Design]| Report.xsd

- X
LI I N - T R T - B B 1 7 1
:| # Page Header
=Reportitems!CustomerCaption.Value =Giobals!ExecutionTime
=Reporttems! COMPANY NAME Value

4. We could change things around here, but we will leave it as is.

Compile, save, and
close the report layout.

Chapter 12

5. When running the report you will be presented with the request page.

Customer

Sorting:

% Where
¢ Add Filter

Mo,

Show results:

Limit totals to:
¢ Add Filter

-

Mo,

-
Edit - Customer Report RTC

===

-~
2
v s Enter a value
Print] ’ Preview] ’ Cancel]

|

6. After you click on Preview you will see the report generate. It should look similar to
the one shown in the following screenshot:

i Print Preview

Customer Report

RTC

Bl <

Customer
‘CRONUS Intemnational Lid.

Na.
Name
Ne.

Nams

Name
Ne.
Nama
Na.
Name
Ne.
Nama
Na.
Name
Ne.
Namz
No.
Name

of 2 B M | O

01121212

Spotsmeyers Furnishings
01445544

Frogressive Home Furnishings
01454545

New Concepts Furniture
01205853

Candoxy Canada Inc
01305859

Elkhom Airport

01205502

Londen Candoxy Storage Campus
10000

The Cannon Group PLC
20000

Selangorian Ltd.

20305520

Metstorad Malsysiz Sdn Bhd

S @ oud-

100% @ Find

Mext

Tr24/2010 412 FM
Page 1
Matt| HXI"QEI'.Ma“
Trarinner

| »

m

The RoleTailored Client

NAV will do its best to automatically translate your report layout to one that is compatible with
SQL Reporting Services and Visual Studio. This is done using the Create Layout Suggestion
command under the Tools menu.

From Visual Studio you can click on View | Toolbox to see the available controls you can add
to your report.

In NAV 2009, you have to think about data items a little differently. In the older versions of the
product, data items were indented to show the relationship between the two. For example, you
would indent a Customer Ledger Entry data item under a Customer data item and link them
with the customer number. You can probably visualize it with the following structure:
» Customer No. 1
o Ledger Entry 1

o Ledger Entry 2

» Customer No. 2
o Ledger Entry 3

In SQL Reporting Services, the data is flattened out using a SQL JOIN statement. In other
words, each combination of Customer and Customer Ledger Entry is combined into a single
record like this:

Customer No. 1 :Ledger Entry 1
Customer No. 1 : Ledger Entry 2
Customer No. 2: Ledger Entry 3

It may not make a difference to how you design your reports, but it is important to know what
is happening in the background.

» Using the Report Generation Wizard
» Interactive sorting for reports
» Displaying a graph on a report

320

Chapter 12

Interactive sorting for reports

With the NAV Classic client you can sort data only based on keys that currently exist in the
database. The RoleTailored client allows you to sort on any column that is displayed on
the report.

How to do it...

Build the report layout as described in the Building the report layout recipe.
Click on View | Layout.

Change the layout so that the data is presented in columns. You can do this by deleting
the existing table and dragging a new one from the toolbox to the Body section.

4. The result should look similar to the following screenshot:
Report.rdic [Design]" | Reportasd Ml
|_ I N L R e e e T B T
:| # Page Header
N =Reportitems!CustomerCaptionValve =Globals!ExecutionTime
=Reportitems! COMPANYMNAME Value |0 o o o e e e e e e e =Repo|=Gl
.. —UsarUsenD
(I
- =First(Fields!Customer__Mo__Caption. =First(Fields!Customer_NameCaption. - - - - - - - - - . . . oo
=FieldsICustomer__No__Value =FieldsICustomer_Mame Walue . - .« oo
2z
5. Right-click on the Table Header cell for the Customer No. field and go to Properties.
6. Click on the Interactive Sort tab.
7. Check the box for Add an interactive sort action to this textbox.
8. Inthe Sort expression: select the Customer No. field.

321

The RoleTailored Client

9. The properties should be set as follows:

Textbox Properties @
oy p

| General I Visibility | Mavigation I Font | Format| Interactive Sort | Data Qutput

Add an interactive sort action to this textbox

Sort expression:

=Fields!Customer_No_.‘u’aIuel A S

Data regicn or grouping to sort

@ Current scope

(7) Choose data region or grouping

Evaluate sort expression in this scope:
@ Detail scope

(") Choose data region or grouping

0K ” Cancel][Help

10. Repeat for the Customer Name textbox.

11. Compile, save, and close the report layout.

12. Compile, save, and close the report.

13. When you run the report you will notice two small arrows next to the column headers:

322

Chapter 12

g Print Previewe - —hE
Y

Customer Report RTC + Sorting

T K 41 oz » M| 038w HA- ws - Find | MNest |
#Error TraAE 526 P
mEree Faaw

g

No. = Name (& I
44180220 Afiifiald Corporation =
32656565 Antarchcopy
43633663 Autohaus Mielberg KG
43525252 Beef House
ez Bilabankinn
60000 Blanemark Hifi Shop —
42147258 BYT-KOMPLET sro
01905693 Candoxy Canada Inc.
45282628 Candaxy Kontor AIS
3198T9ET Candoxy Nederdand BV
45282829 Carl Anthony
3BE3IAT Centromerkur d.c.o
34010199 Corporacidn Beta
1C1030 Cronus Cardoxy Procuramant
1IC1020 Cranus Cardoxy Sales
40000 Deedield Graphics Company
43687128 Designstudio Grunden
27480991 Durbandit Fruit Exponers =

14. You can use them to sort the data.

SQL Reporting Services allows for a lot of functionality that were just not possible in base
NAV reporting. One of them is interactive sorting of columns. You can set columns to be
sortable by setting a property on the textbox in Visual Studio. On the Interactive Sort tab for
the properties of the textbox, you simply check a box to allow sorting and then tell it how you
want to sort.

The next time you run the report you will see small arrows next to each column header. An
arrow in a circle means that the report is currently sorted by that column, while two small
arrows mean that it is a sortable column.

There's more...

| recommend reading the book Programming Microsoft Dynamics NAV 2009, by David
Studebaker or the NAV 2009 Development Courseware/Application Designer's Guide that
ships with the product.

323

The RoleTailored Client

See also

» Building the report layout

» Displaying a graph on a report

Displaying a graph on a report

Graphs and other data visualization techniques make for more interesting and sometimes
more useful reports. Until NAV 2009, these types of reports were missing. This recipe will
show you how to leverage these options in the RoleTailored client.

How to do it...

1. Create a new Tabular style report using the Report Generation Wizard. It should be
based on the Customer table and display the No., Name, and Location Code fields.

2. Click on Tools | Suggest Report Layout. After a few seconds the report will open in
Visual Studio.

In Visual Studio, click on View | Toolbox.

Drag a Chart Report Item to the body of the report.

Right-click on the chart and go to Properties.

On the General tab change the Title to Customers by Location.
Change the Chart type to a Pie chart.

No oo s W

7 Chart Properties =

Customers by Location

AL LT PLAULIU .
DOODOOEDEOD0E0E
0D D DD DD DD DD
310 03 (1 AU 2 0 0 1 U i
PRRENIE R T -

General |Data | XAsis | ¥ Axis | Legend | 3D Effect | Filters |

Name: Palette:
chartl [Defaure -

Title:

]

Customers by Location

Chart type: Chart sub-type:

e XV (Seatten)

2 Bubble -

Chart Area Style..] ‘ Plot Area Style... |

oK H Cancrl H Help

324

Chapter 12

8. On the Data tab click on the Add button in the Values area.
9. Clear the Series label textbox.

10. In the Value textbox enter the following formula: =Count (Fields!Customer
Location Code .Value)

= Edit Chart Value — B =5

Values | Appearance | Point Labels | Action | Data Output

Series label: | fe

Value: =Count(Fields!Customer_Location_Code_Valug)

oK][Cancel H Help

11. Click OK.

12. Click OK to close the Chart Properties window. Your layout should now look like the
following screenshot:

Report.rdic [Design]™ | Reportuxsd -

@
-

l| L - L T - T

:| # Page Header -
=Reportitems!CustomerCaption.Value =Globals!ExecutionTime

SReportitemsICOMPANYNAME Value L L L N
.. —UsiUseiD

L[| #Body
=First[Fields! =First[Fields! =First
Customer__No___Cont Customer_NameCaption.Value) (Fields!

=First{Fields!Customer || =First{Fiekis!Customar No Valus)
=Figlds!Customer No | =Fields!Customar Name.Value =Figlds!Cust

Customers by Location

B Series 1
B Series 1
Bl Series 1
[Series 1
I Series 1
B Series 2
W Series 2
Bl Series 2
[Series 2
B Series 2
B Series 3
B Series 3
B Series 3
- S [Series 3
- C I Series 3

m

The RoleTailored Client

13. Compile, save, and close the layout.
14. Compile, save, and close your NAV report.

15. When you run the report you should see a graph on the last page similar to the
following screenshot:

_ 4y Print Preview =ARC X

Graph Example

M 4 2 of 2 = NE R ™ R} - Find | Next
TI25/2010 2:21 AM -
2z

Aatt

ar

Matt | rsxing
T

Customers by Location

I YELL...
ElSLUE
Wl Point 3
[GREEN
B WHITE
BN RED

With NAV 2009, we are no longer bound to the boring black and white reports of the past.
Not only can you display your text in beautiful, vibrant color, but you can also show data
visualizations in the form of built-in graphs.

To start, we drag a graph control from the Visual Studio toolbox to the Body section of the
report. We have a variety of graphs to choose from, but in this case we will show a pie chart.

Setting up the data for the graph is very similar to setting up a graph or chart in Microsoft
Excel. The Data tab on the graph properties allows you to set up the Series names as well as
the actual values to display. Here we are displaying the total number of customers by location
code. Just as we would in a NAV FlowField, we enter a COUNT formula. Notice how the series
name in the legend defaults to the value "Point" and the index number if the display name

is blank.

That is all there is to it. There are of course many more options, but as you can see, adding
graphs to a report requires only a few clicks.

326

Chapter 12

There's more...

For more information about reporting in NAV 2009 you can search the NAV C/SIDE Help
or MSDN.

See also

» Building the report layout
» Interactive sorting for reports

Displaying a .NET add-in on a page

The NAV Page Designer is limited in what it can do and what data it can display. By creating
a visual .NET add-in and adding it to a page, you can display your data in the same formats
available in .NET Windows Forms.

Getting ready

Download and install the client add-in tool from Christian Abeln.

http://www.cooldudette.net/BlogFiles/AddInImporter.zip

How to do it...

1. Create a new class library project in Visual Studio.
2. Add the following references to the project:

System.Windows.Forms
Microsoft.Dynamics.Framework.UI.Extensibility

3. The latter can be found in the NAV installation directory under the RoleTailored
client folder.

4. Add the following code to the program:

using System.Xml;

using System.Data;

using System.Windows.Forms;

using Microsoft.Dynamics.Framework.UI.Extensibility;

using Microsoft.Dynamics.Framework.UI.Extensibility.WinForms;

namespace RSSReader

{

[ControlAddInExport ("NAV_RSS")]
public class RSSReaderAddIn : WinFormsControlAddInBase

327

http://www.cooldudette.net/BlogFiles/AddInImporter.zip
http://www.cooldudette.net/BlogFiles/AddInImporter.zip

The RoleTailored Client

328

{

private DataGridvView grid;

public void LoadRSS(string URL)

{

System.Net .WebRequest myRequest =

System.Net .WebRequest .Create (URL) ;

System.Net .WebResponse myResponse = myRequest.GetResponse() ;
System.IO.Stream rssStream = myResponse.GetResponseStream() ;
System.Xml.XmlDocument rssDoc = new

System.Xml.XmlDocument () ;

rssDoc.Load (rssStream) ;
System.Xml.XmlNodeList rssItems =

rssDoc.SelectNodes ("rss/channel/item") ;

XmlNode attribute;

int i

= 0;

foreach (XmlNode node in rsslItems)

{

att

ribute = node.SelectSingleNode ("title") ;

string[] rowArray = new string[] { attribute.InnerText };
grid.Rows.Add (rowArray) ;

i++

7

public override bool AllowCaptionControl

{

}

get

{

return false;

}

protected override Control CreateControl ()

{

grid
grid.
grid.

= new DataGridView() ;
Columns.Add ("Title", "Title");
Columns ["Title"] .Width = 600;

grid.Height = 500;
LoadRSS (

"http://mibuso.com/forum/smartfeed.php?u=

7776&e=dGmF1iUl50Nty0rhD8WG9KPwglx38DiyvBHOtybeha8xNIA6Pr4X6EA. . &
lastvisit=1&filter foes=1&forum=32&1limit=NO LIMIT&count limit=10&
sort by=postdate desc&feed type=RSS2.0&feed style=HTML") ;

return grid;

}

}

}

Chapter 12

5. Go to the project properties and click on the Signing tab. Check the Sign the
assembly checkbox.

Compile, save, and close the project.

7. Copythe NAV_RSS.d11 file from your default project folder, usually under C:\
Users\Your Username\Documents\Visual Studio 2008\Projects\
RSSReader\RSSReader\bin\Debug to the Add-Ins folder for the RoleTailored
client, usually under C:\Program Files (x86) \Microsoft Dynamics NAV\60\
RoleTailored Client\Add-ins.

8. Run form 100000, Client Add-In, from Object Designer in the Classic client. This
object is found in the Client Add-In tool referenced in the Getting started section.

9. Click on Register Add-Ins and navigate to the NAV_RSsS.d11 file.

10. Click Open.

Client Add-In == =]
Control Add-in Mame Public Key Token Version Description
» | IS faBe6ag8efca0cs 1.0.0.0 -
Fl I |2
Register Add-ins ...

11. The add-in should be registered.
12. Create a new page from Object Designer.
13. Add the following lines:

Name Caption Type SubType
MainContainer <MainContainer> Container ContentArea
NAV_RSS <NAV_RSS> Field

14. Set the following property on the NAV_RSS line:

Property Value
ControlAddIn NAV_RSS;PublicKeyToken=£f98e6a98efc50c05

329

The RoleTailored Client

15. Your value may not be exactly the same. Use the lookup arrow to select the add-in.
Your page should look similar to the following screenshot:

Page 51203 NAV RSS Page - Page Designer [===
Mame Caption Type SubType SourceExpr
MainContainer <MainContainer = Container ContentArea -
| MAV_RSS <MAV_RS5=> Field
NAV_RSS - Properties o |2]
Property Value
ClosingDates <No= -
Mumeric <Mo> il
DateFormula <MNo=
iControladdIn i NAV_RSS;PublickeyToken=r98e6a98efc50c05 i Help
Style <MNone 4
StyleExpr <FALSE> -

16. When you run the page it should similar to the following screenshot:

_dy View - NAV RSS Page =ANCN X

Title it
3 MAV Three Tier :: Re: Search on any part of the field :: Reply by Alex Chow

MAY Three Tier = Re: NAV 2009 - SP1 - USER ROLES & RESPOMSIBILITY (RTC) :: Reply by TonyH

MAY Three Tier = Re: NAV 2009 - SP1 - USER ROLES - MICROSOFT DEFAULT ROLES = Reply by TonyH

MNAV Three Tier = Re: Problem with sales order subform i Reply by veerendra

MAY Three Tier = Re: NAV 2009 - 5P1 - USER ROLES - MICROSOFT DEFAULT ROLES :: Reply by veerendra n

MNAV Three Tier = Re: Search on any part of the field :: Reply by Mogens Fogh

MAY Three Tier 2 NAY 2009 - SP1 - USER ROLES - MICROSOFT DEFAULT ROLES = Author Ravi_Thakkar

MAY Three Tier :: NAV 2009 - 5P1 - USER ROLES & RESPONSIBILITY (RT(C) :: Author Ravi_Thakkar

MAY Three Tier :: Re: Search on any part of the field :: Reply by Alex Chow

MNAV Three Tier = Re: Search on any part of the field :: Reply by Mogens Fogh
4 [| +

m

In NAV 2009 SP1 you can create your own .NET objects to display in RoleTailored client
pages. This is done by using the functionality in the Microsoft .Dynamics.Framework.
UI.Extensibility dll.

will display a simple GridView that contains the last 10 posts from the

For a complete list of Control classes you can search MSDN, but here we
! I NAV 2009 Forum on one of my favorite websites, www . Mibuso . com.

330

http://www.Mibuso.com

Chapter 12

The LoadRSS function is the bulk of our class, but it is not important to the recipe, so we
will only discuss it in brief. Many sites publish data from their site in a format called RSS, or
Really Simple Syndication. This RSS format is just a form of XML which can be parsed and
used for our own use, in this case to fill in our GridView.

We have two functions that allow us to control the way we interact with pages in NAV 2009.
The first is AllowCaptionControl. By overriding the function in the extensibility DLL file, we
can force our control not to display a label.

The second function is the most important: CreateControl. It returns a control object
which tells the RoleTailored client what to display. Our function sets up a simple grid with one
column called Title. We then call our LoadRSS function to fill in the actual data.

In order to use this new DLL in NAV 2009 we also have to make sure it is a signed assembly.

With the Client Add-in tool, registering the new control in NAV is easy. When we select the file
to register, it automatically determines the Public Key Token which is used to identify the DLL.

Finally, it is time to use our control in a page. We create a new page and add a field line.
There is a property on field lines called ControlaAddIn which we can point to our newly
registered add-in.

Although it may not be the prettiest add-in, that is all there is to it. Our control is now ready to
be used anywhere in the RoleTailored client.

» Writing your own automation using C#
» Creating a page using the Page Generation Wizard
» Building a Role Center

331

Symbols

.NET add-in
displaying, on page 327-330
working 330

A

Active Directory groups
about 184
checking 185, 186
working 188, 189
ActiveX Data Object. See ADO
AddCustomer function 106
AddElement function 264
AddTable function 235
ADO
about 277
using, to access outside data 277, 278
working 279
advanced filtering
about 60
using 62
ways 62
working 62
AppendBody function 218
array
address creating, Format Address used 18
ARRAYLEN 17
creating 16, 17
working 17
AutoSignin method 230

backup plan
setting up 298-300

Index

working 300
basic SQL query
creating 282
types 284
working 283
basic SQL query, types
data, adding 284
data, deleting 284
data, editing 284
breakpoints
setting 156, 157
working 157

C

CALCDATE() function
units, using 27
working 27
CALCFIELDS command 67
CalcFormula property 65, 66
CALCSUMS function 69
CalculateData function 98
Caption property 119
CASE statement
multiple conditions, testing 38
working 39
CHANGECOMPANY command 77
ChangelLog 9
check mark, displaying on report
steps 125
working 126
CheckUserlD function 183
class
FilelOPermission 249
Classic client 8
CLEAR command 73
ClearPDFCreator function 271, 272

Client Monitor

about 162

using, for problem diagnosis 162

working 163-165
Code Coverage

about 158

running, from code 160

use 159

using 158

working 159
CODECOVERAGELOG function 160
code repetition

loop used, working 31

loop, using 30

loop using, steps 30, 31
ColumnHeader method 100
Common Dialog Management 244
communicator_OnSignin method 230
company-based menu suites

assigning 197, 199

working 200
ContentArea 310
CopyHere function 253
CreateAccountingDateFilter function 15
CREATE command 253
CreateExcelBook function 221
CreateFile method 234
CREATE function 262
CreateMessage function 218
CreateSubKey function 252
CreateWatermark function 150
CURRENTDATETIME function 9
CurrForm.UPDATE command 109
CurrReport.SHOWOUTPUT command 129
custom filters

adding, to request form 119, 120
custom NAS handler

about 273

creating 273, 274

working 275
Custom Zoom menu button 208

D

data
altering, transactions created 54, 55
criteria, selecting 129, 130

334

fields, totalling 129, 130

retrieving, from another company 76

sending, through FTP 267
database

GET command, working 60

single record, retrieving from 59
data export

Excel buffer, using 218, 219
DataltemTableView property 118
DataPerCompany property 295
dataports

creating 256

Output Streams, using 258

properties, setting 257

working 257, 258
data, retrieving

FIND, using 63

from another company, steps 76

steps 63, 64

working 77
data, sending, through FTP

steps 267, 268

working 268, 269
data types 7
data validation

about 57, 58

starting with 57

steps 57

working 57, 58
date

depreciation, calculating 13

details, determining 12
Date2DMY function 12
DateFilter-Calc 15
date formulas

CALCDATE() function, working 27

date, calculating 26
deadlocking

determining 295

finding, ways 297

sp_who command, working 296
debugger

about 156

limitations 157

using 152

working 153-156
DecomposeRowlID() function 25

default filter columns
changing 316, 317
working 317
DeleteSubKey function 252
Demand function 249
Dialog 34
distinguishedName property 204
DOWNLOAD command 272
dynamic tables
referencing 44, 45
working 45, 46

E

editable field
adding to non-editable form 94, 95
working 95
editable lookup forms
Lookup mode 94
preventing 93
working 94
Editable property 65, 95
ELSE statement 36
e-mail sending, from NAV
HTML formatted e-mail, sending 217
Outlook, using 216, 217
working 217
ENVIRON command 215
ENVIRON function
about 240
for Role Tailored client 241, 243
environment variables
working with 240, 241
EVALUATE() function
about 22
working 22
event
OnReadyStateChange event 112
XMLDoc::0nReadyStateChange 111
Excel buffer
data, exporting 218, 219
working 220, 221
Excel to NAV data connection
creating 222, 223
working 223
Extensible Markup Language. See XML ports

F

FastTabs 310
FDB (Financial Database) 281
FieldClass property 65
Field Groups functionality 317
field-level security
about 191
using 191-195
working 196, 197
fields
referencing 44, 45
working 45, 46
file access permissions
checking 247, 249
working 249
file browsing
about 244
steps 244
working 244
FilelOPermission class 249
files
code, writing manually 262
CREATE function, using 262
reading from 262
XML files, creating 263
File Transfer Protocol. See FTP
filter
creating, variable types, used 15, 16
removing 72
setting, when report is loaded 122
FILTERGROUP
data, restricting 178, 179
working 179, 180
FilterRecord function 84
filter setup, on report loading
steps 122
working 123
FIND command
data, retrieving 63
working 64
FindOne() method 204
FINDSET command 64
FlowField
adding, to table 65
lookup field 66

335

using 66 H
value, determining 67

working 65, 66 Height property 108
folder access permissions HYPERLINK
checking 247, 249 about 139
working 249 using, for opening external files 238, 239
folder browsing working 238, 239
about 245
steps 246 |
working 246, 247
FOR loop idle session
using 31 about 201
FORMAT function 14 ending 201
form based temporary table working 201
about 105 IF CODEUNIT.RUN THEN syntax 171

designing 105 IF statement
working 106 condition, checking 35

Form Generation Wizard multiple conditions, checking 37, 38

about 89 working 36
using 90, 91 InfoPath form
working 91 creating, NAV data used 224-226
forms 87 use 227
FTP working 227
about 268 InitRecord() method 11
data, sending 267 !nitVaIue property 11
function input
CountToN 40 obtaining, without form 88, 89
creating 40 INSERT command 56

InsertLogEntry() method 9
instant messaging
Office Communicator, using 227-230

creating, steps 40
local private function, creating 41

working 40
Item Tracking Management 25

G K
GET command 60
GET function 162 key
GetNoOfPagesPDF function 139 adding to, tables 53
GetNumberOfPages function 136 addmg' to tables 54
GetSysinfo function 243 removing 72
graph, displaying on report working 54

steps 324-326 KILL spid command 297

working 326
GridView 331 L

GroupTotalFields property 131 LinkedInTransaction property 295

LoadRSS function 331
LoadXML function 113
lookup arrow 122
Lookup mode 94

MakeExcelDataBody function 221
MakeExcelinfo function 221
MakeReminder() method 28
MARK command 71
MARKEDONLY function 71
MARK function 71, 75
MatchOptionTolnteger 84
matrix box 99
matrix form

about 95

creating 96-99

working 99, 100
MatrixSourceTable property 100
menu suites

working 200
method

AutoSignin 230

ColumnHeader 100

CreateFile method 234

FindOne() 204

InitRecord() 11

InsertLogEntry() 9

MakeReminder() 28

Shape.AddPicture 215

ShowStep 104

TypeText 215

WRITETEXT 263
Microsoft Common Dialog Control 244
Microsoft Office

about 209

InfoPath 209

Office Communicator 209
Microsoft Visio. See Visio
Microsoft Word

data, sending 213, 215

working 215

N
Name property 108

NAS

about 165

errors, finding 166

NAS Snap-in Console, working 166
NASHandler function 275
NAV

Change Log 84

data validation 58

deadlocking 295

files, zipping 252

folders, zipping 252

security 173

security roles, working 177

style sheet tool, using 210

users, automatic addition 202, 203

virtual tables 142

Zip file, working 253
Navision Application Server. See NAS
NAV tasks, SQL Server

scheduling 300-304

working 304
NoSeriesManagement 23

0

Object Designer
code, creating 33
Office Communicator
instant messaging 227-230
SendIM function 230
Signln function 230
working 230
OnRun trigger 30, 35
OpenTemplate function 234
OptionString property 20, 84
option variable
about 19
creating 19
using, in documents 20, 21
working 20
Organizational Units. See OUs
OUs 188

P

Page Generation Wizard
page, creating 308-310

331

pages, working 310, 311
page totals
adding, to reports 131, 132
parameters by reference
ChangeCustomerName function 43
hangeCustomerNameRef function 43
passing 41
passing, steps 42,43
working 43
parent form
updating, from subform 110-112
PartType property 315
PDFCreator 133
PrintReportToPDF function 139
Progress Bar
displaying 33
displaying, steps 33
reports, processing 35
working 34
property
Caption 119
DataltemTableView 118
DataPerCompany 295
distinguishedName 204
GroupTotalFields 131
LinkedInTransaction 295
MatrixSourceTable 100
propertyCalcFormula 65, 66
propertyEditable 65
propertyFieldClass 65
RedirectStandardOutput 149
RegFilterFields 120
SourceExpr 119
SourceTableTemporary 106
TotalFields 131
USEREQUESTFORM 150
WithEvents 112

Really Simple Syndication. See RSS
records
about 50
MARK command, using 71
marking 70
merging 77
storing 50

338

viewing 50
working 71
records, merging
starting with 77
steps 78
working 78
recursion
about 46
using 46
working 47, 48
RedirectStandardOutput property 149
registry
querying 249, 250
working 251
RemoveNonNumeric() function 24
REPEAT..UNTIL loop
using 32
report
building, to process data 123
check mark, displaying 125
columns, sorting 321-323
graph, displaying 324
page totals, adding 131, 132
printing, to PDF 269
sections, choosing to dispaly 127, 128
SQL Reporting Services, working 323
total page number, printing on every
page 133-139
working 129
report, building to process data
Data Item, working 124
steps 124, 125
report generation wizard
about 116
features 119
using 116-118
working 118
report layout
about 318
building 318, 319
working 320
report, printing to PDF
starting with 269
steps 270, 271
working 272
ReqFilterFields property 120

request form

custom filters, adding to 119, 120

textboxes 121

working 120, 121
RESET function 73
ReverseEntry function 84
Role Center

about 311

activities 315

building 311-314

cues 315

sales cues 315

working 315
roles, adding

User Setup table, using 174, 175
Role Tailored client. See RTC
rollback routine

working 84

writing, steps 80-83
RSS 331
RTC

about 88, 307

ENVIRON 241, 243

Page Generation Wizard 308
RUN() method 123
runtime errors

about 160

handling 160

working 161

S

SAVEASPDF function 272
security filters
about 189
features 190
using 189, 190
working 190
security, NAV
field-level security 191
FILTERGROUP, using 178
role, creating 176
security filters, using 189
security role
assigning 176
creating 176
working 177, 178

security tools
User Rights Tool, leveraging 178
SendMessage function 113
SETCURRENTKEY command 165
SetupPDFCreator function 270
SetValues function 109
Shape.AddPicture method 215
SHELL
external applications, using 243
working 243
ShortUserld function 183
ShowStep method 104
SIFT tables
about 69, 286
working 287-289
Simple Mail Transfer Protocol. See SMTP
Simple Object Access Protocol. See SOAP
Single Sign-On (SS0) 284
SMTP 217
SOAP 304
SourceExpr property 98, 119
SourceTableTemporary property 106
sp_who command 296
SQLCLR 304
SQL Common Language Runtime. See
SQLCLR
SQLCLR 304
SQL Profiler
about 290
using 290-293
working 293
SQL Server
NAV tasks, scheduling 300-304
SQL view, NAV
data, displaying from 293-295
working 295
StampPDFFileWithimage function 149
string
contents, manipulating 23
converting, into another data type 21
EVALUATE() function, working 22
number series, incrementing 23
string contents
manipulating 23, 24
records, linking with 25, 26
working 24, 25

339

STRLEN() function 24 TOTALSCAUSEDBY function 131

style sheet tool transactions
about 213 code, calling 56
installing 210 creating, by data altering 54, 55
using 210-212 errors, catching 56
working 212, 213 working 55

subform from TRANSFERFIELDS function 200
updating, from parent form 106, 107 TransFooter
working 108, 109, 112 working 133

SubFormiD property 108 TransHeader

Sumindex field working 133
about 68 Try / Catch / Finally syntax
creating, steps 68 about 167
need for 69 implementing 167-170
working 68 working 170, 171

Sum Index Field Technology. See SIFT tables TypeText method 215
system date

retrieving 8 U
system time
changes, logging 9 UpdateSelf function 107, 109
CURRENTDATETIME, advantage 9 user-assigned roles
events, logging 9 checking 180-182
retrieving 8 working 183
TODAY keyword 8 USEREQUESTFORM property 150
User Rights Tool
T leveraging 178
users
table adding, automatically to NAV 202, 203
about 52 LoadProperty function 203, 204
creating 52 User Setup table
key, adding to 53 roles, adding 174, 175
FlowField, adding 65 working 175
working 52
TableNo property 43 \")
TableRelation property 58
TCF:NAVTry event 170 VALIDATE command 58
Temporary property 74 value
temporary tables converting, into formatted string 14
data, storing 73, 74 FORMAT function, working 14

records, storing 75 predefined date formats 15

working 74 removing 72
text appearance Value Entry Relation 25

changing 92 VerifySecurity function 183
importance 93 virtual tables
working 92 in _NAV 143
Timer::Timer event 275 using, to loop through data 140, 141
TotalFields property 131 working 144, 142

340

Visio
about 231
charts, creating 232-234
installation 232
working 234, 235
Visual Studio project creating , C# used
steps 275
working 276, 277
VSIFT 287

W

WaitUntilFileExists function 271, 272
watermark
adding, to page 144-148
working 149, 150
web service
about 264
consuming 265, 266
creating 264
working 264, 266
WHILE loop
using 32
Width property 108
WithEvents property 112
wizard-style form

about 100
adding 101-104
working 104
work date
about 10
date fields, populating 11
retrieving 10
WORKDATE keyword, using 11
working 10
WRITETEXT method 263

X

XMLDoc::OnReadyStateChange event 111
XMLports

about 259, 261

information, sharing 259

working 260, 261
xp_ stored procedures

adding 284-286

y 4

Zoom
field values, hiding 205, 206
working 207, 208

3

enterprise &

professional expertise distilled

PUBLISHING

Thank you for buying
Microsoft Dynamics NAV 2009 Programming Cookbook

About Packt Publishing

Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www . PacktPub. com.

About Packt Enterprise

In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order
to continue its focus on specialization. This book is part of the Packt Enterprise brand, home
to books published on enterprise software - software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub. com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

' enferprise &

professional expertise distiled

"PUBLISHING

Microsoft Dynamics NAV
2009 Application Design

ISBN: 978-1-849680-96-7 Paperback: 496 pages

A focused tutorial for Microsoft Dynamics NAV
application development

1. Learn how Dynamics NAV ERP suite is set up and
customized for various industries

Micro
Application Design 2. Integrate numerous parts of a company's

operations including financial reporting, sales,
order management, inventory, and forecasting

— 3. Develop complete applications and not just
Mack Brumenel ACKTI== skeleton systems

4. Covers the design and implementation of two new
add-on services: The Squash application and the
Storage & Logistics application

Implementing Microsoft
Dynamics NAV 2009

ISBN: 978-1-847195-82-1 Paperback: 552 pages

Explore the new features of Microsoft Dynamics NAV
2009, and implement the solution your business needs

1. First book to show you how to implement
Microsoft Dynamics NAV 2009 in your business

Implementing Microsoft
Dynamics NAV 2009 2. Meet the new features in Dynamics NAV 2009

that give your business the flexibility to adapt to
new opportunities and growth

3. Easy-to-read style, packed with hard-won practical
advice

4. Real-world examples with step-by-step
explanations

Please check www.PacktPub.com for information on our titles

enterprise 8

professional expertise distilled

PUBLISHING

Programming Microsoft
Dynamics NAV 2009

Programming Microsoft
Dynamics NAV 2009

ISBN: 978-1-847196-52-1 Paperback: 620 pages
Develop and maintain high performance NAV

applications to meet changing business needs with
improved agility and enhanced flexibility

1. Create, modify, and maintain smart NAV
applications to meet your client's business needs

2. Thoroughly covers the new features of NAV 2009,
including Service Pack 1

3. Focused on development for the three-tier
environment and the Role Tailored Client

4. For experienced programmers with little or no
previous knowledge of NAV development

Programming Microsoft®
Dynamics™ NAV

Programming Microsoft®
Dynamics™ NAV

ISBN: 978-1-904811-74-9 Paperback: 480 pages
Create, modify, and maintain applications in NAV 5.0,

the latest version of the ERP application formerly known
as Navision

1. For experienced programmers with little or no
previous knowledge of NAV development

2. Learn as quickly as possible to create, modify, and
maintain NAV applications

3. Written for version 5.0 of NAV; applicable for all
versions

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the author
	About the reviewer
	Table of Contents
	Preface
	Chapter 1:
Strings, Dates, and Other Data Types
	Introduction
	Retrieving the system date and time
	Retrieving the work date
	Determining the day, month, and year from a given date
	Converting a value to a formatted string
	Creating an array
	Creating an Option variable
	Converting a string to another data type
	Manipulating string contents
	Using date formulas to calculate dates

	Chapter 2:
General Development
	Introduction
	Repeating code using a loop
	Displaying a Progress Bar
	Checking for conditions using an IF
statement
	Using a CASE statement to test multiple conditions
	Creating a function
	Passing parameters by reference
	Referencing dynamic tables and fields
	Using recursion

	Chapter 3:
Working with Tables and Records
	Introduction
	Creating a table
	Adding a key to a table
	Creating transactions to alter data
	Validating data
	Retrieving a single record from the database
	Using advanced filtering
	Retrieving data using FIND
	Adding a FlowField to a table
	Creating a SumIndex field
	Marking records for future use
	Clearing filters, keys, and values
	Using temporary tables to store data
	Retrieving data from another company
	Merging records
	Writing your own rollback routine

	Chapter 4:
Designing Forms
	Introduction
	Obtaining input without a form
	Using the Form Generation Wizard
	Changing text appearance
	Preventing editable lookup forms
	Adding an editable field to a non-editable
	form
	Creating a matrix form
	Creating a wizard-style form
	Designing a form based on a temporary
	table
	Updating a subform from a parent form
	Updating a parent form from a subform

	Chapter 5:
Report Design
	Introduction
	Using the Report Generation Wizard
	Adding custom filters to the request form
	Setting filters when a report is loaded
	Creating a report to process data
	Displaying a check mark on a report
	Dynamically showing Sections on reports
	Grouping data to display totals
	Adding page totals to reports
	Display page of X of Y
	Using virtual tables to loop through data
	Adding a watermark to a page

	Chapter 6:
Diagnosing Code Problems
	Introduction
	Using the debugger
	Setting breakpoints
	Using Code Coverage
	Handling runtime errors
	Using Client Monitor to diagnose problems
	Finding errors when using NAS
	Implementing Try / Catch / Finally

	Chapter 7:
Roles and Security
	Introduction
	Adding roles through the User Setup table
	Creating and assigning a security role
	Using FILTERGROUP to restrict data
	Checking for user-assigned roles
	Checking Active Directory groups
	Using security filters
	Field-level security
	Assigning menu suites based on company
	Ending an idle session
	Automatically adding users to NAV
	Hiding values in Zoom

	Chapter 8:
Leveraging Microsoft Office
	Introduction
	Using the style sheet tool
	Sending data to Microsoft Word
	Sending an e-mail from NAV through Outlook
	Exporting data using the Excel buffer
	Creating a data connection from Excel to
	NAV
	Creating an InfoPath form with NAV data
	Instant messaging using Office
	Communicator
	Creating charts with Visio

	Chapter 9:
OS Interaction
	Introduction
	Using HYPERLINK to open external files
	Working with environment variables
	Using SHELL to run external applications
	Browsing for a file
	Browsing for a folder
	Checking file and folder access permissions
	Querying the registry
	Zipping folders and files within NAV

	Chapter 10:
Integration
	Introduction
	Flat file exchange using dataports
	Sharing information through XMLports
	Manually writing to and reading from files
	Creating a web service
	Consuming web services
	Sending data through FTP
	Printing reports to PDF
	Creating a custom NAS handler
	Writing your own automation using C#
	Using ADO to access outside data

	Chapter 11:
Working with SQL Server
	Introduction
	Creating a basic SQL query
	Adding the xp_ stored procedures
	Understanding SIFT tables
	Using SQL Profiler
	Displaying data from a SQL view in NAV
	Figuring out who is blocking whom
	Setting up a backup plan
	Scheduling NAV tasks from SQL Server

	Chapter 12:
The RoleTailored Client
	Introduction
	Creating a page using the Page Generation
	Wizard
	Building a Role Center
	Changing default filter columns
	Building the report layout
	Interactive sorting for reports
	Displaying a graph on a report
	Displaying a .NET add-in on a page

	Index

