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Foreword

Verification and hence modeling are a mandatory but intricate problem for engi-
neers developing embedded distributed real-time systems that are entrusted with criti-
cal safety applications like medical care, transportation, energy production, industrial
processes, military operations. Therefore, while emerging 40 years ago, first for cir-
cuit design, avionics and finally for all domains, verification environments are now
widely exploited by industry and fully integrated into the development processes.

Volume 1 presented design and algorithms for developing these large-scale dis-
tributed systems, real-time embedded ones, security concepts for peer-to-peer and
ubiquitous computing. However the crucial problem of their correctness is made
hard by their complexity, the difficulty of managing fault tolerance, the real-time con-
straints that they must satisfy, asynchronism of worldly spread units as well as the
heterogeneity of devices, networks and applications.

This second volume presents different approaches for mastering these verification
problems, beginning with the main concepts and formal methods used for modeling
and well structuring distributed systems and for expressing their logical and timed
properties. Then it explores the theoretical approaches, mainly logic and automata
theory, for behavioral verification of these models. It goes thoroughly into the decid-
ability issues and algorithmic complexity that are the inherent obstacles to overcome
particularly for dealing with infinite state spaces and timed models. Collecting the ex-
perience of researchers from several laboratories, this volume covers advanced topics
of distributed system modeling and verification. It aims at giving a deep knowledge of
theory, methods and algorithms to Masters and PhD students as well as to engineers
who are already good experts in verification.

Semi-formal specifications and models are a first step for a precise system de-
scription. The Unified Modeling Language (UML), widely used in industry, provides
diagrams for describing the relations between classes, objects, operations, activities,
and allows for examining the system action sequences, reachable states and desired

ix
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properties. Such specifications provide a good understanding of the system and al-
low early detection of some errors. Furthermore, formal models, such as algebraic
specification, automata, Petri nets (PN), process algebras, bring abstraction, precision
and rigor by precisely describing all the possible behaviors of a system. They allow
for performing exhaustive simulation and therefore checking some safety and liveness
properties. Moreover temporal logics like Linear Time Logic (LTL) and Computation
Tree Logic (CTL) are introduced to express properties of sequences of states gener-
ated by these formal models. However the size of the generated sets of states may be
so huge that it raises the problems of complexity of the space and time needed to build
and explore them. These sets may even be infinite and their manipulation requires
sophisticated methods.

Whatever the chosen formalism, system modeling has to keep verification in mind.
The abstraction level needs to identify the system elements that must be taken into
account, while neglecting those which are out of the verification purposes. Once iden-
tified, the system relevant elements are progressively taken into account, and refined.
Incremental construction allows us to validate successive refinements. Model oriented
engineering approaches may be based on problem frames, architectural or component
architectures. Property oriented approaches may use languages like the Common Al-
gebraic Specification Language (CASL) extended with a Labelled Transition Logic to
express conditions satisfied by states, requirements on the transitions and incompatible
elementary actions.

As modern distributed systems and consequently their models become very large
and complex it is important to express their structure. Architecture and Analysis De-
scription Languages (AADL) help to manage and improve it by component compo-
sition via interfaces and packages, providing a convenient analysis support in case of
future reconfigurations or evolutions.

System verification depends heavily upon the interrelated choices concerning the
expressiveness of the formal model, the system requirements and expected properties,
the adequate verification methods and moreover the quality of the available tools. Ax-
iomatic proof of properties is highly desirable, but even if computer-aided it needs
intensive work for system formalization (much more difficult than modeling) and rig-
orous checking by highly trained engineers. Moreover, repetitions for each design
correction increase cost and delay. Therefore engineers mainly use automatic verifi-
cation based on numerous model checking methods. Researches combine the advan-
tages and drawbacks of methods, extend the models and develop new strategies. Many
subtle variants of models and classes of properties may drastically change complex-
ity in time or in space, or require ingenious extensions of methods and algorithms at
the decidability borders. Often expressiveness is costly for analysis. Inhibitor or re-
set arcs of PN make reachability undecidable. Decidability of counter automata may
be obtained by restricting their counters and avoiding zero tests. Association of time
with tokens instead of transitions requires more complex constructions for reachability

10 Models and Analysis for Distributed SystemsModels and Analysis in Distributed Systems
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Foreword 11

proofs. Fortunately some powerful extensions have been defined without theoretical
loss. Colored PN still allow positive linear flows and easily understandable invariants,
symmetries and parameterization. Recursivity is smartly introduced for PN keeping
their most useful properties. Colored semantics of PN by unfolding although rather
cumbersome, allows for efficient verification and reductions. PN box calculus allows
CCS-like process algebra but nevertheless decidability of verification.

Expression of properties is the most sensitive choice. Generic ones like bounded-
ness, liveness, even home states are useful but not sufficient for verifying the complex
behavior of distributed systems. Therefore temporal logics expressing the intricate
succession of events are so essential that for the past 40 years much research has fo-
cussed on them, thus leading to effective automatic verification of complex systems.
For this reason, the pioneer fundamental work of E. Clarke, A. Emerson and J. Sifakis
has been recognized by the 2007 ACM Turing Award.

The state graph is the key object for verification. Even when finite, it may be
exponentially huge w.r.t. the model size so that its reduction is a major goal. Some
model simplifications, like agglomerations of actions, allow us to suppress many in-
termediate states and meaningless interleaving effects, provided suitable conditions
preserve behavioral properties. For Petri nets, intricate behavioral conditions on fir-
ing sequences provide powerful agglomerations but the help of structural properties
simplifies their checking. Avoiding the state graph, structural verifications of PN use
flows, invariants, systems of integer linear inequalities and distinguished place sub-
sets. For better behavioral verification, a system is abstracted as an automaton accept-
ing transition sequences of infinite length. To be checked, a Linear-time Temporal
Logic formula Φ is automatically translated into a second automaton, called a Büchi
automaton, whose language is the sets of words that contradict Φ. Their “synchro-
nized product” is built to check if they have no common word (emptiness test) and Φ
holds, otherwise a counter example is found.

The memory space for these automata may be reduced by representing only the
index states in a hash table, or by neglecting parts of the state space irrelevant for
checking a particular formula. Better still, the widely used Binary Decision Diagrams
(BDD) provide an extremely compact representation of a state space as a Directed
Acyclic Graph of Boolean functions sharing most of their common subexpressions.
BDD may grow linearly even when state graphs grow exponentially. They are also
extended to represent whole graphs and automata allowing us to check paths and to
achieve model checking for CTL as well as for LTL. Variants again provide more
compactness (Zero suppressed BDD) or larger scopes (Algebraic DD, Multi-valued
DD and Data DD). Interleaving partial executions of actions is a major cause of space
explosion; therefore important gains are obtained by using equivalence classes of in-
dependent action subsequences. Covering Step Graphs, partial order methods and
trace unfoldings lead to many improvements like persistent sets, sleep sets, stubborn
sets. Distributed systems often have identical components, modeled by Colored Petri
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Nets (CPN) so their behavioral symmetries allow us to use quotient state graphs and
compact symbolic representations. All these improvements now help model checking
of large distributed systems, mainly hardware and embedded ones.

Verification of infinite state systems is a challenging problem because all systems
use integer and real variables, dynamic data structures, recursive calls, list processing,
process creation, parameterization that lead to infinity or unknown bounds. Infin-
ity raises specific difficulties for verification because it requires finite representations
with special decision techniques. Only subproblems with strong restrictions become
decidable.

Counter systems are finite-state automata with counters, that are non-negative in-
teger variables. Their transition relation is expressed by Presburger formulae which
control guards and counter modifications. The Presburger arithmetic allows addition
but not multiplication of variables with relational and Boolean connectors and quanti-
fiers. It is one of the most expressive fragments of arithmetic that is decidable. Vector
Addition Systems are restricted, hence called “succinct” counter automata without
zero test, shown equivalent to Petri nets, and allowing us to decide boundedness and
reachability of a target marking. Conversely satisfiability for Presburger arithmetic
may be solved by the non-emptiness test for finite state automata. Many tools have
been implemented for Presburger decision procedures and for verification of infinite
state systems with counters.

Petri nets may be extended by recursion while still allowing for decidability and
model checking. Recursive PN (RPN) introduce abstract transitions for creating and
resuming processes. The simpler model of Sequential RPN (SRPN) allows us to run
only the child process by stacking its father. Each abstract transition is provided with
the initial marking of the child process and a Presburger condition for its termination.
An “extended marking” is the stack of saved occurrences of abstract transitions having
created a child process (modeling the saved interrupt points) with their correspond-
ing marking at the creation (modeling the saved contexts). A termination pops up the
stack and fires the abstract transition with the saved marking. SRPN are a fundamental
model of great practical and theoretical interest because they are a strict extension of
PN able to naturally describe key system features like interruptions, exceptions, man-
agement and even fault tolerance while reachability and verification of LTL formulae
remain decidable and extended structural linear invariants may be computed.

Real-time systems deal with time, dates and delays which must be carefully taken
into account for sound verification and for performance evaluation. The underlying
problems are difficult because concurrency and distribution involve subtleties and
moreover because continuous time variables require managing dense sets. Mark-
ings are extended to also represent clocks or time variables. Different semantics are
used for time modeling: event dates and action delays with either clock ticks for dis-
crete time or real variables for continuous time. Timed automata are the basic model

12 Models and Analysis for Distributed SystemsModels and Analysis in Distributed Systems

www.allitebooks.com

http://www.allitebooks.org


Foreword 13

equipped with a finite set of real synchronous clocks. These clocks are synchronously
increased by special delay transitions, they may be compared with constants for guards
and also be reset by firings. Although they can generate an infinite state space, most
decision problems remain decidable. Among Time Transition Systems (TTS) variants,
Time PN (TPN) associate time with transitions and model urgency or time out, but they
cannot disable transitions that become obsolete. Conversely, Timed PN (TdPN) more
subtly associate age to tokens. Their input arcs specify an age interval during which
tokens may be consumed, and their output arcs give initial ages to created tokens.
Their lazy semantics do not model urgency but allow for disabling transitions when
time elapses. The state descriptions and firings become far more complex for all TTS
with elapsing of time, durations of transitions, minimum and maximum delays for
firing. The often assumed instantaneity of some actions or guard evaluations may be
not always compatible with real hardware speed. Temporal logic CTL must be ex-
tended for timing, giving in particular CTLT. Strong or weak equivalences between
time automata may also be defined. Despite the difficulties, these new logics with
their rather efficient and scalable model checking algorithms, provide time modeling
and verification for industrial systems.

Real-time systems involve time represented by clocks that are continuous variables
forcing us to deal with infinity by means of new “finite-state abstractions”. For the
classical timed automata, “configurations” are defined as the product of a state and the
set of clock values. These clocks are increased by the delay transitions. Subspaces
of configurations are delimited by guards which combine comparisons of clocks with
constants (that may be all chosen as integers). An equivalence between configurations
allows us to divide this space into regions delimited by the constraints and also by the
steps of integer values crossed by the clocks, up to the maximum constant to which the
clocks are compared. Some infinite region gathers all the values above this maximum.
This partition distinguishes regions from all their boundaries of decreasing dimension,
down to elementary points. Thus, the continuous transition system is reduced to a
region automaton with a finite number of regions for which reachability and language
emptiness are decidable. Finite-state abstraction has been extended to more expressive
time automata and to Time Petri nets (TPN). The Büchi automata approach and the
emptiness test may be applied to these nets for temporal logic verification of LTL and
TCTL formulae.

Problems are far more complex for models with an infinite number of regions.
This is the case for Timed Petri Nets (TdPN) because tokens have ages. A more
complicated construction makes the coverability problem still decidable by using a
finite recurrence to compute the predecessors of the configuration to be covered. The
problem of token liveness which arises because some tokens may become useless (i.e.
dead) when time elapses, is also shown decidable. A Zeno execution is one where
an infinite number of actions or message transmissions must be performed within a
finite delay that is unrealistic for real systems. Existence or non-existence of such a
sequence is also decidable. Verification of real-time systems being theoretically well
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founded, tools have been developed for them. However they raise several axiomatic
issues about clock precision, time progress and Zenoness. Therefore a new semantics
“Almost As Soon As Possible” (AASAP) has been introduced as an emerging research
domain.

Controlling a system G consists in designing an interacting controller C so that the
controlled system (C/G) satisfies its requirements whatever the actions of the environ-
ment of S. However some system actions may be uncontrollable. Also the controller
may only have a partial observation of the state of G. The formal control problems are
very representative of the ones appearing in real peer-to-peer systems and take into
account the complete underlying architecture. Verifying that the controller effectively
keeps the systems within the requirements is simpler than its synthesis which aims at
automatically producing a correctly controlled system.

The completed tasks are represented by the action sequences whose end states are
in the set of terminal states of G, called markers. The controller is modeled by an au-
tomaton S over the same actions and a control function Ψ that indicates whether each
action s of G is enabled by C. By convention it must enable all uncontrolled actions.
L(C/G) is the language of sequences generated by G whose actions are enabled by C.
A subset K of L(G) specifies all the “legal” sequences. K is controllable if any prefix
followed by an uncontrollable action remains legal. If K is not controllable, a fixed-
point algorithm builds a supremal sublanguage of K that is controllable. Local and
modular specifications and solutions have been proposed for decentralized control.
Each controller Ci makes local observations of the system and can disable only a sub-
set of controllable actions. It takes local decisions. An arbiter mechanism is required
for a final decision when there is no consensus between the controllers. Moreover
deadlocks must be avoided. Intricate conditions define tolerance and co-observability
of controllers and distinguish disjunctive or conjunctive arbiters. A general controller
may be obtained by a shuffle of local controllers of the two types. Cooperative con-
trol allows local controllers to exchange information when their local views are not
sufficient.

The synthesis problem for distributed systems is, in some sense, very general. The
system architecture defines a set of processes and their possible communications, A
variable belongs to the partition corresponding to a process if it can be modified by
this process. Indeed at most one process can have a writing access to a given variable.
This very general architecture may be refined. The control is very difficult to achieve:
the problem is in general undecidable in particular for LTL or CTL specifications. For
the decidable sub-cases, the theoretical complexity is very high. For decidability with
LTL specifications, the processes must be organized in a pipeline with restricted access
to variables. For asynchronous communications via shared variables and controllers
with causal memories, the synthesis needs extremely restrictive conditions.

14 Models and Analysis in Distributed Systems
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The control problem may be viewed as a game where the controller plays against
the environment. A distributed controller is a team of players able to play actions
simultaneously but each one does not know the other’s choices. At each state, each
player can concurrently choose one move among available ones. Each state is eval-
uated w.r.t. a set of desired properties. A player strategy is a function determining
his moves after a state sequence. The logic ATL (Alternating-time Temporal Logic)
is suited to open systems with multiple agents. It can express that some agent can
enforce a property. It appears as an extension of CTL offering besides the connectors
X, G and U, a selective quantification over paths. For any subset P of players, pos-
sibly empty, called a coalition, this new quantifier “P” selects the paths enforced by
the strategies of the P players: “P” Φ means that P can enforce Φ and the dual [[P]]
Φ means that P cannot avoid Φ. The implemented model checking algorithm extends
those of CTL. Like CTL with CTL∗, ATL may be extended to ATL∗, allowing both
state and path formulae. However it cannot express that an infinite number of requests
implies an infinite number of grants. Extensions of ATL have been proposed for more
expressiveness as well as for games where the players have incomplete information.

This volume provides strong bases for new research extending verification meth-
ods in open fields such as composition and refinement, aspect orientation, new algo-
rithms and heuristics, distributed verification, synergies with theorem provers, schedul-
ing, performance evaluation, and more.

Claude Girault, Emeritus Professor
Pierre & Marie Curie University
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Chapter 1

Introduction

Problematics

The complexity of dynamic systems grows much faster than our ability to manage
them [LEV 97]. In particular, the parallel execution of the threads of a distributed
system requires the elaboration of sophisticated models and methods.

The oldest technique, simulation, is a straightforward way to increase confidence
about the correctness of an implementation. Such a simulation is based on a model of
the system with operational semantics in order to perform the elementary steps of the
system. Unfortunately due to the non-determinism of distributed systems, replaying a
simulation is a difficult task.

More precisely this problem is a consequence of two factors: the variable transit
time of any message and the relative speed of the machine processors. Thus with the
help of (vectorial) logical clocks associated with every station, additional information
can be managed during the simulation so that it can be replayed [BON 96]. Such
mechanisms can easily be integrated within a framework for distributed execution
(called middleware).

Even if simulation techniques point out some bugs, they can never fully reassure
to the designer of the system. Thus tests must be combined with other techniques in
order to obtain a more complete validation of the system.

Introduction written by Serge HADDAD, Fabrice KORDON, Laurent PAUTET and Laure
PETRUCCI.
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Among these alternative approaches, the more efficient ones are associated with
the early stage of the design. The most appropriate method consists of equipping the
design step with a formal model such as UML 1 [CHA 05]. Unfortunately UML is not
intended to have an operational semantic and this feature is required for the analysis
of distributed systems. In particular, a formal semantic for the component behavior
and for their composition is essential in view of checking the properties of the system.

Once a model with a formal semantics is obtained, the properties can be expressed
either in a specific way (absence of deadlocks, mutual exclusion, etc.) or in a generic
way via some logic (such as temporal logics) that can express fairness, liveness, etc.
Furthermore, in order to combine performance evaluation, and verification, quantita-
tive logics have also been introduced.

There are also difficulties with verification methods [LUQ 97]: the competency
of the designer, the adaption to industrial case studies, the ability to tackle large-
scale applications. Thus pragmatism is a key factor in the success of formal meth-
ods: without tools and methodology formal methods would never be adopted by engi-
neers [KOR 03].

Objective of this book

The objective of this book is to describe the state of the art in formal methods for
distributed and cooperative systems. These systems are characterized by:

– several components with one or more threads, possibly running on different pro-
cessors;

– asynchronous communications with possible additional assumptions (reliability,
order preserving, etc.);

– or local view for every component and no shared data between components.

These are the most common features in modern distributed systems. Numerous
issues remain open and are the topic of European research projects. One current re-
search trend consists of intricately mixing the design, modeling, verification, and im-
plementation stages. This prototyping-based approach [KOR 03] is centered around
the concept of refinement of models.

This book is more specifically intended for readers who wish to get an overview
of the application of formal methods in the design of distributed systems. Master’s
and PhD students, and engineers will obtain a thorough understanding of the techniques
as well as references for the most up-to-date work in this area.

1. UML stands for Unified Modeling Language.

Models and Analysis in Distributed Systems
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Organization of the book

This book follows the two stages of a formal method: modeling, and verification.

Part 1 is concerned with the initial step of system design: modeling.

– Chapter 3 discusses a modeling approach to design a consistent specification.
After identifying the key elements of the system to be modeled, they are step by step
taken into account, and refined until the model is obtained.

– Chapter 4 is devoted to efficient handling of time. Timed models address mecha-
nisms to manipulate time within distributed systems. They make use of discrete clocks
and variables, while hybrid systems consider continuous evolution of time.

– Chapter 5 is concerned with the description of software architectures using ded-
icated languages that are ADLs (architecture description languages).

Part 2 is concerned with the next step of system design: verification.

– Chapter 7 covers the finite-state verification. Historically it is the oldest line of
research that has been developed. The main objective of finite-state verification is the
reduction of complexity due to the combinatory explosion of the system. Possible
approaches are structural methods, which try to avoid developing the behavior of the
system, and data representation which reduces the explosion by sharing substructures
or exploiting the properties satisfied by the formalism.

– Chapter 8 addresses the problem of verifying infinite-state systems. Most of the
research is devoted to the design of formalisms, which are slightly less expressive than
Turing machines (or equivalent computational models), and to study which properties
are decidable. In this chapter, the main focus is put on extensions of Petri nets and
on different variants of counter machines. It emphasizes the fact that small variations
lead to drastically different theories.

– Chapter 9 studies timed systems. Time is a particular source of infinity. How-
ever, its specificity leads to efficient verification procedures such as those developed
for timed automata. Moreover, time can be combined with other sources of infinity
such as in time(d) Petri nets. In addition, this chapter tackles the problem of imple-
menting timed systems when the abstractions achieved at the theoretical level (such as
the perfect synchronization of the clocks) are no longer satisfied.

– Chapter 10 studies control and synthesis of distributed systems. After recalling
the centralized case, it develops, with the aid of specific examples, the specifics of the
distributed case and the different possible approaches.
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The MeFoSyLoMa community

MeFoSyLoMa (Méthodes Formelles pour les Systèmes Logiciels et Matériels 2) is
an association gathering several world-renowned research teams from various labo-
ratories in the Paris area [MEF 11]. It is composed of people from LIP6 3 (P. & M.
Curie University), LIPN 4 (University of Paris 13), LSV 5 (École Normale Supérieure
de Cachan), LTCI 6 (Telecom ParisTech), CÉDRIC 7, (CNAM), IBISC 8 (University
of Évry-Val-d’Esssone), and LACL 9 (University of Paris 12). Its members, approxi-
mately 80 researchers and PhD students, all have common interest in the construction
of distributed systems and promote a software development cycle based on modeling,
analysis (formal), and model-based implementation. This community was founded in
2005 and is federated by regular seminars from well-known researchers (inside and
outside the community) as well as by common research activities and the organization
of events in their domains such as conferences, workshops, or book writing.

The editors of this book, as well as most authors, are from this community.
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Chapter 2

Introduction to Formal Models

2.1. Motivation

Systems that are developed nowadays are of increasing complexity, and their func-
tioning may have dramatic consequences on their environment, even irreversible ones,
be it economical or human, e.g. avionics mission systems [PET 03], healthcare man-
agement [JØR 04], etc. [Dep 09].

It is thus of the utmost importance to design secure and safe systems, and their
behavior must be checked before they become operational.

Verification of such critical systems is usually carried out using methods and tech-
niques that largely depend on the problem at hand. For example, for hardware systems,
such as avionics mission systems, physical test-beds are used. In such a case, a plane
model, reproducing the exact system, is used on the ground. Simulation traces are
logged and analyzed. Such an approach obviously necessitates a hardware infrastruc-
ture, as well as qualified staff, to conduct tests. Setting up this kind of test-bed is also
usually very time-consuming. Moreover, the simulation traces obtained present the
functioning in so much detail that their interpretation is a difficult task. It is thus clear
that for verification to be efficient, an adequate abstraction level corresponding to the
problem at hand is necessary.

To achieve these safety goals, one should abstract away from the physical system,
using a model. Such an approach has many advantages:

– as no hardware is involved, its cost is relatively small;

Chapter written by Laure PETRUCCI.
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– it can be analyzed using computer tools, and modified without a significant ad-
ditional cost;

– the designer of the system model has a better and more rigorous understanding
of the characteristics that need to be put into operation;

– once the verification of the expected properties of the model is satisfactory, an
experimental prototype can be developed, with sufficient confidence, as many of the
design errors have already been eliminated;

– moreover, such a formal specification helps with future maintenance, especially
by a person not involved in the initial project.

Several types of specification models and languages can be considered, with com-
plementary goals. They are detailed in the following sections.

2.2. Semi-formal models

System specification can be more or less formal, according to the techniques
employed. The use of semi-formal models, such as UML (unified modeling lan-
guage, [PIL 05]) may achieve part of the intended goals:

– while writing the specification, the designer improves his understanding of the
expected behavior of the system, as well as the interactions between its various com-
ponents. Writing the model enables reconsideration of some conceptual choices, and
provides a more accurate understanding of the system itself;

– a model written in a simple notation facilitates communication with clients;

– during a maintenance phase, the model constitutes precise documentation of the
system.

A UML specification is composed via various development steps, each of them
represented by diagrams, which have the advantage of being relatively easy to under-
stand. Here, we present some of the main aspects of UML.

Firstly, a use case diagram depicts the context: it describes the relationship be-
tween use cases and the actors within the system under study. Use cases summarize
action sequences carried out by the system. The actors are the external parts (either
people or other systems) that interact with the system that is being modeled. Use cases
may correspond to several execution scenarios.

EXAMPLE.– Let us consider a car insurance problem. Two actors are involved: the
client and the insurance agent. The client may declare an accident to the insurance
agent. This operation is composed of several elementary actions, such as filling in a
declaration, sending it by electronic or surface mail, etc. The insurance agent may de-
cide, according to the case, to refund the client or not. There are thus several possible
scenarios. A corresponding use case diagram is presented in Figure 2.1.
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Declare
an accident

Refund

client insurance
agent

Figure 2.1. Use case diagram

These diagrams clarify the system that will be modeled and enables a better under-
standing of what should or should not happen without getting lost in technical details.
They also help to provide, at a later stage, test sets for the validation of the system’s
behavior.

The model of a system can be structured into classes, represented by a class dia-
gram. The different classes contain their own attributes and operations, and are linked
to one another via relations of different kinds.

EXAMPLE.– Let us consider the class diagram of our accident declaration example,
shown in Figure 2.2. A vehicle has several associated attributes, such as its license
plate number, its type, and its brand. Similarly, a client has a name, a surname, and an
insurance number. The client can execute a declare() operation, in order to declare
an accident. A declaration concerns exactly one vehicle and one client.

Declaration

Vehicle
Plate
Type
Brand

. . .

Client
Name

Surname
Number
declare()

1 1

Figure 2.2. Class diagram

Each object in the system implements part of the intended functionalities. The
global behavior is obtained through the cooperation between the different objects.
These communications between objects are realized by exchanges of messages, which
can be described in a communication diagram.
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EXAMPLE.– The communication diagram in Figure 2.3 shows that the client should
declare an accident by sending a message declare. He can then send the declaration
to the insurance agent who makes a decision in order to reply to the client.

:Client

Declaration
:Insurance agent

1. declare 2. send

3. reply

Figure 2.3. Communication diagram

This information can also be represented by sequence diagrams, which, in addi-
tion, show how objects are created.

EXAMPLE.– The sequence diagram in Figure 2.4 indicates message exchanges be-
tween the different objects. Note that the operation initiated by the client to declare an
accident also generates a declaration object.

client

:Declaration
insurance agent

declare

send

reply

Figure 2.4. Sequence diagram

The flow of information in the system is represented by an activity diagram, which
gives additional information complementary to those of the communication and se-
quence diagrams. It depicts the system evolution as seen by one of its actors.

EXAMPLE.– From the insurance agent point of view, the activities take place as pic-
tured in Figure 2.5: he receives a declaration, handles it, and then sends his reply to
the client.

A behavioral description of classes, use cases, actors, etc. is described through a
state diagram. During the system evolution, the involved entities change state. This
may be the result of external events triggering a particular activity.

Models and Analysis in Distributed Systems
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Receive

Handle

Reply

Figure 2.5. Activity diagram – the insurance agent viewpoint

EXAMPLE.– The state diagram for our accident declaration example is shown in Fig-
ure 2.6. The insurance agent initially waits. When he receives a declaration, he moves
to a new state in which he is ready to handle it. After checking the declaration, two
cases may occur: either there is no problem (OK) and the reimbursement can take
place (a positive response is sent to the client), or there is a problem (NOK) and the
insurance agent sends a negative response to the client.

Software tools enable a complex specification to be built. They check the consis-
tency among the different diagrams. Moreover, they propose automatic generation of
code and test scenarios.

Some diagrams, other than those mentioned in this section, exist, but their presen-
tation is outside the scope of this book. For further information, see e.g. [PIL 05].

To conclude, semi-formal techniques such as UML enable the characteristics of the
system to be studied in depth during modeling, with a high level of abstraction, and the
implementation detail can be addressed. The diagrams thus obtained provide a good
view of the different aspects of the system. However, even though these diagrams are
easy to understand for a non-specialist, grasping the full picture can be a challenge.
Moreover, system validation cannot be exhaustive. Therefore, formal models aim to
tackle these problems.

2.3. Formal models

Formal models enable the correct behavior of a system to be formally (i.e. math-
ematically) proven. Then, whatever the evolution of the system, it is guaranteed to
behave as expected.
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Waiting

Declaration
received

Problem Refund

[send()]

check(declaration)

NOK OK

reply(NOK) reply(OK)

Figure 2.6. State diagram for the insurance agent

In addition to the advantages of the previous techniques, formal models offer anal-
ysis tools for the system under study:

– simulation provides evidence of the correct behavior or eventually errors to be
discovered, especially severe ones. Correction at this stage is relatively cheap, com-
pared to the correction of an already existing system, either implemented as software
or hardware;

– exhaustive verification of system behavior can be performed. First, simulation
is applied, leading to a coarse-grained debugging, and then the model is refined by
verification of its expected properties.

A wide range of specification models and languages exists. In this book, we shall
focus on algebraic specifications, automata [BÉR 01a], Petri nets [GIR 03, DIA 09],
and process algebras [BER 01b]. This is justified by the existence of a specifica-
tion methodology, the possibility of using structural methods, and introducing tempo-
ral constraints in the models considered. Finally, architecture description languages
(ADLs) [MED 00] enable model composition.

Models and Analysis in Distributed Systems
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2.3.1. Algebraic specifications

Algebraic specifications historically originate from data abstraction (“abstract data
types”), and are the origin of object-oriented programming languages (see the class
concept). They were further developed and enhanced to become formal specifications
of the functional requirements for software modular design. Following the design of
numerous algebraic specification languages, CASL (common algebraic specification
language) was developed in the context of the CoFI international project (Common
Framework Initiative for algebraic specification and development). This language is
based on a careful selection of already explored constructs, such as sub-sorts, partial
functions, first-order logics, structured and architectural specifications [AST 02]. The
CoFI project website [COF11] contains the documents produced within the project,
the language is described in a user manual [BID 04], and the reference manual [CoF 04]
provides the complete formal semantics.

A CASL specification may include declaration for types, operations, and predi-
cates (together with their arity), as well as axioms, which are first-order formulae.
Some operations are considered as generators (or constructors) and are part of the type
declaration (“datatype declaration”). A simple specification is described as follows:

spec NOMSPEC=
type type_name ::= gen_name(args) | . . .
op op_name : op_args → op_res
. . .
pred pred_name : pred_arg
. . .
axioms %%first-order formulae
end

The language includes constructs for modular design of specifications: union and and
then extensions can be used for specification structuring.

spec NOMSPEC= SP1 and . . . and SPj then
type type_name ::= gen_name(args) | . . .

EXAMPLE.– Let us consider the example from section 2.2. An accident declaration
specification imports the modules specifying vehicles and clients.

spec DECLARATION = VEHICLE and CLIENT then
type Declaration ::= . . .
end

In practice [BID 04], a realistic system specification involves both partial and total
operations. Hence, the ? symbol distinguishes partial operations and generators, and
their definition domains are provided by axioms.
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spec NOMSPEC=
type type_name ::= gen_name(args) | . . .
op op_name : op_args →? op_res %%partial operation
. . .
axioms

def op_name(args)⇔ . . .

The free construct forces the use of the initial semantics, avoiding explicit negation.
Indeed, in the free specification models, term values are distinct unless their equality
follows from the specification axioms [BID 04].

spec NOMSPEC= SP1 and . . . and SPj then
free { type type_name ::= gen_name(args) | . . .
op op_name : op_args →? op_res . . .
axioms . . . }

EXAMPLE.– A counter modulo 3, using increments by 1 and by 2 as operations (see
example in section 2.3.2) can be specified as follows:

spec COUNTER =
free { type Counter ::= 0 | suc(Counter);
%% suc adds one
axioms suc(suc(suc(0 ))) = 0 ;
op add2 : Counter → Counter
axioms add2 (0 ) = suc(suc(0 ));

add2 (suc(0 )) = 0 ;
add2 (suc(suc(0 ))) = suc(0 ); }

end

Generic specifications are most useful for reuse purposes. Specifying their parame-
ters is simple, and an instance of the generic specification is obtained by providing a
specification argument for each parameter. The specification below is an extension of
the generic specification SET[ELEM] instance by INT (these specifications are part
of the basic library [ROG 04]):
spec NOMSPEC = SET [INT] . . . then . . .

Note that algebraic specifications include the properties as axioms. Hence, theo-
rems having some impact on these properties can be proven.

The extensions of algebraic specification languages have been proposed so as to
take into account dynamic systems and temporal logic properties. For example, CASL-
LTL [REG 03] uses labelled transition logic [AST 01], thus the states of a system and
transitions between states triggered by events can be described.
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2.3.2. Automata

Automata explicitly describe the possible states of the system. Different kinds of
automata exist (communicating automata, timed automata, with variables, etc.), each
with specific characteristics.

An automaton can be illustrated using a graph where states of the system are nodes.
The evolution from one state to another is performed by firing a transition, represented
on the graph by an arc linking the two states. The choice of which transition to fire is
non-deterministic as several transitions may be fired from a single state. This enables
different evolutions of the system to be represented.

(0, 0)

(1, 0) (0, 1)

(2, 0) (1, 1) (0, 2)

(2, 1) (1, 2)

(2, 2)

Figure 2.7. Automaton representing a system with 2 counters

EXAMPLE.– Let us consider a system with two counters modulo 3, i.e. taking the
following values successively: 0, 1, 2, 0, etc. The two counters can either evolve in-
dependently, by incrementing their value, or together when they have the same value.
In this latter case (and this example), the first counter is incremented by 2 while the
second is only incremented by 1. This example is modeled by the automaton in Fig-
ure 2.7.

In this description, the name of states contains the value of both counters, i.e. (0, 2)
represents the state where the first counter has value 0, and the second value 2. The
arcs with a plain line correspond to the increment of the first counter only, and those
dashed to the increment of the second counter only. Finally, the arcs depicted with a
bold line increment the first counter by 2 and the second by 1. The initial state of the
system is also bold-faced (both counters have value 0).
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2.3.3. Petri Nets

Petri nets [GIR 03, DIA 09] are another formalism giving a view of both states
and transitions of the system. The corresponding graph contains two types of nodes:
places (represented by circles or ellipses) and transitions (rectangles). Places rep-
resent part of the system state. They contain tokens, which indicate the number of
occurrences of this particular sub-state. As for automata, transitions represent events
that can occur. The arcs entering a transition indicate the pre-conditions required to
enable transition firing, i.e. the conditions that must be satisfied for the action to occur.
Similarly, the output arcs of the transition indicate its post-condition, i.e. the result of
the firing. The firing semantics for a transition t thus consists of deleting the input
tokens of t, as specified by the pre-conditions, and adding the tokens in the output
places of transition t, as specified by the post-conditions.

EXAMPLE.– The Petri net in Figure 2.8 models our counters system example.

C10

C11

C12

C20

C21

C22

t101

t112

t120

t201

t212

t220

f1

f2

f3

Figure 2.8. Petri net representing a system with 2 counters

The conventions used to indicate the meanings of the arc lines is the same as in
the automaton of Figure 2.7. Places on the left-hand side of the figure (C10, C11,
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and C12) indicate the different values the first counter can take, while those on the
right hand-side (C20, C21, and C22) correspond to the values of the second counter.
Similarly, transitions on the left-hand side (t101, t112, and t120) correspond to the
increment of the first counter, and transitions on the right-hand side (t201, t212, and
t220) correspond to the increment of the second counter. Transitions in the center of
the figure (f1, f2, and f3) represent actions that increment the first counter by 2 and the
second by 1. Note that these transitions can only be fired when all their preconditions
are satisfied, i.e. when both counters have the same value. The initial state of the
system is represented by the distribution of tokens among places: both counters have
value 0.

The behavior of Petri nets is often analyzed through its reachability graph or state
space. This graph shows an exhaustive representation of all states the system can
reach. Starting from the initial state, all possible transition firings are examined, the
resulting markings are added as nodes of the reachability graph, and transitions label
the arcs between states, thus explicitly showing how one state is obtained from another.
The state space of the Petri net in Figure 2.8 is similar to the automaton in Figure 2.7
(up to the arc labels not present in the automaton), where a marking (C1x, C2y) is
represented by the pair (x, y).

As systems are becoming larger and larger, Petri net models have evolved towards
high-level nets [JEN 91], in which the flow is captured by a Petri net structure, and
data are explicitly represented using a data specification language. This language can
either be dedicated to the kind of model [AMI11], a programming language [CPN11],
or an abstract data type specification [REI 91]. High-level nets are easily understood
by those with a good programming experience.

In high-level nets, tokens carry data that may be tested or changed while firing a
transition. To express data manipulation, the net arcs are labeled with terms specifying
the required preconditions and values associated with the created tokens.

EXAMPLE.– Figure 2.9 presents a high-level net model of the counters system.

The net has a single place that always contains a unique token. The token value is
(x, y) where x is the value of the first counter and y the value of the second counter.
Place counters initially contains a token with value (0, 0). The 0..2 inscription next to
the place indicates that tokens take their value in the interval from 0 to 2. Transition
t1 increments the first counter, whatever its value. It thus corresponds to a folding of
transitions t101, t112, and t120 from Figure 2.8. Similarly, transition t2 increments
the second counter (folding of t201, t212, and t220). Finally, transition f increments
the first counter by 2 and the second by 1 (folding of f1, f2, and f3). A guard [x = y],
associated with transition f , indicates that both counters must have the same value
for f to be firable. Such a constraint could also have been captured within the arc
expressions of transition f , replacing variable y by x.
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(0, 0)

counters
0..2

t1 f
[x=y]

t2

(x,y)

(x,y)

(x,y)

(x+1,y)

(x+2,y+1)

(x,y+1)

Figure 2.9. High-level net representing a system with two counters

2.3.4. Process algebras

Process algebras are a family of mathematical formalisms with the aim of describ-
ing concurrent systems. Numerous algebras have been defined, the two main families
being those derived from CSP (communicating sequential processes [HOA 78]) and
CCS (calculus of communicating systems [MIL 80]).

The most expressive process algebras often include parameterized definitions, pro-
cess expressions, and actions prefixes. The data manipulated can be simple values
(CCS), structured events (CSP), or even names (as in e.g. π-calculus [MIL 92]).

A process expression is generally built using the following operators 1:

– 0 is the inactive process;

– α.P is the sequential composition of action prefix α followed by the expression
of process P ;

– P‖Q represents the parallel composition of processes P and Q expressions. The
semantics considered is often an interleaving semantics possibly with a synchroniza-
tion of processes P and Q. Processes P and Q coexist;

– P + Q is a non-deterministic choice between processes P and Q. Only one of
them is executed;

– finally, A(v1, . . . , vn) represents a call to a parameterized definition.

The elementary actions of processes are often limited to the following:

– τ represents an internal action that cannot be observed outside the process itself;

1. Here, a mixed CCS/CSP syntax is used, but equivalent expressions exist in most process algebras.
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– c!v represents the emission of a value v on name c, used as a communication
channel. The c! prefix corresponds to an emission without value passing (as for a
signal);

– c?(x) represents the reception of a name on a channel c. Variable x is then
instantiated with the value received, for the sequel of the process. Reception without
value c? corresponds to an emission without value c!;

– [a = b] tests the equality of values or names a and b;

– [a �= b] tests the inequality of values or names a and b;

– (νx) corresponds to the construction of private name x. This name is visible
only for the process that created it. This construct is also called restriction.

EXAMPLE.– Let us consider a simplified machine delivering drinks. The commu-
nication channels explicitly describe the interface between the machine and its user:
channel coin is used for inserting coins, and channels coffee, tea, and water for se-
lecting a drink. A possible specification is the following:⎡

⎣ Machine = coin?(p). ([p = 1e]CoffeeTea + [p = 50cts]Water)
CoffeeTea = tea?.Machine + coffee?.Machine
Water = water?.Machine

The machine operates as follows. If the inserted coin is a 1 euro coin, the machine
offers a choice (external choice, performed by the environment) between coffee and
tea. If it is a 50 cent coin, only fresh water is proposed.

It is also possible to compose this machine with e.g. a client, so as to obtain a
complete system Sys:[

Client = coin!(1e).tea!.coin !(50cts).water !.0
Sys = Client ‖ Machine

Here, a parallel composition of the client and the machine is used. The behavior of the
client consists of first paying and then choosing tea, followed by paying and choosing
water.

Process algebras admit many variants: timed, probabilistic, distributed, asynchronous
algebras, etc.

2.4. After specification, verification

Once the system has been modeled, simulations can be carried out to gain in-
creased confidence that its behavior is correct. To do so, we start from an initial state
of the system and execute the model step by step. For automata or Petri nets, transi-
tions are fired one after the other. Simulation can follow two main modes:
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– automatic simulation is entirely performed using a computer tool. When a choice
between transitions occurs, it is done in a non-deterministic fashion;

– guided or manual simulations provide the user with a choice either at each step
or when several firings can occur. This allows the tool to be guided towards possible
errors.

In any case, execution traces will be studied for coarse-grained checking of the
behavior of the system for these particular executions. This also enables correction of
major errors.

One of the main criteria to consider for simulation is the stop condition. It can be
expressed according to:

– the number of firing steps to execute during each simulation. The fixed limit
should be large enough for the simulation result to be significant;

– a property that should not be satisfied. The goal is then to find an execution trace
that violates a desired property. As soon as a state violating the property is found, the
simulation terminates, and an inspection of its trace enables the source of the error to
be determined.

This latter technique is close to verification issues. Verification techniques are
applied as a second step, after simulation, in order to perform a more detailed anal-
ysis of the system. Then, intended properties must be expressed using a formalism
compatible with both the model and the chosen tool.

In order to check specific system properties, they must be written according to
an appropriate formalism. Petri nets propose a set of “standard” properties, generic
for any Petri net (boundedness, liveness, deadlocks, etc.). However, the properties of
interest are often more complex and depend on the system under study (e.g. mutual
exclusion between two processes). Such properties are then formalized using an ap-
propriate language, such as temporal logics [BÉR 01a, CLA 00]. Temporal logics aim
at expressing the sequentialisation of events. It is basically divided into two kinds of
logics:

– LTL (linear time logic) expresses properties on execution paths;

– CTL (computation tree logic) expresses properties on the states encountered dur-
ing the system evolution.

Verification of properties can be performed in different ways, as will be explained
in part II:

– structural analysis is concerned with validation of intrinsic properties of the sys-
tem, valid whatever the initial state;

– behavioral analysis is based on a total or partial representation of the system’s
behavior.

Models and Analysis in Distributed Systems
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Each of these techniques has its pros and cons. Making the appropriate choices
from the start of the modeling phase is thus a key issue.

2.5. Outline of Part I

Formal models are key to the design and validation of secure and safe systems.
For such an approach to be efficient, the system under study must first be specified.
This first step is of utmost importance since it has consequences on later stages of
the process. The designer should consider many aspects of his system and answer
questions that are not always obvious initially, so as to choose the most appropriate
model or specification language. The expected properties that will be checked at a
later stage must already be considered as well. Hence, the chosen abstraction level
will allow these properties to be expressed without the burden of useless details. Once
all these aspects have been considered, writing a specification using knowledge of the
system is key to a successful modeling approach. This is detailed in Chapter 3.

For some systems, temporal or dynamic constraints should explicitly be consid-
ered. Then, the use of temporal or hybrid models will be privileged. They make it
possible to verify not only the usual properties of untimed systems, but also real-time
constraints. Thus, the duration of some events, the occurrence of a particular event
before a time delay elapses, etc., can be checked. Time can be modeled using a global
clock, i.e. shared by all components of the system, a local clock for each component,
chronometers, etc. Adapted verification techniques are applied to these kinds of mod-
els. These models and their associated verification techniques constitute the subject
of Chapter 4.

When dealing with real systems, models are usually too large to be dealt with
and to guarantee complete understanding, follow-up, and analysis. Moreover, parts
of such systems can be reused within other similar systems, or during maintenance,
e.g. when replacing one subsystem with another. Some models, such as hierarchical
high-level nets [JEN 92, JEN 09] or modular nets [CHR 00, KIN 09], include a mod-
ular structure from the start. But, these concepts are extended further so as to harness
heterogenity issues, hence allowing for the development by components, which may
be heterogenous. Then, not only should the component be modeled – and its indi-
vidual behavior checked, but its interface with other system components must also be
detailed (input/output, connectors, etc.). ADLs follow such an approach. Chapter 5
presents formal ADLs, which aim to verify properties, and implementation ADLs,
which enable real tools to be obtained from their specification.

2.6. Bibliography

[AMI11] CPN-AMI website, http://move.lip6.fr/software/CPNAMI/index.html, February
2011.



38 Models and Analysis for Distributed Systems

[AST 01] ASTESIANO E., REGGIO G., “Labelled transition logic: an outline”, Acta Inf.,
vol. 37, 2001.

[AST 02] ASTESIANO E., BIDOIT M., KIRCHNER H., KRIEG-BRÜCKNER B., MOSSES

P. D., SANNELLA D., TARLECKI A., “CASL: the common algebraic specification lan-
guage”, Theoretical Comput. Sci., vol. 286, p. 153–196, 2002.

[BÉR 01a] BÉRARD B., BIDOIT M., FINKEL A., LAROUSSINIE F., PETIT A., PETRUCCI L.,
SCHNOEBELEN PH., Systems and Software Verification. Model-checking Techniques and
Tools, Springer, 2001.

[BER 01b] BERGSTRA J. A., PONSE A., SMOLKA S. A., Handbook of Process Algebra,
Elsevier Science, 2001.

[BID 04] BIDOIT M., MOSSES P. D., CASL User manual, LNCS 2900 (IFIP Series), Springer,
2004, with chapters by T. Mossakowski, D. Sannella, and A. Tarlecki.

[CHR 00] CHRISTENSEN S., PETRUCCI L., “Modular analysis of Petri nets”, The Computer
Journal, vol. 43, p. 224–242, 2000.

[CLA 00] CLARKE E. M., GRUMBERG O., PELED D. A., Model Checking, MIT Press, 2000.

[CoF 04] COFI (THE COMMON FRAMEWORK INITIATIVE), CASL reference manual,
LNCS 2960 (IFIP Series), Springer, 2004.

[COF11] CoFI, http://www.cofi.info, February 2011.

[CPN11] CPN TOOLS HOMEPAGE, http://cpntools.org/, February 2011.

[D 09] DEPARTMENT OF COMPUTER SCIENCE, DAIMI, Examples of industrial use of
CP-nets, http://www.daimi.au.dk/CPnets/intro/example_indu.html, May 2009.

[DIA 09] DIAZ M., Ed., Petri Nets: Fundamental Models, Verification and Applications, ISTE-

[GIR 03] GIRAULT C., VALK R., Petri Nets for Systems Engineering: a Guide to Modeling,
Verification and Applications, Springer, 2003.

[HOA 78] HOARE C. A. R., “Communicating sequential processes”, Communications of the
ACM, vol. 21, p. 666–677, 1978.

[JEN 91] JENSEN K., ROZENBERG G., High-level Petri Nets, Springer, 1991.

[JEN 92] JENSEN K., Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical
Use. Volume 1: Basic Concepts, Monographs in Theoretical Computer Science, Springer,
1992.

[JEN 09] JENSEN K., KRISTENSEN L., Coloured Petri nets: modelling and validation of con-
current systems, Monographs in Theoretical Computer Science, Springer, 2009.

[JØR 04] JØRGENSEN J., BOSSEN C., “Executable use cases: requirements for a pervasive
health care system”, IEEE Software, vol. 21, p. 34–41, 2004.

[KIN 09] KINDLER E., PETRUCCI L., “Towards a standard for modular Petri nets: a formal-
isation”, Proc. 30th Int. Conf. Application and Theory of Petri Nets and Other Models of
Concurrency (PetriNets’2009), vol. 5606 of LNCS , Springer, p. 43–62, 2009.

Wiley, 2009.

Models and Analysis in Distributed Systems

EP



Introduction to Formal Models 39

[MED 00] MEDVIDOVIC N., TAYLOR R. N., “A classification and comparison framework for
software architecture languages”, IEEE Transactions on Software Engineering, vol. 147,
p. 225–236, 2000.

[MIL 80] MILNER R., “A calculus of communicating systems”, vol. 92 of LNCS , Springer,
1980.

[MIL 92] MILNER R., PARROW J., WALKER D., “A calculus for mobile processes”, Infor-
mation and Computation, vol. 100, p. 1–40, 1992.

[PET 03] PETRUCCI L., KRISTENSEN L. M., BILLINGTON J., QURESHI Z. H., “Developing
a formal specification for the mission system of a maritime surveillance aircraft”, Proc.
3rd Int. Conf. on Application of Concurrency to System Design (ACSD’03), Guimarães,
Portugal, June 2003, IEEE Comp. Soc. Press, p. 92–101, 2003.

[PIL 05] PILONE D., PITMAN N., UML 2.0 in a Nutshell, O’Reilly, 2005.

[REG 03] REGGIO G., ASTESIANO E., CHOPPY C., CASL-LTL: A CASL extension for dy-
namic reactive systems, version 1.0 – Summary, Report num. DISI-TR-03-36, University
of Genova, 2003.

[REI 91] REISIG W., “Petri nets and algebraic specifications”, Theoretical Computer Science,
vol. 80, p. 1–34, 1991.

[ROG 04] ROGGENBACH M., MOSSAKOWSKI T., SCHRÖDER L., “CASL Libraries”,
[CoF 04], part V.



Chapter 3

Specification and Design Approaches

3.1. Introduction

The aim of this chapter is to describe how to write a consistent system specifica-
tion. The question under study here is the following: “how do you write and develop
a specification?” It is obvious that before starting to write the specification of a com-
plex problem, the problem should be studied, structured, and split into parts, using
processes that will be detailed at a later stage. Moreover, appropriate choices should
be made at an early stage so that the specification reflects the important characteristics
of the system for which some properties must be guaranteed. The choice of an ap-
propriate modeling language and associated verification techniques, within the large
existing zoo, is thus a major issue.

Therefore, section 3.2 presents criteria that should be taken into account for the
specification to fulfill its intended objectives. Thus, before even starting to write
the specification, the important characteristics of the specification should be carefully
considered, i.e. which modeling language should be chosen, which abstraction level
should be selected, the expected properties that should ultimately be verified.

Then, section 3.3 introduces a modeling methodology. Such an approach helps
the designer to choose the constituent features of the system to model, as well as the
relevant actions. It helps him in formalizing the essence of the relations between these
and constructing a formal model step by step, starting from an informal description.

Chapter written by Christine CHOPPY and Laure PETRUCCI.

41



42 Models and Analysis for Distributed Systems

3.2. Criteria for developing specifications

It is necessary, before starting the development of a specification, to consider the
important characteristics of the system under study. Such an approach enables an
appropriate formalism to be chosen with respect to the system, and also enables the
model to be structured, so that it will be easier, at a later stage, to enrich the model
by incorporating additional details. Finally, the formalism used must provide analysis
techniques for the intended properties.

In this section, we describe the different aspects to be considered before starting
to write the system specification. Then, a rather simple case study illustrates this
approach.

3.2.1. Relevant concepts

The first step identifies the relevant concepts in the system under study. The key
elements constituting the system are exhibited, thus guiding the choice for a formal-
ism.

System data types More or less complex data can appear in the system under study.
Hence, it is important to determine whether details for these data are necessary or not.
Indeed, in general, the higher the description level, the less efficient the associated
verification techniques are.

EXAMPLE.– Let us consider a communication protocol, with a special focus on the
adequate functioning of retransmissions with this protocol. The detail of the message
content is not necessary, whereas the kind of messages exchanged may very well be.
Then messages can be modeled using solely their type (request, indication, response,
confirm) and their sequence number.

When handling complex data that should explicitly be modeled, the choice of for-
malism is preferably high-level models, such as abstract data types or colored Petri
nets. Conversely, if the actual data are not that important, but only their availability is
required for the system to operate, lower-level formalisms, such as automata or Petri
nets will be preferred. In an intermediate case, where few simple types are used and
can be mapped to integers or enumerations, counter automata or symmetric Petri nets 1

are more appropriate.

Time Among critical systems are real-time systems, which include temporal con-
straints of different types such as:

1. Symmetric Petri nets were formerly named well-formed nets. The name changed during the stan-
dardization process for Petri nets (ISO/IEC 15909 standard).

Models and Analysis in Distributed Systems



Specification and Design Approaches 43

– a waiting time, such as a timeout;

– an action execution time, such as the movement of a robot.

Several extensions of automata and Petri nets include time. They will be detailed
in Chapter 4. Two main paradigms are used when considering time. Some formalisms
assume a global clock exists, which is used by all operations with timing constraints.
Others consider there is no such global clock and operations can occur within a time
interval from the moment all their preconditions are satisfied; or each of the different
system components have their own local clock.

Time can be modeled along two main trends:

– discrete time corresponds to the observation of the system at regular clock ticks,
or to a sampling;

– continuous time reflects the evolution of the system without considering time
slices. This is particularly relevant when studying hybrid systems where variables val-
ues may evolve according to time (for example, acceleration, change in temperature,
etc.).

It is not always necessary to take time into account in the specification. Indeed,
this is the case when the focus of interest is qualitative properties, in which time is not
considered.

Determining whether time should be considered in the specification is hence an
issue. Moreover, if it is the case, the nature of time, i.e. discrete or continuous, and
which clocks (local, global, time intervals) are chosen is in accordance with the prob-
lem studied.

The choice between the synchronous or asynchronous model paradigm [LYN 96]
will also have to be carefully considered. Subsystems of a synchronous model evolve
at the same rate, whereas in an asynchronous model, one subsystem may progress
while another waits for a particular event to happen.

Communication Complex systems are generally composed of communicating sub-
systems. Communications may take different forms:

– rendez-vous enforces a synchronization between the different participating en-
tities. A subsystem sends a message that is received simultaneously by one or more
other subsystems. If one of these is not yet ready to synchronize, the other subsystems
have to wait. This kind of communication is explicitly modeled in communicating
automata and in Petri nets.

– a communication channel may be used according to different policies: the chan-
nel can be modeled by a message queue with a FIFO (first in first out) ordering, or
another order (in which case desequencing of messages is possible); it can either
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eventually lose messages or be reliable. Queuing automata and high-level Petri nets
provide such modeling mechanisms.

3.2.2. Abstraction level

Writing a specification is definitely not a one-shot process. A major notion in this
process is the abstraction level. The modeling starts at a very abstract level, before
applying incremental construction through several refinement steps. At each step, the
model should be analyzed and proven correct before the next refinement. Refining
consists of considering more elaborate data structures so as to consider additional
details, but also to augment the automaton or Petri net structure, in order to elicit a
complex action by breaking it down into several more elementary actions.

Thus, such a specification approach starts with a rather abstract model, where only
the key aspects of the system are modeled, and sequentially adds more and more
details.

EXAMPLE.– Let us consider again the example of the modulo-3 counters introduced
in section 2.3.2. Even though this example is extremely simple, it could be seen as a
system with two counters and two kinds of operations: incrementing a single counter
by one unit and incrementing both counters, the first one by 2 and the second by 1.
This leads to the model in Figure 3.1. This model can then be refined into the one in
Figure 2.8.

C1 C2

t1 t2

f12 2
2 2

Figure 3.1. Abstract Petri net for a system with 2 counters

Choosing an adequate abstraction level is all the more important as taking into
account unnecessary details complicates the analysis of the system.

Moreover, as for program development, a step-by-step construction enables parts
of the model to be validated one by one. The designer then ensures that the subsystems
studied have the correct behavior before proceeding with an additional subsystem.
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3.2.3. Specification structuring

Since writing a complex system specification is a multistep process, structuring
mechanisms are necessary. Such a system is usually composed of several interacting
subsystems. An interesting approach is to specify each of these subsystems in isola-
tion, and then specify their interactions. Such an approach has several advantages:

– the design of each subsystem focuses on its own behavior. Hence, the designer
is not bothered with other subsystem specifics;

– a subsystem may allow for different variants. The whole system can then be
analyzed with these different possibilities, only replacing one model of the subsystem
by another within the complete model;

– similarly, a component (or subsystem) designed for a particular problem may be
reused within another complex system. Therefore, it is not necessary to model this
component again;

– several instances of a same component may be integrated in the model, using
parameterized modeling features, so as to clearly identify each individual instance
during the analysis phase. Hence the subsystem model is not duplicated;

– This approach enables generic components or subsystems to be used, which are
available in libraries of frequently used components, with as little adaptation as possi-
ble.

EXAMPLE.– Consider the specification of a communication protocol. Such a system
usually involves sender and receiver processes, as well as a communication medium.
These three components can be specified independently of each other. It may be of
particular interest to e.g. model two kinds of senders, and verify the characteristics of
the protocol with each of these.

Some specification formalisms include structuring concepts, either intrinsic or in-
tegrated. This is the case for hierarchical colored Petri nets [JEN 92, JEN 09], in which
the model architecture follows a tree-like structure. The highest level (tree root) cor-
responds to the most abstract description of the system, while the lowest levels (tree
leaves) describe the different elements in great detail.

3.2.4. Properties

Expressing the system’s intended properties is complementary to its specification.
Indeed, not only should the formalism used for expressing properties be compatible
with the language used for the system specification, but also the elements constituting
the property should actually be represented within the model. For example, real-time
constraints or schedulability can be expressed on a timed model.

www.allitebooks.com
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3.2.5. Future evolution of model and properties

Both the system and properties specifications are deemed to evolve during the
design and verification phases. This aspect must also be taken into account, in order
to guarantee that the intended abstraction level is reached.

EXAMPLE.– The Petri nets in Figures 3.2, 3.3, 3.4 and 3.5 all model the problem of
mutual exclusion between two processes, competing for access to a critical section.

These models comprise a loop to represent a process behavior: it is initially not in
the critical section (place P ), it can ask to enter the critical section (transition Enter),
after which it is in the critical section (place CS), which it can leave (transition End)
to return to its initial state. At any time, only a single process can be in the critical
section. As a consequence, the right for a process to enter the critical section is pre-
conditioned by the status of the other process, which should not be in the critical
section itself. This is modeled by the double arcs (i.e. arcs with two arrow heads)
in Figure 3.2. A standard way of handling the access to the critical section is to
grant some “access right”, modeled by a token in place MutEx in all other Petri nets
presented for this problem. In Figure 3.3, the loop is explicitly shown for each process,
whereas in Figure 3.4, both cycles are superposed and the two processes specified by
two tokens in place P . Figure 3.5 is similar, using a colored Petri net that enables the
two processes to be distinguished by naming them p1 and p2.

P1

CS1

P2

CS2

Enter1

Exit1

Enter2

Exit2

Figure 3.2. Mutual exclusion between two processes (version 1)

Let us now consider the first approach to this specification development: the de-
signer wants to extend his model so as to cater for the mutual exclusion between three
processes. The net in Figure 3.2 should then include a new cycle for the additional
process. Transition Enter3 must be connected by a double arc to places P1 and P2,
and similarly, transitions Enter1 and Enter2 must be connected to place P3. Hence
the model becomes less readable. When adding the same extension to the Petri net
in Figure 3.3 a new loop must be added for the third process and connected to place
MutEx. This is also not very readable. Conversely, the extension of the other two
models is simply made by adding a new token in place P to model the third process.
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P1

CS1

MutEx

P2

CS2

Enter1

Exit1

Enter2

Exit2

Figure 3.3. Mutual exclusion between two processes (version 2)

P

CS

MutEx
Enter

Exit

Figure 3.4. Mutual exclusion between two processes (version 3)

Now, assume that the internal behavior of the critical section for each process has
to be detailed. Only the Petri net in Figure 3.5 enables the different processes involved
to be distinguished while maintaining a relatively compact model (the net in Figure 3.3
also distinguishes the process identities).

Similarly, if verifying that a process can enter the critical section, whatever its
identity, nets in Figures 3.3 and 3.5 are more appropriate. Hence, this shows that even
for a very simple example, the design choices must definitely take into account future
evolutions of the model as well as checking the properties.

3.2.6. Using specification and verification tools

Several tools (e.g. [AMI11, CPN11, HEN 95, LAR 97]) provide an environment
for designing formal models as well as the associated analysis techniques. However,
the kind of model considered and the analysis provided differ from one tool to an-
other. The choice of a formal specification and verification tool should then consider
both aspects. The recent standard for Petri nets [ISO 11] provides a unified language
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P p1+p2 {p1,p2}

CS {p1,p2}

MutEx

e {e}

Enter

p

ep

Exit

p e

p

Figure 3.5. Mutual exclusion between two processes (version 4)

to describe these models in order to exchange them between different software tools,
and thus take advantage of the particular analysis techniques they implement. A com-
panion framework to the standard [HIL 10] is provided to ease the implementation of
writing and reading such standardized Petri nets files.

3.2.7. Case study: modeling a railway system

In this section, we consider the more complex design example of a model railway.
This example is taken from a students’ project [BER 01] with the aim of formally
designing and analyzing an electrical model railway before implementing it on the
actual hardware. It is thus mandatory to ensure that no collision will occur before the
final solution is tested on the real devices.

The physical layout of the railway track is presented in Figure 3.6. It is composed
of approximately 15 m of track divided into 16 sections (blocks B1 to B16), plus two
garage side tracks (ST1 and ST2). These are connected with four switches and one
crossing. The hardware allows for several trains to circulate simultaneously. It is
connected to a computer, which sends information on the tracks and transmits orders
to trains (stop, advance, go backwards) and also to switches. Each track section is
equipped at both ends with a sensor to detect that a train is entering or leaving the
section.

When catering for several trains, the model can very quickly become extremely
complex. Hence, the formalism chosen is a high-level specification language. More-
over, in a first approach, a very abstract model, close to the actual layout, can be
designed. In a subsequent step, details to move from one track section to the next will
be considered. Therefore, hierarchical colored Petri nets will be an adequate choice.
Figure 3.7 illustrates an abstract model “fitting” the physical tracks layout, easily re-
flecting a mapping between net elements and physical ones.
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switch 1 switch 4

switch 2 switch 3

crossing
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ST2

B3

B4

B9

B10

B1

B2

B7

B8

B13

B14

B15

B16

B5

B6

B11

B12

Figure 3.6. Setup of the model railway track
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Figure 3.7. Abstract Petri net for the model railway
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The policy to move from one track section to the next can then be detailed: each
transition of the net in Figure 3.7 is thus a substitution transition, i.e. its behavior is
described by a subnet. Figure 3.8 shows a simple policy to move from one section to
the next, in the simple case where there is neither a switch nor a crossing. This subnet
explicitly describes the behavior of transitions t1, t3, t6, t8, t10, and t11. The subnets
for the switches and the crossing can be found in [BER 01].

section

P2
P I/O

section
P1P I/O

P2P1 P1P2retboth

none

none

t cl

t cl

none

none

t acl

t acl

t acl

t aclt cl

t cl

Figure 3.8. Petri net model for the move from one track section to the next

Let us now focus on the data manipulated in this model. The railway is represented
by Petri net places. Each track section can contain either a single train or no train at all.
The type associated with places thus reflects these two possibilities. It is also necessary
to know which way each train is heading, thus a direction (clockwise or anticlockwise).
The designer is tempted to assign an identity to each train, so that he knows at all
times where each train is. However, this information is superfluous. Indeed, for the
system to behave as expected, knowing if a train is present on a track and its direction
suffices. Even though naming trains is possible, it entails problems: when verifying
the absence of collisions, the state space explosion problem is encountered (unless
symbolic techniques are used, see Chapter 7). An approach without train identities
avoids this problem.

3.3. Specification development methodologies

A common characteristic of all development methods considered is thus that they
can lead, one way or another, to a decomposition of the system under study. An
initial decomposition can very often be obtained through unified modeling language
(UML) use cases. This structuring step must then be pursued further, for example
using patterns and guidelines so as to ultimately reach a precise formal specification.

Patterns represent families of structures that are frequently used, and that the user
is invited to “try” on (and possibly to adapt to) the problem under study, so as to benefit
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from its “off-the-shelf” structuring concepts. Patterns can thus be viewed as an elabo-
rated means to reuse knowledge acquired from experience. Problem frames [JAC 01]
were proposed by M. Jackson to structure problems in a global way. Structures of
a finer grain and often used for design are offered by architectural styles [GAR 93,
BAS 98]. Components architecture [CHE 01] is interesting to describe precisely how
the components (that structuring yields to develop independently) should be inte-
grated. It may be worth combining these different approaches so as to benefit from
their combined advantages [CHO 04c].

Once a convenient level of decomposition is reached, the precise specification of
the system may be developed, and guidelines are useful to achieve this in a methodical
way that should cover the different relevant points as much as possible. An approach
presented in section 3.3.1 relies on a distinction between data structures, simple dy-
namic systems, and structured (with subsystems) dynamic systems, and for each case
proposes the characteristic elements to consider and the kind of properties to look for.
The methods developed further are based on problem frames, architectural styles, as
well as the specification development based on components and the composition of
the different parts for the solution.

3.3.1. Guidelines for specification development

Following the approach described in [CHO 06], a software item may be:

– a simple dynamic system (for instance a sequential system);

– a structured dynamic system (with interacting subsystems, that may themselves
be either simple or structured);

– a data structure.

Software items are characterized by their parts and by their constituent features. For
instance, the parts of a simple system are its data structures and its constituent features
are its states and elementary interactions. A dynamic system (simple or structured) is
considered as a labeled transition system lts, where lts is a triple (State, Label,→)
that comprises the system State, the transition Label (composed of elementary inter-
actions), and the transition relation→, with→⊆ State× Label× State.

Precise guidelines indicate which properties should be expressed and in which
way.

It is also possible to choose a specification style, for instance a property-oriented
style (also called axiomatic), or a model-oriented style (also called constructive).
The property-oriented style is focused on the description of the system properties
expressed at an abstract level (it may be possible to prove some consequences of
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these properties), while the model-oriented style deals with the possibility of achiev-
ing some computations (and also to perform model checking).

Whichever style is chosen, it is always recommended to adopt a graphical repre-
sentation that facilitates the reading and understanding of the formal specification.

This method was initially developed for the languages CASL [BID 04] and CASL-
LTL [REG 03] (see section 2.3.1), but it was also applied to other languages, such as
Petri nets [CHO 04a, CHO 08] or UML [CHO 04b]. We describe below the method
for simple dynamic systems.

Simple dynamic systems

We sketch out a description of the method for producing a property-oriented spec-
ification of simple dynamic systems, and we illustrate this using the train example
described in section 3.2.7.

A simple dynamic system has no internal component, and it may be a sequen-
tial/non deterministic process or a distributed/parallel system. As mentioned above
simple dynamic systems are formally considered as labeled transition systems lts.
The states s of an lts represent the intermediate situations in the system life, each
transition represents its capacity to evolve from state s to state s′, and the label l con-
tains information about the necessary conditions to enable this transition and on the
transformations resulting form the transition execution.

The labels are a set of elementary interactions. Each elementary interaction corre-
sponds to an elementary exchange with the external environment. Elementary inter-
actions have different types, and one type is characterized by a name and arguments
(that belong to data structures). Elementary interactions belong to the simple system
constituent features.

The state is also a constituent feature of a simple system and, depending on the
specification style adopted, it will be described by means of state observers (for a
specification in the property-oriented style) or by state constructors (for a specification
in the model-oriented style).

The data structures used in the state descriptors and by the elementary interactions
are the parts of the system.

The properties of a simple system correspond to properties on lts that areproperties
on the labels, states, and transitions. These properties may express what the admissible
sets of elementary interactions are in order to form a transition label, and the links
between the source state, the target state, and the label of a transition. These properties
may also provide information on the values observed by the different state observers.
More precisely:
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1) label properties express that elementary interactions are incompatible under
some conditions;

2) state properties describe the conditions that should be satisfied by the values
returned by state observers for any state;

3) state properties may also include special atoms that express properties on the
execution paths (sequences of transitions) leaving/arriving this state (thus properties
of the future/past behavior of the system);

4) transition properties are conditions on the state observers that apply to the
source and target states of the transition.

Properties should be described both informally using a comment expressed in nat-
ural language, and formally with a formula. A complete list of the properties is given
in [CHO 06], and they will be illustrated in the train specification example. Some ex-
amples of properties are detailed below: an elementary interaction precondition and
its incompatibilities with itself and other elementary interactions.
pre-cond1 (TransitionProp) If a transition label contains an instance of ei, then the

transition source state should satisfy the condition:
if cond(args) then ei(args) happens

Some observers on the source state may appear in cond(args) while observers
on the target state may not appear.

incompat1 (LabelProp) Under some conditions on the arguments, an instance of ei
is incompatible with another instance of itself (no transition label may contain
both):
ei(arg1) incompatible with ei(arg2) if cond(arg1,arg2)

Under some conditions on the arguments, an instance of ei is incompatible with
an instance of ei′ (no transition label may contain both):
ei(arg1) incompatible with ei′(arg2) if cond(arg1, arg2)

In the next section these ideas are applied to guide the specification of part of the
train example described in section 3.2.7.

The train example specification

In order illustrate the ideas above, we consider the train as a simple dynamic sys-
tem. 2

Hence, system characteristics should be identified and expressed as state observers
and elementary interactions, as shown in Figure 3.10.

2. Of course, a more complete approach, taking into account a moving policy, can be described as a
more elaborate structured system, as described in [CHO 08].
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The description of a state of the system is first based on the physical system layout,
i.e. the tracks on which the trains circulate, as well as the switches. The state observers
must then tell which track sections are contiguous (“connected”) or connected via a
switch (“switched”), and if a train is present on a section (“train_present”), which
direction it is heading (here “clockwise” or “anticlockwise”).

The elementary interactions (associated with a train changing state) are thus the
track section changes for the train, be they connected directly or via a switch. The
properties of the state observers will of course show that the track positions and the
switches connections are fixed.

The identified elementary interactions and state observers should be named in a
consistent manner. Their parameter types must also be determined and specified.

T
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IN

D
A
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A

ST2

ST1

B16

B3

B2

B1

...

TrainPresence

none

TrainDirectionanticlockwise

clockwise

TrainDirection

TrackSection

crossing

Switch

switch1

switch2

switch3

switch4

Figure 3.9. Data structures

Data structures that constitute part of the system are identified and designed while
working on elementary interactions and state observers. The names of track sections
and switches are those of the physical layout in Figure 3.6, and they are also the pos-
sible values for the associated data types. When the number of different values being
rather small, the types are defined as enumerations (see Figure 3.9 and the CASL spec-
ification below). Similarly, the direction in which trains are heading has two possible
values. The CASL specification for these data is given below. The free construct
guarantees that no property relates these values with one another, and that they are
therefore actually distinct. The sort construct is used here to express that each ele-
ment of type TrainDirection is also an element of type TrainPresence.

spec TRAINDATA =
free type

TrackSection ::= B1 | B2 | B3 . . . | B16 | ST1 | ST2
free type

Switch ::= switch1 | switch2 | switch3 | switch4 | crossing
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free type
TrainDirection ::= clockwise | anticlockwise

free type
TrainPresence ::= none | sort (TrainDirection)

end

Note that these data appear in the names of the Petri net places and transitions, or
in the token colors (see Figure 3.6). The presence of a train on a track section evolves
with the system behavior according both to the initial state and the changes that oc-
curred since then. It is thus necessary to record the system “History” and “State”.

HISTORY

TRAINDATA

BASIC DATA

(state observers)

(elementary interactions)

TRAIN

switched(List[TrackSection], List[TrackSection], Switch, TrainDirection)

changeTrackSec(TrainTrack, TrainTrack, History): State

train_present(TrackSection, TrainPresence, History)

connected(TrackSection, TrackSection, TrainDirection)

LIST, PAIR ...

The auxiliary type TrainTrack is defined as Pair[TrainPresence, TrackSection] 

Figure 3.10. The train elementary interactions and state observers

spec STATE =
sort State;
op initial : State;
end

spec HISTORY = STATE then
type History ::= initial | __.__(History; State);

. . .
end

The then construct introduces the elements added after importing the STATE spec-
ification module.

Once the constituent characteristics are identified and the system parts specified,
the system properties can be formulated. The properties of the elementary interaction
changeT rackSec are altogether a pre-condition, a post-condition, and an incompati-
bility property.

www.allitebooks.com

http://www.allitebooks.org


56 Models and Analysis for Distributed Systems

pre-cond1 (transition property) The track section change is possible when two track
sections are connected (either directly or via a switch), when a train is on the
departure track for this connection, and there is no train on the destination track:
if (connected(TSi, TSj , TPi) ∨
∃sw : Switch s.t. switched((. . . , TSi, . . .), (. . . , TSj , . . .), sw,TPi)) ∧ (TPj = none)

then changeTrackSec(< TPi, TSi >,< TPj , TSj >) happens

post-cond1 (transition property) After changing track section, the train is on the des-
tination track:
if changeTrackSec(< TPi, TSi >,< TPj , TSj >) happens then (TP ′

j = TPi)

incompat1 (label property) The idea here is to express that a train cannot simulta-
neously make several track changes at a given time in the system’s history h.
Since the direction the train is heading is known, the possibility that the train
takes two different directions while using a switch should be avoided:
changeTrackSec(< TPi, TSi >,< TPj , TSj , h >) incompatible with

changeTrackSec(< TPi, TSi >,< TPk, TSk, h >)

if ∃sw : Switch s.t. switched((. . . , TSi, . . .), (. . . , TSj , . . . , TSk, . . .), sw, TPi) ∧ (Tj �=
Tk)

The properties for state observers connected and switched reproduce the track lay-
out, which never changes:

value1 (state property)
connected(B1, B2, anticlockwise)

connected(B2, B1, clockwise)

. . .

switched((ST1,B1), B3), switch1, clockwise)

switched((B1), (B3, B4, B5), clockwise)

switched((B3), (B1, ST1), anticlockwise)

switched((B3, B4, B5), (B1), switch1, anticlockwise)

. . .

The properties for state observer train_present concern the initial state values (for
example trains are or are not occupying some tracks) and the way these values evolve
when elementary interactions occur (here changeT rackSec).

value1 (state property) train_present(B1, none, initial) . . .

how-change (transition property)
if train_present(TSi, TPi, h) ∧ train_present(TSj, none, h)

∧ changeTrackSec(< TSi, TPi >,< TSj , none >, h) happened

then (TPi �= none) ∧ train_present(TS′
i, none, h

′) ∧ train_present(TS′
j, TPi, h

′)

where h and h′ are the system history before and after the move, respectively.

A parallel can be drawn between this CASL-LTL specification and a Petri net model.
This modeling step can be pursued by other steps introducing additional details (spec-
ification refinement).
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Moreover, this specification can be used (e.g. be imported) as part of a structured
system specification, or part of another system. In the following, we describe problem
frames, and illustrate how the specification developed above is used at a larger scale
by using the train example.

3.3.2. Problem frames

A problem frame [JAC 01] is a schema defining, in intuitive manner, a class of
problems with their context, domain specific characteristics, interfaces, and require-
ments. The system to be developed is represented by the “machine”.

A diagram is associated with each problem frame (such as that in Figure 3.11).
Rectangles represent the already existing application domains, while those with a dou-
ble bar represent the “machine” domains to be constructed, and the requirements are
denoted by a dashed oval. The lines linking them represent interfaces, also called
shared phenomena. Jackson distinguishes causal domains, which obey some rules,
lexical domains, which are physical representation of data, and “biddable” domains,
which correspond to people. Jackson also defines five basic frames (required be-
havior, commanded behavior, information display, workpieces and transformation).
Figure 3.11 pictures the control-command (commanded behavior) problem frame,
proposing a structure for problems where the domain is controlled according to an
operator’s commands.

behavior
Commanded

Operator

machine

E4

C3

B

domain
Controlled

Control

OP!E4

GD!C2
CM!C1

C

Figure 3.11. Control-command problem frame

The C indicates that the controlled domain is causal, and CM!C1 means that the C1
phenomenon is controlled by the machine (CM, control machine). The dashed line
refers to requirements, and the arrow indicates that it is a constraining reference.

Using a problem frame consists of instantiating domains, interfaces, and require-
ments according to the problem under study. A problem frame corresponding to the
problem studied will therefore be sought. The basic frames provided by Jackson being
very simple, either a first decomposition (e.g. using UML use cases), an adaptation of
existing frames, or the use of more elaborate ones (obtained by combination of several
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problem frames) will be necessary. The domain nature (causal, lexical, “biddable”) is
key to obtaining the appropriate frame.

With respect to the model railway example described in section 3.2.7, the control-
command problem frame cannot be used as it does not refer to a train user. The
train can be considered has having an autonomous behavior as soon as it is started.
The problem frame “required behavior” (without a user, see Figure 3.12) is more
adequate. It corresponds to applications where an automatic behavior prevails, and
humans seldom intervene (only for the bootstrap and eventually a few settings).

Control
CD!C2

CM!C1

domain
Controlled

C

C3

machine behavior
Required

Figure 3.12. Problem frame “required behavior”

The specification associated with this problem frame involves a specification of
the controlled domain, that for the required behavior, and also for the design of the
system that will operate. In our train example, the controlled domain is composed of
trains that circulate according to the railway layout. The intended behavior must be
described, e.g. by imposing circulation rules (a train advances as long as it does not re-
sult in a collision). In order to guarantee this behavior, the system must be aware of the
controlled domain state (in practice, this is often achieved with sensors), and should be
able to change this state (using actuators). In the train example, sensors can transmit
the train_present information, and the system controls the changeT rackSection
event.

In the above, only the structure deduced by the nature and the elements of the
problem is considered. When describing a global system structure, frames given by
architectural styles are advocated, either immediately if the problem is well known,
or after initial processing of the problem specification (then following a refinement
approach).

3.3.3. Architectural styles

Architectural styles [GAR 93, BAS 98] are patterns of software architecture, so
they are a priori structures less abstract than problem frames and that will therefore
not be used as a first line, but to a level of development (and specification) close to the
design. Architectural styles are characterized by:

– a set of component types (for instance a directory of data, processes, etc.) that
perform certain functions upon execution;

– a topological distribution of these components indicating their relationships at
run time;

Models and Analysis in Distributed Systems



Specification and Design Approaches 59

– a set of semantic constraints;

– a set of connectors for communication, coordination, or cooperation among com-
ponents.

Client

Client

Client

Client Client

Client

Repository

Notation

Component Computational Component/Object

Bidirectional Data Flow

Passive Data Component

Figure 3.13. A data-centered architectural style

Among the major styles of architecture, the “repository” style (see Figure 3.13),
data-centric, where different clients access shared data, is well-suited for information
systems.

As for problem frames, it must provide an instance of an architectural style. This
style will be chosen depending on the type of problem considered, but it often leaves
several choices. Non-functional specifications can then come into play. It is also
possible to guide the choice from the problem frame(s) used in the first step.

The associated formal specification shall take all elements of the chosen architec-
ture into account.

3.3.4. Component-based specifications

The basic idea of component-based software engineering is to build software from
parts of already existing software, which are well encapsulated and relatively inde-
pendent [SZY 99]. These pieces of software are also named “components”, but in this
context, the components must satisfy the following conditions:

– all services provided and all services required by a component are accessible
only via well-defined interfaces;

– a component adheres to a component model. This model specifies, among others,
syntactic conventions for defining interfaces and how the components communicate.
It serves to ensure the interoperability of several components that adhere to the same
component model;

– components are integrated in binary form, and the source code is often not ac-
cessible to the “client” components. It is therefore important that the specification of
a component contains all information needed for its use.
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In the component-based software engineering approach, architectural principles
also play an important role, since the composition of a system from components is
performed using a chosen architecture. The two areas are quite tightly linked.

The idea here is to break down a problem into sub-problems. For each sub-
problem, a software must be developed, and the whole system consists of an appro-
priate combination of the software that solves these sub-problems. Each sub-problem
is constructed as a component that must comply with the constraints on the interfaces.
The combination of different components can be achieved using a component archi-
tecture, such as that proposed by Cheesman and Daniels [CHE 01].

3.4. Conclusion

Developing a formal specification is a crucial step in the development of the sys-
tem. However, achieving this specification raises many issues, but these are not insur-
mountable. Indeed, the various points discussed here are intended to help to quickly
and accurately identify the nature of the problem studied and to enlighten the reader
with the crucial aspects to consider (for example, choosing a level of abstraction, the
choice of elements to take into account immediately or to leave open up to the imple-
mentation stage, and determine the responsibilities of the system).

We have also seen how a specification might evolve, for example in the case of
mutual exclusion.

Finally we showed how schemas or patterns can also be used in the specification,
and we have provided guidelines for writing specifications that indicate which ele-
ments to look for and which properties should be expressed.
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Chapter 4

Modeling Time

This chapter is devoted to the modeling of applications involving quantitative time
constraints. We briefly show how timed models can be useful (section 4.1), then
we describe semantical aspects of such models in section 4.2. Sections 4.3 and 4.4
respectively present several timed models and logics that have been largely studied in
the last 15 years for the specification of timed properties.

4.1. Introduction

We now explain in an informal way when time constraints should be integrated
in the modeling of systems and we describe the problems involved by this process of
adding explicit time.

4.1.1. Introducing explicit time in models

Reactive systems have to take into account actions from the environment and main-
tain adequate reactions throughout their executions. Timed systems are a subclass of
these systems, where possibly critical requirements are enforced by using explicit time
constraints.

A classical example is the response time property: “each time a dangerous event
occurs, an alarm is triggered”. In a model that does not handle explicit time, there is
no way to specify a precise delay between the dangerous event and the triggering of
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an alarm. Thus, when the property is satisfied, we only know that “sometimes in the
future”, the alarm will be triggered, which is not enough in some critical systems. On
the contrary, when time is explicitly represented, it is possible to require that at most 30
seconds elapses between these events. Another feature occurring frequently in reactive
systems is the time-out requirement, for instance: “if no action takes place, return to
initial state”. Again in this case, a precise time duration is needed to implement the
constraint.

Moreover, some systems involve more complicated dynamic variables evolving
with time, such a the room temperature obtained with a heating device or the water
level in a tank. In both cases, these variables satisfy differential equations and the
system should satisfy some requirements stating that their values must stay between
minimal and maximal thresholds.

Similar examples are described more formally in the following.

4.1.2. Some issues related to explicit time

There are various difficult aspects related to handling explicit time; we only show
some of them below.

The first concerns the language used to express time requirements. Consider again
the example of the response time property and assume that p(τ) and a(τ) denote,
respectively, the occurrence of a problem and the triggering of an alarm at time τ .
Writing the property in first-order logic would give the following formula:

∀τ (p(τ)⇒ ∃τ ′ (τ ≤ τ ′ ≤ τ + 30 ∧ a(τ ′))).

This would lead to large formulas for more complicated properties. Therefore, new
logics better suited to the timed framework have been introduced and will be described
in section 4.4.

The second problem concerns the more general issues of modularity and composi-
tionnality. The design of large systems is easier if it is possible to separately describe
subparts of a system, which are subsequently composed to obtain a global represen-
tation. The classical synchronization problems between modules are increased by the
necessary additional time synchronization. In a simplified framework, a global clock
can be introduced, thus leading to a strong synchronization between timed modules.
However, this hypothesis is not realistic when dealing with distributed components
executing on different machines, and introducing several asynchronous clocks often
yields undecidability for most verification problems.

Finally, similar to the design of large models, the questions of hierarchical structure
and model refinement arises. Until recently, few studies have been devoted to these
questions at the model level [BÉR 08b, BER 09].
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4.2. Semantics of timed models

Labeled transition systems are a natural framework well suited to the description
of the behaviors of dynamic systems. This framework has been extended to timed
models, by adding duration transitions to the classical action transitions. We first
describe the structure of time domains, then the timed transition systems, and the
corresponding languages, and we explain the problems resulting from the addition of
timed transitions.

4.2.1. Time domains

Classically, the time domains are the sets N of natural numbers, Q+ of non-
negative rational numbers and R+ of non-negative real numbers. The first domain
is a particular case of discrete time domain, sometimes also modeled by sequences
of special events called ticks, where the system state can be observed. The other two
represent dense time domains. In [NIC 93], a unified model is proposed for the time
domains, as a commutative monoid (T,+), with 0 as its identity, satisfying the fol-
lowing properties:

– ∀τ, τ ′ ∈ T, τ + τ ′ = τ if and only if τ ′ = 0

– the relation ≤ defined by τ ≤ τ ′ if ∃τ ′′ ∈ T such that τ ′ = τ + τ ′′, is a total
order on T.

This definition implies that 0 is the minimum of T for≤ and if τ ≤ τ ′ then there exists
a unique τ ′′ ∈ T, denoted by τ ′ − τ , such that τ ′ = τ + τ ′′.
Thus, elements in T represent dates and the difference between two dates naturally
corresponds to a duration, also in T. Within this framework, discrete or dense time
can be characterized.
A date sequence is a non-decreasing sequence in T. When the domain is Q+ or
R+, an infinite sequence can be convergent, in which case it is called Zeno, in refer-
ence to the famous greek philosopher and his paradox. Behaviours occurring along
such sequences are often excluded from the semantics of timed models, since they
are not considered realistic. They were nevertheless studied, for instance in [HAN 95,
BÉR 00]. In the following, for the sake of simplicity, the time domain T is considered
as a subset of R+.

4.2.2. Timed transition systems

Recall that a labeled transition system is usually defined by a quadruple T =
(L, S, s0, E), where L is the set of labels, S is the set of configurations, s0 is the
initial configuration and E is the transition relation, given as a subset of S × L × S.

A transition (s, �, s′) in E is also written as s
�−→ s′ and

�−→ is the set of transitions
labeled by �.
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A timed transition system is obtained by introducing delay transitions, in addition
to action transitions:

DEFINITION 4.1 A timed transition system (TTS) is a transition system T labeled by
L = Σ ∪ T, where Σ is a finite alphabet and T a time domain.

Transitions
d−→, with d ∈ T, correspond to time elapsing for a duration d and must

satisfy specific conditions expressing consistency of the system with respect to time
operations:

• null delay: s
0−→ s′ if and only if s′ = s,

• addition rule: if s
d−→ s′ and s′ d′

−→ s′′, then s
d+d′
−−−→ s′′,

The timed transition system T is time deterministic if s
d−→ s1 and s

d−→ s2 implies

s1 = s2. The system is continuous if s
d−→ s′ implies for all d′ and d′′ such that

d = d′ + d′′, there exists s′′ such that s
d′
−→ s′′ and s′′ d′′

−→ s′.

Transitions
a−→, with a in Σ, correspond to usual actions and are considered in-

stantaneous. Some variants include a non-observable action represented by the empty
word ε, so that actions are labeled by Σε = Σ ∪ {ε} instead of Σ. In other variants
like durational Kripke structures (see definition 4.5), there are only delay transitions
with a set of labels reduced to T.

A variant of this semantics is obtained by combining a delay transition with an
action transition into a single step of the system by defining:

s
(a,d)
===⇒ s′ if there exists s′′ ∈ S such that s

d−→ s′′ and s′′ a−→ s′

which leads to a single type of transitions with labels as pairs (a, d) ∈ Σ × T. The
associated transition system Tm = (Σ×T, S,=⇒) is called the mixed transition system
associated with T in [LAB 98]. These semantics are used in [ALU 90, ALU 94],
where they are directly defined from the machine model.

In all the above cases, executions (or runs) of T or Tm are defined as paths in
the graph starting from the initial configuration, sometimes with additional conditions
leading to so-called admissible runs. Observe that with the property of null delay
and the additivity rule, all runs in T can be obtained by a strict alternation of action
transitions and delay transitions.

4.2.3. Timed languages

A timed word is a pair w = (σ, θ), where σ is a word a1a2 . . . over the alphabet
Σ and θ = τ1τ2 . . . is a sequence of dates in T with same length as σ. The timed
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word w can also be written w = (a1, τ1)(a2, τ2) . . . and its untimed part is obtained
by projection on the alphabet of actions: untime(w) = a1a2 . . .. In this framework, a
pair (ai, τi) is called a timed action, since it can represent an observation of a system
at time τi, where action ai takes place in an instantaneous way.

From the sequence of labels (ai, di)i≥1 on the run of a mixed transition system Tm,
a timed word w = (ai, τi)i≥1 is obtained by accumulating the delays: τi =

∑
j≤i dj ,

for i ≥ 1. Conversely, from a timed word, a sequence (ai, di) ∈ Σ × T can be re-
covered by setting di = τi − τi−1 (with the convention τ0 = 0). Thus, di can also be
viewed as the maximal duration of action ai.

When the labels belong to Σ ∪ T, a timed word is obtained by considering paths
with an alternation of actions and durations. Moreover, if action labels belong to Σ ∪
{ε}, unobservable actions (ai, τi) (i.e. such that ai = ε) must be removed. Note that
in this case, absolute dates must be computed before erasing non-observable actions,
in order to take the corresponding delays into account.

A timed language is a set of timed words. Untiming is extended to languages: for
a timed language L, the projection on the alphabet of actions yields a standard lan-
guage untime(L) = {σ | ∃θ (σ, θ) ∈ L}. Timed languages have not been greatly
studied independently of timed transition systems. However, some studies have inves-
tigated the notion of timed regular expression [ASA 97, HEN 98b, BOU 99, BOU 02,
ASA 02, BRI 10] and algebraic approaches have been proposed in [GRO 95, DIM 00,
BOU 01].

4.2.4. Some issues related to timed semantics

A typical question raised by the timed model concerns urgency [BOR 98b]. A
transition labeled by some action a ∈ Σ is urgent in a configuration s of a transition
system if it cannot be delayed. This means that no delay transition can be fired in
this configuration, that is, a transition s

a−→ must occur in a null delay. This notion is
very useful for practical modeling purposes, for instance if several action transitions
must be executed in an instantaneous way. This is the case in some models where
this feature is used to simulate a synchronization of several components when only
binary synchronization is allowed. However, there can be ambiguous interpretations
of urgency in some models, for instance when two urgent actions are enabled simulta-
neously in two components, and urgency can lead to deadlocks in the composition of
modules [BOR 98a]. These two points are illustrated in the next section.
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4.3. Classical timed models

This section shows how an explicit notion of time was added in classical (untimed)
models, such as finite automata or Petri nets, to obtain timed behaviors. In all models
presented hereafter, a labeling of states by a set of atomic propositions is usually added
for verification purposes. This labeling is omitted here for the sake of simplicity, we
consider that this role is played by the names of states.

The mechanism for introducing explicit time in existing models consists of adding
a time domain and time constraints associated with the firing of transitions, in order
to produce a timed transition system. Essentially two variants have been proposed:
either adding variables evolving with time or adding time intervals, which can be seen
as a particular case of the first variant.

4.3.1. Adding a discrete clock

This first approach has been largely used since [EME 92], with N as the time
domain, based on the idea that system observations always take place along discrete
time sequences, produced, for instance, by sampling. With a fine enough granularity,
a global clock can be represented by a sequence of ticks and synchronized with the
system. This technique amounts to unfolding the original model by representing all
time units.

OFF ON

b

s

b

Figure 4.1. A1: a time-switch

EXAMPLE.– Consider a time-switch for light in a staircase. If the button is pressed,
the light is switched on (action b). If the button is not pressed again, the light switches
off after some time (action s). In this very simple case, the system is modeled by
the finite automaton A1 in Figure 4.1 with two states ON and OFF (also called
control modes). A timing requirement can be added, for instance: “If the button is
not pressed again, the light switches off after three time units”. Introducing the action
1, which represents a duration of one time unit, automaton A1 is synchronized with
the (reduced) clock H from Figure 4.2, which corresponds to unfolding the previous
automaton and yields the timed system A2 in Figure 4.3. Note that in this timed
transition system, there are no explicit transitions of duration two or three time units,
so they should be added for the addition rule to hold.
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0 1 2 3
1 1 1

Figure 4.2. H: three consecutive ticks

OFF

ON0 ON1

ON2ON3

b

1

1

1

b

b
b

s

1

Figure 4.3. A2: a time-switch with time-out of three time units

A serious drawback of such models lies in the constants involved in the unfolding,
which can produce a very large number of configurations. It then becomes difficult to
use a symbolic representation for the constraints.

4.3.2. Adding variables

Another technique consists of explicitly adding variables to describe different fea-
tures of a system [DIL 89, ALU 97]. These variables are functions over the time
domain, which evolve with time in the control modes and can be updated when a dis-
crete transition is fired. This mechanism yields the general class of hybrid automata,
with real valued variables evolving according to differential equations. A detailed
presentation can be found in [HEN 96] when the control modes belong to a finite set.

Timed automata Timed automata were introduced in [ALU 90, ALU 94] and form a
basic subclass of hybrid automata, where most verification problems have been proved
decidable. In this framework, the underlying structure is a finite automaton to which
variables called clocks are added. In a given control mode, these variables evolve
synchronously with time, at the same speed. When a discrete transition is fired, clock
values can be compared to constants and some clocks can be reset.

EXAMPLE.– Consider again the specification of the time-switch with a three time
units time-out. The time constraint can be modeled by adding a clock x, which is
reset when b occurs and compared to 3 for switching off the light. This yields the
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timed automatonA3 in Figure 4.4, which is simply obtained fromA1 (Figure 4.1) by
decorating the transitions with operations on clocks.

OFF ON

b, x := 0

x = 3, s

b, x := 0

Figure 4.4. A3: a time-switch with a time-out of three time units

We now give a formal definition of timed automata. For a (finite) set X of clocks,
P(X) denotes the power set of X and C(X) is the set of conjunctions of atomic
constraints of the form x ∼ c where x is a clock, c is a constant (usually a natural
number) and ∼ is in {<,≤,=,≥, >}. A constraint in C(X) is called a guard.

DEFINITION 4.2 A timed automaton over alphabet Σ is a tuple A =
(Σ, X,Q, q0,Δ), where

– X is a finite set of clocks,

– Q is a finite set of states (also called control modes or locations),

– q0 ∈ Q is the initial state and

– Δ ⊆ Q× C(X)× Σ× P(X)×Q is the set of transitions.

A transition (q, g, a, r, q′) in Δ, also written q
g,a,r−−−→ q′, represents switching modes

from q to q′ with action a, when the guard g is satisfied. All clocks in r ⊆ X are reset,
which is often written r := 0, such as in Figure 4.4.

Timed automata semantics We now more precisely define the semantics of a timed
automaton. Recall that the time domain is a (discrete or dense) subset of R+. The
guards are interpreted over clock valuations, which are mappings from X to R+:
valuation v satisfies a guard g ∈ C(X) if, replacing each clock by its value yields
true for the constraint g. For instance, if X = {x, y} and if g is the constraint
x < 5 ∧ y ≥ 3, the valuation v defined by v(x) = 1.2 and v(y) = 3 satisfies g.
Operations on clock valuations are defined as follows:

– time elapsing of duration d from valuation v results in the valuation v+d defined
by: (v + d)(x) = v(x) + d for each clock x. This describes synchronous evolution of
duration d for all clock values,

– reset of the clocks in r ⊆ X from valuation v results in the valuation v[r �→ 0]
defined by: v[r �→ 0](x) = 0 if x ∈ r and v(x) otherwise.
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DEFINITION 4.3 The semantics of A = (Σ, X,Q, q0,Δ) is the timed transition sys-
tem T = (Σ ∪ T, S, s0, E), where

– the set of configurations is S = Q×RX
+ . Hence, a configuration is a pair (q, v)

where q ∈ Q and v is a valuation;

– the initial configuration is (q0,0), where 0 is the valuation for which all clocks
are assigned the value 0;

– the transitions in E are of two types:

- delay transition with duration d, defined by (q, v)
d−→ (q, v + d),

- action transition with label a, defined by (q, v)
a−→ (q′, v′) if there is a transi-

tion q
g,a,r−−−→ q′ in Δ such that v satisfies the guard g and v′ = v[r �→ 0].

EXAMPLE.– For automatonA3 in Figure 4.4, the beginning of a run can be:

(OFF, 0)
1.5−−→ (OFF, 1.5)

b−→ (ON, 0)
3−→ (ON, 3)

s−→ (OFF, 3) · · ·

Such a transition system contains an infinite number of states, uncountable if the
time domain is R+. Adding acceptance conditions to a timed automaton A, for in-
stance final states for finite runs or Büchi conditions for infinite runs [ALU 94], allows
the language of timed words associated with A, denoted by L(A), to be defined. This
leads to the definition of the family of recognizable timed languages, which contains
those timed languages accepted by a timed automaton.

The transition system T associated with A3 is represented in a compact way in
Figure 4.5. For instance, all configurations of the form (OFF, d), d ≥ 0 have been
grouped together and all time transitions are dotted lines. These systems can be com-
pared to the automatonA2 from Figure 4.3 obtained with a global discrete clock. The
analysis of timed automata relies on an abstraction similar to these representations,
which amounts to finding an equivalence relation and considering sets of states of the
form (q, v) for a given state q together. Valuations are equivalent if they produce “sim-
ilar” behaviors in the automaton. Using this technique, the emptiness test was proved
decidable for the class of timed languages accepted by timed automata (or equivalently
the reachability problem for timed automata) [ALU 90, ALU 94].

Urgency and liveness Note that the previous system has an incorrect behavior, where
it stays longer than three time units in state ON and can later reset the time switch.
This problem led to the addition of liveness conditions to the definition of timed au-
tomata. Various solutions have been proposed, among them Büchi conditions, as un-
dertaken in the original model from [ALU 90], but also the addition of invariants,
which are clock constraints associated with control modes [NIC 92], or deadlines,
which are also clock constraints viewed as limiting conditions for the firing of transi-
tions [SIF 96].
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OFF, d

d≥0

ON, 0

ON, d

0<d<3

ON, 3
ON, d

d>3

b

bb

s

b

Figure 4.5. A compact representation of T

For instance, the specification will be satisfied if automaton A3 is modified as
follows: the constraint x ≤ 3 is associated with state ON , with an additional re-
striction in the semantics: a configuration (ON, d) belongs to S if and only if d ≤
3. The relations between the different liveness conditions are investigated in detail
in [BOR 97, LAB 98] and other mechanisms ensuring urgency of transitions have
been implemented in analysis tools for timed models such as KRONOS [DAW 96] or
UPPAAL [LAR 97a, BEH 10].

Hybrid automata First consider the (simplified) example of a thermostat from
[JAF 91] in Figure 4.6. This hybrid automaton describes the behavior of a thermo-
stat, which starts or stops a heating device according to the temperature information
from a sensor in a room (in winter). There are two control modes: ON and OFF ,
with a variable H representing the temperature in the room. In each mode, the temper-
ature change is described by a (linear) differential equation. Assume that the system is
initially in the mode ON with a temperature of 0oC, the constant K is associated with
a decrease in temperature and Ha depends on the heating device. In this mode, the de-
vice is heating the room and the temperature increases according to the equation, until
it reaches a maximal value Hmax. The system then switches to mode OFF , where
the device is switched off and the temperature decreases. When it reaches Hmin, the
device is again switched on.

We now give a formal definition of linear hybrid automata. For a set X of real
valued variables, a linear expression over X is an expression of the form k0 + k1x1 +
· · · + kmxm, where the xis are variables in X and the kis are constants in (a subset
of) Q. If �1 and �2 are linear expressions, �1 ≤ �2 is a linear inequality. A linear
constraint is a conjunction of linear inequalities. The set of linear constraints over X is
denoted by Clin(X). Similar to timed automata, a valuation is a mapping v : X → R,
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ON

Ḣ = K(Ha −H)

OFF

Ḣ = −KH

H = Hmin

switch on

H = Hmax

switch off

Figure 4.6. Hybrid automaton for the modeling of a thermostat

which can also be viewed as a tuple of real values x ∈ Rn where n = |X | is the
number of variables in X . A valuation x satisfies a constraint ϕ ∈ Clin(X), denoted
by x |= ϕ, if the closed predicate ϕ[X := x] is evaluated to true.

To describe a linear hybrid automaton, the following notations are used: X ′ =
{x′ | x ∈ X} is a copy ofX for the values of variables updated by a discrete transition,
and Ẋ = {ẋ | x ∈ X} is another copy of X representing the slopes of the variables
of X . These slopes describe the evolution of the variables in the control modes. With
these notations, a reset of variable x is written x′ = 0.

DEFINITION 4.4 A linear hybrid automaton over alphabet Σ is a tuple A =
(Σ, X,Q, q0, V0,Δ, Inv,Π), where

– X is a finite set of variables;

– Q is a finite set of states (or control modes), with q0 ∈ Q the initial state;

– V0 is a set of intial valuations;

– Δ ⊆ Q× Clin(X ∪X ′)× Σ×Q is the set of transitions;

– Inv : Q → Clin(X) associates an invariant with each state, which is a con-
straint that variable values must satisfy in the state;

– Π : Q → Clin(Ẋ) associates a constraint over the variable slopes with each
state.

We do not formally define the semantics, which is similar to that of timed au-
tomata, and is obtained by adapting the variable evolutions and updates. An ele-
ment in Clin(X ∪ X ′) is called a jump and describes a firing condition for a transi-

tion, combined with an update. A transition in Δ, denoted by q
j,a−−→ q′ describes a

switch from q to q′ with action a and jump j. For instance, a transition labeled by
x ≤ 2 ∧ y = 3 ∧ x′ = 0 ∧ y′ > 2x + 1 can be fired only if the current valuation
satisfies v(x) ≤ 2 and v(y) = 3, the variable x is then reset, and a new value for y
chosen non-deterministically in the open interval ]2v(x) + 1,+∞[.
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q0

ẋ = 1 ∧ ẏ = 2

q1

ẋ = 1 ∧ ẏ = −1

a, x = 2 ∧ y′ = y − 1

b, y = 2 ∧ x′ = 0

Figure 4.7. An example of linear hybrid automaton

Similarly, if Π(q) is the constraint 2 ≤ ẋ ≤ 5 ∧ ẏ = 0 for some state q ∈ Q, then in
this state, the slope of x is chosen between two and five while y stays unchanged.

EXAMPLE.– Consider for instance the automaton in Figure 4.7. In this basic case, the
sequence of transitions starting from q0 with both variables x and y having value 0 is:

(
q0,

[
0
0

])
2−→
(
q0,

[
2
4

])
a−→
(
q1,

[
2
3

])
1−→
(
q1,

[
3
2

])
b−→
(
q0,

[
0
2

])
2−→
(
q0,

[
2
6

])
a−→
(
q1,

[
2
5

])
3−→
(
q1,

[
5
2

])
b−→
(
q0,

[
0
2

])
· · ·

and from there, the system stays in a loop, producing the trajectory depicted in Fig-
ure 4.8.

x

y

2

Figure 4.8. Geometrical view of a trajectory for the automaton in Figure 4.7
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Note that for hybrid automata where the constraints on the derivatives are of the
form α ≤ ẋ ≤ β, the timed transition system is not time deterministic, in the sense
defined in section 4.2.2.

Most verification problems are undecidable on such models, as soon as two vari-
ables with different slopes are used (see for instance [ALU 95, ASA 95, HEN 98a,
LAF 01, ASA 07, BRI 10, LEG 10] for analysis results). However, several tools
such as HYTECH [HEN 95], HCMC [CAS 00], TReX [ANN 01], or more recently,
PHAVer [FRE 05] and SpaceEx [FRE 09] have been developed, often implementing
semi-algorithms or approximations.

Composition Like in the untimed case, the composition of several models is obtained
from the cartesian product of the states, with a synchronization function on the transi-
tion labels. When several transitions can synchronize, the corresponding components
progress simultaneously. When some action is internal to a component, this compo-
nent evolves separately. For timed or hybrid systems, the additional delay transitions
correspond to time elapsing, which is the same for all components and hence plays a
synchronization role. The main problem occurring in this case is the following, ex-
plained in [SIF 96]. Suppose that an untimed modelM is obtained by composition of
two modelsM1 and M2. If these models are then extended in Mt, Mt

1 and Mt
2 by

adding timing constraints, the timed composition must guarantee that the product of
Mt

1 andMt
2 corresponds exactly to Mt.

A
x < 7

B

C
D

z < 8

x = 7, in
x := 0

y ≥ 4, out
y := 0

in
z := 0

3 ≤ z ≤ 8
out

A:

B:

I:

Figure 4.9. Three processes communicating through in and out

The example proposed in [SIF 96] illustrates this problem with the specification
of three processes, described by timed automata with invariants (Figure 4.9): the first
one (A) produces in messages every seven time units, the second (B) produces out
messages separated by at least four time units and the third (I) implements the com-
munication by transmitting to B the messages received fromAwithin a delay between
three and eight time units. Figure 4.10 shows how the productA | B | I is performed
with a synchronization on actions in and out. Now if the transmission interval [3, 8] is
replaced by ]7, 8], a timed deadlock is reached in configuration ABD, with clock values

www.allitebooks.com
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x = 7 and z = 7, since action out cannot take place and time progress is restricted by
invariant x < 7.

ABC
x < 7

ABD
x < 7, z < 8

x = 7, in
x, z := 0

y ≥ 4, 3 ≤ z ≤ 8, out
y := 0

Figure 4.10. Synchronized product A | B | I

Thus, problems mainly result from the combination of action synchronization and
time synchronization. Several solutions have been proposed to answer this question,
for instance using priorities on actions [BOR 98a, BOR 00].

4.3.3. Adding time intervals

In this section, we show how a timed transition system can be obtained by equip-
ping transitions with time intervals. When an interval (mine,maxe) from the time
domain is associated with a transition e : q

a−→ q′, the limits of the interval represent
respectively the minimal and maximal delay for firing the transition. In this case, an
implicit clock can be associated with the transition and the transition can be fired only
if the clock value belongs to the interval. This mechanism, first used for time Petri nets
in [MER 74] was also applied to timed systems in [MAL 91, HEN 92, HEN 94a],
and durational Kripke structures in [CAM 95, LAR 02]. The model of Petri nets is
well suited to the modeling of concurrent processes and numerous timed extensions
have been proposed for this model, which also associates timing parameters with arcs,
places, etc. We present here DKS as well as two versions of Petri nets with dense
time: time Petri nets and timed Petri nets [VAL 99, ABD 01], where intervals are used
on arcs.

DKS Note that until now, the timed models defined over the time domain R+ have a
continuous semantics, in the sense defined in section 4.2.2: an infinite (non-countable)
number of configurations appear between two configurations s and s′ separated by a

delay d, namely all intermediate configurations sδ, with s
δ−→ sδ , for 0 ≤ δ ≤ d.

DKS, as studied in [CAM 95, LAR 02] for instance, are a discrete time model with a
so-called jump semantics, where these intermediate configurations do not exist.

We write I(N) for the set of intervals in N with lower bound in N and upper
bound in N ∪ {∞}.
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DEFINITION 4.5 A DKS is a triple K = (Q, q0,Δ) where Q is a finite set of states,
q0 ∈ Q is the initial state and Δ ⊆ Q × I(N)×Q is the set of transitions.

EXAMPLE.– Figure 4.11, borrowed from [LAR 02], describes (a simplified view of)
the activity of a researcher. The transitions are equipped with an interval, possibly
reduced to a single value. Intuitively, a value is chosen in this interval in order to
switch to the next state.

New
Idea

Draft
Written

Submis−
sion

Wait for
Submi.

Notif.
Accept

Final
Version

Publication

Notif.
Reject

Revised
Draft[7,45]

0
0

[25,50] [25,50]

[0,7]

[50,110]

1

[0,10]

0

[0,∞)

[0,∞)

[0,366]

Figure 4.11. Durational Kripke structure for a researcher’s activity

Observe that no action labels are used in these structures.

Jump semantics Several semantics can be defined for this model, according to the
interpretation given to the firing of a transition from q to q′ with delay d ∈ N. Similar
to timed automata, it can be assumed that the system waits in state q for a duration of
d time units and then switches in an instantaneous way to state q′.

The jump semantics rather consider that the system is in state q at time n and
will be in state q′ at time n + d, with no intermediate states for times n + 1, . . . ,
n + d − 1. This is similar to viewing the durations as costs. The associated timed
transition system is T = (N, Q, q0, E), with only one type of transitions in E, defined

by: q
d−→ q′ if there exists a transition (q, I, q′) in Δ such that d belongs to interval I .

This semantics can then be considered as a mixed transition system, where only one
(unobservable) action is associated with the durations.

EXAMPLE.– For the system in Figure 4.11, the beginning of a run could be:

New Idea
15−→ New Idea

10−→ Draft Written
0−→ Wait for Submi. · · ·
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Finally observe that this semantics is not robust with respect to the composition.
In contrast, verification problems can be solved with a lower complexity than in timed
automata (see for instance [LAR 02]).

Time Petri nets In an analogous way, time Petri nets extend standard Petri nets by
associating intervals with transitions. We denote here by I the set of closed intervals
with a lower bound in Q+ and an upper bound in Q+ ∪ {∞}. For such an interval I ,
we define the backward closure by: I↓ = {x | ∃y ∈ I, x ≤ y}.
Similar to classical Petri nets, a marking is a mapping from the set P of places into N.

DEFINITION 4.6 A time Petri net over alphabet Σ is a tuple N =
(P, T,Σε, P re, Post,M0, λ, I) where:

– P is a finite set of places;

– T is a finite set of transitions with P ∩ T = ∅;
– Pre and Post are mappings from T ×P into N called, respectively, the precon-

dition and postcondition;

– M0 ∈ NP is the initial marking;

– λ : T → Σε is the labeling function of transitions;

– I : T → I associates with each transition a firing interval.

EXAMPLE.– Figure 4.12 illustrates the graphical representation of a time Petri net.
Each transition is equipped with its label and its firing interval. For instance, transition
t1 has label a and interval I(t1) = [1,∞[. The initial marking has two tokens in place
p1 and one token in place p2.

• •

•

p1

p2

p3

t1, a, [1,∞[

t2, b, [1, 1]

t3, c, [1,∞[

Figure 4.12. A time Petri net

Semantics of time Petri nets For a marking M in PN, M(p) represents the number
of tokens in place p. For a transition t, we denote by •t (respectively t•) the mapping
from P to N such that •t(p) = Pre(t, p) (respectively t•(p) = Post(t, p)). A tran-
sition t is enabled in marking M if M ≥ •t and we write En(M) the set of enabled
transitions. As in standard Petri nets, firing t leads to a new markingM ′ = M−•t+t•.

Models and Analysis in Distributed Systems



Modeling Time 79

We now explain the timing conditions, with R+ as dense time domain. A transition
can be fired if the time elapsed since the last update belongs to interval I(t). Moreover,
for all enabled transitions, time cannot progress when one of the upper bounds is
reached, thus enforcing urgency.

A configuration of N is a pair (M, ν), for a marking M and a valuation ν ∈
(R+)

T . Relevant values of ν are those for which t belongs to En(M), and ν(t)
contains the time elapsed since the last update in this case. We write ν(t) = ⊥
otherwise. A configuration is admissible if for all enabled transitions, ν(t) ∈ I(t)↓.
We denote by ADM(N ) the set of admissible configurations.

The important point that remains to be defined is the update of timing information
upon transition firing. In other words, we should specify when the implicit clock
associated with the transition is reset: transition t′ is said to be newly enabled after
firing t from marking M if the predicate ↑enabled(t′,M, t) defined by:

↑enabled(t′,M, t) = (t′ ∈ En(M − •t+ t•)) ∧ (t′ �∈ En(M))

evaluates to true.

Thus, t′ is newly enabled if it was not enabled before firing t but becomes enabled
by this firing. This corresponds to the so-called persistent atomic semantics, which is
not the most frequently used but is easier to explain and equivalent to the others for
safe time Petri nets (see [BÉR 05a, REY 09] for discussions).

DEFINITION 4.7 The semantics of a TPN N is the timed transition system T =
(L, S, s0, E) where:

– L = Σε ∪ R+;

– S = ADM(N );

– s0 = (M0,0), where 0 denotes the valuation with null values for all transitions
enabled in M0 and ⊥ otherwise;

– E ⊆ S × (Σε ∪ R+) × S contains the two following types of transitions, from
an admissible configuration (M, ν):

- for each transition t enabled in M such that ν(t) ∈ I(t), a discrete transition

(M, ν)
λ(t)−−→ (M − •t+ t•, ν′) with for all t′ ∈ En(M − •t+ t•),

ν′(t′) =

{
0 if ↑enabled(t′,M, t),

ν(t′) otherwise,

- for each d ∈ R+, such that for each t in En(M), ν(t) + d ∈ I(t)↓, a delay

transition (M, ν)
d−→ (M, ν + d).
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EXAMPLE.– A possible run of the TPN in Figure 4.12 is the following:

(M0, [0, 0,⊥]) 1−→ (M0, [1, 1,⊥]) a−→ (M1, [1, 1, 0])
a−→ (M2, [⊥, 1, 0])

b−→ (M3, [⊥,⊥, 0]) 1.5−−→ (M3, [⊥,⊥, 1.5]) c−→ (M4, [⊥,⊥, 1.5]) · · ·
with markings M0 = (2, 1, 0), M1 = (1, 1, 1), M2 = (0, 1, 2), M3 = (0, 0, 2) and
M4 = (0, 0, 1).

This model has been extensively studied (see for instance [JON 77, BER 91]), and
tools such as ROMÉO [GAR 05] and TINA [BER 06] have been developed for the
analysis of (bounded) time Petri nets.

Timed Petri nets We finally present a (simple) variant of timed Petri nets, where
the timing information is related to the tokens by giving them an age. In this model,
intervals are associated with arcs: when a transition is fired, the tokens removed from
the input places of the transition and the tokens added to the output places should
have ages lying in the intervals of the corresponding arcs. Thus, input arcs correspond
to guards over the token ages while output arcs perform non-deterministic updates
on these ages, resulting in the association of an implicit clock with each token. The
definition is restricted here to the case where at most one token travels along an arc.
Note that the token may become too old to be used in a transition, in which case

dead. This means that, unlike for the previous model, urgency
constraints are relaxed here.

We again denote by I the set of closed intervals with a lower bound in Q+ and an
upper bound in Q+ ∪ {∞}.
EXAMPLE.– Figure 4.13 depicts a timed Petri net modeling a producer/consumer
problem, borrowed from [VAL 99], with a buffer of size three. In this particular case,
all missing intervals on the output arcs are [0, 0], which means that the token’s age is
reset by each transition. Moreover, the labeling of transitions has been omitted, so that
it can be considered that Σ is the set T of transitions.

The notion of marking in a TdPN is slightly modified to integrate the ages of
tokens. Let Bag(Z) denote the set of finite multisets (also called bags) on a set Z , i.e.
the set of mappings with finite domain from Z into N, the image of an element being
its multiplicity. Operations of union, set difference, and inclusion apply to multisets
by taking multiplicities into account.
A marking M is an element of Bag(P ×R+). For instance, the initial marking M0 in
the TdPN of Figure 4.13 contains one token in place p1, one in place p3 and three in
place p5, all with age 0. Using the standard notations for multisets, it can be written
M0 = (p1, 0) + (p3, 0) + 3.(p5, 0).

DEFINITION 4.8 A timed Petri net (TdPN) over alphabet Σ is a tuple N =
(P, T,Σε, P re, Post,M0, λ) where:

it is said to be
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0 0
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[0,∞]
[0,∞]

Figure 4.13. A timed Petri net for the producer/consumer problem

– P is a finite set of places;

– T is a finite set of transitions with P ∩ T = ∅;
– Pre and Post are mappings from T × P into I again called, respectively, the

precondition and postcondition;

– M0 is the initial marking, with all tokens aged 0;

– λ : T → Σε is the labeling function of transitions;

Note that the case where place p is not an input place (respectively an output place)
for transition t now corresponds to the empty interval for Pre(t, p) (respectively
Post(t, p)). We denote here by •t (respectively t•) the subset of P of intput places
(respectively output places) of t.

Semantics of timed Petri nets As in previous models, time elapsing of d time
units (where d is a nonnegative real number) results in increasing all clock values by
d. For instance, from initial marking M0 time elapsing of 2.1 produces the marking
M1 = (p1, 2.1) + (p3, 2.1) + 3.(p5, 2.1). More generally, for a marking M and a
duration d ∈ R+, we denote by M + d the marking obtained by increasing the age of
each token by d. Firing a discrete transition t from a marking M is possible if a token
with an age in the specified interval Pre(t, p) exists in each input place of t. The new
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marking M ′ is obtained by extracting these tokens from M and adding a new token
with an age chosen in the interval Post(t, p), for each output place of t.

More formally:

DEFINITION 4.9 The semantics of a TdPN N is the timed transition system T =
(L, S, s0, E) where:

– L = Σε ∪ R+;

– S = Bag(P × R+): a configuration is a marking;

– s0 = M0 is the initial marking where all tokens are aged 0;

– E ⊆ S × (Σε ∪ R+) × S contains the two following types of transitions, from
configuration M :

- for each d ∈ R+, there is a delay transition M
d−→M + d,

- given a transition t ∈ T , there is a discrete transition M
λ(t)−−→ M ′ if and

only if for •t = {p1, . . . , ph} and t• = {p′1, . . . , p′k}, there exist two bags Bpre =
{(p1, τ1), . . . , (ph, τh)} and Bpost = {(p′1, τ ′1), . . . , (p′k, τ ′k)} such that:

⎧⎨
⎩

Bpre ⊆M and τi ∈ Pre(t, pi) for each i,
for each j, token (p′j , τ

′
j) is such that τ ′j ∈ Post(t, p′j),

M ′ = M −Bpre +Bpost.

Note that due to the restrictive framework, the bags Bpre and Bpost are in fact plain
sets here.

EXAMPLE.– An execution for the TdPN in Figure 4.13 can be as follows:

(p1, 0) + (p3, 0) + 3.(p5, 0)
5.7−−→ (p1, 5.7) + (p3, 5.7) + 3.(p5, 5.7)
t1−→ (p2, 0) + (p3, 5.7) + 3.(p5, 5.7)
t2−→ (p1, 0) + (p3, 5.7) + 2.(p5, 5.7) + (p6, 0)
t3−→ (p1, 0) + (p4, 0) + 2.(p5, 5.7) + (p5, 0)
4.9−−→ (p1, 4.9) + (p4, 4.9) + 2.(p5, 10.6) + (p5, 4.9)
t4−→ (p1, 4.9) + (p3, 0) + 2.(p5, 10.6) + (p5, 4.9) . . .

The absence of urgency constraints led to verification methods for unbounded nets.
Extensions of this model and analysis results can be found for instance in [SRB 05,
BOU 08, ABD 07] and in [FRU 00] for discrete time semantics.
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4.3.4. Timed process algebras

The mechanisms of parallel composition offered in process algebra can be a partial
answer to some of the problems mentioned above. The first timed process algebra was
timed CSP, proposed in [REE 86] as a real-time extension of CSP. It was quickly
followed by a large amount of work (a retrospective can be found in [OUA 06]).

EXAMPLE.– We first present an example from [OUA 03] (a modification of the clas-
sical coffee machine), which defines a “chocolate-biscuit machine” by the following
equation:

M
def
= in.[(choc.M + bisc.M)

60
� (out!.M)]

The machine accepts a coin (action in), then the client selects a chocolate or a
biscuit. However, if he waits more than 60 seconds before choosing, he receives
his money back (action out!) and the machine returns in its initial state. The timed
automaton in Figure 4.14 can be associated with this process.

M x ≤ 60
in, x := 0

x < 60, bisc

x < 60, choc

x = 60, out!

Figure 4.14. A timed automaton for the vending machine

This definition integrates a time-out operator, where process P
d
� Q behaves like

P within d time units, and like Q after this delay. Moreover, urgent actions are added,
like out!, which must be executed immediately.

We give here a simple definition, mainly based on binary synchronization, but
many more elaborated variants appear in the literature. The set Σ contains a set of
actions and their complementary actions denoted, respectively, by a and a and we
consider again the augmented set Σε. The set E of expressions (or terms) of a process
algebra over Σε contains constants, variables, and is defined by the grammar:

E ::= 0 | a · E | (d) · E | E1 + E2 | E1 ‖ E2

where a is an action in Σε, the delay d belongs to the (discrete or dense) time domain
T, and 0 is the null process, which executes nothing but may let time elapse. The
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basic delay mechanism is represented by (d)E, which lets d time units elapse and
then behaves like E. A process is an expression without free variable and a constant
(other than 0) is a process defined by an equation using operator def (as in the example
above).

Of course, this def operator can be replaced by explicit recursion. Sometimes, a
constant process, which cannot execute any action and can also not let time elapse, is
introduced, as well as classical operators of restriction, renaming, or timed operators.

The timed transition system associated with a definition such as the one above is
T = (Σε ∪ T, E ,Δ), where configurations are expressions in E , and transitions in Δ
are given by the following rules, with � ∈ Σε ∪ T, a ∈ Σε and d ∈ T:

– definition and action prefixing:

Def :
E

�−→ F

P
�−→ F

if P
def
= E

D0 :
0

d−→ 0
Act1 :

a · P a−→ P

– choice is usually a commutative and associative operation, the third rule is a time
synchronization between processes:

Ch1 :
P

a−→ P ′

P +Q
a−→ P ′ Ch2 :

Q
a−→ Q′

P +Q
a−→ Q′

Ch3 :
P

d−→ P ′ Q
d−→ Q′

P +Q
d−→ P ′ +Q′

– parallel composition:

Comp1 :
P

a−→ P ′

P ‖ Q a−→ P ′ ‖ Q
Comp2 :

Q
a−→ Q′

P ‖ Q a−→ P ‖ Q′

with action (for a �= ε) and time synchronization:

Comp3 :
P

a−→ P ′ Q
a−→ Q′

P ‖ Q ε−→ P ′ ‖ Q′ Comp4 :
P

d−→ P ′ Q
d−→ Q′

P ‖ Q d−→ P ′ ‖ Q′

– delays:

D1 :
a · P d−→ a · P

D2 :
P

a−→ P ′

(0) · P a−→ P ′

Ddec :
(d+ d′) · P d−→ (d′) · P

Dac :
P

d−→ P ′

(d′) · P d+d′
−−−→ P ′
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Similar rules can be defined to distinguish lazy actions and urgent actions, and for
the time-out operator. Following this line, several classical process algebras have been
extended to the timed framework. A detailed presentation can be found in [NIC 91a,
BAE 01], comparisons and various propositions are given in [YI 91, COR 99, COR 03,
OUA 03].

Remarks This short presentation of timed models only describes a small part of the
work done in the last 20 years with the aim of producing models for real-time sys-
tems and verifying them. Several of these models have been studied both in dense
and discrete time. A question that arises then concerns the relation between all these
models, both for their expressive power and their ability to support analysis. Some
comparisons have been investigated, based either on language equivalence (do models
M1 andM2 accept the same timed language?) or on various behavioral equivalences,
such as strong or weak timed bisimulation (see next section). We only give a few ref-
erences here for the interested reader. Comparisons can be found in [BOY 08] about
the different timing mechanisms for Petri nets, while time Petri nets or timed Petri
nets are compared to timed automata, for instance in [BÉR 05b, BOU 08, BÉR 08a].
The ability of Petri nets to model concurrency led to comparisons with networks
of automata. This was done for timed Petri nets and networks of timed automata
in [SRB 05] for instance. Relations between hybrid systems and process algebra are
described in [NIC 91b, NIC 93, BOR 98a].

4.4. Specification of timing requirements

In this section, we specifically address the problem of formalizing properties in-
volving explicit time constraints. The initial section is devoted to timed extensions of
classical temporal logics, with the example of timed CTL (TCTL), then, considering
the representation of properties by models, we present the behavioural equivalences,
which form the basis of some verification techniques.

4.4.1. Timed Logics

The temporal logic CTL We briefly recall the syntax of the branching time temporal
logic CTL introduced by Pnueli [PNU 77]. Formulas are defined by the following
grammar:

ϕ, ψ ::= P1 | P2 | . . . | ¬ϕ | EXϕ | AXϕ | ϕ ∧ ψ | EϕUψ | AϕUψ

where Pi are atomic propositions in a set AP.

These formula are interpreted over usual Kripke structures, hence without the in-
tervals presented in definition 4.5, but with the addition of a labeling function, which
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associates a subset of atomic propositions in AP with each state. LetK = (Q, q0,Δ, �)
be such a Kripke structure, where Δ is simply a subset of Q×Q and � is the labeling
function from Q intoP(AP). A formula is interpreted on a state q ∈ Q, and we denote
by Exec(q) the set of runs in K starting from q. Let σ : q −→ q1 −→ q2 · · · be a run
in K and for i ≥ 0, write σ(i) for the state of index i in σ (i.e. qi). The semantics is
defined inductively by:

q |= P if P belongs to the set �(q) of labels of state q;
q |= ¬ϕ if q does not satisfy ϕ;
q |= ϕ ∧ ψ if q satisfies both ϕ and ψ;
q |= EXϕ if there exists a run σ in Exec(q) such that σ(1) |= ϕ;
q |= AXϕ if each run σ in Exec(q) is such that σ(1) |= ϕ;
q |= EϕUψ if there exists a run σ in Exec(q) and an integer j ≥ 0

such that σ(j) |= ψ and for each k, 0 ≤ k < j, σ(k) |= ϕ;
q |= AϕUψ if, for each run σ in Exec(q) there exists an integer

j ≥ 0 such that σ(j) |= ψ and for each k, 0 ≤ k < j, σ(k) |= ϕ.

Modalities X and U are temporal modalities, interpreted along a run, while E and
A are, respectively, the existential and universal quantifier on runs. Hence, if state q
satisfies the formula AϕUψ, this means that ψ will be true at some point in the future
in all runs starting from q and ϕ remains true in the meanwhile. Modality X, also
denoted sometimes by next, has a natural interpretation: Xϕ is true in a state if ϕ is
true in the next state.

For this logic, all boolean operators can be defined and some abbreviations are
frequently used, such as for instance:

– EFϕ, defined by E(true)Uϕ, means that for a state q that property ϕ will be true
at some point in the future in at least an execution starting from q (formula true is
satisfied by any state);

– AGϕ is defined by duality as ¬EF(¬ϕ). It means that for a state q that property
ϕ is always true along any execution starting from q;

– AFϕ, defined by A(true)Uϕ, means that for a state q, for any execution starting
from q, property ϕ will be true at some point in the future.

Timing CTL Adding time constraints to these formulas can also be done in several
ways, including adding variables or adding intervals. We present here the original
definition of TCTL [ALU 91, ALU 93, HEN 94b], which is interpreted over timed
transition systems, where configurations are equipped with sets of atomic proposi-
tions. We consider a dense time domain and continuous executions. In this case, the
X modality is meaningless and is removed. For the subformula ϕUψ, the idea consists
of associating a time constraint of the form ∼ c with modality U for a comparison
operator ∼ and a constant c (usually in N), in order to enforce that property ψ will
occur at a time t satisfying t ∼ c.
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The syntax of TCTL is defined by:

ϕ, ψ ::= P1 | P2 | . . . | ¬ϕ | ϕ ∧ ψ | EϕU∼cψ | AϕU∼cψ

where Pi are atomic propositions in AP, operator ∼ belongs to {<,>,≤,≥,=} and
c is a constant in N.

To define TCTL semantics, we consider a timed transition system T = (Σ ∪
T, S, s0, E, �), where � is the function labeling configurations in S by atomic propo-
sitions, and we still denote by Exec(s) the set of paths starting from configuration

s. For such an execution ρ : s
d1−→ s′1

a1−→ s1
d2−→ s′2

a2−→ s2 · · · , where durations
alternate with actions, continuity allows all intermediate positions in time to be con-
sidered. These positions are totally ordered and the strict order along ρ is denoted by
p′ <ρ p. For a position p on ρ, the corresponding configuration is denoted by sp and
ρ≤p is the prefix of ρ before (or at) p. The duration of this prefix, written Dur(ρ≤p),
is the sum of all delays spent along ρ≤p.

The satisfaction relation for TCTL is defined on a configuration s of T , in a way
similar to CTL. We only give it for the U∼c modalities:

s |= EϕU∼cψ if there exists a run ρ ∈ Exec(s) such that ρ |= ϕU∼cψ;
s |= AϕU∼cψ if, for each run ρ ∈ Exec(s), ρ |= ϕU∼cψ;
with
ρ |= ϕU∼cψ if there exists a position p along ρ such that Dur(ρ≤p) ∼ c and

sp |= ψ, and for each position p′ <ρ p, sp′ |= ϕ

and if Dur(ρ≤p′
) ∼ c, sp′ |= ϕ ∨ ψ.

Observe that the standard U modality is now obtained by U≥0.

EXAMPLE.– If we consider again the property at the beginning of this chapter: “if a
dangerous event occurs, an alarm will be triggered after at most three time units”. With
abbreviations similar to those of CTL, and atomic propositions danger and alarm, the
property can be expressed by the following TCTL formula:

Φ : AG(danger⇒ AF≤3 alarm)

To interpret TCTL formulas over timed automata or time(d) Petri nets, the models
must be completed with a labeling of states by atomic propositions. This labeling is
then extended to the associated timed transition system in a natural way: P belongs to
the set of labels of state q if and only if it belongs to �((q, v)) for each configuration
s = (q, v). A timed automaton A is said to satisfy formula Ψ in TCTL, denoted by
A |= Ψ if the initial configuration s0 = (q0,0) of TA satisfies Ψ.
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As proved in [ALU 93], TCTL model checking is decidable for timed automata
with a PSPACE-complete algorithm: given a timed automatonA and a TCTL formula
Ψ, this algorithm decides whether A |= Ψ or not. The tool KRONOS [DAW 96] im-
plements (an optimized version of) this algorithm, while UPPAAL [LAR 97a] allows
on-the-fly verification of a TCTL fragment to be performed. A compositional method
is applied in the tool HCMC [CAS 00].

Other timed logics The same kind of method was used to produce timed versions of
other temporal logics. For instance, the linear time temporal logic, LTL, was extended
in [KOY 90] to the timed framework, yielding MTL (the metric temporal logic). Un-
fortunately, it turned out that model checking MTL is undecidable over timed au-
tomata. Thus, several expressive fragments were studied later [ALU 96, OUA 05],
with positive results. In a similar way, operators with quantitative constraints have
been added to a fragment of the μ-calculus, producing the logic Lν [LAR 95, ACE 02].
Furthermore TCTL itself was extended, either with parameters [BRU 03], or with
modalities extending the expressiveness to “almost everywhere” properties [BEL 05].

In a slightly different direction, to overcome undecidability in hybrid automata,
other extensions of timed automata have been proposed, for instance by associating
costs with states or transitions [BOU 04]. The logic WCTL [BRI 04] was then defined
for these models, by adding cost constraints to CTL modalities. Since model checking
WCTL is still undecidable, fragments were also proposed.

4.4.2. Timed bisimilarity

Note that in the previous section the response time property “if a dangerous event
occurs, an alarm will be triggered after at most three time units” was easily expressed
by the formula Φ in TCTL above. It could also be expressed by a timed automaton
B similar to A3 (see section 4.3.2). Consider now a system, modeled by a timed au-
tomaton S, where this property must be satisfied. Rather than solving the problem by
model checking, the two models S and B can be compared, in order to decide whether
all behaviors of S satisfy the specification expressed by B. For this aim, model equiva-
lences have been introduced and extended to the timed framework. However, it should
be noted that it is not always possible to represent a TCTL formula by a timed automa-
ton [ACE 03].

Strong simulation Let T1 = (L, S1, s
1
0, E1) and T2 = (L, S2, s

2
0, E2) be two timed

transition systems, over the same set of labels L = Σε ∪ T.

DEFINITION 4.10 A binary relation R on S1 × S2 is a strong t-simulation of T1 by
T2 if (s10, s

2
0) belongs toR and
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1) if s1
d−→ s′1 is in E1 for a delay d and s1Rs2 then there exists s′2 in S2 such that

s2
d−→ s′2 is in E2 and s′1Rs′2,

2) if s1
a−→ s′1 is in E1 for an action a and s1Rs2 then there exists s′2 in S2 such

that s2
a−→ s′2 is in E2 and s′1Rs′2.

The timed transition system T2 strongly t-simulates T1 if there exists a strong t-
simulation of T1 by T2. When a relationR is a strong t-simulation of T1 by T2 and the
inverse relation R−1 (defined by (s2, s1) ∈ R−1 iff (s1, s2) ∈ R) is also a strong t-
simulation of T2 by T1, this relation is called a strong t-bisimulation. The two systems
T1 and T2 are then said to be strongly t-bisimilar.

Similar to simulation in the untimed framework, this relation means that T2 can
“imitate” T1, the delay transitions are considered as ordinary transitions.

Weak simulation The relation above can be weakened by taking into account ε-
transitions and possible decompositions of durations. From a TTS T = (L, S, s0, E),
the transition relation =⇒⊆ S × (Σ ∪ T)× S is defined for a ∈ Σ and d ∈ T by:

– s
d
=⇒ s′ if there exists a run of T from s to s′ of duration d, with only ε-

transitions;

– s
a
=⇒ s′ if there exists a run of T from s to s′ of duration 0, with only a as visible

action.

DEFINITION 4.11 A binary relation R on S1 × S2 is a weak t-simulation of T1 by

T2 if (s10, s
2
0) belongs to R and if, for each transition s1

�
=⇒ s′1 in E1, with � ∈ Σ ∪ T,

such that s1Rs2, there exists s′2 in S2 such that s2
�
=⇒ s′2 is in E2 and s′1Rs′2.

The TTS T2 weakly t-simulates T1 if there exists a weak t-simulation of T1 by T2.
As above, if the inverse relation R−1 is also a weak t-simulation of T2 by T1, this
relation is called a weak t-bisimulation. The systems T1 and T2 are then said to be
weakly t-bisimilar.

This notion is well suited to timed systems and was used in the comparisons of
expressive power of timed models, for instance in [ČER 93, BÉR 05b, BÉR 08a].

Other equivalences Other simulations can be defined, for instance to express that
a timed system is “faster” than another. Furthermore, the equivalences can again be
weakened by abstracting time, replacing all delay transitions by an abstract “time-
successor” transition. Although this operation seems to remove quantitative informa-
tion, it can be defined as explained in the beginning of this chapter, so that verification
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can still be performed on the quotient [LAR 97b]. Finally, by adding acceptance con-
ditions, language inclusion (and language equality) can also be defined. Time Petri
nets and timed automata have been compared for this relation [BÉR 05b]. Note, how-
ever, that language inclusion is undecidable for timed automata [ALU 94], so that a
bounded version was later proposed [OUA 09].

4.5. Conclusion

In this chapter, we illustrated how several notions can be taken from the untimed
to the timed framework. For models such as finite automata, Petri nets or Kripke
structures, the mechanism consists of adding timing constraints to the transitions, by
adding time intervals or guards to variables. We also presented timed logics and timed
bisimulation. This represents a very small part of the tremendous work accomplished
in the last 20 years in formal methods, which were a breakthrough for the design,
modeling, and verification of systems where real-time constraints must be taken into
account. The theoretical work resulted in many efficient tools, which were success-
fully applied to numerous industrial case studies, leading to the detection of errors
related to delays and parameter synthesis.

Beyond these results, open questions still remain, both on theoretical aspects and
on the scalability of the methods for the verification of very large systems. The size of
the resulting model is significantly increased not only with the number of components,
but also with the addition of time [LAR 00]. Thus, design and analysis of large timed
systems remain a challenge.
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Chapter 5

Architecture Description Languages

5.1. Introduction

This chapter presents an overview of architecture description languages (ADLs).
After introducing the motivation for ADLs and their benefits (section 5.1), we study
their general concepts and underlying principles (section 5.2). We then take a deeper
look into ADL from two different viewpoints. We first study more abstract and formal
languages, dedicated to the analysis of composite systems, mainly software systems
(section 5.3). Further, in a second step, we present more concrete languages designed
to help in the actual implementation of applications (section 5.4).

A major issue when designing a distributed system is its complexity. Complex-
ity is, of course, not specific to distributed systems, and it stems first from the size
of the system. Distributed systems present features that increase complexity. First,
complexity may arise from the fact that several entities have to be taken into account.
Further, in a distributed system, these entities do not exist independently from one an-
other. Their interactions are an important part of the problem as they can lead to both
benefits (achieving some form of collaboration or cooperation) or to major drawbacks
(deadlocks, starvation, or incorrect multiple access to resources, etc.). To solve these
complexity issues, approaches based on the decomposition of a system into subsys-
tems can be put into practice, whether is it for design, verification, or implementation.

Underlying this decomposition, is an important concept: structuring. It has been
instantiated several times in the past years with approaches based on modules [PAR 72],
objects/classes [DAH 66, MEY 97], software components [SZY 98], services [PAP 03],
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aspects [FIL 05], or software product lines [POH 05]. Software components make the
functionalities provided by some reusable entity explicit, as modules and classes/ob-
jects did. However, software components go further by also making the required func-
tionalities explicit. Having both provided and required functionalities explicit supports
the definition of software components independently from a specific usage context.

This makes, in theory, software components more reusable than modules or ob-
jects/classes where requirements are hidden in the code. Services are the basic entities
that underpin the development of service-oriented architectures (SOA) and service-
oriented computing (SOC). However, for differences in description languages and un-
derlying middleware, services can be seen as a kind of software component. Aspect-
orientation 1 is a more asymmetric approach, where some first-class entity, the base
business model or code, is extended with the integration of one or several second-
class entities called aspects. Software product lines are another modern application
of structuring, where products are the result of the integration of core assets and
variation-related ones.

The abovementioned approaches lead to new software design processes with two
distinct tasks 2:

– designing in-the-large, the structuring of the system as a set of subsystems linked
by dependency or interaction relations, a kind of structural blueprint of the system. In
an analogy to building construction where buildings are constructed using an assembly
plan for subparts (ground, walls, roof), such a blueprint can be referred to as the
architectural plan of the system, and the person in charge of its definition can be
called a software architect;

– designing in-the-small, the design, verification, and implementation or reuse of
subsystems satisfying a subset of the system’s functionalities or corresponding to de-
ployment units.

In the following, rather than focusing on a specific application domain (modules,
classes, software components, services, aspects, products, etc.), we will adopt the
generic term of component for such a subsystem that can be assembled with others to
build bigger systems.

The development of ADLs [PER 92, GAR 93, MED 00] is the application of the
principle stating that different languages should be used for different activities. ADLs
are domain specific languages (DSL), which support the software architect in specify-
ing, designing, and implementing a system with an architectural viewpoint. Towards

1. We refer here to the mainstream aspect-oriented approach, i.e. following the Aspect-J vision.

2. The terms “designing in-the-large” and “designing in-the-small” are variations inspired from the
terms “programming in-the-large” and “programming in-the-small” first introduced by De Remer and Kron
in [DER 75].
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this objective, ADLs enable the definition of base architectural elements, the definition
of relations between base architectural elements, and the definition of architectural
models as the composition of architectural elements and their relations.

To master complexity, ADLs enable the description of a system’s architectural
model (i.e. its decomposition into elements and relations) at different abstraction lev-
els, possibly going from a very abstract functional architecture (functionalities and
dependency relations) to a concrete implementation architecture (deployed and com-
municating subsystems). At some given abstraction level, it is also possible to de-
scribe a system under different and complementary viewpoints, such as the functional
viewpoint (e.g. base elements provide some functionalities, possibly requiring some
other), the quality of service viewpoint (e.g. base elements perform operations in less
than x seconds), and the robustness (e.g. base elements are fault-tolerant), etc. These
principles are important principles of software engineering, and can be found also
in the UML for example. However, while the unified modeling language (UML)
promotes the use of different diagrams, hence different underlying concepts in the
meta-model, ADLs promote simpler meta-models with possible extensions (such as
the UML stereotypes).

Further, ADLs integrate in a rigorous development process. Hence they also pro-
vide a well-founded semantics for the architectural definitions, and are not only re-
stricted to a “box-and-line” notation. Building on this semantics, ADLs support archi-
tectural analysis, i.e. the analysis of architectural models. Examples include checking
structural constraints (e.g. limits on the kind of components, the number of compo-
nents, and/or the kind of relations between them), performing qualitative analysis (e.g.
is the architecture deadlock free?), or performing qualitative analysis (e.g. does the
system reply in less than x seconds to requests?). The semantics is also the support
for the automatic retrieval of parts of a system’s implementation from its architectural
model.

The development of ADLs was undertaken in two steps. Initially, academics be-
came interested in the definition of ADLs dedicated to qualitative verification (of soft-
ware architectures) and/or to automatic or guided implementation (from software ar-
chitectures). This leads to an important number of first-generation ADL being defined
in the 1990s (Aesop, C2/SADL, Darwin, OLAN, MetaH, Rapide, UniCon, Wright, to
cite only some). The need for interchange meta-models and formats rapidly emerged,
the main solution being Acme [ABL 10], an interchange language between ADLs,
and its toolbox, AcmeStudio, was developed at Carnegie Mellon. More recently,
ADLs research has addressed the extension of properties taken into account in archi-
tectural analysis (e.g. with performance analysis), new kinds of systems (e.g. services-
oriented architectures, software product lines), or relations between ADL and main-
stream design notations such as the UML [MED 02]. It should be noted that since
UML 2.0 [OMG 10b], methods for architectural description have been more widely
supported in the standard notation (i.e. not extended with profiles and/or stereotypes).
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A major research direction on ADL now is the support for systems with a dynam-
ic/evolving architecture [ORE 08, KRA 09] or where mobility is crucial [MED 10].
Meanwhile, the industry has become interested in the application of ADL, mainly
within the context of embedded systems. A major outcome of this is architecture
analysis and design language (AADL), which defines a standard for the description of
architectural models of real-time embedded systems.

In this chapter we first present, in section 5.2, the common principles and concepts
behind most ADLs. The following two sections are dedicated to the presentation of
ADLs with complementary viewpoints. Section 5.3 introduces two representative in-
stances of the formal first-generation ADLs. They are abstract ADLs, based on fewer
concepts, and tackle architectures with a design perspective. These concepts, being
well-founded, enable the analysis and verification of architectural models. Section 5.4
introduces a type of ADL dedicated to the implementation of distributed systems. In
this field, we focus mainly on AADL. Finally, we conclude noting the benefits of ADL
and showing how these two kinds of ADL can meet with the formal developments
around AADL.

5.2. Concepts

Numerous ADLs have been proposed, whether multi-purpose abstract ADLs, or
dedicated to some specific application domain. There currently does not yet exist a
consensus on the “good” abstraction and description level of an ADL. Indeed, this is
also one of the reasons why ADLs can be used in very different contexts. However,
there is an emerging agreement on the core concepts that should be found in an ADL.
This ADL ontology has led to the definition of meta-models and interchange formats,
such as Acme [ABL 10] or xADL [DAS 01]. This underlies the reference study and
survey on ADL by Medvidovic and Taylor [MED 00].

5.2.1. Elements of an ADL description

A simple meta-model for ADLs is presented in Figure 5.1.

The basic elements of an architectural model are components and connectors.
Components and connectors have interfaces that are the support for the definition of
relations or bindings. Altogether, a set of components, a set of connectors, and bind-
ings between their interfaces define an architectural configuration (or simply, config-
uration).

Components

A component is the basic architectural entity that abstracts some information that
is available or some piece of code that is reusable. To quote [MED 00], “A component
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ComponentInterface ConnectorInterface

Component ConnectorInterface

Configuration

1 1

0..*1..*

Port Role
1..* 1..*

binding

Figure 5.1. ADL meta-model (UML class diagram notation)

is a unit of computation or a data store [...]. Components may be as small as a single
procedure or as large as an entire application”. The basic motivations that trigger the
encapsulation of some information or piece of code as a component are the decom-
position of a complex system into small subsystems – the system components – and
their interactions, or the desire to enable reuse, following the definition of Szyper-
ski [SZY 98]: “A (software) component is a unit of composition with contractually
specified interfaces and explicit context dependencies only. A (software) component
[...] is subject to composition by third-parties”. The former case (decomposition)
integrates perfectly in a top-down vision of the software engineering process (decom-
pose to simplify), while the later case corresponds to a bottom-up vision (building
value-added systems from simpler ones).

Connectors

A connector is the basic architectural entity that abstracts some type of interac-
tion between components. A shared variable in a threaded Java program, a Unix pipe
between two commands, a socket between a client and a server, a JDBC connection
between a Java program and some database, a HTTP connection between a browser
and a Web server, the SOAP connections between an orchestration and basic Web
services, tuple spaces, etc. are all examples connectors in every-day life. Whether
there should be any (explicit) connectors at all is a matter of discussion. Some ADLs
have no explicit connectors. It is particularly relevant when there are few kinds of
interactions between components, e.g. in Web service compositions 3. Other ADLs
advocate that if connectors are complex they should be defined as components, hav-
ing again only simple bindings between “component” components and “connector”
components.

3. Web services can interact in different ways, but we stress out that the standard is SOAP over HTTP.
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Interfaces

If we refer to the Oxford online dictionary definition [Oxf 10], an interface is “a
point where two systems, subjects, organizations, etc. meet and interact”. From a
software point of view, the interface of an entity is both the operational mechanism
through which this entity interacts with its environment (e.g. a protocol information,
an IP address, and a port, such as http://127.0.0.1:8080/), and the contractual
specification of the entity functionalities (e.g. “this service provides you with the pos-
sibility to buy a holiday package provided you supply the departure and return dates/-
places, and for this it will require facilities to plane ticket and hotel booking avail-
able”). As we saw before, an important benefit with reference to earlier approaches is
that this specification explicits both the functionalities provided by the entity (here the
holiday package) and those it requires (here online services for plane and hotel book-
ing). The first interpretation of interfaces is mandatory to enable implementability of
software architectures. It gives an answer to the question “Where can I access this
entity?”. However, ADL go further by using the second interpretation and associated
information extensively, and giving an answer to the question “What and how can this
entity do something for me? – What and how should I do for this entity?”.

Many ADL refine interfaces as a set of interaction points that correspond to the first
interpretation. An entity has then one interface, made up of one or several interaction
points. This is depicted in our meta-model, in Figure 5.1. In the component inter-
faces, these interaction points are called ports, while in the connector interfaces, they
are called roles. Provided ports describe the services a component provides, while
required ports describe the assumptions a component assumes from its environment,
such as the services it should provide to the component. Taking our example, above,
the trip component has one provided port (for booking a holiday package) and two
required ports (respectively used by the component to buy plane tickets and to book
hotel rooms). Roles describe the different roles (hence the name) that components
can play in some interaction. Taking for example a Unix pipe-and-filter architecture,
the pipe connectors have two roles: producer (or data source) and consumer (or data
sink).

An alternative to entities having one interface with several interaction points, is
to consider entities that have several interfaces and then these are not decomposed
into several interaction points (both notions coinciding). Web services for example
take the first interpretation. Let us take a composite Web service written in the BPEL
orchestration language [OAS07]. It has different partners that it will communicate
with. These can correspond to end-users, programs, or other services that will fulfill
some functionality for the composite. For each of these partners there is a port, called
partner link, which is described using the WSDL [W3C01].

Usually, ports are detailed into sets of operations (the operation being the element
being called, while the port – or partner link in Web services – being the place where
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the call is issued) [POI 06, HAD 07, BAR 09]. Indeed, many different kinds of infor-
mation can be associated with an interface (or, respectively, to ports and roles). These
are often classified using four interface description levels and accordingly interface
description languages (IDLs) [CAN 06].

1) Signature level. This is the state of the art for mainstream components and
service middleware, e.g. CORBA or SOA such as Web services. Interface descriptions
at this level specify the methods or services that an entity offers (as in object IDLs, like
CORBA-IDL, or the public interface of a Java class). Sometimes, they also describe its
external dependencies (as in component IDLs like CCM-IDL for OMG’s component
model, or WSDL for Web Services). Typically, these interfaces specify the name of
the service, the type of its arguments and return values, and the possible exceptions
raised, that is, the full signature of the entity behind the interface.

2) Behavioral level. Interfaces at this level specify the protocol describing the
interactive behavior that a component follows, and possibly the behavior that it ex-
pects from its environment. Behavioral descriptions are required for entities with
state, providing non-uniform services that are not available at any time, but that
depend for example on the internal state of the entity. There are numerous pro-
posals for extending interfaces with behavior, either for components with protocols,
e.g. [PLÁ 02, POI 06, BAR 09, BRA 05, CAN 08, TIV 08], or for services with con-
versations, e.g. [Ben 07, MAT 08, BER 10]. We will detail formal ADLs that use
behavioral interfaces in section 5.3 (e.g., Wright or Darwin) but some ADLs briefly
presented in section 5.4 may also have this kind of information in interfaces (e.g.
SOFA or Fractal). ADLs with behavioral interfaces rely, for description and analysis,
on formal behavioral model such as (labeled) transition systems (LTS), Petri nets, or
process algebras.

3) Semantic level. This level describes what the entity actually does, not only the
methods it offers or the messages it exchanges. Such specification is particularly in-
teresting for component mining (e.g. automatic service discovery). In the field of Web
services, this level of description is related to the Semantic Web, e.g. using ontologies
or description logics, and languages such as OWL/OWL-S or WSMO [TOÖ ]. An
alternative approach consists of using formal functional descriptions for specifying
functionality, e.g. preconditions and postconditions for the signature level operations.

4) Service (non-functional) level. Numerous non-functional properties such as
temporal requirements (discrete or real-time), security, reliability, accuracy, cost, etc.
are important to take into account when composing entities altogether, especially for
some application domains such as real-time embedded systems. These properties are
tackled by the non-functional interface description level. It is usually highly customiz-
able, and the possible descriptions include mean values, standard deviations, and a set
of quantiles characterizing the distribution of any self-defined quality metric. AADL,
which we present in section 5.4 is a typical example of an ADL providing this interface
description level and associated analysis techniques.
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It is important to stress that, if most ADLs associate with interfaces only a subpart
of these four levels, the genericity and extensibility principle of interfaces in ADLs
states that anything that eases the specification, analysis, and/or implementation can
be included in the description of an interface.

Configurations

An (architectural) configuration is the description of an assembly of components
(i.e. a set of identified instances of component types) and connectors (i.e. a set of iden-
tified instances of connector types). The relations between components (exchanging
provided/required functionalities) is achieved through connectors and the binding of
component ports to the different roles of the connectors.

Configurations represent an architectural viewpoint of a system. Different ab-
stractions or constraints of a system (e.g. whether during the design process, or at
deployment where deployment constraints are highly relevant) can lead to different
configurations. Configurations enable the designer to check the system’s architecture
(see below, ADLs and analysis). Further, once a deployment scheme has been chosen
(e.g. if, for each component, an address is given) then ADLs enable the automatic
deployment of the system.

Regarding systems complexity, an important benefit of configurations in ADL is
the possibility to build composite components, i.e. to treat a configuration as a compo-
nent and (re-)use it in further configurations. For this, it must be possible to relate the
ports of the composite components to the ports of its subcomponents (see an exam-
ple of this, below, in Examples). Composite components enable a divide-and-conquer
strategy where, for example, a first decomposition level of a system can be made
based on deployment issues (e.g. having three high-level components in the system
corresponding to three Web services deployed on three application servers), while in
a second step each of these three components can be refined as a composite using a
configuration made up of functional (business) subcomponents (e.g. implemented us-
ing Java classes). The service component architecture (SCA) [Ope 07] is an example
of a recent framework that is highly reliant on composite components.

Composite components raise the compositionality issue. An ADL is compositional
if, not only is it possible to define composite components, but also the semantics of
the configuration in the composite component can be related to the semantics of a
component. Interestingly, this is the case for most formal ADLs with behavioral sig-
natures: given the behaviors (e.g. some LTS) of all the components (and connectors,
if not implicit) in a configuration, it is possible to retrieve the behavior (again, e.g.
an LTS) for the configuration. The compositionality of the ADL raises the possibility
of compositional verification of the architectures, i.e. verify a composite component
without really computing the global behavior, but taking into account only the sub-
components’ behaviors and their connections. Reasoning on composite components
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is not restricted to behavioral descriptions but it also applies to non-functional service
descriptions, e.g. to retrieve the value of quality of service attributes for composite
components being given the value of these attributes for the subcomponents.

Examples

In Figure 5.2, we illustrate an example of an architectural description, namely
a client-server configuration with two components (a client and a server) and one
connector (a remote procedure call (RPC) interaction) [ABL 10]. Each component
has one port, respectively, Request for the client and Service for the server. The
RPC connector has two roles: Callee for the service being called and Caller for the
client calling it.

Client Server
RPC

connector

components

role port

Request Service

Callee

Caller

Service

Callee

Figure 5.2. A client-server configuration [ABL 10] (ACME notation)

A second example is illustrated in Figure 5.3 and demonstrates that ADLs can be
used to model different kinds of structured systems, and, using the connector abstrac-
tion, refine architectures depending on the distribution choice and related interaction
technique(s). Here, we have a Unix pipe-and-filter architecture to find out definitions
in C source files, i.e. corresponding to:

grep "#define" | cut -d ’ ’ -f 2,3 | sort.

It is made up of three components and two connectors. It is important to note
that the configuration strictly adheres to some implicit rules constraining what is a
“correct” pipe-and-filter architecture (we will see later that such rules can be made
explicit): the only component types are filters, while the only connector types are
pipes 4. Each component has three ports: in (aka stdout, or &0), out (aka stdout, or
&1), and err (aka stderr, or &2). Pipes have one input role (source) and one output

4. Actually, pipe-and-filter architectures also contain data sources and data sinks; however, we restrict
them here for simplicity.
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role (sink). While the previous example was a closed one, here the configuration as
a whole can be seen as an open system component, with three ports (input, output,
and error). Binding can be used not only to bind ports and roles, but also to bind
internal component ports to the composite component ports. Refining such a system
into a distributed one is eased by the architectural notation, e.g. we can replace pipe
connectors by RPC connectors.

Filter Filter Filter

grep "#define" cut -d ' ' -f 2,3 sort

in out

err

in inout out

err err

input output

error

Pipe Pipe

source
sink

source
sink

Figure 5.3. A pipe-and-filter configuration (ACME notation)

Our last example, in Figure 5.4, demonstrates the use of ADLs to model another
kind of system, namely a centralized composite Web service (i.e., an orchestration).
Here we demonstrate a typical example where connectors are abstracted away (see
discussion in Connectors, above). ADLs enable us to focus additionally on the opera-
tions corresponding to service functionalities provided or required at ports (signature
level interfaces). Note that the set of operations required at a required port may be
a subset of those provided at the corresponding provided port. In such a case, UML
component diagrams [OMG 10b] complemented with class diagram(s) for interfaces
may be a valuable alternative regarding the graphical representation of the configura-
tion.

These examples will serve as a basis in the sequel to present representatives of
the formal ADL in section 5.3. Behavioral interfaces will be demonstrated there too,
while non-functional interfaces will be demonstrated in section 5.4.

5.2.2. ADLs and analysis

The use of ADLs gives the software architect the possibility to analyze architec-
tural descriptions in an architectural design step that takes place between the require-
ment analysis and implementation. Further, when the properties or descriptions that
are associated with components’ and connectors’ interfaces are formally grounded
(i.e. they have a formal model) then automatized verification and analysis becomes
possible.
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TripService
tripClient plane

hotel

PlaneService
planeClient

HotelService
hotelClient

operation book
inputs from:string,to:string,
           departure:date,return:date
           hotelstars:integer
outputs eticket:string,
             hotel:Hotel

operation bookPlane
inputs from:string,to:string,
           departure:date,return:date
outputs eticket:string

operation setup
inputs from:string,to:string,
           departure:date,return:date
outputs sessionid:integer

operation book
inputs sessionid:integer
outputs information:Hotel

operation cancel
inputs sessionid:integer

operation bookPlane
inputs from:string,to:string,
           departure:date,return:date
outputs eticket:string

operation setup
inputs from:string,to:string,
           departure:date,return:date
outputs sessionid:integer

operation book
inputs sessionid:integer
outputs information:Hotel

Figure 5.4. An orchestration configuration (extended ACME notation)

Architectural styles and their verification

The notion of (architectural) style is only present in some ADLs. It enables the
definition of structural constraints over configurations that can be verified by tools
such as AcmeStudio. This includes:

– typing constraints. A style can limit the types of the components and connectors
that are used. An example we saw is the pipe-and-filter architectures where the only
components are filters, data sources and data sink, while the only connectors are pipes;

– binding constraints. A style can limit the types of bindings between component
ports and connector roles. Again, in the pipe-and-filter architecture, the source role of
a pipe can only be bound to the output of a component, and the sink role can only be
bound to the input of a component. Additionally, both roles can only be bound once
(it is not possible to bind two component ports on a single connector role);

– occurrence constraints. A style can limit the number of components and/or con-
nectors in configurations, e.g. for efficiency issues, or, the other way round, impose
that some/all components are duplicated, e.g. for safety reasons.

Behavioral analysis, composition, and adaptation

Associating formal behavioral descriptions to components and connectors pro-
vides numerous benefits to the software architect [BER 03, POI 04, BEE 07]. Among
these we may cite:
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– animation. Using the operational semantics of behavioral descriptions, it is pos-
sible to animate the specifications of components and connectors. Further, when the
ADL is compositional, the specification of whole configurations may be animated.
Most process algebras come with animation tool facilities, which provide a basic pro-
totype means for architectural descriptions;

– checking behavioral equivalences, pre-orders, and refinement relations. Check-
ing equivalence relations between two components enables verification of whether one
can replace the other. Sometimes, equivalence is too strong an assumption as the re-
placement component may do more than the replaced component without a problem.
In such a case, a pre-order relation would be used. Finally, refinement relations, enable
verification of whether some configuration is a correct implementation (or refinement
in general) of a component. In ADLs, these relations are more particularly used to
check whether components (their ports) fulfill the conditions specified in the connec-
tors (their roles) they are bound to. Regarding Web service applications, a specific
notion of equivalence which takes into account the direction of exchanged messages
is used, namely compatibility;

– checking behavioral properties. Different kinds of properties can be checked
against a component, connector, or configuration specification. These include dead-
lock freedom and availability properties. It is also possible to check that undesired
properties are not satisfied (and, when it is the case, to get a counter example).

Rich interfaces including semantics foster automatic composition, where the issue
is to retrieve configurations from available components (to be reused) and composition
requests (to be fulfilled). This area has particularly been studied in the Web service do-
main [PEE 05, DUS 05, CHA 07, BER 10], but not only [MOR ]. While components
and services are often designed by different third-parties, they may present mismatch
(e.g. deadlocks) which makes it impossible to reuse them. To complement analy-
sis techniques enabling problem detection, there is the need for solutions for problem
solving. This is the objective of (behavioral) software adaptation [CAN 06, SEG 08] 5

which enables the building of new pieces of code, called adaptors, to proceed auto-
matically. These act between mismatched components in a non-intrusive way, i.e.
without changing their code but only by reordering, deconstructing, and reconstruct-
ing messages. Software adaptation can be related to controller synthesis (presented in
Chapter 10) with the (important) difference that adaptation is able to perform message
reordering and relabeling to avoid deadlocks. Depending on the context, an adaptor
can be either seen as a kind of connector 6 dedicated to solving behavioral interoper-
ability issues (mismatch), e.g. [BRA 05, CAN 08, TIV 08, AAL 09, SEG 10], or as

5. Software adaptation in this sense is following the seminal work by Yellin and Strom [YEL 97] and
should not be confused with adaptive middleware [ada02] or architectural adaptation [ORE 08, KRA 09].

6. One should note that this does not prescribe the way the adaptor is implemented, in the middleware
or as a standalone component.
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a kind of component when adaptors are used to ensure some behavior from a set of
components, e.g. for automatic service composition [MAT 08, POI 10].

Non-functional analysis

Beyond the behavioral information associated with components and connectors,
and associated behavioral analysis, ADLs may support the analysis of quantitative or
non-functional properties of architectures. The Wright ADL, presented in the next sec-
tion, has been extended to take non-functional properties into account [VAN 05], but
still no formal grounding (hence reasoning) is provided. The AEmilia [BER 02] ADL,
built on top of a stochastic process algebra (EMPA) enables performance analysis of
architectures. Finally, AADL, which is presented in the last section, has numerous
possibilities for the specification of non-functional properties and their verification.

5.3. Formal ADLs

To present all formal ADLs in detail would be a long process; indeed the basic idea
behind most formal ADLs is to enable the specification and verification of architec-
tures for a given application domain (architectures from an abstract design perspective
or closer to some implementation framework, e.g. Web services) or properties of in-
terest (deadlock freedom, temporal properties, mobility, etc.). We focus in this section
on two of the main approaches for the formal specification of architectures (i.e. formal
ADLs): Wright and the approach that stems from the Darwin ADL. For more details
(on other formal ADLs), we refer the reader to [BER 03, POI 04] for example.

5.3.1. Wright

The main objective of Wright [ALL 97a, ALL 97b] is the specification of software
architectures together with the formal verification of behavioral properties or architec-
tural styles. To achieve this goal, Wright is based on a language that can be translated
into the CSP process algebra and on the FDR tool to undertake verification. Wright
does not support code generation but simulation is possible using (and in the limits
of) CSP and dedicated tools. One commonly referred to drawback of Wright is that it
can be difficult to apprehend. However, this is the price you pay to benefit in an ADL
from the expressiveness and verification means provided by a process algebra (here,
CSP). While the examples we present here are simple, more complex and realistic
architectures have been defined and verified using Wright [ALL 97b].

Connectors

A connector in Wright is defined as a set of roles together with a glue. Each role
specifies the behavior that is expected from any port that will be bound to this role.
The glue extends this (role-based) local specification by a global specification that
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prescribes how events occurring at different roles should synchronize or interleave,
the possible sequences of these events, etc.

The behaviors are described in a syntax that is close to the CSP syntax, but where
events are overlined when they are to be initiated by the object (role, glue) being
defined. Operators include: → for prefixing, STOP for a void behavior (cannot do
anything),

√
for success (correct termination) , § which is defined as

√→STOP, � for
external choice (the choice between branches is from the environment and the defined
object has to follow it), and � for non-deterministic internal choice (the choice is
made by the object being defined; it is technically a way to model and if-then-else
with an internal condition). Further, the notation enables modeling a reception event
(ev?x), an emission event (ev!x), and parametrized behaviors (Pv = ev!v.Pv+1).

A remote procedure call (RPC) is a connector with two roles: one for the caller,
performing a call and receiving a result, and one for the callee, receiving the call and
returning a result. This may be defined in Wright as follows [ALL 97b]:

Connector RPC
Role Caller = call → return → Caller � §
Role Callee = call → return → Callee � §
Glue = Caller.call → Callee.call → Glue

� Caller.return → Caller.return → Glue

� §

In this example note that one component can play two roles with reference to this
connector: callee or caller. The caller has the decision to initiate the process or not
(use of internal choice), while the callee proposes the procedure call option but it is
others (here, the caller) that decide whether a call will take place or not. The glue part
is used to specify temporal constraints over the two roles. For this, the glue relies on
prefixing the events by the role it refers to (i.e. Caller.call refers to the call event
in the Caller role). While roles correspond to local specifications, the glue is used to
give a global semantics to the RPC connector.

Components

Similarly to connectors, components are defined by a formal specification of their
ports and optionally by a description of the interactions between ports (computation).

In a client-server architecture, on top of RPC connectors, we also have two kinds
of components: clients and servers. A client has a unique request port through which
it outputs calls and gets results. In the same way, a server has a unique service port
through which it gets calls and returns results. In Wright, we get [ALL 97b]:
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Component Client
Port Request = call → return → Request � §
Computation = Request.call → Request.return → Computation � §

Component Server
Port Service = call → return → Service � §
Computation = Service.call → internal_computation

→ Service.return → Computation � §

Configurations

Following the general definition of a configuration in an ADL presented earlier, a
configuration in Wright is given as a set of (types of) components, a set of (types of)
connectors, instances of these component and connector types and bindings between
ports and roles.

Let us take the pipe-and-filter architecture presented in section 5.1 (simplified not
to deal with errors). In Wright, this results in a configuration made up of three in-
stances of one type of component, and two instances of one type of connector. Bind-
ings relate the component ports to the connector roles.

Configuration DefinitionFinder
Component Filter
Port in = [...]
Port out = [...]
Computation = [...]

Connector Pipe
Role source = [...]
Role sink = [...]
Glue = [...]

Instances
grep:Filter
cut:Filter
sort:Filter
p1:Pipe
p2:Pipe

Attachments
grep.out as p1.source
cut.in as p1.sink
cut.out as p2.source
sort.in as p2.sink

End DefinitionFinder
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Specific features

Wright enables the specification of composite components. The computation part
of a components or the glue part of a connector can be defined using an architectural
description, and bindings are used to connect the subcomponent ports to the composite
port.

Suppose that we want to reuse our configuration that finds the definitions (see
above) as a component, we can make a composite component from it as follows:

Component DefinitionFinderComponent
Port in = [...]
Port out = [...]
Computation

Configuration DefinitionFinder
// see above
End DefinitionFinder
Bindings

in = grep.in
out = sort.out

End Bindings

Wright also supports the definition of interface types that define generic patterns
of interaction. These can be later on used in ports and roles [ALL 97b]:

Interface Type DataInput = [...]
Interface Type DataOutput = [...]
Component Filter
Port in = DataInput
Port out = DataOutput
Computation = [...]

Architectural style constraints can also be specified in Wright. An example is the
pipe-and-filter architectural style where only connectors are pipes and where compo-
nents have only input or output data ports [ALL 97b]:

Style Pipe-and-Filter
Interface Type DataInput = [...]
Interface Type DataOutput = [...]
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Component Filter = [...]
Connector Pipe = [...]

Constraints
∀ c:Connectors . Type(c) = Pipe
∧ ∀ c:Components; p:Port | p∈ Ports(c) . Type(p) = DataInput
∨ Type(p) = DataOutput

...

Wright also supports more advanced concepts such as data associated with events
or parametrized components and connectors. We refer the reader to [ALL 97b] for
more details. It should also be noted that Wright has been extended to take into ac-
count configuration dynamicity [ALL 98] or non-functional properties [VAN 05].

Verification

Wright supports the verification of software architectures using the transformation
of definitions into the finite subset of the CSP process algebra (the number of processes
has to be finite) and then the use of the FDR tool. Possible verifications in Wright
include:

– for a component: consistency between the definition of its ports and its compu-
tation;

– for a connector: deadlock freedom (of the whole connector), deadlock freedom
of a role;

– for a configuration (set of bound components and connectors): consistency be-
tween the definitions of bound ports-roles, respect of architectural style constraints;

– for an architectural style: consistency of its definition (bindings are consistent).

Some other verification techniques are unique to Wright (unique initiators for events,
verification on the parameters, and the intervals used, etc.).

5.3.2. Darwin and FSP

Darwin [MAG 96] is an ADL mainly targeted at the description of (dynamic) con-
figurations. While Wright is a text-only notation, Darwin presents both a textual and
a graphical notation used in the software architect assistant tool. Darwin served as a
basis for the development of Koala [OMM 00], which has been used in an industrial
context.

Configurations in Darwin

Darwin supports dynamicity in the topology of architectural descriptions, such as
adding/removing components or changing binding, which is increasingly required in
new systems, such as ubiquitous service-based systems where the user is mobile. To
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support this feature, while the semantics of Wright has been given in a simple process
algebra (CSP), the semantics for Darwin has been given in a more expressive process
algebra, namely the π-calculus [MAG 95].

Let us take an example where n filters are serialized to achieve some composite
component (Figure 5.3 was a simple example of this). In Darwin we get (combined
from [MAG 95] and [MAG 96] 7):

1 component filter {
2 provide in<stream char>;
3 require out<stream char>, err<stream char>;
4 };
5

6 component pipeline(char) {
7 provide input;
8 require output, error;
9 array F[n]:filter;

10 forall k:0..n-1 {
11 inst F[k]@k+1;
12 bind F[k].err -- error;
13 when k < n-1
14 bind F[k].out -- F[k+1].in;
15 }
16 bind
17 input -- F[0].in;
18 F[n-1].out -- output;
19 }

Listing 5.1: Components and configurations in DARWIN

As one may note, Darwin descriptions are at a lower description level than Wright
(e.g., with C/C++ types being used in configuration definitions). Indeed, Darwin relies
on syntactic elements to relate to Regis [MAG 94], a framework, written in C++,
enabling the construction and execution of distributed programs specified in Darwin.
Thus, in the previous example, <stream char> denotes a port for character streams.
Darwin allows components to be instantiated using the inst primitive (@ enabling to
state on which machine). The dynamic binding between ports (of two components,
or of a composite and one of its subcomponents) is achieved with the bind primitive.
Finally, Darwin does not introduce explicit connectors (with reference to Figure 5.3,

7. The “inputs” of a component can be either considered as provided [MAG 96] or required [MAG 95]
ports (conversely for the “outputs” and “errors”). Both interpretations are sensible as these inputs are
provided by another component while usually corresponding to some operation that is provided by the
component. We take the first interpretation here.
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there are no “pipe” connectors in the example, above). Instead, Darwin relies on
a pre-defined set of connectors between ports (hence they are bindings rather than
connectors).

Component behaviors with FSP

The main objective of Darwin is implementation. However, the Darwin approach
was extended in project TRACTA [GIA 99, MAG 99] to take into account the behav-
ior of components thanks to labeled transition systems and, later on, using the FSP
process algebra, a dialect of CSP. A Darwin architectural description, which is ex-
tended with FSP, may then been verified using the LTSA toolbox, a rich toolbox for
the specification and verification of FSP.

Let us take again our RPC example and model it in FSP. Here, | corresponds to
external choice, -> is prefixing/sequence, and @ enables the definition of a component
external interface.

1 range T = 0..1
2 RPC = (caller.call[x:T]->callee.call[x]->RPC
3 |callee.return[x:T]->caller.return[x]->RPC
4 )@{caller.call,callee.call,
5 callee.return,caller.return}.

Listing 5.2: Component behavior in FSP

Note here the use of a “connector” component (see discussion in section 5.2). It
is used to define complex connectors as Darwin has no explicit connector constructor.
The specification of an architectural configuration consists of composing in parallel
the components (including “connector” ones) using the concurrent (||), renaming
(/{new-name/old-name}), and hiding (\{hidden ports}) FSP operators 8:

1 range T = 0..1
2

3 RPC = ... (see above)
4

5 CLIENT = (request[0]->response[x:T]->CLIENT).
6

7 SERVER = (query[x:T]->reply[(x+1)%2]->SERVER).
8

9 ||CLIENTSERVER = (caller : (CLIENT
10 /{call/request, return/response})
11 || callee : (SERVER

14

8. With reference to our example above, we have changed the names of the actions undertaken by caller
and callee in order to demonstrate the use of renaming to enable correspondence between port names.
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12 /{call/query, return/reply})
13 || RPC)
15 \{ caller.call,caller.return,
16 callee.call,callee.return}.

Listing 5.3: Configuration behavior in FSP

Verification

Using the LTSA tool, the verification of FSP specifications is possible. FSP is an
executable specification language. Hence, a first verification mean uses animation,
where the designer can interact with the ports of architectural descriptions (configura-
tions seen a composite components). This is particularly relevant for prototyping an
architecture. LTSA also enables verification of whether an architecture is deadlock-
free. In the case where it is not, a sequence of port interactions (event trace), called
witness, is presented. Further, LTSA enables a particular automaton to be defined,
called property automaton. This automaton enables legal traces (that one wants to
find in the architecture) and illegal traces (that one wants to avoid) to be defined. The
latter is achieved using ERROR states. The property automaton is composed in par-
allel with the automaton corresponding to the architectural description. Reachability
analysis of ERROR states is used to ensure that illegal traces (ending in these states)
are not possible. Trace equivalence can also be used to ensure that correct traces are
present in the architecture. This technique enables safety and liveness properties to
be checked. More recently, the techniques developed in the Darwin/FSP approach
have been extended to take into account a specific architecture, Web services. Using
the WS-Engineer toolbox [FOS 10],configurations where components are services can
be analyzed. Similar to Wright, where it was possible for example to check config-
urations for port-role compatibility, it is possible to check whether services respect
the role they play in a choreography (decentralized composite service specification).
More generally, it is also possible to perform behavioral analysis (animation, equiva-
lence checking, property verification) on service orchestrations.

5.3.3. Synthesis

By promoting an abstract architectural description level, formal ADLs enable the
formal specification and the verification of architectural descriptions. They are mainly
based on formal behavioral languages, more specifically process algebras such as the
π-calculus, CSP, or FSP, due to their conciseness with reference to automata for ex-
ample. These languages provide the ADLs with a rich and expressive framework for
the description and verification of components, connectors, configurations, and styles.
As a drawback, formal ADLs are often more complex to master and are sometimes
considered to be too abstract when it comes to architectural descriptions close to im-
plementation. We believe that recent applications of FSP to Web service architectures
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demonstrate that formal ADL are of real use in an implementation context too. How-
ever, in the next section, we will see more concrete ADLs that can complement the
formal ADLs for lower-level architectural descriptions.

5.4. ADLs for actual implementation

In the previous section, we studied formal ADLs. We now present a few languages
designed to help in the configuration or the generation of executable systems. They
are based on the definition and composition of components, and rely on a run-time
that allows the execution of the described architecture. We first outline dedicated
languages, then study AADL in more detail, as it provides a very interesting approach.
We finish with some considerations about UML.

5.4.1. Specific ADLs

Some ADLs are specific to a given execution platform; they are used as configura-
tion languages for this platform. In this section, we present a brief overview of some
of them.

ArchJava

ArchJava [ALD 01] is an extension of the Java programming language which is
meant to associate architectural information with source code. The architecture infor-
mation is thus bound to the functional description.

ArchJava adds notions of components and ports to structure applications: each
component defines ports; these ports consist of interfaces that provide or require meth-
ods or variables. ArchJava thus allows the construction of applications by connecting
component ports. It eases the design of applications. As it is associated with Java, it
cannot be used to integrate components written using other programming languages.
The main benefit of this approach is that it is rather easy to use.

Fractal ADL

Fractal [BRU 04b, BRU 04a] defines a way of creating component assemblies; it
is defined by the ObjectWeb consortium. It is based on the notion of containers that
encapsulate component code. Fractal consists of descriptions of assemblies of appli-
cation components that allow reconfiguration (i.e. dynamic evolution of component
assemblies). Such assemblies can be described using a specialized language.

Fractal consists of a run-time and an application programming interface (API) for
different languages. In addition to these elements, there is a configuration language.
Fractal does not define a concrete syntax for the configuration language: Fractal is a
set of concepts rather than an actual language.
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SOFA

SOFA [PLÁ 98] is an architecture that targets the assembly of reusable compo-
nents while allowing their dynamic evolution. SOFA provides a component definition
language (CDL) to describe components, interfaces, connectors, etc. Components are
deployed in SOFAnodes. These SOFAnodes are assembled within a canvas, called a
SOFAnet. The active components are associated with an execution environment called
DCUP (Dynamic Component UPdating) that provides an environment to each SO-
FAnode.

DCUP enables the separation of the functional part and the command part. On
each node, the command part can update the component, controls its execution, and
manages the interface between the component and the other nodes.

Synthesis

Fractal, ArchJava, and SOFA are actually frameworks to build applications. They
rely on a given run-time environment, either generic (a Java virtual machine for Arch-
Java) or specific (for SOFA and Fractal).

These configuration languages rely on the concepts of ADLs. In all situations, the
application design relies on an assembly of components, specified using an associ-
ated ADL. The dedicated ADL describes the interfaces of the components and their
connections. Connectors are not systematically involved: SOFA has the notion of
connector, but ArchJava does not, as it is close to programming languages; communi-
cations in Fractal are implemented by components.

5.4.2. AADL

The AADL) comes from studies carried out by the Society of Automotive Engi-
neers (SAE). It is an evolution of an older ADL called MetaH [FEI 00]. The first
version of AADL was issued in 2004 [SAE04], and has matured to provide a second
version in 2009 [SAE09b]. The core language is now stable; work now focuses on
annexes. AADL is explicitly targeted at the description of embedded real-time sys-
tems. Its initial scope was avionics and space, but it now attracts attention from other
domains.

The AADL standard defines several syntaxes: a textual syntax and a graphical syn-
tax. An annex of the MARTE standard also exists for AADL v1[Car 10, OMG 10a].
The AADL is also defined as a meta-model. The AADL was designed to ease the
interoperability between different tools; which is why the reference syntax is the tex-
tual one, which is similar to a programming language. The graphical notation can be
used as a complement to ease the representation of architectures, as it provides more
understandable descriptions, using less information.
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AADL implements the usual ADL concepts: components, interfaces, connectors,
but, some of them are more developed than others. Here we describe the main aspects
of the language–we do not intend to provide a comprehensive description of the lan-
guage. We will use the textual syntax, as it is the more convenient. We illustrate the
different aspects of the language with examples to show an iterative way to define a
simple system made of a pressure sensor connected to a processor.

Components

An AADL model consists of a hierarchy of components connected to one another.
An AADL description is the declaration of these components. AADL introduces a
distinction between the specifications of a component and its realization: each com-
ponent has an interface (named component type), which corresponds to zero, one of
several implementations (component implementation). The AADL defines several cat-
egories of components.

Software components define the application part of an architecture; there are six
categories of software components. Threads correspond to active software elements.
They correspond to system threads of operating systems. Thread groups are used to
gather threads in order to create hierarchies or thread pools. Processes are memory
partitions in which threads execute; a process must contain at least one thread. Data
correspond to data structures that may be stored or exchanged between components.
Subprograms model programming language procedures; they do not have return types,
but can have in and/or out parameters. Subprogram groups can be used to represent
libraries as sets of functionalities.

Platform components represent the hardware elements; there are six categories of
platform components. Processors represent the combination of microprocessors and
schedulers; they thus model processors with a minimalistic operating system. Virtual
processors represent logical resources in which processes can be deployed; they can
be used to support partitioned operating systems. Memories represent storage devices
in general: hard disks, RAM, etc. Devices model elements, the internal structure of
which is ignored at the level of the AADL model; they can typically be sensors with
only interface and external characteristics being specified. Buses model networks and
buses in general, ranging from a simple serial cable to the Internet. Buses must be
connected to processors, memories, and devices to carry communications between
these components. Virtual buses are used to model logical network flows; for example
an Internet wire can be modeled by a bus, and the TCP/IP protocol can be modeled by
a virtual bus.

Besides software and platform components, the AADL standard defines system
components, which do not correspond to actual entities; they are used to create logical
hierarchies. For example, the central unit of a computer can be modeled as a system
that contains a processor, a memory and a bus between them. In addition, abstract



120 Models and Analysis for Distributed Systems

1 thread execution_thread
2 end execution_thread;
3

4 thread implementation execution_thread.impl
5 calls
6 {call1 : subprogram a_procedure;};
7 end execution_thread.impl;
8

9 subprogram a_procedure
10 end a_procedure;
11

12 process program
13 end program;
14

15 process implementation program.mono_thread
16 subcomponents
17 thr1 : thread;
18 end program.mono_thread;
19

20 process implementation program.mono_thread2 extends program.mono_thread
21 subcomponents
22 thr1 : refined to thread execution_thread.impl;
23 end program.mono_thread2;

Listing 5.4: Component types and implementations in AADL

components are defined; they have no semantics at all, and are meant to be refined
into one of the other component categories. Abstract components can be used in the
early steps of architecture design.

A component type defines the interface of a component while a component im-
plementation describes its internal structure. Component implementation thus always
refers to an existing component type. No declaration order is required: an implemen-
tation can be declared before the type it corresponds to. Listing 5.4 illustrates the
relationship between types and implementations. A component declaration (type or
implementation) can be extended to add or refine elements.

Component implementations can have subclauses, as shown in listing 5.4. A com-
ponent implementation can contain subcomponents. A subcomponent is an instance
of a component declaration (either component type or implementation). This way,
an AADL architecture is a set of components contained one in another, creating a
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tree. The declaration of a subcomponent must be associated with a component cate-
gory, and possibly with a type or an implementation, depending on the accuracy of the
model.

Subprogram calls model calls to procedures in imperative programming languages.
They are organized into call sequences within subprograms or threads. Though the
syntax is similar to that used for subcomponents, the call of a subprogram is not an
instance of this subprogram (as in programming languages).

Interfaces and connectors

AADL does not have a complete notion of connector, as communication media
are not separate from components. The communication semantics is carried by the
elements of the component interfaces.

Interface elements (features) of a component are declared in its type, as shown in
listing 5.5. Thus, each implementation of a component type offers the same interface
to other components; the different implementations can thus be interchanged. There
are several types of features.

Ports correspond to communication interfaces between components. They are de-
clared as input, output, or input/output ports. Event ports transmit a signal. They
can be compared to signals of operating systems. They can trigger the execution of
an AADL thread. Data ports transmit data. Unlike event ports, they do not trigger
anything upon reception; they can thus model a memory register that is updated in
an asynchronous way. Event data ports are a synthesis of the two other port kinds:
they transmit data and threads are notified upon reception; they can be used to model
message-based communications. Subprograms do not have ports; they have param-
eters. Subprogram parameters have the same semantics as data ports or event data
ports.

There are four kinds of subcomponent access: for bus, for data, for subprograms,
and subprogram groups. In all cases, they are declared as provided or required. In the
case of a data component, an access is used to share the data; a bus access is used to
connect processors, devices, or memories. A subprogram accesses model remote pro-
cedure calls. A subprogram can be direct features of a thread type. This is equivalent
to a provided access to a subprogram that would be part of the thread. Accesses to sub-
program groups correspond to shared libraries, and thus do not completely correspond
to a communication model.

AADL defines the notion of feature groups, that gather several features into one
structure. This allows the connection of several features without having to deal with
all of them separately. For example, all the pins of a parallel cable could be modeled
by event ports gathered within a feature group. This can also be used to gather a set
of subprogram accesses.
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1 data pressure_information
2 properties
3 Data_Model::Data_Representation => Integer;
4 Data_Model::Number_Representation => Unsigned;
5 Source_Data_Size => 2 Bytes;
6 end pressure_information;
7

8 thread mean_pressure_processing
9 features

10 input : in event data port pressure_information;
11 output : out data port pressure_information;
12 mean : requires data access pressure_information;
13 end mean_pressure_processing;
14

15 process pressure_processing
16 features
17 input : in event data port pressure_information;
18 output : out data port pressure_information;
19 end pressure_processing;
20

21 process implementation pressure_processing.mono_thread
22 subcomponents
23 thr1 : thread execution_thread.impl;
24 mean : data pressure_information;
25 connections
26 event data port input -> thr1.input;
27 data access mean -> thr1.mean;
28 data port thr1.output -> output;
29 end pressure_processing.mono_thread;

Listing 5.5: Features and connections in AADL

Connections are used to connect the features of the subcomponents, either to the
features of other subcomponents or to the features of the parent component in which
the subcomponents are declared. Listing 5.5 illustrates connections of features in
process implementation pressure_processing.mono_thread.

Structuring declarations

In order to structure declarations, AADL provides the notion of name space (see
listing 5.7). The anonymous name space is the default name space; it can contain
packages, which are called name spaces. They have a public part, and possibly a
private part. Declarations in the public part can be referenced from the outside of
a package, while declarations in the private part are only seen inside the package.
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Though the naming system of the AADL packages can simulate a hierarchy, packages
cannot contain other packages. Packages can be used to gather AADL declarations to
create logical sets of declarations, the same way Java packages or C++ name spaces.
Packages are used to structure AADL declarations while systems are used to structure
AADL architectures.

Support for architecture reconfiguration and analysis

AADL architectures are completely defined at the design stage: for example, it is
not possible to declare components with an undetermined number of subcomponents
(that would be created at run-time), or to have undefined connections (here again, that
would be managed at run-time). However, the language is not restricted to completely
static architectures: modes are used to introduce a certain dynamism in architectures.
They are defined within component implementations and correspond to execution con-
figurations to which subcomponents, connections, etc. can be associated. Conditions
of mode switching are also described, so that it is possible to define a state machine
in the component implementation. An example of mode definition is provided in list-
ing 5.7, in the implementation machine.i. We defined two modes, mono and dual,
that affect the connections of the process connections. Connection cnx1 is always
active, while cnx2, cnx3, and cnx4 are active or inactive, depending on the current
execution mode. Modes are switched upon reception of signal switch.

An AADL description is based on a hierarchy of subcomponents connected with
one another; the transmission of data is managed through point-to-point connections.
In order to ease the analysis of architectures, AADL defines the notion of flow. Flows
are carried by connections and allow the description of logical flows of data across the
whole architecture.

Characterization of AADL entities using properties and annexes

Properties are a key aspect of AADL. They are used to specify characteristics of
AADL elements; it is thus possible to describe constraints that apply to architectures.
For example, properties are used to specify the execution time of a subprogram, the
period of a thread, the queuing protocol to be used for an event data port, etc. An
AADL property is defined by a name, a type, the list of elements on which it can
be applied, and possibly a default value (see listing 5.6). Properties are declared in
property sets, which are similar to packages. Sets of standard AADL properties are
defined, with associated semantics. These standard properties are to be recognized the
same way by all tools. There are three kinds of properties: property types, constants
and property names.

1 property set User is
2 Compiler : aadlstring => "gcc" applies to (subprogram, thread);
3 Pressure : type units (Pa, hPa => Pa * 100);
4 Pressure_Range : range of Pressure applies to (device);
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5 Version : aadlinteger applies to (all);
6 end User;

Listing 5.6: Property declarations

Property associations assign a value to a given property, i.e. associate a value with
a property name. Property associations can be used in three situations: they can be
declared in a package, in the properties section of a component, or be directly
associated with a subclause.

If a property association is declared in a package, it applies to all the components
declared in this package that are specified in the applies to clause of the property
declaration. If it is declared within a component, it applies to this component, unless
it is used with the keyword applies to; in this case, the property applies to the ele-
ment designated by the applies to statement. If a property association is declared
at the level of a subclause of a component, it applies to this subclause. If the keyword
applies to is used, the property applies to the subclause of the component refer-
enced by the applies to statement. It is exactly the same mechanism, but applied to
a subclause instead of a component declaration.

Listing 5.7 illustrates the use of property associations. We specify the range for
the propagation delay of the AADL bus network using a standard property. We use
standard property actual_processor_binding to bind processes prog1 and prog2
to processor comp1. We also use pressure_range and version that we defined in
listing 5.6. Properties are also used in listing 5.5 to define the semantics of data type
pressure_information; these properties are defined in the data modeling annex of
the AADL standard [SAE09a].

1 package Hardware
2 public
3 processor computer
4 features
5 net : requires bus access network;
6 end computer;
7

8 bus network
9 properties

10 propagation_delay => 1 ns .. 2 ms;
11 end network;
12 end Hardware;
13

14 device pressure_sensor
15 features
16 net : requires bus access Hardware::network;
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17 pres : out event data port pressure_information;
18 properties
19 User::pressure_range => 10 Pa .. 2000 hPa;
20 end pressure_sensor;
21

22 system machine
23 features
24 net : requires bus access Hardware::network;
25 pres_in : in event data port pressure_information;
26 pres_out : out data port pressure_information;
27 switch : in event port;
28 end machine;
29

30 system implementation machine.i
31 subcomponents
32 prog1 : process pressure_processing {User::version => 1;};
33 prog2 : process pressure_processing {User::version => 2;};
34 comp1 : processor computer;
35 connections
36 cnx1 : event data port pres_in -> prog1.input;
37 cnx2 : event data port pres_in -> prog2.input in modes (dual);
38 cnx3 : data port prog1.output -> pres_out in modes (mono);
39 cnx4 : data port prog2.output -> pres_out in modes (dual);
40 modes
41 mono : initial mode;
42 dual : mode;
43 mono -[ switch ]-> dual;
44 dual -[ switch ]-> mono;
45 properties
46 actual_processor_binding => reference comp1 applies to prog1;
47 actual_processor_binding => reference comp1 applies to prog2;
48 end machine.i;

Listing 5.7: Packages

Annexes are another way to associate information with the element of a descrip-
tion. They allow the insertion of information written in an arbitrary syntax at the
level of a component declaration. An annex can be used to specify the behavior of a
component or to specify constraints.

Annexes and properties are used to add information within architecture descrip-
tions. Annexes only apply to components, while properties can be associated with all
AADL elements: components, connections, features, etc. Annexes allow the integra-
tion of elements written in syntax that is different from the AADL syntax, thus easing
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their processing by existing tools. Properties are more integrated to the AADL syntax,
and thus more suitable to specify architecture characteristics.

Exploiting AADL models

An AADL model consists of a list of declarations; subcomponents correspond to
instances of component declarations. In order to create the architectural description
itself, it is necessary to instantiate the different declarations, and thus obtain a tree
structure of instantiated components. To do so, a top-level component that will be the
root of the tree must be defined. This component must be a system without an inter-
face, as it describes the whole architecture. Such a system is represented in listing 5.8.
We declare a system without any features, called global. The implementation of this
system contains all the elements of the architecture and the connections between their
features.

1 system global
2 end global;
3

4 device console
5 features
6 pres : in data port pressure_information;
7 end console;
8

9 device switcher
10 features
11 switch : out event port;
12 end switcher;
13

14 system implementation global.i
15 subcomponents
16 capt : device Hardware::pressure_sensor;
17 calc : system machine.impl;
18 net : bus Hardware::network;
19 switcher1 : device switcher;
20 console1 : device console;
21 connections
22 bus access net -> capt.net;
23 bus access net -> calc.net;
24 dat_cnx : event data port capt.pres -> calc.pres_in;
25 data port calc.pres_out -> console1.pres;
26 basc : event port switcher1.switch -> calc.switch;
27 properties
28 Actual_Connection_Binding => reference net applies to dat_cnx;
29 Actual_Connection_Binding => reference net applies to basc;

Models and Analysis in Distributed Systems



Architecture Description Languages 127

30 end global.i;

Listing 5.8: A global AADL system

AADL models focus on the deployment and allocation of software resources to an
execution environment (mainly a hardware topology). Thus it is a good support for
code generation, analysis, etc.

Each component and feature category has its own semantics, which defines legality
rules with respect to what kind of subcomponent can be nested within a given compo-
nent kind, what kinds of features a component type can have, etc. AADL thus provides
a wide range of possibilities to describe consistent architectures, without ambiguity.

AADL models are based on a single architectural representation (with possibly
several syntaxes) of applications. Some aspects, such as behavior modeling of com-
ponents, are not directly in the scope of AADL. Properties and annexes can be used to
associate behavior information with components, whether by specifying source code
files or by providing more formal specification. It is thus useless to specify the size
of the source code if we just want to perform schedulability analysis: we will just
have to specify execution time, thread periods, etc. using properties. Similarly, it is
not necessary to specify the types of the subcomponents: only their categories can be
sufficient. It is then easy to describe the deployment of an architecture distributed on
several nodes. In addition, the AADL syntax allows for flexibility: it is not neces-
sary to provide all the details of an architecture to process it. Declarations of features,
subcomponents, and subprogram calls are generally associated with component dec-
larations. However, it is possible to specify only the category of a subcomponent,
feature or subprogram. In this case, the description is valid, though inaccurate. It
is thus possible to easily describe an architecture in the first stages of design, with
different level of accuracy.

Because it can gather in a single representation all the necessary information to
describe architectures, AADL can be used as a central language for a design and
generation process: it is possible to use different tools to test schedulability, ensure
that memory constraints are met, process the behavior descriptions to simulate the
application, and finally, generate the application code. AADL can be used as a support
for a design approach based on prototyping [VER 05], illustrated in Figure 5.5. The
first step consists of modeling an abstract architecture, which is then refined to obtain
a low-level, accurate model. At each step of the refinement process, we can check the
theoretical validity of the architecture by simulation or verification of the properties.
These different steps lead to a complete description of the application, which can be
processed to generate code in order to validate the deployment. Tests can then be
performed and depending on the results, the model can be modified.
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Figure 5.5. Design process with AADL

The generation of an executable system from its architectural description requires
the use of a run-time that will support the execution of the code [VER 06]. The run-
time will support the execution of the code generated from the AADL component
descriptions; this component code encapsulates the functional code that was specified
either using properties or annexes. Thus, the functional code is isolated from the run-
time and the actual deployment issues.

Several strategies can be applied: either using a run-time based on a communi-
cation middleware (thus providing high-level communication APIs to the generated
code) or relying on a minimalistic run-time based on a system thread library (thus
delegating the management of communications to the generated code). Using a com-
munication middleware eases the management of data exchange between the different
nodes and requires less code generation. This approach allows an executable proto-
type of the application to be obtained relatively quickly; it is suitable for the first steps
of the process. Using a minimalistic implies the description of the communication
mechanisms in AADL: the communication mechanisms are then to be represented by
a set of AADL components in the architecture. In this later case, the application de-
signer has more work, but the description is more accurate, and more precise analysis
can be performed.

5.4.3. UML

The UML is an OMG standard [OMG 10b]. It is designed to address as many of
the modeling aspects as possible, thus aiming to be universal.

In version 2.0, the UML defines 11 syntaxes; each of which corresponds to a type
of diagram. Class diagrams are well known; they are used to describe the organization
of the application elements and are related to object-oriented programming languages.
Package diagrams are used to structure entities into logical sets and represent depen-
dencies between these sets. Object diagrams describe class instances. Component
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diagrams are at a higher level: components have ports through which they can com-
municate. Components can provide or require interfaces, while classes only imple-
ment (and thus provide) interfaces. Deployment diagrams describe how application
elements can be installed as libraries. They can be used to represent hardware nodes
on which software elements will be installed.

Composite structure diagrams describe the internal structure of a class or compo-
nent and the relationships (i.e. connections) between its contained elements. They can
be used as a syntactical support for architecture description languages.

Other diagrams are mostly used to describe behavior. Sequence diagrams, activity
diagrams, interaction overview diagrams, and timing diagrams are used to represent
the communications between the different architecture entities. State machine dia-
grams represent automata and thus model the evolution of the states of an entity. Use
case diagrams represent roles of entities in various scenarios.

The entire UML is not an ADL, as most of the UML diagrams are not in the scope
of an ADL (for example, use case diagrams, sequence diagrams, etc.). Yet, the UML
can be used as an ADL: composite structure diagrams represent architectures; the
other parts of UML can be used to complement this ADL aspect.

Refinement of the UML using profiles

The UML defines a set of syntaxes that can be used to describe applications. As
the concept of UML is to be as general as possible, the UML in itself is often not
sufficiently accurate; it is meant to be refined to fit particular modeling semantics
needs. Such refinements are called profiles. For example, the profile for scheduling,
performance and time (SPT) defines notions of quality of service associated with real-
time systems (response time, queue sizes, etc.).

The MARTE [OMG 10a] also covers the embedded aspects. It integrates most of
the concepts of AADL; a part of the MARTE standard describes how to model AADL
architectures using the MARTE profile. Due to its versatility, the UML syntax can be
used as an alternative notation for existing ADLs.

5.4.4. Synthesis

ADLs that target actual system implementation can take different forms. Some
are associated with a specific platform (e.g. Fractal ADL). Others rely on run-time
specifications, but are more general: AADL defines a precise run-time semantics, but
can be used without any run-time implementation (for analysis, for example). UML
covers a much wider range of usages; a part of it can be used as an ADL syntax,
together with other aspects, such as behavior.
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5.5. Conclusion

ADLs have now proven to be efficient solutions to cope with the complexity of
systems. They can be used to support top-down analysis by allowing the decomposi-
tion of a system into inter-connected subcomponents; they can also support bottom-up
analysis by allowing the reuse and combination of already existing components to cre-
ate a higher-level system.

ADL reached maturity by the end of 1990s with so-called “first-generation ADLs”.
Such languages were developed by the academic community, and they focused on
formal aspects of architecture description. The concepts involved in these languages
are often simple and restricted to a small set; yet, they can support very powerful and
relevant analysis. In the 2000s, new ADLs were developed with the aim of being used
in industry. Some of these languages rely on an existing and well-accepted syntax (e.g.
UML); others define new notations that are more adapted to the concepts of a given
application domain (e.g. AADL).

Some ADLs cover a small scope, and thus ease the analysis, but are too abstract to
generate code easily. Others are more expressive and close to actual implementation,
and thus ease code generation, but are so complex that analysis is difficult. A good
compromise would be to be able to create a link between these ADLs.

The model driven architecture (MDA) approach consists of refining abstract and
formal architecture configurations into other architecture configurations of a lower
level. This could help solve the ADL duality problem. Industrial approaches, based
on AADL or UML/MARTE, try to enrich industrial ADLs with the advantages of
academic ADLs. These methods could also bring solutions.
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Chapter 6

Introduction to Verification

6.1. Introduction

The diversity of verification methods may be confusing for the engineer faced with
issues related to the choice of appropriate techniques for the analysis of his system.
This chapter aims to clarify the basis for such a choice by discussing three fundamental
factors associated with the verification process:

– how to choose the formal model that will support the verification;

– how to express the requirements and expected properties of the model;

– which verification methods apply to the model.

Often the modeler is tempted to choose a very expressive formalism in order to
cover all the details of his system. However, this expressiveness significantly com-
plicates the verification process. Indeed the complexity of such a method can limit
the analysis to toy systems. At worst, the property satisfaction may be an undecid-
able problem and requires the application of semi-algorithms. Moreover, the modeler
wishes to check a property whatever the values of some parameters (number of net-
work routers, size of buffers, etc.). This leads to parametrized models, the verification
of which becomes even more untractable.

The specification of properties must address the following question: how do you
specify a “good” behavior of a system? Among the different answers, the following
can be suggested:
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– a family of properties called generic expressing the behavior of the formal model
independently of the system (e.g. absence of deadlocks, the finite ss, etc.);

– a language of properties adapted to dynamic systems and especially to concur-
rent systems (e.g. a modal logic such as linear or branching temporal logics);

– a behavioral equivalence with another model representing the specification of
the expected behavior in a more abstract way (e.g. bisimulation);

– the response to a test sequence (e.g. failure tests, acceptance tests, etc).

The verification methods are generally classified according to basic criteria. To
which formalisms does the method apply? Does the method work at a structural level
(i.e. analyzing the model description) or at a behavioral level (i.e. building a possibly
partial or abstract representation of its behaviour)? Is the verification process wholly
or partially automatic? Which kinds of properties is the method able to check?

At last, in order to combine different verification methods, it is necessary to under-
stand how one method can take into account the results of another. Furthermore, this
combination also has an impact on the specification process: for instance the system
can be modeled in a very abstract way such that its analysis is relatively easy and then
it can be iteratively refined while keeping most of the results obtained at the previous
stage at subsequent stages.

In order to illustrate our discussion and faced with the diversity of the formalisms,
we will focus on Petri nets and their extensions. The rest of the chapter is organized
as follows: in section 6.2 we discuss choice criteria between formalisms; then in sec-
tion 6.3 we introduce several ways to express the properties of a system; in section 6.4
we examine the main categories of verification methods; lastly in section 6.5, we con-
clude this chapter by providing an overview of the methods presented in this part of
the book.

6.2. Formal models for verification

6.2.1. Expressiveness versus decidability and complexity

Models devoted to verification should meet two contradictory requirements. On
the one hand, they must be expressive enough to avoid over-abstraction when trans-
forming the design model into a verification model. On the other hand, this expres-
siveness is necessarily limited in order to obtain efficient verification algorithms. We
encourage the interested reader to read about complexity of algorithms for instance
in [PAP 94].

ne
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Let us illustrate this point with the reachability problem in Petri nets: given a
net, an initial marking and a final marking, we want to decide whether a firing se-
quence exists in the net leading from the initial marking to the final marking. As
the number of markings of the net is possibly infinite, it is not a priori obvious that
this problem is decidable. However, some properties such as the boundedness of
the net and marking covering (a variant of the reachability in which we investigate
whether a marking greater or equal than the final marking can be reached) are decid-
able using a conceptually simple construction “the covering graph” [KAR 69]. Thus
it is plausible that reachability is decidable and indeed such a decision algorithm ex-
ists [MAY 84, KOS 82]. Unfortunately, this algorithm is not primitive recursive, oth-
erwise stated its complexity is unpredictable, and even its implementation is relatively
complicated which explains why no software completely solves this problem.

Following this result, researchers have oriented their work in two opposite direc-
tion: restricting the model with more efficient algorithms or studying the limits be-
tween decidability and undecidability. For instance in reversible nets (i.e. where
the net consists of pairs of transitions each one canceling the effect of the other)
reachability is EXPSPACE-complete [MAY 82] and in safe nets (i.e. where every
place of a reachable marking contains at most one token), reachability is PSPACE-
complete [CHE 95]. In free choice nets (i.e. where two transitions that share an input
place have the same backward incidence) reachability is even NP-complete [DES 95].
At last for finite state automata viewed as particular nets (i.e. where every transition
has a single input and a single output) we can solve reachability in linear time and the
problem is NLOGSPACE-complete [PAP 94].

In the other direction Petri nets with inhibitor arcs have the expressive power of
Turing machines and no relevant property (including reachability) is decidable. How-
ever, when there is a single inhibitor arc (or a particular pattern of inhibitor arcs), the
reachability problem is still decidable [REI 08]. Reset arcs, which empty connected
places during the transition firing, do not provide the expressive power of Turing ma-
chines. Thus some properties remain decidable but not reachable [DUF 98]. Finally
recursive Petri nets in which a state corresponds to a dynamic tree of threads, each one
with its own marking, significantly extend the expressive power of Petri nets while
keeping the decidability of the reachability problem [HAD 99].

6.2.2. Desirable characteristics of a model

In parallel to the previous, rather theoretical, discussion, the modeller should study
whether the model is adaptated to the system he wants to analyze. Indeed, two equiv-
alent models with respect to expressiveness, may be rather different with respect to
the ease of the modeling. Numerous criteria can be considered: modularity, hierarchy,
time representation, etc. We illustrate this point with two phenomena that are to be
modeled using Petri nets: fault occurrence and time management.
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Assume that a sytem has been modeled by a Petri net and the modeling is to be
extended in order to represent the possibility that a fault can occur at anytime that
restarts the system. If the net is bounded and a superset of the reachability space is
known, such a modeling is theoretically feasable. Unfortunately, it requires the intro-
duction of a complementary place per place of the net, and furthermore, a transition
per potentially reachable marking! If the net is unbounded then it is established that
such a construction does not exist. With the help of reset arcs, the modeling is now
possible. Let us describe how to do it: a marked place (say normal) controls the stan-
dard behavior of the net which “loops” around every transition, the occurrence of the
fault is represented by a transition, which empties normal and marks fault, then a
second transition empties the places of the net, empties fault, marks normal and the
original places of the net as in the initial marking. A similar construction is also easily
undertaken using recursive Petri nets.

Time has been introduced in Petri nets in multiple ways. Here we only describe the
two most prominent models, which have been the topic of numerous theoretical devel-
opments: time Petri nets (TPNs) [BER 91] and timed Petri nets (TdPNs) [FRU 00]. A
time interval is associated with every transition of a TPN. When a transition becomes
enabled, it may only fire occur if the time elapsed since it became enabled is within
the transition interval. Moreover, time cannot elapse if the enabling duration of some
transition has reached the maximal value of the interval. This semantic choice allows
urgent features of a phenomenon to be modeled such as the expiration of a time-out.
Meanwhile, it does not allow situations when time elapsing would disable the firing of
a transition to be represented. Based on this fact, it has been proven that some timed
automata are equivalent to no TPN [BÉR 08]. In TdPNs, an age is associated with ev-
ery token and every arc is a multiset of intervals. In order to fire a transition, for every
“input” interval a token must be chosen with an age that belongs to the interval. When
tokens are produced, their initial age is fixed non deterministically but it must belong
to the corresponding “output” interval. Contrary to TPNs, in TdPNs a transition can
be disabled by time elapsing but these nets cannot express urgency features. From a
verification point of view, all relevant properties are undecidable for unbounded TPNs
while some of them remain decidable for TdPNs such as the marking covering (but
not the reachability) [ABD 01].

6.2.3. From design to verification: formal semantic

Once the model is chosen, the modeler has to “translate” the specification of the
system expressed within the design formalism. Ideally this step should be performed
by an algorithm. However, this automatic process requires that the behavior of the
new model is equivalent to the original one (w.r.t. some appropriate equivalence). One
possible method consists of providing a formal semantic (the most often an operational
one) of constructors of the design model in terms of sub-models in the verification
framework.
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We illustrate this point using two formalisms of high-level Petri nets: colored Petri
nets [JEN 92] and the Petri box calculus [KOU 94]. Colored Petri nets are nets en-
larged with color domains associated with vertices of the net and color functions asso-
ciated with arcs whose domain is the color domain of the transition and range is the set
of multi-set of colors where colors belong to the domain of the place. There are two
equivalent semantics for such a formalism. In the first case, the firing rule is directly
defined by (1) selecting a transition and a color of its domain (2) evaluating functions
labeling input arcs (3) consuming the resulting multi-sets of tokens in the input places
(4) evaluating functions labeling output arcs (5) producing the resulting multi-sets of
tokens in the output places,

In the second case, an ordinary Petri net is defined as a net consisting of a pairing
of places of the colored net and colors of their domain and whose transitions consist
of pairing transitions of the colored net and colors of their domain. The valuations
of the arcs of this unfolded net are obtained by evaluating the functions for every
color of the transitions and projecting on every color of places. The behavior of the
colored net is then defined as that of the unfolded net. If the latter semantic is a priori
less appropriate than the former one, for instance regarding the simulation, it presents
advantages regarding the verification. A property of the colored net is a property of
the unfolded net. Moreover, the soundness of verification methods applied to colored
nets is checked at the level of the unfolded net (e.g. net reductions).

Petri box calculus is a formalism based on process algebra (such as CCS [MIL 82]).
one of its (equivalent) semantics consists of building a Petri net using net patterns and
operational rules for every operator (sequence, choice, parallel execution, etc.). The
interests of this formalism are twofold; it provides a true concurrent semantic for pro-
cess algebra and verification methods of Petri nets can be applied to it. For instance,
the reachability problem, which is undecidable in CCS, is here decidable due to the
semantic in terms of Petri nets. Similarly the flow computation (a specific technique
for Petri nets), which provide invariants of the model, is extended to the Petri box
calculus.

6.3. Expression of properties

The choice of properties for Petri nets raises the same problem as the choice of the
formalism. Specifying a large set of properties prevents the development of efficient
specialized algorithms whilst a restricted set of properties fails to express the various
properties of protocols and distributed applications.

6.3.1. Generic properties

If the properties are restricted then these properties must be generic in the fol-
lowing sense: they express the behavior of the modeled system, for a large range of
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interpretations. Let us examine how such an interpretation is possible. We give below
a non-exhaustive list of properties that aim to be generic (still in the context of Petri
nets):

– quasi-liveness: “Every transition is fired at least one time” expresses a syntacti-
cally correct design in the sense that any activity or event must occur at least once in
the behavior of the net;

– deadlock-freeness: “There is no dead marking” means that a global deadlock
never happens in the system;

– liveness: “Every transition is fired at least one time from any reachable marking”
means that the system never looses its capacities at any time;

– boundedness: “There is a bound on the reachable marking of any place” ensures
that the system will reach some stationary behavior in the long run. Let us note that
multiple stationary behaviors are possible.

– home state: “A marking exists that is reachable from any other marking” denotes
the possibility for the system to reinitialize itself;

– unavoidable state: “A marking exists that cannot be avoided infinitely” indicates
that for the system must reinitialize itself.

6.3.2. Specific properties

Despite the generality of the previous properties, there will always be some fea-
tures of behavior that will not be captured by a fixed set of properties. For instance,
“the firing of t1 will eventually be followed by the firing of t2” is a useful fairness
property but not one of the previous properties. Of course, it could be included, but
there are many possible variants.

Thus it is better to adopt a language of properties adapted to dynamic systems and
especially the concurrent ones. Among such languages, the temporal logic frame-
work (e.g. linear time logic [PNU 77], branching time logic [EME 86], etc.) has
been widely used. The reasons for this development are twofold: the most interesting
properties of concurrency are expressed by simple formulas and the model checking
associated with these logics can easily be implemented.

The usual temporal logics are relatively intuitive. Let us describe them in an infor-
mal way. Formulas are either state formulas or path formulas. A basic state formula
only depends on the current state. In the framework of Petri nets, it could be “places
p1 and p2 are both marked” or “the marking of p1 is strictly greater than that of p2”.
Then other state formulas can be inductively built with operators such as “for every
(resp. there exists an) execution path starting from the current state, (respectively such
that) a given path formula is fulfilled”. Basic path formulas are state formulas which
are evaluated on the first state of the path. Then path formulas can be inductively built
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with path operators such as “the suffix of the path obtained by deleting the first state
fulfills a given path formula” or “every (resp. there exists a) suffix of the path fulfills
(resp. which fulfills) a given path formula”.

6.3.3. Equivalence between models

The framework of temporal logic is interesting if a set of properties that character-
izes the expected behavior of the modeled system need to be verified. Nevertheless,
starting from a global behavior, such as a set of services, requires a great deal of work
to specify the correct formulas. Moreover the modeler has to build more and more
complex formulas where the semantic of such formulae becomes complicated. In
such cases, it is much simpler to specify the set of services by a model (e.g. a Petri
net) and to compare the behavior of the net modeling the services with the behavior
of the net modeling the protocol.

However, it is necessary to define what is the equivalence between nets. First,
internal transitions (implementing the protocol) and external transitions (associated
with the service interface) has to be distinguished. A first possible equivalence could
be the language equivalence: the projection of the protocol net language onto external
transitions is equal to the language of the service net. However, the language equiv-
alence does not capture the choices offered by the model upon reaching some state.
Numerous equivalences including language and choice have been proposed. The most
common one is the bisimulation relation [MIL 82] which pairs states of the two mod-
els such that for every pair of states whatever the action a model can perform from its
state the other can as also perform it leading to states that are also paired. Regarding
verification, the interest of the bisimulations is twofold:

– bisimulation checking (on finite state systems) has a complexity similar to the
one of formula satisfaction checking;

– for models such as process algebras, axiomatization of equivalence is possible at
the structural level.

6.3.4. Model testing

Another possibility (and the last we examine here) is the response of a model to a
sequence of tests. A typical test application may be described as follows:

1) it starts with a specification of expected behaviors (or failure behaviors);

2) then it generates an intermediate object, called a success tree, which takes into
account the sequence of transitions and the choice offered by the states;

3) this tree is transformed into a transition system called the canonical tester;

4) the synchronous product of the Petri net and the canonical tester is built (i.e. a
parallel execution synchronized on common actions);



144 Models and Analysis for Distributed Systems

5) the observation of deadlocks in the product provides information on the failures
of the implementation specified by the model.

6.4. Verification methods

In this section, we give an overview of the different categories of verification meth-
ods emphasizing rather the principles more than the technical features. These features
will be detailled in the other chapters of this part. The main dichotomy between meth-
ods consists of either representing (wholly or partially) the behavior of the model
or exclusively analyzing the structure of the model in order to deduce its properties.
Each approach has advantages and drawbacks and we highlight them in the following
sections.

6.4.1. Automatic verification versus manual verification

One objective of formal models is computer-aided verification. At first sight, au-
tomatic verification may appear to be highly desirable [CLA 00]. However, there are
some inherent limitations to automatic verification that the modeler should be aware
of:

– there are numerous undecidable properties;

– even for decidable properties, checking is so complex that it may become un-
tractable;

– automatic verification never takes into account the specificities of the modeled
system.

Another advantage of manual verification is the insight it provides to understand-
ing the behavior of the system [BER 04]. However, manual verification is prone to
errors and a sound (and sometimes complete) axiomatization of proofs may help to
develop correct proofs. The duality of the manual and automatic verification should
be emphasized: for instance the reduction or the abstraction of models may be un-
dertaken automatically whereas refinement of nets requires the participation of the
designer. Yet, these are two facets of the same theory.

The automatic method may check properties given by the modeler or simply gen-
erate valid properties of the model. Both methods have their drawbacks. Checking of
properties is sometimes tricky. For instance, an inductive proof a property consists (1)
of checking whether it is true in the initial state, and (2) showing that if it is true in
some state then it remains true in all the subsequent states. A property is inductive if
there exists an inductive proof for it. Unfortunately, a valid property is not necessar-
ily inductive whereas it would have been possible to find a stronger property which
is inductive. Indeed for a large class of transition systems, a property is valid if and
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only if there is a stronger property that is inductive. Conversely, the automatic gener-
ation of properties is generally limited in its scope: a nonlinear invariant will never be
generated by the computation of the flows in Petri nets.

6.4.2. Structural methods

We illustrate using Petri nets the difference between structural and behavioral
method. Below are listed four methods: the first and the second ones are structural
since they do not require us to apply the firing rule in order to obtain their results.

– a Petri net is a graph and the token flows must follow the arcs of this graph;
structural deadlock detection is based on this feature;

– a Petri net is a linear transformation of the vector of tokens and so linear algebra-
based techniques can take advantage of it (for instance computation of the flows);

– a Petri net underlies an event structure with causality and compatibility rela-
tions. Exploiting this feature, partial order methods only partially build the reachabil-
ity graph;

– the colors of a domain often have the same behavior. The symmetrical-based
methods also reduce the reachability graph using equivalence relations to build a quo-
tient graph.

Let us first detail the structural methods.

Analysis of the Petri net as a graph

The examination of the graph’s structure leads to two different and complementary
families of methods, based either on the local structure or on the global structure. The
local structure of a subnet may make it possible to investigate its behavior indepen-
dently from the rest of the net. This is the key point of the reductions theory where the
agglomeration of transitions corresponds to transforming a non-atomic sequence of
transitions into an (atomic) transition [BER 87, HAD 06]. Even if they just simplify
the net by eliminating, say a transition, their impact is considerable. Indeed, in the
reachability graph they eliminate all the intermediate states between the initial firing
and the final firing of the sequence. Roughly speaking, an agglomeration divides by
two the reachability space and thus n agglomerations have a reduction factor of 2n.

Analyzing the global structure of the net can be done by restricting the class of
Petri nets (e.g. free-choice Petri nets [DES 95]) and developing efficient algorithms
for the standard properties (liveness, boundedness, etc.). Applied on the whole class
of Petri nets, similar algorithms provide necessary or sufficient conditions for the stan-
dard properties.
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Linear algebra-based techniques

Linear algebra-based techniques rely on the state change equation, which states
that a reachable marking is given by the sum of the initial marking and the product of
incidence matrix by the occurrence vector of the firing sequence. Thus a weighting of
the places whose product by the incidence matrix is null (i.e. a flow) is left invariant
by any firing sequence. Similarly a vector of transition occurrences whose product by
the incidence matrix is null (i.e. a rhythm) keeps any marking invariant.

So there are two goals for linear algebra-based techniques: computing a generative
family of flows (resp. rhythms) and then apply the flows (resp. rhythms) to the anal-
ysis of the net. The difficulty in computing the flows depends on the constraints on
flows. For instance the complexity of the computation of general flows is polynomial
whereas, unfortunately, the computation of positive flows is not polynomial [KRU 87].
However, positive flows are often more useful than general flows and researchers have
produced heuristics to decrease the average complexity [SIL 88]. In ordinary Petri
nets, algorithms are now well known. The applications of flows and rhythms are nu-
merous: they help to define reductions, they characterize a superset of the reachable
set, they provide bounds on maximal firing rates, they make it possible to compute
synchronic distances between transitions, etc.

6.4.3. Behavioral methods

Behavioral methods are surely the most frequently applied techniques with simu-
lation. Thus before depicting some of them, let us explain the two main approaches to
handle the combinatory explosion inherent to such methods: space management dur-
ing the state graph building and the construction of an equivalent but smaller graph.

An efficient management of the graph construction has an important advantage. It
is independent from the structural model generating the graph and thus can be applied
to Petri nets, process algebra, etc. The two main methods of this kind are the binary
decision diagram (BDD) and on-the-fly verification.

BDD

Originally the BBD technique was defined to compress the representation of boolean
expressions [AKE 78]. Any Boolean expression is represented by a rooted acyclic
graph where non terminal nodes are variables of the expression with two successors
(depending on the valuation of the variables) and there are two terminal nodes (true
and false). In order to evaluate an expression one follows the graph from the root
to a terminal node choosing a successor with respect to the chosen affectation of the
variable labeling the current vertex. As sub-expressions occuring more than once in
the expression are factorized, the gain may be very important.
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The application of the BDD technique to state graph reduction relies on the rep-
resentation of a node by a bit vector and the representation of the arc relation by an
expression composed of variables denoting the bits of the vectors. It can be shown
that the formula of modal logics can also be represented in this way and lastly that
the building of the graph and the property checking can be reduced to operations on
BDDs. In a famous paper, this technique was employed to encode graphs with 1020

states [BUR 90]. A drawback of the method is that it is impossible to predict the
compression factor even approximately.

On-the-fly verification

The on-the-fly technique is based on two ideas: state properties can be checked
on each state independently and in a finite state graph there is no infinite path with
different states. Thus the entire graph is not built but instead the elementary branches
of this graph are developed. The only memory required is what is required for the
longest elementary path of the graph [HOL 87]. In the worst case there is no gain but
on average case the gain is important.

Moreover, the technique can be extended to check the properties of temporal log-
ics [JAR 89]. In this case, the product of the state graph with an automaton (say
for instance a Büchi automaton for LTL formula) can be developed and particular
states [COU 90a] can be looked for. What is quite interesting with this method is its
adaptation to the memory space of the machine. Indeed a cache of states can be added
which remembers a number of states that are not on the current path, thus reducing
the development of the branch if a cache state is encountered. Another fruitful aspect
of this method is that it can be combined with other reduction methods (for instance
the partial-order method discussed below).

Partial-order methods

The partial-order methods rely on structural criteria to reduce the state graph and
are efficiently implemented on Petri nets. The two main methods, sleep set and stub-
born set, associate a set of transitions with a state reached during the building and
use this set to restrict further developments of the graph. These sets of transitions are
based on a basic structural (or possibly marking-dependent) relation between transi-
tions. Two transitions are independent if their firings are not mutually exclusive. The
independence property is structural if the precondition sets do not intersect, whereas
it is marking dependent if the bag sum of the preconditions do not exceed the current
marking.

The sleep sets method keeps track, for every reached marking, of independent
transitions fired in other branches of the graph [GOD 90]. The method ensures that
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if a transition of this (sleep) set is fired, an already reached marking is encountered.
Thus the sleep sets method “cuts” arcs on the reachability graph but the number of
states is left unchanged.

Given a marking, a stubborn set of transitions is such that any sequence built with
other transitions includes only independent transitions with respect to the stubborn
set [VAL 89]. Note that if the independency relation is marking-dependent then the
independency must be fulfilled at the different firing markings. Then it can be shown
that restricting the firing of an enabled transition being in any stubborn set preserves
the possibility of the other firing sequences. The building of the reduced graph is
similar to the ordinary graph except that:

– once a state is examined, the algorithm computes a stubborn set of transitions
including at least one enabled transition (if the marking is not a deadlock);

– the successors of the state are those reached by the enabled transitions of the
stubborn set.

An interesting consequence is the deadlock equivalence between the reduced graph
and the original graph.

The stubborn set method requires more computations than the sleep set method for
there is no incremental computation of the stubborn set and the computation includes
disabled transitions. Conversely, the reduction factor is often more important as here
states are pruned. Nevertheless, the combination of the two methods is straightfor-
ward, thus improving the reduction factor [GOD 91]. A large equivalence of proper-
ties between the reduced graph and the original one is more difficult to obtain. Safety
properties may be obtained if the property is taken into account during the building
process. The handling of general liveness properties is not possible and the checking
of restricted liveness properties has to be performed [VAL 93].

A third partial-order method is based on unfoldings of Petri nets. An unfolding
of a Petri net is an acyclic Petri net where places represent tokens of the markings
of the original net and transitions represent firings of the original net. Commencing
with the places corresponding to the initial marking the transitions associated with the
firings of every initially enabling transition are developed linking input places to the
new transition and producing (and linking) output places; then the process is iterated.
Of course if the net has an infinite sequence, the unfolding would be infinite, and
thus, this unfolding must be “cut”. In order to produce finite unfoldings, different cut
methods have been proposed [MCM 92, ESP 96]. The unfolded net is a very compact
representation of the reachability set and thus safeness properties can be checked with
a low order of space complexity (time complexity may also be reduced but not so
significantly). The method has been extended to support linear temporal logic verifi-
cation [COU 96]. The principle is to build a graph of unfolded nets where the relevant
transitions for the property are always graph transitions.
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High-level model analysis

In order to design verification methods for an high-level model whose semantic is
provided in terms of a low-level model, two directions are possible: (1) methods for
the low-level model are adapted taking into account the fact that this model has been
generated by some high-level model, (2) specific methods for the high-level model are
developed. We illustrate the two approaches on the model of colored Petri nets (CPN).

Color structure analysis has many theoretical applications. Here we just mention
three of them. It should be emphasized that a theoretical development may be applied
on colored nets and/or on parametrized colored nets. Parametrization means that the
method does not require to fix the size of the coulour domains of it handles them as
variables.

The reduction theory for colored nets is based on the following princi-
ples [HAD 90]:

1) choose a reduction for ordinary Petri net.

2) Add colored conditions to the structural conditions (i.e. conditions on the color
functions valuating the arcs); these colored conditions are as weak as possible to en-
sure the structural conditions on the unfolded net for a set of reductions.

3) Check that there is a possible ordering of the set of reductions in the unfolded
net.

4) Define the transformation by a structural transformation similar to the origi-
nal reduction with complementary coloured transformations; this transformation must
correspond to the successive reductions of the unfolded net.

The parametrization of the method is relatively straightforward and is obtained by
substituting syntactical conditions on expressions denoting the colour functions to the
original conditions [EVA 05].

The flow computation for colored nets requires deeper analysis of the color func-
tion structure. It appears that the cornerstone of the flow computation is the algebraic
concept of generalized inverses. Color functions are linear transformations on a set of
bags and thus this algebraic concept is sound. Moreover, a elegant algorithm adapted
from Gaussian elimination rules can be developed provided that the successive gen-
eralized inverses may be computed [COU 90b]. The space and time complexity are
dramatically reduced and the flows are represented in a compact way, which allows
for natural interpretation.

Unfortunately, parametrization of this method is not possible, so researchers have
investigated different directions: color expressions can be identified to polynomials.
The idea is then to apply a Gaussian-like elimination on a ring of polynomials. The
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difficulty lies in the transformation (and the reciprocal transformation) from a color
function to a polynomial one. Some subclasses of well-formed nets (also called sym-
metric nets) have been successfully studied (regular nets, ordered nets) with this tech-
nique [HAD 88]. Another way to obtain parametrized methods is not to require that
the flow family be a generative family. Then simple methods can work on very general
nets and give useful information anyway (even if not complete).

The symbolic reachability graph of well-formed nets exploits the symmetry of
color functions with respect to the firing semantics [CHI 97]. This symmetry leads
to an equivalence relation between markings and transition firings. Once canonical
representation of equivalence marking (and firing transitions) classes is defined, sym-
bolic graph building is similar to ordinary graph building. Some studies show that the
comparison between the reduction factor of symmetrical methods and partial-order
methods depends on the system modeled. Again these methods may be combined.
Another difference between the symmetrical method and the partial-order method is
that very general properties may be checked on the symbolic reachability graph. These
methods have been extended in order to handle partial symmetries in the formula or
in the system [BAA 05].

6.4.4. Synthesis and control

While verification aims to check the properties of a system, another line of research
consists of starting with the requirements and automatically producing a system sat-
isfying the requirements. In a closed system where the requirements are expressed
in some logic, this problem is equivalent to the fundamental problem of satisfiability:
does a model of the formula exist? It is well known that in the framework of first-
order logic this problem is undecidable [BOR 01]. Therefore the logic needs to be
restricted in order to obtain decidability results. Obviously, the propositional frame-
work is insufficient to express the requirements of a dynamic systems. However, with
an appropriate level of abstraction, modal propositional logics express safety, liveness,
fairness, etc, in a natural way. Furthermore it appears that for most of these logics, the
satisfiability problem is decidable [GRA 02].

However, distributed systems cannot been seen as closed systems. Indeed the en-
vironment plays a crucial role in such a system and should be integrated in the syn-
thesis process. Moreover, the distribution of the system into components requires the
architecture of the system to be taken into account [PNU 89b, PNU 89a]. Here the
frontier between decidability and undecidability is closely related to the knowledge of
the agents about the environment. On the negative side, as could be predicted, even
for architecture where decidability holds, the complexity of the procedure is very high
(often non-elementary). On the positive side, when the specification admits an imple-
mentation, the components can be chosen as finite-state components.
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Another alternative to verification is the control approach. Given a system and a
specification, the goal of the control consists of restricting the behavior of the system
to satisfy the specification. In the most widely adopted approach the specification
is given by a regular language and a controller is required that enables the maximal
behavior of the controlled system [RAM 87]. In a distributed framework, different
settings are possible depending on the information known by the local controllers, the
mode of communication between controllers, etc. In general, the complexity of the
control problems are simpler than the synthesis problems due to the corresponding
assumptions.

6.5. Outline of Part 2

Part 2 is organized into four chapters. Chapter 7 covers the finite-state verification.
Historically, it is the oldest line of research that has been developed. The main objec-
tive of finite-state verification is the reduction of complexity due to the combinatory
explosion of the system. Possible approaches are structural methods, which try to avoid
developing the behavior of the system and data representation which reduces the ex-
plosion by the sharing substructures or exploitation of the properties satisfied by the
formalism.

Chapter 8 addresses the problem of verifying infinite-state systems. Most of the
research is devoted to the design of formalisms that are slightly less expressive than
Turing machine, (or equivalent computational models), and to study which properties
are decidable. In this chapter, the main focus is put on extension of Petri nets and
on different variants of counter machines. It emphasizes the fact that small variations
lead to drastically different theories.

Chapter 9 describes timed systems. Time is a particular source of infinity. How-
ever its specificity leads to efficient verification procedures such as those developed for
timed automata. Moreover, time can be combined with other sources of infinities like
in time(d) Petri nets. In addition, this chapter tackles with the problem of implement-
ing timed systems when the abstraction performed at the theoretical level (such as the
perfect synchronization of the clocks) is no longer satisfied.

Chapter 10 describes the control and synthesis of distributed systems. After re-
viewing the centralized case, with the help of intuitive examples, it develops the speci-
fities related to the distributed case and the different possible approaches.
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Chapter 7

Verification of Finite-State Systems

7.1. Introduction

The concurrent programming paradigm is a powerful tool for the implementation
of complex software. However, it may lead to applications where the interaction be-
tween threads or processes produces subtle behaviors that are difficult to predict. In
this context, it is necessary to include complete and systematic verification step in the
development life cycle of an application.

Two kinds of verification techniques can be used: state enumeration based meth-
ods and structural methods. The state enumeration-based methods lead to a complete
verification of the modeled system but the analysis is restricted by the combinatory
explosion factor (i.e. the number of control states may grown exponentially with re-
spect to (w.r.t.) the number of thread and the size of the application). The structural
methods are generally efficient but they do not ensure the complete correctness of the
system. Thus an attractive trade-off is to combine both methods.

In this context, an efficient strategy is to use the structure of the model to reduce
the number of execution traces that are to be analyzed. The reduction ratio obtained
depends on the kind of considered properties. The more specific the properties, the
greater is the reduction.

Again, two distinct approaches can be followed to obtain such a restriction. On the
one hand, it is possible to apply on-the-fly techniques when building the state graph.
These techniques are based on the detection that in a given state,

Chapter written by Jean-François PRADAT-PEYRE and Yann THIERRY-MIEG.

155



156 Models and Analysis for Distributed Systems

– some enabled actions may be forgotten as they lead to an already visited
state [GOD 93];

– some enabled actions may be safely delayed [VAL 93];

– some enabled actions may be executed simultaneously [VER 97].

On the other hand, the model can be simplified at the program level (or more
generally at the model level) before building a reduced state graph. In this framework,
a frequent approach is to merge consecutive statements into a virtual atomic one with
the effect of combining the effects of these statements. Such a transformation presents
the following advantages:

– the combinatory explosion is drastically reduced by the elimination of the inter-
mediate states;

– the induced overhead computation is negligible w.r.t. the cost of the state graph
building;

– this abstraction is potentially applicable to “parametrized” programs (e.g. inde-
pendent of the number of instances of a process class) and this feature is not covered
by the on-the-fly techniques.

In this chapter we propose to expose these techniques and we illustrate them with
the help of Petri nets formalism. So, we first describe some usual definitions related
to this formalism and we present useful notations. Subsequently we present some
efficient structural techniques: structural reductions and linear invariants and we show
how these techniques can be used to decide liveness (or deadlock freeness) for some
specific classes of Petri nets.

We present then model checking techniques that are based on the analysis of the
reachability graph and we provide an overview of approaches that are used to tackle
the state explosion problem, which is the main limitation of these model checking
techniques.

7.2. Petri net definition

DEFINITION 7.1 A Petri net [REI 83] is four-tuple 〈P, T,W−,W+〉 where: P is the
set of places, T is the set of transitions, (P ∩ T = ∅, P ∪ T �= ∅) W− (respectively
W+) is the backward (respectively forward) incidence application from P × T to N.
We note W the incidence application defined by W = W+ −W−

A marked Petri net is a couple 〈N,m0〉 where N is a Petri net and and m0 is the
initial marking (i.e. an application from P to N).

DEFINITION 7.2 Let N = 〈P, T,W−,W+〉 be a Petri net andm0 its initial marking.
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A vector of NP is called a marking of N ; m(p) denotes the number of tokens
contained in place p. A marking m is greater or equal that a marking m′ (denoted
m ≥ m′) iff ∀p ∈ P,m(p) ≥ m′(p). A transition t ∈ T is fireable at a marking m if
and only if : ∀p ∈ P,m(p) ≥ W−(p, t). The marking m′ obtained by the firing of t
is defined by : ∀p ∈ P,m′(p) = m(p) −W−(p, t) +W+(p, t). We note, m[t > m′

which means that t is fireable at m and reaches m′. By extension, a marking m′ is
reachable from a marking m if there exists a sequence s = t0.t1. . . . .tn ∈ T ∗ and a
set of markings m1, . . . ,mn such that m[t0 > m1,m1[t1 > m2, . . . ,mn[tn > m′.
The set of reachable markings from m0 is denoted by Reach(N,m0).

DEFINITION 7.3 We denote by T ∗ the set of finite sequences on T , by T∞ the set
of infinite sequences and Tω = T ∗ ∪ T∞. ε denotes the empty sequence. L∗(PN)
denotes the set of finite firing sequences from m0, L∞(PN) the set of infinite firing
sequences from m0 and Lω(PN) = L∗(PN)∪L∞(PN), and Lmax(PN) the set of
maximal firing sequences from m0.

DEFINITION 7.4 For a sequence s ∈ Tω, a transition t ∈ T and a set T ′ ⊂ T ,

– s.t denotes the concatenation of s and t;

– |s| denotes the length of s; |s|t denotes the number of occurrences of t in s, and
|s|T ′ is defined by

∑
r∈T ′ |s|r;

– ΠT ′(s) is the sequence obtained from s by erasing the occurrences of the tran-
sitions not in T ′;

– Pref(s) is the set of finite prefixes of s;

– W−(p, s.t), W+(p, s.t) and W (p, s.t) are inductively defined by W−(p, s.t) =
max(W−(p, s),W−(p, t)−W (p, s)), W (p, s.t) = W (p, s)+W (p, t), W+(p, s.t) =
W−(p, s.t) +W (p, s.t)

A semiflow is a natural vector �v over the set of places, such that �v ·W = 0. A
semiflow �v induces the following linear invariant: ∀m ∈ Reach(N,m0), �v · m =
�v ·m0. When ∀p ∈ P,�v(p) ∈ N the semiflow is said to be a positive semiflow. We
note Supp(�v) = ‖�v‖ = {p ∈ P |�v(p) �= 0} the support of the semiflow �v. A place
p is covered by the semiflow �v is p ∈ ‖�v‖. By extension, a place p is covered by an
invariant if there exists a semiflow �v that covers p.

We sometimes consider the graph of the Petri net; given a place p (resp. a transition
t) we denote p• = {t ∈ T |W−(p, t) > 0} (resp. t• = {p ∈ P |W+(p, t) > 0}) and
•p = {t ∈ T |W+(p, t) > 0} (resp. •t = {p ∈ P |W−(p, t) > 0})
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7.3. Structural approaches

Structural approaches attempt to reduce the complexity of model-checking by sim-
plifying the model before attempting to build its state space. Their main strength is
that their complexity is related to the size of the input model, rather than to the size
of the state space. These approaches are complementary of the behavioral approaches
presented in section 7.4 at the end of the chapter.

7.3.1. Structural reductions

The first theoretical work concerning reduction of sequences into atomic actions
for simplification purpose was performed by Lipton in [LIP 75]. Lipton focused only
on deadlock property preservation. Using parallel program notations of Dijkstra he
defined “left” and “right” movers. Roughly speaking, a “left” (resp. “right”) mover is
a local process statement that can be moved forward (resp. delayed) w.r.t. statements
of other processes without modifying the halting property. Lipton then demonstrated
that, in principle, the statement P(S), where S is a semaphore, is a “left” mover and
V(s) is a “right” mover. Then Lipton proved that some parallel programs are deadlock
free by moving the P(S) and V(S) statements and by suppressing atomic statements
that have no effect on the variables.

integer a,b,c (a = b = c = 1);
parbegin repeat P(a); P(b); V(a); V(b); end;

repeat P(b); P(c); V(b); V(c); end;
repeat P(a); P(c); V(a); V(c); end; parend

However, two difficulties arise: the reduction preserves only deadlocks and the
application conditions are difficult to check.

The result is obtained by simplifying the previous program into the following one
by delaying (resp. bringing forward) some P(x) (resp. V(x)) statements and by
suppressing atomic statements that have no effect on the variables. This last program
obviously does not halt.

integer a (a = 1);
parbegin repeat P(a); V(a); end;

repeat end;
repeat P(a); V(a); end; parend

At the end of the 1990s, Cohen and Lamport [COH 98] proposed assumptions on
specifications expressed by formula of temporal logic of actions (TLA) under which
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they defined a reduction theorem preserving liveness and safety properties. They
demonstrated the usefulness of their approach by analyzing a “virtual” parallel pro-
gram composed of tasks that perform transactions based on a two-phase locking pol-
icy: tasks can acquire but not release lock in the first phase and they can release but not
acquire lock in the second phase (they take locks in the same order). They proved that
using their theorems transactions can be considered as atomic. Note that this program
can be viewed as an extension of that proposed by Lipton and discussed above.

This work fixes the reduction theorem in a “high”-level formalism, which can have
clear advantages for defining specific usages. However, it is also its main drawback
since it is based on the hypothesis that some actions commute, but no effective way is
proposed to check whether this assumption holds.

More recently, several authors [STO 03], [FLA 03b], [FLA 03a] leveraged Lip-
ton’s theory of reduction to detect transactions in multithreaded programs (and con-
sidered these transactions as atomic actions in the model checking step). Stoller and
Cohen propose in [STO 03] a reduction theorem that can be applied to models of
concurrent systems using mutual exclusion for access to selected variables.

However, they use a restricted notion of “left” mover and a better reduction ratio
can be obtained by applying more accurate reductions. Moreover, their reductions are
justified by the correct use of “exclusive access predicates” and by the respect of a
specific synchronization discipline. These predicates may be difficult to compute and
no effective algorithm is given to test that the synchronization discipline is respected.

Flanagan and Qadeer noted in [FLA 03a] that the previous authors use only the
notion of “left” mover and proposed an algorithm that uses both “left” and “right”
mover notions to infer transactions. However, this algorithm is based on access pred-
icates that can be automatically inferred only for specific programs using lock-based
synchronization. Moreover, as they use both “left” and “right” movers to obtain a bet-
ter reduction ratio and as they do not fix sufficient restrictive application conditions,
their reduction theorem does not preserve deadlock.

A Petri net reduction is characterized by some application conditions, by a net
transformation and by a set of preserved properties (i.e. which properties are simulta-
neously true or false in the original net and in the reduced one). These three character-
istics are strongly interdependent: a slight modification in the application conditions
may strongly modify preserved properties and, the opposite way, a simple attempt
to enlarge preserved properties will significantly restrict the application field of the re-
duction because of strongest conditions. Furthermore, the reduction must significantly
transform the model in order to obtain a significant positive impact on the verification
effort.

Different kinds of Petri net reductions exist but those that achieve the best compro-
mise between all these constraints (simple application conditions, significant model

in 
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transformation and large set of properties preservation) are the transition agglomera-
tions. These reductions agglomerate two transitions that model two sequential actions
into a single one that models the atomic corresponding action.

In Petri nets, the first work concerning reductions was performed by Berthelot
[BER 80, BER 85]. The author focused the preservation on only specific Petri net
properties such as liveness or boundedness. The link between transition agglomera-
tions (the most effective reductions) and general properties, expressed in linear tem-
poral logic (LTL) formalism, is done in [POI 00]. However, these reductions rely on
“pure” structural application conditions, which is very efficient, but leads to a quite
narrow application area.

Esparza and Schröter [ESP 01] simplify a point in the original pre-agglomeration
conditions. However, they consider only 1-safe Petri nets (each place is bounded by
1), the application conditions remain purely structural, and as the authors focus only
on infinite sequence preservation, their reductions do not even preserve the deadlock
property! 1

Orthogonally, in [SCH 00] the authors characterize reductions by means of bisim-
ulation. The interest in this approach is that only one particular subset of the markings
needs to be considered and thus, a very abstract model can be obtained. However, the
applicability of these reductions is quite limited.

In order to define the most simple conditions (simple to express and simple to
check) that allow the preservation of both generic properties (liveness, soundness) and
more specific ones (expressed in LTL) we provide some behavioral conditions (that are
simple to define but complex to check) and structural conditions that are both simple
to define and simple to test, derived from the behavioral conditions.

7.3.2. Agglomeration scheme

We suppose in the context of agglomeration that the set of transitions of the net is
partitioned as: T = T0

⊎
i∈I Hi

⊎
i∈I Fi where I denotes a non-empty set of indices,

and
⊎

the disjoint union. The underlying idea of this decomposition is that a pair
(Hi, Fi) defines transition sets that are causally dependent: an occurrence of f ∈ Fi

in a firing sequence may always be related to a previous occurrence of some h ∈ Hi in
this sequence. Starting from this property, we develop conditions on the behavior of
the net, which ensure that we can restrict the dynamics of the net to sequences where
each occurrence h ∈ Hi is immediately followed by an occurrence of some f ∈ Fi

without changing its behaviour w.r.t. a set of properties.

1. Note moreover that being 1-safe is not a stable characteristic regarding reductions.
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This restricted behavior is the behavior of a reduced net as shown in the next
definitions and propositions.

DEFINITION 7.5 (Reduced net) The reduced Petri net (Nr,m0) is defined by

– Pr = P , Tr = T0 ∪i∈I (Hi × Fi). We note hf the transition (h, f) ∈ Hi × Fi;

– ∀tr ∈ T0, ∀p ∈ Pr, W−
r (p, t) = W−(p, t) and W+

r (p, t) = W+(p, t);

– ∀i ∈ I, ∀hf ∈ Hi×Fi, ∀p ∈ Pr W
−
r (p, hf) = W−(p, h.f) and W+

r (p, hf) =
W+(p, h.f).

From now on, we note H = ∪i∈IHi and F = ∪i∈IFi. The firing rule in the reduced
net is noted 〉r (i.e. m[s〉rm′ denotes a firing sequence in the reduced net).

As we want to compare the behavior of the reduced and the original nets and as
the sets of transitions are not identical we introduce the following one-to-one homo-
morphism, which allows such a comparison.

DEFINITION 7.6 We note φ the homomorphism from the monoid T ∗
r to the monoid

T ∗ defined by: ∀t ∈ T0, φ(t) = t and ∀i ∈ I, ∀h ∈ Hi, ∀f ∈ Fi, φ(hf) = h.f . This
homomorphism is extended to an homomorphism from P(T ∗

r ) to P(T ∗) and from
P(Tω

r ) to P(Tω).

In a formal way, the next basic proposition states that the behavior of the reduced
net is a subset of the original behavior.

PROPOSITION 7.7 Let (N,m0) be a marked Petri net. Then:

1) ∀sr ∈ T ∗
r ,m[sr〉rm′ ⇐⇒ m[φ(sr)〉m′;

2) ∀sr ∈ Tω
r ,m[sr〉r ⇐⇒ m[φ(sr)〉;

At this point, we have proven that if a maximal or infinite sequence violates a
sequence property in the reduced net then the property is also violated in the origi-
nal. However, some original sequences that highlight problems may disappear in the
reduced net and we have no result regarding liveness property of the Petri net (the
reduced net may be live while the original is not and vice versa).

The main reason is that sequences of the original net are often not the image by φ of
a sequence of the reduced net because a transition of Hi is not immediately followed
by a transition of Fi. So we need to formalize the dependence of Fi on Hi. As we
consider an abstraction that merges transitions of Hi with transitions of Fi it seems
reasonable to impose that a transition of Fi must always be preceded by a transition
of Hi in all sequences of the original net. We introduce this constraint with the help
of a set of counting functions, denoted Γi.
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DEFINITION 7.8 (Potential agglomerability) (N,m0) is potentially agglomerable
(p-agglomerable for short) iff ∀s ∈ L(N,m0), ∀i ∈ I , |s|Hi − |s|Fi ≥ 0. We will
denote in the following Γi the mapping from T ∗ to IN defined by Γi(s) = |s|Hi −|s|Fi

In the following, we study p-agglomerable nets. The remainder of the section
is devoted to the presentation of two sets of conditions that ensure the equivalence
between the behaviors of the original and the reduced net. Informally stated, the pre-
agglomeration scheme expresses the fact that firing the transitions of Hi is only useful
for firing the transitions of Fi whereas the post-agglomeration scheme expresses the
fact that the firing of transitions of Fi are mainly conditioned by the firing of the
transitions of Hi.

7.3.3. Behavioral pre-agglomeration

We state now four conditions, which “roughly speaking” ensure that delaying the
firing of a transition h ∈ Hi until some f ∈ Fi fires does not modify the behavior of
the net w.r.t. the set of properties we want to preserve.

DEFINITION 7.9 Let (N,m0) be a p-agglomerable net. (N,m0) is:

– H-independent iff ∀i ∈ I , ∀h ∈ Hi, ∀m ∈ Reach(N,m0), ∀s such that ∀s′ ∈
Pref(s), Γi(s

′) ≥ 0, m[h.s〉=⇒m[s.h〉;

– divergent-free iff ∀s ∈ Lω(N,m0), |s|T0∪F =∞;

– quasi-persistent iff ∀i ∈ I, ∀m ∈ Reach(N,m0), ∀h ∈ Hi,
∀s ∈ (T0 ∪ F )∗, such that m[h〉 and m[s〉
∃s′ ∈ (T0 ∪ F )∗ fulfilling: m[h.s′〉, ΠF (s

′) = ΠF (s) and W (s′) ≥W (s).
Furthermore, if s �= ε=⇒s′ �= ε then the net is strongly quasi-persistent;

– H-similar iff ∀i, j ∈ I, ∀m ∈ Reach(N,m0), ∀s ∈ T ∗
0 ,

∀hi ∈ Hi, ∀hj ∈ Hj , ∀fj ∈ Fj

m[hi〉 and m[s.hj .fj〉 =⇒ ∃s′ ∈ (T0)
∗, ∃fi ∈ Fi such that m[s′.hi.fi〉 and such that

s = ε=⇒s′ = ε;

– HF -interchangeable iff one of these two conditions is fulfilled:
- ∀m ∈ Reach(N,m0), ∀h, h′ ∈ H , ∀f ∈ F , m[h.f〉 ⇐⇒ m[h′.f〉
- ∀m ∈ Reach(N,m0), ∀h ∈ H , ∀f, f ′ ∈ F , m[h.f〉 ⇐⇒ m[h.f ′〉

The H-independence means that once a transition h ∈ Hi is fireable it can be
delayed as long as it does not need to occur in order to fire a transition of Fi. When a
net is divergent-free it does not generate infinite sequences with some suffix included
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in H . In the pre-agglomeration scheme, we transform original sequences by permuta-
tion and deletion of transitions into sequences that can be simulated. Such an infinite
sequence cannot be transformed by this way into an infinite simulateable sequence.
Therefore, this condition is introduced in order to avoid this situation. The quasi-
persistence ensures that in the original net the “quick” firing of transitions of H does
not lead to some deadlock that could have been avoided by delaying this firing. At last,
the H-similarity forbids situations where the firing of transitions of F is prevented due
to a “bad” choice of a subset Hi.

Under the previous conditions (or a subset of), fundamental properties of a net are
preserved by the pre-agglomeration reduction. This result is stated in the following
theorem the demonstration of which is similar to that of previous theorem. Its demon-
stration and the proof that this reduction is a strict extension of the pre-agglomeration
of Berthelot [BER 83] are provided in [HAD 04b].

THEOREM 7.10 Let (N,m0) be a p-agglomerable Petri net that is H-independent.
If furthermore

– (N,m0) is divergent-free, strongly quasi-persistent and H-similar then

ΠT0∪F (L
max(N,m0)) = ΠT0∪F (φ(L

max(Nr,m0r)));

– (N,m0) is divergent-free then

ΠT0∪F (φ(L
ω(Nr,m0))) = ΠT0∪F (L

ω(N,m0));

– (N,m0) is HF -interchangeable, quasi-persistent and H-similar then

(N,m0) is live ⇐⇒ (Nr,m0) is live.

7.3.4. Behavioral post-agglomeration

For these reductions, we restrict I to a singleton (i.e. I = {1} and we set Γ = Γ1,
H = H1 and F = F1). Indeed, contrary to the pre-agglomeration, we do not obtain a
weakening of some application conditions when enabling a “parallel” agglomeration.

The main property that the conditions of the post-agglomeration imply is the fol-
lowing: in every firing sequence with an occurrence of a transition h of H followed
later by an occurrence of a transition f of F , f can be immediately fired after h.
From a modelling point of view, the set F represents local actions while the set H
corresponds to global actions possibly involving synchronization.

DEFINITION 7.11 Let (N,m0) be a p-agglomerable marked net. (N,m0) is:
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– F -independent iff ∀h ∈ H , ∀f ∈ F , ∀s ∈ (T0 ∪ H)∗, ∀m ∈ Reach(N,m0),
m[h.s.f〉 =⇒m[h.f.s〉;
and strongly F -independent iff ∀h ∈ H , ∀f ∈ F , ∀s ∈ T ∗ s.t. ∀s′ ∈
Pref(s),Γ(s′) ≥ 0 ∀m ∈ Reach(N,m0), m[h.s.f〉 =⇒m[h.f.s〉;

– F -continuable iff ∀h ∈ H , ∀s ∈ T ∗, s.t. ∀s′ ∈ Pref(s),Γ(s′) ≥ 0 ∀m ∈
Reach(N,m0) m[h.s〉 =⇒ ∃f ∈ F s.t. m[h.s.f〉.

We express the dependence of the set F on the set H with three hypotheses. We
first notice that, in the original net, the transitions h ∈ Hi and f ∈ Fi may be live
whilst the sequence h.f is not live. Thus the HF -interchangeability condition forbids
this behavior. The F -independence means that any firing of f ∈ F may be anticipated
just after the occurrence of a transition h ∈ H which enables this firing. The F -
continuation means that an excess of occurrences of h ∈ H can always be reduced by
subsequent firings of transitions of F .

The following theorem expresses which properties are preserved by the post-agglo-
meration giving the required conditions in each case. The first point is related to the
maximal sequences and allows the modeler to look for deadlocks for instance. The
second point is related to infinite sequences, which characterize, for instance, fairness
properties. More generally these two points allowany (action-based) linear time logic
that does not observe transitions of F to be checked. The third point is related to the
Petri net liveness as liveness cannot be specified with linear time logic. Note that we
proved in [HAD 04b] that this reduction is a strict extension of the post-agglomeration
of Berthelot [BER 83].

THEOREM 7.12 Let (N,m0) be a p-agglomerable Petri net. If furthermore

– (N,m0) is F -continuable then

ΠT0∪H(Lmax(N,m0)) = ΠT0∪H(φ(Lmax(Nr,m0)));

– (N,m0) is F -continuable and strongly F -independent then

ΠT0∪H(Lω(N,m0)) = ΠT0∪H(φ(Lω(Nr,m0)));

– (N,m0) is F -continuable, F -independent and HF -interchangeable then

(N,m0) is live ⇐⇒ (Nr,m0) is live.

We propose in this section sufficient structural conditions that imply the behavioral
conditions presented previously and subsequently, the preservation of most properties
of the net. We propose two sets of conditions: one based intensively on the use of
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linear invariants of the net, and one, which is more simple, which corresponds to
Berthelot’s initial conditions and is only based on the graph structure of the net.

First of all, we show a general methodology that enables the definition of struc-
tural conditions that characterize behaviors of the model using linear invariants of the
model.

7.3.5. Structural conditions and linear invariants of the nets

Behavioral hypotheses defined in the previous section cannot be used directly in
practice as they refer to the behavior of the model. In the worst case, verifying these
hypotheses leads the reachability graph to be built before applying the reductions!

An initial method to ensure specific behavior of a net is to strictly restrict the Petri
net graph in order to constrain the possible evolution of the model. For instance, the
preset of a transition can be limited to a singleton. Then, the firing of the transition
is only dependent on the marking of this simple place and then it can ensured that
the transition is fireable as soon as this place is sufficiently marked. Generally, this
kind of strategy leads to severe conditions that restrict the possible application of the
transformation.

Another way to depict the behavior of a net is to use algebraical conditions based
on flows and linear invariants of the net. These flows and invariants can be obtained
by two means: the first one is to apply algorithms such as the Gaussian elimination or
the Farkas algorithm [COL 91] when positive constraints on coefficients are required.
The second is to derive already known information when nets are produced by an
automatic generation from a high-level specification. We will study these algorithms
in the next section.

We show now the method that can be used to define structural and algebraical
conditions corresponding to the behavioral hypothesis defined in previous definitions.
We illustrate these principles on the Petri net depicted in Figure 7.1 for which a simple
computation leads to the following invariants:

– ∀m ∈ Reach(N,m0),m(p)+m(q)+m(u) = 1 meaning that the sum of tokens
contained in places p, q and u is always equal to 1;

– ∀m ∈ Reach(N,m0),m(r1)+m(r2) = 1 meaning that there is always exactly
one token in either r1 or r2.

Let us suppose that we want to establish the following properties:

1) when the process is in the state p (i.e. p is marked) it is never suspended (either
f1 or f2 is fireable). This illustrates the F -continuation;
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Figure 7.1. A simple Petri net

2) when the process is in the state p some activity is forbidden (e.g. g is not
fireable). This illustrates the H-independence.

For the first property we build a linear programming problem (LP problem) in
which we associate a variable xp with each place p, which denotes the number of
tokens contained in this place. Thus an assignment of the variables is equivalent to a
potential marking since we introduce the linear invariants of the net to characterize a
superset of the reachable markings. The constraints of this LP problem are defined by
the invariants of the net, by the hypothesis that p is marked, and by the negation of
the conclusion (i.e. neither f1 nor f2 are fireable). We conclude that the property is
satisfied if the LP is not satisfiable (but the converse is not true).

⎡
⎢⎢⎢⎢⎢⎢⎣

∀i ∈ P, xi ≥ 0 the markings are positive
xq + xp + xu = 1
xr1 + xr2 = 1

}
the constraints defined by the invariants are satisfied

xp ≥ 1 the place p is marked
xr1 = 0
xr2 = 0

}
neither the transition f1 nor the transition f2 is fireable

The second property is expressed similarly. Let us observe that here the negation
of the conclusion leads to lower bounds for markings of places.⎡
⎢⎢⎢⎢⎢⎢⎣

∀i ∈ P, xi ≥ 0 the markings are positive
xq + xp + xu = 1
xr1 + xr2 = 1

}
the constraints defined by the invariants are satisfied

xp ≥ 1 the place p is marked
xv ≥ 1
xu ≥ 1

}
the transition g is fireable
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PROPOSITION 7.13 (Transition freezing) Let (N,m0) be a Petri net, p be a place
and t be a transition. Suppose that the LP problem where:

– the variables are {xq}q∈P ;

– the constraints are given by the positivity of the variables, the invariants of the
net and by the inequations xp ≥ 1 and ∀q ∈ •t, xq ≥W−[q, t];

does not admit a solution. Then ∀m ∈ Reach(N,m0), m(p) > 0 =⇒ NOT m[t〉.
We say that p freezes t. By extension, p freezes a set of transitions T ′ if ∀t ∈ T ′, p
freezes t.

Since we want to prove the non-existence of a marking satisfying the linear prob-
lem, we should solve an integer linear problem (ILP). It is well-known that solving
an ILP may be highly time-consuming. Thus a less accurate sufficient condition is to
interpret this problem as a rational linear problem. This satisfiability checking is now
processed in polynomial time. Moreover, practical experiments have shown that, for
the kind of problems we solve, it seldom occurs that the ILP is unsatisfiable when the
LP is satisfiable. This shows that the structural conditions are quite accurate w.r.t. the
behavioral conditions.

7.3.6. HPP structural and algebraical conditions

Using the previous method it is possible to capture behavioral conditions stated in
the previous section with the help of algebraical and structural conditions.

We now propose five structural conditions that imply the respect of the behavioral
hypotheses used in the previous section. Some of them are only based on structural
constraints while others use both structural and algebraical conditions.

We first provide those corresponding to the pre-agglomeration. All proofs of
propositions stated in this section can be found in [HAD 04b].

The first handles the potential agglomerability. This behavioral hypothesis can be
easily ensured by the following structural sufficient condition : ∀i ∈ I , ∃pi such that
m0(pi) = 0, •pi = Hi, pi• = Fi, and ∀h ∈ Hi, ∀f ∈ Fi, W+(pi, h) = W−(pi, f) =
1.

The HF -interchangeable hypothesis ensures that any transitions of Hi can be re-
placed by any other transition of Hi or similarly that any transition of F i can be re-
placed by any other transition of Fi. We propose four simple structural conditions that
guarantee such a behavior. Conditions 2 and 3 are related to the F -interchangeability
and conditions 1 and 4 are related to the H-interchangeability. The technical aspect
of point 4 is due to the fact that if Hi and Fi are not reduced to a singleton, then the
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possibility to replace a transition h by a transition h′ implies an equivalence in term of
pre-conditions but also an equivalence in term of tokens produced by these transitions
and needed for the firing of a transition of Fi.

PROPOSITION 7.14 (Structural HF -interchangeability) A sp-agglomerable net
(N,m0) is HF -interchangeable if ∀i ∈ I , one of these conditions is fulfilled:

1) |Hi| = 1;

2) |Fi| = 1;

3) ∀f, f ′ ∈ Fi, ∀p ∈ P , W−(p, f) = W−(p, f ′);
4) ∀h, h′ ∈ Hi

- ∀p ∈ P,W−(p, h) = W−(p, h′) and
- ∀f ∈ Fi, ∀p ∈ h• ∩ •f , W+(p, h) = W+(p, h′).

In the following figure (Figure 7.2), the model on the left does not verify the struc-
tural conditions: neither Hi nor Fi are reduced to a singleton, and place q2 prevents
from verifying point 3 or 4. In the model of the right, since Pre(q2, f) = Pre(q2, f ′)
the point 3 is fulfilled. Thus HF -interchangeability is verified.

q1 q2
p

r1 r2

h h’

f’f

q1 q2
p

r1 r2

h h’

f’f

Figure 7.2. Example of nets illustrating the structural HF -interchangeability

In order to obtain a structural characterization of the H-independence, we require
first that the tokens produced by a transition h ∈ Hi (other than the one produced in
pi) cannot be consumed by a transition which does not belong to Fi while the place
pi is marked. Furthermore, in the case where such a token can be consumed by a
transition of Fi, the transitions Hi are frozen by the place pi.

PROPOSITION 7.15 (Structural H-independence) A sp-agglomerable net
(N,m0) is H-independent if:
∀i ∈ I , denoting HPi = (Hi

• \ {pi});
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pi

r1

h

f’f

q1

tb
tb is disabled when pi is marked

(a)

r

q2
pi

f’f

r2

h’h

r1

(b)
h and h’ are disabled when pi is marked

Figure 7.3. Illustration of the structural conditions of the H-independence

a) pi freezes HPi
• \ Fi;

b) if HPi
• ∩ Fi �= ∅ then pi freezes Hi.

The divergence freeness hypothesis focuses on the possibility of entering an in-
finite loop composed only of transitions of H . In order to structurally forbid this
behavior we impose that either the places pi are structurally bounded (point 1) or that
the firing of transitions of H requires tokens that are not produced by these transitions
(point 2). In both cases, the undesirable behavior is disabled.

PROPOSITION 7.16 (Structural divergence freeness) A sp-agglomerable net
(N,m0) is divergent-free if ∀i ∈ I ,

1) either pi is covered by a positive flow;

2) or ∀h ∈ Hi, ∃q ∈ •h such that •q ⊂ T0 ∪ F .

The main idea on which the structural condition of the quasi-persistence is based is
that any transition that can be in conflict with a transition h of H either has no impact
on the marking (it is a neutral transition as the transition t0 in Figure 7.4) or such that
a conflict is not effective (transition t in Figure 7.4). One more time, this last point is
obtained by the expression of a linear programming problem using positive flows of
the net.

PROPOSITION 7.17 (Structural quasi-persistence) A sp-agglomerable net is
quasi-persistent if one of the following structural conditions are verified: ∀h ∈ H ,
∀t ∈ (•h)• \H , then
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1) either t ∈ T0 is a neutral transition;

2) or the linear programming problem where
- the variables are {xq}q∈P ,
- the constraints are defined by the positivity of the variables, the invariants of

the net, and by the inequations ∀q ∈ •h, xq ≥W−[q, h] and ∀q ∈ •t, xq ≥W−[q, t]
does not admit a solution.

If all transitions of (•h)• \H verify point 2 then the net is strongly quasi-persistent.

pi

r1 r2

h h’

f’f

(1)
t0t

t is disabled when h is enabled

Figure 7.4. Illustration of the structural conditions of quasi-persistence

The H-similarity hypothesis states that when |I| > 1 a “bad” choice cannot be
made between a transition of Hi and a transition of Hj with i �= j. For instance, in
Figure 7.5, p1 is marked and f11 or f22 is fireable implies that the firing of f21 or
f22 is possible as soon as p2 is marked and vice-versa.

PROPOSITION 7.18 (Structural H-similarity) A sp-agglomerable net, which is H-
independent and quasi-persistent, is H-similar if:
∀i, j ∈ I , ∀hj ∈ Hj , fj ∈ Fj , ∀hi ∈ Hi,
∃fi ∈ Fi such that ∀p ∈ •fi \ {pi}, W−(p, hj .fj) ≥W−(p, hi.fi).

We now propose structural conditions for the two post-agglomeration specific be-
havioural properties: the F -independence and the F -continuation. We recall that
I = {1}, so we abbreviate p1 to p.

The F -independence hypothesis requires that any transition f of F can commute
with sequences of (T0∪H)∗ (or with sequences s in T ∗ s.t. ∀s′ ∈ Pref(s),Γ(s′) ≥ 0
for the strong version). The first way to obtain this behavior is to suppose that no
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p1 p2

q1 q2

h1 h2

f11 f12 f21 f22

Figure 7.5. Illustration of the structural conditions of H-similarity

transition producing useful tokens for the firing of F can be fired when p is marked
(including H for the strong version). A second method is to require that the structure
of the net around concerned transitions is such that transition f commutes with other
transitions.

PROPOSITION 7.19 (F -independence) A sp-agglomerable net (N,m0) is F -
independent if ∀f ∈ F , ∀q ∈ (•f \ {p}), ∀t ∈ (•q \ F )

1) either p freezes t;

2) or t and f fulfill conditions a) and b)
a) W−(q, t) ≥ min(W+(q, t),W−(q, f))
b) W+(q, f) ≥ min(W−(q, f),W+(q, t)).

A F -independent net is strongly F -independent if p freezes H .

Remark Note that if |F | = 1 and if the net is F -continuable then point 2.a can be
suppressed.

Finally, the F -continuation condition ensures a transition of F that is fireable as
soon as p is marked, always exists.

PROPOSITION 7.20 (F -continuation) A sp-agglomerable net (N,m0) is F -
continuable if one of the three conditions is fulfilled:

1) ∃f ∈ F such that •f = {p};
2) or ∃ Fs ⊂ F such that:

a) all transitions f of Fs have only one input place pf , which is different from
p,



172 Models and Analysis for Distributed Systems

b) the linear programming problem in which the variables are {xq}q∈P , the
constraints are given by the positivity of the variables, the invariants of the net, and
by the inequations ∀pf ∈ •Fs \{p}, xpf

≤W−[pf , f ]−1 and xp ≥ 1 does not admit
a solution;

3) or ∃ Fs ⊂ F such that :
a) ∀q ∈ •Fs, q is a structural safe place (e.g. is covered by a binary positive

semiflow);
b) ∀f ∈ Fs, ∀q ∈ •f , W−(q, f) = 1;
c) the linear programming problem in which the variables are {xq}q∈P , the

constraints are given by the positivity of the variables, the invariants of the net and by
the inequations ∀f ∈ Fs

∑
q∈•f\{p} xq ≤ |•f | − 2 and xp ≥ 1, does not admit a

solution.

h

p

q1

r1

q2

r2

f11

f21

f22

f12

f’

FS = {f11, f12, f21, f22}

h

p

2

2

q1

q2

FS = {f1, f2}

f’

f1 f2

Figure 7.6. Illustration of the structural conditions of the F -continuation

In the left model of Figure 7.6 the invariant ∀m,m(q1) +m(q2) = 2 ensures that
a marking m such that m(q1) = 0 and m(q2) ≤ 1 cannot exist. So, as soon as p is
marked one of the transition f1 or f2 is fireable. In the right model, let us suppose
that there exist two invariants m(q1) +m(q2) = 1 and m(r1) +m(r2) = 1 (which
may correspond to the fact that places q1 and q2 model the two possible values of a
variable q when places r1 and r2 model the two possible values of a variable r). These
invariants ensure that one of the four transitions f11 to f22 is fireable as soon as p is
marked. Obviously, the place p may have other output transitions in both cases.

7.3.7. Application examples

Consider the following fragment of a Petri net (modeled in the left-hand side of
Figure 7.7) modeling the access to data protected by locks (modeled by places Lock1
and Lock2) by two threads. These locks could be those associated with each Java
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object when Java is used in a multithreaded context. Let us note that the two processes
take these locks in a different order but that these actions are performed under the
protection of a mutual exclusion mechanism. Note that this construction follows some
well-known guidelines used to prevent deadlocks [HAB 69].

a6

a5

a4

a3

a2

a1

b2

b1

b3

b4

b5

b6

p2

p3

p4

p5

p6

p7

Lock1 Lock2

Mutex
p1 q1

q2

q7

q6

q5

q4

q3

a3.a4.a5.a6

p7

p3

p2

p1

Lock1 Lock2 q2

q1

q7

q3

Mutex

b1

b2a2

a1

b3.b4.b5.b6

Figure 7.7. Taking two locks under the protection of a mutex

In this net there exist different binary places invariants (i.e. the corresponding
vectors �v ∈ {0, 1}P ) ensuring that when place p2 is marked then all transitions that
have the place Lock1 as a pre-condition cannot be fired and, symmetrically, that, when
place q2 is marked all transitions that have the place Lock2 as a pre-condition cannot
be fired.

We now describe the reduction process. First of all, we post-agglomerate tran-
sitions a3 with a4. Then this new transition a3.a4 can be post-agglomerated with
a5 and then with a6. We also apply a similar sequence of post-agglomerations on
transitions b3 to b6 and we obtain then the model on the right-hand side of Figure 7.7.

However, using algebraic part of the conditions enables in net reduction to go fur-
ther. Indeed, if we consider H = {a2} and F = {a3.a4.a5.a6} we immediately note
that the net is p-agglomerable around place p3. Let us prove that the five hypotheses
of the pre-agglomerations are fulfilled:

– HF -interchangeability: since |H | = |F | = 1 this point is obviously satisfied;

– H-independence since a2• \ {p3} = ∅ the set of transitions that the firing of a2
may enable is a3.a4.a5.a6. Thus, a sequence s, fireable after the firing of a2 from a
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marking m (m[a2.s〉) and such that its prefixes s′ verify Γ(s′) > 0, is also fireable
before the firing of a2 (m[s〉). Let q �= p3 ∈ •a2. As a2• = {p3}, W+(q, a2) = 0.
By hypothesis, m(q) ≥ W−(q, a2.s) = Max(W−(q, a2),W−(q, s) −W (q, a2)).
So, m(q) ≥W−(q, a2)+W−(q, s) and m(q) ≥W−(q, a2)+W−(q, s)−W+(q, s).
It comes m(q) +W (q, s) ≥W−(q, a2). As, m[s〉, m[s.a2〉;

– divergence freeness: as the place Lock1 belongs to •a2 \ a2•, a2 cannot be
infinitely fired and this point is also fulfilled;

– quasi-persistence: Let S = Lock1• \{a2}. By construction, this net satisfies the
invariant ∀m ∈ Reach(N,m0),m(Mutex)+m(p2)+m(p3)+m(q2)+m(q3) = 1.
So, when p2 is marked, transition b3.b4.b5.b6 ∈ S is not fireable. So this point is also
fulfilled;

– H-similarity: As here H is a singleton this point is obviously fulfilled.

We obtain the net depicted in the left-hand side of Figure 7.8. Now, symmetrically,
we perform a pre-agglomeration around place q3. This leads to the model at the top
right of Figure 7.8.

p2

p1

p7

Lock1 Lock2

Mutex q1

q7

q3

q2 p7

p2

p1 Mutex

a1

Lock1 Lock2

b1

q1

q2

q7

q1

q7
Lock2

Mutex

a1.a2.a3.a4.a5.a6

p7

p1

Lock1

b1.b2.b3.b4.b5.b6

b2.b3.b4.b5.b6a2.a3.a4.a5.a6

a2.a3.a4.a5.a6

a1

b2

b1

b3.b4.b5.b6

Figure 7.8. The model at different stages of the reduction process

At last, we can apply a “parallel” pre-agglomeration of a1 with a2.a3.a4.a5.a6
and of b1 with b2.b3.b4.b5.b6 (H1 = {a1} and F1 = {a2.a3.a4.a5.a6}, H2 = {b1}
and F2 = {b2.b3.b4.b5.b6}) to this model. Note that it is also possible to first suppress
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places Lock1 and Lock2 (that are now implicit places 2) and then apply two post-
agglomerations. This reduction is interesting since no reduction with I reduced to a
singleton is possible.

In the final model, the two threads atomically operate on the locks.

7.3.8. Linear invariants and applications

Flows, semi-flows and P and T invariants.

A shown previously, it is possible to use the structure of the model to simplify its
analysis by reducing it while maintaining its properties. We show in this section that
the structure of the net can be used to directly obtain results about some properties
of the model. Again, as we use only the structure of the model, we can perform a
parametrized analysis and we do not need to build part or whole of the reachability
graph.

Let X ∈ ZZP be a natural vector indexed by P , the set of places of the net. If we
denote by W (t) the tth column of the incidence matrix, we can note the state equation
rule as:

tX.M ′ = tX.M + tX.W (t)

If we suppose now that tX.W (t) = 0 then we can state that tX.M ′ = tX.M , and
particularly tX.M ′ = tX.M0. This last equation states that the weighted sum of
tokens in places defined by the support of X , Supp(X), remains constant whatever
the evolution of system is. For all t ∈ T ,∑

p∈P

X(p).M(p) =
∑
p∈P

X(p).M ′(p).

Thus, integer solutions of the equation tX.W = 0 will characterize linear invariants
of the studied model.

These invariants can be computed using either the Gauss’ algorithm, cases in
which positive constraints on weights not put, or with the Farkas’ algorithm, case
in which positive invariants are sought. Note that the use of positive invariants leads
to more complex calculus but simplifies the interpretation of found invariants w.r.t. the
model semantic.

Example 7.1 Let us suppose that we want to analyze the following net (Figure 7.9),
which models the mutual exclusion of two processes on a common resource. Note
that the place Counter imposes that process b accesses the critical section a number
of times less or equal than the process a does.

2. An implicit place is a place that never disables the firing of any transition by itself; this kind of places
can be characterized using structural and algebraic conditions.
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Passive(b)

Exec(b)

Waiting(b)

r3

r2

r1

Lock

Counter

Waiting(a)

Exec(a)

t1

t2

Passive(a)

t3

Figure 7.9. A model for a bi-partite mutual exclusion

In order to prove that this model defines an effective mutual exclusion between pro-
cess a and process b, the first method consists of building the reachability graph and
verifying that for each state, when a process i is in the critical section (place Exec(i)
is marked) then the other process is not in the critical section (place Exec(j), j �= i
is not marked). While this model is quite simple, it is not bounded, and so, its reacha-
bility graph is infinite and then this property cannot be proved using this strategy.

However, a set of generative positive invariants of the model can be generated (the
complexity of which does not depend on the reachability graph). Applying the Farkas’
algorithm on this model gives three positive flows:

1) Waiting(a) + Exec(a) + Passive(a) = cst(M0) = 1;

2) Waiting(b) + Exec(b) + Passive(b) = cst(M0) = 1;

3) Exec(a) + Exec(b) + Lock = cst(M0) = 1.

The two first invariants state that the net models two processes that are in one of their
three possible states. The last allows us to state the mutual exclusion since either the
Resource is free (place Lock is marked) or one process is in the Exec state (place
Exec(a) or Exec(a) is marked).

Before giving an efficient version of the Farkas’ algorithm we precisely define a
minimal generative family of flows or of positive flows.

DEFINITION 7.21 (Generative Family) Let A be an integer matrix where rows are
indexed by a finite set P and columns are indexed by a finite set T . A generative family
in lQ (resp. Q+) of the equationtX.A = 0 is a finite family {V1, . . . , Vm} of non-null
vectors in (Q+)) (resp. (Q+)P ) s.t.:
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– ∀ Vi,
tVi.A = 0;

– ∀ V ∈ (Q+) (resp. (Q+)P ) with tV.A = 0,
∃λ1, . . . , λm ∈ Q (resp.Q+) s.t. V = λ1.V1 + . . .+ λm.Vm.

The family is a minimal generative family if removing one item of this family leads to
a non-generative family.

The rows of the matrix corresponds to variables of the system while columns rep-
resent equations that link variables.

The principle of the Farkas’ algorithm consists of building a generative family of
invariants of the system reduced to its first i equations from a generative family of the
system reduced to its first i − 1 equations as follows: giving the equation (column) i,
keep all vectors that satisfy this equations (0 in the column), and combine two-by-two
vectors for which the equation i leads to a positive (positive number in the column)
result with those for which the equation i leads to a negative result (negative number
in the column).

The most important difficulty of this algorithm is that it may compute useless
solutions (in sense that they are linear combinations of other solutions) which may
lead to a possible “explosion” of the number of solutions. In order to quickly eliminate
these useless solutions, a characterization of a minimal generative family based on the
support of solutions can be used.

PROPOSITION 7.22 Let F = {V1, . . . , Vm} be a family of non-null vectors in (Q+)P

s.t. ∀i, tVi.A = 0. F is a minimal generative family if:

1) ∀ V ∈ (Q+)P s.t. tV.A = 0 and V �= 0, ∃Vi s.t. Supp(Vi) ⊆ Supp(V );

2) ∀ V �= V ′ ∈ F we have not Supp(V ′) ⊆ Supp(V ).

Using this proposition we can propose an efficient version of the Farkas’ algorithm
(algorithm 1):

Note that some improvements may be performed on this algorithm:

– Do not randomly choose equation t to solve but choose one that minimizes some
objectives;

– only compare support of solutions of the i steps with those obtained at the i− 1
steps (and not with those obtained at the i); this may replace a bidirectional test with
a unidirectional test and is very efficient in practice [COL 91].
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1) S := {−→p /p ∈ P}% S is the canonical basis of E = (lQ+)P

2) For t taking value in T DO
% Separate vectors of S w.r.t. the sign of their projection on the equation t

a) S0 ← {s ∈ S/ts.At = 0}
b) S+ ← {s ∈ S/ts.At > 0}
c) S− ← {s ∈ S/ts.At < 0}
% now, we perform linear combinations
d) For (s+, s−) in S+ × S− DO

S ← S
⋃
{(ts+.At).s

− − (ts−.At).s
+}

End For
% we suppress non minimal solutions
e) For (s, s′) in S × S, s �= s′ DO

If Supp(s′) ⊆ Supp(s) Then
S ← S \ {s}

End If
End For

End For

S is a minimal generative family of the system tX.W = 0, X ∈ lQ+.

Let us consider the following model (Figure 7.10), which corresponds to a reduced
model of the well known “swimming pool” model: swimmers enter the swimming
pool (transition t0.t1). Then they choose a cubicle to undress in, take a basket and
change into a swimsuit and go swimming (transition t2.t3). They end by leaving the
swimming pool and releasing granted resources (transition t5.t6). Let us apply the
previous algorithm in this model.

x3
r2 r1

t4t5t6

t2t3

x1
y

t0.t1

K2 K1

K

Figure 7.10. An abstract version of the swimming pool model
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The original incidence matrix is:

W =

⎛
⎜⎜⎜⎜⎝

t0.t1 t2.t3 t4.t5.t6
−→y −1 1 0−→
x1 1 −1 0−→
x3 0 1 −1−→
r1 −1 1 0−→
r2 0 −1 1

⎞
⎟⎟⎟⎟⎠

We first nullify the transition t2.t3.t4 (which is not a judicious choice but as it
makes non minimal solutions appear, it enables the illustration of an important part
of the algorithm). For this transition, the set S0 is empty, S+ = {−→y ,

−→
x3,
−→
r1} and

S− = {−→x1,−→r2}. The combination of items of these two last sets leads to the following
system:

W1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

t0.t1 t2.t3 t4.t5.t6
−→y +

−→
x1 0 0 0

−→y +
−→
r2 −1 0 1−→

x3 +
−→
x1 1 0 −1−→

x3 +
−→
r2 0 0 0−→

r1 +
−→
x1 0 0 0−→

r1 +
−→
r2 −1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

We can then nullify t0.t1 by combining
−→
x3 +

−→
x1 with −→y +

−→
r2 and

−→
r1 +

−→
r2 and we

obtain the matrix

W1 =

⎛
⎜⎜⎜⎜⎝

t0.t1 t2.t3 t4.t5.t6
−→y +

−→
x1 0 0 0−→

x3 +
−→
r2 0 0 0−→

r1 +
−→
x1 0 0 0−→y +
−→
r2 +

−→
x3 +

−→
x1 0 0 0−→

r1 +
−→
r2 +

−→
x3 +

−→
x1 0 0 0

⎞
⎟⎟⎟⎟⎠

At this step, the matrix is the null matrix, so the computed set is a generative fam-
ily. However, the two last solutions are not minimal solutions as Supp(−→y +

−→
x1) ⊆

Supp(−→y +
−→
r2 +

−→
x3 +

−→
x1) and Supp(

−→
x3 +

−→
r2) ⊆ Supp(

−→
r1 +

−→
r2 +

−→
x3 +

−→
x1)

These two solutions can then be suppressed while maintaining a generative family,
which is done in the second part of the algorithm.

A minimal generative family of positive flows of the model of Figure 7.10 is:

{(−→y +
−→
x1), (

−→
x3 +

−→
r2)(

−→
r1 +

−→
x1)}

leading to the three invariants: ∀m ∈ Acc(R,m0) m(y) + m(x1) = K , m(x3) +
m(r2) = K2 and m(r1) +m(x1) = K1, which represent the state of the different
resources of the model.

Liveness, traps, and sinks

Another way to check a property of a model is to deduce its behavior with the
help of structural patterns used to guide the modeling or find by analysis the struc-
ture of the model. The most cited works in this area are those that focus on deducing
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liveness or weakly-liveness (deadlock freeness) from necessary or sufficient condi-
tions on some specific sets of places called siphons. We can cite [COM 72, BAR 89,
BAR 90, ESP 92b, KEM 92, COL 86, TER 93, BAR 97]. Indeed, liveness, which is
an important behavioral property of nets, is closely related to the satisfiability of some
predicates on siphons.

In order to simply our presentation, we restrict some propositions to ordinary Petri
nets, i.e. Petri nets for which all valuations equal 1; see [BAR 97] for a generalization
to Petri nets.

DEFINITION 7.23 Let N be a Petri net. Let A ⊆ P,A �= ∅.
– A is called a siphon if and only if •A ⊆ A•. The siphon A is minimal if and only

if it contains no other siphon as a proper subset and A is maximal if and only if none
other siphon includes it.

– A is called a trap if and only if A• ⊆ •A. The trap A is minimal if and only if
it contains no other trap as a proper subset and A maximal if and only if none other
trap includes it.

The following propositions formalize the main characteristics of siphons and traps:
as soon as a siphon becomes empty, it will remain empty forever, and, as soon as a
trap is marked, it remains marked forever.

PROPOSITION 7.24 Let (N,m0) be an marked Petri net and S a siphon of N . Then
∀m ∈ Reach(N,m0), |m(S) = 0⇒ ∀m′ ∈ Reach(N,m),m′(S) = 0

PROPOSITION 7.25 Let (N,m0) be marked Petri net and R a trap of N . Then ∀m ∈
Reach(N,m0), |m(R) > 0⇒ ∀m′ ∈ Reach(N,m),m′(R) > 0

So, using these characteristics, it is easy to obtain the following result, which links
liveness and markings of siphons:

PROPOSITION 7.26 If an ordinary marked Petri net (N,m0) is live then each mini-
mal siphon remains marked for all reachable markings.

Ensuring that each siphon remains marked is then a necessary condition for live-
ness; however, in the general case, ensuring that siphons remain marked is not suffi-
cient to ensure liveness.

Models and Analysis in Distributed Systems
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PROPOSITION 7.27 Given an ordinary marked Petri net (N,m0) if every minimal
siphon remains marked for all reachable markings then (N,m0) is weakly-live.

So in order to build weakly-live Petri nets we have to ensure that all siphons remain
marked. This can be achieved with the help of structural or algebraic conditions based
on the existence of traps or places semiflows (see for instance [BAR 96]). We recall
here a main proposition known as the Commoner’s property.

PROPOSITION 7.28 (Commoner’s property) Given an ordinary marked Petri net
(N,m0) if every siphon of N contains a marked trap (form0) then (N,m0) is weakly-
live.

Let us illustrate the use of these results on the following model (Figure 7.11) of a
manufacturing system composed of two assembly lines using robots and resources for
building some pieces:

This net contains five minimal siphons: D1 = {p11, p1, p12, p22, p13, p23, p14, p24},
D2 = {p21, p1 + p12, p22, p13, p23, p14, p24}, D3 = {robot, p12, p22, p14, p24}, D4 =
{resources, p13, p23} and D5 = {robot, resources, p14, p24}

The four siphons D1, D2, D3, D4 are traps; so they will remain marked as soon as
they are initially marked. We can ensure that the siphon D5 will remain marked using
the two following invariants f1 = robot + ressources − p1 − p11, f2 = robot +
ressources − p1 − p21 which state that for any reachable marking m, m(robot) +
m(resources) = m0(robot)+m0(resources)−m0(p1)−min(m0(p11)+m0(p21))+
m(p1) +min(m(p11) +m(p21))

So, we can ensure that as soon as m0(robot) + m0(resources) > m0(p1) +
min(m0(p11) + m0(p21)) and m0(robot) > 0 and m0(resources) > 0, the net is
weakly-live.

Controlling siphons guarantees the absence of a deadlock. However, in order to
decide liveness, we have to restrict the model of concurrency of our models, which
also corresponds to a need to reflect the behavior of human processes. Indeed, in or-
ganizations, the business processes use often limited types of synchronizations, so we
can model realistic models without using general Petri nets. Furthermore, restricting
patterns to specific ones simplifies also the complexity about deciding the correct be-
haviors of a model. The most relevant results in this domain concern the subclass of
Petri nets called free-choice Petri nets.

DEFINITION 7.29 A Petri net N is said to be a free-choice net if ∀p ∈ P, ∀t ∈ T ,
p ∈ •t⇒ •t = {p} or p• = {t}



182 Models and Analysis for Distributed Systems

p21

robot

resources

p12

p13

p14

p22

p23

p24

p1

t1

t12

t13

t14

t11

t24

t23

t22

t21

p11

Figure 7.11. A manufacturing system

In other words, it is possible to model conflict and choice with the help of free-
choice nets but both cannot occur at the same time.

Note that the previous definition is equivalent to the following assertion. Given
two places p and q (resp. two transitions t and r) either p• ∩ q• = ∅ or p• = q• (resp.
•t ∩ •r = ∅ or •t = •r).

For this kind of Petri net, Commoner’s property establishes the liveness of a model
with the help of the trap control of its siphons.

PROPOSITION 7.30 (Commoner’s property for free-choice nets) A marked free-choice
Petri net (N,m0) is live if and only if each siphon of N contains a marked trap (for
m0).

This proposition shows the main advantage of free-choice nets w.r.t. model anal-
ysis: the liveness can be stated with the help of structural characteristics, but we can
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go a step further with the following theorem, which links simultaneous liveness and
boundedness with pure structural properties that can be checked in polynomial time.

THEOREM 7.31 (rank theorem) A marked free-choice Petri net (N,m0) is live and
bounded if and only the four hypotheses hold:

1) N is a strongly connected net: i.e. ∀x, x′ ∈ T ∪ P , there exists a direct path
from x to x′;

2) N is covered by states machines: i.e. there exist a decomposition of N in a set
of subnets ({Ni}) such that each sub net Ni is a state machine (each transition of Ni

has a unique input place and a unique output place in Ni);

3) rank(W ) = |θ| − 1 where θ denotes the equivalence relation defined on T by:
t θ t′ iff •t = •t′ (t and t′ are in equal conflit);

4) each siphon of N is marked for m0.

These four properties can be checked in a polynomial time using Tarjan’s algo-
rithm for testing the strong connectivity, the Gauss algorithm to check the rank of the
incidence matrix, and by building specific siphons in a polynomial time for testing the
third and fourth conditions; see [ESP 92b] for details on this result.

7.4. Formal verification by model-checking

The following sections present approaches designed for behavioral verification of
finite state systems. Model-checking generally consists of an exhaustive exploration
of the state space of a system, which seeks for “bad” behaviors with respect to a given
property. This approach faces the combinatorial state-space explosion problem, thus
requires specific algorithms and data structures to tackle the storage and exploration
of the state graph.

We first define the reachability graph and explain how it can be used to check be-
havioral properties, focusing on properties expressed using temporal logic. We then
give an overview of the most important families of approaches that have been pro-
posed to tackle model-checking. Then we describe four of these approaches in more
detail based respectively on reduced decision diagrams, partial order reductions, sym-
metry exploitation, and SAT-based solvers (i.e. algorithms solving the propositional
satisfiability problem).

7.4.1. Reachability graph

This section presents the general problems raised when attempting to generate a
reachability graph, and how to exploit this graph to automatically verify the properties
of a system.
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Model-checking consists of exploring all the possible configurations of a system.
A reachability graph is a graph where vertices represent the states of the system, and
edges represent the occurrence of events that induce a change of state. The principle
of generation is straightforward, starting from an initial state s0 and given a transition
relation T that describes all the events that can potentially occur in the system, the
graph is built inductively. Since by hypothesis the system has a finite state space, the
procedure terminates.

Algorithm ReachabilityGraph(M )1

Data: Let,
input : M : 〈s0, T 〉 a system and its initial state
local : todo : initially empty, set of known states that need to be explored
output : graph : the reachability graph of the system

begin2

todo.push(s0)3

while todo �= ∅ do4

s := todo.pop()5

foreach t ∈ T do6

if t enabled in s then7

s′:=succ(s, t)8

if s′ �∈ graph then9

graph.addState(s′)10

todo.push(s′)11

graph.addEdge(s,s′)12

Return graph13

end14

Algorithm 1: Building a state graph

The algorithm ReachabilityGraph presents a simple algorithm to build a reach-
ability graph. When todo is a first-in, first-out (FIFO) queue, exploration order is
a breadth-first search (BFS), all direct successors of a node are explored before ex-
ploring their own successors. If todo is a stack, the exploration order is a variant on
a depth-first search (DFS), i.e. the algorithm tends to follow a path until it reaches
a previously known state, before switching to the next path. A DFS can easily be
implemented using a recursive function, with the call stack replacing the todo stack.
Regardless of the exploration order chosen, the algorithm stops when all states have
been explored. The graph once built can be used to look for desired (or undesirable)
behaviors. Verification of behavioral properties is thus reduced to simply exploring a
labeled graph.
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This enumerative approach has as strength its simplicity and the fact that it can
be entirely automated with ease, thus requiring less expertise from the user. In this
respect, model-checking can be contrasted to theorem-proving, which meets the same
goal of verifying behavioral properties of a system by assisting the user to establish a
formal mathematical proof. In theorem-proving, the system is seen as a set of axioms,
and properties are seen as theorems that need to be proved. Proving a property requires
manual intervention of an expert, while in model-checking the whole process can be
fully automated. However, model-checking cannot be easily scaled up, as the state
graph explodes in size, but theorem-proving can often provide inductive proofs that
scale up to the size of an arbitrary system.

The critical limitation for model-checking is the exponential blow-up of the size of
the state space when the system grows. To implement the test of line (9), a hash table,
which stores the nodes of the graph is typically used, but this introduces a memory
complexity blow-up as all nodes are stored.

t1 t3t2

t4

P1<S>

P2 P3 P4

<S-x>

<S>

<x><x><x><x><x>

Figure 7.12. A colored Petri net representing a resource access protocol. P1: idle, P2:
requestCS, P3: wait, P4: critical ection

For instance, consider Figure 7.12, which represents a colored Petri net modeling
a simple resource access protocol among several process (see Figure2.9 and accom-
panying text for a presentation of this formalism). The model is parameterized by a
variable < x > of domain Proc = {pr1, pr2, . . .} the process identity. Initially, all
process are idle, which is modeled by the S marker in place P1, representing one oc-
currence of each process id. Each process can autonomously decide to ask for access
to the resource (thus moving to P2), when this request is received by the controller, the
process moves to P3. Process < x > then waits until all other process (represented
by S − x on arc from P1 to t3) are idle to access the resource in place P4.

The number of reachable states of this system can be analytically computed, since
each process can be in any of three states (P1, P2 or P3) regardless of the other’s
states. An additional state where the only marked place is P4 represents the resource
access phase for any process. Thus the state space contains 3n + 1 states when the
system contains n processes. Table 7.1 highlights this exponential blow-up of the state
space as n grows.
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Processes States Processes States
2 10 8 6 562
4 82 10 59 050
6 730 20 3 486 784 402

Table 7.1. Exponential blow-up of the state space as the number of processes grow
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Figure 7.13. Equivalent Petri net for two processes and its reachability graph

Distributed and concurrent protocols often contain subtle errors, which are diffi-
cult to reproduce, but that can lead to system deadlock. Non-determinism due to the
process scheduler that selects which process will progress leads to numerous possible
interleaving of actions, some of which might lead to problematic situations.

For instance, the protocol described in Figure 7.12 allows a deadlock to occur.
For more clarity, we show in Figure 7.13 the same protocol instantiated for just two
concurrent process, and its state graph. The state s4 : p3+p3′ is a reachable deadlock
state, but there are infinitely many executions that go through state s3 : p4 and never
deadlock. Test-based validation of such non-deterministic systems is prone to missing
these tricky bad interleaving of actions.

Computing the state graph of a system allows properties that can be evaluated
locally to a state, to be immediately proved or invalidated. Typically, a deadlock
consists is a state with no successors, and a safety property requires that a given atomic
property holds in all reachable states. An atomic property is a predicate that can
be evaluated to be either true or false in any given state. More complex behavioral
properties referring to execution paths or circuits in the state graph can also be verified,
using standard graph algorithms. For instance, checking whether a given (nominal)
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situation can always be reached from any state, allows confidence that the system can
repair itself to be gained.

A general framework for the verification of such behavioral properties, called the
automata theoretic approach to model-checking, has been defined. In the following
sections, we introduce this approach dedicated to the verification of linear-time tem-
poral logic, then we provide an overview of the various approaches that have been
proposed to improve the efficiency of model-checking techniques (section 7.5). A
representative subset of these techniques is then presented in more detail. To allow
easier comparison of these techniques, we will use the state graph of Figure 7.13 as a
running example.

7.4.2. Automata theoretic approach to model-checking

To check simple reachability properties, such as the presence of deadlock states
(that have no successors) or the the existence of invariants, a simple traversal of the
nodes of the reachability graph is sufficient. For more complex behavioral properties
reasoning on sequences of states, variants of temporal logics are used, of which the
most common are linear-time temporal logic (LTL) and the branching time compu-
tation tree Logic (CTL) [CLA 86]. Verification of CTL formulas is a well-studied
domain (see [VAR 01] for an overview), but it can be reduced to (nested) reachability
computations, thus it is not developed in this chapter. We present here a framework
for the verification of LTL formulas.

system
M

�� ω-automaton AM

L∞(AM )
ϕ holds
M |= ϕ

synchronized product
L∞(AM ⊗A¬ϕ) =

L∞(AM ) ∩ L∞(A¬ϕ)

��

��
��

��
��

emptiness-check

L∞(AM ⊗A¬ϕ)
?
= ∅

��yes

��

��no

��property
ϕ

�� ω-automaton A¬ϕ

L∞(A¬ϕ)
counter-example

m ∈ L∞(AM ⊗A¬ϕ)

Figure 7.14. Automata-theoretic approach to model checking

In the automata theoretic approach to model-checking (Figure 7.14), the model M
of a system is seen as an automaton AM , composed of states and transitions, that ac-
cepts words of infinite length (called ω-words and ω-automaton). The letters of these
ω-words correspond to a given configuration or state of the system. The language of
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the automaton (denoted L∞(AM )) is the set of ω-words it accepts; it represents all
possible behaviors of the system.

Furthermore, the behavioral property ϕ we want to check holds on M is itself
expressed as an ω-automaton A¬ϕ whose language is the set of all behaviors that
contradict or invalidate property ϕ.

Two fundamental operations allow to decide whether L∞(AM ) and L∞(A¬ϕ) are
not disjoint, hence they share an ω-word, i.e. if there exists an execution of the system
M for which ϕ does not hold. First the synchronized product of the two automata
is built, it is itself an ω-automaton that accepts the intersection of the two languages.
Then an emptiness-check algorithm is run on this product, allowing to decide whether
its language is empty.

If the language of the product is empty, then there are no executions of M where
ϕ does not hold. Otherwise a counter-example (or witness trace), i.e. an ω-word
representing a forbidden execution of the system according to ϕ can be exhibited, to
help the user debug his or her design.

This approach to model-checking is very general: it can be applied to any finite
state system. It also allows a wide class of properties to be checked, and is easily
extended to compositional models, which are defined as a synchronized product of
communicating finite-state ω-automata.

7.4.3. Automata and temporal logic

The automata theoretic approach allows infinite sets (the languages) to be manip-
ulated while using a finite representation (ω-automata). Many types of ω-automata
exist, varying in both syntax and semantics. The most common type of ω-automata
presented here is called Büchi automata.

Any property expressed by a Büchi automaton can thus be checked using the
automata-theoretic approach. However, directly modeling properties as automata is a
difficult and error prone task. Typically a temporal logic such as LTL is preferred as it
has clearer semantics and its formula can be translated into Büchi automata [VAR 96].
In fact, Büchi automata are strictly more expressive than LTL.

LTL formulas are built from propositional Boolean variables called atomic prop-
erties, the usual boolean logic connectors (¬, ∨, ∧, ⇒, . . . ), and temporal operators
(F, G, U, X, . . . ).

Atomic properties allow states of the system to be characterized. They are Boolean
variables whose value is known in any state of the system. A state s is labeled by
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atomic property φ if and only if φ holds true in s. Temporal operators allow to reason
on sequences of states in a given execution of the system. Gf means the LTL sub-
formula f must always (Generally) hold from this point on. Ff indicates that f must
hold at some Future point of this execution. Xf forces f to hold in the immediate
successor (neXt) state. Finally fUg holds if f holds Until g does.

For instance, in Figure 7.12, atomic proposition [P1.pr1 + P2.pr2] holds when a
request of process pr2 has been sent (in place P2) and simultaneously pr1 is idle (oc-
cupying place P1). LTL formula G([P1.pr1 +P2.pr2]⇒ F[P4]) specifies that when
this situation occurs, therewill be in the future (F) necessarily an access to the critical
section (P4). On the Petri net with two processes of Figure 7.13,G([p1+p′2]⇒ F[p4])
expresses the same property.

[p1+p2'] and not [p4]

true not [p4]

q0 q1

Figure 7.15. Automaton A¬G([p1+p′2] =⇒ [p4])

The Büchi automaton of Figure 7.15 accepts all execution sequences that inval-
idate the property G([p1 + p′2] ⇒ F[p4]). Any ω-word accepted by this automata
corresponds to an infinite sequence of states (or run), starting in the initial automata
state (as marked by an edge with no source), and that infinitely often traverses the
acceptance state represented by a double circle. The alphabet of this automaton is a
set of atomic properties, which can be evaluated in any state of the system. An ac-
cepted word is then defined by the sequence of arc labels that are traversed to build
this sequence of states.

For instance, (true)(true)([p1+p′2]∧¬[p4])(¬[p4])...(¬[p4]) is an accepted word.
The atomic proposition true holds in any state. For this automata, the set of ac-
cepted words can also be described by the regular expression (true)∗([p1 + p′2] ∧
¬[p4])1(¬[p4])∞, where ∗ denotes an arbitrary finite number of repetitions, 1 denotes
a single occurrence and∞ an infinite number of repetitions of the letter (or arc label)
in the word. Note that infinite sequences of true that remain on the initial state are
not accepted.

7.4.4. Automata and synchronized product

Following the approach presented in Figure 7.14, the automaton A¬ϕ correspond-
ing to the negation of the property ϕ needs to be synchronized with the automaton
AM , which represents all possible behaviors of the system, to determine the existence
of behaviors the contradict the formula. To relate the alphabet of A¬ϕ (i.e. atomic
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propositions) to system states in AM each state of the system is seen as being labeled
by the truth values of each atomic property. A synchronized product is a Büchi au-
tomaton in which states are tuples 〈s, q〉where s is a state of the system and q is a state
of the Büchi automata A¬ϕ. For any state 〈s1, q1〉 of this automaton, its successors
are defined as nodes 〈s2, q2〉 such that:

– s2 is a successor of s1 in the system;

– q2 is a successor of q1 in the Büchi automata;

– s1 is labeled by the atomic propositions on the edge q1 → q2;

– 〈s2, q2〉 is accepting iff q2 is accepting.

s0: p1+p1'

s2: p1+p2's1:  p2+p1'

s3:   p3+p1'

p3+p3'

s5: p1+p3'

s6

p3+p2' s7:p2+p3'

s9: p4

p2+p2'
s4

s2:  p1+p2'

s5:   p1+p3'
s7

p2+p3' s7:p3+p2'

p2+p2'
s4

s8: s8:
p3+p3'

Figure 7.16. Synchronized product with the automata A¬G([p1+p′2]⇒F[p4])

Any accepted run of the synchronized product can be exhibited as a counter-
example of the desired property G([p1 + p′2] ⇒ F[p4]), and the property holds on
the system if and only if the language of the product is empty. Note that since we only
consider ω-words in this approach, deadlock states require a special treatment as they
induce the existence of finite maximal runs in the system. A special atomic property
dead is typically added to the logic, and self-loop edges bearing the label dead are
added to any deadlock state of the system.

Figure 7.16 shows the synchronized product of the reachability graph of Fig-
ure 7.13 and the automata of Figure 7.15. The left part represents system states that
are synchronized with state q0 of the automata, while the right part represents states
synchronized with q1. Dashed lines and states are not part of the product, as they do
not match the synchronized product construction rules.

In this product, we can deduce that property ϕ : G([p1 + p′2] ⇒ F[p4]) does not
hold, since the ω-word 〈q0, s0〉〈q0, s1〉〈q1, s2〉〈q1, s4〉(〈q1, s5〉)∞ is accepted, thus the
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language of AM ⊗ A¬ϕ is not empty. Through similar reasoning we could prove
that G([p2 + p′2] ⇒ ¬F [p4]) holds (any state in which two requests have been sent
simultaneously in P2 leads to the critical section becoming unreachable).

Emptiness-check can be performed in linear time and memory with respect to the
size of the synchronized product. However, the size of A¬ϕ grows exponentially with
the number of elements in the LTL formula ϕ, both atomic propositions and temporal
operators. Fortunately, most useful LTL formulas are quite small, and typical Büchi
automaton used in this procedure only have a few states. There are many variants of
Büchi automata, some of which allow more compact formula representation, such as
transition-based Büchi automata [GIA 02, COU 05], which carry acceptance condi-
tions on edges rather than on states.

More troublesome, the size of the automata AM (representing the reachability
graph) grows exponentially with the size of the system. This state-space size explo-
sion is the main hurdle to the application of this approach, thus many reduction and
optimization techniques have been proposed to try to reduce this complexity. We
present some of these in the next sections.

7.5. Classification of model-checking approaches

Many approaches have been proposed to allow the use of model-checking on in-
dustrial case studies. We separate them here into two categories: approaches that use
a form of compression to limit the memory requirements due to storage of the state
graph, and approaches that use a form of abstraction, of either states or behaviors, so
that only the part of the system that is relevant to the property needs to be explored.

7.5.1. Compression based approaches

The automaton of the system represents the reachability graph. Its size grows
exponentially with the size of the system, yet for model-checking we need to be able
to test for presence of a state without performing any disk-based input-output (IO).

To allow the state space to fit in the memory, one of the approaches simply
proposes that the states are compressed; clearly storing states using fewer bits allows
more states to be stored in memory. Classic compression algorithms can be applied
(such as zip), or bitsets can be used instead of integers to represent system variables.

A more effective approach in the specific context of model-checking, consists of
using correspondence tables to encode or decode the states. The system is seen as
being composed of individual components Ci, each having a finite state space. The
states local to each component type are stored in local state pools Hi as they are
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discovered. A global system state is then represented as an array of integer variables,
each variable giving the index of the state of a subcomponent in table Hi.

For instance, global state [3, 22, 7] would be read: C0 is in state H0[3], C1 is in
state H1[22], etc.

When components share their structure or type, which typically happens when
a component is instantiated several times in a model, the local state tables Hi can be
shared. This strategy is nearly always used, particularly when formalisms are complex
and local state descriptions are much more voluminous than an integer.

This compression scheme was used in the model-checker Spin [HOL 97], and has
since been largely adopted in other tools.

Another approach consists of not storing the states, but simply their presence. This
approach is called bit-state hash coding [STE 96] and uses a single bit to represent
presence of a state. This is simply an application of Bloom filters (a space-efficient
probabilistic data structure, see Wikipedia) to the model-checking problem. It allows
to decide whether to continue on line (9) of the reachability algorithm presented above
(Figure 1). The search for bad states (deadlock, etc.) is then performed on-the-fly as
the graph is not available post-construction. The only issue with this approach is the
chance of collisions in the Bloom filter, which might produce false positives (i.e. we
think the state has been visited when it has not). The probability of collision in the
hash can be estimated as δ based on the size of the hash table and how full up it is.

To minimize this risk, several statistically uncorrelated hash functions can be used.
By repeating the computation using independent hash functions, each new computa-
tion that agrees with the previous intuitively multiplies the probability of error by δ
[COU 92]. For instance, if collision probability is δ = 1%, and three independent
computations agree on the same result, there is only roughly a 0.0001% probability
that the result is incorrect.

Finally, a very dense tree-based representation allowing efficient manipulation of
sets of states has been proposed: reduced decision diagrams. Symbolic algorithms
operating on this data structure directly work with sets of states. Decision diagrams
exploit the similarity between states in a state space to share their representation. This
category of techniques is detailed in section 7.6.

7.5.2. Approaches based on equivalence relations

A second category of approaches consists of limiting the representation of the state
graph to information that is really necessary for the verification of a given property ϕ.
A graph that is representative of the full state graph with respect to ϕ is built, but that
can be much smaller.
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Most techniques that use this approach define a specific equivalence relation on the
state graph nodes, which ensures that the reduced state graph that is built preserves the
existence of behaviors that are of interest for a given property or for a given dialect of
temporal logic.

For instance, equivalence relations that preserve the presence or absence of dead-
locks, more general reachability properties, or for preservation of stuttering invariant
behaviors (such as formulas expressed in LTL\X , LTL without the neXt operator)
have been proposed. They often enable an exponential reduction in the size of the
state graph.

Equivalent behaviors

A class of techniques that has been very successful is based on the notion of partial
ordering of events in a given execution or run. Indeed some runs can be considered
equivalent up to the reordering of the occurrence of uncorrelated events. We can
concentrate on specific runs that are representative of a set of runs.

For instance, run {a, b}.c represents the runs a.b.c and b.a.c, i.e. we know that
both a and b occur before c, but a and b are incomparable (hence the name partial
order reduction). This family of approaches preserves stuttering invariant logics, such
as LTL\X . We present some partial order reductions in more depth in section 7.7.

Some partial order reductions are based on a partition of events (i.e. transition
labels of the state graph) into observable and invisible events. Invisible events (often
noted τ ) do not measurably (with respect to the property ϕ) modify the state of the
system; they can thus be abstracted away from the state graph. The notion of ob-
servability of an event can be refined depending on the property to be checked, but in
general, a much smaller abstraction of the state graph can be built using this approach.

For instance, for the global property of absence of deadlocks, events local to a
given component (that do not communicate with other components) can be consid-
ered unobservable. This observation-based reduction is compatible with the automata-
theoretical approach to model-checking, and thus, can be applied to a wide category of
systems and properties. Observability can also be exploited in the context of symbolic
model-checking to considerably improve decision diagram-based techniques.

Observability of events is fundamental in the context of distributed systems, where
verification by composition may allow a global property to be checked by checking
some (simpler) properties on the components. When a system is defined as a set
of interacting components or communicating finite state machines, compositional ap-
proaches try to tackle verification by abstracting a sub-system by a set of behaviors it is
proved to uphold, allowing contract-based reasoning. This means you check whether
a sub-system satisfies its contract given some constraints on its environment (the other
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components), then you prove the environment respects these contracts. This second
proof can itself be done in a compositional way.

Equivalent states

A widespread approach consists of abstracting parts of the data describing a state,
yielding both smaller states, and less of them. For instance a data abstraction such
as [KES 98a], proposes to model the value of a floating point variable by one of the
three symbols {+,−, 0}, which simply tell if the value is positive, negative, or zero.
This information is enough to prove properties, if the program only uses floating point
multiplication, and the property is not interested in the data value but only in its
sign. Although the abstraction process can now be partially automated, the choice of
variables to abstract and how to abstract them usually requires human expertise.

Another approach that gives good results is to exploit system symmetries to rec-
ognize states as equivalent with respect to overall system behavior. A quotient state
graph can be built using such an equivalence relation, where nodes represent equiva-
lence classes of states. Depending on the permissiveness of the equivalence relation,
for systems exhibiting a large degree of symmetry, the quotient graph can be expo-
nentially smaller than the state graph. We present a symmetry-based approach that
preserves LTL in more detail in section 7.8.

To illustrate how some of these techniques work in more detail, we now show how
three of them can be applied to our running example of Figures 7.12 and 7.13. We
have chosen to present the symbolic approach using decision diagrams, some tech-
niques that exploit partial order reductions, and a symmetry based reduction. These
are representative examples of finite state model-checking techniques.

7.6. Decision diagram-based approaches

This section presents in more detail model-checking approaches based on reduced
binary decision diagrams (BDD). Decision diagrams were initially introduced for
compact representation of Boolean functions [AKE 78]. Reduced (and ordered) BDD
were first defined and applied to model-checking problems on circuits by Bryant in his
PhD thesis [BRY 86]. They were then made popular by the seminal paper [BUR 92],
which shows how to tackle CTL model-checking using BDD, and how BDD based
symbolic model-checking scales up to systems with 1020 states, several orders of mag-
nitude greater than that handled by usual explicit techniques.

7.6.1. BDD

A BDD allows a compact representation of a Boolean function. Consider for in-
stance the Boolean function f = (a ∨ b) ∧ c of three variables a, b and c. A decision
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diagram that represents this function is shown Figure 7.17 (a). This tree is read from
the root to the leaves, each path in the structure leads to the truth value of f given the
values of the variables a, b and c.

This decision diagram can be represented in a more compact manner by sharing
subtrees, leading to a reduced decision diagram. A first step consists in only repre-
senting the terminal nodes 0 and 1 once, leading to Figure 7.17 (b). This reasoning
can inductively be applied to all nodes of the tree, working upwards from the terminals
to the root. We then obtain the diagram of Figure 7.17 (c). This reduced structure is
called a reduced ordered binary decision diagram (ROBDD), or simply BDD in the
following text. A BDD is reduced because subtrees are shared and linked to several
parent nodes, and it is ordered because the decision variables are always encountered
in the same order along any path from root to terminal (a then b then c in this example).
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Figure 7.17. Binary decision diagram for Boolean formula (a∨b)∧c and its reduced form. Full
edges correspond to assigning true to the variable and dashed lines correspond to assigning
false. (a) full decision diagram, not reduced; (b) with non-redundant terminal nodes; (c) with
non-redundant internal nodes; (d) with no redundant tests

Another optimization is sometimes applied to further reduce the size of the de-
cision diagram: removal of redundant tests, as presented in Figure 7.17 (d). The
variables are still encountered in a fixed order, but we allow edges to “skip” a level
or variable, if the truth value of the function that is represented does not depend on
the value of this variable in these decision paths. In practice this amounts to skipping
nodes where both true and false arcs point to the same successor node (e.g. compare
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Figure 7.17 (c) and (d)). In this last figure it is quite easy to see that this decision tree
indeed represents f = (a ∨ b) ∧ c: if a is false and b is false then (regardless of the
value of c) f is false; else if a is false but b is true then f is equal to c; else if a is true,
regardless of the value of b, f = c.

BDD techniques manipulate sets of values symbolically, since any node represents
the set of paths it is the root of. The term symbolic model-checking is often used to
refer to BDD-based approaches, by opposition to classical explicit approaches, where
each state (or path) is represented and manipulated explicitly.

7.6.2. BDD for finite state model-checking

Although BDD were designed for Boolean function manipulation, they can be
used to represent the state space of a system. The variables of the BDD then repre-
sent (Boolean) variables of the system, and any path that leads to the terminal 1 is
interpreted as a reachable state.
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Figure 7.18. State space of the example of Figure 7.13 represented as a BDD
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Figure 7.19. The same state space with an unfavorable variable order

For instance let us consider the running example for two processes described in
Figure 7.13. Figure 7.18 represents its state space stored in a BDD. The variables of
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Process States BDD nodes BDD nodes
(contiguous order) (interlaced order)

2 10 16 21
5 244 40 260

10 59050 80 13321
15 1.43489e+07 120 589838
20 3.48678e+09 160 -

Table 7.2. Growth in number of BDD nodes as the number of process grows

the BDD correspond to the places of the Petri net, and the values on the arcs corre-
spond to the marking of the place in the current state. The figure is read from left to
right, each state is represented by a path that starts from the root (P0) and leads to
terminal 1. For instance, the uppermost decision path in the diagram represents state
where the a process is in the critical section (P4 is marked and all other places are
empty).

Table 7.2 allows the appreciation of how BDD enable scaling up to large state
spaces, when the order chosen is appropriate. Indeed, although the state space grows
exponentially (3n + 1 states for n process), the BDD encoding of the state space
grows linearly (8n nodes)! More specifically, for 20 processes, 3 billion states are
represented on 160 nodes (less than 1 kilobyte of memory). Moreover, complexity
of BDD operations is related to the size of the structure in number of nodes, thus
computation time for this example is counted in microseconds.

BDD are an extremely efficient compression technique; they are able to store the
states of the system while managing the huge volume of states. This is to in contrast
to abstraction-based techniques, where equivalence classes of states are manipulated
(such as the symmetry based approach presented in section 7.8), allowing the state
explosion to be dealt with by representing much smaller graphs. However, the two
approaches have been combined successfully, allowing large sets (as BDD) of equiv-
alence classes [THI 04] to be stored.

Unfortunately, the size of the BDD strongly depends on the variable order chosen
to build the diagram. The BDD of Figure 7.19 represents the same state space for
two processes, but we have chosen to interlace the variables corresponding to each
process. Instead of the variable order p1 > p2 > p3 > p′1 > p′2 > p′3 we chose to use
p1 > p′1 > p2 > p′2 > p3 > p′3. With the first variable order, the places that represent
the state of a given process are placed in a contiguous fashion, respecting the system
structure. The interlaced order leads to a representation whose size grows exponen-
tially, thereby nullifying the whole point of using BDD. The last column of Table 7.2
shows the growth in number of nodes with this unfavorable interlaced variable order.
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The computation of the BDD did not terminate for 20 process on a machine with 3 Gb
of RAM.

Thus, for a given model, we can exhibit variable orders leading to linear size BDD
encodings, as well as variable orders that lead to exponential blowup of the represen-
tation. Furthermore, finding an optimal ordering of variables has been shown to be
NP-complete [TAN 93]; hence BDD techniques must rely on heuristics to provide a
good variable order. Even then, some boolean functions can be shown to have expo-
nential representation size whatever the order chosen, so BDD are not a panacea.

Static variable orders can usually be deduced from the structure of the input spec-
ification, using various heuristics, as suggested as early as [BRY 86], and this is still
the approach that is most often applied. Dynamic reordering of variables [RUD 93]
can also be applied as the structure is being built, triggered when the representation
size exceeds a certain threshold, but this is usually a complementary technique to
proposing a “reasonable” initial variable order computed by some heuristic.

7.6.3. Construction and manipulation

In this section we present how BDD are built, how they can be manipulated to
encode a transition relation, and finally, how to use them for symbolic model checking.

Canonical form and cache

Construction of a BDD relies on a unique table of existing nodes: since the deci-
sion tree is built from the terminals up to the root, when creating a node its successor
nodes are already in the unique table. If a node with the same successors already ex-
ists, the existing node in the unique table is used directly. The union operation of two
BDD is the fundamental construction operation, and ensures a canonical form for the
resulting BDD. It is described in algorithm 2; a cache is used to result in a complexity
proportional to the product of the number of nodes in the representation rather than to
the number of paths (states). Line (9) of this algorithm is the critical inductive step:
the union of a and b leads to a node with a 0 successor node defined as the union of
the 0 successor nodes of a and b, and a 1 successor computed as the union of the 1
successors of a and b.

Thanks to use of an operation cache, BDD allow the implementation of efficient
algorithms that manipulate a set of values, with a complexity linked to the number of
nodes in the representation rather than to the number of values (decision paths) in the
set. For instance, the set-theoretic operations (union, intersection and set difference)
between two BDD a and b has a complexity proportional to the number of nodes in
the representation of a and b.

Construction of a BDD node is always done by first checking if the node already
exists in the unique table (it is handled by CreateBDD in line (9) of union above).
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bdd Union(bdd a,bdd b) :1

begin2

if a = 0 ∨ b = 1 then3

return b4

if b = 0 ∨ a = 1 then5

return a6

if 〈{a, b}, r〉 ∈ Cache then7

return r8

bdd r := CreateBDD(0→ Union(a[0], b[0]), 1→ Union(a[1], b[1]))9

Cache.add(〈{a, b}, r〉)10

return r11

end12

Algorithm 2: Algorithm to build the union of two BDD

The unique node representation of memory allows the use of an efficient cache, the
number of entries in the cache being proportional to number of nodes in the unique
representation. However, as shown on our running example, this number may be
exponentially smaller than the number of states in the state space.

Transition relation

For model checking, the transition relation is usually represented itself as a BDD
that contains 2k variables when the state is represented with k variables. Variable
of index 2i, i ∈ 0..k of the transition relation BDD gives the value of the variable
before the transition, and variable indexed 2i+ 1 gives its resulting value(s) after the
transition. Applying a BDD T representing a transition relation to a BDD representing
a state space is akin to the particular synchronized product of the two BDD, and again
uses a cache.

This encoding of the transition relation allows the computation of the effect of the
union of two transitions as the union of their BDD representations. Hence the full
transition relation T of the system can be built and manipulated symbolically, without
referring directly to the individual events t ∈ T . Applying a BDD T representing a
transition relation to a BDD S produces the set of states S′ = T (S) reachable from a
state s ∈ S by firing an event t ∈ T . States in S′ are direct successors of states in S
by an event in T .

The complexity of this operation is still proportional to the node sizes of T and S,
but may build huge sets of successor states in a single application step. This symbolic
encoding of the transition relation is, however, itself sensitive to variable ordering
issues, hence many approaches [BUR 91, MIN 99] have suggested splitting T into
smaller parts that are less likely to blow up in representation size.
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Data:
Let M : 〈s0, T 〉 be a system, its initial state and set of transitions
bdd todo : new states to explore
bdd reach : reachable states already computed
begin

todo := {s0 }
reach := {s0 }
while todo �= ∅ do

bdd tmp := T (todo)
todo := tmp \ reach
reach := reach ∪ tmp

end

begin
todo := { s0 }
reach := { }
while todo �= reach do

reach := todo
todo := todo ∪ T (reach)

end

Algorithm 3: Two variants of BDD based algorithms to compute reachable states

Two variants to compute the reachable states of a system are presented on algo-
rithm 3. In the left variant, the immediate successors of states are obtained in todo by
applying T and keeps states that were not seen before to continue the computation.
The traversal of the state space is thus a strict breadth-first search (BFS). Note that
we build reach instead of graph as in algorithm 1, as it is actually storing the set of
reachable states and not the full reachability graph.

Contrarily, it is actually often more efficient to use the variant on the right, which
simply adds states until a fixpoint is reached. While this is still a BFS traversal, the
algorithm progressively adds states to the graph, removing the need for the interme-
diate tmp variable of the first algorithm, and the need for the set difference operation.
Indeed, the tmp variable represents a BDD of a subset of states at an intermediate
step of the construction, and is unlikely to contain nodes that will be part of the final
state space representation. Hence nodes in tmp clutter the cache and unique table,
whereas the successor computation on the full graph of the second algorithm might
not be as costly as anticipated due to the cache. The BDD todo of the first algorithm
is just as likely as graph to require exponential representation size at some point of
the computation even though it contains less states.

Indeed, this is a critical problem for symbolic model checking approaches: some-
times, although the final representation size of the reachable state space is small, the
intermediate BDD representing steps of the computation may become huge and un-
manageable. This problem is described as the “peak effect”, i.e. during the compu-
tation, representation size grows and falls, but often goes through a peak memory re-
quirement that may be orders of magnitude greater than the final representation. This
peak effect can be partially explained by the BFS traversal order of the state space,
that discovers successor states relevant for reachability, but irrelevant with respect to
the BDD representation of states.
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The peak effect can sometimes be tackled by exploiting locality of actions to com-
pute the fixpoint on parts of the transition relation, split according to the variables
that are impacted by an event. The saturation algorithm [CIA 03] applies transition to
fixpoint starting upward from the terminals of the decision diagram. A node at level
k above the terminal is said to be saturated if and only if all events that impact this
variable and any lower variable of index k′ < k have been applied until a fixpoint is
reached. When a node is fully saturated the algorithm climbs to its predecessor nodes
at level k+1, and applies all event that concern the variables of indexes 0 to k+ 1. If
any of these events modifies a node of a lower level (thus that was saturated before, by
construction) it re-saturated before allowing the computation to continue. When the
algorithm reaches the root of the structure, all events have been fired to fixpoint, hence
the computation is finished. This saturation algorithm often allows us to circumvent
the peak effect, allowing gains of several orders of magnitude with respect to plain
BFS exploration. For systems with a high degree of locality and concurrency, such
as Petri nets, saturation is very successful, but it does not perform as well for highly
synchronous models, such as circuits (which are controlled by a clock signal).

Symbolic model checking and temporal logic

Symbolic approaches easily answer the reachability problem, hence they allow
states satisfying a given condition (invariant, deadlock...) to be found. In fact, identi-
fying such a state once the representation of the reachable state space has been built
can mostly be done in constant time and memory, by simply traversing the BDD.

Verification of properties expressed using the computational tree logic CTL can
be reduced to a succession of nested fixpoint computations, using either the transition
relation T , or its inverse T−1 [BUR 92]. Computing the inverse is not difficult given a
BDD representing T , but may be quite costly. Since fixpoint algorithms must already
be available to build the reachable state space, most BDD-based tools offer support
for the verification of CTL.

For properties expressed in LTL, a common approach is to reduce the problem
to CTL with additional fairness constraints [CLA 94]. The fairness constraints are
introduced to ensure the existence of infinite runs, that cannot be adequately expressed
in CTL. Other algorithms [KES 98b] propose directly model-checking properties of
LTL using BDD.

For the verification of the stuttering invariant fragment of LTL, LTL\X , some hy-
brid approaches, such as the symbolic observation graph [HAD 04a] propose building
a graph where each node contains a set of states represented as a BDD, and the edges
between nodes represent observable events. The successors through invisible events of
states in a node are aggregated into the node. When the number of observable events
is small, the approach provides good results.
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7.6.4. BDD extensions

To apply symbolic approaches to a given problem, the first step is to find an appro-
priate encoding of the system states. With classical BDD, this is an encoding using
a fixed-length vector of Boolean variables. Depending on the type of model, this en-
coding may not be the most appropriate, which has led to various extensions of BDD,
that exploit similar canonical form and cache mechanisms, some of which we present
here.

BDD can be seen as representing functions Bn �−→ B. When the function is
sparse, i.e. it is mostly false, it can be interesting to suppress decision paths leading
to the zero terminal; this reduction is almost always applied. It is congruent regarding
the way BDD are manipulated in model-checking to represent a set of objects (states).

When along the paths that lead to the accepting terminal 1 the variables are mostly
false, the canonization rule can be amended to skip variables that only have a false
successor edge. This version is called Zero-suppressed BDD (ZBDD) [MIN 93]. De-
pending on the input problem, this variant can be more or less efficient than the usual
canonization rule (skip nodes where both edges point to the same successor node).

A major extension of BDD is the definition of a canonical form for functions
Bn �−→ R. These are multi-terminal BDD (MTBDD [FUJ 97]) also called algebraic
decision diagrams (ADD [BAH 93]). The main idea here is that although domain R

is infinite, a given function of n variables can only have a finite number of output
values, bounded by 2n. Thus the BDD construction rules can be extended to build a
terminal node for each value that is in effect an output of the function, the rest of the
construction rules being the same as for BDD. For model-checking, this type of deci-
sion diagram has been used to solve stochastic problems [HER 03], where the ADD
stores the probability of occurrence for each reachable state. In that context, they en-
able compact representations of both the state space and the probabilistic transition
relation matrix.

Another extension consists of representing functions Nn �−→ B. These multi-
valued decision diagrams (MDD) were defined by [SRI 90] through an unfolding to an
equivalent BDD, but have also been implemented directly with nodes of the decision
diagram having several output edges in [MIN 99]. If the domain of the variables of the
MDD can be bounded a priori then there is a possible binary encoding of the problem
using log2(n) BDD variables to represent an MDD variable with n possible values.

MDD can sometimes be much more efficient than BDD, because decision paths
are much shorter and their interpretation (in the transition relation) is more straightfor-
ward, as they allow system variables to be mapped to MDD variables directly. How-
ever, on some models, if the number of edges per node is excessive, the efficiency of
manipulation algorithms and cache can be negatively impacted, and the storage cost
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for individual nodes may grow to unmanageable levels. In practice, in MDD, paths
leading to the terminal 0 are always suppressed from the representation. Note that
MDD can be combined with multiple terminals.

A difficulty that is common to all these decision diagram variants is the strong
constraint on the variable order (remember BDD are really reduced ordered BDD)
and the length of the decision paths. Data decision diagrams (DDD [COU 02]) allow
these constraints to be relaxed in the context of MDD. In particular they allow ob-
jects with variable size such as stacks or lists to be captured even without an a priori
bound on their size. Their manipulation is based on homomorphisms, which offer an
abstract high-level mechanism to define the transition relation instead of using a 2k
level BDD, as explained above, for classical BDD. In particular, the expression of a
transition relation as a homomorphism allows decision diagram saturation algorithms
to be automatically enabled [HAM 98].

7.7. Partial order reductions

Model-checking approaches that use partial order reductions address a fundamen-
tal source of state space explosion: interleaving of actions introduces a large number
of intermediate steps, even when these events are, in reality, independent. For in-
stance, in a given state suppose a system admits n independently enabled events, there
are n! firing sequences to consider from this state, if all possible interleavings are
considered. Since the only difference between these execution sequences is the order
the events are fired in, the state space can be hugely reduced by considering a subset
of these sequences (or even just one sequence) that are representative of the possible
interleavings.

The foundations of this theory was proposed by Mazurkiewicz in [MAZ 86], where
he defined the notion of trace instead of considering plain executions. A trace rep-
resents an equivalence class of sequences of events, such that equivalent traces are
obtained by permuting two adjacent independent events in the trace. In practice, two
events are either “in conflict” if firing one deactivates the other, or are “causally re-
lated” if firing one event enables the other. Otherwise, the events are said to be “inde-
pendent”.

This type of techniques is generally known as partial order reduction, since the
traces considered only enforce a partial order on the order of occurrence of events in
a run.

Graph of traces

Most partial order-based approaches consist of reducing the state graph by remov-
ing executions which are redundant with respect to the trace-based interpretation.
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There are many variants of graphs of traces; a large body of work on this subject
is due to Valmari [VAL 90, VAL 93], Godefroid and Wolper [GOD 92, GOD 96], and
Peled [PEL 94c, PEL 94b]. Some of the algorithms they propose are presented in
more detail below.

Covering step graph

Another slightly different exploitation of the independence relation between events
is the covering step graph (CSG). The CSG is a relatively recent proposition [VER 97]
that aims to reduce state explosion due to interleaving issues in the state graph. The
principle is to compute the set of independent transitions in a given state, and then fire
this whole transition set simultaneously in a single step. This algorithm produces a
new graph, the CSG, where the nodes are still states of the system, but edges represent
firing steps of sets of events of the system. The CSG enables huge reductions with
respect to the state graph, particularly when several processes evolve independently, but
sometimes synchronize.

For some examples, the CSG can even be shown to be linearly better than a graph
of traces. A CSG covers all possible execution sequences, hence many properties can
be checked using this reduced state graph representation. For instance, absence of
deadlocks and liveness (i.e. the capacity of the system to recover from perturbations)
can be checked on a CSG.

The CSG is also simpler than other methods, such as persistent sets, since no
proviso is necessary. Lastly, the CSG can be built to preserve the behavior as projected
onto a set of observable transitions. Stuttering invariant logics over these events can
then be checked, provided the CSG is restricted to contain one observable transition
in each step at most. This simple condition ensures that all interleavings of observable
actions are represented in the CSG. This method can also be adapted to be applicable
to timed systems, and can even be combined with other partial order reductions, such
as persistent sets [RIB 02].

Unfoldings

A third approach consists of directly representing the partial order of event occur-
rences, by using the notions of transition conflict and independence of Petri nets. This
approach, proposed in [NIE 81, WIN 87], consists of translating a given Petri net into
a special class of labeled Petri nets called a branching process.

This translation is called an unfolding, since a given transition (and connected
places) may be represented several times in the unfolding, depending on its occurrence
order in an execution. In an unfolding, independent event occurrences are represented
by separate transitions, thus directly representing their possible interleavings without
explicitly representing them.
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Unfolding exploits the strong locality of Petri net models, i.e. the fact that a transi-
tion only modifies the state of a small set of places (those connected to it). Many
variants of unfoldings have been proposed [MCM 95, ESP 92a, ESP 93, KON 96,
COU 96], to offer practical algorithms to compute an unfolding and use it to verify
system properties efficiently.

These partial order reduction-based methods allow a wide class of temporal logic
properties to be checked. The next section presents two algorithms to build a graph of
traces in more detail, the stubborn set and sleep set approaches. Due to space consid-
erations, the CSG construction and unfolding technique will not be further detailed in
this book. Our running example from Figure 7.13 will be used to exhibit the reduced
state graph representations built by these algorithms.

7.7.1. Traces and verification

In a given run of a system, partial order regarding event occurrence is defined
according to an independence relation between event occurrences, also called the di-
amond property: it states that two events t1 and t2 are independent in a state s if and
only if both the sequences t1.t2 and t2.t1 are enabled in s, and they lead to the same
resulting state. This independence relation can be defined locally for each state s or
globally for all states. Global independence relations can usually be computed using
a structural approach in the input model: typically actions local to a process (that do
not update global variables or use communication channels) are independent of local
actions of another process.

Given this independence relation, executions (or runs) of the system can be grouped
into equivalence classes called traces. Two runs belong to the same trace (i.e. are con-
sidered equivalent) if one can be obtained from the other by iteratively permuting
adjacent independent events in the run.

For instance, in the state space of Figure 7.13, note that (t1, t′1) from state p1+ p′1,
(t2, t

′
1) from state p2+p′1, (t1, t′2) from state p1+p′2 and (t2, t

′
2) from state p2+p′2 are

pairs of independent events. Hence many runs from p2 + p′1 such as t2.t′1.t
′
2, t′1.t2.t

′
2,

t′1.t
′
2.t2 can be considered equivalent and represented by a single trace [t2.t′1.t

′
2].

Notion of trace

In a reachability graph, the number of interleavings that need to be considered can
thus be considerably reduced by only studying traces representative of the system be-
havior. More precisely, a trace is represented in a graph G if all the runs it represents
are prefixes of runs in G or valid permutations (according to the independence rela-
tion) of these prefixes. This definition using a prefix, allows more compact state graph
representations to be built, i.e. a graph of traces.
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For instance, sequence t′1.t2 is a prefix of t′1.t2.t′2, and can thus be represented by
the trace [t2.t′1.t

′
2]. Figures 7.20, 7.21(a) and 7.21(b) show three different trace graphs

built using this definition. In these figures, the full line edges represent transitions that
are considered representative, while the light grey edges are transitions that are not
explored, and are represented simply to allow easier comparison of these approaches
to the full state graph of Figure 7.13.

These graphs differ in the runs that are chosen as trace representatives, but they all
cover the full set of traces enabled from the initial system state, i.e. the three traces:
[t1.t2.t

′
1.t

′
2], [[t1.t2.t3 + t′1.t

′
2.t

′
3]

∗.t4.t1.t2.t′1.t
′
2] and [[t1.t2.t3 + t′1.t

′
2.t

′
3].t4]

∞. The
best reduction for this example is obtained in Figure 7.21(b), since the graph cannot
be further reduced without losing some traces.

Of course, the partial order construction must not introduce any behaviors that are
incorrect with respect to the property we wish to check. The first condition enforcing
this is that the trace graph be a subset of the state graph. But, this is usually not
enough, because of the prefix condition used to limit the exploration: if the graph of
Figure 7.21(a) is interpreted as a normal state graph, the sequence t1.t

′
1.t

′
2 leads to a

deadlock state, which is not true in the original state graph.

Many behavioral properties can be checked using a valid trace graph. For instance
quasi-liveness, which states that for every transition of the system there exists a run
from the initial state which contains the transition; this can be checked using a trace
graph that only contains one trace per transition. Similarly, state invariants can be
checked by introducing an artificial transition that is only enabled in faulty states,
and then checking its quasi-liveness. For instance, the invariant “p2 and p′2 are never
simultaneously marked” can be checked for by introducing a transition enabled when
p2 and p′2 are simultaneously marked.

More general safety properties and liveness properties require greater interpreta-
tion effort as we need to distinguish observable events from invisible events with re-
spect to the property. A transition is observable if its firing can modify the truth value
of an atomic proposition of the property, and it is invisible if it has no direct impact
on atomic propositions of the property. For Petri nets and state-based properties, a
transition can be considered invisible if it is not connected to any place queried in the
atomic propositions of the property.

Valid trace graph

Three key issues must be correctly handled when building a trace graph, to ensure
preservation of temporal properties, which may be sensitive to the order of occurrence
of certain events:

1) the set of traces built must cover all possible interleavings of observable transi-
tions, to allow correct results when building the synchronized product with the (nega-
tion of) the formula automaton;
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2) as a result, partial order reductions are limited to invisible events. This allows
the preservation of safety and liveness properties that reason over infinite runs of ob-
servable events. However, infinite runs that end by a loop over invisible events need to
be identified, as they might be accepted in the product automaton with the formula, but
are not captured by the first condition above. These runs, called divergent runs, need
to be represented in a valid trace graph, although sometimes representing a subset of
them is enough;

3) the third issue to consider is the class of properties that can be checked using
a trace graph. Indeed, as evidenced by point (1), if all events are observable for a
given property, the trace graph is degenerated to the full state graph, hence the whole
approach is useless. The property must be insensitive to finite sequences of occurrence
of invisible transitions, which is not the case for general LTL where the neXt operator
is used. Many works [WIL 96] thus limit the scope of the technique to the fragment
LTL\X , which is known to be a stuttering invariant. A property is stuttering invariant
if its truth value is not affected by any finite repetition of the atomic propositions
it manipulates. For instance, if a formula accepts sequence a.b.c, all sequences of
the form a+.b+.c+ should also be accepted, where a+ designates a finite non-empty
sequence of repetitions of a. Properties that are not stuttering invariant require all
transitions to be observed, since, by definition, the firing of invisible transitions (which
have been abstracted away) causes this repetition of atomic proposition values.

Of course while it is possible to compute the independence relation between events
by building the state graph, this would be counter-productive as the goal of the ap-
proach is to avoid building the full state graph. In practice, trace graphs are usually
built on the fly, since the independence of the events enabled in a given state can usu-
ally be computed a priori. For Petri nets, this computation uses the notion of transition
conflict described above, applied to the subset of events enabled in the current state.

One approach to building a trace graph is to only fire a subset of the enabled tran-
sitions in each state; enabled transitions that were not chosen are by definition still
enabled in the successor state. For a multiprocess system, the actions of a process can
be considered independent of other process actions only if they manipulate variables
local to the process. The trace graph built using this algorithm is thus a reduced repre-
sentation of the full state graph, however all properties of interest must be preserved.

Interpretation of a trace graph

Two issues can be problematic when some enabled events are not fired:

– the first issue is the problem of “ignored transitions”, where some events might
be enabled but never chosen when building the trace graph. This problem may occur
when a subset of system transitions is isolated or independent from the other system
transitions. Typically, consider a trace graph built for a system of with two indepen-
dent process, if we always choose to fire transitions of the first process when both
process could progress, the construction might miss some important behaviors;



208 Models and Analysis for Distributed Systems

– the second problem is called transition confusion, whereby some states might
never be visited although they allow sequences to be fired that are not otherwise rep-
resented in the trace graph. On our running example in Figure 7.13, when building
the trace graph of Figure 7.20, although t1 and t′1 are not in conflict in the initial state,
both transitions should be fired. Indeed, if we only choose one of these transitions, say
t1, then all sequences containing t′3 will be lost from the trace graph, because the state
p1 + p′3 will never be reached. This is due to a conflict between t1 and t′3 which is not
obvious in the initial state (because t′3 is not yet enabled), but that becomes critical
once the sequence t′1.t′2 has been fired. Thus a dependence between transitions can be
induced by a causal relationship between events.

We present here two different algorithms to build a full valid trace graph in more
detail. The first approach is based on persistent sets, and is a direct application of the
general principles given above. The second approach called sleep sets allows some
edges of the state graph to be discarded, but keeps all the nodes. We then show how
these two techniques are complementary and can thus be combined to build a trace
graph that is smaller than that produced by either technique by itself.

7.7.2. Persistent sets

A set of transitions T enabled in a given state s is said to be a persistent set if for
any transition t ∈ T , and for any sequence t.w fireable from s, where w is a sequence
of transitions that do not belong to T , all sequences built by permuting t with an
element of w are enabled in s, and lead to the same resulting state. The transitions
that belong to a persistent set are thus independent of transitions that do not belong to
the set. In the extreme case where all transitions depend on each other, the persistent
set is thus simply the full set of enabled transitions of the system.

Based on this definition of a persistent set, the trace graph is built using the fol-
lowing algorithm:

– when a new state is reached, the algorithm computes a persistent set that contains
at least one enabled transition (except if the state is a deadlock state);

– the state then admits a successor for every transition of the persistent set.

This technique can be seen as a linearization of the firing of independent transi-
tions, as enabled transitions that are not chosen (those outside the persistent set) are,
by definition, still enabled in the successor states. This trace graph, while smaller
than the state graph, thus preserves both deadlocks and the presence of infinite firing
sequences. Depending on the way the persistent sets are computed, this construction
is prone to the “ignored transitions” problem mentioned above. However, for certain
classes of models (such as bounded and strongly connected Petri nets [VAL 89]), the
problem pro ably never occurs.b
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Proviso

In more general settings, the problem can be avoided by ensuring that a certain
constraint is enforced in each state, called the proviso. Literally this is a “provided
that” condition, i.e. a proviso is a sufficient (but not necessary) condition for correct-
ness. In [VAL 89], a first proviso definition was proposed, based on the computation
of all non-trivial strongly connected components of the state graph. If in one of these
components an enabled transition is never chosen, the persistent set is enlarged to
cover the missing transition. A simpler proviso was proposed in [HOL 92]. It consists
of detecting states in which an enabled transition allows a circuit to be closed. The fact
that no enabled transitions are perpetually ignored in the trace graph ensures preser-
vation of deadlocks as well as state invariants. Other proviso conditions have been
proposed [VAL 90], some of which are specifically adapted to ensure preservation
of behaviors in the synchronized product with a property expressed as an automaton
[VAL 93, PEL 94a].

Computing persistent sets

Based on structural analysis of a Petri net, several algorithms have been proposed
to efficiently compute persistent sets in each visited state. The simplest forms simply
search for transitions that are in conflict [GOD 94, BAU 97] while some strategies are
more involved such as the stubborn set approach [VAL 89].
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s2s1
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s6 s7

s9

t1 t1'

t2 t2'

t3
t1' t1

t2' t2

t3'

t4
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Figure 7.20. Persistent set trace graph construction

A simple method to compute persistent sets is the conflict-based method [GOD 91].
It is based on the following observations:

1) if we start by adding a random enabled transition to the set, and then recursively
add any other enabled transition that is in conflict with a transition of the set, we have a
particular case of persistent set. If some transitions that are not enabled are in conflict
with a transition of the set, we can fall back to case below;
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2) if in the current state there are transitions that are in conflict with a transition of
the set but are not enabled, we can always use the full set of enabled transitions as our
persistent set, ensuring correctness.

This simple approach thus ensures that all transitions in the persistent set are en-
abled and do not have any conflict with transitions that will not be fired (those outside
the set). This simple approach is often less effective than the more complex stubborn
set approach, because when we fall back to case 2), no reductions are obtained for the
current state. The stubborn set approach improves case 2); when there exists a transi-
tion t that is not currently enabled but is in conflict with some transition(s) of the set,
the algorithm selects a place whose marking is responsible for disabling t (i.e. it does
not contain enough tokens). It then adds to the persistent set any enabled transition
that could add tokens to this place.

The stubborn set algorithm thus always computes smaller or equal persistent sets
than the basic conflict-based approach. In some cases the two algorithms coincide,
such as on our running example (see Figure 7.20).

7.7.3. Sleep set approach

The sleep set approach [GOD 94] tries to exploit the absence of conflict between
event occurrences. The aim is to avoid reaching the same state by many different
paths, by predicting the diamond effect due to interleaving of independent events.
Almost identically to the persistent set computation presented above, the sleep set S
of a state s (noted (s, S)) represents a set of enabled transitions that will not be fired,
because the target state they would reach will already be explored through another
path. This technique thus reduces the number of edges of the state graph that need to
be explored, but builds all the states of the graph.

Sleep sets are built on the fly as the construction of the graph progresses. In the
initial state, the sleep set is initially empty. To build the successors of a given state
(s, S), we consider the ordered set T of enabled transitions in s. For each transition
t ∈ T , we build a successor (s′, S′), where S′ is defined as S augmented by all
transitions that precede t in T , but where transitions that are in conflict with t in s are
removed from the sleep set.

Figure 7.21(a) shows the reduced state graph that is built using this approach. As
the sleep set in the initial state is empty, T = {t1, t′1}, and t1 and t′1 are both explored
as usual. If t1 is fired first (remember transitions are ordered in this approach), we
reach state p2 + p′1, then we reach p1 + p′2 through t′1. The sleep set in state p2 + p′1
is still empty, but in state p1 + p′2 it contains {t1} since t1 and t′1 are not in conflict,
and t1 precedes t′1 in T . Then, from p2 + p′1, all enabled transitions are explored, but
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Figure 7.21. State graph reductions using sleep set

in state p1 + p′2 only t′2 will be explored (because we can infer that the successor by
t1 will be explored through another path).

As we can see in this example, most states are reached by a single path, leading
to drastic time reductions to explore the full state graph. This is especially true for
models in which the successor computation is costly, typically because some other
strategy (such as symmetry reductions) is being applied in conjunction with this ap-
proach. Regarding memory requirement, the graph built is usually larger than that
built using persistent sets, this is the case for our running example (see Figures 7.20
and 7.21(a)). However, for some examples, the persistent set approach may yield no
reductions because it tries to take into account “future” conflicts, whereas the sleep set
may be more effective because it only considers immediate conflicts in a given state.

The fact that all states of the reachability graph are preserved allows reachability
properties to be easily checked, such as invariants. All traces of the reachability graph
are also preserved, as the edges that are removed from the graph are, by definition,
already covered by other paths, but some traces are incomplete, e.g. [t1.t′1.t

′
2] is only

the prefix of trace [t1.t
′
1.t

′
2.t2]. Hence some properties, such as presence of deadlock

states, cannot be evaluated unless it is noted that transitions of the sleep set of each
state could have been fired. More generally, verification algorithms on the graph built
using the sleep set method need to be adapted to provide correct results.
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7.7.4. Combining sleep and stubborn set approaches

The sleep set approach can be combined with the stubborn set approach yielding
a smaller trace graph representation: when computing the stubborn set of transitions
that need to be fired, we can remove transitions of the sleep set computed using a given
transition ordering. This allows the trace graph to be further reduced. Figure 7.21(b)
shows the effect of combining both approaches on our running example. We can
notice on this example that state p2 + p′3 is no longer reached; indeed from the initial
state state p1+ p′3 is reached by firing t′1.t

′
2 but {t1} is the sleep set in this state. Since

its stubborn set is limited to {t1, t′3}, only t′3 will be explored by this variant of the
algorithm.

Verification of stuttering invariant properties is possible on this reduced trace graph,
although we need to introduce a proviso condition as presented above.

7.8. Reductions exploiting symmetry

To fight the combinatorial state space explosion, a successful approach consists of
exploiting system symmetries [CHI 91] to explore only representative parts of the be-
havior. Many distributed systems are actually built as the parallel composition of iden-
tical components. For instance, the processes of our running example (Figure 7.12)
behave identically. It is thus possible to build a reduced state graph according to a
given equivalence relation, called a quotient graph, where the nodes and edges repre-
sent equivalence classes of states and firing of equivalent events.

7.8.1. Quotient graph

The main idea of this approach is to avoid distinguishing similar occurrences of a
given process. Hence instead of building a node in the reachability graph for the state
where process 0 has fired t1 and another node for the state where process 1 has fired
t′1, we build a single node that represents the states where one of the processes has
fired t1.

Figure 7.22 and Table 7.3 illustrate the reduction in the number of states that need
to be represented when building a quotient graph, with respect to the ordinary state
graph. As exhibited in this example, the quotient graph can be exponentially smaller
than the ordinary reachability graph. More formally, each node of the quotient graph
represents an equivalence class of states, according to a given equivalence relationR
that defines which permutations of process identities are permissible in this state.

The basic symmetry reduction approach considers a single equivalence relation
that holds for the whole reachability graph, but this constraint can be partially removed
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Figure 7.22. Quotient graph when considering that both process are equivalent

Process States Quotient states
2 10 7
4 82 16
6 730 29
8 6562 46

10 59050 67
20 3486784402 232

Table 7.3. Compared evolution of the size of the reachability graph and of the quotient graph

when considering partial symmetries, i.e. cases where the system is mostly symmet-
rical except for some part of the behavior, such as initial conditions. The equivalence
relation that holds for a given system could be computed simply by testing on the full
reachability graph which permutations of process identities leave the graph invariant;
however, computing such graph isomorphisms is prohibitively costly, since it requires
exponential complexity on the size of the (already huge) state graph.

Most symmetry-based approaches thus attempt to pre-compute the equivalence
relation by exploiting structural information derived from the specification of the sys-
tem. For instance, in high-level colored Petri net description of our running example
(Figure 7.12), the set of process identities can be easily identified as being symmetric,
since none of the transitions of the system act differently for a given process identity.
A favorable characteristic of the symmetry reduction is that the size of the quotient
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state graph is bounded by the size of the ordinary state graph, since at worst the equiv-
alence relation does not allow any permutations (i.e. it is limited to identity) and each
equivalence class of states contains a single state.

Two main approaches are possible when building such a quotient graph; the first
(and simplest) consists of choosing a representative for each equivalence class (i.e. an
ordinary state of the state graph). While this allows less states to be built, it usually
forces all possible transitions that can be fired from this state to be considered, hence
a large number of edges. Another approach [CHI 91] consists in directly representing
equivalence classes rather than choosing a representative for each class; this may allow
the edges of the quotient graph to be symbolically computed, yielding a more efficient
algorithm.

Consider, for instance, Figure 7.22 representing the quotient graph of our running
example; the edge from ŝ0 to ŝ1 actually represents two equivalent edges. With a naïve
algorithm that just uses state representatives, this edge would be computed twice.

The quotient graph approach allows reachability properties to be checked easily,
since testing if a state belongs to an equivalence class is easy. However, for more com-
plex behavioral properties, such as LTL, some care must be taken, since the property
should itself be symmetric with respect to the equivalence relation used to build the
quotient graph for the result to be correct.

7.9. Conclusion

Finite state model-checking is thus a formal approach that ensures that a given
system fulfills some expected behavioral properties, even in the presence of non-
determinism due to interleaving of actions. Moreover, since it is based on full state
space exploration, it can be fully automated and hidden from the end-user, which is
usually not the case for other approaches, such as theorem proving. Model-checking
for the verification of hardware systems is now extensively adopted industrially, but is
not generally in use for the development of software. The main factors that limit its
more widespread adoption are first the combinatorial explosion problem which limits
the size of specifications to which model-checking is applicable, and second the gap
between formal specification languages (such as Petri nets) and specifications used in
industry.

As more effective abstraction and reduction techniques are developed, larger sys-
tems can be tackled successfully; for decreasing the gap between models, the
currently popular approach is to use model transformation to translate industrial spec-
ifications (e.g. UML or code) to formal specifications that are appropriate for model-
checking tools.
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Chapter 8

Verification of Infinite-State Systems

8.1. Introduction

In this section, we briefly present several methods that are used for the verification
of infinite-state systems. Furthermore, we show how the developments in counter
systems are related to other techniques (exact methods or by approximation).

8.1.1. From finite-state to infinite-state systems

Model-checking is a well-known approach to verifying behavioral properties of
computing systems; which has been very successful in the verification of finite-state
systems, see e.g. [MCM 93, CLA 00b, BER 01]. The assumption that programs are
finite-state is usually too restrictive; which is why, model-checking techniques for
infinite-state systems have flourished over the last 20 years. However, dealing with in-
finity or unboundedness of computational structures has dramatic consequences com-
putationally. The source of infinity of infinite-state systems is not unique and it can be
caused by at least the following factors. Programs manipulate local or global variables
interpreted in infinite domains such as the set of integers or the set of real numbers.
Similarly, dynamic data structures are considered in programs which is another source
of infinity. Programs contain procedure/method calls, leading to an unbounded con-
text stack to handle the control. The size of the stack can be arbitrarily large depending
on the number of nested calls, in which recursive calls may induce unbounded control
structures. Similarly, process creation can be the source of infinity (see section 8.3).
Furthermore, the behavior of programs depends on input data values (parameters).
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Similarly, systems may be parameterized by the number of subsystems that are syn-
chronized, etc. Parameterized systems can therefore represent an infinite number of
specific systems, depending on the parameter values. Note, for instance, to verify
a property automatically regardless of the number of processes is a great challenge.
Among the jungle of infinite-state systems, there are many interesting classes that have
been used for modeling computer systems and for undertaking formal verification.
Here are a few of them: Petri nets, see e.g. [REI 98]; timed systems (see Chapter 9);
pushdown systems, see e.g. [FIN 97]; counter systems (see section 8.2) and systems
with lossy channels [ABD 96].

8.1.2. Decision problems for infinite-state systems

Decision problems related to verification for infinite-state systems can be roughly
divided into two categories. Firstly, numerous decision problems are essential for
finite-state and for infinite-state systems such as reachability problems (including
control state repeated reachability problem), model-checking temporal formulae or
checking behavioral equivalences with respect to a finite-state system. Nevertheless,
specific methods or adaptations of existing methods are required in order to deal with
infinity. In this chapter, we shall mainly focus on reachability problems since their
resolution often enables much more complex problems to be solved. Secondly, deci-
sion problems also exist that are more specific to infinite-state systems. This includes
decision problems related to boundedness (for instance, checking whether a counter
in a counter automaton takes a bounded amount of values) and those related to model-
checking temporal formulae in which atomic formulae can state properties about un-
bounded values (a typical example is to replace control states in the temporal language
by constraints on counter values).

8.1.3. Techniques for verifying infinite-state systems

Techniques for the verification of infinite-state systems stem from exact methods in
which potentially infinite sets of configurations are finitely represented symbolically
to semi-algorithms that are designed to behave well in practice (of course these latter
procedures may not terminate). When exact methods provide decision procedures,
this is mainly due to the identification of an underlying finite structure in the veri-
fication problem. For instance, the set of reachable configurations can be effectively
represented symbolically, for instance by a formula in Presburger arithmetic for which
satisfiability is known to be decidable [PRE 29] (see section 8.4). The use of Pres-
burger arithmetic for formal verification has been advocated in [SUZ 80]. Finiteness
can also occur in a more subtle way as in well-structured transition systems [FIN 01]
for which termination is guaranteed thanks to underlying well quasi-orderings, see
also [HEN 05] for a classification of symbolic transition systems. Section 8.4 presents
exact methods to decide reachability problems for subclasses of counter systems by
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taking advantage of decision procedures for Presburger arithmetic. Similarly, sec-
tion 8.3 introduces the class of recursive Petri nets, an extension of Petri nets with
recursion, and it shows how standard proof techniques for Petri nets (that are already
common and often studied class of infinite-state systems) can be extended in pres-
ence of recursion. As there are methods to verify finite systems that can be extended
to infinite-state systems (for instance the automata-based approach), specific methods
for infinite-state systems need to be developed too, for instance those based on well
quasi-orderings.

8.1.4. Automata-based symbolic representations

A major problem for the verification of infinite-state systems consists of comput-
ing the set of configurations reachable from a set of configurations. This requires a
well-suited symbolic representation for such (potentially infinite) sets and techniques
to compute the transitive closure of transition relations. Regular model-checking is
an approach that represents sets of configurations by regular sets of finite words (or
infinite words, or trees) and transducers encode the transition relations of the sys-
tems. Regularity is typically captured by finite-state automata. This automata-based
approach has been developped for several types of systems including systems for in-
tegers and reals [BOI 98], pushdown systems [FIN 97] or systems with lossy chan-
nels [ABD 96] (see also a similar approach by automatic structures in [BLU 00]);
recent developments can be found in [LEG 08]. Regular sets of trees are for instance
considered in [BOU 06b] in order to verify programs with dynamic data structures. In
section 8.4, we shall illustrate how sets of reachable configurations can be represented
by finite-state automata accepting finite words.

8.1.5. Approximations

An important difficulty in the approach with regular model-checking is the state-
explosion problem since the number of states of the built automata (representing sets
of configurations) can be huge. This is partly due to the fact that the automata are con-
structed regardless of the properties to be shown. By contrast, approximation methods
may over-approximate the exact set of reachable configurations so that in case of ter-
mination, non-reachability can be deduced. The aim is to reduce the verification of
such systems to the verification of finite-state systems with the hope of using known
and efficient methods. For instance, predicate abstraction produces Boolean programs
(program variables are Boolean) but the crux of the method relies on the ability to
automatically produce a precise enough abstraction that allows the desired property
to be checked. Indeed, the inacurracy of the abstraction should not induce the pro-
duction of spurious counter examples. The method CEGAR (counter-example guided
abstraction refinement) [CLA 00a] aims to automatically derive more and more re-
fined abstractions in order to check the desired properties. Many tools successfully
use this method, including BLAST [HEN 03].
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8.1.6. Counter systems

Despite numerous symbolic representations having been proposed to deal with
infinite-state systems (see e.g. timed automata [ALU 94] in Chapter 9), their formal
verification remains a difficult problem. Many general formalisms referring to infinite-
state systems have an undecidable model-checking problem. Sometimes, decidability
can be regained by considering subproblems of the general problem. The class of
counter systems is an example of such a formalism. Counter systems have many ap-
plications in formal verification. Their ubiquity stems from their use as operational
models of numerous infinite-state systems, including for instance broadcast proto-
cols [FIN 02], programs with pointer variables (see [BOU 06a]) and logics for data
words. However, numerous model-checking problems for counter systems, such as
reachability, are known to be undecidable. Many subclasses of counter systems admit
a decidable reachability problem such as reversal-bounded counter automata [IBA 78]
and flat counter automata [BOI 98, COM 98, FIN 02]. These two classes of systems
admit reachability sets effectively definable in Presburger arithmetic (assuming some
additional conditions, unspecified herein). In general, computing the transitive clo-
sures of integer relations is a key step to solve verification problems on counter sys-
tems, see e.g. [BOZ 10].

In this chapter, we consider

– the class of sequential recursive Petri nets in order to illustrate how recursion can
be handled by adapting adequately techniques for Petri nets;

– subclasses of counter systems in order to illustrate the use of Presburger arith-
metic to solve verification problems on such systems.

8.1.7. Structure of the chapter

In section 8.2, we present the class of counter systems that are essentially finite-
state automata equipped with program variables (counters) interpreted by non-negative
integers. To do so, we first present Presburger arithmetic, since the update functions
on counters are governed by constraints expressed in Presburger arithmetic. Several
subclasses of counter systems are also introduced, including the vector addition sys-
tems with states that are known to be equivalent to Petri nets. The subsequent sections
are dedicated to subclasses of counter systems in which verification tasks can be done
effectively. In section 8.3, we present the class of recursive Petri nets that extend Petri
nets by adding recursion in a controlled way. Verification techniques for this enriched
computational model are described by emphasizing how the proof techniques for Petri
nets can be indeed extended adequately to this more expressive model. This includes
the resolution of the reachability problem as well as the computation of linear invari-
ants. In section 8.4, we introduce subclasses of counter systems for which reachability
questions can be solved in Presburger arithmetic viewed as a means to symbolically
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represent sets of tuples of natural numbers. Unlike section 8.3, the new feature is not
recursion but rather the possibility to perform zero-tests (and more sophisticated up-
dates that can be expressed in Presburger arithmetic) but at the cost of making further
restrictions, for example on the control graphs. Concluding remarks can be found in
section 8.5.

8.2. Counter systems

In this section, we present Presburger arithmetic, the class of counter systems as
well as remarkable subclasses, including VASS that are known to be equivalent to
Petri nets (models of greater practical appeal).

8.2.1. Presburger arithmetic in a nutshell

Roughly speaking, Presburger arithmetic is the first-order theory of the structure
(N,+) shown decidable in [PRE 29] (which contrasts with Peano arithmetic that also
admits multiplication). This logical formalism is used to define sets of tuples of nat-
ural numbers. Moreover, it will serve several purposes. Firstly, in the definition of
counter systems, Presburger arithmetic is used as a language to define guards and
actions (updates on counter values) on transitions. Secondly, each formula from Pres-
burger arithmetic defines a set of tuples (related to the set of assignments that make
true the formula) and Presburger arithmetic is therefore a means to represent and sym-
bolically manipulate infinite sets of tuples of natural numbers. Thirdly, formulae from
Presburger arithmetic will serve as symbolic representations for semilinear sets (see
section 8.3). This section is dedicated to the basics of Presburger arithmetic and to the
main properties we shall use in the chapter.

Basics on tuples of natural numbers

We write N [resp. Z] for the set of natural numbers [resp. integers] and [m,m′]
with m,m′ ∈ Z to denote the set {j ∈ Z : m ≤ j ≤ m′}. Given a dimension n ≥ 1
and a ∈ Z, we write �a to denote the vector with all values equal to a. For �x ∈ Zn, we
write �x(1), . . . , �x(n) for the entries of �x. For �x, �y ∈ Zn, �x  �y

def⇔ for i ∈ [1, n], we
have �x(i) ≤ �y(i). We also write �x ≺ �y when �x  �y and �x �= �y.

Definition

Let VAR = {x, y, z, . . .} be a countably infinite set of variables. Terms are defined
by the grammar t ::= 0 | 1 | x | t+t, where x ∈ VAR and 0 and 1 are distinguished
constants (interpreted by zero and one respectively). For k ≥ 1, we write kx instead
of x + · · · + x (k times). Similarly, for k ≥ 1, we write k instead of 1 + · · · + 1 (k
times). Presburger formulae are defined by the grammar ϕ ::= t ≡k t | t < t |
¬ϕ | ϕ ∧ ϕ | ∃x ϕ | ∀x ϕ, where k ≥ 2. The atomic formula x ≡2 y holds true



226 Models and Analysis for Distributed Systems

whenever the difference between x and y is even (equality modulo 2). As usual, an
occurrence of the variable x in the formula ϕ is free if it does not occur in the scope of
either ∃x or ∀x. Otherwise, the occurrence is bound. For instance, in x1 < x2, all the
occurrences of the variables are free.

A valuation v is a map VAR → N and it can be extended to the set of all terms
as follows: v(0) = 0, v(1) = 1 and v(t + t′) = v(t) + v(t′). The satisfaction rela-
tion for Presburger arithmetic is equipped with a valuation witnessing that Presburger
formulae are interpreted over the structure (N,+).

– v |= t ≡k t′ def⇔ there is n ∈ Z such that kn+ v(t) = v(t′);
– v |= t < t′ def⇔ v(t) < v(t′);
– v |= ¬ϕ def⇔ v �|= ϕ;
– v |= ϕ ∧ ϕ′ def⇔ v |= ϕ and v |= ϕ′;
– v |= ∃x ϕ def⇔ there is n ∈ N such that v[x �→ n] |= ϕ where v[x �→ n] is equal

to v except that x is mapped to n;
– v |= ∀x ϕ def⇔ for every n ∈ N, we have v[x �→ n] |= ϕ.

As usual, the Boolean connectives ∨ (disjunction) and ⇒ (implication) can be
defined from negation and conjunction in the standard way. Equality between two
terms, written t = t′, can be expressed by ¬(t < t′ ∨ t′ < t). Similarly, we write
t ≤ t′ to denote the formula (t = t′)∨ (t < t′). Observe also that t ≡k t′ is equivalent
to ∃ x (t = kx + t′ ∨ t′ = kx + t) (x is a variable that does not occur in t and t′).
We invite the reader to check that 0 and 1 can be removed from the above definitions
without changing the expressive power of the formulae.

In the chapter, we assume that the variables in VAR are linearly ordered by their
indices. So, any valuation restricted to n ≥ 1 variables can be viewed as a tuple in
Nn. Any formula with n ≥ 1 free variables x1, . . . , xn defines a set of n-tuples (n-ary
relation) as follows:

REL(ϕ)
def
= {(v(x1), . . . ,v(xn)) ∈ Nn : v |= ϕ}.

For instance, REL(x1 < x2) = {(n, n′) ∈ N2 : n < n′}. Similarly, the set of
odd natural numbers can be defined by the formula ∃y x = y + y + 1. A set X ⊆
Nn is said to be Presburger-definable iff there is a Presburger formula ϕ such that
X = REL(ϕ). Sets that are Presburger-definable are known to correspond exactly to
semilinear sets [GIN 66].

A formula ϕ is satisfiable (in Presburger arithmetic) whenever there is a valuation
v such that v |= ϕ. Similarly, a formula ϕ is valid (in Presburger arithmetic) when
for all valuations v, we have v |= ϕ. When ϕ has no free variables, satisfiability and
validity are equivalent notions. Two formulae are equivalent (in Presburger arithmetic)
whenever they define the same set of tuples.
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THEOREM 8.1 [PRE 29] (I) The satisfiability problem for Presburger arithmetic is
decidable. (II) Every Presburger formula is equivalent to a Presburger formula with-
out first-order quantification.

Theorem 8.1(II) takes advantage of atomic formulae of the form t ≡k t′ that con-
tain an implicit quantification. Removing atomic formulae of the form t ≡k t′ does not
change the expressive power but the equivalence in theorem 8.1(II) would not hold in
that case. Moreover, in (II) above, the equivalent formula can be effectively built wit-
nessing the quantifier elimination property. In subsequent developments, we mainly
consider quantifier-free Presburger formulae, which does not restrict the expressive
power but may modify complexity issues. It is worth noting that the first-order theory
of (N,×) is decidable too (known as Skolem arithmetic) whereas the first-order the-
ory of (N,×,+) is undecidable (see e.g. [TAR 53]). Observe also that (Z, <,+) is
decidable [PRE 29] as well as the first-order theory of (R,×,+) [TAR 51].

Satisfiability problem for Presburger arithmetic can be solved in triple exponential
time [OPP 78] by analyzing the quantifier elimination procedure described in [COO 72].
Besides, satisfiability problem for Presburger arithmetic is shown 2EXPTIME-hard
in [FIS 74] and in 2EXPSPACE in [FER 79]. An exact complexity charaterization is
provided in [BER 80] (double exponential time on alternating Turing machines with
linear amount of alternations). Due to the wide range of applications for Presburger
arithmetic, computational complexity of numerous fragments has been also charac-
terized, see e.g. [GRÄ 88]. Moreover, its restriction to quantifier-free formulae is
NP-complete [PAP 81] (see also [BOR 76]).

8.2.2. Classes of counter systems

A counter system S is defined below as a finite-state automaton equipped with
counters, i.e. program variables interpreted by non-negative integers. In full general-
ity, the counters are governed by constraints that can be expressed by Presburger for-
mulae (this generality is mainly useful for section 8.4.1). Minsky machines [MIN 67]
form a special class of counter systems and therefore most interesting problems on
counter systems happen to be undecidable since Minsky machines can simulate Tur-
ing machines [MIN 67]. However, we shall study important subclasses of counter
systems for which decidability can be regained for various decision problems.

DEFINITION 8.2 A counter system S = (Q,n, δ) is a structure such that

– Q is a nonempty finite set of control states (a.k.a. locations);
– n ≥ 1 is the dimension of the system, i.e. the number of counters; we assume

that the counters are represented by the variables x1, . . . , xn;
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– δ is the transition relation defined as a finite set of triples of the form (q, ϕ, q′),
where q, q′ are control states and ϕ is a Presburger formula whose free variables are
among x1, . . . , xn, x

′
1, . . . , x

′
n.

Elements t = (q, ϕ, q′) are called transitions and are often represented by q
ϕ−→ q′.

As usual, by convention, prime variables are intended to be interpreted as the next
values of the unprimed variables. Moreover, observe that a counter system has no
initial control state and no final control state but in the chapter we shall introduce such
control states on demand. It is certainly possible to propose an alternative definition
without control states and to encode them by new counters, for instance. However,
when infinite-state transition systems arise in the modeling of computational pro-
cesses, there is often a natural factoring of each system state into a control component
and a memory component, where the set of control states is typically finite.

Figure 8.1 contains a counter system (augmented with an initial control state). It
is related to the famous Collatz problem. The role of control state q0 is to compute an
arbitrary counter value before reaching the control state q1. At the control state q1, if
the counter value is even, then divide by two the counter value. Otherwise, multiply
by 3 and add 1. It is open whether whenever the system enters in the control state q1,
eventually it reaches the counter value 1.

Figure 8.1. An example of counter system

The class of counter systems is quite general and it very often makes sense to label
the transitions by Presburger formulae that can be decomposed by a guard (constraints
on the current counter values) and an update function (constraints on the way the new
counter values are computed from the previous ones).

A configuration of the counter system S = (Q,n, δ) is defined as a pair (q, �x) ∈
Q × Nn. Given two configurations (q, �x), (q′, �x′) and a transition t = q

ϕ−→ q′, we

write (q, �x)
t−→ (q′, �x′) whenever v
x, 
x′ |= ϕ and for i ∈ [1, n], v
x, 
x′(xi)

def
= �x(i) and

v
x, 
x′(x′i)
def
= �x′(i). The operational semantics of counter systems updates configu-

rations, and runs of such systems are essentially sequences of configurations. Every
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counter system S = (Q,n, δ) induces a (possibly infinite) graph made of configura-
tions. Indeed, all the interesting problems on counter systems can be formulated on
its transition system.

DEFINITION 8.3 Given a counter system S = (Q,n, δ), its transition system T (S) =
(S,−→) is a graph such that S = Q×Nn and−→⊆ S×S such that ((q, �x), (q′, �x′)) ∈−→

def⇔ there exists a transition t ∈ δ such that (q, �x)
t−→ (q′, �x′). As usual,

∗−→ denotes
the reflexive and transitive closure of the binary relation −→.

Given a counter system S, a run ρ is a non-empty (possibly infinite) sequence ρ =
(q0, �x0), . . . , (qk, �xk), . . . of configurations such that two consecutive configurations
are in the relation −→ from T (S). (q0, �x0) is called the initial configuration of ρ.

Standard decision problems

Below, we enumerate a list of standard decision problems for counter systems.
They are mainly related to reachability questions. The list is certainly not exhaustive
but it contains the main problems related to verification and model-checking.

Reachability problem:

– Input: a counter system S and two configurations (q, �x) and (q′, �x′);
– Question: is there a finite run with initial configuration (q, �x) and final configu-

ration (q′, �x′)?

Control state reachability problem:

– Input: a counter system S, a configuration (q, �x) and a control state qf ;
– Question: is there a finite run with initial configuration (q, �x) and whose final

configuration has control state qf?

Covering problem:

– Input: a counter system S and two configurations (q, �x) and (q′, �x′);
– Question: is there a finite run with initial configuration (q, �x) and whose final

configuration is (q′, �x′′) with �x′  �x′′?

Boundedness problem:

– Input: a counter system S and a configuration (q, �x);
– Question: is the set {(q′, �x′) ∈ Q× Nn : (q, �x)

∗−→ (q′, �x′)} finite?

Termination problem:

– Input: a counter system S and a configuration (q, �x);
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– Question: is there an infinite run with initial configuration (q, �x)?

Control state repeated reachability problem:

– Input: a counter system S, a configuration (q, �x) and a control state qf ;
– Question: is there an infinite run with initial configuration (q, �x) such that the

control state qf is repeated infinitely often?

Most standard verification problems on counter systems reduce to one of the above
mentioned decision problems. For instance, model-checking over linear-time tempo-
ral logic (LTL) in which atomic formulae are restricted to control states amounts to
questions on control state repeated reachability problem. Hence, designing algorithms
for such decision problems can be helpful for instance to verify computer systems such
as programs with pointers [BOU 06a], broadcast protocols [ESP 99], or replicated
finite-state programs [KAI 10] (Boolean programs with a finite set of configurations
but can be executed by an unknown number of threads), to quote but a few.

In the forthcoming subsections, we introduce several subclasses of counter systems
by restricting the general definition provided above. Additional requirements can be
of distinct nature: restriction on syntactic ressources (number of counters, Presburger
formulae etc.), restriction on the control graph (e.g. flatness), and semantical restric-
tions (reversal-boundedness, etc.)

Succinct counter automata

In the chapter, we adopt the convention that a counter automaton is a counter sys-
tem in which the instructions are either zero-tests, increments, or decrements, possibly
encoded succinctly. A succinct counter automaton is a counter system (Q,n, δ) in

which the transitions are of the form either q
inc(
b)−−→ q′ with�b ∈ Zn or q

zero(
b′)−−−−→ q′ with
�b′ ∈ {0, 1}n where:

– inc(�b) is a shortcut for
∧

i∈[1,n] x
′
i = xi +�b(i);

– zero(�b′) is a shortcut for
∧

i∈[1,n] s.t. 
b′(i)=1 xi = 0 ∧
∧

i∈[1,n] x
′
i = xi (as usual,

empty conjunction is understood as #).

In succinct counter automaton, each transition either performs zero-tests on a subset
of counters or updates counters by adding a vector in Zn. All the counters are tested
or updated simultaneously.

Standard counter automata

A standard counter automaton is a counter system (Q,n, δ) in which the transi-

tions are of the form either q
inc(i)−−→ q′ or q

dec(i)−−−→ q′ or q
zero(i)−−−→ q′ (i ∈ [1, n]) where

– inc(i) is a shortcut for (x′i = xi + 1) ∧ (
∧

j �=i x
′
j = xj) (also written xi++);
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– dec(i) is a shortcut for (x′i = xi − 1) ∧ (
∧

j �=i x
′
j = xj) (also written xi- -);

– zero(i) is a shortcut for (xi = 0) ∧ (
∧

j x
′
j = xj) (also written xi = 0?).

By contrast to succinct counter automata, transitions in standard counter automata
can perform a simple operation at once (otherwise, a succession of transitions is
needed). Indeed, standard counter automata and succinct counter automata are very
similar but when it comes to complexity issues, exponential blow-up may occur when
passing from one model to another. In the sequel, unless otherwise stated, by a counter
automaton we mean a standard one. It is easy to check that Minsky machines (with
two counters) form a subclass of standard counter automata.

8.2.2.1. Vector addition systems with states

A vector addition system with states (VASS) [KAR 69] is a succinct counter au-

tomaton without zero-tests, i.e. all the transitions are of the form q
inc(
b)−−→ q′ with

�b ∈ Zn. In the sequel, a VASS is represented by a tuple V = (Q,n, δ) where Q
is the finite set of control states and δ is a finite subset of Q × Zn × Q. Standard
counter automata can be naturally viewed as VASS augmented with zero-tests by sim-

ulating transitions of the form q

b−→ q′ by sequences of increments and decrements.

Additionally, VASS are known to be equivalent to Petri nets that are models of greater
practical appeal. Figure 8.2 presents an example of VASS. One can show that for all
�x ∈ N4, the set {�y ∈ N4 : (q0, �x)

∗−→ (q0, �y)} is finite. Moreover, for �x ∈ N2,
{k ∈ N : k ≤ �x(1) × �x(2)} = {�y(4) : (q0, �y0) ∗−→ (q0, �y), �y0(1) = �x(1), �y0(2) =
�x(2), �y0(3) = �y0(4) = 0}.

Figure 8.2. A VASS weakly computing multiplication

THEOREM 8.4 (see e.g. [MAY 84, KOS 82]) The reachability problem for VASS is
decidable.

The exact complexity of the reachability problem is open: we know it is EX-
PSPACE-hard [LIP 76] and no primitive recursive upper bound exists. By contrast,
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the covering problem and boundedness problems seem easier since they are EX-
PSPACE-complete [LIP 76, RAC 78]. Observe also that the covering problem can
express the thread-state reachability problem for replicated finite-state programs, see
e.g. [KAI 10]. Similarly, the boundedness problem for asynchronous programs has
been considered in [GAN 09].

8.2.2.2. Relationships with Petri nets

In this section, we briefly recall how Petri nets (see e.g. [REI 98]) are related to
VASS . First, let us recall that a Petri net N is a structure (P, T,W−,W+,mI) such
that P is a finite set of places, T is a finite set of transitions, W− : (P × T ) → N
and W+ : (P × T ) → N are weight functions. A marking m is a map of the form
P → N: for each place, we specify a number of tokens (possibly none). In the
Petri net N , mI : P → N is the initial marking (initial distribution of tokens). We
assume that the reader is familiar with the semantics of this model (otherwise see
e.g. [PET 81, REI 98]). We just recall below a few definitions. A transition t ∈ T is

m-enabled, written m
t−→, whenever for all places p ∈ P , m(p) ≥ W−(p, t). An m-

enabled transition t may fire and produce the marking m′, written m
t−→ m′, with for

all places p ∈ P , m′(p) = m(p)−W−(p, t)+W+(p, t). A marking m′ is reachable

from m whenever there is a sequence of the form m0
t0−→ m1

t1−→ · · · tk−1−−→ mk with

m0 = m and mk = m′ (also written m
t0···tk−1−−−−→ m′).

Here are standard problems for Petri nets.

Reachability problem for Petri nets:

– Input: a Petri net (P, T,W−,W+,mI) and a marking m;
– Question: is m reachable from mI?

Covering problem for Petri nets:

– Input: a Petri net (P, T,W−,W+,mI) and a marking m;
– Question: is there a marking m′ reachable from mI such that for all p ∈ P , we

have m′(p) ≥ m(p)?

Boundedness problem for Petri nets:

– Input: a Petri net (P, T,W−,W+,mI);
– Question: is the set of markings reachable from mI infinite?

Petri nets and VASS are known to be equivalent models as far as the reachabil-
ity problem, the covering problem, and the boundedness problem are concerned, see
e.g. [REU 90]. By way of example, let us show how to simulate a VASS using a Petri
net. Let V be a VASS (Q,n, δ) and (qI , �xI) be a configuration. We can build a Petri
net NV that simulates V , by using a standard translation from VASS to Petri nets.
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For every control state q in V , we introduce a place pq in NV and for i ∈ [1, n], we
introduce a place pi. An initial marking mI contains one token in the place pqI and
for i ∈ [1, n], mI(pi) = �xI(i). From this marking, we only obtain markings where
a unique token belongs to a place of the form pq (q ∈ Q) which means that a unique

control state is active for every marking. For every transition in V , say t = q

b−→ q′,

we consider a transition t in NV that consumes a token in pq, produces a token in
pq′ and produces [respectively consumes] �b(i) tokens in the place pi when �b(i) ≥ 0

[respectively when�b(i) < 0].

In the rest of this chapter, we shall consider two types of extensions of Petri nets,
namely recursive Petri nets in section 8.3; which adds recursion to Petri nets and sub-
classes of counter systems in which zero-tests are allowed in section 8.4 (presented as
extensions of VASS with zero-tests or with more complex Presburger-definable update
functions). Methods to handle verification problems for such extensions will be of a
different nature. As far as recursive Petri nets are concerned, extensions of techniques
for standard Petri nets are considered. In contrast, in section 8.4, the decidability
of verification problems is established by reduction into the satisfiability problem for
Presburger arithmetic.

8.3. Recursive Petri nets

The recursive Petri net formalism (RPN) has been introduced to model dynamic
systems for which the creation of processes (or threads) is required [El 95, El 96]. In
this formalism, a process is characterized by a Petri net in which particular transitions
(called abstract) allow the creation of processes and sets of markings from which the
process is allowed to terminate. More precisely, termination of a process is possible
when the current marking belongs to a given semilinear set, i.e. to a set defined by a
Presburger formula. All the processes share the same control structure (i.e. the same
RPN) but the initial marking of each process depends on the abstract transition which
has created it. In consequence, the state of a process is completely characterized
by a marking (a distribution of tokens over places) of the RPN and by the abstract
transition that has created the process. Parallelism, which is a fundamental feature
of Petri nets, is allowed between a process and its father. Termination of a process
induces the update of the current marking of the father process (mainly by adding
tokens to places). In this way, the relationships between processes and their fathers
is encoded in the global state of the RPN. Hence, the global state of a recursive Petri
net can be viewed as a finite tree whose nodes are markings (in the usual sense for
Petri nets) and each edge is labeled by the abstract transition that has created the child
process.

It has been shown in different papers [HAD 99, HAD 00, HAD 01] that RPN form
a strict extension of Petri nets in terms of expressive power. It has also been shown
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that the reachability problem remains decidable for RPN. It is important to note that
this property is essential for the design of verification tools. However, in [HAD ],
the authors have established that the verification of linear-time temporal formulae is
an undecidable problem whereas it is decidable for the standard class of Petri nets
(limited to event-based formulae).

In this section, we focus on a particular subclass of RPN called sequential re-
cursive Petri nets (SRPN) [HAD 01]. In such a net, a father process creating a child
process is blocked until the child process terminates. Consequently, parallelism is only
allowed within the unique active process, if any. The global state of a sequential recur-
sive Petri net can be viewed as a finite stack of processes, the topmost process being
the active one. Moreover, each process can be represented by a marking (in the usual
sense for Petri nets) and by the abstract transition that has created it (if any), the father
process being just below on the stack. This formalism is less expressive than RPN
but it is a strict extension of Petri nets. Moreover, the verification of (event-based)
linear-time temporal formulae remains a decidable problem for SRPN.

8.3.1. Definitions

Similar to an ordinary Petri net, a SRPN has places and transitions. The transitions
are split into two categories: elementary transitions and abstract transitions.

The semantics of such a net may be informally explained as follows. In an ordinary
net, a process plays the token game by firing a transition and by updating the current
marking (its internal state). In an SRPN, there is a stack of processes (each one with
its current marking) where the only active process is on top of the stack. A step of an
SRPN is thus a step of this process. The enabling rule of the transitions is specified by
the backward incidence matrix.

When a process fires an elementary transition, it consumes the tokens specified by
the backward incidence matrix and produces tokens defined by the forward incidence
matrix (as in ordinary Petri nets).

When a process fires an abstract transition, it consumes the tokens specified by the
backward incidence matrix and creates a new process (called its son) put on top of the
stack which consequently becomes the active process. Such a process begins its token
game with an initial marking that depends on the abstract transition.

Termination of an active process is possible when the current marking belongs to
a given set of markings that is effectively semilinear. Herein, effective semilinearity
is guaranteed by using Presburger formulae whose free variables refer to places of
the net (see section 8.2.1). So, a family of effective representations of semilinear sets
of final markings is defined in order to describe the termination of processes. This
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family is indexed by a finite set whose items are called termination indices. When
a process reaches a final marking, it may terminate its token game (i.e. it is popped
out of the stack). Then, it produces in the token game of its father (the new top of
the stack) and for the abstract transition which created it, the tokens specified by the
forward incidence matrix. Unlike ordinary Petri nets, this matrix depends also on the
termination index of the semilinear set which the final marking belongs to. Such a
firing is called a cut step (or equivalently a return step). When a cut step occurs in a
stack reduced to a single process, this results to the empty stack.

The next definitions are helpful to define what are the configurations (global states)
of an SRPN. Below, such configurations are called extended markings.

DEFINITION 8.5 (SRPN) An SRPN is defined by a tuple N =
〈P, T, I,W−,W+, Init,Υ〉 where:

– P = {p1, . . . , pα} is a finite set of places;
– T is a finite set of transitions such that P ∩ T = ∅;
– A transition of T can be either elementary or abstract. The sets of elementary

and abstract transitions are respectively denoted by Tel and Tab;
– I is a finite set of indices;
– W− is the pre function defined from P × T to N;
– W+ is the post function defined from P × [Tel ∪ (Tab × I)] to N;
– Init is a labeling function Tab → (P → N) which associates an ordinary

marking called the starting marking of t with each abstract transition;
– Υ = (ϕi)i∈I is a family of Presburger formulae with free variables among x1,

. . . , xα. Each formula ϕi defines the set of ordinary markings {m : P → N | v |=
ϕi, for 1 ≤ j ≤ α, v(xj) = m(pj)}. By abuse of notation, we say that a marking m
belongs to REL(ϕi) to mean that it belongs to the above set. For instance, ’x1 = x2’
would be interpreted as a symbolic way to represent the set of markings such that the
number of tokens in the place p1 is equal to the number of tokens in the place p2.

In the chapter, we distinguish two kinds of markings. As usual for Petri nets, an
ordinary marking is a map fromP to N. By contrast, an extended marking corresponds
to a global state of the SRPN that can be viewed as a finite stack of ordinary markings
augmented with abstract transitions. When no confusion is possible, we simply use
the term “marking”.

DEFINITION 8.6 (Extended marking) An extended marking em for a SRPN
N = 〈P, T, I,W−,W+, Init,Υ〉 is either the empty stack ⊥ or a sequence
(md, td), . . . , (m2, t2),m1 for some d ≥ 1 such that

– d is the depth of em and {1, . . . , d} is the set of levels;
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– m1, . . . , md are ordinary markings;
– t2, . . . , td are abstract transitions. The intention is that a process (mi, ti) has

been created by the abstract transition ti and its current marking is mi. Whenever
d ≥ 2, the active process is (md, td). When d = 1, the active process is m1.

Obviously, an extended marking different from⊥ can be viewed as a tree reduced
to a single path where nodes are indexed by levels and labeled by ordinary markings
and edges are labeled by abstract transitions. The root of this tree corresponds to
the bottom of the stack and the single leaf to its top (for instance, see Figure 8.6).
A marked SRPN (N, em0) is an SRPN N together with an initial extended marking
em0. According to the presentation, the size of the stack corresponding to an extended
marking em is d and the ordinary markings associated with the processes of the stack
are m1, . . . , md. Since the effect of cut steps depends on the abstract transition which
created a process, the transitions t2, . . . , td are stored in the extended marking.

Given a SRPN, we can define its corresponding reachability graph whose nodes
are made of extended markings and edges are labelled by actions. Three types of
actions can be distinguished:

1) firing an elementary transition t ∈ T \ Tab, corresponding to an internal step;
2) firing an abstract transition t ∈ Tab, corresponding to a gosub step;
3) terminating the active process with the current marking in REL(ϕi) for some

i ∈ I and possibly returning to the father process, corresponding to a return step (also
called cut step).

An elementary step corresponds to performing a single action. Hence, the seman-
tics of a SRPN, completely determined by its corresponding reachability graph, is
based on the notions of enabled actions and firing of steps.

DEFINITION 8.7 Let em = (md, td), . . . , (m2, t2),m1 be an extended marking (dif-
ferent from ⊥) for the SRPN N .

1) A transition t ∈ T is enabled in em, denoted by em
t−→ iff for all p ∈ P , we

have md(p) ≥W−(p, t);
2) Return step τi with i ∈ I is enabled in em, denoted by em

τi−→, iff md ∈
REL(ϕi).

DEFINITION 8.8 Let em = (md, td), . . . , (m2, t2),m1 and em′ =
(m′

d′ , t′d′), . . . , (m′
2, t

′
2),m

′
1 be two extended markings for the SRPN N .

– For t ∈ T \ Tab, em
t−→ em′ iff

1) t is enabled in em,
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2) d = d′ and, em and em′ differ at most on their active process,
3) td = t′d and for all p ∈ P , m′

d(p) = m′
d(p)−W−(p, t) +W+(p, t);

– For t ∈ Tab, em
t−→ em′ iff

1) t is enabled in em,
2) d′ = d+ 1,
3) (m′

d′ , t′d′) = (Init(t), t),
4) for all p ∈ P , m′

d(p) = md(p)−W−(p, t),
5) td, (md−1, td−1), . . . , (m2, t2),m1 = t′d, (m

′
d−1, t

′
d−1), . . . , (m

′
2, t

′
2),m

′
1;

– For i ∈ I , em
τi−→ em′ iff

1) τi is enabled in em,
2) d′ = d− 1,
3) if d′ ≥ 1, then for all p ∈ P , m′

d′(p) = md′(p) +W+(p, td, i),
4) We have the equality below:

td′ , (md′−1, td′−1), . . . , (m2, t2),m1 = t′d′ , (m′
d′−1, t

′
d′−1), . . . , (m

′
2, t

′
2),m

′
1.

A firing sequence σ is a sequence of the form em1
a1−→ em2

a2−→ em3 · · ·
an−1−−→ emn

such that for every i ∈ [1, n− 1], emi
ai−→ emi+1 is a single step. In the sequel, for the

sake of simplicity, σ will be often denoted by σ = a1 . . . an−1. When multiple SRPNs
are involved, we denote by em1

σ−→N emn a firing sequence σ in an SRPN N . In a
marked SRPN (N, em0), an extended marking em is reachable iff there exists a firing
sequence em0

σ−→N em. The reachability graph of (N, em0) is defined as follows:
the nodes are the reachable extended markings and the edges are labeled by actions.

8.3.2. Expressive power

This section illustrates both the syntax and the semantics of SRPN with the help
of relevant examples. Furthermore, we simultaneously demonstrate the expressive
power of the model and its suitability with respect to standard discrete event system
patterns [CAS 99].

Modeling of interrupts and exceptions. SRPNs are illustrated by integrating an inter-
rupt mechanism step by step in an existing net. Then, the treatment of exceptions is
added. The SRPN modeling the abstraction of the original system is given in Fig-
ure 8.3. This net can be understood as a standard Petri net and it can realize a unique
behavior where the transition tcorrect is systematically fired. It is important to note
that any Petri net can be interpreted as a SRPN without abstract transitions and ex-
tended markings are reduced to ordinary markings.

When an (software or hardware) interrupt is handled, the context of the system
must be saved and the control given to the interrupt handler. If different levels of
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tcorrect

prun

Figure 8.3. An abstraction of a system

ptreated

pup

tcorrect

Υ0 = {m | m(ptreated) = 1}

ttreat

prun

pup + pint

tint

pint

〈0〉

Figure 8.4. Integration of an interrupt mechanism

interrupts have to be taken into account, an interrupt can mask some others. Moreover,
when the handler returns, the execution context must be restored.

The SRPN presented in Figure 8.4 adds an interrupt mechanism to the net from
Figure 8.3. Contrary to ordinary nets, SRPNs are often disconnected since each con-
nected component may be activated by the firing of different abstract transitions. As
the initial extended marking is reduced to a single node, we have directly described
the ordinary marking associated with this node by putting tokens in places. We will
follow the same convention in the sequel. The new elements are:

– the transition tint: this transition is an abstract one (represented by a double line
rectangle) and represents the trigger point of the interrupt. Here, we consider that
the interrupt can always occur and in consequence, the unique input place (pint) of
the abstract transition is initially marked. The firing of tint creates a new process
on top of the stack and freezes the execution of the father process until the child
process terminates. The child process starts its execution with the marking pup + pint
(indicated in the frame near the abstract transition). Because, pint will be still marked,
a new interrupt may occur during its execution. The firing of tint consumes also a
token from its input place pint but produces no token. This step is delayed until the
end of the new process and depends on its type (index) of termination;
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– the set Υ0: In this example, a unique set characterizes the final markings from
which a return step is possible. Υ0 represents the set of markings where the interrupt
has been treated (the place ptreated is marked). The index 0 associated with this set is
used to indicate the type of termination (here, there is a unique type);

– the valuation 〈0〉 labels the arc linking the transition tint to the place pint: when
a process terminates (its current marking should belong to Υ0), the marking of the
father process is modified depending on the index of the semilinear sets used for ter-
mination of the active child process. Then, the post-condition of an abstract transition
is conditioned by the index associated to the termination set. In this example, the firing
of a cut step will always produce a token in the place pint.

The initial extended marking of the SRPN of Figure 8.4 is composed of a unique
process in which only the places prun and pint both contain a unique token. It is
clear that this net can reach an infinite number of configurations. Indeed, taking into
account an interrupt does not mask those that can occur during its handling (the place
pint is marked in the starting marking of tint). We can remark that this infinite state
space can occur whatever the boundedness of the places (all the places may contain at
most a unique token).

The integration of a mechanism for exceptions is illustrated in Figure 8.5. In this
example, an exception can occur (the firing of the abstract transition tex) only if the
main process runs (witnessed by the presence of a token on the place prun). Its treat-
ment can recover the error (place precover) or leads to a fatal situation (place pfatal).
The two termination sets Υ1 and Υ2 allow to distinguish both cases and the output
arcs of the abstract transition tex are labeled consecutively.

Modularity is a natural feature of SRPNs. Indeed, if the system does not include
the interrupt mechanism, the designer simply deletes the corresponding elements in
the figure.

Figure 8.6 presents a subgraph of the reachability graph of the SRPN. The right
part of the figure illustrates the interrupts and the left the exceptions. Interrupt cannot
occur during the treatment of exception. On the contrary, if an exception leads to
a fatal situation and when this error has been transmitted to the main process, the
behavior of this last process will be limited to the treatment of interrupts (the unique
enabled transition – not represented in the figure – from the state where the main
process reaches the marking pstop + pint, is tint).

The example of Figure 8.5 shows the ability of SRPN to implicitly keep the con-
text of suspended processes. This kind of formalization in terms of Petri net requires
an explicit representation of each context. By using this feature, it has been shown
in [HAD 00] that SRPN include the family of algebraic languages. On the other hand,
it has been also shown that the language of palindromes (a well-known algebraic lan-
guage) cannot be recognized by a (labeled) Petri net [JAN 79]. Thus, the family of
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Figure 8.5. An exception mechanism

languages recognized by SRPNs strictly includes the family of languages recognized
by ordinary Petri nets.

Modeling of fault tolerance. In order to analyse fault-tolerant systems, the engineer
may start by a nominal system and then introduces the faulty behavior as well as
repairing mechanisms. We limit ourselves to an abstract view for such a system since
this pattern can be simply generalized. This abstraction is given in the right part of
Figure 8.7. The nominal system infinitely executes instructions (elementary transition
tcount). The marking of place pcount represents the number of instruction executions.

The complete SRPN is obtained by adding the left part of Figure 8.7. Its behavior
can be described as follows. There are only two reachable extended markings reduced
to a single node: the initial global state (emstart ) where a token in pstart indicates
that the system is ready to start and the repairing state (emrepair ) where a token in the
place prepair indicates that the system is being repaired. Starting from the initial state,
the abstract transition tstart is fired and the execution of instructions is “played” by the
new process. If this process terminates, meaning that a crash occurs, the repairing state
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Figure 8.6. Subgraph of the reachability graph of the SRPN of Figure 8.5
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Υ0 = {m | m(pfault ) > 0}

Figure 8.7. A fault-tolerant system

is reached. The place pfault represents the possibility of a crash. As pfault is always
marked in the correct system and from the very definition of Υ0, the occurrence of a
fault is always possible. We assume that no crash occurs during the repairing stage.
With additional places and by modifying Υ0, we could model more complex fault
occurrences (e.g. conditioned by software execution).
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Figure 8.8. (Infinite) reachability graph of the SRPN of the figure 8.7

The reachable extended markings either consist of a single node or an initial node
and its son. However, the number of reachable markings in this latter node is infinite
(the place pcount is unbounded). In other words, the repairing state can be reached
from an infinite number of extended marking which means that the transition system
associated with an SRPN may have some states with an infinite in-degree. This situ-
ation cannot occur with standard Petri nets or with process algebras. In particular, in
a reachability graph obtained from a Petri net, for each marking/node, its in-degree
is bounded by the number of transitions. Moreover allowing unobservable transitions
does not solve the problem. Indeed, it has been proven that the transition system
shown in Figure 8.8 cannot be generated by a standard Petri net with unobservable
transitions.

Otherwise stated, the modeling of crash for a nominal system with an infinite num-
ber of states is impossible with Petri nets. In the restricted case where the nominal
system has a finite number of reachable configurations, theoretically it is possible to
model it with a standard Petri net. However, the modeling of a crash requires a number
of transitions proportional to the number of reachable configurations, which leads to
an intricate net. The SRPN designed herein does not depend on this number and leads
to a quite compact representation.

8.3.3. Verification

A distinguished feature of Petri nets is the decidability of the reachability problem,
even though the best known decision procedure does not lead to a primitive recursive
complexity, see e.g. [REU 90]. Many safety properties (specifying that nothing bad
will happen) can be reduced to instances of the reachability problem. Then, a decision

Models and Analysis in Distributed Systems



Verification of Infinite-State Systems 243

procedure for the reachability problem can be viewed as a building block in larger
verification tools.

It is possible to decide whether a Petri net is bounded. Because, the reachability
graph of a bounded net is finite (by definition), the methods presented in Chapter 7
can be applied. Moreover, the membership problem with a language specified by a
labeled Petri net is also a decidable problem. This allows verification that an expected
behavior can be effectively realized by the system. Finally, the verification of a tem-
poral property is possible but limited to the event-based linear-time temporal formula
(an LTL formula can express the firing of transitions but not constraints on reached
markings). The work in [ESP 94] gives a large synthesis of the decidability results
concerning Petri nets.

These problems remain decidable for SRPN. Hence, even if it is a strict extension
of Petri nets, the verification of numerous behavioral properties is still possible. In
this section, we limit ourselves to the study of the reachability problem.

Another important feature of Petri net concerns the structural verification tech-
nique presented in Chapter 7. We present an algorithm for the computation of linear
invariants of SRPN.

Behavioral verification. Given a marked SRPN, the reachability problem consists
of checking whether an extended marking can be reached from the initial extended
marking (through a sequence of successive firings). The decision procedure, infor-
mally presented below, is inspired from a more complex one that is dedicated to the
larger class of RPNs. The idea consists of reducing an instance of the problem to
several instances of the reachability problem for ordinary Petri nets.

The decision procedure can be divided into different stages:

– the first one is independent of the initial and final extended markings. It consists
of determining whether a process created by a given abstract transition can reach a
marking belonging to a termination set (those termination sets are specified by Υ
in a SRPN). Such an abstract transition is said to be closable with respect to this
termination set. This verification should be done for each abstract transition and for
each termination set; thus it should be done at most card(Tab)× card(I) times;

– the second stage aims to predict the behavior of processes composing the ini-
tial extended marking and, hence, the nature of the processes composing the extended
marking to be reached. Indeed, a process of the initial extended marking can either
be terminated during the firing sequence or can persist modifying its marking. The
processes of the final extended marking, which do not correspond to processes of the
initial extended marking, must be created by the firing sequence. Even if each pre-
diction must satisfy some constraints (e.g. if a child process must be created by the
firing sequence, its child processes must be created as well), many different predic-
tions are generally possible. Figure 8.9 presents such a prediction. The two processes
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Figure 8.9. A coherent prediction of the behavior of processes

of the initial extended marking labeled by the markings m0 and m1 must evolve to
the respective markings m′

0 and m′
1. On the contrary, the process labeled by m2 must

terminate during the sequence and, consequently, its child processes must also ter-
minate. Finally, it is expected that the process labeled m′

2 in the reached extended
marking will be created by the sequence. It is clear that the number of distinct and
coherent predictions is bounded by the number of processes composing the initial and
final extended markings.

All the steps of the decision procedure are based on the same principle: the con-
struction of an ordinary Petri net and a reachability problem equivalent to the elemen-
tary problem to be decided. We now focus on the determination of closable abstract
transitions.

Note that it is decidable to determine whether a marking from a semilinear set can
be reached in a Petri net equipped with an initial marking (even if the semilinear set is
infinite).

An abstract transition is said closable in a termination set if a process (created
by this abstract transition) can realize a return step from this termination set. This
amounts to checking an instance of the reachability problem and, when an abstract
transition is closable, it induces a corresponding firing sequence. When an abstract
transition is fired in a given process, the execution of this process is suspended until
the child process created by the abstract transition terminates. Consequently, in the
associated firing sequence, the firing corresponding to the root level can only involve
some closable abstract transitions.
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This leads to an iterative computation of the set F ⊆ Tab × I of closable abstract
transitions. F0 is the subset of F where the associated firing sequence contains no
firing of abstract transitions. When new elements are added to F , this indicates that
these transitions can be used.

The elements of F0 are determined by testing if the ordinary net obtained by sup-
pressing all the abstract transitions can reach a marking from a termination set from
the initial marking of a given abstract transition (specified by Init in a SRPN). In
order to compute the set F1, the abstract transitions belonging to F0 are now simu-
lated by ordinary transitions having the same pre-conditions and post-conditions (for
a given termination set). The aim of these transitions is to simulate the creation of
child processes that are able to terminate (in this termination set).

Assuming that Fi is defined, Fi+1 is defined as the set of closable abstract tran-
sitions, excluding those from Fi, such that we consider the SRPN in which the ab-
stract transitions belonging to Fi are now simulated by ordinary transitions having the
same pre-conditions and post-conditions. Observe that there is J ≤ (card(Tab) ×
card(I)) + 1 such that FJ = ∅ and whenever Fi is empty, this implies that for all
j > i, we have that Fj is empty too. Knowing that the set of abstract transitions is
finite as well as the number of final marking sets demonstrate the termination of the
decision procedure. Hence, F

def
=
⋃

i Fi.

We are now in position to describe the procedure for the decision of the reachability
problem. Let src be the initial extended marking and dest be the destination extended
marking. If src =⊥ (the empty state) then it is sufficient to test if dest =⊥. Assume
that src �=⊥ and dest =⊥. This problem is similar to decide whether an abstract
transition is closable except that the initial state is not necessarily composed by a
unique process. Hence, the child processes must also be successively closed. This
leads to a set of termination problems.

Finally, when src �=⊥ and dest �=⊥, the principle consists of testing the possible
predictions one by one. The main difference comes from the fact that some processes
of dest can be predicted as created. Here again, the decision can be reduced to in-
stances of the reachability problem in an ordinary Petri net. By way of example, let us
consider the two extended markings below:

em1 = (md+d1, td+d1), . . . , (md+1, td+1), (md, td), . . . , (m2, t2),m1

em2 = (m′
d+d2

, t′d+d2
), . . . , (m′

d+1, t
′
d+1), (md, td), . . . , (m2, t2),m1

with d1, d2 ≥ 1 and d ≥ 2 (they share a common bottom of the stack). Assuming
that these extended markings are defined with respect to the SRPN N , let N− be the
standard Petri net obtained from N by deleting the non-closable abstract transitions,
and each closable abstract transition in F is replaced by an ordinary transition having
the same pre-condition and post-condition. We can show that em2 is reachable from
em1 in N iff there exists i1, . . . , id1 ∈ I such that:
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1) there exists a marking m in REL(ϕid1
) such that md+d1

∗−→ m in N−;
2) for j ∈ [1, d1 − 1], there exists a marking m in REL(ϕij ) such that

md+j +W+(·, td+j+1, ij+1)
∗−→ m in N−. As usual, md+j + W+(·, td+j+1, ij+1)

denotes the marking m′ such that for every place p ∈ P , m′(p) = md+j(p) +
W+(p, td+j+1, ij+1). A similar notation is used below;

3) Init(t′d+d2
)

∗−→ m′
d+d2

in N−;

4) For j ∈ [1, d2 − 1], Init(t′d+j)
∗−→ m′

d+j +W−(·, t′d+j+1).

Predictions (indeed non-determinism) are witnessed by the sequence of termination
indices i1, . . . , id1 . Moreover, observe that (3) and (4) are instances of the reachability
problem for Petri nets whereas (1) and (2) are instances of the reachability problem
into a semilinear set, this latter problem being easily reducible to plain reachability.

Structural verification. Among the structural method presented in Chapter 7, we fo-
cus on the computation of linear invariants that we adapt to SRPN. The computation
shown here is an adaptation of the one dedicated to RPN.

The incidence matrix W of a SRPN is defined as follow. Rows are indexed by the
places and by the abstract transitions. The intended meaning of a variable indexed by
a place is its number of tokens while the interpretation of a variable indexed by an
abstract transition is the current number of processes created by its firing.

The columns of the matrix are indexed by the transitions and by the pairs (t, i)
where t is an abstract transition and i ∈ I is an index corresponding to a termination
set. A column indexed by a transition represents its firing while a pair (t, i) indi-
cates the firing of a cut step related to the termination set REL(ϕi) in a child process
initiated by the abstract transition t.

The incidence matrix is defined by:

– for all p ∈ P , for all t ∈ Tel and for all t′ ∈ Tab,
W (p, t) = W+(p, t)−W−(p, t) and W (t′, t) = 0;

– for all p ∈ P , for all t, t′ ∈ Tab with t′ �= t,
W (p, t) = −W−(p, t) and W (t, t) = 1 and W (t′, t) = 0;

– for all p ∈ P , for all t, t′ ∈ Tab, for all i ∈ I with t′ �= t,
W (p, (t, i)) = W+(p, t, i) and W (t, (t, i)) = −1 and W (t′, (t, i)) = 0.

Figure 8.10 illustrates the definition of the matrix W . The matrix is divided into
six blocks depending on the type of rows and columns. Let us look at some items of
the row indexed by place p: the elementary transition tel consumes one token from p
and produces 4 tokens for it, thus the corresponding value in the matrix is 3; firing the
abstract transition tab consumes 2 tokens thus the corresponding item is −2 and the
cut step associated with tab and index 0 (resp. 1) produces 1 token (resp. 4 tokens)
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Figure 8.10. A SRPN and its incidence matrix

thus the corresponding item is 1 (resp. 4). Let us have a look at the row indexed by
the abstract transition tab: firing tab creates one more process initiated by tab, thus
the corresponding item is 1 while firing any of the two cut steps corresponding to tab
terminates one such process yielding an item −1.

Given a process pr in an extended marking em, we denote by fire(pr)em the
vector, indexed on Tab, such that for any abstract transition t, fire(pr)em(t) is equal
to one if a child process initiated by t has been created by pr and is not already
terminated and equal to zero otherwise. We are now in position to justify the choice
of W as incidence matrix.

Let em′ be an extended marking of an SRPN; which is reachable from a given
state em via a firing sequence σ. Assume the existence of a process pr in both em
and em′ (and then in all the extended markings visited by σ). We note m(pr)em the
marking of the process pr in the state em. Let x be a solution of x ·W = 0, then:

x · (m(pr)em
′
, f ire(pr)em

′
) = x · (m(pr)em, f ire(pr)em)



248 Models and Analysis for Distributed Systems

As for ordinary Petri nets, when em is the initial state of the SRPN, this equation
is called a linear invariant. In order to obtain linear invariants, we can compute a
generative family of solutions {x1, . . . , xn} of this equation. For a process pr of
the initial extended marking em0, we obtain a superset of the reachable “states” of
this process by the set of equations: for i ∈ [1, n], xi · (m(pr)em, f ire(pr)em) =
xi · (m(pr)em0 , f ire(pr)em0 ).

The same overestimation can be done for the reachable ordinary marking space
of a process pr dynamically created by the firing of an abstract transition t: for all
i ∈ [1, n], xi·(m(pr)em, f ire(pr)em) = xi ·(Init(t),�0) (where Init(t) corresponds
to the starting marking associated with t).

The fact that depending on the initial marking Init(t) some transitions are dead
may lead to additional sources of overestimation. Since this last factor often happens
in practical cases, we describe now an iterative method that tackles this problem. In
fact, the method is also applicable to Petri nets but it is of limited interest in this case
since usually the transitions of a Petri net are not dead.

Algorithm 4 simultaneously computes a set of linear invariants fulfilled by mark-
ings reachable from m, an ordinary marking, and a superset of the transitions enabled
at least once from m. More precisely, it initialises Tlive as the empty set. Then it
computes the positive invariants for the recursive Petri net whose transitions are re-
duced to Tlive. In the algorithm 4, the function Invariant returns a generative family
of invariants (see [COL 90] for efficient computation of such families). For each tran-
sition that does not belong to Tlive, it builds a linear problem with the invariants and
the firing conditions of this transition. If this problem admits a solution, it is possibly
enabled and so, it adds it to Tlive. This process is iterated until Tlive is saturated.

Finally, we describe how the linear invariants can be used to obtain information
about the structure of the reachable extended markings. We build a graph whose nodes
are the abstract transitions. There is an edge from t to t′ if starting from the marking
Init(t) a process may fire t′. In order to determine such an edge, we compute the
invariants associated with Init(t) by a call to structReach. If t′ belongs to the set
returned by this call then an edge is added. This graph is a skeleton for the dynamic
structure of the extended markings. For instance, if it is acyclic, then any reachable
extended marking has a bounded depth.

8.3.4. Related work

We have seen that Petri nets can be extended while preserving the decidability sta-
tus of numerous problems (reachability problems, etc.). However, it is important to
note that minor extensions can lead to undecidability results. For instance, the reach-
ability problem is undecidable for Petri nets with two inhibitor arcs (a computational
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input : an ordinary marking m
output: a set of invariants and a set of transitions
Tlive = ∅;1

New = ∅;2

In = ∅;3

repeat4

New = ∅;5

In = Invariant(N,m, Tlive);6

foreach t ∈ T \ Tlive do7

Build a linear problem Pb in NP with In and W−(−, t);8

if Pb has a solution then9

New = New ∪ {t};10

end11

end12

Tlive = Tlive ∪New ;13

until (New == ∅) ;14

return 〈In, Tlive〉;15

Algorithm 4: structReach

model similar to Minsky machines) while it becomes decidable with one inhibitor arc
(or a particular nested structure of inhibitor arcs). The self-modifying nets introduced
by R. Valk have (like Petri nets with inhibitor arcs) the power of Turing machines
and thus many properties including reachability are undecidable [VAL 78a, VAL 78b].
Moreover, these extensions do not offer a practical way to model the dynamic creation
of objects.

In order to tackle this problem, A. Kiehn introduced a model called net sys-
tems [KIE 89] that are Petri nets with special transitions whose firing starts a new
token game of one of these nets. A call to a Petri net, triggered by such a firing, may
return if this net reaches a final marking. All the nets are required to be safe and the
constraints associated with the final marking ensure that a net may not return if it has
pending calls. It is straightforward to simulate a net system by an RPN. Moreover, as
the class of languages recognized by Petri nets is not included in the class of languages
recognized by net systems, the class of languages recognized by net systems is strictly
included in the family of RPN languages.

Process algebra nets (PANs), introduced by R. Mayr [MAY 97], are a model of
process algebra including the sequential composition operator as well as the parallel
operator. The left term of any rule of a PAN may use only the parallel composition of
variables whereas the right side is a general term. This model includes Petri nets and
context-free grammars. In [HAD 00], the authors demonstrate that RPNs also include
PANs. However, it is not known whether the inclusion of the PAN languages by the
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RPN languages is strict. Moreover, PANs as well as process rewrite systems (a more
expressive model) cannot represent a transition system with an infinite in-degree.

A verification technique, which is not treated in this section, concerns the equiv-
alence relations between two nets. This approach is essential when the design is
realized by successive refinements. In [HAD 07], it has been shown that checking
bisimulation between an SRPN (satisfying some additional constraints) and a finite
automaton is a decidable problem.

8.4. Presburger arithmetic as symbolic representation

In section 8.3, we have seen how verification problems for SRPNs can be solved by
using techniques for standard Petri nets, at the cost of adequately adapting standard
methods. Typically, an instance of the reachability problem for SRPNs (involving
extended markings) is transformed into a finite number of instances of the reachability
problem for Petri nets. By contrast, in this section, we consider other extensions of
VASS by allowing for instance zero-tests, but in a controlled manner. In this section,
decidability of the reachability problem is obtained by reduction into instances of the
satisfiability problem for Presburger arithmetic. More precisely, in this section, we
consider subclasses of counter systems for which the reachability sets of the form
{�x ∈ Nn : (q0, �x0)

∗−→ (q, �x)} are effectively Presburger-definable ((q0, �x0) and q
are fixed). By decidability of Presburger arithmetic, this allows us to solve problems
restricted to such counter systems such as the reachability problem, the control state
reachability problem, the boundedness problem, or the covering problem. Indeed,
suppose that given (q0, �x0) and q, we can effectively build a Presburger formula ϕq

such that REL(ϕq) = {�x ∈ Nn : (q0, �x0)
∗−→ (q, �x)}. We can then easily show the

properties below:

1) {�x ∈ Nn : (q0, �x0)
∗−→ (q, �x)} is infinite iff the formula below is satisfiable:

¬ ∃ y ∀x1, . . . , xn ϕq(x1, . . . , xn)⇒ (x1 ≤ y ∧ · · · ∧ xn ≤ y);

2) (q0, �x0)
∗−→ (q, �z) iff the formula below is satisfiable:

ϕq(x1, . . . , xn) ∧ x1 = �z(1) ∧ · · · ∧ xn = �z(n),

where any constant k > 0 is encoded by the term

k times︷ ︸︸ ︷
1 + · · ·+ 1;

3) control state q can be reached from (q0, �x0) iff the Presburger formula
ϕq(x1, . . . , xn) is satisfiable.

Below, we consider the class of reversal-bounded counter automata and the class of
admissible counter systems. However, other types of counter systems with Presburger-
definable reachability sets exist, see numerous examples in [PAR 66, ARA 77, HOP 79,
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ESP 97, COM 98, FIN 00, LER 03] (see also the generalizations presented in [LER 05,
BOZ 10]). Besides, let us briefly recall below why reachability sets for VASS (suc-
cinct counter automata without zero-tests) may not be semilinear, witnessing the fact
that semilinearity is not always guaranteed even for harmless VASS. In Figure 8.11,
we present a slight variant of the VASS described in Figure 8.2 by adding two com-
ponents to store counter values just before entering in the control state q0 for the first
time. We can show that

{(�x(1), �x(2), �x(6)) : (q0,�0) ∗−→ (q1, �x)} = {(n1, n2, n3) ∈ N3 : n3 ≤ n1 × n2}

Now, suppose that there is a Presburger formula ϕ(x1, . . . , x6) such that REL(ϕ) =

{�x : (q0,�0)
∗−→ (q1, �x)}. We can build from it a Preburger formula χ(x) such that

REL(χ(x)) = {n2 : n ≥ 0}(= Y ):

∃ x1, . . . , x5 ϕ(x1, . . . , x5, x)∧x1 = x2∧(∀ x′(x′ > x)⇒ ¬∃ x3, x4, x5 ϕ(x1, . . . , x5, x′))

Since Y is infinite, there are b ≥ 0 and p1, . . . , pm > 0 (m ≥ 1) such that (Z =
){b +

∑m
i=1 nipi : n1, . . . , nm ∈ N} ⊆ Y . Let N ∈ N be such that N2 ∈ Z and

(2N + 1) > p1. The value N always exists since Z is infinite. Since Z is a linear set,
we also have (N2 + p1) ∈ Z . However (N + 1)2 − N2 = (2N + 1) > p1. Hence
N2 < N2 + p1 < (N + 1)2, which leads to a contradiction.

By contrast, the reachability sets for VASS of dimension 2 can be shown to be
effectively Presburger-definable [HOP 79].

Figure 8.11. A VASS weakly computing multiplication (bis)
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8.4.1. Presburger-definable reachability sets

Reversal-bounded counter automata

A reversal for a counter occurs in a run when there is an alternation from non-
increasing mode to non-decreasing mode and vice versa. Figure 8.12 presents schemat-
ically the behavior of a counter with five reversals.

Figure 8.12. Five reversals in a row

A counter automaton is reversal-bounded whenever there is r ≥ 0 such that for any
run from a given initial configuration, every counter makes no more than r reversals.
This class of counter automata has been introduced and studied in [IBA 78]. A for-
mal definition will follow, but before going any further, it is worth pointing out a few
peculiarities of this subclass. Indeed, reversal-boundedness is defined for initialized
counter automata (a counter automaton augmented with an initial configuration) and
the bound r depends on the initial configuration. Secondly, this class is not defined
from the class of counter automata by imposing syntactic restrictions but rather se-
mantically. Its very definition is motivated by technical and theoretical considerations
rather than by constraints from case studies.

Let S = (Q,n, δ) be a standard counter automaton. Let us define the auxiliary
(succinct) counter automaton Srb = (Q′, 2n, δ′) such that Q′ = Q × {DEC, INC}n

and (q, �mode)
ϕ′
−→ (q′, �mode

′
) ∈ δ′ def⇔ there is q

ϕ−→ q′ ∈ δ such that if ϕ does not

deal with the jth component, then �mode(j) = �mode
′
(j) and for every i ∈ [1, n], one

of the conditions below is satisfied:

– ϕ = zero(i), �mode(i) = �mode
′
(i), ϕ′ = ϕ ∧

∧
j∈[1,n] x

′
n+j = xn+j ;

– ϕ = dec(i), �mode(i) = �mode
′
(i) = DEC and ϕ′ = ϕ∧

∧
j∈[1,n] x

′
n+j = xn+j ;

– ϕ = dec(i), �mode(i) = INC, �mode
′
(i) = DEC and

ϕ′ = ϕ ∧ (x′n+i = xn+i + 1) ∧
∧

j∈[1,n]\{i}
x′n+j = xn+j ;

– ϕ = inc(i), �mode(i) = �mode
′
(i) = INC and ϕ′ = ϕ ∧

∧
j∈[1,n] x

′
n+j = xn+j ;
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– ϕ = inc(i), �mode(i) = DEC, �mode
′
(i) = INC and

ϕ′ = ϕ ∧ (x′n+i = xn+i + 1) ∧
∧

j∈[1,n]\{i}
x′n+j = xn+j .

Essentially, the n new components in Srb count the number of reversals for each com-
ponent from S. Moreover, the above construction could be easily adapted so that to
control S by imposing that each counter does not perform more than r reversals, for
some fixed bound r. Observe that Srb is succinct because two counters may be updated
in one step. Initialized counter automaton (S, (q, �x)) is reversal-bounded [IBA 78]

def⇔ for every i ∈ [n+1, 2n], {�y(i) : ∃ run (qrb, �xrb)
∗−→ (q′, �y) in Srb} is finite with

qrb = (q, �INC), �xrb restricted to the n first components is �x and �xrb restricted to the
n last components is �0. When r ≥ max({�y(i) : run (qrb, �xrb)

∗−→ (q′, �y) in Srb} :
i ∈ [n+ 1, 2n]) S is said to be r-reversal-bounded from (q, �x).

A counter automaton S is uniformly reversal-bounded iff there is r ≥ 0 such
that for every initial configuration, the initialized counter automaton is r-reversal-
bounded. We can check that the counter automaton in Figure 8.13 is not uniformly
reversal-bounded.

Figure 8.13 contains a counter automaton S such that any initialized counter au-
tomaton of the form (S, (q1, �x)) with �x ∈ N2 is reversal-bounded. Let �x ∈ N2 and ϕ
be the Presburger formula

ϕ = (x1 ≥ 2 ∧ x2 ≥ 1 + �x(2) ∧ (x2 − �x(2)) + 1 ≥ x1)∨

(x2 ≥ 2 ∧ x1 ≥ 1 + �x(1) ∧ (x1 − �x(1)) + 1 ≥ x2)

We can show that REL(ϕ) is precisely equal to the reachability set {�y ∈ N2 :

(q1, �x)
∗−→ (q9, �y)}.

Reversal-boundedness for counter automata is very appealing because reachability
sets are Presburger-definable as stated below.

THEOREM 8.9 [IBA 78] Let r ≥ 0 and (S, (q, �x)) be an initialized counter au-
tomaton that is r-reversal-bounded. For each control state q′, the set {�y ∈ Nn :

∃ run (q, �x)
∗−→ (q′, �y)} is effectively Presburger-definable.

This means that we can compute a Presburger formula that characterizes the reach-
able configurations whose control state is q′. The original proof for reversal-boundedness
can be found in [IBA 78].

As a consequence of theorem 8.9, we get:
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Figure 8.13. A counter automaton that bounds the numbers of reversals

COROLLARY 8.10 The reachability problem for reversal-bounded counter automata
is decidable.

Moreover, the control state repeated reachability problem for reversal-bounded
counter automata is decidable too by reduction into the reachability problem, see
e.g. [DAN 01].

Let us consider another problem that can be shown decidable even though it takes
as input a standard counter automaton without any further restriction.

Reachability problem with bounded number of reversals:

– Input: a counter automaton S, a bound r ∈ N, an initial configuration (q0, �x0)
and a final configuration (q, �x);

– Question: is there a finite run of S with initial configuration (q0, �x0) and final
configuration (q, �x) such that each counter has at most r reversals?

Observe that when (S, (q0, �x0)) is r′-reversal-bounded for some r′ ≤ r, we get an
instance of the reachability problem with initial configuration (q0, �x0).

COROLLARY 8.11 The reachability problem with bounded number of reversals is
decidable.

By using [GUR 81], the problem can be solved in non-deterministic exponential
time.
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Affine counter systems with finite monoids

We shall define the class of affine counter systems that slightly generalizes the class
of succinct counter automata (roughly speaking, a counter value can be multiplied by
a factor different from 1). To do so, we start by proposing a few definitions.

A binary relation of dimension n is a relation R ⊆ N2n. R is Presburger-definable
def⇔ there is a Presburger formula ϕ(x1, . . . , xn, x

′
1, . . . , x

′
n) with 2n free variables

such that R = REL(ϕ). A partial function f from Nn to Nn is affine
def⇔ there

exist a matrix A ∈ Zn×n and �b ∈ Zn such that for every �a ∈ dom(f), we have
f(�a) = A�a+�b. f is Presburger-definable

def⇔ the graph of f is a Presburger-definable
relation.

A counter system S = (Q,n, δ) is affine when for every transition q
ϕ−→ q′ ∈ δ,

REL(ϕ) is affine. In the sequel, each formula ϕ labeling a transition in an affine
counter system is encoded by a triple (A,�b, ψ) such that

1) A ∈ Zn×n,�b ∈ Zn;
2) ψ has free variables x1, . . . , xn;
3) REL(ϕ) = {(�x, �x′) ∈ N2n : �x′ = A�x+�b and �x ∈ REL(ψ)}.

The formula ψ can be viewed as the guard of the transition and the pair (A,�b) as
the (deterministic) update function. Such a triple (A,�b, ψ) is called an affine update
and we also write REL((A,�b, ψ)) to denote REL(ϕ). Furthermore, succinct counter
automata are affine counter systems in which the matrices are equal to the identity ma-
trix. Moreover, in succinct counter automata the guards are reduced to the truth con-
stant or to a zero-test. This class of counter systems has been introduced in [FIN 02].

Lemma 8.12 roughly states that the composition of affine updates is still an affine
update, which shall be helpful to show that the accessibility relation for admissible
counter systems is Presburger-definable.

LEMMA 8.12 Let (A1, �b1, ψ1) and (A2, �b2, ψ2) be two affine updates. There exists
an affine update (A,�b, ψ) such that

REL((A,�b, ψ)) =

{(�x, �x′) ∈ N2n : ∃�y ∈ Nn (�x, �y) ∈ REL((A1, �b1, ψ1)) and (�y, �x′) ∈ REL((A2, �b2, ψ2))}

In the forthcoming class of admissible counter systems, we shall assume that the
control graph is flat. A counter system is flat whenever every control state belongs to
at most one simple cycle, i.e. with no repeated vertex, in the control graph. Moreover,
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Figure 8.14. A flat control graph

we require that there is at most one transition between two control states. An example
of flat control graph can be found in Figure 8.14.

Hence, it becomes essential to symbolically represent the effect of loops on counter
values. This sounds a necessary condition to establish that a reachability relation
is Presburger-definable. We already know by Lemma 8.12 that transitions in affine
counter systems are closed under bounded compositions.

Let R be a binary relation of dimension n. The reflexive and transitive closure of
R, written R∗, is a subset of N2n such that (�y, �y′) ∈ R∗ iff there are �x1, . . . �xk ∈ Nn

such that �x1 = �y, �xk = �y′ and for i ∈ [1, k − 1], we have (�xi, �xi+1) ∈ R. If R is
Presburger-definable, then this does not imply that R∗ is Presburger-definable too. For
instance, if R = {(k, 2k) ∈ N2 : k ∈ N} then R∗ = {(k, 2k′

k) ∈ N2 : k, k′ ∈ N}
is not Presburger-definable. By contrast, if S = {(k, k + 1) ∈ N2 : k ∈ N} then
S∗ = {(k, k′) ∈ N2 : k < k′, k, k′ ∈ N} is Presburger definable. Counter sys-
tems of dimension n induce naturally one-step binary relations of dimension n that
are Presburger-definable; the question of deciding whether their reflexive and transi-
tive closure of is Presburger-definable would directly answer whether the reachability
relations in such systems are Presburger-definable or not.

Indeed, consider the following loop with q1 = qk:

q1
ϕ1(x1,...,x

′
n)−−−−−−−→ q2

ϕ2(x1,...,x
′
n)−−−−−−−→ · · · ϕk−1(x1,...,x

′
n)−−−−−−−−→ qk−1

ϕk(x1,...,x
′
n)−−−−−−−→ qk.

The effect of the loop can be represented by the Presburger formula below:

ψ(�x, �x′) def
= ∃ �y1, . . . , �yk ϕ1(�x, �y1) ∧ ϕ2(�y1, �y2) ∧ · · · ∧ ϕk(�yk, �x′)

The effect of visiting the loop a finite (but unbounded) number of times amounts to
represent symbolically the reflexive and transitive closure of REL(ψ(�x, �x′)). The best
we can hope for is that REL(ψ(�x, �x′))∗ is Presburger-definable.
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Given A ∈ Zn×n, we write A∗ to denote the monoid generated from A with
A∗ = {Ai : i ∈ N}. The identity element is naturally the identity matrix A0 = I .
Given a matrix A ∈ Zn×n, checking whether the monoid generated by A is finite, is
decidable [MAN 77].

A loop in an affine counter system has the finite monoid property
def⇔ its corre-

sponding affine update (A,�b, ψ), possibly obtained by composition of several affine
updates, satisfies that A∗ is finite. Let us introduce below the class of admissible
counter systems.

DEFINITION 8.13 A counter system S is admissible if S is an affine counter system,
its control graph is flat, and each loop has the finite monoid property.

THEOREM 8.14 [BOI 98, FIN 02] Let S be an admissible counter system and q, q′ ∈
Q. We can compute a Presburger formula ϕ such that for every valuation v, we have
v |= ϕ iff (q, (v(x1), . . . ,v(xn)))

∗−→ (q′, (v(x′1), . . . ,v(x
′
n))).

As a corollary, the reachability problem for admissible counter systems is decid-
able. This result can be pushed a bit further by showing that model-checking over
an extension of the temporal logic CTL� with arithmetical constraints for admissi-
ble counter systems is decidable too [DEM 06]. Indeed, theorem 8.14 states that the
reachability relation is indeed Presburger-definable.

If we give up the assumption on the finite monoid property, the reachability prob-
lem is undecidable for flat affine counter systems [COR 02]. However, theorem 8.14
still holds true if we relax the notion of admissibility a bit for instance by allowing that
between two control states for which no transition belongs to a cycle, more than one
transitions are allowed. Giving up the flatness condition in admissible counter systems
also leads to undecidable reachability problems since this new class would capture the
class of counter automata.

As observed in [COM 98, FIN 02, LER 03], flatness is very often essential to get
effective Presburger-definable reachability sets (but of course this is not a necessary
condition, see e.g. [PAR 66, HOP 79, ESP 97]). However, flat counter systems are
seldom natural in real-life applications. Therefore, a relaxed version of flatness has
been considered in [LER 05, DEM 06] so that an initialized counter system (S, (q, �x))
is flattable whenever there is a partial unfolding of (S, (q, �x)) that is flat and has the
same reachability set as (S, (q, �x)). In that way, reachability questions on (S, (q, �x))
can still be decided even in the absence of flatness but in general properties on finite
traces are not preserved. For the sake of completeness, let us provide below basic
definitions about flattable counter systems.
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Let L be a finite union of bounded languages of the form

u1(v1)
∗u2(v2)

∗ · · · (vk)∗uk+1,

where ui ∈ Σ∗, vi ∈ Σ+, Σ = δ is the set of transitions from S such that in the
expression u1(v1)

∗u2(v2)
∗ · · · (vk)∗uk+1, two consecutive transitions share an inter-

mediate control state. So, (S, (q, �x)) is initially flattable [LER 05] if there is some
language L of the above form such that the configurations reachable from (q, �x) are
those reachable by firing the sequences of transitions from L (not every such sequence
leads to a run, partly because counter values should be non-negative). So, there is
some language L of the above form such that

{(q′, �x′) : (q, �x) ∗−→ (q′, �x′)} = {(q′, �x′) : (q, �x) u−→ (q′, �x′), u ∈ L}

For instance, the initialized counter system (S, (q1,�0)) in Figure 8.15 is initially flat-
table (see e.g. further explanations about the phone controller in [COM 00]). Indeed,
whenever the control state q1 is visited, the counters are reset. So, by deleting the tran-
sition from q1 to q6, we obtain a flat counter system without modifying the reachability
set from (q1,�0).

Figure 8.15. Phone controller

Similarly, S is uniformly flattable [LER 05] iff there is some language L of the
above form such that the reachability relation

∗−→ is equal to {((q, �x), (q′, �x′)) : (q, �x) u−→
(q′, �x′), u ∈ L}, which means that reachability can be restricted to sequences of tran-
sitions from a bounded language. Surprisingly, standard classes of counter automata
contain already flattable counter systems, see many examples in [LER 05].
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THEOREM 8.15 [LER 05] Uniformly reversal-bounded counter automata are uni-
formly flattable, reversal-bounded initialized counter automata are initially flattable,
and the finite unions of bounded languages can be effectively computed.

This provides an alternative proof for the effective semilinearity of the reachabil-
ity relation. Indeed, an initialized counter automaton and a finite union of bounded
languages can be simulated by an admissible counter system.

8.4.2. Automata-based approach for Presburger arithmetic

In the previous sections, we have seen that the satisfiability problem for Presburger
arithmetic is decidable and many verification problems for subclasses of counter sys-
tems can be reduced to this problem. In this section, we shall informally describe
the decidability of satisfiability problem for Presburger arithmetic by translation into
the non-emptiness problem for finite-state automata. The use of automata for logical
decision problems goes back to [BÜC 60a] and we shall provide below the approach
by automatic structures developed in [BOU 96, BLU 00] (see also [WOL 95]). The
seminal paper [BÜC 60b] describes how to use the automata-based approach to deal
with Presburger arithmetic. Of course, other decision procedures exist for Presburger
arithmetic: for instance, quantifier elimination method from [RED 78] improves the
method developped in [COO 72].

Before presenting the principles of the automata-based approach for Presburger
arithmetic, let us mention that in general, the automata-based approach consists in
reducing logical problems into automata-based decision problems in order to take
advantage of known results from automata theory. Alternatively, this can be viewed
as a means to transform declarative statements (typically formulae) into operational
devices (typically automata with sometimes rudimentary computational power). The
most standard target problems in automata used in this approach is the non-emptiness
problem that checks whether an automaton admits at least one accepting computation.
A pioneering work by Büchi [BÜC 60a] show that Büchi automata are equivalent to
formulae in monadic second-order logic (MSO) over (N, <); models of a formula
built over the second-order variables P1, . . . , PN are ω-sequences over the alphabet
P({P1, . . . , PN}). In full generality, the following are a few desirable properties of
the approach:

– the reduction should be conceptually simple, apart from being semantically faith-
ful;

– the computational complexity of the automata-based target problem should be
well-characterized. In that way, a complexity upper bound is obtained to solve the
source logical problem;

– last but not least, the reduction should preferably allow the optimal complexity
for the source logical problem to be obtained.
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We have seen that each Presburger formula ϕ with n ≥ 1 free variables defines a
subset of Nn, namely REL(ϕ) ⊆ Nn, that corresponds to the set of variable valuations
that makeϕ true. For instance, REL(x = y+z) = {(k1, k2, k3) ∈ N3 : k1 = k2+k3}.
The automata-based approach for Presburger arithmetic consists of representing the
tuples in REL(ϕ) by a regular language that can be effectively defined, for instance
with the help of a finite-state automaton. In that way, satisfiability ofϕ, which is equiv-
alent to the non-emptiness of REL(ϕ), becomes equivalent to the non-emptinesss of a
finite-state automaton (which is an easy problem to solve once the automaton is built).
In order to define regular languages, first we need to specify how natural numbers
and tuples of natural numers are encoded by words over a finite alphabet. Numerous
options are possible (see e.g. [LER 03, KLA 04b]) and below we adopt a simple and
standard encoding in which natural numbers are viewed as finite words over the alpha-
bet {0, 1} by using a binary representation in which the least significant bit is first. We
adopt a representation of natural numbers that is not unique, for instance the number
five can be encoded by 101 or by 101000. Tuples of natural numbers of dimension
n are represented by finite words over the alphabet {0, 1}n by using an equal length
representation for each number. Typically, the pair

(
5
8

)
can be represented by the

word
(

1
0

) (
0
0

) (
1
0

) (
0
1

) (
0
0

)
over the alphabet {0, 1}2. So, we introduce the

map f : N → P({0, 1}∗) such that f(0)
def
= 0∗ and for k > 0, f(k)

def
= bk · 0∗ where

bk is the shortest binary representation of k (least significant bit first). The map f is
extended to subsets of N in the obvious way as well as to n-tuples of natural numbers
with alphabet {0, 1}n such that f(�x) ⊆ P(({0, 1}n)∗) with �x ∈ Nn and �b ∈ f(�x)

iff for i ∈ [1, n], the projection of �b on the ith row belongs to f(�x(i)). The map f is
typically a state-encoding schema in the sense of [BOI 98, LEG 08].

Given a Presburger formula ϕ with n ≥ 1 free variables and a finite-state automa-
ton A over the alphabet {0, 1}n, we write ϕ ≈ A whenever L(A) = f(REL(ϕ)).

THEOREM 8.16 (see e.g. [BOU 96]) Given a Presburger formula ϕ, we can build a
finite-state automatonAϕ such that ϕ ≈ Aϕ.

We also have REL(ϕ) ⊆ REL(ψ) iff L(Aϕ) ⊆ L(Aψ) (see e.g., [LEG 08, theo-
rem 3.22]).

The finite-state automaton Aϕ can be built recursively over the structure of ϕ.
For instance, conjunction is handled by the product construction, existential quanti-
fier is handled by projection, negation is handled by the complement construction, see
details below. Nevertheless, a crude complexity analysis of the construction of Aϕ

reveals a non-elementary worst-case complexity. Indeed, for every negation, a com-
plementation needs to be operated. However, developments related to the optimal size
of automata can be found in [KLA 04a].
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The recursive definition is based on the following properties. Let ϕ and ψ be
Presburger formulae with free variables x1, . . . , xn.

conjunction If ϕ ≈ A and ψ ≈ B, then ϕ ∧ ψ ≈ A ∩ B where ∩ is the product
construction computing intersection;

negation If ϕ ≈ A, then ¬ϕ ≈ A where · performs complementation, which may
cause an exponential blow-up;

quantification If ϕ ≈ A, then ∃ xn ϕ ≈ A′ where A′ is built over the alphabet

{0, 1}n−1 by forgetting the nth component. Typically, q

b−→ q′ in A′ whenever

there is a transition q

b′−→ q′ in A such that �b and �b′ agree on the n − 1 first bit

values.

In the above construction, we assumed that ϕ and ψ share the same set of free
variables, which does not always hold true for arbitrary formulae. If it is not the case,
ϕ ≈ A and ψ ≈ B, then we perform an operation that consists of adding dummy bits.
For instance, suppose that ϕ contains the free variables x1, . . . , xn. We can build the
automatonA′ over the alphabet {0, 1}n+1 obtained by adding the n+1th component.

Typically, q

b−→ q′ in A′ whenever there is a transition q


b′−→ q′ in A such that �b and �b′
agree on the n first bit values. It remains to deal with atomic formulae to achieve the
inductive building of the automaton.

The proof of theorem 8.16 is clearly based on the above constructions but we
need to complete the argument in order to deal with atomic formulae. Without any
loss of generality, we can restrict ourselves to equalities of the form x = y + z (at
the cost of introducing new variables in order to deal with sums made of more than
two variables). Such a restriction is only helpful to simplify the presentation of the
method but it makes sense to consider the full language with linear constraints in order
to optimize the reduction to automata, see e.g. [BOI 02, BOU 96]. The variables in
x = y + z are not necessarily distinct.

The automaton for x1 = x2 + x3 is described in the left part of Figure 8.16 where
q1 is the initial state as well as the final state. The state q1 represents a carry-over of 0
whereas the state q2 represents a carry-over of 1. We can check that (x1 = x2 + x3) ≈
A. The right part of Figure 8.16 describes the automaton for x1 = x2 + x2.

Figure 8.16. Finite-state automata for x1 = x2 + x3 and x1 = x2 + x2
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The automata-based approach for Presburger arithmetic can be extended to richer
theories such as (R,Z,+,≤), see e.g. [BOI 02], or can be refined by providing other
reductions, see e.g. [LER 03, KLA 04a, SCH 07]. An overview of automata-based
decision procedures for Presburger arithmetic and related formalisms can be found
in [KLA 04a].

8.4.3. A selection of tools for Presburger arithmetic

So far, we have seen how to reduce verification problems into the satisfiability
problem for Presburger arithmetic. Then, we presented the principle of an automata-
based decision procedure for Presburger arithmetic by viewing sets of tuples defined
in Presburger arithmetic as regular languages. Below, we provide a (non-exhaustive)
list of tools that can handle first-order logics with linear arithmetic. In that way, we
have provided the natural set of steps to perform formal verification of infinite-state
systems dealing with counters:

– LIRA implements decision procedures based on automata-theoretic techniques
for the first-order theory of (Z,+, <) and for other related logics with linear arith-
metic [BEC 07]. It is closely related to MONA [BIE 96], LASH [BOI 01] and
PRESTAF [COU 05]. Contrary to numerous SMT solvers, LIRA can handle quan-
tifiers (this is also true for MONA and LASH very briefly described below);

– the MONA tool provides an implementation for the automata-based decision
procedure for weak monadic second-order logic WS1S [BIE 96]. The logic WS1S is
known to be strongly related to Presburger arithmetic, see e.g. [BÜC 60b];

– LASH is an automata library that provides the implementation of standard con-
structions on automata [BOI 01] as well as constructions for linear inequations. Com-
parisons of data structures used in MONA and LASH can be found in [KLA 04a,
Chapter 5]. As an application domain, LASH has been used successfully to verify
properties on counter systems, see e.g., [BOI 98];

– TAPAS is a suite of libraries [LER 09] dedicated to first-order logics of linear
arithmetic. The application programming interface GENEPI for such logics encapsu-
late many standard solvers such as LIRA or MONA. FAST [BAR 06] is a tool over
TAPAS that is designed to verify reachability properties of counter systems; this is a
client application in TAPAS;

– the tool CVC3 is an automatic theorem prover for Satisfiability Modulo first-
order Theories (SMT), see e.g., [BAR 08], [BAR 07]. CVC3 is the last offspring of
a series of popular SMT provers, which originated at Stanford University with the
SVC system. In particular, it builds on the code base of CVC Lite, its most recent
predecessor. The automatic theorem prover CVC3 (and the new version CVC4) is
a tool that can prove the validity of first-order formulae in a large number of built-
in logical theories, including rational and integer linear arithmetic, arrays, tuples, bit
vectors, etc;

– Z3 is an efficient SMT solver, see e.g., [MOU 08], that can deal with linear real
and integer arithmetic. This is an SMT solver developed by Microsoft Research that
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is freely available for academic research. Z3 is designed to tackle problems that arise
in software verification and software analysis.

8.5. Concluding remarks

The verification of infinite-state systems is a very tough problem for which deci-
sion procedures do not always exist. In this chapter, we have illustrated the verification
methods for such systems on recursive Petri nets and on subclasses of counter systems.

As far as SRPNs are concerned, we have seen that the addition of recursion to
Petri nets increases the expressive power of the computational model even though
some of the verification problems remain decidable, such as the reachability problem.
The decidability proof for that problem on SRPNs uses a solver for the reachability
problem for standard Petri nets as a blackbox. Similarly, the computation of linear
invariants for Petri nets can be adapted to SRPNs as shown in section 8.3.

As far as counter systems are concerned, we have shown how to reduce a verifica-
tion problem in a subclass of counter systems (for instance for the reversal-bounded
counter automata) into satisfiability in some first-order theory. In order to solve the
instances of the logical problem, one option consists of eliminating quantifiers and
then using dedicated SMT solvers such as Z3 or CVC3. Alternatively, a Presburger
formula can be effectively transformed into a finite-state automaton such that satisfia-
bility is equivalent to the non-emptiness of the language recognized by the automaton.
This allows the use of tools dedicated to decision procedures for automata such as
LIRA or LASH. Alternatively, the formula can be given to a suite of libraries such as
TAPAS and then satisfiability can be checked with any standard solver that is plugged
in.

At some abstract level, similar ideas can be found to verify timed systems with
real-time constraints (timed automata, timed Petri nets, see e.g. Chapter 9) or push-
down systems even though the methods are undertaken differently. The wealth of
infinite-state systems as well as the diversity of properties that require verification
has induced the development of numerous methods and tools even though two central
problems always need to be solved in order to run verification tools:

1) how do you symbolically represent an infinite set (configurations, processes,
data)?

2) which data structures allow you to represent concisely such sets (when possible)
in order to effectively manipulate the symbolic representations in verification tools?
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Chapter 9

Verification of Timed Systems

9.1. Introduction

This chapter is devoted to the presentation of verification techniques for systems
involving quantitative time constraints. Different ways of modeling such systems have
been presented in Chapter 4. In this chapter, we present different results ranging from
well established techniques (such as the region graph construction for timed automata)
to more advanced issues (such as the implementability of timed automata).

Main methods to tame timed systems

Timed systems are a particular type of infinite-state systems in which the state
space involves dense time variables. A general introduction on the verification tech-
niques used to infinite-state systems can be found in Chapter 8. The most standard
tool used to analyze timed systems is the symbolic representation of configurations,
i.e. the identification of a framework that enables the finite representation of infinitely
many configurations.

For some classes of timed systems, we can even use such a symbolic represen-
tation to transform the timed system into a finite-state system on which the property
can be decided. In this chapter, we present such symbolic representations for sev-
eral classes of timed systems. The first presentations of such constructions are the
state-class graph for time Petri nets [BER 83], and the region graph for timed au-
tomata [ALU 94].
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These reductions to finite-state systems are usually based on an equivalence rela-
tion between configurations that admits a finite number of equivalence classes. How-
ever, it can also be the case that this equivalence admits an infinite number of classes,
and still yields decidability results, for instance if there exists a well quasi-order on
the equivalence classes.

From decidability to efficient procedures

Although the previously mentioned techniques allow decidability results to be
proved, the algorithms resulting from them are not always the most efficient. For in-
stance, for the class of timed automata, while the region graph construction is comonly
used to prove decidability, it is never computed in practice. As an alternative, the
symbolic representation of zones is considered which, though not always theoretically
optimal, often yields much better algorithms in practice.

In this chapter we are mainly interested in decidability results, and thus we do not
present such algorithms. However, most of the positive results presented here have
been turned into efficient procedures.

Implementability of timed systems

Implementing mathematical models on physical machines is an important step for
applying theoretical results to practical examples. This step is well-understood for
many untimed models that have been studied (e.g. finite automata, pushdown au-
tomata). In the timed setting, while timed automata are widely-accepted as a frame-
work for modeling real-time aspects of systems, it is known that they cannot be faith-
fully implemented on finite-speed central processing units (CPUs) [CAS 02]. Study-
ing the “implementability” of timed automata is thus a challenging problem which has
obvious theoretical and practical interest.

Structure of the chapter

Section 9.2 is elaborated around the standard region graph construction for timed
automata. After describing it precisely, we will present other models with a finite-state
abstraction of their state space, and decidability results for temporal logics resulting
from these abstractions.

When considering extensions of Petri nets with time, we obtain models that are
infinite “in two directions”. We present in section 9.3 the setting of timed Petri nets,
for which an equivalence relation with an infinite number of equivalence classes can
be used to prove decidability results.

Finally, we discuss in section 9.4 implementability issues in timed automata, and
present a recent approach based on a parametric semantics for timed automata.
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9.2. Construction of the region graph

To decide reachability properties in timed systems, many positive results are based
on the construction of a finite-state automaton that abstracts the timed system. The
construction ensures that checking whether a configuration (or a set of configurations)
is reachable in the timed system is equivalent to checking whether a state (or a set
of states) is reachable in the finite automaton. More precisely, this construction often
yields a finite state automaton that precisely accepts all the untimed words that can be
obtained from the timed words accepted by the timed automaton by dropping out the
time components. The standard way to obtain such an abstraction is the construction
of an equivalence relation of finite index (i.e. with finitely many equivalence classes)
over the configurations. To be compatible with reachability checking, this equivalence
must ensure that from two equivalent configurations, the same behaviors will be pos-
sible. In timed systems, there are two types of transitions, time elapsing, and discrete
firing of a transition: if from a configuration, it is possible to delay (respectively to take
a transition), then this can occur from an equivalent configuration, and the two con-
figurations resulting from the two moves are then also equivalent. However, precise
delays need not to be respected, and thus the equivalence will only be a time-abstract
bisimulation (unlike timed bisimulations defined in Chapter 4).

9.2.1. Timed automata

We describe a notion of regions initially presented in [ALU 90, ALU 94] for the
decision of the reachability of a location in a timed automaton.

The equivalence relation

For timed automata, an equivalence relation (with finite index) verifying the above
properties always exists, and it can be defined as follows. Let A be a timed automa-
ton with set of clocks X and maximal constant M . Without loss of generality, we
assume that all constants of A are integers, this can be obtained by multiplying all
the constants by the same value. Two configurations (q, v) and (q′, v′) are equivalent
if q = q′ and v ≡M v′, where the relation v ≡M v′ holds whenever for each clock
x ∈ X ,

1) v(x) > M ⇐⇒ v′(x) > M ;

2) if v(x) ≤M , then 1 %v(x)& = %v′(x)&, and 〈v(x)〉 = 0 ⇐⇒ 〈v′(x)〉 = 0,
and for each pair of clocks (x, y);

3) if v(x) ≤M and v(y) ≤M , then 〈v(x)〉 ≤ 〈v(y)〉 ⇐⇒ 〈v′(x)〉 ≤ 〈v′(y)〉.

As M is defined as the maximal constant appearing in A, the two first conditions
imply that two equivalent valuations satisfy exactly the same clock constraints of the

1. �v(x)� (resp. 〈v(x)〉) denotes the integral part of v(x) (resp. its fractional part).
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Figure 9.1. Partitions of the upper-right quarter of the plane

timed automaton. The third condition ensures that from two equivalent configurations,
letting time elapse will lead to the same integral values for the clocks, in the very same
order. The equivalence≡M is called the region equivalence, and an equivalence class
is then called a region. We denote the set of regions obtained in this way as RM (X).
More formally, we have, given two clock valuations v, v′ ∈ RX

+ ,

v ≡M v′ ⇒
{

for any constraint g in A, v |= g ⇐⇒ v′ |= g
∀d ∈ R+, ∃d′ ∈ R+ s.t. v + d ≡M v′ + d′ (9.1)

We can verify that the number of regions is bounded by n! ·2n · (2M +2)n, where
n denotes the number of clocks. Indeed, a region is characterized by specifying:

(i) a mapping from clocks to the set of so-called one-dimensional regions
{[0, 0], ]0, 1[, [1, 1], . . . , ]M − 1,M [, [M,M ], ]M,+∞[};
(ii) for each pair of clocks x and y such that, according to point (i), both clocks have
non-nul fractional parts and are bounded by M , whether 〈x〉 is less than, equal to, or
greater than 〈y〉.

Point (i) yields (2M+2)n choices as there are 2M+2 one-dimensional regions. Point
(ii) is characterized by a subset of representative clocks (thus at most 2n choices) and
an order on clocks (at most n! choices). Indeed, we can obtain the strict/non-strict
order on fractional values clocks from the order on clocks by collapsing it on the
representative clocks.

To illustrate this definition, we consider the case of two clocks x and y, with max-
imal constant 2. A valuation can then be understood as a point in the quarter of the
plan depicted in Figure 9.1(a). The partition depicted in Figure 9.1(a) respects all
constraints defined with integral constants smaller than or equal to 2, but the two val-
uations v and v′ are not equivalent due to time elapsing (item 3 above): indeed, if we
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1 < x < 2 ∧ 2 < y

x = 0 ∧ y = 2

0 < y − 1 < x < 1

0 < x− 1 = y < 1

Figure 9.2. The 44 regions in two dimensions with maximal constant 2

let some time elapse from the valuation v, we will first satisfy the constraint y = 1 and
then x = 1, while it will be the converse from the valuation v′. Hence, the possible
behaviors from v and v′ are different. More precisely, property (9.1) is not satisfied:
there exists a delay d such that v + d satisfies the constraint x < 1 ∧ y = 1, while
there exists no such delay for valuation v′. To handle time elapsing constraints in-
duced by time-elapsing, condition 3) refines the partition of Figure 9.1(a) by adding
diagonal lines. The resulting partition is given in Figure 9.1(b) and is a time-abstract
bisimulation.

Following the above characterization of regions, they can be represented by the
linear equalities and inequalities satisfied by the valuations they represent. All the
regions of our example are represented in Figure 9.2. Note that there are different
types of regions: regions reduced to a single element (corners), regions composed
of a segment, regions composed of a half-line, regions composed of a triangle, etc.
Examples of constraints associated with regions are given in this figure.

Construction of the region automaton

We present now how regions allow a finite-state automaton to be built that ac-
cepts the untimed language of the timed automaton. States of this automaton are pairs
(q, R) composed of a control state of A and of a region of RM (X). There exists a
transition (q, R)

a−→ (q′, R′) if, and only if, there exists a transition q
g,a,r−−−→ q′ in A,

a valuation v in the equivalence class R, and a non-negative duration t ∈ R+ such
that v + t |= g and v′ = (v + t)[r ← 0] belongs to the equivalence class R′. Note
that in this definition, a transition in the region automaton represents an action tran-
sition preceded by a delay transition. We could also define transitions in the region
automaton to explicitely represent delay transitions in the timed automaton in order
to express qualitative properties on time elpasing. We denote by R(A) the result-
ing finite-state automaton, which we call the region automaton. Recall that operator
Untime projects a timed language on its untimed component. We can easily prove
the following property:
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PROPOSITION 9.1 Let A be a timed automaton. We have:

L(R(A)) = Untime(L(A))

As a consequence, we obtain:

THEOREM 9.2 ([ALU 94]) The two following problems are PSPACE-complete:

– Checking the emptiness of the language of a timed automaton;

– Checking the reachability of a location in a timed automaton.

These problems are already PSPACE-hard for a fixed number k of clocks, with k ≥ 3.

These two problems can be reduced to each other by considering accepting lo-
cations. PSPACE-membership can be deduced from the construction of the region
automaton of a timed automaton, considering the bound given above on the number
of regions. Indeed, the number of locations of the region automaton is exponential in
the size of the timed automaton, and can thus be stored in polynomial space. Then, an
NPSPACE procedure simply guesses the path allowing the location to be reached, and
checks that the path is correct with polynomial space. As there are exponentially many
locations in the region automaton, the length of this path is at most exponential, and
can thus also be stored in polynomial space. We conclude with Savitch’s theorem. To
prove the PSPACE-hardness, one can encode the behavior of a linearly space bounded
Turing machine on a given input. In this encoding, clock values are used to represent
the content of the tape during the execution of the Turing machine.

To conclude this section, we illustrate the construction of the region automaton
with an example. Consider the timed automaton depicted on Figure 9.3, which has
two clocks x and y. The region automaton resulting from the previous definitions is
depicted on Figure 9.3(b). In each of its location, the location of the timed automaton
and the constraint corresponding to the region are given. The language of this automa-
ton is a∗a2b. In particular, this shows that in order to reach the accepting location in
the timed automaton, the loop should be fired twice around location �1.

9.2.2. Other timed models with finite-state abstractions

Region construction is a very standard tool for proving decidability results in timed
systems. In the chapter, we sketch other region constructions for extensions of timed
automata or for other timed models.

Models and Analysis in Distributed Systems
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Figure 9.3. A timed automaton and its region automaton

Extensions of timed automata

Timed automata constitute an extension of finite-state automata equipped with
clocks, in which transitions are labeled by conditions on clock values, and by op-
erations of updates on clock values. In the original model of Alur and Dill, conditions
are Boolean combinations of comparisons of a clock with a constant and updates are
simply resets to zero.

These two aspects can be extended in different ways, and several works have
studied such extensions. We briefly present here some of the results established
in [BOU 04].

In this work, conditions are extended with so-called diagonal constraints. Such
constraints are of the form x − y ∼ c, where x and y are clock variables and ∼∈ {≤
, <,=, >,≥}. They are called diagonal as they involve the difference between two
clocks.

Regarding updates, they consider several extensions of the standard zero reset:

– reset to a constant value different from zero: x := c;

– reset to the value of another clock: x := y;

– incrementation: x := x+ 1;

– decrementation: x := x− 1;
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U0(X)∪ Diagonal free constraints General constraints
x := c, x := y

PSPACE-complete
PSPACE-complete

x := x+ 1
Undecidable

x := x− 1 Undecidable

Table 9.1. Decidability status of extensions of timed automata

1 < x < 2 ∧ 2 < y
∧1 < y − x < 2

0

y

1

2

2

1 x

Figure 9.4. Partition compatible with the presence of diagonal constraints

Denoting U0(X) as the standard set of updates allowed in timed automata, some
of the results of [BOU 04] are summarized in Table 9.1. Among them, it is interesting
to note that while adding decrementation to updates always leads to undecidability, it
is possible to allow incrementation if diagonal constraints are not allowed.

To obtain the decidability results presented in this table, the authors exhibit differ-
ent conditions of compatibility of a set of regions with a set of updates and/or a set
of clock conditions. In some cases, it is possible to explicitly build regions verifying
these compatibility conditions. We describe such a case below. However, in more
involved cases, the author expresses the existence of compatible regions as the solu-
tion of a system of diphantine equations, and prove that this sytem always admits a
solution. Note that to prove some of these results, we could also reduce the problem
to standard timed automata by using automata translations. For instance, this can be
done for diagonal constraints [BÉR 98].

Regions in presence of diagonal constraints. We describe here a construction of
regions for a system composed of two clocks x and y, containing diagonal constraints,
and whose maximal constant is 2. A possible partition of the set of clock valuations is
described on Figure 9.4. We can easily verify that this partition ensures property (9.1),
and that it is compatible with the reset operation (the result of a region by a reset is
still a region). In the general case of a set of clocks X and a maximal constant M , in
addition to the constaints defined in section 9.2.1, we have to consider constraints of
the form x− y ≤ c, for any pair of clocks x, y and any c ∈ {0, 1, . . . ,M}.
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q0, 1 q1, 2 q2, 2
x1 < 1, a, x2 := 0 x1 + 2x2 = 1, b

Figure 9.5. An interrupt timed automaton

Interrupt timed automata

The model of interrupt timed automata has recently been introduced in [BÉR 09]
to model multi-task systems with interruptions.

We recalled in Chapter 4 that the class of hybrid automata is undecidable. An
interesting subclass is the class of stopwatch automata, which extends timed automata
by allowing clock variables to be frozen. However, the reachability problem is also
undecidable for this class.

Interrupt timed automata form a subclass of stopwatch automata, where the real
valued variables (with rate 0 or 1) are organized along priority levels. As proved
in [BÉR 09], untiming languages accepted by these models yields regular languages
with the effective construction of a region automaton.

We will not precisely describe the model, but will indicate on how it operates and
comment on the proof of decidability. In an interrupt timed automaton, the set of lo-
cations is partitioned into interrupt levels, denoted by integers 1, . . . , n. In addition,
a unique clock is associated with each level, denoted by xi for level i, and in a loca-
tion of level i, only clock xi is active (i.e. evolves when time elapses). The clocks
from lower levels are suspended, as stopwatches, and those from higher levels are not
relevant. Regarding transitions, the guard of a transition leaving a location of level
k can be any linear constraint involving clocks x1, . . . , xk . Finally, concerning up-
dates, if the transition enters a location of level k′ with k < k′, then the new clocks
xk+1, . . . , xk′ are simply reset to zero. Other clocks can reset using linear constraints
involving clocks from strictly lower levels. If the transition does not strictly increase
the level, then only clocks x1, . . . , xk can be reset, using linear constraints involving
clocks from strictly lower levels.

As an example, an interrupt timed automaton considered in [BÉR 09] is depicted in
Figure 9.5. In this figure, the level of locations is indicated beside its name. Location
q0 is the initial location with level 1. Locations q1 and q2 are on level 2, and location
q2 is the final location. As there are two levels, there are thus two interrupt clocks x1

and x2. Consider an execution in this model. The constraint x1 < 1 on the transition
labeled by a implies that it is fired after a delay 1 − τ , with 0 < τ ≤ 1, reaching
a configuration (q1, v) where v is the clock valuation defined by v(x1) = 1 − τ and
v(x2) = 0. Then, the second transition is fired after a delay τ ′ which must satisfy
(1 − τ) + 2τ ′ = 1. This yields τ ′ = τ

2 and thus the timed language accepted by
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this interrupt timed automaton is L = {(a, 1 − τ)(b, 1 − τ
2 ) | 0 < τ ≤ 1}. Note in

particular that this language cannot be accepted by a timed automaton.

The construction of the region automaton for interrupt timed automata extends the
construction of [ALU 94] as follows. For timed automata, we defined regions as par-
titions of the set of clock valuations that respect constraints appearing in the timed
automaton, and that are compatible with time elapsing and reset. In the setting of
interrupt timed automata, clock constraints are more general as they involve linear
constraints on interrupt clocks. Similarly, updates are also more general. Thus, we
define here the set Ek of linear constraints for each level k, which can be built in the
interrupt timed automaton on level k (this includes guards of level k, but also com-
binations with updates of higher levels). Then, regions associated with location q are
characterized by a total preorder on Ek, for each 1 ≤ k ≤ λ(q), where λ(q) denotes
the level of q. Intuitively, this is used to ensure that two clock valuations belonging to
the same region give the same order to all the linear constraints in which they could be
evaluated. This implies that the same time elapsing and the same discrete transitions
are possible. This can be used to prove the correctness of the construction of a re-
gion automaton for interrupt timed automata. As for timed automata, this automaton
is time-abstract bisimilar to the original model, and thus it recognizes the untiming
of the language of the interrupt timed automaton. The complete description of this
procedure, and its application on the example of Figure 9.5 can be found in [BÉR 09].

Time Petri nets

We conclude this subsection with the setting of time Petri nets, a model presented
in Chapter 4. Note that the set of states of a time Petri net may be infinite for two
reasons: on one hand because it can admit an unbounded number of (untimed) mark-
ings and, on the other hand, because its semantics is a timed transition system which
involves unbounded (and dense) clock valuations.

Most verification problems are undecidable for time Petri nets, and thus for ver-
ification issues of this model, one considers bounded time Petri nets, i.e. time Petri
nets that admit a finite number of (untimed) reachable markings. We will present in
the next section decidability results for timed Petri nets, which, however, also have an
infinite state space “for two reasons”.

Decidability results for bounded time Petri nets rely on the construction of the
so-called state class graph [BER 83, BER 91], which can be seen as the construction
of a region graph. This construction preserves the reachable markings and the LTL
properties. Other graph constructions have been proposed that decide the reachability
of a configuration of the time Petri net, or that decide whether a CTL property is
satisfied [BER 03].

LetN = (P, T,Σε, P re, Post,M0, λ, I) be a time Petri net. A state class is a pair
(M,D) composed of a marking M on places P , and a firing domain D. The firing
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domain should give, for each enabled transition t, the set of delays after which the
timing constraint of t is satisfied. Formally, it is given by a system of linear inequalities
involving one variable per enabled transition. Two state classes (M,D) and (M ′, D′)
are said equivalent, denoted (M,D) ∼= (M ′, D′), whenever M = M ′ and D and D′

have equal solution sets.

Notations. Let t ∈ T be a transition. By definition I(t) gives the interval of firing
of t. We denote by eft(t), which stands for the earliest firing time, (resp. lf t(t),
which stands for the latest firing time) the left-bound (resp. the right-bound) of I(t).
In the sequel, we denote by xt a variable associated with transition t.

The construction of the state class graph proceeds as follows:
Initialization: the initial state class is (M0, D0) where D0 is defined by the following
set of inequations: {eft(t) ≤ xt ≤ lf t(t) | •t ≤M0};
New Successor: let (M,D) be a state class built by the procedure. Transition t is
firable from (M,D) if and only if the two following conditions are satisfied:

(i) •t ≤M (discrete enabledness), and

(ii) the system D ∧ {xt ≤ xt′ | t′ �= t ∧ •t′ ≤M} admits a solution.

Let t be a transition satisfying these conditions, then we build a new state class, de-
noted (M ′, D′), which is the successor of (M,D) by the transition t. This state class
is defined by M ′ = M − •t+ t•, and D′ is obtained by:

(a) D := D ∧ {xt ≤ xt′ | t′ �= t ∧ •t′ ≤M};
(b) for each transition u enabled at M ′, a new variable x′

u is introduced, obeying:
x′
u = xu − xt if the predicate 2 ↑enabled(u,M, t) evaluates to false,

eft(u) ≤ x′
u ≤ lf t(u) otherwise;

(c) variables xv for v ∈ T are eliminated by considering an existential quantifica-
tion for these variables (this is possible in linear arithmetic over real numbers).

In this construction, when a new state class is built, if an equivalent state class
(with respect to relation ∼= defined above) exists in the graph, then the two nodes of
the graph are merged. The equivalence∼= can be checked by transforming the systems
of linear inequalities into canonical forms. Indeed, these systems are conjunctions
of inequalities on differences of variables. Thus, a canonical form can be obtained
by the computation of the strongest constraints, what can be obtained by a “shortest
paths” algorithm, for instance the Floyd-Warshall algorithm. Note that while the time
complexity of the general Floyd-Warshall algorithm is O(n3) where n denotes the
number of variables, the computation of a canonical form after the above operations
can be performed in time O(n2) if the previous constraints were in canonical form.

2. See Chapter 4 for the definition of this predicate.
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Then, we can state the following theorem:

THEOREM 9.3 ([BER 83]) Let N be a bounded time Petri net, then the state class
graph ofN is finite and recognizes the language Untime(L(N )).

To conclude this section, we illustrate this construction with an example. We con-
sider the time Petri nets depicted in Figure 4.12 of Chapter 4. The state class graph
obtained by the procedure described above applied on this time Petri net is depicted
in Figure 9.6. In this figure, we represent the marking and the constraints defining the
firing domain in each node state class. On each transition, we write both the name of
the transition from the original time Petri net and its label. Note that variable xi refers
to transition ti. When no transition is enabled in a marking, we denote by ⊥ the firing
domain. Consider the transition labeled by a between markings p1 + p2 + p3 and
p2 + 2p3. This corresponds to the firing of transition t1 of the net. The firing of this
transition from this marking does not newly enable transition t3, but it newly enables
transition t2. As a consequence, the constraint associated with t3 has been modified,
since it is deduced from the fact that at least one time-unit has elapsed to allow the
firing of t1. On the contrary, the constraint associated with t2 is fresh, as t2 is newly
enabled. Note also that the discrete structure of the graph is different from that of the
reachability of the underlying Petri net. Indeed, marking p3 is represented twice with
different constraints.

9.2.3. Application to the decision of temporal logics

The region construction of timed automata also has consequences on the decid-
ability results of model checking. We present here two model-checking algorithms
for timed automata based on the region automaton construction.

Model checking LTL

The model checking of LTL properties for finite-state systems was presented in
subsection 7.4.2. It relies on the construction of a Büchi automaton for the LTL for-
mula, and of its synchronized product with the automaton of the model. Following
Proposition 9.1, which states that the untimed language is preserved by the region
automaton construction, the same process can be applied on the region automaton,
yielding the decidability of the LTL model checking for timed automata.

Model checking TCTL

The timed logic TCTL has been presented in Chapter 4. It constitutes a timed
extension of the branching logic CTL. We present here an adaptation of the region
automaton construction which allows to decide whether a timed automaton satisfies a
property expressed as a TCTL formula.
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Figure 9.6. A state class graph of a time Petri net

THEOREM 9.4 ([ALU 93]) Model checking TCTL over timed automata is decidable
and the problem is PSPACE-complete.

The model checking of TCTL formulas on timed automata can be reduced to the
model checking of a CTL formula on a modified region automaton. We describe here
how this procedure works. The central property of the equivalence used above to
define the regions of a timed automaton is its consistency with TCTL formula: let
A = (Σ, X,Q, q0,Δ) be a timed automaton,≡M the associated equivalence relation,
q ∈ Q a state and v ≡M v′ two equivalent valuations. Then for each formula φ of
TCTL, (q, v) |= φ ⇐⇒ (q, v′) |= φ. The proof of this property relies on a notion of
equivalence between runs, extending the equivalence between valuations. Then, for
model checking, a construction similar to that for the region automaton is performed,
which additionally takes into account the formula φ that A must satisfy:

– a new clock zφ (not in X) is added to measure delays associated with subformu-
las of φ. We set X∗ = X ∪ {zφ};
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– recall that M is the maximal constant associated with A. In order to take into
account the constants appearing in the time constraints of the subformulas, we denote
the largest of these constants as Mφ and we set M ′ = max(M,Mφ).

Then a region automaton HA is built from A with X∗ as set of clocks and M ′ as
maximal constant. States are thus elements of the form (q, R), where q is a location of
A and R ∈ RM ′ (X∗) is a region involving one more component than regions on X ,
corresponding to the values of the special clock zφ. In this construction, the case of
boundary regions must also be handled by modifying some transitions (we omit these
technical details here). The last step before applying the CTL labeling algorithm is to
add atomic propositions p ∼ c to label the states of HA: a state (q, R) is labeled by
p ∼ c if the value of zφ in the region R satisfies the constraint zφ ∼ c. For instance, to
handle a formula like φ : AF<3P , meaning that atomic proposition P will hold on all
runs before three time units, we transform the condition for a configuration (q, v) |= φ
into (q, [v, 0]) |= AF (P ∧ p < 3) in HA.

In other words, from a state where the value of zφ is equal to 0, a state can always
be reached where P holds and at the same time the value of zφ is less than 3. The
construction is illustrated on the timed automaton of Figure 9.3. This timed automaton
has two clocks x and y and 1 as maximal constant 1. We also choose 1 for Mφ, so
we can deal with formulas using 0 or 1 as constants. The region automaton HA is
thus built with M = 1. For the sake of simplicity, consider only formulas with one
level (no nested formulas). Then the clock z is never reset (as clock y in this example)
and thus the region automaton HA is obtained from the region automaton depicted in
Figure 9.3(b) by letting z be equal to y in all regions.

To conclude this section, note that this technique can be adapted to obtain a proce-
dure for the model checking of the timed logic Lν [LAR 95].

9.3. Handling infinite abstractions

The different settings presented in the previous section share the property of admit-
ting an equivalence relation of a finite index. This yields a finite number of regions and
thus allows decidability results to be deduced. We present here a setting in which the
number on regions is infinite, but still yields a decidability result, through additional
techniques of infinite state systems (here, well quasi orders). This setting concerns the
model of timed Petri nets, an extension of Petri nets which model timed systems. We
do not recall here the model as it was presented in Chapter 4.

A lazy semantics

As for the model of time Petri nets, the set of reachable states of a time Petri net
may be infinite for two reasons: on the one hand because it can admit an unbounded
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number of (untimed) markings and, on the other hand, because its semantics involves
unbounded (dense) clock valuations. However, as we will see, several problems are
decidable for this model. This positive property partly follows from the fact that the
semantics of time Petri nets is urgent, while the semantics of timed Petri nets is lazy. In
time Petri nets, when a transition is enabled, it cannot get disabled by time elapsing.
On the opposite, in timed Petri nets, one can miss the firing of a transition by time
elapsing. This induces a monotony property for timed Petri nets, not satisfied by time
Petri nets, that is central in the decidability results we present in this section.

9.3.1. A symbolic representation for timed Petri nets

Let N = (P, T,Σε, P re, Post,M0,Λ) be a timed Petri net where the bounds of
intervals are in IN≥0 ∪ {∞}. There is no loss of generality in assuming that finite
bounds of the net are integers (otherwise we refine the granularity of the regions).

Definition of the Coverability problem. Let N be a finite set of markings with
integral ages (again, we could pick rational numbers and refine the granularity). By
N↑, we denote the upward closure of N , i.e., the set {ν | ∃ν′ ∈ N, ν′ ≤ ν} (where
the order is the standard order of Bag(P × R+)). The coverability problem for N
and set of configurations N asks whether there exists a path in N from ν0, the initial
configuration ofN , to some ν ∈ N↑. We prove the following result.

THEOREM 9.5 (Coverability Problem [ABD 01]) The coverability problem is de-
cidable for timed Petri nets.

In order to prove this theorem, we introduce the notion of region for timed Petri
nets. Such a construction has been done for example in [MAH 05] for timed Petri nets,
and has been used recently in several other contexts [OUA 04, OUA 05, LAS 05], and
extended to timed Petri nets with read-arcs in [BOU 08a]. By max we denote the
maximal integer appearing in the bounds of intervals of the net and in the ages of the
tokens in the configurations of N .

DEFINITION 9.6 A region R for N is a sequence a0a1 . . . ana∞ where n ∈ IN≥0,
for all 0 ≤ i ≤ n, ai ∈ Bag(P × {0, 1, . . . ,max}) with size(ai) �= 0 if i �= 0, and
a∞ ∈ Bag(P × {∞}).

We first informally explain the semantics of a region. Given the bag of tokens
defining a configuration, we obtain its associated region as follows. We put in a∞
all the tokens whose ages are strictly greater than max and forget their ages. We
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then put in a0 the tokens with integral ages and add the information about their ages.
Finally, we order the remaining tokens depending on the fractional part of their ages
in a1, . . . , an, forget their fractional part, and only store the integral part of their ages.
Hence n is the number of different positive fractional values for ages of the remaining
tokens. For instance, consider the bag of tokens (p, 1)+(p, 2.8)+(q, 0.8)+(q, 5.1)+
(r, 1.5). Then, if the maximal constant is 4, its region encoding will be a0a1a2a∞
where a0 = (p, 1) (because there is a single token with integral age), a∞ = (q,∞)
(because the age of token (q, 5.1) is 5.1, hence above the maximal constant), a1 =
(r, 1) (among all fractional parts, 0.5 is the smallest one), and a2 = (p, 2)+ (q, 0) (all
tokens with fractional part 0.8).

We now define more formally the semantics of the regions. Let φ be the mapping
from R+ to {0, 1, . . . ,max,∞} defined by: if x > max then φ(x) =∞ else φ(x) =
%x&. We extend φ to P ×R+ by φ((p, x)) = (p, φ(x)) and to Bag(P × R+) by
linearity. Let us recall the order defined on finite multisets (also called bags). An
element m ∈ Bag(Z) is a mapping with finite domain from Z to N. Given m,m′ ∈
Bag(Z), m ≤ m′ holds if, and only if, for all z ∈ Z , we have m(z) ≤ m′(z). To
ease the reading, given z ∈ Z and m ∈ Bag(Z), we may also write z ≤ m whenever
m(z) ≥ 1.

Let R = a0a1 . . . ana∞ be a region. Then [R] is a set of configurations ν such
that there exist ν1, ν2, . . . , νn, ν∞ belonging to Bag(P ×R+) with:

– ν = a0 + ν1 + ν2 + . . .+ νn + ν∞;

– ∀1 ≤ i ≤ n, φ(νi) = ai, and φ(ν∞) = a∞;

– ∀1 ≤ i ≤ n, ∀(p, x) + (q, y) ≤ νi, 0 < x− %x& = y − %y&;
– ∀1 ≤ i < j ≤ n, ∀(p, x) ≤ νi, (q, y) ≤ νj , x− %x& < y − %y&.

Note that every configuration ν belongs to a single region, that we write R(ν).
Conversely, according to the hypothesis, elements of N have integral ages, for any
ν ∈ N , we have [R(ν)] = {ν}. The original coverability problem thus reduces to
the coverability problem for finitely many regions, which itself reduces to solve the
coverability problem for a single region R.

9.3.2. Coverability of timed Petri nets

We first notice that, given two regions R = a0a1 . . . ana∞ and R′ = a′0a
′
1 . . .

a′n′a′∞, we can check whether [R]↑ ⊆ [R′]↑: the necessary and sufficient conditions
are a0 ≥ a′0, a∞ ≥ a′∞ and the existence of a strictly increasing mapping ψ from
{1, . . . , n′} into {1, . . . , n} such that for every 1 ≤ i ≤ n′, aψ(i) ≥ a′i.

We define a partial order between regions by R ≤ R′ iff [R′]↑ ⊆ [R]↑. Then, using
Higman’s lemma [HIG 52], we can show that this is a well quasi-order, i.e., for every
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infinite sequence of regions {Ri}i∈N there exist i < j such that Ri ≤ Rj . Indeed,
each region R is a finite sequence of bags over a finite set, hence applying [ABD 01,
theorem 1], the above mentioned partial order is a well quasi-order.

The algorithm for solving the coverability problem for the upward closure of a sin-
gle region R then consists of iteratively computing the predecessors (by time elapsing
and by discrete steps) of [R]↑. As we will see, each such predecessor is a finite union
of upward closures of regions. We stop exploring the predecessors of an upward clo-
sure of a region when it is larger (for partial order≤) than an already computed region.
Note that all configurations reachable from [R2]

↑ are also reachable from [R1]
↑ when-

ever R1 ≤ R2. The computation can then be seen as a finitely branching tree. To
prove that it terminates, it is sufficient to prove that this tree is finite. Suppose it is not.
By applying König lemma, this tree has an infinite branch. However, as ≤ is a well
quasi-order, we will eventually obtain a region that is larger than a previous one. This
leads to a contradiction. Hence, the computation tree is finite, and the computation
terminates. The set of configurations N is covered by the timed Petri net N if and
only if its initial configuration ν0 occurs in the upward closure of some region of the
tree.

Finally we explain how we compute the time and discrete predecessors of the
upward closure of a region R = a0a1 . . . ana∞.

Time predecessors

If a0 contains a token (p, 0), there is no strict time predecessor of [R]↑. Otherwise
if size(a0) �= 0, then the time predecessor is [R′]↑ with R′ = a′0a1 . . . ana

′
n+1a∞

where a′0 is the empty bag and a′n+1 is obtained from a0 by decrementing by 1 the
(integral) age of each token. Informally, this operation represents a (reverse) small
time elapse such that no token of a1 reaches an integral value and no token of a∞
reaches back max.

Otherwise (i.e. size(a0) = 0) we need to choose if tokens of a1 will first reach an
integral value or some tokens of a∞ will first reach max. It could be the tokens of a1,
a bag of tokens b∞ ≤ a∞, or both. We only illustrate this last case (which assumes
n ≥ 1). The above mentioned time predecessor is [R′]↑ where R′ = a′0a′1 . . . a′n−1a

′∞
is obtained as follows.

– a′∞ = a∞ − b∞;

– a′0 = a1 + c∞ where c∞ is obtained from b∞ by setting the age of each token to
max;

– ∀1 ≤ i ≤ n− 1, a′i = ai+1.

Discrete predecessors

We pick a transition t. Recall that in the syntax of a timed Petri net, there exist
two mappings Pre and Post from T × P to the set I of closed intervals with a lower
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bound in N and an upper bound in N∪{∞} (we assume that the constants are integers
instead of rational numbers, this can be achieved by multiplying all the constants of
the system). In addition, the fact that place p is not an input place of transition t corre-
sponds to the case where Pre(t, p) is the empty interval. We introduce an alternative

notation for pre- and postconditions. We definePre(t) =
∑

p|Post(t,p) �=∅
(p, Post(t, p)),

and similarly for Post(t). For instance, a transition t consuming a token in place p1
with interval [0, 1], no token in p2 and p3, and a token in place p4 with interval [2, 3]
verifies Pre(t) = (p1, [0, 1]) + (p4, [2, 3]).

Note that given an interval I of the net and a token (p, x) belonging to some ai
for i ∈ {0, 1, . . . , n,∞}, we can compute whether, given a configuration belonging
to that region, the corresponding token belongs to I . According to the property of
the regions, this is independent of the choice of the configuration. We then write
(i, x) � I .

We consider the upward closure of the region a0a1 . . . ana∞, and want to compute
its preimage by transition t. Transition t produces a bag of tokens as defined by
Post(t). These tokens may appear in one of the ai’s, but this is not required, they may
only be in the upward closure. This constitutes an important difference with standard
reachability analysis, and comes from the fact that we are interested in a coverability
problem. Hence, we choose bags of tokens posti ∈ Bag(P × {0, 1, . . . ,max} × I)
for every i ∈ {0, 1, . . . , n} and post∞ ∈ Bag(P × {∞} × I) such that 3

– for all (p, x, I) ≤ posti, (i, x) � I;

– for all i ∈ {0, 1, . . . , n,∞}, π1,2(posti) ≤ ai;

–
∑

i π1,3(posti) ≤ Post(t).

The bag posti represents the tokens produced by t which “belong” to ai. However,
there may be additional tokens produced that do not appear in one of the ai’s (this is
possible as we consider the upward closure of the region), which is why the two last
conditions are inequalities and not equalities. Figure 9.7 illustrates the decomposition.
The first condition states that the values of x, i and I in a bag (p, x, I) of posti are
coherent. The second condition states that posti constitutes a subset of ai. The third
condition states that posti constitutes a subset of Post(t) (in the second and third
conditions, projections are used as ai contains integral values while Post(t) contains
intervals).

Applying this first decomposition, we build an intermediate region R′ = a′0a
′
1 . . .

a′n′a′∞ by substracting π1,2(posti) from ai for every i and deleting the item in the
resulting sequence if its size is null (for 1 ≤ i ≤ n).

3. π1,2 (resp. π1,3) projects bags onto the two first components (resp. onto the first and the third).
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|=∑
i π1,3posti

and

∈ψ−1(
∑

i π1,2(posti)) |=Post(t)

and ∈ψ−1(
∑

i π1,2(prei))

|=Pre(t)=
∑

i π1,3prei

∈[R′′]

∈[R′]

∈[R]

∈[R′′]↑ ∈[R′]↑ ∈[R]↑

Figure 9.7. Decomposition of the set of tokens for the discrete predecessor computation

Then, to really simulate the discrete transition t, we need to initially have all to-
kens that are consumed by the pre-arcs. We set bags of tokens prei ∈ Bag(P ×
{0, 1, . . . ,max} × I) for every i ∈ {0, 1, . . . , n′′} for some integer n′′, pre∞ ∈
Bag(P × {∞} × I) and a strictly increasing mapping ψ from {1, . . . , n′} into
{1, . . . , n′′} such that:

– for all (p, x, I) ≤ prei, (i, x) � I;

– a′′0 = a′0 + π1,2(pre0);

– a′′∞ = a′∞ + π1,2(pre∞),

– for every i ∈ {1, . . . , n′′}, if there exists j such that ψ(j) = i then a′′i =
a′j + π1,2(prei), otherwise a′′i = π1,2(prei);

–
∑

i π1,3(prei) = Pre(t).

The bags prei are the tokens required by the pre-arcs of the transition. See Figure 9.7
for an illustration of the construction.

Under those conditions, the region R′′ = a′′0a
′′
1 . . . a

′′
n′′a′′∞ is a predecessor by

t of [R]↑. Note that the constructed region R′′ depends on the various choices we
have made (all bags posti, pre, and also the indices n′, n′′, the mapping ψ). For
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each of these (finitely many) choices, it gives a region that is in the preimage of R
by t (indeed, take any configuration ν′′ ∈ [R′′]↑, then quite straightforwardly, any
configuration image of ν by t is in [R]↑), and all regions in the preimage by t can, of
course, be obtained in that way.

Hence, time predecessors and discrete predecessors of regions are finite unions of
regions, and can be effectively computed, which concludes the proof of the theorem.

9.3.3. Survey of decidable properties for timed Petri nets

We have presented in the previous sections how a region construction with in-
finitely many regions can be used to prove the decidability of the coverability problem
for timed Petri nets. It is worth noticing that this model, which combines dense-time
with an unbounded control structure (represented here by the tokens), is very diffi-
cult to analyze. In this section, we will present several decidability results, which, for
most of them, relies on the techniques presented previously. These results are taken
from [ABD 07, BOU 08a].

Token liveness

As the semantics of timed Petri nets is lazy, we can miss the firing of a transition.
As a consequence, it may happen that a token can no longer be used in the firing of a
transition, in which case we say that the token is not live anymore. More formally, a
marking is composed of a finite set of tokens, and each token is characterized by the
place p in which it lies and by its age, given as a non-negative real number x (a token
is thus represented by the pair (p, x)). Let M be a marking, and (p, x) a token in M .
The token (p, x) is called live from marking M in a timed Petri netN if there exists a
sequence of transitions inN , starting from M , which eventually consumes the token.
Conversely, if a token is not live, then we say that it is a dead token. Formally, we say
that the token (p, x) can be consumed in M if there exists a transition t satisfying the
following properties:

– t is enabled in M ; and

– x ∈ Post(t, p).

Given a timed Petri net N , a marking M ; and a token (p, x) in M , the problem
of token liveness consists of deciding whether (p, x) is live or not. This problem is
called the semantic liveness of tokens. Without loss of generality, we assume that the
ages of tokens composing the marking M are all integers.

THEOREM 9.7 ([ABD 07]) The semantic liveness of tokens is decidable in timed
Petri nets.
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The proof of this result is proceeded by a direct reduction to (several instances of)
the coverability problem. As we have seen that this problem is decidable for timed
Petri nets, the result follows. We briefly describe how the reduction works.

We define the timed Petri net N ′ as follows. The set of places is obtained by
substituting of place p with a new place p′, not connected to any transition. The initial
marking is the marking Minit = M − (p, x) + (p′, x). Finally, the set of target
markings N is defined as follows. Let t be a transition such that p is an input place of
t. Then we write Pre(t) =

∑n
i=1(pi, Ii) + (p, I). We define the set of markings Nt

as:

Nt =

{
n∑

i=1

(pi, τi) + (p′, x′) | ∀i, τi ∈ Ii ∧ x′ ∈ I

}

This set can be represented as a finite union of regions. We then define the set N as
the union of sets Nt over the transitions t having p as input place. In this construction,
we move the token from place p to a fictive place p′ where it cannot be used, it will
only get older as time elapses. Then, we look for markings, composed of tokens with
integral ages, that allow a transition involving place p to be fired. We can easily prove
that the token (p, x) is live if, and only if, the set of markings N can be covered.

Boundedness

We say that an untimed Petri net is bounded if, and only if, there exists a bound
k ∈ N such that all its reachable markings have at most k tokens in each place. In
particular, a bounded Petri net has a finite reachability set. For timed Petri nets, we
will also be interested by bounding the number of tokens. However, this will not yield
a finite reachability set because of the ages of the tokens.

Two notions of boundedness are distinguished, whether dead tokens are counted
or not:

– syntactic boundedness: does a bound k ∈ N exist such that all reachable mark-
ings are composed of at most k tokens?

– semantic boundedness: does a bound k ∈ N exist such that all reachable mark-
ings are composed of at most k alive tokens?

The following theorem is stated in [ABD 07]:

THEOREM 9.8 ([ABD 07]) The syntactic boundedness is decidable for timed Petri
nets. The semantic boundedness is undecidable for timed Petri nets.

The undecidability result is proven by a reduction in the problem of space bound-
edness for lossy counter machines. Details can be found in [MAH 05]. For the decid-
ability result, we consider an algorithm similar to the Karp-Miller algorithm [KAR 69]
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to solve the boundedness problem for Petri nets. This algorithm builds a tree labeled
by markings and, when a new marking is added, checks whether one of the ances-
tors is strictly dominated. If this is the case, then the number of reachable markings
is unbounded. We can consider a similar algorithm, in which nodes of the trees are
labeled by regions. The termination of the algorithm is guaranteed due to the fact that
the inclusion ordering on regions is a well-quasi-ordering (see subsection 9.3.2).

Zenoness

Zeno behaviors are executions that perform an infinite number of actions in a finite
amount of time. Such time-convergent behaviors are unrealistic in practice. For timed
automata, the existence of such behaviors can be decided using the region graph. One
can also consider this problem for timed Petri nets:

– zenoness: given a timed Petri netN and a marking M , does a Zeno execution in
N exist that starts in M?

– universal zenoness: given a timed Petri net N and a marking M , are all infinite
runs ofN issued from M Zeno runs?

Note that the negation problem is the problem of the existence of an infinite non-Zeno
execution.

The following theorem is stated in [ABD 07]:

THEOREM 9.9 ([ABD 07]) The Zenoness is decidable for timed Petri nets. The uni-
versal Zenoness is undecidable for timed Petri nets.

We will not give the details of the proofs of these results as they rely on sophis-
ticated techniques of Petri nets. More precisely, the decidability result uses a charac-
terization of the set of markings admitting an infinite computation in an extension of
standard Petri nets, which is a subclass of transfer nets.

Extension to read arcs

We conclude with an extension of our first result on the coverability. The construc-
tion we have presented can be extended to the setting of timed Petri nets with read arcs.
Read arcs allow a transition to test the presence of some tockens in a place, without
consuming them (in particular their age is left unchanged). It can be shown that read
arcs allow the expressiveness of timed automata to subsumed (see [BOU 08a]).

THEOREM 9.10 ([BOU 08a]) The coverability problem is decidable for timed Petri
nets with read arcs.
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9.4. Robustness issues in timed systems

In this section, we present issues related to the implementation of timed systems,
and more specifically a recent approach proposed for the class of timed automata.

9.4.1. Motivations

The verification of real-time systems is now a well-established procedure, with
efficient algorithms and scalable tools. However, the timed models used suffer from
mathematical idealization, which makes their implementation problematic. For in-
stance, timed automata are governed by an idealized, theoretical semantics, and their
implementation on real hardware could fail to satisfy their mathematically proved
properties. More precisely, timed automata assume that clocks are continuous and
infinitely precise, while CPU have a finite frequency and are digital.

A well-known difficulty is the case of so-called Zeno behaviors, in which an in-
finite number of actions can occur in a finite amount of time, which naturally corre-
spond to unrealistic physical behaviors. The difficulties of implementation for timed
systems are, however, not limited to the non-Zenoness property. As an illustration,
we recall on Figure 9.8 a timed automaton presented in [CAS 02]. In this example,
location 4 is considered to be a bad location that should be avoided. Thus, the system
should be able to perform infinite executions around locations 1, 2, and 3. It can be
shown that infinite executions admitted by this timed automaton must go “faster and
faster”. More precisely, one cycle through these three locations must last exactly one
time unit because of the timing constraints on x between locations 1 and 2. In ad-
dition, before firing the last transition of the cycle (from 3 to 1), the execution must
let some time elapse (because of the constraint on z). We denote this value by di for
the i-th execution of the loop. Then, valuation vi obtained when entering location 1

after the i-th loop is defined by vi(x) =
∑
j≤i

dj , vi(y) = 0 and vi(z) = di. As a

consequence, in order to obtain an infinite execution, delay di must be choosen so as
to verify the inequality

∑
i≥1

di < 1. For instance, a possible execution is obtained by

letting di = 1
2i+1 . As a consequence, the delays between the last two transitions of

the cycle must converge towards 0. In particular, no discrete-time execution can verify
this property, no matter how fine the granularity. As a consequence, any implementa-
tion of such an automaton will eventually fail to satisfy that property, and will finally
reach location 4.
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z > 0,

y := 0

Figure 9.8. A timed automaton admitting no discrete-time implementation
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id = i ∧ xi > 1

starti!

endi!
id := 0

Figure 9.9. Timed automata models for the Fischer protocol

Consider the example of the Fischer protocol for ensuring mutual exclusion: two
systems S1 and S2 want to access a critical section; they are supervised by two con-
trollers in charge of ensuring that they will not simultaneously access the critical sec-
tion. Figure 9.9 represents a system and its controller. We can show, using a verifi-
cation tool such as Uppaal [BEH 04], HyTech [HEN 97], or Kronos [DAW 96], that
mutual exclusion is ensured by these controllers. Intuitively, the protocol works as fol-
lows. A shared integer variable id is used to store the identifier of the process allowed
to enter the critical section. More precisely, this variable initially has value 0. Then,
when process Si moves from location Req to location Waiting, it sets this variable to
value i, and checks that id = i when it enters location CS. In addition to this untimed
rule, timing constraints are used to ensure that a process cannot decide to enter the
critical section (by setting variable id to its identifier) when another process is already
in its critical section.

However, this property greatly depends on the infinite precision (i.e. exact) of
the model of timed automata. In particular, it relies on the fact that guard xi > 1
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is strict. Indeed, it ensures, combined with invariant xi ≤ 1 of location Req, that
when a process Si can reach its critical section, then no other process Sj can lie in
location Req. Thus, relaxing constraing xi > 1 in constraint xi ≥ 1 results in an
incorrect system, thus proving its brittleness. For instance, if clocks are digital, or
if clocks are not perfectly synchronized, or if there are some communication delays
between systems, or again if delays of write/read actions slow down the system, then
transitions may be performed at time stamps that are not allowed in the mathematical
model. Of course, such imprecisions are unavoidable in physical devices, and thus the
mutual exclusion can be violated.

9.4.2. A parametric semantics to handle imprecisions of clock valuations

Following the example of the Fischer protocol, some properties related to the ide-
alization of timed models cannot be satisfied by physical devices. We list some of
them:

1) perfect synchronization of the different components of the system, inputs re-
ception without delay, output production without delay;

2) infinite precision of clocks;

3) instantaneous execution of actions (infinite speed of the system while evaluating
guards, and choosing which action to fire).

A real system, when it simulates the behavior of a timed automaton, cannot fire
transitions in zero time. Similarly, the variables it manipulates have a finite precision,
and synchronizations between processes are not instantaneous. The standard hypoth-
esis allowing these issues to be ignored consists of assuming that the delays related to
computation times or message exchanges are negligible with respect to constants used
in the guards and invariants of the timed automaton. However, this approach does not
rely on any mathematical justification.

In order to handle the different imperfections of a real system, a new seman-
tics, called the AASAP (“almost as soon as possible”) semantics, was introduced
in [DEW 05] for timed automata. This semantics relaxes the hypotheses that were
too strong in the classical semantics. The AASAP semantics can be seen as a re-
laxation of the standard ASAP (“as soon as possible”) semantics. Formally, these
two semantics are defined as timed transition systems. We do not present them here,
but rather describe their main characteristics. We refer the reader to [DEW 05] for a
complete presentation.

The notion of timed simulation, introduced in Chapter 4 for timed transition sys-
tems, is the key tool to compare semantics. Indeed, such relations preserve safety
properties, but more generally, they preserve properties expressing a universal quan-
tification over executions, such as LTL [PNU 77] or ACTL [BRO 88].
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The ASAP semantics requires a transition to be fired or to react to an input as
soon as possible. In the AASAP semantics, a parameter Δ is given, and intuitively
the system should react withinΔ time units. The main characteristics of this semantics
can be summarized as follows:

– an enabled transition does not need to be fired instantaneously, but must be fired
within Δ time units;

– the durations of emission and reception of messages are taken into account: a
distinction is made between the emission of a signal by a component and its reception
by another component. The delay between these two actions is bounded by Δ;

– the precision of clocks is relaxed: guards of transitions are enlarged by Δ.

The AASAP semantics of A for parameter Δ is denoted �A�AASAP· , and verifies
the following property:

PROPOSITION 9.11 (“Faster is better” [DEW 05, theorem 3]) LetA be a timed au-
tomaton, and Δ1,Δ2 ∈ Q>0 such that Δ2 ≤ Δ1, then the timed transition system
�A�AASAP

Δ2
is simulated by �A�AASAP

Δ1
, denoted by �A�AASAP

Δ2
' �A�AASAP

Δ1
.

Intuitively, this means that increasing the precision of the system reduces the set
of admissible behaviors. Thus, with respect to the verification of universal path prop-
erties, if the model �A�AASAP

Δ1
verifies the property, then so does �A�AASAP

Δ2
.

In order to build a link with the implementation of a timed automaton, a program
semantics is introduced, representing the behavior of a real execution platform. We
describe the model considered for this platform. The procedure simulating the timed
automaton repeatedly executes the following cycle of instructions:

1) the current time is read in the clock register of the processor and stored in a
variable T ;

2) the list of input signals is updated: sensors are checked to detect whether signals
have been emitted by other components;

3) timing constraints of the output transitions of the current location of the timed
automaton are evaluated with the value of T . If one of these conditions is satisfied,
then one of the firable transitions is taken.

The program semantics of A depends on two parameters ΔP , ΔL and is denoted
by �A�

Prog
ΔL,ΔP

. These two parameters represent the performance of the platform. More
precisely, they are defined as follows:

1) the clock register is incremented every ΔP time units;

2) the time necessary to process one cycle of instructions is less or equal than ΔL.
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The fundamental result that links the two previously introduced semantics is:

THEOREM 9.12 (Simulation [DEW 05, theorem 4]) Let A be a timed automaton
and Δ,ΔP ,ΔL ∈ Q>0 three rational parameters. Then if the inequality 3ΔL +
4ΔP ≤ Δ is satisfied, the associated transition systems verify:

�A�Prog
ΔL,ΔP

' �A�AASAP
Δ

As for any positive Δ, it is always possible to find parameters values of ΔL and
ΔP verifying the above inequality, this result establishes that if the AASAP semantics
is correct for some value of Δ, then there exists a correct implementation of A.

Finally, we present a last result, stating that the AASAP semantics can be simu-
lated by a syntactic transformation of timed automata, involving a parameter.

THEOREM 9.13 ([DEW 05, theorem 8]) LetA be a timed automaton andΔ ∈ Q>0.
It is possible to build a timed automaton F(A,Δ) such that:

�A�AASAP
Δ ' �F(A,Δ)� and �F(A,Δ)� ' �A�AASAP

Δ

The main operation involved in the definition of F(A,Δ) is the enlargment of
guards and invariants by Δ. Intuitively, this consists in replacing a constraint of the
form x ∈ [a, b] by the constraint x ∈ [a − Δ, b + Δ]. As the other transformations
involved in F(A,Δ) are less important, we consider in the chapter a parametric se-
mantics of timed automata:

DEFINITION 9.14 (Enlarged semantics) LetA be a timed automaton. We define the
enlarged semantics ofA as a parametric semantics depending on a rational parameter
Δ. It is defined by the timed transition system associated with the timed automaton
obtained from A by enlarging all guards and invariants of Δ, and denoted by �A�Δ.

The problem of interest is to decide whether a positive value of Δ exists for which
the enlarged semantics meets a specification given by a universal property on execu-
tions.
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9.4.3. Related work

Recently, several works have proposed approaches to ensure implementability of
timed models. In this section, we present one of them, which relies on a parametric
enlargment of timed automata. We present a short survey of related works:

– this approach using the AASAP semantics contrasts with a modeling-based solu-
tion proposed in [ALT 05], where the behavior of the platform is modelled as a timed
automaton. While this approach offers a very rich framework to model the platform, it
suffers from two drawbacks. First, it does not verify the “faster is better property” (if a
model is implementable on an implementation, then it should also be the case on any
“faster” implemention). Second, verification problems are difficult and the approach
of [ALT 05] does not offer decidability results;

– other works has introduced other notions of “robustness” in order to relax the
mathematical idealization of the semantics of timed automata [GUP 97, OUA 03,
BAI 07b, BAI 07a]. Those approaches are different from ours, since they roughly
consist of dropping “isolated” or “unlikely” executions;

– these results should also be compared with tools related to code generation from
timed automata. The TIMES tool [AMN 03] automatically generates executable code
from timed automata. However, it does not take into account the imprecisions, as it
relies on the perfect synchrony paradigm. Henzinger et al. proposed in [HEN 03] a
model for embedded systems, called GIOTTO, which can be seen as an intermediary
step beween timed automata and real platforms.

9.4.4. Decidability result for safety properties

We consider here a safety property, which is given by a set of locations of the
timed automaton that should be avoided and is denoted Bad. Thus, in the enlarged
semantics, the problem we want to solve is the following: does there exist a positive
value of Δ such that Reach(�A�Δ) does not intersect Bad?

This problem has been solved in [PUR 00, DEW 08], under some assumptions
on timed automata that we recall here. In this subsection, we assume that the timed
automata we consider satisfy the following requirements:

– all guards and invariants involve non-strict inequalities;

– all the clocks are always bounded;

– all the cycles of the region graph are progress cycles, i.e. do reset all clocks to
zero.

The first hypothesis does not change the expressive power of the model under the en-
larged semantics. The second hypothesis is not really restrictive since every timed
automaton can be transformed into such a bounded timed automaton (see for exam-
ple [BEH 01]). Note that it entails that any time-divergent path contains an infinite
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number of action transitions. As mentioned in [DEW 08], the third requirement is less
restrictive than classical strong-non-Zenoness assumptions.

The proof of the decidability result relies on the following proposition:

PROPOSITION 9.15 Let A be a timed automaton, and Bad be a set of locations. We
have:

∃Δ > 0 | Reach(�A�Δ) ∩ Bad = ∅ ⇐⇒
( ⋂

Δ>0

Reach(�A�Δ)

)
∩ Bad = ∅

Intuitively, this property follows from the fact that two subsets of Rn
≥0, defined by

zones 4 with integral constraints, and whose intersection is empty, are at distance at
least 1

n . In addition, as all guards are non-strict, we can prove that all sets involved in
the proposition verify these conditions.

As a consequence, the problem is reduced to the computation of the set Reach∗(�A�)
defined as

⋂
Δ>0Reach(�A�Δ). This set exactly contains configurations that are

reachable for any positive value of the parameter.

�1 �2�0 Bad
x=1

y:=0

x≤2

x:=0

y:=0

y≥2

x=0 ∧ y≥2

Error

Figure 9.10. A timed automaton A

This set can differ from the set Reach(�A�). As an illustration, consider the timed
automaton depicted in Figure 9.10, and where ρ is the simple cycle around locations �1
and �2. The two corresponding sets are depicted on Figure 9.11, together with the sets
of reachable configurations after one and two executions of cycle ρ. In this example,
the guard enlargment allows the first transition of the cycle (from �1 to �2) to be fired
a bit after the constraint x = 2 is satisfied and the second transition to be fired a bit
before the constraint y = 2 is satisfied. As a consequence, this allows location �1 to
be reached, after one loop, with a clock valuation of v(x) = 1 − 3Δ and v(y) = 0
(see Figure 9.10). This slight perturbation can be accumulated by iterating the cycle,
after a second loop, a clock valuation of v(x) = 1 − 5Δ and v(y) = 0 is obtained
(see Figure 9.10). As a consequence, however small Δ is, any valuation of the set
Reach∗(�A�) can be reached after a sufficient number of iterations of the cycle.

4. A zone is defined by a conjunction of lower and upper bounds on clocks and clock differences.
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Figure 9.11. Differences between Reach(�A�) and Reach∗(�A�), and intermediate
computations of the reachable configurations in �A�Δ

Algorithm 5 can be used to compute the set Reach∗(�A�), which was proposed
in [PUR 00]. This algorithm relies on the region graph construction presented in sec-
tion 9.2. In its presentation, notation Reach(R(A), J∗) denotes the set of reachable
states from J∗ in R(A). In addition, given a region R of a timed automaton, its
topological closure is denoted R, and this notation is extended to sets of regions.

The proof of correction of the algorithm is long and technical, and thus we only
briefly describe it. The proof proceeds by double inclusion. To prove the soundness of
the algorithm, i.e. the inclusion J∗ ⊆ Reach∗(�A�), the authors show a key lemma
stating that two configurations belonging to the topological closure of a same strongly
connected component can reach each other, for any postive value of Δ. For the com-
pleteness, the authors prove a bound between the distance of a run in the enlarged
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Input: a timed automatonA
Output: the enlarged reachability set Reach∗(�A�)

Compute the region graphR(A) = (Γ, γ0,→)1

Compute the set S of strongly connected components ofR(A)2

J∗ := {γ0}3

J∗ := Reach(R(A), J∗)4

while ∃S ∈ S such that S �⊆ J∗ and J∗ ∩ S �= ∅ do5

J∗ := J∗ ∪ S6

J∗ := Reach(R(A), J∗)7

Return J∗;8

Algorithm 5: Computation of the set Reach∗(A)

semantics and a run in the standard semantics, depending on the parameter Δ. Using
the fact that long paths will necessarily go through strongly connected components,
they prove that this bound vanishes when Δ → 0. Finally, we obtain the following
theorem.

THEOREM 9.16 Let A be a timed automaton and Bad be a subset of locations of
A. One can decide whether there exists a positive value of parameter Δ such that
Reach(�A�Δ) ∩ Bad = ∅. In addition, this problem is PSPACE-complete.

Recall that the emptiness problem for timed automata is already PSPACE-complete
(theorem 9.2).

9.4.5. Other results and current challenges

This semantical approach to the robustness and implementability of timed au-
tomata has been extended in several works in the recent years. We describe here
some of these results.

Symbolic computations

First, as we mentionned in the introduction, the decidability results based on the
region graph construction do not yield efficient algorithms. In [DAW 06], a symbolic
algorithm is proposed for the computation of Reach∗(A). This algorithm uses zones
as a symbolic representation of clock valuations. The computation of the strongly
connected components of the region graph is replaced by a notion of stable zone of a
cycle, which corresponds intuitively to the set of valuations that are connected through
this cycle, regardless how small the perturbation is. The authors prove that the stable
zone can be computed as a greatest fixpoint. However, their approach only handles
flat timed automata, as the computation of the stable zone must be done for each cycle
of the system. Flat means here that the system does not contain nested cycles.
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Another perturbation

In the seminal paper by Puri [PUR 00], the notion of guard enlargment is intro-
duced, and also a notion of drift of clocks. This is formalized, given a positive rational
number ε > 0, by modifying the semantics of the timed automaton by allowing clocks
to have a rate in the interval [1 − ε, 1 + ε]. As a consequence, clocks may not evolve
at the same speed.

This notion of perturbation is very attractive, as it intuitively corresponds to actual
flaws of real systems. It turns out to be equivalent to guard enlargment. More formally,
it was proved in [PUR 00, DEW 08] that a similar definition of the set Reach∗(A) for
clock drift yields the same set. The two perturbations can be combined and this still
yields the same set of configurations (see [DEW 08] for a detailed proof).

Robust verification

The results presented so far concern safety properties. In [BOU 06, BOU 08b], the
robust verification is considered for other properties such as temporal properties. First,
it is proven that the robust model-checking of LTL properties is PSPACE-complete, as
for standard model-checking. Second, an expressive fragment of the timed logic MTL
is proposed, for which the robust model-checking is also decidable. This fragment
encompasses the logic LTL, the bounded fragment of MTL, and can express interesting
properties such as bounded response-time. Again, the complexity obtained is the same
as for standard model-checking.

Quantitative robustness

Using the previous results, we can decide whether a positive perturbation
exists for which the property is satisfied. In [JAU 11], a more difficult problem is
tackled, which consists of computing the largest value of the parameter for the system
to meet the specification. The authors propose a parametric extension of the symbolic
algorithm introduced in [DAW 06], which allows the set of reachable states in the
timed automaton to be computed, for all values of the parameter, which corresponds
to the parametric reachability set. However, as for [DAW 06], the algorithm only
applies to flat timed automata.

Current challenges

This semantical approach of robustness opens promising perspectives for research.
Among them, we can mention the problem of robust control. This problem consists
of synthesizing a controller, for instance from a timed game specification, which is
robust, i.e. such that a positive enlargment exists for which the enlarged controller still
ensures that the system under control is correct. This problem has been investigated
in [CHA 08], but only for a fixed value of the enlargment.

Models and Analysis in Distributed Systems
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9.5. Conclusion

Real-time aspects are central to the design of many applications, such as embed-
ded systems. We have presented in this chapter how verification techniques can be
extended to timed systems. Therefore, we have focused on the notion of region, which
consists of gathering configurations of the system in equivalence classes, yielding a
quotient system on which the property can be checked.

In addition to region constructions, existing tools for the verification of timed sys-
tems may also use other symbolic techniques such as zones (see Uppaal [BEH 04],
Romeo [GAR 05]). Recently, several case studies have proven that these tools have
reached a level of maturity that allows them to tackle relevant industrial problems.

Current works are investigating extensions to these techniques to more complex
models. We have presented recent works related to the implementability of timed sys-
tems. Among other directions, let us mention two-player games, which are useful for
controller synthesis problems; the extensions to weighted systems which allow vari-
ables with more complex dynamics than clock variables to modeled; and probabilistic
systems, used for instance to model communication protocols.
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Chapter 10

Distributed Control

10.1. Introduction

While verification techniques ensure that a given system is correct with respect to
its specification, another challenging problem is to control a system in order to fulfill
a specification. In this context, the system to control is open (it interacts with an envi-
ronment), and the controller (or supervisor) restricts its behaviors in order to maintain
a correct execution. Controller synthesis investigates the possibility of automatically
synthesizing such controllers. Instead of verifying all the possible executions of a
system, we are now interested in dynamically controlling the system in order to stay
within the range of acceptable behaviors. Another question that derives from the ver-
ification problem is the synthesis problem: is it possible to automatically derive a
correct system from its specification?

In other words, given a model M and a specification ϕ, the verification problem
consists of checking that all the behaviors of the model satisfy the specification. In
the control problem, we are given a controllable system G (called a plant), and a spec-
ification (ϕ) and we look for a controller C such that, whatever the actions of the
environment E are, the executions of the system controlled by C (noted C/G) satisfy
the specification. Finally, the synthesis problem is the following: given a specification
ϕ, one looks for a program P such that, whatever the actions of the environment E
are, all its executions satisfy the specification. In fact, the synthesis problem can be
seen as a special case of the control problem: whereby the plant under supervision is
trivial. The program that requires synthesis is actually the controller of such a system.

Chapter written by Claude DUTHEILLET, Isabelle MOUNIER and Nathalie SZNAJDER.

307



308 Models and Analysis for Distributed Systems

However, problems studied in the literature are not simply subcases of control prob-
lems. Often, the specifications considered for studying control problems are simpler
when, for the synthesis problem, they are more general.

One of the frameworks of interest in this chapter has been introduced by Ramadge
and Wonham [RAM 89] under the name of supervisory control. There, the system
that requires control (the plant) is modeled by a discrete event system (DES). A DES
is a dynamic system with a (not necessarily finite) state space, whose behavior is
event-driven: modification of the state is triggered by discrete events occurring during
the computation, real-time is abstracted [CAS 06]. Under this category fall numerous
classical formalisms, among them finite automata, Petri nets, and process algebras.
The events (or actions) of systems requiring control are usually partitioned into the
set of controllable events and the set of uncontrollable events. Of course, the desired
controller is only able to restrict the controllable events.

The following problem illustrates the control problem, it is presented in [RAM 89].
A cat and a mouse are placed in the maze of Figure 10.1. Each doorway in the maze
is either for the exclusive use of the cat (they are denoted by ci), or for the exclusive
use of the mouse (they are denoted by mi), and must be traversed in the direction
indicated. Initially the cat is in room 2 and the mouse in room 4.

The objective is to find a controller that permits the cat and the mouse the greatest
possible freedom of movement but which also guarantees that the controlled system
satisfies the following specification ϕ:

1) the cat and the mouse never occupy the same room simultaneously;

2) it is always possible for the cat and the mouse to return to the initial state, i.e.
the state in which the cat is in room 2, and the mouse is in room 4.

To fulfill the above requirements, controller C can open or close each door (control-
lable events), with the exception of door c7 whose opening or closing depends on
environment E (uncontrollable events).

The behaviors of the mouse and the cat are defined by the set of actions that they
can execute, depending on the room in which they are. The system to control G is the
shuffle product of the behaviors of the mouse and the cat.

Synthesis problem is also called Church’s problem [CHU 63]. The problem of
deciding whether such a program exists is called the realizability problem, and the
problem of automatically producing such a program is called the synthesis problem. In
the framework established by Church, the goal is to synthesize programs for open and
reactive systems: systems that maintain an ongoing interaction with an uncontrollable
environment.

Models and Analysis in Distributed Systems
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Figure 10.1. A maze example

It is well established ([BÜC 69]) that solving one of the above problems amounts
to solving a game. Indeed, we can establish the following correspondence: the system
modeled as a transition system is the arena of the game, the controller is the protag-
onist while the environment represents the antagonist. Then, the controllable events
are possible moves for the protagonist and uncontrollable events are possible moves
for the antagonist. Then, a behavior of the system is a play of the corresponding
game, and the specification of the system is the winning condition of the game. Now,
synthesizing a controller amounts to finding a winning strategy for the protagonist.

In the investigation of distributed systems, the problem of distributed control arises
naturally. In such systems, it is desirable (with respect to design and implementation
complexity for instance) to also obtain a distributed controller, i.e. a set of controllers,
each of them controlling one component of the distributed system. The problems
of control and synthesis can now be stated, respectively, by: given a specification
ϕ and a plant G composed of subcomponents G1, G2, . . . , Gn, do controllers exist
C1, C2, . . . , Cn, one for each component, such that whatever the actions of the envi-
ronment E, the parallel executions of the controlled subcomponents (Ci/Gi) satisfy
the specification, and for the synthesis problem, given n sites communicating through
a fixed architecture and a specification ϕ, find programs P1, . . . , Pn such that the be-
haviors of all the programs in parallel and interacting with the environment satisfy the
specification?
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An extension of the maze problem previously presented was proposed as a bench-
mark at WODES’08 [WOD 08]. It considers a tower composed by n identical levels.
Each level is a maze as presented in Figure 10.1. A controllable bidirectional pas-
sageway connects room j of level (5 ∗ i + j) to room j of level (5 ∗ i + j + 1), for
i = 0, 1, 2 . . . , and j = 0, 1, 2, 3, 4. Therefore, levels 0 and 1 ( 5 and 6, 10 and 11,
. . . ) are connected through room 0. Levels 1 and 2 ( 6 and 7, 11 and 12, . . . ) are
connected through room 1. Levels 2 and 3 ( 7 and 8, 12 and 13, . . . ) are connected
through room 2. Levels 3 and 4 ( 8 and 9, 13 and 14, . . . ) are connected through room
3 and levels 4 and 5 ( 9 and 10, 14 and 15, . . . ) are connected through room 4. Level
0 is only connected with level 1 and level n− 1 (the last level) is only connected with
level n− 2. Initially all the cats are in room 0 of the maze of level 0 and all the mice
(as many as cats) are in room 4 of the maze of level n− 1.

The objective is the same as for the initial one. This last version of the maze can
easily be decentralized by looking for a set of controllers, one per level: each con-
troller Ci controls the doors at its level, except for c7, and the inter-level passageways
connected to level i. An inter-level passageway is thus controlled by more than one
controller.

To study the distributed control and synthesis problems, the following questions
should be answered regarding the precise model of distributed systems:

Synchronous vs. asynchronous systems. The first decision to undertake concerns
the semantics of the distributed system: is it synchronous or asynchronous? If the
system is supposed to be synchronous, then a global clock governs the evolution of
all the components: at each tick of this global clock, each of them takes an action.
If we are interested in distributed protocols, the synchronous assumption cannot hold
and we consider asynchronous systems: there all the components evolve at their own
speed. In such asynchronous systems, the communication mechanism should also be
considered carefully: is communication itself synchronous or asynchronous?

Models of communication. The different components of the system are expected
to cooperate to achieve the specification and, to attain that goal, communication is
a key element. The precise model of communication that will be used (shared vari-
ables, handshaking, first in first out (FIFO) channels, . . . ) is an important parameter
to consider.

Type/expressiveness of the specifications. There is a balance to be obtained be-
tween the expressiveness of the specification and the feasibility of the result. Accord-
ing to the type of specifications considered, the results obtained may change drasti-
cally. In the centralized case, the synthesis and control problems are decidable for any
specification given by a (ω)-regular language. This is no longer true in the distributed
case, as we will see.

Models and Analysis in Distributed Systems
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The choice of decentralizing the controllers implies that each of them only has a
partial view of the state of the system. A first step towards a distributed control is then
to obtain a controller under partial observation ([LIN 90, ARN 03, KUP 00]). Then
several approaches have been adopted for distributed control. For the control commu-
nity, decentralized control consists of synthesizing several controllers, each of them
controlling a different subset of the system. The specifications can then be either local
or global. In some cases, a same event can be controlled by several controllers; differ-
ent policies may then be considered: if there is no unanimity among the controllers,
should the transition be enabled or disabled? Another direction for distributed control
has been taken by Pnueli and Rosner [PNU 90], following the line of Church (and fol-
lowed then by quite a few other authors), in which the system is represented explicitly
by a set of processes and communication channels, and each site is associated with ex-
actly one controller. Section 10.2 is devoted to the presentation of the former problem
and section 10.3 to the latter. The game framework is still relevant in the distributed
case, except that multiplayer games are considered. These specific types of games are
linked to logics that allow the properties induced by strategies of the different players
to be expressed, such as ATL. This is presented in section 10.4.

10.2. Decentralized Control

The left part of Figure 10.2 illustrates the problem when the observation is global,
meaning that the controller observes every action of the plant. One controller C ob-
serves all the actions of plant G and decides which controllable actions of G are
enabled. The right part of Figure 10.2 illustrates the problem when the centralized
controller has only a partial view of the plant. The actions of G observable by C are
defined by P . In this case, C has to decide with a partial knowledge of the behavior
of G.

C G
decision

total observation

C G
decision

Ppartial
observation

Figure 10.2. Centralized control with total or partial observation

The decentralized control problem is illustrated by Figure 10.3. It exhibits a new
parameter of the problem, the arbiter. Each controller Ci can enable/disable a subset
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Eni of the controllable actions of the plant. The arbiter is the procedure that deter-
mines whether an action controlled by more than one controller should be enabled or
not in case there is no consensus among the controllers.

G

local decisions
on E1

Cn

observation observation

P1 Pn

Arbiter

final decision

local decisions
on En

C1

Figure 10.3. Decentralized control

The general decentralized control problem can therefore be expressed as follows:
given a plant G, a specification ϕ, action sets P1, . . . , Pn (observable actions) and
En1, . . . , Enn (controllable actions), do finite-state controllers C1, . . . , Cn and an
arbiter exist such that the controlled behavior of the plant satisfies ϕ?

A controller that can act on any controllable action of the plant is said to be global
while a controller that can control only a subset of the controllable actions of the plant
is a local controller. The same distinction is made for the specifications: a specification
that concerns the whole plant is a global one, while a specification that concerns only
a part of the plant is local.

In the following, as in the literature, we present the problems for two supervisors
but all the results can be generalized to any fixed number of supervisors. The results
we present consider several cases: is the expected specification expressed globally or
locally to each controller? Do the controllers communicate with each other?

The control problem may be considered with or without tolerance. In the first case,
the controlled system may have a behavior that is slightly different from the expected
behavior while in the second, the behavior must be exactly as expected .
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The most common representation of the control problem models the plant to be
controlled by a transition system

G = (Q,Σ, f, q0, Qm)

where Q is the set of states, Σ is the input alphabet of actions or events, f ⊂ Σ×Q×Q
is the transition relation, q0 ∈ Q is the initial state, and Qm ⊆ Q is the set of terminal
or marker states. The set Σ must be finite, whereas Q and Qm may be infinite. We
denote by Σuc ⊆ Σ the set of uncontrollable actions of the plant G and by Σo ⊆ Σ
the set of observable actions of plant G.

The transition systems of Figure 10.4, Gcat and Gmouse, model the movements of
the cat and the mouse in the maze of Figure 10.1. Gcat = (Qcat,Σcat, f cat, qcat0 , Qcat

m )
where Qcat = {0c, 1c, 2c, 3c, 4c}, Σcat = {c1, c2, c3, c4, c5, c6, c7}, qcat0 = 2c,
Qcat

m = {2c} and Gmouse = (Qmouse,Σmouse, fmouse, qmouse
0 , Qmouse

m ) where
Qmouse = {0m, 1m, 2m, 3m, 4m}, Σmouse = {m1,m2,m3,m4,m5,m6}, qmouse

0 =
4m and Qmouse

m = {4m}. The transition relations f cat and fmouse are defined by the
automata of Figure 10.4.

The transition system G of the whole system is the shuffle product of Gcat and
Gmouse, i.e., G = (Qcat × Qmouse,Σcat ∪ Σmouse, f, (2c, 4m), {(2c, 4m)}) with
(s, (xcat, xmouse), (ycat, ymouse)) ∈ f iff (s ∈ Σcat and (s, xcat, ycat) ∈ f cat and
xmouse = ymouse) or (s ∈ Σmouse and xcat = ycat and (s, xmouse, ymouse) ∈
fmouse).

c2

c1 c3

c4

c5

c6

c7

1c 2c

4c3c

m1

m2

m3

m5

m4m6

1m 2m

3m 4m

0c 0m

Figure 10.4. Transitions systems: Gcat and Gmouse

G is characterized by two subsets of Σ∗, where Σ∗ is the set of all finite strings
over Σ, including the null string ε: the set L(G) of all possible action sequences that
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the plant may generate, called the closed behavior of G, and a subset Lm(G) of L(G),
called the marked behavior of G, which contains sequences whose end-state belongs
to Qm. This subset is intended to represent completed tasks.

Formally, a controller C is a pair (S, ψ) where S is an automaton that recognizes a
language over the same event set Σ as the plant G and ψ is a mapping that determines
for every state x of S and every action s in Σ whether s is enabled in x. ψ must
be such that ∀x ∈ X, ∀s ∈ Σuc, ψ(x, s) = enable, where X is the set of states of
S. S changes state according to the events generated by G and at each state x of S,
ψ(x, s) is used to determine whether s is enabled or not in the corresponding state of
G. Usually, the automaton S is labelled only with actions observable by the controller,
therefore, it represents the evolution of the controller in response to the outputs of the
plant. The mapping ψ represents the control exerted by the controller on the plant.

Consider L(C/G) the language that describes the behavior of plant G under the
supervision of controller C. L(C/G) is the set of sequences of events that are gen-
erated by both G and C and such that each event of the sequence is enabled by ψ.
Lm(C/G) is the subset of L(C/G) containing sequences whose end-state is marked
by both G and C. Considering the maze problem, a controller that ensures the second
part of the specification (the system can always return to the initial state) is a proper
controller when the initial state of the system is a marked state.

A controller C is said to be a proper controller if

Lm(C/G) = L(C/G)

where the overbar notation denotes the prefix-closure, i.e. all strings in Lm(C/G)
and all their prefixes, including the empty string. A proper controller guarantees that
the system is non-blocking, i.e. that every string in the closed-loop system can be
completed to a marked string in the system.

A controller C = (S, ψ) is said to be complete for G if for every string σ in Σ∗

and every event s in Σ, the conditions σ ∈ L(C/G), σs ∈ L(G) and ψ(x, s) =
enable together imply that σs ∈ L(C/G), where x is the state reached by C after
the execution of σ. This ensures that suitable transitions are defined in S for every
possible closed loop action. It is always possible to obtain a complete controller from
an incomplete one.

The most common representation of the specification that the controlled system
must satisfy is a language K such that K ⊆ L(G). For the control problem to be
solvable, it is necessary that K satisfies the controllability property [RAM 82]. A
language is controllable if whenever a legal sequence (sequence that belongs to K)
can be extended by an uncontrolled action, the resulting sequence is still legal. Then,
controllability can be paraphrased by: “If you cannot prevent it, then it should be
legal” [LAF 02].
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DEFINITION 10.1 (controllability) Let K be a language such that K ⊆ L(G). K is
a controllable sublanguage of L(G) (controllable with respect to G) if

KΣuc ∩ L(G) ⊆ K

where KΣuc = {σs | σ ∈ K ∧ s ∈ Σuc}.

When considering centralized control, if K is not controllable, there exists a unique
supremal controllable sublanguage of K (possibly the empty language) [WON 87].
The author proposes an algorithm to compute this language when K and L(G) are
regular languages. The starting point is the automaton that recognizes K . This au-
tomaton is reduced by deleting the states (and the associated arcs) from which an
uncontrolled event may be executed with respect to L(G) but is not authorized by K
(the execution of the uncontrolled event leads to a sequence that does not respect the
specification). The reduction is iterated until a fix-point is reached. The obtained au-
tomaton is such that each accepted sequence, prolonged by an uncontrolled event with
respect to L(G), is an accepted sequence too. The obtained automaton recognizes the
supremal controllable sublanguage of K and models the controller of the plant. In this
algorithm the automata are always trim, i.e. they are reduced to automata such that all
the states are reachable from the initial state and can reach a marked state.

Considering the maze problem, we first compute the system G that is the shuffle
product of Gcat and Gmouse. To respect the specification, the states where the cat
and the mouse are in the same room are suppressed as well as the states that do not
allow the initial state to be reached (this state is the only marked state). The obtained
automaton is the starting point of the algorithm. The computation of the fix-point
leads to the controller of Figure 10.5.

m5,c3

0 1

m4,c2

m6,c1,c4,c7

Figure 10.5. Controller of the maze

We now focus on particular distributed control problems for which solutions have
been proposed.
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10.2.1. Local and modular specifications

Local and modular approaches both tackle the complexity of the control problem
by decomposing it into subproblems. The modular approach is adapted when the
specification is a task that can be decomposed into subtasks. A set of controllers is
defined, each of them have the aim of achieving one of the subtasks. To do so, every
controller can act on any controllable action of the system. On the contrary, locality
decomposes the plant into subsystems. Each subsystem corresponds to a subset of
actions of the system, and a local specification is defined at the subsystem level. The
goal is to combine the local controllers in order to achieve a specification at the system
level. Local and modular approaches have both shown to be appropriate for some
manufacturing system problems [WON 88, LIN 90].

Regarding the maze problem, a local approach may consist of having a controller
for each level and one for each inter-level passageway. Each controller ensures that in
the controlled level (or passageway) a cat and a mouse can never be in the same room
(or in the inter-level passageway). Each level controller also ensures that the mice
and cats present in the level can always go back to rooms 4 and 2, respectively. A
modular approach may be to have two controllers for the whole system, each realizing
a subpart of the global specification. A first controller should ensure that a mouse and
a cat are never in the same room of a same level and that each cat can return to room
2 and a mouse to room 4. A second controller should ensure that a cat and a mouse
never pass each other in an inter-level passageway.

Formally, in the local approach, each subsystem i is characterized by a non-empty
subset Σi ⊆ Σ of actions. We restrict the presentation to two subsystems, i.e. i = 1, 2,
but the approach is general. LetPi be the projection of Σ onΣi andGi the system such
that L(Gi) = Pi(L(G)). A minimal acceptable behavior Ai ⊆ L(Gi) and a maximal
legal behavior Ei ⊆ L(Gi) are defined for the subsystem. The local control approach
aims to find a set of controllers Ci such that Ai ⊆ L(Ci/Gi) ⊆ Ei and such that
the combination of the local controllers satisfies a global specification. Let C̃i be the
controller that extends Ci to G by enabling all controllable actions that do not belong
to Σi,c. Then L(C̃i/G) = L(G) ∩ P−1

i (L(Ci/Gi)) is such that L(G) ∩ P−1
i (Ai) ⊆

L(C̃i/G) ⊆ L(G) ∩ P−1
i (Ei). By combining local controllers, it is then possible to

find a global controller such that:

L(G) ∩
2⋂

i=1

P−1
i (Ai) ⊆ L(C̃1 ∧ C̃2/G) ⊆ L(G) ∩

2⋂
i=1

P−1
i (Ei)

This control problem is known as local specification for local control with toler-
ance [RUD 92]. In [LIN 90], the authors give sufficient conditions under which a
solution to this problem exists.

Modular control [WON 88] considers the case where the specification can be de-
fined as a set of properties. For each property propi, a set Li ⊆ L(G) of strings
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that satisfy the property is defined. The problem is then to find controllers C1 and
C2 such that L(Ci/G) ⊆ Li and L(C1 ∧ C2/G) ⊆ L1 ∩ L2. When equality can-
not be achieved, the goal is to find the largest controllable behavior that satisfies the
constraint. Four instances of this problem are presented in [WON 88], depending
on whether non-blocking is required for the resulting controller or not, whether lan-
guages Li are included in Lm(G) or not, and whether they are closed or not. For
each problem, sufficient solvability conditions are given and modular supervisors that
satisfy the specification are proposed. The construction of solutions mainly relies on
the so-called “non-conflicting” property of languages (L1 ∩ L2 = L1 ∩ L2).

Local and modular approaches have been combined for systems that are repre-
sented as the composition of a set of susbsystems [QUE 00]. An efficient test has
been proposed in [PEN 09] for detecting conflicts that can result in the blocking of
such systems when the local controllers are combined.

10.2.2. Global specifications

The need for a formulation of the control problem that admits global specifica-
tions arose from the investigation of communication protocol synthesis [RUD 90]. In
[RUD 92] the following definition of the control problem of global specification for
local control is given. The control problem of global specification for global control
is not presented since it is similar to the centralized control problem.

DEFINITION 10.2 (global specification for local control without tolerance) Given a
plant G over an alphabet Σ, a legal language E such that ∅ �= E ⊆ Lm(G) and sets
Σ1,c, Σ1,o, Σ2,c, Σ2,o ⊆ Σ, construct local (complete) controllers C1 and C2 such
that C̃1 ∧ C̃2 is a proper controller for G and such that

Lm(C̃1 ∧ C̃2/G) = E

DEFINITION 10.3 (global specification for local control with tolerance) Given a
plant G over an alphabet Σ, a legal language E ⊆ Lm(G), a minimally adequate
language A ⊆ E, and sets Σ1,c, Σ1,o, Σ2,c, Σ2,o ⊆ Σ, construct local (complete)
controllers C1 and C2 such that C̃1 ∧ C̃2 is a proper controller for G and such that

A ⊆ L(C̃1 ∧ C̃2/G) ⊆ E

In both definitions, Ci, i = 1, 2 is a controller that can observe only actions in Σi,o

and can control only actions in Σi,c and C̃i is the global extension of Ci (C̃i acts on
Σ while Ci acts on Σi,c). The set of uncontrollable actions Σuc is understood to be
Σ\(Σ1,c ∪ Σ2,c).
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A controller that implements control with tolerance is called safe [LAF 02].

In the case that some actions of the system are controlled by more than one con-
troller such as, for instance, the inter-level passageways of the maze example, the
definition of an arbiter is necessary. Different arbitration policies have been proposed
for defining the enabling conditions of a multi-controlled action. The conjunctive ar-
biter requires a consensus among the controllers, the disjunctive arbiter accepts only
one enabling controller, while the general arbiter may apply conjunctive or disjunctive
policy depending on the action under consideration. The choice of a specific controller
is closely related to the specification. The following co-observability properties give
conditions under which the decisions made by local controllers are compatible with
the realization of the specification.

Co-observability

The conjunctive arbiter enables an action if, and only if, it is enabled by every
local controller. As a consequence, the default action of a controller under insufficient
information is to enable an event (“pass the buck” or permissive policy), so that it does
not interfere with the global decision. In other words, a controller disables an action
only if it is sure that, by doing so, it will not prevent a legal sequence from occurring.
The definition of conjunctive and permissive (C&P) co-observability is given here for
two controllers. Point 1) of the definition considers the case of a multi-controlled event
s and states that, if the execution of s after a sequence σ is possible but illegal (i.e.
σs ∈ L∧σs �∈ K), then at least one of the controllers that controls s can distinguish σ
from any sequence after which s is legal (in case it is C1, ∀σ′, P1(σ) �= P1(σ

′)∨σ′s �∈
K). Hence, by disabling s after σ this controller will not remove any legal behavior.
Points 2) and 3) state similar conditions for mono-controlled actions.

DEFINITION 10.4 (C&P co-observability) [YOO 02] A language K ⊆ L = L is
said to be C&P co-observable with respect to a language L,Σo,1,Σc,1,Σo,2,Σc,2 if

∀σ, σ′, σ′′ ∈ K, (P1(σ) = P1(σ
′) ∧ P2(σ) = P2(σ

′′)) ⇒
1) (s ∈ Σc,1 ∩ Σc,2) ∧ (σs ∈ L) ∧ (σ′s ∈ K) ∧ (σ′′s ∈ K) ⇒ σs ∈ K;

2) (s ∈ Σc,1\Σc,2) ∧ (σs ∈ L) ∧ (σ′s ∈ K) ⇒ σs ∈ K;

3) (s ∈ Σc,2\Σc,1) ∧ (σs ∈ L) ∧ (σ′′s ∈ K) ⇒ σs ∈ K .

This definition can been completed with an additional condition on the marked lan-
guage [RUD 92], which states that any marked sequence that cannot be distinguished
from sequences in K and that is a prefix of a sequence in K must belong to K . The
resulting property is simply called co-observability.

DEFINITION 10.5 A language K ⊆ Lm(G) is co-observable with respect to G if
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1) K is C&P co-observable with respect to L(G),Σo,1,Σc,1,Σo,2,Σc,2

2) ∀σ ∈ L(G), ∀σ′, σ′′ ∈ K s.t. P1(σ) = P1(σ
′) ∧ P2(σ) = P2(σ

′′);
σ ∈ Lm(G) ∩K ⇒ σ ∈ K .

The disjunctive arbiter enables an action as soon as it is enabled by one of the local
controllers. As a consequence, the default action of a controller under insufficient
information is to disable an event (“antipermissive” policy), so that its decision does
not interfere with the global decision. In other words, a controller enables an action
only if it is sure that its execution will not cause any violation of the specification.
The definition of disjunctive and antipermissive (D&A) co-observability is given here
for two controllers. Point 1) of the definition considers the case of a multi-controlled
event s and states that, if the execution of s after a sequence σ is possible and legal
(i.e., σs ∈ L ∧ σs ∈ K), then at least one of the controllers that controls s can
distinguish σ from any sequence after which s is illegal (in case it is C1, ∀σ′, P1(σ) �=
P1(σ

′) ∨ σ′s �∈ K). Hence, by enabling s after σ this controller will not enable an
illegal behavior. Points 2) and 3) state similar conditions for mono-controlled actions.

DEFINITION 10.6 (D&A co-observability) [YOO 02] A language K ⊆ L = L is
said to be D&A co-observable with respect to a language L,Σo,1,Σc,1,Σo,2,Σc,2 if:

∀σ, σ′, σ′′ ∈ K, (P1(σ) = P1(σ
′) ∧ P2(σ) = P2(σ

′′)) ⇒
1) (s ∈ Σc,1 ∩Σc,2)∧ (σs ∈ L)∧ (σ′s ∈ L\K)∧ (σ′′s ∈ L\K) ⇒ σs ∈ L\K;

2) (s ∈ Σc,1\Σc,2) ∧ (σs ∈ L) ∧ (σ′s ∈ L\K) ⇒ σs ∈ L\K;

3) (s ∈ Σc,2\Σc,1) ∧ (σs ∈ L) ∧ (σ′′s ∈ L\K) ⇒ σs ∈ L\K.

We recall the main results for the different arbitration policies.

Main results

The general arbiter applies to an architecture where the set of controllable actions
is partitioned a priori into actions for which the disjunctive policy is applied (Σc,d) and
actions for which the conjunctive policy is applied (Σc,e). It can be particularized into
a conjunctive arbiter (Σc,d = ∅, and point (3) of the theorem becomes meaningless)
or a disjunctive arbiter (Σc,e = ∅, and point (2) of the theorem becomes meaningless).
The following theorem gives the conditions under which the global problem with zero
tolerance can be solved:

THEOREM 10.7 [YOO 02] Let K ∈ Lm(G), K �= ∅ and let Σc,d ∪ Σc,e be a parti-
tion of Σc. There exists a non-blocking controller C such that Lm(C/G) = K and
L(C/G) = K iff the following conditions hold:
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1) K is controllable with respect to L(G) and Σuc;

2) K is C&P co-observable with respect to L(G),Σo,1,Σc,e,1, . . .Σo,n,Σc,e,n;

3) K is D&A co-observable with respect to L(G),Σo,1,Σc,d,1, . . .Σo,n,Σc,d,n;

4) K is Lm(G)-closed, i.e. K = Lm(G) ∩K .

The set of languages that can be generated using a general arbiter is a strict superset
of the union of the sets of languages obtained by means of a disjunctive arbiter and
by means of a conjunctive arbiter. It is also a strict subset of the set of languages
generated by means of a centralized controller.

Besides the construction of the local controllers, the problem here is to find the par-
tition Σc,d∪Σc,e. [YOO 02] proposes a polynomial time algorithm to decide whether
the partition exists and, if so, to build it. For the construction of the local controllers,
the algorithm is as follows. A state xi of Ci is a set P−1

i (Pi(σ)), where σ ∈ K. Each
state is actually an equivalence class of sequences, where equivalence is defined by
identical projections. The intial state x0,i is the equivalence class of ε. There is an arc
from xi to x′

i labeled by s ∈ Σo,i if ∃σ ∈ xi, ∃σ′ ∈ x′
i, σ.s = σ′. Functions ψi are

given by:

ψi(xi, s) = enable ⇔ (s ∈ Σc,d,i ∧ ψDA
i (xi, s) = enable)

∨ (s ∈ Σc,e,i ∧ ψCP
i (xi, s) = enable)

∨ s ∈ Σuc ∨ s ∈ Σc,e\Σc,e,i

where ψDA
i is the local mapping that would apply to events controllable by Ci in a

(purely) disjunctive controller:

ψDA
i (xi, s) = enable ⇔ ∀σ ∈ xi ∩K, ∀s s.t. σ.s ∈ L(G), σ.s ∈ K

and ψCP
i is the local mapping that would apply to events controllable by Ci in a

(purely) conjunctive controller:

ψCP
i (xi, s) = enable ⇔ ∃σ ∈ xi, σ.s ∈ K

A representation of the general controller C can then obtained by a shuffle product of
the local controllers where the global decision for control actions that belong to Σc,e is
obtained by intersection, whereas the decision for control actions that belong to Σc,d

is obtained by union.

The control problem with tolerance has been studied in [RUD 92] for the case of a
conjunctive controller. From theorem 10.7, it appears that this problem can be solved
if, and only, if there exists a controllable and co-observable language K such that
A ⊆ K ⊆ E.
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THEOREM 10.8 [RUD 92] If A �= ∅ then the global problem with tolerance is solv-
able if and only if the smallest prefix-closed, controllable, and co-observable language
containing A is contained in E.

When the system under consideration can be specified by regular languages, [RUD 92]
proposes an algorithm for computing the smallest prefix-closed, controllable and co-
observable language containing A.

Another definition of observability in the decentralized context has been intro-
duced, namely joint observability [TRI 04b], which is not comparable with the def-
initions of C&P or D&A co-observability. Assuming that K represents the correct
behaviors, joint observability states that if σ is a correct behavior and σ′ an incorrect
behavior, then at least one observer i has a different view of σ and σ′. Unfortunately,
the problem of checking whether K is jointly observable with respect to L is decid-
able only in the case of a single observer Σ1, i.e. in a context of centralized control
with partial observation. As soon as two observers Σ1,Σ2 ⊆ Σ are considered, the
problem becomes undecidable. From this result, it follows that the decentralized con-
trol problem where the behavior of the controlled system must be non-blocking and
included in some regular language E, i.e. Lm(C1 ∧ C2/G) ⊆ E, is undecidable
[TRI 04b, THI 05].

10.2.3. Cooperative control

The aim of this approach is to allow local controllers to exchange information
when their local view is not sufficient to make a decision. In [WON 96] the prob-
lem is presented as follows: for a given control task and set of observed actions a
question is whether there is sufficient information obtained through the observed ac-
tions set for a controller to synthesize the given control task. In the situation where
the observed actions set does not provide sufficient information but there is another
controller observing the same system with another observed actions set, the problem
might be overcome by communication from the other controller. This is the case when
a controller cannot distinguish between two sequences of actions (when it is necessary
to take the “good” control decision) while another controller has enough information
to distinguish between the two sequences. The controllers must be able to communi-
cate as shown by Figure 10.6.

Considering the maze problem with one controller for each level and inter-level
passageway, it seems obvious that each level controller needs information from its
connected passageways to ensure that connected rooms never contain a cat and a
mouse. Therefore, to solve this problem is will be necessary to “adapt” the set of
observable actions of each controller.
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Figure 10.6. Decentralized control with cooperative controllers

The problem is formally introduced in [WON 96]. Let G be a plant over the alpha-
bet Σ and K be a non-empty, prefix-closed, and controllable sublanguage of L(G).
K is decomposed into two sub-specifications K1 and K2 that must be respectively
ensured by the controllers C1 and C2 that respectively observe actions of Σ1,o and
Σ2,o ⊆ Σ (Σ1,o ∩ Σ2,o = ∅) and respectively control actions of Σ1,c and Σ2,c ⊆ Σ
(Σ1,c ∩ Σ2,c = ∅). Consider the case where Σ1,o is not sufficient, i.e. C1 has not
enough information to “correctly” control actions of Σ1,c. Then find a set Σo ⊆ Σ2,o,
if possible, such that there is a new controller C1new that observes Σ1,o × Σo with
L(C1new/G) = K1. This problem is solvable if, and only if, K is co-observable with
respect to L, Σ1,o, Σ2,o, Σ1,c and Σ2,c. Furthermore, if the problem is solvable, there
exists at least one minimal set Σo that solves the problem (i.e., �Σ′

o ⊆ Σ2,o with
|Σ′

o| < |Σo| that solves the problem). This solution is not dynamic since the informa-
tion shared between controllers is statically computed, so the controller has access to
it even when it is not necessary.

This formalization considers that each controller observes a projection of L(G).
The results presented in [WON 96] are more general since they consider a map instead
of a projection, i.e. several actions can be mapped to a single action which is not
possible with a projection.

10.2.4. Alternative approaches

In [RIC 97], the authors present the problem in terms of knowledge. Their central
hypothesis is that it is easier to reason about what controllers know or do not know
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instead of what sequences of events must or must not be recognized by the controllers.
To model knowledge they use a modal epistemic logic based on the possible-worlds
model presented in [HAL 90]. At each step, from the actions it observes, each con-
troller builds the set of possible global states of the plant, i.e. possible worlds. At one
step, a controller decides to disable an action it controls if, and only if, it will take the
same decision whatever the possible worlds. If several controllers can act on a same
action, it is disabled when at least one controller makes this decision. In some cases,
at some steps, one controller may have insufficient knowledge to make a control deci-
sion (i.e. it cannot decide to disable an action even if it is the right decision to make).
When it cannot decide, a controller may be able to reduce the set of possible worlds
by using the knowledge of some other controllers. This sharing of knowledge is called
pooling knowledge.

In [RIC 99], the authors argue that if the controllers communicate only when one
of them cannot make a decision, it is sometimes impossible to solve the control prob-
lem even if a solution exists. If the controller had previously received information
it may be able to take the right decision. The authors overcome this limitation by
identifying locations where pooling knowledge is helpful.

Since communications are costly, in [RUD 99] they develop a strategy and propose
an algorithm to minimize communication between controllers. The aim is to obtain
a consistent set of communications that provides enough information for controllers
to solve the control problem and such that no subset of it satisfies the two previous
conditions. The consistency ensures that, if in a global state gs a controller communi-
cates with another one, it must communicate the same way in all global states it cannot
differentiate from gs. These results are used in [RIC 99].

[GRA 10] studied the control problem with specifications that are priority policies
(when two actions may be executed simultaneously the one with the highest prior-
ity has to be executed). It extends a work presented in [BAS 09] to share informa-
tion when necessary. The controllers do not communicate directly, but when nec-
essary, controlled processes may synchronize to pool their knowledge. A controller
can therefore exploit this pooling to take the right control decision. With model-
checking techniques, communication points where processes may be synchronized
are pre-calculated. Before and after these points, they can act independently.

10.3. Controller synthesis for distributed systems

Independently from the aforementioned work, and from a more theoretical point
of view, Pnueli and Rosner have extended the line of research initiated by Church by
considering the synthesis problem for distributed systems [PNU 90]. This framework
has then been used to study different variants of the problem, including the more gen-
eral case of the control problem. This approach is, in some sense, more general and
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control is more difficult to achieve: the problem is, in general, undecidable, and for
the decidable sub-cases, the theoretical complexity is very high. The main difference
with the model described in the previous section is that here the controllers explicitly
communicate in a way that is determined by the description of the system: its archi-
tecture, that defines a set of processes and their possible communications, with the
restriction that the variables of the system form a partition of the set of processes. A
variable belongs to the partition corresponding to a process if it can be modified by
this process. This implies that at most one process can have writing access to a given
variable.

This notion of architecture is very general, and a lot of modeling choices are still
to be made. The most prominent have already been listed in the introduction, and we
take another look at these parameters in the light of this specific model.

10.3.1. The different variants of the model: an overview

Synchronous vs. asynchronous systems

The model presented in the previous section in some sense hid the question of
the synchronous or asynchronous nature of the systems considered, by representing
them by a single automaton controlled by different controllers. Here, to describe the
executions of a given architecture, it is necessary to explicitly provide the chosen
semantics.

Models of communications. For synchronous systems, it is usually assumed that
controllers communicate through shared variables. These variables are shared for
reading only, and they can only be written by a single process: at each step of the
computation, the different processes write simultaneously on the variables they own.
Thus a variable written by one process and read by another serves to transmit infor-
mation from the writer to the reader. In asynchronous systems, such a communication
mechanism is very weak when it comes to distributed systems; Pnueli and Rosner
[PNU 89], and then Anuchitankul and Manna [ANU 94] and Vardi [VAR 95] consid-
ered shared variables for communications between the environment and the system in
the case of centralized synthesis. A more powerful mechanism consists of commu-
nicating through rendez-vous, i.e. synchronized execution of common actions or by
signal (a sort of asymmetric rendez-vous initiated by only one of the processes).

Type/expressiveness of specifications. Since we are interested here in reactive
systems, the specifications are usually assumed to be given in some temporal logic or
similar formalism. Besides the classical alternative between linear time and branching
time setting, and the expressiveness of the chosen specification language, the specifi-
cations may also differ in the set of communications they can constrain: can the speci-
fication concern all the communications of the system, even internal communications
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(we will call them total specifications)? Or can only the input-output behavior of the
system be specified, seen as a black box (we will call them external specifications)?

10.3.2. Synchronous systems

The synthesis problem for synchronous distributed systems is the framework cho-
sen by Pnueli and Rosner in their seminal paper [PNU 90]. In their paper, an archi-
tecture is formed by several processes that communicate with each other and with the
environment through shared variables. In this subsection, we start with the results
obtained for the synthesis problem, before showing an extension of this framework to
the control problem.

The synthesis problem

An architecture describes a set of sites (called the processes) and a set of variables
for the processes. Formally, we define an architecture by a tuple A = (Proc, V, E,
(Sv)v∈V , s0, (dp)p∈Proc), where:

– Proc is the set of processes;

– V is the set of variables;

– E ⊆ (Proc× V ) ∪ (V × Proc) indicates which variables are read or modified
by which process;

– Sv is the domain of the variable v ∈ V ;

– s0 = (sv0)v∈V ∈ Πv∈V S
v is the initial state;

– and dp is the delay associated with the process p ∈ Proc.

For x ∈ Proc ∪ V , we write E(x) = {y ∈ V ∪ Proc | (x, y) ∈ E}, and
E−1(x) = {y ∈ V ∪ Proc | (y, x) ∈ E}, that represent, respectively, the set of the
successors and predecessors of x in the graph of the architecture. Since it is bipartite,
for p ∈ Proc, E(p) ⊆ V and E−1(p) ⊆ V and for v ∈ V , E(v) ⊆ Proc, and
E−1(v) ⊆ Proc. Moreover, |E−1(v)| ≤ 1 (since we assume that a variable can be
modified by at most one process). Intuitively, an edge (p, v) ∈ E means that process
p can write on variable v, and an edge (v, p) means that the variable v can be read
by process p. The special process environment is not represented in the architecture,
thus some variables may have no predecessor (they are written by the environment)
or no successor (they are read by the environment) in the graph (V ∪ Proc, E). We
will distinguish them as input and output variables formally defined respectively by
VI = {v ∈ V | E−1(v) = ∅} and VO = {v ∈ V | E(v) = ∅}.

For U ⊆ V , we denote by SU the set Πv∈US
v. A configuration of the architecture

is given by a tuple s = (sv)v∈V ∈ SV giving the value of all variables. For all
s ∈ SV , for all U ⊆ V , we will write sU = (sv)v∈U the projection of s onto the
variables of U . A run of an architecture A in the synchronous framework is a word
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Figure 10.7. Example of an architecture

σ = s0s1 · · · ∈ (SV )ω, where s0 is the initial state of A. The projection of σ onto U
is σU = sU0 s

U
1 · · · . Finally, for a sequence σ = s0s1 · · · ∈ (SU )ω ∪ (SU )∗, for all

0 ≤ i ≤ j, we write σ[i..j] for si · · · sj .

It is sometimes assumed that a delay occurs in the transmission of information
between processes, corresponding to the time interval between the moment a process
reads the variable and the moment the value it will consequently write on its output
variables will be available to others. This is formalized by the value of dp for each
process p given in the architecture. In most of the models the processes have the same
delay, but the results can be extended to the general case, where each process has a
distinct delay of transmission [GAS 09].

Example 10.1

Figure 10.7 shows an example of an architecture, in which the variables are rep-
resented by circles, and the processes by squares. The input variables are then VI =
{u, v}, and the output variables VO = {x, y}. A run of such an architecture is a
sequence

s0s1s2 · · · =

⎛
⎜⎜⎜⎜⎝

u0

v0
t0
x0

y0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

u1

v1
t1
x1

y1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

u2

v2
t2
x2

y2

⎞
⎟⎟⎟⎟⎠ . . .

If there is no delay, then at each time step i, the value yi depends on the sequence(
t0 . . . ti
v0 . . . vi

)
, including the values computed at the same time step i. But if the

process p2 has a delay of 1 for instance, then the value yi depends only on the sequence(
t0 . . . ti−1

v0 . . . vi−1

)
, the value computed at the same time step being unavailable to
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the process. Observe that the value of the variable y does not depend on the value of
the variables u and x. This is formalized in the definition of a program.

According to the information locally accessible to a process, a program (or strat-
egy) for this process is a map that gives, the next value to be written in the variables
it can modify. Formally, a distributed program (or distributed strategy) for A is a
tuple F = (fp)p∈Proc such that, for any p ∈ Proc, fp : (SE−1(p))+ → SE(p) –
each program provides the next value to give to the variables modified by the process,
according to the history of values taken by the variables read by the process. Such
a strategy is called with local memory. Indeed, as already outlined, SE−1(p) is the
domain of the set of variables that process p can read, and SE(p) is the domain of the
set of variables it can modify. Moreover, in its computation, a program must take into
account the delay associated with the process. Formally, for all sequences of inputs
σ, σ′ ∈ (SE−1(p))i such that σ[0..i− dp] = σ′[0..i− dp] we have fp(σ) = fp(σ′).

With these definitions, we say that a run σ = s0s1 · · · ∈ (SV )ω is compatible with

a distributed strategy F = (fp)p∈Proc if, for each i > 0, for each p ∈ Proc, sE(p)
i =

fp(σE−1(p)[0..i]) (recall that the sets E(p) are pairwise disjoints). Moreover, if there
is some process p ∈ Proc with delay 0, we require the architecture to be acyclic (to
see a definition of cyclic architectures with 0-delay processes, see [BER 06]).

Example 10.2 Consider again the architecture illustrated in Figure 10.7, and suppose
that all the variables range over {0, 1}. If the processes are both 0-delay, define the
(memoryless) strategies fp1(σ · s) = (s ⊕ 1, s) for any σ ∈ (Su)∗, where the first
component is the value of the variable x and the second component is the value of the
variable t, and for any s ∈ Su, and fp2(σ · (st, sv)) = st ⊕ sv, for any σ ∈ (St,v)∗,
and for any (st, sv) ∈ (St,v). The symbol ⊕ indicates the addition modulo 2. Then,
at each instant, variable x is different from u, variable t transmits to the process p2 the
value of u. Then, variable y is equal to the exclusive or (xor) of the two input variables
t and v, hence to the xor of u and v. The following is a prefix of a run compatible with
this strategy:

u :
v :
x :
t :
y :

⎛
⎜⎜⎜⎜⎝

0
0
1
0
0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

1
0
0
1
1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

1
1
0
1
0

⎞
⎟⎟⎟⎟⎠

. . .

. . .

. . .

. . .

. . .

Recall that the value of u and v are controlled by the environment, not by the system.
Hence, there are as many runs compatible with a given strategy as possible choices for
the environment for the sequence of input values.

Specifications are given by either a Büchi automaton over (SV )ω, or a temporal
logic formula (linear-time or branching-time) with atomic propositions of the form
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(a) Totally oblivious architecture
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(b) Pipeline

Figure 10.8. The two extremes of the decidability results

(v = a), for any v ∈ V and a ∈ Sv (see Chapter 7 for a definition of temporal
logic and a description of the link between LTL and Büchi automata). The synthesis
problem for distributed systems is then:
Input: an architecture A = (Proc, V, E, (Sv)v∈V , s0, (dp)p∈Proc), and a specification
ϕ;
Output: a distributed program F = (fp)p∈Proc such that every run compatible with
F satisfies ϕ. 1

This problem is actually twofold: a decision problem called the realizability prob-
lem that takes an architecture and a specification as input and decides the existence of
a distributed program, and, if such a distributed program exists, the synthesis problem
asks for a specific program to be produced. With slight abuse, we will say that the
synthesis problem is decidable (respectively undecidable) if the corresponding realiz-
ability problem is decidable (respectively undecidable).

THEOREM 10.9 ([PNU 90]) The synthesis problem for distributed systems is unde-
cidable, for LTL or CTL specifications.

The proof of this theorem is based on results on multi-player games by Peterson
and Reif [PET 79], and gives undecidability even for the simple architecture of Fig-
ure 10.8(a).

It is nevertheless possible to decide the realizability problem and synthesize dis-
tributed programs in some identified subcases. For instance, a pipeline (represented

1. In case of branching-time specifications, one needs to define run-trees that gather all possible com-
putations into one model. This can be done in a fairly straightforward way.
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on Figure 10.8(b)) is an architecture in which information flows linearly from input to
output variables. Then, we obtain the following theorem:

THEOREM 10.10 ([PNU 90, KUP 01]) The synthesis problem for distributed systems
is decidable for total CTL∗ specifications, when restricted to pipeline architectures.

For total specifications, a decidability criterion has been exhibited in [FIN 05]: for
the problem to be decidable, the architecture considered must be totally preordered
with respect to information. This means that all the processes of the architecture can
be ordered in the following sense: process p is greater than process p′ if p′ has a better
knowledge of the global state of the system: if all the variables that can be used to
transmit information from the environment to process p can be read by p′, then p′ is
able to know as much as p. Otherwise the architecture has an information fork and the
problem is undecidable (see Figure 10.9(b)).

Total specifications are more powerful than external ones, so as far as positive
results are concerned, it is more interesting to obtain the result for total specifica-
tions. However, it might be too strong a requirement, as shown with the architecture
of Figure 10.7. The problem is undecidable for this architecture with total specifica-
tions ([FIN 05]), but becomes decidable if we relax the specifications to external ones
[PNU 90]).

A specification is external if it only constrains the value of the input and output
variables of the system. The problem of finding a decidability criterion for the syn-
thesis problem for distributed systems, when restricted to external specifications is a
challenging one, and is still an open question. We know what can cause undecidability
though: the problem with external specifications is undecidable if the architecture is
with uncomparable information, i.e., we can find two output processes with a set of
co-accessible input variables that are not comparable (in the sense of set inclusion).

Figure 10.9 shows examples to illustrate the differences between the different no-
tions. The architecture of Figure 10.9(a) is with uncomparable information: the set of
coaccessible input variables of p2 is {x0, x1, x2}, which is not comparable with the
set of co-accessible input variables of p3 : {x1, x2, x3}. It is then undecidable for both
external and total specifications. Architectures of Figure 10.9(b) have an information
fork: for instance, in the architecture on the right, process p4 has access to x2, but x2

is not read by p3, and reciprocally, process p3 is linked to input variable x1 that cannot
be read by process p4. However, the set of co-accessible input variables is the same
for the two processes: {x1, x2}. In fact, when we are restricted to external specifica-
tions, the problem can be decidable for this architecture [GAS 09]. The architecture
illustrated in the last part of the figure is totally preordered and thus the problem is
decidable for this architecture for both external and total specifications.
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(a) Architecture with uncomparable information
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(b) Architectures with information fork but without uncomparable infor-
mation
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(c) A totally preordered architecture

Figure 10.9. Examples of architectures with uncomparable information or linearly preordered
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C3 C4

Figure 10.10. A plant with its controllers

A control problem with local specifications

To consider a control problem in this setting, we should incorporate the notion of
a plant in the model. To that matter, to each site we add a (finite-state) program of the
process to be controlled. This program is represented by a transition system, whose
set of states can be seen as an additional private variable, local to the process, that
memorizes its control state. Its transition function maps a local state and a tuple of
values on the variable readable by the process to the next possible local states, and
the next acceptable values for the shared variables modified by the process. Here it is
assumed that the architectures are zero-delay (and hence acyclic). Formally, a plant
is a couple (A, P̂ ), where A = (Proc, V, E, (Sv)v∈V , s0) is an architecture, and P̂ is
a tuple of programs for the processes: P̂ = (P p)p∈Proc, and each P p = (Qp, qp0 , δ

p)
is a transition system with Qp is the set of states, qp0 ∈ Qp is the initial state and

δp : Qp × SE−1(p) → 2Q
p×SE(p)

is the transition function.

The problem is then to automatically synthesize local controllers for the processes.
Formally, a controller for process p is a function fp : Qp× (SE−1(p))+×Qp×SE(p)

such that, for all q ∈ Qp, for all σ · s ∈ (SE−1(p))+, fp(q, σ · s) ∈ δp(q, s). Hence,
a local controller is an advice function that gives, according to the current state of the
process, and the history of input values, the next move the program should take. A
distributed controller is then a tuple F = (fp)p∈Proc of local controllers.
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Figure 10.11. Clean pipeline

Given a distributed controller F = (fp)p∈Proc, a F -controlled run is a sequence
σ = (q0, s0)(q1, s1) · · · ∈ (QProc × SV )ω such that:

(C1) q0 = (qp0)p∈Proc is the tuple of initial states for the processes;

(C2) for all p ∈ Proc, for all i ≥ 0, if fp(qpi , (s0 · · · si)E
−1(p)) = (q, s), then qpi+1 =

q, and for all v ∈ E(p), svi = sv. Since the set of variables modified by the system
forms a partition of the processes, this is well defined.

The condition (C1) ensures that all the programs start in their initial state, while
the condition (C2) enforces the evolution of the system to respect the controllers ad-
vice. Observe that since the controller is a deterministic function, there is only one
controlled run that matches a given sequence of values for the input variables of the
system.

The control problem is then:
Input: a plant (A, P̂ ), and a specification ϕ;
Output: a distributed controller F = (fp)p∈Proc such that every F -controlled run
satisfies ϕ.

It turns out that decidability results obtained in theorem 10.10 extend to the con-
trol framework. Madhusudan and Thiagarajan have studied the control problem in this
framework, and advocating that global specifications as those presented in the previ-
ous subsection are unreasonably powerful, have investigated the problem with local
specifications. In this context, a specification is said to be local if it is defined on the
sequence of local states for each process.

A clean pipeline is an architecture in which the processes communicate in a chain,
and the input variables are read by the first and the last process of this chain (see
Figure 10.11). Observe that the output variables are not represented anymore: they
are incorporated in the local states of the processes.

THEOREM 10.11 ([MAD 01]) The control problem with local LTL specifications is
decidable for clean pipelines.

Models and Analysis in Distributed Systems



Distributed Control 333

Since pipelines of Figure 10.8(b) are special cases of clean pipelines, this result
extends the class of decidable architectures when we consider local specifications.

Unfortunately, local specifications also to lead to undecidability quite quickly too.

THEOREM 10.12 ([MAD 01]) The control problem with local LTL specifications is
undecidable for any architecture that is not a subarchitecture of a clean pipeline.

10.3.3. Asynchronous systems

The synthesis problem for asynchronous systems was first studied in the cen-
tralized framework, with asynchronous communications (through shared variables)
([PNU 89, ANU 94, VAR 95]), but it is a very weak means of communication for the
processes in the distributed case. This specific problem was addressed in [FIN 06].
Other works ([MAD 02, GAS 04a, MAD 05, CHA 09]) have assumed synchronous
communications, mostly by rendez-vous.

The model

In asynchronous distributed systems, two events may occur independently on two
different sites. We may chose to represent executions of such systems by words rep-
resenting possible interleavings of independent events. This formalism translates the
notion of concurrency between two events into a non-deterministic choice. To pre-
cisely describe and analyze executions of such systems, Mazurkiewcz traces have
been introduced [MAZ 77, MAZ 86] (see also [ROZ 95]). In this setting, the con-
currency between two events is preserved, since a specific order between two events
is assumed only if the events are linked by a causality relation, encoded in the model
by the notion of dependency. Since executions of asynchronous architectures will be
represented by Mazurkiewicz traces, we first define these objects.

DEFINITION 10.13 (dependence alphabet) A dependence alphabet is a pair (Σ, D)
where Σ is a finite set of events and D ⊆ Σ× Σ is a reflexive and symmetric relation
called dependence relation. The complementary relation I = Σ × Σ \ D is called
independence relation.

DEFINITION 10.14 (Mazurkiewicz trace) A Mazurkiewicz trace over the depen-
dence alphabet (Σ, D) is (up to isomorphism) a Σ-labeled partial order t = (V,≤, λ)
(with λ : V → Σ a labeling function) such that:

1) for all x ∈ V , the set {y ∈ V | y ≤ x} is finite;

2) for all x, y ∈ V , x� y =⇒ λ(x) D λ(y);
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3) for all x, y ∈ V , λ(x) D λ(y) =⇒ x ≤ y or y ≤ y.

There is a mapping between the infinite words overΣ and the infinite Mazurkiewicz
traces over (Σ, D). In fact, every word is the linearization of a unique Mazurkiewicz
trace over (Σ, D), and a Mazurkiewicz trace admits at least one linearization over Σω.

Given a set of processes Proc, we consider a distributed alphabet (Σ, loc), where
Σ is a finite set of actions, and loc : Σ → 2Proc \ ∅ is a total function mapping each
function to the set of processes that take part into its execution. An action a ∈ Σ is said
to be local if |loc(a)| = 1. Moreover, Σ is partitioned into the sets of controllable and
uncontrollable actions denoted Σc and Σuc, respectively, and all the uncontrollable
actions are assumed to be local. Now, the system to be controlled is an asynchronous
automaton [ZIE 87].

In other words, in this framework, an architecture is given by a tuple

A = (Proc,Σ, loc, (Sp)p∈Proc, s0, (δa)a∈Σ)

where Proc is a set of processes, (Σ, loc) form a distributed alphabet over Proc, and
moreover, Σ = Σc ) Σuc is partitioned into the set of controllable and uncontrol-
lable actions, Sp is the finite set of states of process p, s0 = (sp0)p∈Proc is the global
initial state, formed by the initial local states of each process, and for all a ∈ Σ,
δa ⊆ S loc(a) × S loc(a) is the transition function associated to the action a, giving the
evolution of the states of all the processes involved in the execution of a. In the fol-
lowing, we will write Σp for the set of actions in which p is involved, i.e. actions a
such that p ∈ loc(a).

Runs of such architectures are Mazurkiewicz traces over the alphabet (Σ, D) where,
for all a, b ∈ Σ, a D b if and only if loc(a) ∩ loc(b) �= ∅. Indeed, two events are
dependent if one process participates in the execution of both. Otherwise, they can
occur independently. Alternatively, we can see them as words over Σω (i.e. as the
possible interleavings). Then, the global system can be seen as a transition system
TSA = ((Sp)p∈Proc,Σ,→, s0), where the transition relation→⊆ (Sp)p∈Proc × Σ×
(Sp)p∈Proc is given by (s, a, s′) ∈→ if, and only if, (sp)p∈loca, (s

′p)p∈loca ∈ δa, and
for all p /∈ loc(a), sp = s′p. The runs of the system are then sequences of elements
in {s0} · ((Sp)p∈Proc · Σ)ω respecting the transition relations →. Observe that, in
that case, the set of runs is trace-closed: if a word is a run of the system, then all the
other linearizations of the unique corresponding Mazurkiewicz trace are also runs of
the system.

Consider the architecture illustrated in Figure 10.12, adapted from [MAD 02]. It is
part of an architecture modeling the dining philosopher’s problem. Here we only have
pictured one philosopher and one fork. In this problem, n philosophers are around
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Figure 10.12. An architecture of an asynchronous system: one philosopher and one fork

a table, and n forks are available: one fork between two philosophers. The upper
process in Figure 10.12 models the philosopher i. He thinks for a while, and then
becomes hungry. He picks one the left or the right fork, then the other one, and eats for
a while. When he is finished, he puts his forks back on the table. The uncontrollable
actions are think, hungry, eat, and finish and are local actions (do not involve any other
processes). The actions reqf(i,j) and relf(i,j) stand for “philosopher i requests the fork
j” and “philosopher i releases the fork j” respectively. Observe that the request action
involves both the fork and the process, then loc(reqf(i,j)) = {philoi, forkj}. If the
fork is already used by another philosopher, philosopher i cannot take the transition
reqf(i,j) , it will only be possible when the other philosopher releases its fork.

Representation of executions by Mazurkiewicz traces provides two natural ways
of defining history available to local controllers for the processes. The first has already
been presented in the chapter and is called local memory. A controller for a process
p ∈ Proc is with local memory if its decisions are based on the history of events a ∈ Σ
such that p ∈ loc(a), i.e. it depends only on the actions that are locally visible. This
is in some sense the minimal amount of information can be provide to the controllers.
Now, a controller is with causal memory if it depends on all the events in the past of
the last local event, in the trace representing the run. An algorithm for the processes
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to compute this relation has been given by Mattern with the introduction of vectorial
clocks [MAT 89]. This can be seen as the maximal amount of information that can
be allowed while keeping the distribution of the controllers. This is less unrealistic
than it may seem at first glance, and the amount of information to transmit is actually
bounded.

When controlling such asynchronous automata, a choice can also be made between
controlling the processes (process-based controllers) or controlling the actions (action-
based controllers). In the process-based version, each process decides which action to
undertake. An action is then undertaken if all the processes involved agree to do so.
In the action-based version, each action is declared executable or not, regarding the
state of all the processes involved.

Controllers with local memory

We present here the model defined by Madhusudan and Thiagarajan in [MAD 02].
The goal is to synthesize a set of controllers, one for each process, whose actions are
determined only by the history of actions locally visible to the process. Formally, a
strategy (or controller) for process p is a function fp : (Σp)∗ · Sp → 2Σ

p

that maps
a current local state of the process and a sequence of actions in which p is involved
to a set of allowed actions. Of course, the strategy always allows all the possible
uncontrollable actions. Moreover, if we write, for s ∈ Sp, en(s) = {a ∈ Σp |
∃s′, s′′ ∈ (Sp)p∈loca, s

′p = s and (s′, s′′) ∈ δa} the set of locally enabled actions
for process p, we require that fp(σ, s) ⊆ en(s), for any σ ∈ (Σp)∗, s ∈ Sp. This
enforces the fact that the controller can only restrict the allowed behavior.

The specification is given by an ω-regular language overΣ, the alphabet of actions.
Recall that we have stated that the runs of the system are trace-closed. Without this
requirement, it could lead to specifications that do not respect the asynchronous aspect
of the system, by discriminating between two linearizations of the same partial order.
Moreover, we state the following theorem:

THEOREM 10.15 [MAD 02] If the specification language is not trace-closed, the
control problem for asynchronous systems is undecidable.

Madhusudan and Thiagarajan [MAD 02] show that if the specification language
is trace-closed, in the very restricted case where the strategies are clocked and com-
rigid, the problem becomes decidable. A strategy is clocked if it only depends on
the current local state, and on the number of actions already taken, the exact history
remaining unknown. It is com-rigid if, at each instant, the actions it allows are actions
that involve the same set of processes.
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Controllers with causal memory

The previous restrictions can be released if we consider causal memory. Infor-
mally, a controller with causal memory is a controller that depends on all the actions
that are in the causal past (i.e. in the past in the partial order of the Mazurkiewicz
trace) of the last action locally visible to the controller. To understand this, it is use-
ful to see the executions of the system as Mazurkiewicz traces, i.e. partial orders of
actions. All the actions of a given process are totally ordered, but actions on other
processes may be concurrent. Consider the architecture illustrated in Figure 10.13(a).
The dependence relation for the different actions can be computed and built from the
linear execution abcadcadb the partial order of Figure 10.13(b), where fortuitous or-
ders between events have been erased. At this point, the local view of process p1 is
simply aaa, whereas its causal view is illustrated in Figure 10.13(c): all the events in
the past of the maximal event occurred on p1 (here a) are included. The causal view
of the action a now takes the maximal events that have occurred on all the processes
involved in a, and can view all the events in the causal past of these elements. In
our example, it means that the local view of a also includes the last b (as illustrated
in Figure 10.13(d)). Hence, action-based controllers are more powerful than process-
based controllers, since, they can simultaneously observe the state of several processes
(those that are involved in the action). We will return to that observation later.

It has been shown in [MAD 05] that for connectedly communicating processes
(CCP) and trace-closed specifications, the control problem is decidable. An archi-
tecture is a CCP if there exists some bound on the number of steps a process p can
execute without communicating with q (directly or indirectly) and communicate with
him again later. In other words, the bound k is such that, if p executes k steps without
communicating with q, they will never communicate again.

Controllers with causal memory have also been studied by Gastin, Lerman, and
Zeitoun (see [GAS 04a]) in the case of controllers distributed among actions (in fact,
controllers with causal memory have been introduced in [GAS 04b]). To describe
their decidability result, we need the following definition: a dependence alphabet is a
co-graph if it can be obtained from singletons using serial and parallel compositions
(given (A,DA) and (B,DB) two dependence alphabets, the parallel composition is of
the form (A∪B,DA∪DB) and the serial product is (A∪B,DA∪DB∪A×B∪B×A)).
Behaviors on co-graphs are called series-parallel. In [GAS 04a], the authors show that
the control problem is decidable for architectures with a dependence alphabet that is a
co-graph and trace-closed ω-regular specifications.

As we have already pointed out, action-based controllers are more powerful than
process-based controllers. In fact, there exist an architecture and a specification such
that there exists a distributed winning strategy for action-based controllers, but none
for process-based controllers ([MUS 09]).
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Figure 10.13. Different views for the controllers
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10.4. Multi-player games

As pointed out in the introduction to the chapter, there is a natural relation between
the (distributed) control problem and (multi-player) games: the controllers are a team
of players that cooperate against an opponent - the environment. In this section we
present some of theoretic approaches used in games to the distributed control problem.

10.4.1. ATL

The logic ATL (alternating-time Ttemporal logic) [ALU 97] has been introduced as
a specification language particularly adapted to open systems, in which several agents
can influence the behavior of the system. While LTL mainly allows the description
what will arrive and CTL what can arrive, ATL can express the fact that some agent
(or coalition of agents) can control the system in order to enforce a given property. In
that sense, it can be seen as an extension of CTL, since it offers selective quantification
over paths that are possible outcomes of a game.

If a Kripke structure is the model on which linear-time and branching-time log-
ics are interpreted, alternating-time temporal logics are interpreted on multi-agents
systems, such as concurrent game structures. In a concurrent game structure, all the
players of the game are given the ability to undertake actions simultaneously. These
structures are then well adapted to describe concurrent and synchronous games. How-
ever, we will see that it is flexible enough to also describe turn-based games by offering
only one action to all the players but one in a given state, and asynchronous games by
adding an additional player acting as a scheduler.

DEFINITION 10.16 (Concurrent Game Structure) A concurrent game structure
(CGS) is a tuple S = (k,Q,Π, π, d, δ) such that:

– k is a natural number representing the number of players, identified by numbers
ranging from 1 to k;

– Q is a finite set of states;

– Π is a finite set of propositions;

– π is a labeling function, such that for each state q ∈ Q, π(q) ⊆ Π indicates the
set of propositions true at q;

– for each player a ∈ {1, . . . , k}, and each state q ∈ Q, the natural number
da(q) ≥ 1 gives the number of moves available to player a at state q. These moves
are identified with the numbers 1, . . . , da(q). At each state q ∈ Q, a move vector
is a tuple (j1, . . . , jk) such that for each player a, 1 ≤ ja ≤ da(q). We define
also a move function D that gives for each q ∈ Q, the set of possible move vectors:
D(q) = {1, . . . d1(q)} × · · · × {1, . . . , dk(q)};
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Figure 10.14. A concurrent game structure

– δ is a transition function defined for each q ∈ Q and each move vector
(j1, . . . , jk) ∈ D(q) by a state δ(q, j1, . . . , jk) ∈ Q that results from state q when
every player a plays the move da(q).

In a concurrent game structure, at each state, each player chooses a move among
the set of available moves. The choice is made concurrently: a player does not know
the moves chosen by the others. By applying the transition function to the resulting
tuple and the current state, the next state of the run is obtained. The concurrent game
structure illustrated in Figure 10.14 represents a “rock/paper/scissors” game (example
taken from [LAR 10]). In this two-player game, the players choose simultaneously
between the rock, the scissors, and the paper. The rock breaks the scissors but is
wrapped in the piece of paper, that is itself cut by the scissors. In the CGS, a pair
(c1, c2) represents the move c1 of player A1 and c2 of player A2, where r stands for
rock, p for paper and s for scissors. In state 1, A1 wins the game, in state 2, A2 wins.
This example shows the concurrency of the model.

Open systems are also commonly represented by turn-based synchronous games,
in which the players play one at a time. It is, in fact, a special case of a concurrent game
structure, in which at each state q, only one player has a choice of moves, for any other
player a, da(q) = 1. Consider for instance the classical example of the gate controller
([ALU 97]): a train arrives at a crossing and needs to drive through a gate. Whether
or not the train is allowed to enter the gate is decided by a controller. Figure 10.15
illustrates the associated concurrent game structure. The labeling function gives:

– π(q0) = {out_of_gate}: the train is outside the gate;

– π(q1) = {out_of_gate, request}: the train is outside the gate and has requested
to enter;
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Figure 10.15. The gate controller

– π(q2) = {out_of_gate, grant}: the train is outside the gate and has been given
permission to enter;

– π(q3) = {in_gate}: the train is in the gate.

Here, the states q0 and q2 belong to the train, and the states q1 and q3 belong to
the controller. In state q0, the train can request to enter the gate or can chose to stay
out of the gate. In state q1, the controller can either grant the train permission to enter,
or deny it, or delay the handling of the request (by staying in q1). In state q2, the
train can either enter the gate or cancel its request and go back to q0. In state q3, the
controller can chose to keep the gate closed (by staying in q3), or decide to open it to
new requests.

Alternatively, it is possible to encode turned-based asynchronous game structures
in concurrent game structures, which is useful to model transmission protocols for in-
stance. To that matter, an additional player playing the role of a scheduler is required.
In every state, the scheduler selects one of the players, that will be the one to choose
its move at the next state.

Syntax and semantics of ATL

Given a set Π of propositions, and a finite set Σ = {1, . . . , k} of players, an ATL
formula ϕ is described by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈〈A〉〉Xϕ | 〈〈A〉〉Gϕ | 〈〈A〉〉ϕUϕ

where p ∈ Π is a proposition, and A ⊆ Σ is a coalition of players. As in CTL,
the modalities X, G, and U are temporal operators, intuitively meaning respectively
“next”, “always” and “until”, and the operator 〈〈〉〉 is a path quantifier, selecting those
paths enforced by some strategies for the players of A.
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An ATL formula is interpreted over states of a concurrent game structure having
the same sets of propositions and players. Formally, consider the concurrent game
structure S = (k,Q,Π, π, d, δ). A strategy for a player a ∈ Σ is a function that
determines the next move for player a, after a finite sequence of states. Formally, we
define fa : Q+ → N such that, if λ ∈ Q+ ends with the state q, fa(λ) ≤ da(q).
Hence, the strategy always offers a possible move. Given a coalition A, and a set FA

of strategies for the players in A, given a state q ∈ Q, we define the possible outcomes
of FA from q (denoted outcome(q, FA)) to be the set of computations q0q1 . . . such
that q = q0, and for all i ≥ 0, there is a move vector (j1, . . . , jk) such that (1)
fa(q0 . . . qi) = ja, for all a ∈ A, and (2)δ(qi, j1, . . . , jk) = qi+1.

Consider a state q ∈ Q. The semantics is given inductively by:

S, q |= p if p labels the state q;
S, q |= ¬ϕ if S, q �|= ϕ;
S, q |= ϕ1 ∨ ϕ2 if S, q satisfies either ϕ1 or ϕ2;
S, q |= 〈〈A〉〉Xϕ if there is a set FA of strategies for the players in A such that,

for all computations q0q1 · · · ∈ outcome(q, fA), S, q1 |= ϕ;
S, q |= 〈〈A〉〉Gϕ if there is a set FA of strategies for the players in A such that,

for all computations q0q1 · · · ∈ outcome(q, fA), for all i ≥ 0,
S, qi |= ϕ;

S, q |= 〈〈A〉〉ϕ1Uϕ2 if there is a set FA of strategies for the players in A such that,
for all computations q0q1 · · · ∈ outcome(q, fA), there is some
i ≥ 0, such that S, qi |= ϕ2 and for all 0 ≤ k < i, S, qk |= ϕ1.

It is also useful to consider the dual notion of 〈〈〉〉, that will be denoted [[]]. In-
tuitively, if the formula 〈〈A〉〉ϕ means that the coalition of players A can enforce ϕ,
[[A]]ϕ cannot “avoid” ϕ (they cannot cooperate in order to make it false). Then, for a
coalition A, we can write [[A]]Xϕ for ¬〈〈A〉〉X¬ϕ [[A]]Gϕ for ¬〈〈A〉〉F¬ϕ, and [[A]]Fϕ
for ¬〈〈A〉〉G¬ϕ.

If we consider the example of the gate controller illustrated in Figure 10.15, we can
express in ATL the following properties (taken from [ALU 97]) that are all satisfied in
the initial state of our CGS. In the following properties ctr represents the controller:

– whenever the train is out of the gate and has not been granted the permission to
enter the gate, the controller can prevent it from entering the gate:

〈〈〉〉G((out_of_gate ∧ ¬grant)→ 〈〈ctr〉〉G out_of_gate.)

Observe that this formula could not been expressed in CTL nor CTL∗. In this CGS,
whenever the train is out of the gate and does not have the permission to enter the
gate, there exists a computation in which the train finally enters the gate, so the CTL
formula AG((out_of_gate ∧ ¬grant) → EGout_of_gate) is not satisfied. What
we express in the ATL formula, is that, however the train behaves, the controller can
enforce it to stay out of the gate;
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– whenever the train is out of the gate, the controller cannot force it to enter the
gate:

〈〈〉〉G (out_of_gate→ [[ctr]]G out_of_gate);

– whenever the train is out of the gate, the train and the controller can cooperate
so that the train will enter the gate

〈〈〉〉G (out_of_gate→ 〈〈ctr, train〉〉F in_gate).

Note that in that case, since there are only two players, it is indeed the same than the
CTL formulaAG (out_of_gate→ EF in_gate): the fact that they can both cooperate
in order to obtain some result amounts then to the existence of a path obtaining the
result;

– whenever the train is out of the gate, it can eventually request a grant for entering
the gate, in which case the controller decides whether the grant is given or not:

〈〈〉〉G (out_of_gate→ 〈〈train〉〉F (request∧ (〈〈ctr〉〉F grant)∧ (〈〈ctr〉〉G¬grant)));

– whenever the train is in the gate, the controller can force it out in the next step:

〈〈〉〉G (in_gate→ 〈〈ctr〉〉X out_of_gate).

Model-checking

If we want to verify whether controller exists that can enforce a given specification
for instance, we need to model-check the corresponding ATL formula stating that the
controller has a strategy to enforce the specification. The model-checking problem
for ATL asks, given a CGS S = (k,Q,Π, π, d, δ) and an ATL formula ϕ, for the set
of states in Q that satisfy ϕ. Model-checking algorithms are similar to those used
for CTL, except that instead of a pre-image operator, we need here a controllable
predecessor operator, computing the set of predecessor states in which the players
can cooperate and enforce the next state to be the one asked for. We will not detail
this algorithm here, interested readers can refer to [ALU 97]. ATL model-checking is
PTIME-complete, and is implemented in MOCHA [ALU 98].

As for every logic, several extensions of ATL exist. We present some of them here.

An extension of ATL: ATL∗

Like CTL is a fragment of CTL∗, ATL is a fragment of a logic called ATL∗. Formu-
lae of ATL∗ are formed by two types of formulaes: state formulae, and path formulae.
Formally, a ATL∗ state formula ϕ is of the form:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈〈A〉〉ψ
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for p ∈ Π is an atomic proposition, A ⊆ Σ is a set of players, and ψ is a ATL∗ path
formula defined by:

ψ ::= ϕ | ¬ψ | ψ ∨ ψ | Xψ | ψUψ.

An ATL∗ formula is a state formula. The semantics of a ATL∗ is, given a CGS S,
a state q and a path λ, defined as follows:

S, q |= p if p labels the state q;
S, q |= ¬ϕ if S, q �|= ϕ;
S, q |= ϕ1 ∨ ϕ2 if S, q satisfies either ϕ1 or ϕ2;
S, q |= 〈〈A〉〉ψ if there is a set FA of strategies for the players in A such that,

for all computations λ ∈ outcome(q, fA), then S, λ |= ψ;
S, λ |= ϕ for ϕ a state formula, if λ = q0q1 · · · and S, q0 |= ϕ;
S, λ |= ¬ψ if S, λ �|= ψ,
S, λ |= ψ1 ∨ ψ2 if S, λ satisfies ψ1 or ψ2,
S, λ |= Xψ if λ = q0q1 . . . and S, q1 |= ψ;
S, λ |= ψ1Uψ2 if λ = q0q1 . . . and there is some i ≥ 0, such that

S, qiq2 · · · |= ϕ2 and for all 0 ≤ k < i, S, qkqk+1 · · · |= ϕ1.

The formula 〈〈A〉〉FG¬req ∨ GFgrant expressing that a coalition of players can
enforce that an infinite number of requests implies an infinite number of grants is
neither expressible in ATL nor in CTL∗.

The model-checking of ATL∗ is 2EXPTIME-complete (the lower bound is ob-
tained by a reduction to the LTL realizability problem [PNU 89]), and PTIME-complete
when restricted to ATL∗ formulae of bounded size.

ATL with incomplete information

The definition of ATL assumes that each player of the game has complete infor-
mation about the state of the CGS: strategies for the player depends on the history of
the global states visited so far. However, in the distributed control framework, it is
generally admitted that controllers have a local view of the system. The definitions of
CGS and ATL can be adapted to model such games with incomplete information.

In a turn-based synchronous CGS with incomplete information, each player can
observe only a subset of the set of propositions. In particular, we use special atomic
propositions, pa for each player a. If pa holds in one state, it means that it is player
a’s turn. We note σ(q) the player that can play in q. This proposition pa is always
observable by the player a (each player can observe when it is its turn to play), but
not necessarily by the other players (the other players might not be able to determine
which player plays). Moreover, we require that the CGS respects the following prop-
erty: in some state q where pa holds, if there is a move from q to q′, then the set of
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propositions that are unobservable to a is the same in q and q′, except from pσ(q′) that
can appear in q′: this information might be unobservable to a, and still appear in q′.
Besides, from two states q1 and q2 where pa holds and the set of atomic propositions
observable to a is the same, if there is a move from q1 to q′1, then there is a move from
q2 to q′2 for every state q′2 verifying: 1) the set of propositions observable to a in q′2 is
the same than in q′1 and 2) the set of propositions unobservable to a is the same in q′2
and q′1, except from pσ(q′2) that might be different from pσ(q′1).

To specify properties on such CGS with incomplete information, we need to re-
strict ourselves to a syntactic fragment of ATL. As a matter of fact, if some property p
is not observable by a player a, the formula 〈〈a〉〉trueUp makes no sense: if the player
a cannot observe the property to reach, we cannot require him to have a strategy to
attain such a state. Hence we require that each player in a coalition is able to observe
all the properties involved in the task the coalition is required to attain. For formal
definitions of CGS with incomplete information and of the corresponding fragment of
ATL, the interested reader can again refer to [ALU 97].

Unfortunately, the model-checking problem for CGS with incomplete information
is undecidable. The proof of this result relies on results of Yannanakis [YAN 97].
However, if we are restricted to single-player ATL, i.e., formulae in which coalitions
are restricted to singletons of players, the model-checking problem for CGS with in-
complete information becomes decidable, though EXPTIME-complete [ALU 97].

Other logics

Other logics have been proposed in the last years to increase the expressiveness
of ATL and ATL∗. For instance, strategy logic [CHA 07] extends LTL with first-order
quantifications over strategies. It subsumes both ATL and ATL∗and allows us to express
properties for non-zero sum games, but is restricted to two-player games.

Definition of ATL semantics implies that, when quantification on strategies are
nested, the outmost strategies are not taken into account by the innermost ones. In
[DAC 10], an alternative definition of ATL is given, named ATL with strategy con-
texts, in which players commit to their strategies, which apply to evaluate the whole
subformula. This logic is very expressive and can be model-checked.

A special framework of distributed games with incomplete information has been
defined in [MOH 03]. In this case, an arena is composed of a synchronous product
of several arenas, one for each player. Each local arena is bipartite: the moves of the
player and the environment alternate. In the global arena, a state is controlled by the
environment if all the local arenas are in an environment-controlled state. A move
from such a state consists of a move in at least one local arena, leading to a player-
controlled state. From a player-controlled state, all the players activated (i.e. those
that are in a player-controlled state on the local arena) move on their local arena. The
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players that were not activated are even unaware of the existence of a move by other
players. This model, though slightly abstract, is very flexible and allows numerous
synthesis and control problems to be encoded, both in synchronous and asynchronous
settings. They provide simplification theorems on the distributed games obtained,
which often leads to games where a distributed strategy can be computed. Using
this technical tool, they offer a uniform (and often simpler) way of solving classical
problems of distributed control and synthesis.

10.5. Conclusion

Automatically controlling a distributed system in a distributed way respecting the
structure of the plant is a challenging problem. We have presented two different ap-
proaches for this problem, respectively from the control and formal method commu-
nities. While the latter approach considers controllers whose actions should ensure
that the infinite behavior of the plant belongs to the language of the specification, the
former often looks for maximal controllers, i.e. controllers ensuring that the set of
(often finite) behaviors is the language of the specification.

We have presented the main results regarding the control problem. Our presen-
tation is obviously not exhaustive. For each presented problem we have not men-
tioned all the works concerned and we have not presented all the possible prob-
lems. Regarded the presented works, the controller must be a finite state controller.
In [PUR 01, THI 09] the authors investigated infinite state controllers. Another sup-
position made in the results presented is that communications between the controllers
and the plant are synchronous. In [TRI 04a] the authors investigated asynchronous
communications.

To overcome the state explosion problem due to the study of a complete system, the
hierarchical control of discrete event systems has been studied. It was first introduced
in [ZHO 90]. A summary of the problem is presented in [GRI 05].

Some tools are proposed to solve the control problem. Some of them have been
used to solve the Wodes benchmarks such as libFAUDES [MOO 08], STSlib [MA 08],
and SUPREMICA [MIR 08]. The first two are library and the third is a complete tool.
The tool DESUMA [RIC 06] is a tool integrating the UMDES [UMD 06] library ded-
icated to the study of discrete event systems modeled by finite-state automata.
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