
Moving from
Unity to Godot

An In-Depth Handbook to Godot
for Unity Users
—
Alan Thorn

www.allitebooks.com

http://www.allitebooks.org

Moving from
Unity to Godot

An In-Depth Handbook
to Godot for Unity Users

Alan Thorn

www.allitebooks.com

http://www.allitebooks.org

Moving from Unity to Godot: An In-Depth Handbook to Godot for
Unity Users

ISBN-13 (pbk): 978-1-4842-5907-8		 ISBN-13 (electronic): 978-1-4842-5908-5
https://doi.org/10.1007/978-1-4842-5908-5

Copyright © 2020 by Alan Thorn

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a
trademark symbol with every occurrence of a trademarked name, logo, or image we use the
names, logos, and images only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any
legal responsibility for any errors or omissions that may be made. The publisher makes no
warranty, express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Spandana Chatterjee
Development Editor: James Markham
Coordinating Editor: Divya Modi

Cover designed by eStudioCalamar

Cover image designed by Pixabay

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress
Media, LLC is a California LLC and the sole member (owner) is Springer Science + Business
Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.
apress.com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our
Print and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
978-1-4842-5907-8. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

Alan Thorn
High Wycombe, UK

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-5908-5
http://www.allitebooks.org

iii

Chapter 1: ��Introducing Godot: Why Migrate?��1

Getting and Installing Godot���2

Why Use Godot?���3

Godot Is Free��3

Godot Is Open Source���4

Godot Is Evolving��5

Godot Is Supported���5

Godot Is About Games and Experiences���6

Godot and C#��6

Getting Started with C# in Godot��9

Summary���14

Chapter 2: ��Godot Fundamentals��15

Godot Projects��16

Editor Interface��20

Creating and Editing Scenes��21

Scenes and Nodes – Adding a Cube��26

Table of Contents

About the Author���vii

About the Technical Reviewer��ix

Introduction��xi

www.allitebooks.com

http://www.allitebooks.org

iv

Navigation and Transformation��33

Zoom���35

Pan���36

Frame and Orbit��36

First-Person Controls��37

Selecting, Moving, Rotating, and Scaling Nodes��38

Local and World Space Transforms��40

Scene vs. Game Mode���41

Resources��50

Summary���52

Chapter 3: ��Scripting with C# in Godot: Common Tasks�����������������������53

.�NET and Build Problems with C#��55

Building a Hello World Program���61

Working with Nodes���67

Iterating Through Child Nodes���68

Finding Nodes by Name���70

Finding Nodes by Path���71

Godot Groups vs. Unity Tags���73

Accessing Variables in the Inspector���78

Variables As Properties – GetComponent?���80

NodePaths and Node References��81

Set an Object’s Position���83

Make an Object Move Smoothly��85

Make an Object Rotate Smoothly���86

Detecting When an Object Enters a Trigger��87

Viewing Spatial Nodes���96

Table of ContentsTable of Contents

www.allitebooks.com

http://www.allitebooks.org

v

Reading Player Input��98

Summary���103

Chapter 4: ��Making a 2D Game���105

Configuring a 2D Project��106

Importing Assets��110

Creating the Player Character��112

Building a Level – Tilemaps and Tilesets���128

World Collisions���139

2�D Lighting���148

Pickups��152

Timers and Countdowns��156

Summary���160

Chapter 5: ��3D Lighting and Materials��161

Lighting Fundamentals��162

Exploring Light Types���165

Materials��168

Global Illumination – Light Baking���172

Global Illumination – GI Probes��188

Summary���200

Chapter 6: ��Coding a First-Person Controller in C#�����������������������������201

Getting Started – Creating a Camera Scene��202

Player Movement and Key Bindings��209

Reading Input Actions for Movement���213

Establishing Move Direction���215

Applying Gravity���217

Table of ContentsTable of Contents

vi

Completing Player Movement��218

Head Movement and Orientation���221

Jumping and Being Grounded��224

Walking and Sprinting��227

Head Bobs and Sine Waves��228

Completing the FPS Controller���230

Testing the Controller���235

Summary���238

Chapter 7: ��Tips and Tricks���239

How to Make Objects Look at the Cursor���239

Singletons and Auto-Loading���242

Batch Renaming���245

Textures As Masks���248

Type-Independent Function Calling��255

Progress Bars and Loading��256

How to Save Game States��260

Summary���266

�Index��267

Table of ContentsTable of Contents

vii

About the Author

Alan Thorn is an expert on leading technical

teams for game development. He previously

worked at Microsoft, Teesside University,

Apress Publishing, and Disney. Alan

specializes in helping “tech heads” thrive and

flourish in their chosen fields. With 18-year

game industry experience, Alan has written

28 books, presented 30 online courses, and

created 33 games including the award-

winning adventure Baron Wittard: Nemesis

of Ragnarok. Alan is dedicated to helping

creative people make high-impact experiences. He was a Studio Director

at Wax Lyrical Games and a Senior Author at LinkedIn Learning, and now

he leads the prestigious MA program for Games Design and Development

at the BAFTA-winning National Film and Television School, an incubation

space for breakthrough gaming talent. Alan is a pioneer of the new “Open

Stream” model of Transformative Learning, and he advises in higher

education on disruptive curriculum content and instructional design.

Alan speaks passionately worldwide about the future of interactive

experiences. In this book, he clearly details Godot-specific terminology,

how to use its interface effectively, how scenes are structured, coding in

C#, and optimal ways of working.  

ix

About the Technical Reviewer

Doug Holland is a Software Architect at

Microsoft Corporation in the One Commercial

Partner team. In his role at Microsoft,

Doug provides guidance to Microsoft’s

partners looking to digitally transform with

cloud computing, mixed reality, and other

emerging technologies. Doug holds a master’s

degree from Oxford University in Software

Engineering and lives in Northern California

with his wife and children.  

xi

Introduction

Congratulations on joining me to take an exciting journey, one that moves

from Unity to the Godot engine. Godot is a completely free, open source,

and cross-platform engine that’s making amazing strides and progress.

Godot can make 2D and 3D games, and it can be used for other products

like visualizations, Movie Previz, historical recreations, and more. In

the competitive climate of game development, where new tools and

technologies are continually reshaping the landscape, and challenging

established norms, it can be difficult knowing which tools to learn or

to trust in. Every software, it seems, has its rise and fall. It’s difficult

knowing which one represents the actual future and who is just a passing

fad. But your decisions about which software to use are crucial for your

business and your success. Your choice of engine influences your future. It

influences how quickly and easily you can work, which platforms your end

product can target, and which tools you can integrate with.

One reason so many people today are switching from Unity to Godot,

or at least considering the switch, is because Godot represents a vision

and a promise, a free engine that’s open source and community driven, an

engine that’s easy to use and reliable, and an engine that’s open about its

development road map.

One of the historic fears surrounding the use of any game engine –

as opposed to making your own engine – was its closed and proprietary

nature, that it would keep you locked into specific ecosystems and to

specific agendas led by companies and parties outside of your own

business. And until recently, you never really had much choice if you

wanted to make a professional-grade game. You had to lock yourself to a

xii

closed engine driven by people behind closed doors. But Godot changes

that, and that’s why it’s an especially important engine today. It represents

an opportunity to make games on very different terms. And with the

outstanding success of other open source tools, like Blender, we have every

reason to feel excited for the future of Godot. I’m truly glad you’re going to

join me on this journey.

IntroductionIntroduction

1© Alan Thorn 2020
A. Thorn, Moving from Unity to Godot, https://doi.org/10.1007/978-1-4842-5908-5_1

CHAPTER 1

Introducing Godot:
Why Migrate?
This book helps you convert easily from Unity to Godot. It assumes you’re

already familiar with Unity (at least the basics) but are completely new to

Godot. This book translates Unity terminology to Godot terminology. Plus,

it features comprehensive tutorials and guides to get you started quickly

in Godot. Godot is a completely free and open source game engine that’s

growing rapidly in popularity, acceptance, and adoption, especially for

independent games. More and more developers worldwide are happily

joining the Godot community to make great games together, and there’s

never been a better time to start learning. In this chapter, we explore

what Godot is, how to download and install it, and strong reasons why we

should use it compared to other engines, like Unity or Unreal. So let’s get

started.

This book was written for the Godot 3 release cycle. This includes 3.0,
3.1, and later releases in the 3 cycle. You may be using a later release
than the one featured in this book; but most of the content presented
here should be good for the near future.

https://doi.org/10.1007/978-1-4842-5908-5_1#ESM

2

�Getting and Installing Godot
If you’re using Unity, you probably already know what Godot is! Godot is a

game engine. It’s software for making games and interactive experiences.

It features a world creator, a graphical interface, a code editor, a complete

API, and build tools for deploying your game to different platforms as

a stand-alone application. In short, imagine a game engine that’s very

similar to Unity in its ease of use, but it’s completely free and open source.

That’s Godot.

You can download Godot from its home page https://godotengine.org/.

Simply navigate a browser there and click the Download button from the

top menu. This takes you to the Download page. From there, be sure to

download the Godot Mono Version C#. See Figure 1-1.

Multiple versions of Godot are available for download, all for multiple

operating systems. Specifically, Godot natively supports Windows,

Mac, and Linux; and it’s available in a Standard Version and a Mono

Version. The Mono Version lets you make script files in the C# scripting

Figure 1-1.  Download and Install the C# Godot Version for Your
Operating System

Chapter 1 Introducing Godot: Why Migrate?

https://godotengine.org/

3

language – like Unity – while the Standard Version supports Godot’s

custom language, GDScript, only. This book uses the Mono Version and

writes script files in C#. Using C# not only makes the transition from

Unity to Godot simpler; it’s also a great language offering premium level

runtime performance. So I recommend choosing the Mono Version in all

cases. Godot features full support for C# 8.

�Why Use Godot?
So why use Godot at all? That’s a good question! After all, there’re tons

of apparently free and spectacular game engines available today. For

example, you can download Unity, Unreal, or Lumberyard right now and

make games with them. These engines are well documented, widely used,

and are responsible for many well-loved games on the market. So why use

Godot instead? This section lists important reasons for choosing Godot as

opposed to its alternatives.

�Godot Is Free
Godot is completely free of cost. You pay nothing for using Godot or for

selling your Godot games. Really. This is actually very different from Unity

and Unreal even though many people think they’re fully free. Unity and

Unreal are, in fact, not completely free. True, you may download and

use them free of charge, but you’ll need to pay up if you release a game

commercially and its revenue surpasses a specific threshold. The amount

differs per engine. But let’s put this into perspective as of November

2019. For Unity, if your company earns more than 100,000USD in a single

financial year, then you’ll need to purchase a Unity Professional License.

This costs 125USD per month. See the Unity FAQ page here: https://

unity3d.com/unity/faq/2491. In future, this pricing structure could

increase! Similarly, for Unreal Games, you’ll need to pay 5% of your gross

Chapter 1 Introducing Godot: Why Migrate?

https://unity3d.com/unity/faq/2491
https://unity3d.com/unity/faq/2491

4

revenue (before tax) after you earn 3,000USD (see www.unrealengine.

com/en-US/faq). This could amass to a huge sum if your game becomes

successful! So, neither Unity nor Unreal is fully free. But Godot is. You pay

nothing for using Godot, ever. Simple.

�Godot Is Open Source
Godot is completely open source. This means you can download, inspect,

edit, and compile its source code immediately. Plus, you can use and

redistribute any derived versions you may make. Open source should be

reassuring to a game developer. This is because their work won’t depend

on a closed foundation of proprietary code that’s maintained by a third-

party developer whose agenda may be very different to yours. The engine

is licensed under the MIT License, which is summarized by Godot:

You are free to download and use Godot for any purpose, per-
sonal, non-profit, commercial, or otherwise. You are free to
modify, distribute, redistribute, and remix Godot to your
heart’s content, for any reason, both non-commercially and
commercially.

—Godot website
(https://docs.godotengine.org/en/3.1/about/faq.html)

This book doesn’t cover compiling Godot from source. It assumes
you’ll be using a fully built version that’s downloadable from the Godot
website. For more information on compiling from source, visit the
Development website here: https://docs.godotengine.org/en/
latest/development/compiling/getting_source.html.

Chapter 1 Introducing Godot: Why Migrate?

http://www.unrealengine.com/en-US/faq
http://www.unrealengine.com/en-US/faq
https://docs.godotengine.org/en/3.1/about/faq.html
https://docs.godotengine.org/en/latest/development/compiling/getting_source.html
https://docs.godotengine.org/en/latest/development/compiling/getting_source.html

5

�Godot Is Evolving
Godot is always evolving. It was established in 2014 by software developers

Juan Linietsky and Ariel Manzur, and it’s continued to grow in popularity

and features year after year. Godot has a full range of features that any

Unity developer will recognize and expect from an engine, plus really

interesting features that may pleasantly surprise you. Godot supports Light

Baking, full Global Illumination, Navigation Meshes and Path Finding,

Visual Scripting, Constructive Solid Geometry (CSG), and 2D functionality

for sprites and User Interfaces. Godot currently supports two scripting

languages, namely, GDScript and C#; the former is more established in the

engine, while the latter is newer. Godot is actively maintained by a strong

development community, and many people financially support the project

through Patreon, here: www.patreon.com/godotengine.

�Godot Is Supported
Godot is strongly supported by a growing community of game developers,

educators, and creative evangelists. Together they have a ton of experience.

They have a shared purpose in promoting Godot, helping each other, and

helping newcomers learn the tools. Online documentation, books like

this, videos, and video courses are all available to help you learn Godot

from scratch and to continue using Godot professionally. Godot has

comprehensive online documentation that should be used frequently

as a reference, in conjunction with this book, as you progress chapter by

chapter. It’s available here: https://docs.godotengine.org. Furthermore,

you’ll also want to check out https://godotsharp.net for a C#-oriented

reference and also my YouTube channel BeIndie.biz (www.youtube.com/

channel/UCF1X3sTIj-pCIcR_C2wg6SQ/) for regular tutorials on Godot.

Chapter 1 Introducing Godot: Why Migrate?

http://www.patreon.com/godotengine
https://docs.godotengine.org/
https://godotsharp.net/
http://www.youtube.com/channel/UCF1X3sTIj-pCIcR_C2wg6SQ/
http://www.youtube.com/channel/UCF1X3sTIj-pCIcR_C2wg6SQ/

6

�Godot Is About Games and Experiences
If you attend game conferences, you’ll find a growing community of

game developers discontented with the strategic direction of both Unity

and Unreal right now. These developers are seeking alternative options,

and understandably so. There’re several important reasons for this

search worth mentioning here. Some consider Unreal too expensive and

technically burdensome, especially for small development teams with less

specialist needs. Some see Unity as focusing too heavily on architectural

and automotive visualization features at the expense of games. And some

feel that both engines have just gotten too wrapped up in the arms race

toward photorealism, the sense that both are “growing too big to fully

understand the needs of independent developers and small teams.”

There’s a sense, either real or perceived, that in both Unreal’s and Unity’s

most recent growth (especially in the latter), there’s also a significant

detachment from their original user base. In this search, then, many

people are now finding their ideal in the Godot engine – driven by and

built by the game development community. Godot is first and foremost

a game engine. Its structure, tools, feature set, and build options have

games (and interactive experiences) in mind from the outset. Its source

code is open and its development road map are constantly under an open

discussion by the developer community. The full development road map

can be found on GitHub here: https://github.com/godotengine/godot-

roadmap.

�Godot and C#
As a Unity developer, you’ll be familiar with C# for scripting – unless you

use a Visual Scripting plug-in like Playmaker. C# is a versatile, powerful,

and easy-to-learn language that delivers comparatively excellent runtime

performance. And so it’s likely you’ll want to continue using it on migrating

Chapter 1 Introducing Godot: Why Migrate?

https://github.com/godotengine/godot-roadmap
https://github.com/godotengine/godot-roadmap

7

to Godot. After all, you probably don’t want to learn a completely new

language and syntax just because you’re moving to a new engine.

Thankfully, you can bring your C# knowledge with you! This is because

the Godot 3.1 Mono Build (or higher) supports C# as a scripting language.

However, there are some important limitations to using C# that you should

know. These limitations may be ironed out in later releases, but as of 3.1

they apply:

	 1.	 You can’t build C# projects for the Web or mobile

devices.

Godot lets you build games for many platforms,

including desktop, Web, and mobile – using the

GDScript language. However, C# projects build only

for desktop systems – both Web and mobile are

currently excluded. C# support may be added soon,

but this is in development.

You can keep track of the development status for these features, as
follows:

Android

https://github.com/godotengine/godot/issues/20267

iOS

https://github.com/godotengine/godot/issues/20268

HTML5

https://github.com/godotengine/godot/issues/20270

Chapter 1 Introducing Godot: Why Migrate?

https://github.com/godotengine/godot/issues/20267
https://github.com/godotengine/godot/issues/20268
https://github.com/godotengine/godot/issues/20270

8

	 2.	 You won’t get C# code completion or syntax

highlighting for the native script editor.

Unlike Unity, Godot provides an integrated text

editor for creating scripts as part of the main editor

interface; see Figure 1-2. This is the script editor

window. You can use this window to type C# script

files, but it lacks full language support. It’s designed

for GDScript. So you won’t get full syntax highlighting

or code completion or any coding assistance for C#.

To get this, you’ll need to use external code editor!

This book will show you how to use Visual Studio
Code with Godot – complete with syntax highlighting

and code completion. Visual Studio Code is

supported on Windows, Linux, and macOS.

	 3.	 It’s easy to break the metadata for your C# project.

As you add and remove files to and from your

project, Godot maintains metadata. This tracks

connections between files and resources, and it

maintains lists of script files needed for compiling.

In C# projects, it’s currently easy for anybody

to accidentally break the metadata. This causes

compilation to fail. Don’t worry though. These

issues can usually be fixed easily and manually, and

we’ll see how soon.

Chapter 1 Introducing Godot: Why Migrate?

9

�Getting Started with C# in Godot
So you’ve finally downloaded and installed the Godot Mono Version for

your OS, as mentioned earlier in this chapter. Great! Let’s now take the

next steps to configure Godot for C# scripting. Once set up, we’ll be ready

to start making games. Open up a web browser and download Visual

Studio Code to your computer. See Figure 1-3. The URL is https://code.

visualstudio.com/.

Figure 1-2.  The Godot Editor Features a Scripting Window for
GDScript and C#. However, Third-Party Editors Are Better for C#, As
We’ll See

Chapter 1 Introducing Godot: Why Migrate?

https://code.visualstudio.com/
https://code.visualstudio.com/

10

After running Visual Studio Code for the first time, select the

Extensions tab and install the OmniSharp C# Extension for syntax

highlighting and code completion support. See Figure 1-4.

Figure 1-4.  Installing the C# OmniSharp Extension for Visual Studio
Code

Figure 1-3.  Downloading Visual Studio Code for Your Operating
System. This Book Supports All Platforms for Godot, Although I’m
Using a Mac for Screenshots and Examples

Chapter 1 Introducing Godot: Why Migrate?

11

Next, Open Godot and create an empty project from the Project

Creation Window. Click the New Project button and enter your project

name and location. You can name your project anything and store it

anywhere. We only need to create a new project to access the Editor

Settings window from the main interface. See Figure 1-5.

From the main Interface, select the menu item Editor ➤ Editor

Settings. This displays the Editor dialog where you can customize

application settings. See Figure 1-6.

Figure 1-5.  Creating a New Godot Project

Chapter 1 Introducing Godot: Why Migrate?

12

From the Editor Settings Window, choose Mono ➤ Editor from the

list view and then select Visual Studio Code from the External Editor

drop-down menu. This sets Visual Studio Code as the default code editor

for Godot. This means that Visual Studio Code will open automatically

whenever you open script files from the Godot File System (Project Panel).

See Figure 1-7.

Figure 1-6.  Accessing the Editor Settings Window

Chapter 1 Introducing Godot: Why Migrate?

13

Excellent! You’ve now configured Visual Studio Code as the default

code editor for Godot. This editor will now open to display script files in

your project. You’re now all set to get started!

You can view a free YouTube video tutorial on configuring Visual
Studio Code on my BeIndie.Biz channel here: www.youtube.com/
watch?v=ra-BJ-fJ6Qo&t.

Figure 1-7.  Setting the Default Code Editor

Chapter 1 Introducing Godot: Why Migrate?

http://www.youtube.com/watch?v=ra-BJ-fJ6Qo&t
http://www.youtube.com/watch?v=ra-BJ-fJ6Qo&t

14

�Summary
On reaching this point, you’ve now downloaded and installed Godot

Mono, and you’re ready to start coding games using C# for any desktop

platform – Windows, Linux, or Mac. Godot is an excellent, free, and open

source engine; and by using this tool, you can create great products.

Now let’s jump in and learn Godot quickly. I’ll be converting your Unity

knowledge to Godot knowledge. Let’s go!

Chapter 1 Introducing Godot: Why Migrate?

15© Alan Thorn 2020
A. Thorn, Moving from Unity to Godot, https://doi.org/10.1007/978-1-4842-5908-5_2

CHAPTER 2

Godot Fundamentals
So you’ve now installed Godot and Visual Studio Code. That’s great!

Chapter 1 explained how to configure Godot on your computer – Windows,

Mac, or Linux – and how to create Godot projects successfully. This

chapter picks up from the previous to get you started quickly. Specifically,

it’s a high-powered conversion course. It helps you move from the already

familiar world of Unity into the new world Godot. In this chapter, you’ll

learn how to create Godot projects, how to use the editor interface, how

to convert from Unity’s language and terminology into Godot’s, and how

to build scenes with basic game functionality. If you’ve never used Godot

before, then you absolutely need to read this chapter. So let’s go.

Note  Even if you’ve used Godot before, it’s strongly recommended
that you read this chapter. It covers Godot’s most core features,
comparing them to Unity’s and also making important distinctions
that you need to know about.

Unity comes with a whole bunch of names and words you’ll already know,

such as GameObject, Component, Scene, Script, Asset, Hierarchy, Inspector,

and more. Godot unsurprisingly has exactly the same concepts and ideas! But

it sometimes uses different names for them. Let’s start then by exploring the

names we’ll be encountering extensively throughout this chapter. Table 2-1

lists how Unity’s names and terms compare to Godot’s. Later, we’ll see more

in-depth explanations for them and also make important distinctions.

https://doi.org/10.1007/978-1-4842-5908-5_2#ESM

16

�Godot Projects
The first step in working with Godot is to create a new Project, just like

working with Unity. In Godot, “One Project” refers to “One Game” or “One

Simulation,” or – more generally – one complete experience. By creating

a new Project, Godot effectively creates a folder in your computer’s file

system, and it will contain all necessary files for your game, including

metadata, textures, meshes, sounds, animations, and more. If you ever

want to share your project with other team members or friends – allowing

them to open it inside Godot for editing – then you’ll need to send them

your complete project folder. To create a new Project, simply launch the

Godot application, and you’ll be presented with the Project Creation

Table 2-1.  Terminology: Unity vs. Godot

Unity Godot

Project Project

Scene Scene

GameObject Node

Prefab Scene

Hierarchy Scene Tree

Project Panel File System

Inspector Inspector

Empty Object Spatial Node

Asset Resource

Tag Group

Chapter 2 Godot Fundamentals

17

The project creation dialog is small and contains very few options. But

they’re important. By default, the confirmatory Create & Edit button in the

bottom-left corner will probably be disabled, requiring you to make some

changes. See Figure 2-2.

Figure 2-1.  Creating a New Godot Project

Introduction Window. This is basically Godot’s version of the Unity Hub.

From this Window, select the Projects tab and click the New Project

button from the right-hand margin. See Figure 2-1.

Chapter 2 Godot Fundamentals

18

Specify a project name using the Project Name text field and then click

the Create Folder button next to the field if the Project Path location is

suitable for you. The Project Path specifies the folder on your computer’s

file system where a new sub-folder will be created, matching the Project

Name. It will contain all project files and become the Project Folder. Be

sure to leave the option OpenGL ES 3.0 enabled, unless you’re making

a game for very old hardware, older mobile hardware, or web games. In

this book, we won’t be doing that! Godot supports Windows, Mac, Linux,

Android, Web, and (soon) iOS. See Figure 2-3.

Figure 2-2.  The Godot Project Creation Window

Chapter 2 Godot Fundamentals

19

When you’re done, click the Create & Edit button to generate your

Godot Project. When completed, Godot will open the Project inside the

Editor Interface, ready for you to edit and begin development.

Note  When project creation is completed, you may see a warning
window titled Important - C# Support is not feature complete. This
Window outlines some limitations to the current C# language support
in Godot and emphasizes that its support is still in development. You’ll
probably be pleased to know that, as of Godot 3.2, C# support – while
still in development – is extensive and powerful.

Figure 2-3.  Choosing a Project Folder

Chapter 2 Godot Fundamentals

20

�Editor Interface
You’ll spend most of your development time using the Godot Editor Interface,

building games and other projects. The Editor Interface lets you import

Assets, create Scenes, and build Projects. Its default layout looks and works

similarly to the Unity engine. Let’s see a comparison. See Figures 2-4 and 2-5.

Figure 2-4.  Unity Editor Interface: (1) Hierarchy Panel, (2) Scene
Tab, (3) Inspector, and (4) Project Panel

Figure 2-5.  Godot Editor Interface: (1) Scene Tree, (2) Scene Tab, (3)
Inspector, and (4) File System

Chapter 2 Godot Fundamentals

21

Note M any screenshots included in this book feature the Godot
interface in its light color theme, as opposed to the darker, default
theme. You can choose the Interface theme by selecting Editor ➤
Editor Settings from the application menu to show the Settings dialog.
From there, you should choose Interface ➤ Theme from the options
list and set the Theme Preset drop-down menu to Light.

By default, Unity creates an empty scene for you in your new project.

You can edit this scene through the scene tab – as you’ll already know.

In contrast, Godot doesn’t create a scene automatically, even though it

initially appears like a scene exists by looking at the 3D viewport. You’ll see

a skyline and a 3D Grid in the viewport (somewhat counter-intuitively) –

making it look like a world exists. See Figure 2-5. Despite appearances,

however, Godot is different from Unity. It’s actually in a “standby” mode,

waiting for you to open any existing scene (if you have one), to import a

scene from a file or to create a new scene. We’ll do the latter in the next

section.

�Creating and Editing Scenes
Scenes are worlds or levels. A scene is a single, unified coordinate space in

which objects exist in a hierarchy, like characters, buildings, and weapons.

Unity calls such objects “GameObjects.” Godot calls them Nodes. Together

these Nodes form a world, such as a town, a house, a space station, or

any other type of location. Typically, a game consists of one or multiple

Scenes. These may be presented during gameplay either successively,

like when the player progress to the next level, or intermixed together at

different times, such as when a town environment changes seamlessly to

a forest during an RPG. In Unity, a Scene is conceived as a monotype; that

is, there’s literally only one type of scene. Consequently, your development

Chapter 2 Godot Fundamentals

22

workflow in Unity will be to create an empty scene and then put things

in it: 3D objects, UI elements, and also 2D elements as needed. Simple.

You can – of course – make fully 2D games in Unity, as opposed to

3D. Naturally, 2D and 3D seem to be different coordinate spaces; but

really – when you make a 2D game – your 2D objects will just live in a 3D

world and they’ll only be presented in 2D to the camera. Godot is different,

however. Unlike Unity, Godot does divide Scenes into different types,

specifically three types: 3D Scenes, 2D scenes, and UI (User Interface)

Scenes. A scene’s type is determined by its Root Node type, that is, by

the type of Object at the top of the scene hierarchy. Let’s try a practical

example to show you what I mean.

Note  I strongly believe it’s a mistake to divide scenes into different
types as Godot has done. I think the Unity understanding of a Scene
is simpler, more elegant, and more powerful as it separates the world
space from the types of objects that inhabit it, allowing you to easily
and intuitively mix different kinds of objects, like 3D objects and UI
elements. I hope that Godot will revise its scene conception in future
releases.

To create a 3D scene, you select Scene ➤ New Scene from the File

menu. This creates a new Scene tab in the interface, and the Scene Tree

tab prompts you to generate your first, top-level Node. For a 3D scene, you

must select 3D Scene. See Figure 2-6.

Chapter 2 Godot Fundamentals

23

After selecting 3D Scene from the menu, Godot auto-generates a new

Node as the topmost node in the scene hierarchy (Tree). This node is

called a Spatial. A Spatial Node is the Godot equivalent of a 3D Empty
Game Object from Unity. It represents a location in 3D space. It can be

moved, rotated, and scaled; but it has no substance or appearance, like

a mesh. The Spatial node exists in 3D space. This is why any scene with

a Spatial node as the Root of its Scene Tree will always be a 3D scene. See

Figure 2-7.

Figure 2-6.  Creating a 3D Scene Root Node

Chapter 2 Godot Fundamentals

24

After creating any scene, you’ll need to save it. A scene with unsaved

changes appears with an asterisk symbol (*) beside its name in the Editor.

You can save the open scene by pressing Ctrl+S (Windows and Linux) or

Cmd+S (Mac) or by choosing Scene ➤ Save Scene from the application

menu. See Figure 2-8.

Figure 2-7.  Spatial Nodes Are at the Root of 3D Scenes

Chapter 2 Godot Fundamentals

25

Scenes are saved as an Asset (Resource) of the project and will appear

in the File System panel. Each scene is saved in the .tscn format.

Note  The tscn format defines the contents of a scene in a text file
form. Godot uses this text file to construct the contents of a saved
scene when shown in the viewport or during gameplay. Being a
text file, scenes can be edited and modified using a text editor. This
makes it useful to batch process a scene or make far-reaching edits
by using Search and Replace tools. More information can be found on
the tscn format at https://docs.godotengine.org/en/3.1/
development/file_formats/tscn.html.

Creating a 2D scene or a UI scene consists only on generating a

different root node. For 2D scenes, choose 2D Scene; and for UI scenes,

choose User Interface. Both 2D and UI scenes look substantially different

in the viewport, as they use a 2D coordinate system. See Figure 2-9.

Figure 2-8.  Saving a 3D Scene

Chapter 2 Godot Fundamentals

https://docs.godotengine.org/en/3.1/development/file_formats/tscn.html
https://docs.godotengine.org/en/3.1/development/file_formats/tscn.html

26

�Scenes and Nodes – Adding a Cube
So you can now create 3D, 2D, and UI scenes directly from the Godot

interface. It’s easy. As mentioned, Godot distinguishes between scene

types, between 2D and 3D coordinate systems. In this section, we’ll focus

on the 3D scene for demonstration, because it’s the closest type to a

Unity scene. Even so, Godot Nodes (GameObjects) work the same across

scenes. So everything you’ll learn here for 3D scenes will be good for

2D and UI ones too. Let’s explore a really basic task, specifically how to

generate a basic cube mesh primitive in the scene. In Unity, that’s easy to

do. For example, in Unity 2019 and 2020, you just choose GameObject ➤

3D Object ➤ Cube from the application menu. And voila, a cube is made!

See Figure 2-10. In Godot, however, the situation is different. There is no

Primitive Creation menu option!

Figure 2-9.  Creating a 2D Scene

Chapter 2 Godot Fundamentals

27

In Godot, you must make mesh primitives manually. To do this, select

the scene root node by left-clicking it from the Scene Tree panel. For a

3D scene, the root node will be a Spatial Node. To create a Child Node

from here, right-click the Spatial Node from the Scene Tree, and select

Add Child Node from the context menu. See Figure 2-11. This displays the

Node Creation Window.

Figure 2-10.  Creating a Cube in Unity. Easy!

Chapter 2 Godot Fundamentals

28

From the Node Creation Window, enter MeshInstance into the Search

field. This applies a filter to the Matches list, showing you all available,

matching nodes that can be added to the scene. See Figure 2-12. The

MeshInstance node is the Godot equivalent of a Unity GameObject

featuring both a MeshRenderer and MeshFilter component. It allows you to

display a mesh in a 3D scene. Select the MeshInstance node and click the

Create button.

Figure 2-11.  Creating a New Node

Chapter 2 Godot Fundamentals

29

Note  Pretty much anything functional in a scene – lighting,
navigation, post-processing, and so on – must happen through
Nodes. Godot is far more node driven than Unity. Unity features many
Editor Windows as tools that are used to work on GameObjects.
There is a clear distinction between a GameObject in the world and a
tool for editing properties of that object. Godot, by contrast, embeds
much Editor functionality into a scene through nodes, as we’ll see.
You create nodes by using the Node Creation Window, making this
tool highly important. More information on Scenes and Nodes can be
found online here: https://docs.godotengine.org/en/3.1/
getting_started/step_by_step/scenes_and_nodes.html.

Figure 2-12.  Creating a New MeshInstance Node

Chapter 2 Godot Fundamentals

https://docs.godotengine.org/en/3.1/getting_started/step_by_step/scenes_and_nodes.html
https://docs.godotengine.org/en/3.1/getting_started/step_by_step/scenes_and_nodes.html

30

After adding a MeshInstance node to the scene, it’ll appear as a Child

of the previously selected Node in the Scene Tree. If the MeshInstance

gets created as a child of an unintended node, then you can fix this by

simply dragging and dropping the MeshInstance onto another node inside

the Scene Tree Panel. This creates a parent-child connection between the

nodes. Dragging and dropping Node X to Node Y will always make Node X

a child of Node Y. See Figure 2-13 where a MeshInstance node is a child of

the Scene Root object, a Spatial Node.

Figure 2-13.  Adding a MeshInstance As a Child Node of a Spatial

MeshInstance nodes are used for displaying meshes in 3D scenes. Each

MeshInstance node is a single, unique instance of a mesh inside the scene.

They can display complex meshes imported from third-party software like

Blender (www.blender.org) or auto-generated Primitive meshes like Cubes

and Spheres. To generate a Cube, select the MeshInstance by left-clicking

it in the scene viewport, or from the Scene Tree Panel, and then (from the

Inspector) click the Mesh drop-down field and choose New CubeMesh to

create a new Cube Mesh Asset in the Project. See Figure 2-14.

Chapter 2 Godot Fundamentals

http://www.blender.org

31

After selecting New CubeMesh, a cube will be shown in the scene. By

default, all meshes are visible in Godot. Clicking this option generated a

new procedural mesh that Godot has saved internally as a Resource (Asset)

of the Project, even though nothing extra is shown in the File System Panel.

The newly generated mesh has been assigned as the Mesh property for

the MeshInstance object, which positions the mesh by the Transform
Component. See Figure 2-15.

Figure 2-14.  Generating a New Cube Mesh Asset in the Godot
Project...

Chapter 2 Godot Fundamentals

32

If you want to change the Location, Rotation, or Scale of a Node in

a 3D scene, then you can use its Transform Component. To view this,

select the Node by left-clicking the viewport, or select from the Scene

Tree, and then expand the Transform group inside the Inspector. You

can type numerical values directly into the X, Y, and Z fields to set them

immediately; or you can left-click and drag your mouse over the X, Y, and

Z labels beside the fields to smoothly change the values. Dragging leftward

decreases the field and rightward increases. See Figure 2-16.

Figure 2-15.  Generating a Cube Mesh and Displaying It in the Scene

Chapter 2 Godot Fundamentals

33

Congratulations! You just made your first Godot 3D object. It’s easy and

rational but significantly distinct from the Unity method. There is however

an important limitation. Specifically, Godot will not automatically generate

any colliders for a primitive object made in this way. Consequently, physical

objects – like first-person controllers and rigid bodies – will smoothly pass

through the cube mesh as though it were an apparition or hologram, an

object without substance. This is not a problem here specifically; but it

would be a problem if you wanted objects to bump into the cube or to be

obstructed by it. We’ll see shortly how to add collision properties to the cube.

�Navigation and Transformation
We saw previously how to create Godot projects. Plus, we saw how to add

primitive objects – like cubes and sphere – inside 3D scenes. Although we

saw important differences in the workflow between Godot and Unity, the

Figure 2-16.  Adjusting Transformation Properties for a Node

Chapter 2 Godot Fundamentals

34

underlying principles are really the same. You should first create a Scene

and then simply put objects in it. This section looks at the main Godot

control system, both for moving objects around a scene and for navigating

the scene camera. You’ll be pleased to know that there’s hardly any

difference between Unity and Godot here – if you set things up right.

Let’s start by configuring Godot to use the Maya Control scheme. This

makes Godot’s controls behave like Unity’s controls. To do this, choose

Editor ➤ Editor Settings from the application menu. This displays the Editor

Settings Window. From here, select Editors ➤ 3D from the options list, and

then set the Navigation Scheme drop-down to Maya. See Figure 2-17.

Note  If you’re using Godot on a laptop or mobile computer with a
trackpad for a mouse, then you’ll want to enable Emulate 3 Button
Mouse to get access to all viewport navigation features.

Figure 2-17.  Configuring Godot Controls...

Chapter 2 Godot Fundamentals

35

�Zoom
You can zoom in and out of the viewport by rolling the middle mouse

wheel forward or back, respectively, or by sliding two fingers along a

trackpad. See Figure 2-18.

Figure 2-18.  Viewport Zooming

Note  Technically, with Zoom, we’re actually dollying the camera
and not zooming. That is, we’re moving the camera forward in 3D
space, as opposed to keeping the camera static but changing the
focal length of the lens.

Chapter 2 Godot Fundamentals

36

�Pan
Pan allows you to slide the viewport camera left or right or up or down. Just

drag the mouse around while holding down the Alt key and middle mouse

button. If you’re using a trackpad, then hold down the shift key and drag

around the pad. Moving left, right, up, or down will pan the view in that

direction. See Figure 2-19.

�Frame and Orbit
Frequently, you’ll want to rotate your viewport camera around a centered

node – like a mesh – to get view of it from any angle. You can do this using

the Frame and Orbit technique, which is really simple. Start by “Framing”

the object you want to rotate around. To do this, select the object that will

be your target – either by left-clicking it on the viewport or by clicking it

from the Scene Tree Panel. To frame the selected Node, you can either press

the F key on the keyboard or double-click the Node icon from the Scene

Figure 2-19.  Panning Around the Viewport

Chapter 2 Godot Fundamentals

37

Tree Panel – either way works. When you do this, the viewport will center

its aim on the selected node. Then you can freely rotate (orbit) around it

by holding the Alt key (Option key on a Mac) and then left-clicking and

dragging the mouse in the direction of rotation. See Figure 2-20.

Figure 2-20.  Orbiting the Framed Object

�First-Person Controls
Now then, who can truly resist exploring their 3D worlds in first-person

mode, as though you were actually there? Certainly not me! So thankfully,

Godot offers first-person controls, allowing you to view the world directly

from the perspective of a character in the world. To access first-person

controls, hold down the right mouse button, and then use the W, A, S, and

D keys on the keyboard to move the camera forward, left, down, and right,

respectively. See Figure 2-21.

Chapter 2 Godot Fundamentals

38

�Selecting, Moving, Rotating, and Scaling Nodes
You’ve seen how to move the viewport camera to get a better view of a

scene. But you can also move, rotate, and scale nodes in the scene – just

like Unity. The controls are the same too. To select an object without

transforming it, just hit the Q key and then left-click the node in the

viewport, or select it from the Scene Tree Panel. You can also activate the

Select Tool from the Godot toolbar, after which you can left-click objects in

the viewport to select them. See Figure 2-22.

Figure 2-21.  First-Person Controls…

Chapter 2 Godot Fundamentals

39

You can use the W key to activate the Move tool, allowing you to move

selected Nodes around using the viewport Gizmo along the X, Y, or Z axis.

Similarly, you can rotate objects using the E key and scale them with the

R key. After activating the Move, Rotate, or Scale tools, you should simply

click and drag the selected Node in the viewport to apply the tool, just like

Unity. See Figure 2-23.

Figure 2-22.  Select Tool

Chapter 2 Godot Fundamentals

40

�Local and World Space Transforms
Moving objects around in 3D is easy. But, as soon as you start rotating

objects and then moving them, you might run into confusing coordinate

troubles. For example, if a character that’s standing still while facing an

oncoming target ahead is rotated to a new orientation, where should the

character go when you move them forward? They could move forward

in world space – along the Z axis – which might be different from the

direction in which the character is now facing after being rotated. To

solve this problem, Godot understands the scene using two different

coordinate systems. The first is World Space. This is an absolute and fixed

coordinate system divided into X, Y, and Z. Every spatial node in the scene

has a position in world space, measured from the world origin at (0,0,0).

The second is Local Space. Each spatial node has its own Local Space,

Figure 2-23.  Translate, Rotate, and Scale Tools for Transforming
Nodes

Chapter 2 Godot Fundamentals

41

and each node is the origin of its own space. When a Node is rotated, the

coordinate system rotates with it, so that the Z axis in local space always

points forward, in the direction that the object is facing. Godot makes

it easy to switch between World and Local spaces. You can do this by

pressing the T key or by toggling the Local/World space icon, to switch

back and forth between Local and World space, making transformations –

like move, rotate, and scale – easier to apply. See Figure 2-24.

Figure 2-24.  Local vs. World Coordinate Space

�Scene vs. Game Mode
The Unity interface features a Scene and Game tab. These represent two

distinct modes for the Unity Editor. In the Scene tab, you build a game

world; add objects and configure the code. In the Game tab, by contrast,

you play-test your game from the perspective of a gamer or a game tester.

See Figure 2-25.

Chapter 2 Godot Fundamentals

42

The great thing about Unity’s Game Mode is that, even while your

game is running in the Game tab, you can still switch over to Scene mode

and inspect your objects and the scene live. This makes debugging much

simpler and even fun! Godot, however, doesn’t feature a Game tab exactly

like Unity’s; but, you can still do most of the same things. Let’s see how. To

play-test your game, simply click the Play icon on the application toolbar

or press F5 on the keyboard. See Figure 2-26.

Figure 2-25.  Scene and Game Mode in Unity

Chapter 2 Godot Fundamentals

43

If this is the first time you’re pressing Play, Godot will probably display

a confirmation notice, asking you to specify the Main Scene. The Main

Scene is the default scene, the scene that’ll always load first when your

game is executed. From the Confirmation Window, you can make the

active scene the Main Scene by simply choosing Select. The active scene

then becomes the Main Scene and will execute. See Figure 2-27.

Figure 2-26.  Launching Godot’s Play Mode

Chapter 2 Godot Fundamentals

44

You can always change the Main Scene by choosing Project ➤ Project

Settings from the application menu to display the active Project settings.

From here, select Application ➤ Run from the Settings list, and then either

remove or choose a different scene for the Main Scene field. See Figure 2-28.

Figure 2-28.  Changing the Main Scene

Figure 2-27.  Setting the Main Scene

Chapter 2 Godot Fundamentals

45

If you just want to play the active scene immediately, as if it were the

Main Scene, then just click Play Scene or press F6 on the keyboard. See

Figure 2-29.

Figure 2-29.  Starting to Play the Active Scene

After entering Play mode, your scene will always run in a separate,

free-floating Window, which is a completely separate process. See

Figure 2-30.

Chapter 2 Godot Fundamentals

46

Remember, your scene will only be visible in the Application Window

during Play Mode if it has a camera node in the tree. Scenes are not created

with cameras by default, so you’ll probably need to add one manually. You

can do that in the same way as adding any other Node. Right-click the root

node in the Scene Tree panel, and then choose Add Node from the context

menu. From the Node Creation Window, select Camera to add a scene

camera. See Figure 2-31.

Figure 2-30.  Playing the Active Scene

Chapter 2 Godot Fundamentals

47

When your scene has a camera Node, then Play mode will display the

scene from the perspective of the camera. See Figure 2-32.

Figure 2-32.  Playing a Scene with a Camera Node

Figure 2-31.  Creating a Camera Object

Chapter 2 Godot Fundamentals

48

Since Game Mode runs in a separate Window, as a separate process,

it’s completely detached from the main Godot Editor and the scene.

Consequently, any changes you make in the Godot Editor during Game

Mode – such as moving a mesh or moving the player character – will

not be synchronized to the Game Window by default. However, you can

synchronize changes between the two modes. To do this, select Debug ➤

Sync Scene Changes from the Application Menu. Now, when you hit Play

with this option activated, any changes you make in the scene during

Game mode will be updated in the Game Window automatically and

immediately. See Figure 2-33.

Figure 2-33.  Activating Sync Scene Changes

Note  Unlike Unity, where any changes made to a scene during
Game mode will be reversed as Game mode ends, all Godot changes
will persist and remain.

Sync Scene Changes works great whenever you need edits made in

the Scene view to transfer directly to the Game Window. But sometimes

you need a more extensive connection than the one-way one from Editor

to Game. To create a two-way connection between editor to game and

Chapter 2 Godot Fundamentals

49

Figure 2-34.  Activating the Remote View from the Scene Tree

game to editor, you should enable the Remote View from the Scene Tree

Panel during Game Mode. This updates the Editor to reflect the Game

View and updates the Game View to reflect the editor. This allows you to

select objects in the Editor and to inspect their properties while the game

is running, just like Visual Debugging in Unity. To do this, click the Play

button to enter Game mode, and then click the Remote button from the

Scene Panel. See Figure 2-34.

Excellent! You can now use Godot’s Play Mode and Visual Debugging

features. At first sight, the Play mode features seem limited; but it turns out

they’re extensive and offer a lot of parity with Unity’s Game Mode. Next,

and finally, we’ll turn to working with Resources in Godot.

Chapter 2 Godot Fundamentals

50

Figure 2-35.  Importing Different Asset Types into a Project

�Resources
Basically, a Resource in Godot compares to an Asset in Unity. It includes

all the files on which your project depends: meshes, textures, audio,

animations, scenes, and more. Some resources are fundamental insofar

as their structure means they must necessarily contain no external

dependencies, for example, image files, audio files, and text files. Other

resources are of a higher order. These may contain dependencies, such

as a mesh file that depends on a set of external images for its materials

or a scene file that depends on a set of meshes because it contains

instances of them. Godot doesn’t actually make any formal distinction

between fundamental and higher-order assets as discussed here. But, the

distinction nevertheless exists in practice because higher-order assets

simply won’t function as intended whenever their dependencies are

missing from the project. To import an asset into Godot, you just need to

drag and drop the files or folders into the File System Panel. When you do

this, Godot imports any valid and supported asset files. See Figure 2-35.

Chapter 2 Godot Fundamentals

51

Godot supports many different file formats. For image files, both JPG

and PNG are supported, including transparency; and for Audio, WAV and

OGG are supported. From Godot 3.2 onward, the AssImp library (http://

cms.assimp.org/) has been integrated into the core code, meaning that

Godot now supports an extensive range of 3D formats for meshes. This

includes FBX, DAE, glTF, and more.

Note  For a complete list of supported mesh types, please see the
AssImp documentation here: http://assimp.sourceforge.net/
main_features_formats.html.

After importing an asset, Godot copies the imported file to a hidden

folder within the project. This ensures that any changes you may make

during development will not damage the original if it’s ever needed again.

You can change the properties for an imported asset by selecting the asset

in the File System Panel and then switching to the Import tab in the Scene

Tree Panel. This displays a special Inspector that applies to Assets. See

Figure 2-36.

Chapter 2 Godot Fundamentals

http://cms.assimp.org/index.php
http://cms.assimp.org/index.php
http://assimp.sourceforge.net/main_features_formats.html
http://assimp.sourceforge.net/main_features_formats.html

52

Figure 2-36.  Configuring File Import Settings

�Summary
This chapter explored the fundamentals of Godot that every Unity user

simply needs to know. There’s more to learn, of course. But this chapter

introduced the basic building blocks for creating a project and getting

started quickly for 3D scenes. 2D scenes – though distinct in their

coordinate space – follow the same workflow we’ve seen here. Most 3D

object types in Godot have 2D counterparts. From this point forward, each

chapter will build on the knowledge contained here. The next turns to C#

and to creating script files in Godot.

Chapter 2 Godot Fundamentals

53© Alan Thorn 2020
A. Thorn, Moving from Unity to Godot, https://doi.org/10.1007/978-1-4842-5908-5_3

CHAPTER 3

Scripting with C#
in Godot: Common
Tasks
Godot supports many scripting languages unofficially through add-ons and

patches. You’ll find people who’ve used GDScript, Python, Visual Scripting,

and JavaScript. This book and chapter, however, focus on C#. C# is natively

supported by Godot and is the natural choice for Unity developers where

C# is used almost exclusively. Here, we’ll write our first Hello World script

file with C# and see how to code common gameplay tasks with C# through

the Godot API (Application Programming Interface). If you’ve coded with

C# in Unity, you’ll be used to a whole string of commands and classes, like

Transform, GetComponent, Time.deltaTime, Update, and lots more. Now,

while Godot often uses very different names for its classes and functions,

you’ll be pleased to know that Godot has Unity equivalents and is remarkably

similar sometimes. Table 3-1 shows some common mappings between

Unity and Godot classes and function calls. Figure 3-1 demonstrates how to

download the Godot engine with C# support natively included.

Note  To use C# in Godot, you’ll need to download the Godot Mono
Build from the Godot home page: https://godotengine.org/
download/.

https://doi.org/10.1007/978-1-4842-5908-5_3#ESM
https://godotengine.org/download/
https://godotengine.org/download/

54

Table 3-1.  Terminology: Unity C# vs. Godot C#

Unity Godot

Print GD.Print

Update() _process()

Start() _ready()

Prefab Scene

Hierarchy Scene Tree

Project Panel File System

Inspector Inspector

Empty Object Spatial Node

Asset Resource

Tag Group

Figure 3-1.  Downloading Godot with Mono Support

Chapter 3 Scripting with C# in Godot: Common Tasks

55

�.NET and Build Problems with C#
With Unity, you can normally just install the engine and start using C#

right away. This isn’t always the case with Godot, however. Many people

report compilation issues or other problems preventing them from

effectively writing and compiling C# code out of the box. Let’s start by

seeing what issues arise, in case they happen for you, and then how to

address them. When creating a Godot project for the first time after a fresh

install, it’s a good idea to check that your C# code will compile successfully

for you. To do this, simply create a new Script file. Right-click your mouse

over the res:// item in the FileSystem panel, and choose New Script from

the context menu. See Figure 3-2.

Figure 3-2.  Creating a New Script Resource

Next, select C# for the scripting language, and inherit from the Spatial

class, since we’ll be adding this script to a Spatial object. I’ve named the

script HelloWorld to print a simple message to the console for a Hello

World program, coded later in this chapter. See Figure 3-3. When you’ve

chosen these settings, simply click Create. The script file will be generated

and added to the current Godot project.

Chapter 3 Scripting with C# in Godot: Common Tasks

56

After the C# file is generated, it’ll appear inside the FileSystem panel, as

shown in Figure 3-4. And just as a Unity script file is populated with default

code, derived from MonoBehaviour, Godot also generates a code file, as

shown in Listing 3-1.

Figure 3-3.  Creating a New Script File… If Class Name Is Left Blank,
Godot Will Name the Class After the Filename

Figure 3-4.  Script Files Are Added to a Godot Project and Appear in
the File System Panel

Chapter 3 Scripting with C# in Godot: Common Tasks

57

Listing 3-1.  Default Generated Godot Script File

using Godot;

using System;

public class HelloWorld : Spatial

{

 // Declare member variables here. Examples:

 // private int a = 2;

 // private string b = "text";

 // �Called when the node enters the scene tree for the first time.

 public override void _Ready()

 {

 }

// // Called every frame. 'delta' is the elapsed time since the

previous frame.

// public override void _Process(float delta)

// {

//

// }

}

Now just click Build at the top-right corner of the Godot Editor

interface. See Figure 3-5. Clicking this button begins the C# compilation

process. The result will indicate whether you’ll successfully compile C#

code at all using the current install. You may see a compilation progress

bar briefly, as shown in Figure 3-5.

Chapter 3 Scripting with C# in Godot: Common Tasks

58

After compiling, if the Godot engine returns silently and the output

window (at the bottom of the interface) doesn’t display any errors, then

everything probably compiled successfully. To confirm, press the Play

button from the toolbar to run the application. If it runs successfully, the

project compiled successfully and you’re good to continue to the next

section. However, if the Output window displays and prints an Error

message, then there’s a problem with your C# setup. See Figure 3-6.

Figure 3-5.  Compiling a C# Script File

Chapter 3 Scripting with C# in Godot: Common Tasks

59

The printed Error Message will usually be related to a mismatch in

the .Net Framework version. Godot is unable to compile your C# for the

targeted .Net framework. To solve this, first ensure your Godot project is

targeting the MS .Net framework, as opposed to the Mono Framework.

You can set this by choosing Editor ➤ Editor Settings from the application

menu to display the Editor Settings Window. Then, choose Mono ➤ Builds

from the Editor menu. Select VS Build Tools for the Build Tools drop-down.

See Figure 3-7.

Figure 3-6.  Examining a Compilation Error

Chapter 3 Scripting with C# in Godot: Common Tasks

60

Next, you’ll need to either (1) change the targeted .NET framework

for your Godot project to the version matching the latest system one or

(2) install the .NET Framework 4.5 targeting pack for Visual Studio. This

chapter explores the second option. To get started, you’ll need to install

Visual Studio Community. You can download it from here: https://

visualstudio.microsoft.com/downloads/.

Note  To view steps for the first option, check out my free
BeIndie.Biz tutorial on YouTube here: www.youtube.com/
watch?v=KyqBKq_wQQw.

Figure 3-7.  Setting the VS Build Tools

Chapter 3 Scripting with C# in Godot: Common Tasks

https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
http://www.youtube.com/watch?v=KyqBKq_wQQw
http://www.youtube.com/watch?v=KyqBKq_wQQw

61

While running the Visual Studio Installer, select the Individual

Components tab, and from the .NET group, enable the .NET Framework

4.5 retargeting pack. See Figure 3-8. Then continue or complete the

installation. After installation, restart your computer, and your Godot

project should now compile successfully. Great!

Figure 3-8.  Installing the .NET Retargeting Pack

�Building a Hello World Program
Hello World programs simply print the message “Hello World” to an

output, like a screen, or a printer, or (in our case) the Output Window.

Printing the message “Hello World” isn’t especially useful itself –

certainly not. But the process of being able to send a human-readable

string message to the output is incredibly helpful. It’s useful notably as

a Debugging tool. You can print messages to show the order of code

execution, the value of variables, and other data. In this section, we’ll write

a Hello World program for Godot. To start, create a Hello World C# script

file, as demonstrated in the previous section. Then double-click the script

Chapter 3 Scripting with C# in Godot: Common Tasks

62

file from the FileSystem Panel to open it inside your code Editor, such as

Visual Studio Code. See Chapter 1 for details. See Figure 3-9 for a default

code file open in an Editor, ready to code.

Figure 3-9.  Preparing to Code a Hello World Program

Note  You can change the Visual Studio Code Color Scheme by
choosing File ➤ Preferences ➤ Settings from the application menu.
Then select Workbench ➤ Appearance. And set the Color Theme to
your preference. Visual Studio Light is used in Figure 3-9.

In Godot, the C# function GD.Print prints a string to the output console

for reading in the editor interface while the game is running. Our Hello

World application should print the message “Hello World” to the console

Chapter 3 Scripting with C# in Godot: Common Tasks

63

at application startup. For this reason, we’ll need to use the _ready event.

_ready is comparable to Unity’s Start event. _ready is called after a Node

is created and when it is added to the scene tree, that is, when the object

enters the scene hierarchy. Look at Listing 3-2 to see an example of a Hello

World program in C#.

Listing 3-2.  A Hello World Program

using Godot;

using System;

public class HelloWorld : Spatial

{

 // Declare member variables here. Examples:

 // private int a = 2;

 // private string b = "text";

 // �Called when the node enters the scene tree for the first time.

 public override void _Ready()

 {

 GD.Print("Hello World");

 }

// // Called every frame. 'delta' is the elapsed time since the

previous frame.

// public override void _Process(float delta)

// {

//

// }

}

Chapter 3 Scripting with C# in Godot: Common Tasks

64

Note  Unity also has the Awake event, which is called before Start.
Godot has a similar event called _init. The _init function is invoked
when a node is created in memory but before it is added to the scene
tree, becoming a “thing in the world.” The _init event always happens
before _ready and is useful for initializing private member variables,
as well as for running private member functions. The _ready
event should be preferred, however, for any initialization code that
references external nodes or objects or which accesses the scene
tree. The sequence in which _ready events are invoked across all
nodes in a scene should never be assumed. For this reason, every _
ready event should assume that all other nodes are already initialized
as a result of their _init event called earlier.

After writing your Hello World code, as shown in Listing 3-2, you

should attach to it a Spatial node in a 3D scene. To do this, select a spatial

node in the scene, and from the Object Inspector, expand the Script group.

From the Script drop-down field, select the Load option. See Figure 3-10.

Figure 3-10.  Adding a Script to a Node

Chapter 3 Scripting with C# in Godot: Common Tasks

65

From the Load menu, you may choose any .cs script file to attach to

the selected node where it’ll be instantiated and run in Play Mode, just as

it does in Unity. In our case, simply select the newly created HelloWorld.

cs file from the file list and then click the Open button at the bottom-left

corner. See Figure 3-11.

Figure 3-11.  Attaching a Hello World C# Script to the Selected Node

After clicking Open, simply confirm the Script has been added to the

Node by checking the Script field from the Inspector, which should now

display the associated filename. Further, always click the Build button,

from the top-right corner of the interface, before playing your project. This

ensures you’re always testing with the latest compiled code. See Figure 3-12.

Chapter 3 Scripting with C# in Godot: Common Tasks

66

After compiling, click the Play Scene button (F6) from the toolbar to

run your game in an application Window. See Figure 3-13.

Figure 3-12.  Always Build the Latest Code Before Playing Your
Project

Figure 3-13.  Playing the Open Scene

On running your game, the _ready function executes immediately for

every Node in the scene. By viewing the Output Window at the bottom

center of the Editor interface, you’ll now see the complete message “Hello

Chapter 3 Scripting with C# in Godot: Common Tasks

67

World” printed straight from the _Ready function. Printing messages like

this is great – it’s an effective strategy for debugging your code, seeing its

flow as the application executes. See Figure 3-14.

Figure 3-14.  Printing Hello World to the Output Window

�Working with Nodes
A Godot scene is, fundamentally, a hierarchical tree of Nodes (the

SceneTree). The SceneTree has one Root node – the topmost node –

from which all others are children. They are children either directly by

being a child of the root node – or indirectly by being a grandchild of

the root node – or by having an even more distant connection. Each

Node in the scene may contain a maximum of only one attached Script

file. In Unity, by contrast, a GameObject may have multiple Scripts

attached, each becoming a Component. Godot however expects you to

attach only one script to a Node wherever you need custom behavior.

More complex behaviors – requiring multiple systems – are created not

by adding more scripts to a node, but by building a hierarchy of Nodes

with different Scripts attached to each, or, in some cases, by using C#

inheritance to customize a single Script on a Node. This may seem like a

limitation compared to Unity; but really, it only requires a different way

of thinking and a different approach, as we’ll see. Each Node, therefore, is

an instantiation of a single class only, one that derives from the Node class

directly or indirectly by one of Node’s descendant classes. In the previous

Chapter 3 Scripting with C# in Godot: Common Tasks

68

section, for example, a Hello World class was derived from the Spatial

class, which in turn derives from the Node class. The Godot API Reference

Documentation provides a solid description of each native class – such as

Node, Spatial, Camera, Light, and more – including its member variables

and functions. Each class gets its own dedicated documentation page. You

can see any class’ inheritance connection to its ultimate ancestor Node

class by viewing the Inherits section of the class’ documentation page. See

Figure 3-15. Knowing this connection is important for understanding the

C# variables and methods supported by any given node in the SceneTree.

Figure 3-15.  Class Hierarchy Can Be Viewed from the Godot API

�Iterating Through Child Nodes
Being able to navigate the SceneTree effectively by code is critically

important for creating gameplay, for understanding how a scene is working,

and for accessing different objects in a scene. Let’s start by looking at how

a script on any Node can cycle through all direct children, one by one.

There are two common methods given in Listings 3-3 and 3-4, respectively.

Chapter 3 Scripting with C# in Godot: Common Tasks

69

Cycling through child nodes is a valuable and powerful technique if you

structure your scene tree cleverly. For example, by cycling through children,

you can make inventory systems that keep track of all items the player has

collected. You can count how many enemies are remaining in the scene.

And you can determine which rooms are on the same floor. And lots more!

Listings 3-3 and 3-4 achieve the same result. When you attach the scripts

to nodes in the scene, it’ll print the names of all children to the Output

Window.

Listing 3-3.  Printing Child Object Names – Method 1

using Godot;

using System;

public class NodeTraverse : Node

{

 public override void _Ready()

 {

 //Print all child node names, Method 1

 for(int i=0; i<GetChildCount(); i++)

 {

 Node N = GetChildOrNull<Node>(i);

 if(N != null)

 GD.Print(N.Name);

 }

 }

}

Chapter 3 Scripting with C# in Godot: Common Tasks

70

Listing 3-4.  Printing Child Object Names – Method 2

using Godot;

using System;

public class NodeTraverse : Node

{ public override void _Ready()

 {

 //Print all child node names, Method 2

 Godot.Collections.Array ChildArray = GetChildren();

 foreach(Node N in ChildArray)

 GD.Print(N.Name);

 }

}

�Finding Nodes by Name
Unity features the GameObject.Find function. This searches the scene

hierarchy for the first object matching the specified name. Godot has an

equivalent function. It’s the FindNode function. This function searches all

child nodes recursively for a matching node. Unlike the Unity equivalent

of GameObject.Find, however, Godot’s FindNode function only searches

the entire scene tree if executed from the scene’s root node. Otherwise, it

only searches from the parent downward to all children. Finding nodes

by name is useful when you need access to specific singular objects in

the scene, like the player character, or the GameManager, or a Respawn

Location. Listing 3-5 searches all children recursively for an object named

“Player”.

Chapter 3 Scripting with C# in Godot: Common Tasks

71

Listing 3-5.  Finding Child Nodes by Name

Node PlayerNode = FindNode("Player", true);

if(PlayerNode != null)

 GD.Print("Player Node found!");

else

 GD.Print("Player Node not found!");

You can always search the entire scene for an object by name by simply

searching from the root node. If your script isn’t attached to the root node,

you can always get access to it by using the Node.GetTree function. This

function returns the complete scene hierarchy, allowing you access the

root node. See Listing 3-6 to search the scene hierarchy for an object by

name via the Root Node.

Listing 3-6.  Finding Child Nodes by Name from the Root Node

SceneTree ST = GetTree();

Node PlayerNode = ST.CurrentScene.FindNode("Player");

if(PlayerNode != null)

 GD.Print("Player node found");

�Finding Nodes by Path
An excellent feature of Godot is that each Node can be referenced by both

an absolute and a relative path. You can select a Node from a C# script by

using the GetNode function or by its GetNodeOrNull version. The former

throws a game-breaking exception if the specified Node isn’t found and

the latter simply returns NULL in the same event. Listing 3-7 retrieves a

root node called root_level inside the _ready event and prints its name to

the Output. The scene hierarchy is shown in Figure 3-16.

Chapter 3 Scripting with C# in Godot: Common Tasks

72

Listing 3-7.  Getting Access to the Root Node, Called root_level

public override void _Ready()

{

 Node N = GetNodeOrNull<Node>("root/root_level");

 if(N!=null)

 GD.Print(N.Name);

}

Figure 3-16.  Root Node in the Scene Tree

Note  Remember, if your root node is named differently from
root_level, you’ll need to specify it by name to access it via the
GetNode or GetNodeOrNull functions.

You can also access nodes by using relative paths with the GetNode or

the GetNodeOrNull functions. For example, Listing 3-8 uses the path

“../Player” to get access to a sibling node named Player. The prefix (..)

refers to the Parent node.

Chapter 3 Scripting with C# in Godot: Common Tasks

73

Listing 3-8.  Accessing a Sibling Node by Name and Path

public override void _Ready()

{

 Node N = GetNodeOrNull<Node>("../Player");

 if(N!=null)

 GD.Print(N.Name);

}

�Godot Groups vs. Unity Tags
If you’re familiar with Unity, you’ll remember that it has a Tag feature. This

lets you label related objects like power-ups, enemies, or weapons. Tagging

objects helps you find them easily in C# code because you can quickly

search for objects with a matching tag. Most objects in Unity are Untagged,

but some – like the Main Camera and the Player – are tagged by default.

See Figure 3-17.

Figure 3-17.  Unity Tags Group Together Related Objects

Chapter 3 Scripting with C# in Godot: Common Tasks

74

Godot supports equivalent tagging functionality through Groups.

However, the Godot concept of Groups is more versatile and powerful than

Tags, as we’ll see. In Godot, a Group is a collection of objects, but an object

may also belong to multiple groups. To create a new group, select any

node in the scene and switch to the Node Inspector – it’s next to the Object

Inspector and it’s easy to miss! See Figure 3-18.

Figure 3-18.  Unity Tags Group Together Related Objects

Click the Groups tag to show the Godot Group options. From there,

click the Manage Groups button to show the Group Editor Window. From

here, you can create and remove groups. See Figure 3-19.

Chapter 3 Scripting with C# in Godot: Common Tasks

75

From the Group Editor, type in a meaningful Group Name and click

the Add button to create a new empty group. See Figure 3-20. Meaningful

names may include power-ups, enemies, treasure, weapons, waypoints,

doors, elevators, and more. It depends on your project. Your scene should

have as many groups as needed. They’re excellent for organizing nodes,

and they make coding easier too.

Figure 3-19.  Accessing the Group Editor

Chapter 3 Scripting with C# in Godot: Common Tasks

76

After creating a Group in the Group Editor, you can add nodes to the

group from the Nodes Not in Group column. Select the nodes to add and click

the Add button (you can remove nodes using the Remove button). Remember,

you can add Nodes to multiple groups if needed, for example, Enemies and

NPCs groups or Weapons and Equipment groups. See Figure 3-21.

Figure 3-21.  Adding Ogre NPCs to the NPC Group

Figure 3-20.  Adding Groups Using the Group Editor

Chapter 3 Scripting with C# in Godot: Common Tasks

77

Now that you can add nodes to groups in Godot, you can

efficiently process those nodes in C# code. Specifically, the SceneTree.

GetNodesInGroup function returns a list of all nodes in the specified

named group. Listing 3-9 retrieves all nodes in the NPC group. The node

list is returned as a Godot.Collections.Array. More information on the Array

class can be found at the Godot API documentation here: https://docs.

godotengine.org/en/3.1/classes/class_array.html.

Listing 3-9.  Finding All Nodes in a Specified Group

//Getting nodes in group named 'NPC'

�Godot.Collections.Array GroupedNodes = GetTree().

GetNodesInGroup("NPC");

//Cycle through all nodes in group, if any

foreach(Node N in GroupedNodes)

{

 GD.Print(N.Name);

}

You can also find all the groups to which a single Node belongs by

calling the Node.GetGroups function. See Listing 3-10. This listing prints

the names for all groups associated with the first found Ogre node.

Listing 3-10.  Get All Groups Associated with a Selected Node

//Find first child node featuring 'Ogre' in the name

Node N = FindNode("*Ogre*");

//Get all groups to which this node belongs

Godot.Collections.Array Groups = N.GetGroups();

//Print all group names

foreach(string S in Groups)

 GD.Print(S);

Chapter 3 Scripting with C# in Godot: Common Tasks

https://docs.godotengine.org/en/3.1/classes/class_array.html
https://docs.godotengine.org/en/3.1/classes/class_array.html

78

Note  You can also check if a node belongs to a specific named
Group using the Node.IsInGroup function. This returns a Boolean,
indicating whether the node is in the named group.

A really great feature is calling a named Function for all Nodes in a

Group. This is achieved using the SceneTree.CallGroup function. This

lets you run a function on all nodes within a named group. This is great

for initiating group behaviors – like charging or fleeing NPCs who must

act together at the same time – or for saving and loading scene data,

for example, saving the state of a game for all objects in the scene. The

SceneTree.CallGroup function uses reflection internally, and so it must

be used as sparingly as possible for best performance. Avoid calling this

function inside the _process event. See Listing 3-11.

Listing 3-11.  Invoking the Method SaveData on All Objects in the

NPC Group

public override void _Ready()

{

 //Save data for all NPC characters

 GetTree().CallGroup("NPC", "SaveData");

}

�Accessing Variables in the Inspector
In Unity, the public keyword can be prefixed to a variable in C# – like an Int

or a Float or a String – to make it fully readable and writeable in the Object

Inspector. This means the public variable is shown in the inspector and

can be edited from there as well as from code. This is convenient for many

reasons; notably, you can edit a variable’s starting value without having

to recompile your code, and you can visually observe a variable changing

Chapter 3 Scripting with C# in Godot: Common Tasks

79

during gameplay to debug any potential problems. Godot supports similar

functionality but doesn’t use the scope specifier – public, protected, or private –

to determine variable visibility. Instead, you must use the [Export] attribute

for each variable that should appear in the Inspector. See Listing 3-12 for

variable declarations and then the corresponding result in Figure 3-22.

Listing 3-12.  Making Variables Accessible from the Inspector

public class Ogre : Spatial

{

 [Export]

 private string NPCName;

 [Export]

 public float NPCSpeed;

 [Export]

 public float NPCHealth;

}

Figure 3-22.  Exposing Variables in the Inspector

Chapter 3 Scripting with C# in Godot: Common Tasks

80

�Variables As Properties – GetComponent?
OK, so you’ve created an [export] variable, as shown in the previous

section. An Export variable becomes a Property of the Node. You can

both see and edit properties from the Object Inspector. Each property

gets its own unique identifier within the Godot tree – just like Nodes. For

example, the following path /root/Spatial/Ogre:Health refers to the Health

variable on an object named Ogre. You can find the Property name of any

variable by simply hovering your cursor over its name in the Inspector. The

Property name will display in a pop-up context menu. See Figure 3-23.

Figure 3-23.  Viewing Property Names

Excellent! But wait, how can one script access the variables of another?

That is, how can two different script instances (attached to different nodes)

communicate and interact effectively with each other at runtime? In

Unity, you’d often call GetComponent or GetComponents to retrieve direct

references to other script instances. Godot is different. To access a script

on any node – and its variables – you can use the Typecast method or the

Property Access method. Let’s see these in turn starting with Typecasting.

See Listing 3-13. Here, we simply typecast the node to our intended data

type (in this case, NPC) using the as keyword.

Chapter 3 Scripting with C# in Godot: Common Tasks

81

Listing 3-13.  Typecasting Nodes

public override void _Ready()

{

 //Get NPC Object Named Ogre, with an NPC script

 �Node N = GetTree().Root.GetNodeOrNull("/root/Spatial/Ogre");

 //Typecast object as type NPC to get script access

 NPC OgreNPC = N as NPC;

 //Set health of Ogre NPC

 OgreNPC.Health = 100f;

}

The other method for accessing variables is simple, doesn’t involve any

typecasting, and feels intuitive. But it’s far from optimal and can lead to

poor performance when used frequently and often. See Listing 3-14. This

involves using the Object.Set function for setting a named variable.

Listing 3-14.  Setting Properties

public override void _Ready()

{

 //Get NPC Object Named Ogre

 �Node N = GetTree().Root.GetNodeOrNull("/root/Spatial/Ogre");

 //Set variable value

 N.Set("Health", 50f);

}

�NodePaths and Node References
We’ve seen already how functions like GetNode, FindNode, and GetGroups

can programmatically search for, and retrieve, references to specific

nodes in a scene. This works well when you’re retrieving nodes in code.

Chapter 3 Scripting with C# in Godot: Common Tasks

82

However, you’ll sometimes want to specify nodes from the Inspector

through a variable property, such as referencing the player character, or

the game manager, or the UI system. In Unity, you’d do this by declaring

a public GameObject or Transform variable in your script file, and then

you’d drag and drop your GameObject from the Scene View into the

associated Inspector slot. However, in Godot, you must use the NodePath

object type instead, declaring this as an Export type. The NodePath

doesn’t reference a Node directly. Rather, it represents a fully qualified

path to a node, which gets resolved dynamically when needed. See

Listing 3-15.

Listing 3-15.  Getting a Node from a Reference

using Godot;

using System;

public class ExportVar : Node

{

 [Export]

 public NodePath LinkToPlayer = null;

 //Actual reference to player

 private Node PlayerNode = null;

 // �Called when the node enters the scene tree for the first

time.

 public override void _Ready()

 {

 //Resolve the link and find the object

 PlayerNode = GetNode(LinkToPlayer);

 }

}

Chapter 3 Scripting with C# in Godot: Common Tasks

83

Listing 3-15 features the Export variable LinkToPlayer. This is of type

NodePath. A NodePath variable doesn’t line to a node directly. It must

be resolved in code. For this reason, the _Ready event uses the GetNode

function to convert the path to a node reference. See Figure 3-24, which

shows a NodePath in the inspector where a node reference can be specified.

Figure 3-24.  Referencing a Node via a NodePath

�Set an Object’s Position
The Spatial class is the base for objects that exist spatially in a 3D scene.

This includes meshes, particle systems, cameras, lights, and others. When

working with Spatial objects like these, you’ll commonly want to set their

position in the scene in terms of X, Y, and Z. In Unity, you achieve this

using the Transform.Position variable. In Godot, you achieve this similarly

with the Transform.Origin variable. The Transform class in Godot is

accessed by value rather than by reference. See Listing 3-16 for a script

that sets an object’s position based on a Vector3 PosRestrict variable.

Figure 3-25 illustrates what this class will look like in the Inspector when

attached to a node.

Chapter 3 Scripting with C# in Godot: Common Tasks

84

Listing 3-16.  Restricting an Object’s Position

using Godot;

using System;

public class PostionRestrict : Spatial

{

 [Export]

 public Vector3 PosRestrict = Vector3.Zero;

 �// Called every frame. 'delta' is the elapsed time since the

previous frame.

 public override void _Process(float delta)

 {

 //Get access to the object’s transform

 Transform T = Transform;

 //Set the position

 T.origin = PosRestrict;

 //Apply the changes

 Transform = T;

 }

}

Note  Remember, the Transform member variable will always refer
to the transform of the Node to which the script is attached.

Chapter 3 Scripting with C# in Godot: Common Tasks

85

�Make an Object Move Smoothly
The previous section demonstrated how to set an object’s position

absolutely. Now let’s make an object move smoothly. That is, let’s change

its position over time. To be specific, every object faces in a specific

direction, namely, its forward direction. When an object moves, it

normally moves in the direction it’s facing. This ensures an object always

moves forward, no matter how it’s orientated. To achieve this, we’ll

use the Transform.Origin variable along with some clever Vector math.

Specifically, we’ll offset the object’s position along its forward vector, which

is expressed by the variable Transform.basis.z. This is equivalent to Unity’s

transform.forward variable. Consider Listing 3-17, which moves an object

forward continuously.

Figure 3-25.  Restricting an Object to a Position

Chapter 3 Scripting with C# in Godot: Common Tasks

86

Listing 3-17.  Moving an Object in C#

using Godot;

using System;

public class Mover : Spatial

{

 [Export]

 public float Speed = 5f;

 �// Called every frame. 'delta' is the elapsed time since

the previous frame.

 public override void _Process(float delta)

 {

 Transform T = Transform;

 T.origin += T.basis.z * Speed * delta;

 Transform = T;

 }

}

Note  The Godot delta parameter of function _Process is equivalent
to Time.deltaTime in Unity. It represents the amount of time,
measured in seconds, since the previous frame completed.

�Make an Object Rotate Smoothly
Now let’s make an object rotate continuously and smoothly around

its central axis, like a spinning power-up coin or a rotating sign. This

approach is like making an object move, as demonstrated in the previous

section. To make an object rotate, you’ll need to rotate an object per frame

by a rotational speed. Many rotation functions in Godot expect angles to

Chapter 3 Scripting with C# in Godot: Common Tasks

87

be specified in Radians and not Degrees – or Euler Angles. Consequently, if

you’re specifying angles in degrees, you’ll need to convert them using the

Mathf.Deg2Rad function. See Listing 3-18.

Listing 3-18.  Rotating an Object in C#

using Godot;

using System;

public class Rotator : Spatial

{

 [Export]

 public float RotateSpeed = 90f;

 �// Called every frame. 'delta' is the elapsed time since

the previous frame.

 public override void _Process(float delta)

 {

 Transform T = Transform;

 �T = T.Rotated(Vector3.Up, Mathf.Deg2Rad(delta *

RotateSpeed));

 Transform = T;

 }

}

�Detecting When an Object Enters a Trigger
Detecting when an object – like the player or an NPC – enters a 3D volume

is useful. It can let us know when an object enters a room or an area in the

scene or when the player falls into a lava pit and other scenarios. In Unity,

the event OnTriggerEnter will fire for every MonoBehaviour script when

a physical object enters a 3D volume. In Godot, the process for detecting

Chapter 3 Scripting with C# in Godot: Common Tasks

88

collisions or intersections is different from Unity. Let’s start by configuring

a 3D volume marking out an area in the scene. We’ll be detecting to see

if an object enters that area. To start, right-click the root Node in a new

scene from the Scene Tree Panel. Then choose Add Node to add a node.

See Figure 3-26.

Figure 3-26.  Creating a New Node

Next, create a new Area node by typing “Area” into the Search field

of the Add Node Window. The Area node is useful for attaching physical

forces, interactions, and collision detections to specific areas within a

scene. Areas are invisible to the game camera; they simply mark out

regions of 3D space. See Figure 3-27.

Chapter 3 Scripting with C# in Godot: Common Tasks

89

By default, Areas lack width, height, and depth. They represent a

physics anchor point in the scene and nothing more. To associate an Area

with a Volume, you must create a CollisionShape child node. A Godot

CollisionShape is equivalent to a Unity Collider. To create a CollisionShape

as a child of an Area, right-click the newly created Area node from the

Scene Tree Panel and then choose Add Node. From the Node creation

menu, search for CollisionShape, and add a Collision Shape object. See

Figure 3-28.

Figure 3-27.  Creating an Area Node

Chapter 3 Scripting with C# in Godot: Common Tasks

90

Next, you’ll need to choose the Volume to use for the collision area.

This specifies the 3D volume inside which collision can be detected. To

do this, select the CollisionShape object from the Scene Tree and click the

Shape drop-down in the Inspector. From there, select a 3D volume. For

our example here, let’s select a Cube by choosing New BoxShape from the

menu. See Figure 3-29.

Figure 3-28.  Adding a Collision Shape Node

Chapter 3 Scripting with C# in Godot: Common Tasks

91

When a fully configured CollisionShape features as a child of an Area

Node, you’ll end up with a complete Collision Detection area. See Figure 3-30.

Figure 3-30.  Completing a Cube Collision Area

Figure 3-29.  Assigning a New Box Shape to the Shape Field

Chapter 3 Scripting with C# in Godot: Common Tasks

92

Now, simply configure a test physics object, such as a RigidBody box,

which can fall or enter the Collision Area. To create a physics box, simply

add a new RigidBody node and then add a Box Collision shape as a child

node. Then finally, add a Box MeshInstance as a child of the Box Collision

object. This creates a RigidBody node network that can interact with other

objects. See Figure 3-31.

Figure 3-31.  Creating a Rigid Body Object

Great. You’ve now configured the scene, ready to detect a collision. You

have both a physics Rigid Body (a Cube) and a Collision Area. To detect

when the rigid body enters the area, start by adding a new script onto the

Area node. This script will handle the collision event. Next, select the Area

object from the Scene Tree. Once selected, click the Node tab from the

Object Inspector to view the Signals tab. See Figure 3-32.

Chapter 3 Scripting with C# in Godot: Common Tasks

93

Signals in Godot equate to Events from Unity – or Delegates in C# –

that you can connect to different functions in code, which execute when

events happen. To detect when rigid bodies enter an area, first double-

click the body_entered event from the Signals list. This event will execute

once whenever a Rigid Body first enters a collider. It corresponds to Unity’s

OnTriggerEnter event. When you double-click the body_entered event, the

Signal Connector Window appears. See Figure 3-33.

Figure 3-32.  Accessing the Signals Tab

Chapter 3 Scripting with C# in Godot: Common Tasks

94

From the Signals Connector Window, select the Area object from the

Connect to Script list. This node should be selectable. If it’s not, check that it

has a script attached. After selecting the Area node, enter a suitable name for

the function that is to become the Event, using the Receiver Method field. Your

associated script file should feature a function of a matching name, which

will be called by Godot automatically whenever a Rigid Body first enters the

area. You may need to add the function manually. See Listing 3-19 to see how

a script file should be configured to support a body_entered event. Figure 3-34

demonstrates how the node connection should look when configured.

Listing 3-19.  Detecting Collisions in C# Script

using Godot;

using System;

public class CollisionDetect : Spatial

{

 public void _on_Area_body_entered(PhysicsBody Node)

 {

 GD.Print("entered");

 }

}

Figure 3-33.  The Signal Connector Window

Chapter 3 Scripting with C# in Godot: Common Tasks

95

Figure 3-34.  Handling the Area Entered Event

Great! Your Area is now configured to detect collisions with physical

objects. Let’s quickly create a RigidBody to react with, for testing purposes.

To do this, add new Rigidbody node and then a cube collision shape as a

child, and then finally add a child MeshInstance node, created as a Cube.

Basically, that’s three nested nodes: a RigidBody, a CollisionShape, and

then a Cube MeshInstance. See Figure 3-35.

Figure 3-35.  Configuring a Rigid Body Object

Chapter 3 Scripting with C# in Godot: Common Tasks

96

Now just hit Play on the toolbar and watch your rigidbody cube fall into

the area below during gameplay. You may need to set up a scene camera

first to get an ideal view of the interaction. You’ll also see a message printed

to the console when the collision happens. See Figure 3-36.

Figure 3-36.  Printing a Message on Object Entry

�Viewing Spatial Nodes
Godot’s Spatial Node is, in many ways, equivalent to Unity’s Empty Object.

It marks a location in 3D space, has no visibility, and can be used – like a

folder – to contain child nodes for organization. But, by default, Spatial

nodes have no editor visibility either. This makes it difficult for developers

to see them in the viewport and to select them by clicking. To select a

Spatial node, you must always resort to clicking the object by name from

the Scene Tree panel. This can be inconvenient. Instead, if you need to

Chapter 3 Scripting with C# in Godot: Common Tasks

97

view and select a Spatial Node from the view, you should use a Position3D

node. To create one, simply right-click the root node from the Scene Tree

Panel, choose Add Node to display the Node Creation Window, and then

search for Position3D to add a new Position3D node. See Figure 3-37.

Figure 3-37.  Creating a Position 3D Node…

After creating a Position3D Node, you’ll always be able to see it inside

the viewport and click it to select it. See Figure 3-38.

Chapter 3 Scripting with C# in Godot: Common Tasks

98

�Reading Player Input
There are many ways to read input from multiple devices in Godot,

including the keyboard, mouse, and gamepad. The cleanest method, and

the closest to Unity’s, is through the Input Mapping System. Let’s see how

this works. To start, access the Input Map settings by choosing Project

➤ Project Settings from the application menu. This displays the general

project settings. See Figure 3-39.

Figure 3-38.  Selecting a Position3D Node in the Viewport

Chapter 3 Scripting with C# in Godot: Common Tasks

99

From the Project Settings menu, choose the Input Map tab. See

Figure 3-40. This displays a list of custom input axes, each associated

with different input devices and buttons. Its purpose is to assign different

buttons from different device types to a single unified input map that

works effectively.

Figure 3-40.  The Input Map Associates Buttons with input axes

Figure 3-39.  Accessing Project Settings from the Application Menu

Chapter 3 Scripting with C# in Godot: Common Tasks

100

From the Input Map tab, let’s create a new axis to read input from the

keyboard, detecting when the space bar key is pressed. This is useful for

handling character-jump or character-shoot events. To start, type a new

Axis name into the Action type field at the top of the Input Map tab. Let’s

call this Axis fire. Once entered, click the Add button to a new axis with the

matching name. See Figure 3-41.

Figure 3-41.  Adding a New Fire Axis

After adding the fire axis, click the + icon to associate a new key to it.

From the context menu, select Key. See Figure 3-42. After selecting Key,

simply press the relevant key on the keyboard to assign (here, we’ll press

the space bar).

Chapter 3 Scripting with C# in Godot: Common Tasks

101

Great! You’ve now created a new Axis associated with a space bar

press. You can then use C# to detect important axis events. Specifically,

the Input.IsActionPressed function will return true for as long as the space

bar is being held down. The Input.IsActionJustPressed function will return

true once only on the first occasion of the space bar being pressed and the

Input. IsActionJustReleased function will return true once only on the first

occasion of the space bar being released. Listing 3-20 prints a message

when the space bar is first pressed.

Listing 3-20.  Detecting When the Space Bar Is First Pressed

public override void _Process(float delta)

{

 if(Input.IsActionJustPressed("fire"))

 GD.Print("Fired!");

}

This is excellent. You can now read input from specific button presses,

such as jumps, shoots, interacts, and other forms of Boolean interactions.

However, you’ll also want to read analog data across a range of values in

an axis. A classic example is left-right and up-down motion of a character.

In Unity, you can use the Input.GetAxis function to read Horizontal and

Figure 3-42.  Adding a New Key to the Fire Axis…

Chapter 3 Scripting with C# in Godot: Common Tasks

102

Vertical data with smoothed values to drive character movement left and

right and up and down. You can do the same in Godot too. To achieve this,

add additional actions in the Input Map for Left, Right, Up, and Down.

You can associate them with keyboard presses for WASD and arrows. See

Figure 3-43.

Figure 3-43.  Configuring Left, Right, Up, and Down Actions

Next, you can read Horizontal and Vertical input values using Listing 3-21.

The Horizontal Axis can return –1 (meaning left is being pressed), or 1

(meaning right is being pressed), or 0 (meaning neither direction is pressed).

Similarly, for Vertical Input, 1 means Up is pressed, –1 means Down is

pressed, and 0 means neither is pressed.

Chapter 3 Scripting with C# in Godot: Common Tasks

103

Listing 3-21.  Reading Horizontal and Vertical Input

public override void _Process(float delta)

{

 �float Horizontal = -Input.GetActionStrength("left") +

Input.GetActionStrength("right");

 �float Vertical = -Input.GetActionStrength("down") + Input.

GetActionStrength("up");

 �GD.Print("Vertical: " + Vertical + " Horizontal: " +

Horizontal);

}

�Summary
This chapter demonstrates the fundamentals of using C# in Godot to

achieve critically important gameplay tasks. This includes searching for

named nodes, traversing the node hierarchy, converting node paths to

node references, exposing variables in the inspector, detecting collisions

and reading input from the player, and others. By exploring the range of

coding tasks illustrated here, you can now put together complex scenes

with important gameplay behaviors.

Chapter 3 Scripting with C# in Godot: Common Tasks

105© Alan Thorn 2020
A. Thorn, Moving from Unity to Godot, https://doi.org/10.1007/978-1-4842-5908-5_4

CHAPTER 4

Making a 2D Game
Godot has a truly amazing 2D feature set for quickly and easily building

2D games. These games will normally export smoothly across platforms

and run impressively. In this chapter, we’ll explore Godot’s 2D feature set

by building a simple yet functional 2D game. Furthermore, we’ll explore

ways of working that Godot expects, and which differ from Unity. One

of the biggest differences is philosophical, as we’ll see. For example, in

Unity, there’s only one type of Scene, namely, a 3D Scene. You can, of

course, build 2D games and 2D worlds in Unity. But such worlds are, in

truth, just flat objects aligned to the camera in a 3D scene, only making it

appear 2D. Godot by contrast does distinguish between scenes and world

spaces. Godot supports both 3D scenes and 2D scenes, and these do differ

significantly. A 2D scene in Godot is not simply a flat object aligned to the

camera in a 3D world. It’s truly a hierarchy of 2D objects, positioned and

measured in 2D space. This offers us both advantages and disadvantages

as a developer. It makes 2D worlds intuitive and simpler to navigate during

development but poses new challenges whenever we want to create mixed

worlds featuring both 2D and 3D elements.

The 2D game we’ll create in this chapter will be a top-down coin

collection game. The player will move a 2D toon-sprite character around

a tile-set world to collect coin pickup objects before the timer expires. To

achieve this, we’ll use a broad range of 2D features. Let’s get started. See

Figure 4-1 to see the completed game in action. The completed game is

included in the book companion files.

https://doi.org/10.1007/978-1-4842-5908-5_4#ESM

106

�Configuring a 2D Project
To get started, we’ll need to create a project and configure it appropriately.

Simply create a new project with OpenGL ES 3.0 activated, choose a folder

location for saving, and assign the project a suitable name, such as “top-

down collector.” Once created, you’ll begin inside the Godot Editor. From

here, access the Project Options by choosing Project ➤ Project Settings

from the application menu. Let’s start by setting the Application Window

size, that is, the complete dimensions of the game window in pixels. To do

that, select Display ➤ Window, and then enter values of 1024 x 600 for the

pixel width and height, respectively. See Figure 4-2.

Figure 4-1.  Building a Top-Down 2D Collection Game…

Chapter 4 Making a 2D Game

107

Next, scroll down to the Stretch Section of the Project Settings Window.

This determines how Godot should automatically render your scene

when the window size changes from the intended resolution. This may be

because the user resized the window or because the game is now running

on a device with a different resolution. By default, Godot will maintain

pixel sizes. This will be problematic if you want your 2D game to auto-

resize or scale to a different resolution. To fix this, change the Mode drop-

down to 2D and the aspect to keep_width. See Figure 4-3.

Figure 4-2.  Setting Window Width and Height

Chapter 4 Making a 2D Game

108

Our game will use Tilemaps to build the world, based on 2D tile

images arranged in a grid. On some graphics cards – such as legacy

NVIDIA cards – you may experience flickering from your tiles, especially

as the camera moves around the scene. To avoid this bug, let’s switch to

the Rendering ➤ Quality tab and move to the Depth Section. From here,

remove the check mark from the HDR field. See Figure 4-4.

Figure 4-3.  Setting the Stretch Properties

Chapter 4 Making a 2D Game

109

Now let’s set up the keyboard input for up, down, left, and right

controls. These span the Horizontal and Vertical axes, corresponding to

the keys WASD (and the corresponding arrow keys). Chapter 3 explores

how to configure these. Figure 4-5 shows the final key configuration for our

2D game.

Figure 4-4.  Disabling HDR for Rendering Optimizations in 2D

Chapter 4 Making a 2D Game

110

�Importing Assets
For our 2D game, we’ll use the freely available public domain assets

from kenney.nl. For character sprites, we’ll use www.kenney.nl/assets/

toon-characters-1 and for environment tile sets www.kenney.nl/

assets/topdown-shooter. Later, we’ll also use www.kenney.nl/assets/

generic-items for pickups. Kenney is an excellent online source for

quick prototypical 2D game art. Other great resources include https://

opengameart.org/, https://texturehaven.com/, and hdrihaven.com.

Each pack contains a selection of images in PNG format. And within each

pack, there will be a single sprite sheet, with each smaller image composed

into a single larger atlas image. We’ll import the larger sprite sheet into

Godot, and these are included in the book companion files too. See

Figure 4-6.

Figure 4-5.  Setting Input for the 2D Collection Game

Chapter 4 Making a 2D Game

http://www.kenney.nl/assets/toon-characters-1
http://www.kenney.nl/assets/toon-characters-1
https://www.kenney.nl/assets/topdown-shooter
https://www.kenney.nl/assets/topdown-shooter
http://www.kenney.nl/assets/generic-items
http://www.kenney.nl/assets/generic-items
https://opengameart.org/
https://opengameart.org/
https://texturehaven.com/

111

After importing the textures, select each one from the FileSystem panel

and then move to the Import tab above. This allows you to change the

import settings for the selected texture. For the Character sprite sheet –

and for any objects that’ll move or rotate during gameplay – ensure Filter

is enabled. For environmental assets, and tile-sets, and other 2D assets

that don’t move during gameplay (walls, floors, tables, etc.), ensure Filter

is deactivated. Don’t forget to click the Reimport button if you make any

changes. See Figure 4-7.

Figure 4-6.  Importing PNG Image Textures into the Project

Chapter 4 Making a 2D Game

112

�Creating the Player Character
Let’s start development by creating the player character. The character will

be able to move around the environment using the WASD keys, collide

with objects like walls and props, and collect power-up items. In Godot,

each distinct gameplay element should be created in its own scene. For this

reason, we’ll need at least a player scene, an environment scene, and a

collectible scene. During gameplay, these scenes will be merged, or linked,

together to create a master scene containing our combined gameplay

elements. Scenes, in this sense, then, should be conceived as stand-alone,

self-contained gameplay units. Let’s create the player scene by choosing

Scene ➤ New Scene from the application menu and then click 2D Scene from

the Scene tab to create the initial starting node for the scene. See Figure 4-8.

Figure 4-7.  Reimporting Textures

Chapter 4 Making a 2D Game

113

The player root node should be a KinematicBody2D, because it’ll

be player controlled and should react with physical objects. Right-click

the scene root, and then choose Add Child Node. From here, create a

KinematicBody2D. See Figure 4-9.

Figure 4-8.  Creating a 2D Scene for the Player Character

Figure 4-9.  Creating a Kinematic Body As the Player Root

Chapter 4 Making a 2D Game

114

You can make any node the scene root by right-clicking the node
from the Scene Tree and then selecting Make Scene Root from the
context menu. For this example, go ahead and make our newly
created Kinematic Body the scene root.

The KinematicBody2D has no physical or visible presence when

created on its own. It must be complemented by two additional child

nodes: one to define the character’s volume and size physically and the

other to define its appearance to the player. To achieve this, let’s create

two child nodes: first, the CollisionShape2D node and, second, the

AnimatedSprite node. See Figure 4-10 for the completed scene tree.

Figure 4-10.  Creating a Kinematic Body As the Player Root

Let’s proceed by defining the Sprite Appearance through the

AnimatedSprite node, that is, the 2D appearance of the player character.

We’re using an AnimatedSprite node, as opposed to a regular Sprite node,

because actions like walking should display a spite animation. Select the

AnimatedSprite from the Scene Tree, and from the Frames field in the

Object Inspector, choose New SpriteFrames. See Figure 4-11.

Chapter 4 Making a 2D Game

115

By clicking the newly created SpriteFrames Resource in the Inspector,

you’ll display the SpriteFrames Window at the bottom center of the Godot

interface. This lets you edit the SpriteFrames resource, adding animations

and frames from a pixel-based sprite or sprite sheet. See Figure 4-12. To

create our first animation, click and rename the default to Idle. And then click

the Add Frames from Sprite Sheet button. From here, you can select a texture

asset (character_maleAdventurer_sheet.png) from our available resources.

Figure 4-11.  Creating New Sprite Frames…

Figure 4-12.  Adding Frames from a Sprite Sheet

Chapter 4 Making a 2D Game

116

Clicking the Add Frames from Sprite Sheet button displays the Select

Frames Window, where you can slice the sprite sheet into even tiles, based

on rows and columns. For our character sprite image, a horizontal slice of

9 and a vertical slice of 5 works. This divides the image successfully into

evenly sliced tiles. Once sliced, simply hold down the Ctrl key (or Cmd

key on a Mac) to left-click and select all frames to be included in the Idle

animation. The Idle animation defines how the character will animate

when standing still. See Figure 4-13. When done, click the Add Frames

button.

Figure 4-13.  Selecting Animation Frames

Chapter 4 Making a 2D Game

117

Figure 4-14.  Defining an Idle Animation Using the Sprite Frames
Window

Now you can use the Sprite Frames Window to arrange the frames

and define a frame rate for the animation. Use the Copy and Paste buttons

to duplicate frames where needed and the Move Before and Move After

buttons to rearrange the order of frames. See Figure 4-14.

Chapter 4 Making a 2D Game

118

You can preview each animation directly in the viewport. To do

this, select the AnimatedSprite node, and from the Inspector, enable the

Playing check box and select the relevant animation to preview from the

Animation field. See Figure 4-16.

Figure 4-15.  Creating a Walk Animation

Repeat this process now for creating a Walk animation, which will

play whenever the player character moves. Simply hit the New Animation

button to add a Walk animation, and then add frames via the preceding

method. See Figure 4-15.

Chapter 4 Making a 2D Game

119

Excellent! We’ve now got an animated character, complete with two

distinct animations. Of course, the Idle animation should be the default,

as it’ll always play unless the character is moving. However, the character

still doesn’t have any physical size, shape, or volume. Let’s address that by

selecting the CollisionShape2D node from the Scene Tree panel. With this

object selected, click the Shape field from the Object Inspector, and choose

New CircleShape2D from the context menu. See Figure 4-17.

Figure 4-16.  Previewing Character Animations

Chapter 4 Making a 2D Game

120

After creating a new CircleShape2D, you’ll be able to resize the radius

to enlarge or shrink the circle, approximating the character shape and

size. You can resize the circle by adjusting the Radius field or by directly

dragging the circle gizmo in the editor. See Figure 4-18. As you adjust the

Radius, you’ll notice the AnimatedSprite is probably centered on the object

pivot point, making the character pelvis or mid-region centered at the

origin. This is not ideal. So, we’ll change that next.

Figure 4-17.  Creating a Collision Shape for the Player Character

Chapter 4 Making a 2D Game

121

Select the AnimatedSprite character, and then deactivate the Centered

check box. Next, use the Offset X and Y fields to recenter the character, so

his feet touch the origin instead. This’ll make it easier to predict where

the character will appear when we set his position during gameplay. See

Figure 4-19.

Figure 4-18.  Creating a Collision Shape for the Player Character

Chapter 4 Making a 2D Game

122

Now, reselect the CollisionShape2D, and adjust the collision shape to

match the character’s body. You don’t need to enclose the head, because

when seen from a top-down perspective in a regular 2D level, it’s only the

body that will collide with walls, doors, and objects. See Figure 4-20.

Figure 4-20.  Sizing the Circle Collider

Figure 4-19.  Recentering the Player Character

Chapter 4 Making a 2D Game

123

This is great. We’ve got a fully configured player character. And

now, finally, we can code player controls. To do this, select the root

KinematicBody2D node, and create a new C# script from the Script field

in the Inspector. The script should inherit from KinematicBody2D and be

called PlayerControl. See Figure 4-21.

Figure 4-21.  Creating a New C# Script for Player Controls, Attached
to the KinematicBody2D

The purpose of the PlayerControl script is to respond directly to user

input – up, down, left, and right – and to ensure the player interacts with

physical obstacles in the scene, like walls and doors, and props. The

complete source code for the player character is given in Listing 4-1.

Comments follow.

Chapter 4 Making a 2D Game

124

Listing 4-1.  Player Controls

using Godot;

using System;

public class PlayerControl : KinematicBody2D

{

 [Export]

 public float MoveSpeed = 2f;

 private Vector2 InputDir = Vector2.Zero;

 private AnimatedSprite AnimSprite = null;

 // �Called when the node enters the scene tree for the first

time.

 public override void _Ready()

 {

 �AnimSprite = GetNode("AnimatedSprite") as

AnimatedSprite;

 }

 public override void _Process(float delta)

 {

 �InputDir.x = -Input.GetActionStrength("Left") + Input.

GetActionStrength("Right");

 �InputDir.y = Input.GetActionStrength("Down") + -Input.

GetActionStrength("Up");

 if(InputDir.x > 0) AnimSprite.FlipH = false;

 if(InputDir.x < 0) AnimSprite.FlipH = true;

 InputDir = InputDir * MoveSpeed;

 if(InputDir.LengthSquared() <= 0)

 AnimSprite.Play("Idle");

Chapter 4 Making a 2D Game

125

 else

 AnimSprite.Play("Walk");

 }

 public override void _PhysicsProcess(float delta)

 {

 MoveAndSlide(InputDir);

 }

}

Listing 4-1 contains the full and complete PlayerControl script.

The _Ready function executes on startup and finds the AnimatedSprite

node. The _Process function runs on each frame to read input from

the keyboard, to flip the sprite left or right if needed, and to trigger the

appropriate animation in the AnimatedSprite node. The collected input is

expressed as a 2D velocity in the Vector InputDir, which is used inside the

_PhysicsProcess event by the MoveAndSlide function. To draw a parallel,

Unity divides a “frame” across both Update (on each rendered frame) and

FixedUpdate (each physics step). Godot, by contrast, uses _Process for

rendered frames and _PhysicsProcess for physics steps. This means that

all physics-based functions – like MoveAndSlide – must happen inside

_PhysicsProcess, if they are always to behave as intended. Calling a physics-

based function outside the _PhysicsProcess event may mean collisions

aren’t always detected, characters could pass through solid objects, and

physics collisions could result in jitter and stutter.

Now, to complete the player character, let’s add a follow camera.

This will track the player as they move around the scene, ensuring the

player is always visible. Right-click the KinematicBody2D node and add a

Camera2D node. See Figure 4-22.

Chapter 4 Making a 2D Game

126

Figure 4-22.  Adding a Camera2D Node to Become a Follow Camera

After adding a Camera2D node as a child of the KinematicBody2D,

enable the Current boolean setting from the Inspector. This ensures the

Camera is always the main active camera in the scene. In addition, enable

Smoothing to create a smoothed camera motion as the camera tracks its

target, and set its Process mode to Physics, since the camera motion is

based entirely on player movement, which uses the physics system. See

Figure 4-23. Great work! We’ve now got a fully functional player.

Chapter 4 Making a 2D Game

127

The player is done! Save your changes. Now create a new master scene,

if you haven’t already, and drag the player scene into it. The Master Scene

will contain all top-level gameplay units of our game, including the player

and the level. See Figure 4-24.

Figure 4-23.  Configuring the Camera to Follow the Player

Chapter 4 Making a 2D Game

128

�Building a Level – Tilemaps and Tilesets
Our 2D Collection game needs a world – or an environment – where the

player can explore and find things to collect. In 2D, worlds can be made

easily using a Tilemap, which is a grid of equally sized image tiles, arranged

in rows and columns, and reused optimally to form a single complete

world. Many famous games were constructed in this way, including the

early Zelda and Final Fantasy games. Nearly every top-down RPG game

is made from a tilemap, where each level one is simply one big tilemap.

A Tilemap in Godot is composed from a Tileset, which is a palette of tile

images. To build our level, let’s create a new 2D scene and add a Tilemap

node. See Figure 4-25.

Figure 4-24.  Setting Up a Master Scene

Chapter 4 Making a 2D Game

129

Unity also supports TileMaps and offers feature equivalence to Godot.
However, Godot also supports GridMaps, which are tilemaps for 3D
scenes and meshes.

Figure 4-25.  Creating a Tilemap Object

Newly created Tilemaps are generated empty. To start using them,

you’ll need to create a Tileset. A Tileset represents the palette or images,

or the raw materials, from which you build a Tilemap. With the Tilemap

object selected in the Scene Tree, click the Tileset drop-down from the

inspector and select New Tileset from the context menu. This creates a

new Tileset Resource, and this can be edited in the Tileset Editor Window,

shown by default at the bottom center of the interface or whenever you

click the Tile Set field in the Inspector. See Figure 4-26.

Chapter 4 Making a 2D Game

130

The Tile Set Editor is used to create new Tile sets. To start, drag and

drop a tile sheet texture from the FileSystem panel into the texture list

of the TileSet Editor. For our level, we’ll use the spritesheet_tiles.png file

included in the book companion files and which are part of Kenney Assets.

See Figure 4-27. To confirm the drag and drop was successful, the Tileset

Window will populate with the sprite sheet image.

Figure 4-26.  Creating a Tileset Resource for the Tilemap

Figure 4-27.  Building a New Tileset

Chapter 4 Making a 2D Game

131

Let’s make our first two tile types, standard tiles for a wooden floor.

First, click the New Single Tile button from the top menu of the Tile Set

Window. Click and drag a region in the texture sheet area and then expand

the Snap settings from the Inspector. If you don’t see the Snap settings,

be sure to enable Tile Snapping in the toolbar. This makes selecting and

working with Tiles easier. I have chosen a tile width and height of 64 and a

pixel separation value of 10. This simply means that each tile in the image

is 64 pixels wide and high, and there is a gap of 10 pixels between tiles,

both horizontally and vertically. See Figure 4-28.

Figure 4-28.  Starting Our First Tile

Now select the tile image to be used for our first tile, which will be

wooden floorboards. To do this, click the floorboard tile image and assign

the selected tile a name from the Inspector. This name will display in the

Tilemap object, when shown in the tile palette. See Figure 4-29.

Chapter 4 Making a 2D Game

132

You’ve created your first tile. Excellent. Now jump back to the Godot

Tilemap node just by selecting it from the Scene Tree panel. On selecting

it, the Tile Palette will be displayed in the Inspector, showing your newly

created tile. See Figure 4-30.

Figure 4-29.  Configuring the First Floor Tile

Figure 4-30.  A New Tile Map Node with Our First Tile

Chapter 4 Making a 2D Game

133

Just by selecting the tile from the Inspector and then by clicking and

dragging in the viewport like a brush, you can draw many instances of

the tile in the scene to create a world. Right-clicking a tile erases it. You

can also use the rotate left and rotate right controls to rotate your brush,

drawing different tile variations. See Figure 4-31.

Figure 4-31.  Drawing a Scene from a Tile

Next, we’ll create a second tile (much like the first), which is a slightly

different variation of the floorboard tile. This simply adds variety and

diversity in the scene. For a third tile, we’ll create an Autotile, which adds

lots of interesting flexibility for wall tiles, tracks, roads, and other kinds

of winding tiles that other connect together. An Autotile lets you select a

collection of related tiles (e.g., different areas of wall) and will intelligently

paint your tile into the level to connect seamlessly with surrounding areas.

These kinds of tiles are best understood by trying them out. To get started,

click the Tileset asset from the Inspector to return to the TileSet Window.

Then click the New Autotile button. See Figure 4-32.

Chapter 4 Making a 2D Game

134

Now click and drag over a tile set region to select all tiles to be included

as part of the autotile. Be sure to set your tile snap settings from the

Inspector to 64x64 and a separation of 10 pixels, as we did earlier. The

purpose of our autotile will be to create wall elements for the environment:

corner sections, intersections, and straight sections. So I’ll click and drag a

complete rectangular region around all the wall elements. See Figure 4-33.

Figure 4-32.  Autotiles Let You Create Integrated Walls, Roads, and
Other Elements

Chapter 4 Making a 2D Game

135

Now click the Bitmask button from the Tileset toolbar. From the

Inspector, choose 3x3 (minimal) for the Autotile Bitmask field. Then set

64x64 for the Subtile field, X and Y. Once these settings are provided, we’re

ready to complete our auto-tile by drawing out the “walkable” regions, that

is, the continuous, inside regions that follow the direction of the wall. See

Figure 4-34.

Figure 4-33.  Select an Auto-Tile Region. This Should Contain All
Tiles Related to a Specific Architectural Element: Walls, Floors, Roads,
Fences, and Others

Chapter 4 Making a 2D Game

136

Next, click and drag over the “empty” region of the wall tiles. These will be

marked in red. Ensure you cover all areas that are “walkable.” See Figure 4-35.

Figure 4-35.  Drawing the Walkable Regions of an Autotile

Figure 4-34.  Preparing to Select the Autotile Walkable Region

Chapter 4 Making a 2D Game

137

Name your Autotile, and then switch to the Icon tab. From there, click

to select the most appropriate icon. In this case, I selected the completely

enclosed wall section. See Figure 4-36.

Figure 4-36.  Setting the Auto-Tile Icon

Now you’re ready to start drawing interconnected walls with the auto-

tile brush. Jump over to the Tilemap node in the scene, and then select

the auto-tile brush, which is represented in the palette by your selected

icon. You’ll notice that by clicking and dragging the brush around the

scene, inside the viewport, the walls will be drawn and connected together

correctly, automatically, and seamlessly. See Figure 4-37.

Chapter 4 Making a 2D Game

138

Great! Now use your three tiles (two regular tiles and one auto-tile) to

build a complete level. A floor layout surrounded by walls. See Figure 4-38.

Figure 4-37.  Drawing an Auto-Tile Wall

Chapter 4 Making a 2D Game

139

�World Collisions
We’ve built both a character and a world. Let’s test them. Open the Master

Scene file created earlier – or create a new master scene, if you haven’t

already – and drop both the player scene and the level01 scene together

into the master. You may notice that the level overlaps, and hides, the

player character. If you don’t, check out the Scene Tree Panel. By default,

higher objects are rendered behind lower objects.

Figure 4-38.  Designing a Complete Level

Chapter 4 Making a 2D Game

140

We could solve the render order problem by rearranging the nodes,

moving the player below the level node. However, this order really

shouldn’t matter when it comes to rendering. So, we can tweak it easily

instead by jumping to the level scene and selecting the Tilemap node. We

should set its Z Index to –1000, leaving Z as Relative check box enabled.

When enabled, the Z Order of the Tilemap will always be set relative to its

parent. See Figure 3-40. And now the level appears behind the player.

Figure 4-39.  Lower-Order Nodes in the Hierarchy Render on Top of
Higher-Order Nodes

Chapter 4 Making a 2D Game

141

The main problem however is that our game, when played, doesn’t

support any collisions even though our player controller uses the

MoveAndSlide function inside the _PhysicsProcess event. By pressing Play

or Play Scene, the player will happily walk through walls and any solid

objects. See Figure 4-41.

Figure 4-40.  Setting a Node’s Render Order (Z Index)

Chapter 4 Making a 2D Game

142

To fix this, we’ll need to create Collision information for the level. This

information defines the borders and extents of solid, impassable objects.

Open up the Level Scene file and create a new StaticBody2D node. See

Figure 4-42. Static Bodies represent solid objects that never move during

gameplay. Typically, this includes walls, ceilings, floors, trees, pillars, and

others.

Figure 4-41.  The Player Walks Through Walls!

Chapter 4 Making a 2D Game

143

As with the KinematicBody2D created earlier for the player character,

the StaticBody2D has no extension or volume by default. We need to

create its size and shape using a CollisionPolygon2D. To do this, select the

newly created StaticBody2D node, and create a child CollisionPolygon2D

node. Once added, click the Create Points icon in the toolbar, and then

click inside the viewport to start placing points around the level walls. See

Figure 4-43.

Figure 4-42.  Create a New Static Body for Non-movable Objects

Chapter 4 Making a 2D Game

144

By default, point placement is free and loose, and you’ll likely want to

snap points to the world grid to ensure they align with the walls easily. To

do this, click the Toggle Grid Snap icon from the top toolbar. A Grid is then

placed over the complete map and drawn in the viewport. It will not, of

course, be visible to the player – it’s for our reference only. See Figure 4-44.

Figure 4-43.  Build a Collision Polygon for the Scene Static Body

Chapter 4 Making a 2D Game

145

The created grid will typically be tightly packed, spaced to 8 pixels per

grid line. We can change this to suit our tiles better. To do this, click the

Snap Options button (the three dots beside the Snap Toggle), and choose

Configure Snap from the menu. See Figure 4-45.

Figure 4-44.  Enabling Grid Snap for Precise Point Placement

Chapter 4 Making a 2D Game

146

For our TileSet, let’s use a value of 32x32 pixels for X and Y. These

will realign the gridlines and match our tile sizes while also giving us

appropriate steps within the grid. Excellent. See Figure 4-46.

Figure 4-45.  Accessing the Grid Snap Options

Figure 4-46.  Setting Grid Increments

Chapter 4 Making a 2D Game

147

Now you can easily click inside the level to place points for the

CollisionPolygon2D, building a Collision Shape that represents the scene

walls. Be sure to add a point at every corner. Take a look at Figure 4-47,

which shows a half-completed wall arrangement.

Figure 4-47.  Building the Wall Collision Polygon

Great. You’ve now constructed a full collision polygon that surrounds

the walls. By opening the Master Scene and running the game, the player

character will not pass through the walls and will remain within the scene

boundaries. This is good progress, but there’s more to do still. See Figure 4-48.

Now, let’s see how to progress in the next section!

Chapter 4 Making a 2D Game

148

�2D Lighting
In this section, we’ll add drama to the scene with 2D lighting. Specifically,

the room will begin dark, and the player will carry a torch, illuminating

any areas he moves to. The light will also support full shadow casting,

allowing different 2D objects to cast shadows and obscure light. To get

started, let’s open up our environment level scene. To make it dark, add

a CanvasModulate node. And from the Inspector, set its Color property

to a very dark gray, close to black. Suddenly, the entire level darkens. The

CanvasModulate node control multiplies the color values for all Canvas-

based objects, including 2D objects and user interface elements. See

Figure 4-49.

Figure 4-48.  Supporting Player Collisions…

Chapter 4 Making a 2D Game

149

To create Shadows and to ensure the world responds correctly to any

lights added, let’s create a LightOccluder2D node. This works like the

CollisionPolygon2D node created in the previous section to define the

collision extents of the walls. By comparison, the Occluder node defines

which objects will “block” light. Since light won’t travel through walls, the

Occluder polygon should be the same as the wall collision. Take a look at

Figure 4-50.

Figure 4-49.  Supporting Player Collisions…

Chapter 4 Making a 2D Game

150

Now let’s switch over to the player scene. Select the root node and

add a new Light2D child. This represents a light object. It requires a

2D texture to define the shape, scale, and brightness. Let’s use the light

texture provided by Godot, in its Light2D tutorial, here: https://docs.

godotengine.org/en/3.2/tutorials/2d/2d_lights_and_shadows.html.

The image is Light.png, which is also included in the course companion

files for your convenience. Please do check out this tutorial, and others, on

the excellent Godot website: https://docs.godotengine.org/en/3.2/

tutorials/2d/. In this section, we’ll import the light.png texture into

the Godot FileSystem panel. And then assign it to the Texture slot of the

Light2D. See Figure 4-51.

Figure 4-50.  Building Light Occluder Polygons

Chapter 4 Making a 2D Game

https://docs.godotengine.org/en/3.2/tutorials/2d/2d_lights_and_shadows.html
https://docs.godotengine.org/en/3.2/tutorials/2d/2d_lights_and_shadows.html
https://docs.godotengine.org/en/3.2/tutorials/2d/
https://docs.godotengine.org/en/3.2/tutorials/2d/

151

Next, let’s configure Light Shadow casting to interact with the world. To

do this, select the Light2D node from the Scene Tree and then expand the

Shadows tab from the Inspector. From there, click the Enabled check box.

And now test the MasterScene. See Figure 4-52. Great, the Light2D now

interacts with, and casts shadows from, the main environment walls.

Figure 4-51.  Configuring a Light2D Texture

Figure 4-52.  Operational Shadows! Great Work…

Chapter 4 Making a 2D Game

152

�Pickups
In our collection game, the player needs to collect something! The idea is

that the player must collect all pickups before the time expires. In our case,

the player will collect gamepad sprites, and these can be downloaded from

the excellent texture resource, Kenney Assets, available for free here, as

part of the Generic Items pack, www.kenney.nl/assets/generic-items,

specifically the PNG image file genericItem_color_082.png. See Figure 4-53.

Figure 4-53.  Importing a Gamepad Texture for the Pickup

Next, create a new 2D Scene. This will be used for the Pickup object.

Then create an Area2D node and make this the scene root. The Area2D

node behaves like a Unity Trigger collider. It defines an area or a volume

within the scene, inside which events can be detected. But, it doesn’t

represent a physical, solid object like a StaticBody or a Kinematic body.

Areas are useful for lava pits, water, poisonous atmospheres, and cut-scene

triggers – whenever you must detect the entry or exit of objects in areas.

See Figure 4-54 for the original setup.

Chapter 4 Making a 2D Game

http://www.kenney.nl/assets/generic-items

153

Let’s proceed by adding both a Sprite Node and a CollisionShape node.

The former defines the object appearance and the latter its volume. We’ve

seen this process before when creating both the player and the world.

Consider Figure 4-55 for the final configuration.

Figure 4-54.  Make an Area2D Node the Scene Root

Figure 4-55.  Configuring a Pickup

Chapter 4 Making a 2D Game

154

Great. Finally, let’s add the Pickup to a “Pickup” group and use the

Nodes tab from the Inspector (see Chapter 2 on how to use Groups), and

then we can add some code to the pickup. The code will make the object

disappear when it touches the player and will check to see if there are any

remaining collectible objects. If not, the level is completed. See Listing 4-2.

This code should be attached to the topmost Area2D node of the Pickup

scene, and it assumes the player character belongs to the Player Group.

Listing 4-2.  Responding to Pickup Collection

using Godot;

using System;

public class Pickup : Area2D

{

 public void _on_Pickup_body_entered(Node N)

 {

 if(!N.IsInGroup("Player"))return;

 //Check pickups remaining

 if(GetTree().GetNodesInGroup("Pickup").Count <= 1)

 {

 //You completed the level

 GD.Print("Level Completed");

 }

 CallDeferred("RemoveObject");

 }

 public void RemoveObject()

 {

 GetParent().RemoveChild(this);

 }

}

Chapter 4 Making a 2D Game

155

Now jump back to the Level Scene and add multiple instances of the

Pickup object around the level for the player to collect. See Figure 4-56.

Figure 4-56.  Placing Pickups

Now you can play the Master Scene and watch the player collect all

items. This is excellent. We’re nearly there. Only one more feature left to

create: the timer! See Figure 4-57 for the completed level with collectibles.

Chapter 4 Making a 2D Game

156

Figure 4-57.  Catching Those Pickups!

�Timers and Countdowns
So, the final step is adding a timer countdown. When the timer expires, the

level will restart. It’s that simple, and Godot makes it incredibly easy to add

timers. To start, open the Level Scene, since the countdown is part of the

level and not the player. Although the countdown applies to the player, in

terms of game mechanics, its properties are specific to the level. So, let’s

add a Timer node. See Figure 4-58.

Chapter 4 Making a 2D Game

157

Figure 4-58.  Adding a Timer Node…

Set the Timer Process Mode to Physics, to update along with the physics

cycle, and specify a Wait Time of 20 seconds – we can easily change

this – which represents the total time available for the player to collect

the pickups. Enable One Shot and Autostart to begin the timer as the level

begins. See Figure 4-59.

Chapter 4 Making a 2D Game

158

Figure 4-59.  Configuring a Timer

Now we’ll create a new C# script file to handle the level restart behavior

for when the timer actually expires. It’s pretty simple code. This script

should be attached to the Timer node. Take a look at Listing 4-3.

Listing 4-3.  Level Reloading for Expired Timers

using Godot;

using System;

public class LevelReload : Timer

{

 public void _on_Timer_timeout()

 {

 GetTree().ReloadCurrentScene();

 }

}

We should connect this code to the Timer expired signal and allow the

code to execute when the timer expires. To do this, select the Timer node

and switch to the Node tab on the Inspector. From there, double-click the

Timeout signal and connect it to our _on_Time_timeout function, as we’ve

seen before. In the end, your signal panel will look as shown in Figure 4-60.

Chapter 4 Making a 2D Game

159

Figure 4-60.  Responding to Timeout Behaviors

Figure 4-61.  The Completed Game!

And that’s it! You’ve now completed a simple, but functional collection

game using the Godot engine. Excellent. Go ahead; take it for a test run

and behold your work! See Figure 4-61.

Chapter 4 Making a 2D Game

160

�Summary
Great work. In this chapter, we created a complete, comprehensive, and

fun 2D game with a variety of behaviors, showcasing many Godot 2D

features. Godot has an amazing and easy-to-use 2D feature set, which

is easy to pick up, use, and reuse. Godot’s clever hierarchical scene

framework makes it easy to create gameplay elements, like levels and

player characters, in isolation and then bring them together seamlessly

into a single world.

Chapter 4 Making a 2D Game

161© Alan Thorn 2020
A. Thorn, Moving from Unity to Godot, https://doi.org/10.1007/978-1-4842-5908-5_5

CHAPTER 5

3D Lighting and
Materials
This chapter focuses on Lighting and Materials in Godot, specifically for

3D. Here, we’ll focus on Godot’s standard material and light types and

then explore its two major lighting systems: Global Illumination and Light

Baking. By understanding and using these techniques, you’ll effectively

transition from Unity to Godot’s lighting system, and you’ll be able to

configure Godot scenes to achieve high-quality visual results in 3D. It must

first be admitted, however, that Godot’s lighting system is rudimentary

compared to the newer HDRP (High Definition Render Pipeline) in Unity.

In the Unity HDRP, we see an extensive, real-time PBR system for easily

creating high-quality scenes, by tweaking just a few settings and materials.

Godot, by contrast, is more limited in its lighting features out of the box.

But still, that being said, Godot is capable of delivering high-quality

lighting that makes a 3D scene compelling. Although a PBR workflow is

supported and features exist to achieve a photo-realistic finish, the results

are often performance intensive for many systems. This means that Godot

may not be the right choice, right now, for a “photo-realistic” game. But

that still leaves us many options and styles. We’ll explore lighting in this

context throughout the chapter.

https://doi.org/10.1007/978-1-4842-5908-5_5#ESM

162

�Lighting Fundamentals
Let’s explore the Godot Light types together. We’ll do this using a simple

scene to see the lighting results in isolation, in a stand-alone scene,

specifically a cube on a plane. This is created easily. Just make a new scene,

and then add two MeshInstance nodes: one created as a Cube Mesh and the

other as a Plane Mesh. See Figure 5-1.

You’ll notice that every newly created Godot 3D scene features lighting

by default. Even though there’s no light listed in the scene tree, we still see

a sky in the viewport, and both the cube and plane meshes are illuminated.

In a scene truly absent of light, we’d see only black or darkness. But in

our scene – as with all new 3D scenes – we have lighting already. This is

because every new 3D scene is automatically associated with a default

WorldEnvironment, defining the lighting properties of the “world” – the

natural, environment light from the sun or the moon, or surrounding

Figure 5-1.  Creating a Basic Cube/Plane Scene Setup for Exploring
Lights

Chapter 5 3D Lighting and Materials

163

areas –including the sky and fog. For our purpose, let’s completely switch

off the environment lighting. To do this, we’ll override the default world

environment. There are multiple ways to do this. We’ll add a new node,

namely, a WorldEnvironment Node. See Figure 5-2.

After creating the WorldEnvironment node, select New Environment

for the Environment field in the Inspector. This creates a new environment

and the world turns dark, overriding the original settings. See Figure 5-3.

Figure 5-2.  A World Environment Node Overrides Ambient
Light

Chapter 5 3D Lighting and Materials

164

Now expand the Background and Ambient Light sections, and then

turn their Energy field to 0. This removes all ambient light from the scene.

See Figure 5-4.

Figure 5-3.  Configuring the World Environment Node…

Figure 5-4.  Removing All Ambient Light

Chapter 5 3D Lighting and Materials

165

�Exploring Light Types
We’ve now succeeded in removing any and all ambient light from the

scene by overriding the WorldEnvironment lighting data using our own

newly created WorldEnvironment Node. This turns the scene – and indeed,

any scene without lights – completely black. Doing this is useful for

exploring lights, because we can create lights, edit their properties, and see

them in isolation. Let’s start by creating a Directional Light. To do this,

add a Directional Light node. See Figure 5-5.

Directional Lights are truly “positionless” insofar as their location

within the scene makes no difference to their lighting impact. It’s only their

orientation – their direction – that determines what they illuminate and

how. Directional Lights are useful for simulating the sun, the moon, and

other huge natural light sources. They are also used to simulate bounced

light and ambient light. You can enable Light Shadows – for all standard

Figure 5-5.  Creating a Directional Light

Chapter 5 3D Lighting and Materials

166

light types – by expanding the Shadow tab in the inspector and setting

Enabled to On. By default, Shadows will appear completely black. You can

change their intensity by changing the Shadow Color, for example, from

black to gray. See Figure 5-6 for Directional Light Shadows.

Next, let’s delete the Directional Light and try a Spot Light. The Spot

Light is a computationally expensive Light Source, which has a position,

a range, and a cone of influence. It’s useful for creating car headlights,

ceiling lights, and other artificial Light Sources. The Light tab can be used

to control a light’s color and brightness. See Figure 5-7.

Figure 5-6.  Controlling Directional Light Shadows

Chapter 5 3D Lighting and Materials

167

The third and final main light type is the Omni Light, sometimes

referred to as a Point Light. This light is defined by a location and a range.

From its position, it casts light in all direction for a specified range. This

light simulates lamps, bulbs, and other artificial sources. See Figure 5-8.

Figure 5-7.  Adding Spot Lights

Figure 5-8.  Creating an Omni Light

Chapter 5 3D Lighting and Materials

168

Together the Directional, Spot, and Omni lights are the three main light

types for multi-purpose lighting in a Godot seen. As we’ll see shortly, there

are more types that are not immediately obvious and which can be used to

great effect.

�Materials
Lights are an important aspect of making scenes look great, but so are

materials. A material defines how the surface of an object will appear,

when lighting and environmental conditions are all considered. Materials

let you apply textures, color, and other effects to your objects. Normally,

your object needs correct UVs – added inside your 3D modeling software –

for textures to appear correctly on its surface. In this section, we’ll create

a simple material and apply it to a cube in our sample scene. To do this,

right-click the Res// path inside the FileSystem Window, and then choose

New Resource from the context menu. See Figure 5-9.

Figure 5-9.  Making a New Resource

Chapter 5 3D Lighting and Materials

169

Afterward, a New Resource Window appears. From here, search and

select a SpatialMaterial. These are materials that are created and added

to 3D objects. It is Godot’s equivalent to the Unity Standard Shader, or to

the HDRP ➤ Lit material, or the URP ➤ Lit material. It aims to provide

a diversity of shader features needed to illuminate most 3D objects. See

Figure 5-10.

Name your material matCube; and it will appear as a Resource in

the FileSystem panel. You can select and view the material properties

by double-clicking it. When selected, the material properties display for

editing inside the Inspector. To change the main material color, expand the

Albedo section, and click the Color swatch. This lets you select a color for

the material. For our example, I’ll make the material red, and it will soon

be applied to the cube. See Figure 5-11.

Figure 5-10.  Creating a New Spatial Material

Chapter 5 3D Lighting and Materials

170

You can use the Texture slot to select an image texture for applying
to the mesh. This option only works as intended if the 3D mesh has
appropriate UVs.

To assign the material to the cube, select the cube in the scene, and

then expand the Material section from the Inspector. Click the Empty drop-

down, and then choose Load from the context menu. See Figure 5-12.

Figure 5-11.  Building a Red Material

Chapter 5 3D Lighting and Materials

171

From the Resource Selection Window, choose the newly created Red

Material. Once assigned, the cube will turn red to reflect the material

assignment. Now double-click the material from the File System panel to

view its properties in the Inspector again. Expand the Parameters section

and check the Cull Mode field. This should be set to Back. Back means that

Backface Culling is enabled. This is a performance optimization that saves

the Renderer from having to render the “back faces” of a mesh, that is, the

reverse side of a surface that is normally facing away from the camera. For

most meshes in a 3D scene, you’ll want this enabled. See Figure 5-13.

Figure 5-12.  Assigning a Spatial Material

Chapter 5 3D Lighting and Materials

172

You can make a material partially transparent by expanding the Flags
Section, enabling the Transparent check box, and then by assigning a
Alpha Value to the Albedo Color.

�Global Illumination – Light Baking
We’ve surveyed Godot’s most basic and fundamental tools for building

effective 3D scenes, complete with lighting. But we’re missing Indirect
Illumination, sometimes known as Global Illumination (GI), that is, light

that strikes a surface – such as a wall – and then bounces off and continues.

Perhaps it bounces off directly, as it does with a mirror (Specular

Reflections), or perhaps it gets absorbed into the object and then reflected

back after passing through it (a Diffuse Interreflection), or sometimes it

even passes into an object and exits at a point quite distant from the entry

(a Subsurface Scatter). In all of these cases, light is reflected after making

contact with an object; and this results in the continued transport of light

Figure 5-13.  Enabling Backface Culling on a Material

Chapter 5 3D Lighting and Materials

173

through the scene, potentially illuminating areas that are not directly in

view of the original light source. By default, when using Godot’s three

major light types, no indirect illumination is calculated because it’s

computationally expensive to do so in real time. This is evident whenever

we add a light to the scene and observe the results in the viewport.

Consider Figure 5-14. In this figure, light directly hits the cube from a point

light and then illuminates its faces; but any faces turned away from the

light will simply render completely black.

Now, such Direct Illumination behavior is simply not physically

accurate. Polygons facing away from a light should normally receive

illumination from that light. We can solve this problem by using either

one of Godot’s GI lighting methods. The first method, considered here,

is Light Baking. The other, considered in the next section, is the GIProbe

system. Both systems simulate the transport of light through scene, beyond

Figure 5-14.  By Default, Godot Only Calculates Direct Illumination

Chapter 5 3D Lighting and Materials

174

direct illumination. So, both systems are capable of achieving great levels

of realism. Light Baking should be preferred when creating games for a

diversity of hardware, new and old. It’s for when you need good-looking

lighting at a low-performance cost. Light Baking saves most or all lighting

data to textures ahead of runtime to simulate the effect of bounced

lighting. Let’s see how to set up Light Baking. We’ll start by opening the

LightBox Godot project included in the book companion files for this

chapter. It features a basic scene and a mesh with all lighting removed

using a WorldEnvironment node, as we’ve seen previously. See Figure 5-15.

Next, let’s add an Omni Light to the scene and position it close to the

ceiling for simulating a ceiling light. By default, indirect illumination will

not be calculated, as we’ve seen already. Don’t worry, we’ll take care of

that shortly! See Figure 5-16.

Figure 5-15.  Lightbox Room with Lighting Removed

Chapter 5 3D Lighting and Materials

175

Now let’s add some shadows. Select the Omni Light from the Scene

Tree and enable the Shadow field via the Inspector. From there, select

a mid-tone color to create a believable look and feel. Also make sure

that Shadow Casting is enabled on the world mesh instance too. See

Figure 5-17.

Figure 5-16.  Adding an Omni Light to the Scene

Chapter 5 3D Lighting and Materials

176

Wow. What a difference shadows can already make to a scene. Now,

we’ll configure the Baked Lighting. To do this, start by selecting the

environment mesh instance. In our sample scene, we have only one

mesh. But in larger scenes, you’d select all environment instances – walls,

floors, ceilings, trees, and so on. Then choose Mesh ➤ Unwrap UV2 for

Lightmap/AO from the viewport context menu. See Figure 5-18. This

creates a new second set of UVs for the selected mesh. In this set, no UV

islands will overlap within the UV space, ensuring that lighting and pixels

can be rendered safely to a Lightmap texture and encode all scene lighting,

resulting in no overlaps, conflicts, or aberrant effects.

Figure 5-17.  Adding Shadows

Chapter 5 3D Lighting and Materials

177

Now, right-click the scene root from the Scene Tree, and then add a

new Baked Lightmap node using the Add Node dialog. The newly created

node will eventually encode all lighting information. See Figure 5-19.

Figure 5-18.  Creating Lightmap UVs for the World Environment

Chapter 5 3D Lighting and Materials

178

The newly created object surrounds the scene with a highlighted

cube gizmo, representing the total volume of the scene to be included in

the Baked Lighting. Ideally, this box should be as small as possible while

containing all areas of the scene. You can resize the box by clicking and

dragging the dotted handles at the edges of the box or by adjusting the X, Y,

and Z extents field from the Bake section of the Inspector. See Figure 5-20.

Figure 5-19.  Adding a Baked Lightmap Node

Chapter 5 3D Lighting and Materials

179

Next, define the light quality for capturing by adjusting the Default

Texels Per Unit field from the Inspector. This determines the ratio between

linear meters to pixels in the Lightmap texture. The default value is 20,

meaning 20 Lightmap pixels will be produced for every “meter of surface”

in the scene. This means that a winding, wrapping, and contorted surface

will generate more lightmap pixels than a simple, flat plane extending

across the same region. For our example, I’ll reduce the Texels to 10. See

Figure 5-21.

Figure 5-20.  Defining a Baking Volume…

Chapter 5 3D Lighting and Materials

180

Before starting the Baking Process, you’ll need to mark each mesh

instance to be included. Select the environment mesh. From the Inspector,

expand the Geometry section, and then enable the Use in Baked Light

field. See Figure 5-22.

Figure 5-21.  Defining a Texel Ratio…

Chapter 5 3D Lighting and Materials

181

In Unity, you mark geometry for light baking by enabling the Static
check box, available on all Game Objects from the top-right hand side
of Object Inspector. However, in Unity, static objects cannot move.
In Godot, this limitation does not apply. Baked Objects can move.
Moving objects automatically revert to an internal Light Probe system
for calculating Indirect Illumination.

Finally, and optionally, let’s disable the Gizmo Visibility for the Light

Bake volume. Now that we’ve sized it appropriately for our scene, we don’t

need to continue viewing the volume itself. To do that, select View ➤ Gizmos

➤ BakedLightmap from the viewport context menu. See Figure 5-23.

Figure 5-22.  Marking Baked Meshes

Chapter 5 3D Lighting and Materials

182

Finally, you can bake the Lighting by choosing Bake Lightmaps from

the viewport menu. Save the scene before doing so. This process may take

a while, depending on the scene size. See Figure 5-24.

Notice the dramatic improvement on your scene lighting. What a

difference indirect illumination makes to the scene realism. See Figure 5-25.

Figure 5-23.  Toggling BakedLightmap Visibility…

Figure 5-24.  Baking Lightmaps

Chapter 5 3D Lighting and Materials

183

We can improve the lighting quality even further by using Post-

Processing from the WorldEnvironment node. Let’s try that now. Select

the WorldEnvironment node from the Scene Tree and then expand the

Environment section in the Inspector. This features lots of post-processing

options. See Figure 5-26.

Figure 5-25.  Baking Lightmaps Increase the Believability of a Scene

Chapter 5 3D Lighting and Materials

184

First, expand the Tonemap group in the Inspector, and change the

Mode to Aces. The different Tonemapping options adjust the brightness

and saturation of your image dynamically, based on specific properties, to

make your colors look punchier. See Figure 5-27.

Figure 5-26.  Exploring Post-Processing

Chapter 5 3D Lighting and Materials

185

Next, let’s add Contact Shadows, also known as Ambient Occlusion.

This refers to the darkening of objects at their edges, as they come

into contact with other surfaces. To do this, expand the SSAO section

(Screen Space Ambient Occlusion) and enable it. Then reduce the

Intensity slider to 0.8. See Figure 5-28.

Figure 5-27.  Adding Tone Mapping

Chapter 5 3D Lighting and Materials

186

Now let’s add some Bloom. Bloom adds a subtle, but dreamy, blur to

the render’s highlight values. To do this, expand the Glow section. Enable

the effect. Increase the Intensity and Strength fields to strengthen the

effect overall, and then reduce the HDR Threshold to increase the range of

elements affected. See Figure 5-29.

Figure 5-29.  Adding a Glow Effect

Figure 5-28.  Adding Contact Shadows

Chapter 5 3D Lighting and Materials

187

This is looking good. Now, to finish things off, let’s enable Anti-Aliasing

to smooth off any sharp, jagged edges on the meshes. To enable this, select

Project ➤ Project Settings from the application main menu. From there,

display the Rendering ➤ Quality section, enable 4x for the MSAA setting

(Multi Sampling Anti-Aliasing). See Figure 5-30.

Great! And now you’ve successfully illuminated a 3D scene, complete

with Light Baking and global illumination. Godot makes it easy. See

Figure 5-31. Now, in the next section, we’ll try it again, but using the

GIProbe system!

Figure 5-30.  Adding a Glow Effect…

Chapter 5 3D Lighting and Materials

188

�Global Illumination – GI Probes
In this section, we’ll illuminate our Light Box room, the same as from the

previous section. We’ll begin again from the point shown in Figure 5-32.

This room is included in the book companion files too, in the Scene

GIProbes. This scene features only a Lightbox Room mesh, an Omni Light,

and a default WorldEnvironment node. You’ll notice again that our scene

features only Direct Illumination. Throughout this section, we’ll add

Indirect Illumination, but by using the GIProbe system. Unlike Light Baking,

which uses Image Textures to save scene lighting, the GIProbe system is

more sophisticated and can bake a greater variety of lighting data to create

realistic effects quickly and easily. However, the GIProbe is computationally

expensive and is suitable for high-end PCs, consoles, and other more recent

powerful devices.

Figure 5-31.  A Light Baked Scene

Chapter 5 3D Lighting and Materials

189

As before, we must select all meshes and enable the Use in Baked

Lighting option from the Geometry section of the Inspector. This ensures

all meshes will be included in, and effected by, the GIProbe system. See

Figure 5-33.

Figure 5-32.  Getting Ready for GIProbes

Chapter 5 3D Lighting and Materials

190

Next, add a GIProbe node to the scene from the Node dialog. Your

scene needs only one GIProbe node for calculating indirect illumination in

the scene. See Figure 5-34.

Figure 5-33.  Enabling Baked Lighting for Mesh Instances

Chapter 5 3D Lighting and Materials

191

Initially, your GIProbe will probably be larger than your scene and

will appear as a subdivided cube gizmo. The idea is to resize the gizmo

to completely contain your scene, being as tightly sized as possible. You

can resize the Gizmo by clicking and dragging the edge handles, inside

the viewport, or by adjusting the X, Y, and Z fields for Extents group in the

Inspector. See Figure 5-35.

Figure 5-34.  Adding a GIProbe Node

Chapter 5 3D Lighting and Materials

192

Make sure the GIProbe node is selected in the Scene Tree, and then

click Bake GI Probe from the viewport menu. When you do this, Godot

calculates scene lighting and automatically adds indirect illumination. See

Figure 5-36.

Figure 5-35.  Resizing the GI Probe

Chapter 5 3D Lighting and Materials

193

The GI will probably need tweaking if you’re using the default settings.

For example, by viewing the backside of the sphere in our scene (as

featured in Figure 5-37), you’ll notice some aberrant shadows or shading.

See Figure 5-37. You may notice similar problems in other places too.

Figure 5-36.  Baked Scene with GI

Chapter 5 3D Lighting and Materials

194

Let’s address these issues. First, mark our current scene as an “Interior,”

as opposed to an exterior scene, like a forest or a beach. This ensures that

the sky or any skyboxes don’t get baked into the scene lighting. You can do

this by selecting the GIProbe node and then enabling the Interior check

box from the Inspector. See Figure 5-38.

Figure 5-37.  Baked “Errors”

Chapter 5 3D Lighting and Materials

195

Next, let’s adjust the Normal Bias field from the Inspector. This adjusts

the fidelity of shadows and light bounces. Usually, 0 results in lower-

quality shadows for smaller objects. Try adjusting the value to 0.16. This

will instantly have an effect in the viewport, and already the lighting will

look much better. Great work! See Figure 5-39.

Figure 5-38.  Marking a Scene As Interior

Chapter 5 3D Lighting and Materials

196

The Subdiv field at the top of the Inspector (when the GI Probe is

selected) can be raised to higher values to improve lighting quality at

the cost of performance. Here, we’ll leave the GI Probe set to the default

value of 128. Ideally, this value should be as low as possible while still

maintaining the results you need. See Figure 5-40.

Figure 5-40.  Setting the GIProbe Subdivisions…

Figure 5-39.  Adjusting the Normal Bias for Better Shadows

Chapter 5 3D Lighting and Materials

197

Great. This scene is looking good. Now let’s add Reflections. To do this,

add a new Node, a Reflection Probe Node. This node acts like a camera; it

captures images of the surrounding environment as a HDR map, and the

captured data is assigned as a reflection to reflective objects. See Figure 5-41

for adding a Reflection Probe.

Next, use the Extents field of the Reflection Probe (from the inspector)

or use the viewport gizmo handles to resize the reflection volume so it

contains the scene completely. Again, this should be resized as tightly as

possible. See Figure 5-42.

Figure 5-41.  Adding a GI Probe to the Scene…

Chapter 5 3D Lighting and Materials

198

And that’s it! The scene is set up and ready to use Reflections. The

Update Mode is specified as Once by default. This means the scene will be

captured once and the image continually used as a reflection map. If your

scene changes dramatically often – or its lighting changes often – you many

need to change the mode to Always. Be careful, this is highly intensive. See

Figure 5-43 for the complete scene with reflections.

Figure 5-42.  Setting the Reflection Probe Extents to Contain the Scene

Chapter 5 3D Lighting and Materials

199

Figure 5-43.  Looking Good with Reflections

Finally, let’s enable our Post-Process effects from the

WorldEnvironment node, as demonstrated in the preceding section. This

includes Ambient Occlusion, Tone mapping, and Glows. See Figure 5-44.

Chapter 5 3D Lighting and Materials

200

�Summary
This chapter completes our analysis of lighting in 3D using Godot’s two

major lighting systems, Baking and GI Probes. For your projects, you’ll

need to choose the right one. Both are capable of great results: Baking

trades quality for performance, and GI Probes trades in the opposite

direction.

Figure 5-44.  Completed Scene with Post-Processing

Chapter 5 3D Lighting and Materials

201© Alan Thorn 2020
A. Thorn, Moving from Unity to Godot, https://doi.org/10.1007/978-1-4842-5908-5_6

CHAPTER 6

Coding a First-Person
Controller in C#
Unlike Unity, Godot doesn’t ship with any built-in character controllers,

neither third-person nor first-person. So, in this chapter, we’ll create a

reusable first-person controller rig from start to end in C# for Godot. Once

created, we’ll be able to drag and drop first-person controls directly into

any scene. The WASD keyboard keys will move the camera forward, left,

backward, and right, respectively. Holding down the Shift key enables run

mode and the space bar initiates a jump. Mouse movement will control

head orientation, and the first-person controller overall will support many

physical interactions, including gravity, collisions, ramp movement, and

more. See Figure 6-1.

https://doi.org/10.1007/978-1-4842-5908-5_6#ESM

202

�Getting Started – Creating a Camera Scene
Let’s begin the first-person character controller by creating a new scene to

contain our objects. In Godot, a Scene behaves like a Unity Prefab. It allows

us to create an asset in isolation, which can be added and reused across

multiple scenes. To create a new Scene, select Scene ➤ New Scene from the

application menu, and then choose 3D scene from the Create Root Node

menu. See Figure 6-2.

Figure 6-1.  Creating a First-Person Controller Rig

Chapter 6 Coding a First-Person Controller in C#

203

Figure 6-2.  Creating a 3D Scene

Next, right-click the root node from the Scene Tree, and then choose

Add Child Node to show the Create Node Dialog. From here, create a

KinematicBody Node (similar to a character controller in Unity – or a

Rigidbody set to Kinematic Mode). A Kinematic Body is useful for building

player-controlled characters or AI-controlled characters that need to react

with physics and collision bodies. This node will become the root node –

or main node – of the player character. See Figure 6-3.

Chapter 6 Coding a First-Person Controller in C#

204

The newly created Kinematic Body node should become the root

of the scene, that is, the topmost node. It’ll be the topmost node of the

player character, and there’ll be several child nodes. Our current scene

should contain only the player character – it’s not intended to be played

stand-alone but should be embedded into another scene, instantiated as a

node, wherever first-person controls are needed. To do this, right-click the

KinematicBody node in the Scene Tree and then select Make Scene Root

from the context menu.

Figure 6-3.  Creating a Kinematic Body Node

Chapter 6 Coding a First-Person Controller in C#

205

As the Kinematic Body becomes the root, the previous root node (a

3D Spatial) will now become a child, and it may be safely deleted or left

as is. We’ll need a spatial node for later anyway. Every KinematicBody

needs a CollisionShape child node to express the character’s volume and

size (equivalent to a Unity Collider). Let’s add one now, specifically a

CollisionShape node. See Figure 6-5.

Figure 6-4.  Making the Kinematic Body the Scene Root

Figure 6-5.  Adding a CollisionShape Node

Chapter 6 Coding a First-Person Controller in C#

206

The CollisionShape node begins as an empty spatial object with no

width, height, or depth. To assign it shape, volume, and form, simply select

the CollisionShape node and then move to the Shape field in the Inspector.

From here, choose New CapsuleShape. The Capsule best approximates the

volume of a humanoid character. See Figure 6-6.

Figure 6-6.  Creating a Capsule Shape for the Kinematic Body

You may need to rotate the CollisionShape by 90 degrees on the X axis –

or a different axis (depending on your object’s orientation) – and then

tweak the CapsuleShape’s settings to adjust its Radius and Height. The idea

is to resize the CollisionShape to approximate a humanoid character, such

as the player or an NPC. See Figure 6-7.

Chapter 6 Coding a First-Person Controller in C#

207

Now let’s focus on building the character’s head, which will be the

center of the camera’s view. To start, create an empty spatial node – a child

of the root – or use an existing spatial if you have one. Rename the node

to “Head” and position it toward the top of the capsule at the center of the

head location. Remember, the blue forward arrow should always point in

the direction of the character’s view. See Figure 6-8.

Figure 6-7.  Resizing the CapsuleShape

Chapter 6 Coding a First-Person Controller in C#

208

Note T he blue arrow of the transform gizmo is the forward vector.
It must represent the direction in which the character is facing. All
nodes within the player hierarchy should share the same orientation,
with the forward vector pointing forward.

Having now used a spatial node to mark the head position, we should

add a camera as a child object. Simply add a camera node using the Node

Creation Window, and then rotate its transform if needed by 180 degrees

around the Y axis to face forward. See Figure 6-9. The Player Rig is now

completed and ready to code. Excellent!

Figure 6-8.  Positioning the Character’s Head

Chapter 6 Coding a First-Person Controller in C#

209

�Player Movement and Key Bindings
One of the most important mechanics supported by any first-person

controller is movement, both walking and running, specifically moving

forward and backward using the W and S keys and strafing – or side

stepping – left and right with A and D. To read input from these keys on

the keyboard or to read input from buttons on a gamepad, we must first

configure the game’s Input Actions. This is simple to achieve. To do this,

select Project ➤ Project Settings from the application menu, and then

switch to the Input Map tab. See Figure 6-10.

Figure 6-9.  Completing the Character Rig

Chapter 6 Coding a First-Person Controller in C#

210

We’ll need to create four distinct Actions to read input from WASD:

left, right, up, and down. In Godot, an Action is a form of key binding.

It converts a button press or an analog control into numerical data that

drives gameplay. To add Actions, simply type a name for each action into

the Action field, and then click the Add button for each action to add four

new actions in total. I’ve used the names move_forward, move_backward,

move_left, and move_right, respectively. See Figure 6-11.

Figure 6-10.  Accessing the Input Action Settings from Project ➤
Project Settings

Chapter 6 Coding a First-Person Controller in C#

211

Each Input Action defines one or more key bindings or mappings, a

conversion from a button press to axis data. Let’s explore how to create

bindings for the move_forward Action; and the remaining Actions are a

repeat of that process. Click the Add Event button (+ icon), located beside

the Input Action name. This creates a new key binding. On clicking Add

Event, select Key from the context menu. This will link a keyboard button

to the Input Action. See Figure 6-12.

Figure 6-11.  Adding Input Actions from the Project Settings Dialog

Figure 6-12.  Create a New Key Binding

Chapter 6 Coding a First-Person Controller in C#

212

After clicking Key from the context menu, Godot prompts you to press

the relevant keyboard key to form the key binding. For the move_forward

Action, press the W key. See Figure 6-13.

Figure 6-14.  Completing the Key Bindings for Forward, Backward,
Left, and Right

Figure 6-13.  Detecting a Keyboard Press for a Key Binding

You can also add multiple keys to the same Action. Simply click Add

Event again, and then add a new key binding. For the move_ forward

action, the W and Up arrow keys are most appropriate. See Figure 6-14 for

the complete move_ forward binding, along with all other actions, move_

backward, move_left, and move_right. See Figure 6-14.

Chapter 6 Coding a First-Person Controller in C#

213

�Reading Input Actions for Movement
The previous section demonstrated how to configure four input actions

for player movement and all its associated key bindings. This links

forward, backward, left, and right movement to the WASD keys and to

the directional arrows. In this section, we’ll create a new script file for the

PlayerCharacter, which reads input through the Actions. To get started,

create a new C# script file named FPSControl.cs and attach the script to the

topmost KinematicBody node, as shown in Figure 6-15. The newly created

script is shown in Listing 6-1.

Figure 6-15.  Creating an FPSControl.cs Script File for Handling
Player Movement

Chapter 6 Coding a First-Person Controller in C#

214

Listing 6-1.  Godot Auto-Generated FPSControl Script

using Godot;

using System;

public class FPSControl : KinematicBody

{

 // Declare member variables here. Examples:

 // private int a = 2;

 // private string b = "text";

 // �Called when the node enters the scene tree for the first

time.

 public override void _Ready()

 {

 }

// // Called every frame. 'delta' is the elapsed time since

the previous frame.

// public override void _Process(float delta)

// {

//

// }

}

Godot offers the GetActionStrength function to read input data from the

specified Action. This function returns a smoothed floating-point value in

the 0 to 1 range; 0 means “not pressed” and 1 means “fully pressed.” These

values, read from four Actions, can effectively be translated across two axes

of movement. Specifically, move_ forward and move_backward together

represent the Vertical Axis. And move_left and move_right represent the

Horizontal Axis. We can visualize both Horizontal and Vertical in the –1

to 1 range. –1 means down or left, and 1 means right or forward. 0 means

Chapter 6 Coding a First-Person Controller in C#

215

neither Action is pressed, or both are pressed together (because –1 + 1 = 0).

To read input across the four Actions and to map them into our two axes

of character movement, let’s first add Export string variables to our class,

allowing us to customize axis names from the inspector, which will be

plugged into the function GetActionStrength. See the following code. Export

is equivalent to the SerializedField attribute in Unity.

 [Export]

 private string LeftAxis, RightAxis,

 UpAxis, DownAxis = string.Empty;

Next, we’ll use the _process event to read input from the actions and

map them to the two axes. See Listing 6-2.

Listing 6-2.  Converting Input Actions to 2D Movement, Horizontal

and Vertical

public override void _Process(float delta)

{

 �float Vertical = -Input.GetActionStrength(DownAxis) +

Input.GetActionStrength(UpAxis);

 �float Horizontal = Input.GetActionStrength(LeftAxis) +

-Input.GetActionStrength(RightAxis);

}

�Establishing Move Direction
Input read from Actions using GetActionStrength can be converted easily

into two dimensions of local motion: horizontal and vertical – left and right

and forward and backward, respectively. This motion may be expressed in

two floating-point values only. This motion is local insofar as horizontal

and vertical movement always relate to the direction in which the player is

currently facing. Forward always means forward for the player, as opposed

Chapter 6 Coding a First-Person Controller in C#

216

to forward in the world, for example. For this reason, we’ll need to convert

the local movement strength to a world space direction for moving the

player based on input. To do that, consider the revised _process event in

Listing 6-3.

Listing 6-3.  Converting Local Movements to World Velocity

public override void _Process(float delta)

{

 �float Vertical = -Input.GetActionStrength(DownAxis) +

Input.GetActionStrength(UpAxis);

 �float Horizontal = Input.GetActionStrength(LeftAxis) +

-Input.GetActionStrength(RightAxis);

 MoveDirection = Vector3.Zero;

 �MoveDirection = HeadNode.Transform.basis.z * Vertical +

HeadNode.Transform.basis.x * Horizontal;

 MoveDirection = MoveDirection.Normalized();

}

The code in Listing 6-2 depends on two additional class variables.

The first is a Vector3 variable, MoveDirection, which always represents

the normalized velocity of the player character, that is, the direction of

movement. This variable is normalized and has a unit length, allowing it

to be scaled by any speed needed. The other is the HeadNode variable,

which refers to the empty spatial node that is the parent of the camera.

Chapter 3 explores how to retrieve node references from a NodePath using

the GetNode function. The head always represents the direction of travel

for the player. This is because when moving forward and backward or left

and right, the character is always moving in the direction of stare. Here’s

how you can read the Head Node and Camera Node objects at application

startup, from NodePath variables defined in the Inspector.

Chapter 6 Coding a First-Person Controller in C#

217

 public override void _Ready()

 {

 HeadNode = GetNode(HeadPath) as Spatial;

 CamNode = GetNode(CamPath) as Spatial;

 Input.SetMouseMode(Input.MouseMode.Captured);

 }

Note N otice the Input.SetMouseMode function is used to hide the
system cursor, allowing for more intuitive head motion.

The MoveDirection variable is calculated each frame by using the basis

member of the Head Node. The basis variable expresses three vectors,

which are the local X, Y, and Z axes in world space. This means that the

basis.z variable is the forward vector in world space and the basis.x is the

right vector in world space.

�Applying Gravity
The previous section detailed how to convert the player’s move direction

into world space using a normalized vector. This vector can be multiplied

by a speed to offset the player along its velocity smoothly and seamlessly,

frame by frame. However, this direction doesn’t account for gravity, which

is a force normally pulling everything downward toward the ground at an

accelerated rate. To apply gravity, let’s create a representation of it using a

Vector3 variable, expressing direction and strength.

 [Export]

 public Vector3 Gravity = Vector3.Zero;

Chapter 6 Coding a First-Person Controller in C#

218

A gravity vector of type Vector3.Zero will have no strength. For the

player character, a vector of (0, –30, 0) works well in most cases. This can

be specified in the Inspector. Other interesting values include (0, 30, 0),

which would push an object upward, like a perpetual jump, and (–30, 0, 0),

which would continually pull an object sideways.

�Completing Player Movement
In this section, we’ll complete the crucial functionality started in previous

sections, namely, input, direction calculation, and gravity. Here, we’ll

complete the movement controls for the first-person character, specifically

WASD motion. This code will span two functions, namely, _Process and

_PhysicsProcess. _Process will be used to read input directly from the

keyboard, and _PhysicsProcess will convert that input to physics-based

movement for the KinematicBody. Consider the following _Process and

_PhysicsProcess functions in Listing 6-4.

Listing 6-4.  Reading Input and Moving the Kinematic Body

public override void _PhysicsProcess(float delta)

 {

 Vector3 TargetVel = Velocity;

 �TargetVel.x = MoveDirection.x * SpeedMultiplier *

MoveSpeed;

 �TargetVel.z = MoveDirection.z * SpeedMultiplier *

MoveSpeed;

 �Velocity = Velocity.LinearInterpolate(TargetVel,

Acceleration * delta);

 Velocity += Gravity * delta;

Chapter 6 Coding a First-Person Controller in C#

219

 �Velocity.y = MoveAndSlideWithSnap(Velocity,

Vector3.Down, Vector3.Up, true, 4, Mathf.

Deg2Rad(FloorMaxAngle)).y;

 }

// // Called every frame. 'delta' is the elapsed time since

the previous frame.

 public override void _Process(float delta)

 {

 �float Vertical = -Input.GetActionStrength(DownAxis) +

Input.GetActionStrength(UpAxis);

 �float Horizontal = Input.GetActionStrength(LeftAxis) +

-Input.GetActionStrength(RightAxis);

 MoveDirection = Vector3.Zero;

 �MoveDirection = HeadNode.Transform.basis.z * Vertical +

HeadNode.Transform.basis.x * Horizontal;

 MoveDirection = MoveDirection.Normalized();

 }

In Listing 6-4, the _Process event uses the Input.GetActionStrength

function to read input data from the keyboard – on both the horizontal and

vertical axes – and converts that to numerical data within the –1 to 1 range.

This data is then constructed as a Vector3 structure, representing object

velocity. The Transform.basis member expresses the three local axes of

an object (Up, Forward, and Right) in world space. These are expressed in

basis.y, basis.z, and basis.x, respectively.

Chapter 6 Coding a First-Person Controller in C#

220

Note  More information on Input.GetActionStrength can be found
at the Godot Documentation here: https://docs.godotengine.
org/en/3.2/classes/class_input.html#class-input-
method-get-action-strength.

More information on Transform.basis can be found at the
Godot Documentation here: https://docs.godotengine.
org/en/3.2/classes/class_transform.html#class-
transform-property-basis.

Next, the _PhysicsProcess event uses the Vector3.LinearInterpolate

function to smoothly transition the player’s current position to a new

position, based on our input velocity. The MoveAndSlideWithSnap

function will move an object along its velocity but consider important

physical properties about the world. Specifically, MoveAndSlideWithSnap

ensures that, firstly, the player moves around successfully without passing

through solid objects, like walls and enemies; secondly, the player

can move up or down ramps and inclines; and thirdly, the player will

move cleanly when standing on movable surfaces, like conveyor belts

or ascending platforms. The SlopeAngle and Floor Normal parameters

determine these behaviors.

Note  More information on MoveAndSlideWithSnap can be found
at the Godot Documentation here: https://docs.godotengine.
org/en/3.2/classes/class_kinematicbody.html#class-
kinematicbody-method-move-and-slide-with-snap.

Notice also that our code calculates gravity. That is, for each _

PhysicsProcess, our velocity is calculated and gravity applied to continually

pull an object downward. This code uses the Gravity vector defined in the

previous section.

Chapter 6 Coding a First-Person Controller in C#

https://docs.godotengine.org/en/3.2/classes/class_input.html#class-input-method-get-action-strength
https://docs.godotengine.org/en/3.2/classes/class_input.html#class-input-method-get-action-strength
https://docs.godotengine.org/en/3.2/classes/class_input.html#class-input-method-get-action-strength
https://docs.godotengine.org/en/3.2/classes/class_transform.html#class-transform-property-basis
https://docs.godotengine.org/en/3.2/classes/class_transform.html#class-transform-property-basis
https://docs.godotengine.org/en/3.2/classes/class_transform.html#class-transform-property-basis
https://docs.godotengine.org/en/3.2/classes/class_kinematicbody.html#class-kinematicbody-method-move-and-slide-with-snap
https://docs.godotengine.org/en/3.2/classes/class_kinematicbody.html#class-kinematicbody-method-move-and-slide-with-snap
https://docs.godotengine.org/en/3.2/classes/class_kinematicbody.html#class-kinematicbody-method-move-and-slide-with-snap

221

�Head Movement and Orientation
In the preceding section, the _PhysicsProcess function generated a velocity

vector for the player character, based primarily on direct keyboard input.

Pressing the W key or the Up arrow always moves the player forward,

that is, forward in the direction in which the camera is facing. This section

explores how to determine our look direction in code and how to control

it using mouse movement. Let’s start by reading input from the mouse,

specifically mouse movement on the horizontal and vertical axes. This

is important because Horizontal mouse movement (sliding left or right)

controls head rotation around the Y axis, while movement along the

Vertical direction controls head rotation around the X axis. The following

code can be added to our FPSControl class. See Listing 6-5.

Listing 6-5.  Reading Mouse Movement Input

public override void _Input(InputEvent motionUnknown)

{

 �InputEventMouseMotion motion = motionUnknown as

InputEventMouseMotion;

 if (motion != null)

 MouseMove = motion.Relative;

}

The _Input event is a native function of the Node class, which can

be overridden by any script to handle input events, like key presses and

mouse movement. This function will always fire when an input event

changes. Here, this function is used simply to record the Relative mouse

motion, that is, how much the mouse position has changed in screen space

since the previous input event. The MouseMove variable is simply a Vector2

class variable used to express the current mouse movement.

Chapter 6 Coding a First-Person Controller in C#

222

Note  More information on Input event can be found online here at
the Godot Documentation: https://docs.godotengine.org/
en/3.2/tutorials/inputs/inputevent.html.

Next, having collected mouse movement from our Input event, we can

re-code the _Process function as in Listing 6-6.

Listing 6-6.  Handling Head Rotation

 public override void _Process(float delta)

 {

 �float Vertical = -Input.GetActionStrength(DownAxis) +

Input.GetActionStrength(UpAxis);

 �float Horizontal = Input.GetActionStrength(LeftAxis) +

-Input.GetActionStrength(RightAxis);

 MoveDirection = Vector3.Zero;

 �MoveDirection = HeadNode.Transform.basis.z * Vertical +

HeadNode.Transform.basis.x * Horizontal;

 �MoveDirection = MoveDirection.Normalized();

if(MouseMove.Length() <= 0) return;

 �Vector2 MouseResult = MouseMove * MouseSensitvity * delta;

 �MouseResult = new Vector2(MouseResult.x, Mathf.

Clamp(MouseResult.y, -PitchLimit, PitchLimit));

 �HeadNode.Transform = HeadNode.Transform.

Rotated(Vector3.Up, -Mathf.Deg2Rad(MouseResult.x));

 �HeadNode.Transform = HeadNode.Transform.

Rotated(HeadNode.Transform.basis.x,

Mathf.Deg2Rad(MouseResult.y));

Chapter 6 Coding a First-Person Controller in C#

https://docs.godotengine.org/en/3.2/tutorials/inputs/inputevent.html
https://docs.godotengine.org/en/3.2/tutorials/inputs/inputevent.html

223

 �HeadNode.RotationDegrees = new Vector3(Mathf.

Clamp(HeadNode.RotationDegrees.x, -PitchLimit,PitchLimit),

 �HeadNode.RotationDegrees.y, HeadNode.

RotationDegrees.z);

 MouseMove = Vector2.Zero;

 }

The revised _Process function now supports head rotation based on

mouse movement. The complete head rotation is calculated from the

MouseResult Vector2 structure, where MouseResult.X expresses rotation

around the camera’s local Y axis and MouseResult.Y expresses rotation

around the camera’s local X axis. The MouseSensitivity floating-point

variable is a multiplier to either strengthen or weaken the rotation effect.

Notice the Spatial variable HeadNode references the Spatial parent of the

camera. This node rotates according to mouse input.

Head rotation is a multistep process, iterating through Pitch

(rotation around X) and Yaw (rotation around Y). First, the calculated

Pitch is constrained by the Mathf.Clamp function and a PitchLimit. The

PitchLimit variable is a Vector2 object whose X and Y components define

the minimum and maximum rotation in degrees, respectively, that the

head may rotate from its starting orientation around the local X axis. This

prevents the camera from rotating upside down, which would normally

happen if the player continually moved the mouse up or down without

stopping or reversing direction. Second, the Transform.Rotated function is

called to rotate the Camera (or more specifically, it’s empty parent) around

its local Y and then its local X. Notice the utility function Mathf.Deg2Rad

is called during this process, converting angles in degrees to radians, as

expected by Godot’s Rotated function.

Chapter 6 Coding a First-Person Controller in C#

224

Note  More information on Transform.Rotated can be found at the
Godot online documentation here: https://docs.godotengine.
org/en/3.2/classes/class_transform.html#class-
transform-method-rotated.

The final step is ensuring the Spatial.RotationDegrees variable

(a Vector3 object) is clamped within our acceptable pitch range.

RotationDegrees parallels Unity’s EulerAngles variable. It’s a Vector3

structure expressing Pitch, Yaw, and Roll – rotation around each local

axis. So by rotating the camera based on mouse movement as we have

done here, the CameraNode.basis.z variable always expresses our forward

direction in world space – the direction we’re facing.

�Jumping and Being Grounded
Our first-person player character must support a jumping behavior, that

is, the ability to jump in the air and then to fall down again by gravity.

Jumping introduces two important states for the player, namely, grounded

and not grounded. Grounded is true whenever the player is in contact with

the floor and false when not. Knowing when a character is grounded is

important for preventing double jumps – for not being able to jump while

you’re already jumping or falling and for enabling animations or character

behaviors that change depending on whether the character is jumping,

falling, or standing. For our character, a space bar press initiates a jump. To

code this, let’s first configure the relevant Input Action, as with movement,

by simply accessing the Project ➤ Project Settings menu and by adding a

Jump action from the Input Map, as demonstrated earlier in this chapter.

See Figure 6-16.

Chapter 6 Coding a First-Person Controller in C#

https://docs.godotengine.org/en/3.2/classes/class_transform.html#class-transform-method-rotated
https://docs.godotengine.org/en/3.2/classes/class_transform.html#class-transform-method-rotated
https://docs.godotengine.org/en/3.2/classes/class_transform.html#class-transform-method-rotated

225

In addition, let’s add three new variables: JumpPower, a float

describing the strength of our jump; Grounded, to describe whether we are

currently touching the ground or not; and Snap, which will be plugged into

the MoveAndSlideWithSnap function, inside _PhysicsProcess. When we’re

jumping, Snap should be Vector3.Zero to ensure we can lift off without

being connected to the floor, and when falling, it should be Vector3.Down,

to ensure we fall back to ground.

private bool Grounded = false;

[Export]

private float JumpPower = 15f;

private Vector3 Snap = Vector3.Down;

Figure 6-16.  Configuring the Jump Action…

Chapter 6 Coding a First-Person Controller in C#

226

Now we’ve added our variables, let’s refine the _Process function to

detect and handle a Jump situation. See Listing 6-7.

Listing 6-7.  Detecting a Jump

if(Input.IsActionJustPressed("move_jump") && Grounded)

{

 Velocity.y = JumpPower;

 Snap = Vector3.Zero;

}

else

 Snap = Vector3.Down;

A jump works like inverted gravity. Gravity pulls you down with

acceleration, and a jump pulls you up with deceleration. Listing 6-7

detects a jump press to initiate a jump, but it depends on the Grounded

variable being accurate, representing our contact status with the floor.

Godot provides a convenient function in the KinematicBody class to

detect floor contact, namely, IsOnFloor. This function returns true if

the KinematicBody is on the ground. The _PhysicsProcess function can

therefore be written in full as in Listing 6-8.

Listing 6-8.  Checking for Being Grounded

public override void _PhysicsProcess(float delta)

{

 Vector3 TargetVel = Velocity;

 Grounded = IsOnFloor();

 �TargetVel.x = MoveDirection.x * SpeedMultiplier *

MoveSpeed;

 �TargetVel.z = MoveDirection.z * SpeedMultiplier *

MoveSpeed;

Chapter 6 Coding a First-Person Controller in C#

227

 �Velocity = Velocity.LinearInterpolate(TargetVel,

Acceleration * delta);

 Velocity += Gravity * delta;

 �Velocity.y = MoveAndSlideWithSnap(Velocity, Snap,

FloorNormal, true, 4, Mathf.Deg2Rad(FloorMaxAngle)).y;

}

Excellent work! We now have a first-person controller that can move

and jump, and its head can rotate from mouse movement. Let’s move

forward and create walk and sprint modes.

Note  More information on the IsOnFloor function can be found at the
Godot documentation online here: https://docs.godotengine.
org/en/3.2/classes/class_kinematicbody.html#class-
kinematicbody-method-is-on-floor.

�Walking and Sprinting
Basically, sprinting can be coded as “fast walking.” Previously, our first-

person controller had a walk speed determining how quickly it moved

around the scene when horizontal and vertical input was given. Here, we’ll

adjust the code to support two different speeds depending on whether

the Shift key is being held down. A Shift key press should be configured as

an Action from the Input Map – “move_sprint.” To support running, we’ll

create a SpeedMultiplier float variable. A value of 1f is the “default speed.”

As a result, run functionality can be added to the _Process function with

the Listing 6-9.

Chapter 6 Coding a First-Person Controller in C#

https://docs.godotengine.org/en/3.2/classes/class_kinematicbody.html#class-kinematicbody-method-is-on-floor
https://docs.godotengine.org/en/3.2/classes/class_kinematicbody.html#class-kinematicbody-method-is-on-floor
https://docs.godotengine.org/en/3.2/classes/class_kinematicbody.html#class-kinematicbody-method-is-on-floor

228

Listing 6-9.  Add Sprint Functionality

if(Input.IsActionPressed("move_sprint"))

 SpeedMultiplier = RunMultiplier;

else

 SpeedMultiplier = 1f;

�Head Bobs and Sine Waves
This section adds our final, polish feature to the first-person controller,

specifically the Head Bob, that is, the smoothed, bobbing (up and down)

motion of the head as it naturally adjusts to character locomotion, walking

through the scene. A Head Bob is, simply put, a Y axis position adjustment,

back and forth that applies only when the character is moving. To

implement a Head Bob, we’ll use a Sine Wave. This is a smooth, repeated

curve that we can programmatically move through to determine the Y

position of the character’s head over time. This position can be generated

from just two float variables, Amplitude and Frequency. Amplitude

determines the maximum height of the curve and thereby the strength of

the bob. Frequency determines the smoothness of the effect, the ratio of

bobs to linear distance. Let’s get started with Head Bobbing by creating

three new class variables, which we’ll use later.

 [Export]

 public float HeadAmplitude, HeadFrequency = 1f;

 //Current Y-Pos of the head

 private float BobHeight = 0f;

Next, we’ll code a new and separate function to handle Head Bobbing

independently, which will be called every frame, inside _Process. See

Listing 6-10.

Chapter 6 Coding a First-Person Controller in C#

229

Listing 6-10.  Coding a Head Bob

private void HeadBob(float delta)

{

 Transform T = CamNode.Transform;

 if(MoveDirection.y != 0 && Grounded)

 {

 BobHeight += delta;

 BobHeight = Mathf.Wrap(BobHeight,0f,360f);

 �float LerpedHeight = Mathf.Sin(BobHeight *

HeadFrequency) * HeadAmplitude;

 T.origin.y = LerpedHeight;

 CamNode.Transform = T;

 return;

 }

 T.origin.y = Mathf.Lerp(T.origin.y, 0f, delta);

 CamNode.Transform = T;

}

Excellent! You’ve now coded a great looking, and fully tweakable, head

bob. Let’s break down the code here. Firstly, the HeadBob function accepts

a delta value, which can be passed from the _Process event. This is simply

a deltaTime value. Inside the _Process event, the HeadBob function begins

by checking our Grounded status to ensure we’re on the ground. It then

proceeds to wrap an incremental, numerical value between 0 and 360

into Mathf.Sin to retrieve a value along the since curve. This becomes the

LerpedHeight and updates the camera origin on Y.

Chapter 6 Coding a First-Person Controller in C#

230

�Completing the FPS Controller
So, we’re done. The first-person controller is now fully coded. Great job!

Godot doesn’t ship with a C# first-person controller, so we’ve just made an

important contribution. Check out the complete code for the controller in

Listing 6-11.

Listing 6-11.  The Complete First-Person Controller

using Godot;

using System;

public class FPSControl : KinematicBody

{

 [Export]

 �private string LeftAxis, RightAxis, UpAxis, DownAxis =

string.Empty;

 private Vector3 MoveDirection = Vector3.Zero;

 private Vector3 FloorNormal = Vector3.Up;

 [Export]

 public float MoveSpeed = 10f;

 [Export]

 public Vector3 Gravity = Vector3.Zero;

 private bool Grounded = false;

 [Export]

 private float Acceleration = 8f;

 [Export]

 private float JumpPower = 15f;

 public Vector3 Velocity;

Chapter 6 Coding a First-Person Controller in C#

231

 [Export]

 public float FloorMaxAngle = 45f;

 private Vector3 Snap = Vector3.Down;

 private Vector2 MouseMove = Vector2.Zero;

 [Export]

 public float MouseSensitvity = 10f;

 [Export]

 public NodePath HeadPath;

 private Spatial HeadNode;

 [Export]

 public NodePath CamPath;

 private Spatial CamNode;

 [Export]

 public float HeadAmplitude, HeadFrequency = 1f;

 private float BobHeight = 0f;

 [Export]

 public float PitchLimit = 45f;

 [Export]

 public float RunMultiplier = 1f;

 private float SpeedMultiplier = 1f;

 // �Called when the node enters the scene tree for the

first time.

 public override void _Ready()

 {

 HeadNode = GetNode(HeadPath) as Spatial;

 CamNode = GetNode(CamPath) as Spatial;

 Input.SetMouseMode(Input.MouseMode.Captured);

Chapter 6 Coding a First-Person Controller in C#

232

 }

 public override void _PhysicsProcess(float delta)

 {

 Vector3 TargetVel = Velocity;

 Grounded = IsOnFloor();

 �TargetVel.x = MoveDirection.x * SpeedMultiplier *

MoveSpeed;

 �TargetVel.z = MoveDirection.z * SpeedMultiplier *

MoveSpeed;

 �Velocity = Velocity.LinearInterpolate(TargetVel,

Acceleration * delta);

 Velocity += Gravity * delta;

 �Velocity.y = MoveAndSlideWithSnap(Velocity, Snap,

FloorNormal, true, 4, Mathf.Deg2Rad(FloorMaxAngle)).y;

 }

// // Called every frame. 'delta' is the elapsed time since

the previous frame.

 public override void _Process(float delta)

 {

 �float Vertical = -Input.GetActionStrength(DownAxis) +

Input.GetActionStrength(UpAxis);

 �float Horizontal = Input.GetActionStrength(LeftAxis) +

-Input.GetActionStrength(RightAxis);

 MoveDirection = Vector3.Zero;

 �MoveDirection = HeadNode.Transform.basis.z * Vertical +

HeadNode.Transform.basis.x * Horizontal;

 MoveDirection = MoveDirection.Normalized();

 HeadBob(delta);

Chapter 6 Coding a First-Person Controller in C#

233

 if(Input.IsActionJustPressed("move_jump") && Grounded)

 {

 Velocity.y = JumpPower;

 Snap = Vector3.Zero;

 }

 else

 Snap = Vector3.Down;

 if(Input.IsActionPressed("move_sprint"))

 SpeedMultiplier = RunMultiplier;

 else

 SpeedMultiplier = 1f;

 if(MouseMove.Length() <= 0) return;

 �Vector2 MouseResult = MouseMove * MouseSensitvity * delta;

 �MouseResult = new Vector2(MouseResult.x, Mathf.

Clamp(MouseResult.y, -PitchLimit, PitchLimit));

 �HeadNode.Transform = HeadNode.Transform.

Rotated(Vector3.Up, -Mathf.Deg2Rad(MouseResult.x));

 �HeadNode.Transform = HeadNode.Transform.

Rotated(HeadNode.Transform.basis.x, Mathf.

Deg2Rad(MouseResult.y));

 �HeadNode.RotationDegrees = new Vector3(Mathf.

Clamp(HeadNode.RotationDegrees.x,

-PitchLimit,PitchLimit),

 �HeadNode.RotationDegrees.y, HeadNode.

RotationDegrees.z);

 MouseMove = Vector2.Zero;

 }

Chapter 6 Coding a First-Person Controller in C#

234

 private void HeadBob(float delta)

 {

 Transform T = CamNode.Transform;

 if(MoveDirection.y != 0 && Grounded)

 {

 BobHeight += delta;

 BobHeight = Mathf.Wrap(BobHeight,0f,360f);

 �float LerpedHeight = Mathf.Sin(BobHeight *

HeadFrequency) * HeadAmplitude;

 T.origin.y = LerpedHeight;

 CamNode.Transform = T;

 return;

 }

 T.origin.y = Mathf.Lerp(T.origin.y, 0f, delta);

 CamNode.Transform = T;

 }

 public override void _Input(InputEvent motionUnknown)

 {

 �InputEventMouseMotion motion = motionUnknown as

InputEventMouseMotion;

 if (motion != null)

 MouseMove = motion.Relative;

 }

}

Chapter 6 Coding a First-Person Controller in C#

235

�Testing the Controller
You’ve built a first-person controller. Great! Now let’s test it. To do this,

create a completely new empty scene. And then add a selection of mesh

instances to it, boxes, cubes, cylinders, and others, to build some scenery.

Ensure that you generate static bodies for each mesh to enable collisions.

See Figure 6-17. Remember, the associated book companion files feature a

basic collision scene for your testing.

Figure 6-17.  Creating a World for Testing Our Controller…

Next, let’s add the player character. The first-person controller was

created as a completely separate scene, which means it can be dragged

and dropped into any other scene, just like a Unity Prefab or an Additive

Scene. See Figure 6-18.

Chapter 6 Coding a First-Person Controller in C#

236

Figure 6-18.  Adding the Player Scene

Once the player is added, you’ll need to set your starting properties for

the first-person controller. By selecting the player object, you can adjust its

fields from the inspector, customizing them for active scene, as opposed to

the original. See Figure 6-19.

Chapter 6 Coding a First-Person Controller in C#

237

Now you’re ready to try out the new first-person controller. Simply

save the scene, and then press the Play Scene button from the toolbar. See

Figure 6-20. Great work!

Figure 6-19.  Customizing the First-Person Controller

Figure 6-20.  Playing the First-Person Controller Scene…

Chapter 6 Coding a First-Person Controller in C#

238

�Summary
Congratulations. In this chapter, you coded a first-person controller in

C# for Godot, complete with run, jump, and head-control mechanics.

In reaching this far, you’ve seen varied examples for reading input,

both event-based and polling-based; ways to move objects during

_PhysicsProcess to account for physical interactions; how to use scenes as

Prefabs, nested inside other scenes; and how to create input actions and

more.

Chapter 6 Coding a First-Person Controller in C#

239© Alan Thorn 2020
A. Thorn, Moving from Unity to Godot, https://doi.org/10.1007/978-1-4842-5908-5_7

CHAPTER 7

Tips and Tricks
Previous chapters typically focused on specific groups of features within

Godot, such as 2D and 3D worlds. This chapter, by contrast, focuses on

how to achieve common tasks within Godot. The Unity documentation on

such tasks is extensive. But the Godot documentation is limited. So let’s

now take a look at some common tasks.

�How to Make Objects Look at the Cursor
You’ll often want objects – like the player or enemy characters – to face the

mouse cursor as it moves around the screen. Twin-stick shooter games

are a common example. In these games, the player normally controls

character movement – up, down, left, and right – using keyboard arrow

keys or gamepad presses; and they control player orientation through

mouse movement, specifically the player look direction. See Figure 7-1.

https://doi.org/10.1007/978-1-4842-5908-5_7#ESM

240

In short, we want to adjust an object’s rotation to face the mouse

cursor. Listing 7-1 demonstrates how a 2D Node can be rotated to face the

cursor at any time.

Listing 7-1.  Making an Object Look at the Cursor

using Godot;

using System;

public class LookMouse : Sprite

{

 private float StartRot = 0f;

 public override void _Ready()

 {

 StartRot = Rotation;

 }

Figure 7-1.  Controlling an Object’s Look Direction

Chapter 7 Tips and Tricks

241

 public override void _Process(float delta)

 {

 Vector2 CursorPos = GetLocalMousePosition();

 Rotation += CursorPos.Angle() + StartRot;

 �Rotation = Mathf.Wrap(Rotation, Mathf.Deg2Rad(-360),

Mathf.Deg2Rad(360));

 }

}

Listing 7-1 should be attached to any sprite node, and it’ll make the

node point toward the cursor. This code assumes that an object, by default,

is rightward facing. That is, its resting pose will see the character looking

toward the right, along the X axis. See Figure 7-2. If that’s not the case for

your object, then simply use the RotationDegrees field from the inspector

to rotate the node so that it’s rightward facing. The _Process event happens

on each frame, and it will call GetLocalMousePosition to retrieve the mouse

cursor location on screen, relative to the calling node.

Chapter 7 Tips and Tricks

242

�Singletons and Auto-Loading
Sometimes you’ll need – and depend upon – behaviors that should

exist in every scene. This may include player scores, player inventory,

health statistics, and other kinds of global data or functionality that

needs to be available almost everywhere. Now, when you’re creating

objects in different scenes – such as a player scene, or an NPC scene, or

an environment scene – it can be tricky to properly test these scenes in

isolation from each other without the needed global functionality being

present. In our use case here, we’ll write some code that simply prints the

names of nodes as they’re added to the scene for any scene anywhere.

If the added node belongs to a specific group, such as “Lava Pit,” then

we’ll connect up its OnEntered signal to a function so we can receive

notifications about when the player enters the lava pit, presumably to take

Figure 7-2.  Controlling an Object’s Look Direction

Chapter 7 Tips and Tricks

243

damage or be destroyed. Now, this behavior needs to exist in every scene

and to be present before any gameplay nodes are added to the scene, so

we can be sure of catching every subsequently added node that could be a

lava pit. We can achieve this behavior using Singletons configured to Auto-

Load. Singletons are simply globally accessible classes, of which there can

be only one instance simultaneously. The Auto-Load feature of Godot

ensures your Singleton classes are added automatically to each and every

scene at runtime, and further that’ll be added before other scene nodes.

Let’s start by creating a new empty scene with a single Node2D object. See

Figure 7-3.

Figure 7-3.  Creating an Empty Scene…

Next, let’s add the following script, as shown in Listing 7-2, and then

attach it to the root node of the scene. This code prints the name of each

newly added node and also connects its signal to an event handler if the

node belongs to the lava pit group.

Chapter 7 Tips and Tricks

244

Listing 7-2.  Print the Name of Newly Added Nodes

using Godot;

using System;

public class ObjectChecker : Node2D

{

 public override void _EnterTree()

 {

 //Subscribe to the node added signal

 GetTree().Connect("node_added", this, "NodeAdded");

 }

 public void NodeAdded(Node N)

 {

 //Node has been added, print name

 GD.Print("Added node: " + N.Name);

 �//Check group membership, and add to lava pit handler

if needed

 if(N.IsInGroup("LavaPit"))

 N.Connect("OnLavaEntered", this, "OnLavaEnter");

 }

 private void OnLavaEnter()

 {

 //Do damage stuff here

 }

}

Now save the scene and access the Project Settings. Choose Project ➤

Settings from the Application Menu, and access the AutoLoad tab. From

there, search for and find your SingletonScene, and click the Add button to

add it to the AutoLoad list. See Figure 7-4.

Chapter 7 Tips and Tricks

245

Great! Now your Singleton scene will automatically be added to any

and every scene at runtime prior to any other nodes. This means our code

will successfully detect the addition of new nodes, including nodes created

at scene startup, because they are added after the creation of our Singleton.

�Batch Renaming
Often, you’ll be working with scenes that contain many nodes. Some

of these nodes will be manually created and named. But some will be

imported from mesh files or auto-generated by add-ons, and these nodes

feature default naming. In these instances, you could have a ton of nodes to

rename if you want a nice, neat naming convention applied to all nodes in

the scene tree. Additionally, you may need to refer to nodes by name using

Figure 7-4.  Adding an Autoload Scene…

Chapter 7 Tips and Tricks

246

the GetNode or FindNode functions, and you’ll probably want memorable,

meaningful, and structured names for your nodes. You can rename

nodes individually by right-clicking a node and choosing Rename from

the context menu. However, Godot also features a Batch Rename tool for

renaming multiple nodes in one operation. To access this, select multiple

nodes in the scene tree, and right-click. The context menu should display a

Batch Rename option. If it doesn’t, you can also access the Batch Rename

tool by pressing Ctrl+F2 on a PC or Cmd+F2 on a Mac. See Figure 7-5.

Figure 7-5.  Accessing the Batch Rename Tool

After accessing the Batch Rename tool, you’ll be presented with an

options menu. This allows you to specify object names, and naming

patterns, to search for in the selection and then rename based on specific

criteria. See Figure 7-6. In this example, the aim is to rename all objects

consistently and to append sequential numbering.

Chapter 7 Tips and Tricks

247

When you’re ready to apply Batch Rename to the selected objects, just

click the Rename button. When completed in this example, the renamed

objects are as shown in Figure 7-7.

Figure 7-6.  Accessing the Batch Rename Tool

Chapter 7 Tips and Tricks

248

�Textures As Masks
Consider Figure 7-8. This shows two separate image files. One is a brick

texture, and the other is a simple black and white outline. Sometimes,

you’ll have two separate textures like this in Godot, and you’ll want to use

the shape image as a frame or space inside which the other image should

display. The outline or shape image is known as the Mask – or sometimes

the Stencil.

Figure 7-7.  Renamed Objects

Chapter 7 Tips and Tricks

249

Let’s see how we can create a dynamic mask inside Godot – a mask

that can be moved, changed, or updated over time, if we need it to. Start by

importing two images into Godot; for our example here, I’ll use the brick

image and the black and white outline. See Figure 7-9. Then create a new

scene and add the brick image as a Sprite texture.

Figure 7-8.  Importing Image Masks. The Black Mask Should Import
As White Instead. Black Is Used Here for Clarity

Chapter 7 Tips and Tricks

250

Next, add a 2D light node to the scene. Right-click the root and choose

Add Node, and then select Light2D. See Figure 7-10. The act will act like a

projector for the mask.

Figure 7-9.  Importing Images into Godot and Setting Up a 2D Scene.
Bricks Are Shown Here As a Sprite

Chapter 7 Tips and Tricks

251

After adding the Light2D node, load your mask texture into the Texture

slot from the Inspector, and then position the light over the brick texture.

You’ll notice that, by default, the light brightens the texture behind. See

Figure 7-11.

Figure 7-10.  Adding a Light2D to the Scene

Chapter 7 Tips and Tricks

252

Now select the brick texture in the background, and then add a new

CanvasItemMaterial from the Material slot in the Inspector. This material

will control how the texture should interact with intersecting light. See

Figure 7-12.

Figure 7-11.  Assign a Texture to a Light2D Node…

Chapter 7 Tips and Tricks

253

After creating the CanvasItemMaterial, change the Light Mode to Light

Only. When you do this, the texture changes showing only the areas within

the light texture and effectively creating a mask. However, the pixels still

seem slightly washed out. We’ll fix this in the next step. See Figure 7-13.

Figure 7-12.  Assigning a New CanvasItemMaterial to the Texture

Chapter 7 Tips and Tricks

254

We can eliminate the washed out look by selecting the Light2D node and

by changing its Mode to Mix. Now, the pixel saturation will be restored, and

the texture behind will continue to be masked even after you move the Light

around! Great. You’ve just created an effective 2D Mask. See Figure 7-14.

Figure 7-13.  Assigning a Light Only Mode to a Canvas Material
Produces a Mask

Chapter 7 Tips and Tricks

255

�Type-Independent Function Calling
As you develop real-world games with Godot, you’ll make lots of classes

and functions and properties. As your projects develop in complexity,

you’ll need to call different functions on different classes, but it can

sometimes be difficult or messy to ascertain a Node’s type in advance.

That’s where Godot’s HasMethod and Call functions are useful. These

functions are part of the ultimate ancestor Object class and so are

supported by every object. This means you can try to call a function of a

specified name on any object using the following code in Listing 7-3.

Listing 7-3.  Calling a Named Function

if(MyNode.HasMethod("Explode"))

 MyNode.Call("Explode");

Figure 7-14.  Completing the 2D Mask

Chapter 7 Tips and Tricks

256

�Progress Bars and Loading
Large scenes with many assets – such as an RPG town or a village – can

take quite a while to load fully. Having your game suspend or hang for long

periods is a frustrating experience. Consequently, it makes sense to load

larger scenes in a separate thread, or process, to avoid stalling the game

entirely. And you may show a progress bar or loading screen to express

the loading progress. You can achieve that in Godot easily using the

TextureProgress node and a simple script. Simply create a new 2D scene

and create a TextureProgress node. See Figure 7-15.

Figure 7-15.  Setting Up a Texture Progress Node…

Next, attach the following script, as shown in Listing 7-4, to the

TextureProgress node. This script will load the specified scene and update

its progress in the bar.

Chapter 7 Tips and Tricks

257

Listing 7-4.  Level Loading

using Godot;

using System;

public class TextureProgressMain : TextureProgress

{

 [Export]

 public string ScenePath;

 [Export]

 public uint MinimumTime = 2000;

 private uint TimeStart = 0;

 private Thread ThisThread = null;

 private void ThreadLoad(string ResPath)

 {

 �ResourceInteractiveLoader RIL = ResourceLoader.

LoadInteractive(ResPath);

 if(RIL==null)return;

 int StageCount = 0;

 while(true)

 {

 uint TimeElapsed = OS.GetTicksMsec() - TimeStart;

 �float TimeProgress = (float)TimeElapsed/(float)

(MinimumTime*1000f)*(float)MaxValue;

 if(StageCount < RIL.GetStageCount())

 StageCount = RIL.GetStage();

 �float LoadProgress = (float)StageCount/(float)RIL.

GetStageCount()*(float)MaxValue;

 �CallDeferred("set_value", (TimeProgress<LoadProgress)

?TimeProgress:LoadProgress);

Chapter 7 Tips and Tricks

258

 //Take a break

 OS.DelayMsec(100);

 if(Value>=MaxValue)

 {

 �CallDeferred("ThreadDone", RIL.GetResource() as

PackedScene);

 return;

 }

 if(StageCount >= RIL.GetStageCount())

 continue;

 //Poll current stats

 Error PollData = RIL.Poll();

 if(PollData == Error.FileEof)

 {

 StageCount = RIL.GetStageCount();

 continue;

 }

 if(PollData != Error.Ok)

 {

 GD.Print("Error Loading");

 return;

 }

 }

 }

 private void ThreadDone(PackedScene R)

 {

 ThisThread.WaitToFinish();

 SceneTree ST = GetTree();

Chapter 7 Tips and Tricks

259

 Node Root = R.Instance();

 ST.CurrentScene.Free();

 ST.CurrentScene = null;

 ST.Root.AddChild(Root);

 ST.CurrentScene = Root;

 }

 public override void _Ready()

 {

 TimeStart = OS.GetTicksMsec();

 ThisThread = new Thread();

 ThisThread.Start(this, "ThreadLoad", ScenePath);

 }

}

When this script is attached to the TextureProgress node, several

parameters are exposed from the Inspector, as shown in Figure 7-16.

Figure 7-16.  Controlling Scene Loading

Chapter 7 Tips and Tricks

260

This script accepts two parameters. The first is Scene Path, which is the

resource path to the scene, which should be loaded. The second is Minimum

Time. This specifies a minimum amount of time, in seconds, for which the

loading bar will show. In cases where a scene loads incredibly fast, this will

prevent the loading screen from simply flickering into view briefly and then

disappearing. The progress bar will represent either the loading progress of

the scene or the progress of the minimum time, whichever is the slowest.

�How to Save Game States
Save states let gamers retain their progress, resuming from earlier sessions.

With save states, your game remembers how much progress you’ve made.

There are many different ways to code save states, and this section looks at

JSON – a text-based language for saving game data easily and quickly. Let’s

start by considering the following sample scene, shown in Figure 7-17 and

included in the book companion files.

Figure 7-17.  A Sample Scene with Three Zombies

Chapter 7 Tips and Tricks

261

The sample scene features three zombie characters. We’ll save their

position and color, allowing it to be restored in later play sessions. You

can, of course, save any data you want. To get started, we’ll need to create

two script files: one to be attached to each object that can be saved and

the other which is a global script that manages the save and load process.

First, select all objects to be saved – the zombies in our example – and add

them to the same group. Here, I’ve created a group called Persistent. See

Figure 7-18.

Next, the following script should be attached to each sprite to be saved.

This script file is intended to be called, or invoked, by the Save Game Manager.

It serves only two purposes. First, it converts its properties – like position and

color – into a JSON string for Save operations. And second, it converts a JSON

string back into properties for Load operations. These two critical processes

effectively convert an object to and from JSON. See Listing 7-5.

Figure 7-18.  Adding Zombies to a Persistent Group

Chapter 7 Tips and Tricks

262

Listing 7-5.  Serializing a Sprite Object

using Godot;

using System;

public class SerializeNode : Sprite

{

 public Godot.Collections.Dictionary<string, object> Save()

 {

 �return new Godot.Collections.Dictionary<string,

object>()

 {

 {"Filename", Filename},

 {"Parent", GetParent().GetPath()},

 {"PositionX", Position.x},

 {"PositionY", Position.y},

 {"ModColor", Modulate.ToHtml(true)}

 };

 }

 �public void Load(Godot.Collections.Dictionary<string,

object> SavedData)

 {

 �Position = new Vector2((float)

SavedData["PositionX"],(float)SavedData["PositionY"]);

 Modulate = new Color((string)SavedData["ModColor"]);

 }

}

Next, create a Node2D object, and attach a new script (SaveState),

which can be used to invoke saving and loading behavior for each object.

See Listing 7-6.

Chapter 7 Tips and Tricks

263

Listing 7-6.  Save States

using Godot;

using System;

public class SaveState : Node

{

 //Name of file for saving and loading

 public string SGDName = "GameData.sav";

 public void Save()

 {

 //Open file for writing

 File SaveFile = new File();

 SaveFile.Open("user://"+SGDName, File.ModeFlags.Write);

 //Find all objects in scene to be saved

 �Godot.Collections.Array Nodes = GetTree().

GetNodesInGroup("persistent");

 //For each object, get its JSON representation

 foreach(Node N in Nodes)

 {

 if(N.Filename.Empty())

 continue;

 if(!N.HasMethod("Save"))

 continue;

 //Save JSON to file

 var SaveData = N.Call("Save");

 SaveFile.StoreLine(JSON.Print(SaveData));

 }

 //Close file

 SaveFile.Close();

 }

Chapter 7 Tips and Tricks

264

 public void Load()

 {

 File SaveFile = new File();

 if(!SaveFile.FileExists("user://"+SGDName))

 return;

 //Open file for reading data

 SaveFile.Open("user://"+SGDName, File.ModeFlags.Read);

 //Remove any duplicate objects already in scene

 �Godot.Collections.Array Nodes = GetTree().

GetNodesInGroup("persistent");

 foreach(Node N in Nodes)

 N.QueueFree();

 //Loop through file

 while(SaveFile.GetPosition() < SaveFile.GetLen())

 {

 string Line = SaveFile.GetLine();

 if(Line.Empty())break;

 �Godot.Collections.Dictionary NodeData = (Godot.

Collections.Dictionary)JSON.Parse(Line).Result;

 //Load objects back into scene

 �PackedScene PS = (PackedScene)ResourceLoader.

Load(NodeData["Filename"].ToString());

 Node NewScene = PS.Instance();

 �Node ParentNode = GetNode(NodeData["Parent"].

ToString())as Node;

 ParentNode.AddChild(NewScene);

Chapter 7 Tips and Tricks

265

 if(NewScene.HasMethod("Load"))

 NewScene.Call("Load", NodeData);

 }

 //Close file

 SaveFile.Close();

 }

 //Test functionality. Can be removed

 public override void _UnhandledInput(InputEvent @event)

 {

 if (@event is InputEventKey eventKey)

 {

 //Pressing S will save

 �if (eventKey.Pressed && eventKey.Scancode == (int)

KeyList.S)

 {

 Save();

 return;

 }

 //Pressing L will load

 �if (eventKey.Pressed && eventKey.Scancode == (int)

KeyList.L)

 {

 Load();

 return;

 }

 }

 }

}

Chapter 7 Tips and Tricks

266

Excellent. Together, these two scripts support load and saving behavior.

Be sure to check out the project included in the book companion files.

�Summary
Congratulations! You’ve now completed the final chapter and the book.

This chapter presented a selection of super-handy tips and tricks for

achieving common gameplay behaviors in Godot using C#.

Chapter 7 Tips and Tricks

267© Alan Thorn 2020
A. Thorn, Moving from Unity to Godot, https://doi.org/10.1007/978-1-4842-5908-5

Index

A
Auto-loading, see Singletons

B
Batch renaming tool, 246–249

C, D, E
CanvasItemMaterial function, 252
C# scripting

default code editor, 13
editor settings window, 11, 12
Godot editor features, 9
integrated text editor, 8
limitations, 7, 8
OmniSharp extension, 10
project creation, 11
screenshots, 9, 10
scripting languages (see

Scripting languages)

F
First-person controller

camera scene
character rig, 209
CollisionShape node, 205, 206

context menu, 204
Kinematic Body node, 204
node creation window, 208
root node menu, 202
3D Scene creation, 203

creation, 202
direction, 215–217
FPSControl.cs script, 213
gravity vector, 217
head bob/sine

wave, 228, 229
head movement and

orientation, 221–224
input actions, 213–215
jumping/falling, 224–227
mouse movements, 201
player movement and key

bindings
movement, 209–212

_Process and _PhysicsProcess
functions, 218–220

source code, 230–234
sprinting/fast walking, 227
testing

active scene, 237
collision scene, 235
player scene, 236
toolbar, 237

https://doi.org/10.1007/978-1-4842-5908-5#ESM

268

Fundamentals, 15
file system panel, 50
import file configuration, 52
project (see Project creation)
resources, 50–52
terminology, 16

G
Game mode

active scene, 45
camera object creation, 47
changing main scene, 44
free-floating Window, 45, 46
main scene Window, 44
play mode, 43
remote view, 49
sync scene changes, 48
unity editor, 41, 42

GetActionStrength function,
214, 215

GetNode function, 216
GIProbe system

baked scene, 193
error messages, 193, 194
interior check box, 194, 195
lower-quality shadows,

195, 196
mesh instances, 190
node dialog, 190, 191
reflection

extents, 198
post-processing, 199, 200
probe node, 197

update mode, 198, 199
resizing node, 192
subdivisions, 196
WorldEnvironment

node, 188
Global Illumination (GI)

bake section, 178
BakedLightmap, 181
bake section, 179
contact shadows, 186
default window, 173
Diffuse Interreflection, 172
GIProbe system (see GIProbe

system)
glow effect, 186, 187
indirect illumination, 182
light baked scene, 188
Lightmap

adding node, 178
baking process, 180, 181
Texels, 179, 180
UVs creation, 177
viewport menu, 182

Omni light, 175
post-processing options,

183, 184
shadow casting, 175, 176
subsurface scatter, 172
Tonemapping options, 184, 185
WorldEnvironment node,

174, 183
Godot game engine, 1

C# (see C# scripting)
download page, 2

INDEX

269

evolution, 5
free of cost, 3
game conferences, 6
interactive experiences, 6
open source, 4
support system, 5
use, 3
versions, 2

H
HeadBob function, 229, 230
Hello World programs

code execution, 61, 62
compiled code, 65, 66
load option, 64
Output Window, 61, 67
scene hierarchy, 63
selected node, 65
toolbar, 66

High Definition Render Pipeline
(HDRP), 161

I, J
Indirect illumination, 182
Input.GetActionStrength

function, 219

K
Key bindings

creation, 211
forward, backward, left/right, 212

input map tab, 209
keyboard press, 212
project settings dialog, 211

L
Local vs. World coordinate

space, 41, 42

M
Masks

outline/shape image,
248, 249

2D scene
CanvasItemMaterial, 253
canvas material

produces, 254
import image, 250
level completed, 255
node assignment, 252
projector, 250, 251

Materials
context menu, 170, 171
FileSystem Window, 168
FileSystem panel, 169
red material, 170
resources, 168
Resource Selection Window,

171, 172
SpatialMaterial node, 169

Mathf.Clamp function, 223
MoveAndSlideWithSnap

function, 220

INDEX

270

N
.Net

compilation error, 59
C# script file, 58
FileSystem panel, 55, 56
generating Godot file, 57
retargeting pack, 61
script resource, 55
spatial object, 55
VS build tools, 60

Nodes/Scenes mode
Blender, 30
cube creation, 26, 27
MeshInstance node, 28, 30
mesh property, 31, 32
new cube mesh asset, 31
node creation window, 28
spatial node, 30
transformation

properties, 32, 33

O
Object’s Look Direction, 240–243

P, Q, R
_PhysicsProcess function, 226
PitchLimit function, 223
Player character (2D)

AnimatedSprite node, 114, 125
animation frames buttons, 116
Camera2D node, 126
character animations, 119

circle collider, 122
collision shape creation, 120, 121
configuration, 127
creation, 112, 113
C# Script, 123
frames, 115
kinematic body, 113
master scene, 127, 128
recentering option, 122
source code, 123, 124
sprite frames, 114, 115
Sprite Frames Window, 117
walk animation, 118

_Process function, 222, 223
Process and _PhysicsProcess

functions, 218–220
Progress bar/loading

screen, 256–260
Project creation

computer’s file system, 16
dialog window, 17
editor interface, 20, 21
folder button, 18, 19
local vs. world coordinate

space, 41, 42
navigation and transformation

control configuration, 34
first-person mode, 37, 38
frame/orbit, 36, 37
pan, 36
select Tool, 39
translate, rotate, and scale

tools, 40
viewport zooming, 35

INDEX

271

new projects tab, 17
scenes (see Scenes mode)
standby mode, 21
Unity Hub, 17

S
Save game states

persistent group, 261
source code, 260–262
sprite object

serialization, 262
zombie characters, 261

Scenes mode
application menu, 24
game (see Game mode)
GameObjects, 21
nodes (see Nodes/Scenes)
root node, 22
spatial nodes, 24
3D scene root node, 23
tree tab, 22
.tscn format, 25
2D coordinate system, 25, 26

Scripting languages, 53
classes and function, 53
detecting objects

area node creation, 89
box shape field, 91
collision shape node, 90
configuration, 95
C# script, 94
cube collision area, 91
event handling, 95

message printing, 96
node creation, 88
Receiver Method, 94
RigidBody node, 92
scene tree panel, 88
Signals Connector Window,

93, 94
GetComponent/GetComponents,

80, 81
group vs. tag

Group editor, 75, 76
nodes, 77
Ogre NPCs/NPC

group, 76, 82
related objects, 73, 74
SaveData method, 78
SceneTree.CallGroup

function, 78
selected node, 77

Hello World programs, 61–67
inspector, 79, 80
mono support, 54
.Net/build problem, 55–61
nodes

class hierarchy, 68
FindNode function, 70, 71
GetNode function/

GetNodeOrNull
version, 71–73

inheritance
connection, 68–70

NodePath, 83–85
SceneTree, 67
sibling node, 73

INDEX

272

object move smoothly, 85, 86
Object.Set function, 81
object’s position, 83–85
read player input

adding fire axis, 100
application menu, 98, 99
button input, 99
horizontal and vertical

values, 102
Input.GetAxis function, 101
IsActionJustReleased

function, 101
space bar key, 100

reference nodes, 82–84
typecasting nodes, 81
Unity vs. Godot C#, 54
variables accessible, 79, 80
viewing spatial nodes, 96–98

Singletons, 243–246

T
Terminology

Unity vs. Godot, 16
Texture, see Masks
TextureProgress node, 256
3D Lighting systems

Directional Light node, 165, 166
fundamentals

ambient light sections, 164
configuration, 164
cube/plane scene setup, 162
MeshInstance nodes, 162

WorldEnvironment node, 163
GI (see Global Illumination (GI))
global illumination and light

baking, 161
materials (see Materials)
Omni Light, 167
photo-realistic game, 161
Spot Lights, 166, 167

Tilemaps
auto-tile icon, 137
auto-tile region, 135
autotile walkable region, 134, 136
auto-tile wall, 138
configuration, 132
FileSystem panel, 130
level completed, 139
object creation, 129
resource, 130
scene drawing, 133
snapping tool, 131
Tile Map node, 132
Tileset Window, 130
walkable regions, 136

Timers/countdown
configuration, 158
level completed, 159
level reloading code, 158
timeout behaviors, 159
timer node, 157

Transform.Rotated function, 223
2D game

configuration
application menu, 106
keyboard input, 110

Scripting languages (cont.)

INDEX

273

rendering optimizations, 109
stretch properties, 108

features, 105
game collection, 106
importing assets, 111–113
lighting

CanvasModulate node, 148
Light2D texture, 151
occluder polygons, 149, 150
operational code, 151

pickups
Area2D node, 153
CollisionShape node, 153
configuration, 153
gamepad texture, 152
level completed, 155, 156
level scene, 155
object collection, 154
StaticBody/Kinematic

node, 152
player character (see Player

character (2D))
Tilemaps, 128–139

timer countdown, 156–159
world collisions, 139–148

Type-independent function, 255

U, V
Unity terminology, 1

W, X, Y, Z
World collisions

grid snap option, 145, 146
increments (grid), 146
MoveAndSlide function, 141, 142
node’s render order, 141
non-movable objects, 143
player collisions, 148
scene static body, 144
scene tree panel, 139
wall collision polygon, 147

World Coordinate Space, see Local
vs. World coordinate space

WorldEnvironment node, 165

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Chapter 1: Introducing Godot: Why Migrate?
	Getting and Installing Godot
	Why Use Godot?
	Godot Is Free
	Godot Is Open Source
	Godot Is Evolving
	Godot Is Supported
	Godot Is About Games and Experiences

	Godot and C#
	Getting Started with C# in Godot
	Summary

	Chapter 2: Godot Fundamentals
	Godot Projects
	Editor Interface
	Creating and Editing Scenes
	Scenes and Nodes – Adding a Cube
	Navigation and Transformation
	Zoom
	Pan
	Frame and Orbit
	First-Person Controls
	Selecting, Moving, Rotating, and Scaling Nodes

	Local and World Space Transforms
	Scene vs. Game Mode
	Resources
	Summary

	Chapter 3: Scripting with C# in Godot: Common Tasks
	.NET and Build Problems with C#
	Building a Hello World Program
	Working with Nodes
	Iterating Through Child Nodes
	Finding Nodes by Name
	Finding Nodes by Path
	Godot Groups vs. Unity Tags
	Accessing Variables in the Inspector
	Variables As Properties – GetComponent?
	NodePaths and Node References
	Set an Object’s Position
	Make an Object Move Smoothly
	Make an Object Rotate Smoothly
	Detecting When an Object Enters a Trigger
	Viewing Spatial Nodes
	Reading Player Input
	Summary

	Chapter 4: Making a 2D Game
	Configuring a 2D Project
	Importing Assets
	Creating the Player Character
	Building a Level – Tilemaps and Tilesets
	World Collisions
	2D Lighting
	Pickups
	Timers and Countdowns
	Summary

	Chapter 5: 3D Lighting and Materials
	Lighting Fundamentals
	Exploring Light Types
	Materials
	Global Illumination – Light Baking
	Global Illumination – GI Probes
	Summary

	Chapter 6: Coding a First-Person Controller in C#
	Getting Started – Creating a Camera Scene
	Player Movement and Key Bindings
	Reading Input Actions for Movement
	Establishing Move Direction
	Applying Gravity
	Completing Player Movement
	Head Movement and Orientation
	Jumping and Being Grounded
	Walking and Sprinting
	Head Bobs and Sine Waves
	Completing the FPS Controller
	Testing the Controller
	Summary

	Chapter 7: Tips and Tricks
	How to Make Objects Look at the Cursor
	Singletons and Auto-Loading
	Batch Renaming
	Textures As Masks
	Type-Independent Function Calling
	Progress Bars and Loading
	How to Save Game States
	Summary

	Index

